1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass munges the code in the input function to better prepare it for
10 // SelectionDAG-based code generation. This works around limitations in it's
11 // basic-block-at-a-time approach. It should eventually be removed.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/ProfileSummaryInfo.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/CodeGen/Analysis.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/SelectionDAGNodes.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetPassConfig.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Argument.h"
44 #include "llvm/IR/Attributes.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DerivedTypes.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GetElementPtrTypeIterator.h"
53 #include "llvm/IR/GlobalValue.h"
54 #include "llvm/IR/GlobalVariable.h"
55 #include "llvm/IR/IRBuilder.h"
56 #include "llvm/IR/InlineAsm.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/IntrinsicsAArch64.h"
63 #include "llvm/IR/LLVMContext.h"
64 #include "llvm/IR/MDBuilder.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Statepoint.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/IR/ValueHandle.h"
74 #include "llvm/IR/ValueMap.h"
75 #include "llvm/InitializePasses.h"
76 #include "llvm/Pass.h"
77 #include "llvm/Support/BlockFrequency.h"
78 #include "llvm/Support/BranchProbability.h"
79 #include "llvm/Support/Casting.h"
80 #include "llvm/Support/CommandLine.h"
81 #include "llvm/Support/Compiler.h"
82 #include "llvm/Support/Debug.h"
83 #include "llvm/Support/ErrorHandling.h"
84 #include "llvm/Support/MachineValueType.h"
85 #include "llvm/Support/MathExtras.h"
86 #include "llvm/Support/raw_ostream.h"
87 #include "llvm/Target/TargetMachine.h"
88 #include "llvm/Target/TargetOptions.h"
89 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
90 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
91 #include "llvm/Transforms/Utils/Local.h"
92 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
93 #include "llvm/Transforms/Utils/SizeOpts.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstdint>
97 #include <iterator>
98 #include <limits>
99 #include <memory>
100 #include <utility>
101 #include <vector>
102 
103 using namespace llvm;
104 using namespace llvm::PatternMatch;
105 
106 #define DEBUG_TYPE "codegenprepare"
107 
108 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
109 STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
110 STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
111 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
112                       "sunken Cmps");
113 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
114                        "of sunken Casts");
115 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
116                           "computations were sunk");
117 STATISTIC(NumMemoryInstsPhiCreated,
118           "Number of phis created when address "
119           "computations were sunk to memory instructions");
120 STATISTIC(NumMemoryInstsSelectCreated,
121           "Number of select created when address "
122           "computations were sunk to memory instructions");
123 STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
124 STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
125 STATISTIC(NumAndsAdded,
126           "Number of and mask instructions added to form ext loads");
127 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
128 STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
129 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
130 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
131 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
132 
133 static cl::opt<bool> DisableBranchOpts(
134   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
135   cl::desc("Disable branch optimizations in CodeGenPrepare"));
136 
137 static cl::opt<bool>
138     DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
139                   cl::desc("Disable GC optimizations in CodeGenPrepare"));
140 
141 static cl::opt<bool> DisableSelectToBranch(
142   "disable-cgp-select2branch", cl::Hidden, cl::init(false),
143   cl::desc("Disable select to branch conversion."));
144 
145 static cl::opt<bool> AddrSinkUsingGEPs(
146   "addr-sink-using-gep", cl::Hidden, cl::init(true),
147   cl::desc("Address sinking in CGP using GEPs."));
148 
149 static cl::opt<bool> EnableAndCmpSinking(
150    "enable-andcmp-sinking", cl::Hidden, cl::init(true),
151    cl::desc("Enable sinkinig and/cmp into branches."));
152 
153 static cl::opt<bool> DisableStoreExtract(
154     "disable-cgp-store-extract", cl::Hidden, cl::init(false),
155     cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
156 
157 static cl::opt<bool> StressStoreExtract(
158     "stress-cgp-store-extract", cl::Hidden, cl::init(false),
159     cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
160 
161 static cl::opt<bool> DisableExtLdPromotion(
162     "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
163     cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
164              "CodeGenPrepare"));
165 
166 static cl::opt<bool> StressExtLdPromotion(
167     "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
168     cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
169              "optimization in CodeGenPrepare"));
170 
171 static cl::opt<bool> DisablePreheaderProtect(
172     "disable-preheader-prot", cl::Hidden, cl::init(false),
173     cl::desc("Disable protection against removing loop preheaders"));
174 
175 static cl::opt<bool> ProfileGuidedSectionPrefix(
176     "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
177     cl::desc("Use profile info to add section prefix for hot/cold functions"));
178 
179 static cl::opt<bool> ProfileUnknownInSpecialSection(
180     "profile-unknown-in-special-section", cl::Hidden, cl::init(false),
181     cl::ZeroOrMore,
182     cl::desc("In profiling mode like sampleFDO, if a function doesn't have "
183              "profile, we cannot tell the function is cold for sure because "
184              "it may be a function newly added without ever being sampled. "
185              "With the flag enabled, compiler can put such profile unknown "
186              "functions into a special section, so runtime system can choose "
187              "to handle it in a different way than .text section, to save "
188              "RAM for example. "));
189 
190 static cl::opt<unsigned> FreqRatioToSkipMerge(
191     "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
192     cl::desc("Skip merging empty blocks if (frequency of empty block) / "
193              "(frequency of destination block) is greater than this ratio"));
194 
195 static cl::opt<bool> ForceSplitStore(
196     "force-split-store", cl::Hidden, cl::init(false),
197     cl::desc("Force store splitting no matter what the target query says."));
198 
199 static cl::opt<bool>
200 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
201     cl::desc("Enable merging of redundant sexts when one is dominating"
202     " the other."), cl::init(true));
203 
204 static cl::opt<bool> DisableComplexAddrModes(
205     "disable-complex-addr-modes", cl::Hidden, cl::init(false),
206     cl::desc("Disables combining addressing modes with different parts "
207              "in optimizeMemoryInst."));
208 
209 static cl::opt<bool>
210 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
211                 cl::desc("Allow creation of Phis in Address sinking."));
212 
213 static cl::opt<bool>
214 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true),
215                    cl::desc("Allow creation of selects in Address sinking."));
216 
217 static cl::opt<bool> AddrSinkCombineBaseReg(
218     "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
219     cl::desc("Allow combining of BaseReg field in Address sinking."));
220 
221 static cl::opt<bool> AddrSinkCombineBaseGV(
222     "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
223     cl::desc("Allow combining of BaseGV field in Address sinking."));
224 
225 static cl::opt<bool> AddrSinkCombineBaseOffs(
226     "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
227     cl::desc("Allow combining of BaseOffs field in Address sinking."));
228 
229 static cl::opt<bool> AddrSinkCombineScaledReg(
230     "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
231     cl::desc("Allow combining of ScaledReg field in Address sinking."));
232 
233 static cl::opt<bool>
234     EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
235                          cl::init(true),
236                          cl::desc("Enable splitting large offset of GEP."));
237 
238 static cl::opt<bool> EnableICMP_EQToICMP_ST(
239     "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false),
240     cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion."));
241 
242 static cl::opt<bool>
243     VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false),
244                      cl::desc("Enable BFI update verification for "
245                               "CodeGenPrepare."));
246 
247 static cl::opt<bool> OptimizePhiTypes(
248     "cgp-optimize-phi-types", cl::Hidden, cl::init(false),
249     cl::desc("Enable converting phi types in CodeGenPrepare"));
250 
251 namespace {
252 
253 enum ExtType {
254   ZeroExtension,   // Zero extension has been seen.
255   SignExtension,   // Sign extension has been seen.
256   BothExtension    // This extension type is used if we saw sext after
257                    // ZeroExtension had been set, or if we saw zext after
258                    // SignExtension had been set. It makes the type
259                    // information of a promoted instruction invalid.
260 };
261 
262 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
263 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>;
264 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
265 using SExts = SmallVector<Instruction *, 16>;
266 using ValueToSExts = DenseMap<Value *, SExts>;
267 
268 class TypePromotionTransaction;
269 
270   class CodeGenPrepare : public FunctionPass {
271     const TargetMachine *TM = nullptr;
272     const TargetSubtargetInfo *SubtargetInfo;
273     const TargetLowering *TLI = nullptr;
274     const TargetRegisterInfo *TRI;
275     const TargetTransformInfo *TTI = nullptr;
276     const TargetLibraryInfo *TLInfo;
277     const LoopInfo *LI;
278     std::unique_ptr<BlockFrequencyInfo> BFI;
279     std::unique_ptr<BranchProbabilityInfo> BPI;
280     ProfileSummaryInfo *PSI;
281 
282     /// As we scan instructions optimizing them, this is the next instruction
283     /// to optimize. Transforms that can invalidate this should update it.
284     BasicBlock::iterator CurInstIterator;
285 
286     /// Keeps track of non-local addresses that have been sunk into a block.
287     /// This allows us to avoid inserting duplicate code for blocks with
288     /// multiple load/stores of the same address. The usage of WeakTrackingVH
289     /// enables SunkAddrs to be treated as a cache whose entries can be
290     /// invalidated if a sunken address computation has been erased.
291     ValueMap<Value*, WeakTrackingVH> SunkAddrs;
292 
293     /// Keeps track of all instructions inserted for the current function.
294     SetOfInstrs InsertedInsts;
295 
296     /// Keeps track of the type of the related instruction before their
297     /// promotion for the current function.
298     InstrToOrigTy PromotedInsts;
299 
300     /// Keep track of instructions removed during promotion.
301     SetOfInstrs RemovedInsts;
302 
303     /// Keep track of sext chains based on their initial value.
304     DenseMap<Value *, Instruction *> SeenChainsForSExt;
305 
306     /// Keep track of GEPs accessing the same data structures such as structs or
307     /// arrays that are candidates to be split later because of their large
308     /// size.
309     MapVector<
310         AssertingVH<Value>,
311         SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
312         LargeOffsetGEPMap;
313 
314     /// Keep track of new GEP base after splitting the GEPs having large offset.
315     SmallSet<AssertingVH<Value>, 2> NewGEPBases;
316 
317     /// Map serial numbers to Large offset GEPs.
318     DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;
319 
320     /// Keep track of SExt promoted.
321     ValueToSExts ValToSExtendedUses;
322 
323     /// True if the function has the OptSize attribute.
324     bool OptSize;
325 
326     /// DataLayout for the Function being processed.
327     const DataLayout *DL = nullptr;
328 
329     /// Building the dominator tree can be expensive, so we only build it
330     /// lazily and update it when required.
331     std::unique_ptr<DominatorTree> DT;
332 
333   public:
334     static char ID; // Pass identification, replacement for typeid
335 
336     CodeGenPrepare() : FunctionPass(ID) {
337       initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
338     }
339 
340     bool runOnFunction(Function &F) override;
341 
342     StringRef getPassName() const override { return "CodeGen Prepare"; }
343 
344     void getAnalysisUsage(AnalysisUsage &AU) const override {
345       // FIXME: When we can selectively preserve passes, preserve the domtree.
346       AU.addRequired<ProfileSummaryInfoWrapperPass>();
347       AU.addRequired<TargetLibraryInfoWrapperPass>();
348       AU.addRequired<TargetPassConfig>();
349       AU.addRequired<TargetTransformInfoWrapperPass>();
350       AU.addRequired<LoopInfoWrapperPass>();
351     }
352 
353   private:
354     template <typename F>
355     void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) {
356       // Substituting can cause recursive simplifications, which can invalidate
357       // our iterator.  Use a WeakTrackingVH to hold onto it in case this
358       // happens.
359       Value *CurValue = &*CurInstIterator;
360       WeakTrackingVH IterHandle(CurValue);
361 
362       f();
363 
364       // If the iterator instruction was recursively deleted, start over at the
365       // start of the block.
366       if (IterHandle != CurValue) {
367         CurInstIterator = BB->begin();
368         SunkAddrs.clear();
369       }
370     }
371 
372     // Get the DominatorTree, building if necessary.
373     DominatorTree &getDT(Function &F) {
374       if (!DT)
375         DT = std::make_unique<DominatorTree>(F);
376       return *DT;
377     }
378 
379     void removeAllAssertingVHReferences(Value *V);
380     bool eliminateFallThrough(Function &F);
381     bool eliminateMostlyEmptyBlocks(Function &F);
382     BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
383     bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
384     void eliminateMostlyEmptyBlock(BasicBlock *BB);
385     bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
386                                        bool isPreheader);
387     bool makeBitReverse(Instruction &I);
388     bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT);
389     bool optimizeInst(Instruction *I, bool &ModifiedDT);
390     bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
391                             Type *AccessTy, unsigned AddrSpace);
392     bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr);
393     bool optimizeInlineAsmInst(CallInst *CS);
394     bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
395     bool optimizeExt(Instruction *&I);
396     bool optimizeExtUses(Instruction *I);
397     bool optimizeLoadExt(LoadInst *Load);
398     bool optimizeShiftInst(BinaryOperator *BO);
399     bool optimizeFunnelShift(IntrinsicInst *Fsh);
400     bool optimizeSelectInst(SelectInst *SI);
401     bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI);
402     bool optimizeSwitchInst(SwitchInst *SI);
403     bool optimizeExtractElementInst(Instruction *Inst);
404     bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT);
405     bool fixupDbgValue(Instruction *I);
406     bool placeDbgValues(Function &F);
407     bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
408                       LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
409     bool tryToPromoteExts(TypePromotionTransaction &TPT,
410                           const SmallVectorImpl<Instruction *> &Exts,
411                           SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
412                           unsigned CreatedInstsCost = 0);
413     bool mergeSExts(Function &F);
414     bool splitLargeGEPOffsets();
415     bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited,
416                          SmallPtrSetImpl<Instruction *> &DeletedInstrs);
417     bool optimizePhiTypes(Function &F);
418     bool performAddressTypePromotion(
419         Instruction *&Inst,
420         bool AllowPromotionWithoutCommonHeader,
421         bool HasPromoted, TypePromotionTransaction &TPT,
422         SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
423     bool splitBranchCondition(Function &F, bool &ModifiedDT);
424     bool simplifyOffsetableRelocate(GCStatepointInst &I);
425 
426     bool tryToSinkFreeOperands(Instruction *I);
427     bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0,
428                                      Value *Arg1, CmpInst *Cmp,
429                                      Intrinsic::ID IID);
430     bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT);
431     bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
432     bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
433     void verifyBFIUpdates(Function &F);
434   };
435 
436 } // end anonymous namespace
437 
438 char CodeGenPrepare::ID = 0;
439 
440 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
441                       "Optimize for code generation", false, false)
442 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
443 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
444 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
445 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
446 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
447 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
448                     "Optimize for code generation", false, false)
449 
450 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
451 
452 bool CodeGenPrepare::runOnFunction(Function &F) {
453   if (skipFunction(F))
454     return false;
455 
456   DL = &F.getParent()->getDataLayout();
457 
458   bool EverMadeChange = false;
459   // Clear per function information.
460   InsertedInsts.clear();
461   PromotedInsts.clear();
462 
463   TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
464   SubtargetInfo = TM->getSubtargetImpl(F);
465   TLI = SubtargetInfo->getTargetLowering();
466   TRI = SubtargetInfo->getRegisterInfo();
467   TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
468   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
469   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
470   BPI.reset(new BranchProbabilityInfo(F, *LI));
471   BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
472   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
473   OptSize = F.hasOptSize();
474   if (ProfileGuidedSectionPrefix) {
475     // The hot attribute overwrites profile count based hotness while profile
476     // counts based hotness overwrite the cold attribute.
477     // This is a conservative behabvior.
478     if (F.hasFnAttribute(Attribute::Hot) ||
479         PSI->isFunctionHotInCallGraph(&F, *BFI))
480       F.setSectionPrefix("hot");
481     // If PSI shows this function is not hot, we will placed the function
482     // into unlikely section if (1) PSI shows this is a cold function, or
483     // (2) the function has a attribute of cold.
484     else if (PSI->isFunctionColdInCallGraph(&F, *BFI) ||
485              F.hasFnAttribute(Attribute::Cold))
486       F.setSectionPrefix("unlikely");
487     else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() &&
488              PSI->isFunctionHotnessUnknown(F))
489       F.setSectionPrefix("unknown");
490   }
491 
492   /// This optimization identifies DIV instructions that can be
493   /// profitably bypassed and carried out with a shorter, faster divide.
494   if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) {
495     const DenseMap<unsigned int, unsigned int> &BypassWidths =
496         TLI->getBypassSlowDivWidths();
497     BasicBlock* BB = &*F.begin();
498     while (BB != nullptr) {
499       // bypassSlowDivision may create new BBs, but we don't want to reapply the
500       // optimization to those blocks.
501       BasicBlock* Next = BB->getNextNode();
502       // F.hasOptSize is already checked in the outer if statement.
503       if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
504         EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
505       BB = Next;
506     }
507   }
508 
509   // Eliminate blocks that contain only PHI nodes and an
510   // unconditional branch.
511   EverMadeChange |= eliminateMostlyEmptyBlocks(F);
512 
513   bool ModifiedDT = false;
514   if (!DisableBranchOpts)
515     EverMadeChange |= splitBranchCondition(F, ModifiedDT);
516 
517   // Split some critical edges where one of the sources is an indirect branch,
518   // to help generate sane code for PHIs involving such edges.
519   EverMadeChange |= SplitIndirectBrCriticalEdges(F);
520 
521   bool MadeChange = true;
522   while (MadeChange) {
523     MadeChange = false;
524     DT.reset();
525     for (Function::iterator I = F.begin(); I != F.end(); ) {
526       BasicBlock *BB = &*I++;
527       bool ModifiedDTOnIteration = false;
528       MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
529 
530       // Restart BB iteration if the dominator tree of the Function was changed
531       if (ModifiedDTOnIteration)
532         break;
533     }
534     if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
535       MadeChange |= mergeSExts(F);
536     if (!LargeOffsetGEPMap.empty())
537       MadeChange |= splitLargeGEPOffsets();
538     MadeChange |= optimizePhiTypes(F);
539 
540     if (MadeChange)
541       eliminateFallThrough(F);
542 
543     // Really free removed instructions during promotion.
544     for (Instruction *I : RemovedInsts)
545       I->deleteValue();
546 
547     EverMadeChange |= MadeChange;
548     SeenChainsForSExt.clear();
549     ValToSExtendedUses.clear();
550     RemovedInsts.clear();
551     LargeOffsetGEPMap.clear();
552     LargeOffsetGEPID.clear();
553   }
554 
555   NewGEPBases.clear();
556   SunkAddrs.clear();
557 
558   if (!DisableBranchOpts) {
559     MadeChange = false;
560     // Use a set vector to get deterministic iteration order. The order the
561     // blocks are removed may affect whether or not PHI nodes in successors
562     // are removed.
563     SmallSetVector<BasicBlock*, 8> WorkList;
564     for (BasicBlock &BB : F) {
565       SmallVector<BasicBlock *, 2> Successors(successors(&BB));
566       MadeChange |= ConstantFoldTerminator(&BB, true);
567       if (!MadeChange) continue;
568 
569       for (SmallVectorImpl<BasicBlock*>::iterator
570              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
571         if (pred_empty(*II))
572           WorkList.insert(*II);
573     }
574 
575     // Delete the dead blocks and any of their dead successors.
576     MadeChange |= !WorkList.empty();
577     while (!WorkList.empty()) {
578       BasicBlock *BB = WorkList.pop_back_val();
579       SmallVector<BasicBlock*, 2> Successors(successors(BB));
580 
581       DeleteDeadBlock(BB);
582 
583       for (SmallVectorImpl<BasicBlock*>::iterator
584              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
585         if (pred_empty(*II))
586           WorkList.insert(*II);
587     }
588 
589     // Merge pairs of basic blocks with unconditional branches, connected by
590     // a single edge.
591     if (EverMadeChange || MadeChange)
592       MadeChange |= eliminateFallThrough(F);
593 
594     EverMadeChange |= MadeChange;
595   }
596 
597   if (!DisableGCOpts) {
598     SmallVector<GCStatepointInst *, 2> Statepoints;
599     for (BasicBlock &BB : F)
600       for (Instruction &I : BB)
601         if (auto *SP = dyn_cast<GCStatepointInst>(&I))
602           Statepoints.push_back(SP);
603     for (auto &I : Statepoints)
604       EverMadeChange |= simplifyOffsetableRelocate(*I);
605   }
606 
607   // Do this last to clean up use-before-def scenarios introduced by other
608   // preparatory transforms.
609   EverMadeChange |= placeDbgValues(F);
610 
611 #ifndef NDEBUG
612   if (VerifyBFIUpdates)
613     verifyBFIUpdates(F);
614 #endif
615 
616   return EverMadeChange;
617 }
618 
619 /// An instruction is about to be deleted, so remove all references to it in our
620 /// GEP-tracking data strcutures.
621 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) {
622   LargeOffsetGEPMap.erase(V);
623   NewGEPBases.erase(V);
624 
625   auto GEP = dyn_cast<GetElementPtrInst>(V);
626   if (!GEP)
627     return;
628 
629   LargeOffsetGEPID.erase(GEP);
630 
631   auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand());
632   if (VecI == LargeOffsetGEPMap.end())
633     return;
634 
635   auto &GEPVector = VecI->second;
636   const auto &I = std::find_if(GEPVector.begin(), GEPVector.end(),
637                                [=](auto &Elt) { return Elt.first == GEP; });
638   if (I == GEPVector.end())
639     return;
640 
641   GEPVector.erase(I);
642   if (GEPVector.empty())
643     LargeOffsetGEPMap.erase(VecI);
644 }
645 
646 // Verify BFI has been updated correctly by recomputing BFI and comparing them.
647 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) {
648   DominatorTree NewDT(F);
649   LoopInfo NewLI(NewDT);
650   BranchProbabilityInfo NewBPI(F, NewLI, TLInfo);
651   BlockFrequencyInfo NewBFI(F, NewBPI, NewLI);
652   NewBFI.verifyMatch(*BFI);
653 }
654 
655 /// Merge basic blocks which are connected by a single edge, where one of the
656 /// basic blocks has a single successor pointing to the other basic block,
657 /// which has a single predecessor.
658 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
659   bool Changed = false;
660   // Scan all of the blocks in the function, except for the entry block.
661   // Use a temporary array to avoid iterator being invalidated when
662   // deleting blocks.
663   SmallVector<WeakTrackingVH, 16> Blocks;
664   for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
665     Blocks.push_back(&Block);
666 
667   SmallSet<WeakTrackingVH, 16> Preds;
668   for (auto &Block : Blocks) {
669     auto *BB = cast_or_null<BasicBlock>(Block);
670     if (!BB)
671       continue;
672     // If the destination block has a single pred, then this is a trivial
673     // edge, just collapse it.
674     BasicBlock *SinglePred = BB->getSinglePredecessor();
675 
676     // Don't merge if BB's address is taken.
677     if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
678 
679     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
680     if (Term && !Term->isConditional()) {
681       Changed = true;
682       LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");
683 
684       // Merge BB into SinglePred and delete it.
685       MergeBlockIntoPredecessor(BB);
686       Preds.insert(SinglePred);
687     }
688   }
689 
690   // (Repeatedly) merging blocks into their predecessors can create redundant
691   // debug intrinsics.
692   for (auto &Pred : Preds)
693     if (auto *BB = cast_or_null<BasicBlock>(Pred))
694       RemoveRedundantDbgInstrs(BB);
695 
696   return Changed;
697 }
698 
699 /// Find a destination block from BB if BB is mergeable empty block.
700 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
701   // If this block doesn't end with an uncond branch, ignore it.
702   BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
703   if (!BI || !BI->isUnconditional())
704     return nullptr;
705 
706   // If the instruction before the branch (skipping debug info) isn't a phi
707   // node, then other stuff is happening here.
708   BasicBlock::iterator BBI = BI->getIterator();
709   if (BBI != BB->begin()) {
710     --BBI;
711     while (isa<DbgInfoIntrinsic>(BBI)) {
712       if (BBI == BB->begin())
713         break;
714       --BBI;
715     }
716     if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
717       return nullptr;
718   }
719 
720   // Do not break infinite loops.
721   BasicBlock *DestBB = BI->getSuccessor(0);
722   if (DestBB == BB)
723     return nullptr;
724 
725   if (!canMergeBlocks(BB, DestBB))
726     DestBB = nullptr;
727 
728   return DestBB;
729 }
730 
731 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
732 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
733 /// edges in ways that are non-optimal for isel. Start by eliminating these
734 /// blocks so we can split them the way we want them.
735 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
736   SmallPtrSet<BasicBlock *, 16> Preheaders;
737   SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
738   while (!LoopList.empty()) {
739     Loop *L = LoopList.pop_back_val();
740     llvm::append_range(LoopList, *L);
741     if (BasicBlock *Preheader = L->getLoopPreheader())
742       Preheaders.insert(Preheader);
743   }
744 
745   bool MadeChange = false;
746   // Copy blocks into a temporary array to avoid iterator invalidation issues
747   // as we remove them.
748   // Note that this intentionally skips the entry block.
749   SmallVector<WeakTrackingVH, 16> Blocks;
750   for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
751     Blocks.push_back(&Block);
752 
753   for (auto &Block : Blocks) {
754     BasicBlock *BB = cast_or_null<BasicBlock>(Block);
755     if (!BB)
756       continue;
757     BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
758     if (!DestBB ||
759         !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
760       continue;
761 
762     eliminateMostlyEmptyBlock(BB);
763     MadeChange = true;
764   }
765   return MadeChange;
766 }
767 
768 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
769                                                    BasicBlock *DestBB,
770                                                    bool isPreheader) {
771   // Do not delete loop preheaders if doing so would create a critical edge.
772   // Loop preheaders can be good locations to spill registers. If the
773   // preheader is deleted and we create a critical edge, registers may be
774   // spilled in the loop body instead.
775   if (!DisablePreheaderProtect && isPreheader &&
776       !(BB->getSinglePredecessor() &&
777         BB->getSinglePredecessor()->getSingleSuccessor()))
778     return false;
779 
780   // Skip merging if the block's successor is also a successor to any callbr
781   // that leads to this block.
782   // FIXME: Is this really needed? Is this a correctness issue?
783   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
784     if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator()))
785       for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i)
786         if (DestBB == CBI->getSuccessor(i))
787           return false;
788   }
789 
790   // Try to skip merging if the unique predecessor of BB is terminated by a
791   // switch or indirect branch instruction, and BB is used as an incoming block
792   // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
793   // add COPY instructions in the predecessor of BB instead of BB (if it is not
794   // merged). Note that the critical edge created by merging such blocks wont be
795   // split in MachineSink because the jump table is not analyzable. By keeping
796   // such empty block (BB), ISel will place COPY instructions in BB, not in the
797   // predecessor of BB.
798   BasicBlock *Pred = BB->getUniquePredecessor();
799   if (!Pred ||
800       !(isa<SwitchInst>(Pred->getTerminator()) ||
801         isa<IndirectBrInst>(Pred->getTerminator())))
802     return true;
803 
804   if (BB->getTerminator() != BB->getFirstNonPHIOrDbg())
805     return true;
806 
807   // We use a simple cost heuristic which determine skipping merging is
808   // profitable if the cost of skipping merging is less than the cost of
809   // merging : Cost(skipping merging) < Cost(merging BB), where the
810   // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
811   // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
812   // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
813   //   Freq(Pred) / Freq(BB) > 2.
814   // Note that if there are multiple empty blocks sharing the same incoming
815   // value for the PHIs in the DestBB, we consider them together. In such
816   // case, Cost(merging BB) will be the sum of their frequencies.
817 
818   if (!isa<PHINode>(DestBB->begin()))
819     return true;
820 
821   SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
822 
823   // Find all other incoming blocks from which incoming values of all PHIs in
824   // DestBB are the same as the ones from BB.
825   for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E;
826        ++PI) {
827     BasicBlock *DestBBPred = *PI;
828     if (DestBBPred == BB)
829       continue;
830 
831     if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
832           return DestPN.getIncomingValueForBlock(BB) ==
833                  DestPN.getIncomingValueForBlock(DestBBPred);
834         }))
835       SameIncomingValueBBs.insert(DestBBPred);
836   }
837 
838   // See if all BB's incoming values are same as the value from Pred. In this
839   // case, no reason to skip merging because COPYs are expected to be place in
840   // Pred already.
841   if (SameIncomingValueBBs.count(Pred))
842     return true;
843 
844   BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
845   BlockFrequency BBFreq = BFI->getBlockFreq(BB);
846 
847   for (auto *SameValueBB : SameIncomingValueBBs)
848     if (SameValueBB->getUniquePredecessor() == Pred &&
849         DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
850       BBFreq += BFI->getBlockFreq(SameValueBB);
851 
852   return PredFreq.getFrequency() <=
853          BBFreq.getFrequency() * FreqRatioToSkipMerge;
854 }
855 
856 /// Return true if we can merge BB into DestBB if there is a single
857 /// unconditional branch between them, and BB contains no other non-phi
858 /// instructions.
859 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
860                                     const BasicBlock *DestBB) const {
861   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
862   // the successor.  If there are more complex condition (e.g. preheaders),
863   // don't mess around with them.
864   for (const PHINode &PN : BB->phis()) {
865     for (const User *U : PN.users()) {
866       const Instruction *UI = cast<Instruction>(U);
867       if (UI->getParent() != DestBB || !isa<PHINode>(UI))
868         return false;
869       // If User is inside DestBB block and it is a PHINode then check
870       // incoming value. If incoming value is not from BB then this is
871       // a complex condition (e.g. preheaders) we want to avoid here.
872       if (UI->getParent() == DestBB) {
873         if (const PHINode *UPN = dyn_cast<PHINode>(UI))
874           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
875             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
876             if (Insn && Insn->getParent() == BB &&
877                 Insn->getParent() != UPN->getIncomingBlock(I))
878               return false;
879           }
880       }
881     }
882   }
883 
884   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
885   // and DestBB may have conflicting incoming values for the block.  If so, we
886   // can't merge the block.
887   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
888   if (!DestBBPN) return true;  // no conflict.
889 
890   // Collect the preds of BB.
891   SmallPtrSet<const BasicBlock*, 16> BBPreds;
892   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
893     // It is faster to get preds from a PHI than with pred_iterator.
894     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
895       BBPreds.insert(BBPN->getIncomingBlock(i));
896   } else {
897     BBPreds.insert(pred_begin(BB), pred_end(BB));
898   }
899 
900   // Walk the preds of DestBB.
901   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
902     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
903     if (BBPreds.count(Pred)) {   // Common predecessor?
904       for (const PHINode &PN : DestBB->phis()) {
905         const Value *V1 = PN.getIncomingValueForBlock(Pred);
906         const Value *V2 = PN.getIncomingValueForBlock(BB);
907 
908         // If V2 is a phi node in BB, look up what the mapped value will be.
909         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
910           if (V2PN->getParent() == BB)
911             V2 = V2PN->getIncomingValueForBlock(Pred);
912 
913         // If there is a conflict, bail out.
914         if (V1 != V2) return false;
915       }
916     }
917   }
918 
919   return true;
920 }
921 
922 /// Eliminate a basic block that has only phi's and an unconditional branch in
923 /// it.
924 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
925   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
926   BasicBlock *DestBB = BI->getSuccessor(0);
927 
928   LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
929                     << *BB << *DestBB);
930 
931   // If the destination block has a single pred, then this is a trivial edge,
932   // just collapse it.
933   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
934     if (SinglePred != DestBB) {
935       assert(SinglePred == BB &&
936              "Single predecessor not the same as predecessor");
937       // Merge DestBB into SinglePred/BB and delete it.
938       MergeBlockIntoPredecessor(DestBB);
939       // Note: BB(=SinglePred) will not be deleted on this path.
940       // DestBB(=its single successor) is the one that was deleted.
941       LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
942       return;
943     }
944   }
945 
946   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
947   // to handle the new incoming edges it is about to have.
948   for (PHINode &PN : DestBB->phis()) {
949     // Remove the incoming value for BB, and remember it.
950     Value *InVal = PN.removeIncomingValue(BB, false);
951 
952     // Two options: either the InVal is a phi node defined in BB or it is some
953     // value that dominates BB.
954     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
955     if (InValPhi && InValPhi->getParent() == BB) {
956       // Add all of the input values of the input PHI as inputs of this phi.
957       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
958         PN.addIncoming(InValPhi->getIncomingValue(i),
959                        InValPhi->getIncomingBlock(i));
960     } else {
961       // Otherwise, add one instance of the dominating value for each edge that
962       // we will be adding.
963       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
964         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
965           PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
966       } else {
967         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
968           PN.addIncoming(InVal, *PI);
969       }
970     }
971   }
972 
973   // The PHIs are now updated, change everything that refers to BB to use
974   // DestBB and remove BB.
975   BB->replaceAllUsesWith(DestBB);
976   BB->eraseFromParent();
977   ++NumBlocksElim;
978 
979   LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
980 }
981 
982 // Computes a map of base pointer relocation instructions to corresponding
983 // derived pointer relocation instructions given a vector of all relocate calls
984 static void computeBaseDerivedRelocateMap(
985     const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
986     DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
987         &RelocateInstMap) {
988   // Collect information in two maps: one primarily for locating the base object
989   // while filling the second map; the second map is the final structure holding
990   // a mapping between Base and corresponding Derived relocate calls
991   DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
992   for (auto *ThisRelocate : AllRelocateCalls) {
993     auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
994                             ThisRelocate->getDerivedPtrIndex());
995     RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
996   }
997   for (auto &Item : RelocateIdxMap) {
998     std::pair<unsigned, unsigned> Key = Item.first;
999     if (Key.first == Key.second)
1000       // Base relocation: nothing to insert
1001       continue;
1002 
1003     GCRelocateInst *I = Item.second;
1004     auto BaseKey = std::make_pair(Key.first, Key.first);
1005 
1006     // We're iterating over RelocateIdxMap so we cannot modify it.
1007     auto MaybeBase = RelocateIdxMap.find(BaseKey);
1008     if (MaybeBase == RelocateIdxMap.end())
1009       // TODO: We might want to insert a new base object relocate and gep off
1010       // that, if there are enough derived object relocates.
1011       continue;
1012 
1013     RelocateInstMap[MaybeBase->second].push_back(I);
1014   }
1015 }
1016 
1017 // Accepts a GEP and extracts the operands into a vector provided they're all
1018 // small integer constants
1019 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
1020                                           SmallVectorImpl<Value *> &OffsetV) {
1021   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
1022     // Only accept small constant integer operands
1023     auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
1024     if (!Op || Op->getZExtValue() > 20)
1025       return false;
1026   }
1027 
1028   for (unsigned i = 1; i < GEP->getNumOperands(); i++)
1029     OffsetV.push_back(GEP->getOperand(i));
1030   return true;
1031 }
1032 
1033 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
1034 // replace, computes a replacement, and affects it.
1035 static bool
1036 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
1037                           const SmallVectorImpl<GCRelocateInst *> &Targets) {
1038   bool MadeChange = false;
1039   // We must ensure the relocation of derived pointer is defined after
1040   // relocation of base pointer. If we find a relocation corresponding to base
1041   // defined earlier than relocation of base then we move relocation of base
1042   // right before found relocation. We consider only relocation in the same
1043   // basic block as relocation of base. Relocations from other basic block will
1044   // be skipped by optimization and we do not care about them.
1045   for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
1046        &*R != RelocatedBase; ++R)
1047     if (auto *RI = dyn_cast<GCRelocateInst>(R))
1048       if (RI->getStatepoint() == RelocatedBase->getStatepoint())
1049         if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
1050           RelocatedBase->moveBefore(RI);
1051           break;
1052         }
1053 
1054   for (GCRelocateInst *ToReplace : Targets) {
1055     assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
1056            "Not relocating a derived object of the original base object");
1057     if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
1058       // A duplicate relocate call. TODO: coalesce duplicates.
1059       continue;
1060     }
1061 
1062     if (RelocatedBase->getParent() != ToReplace->getParent()) {
1063       // Base and derived relocates are in different basic blocks.
1064       // In this case transform is only valid when base dominates derived
1065       // relocate. However it would be too expensive to check dominance
1066       // for each such relocate, so we skip the whole transformation.
1067       continue;
1068     }
1069 
1070     Value *Base = ToReplace->getBasePtr();
1071     auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
1072     if (!Derived || Derived->getPointerOperand() != Base)
1073       continue;
1074 
1075     SmallVector<Value *, 2> OffsetV;
1076     if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
1077       continue;
1078 
1079     // Create a Builder and replace the target callsite with a gep
1080     assert(RelocatedBase->getNextNode() &&
1081            "Should always have one since it's not a terminator");
1082 
1083     // Insert after RelocatedBase
1084     IRBuilder<> Builder(RelocatedBase->getNextNode());
1085     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1086 
1087     // If gc_relocate does not match the actual type, cast it to the right type.
1088     // In theory, there must be a bitcast after gc_relocate if the type does not
1089     // match, and we should reuse it to get the derived pointer. But it could be
1090     // cases like this:
1091     // bb1:
1092     //  ...
1093     //  %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
1094     //  br label %merge
1095     //
1096     // bb2:
1097     //  ...
1098     //  %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
1099     //  br label %merge
1100     //
1101     // merge:
1102     //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
1103     //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
1104     //
1105     // In this case, we can not find the bitcast any more. So we insert a new bitcast
1106     // no matter there is already one or not. In this way, we can handle all cases, and
1107     // the extra bitcast should be optimized away in later passes.
1108     Value *ActualRelocatedBase = RelocatedBase;
1109     if (RelocatedBase->getType() != Base->getType()) {
1110       ActualRelocatedBase =
1111           Builder.CreateBitCast(RelocatedBase, Base->getType());
1112     }
1113     Value *Replacement = Builder.CreateGEP(
1114         Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
1115     Replacement->takeName(ToReplace);
1116     // If the newly generated derived pointer's type does not match the original derived
1117     // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
1118     Value *ActualReplacement = Replacement;
1119     if (Replacement->getType() != ToReplace->getType()) {
1120       ActualReplacement =
1121           Builder.CreateBitCast(Replacement, ToReplace->getType());
1122     }
1123     ToReplace->replaceAllUsesWith(ActualReplacement);
1124     ToReplace->eraseFromParent();
1125 
1126     MadeChange = true;
1127   }
1128   return MadeChange;
1129 }
1130 
1131 // Turns this:
1132 //
1133 // %base = ...
1134 // %ptr = gep %base + 15
1135 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1136 // %base' = relocate(%tok, i32 4, i32 4)
1137 // %ptr' = relocate(%tok, i32 4, i32 5)
1138 // %val = load %ptr'
1139 //
1140 // into this:
1141 //
1142 // %base = ...
1143 // %ptr = gep %base + 15
1144 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1145 // %base' = gc.relocate(%tok, i32 4, i32 4)
1146 // %ptr' = gep %base' + 15
1147 // %val = load %ptr'
1148 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) {
1149   bool MadeChange = false;
1150   SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1151   for (auto *U : I.users())
1152     if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1153       // Collect all the relocate calls associated with a statepoint
1154       AllRelocateCalls.push_back(Relocate);
1155 
1156   // We need at least one base pointer relocation + one derived pointer
1157   // relocation to mangle
1158   if (AllRelocateCalls.size() < 2)
1159     return false;
1160 
1161   // RelocateInstMap is a mapping from the base relocate instruction to the
1162   // corresponding derived relocate instructions
1163   DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
1164   computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1165   if (RelocateInstMap.empty())
1166     return false;
1167 
1168   for (auto &Item : RelocateInstMap)
1169     // Item.first is the RelocatedBase to offset against
1170     // Item.second is the vector of Targets to replace
1171     MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1172   return MadeChange;
1173 }
1174 
1175 /// Sink the specified cast instruction into its user blocks.
1176 static bool SinkCast(CastInst *CI) {
1177   BasicBlock *DefBB = CI->getParent();
1178 
1179   /// InsertedCasts - Only insert a cast in each block once.
1180   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
1181 
1182   bool MadeChange = false;
1183   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1184        UI != E; ) {
1185     Use &TheUse = UI.getUse();
1186     Instruction *User = cast<Instruction>(*UI);
1187 
1188     // Figure out which BB this cast is used in.  For PHI's this is the
1189     // appropriate predecessor block.
1190     BasicBlock *UserBB = User->getParent();
1191     if (PHINode *PN = dyn_cast<PHINode>(User)) {
1192       UserBB = PN->getIncomingBlock(TheUse);
1193     }
1194 
1195     // Preincrement use iterator so we don't invalidate it.
1196     ++UI;
1197 
1198     // The first insertion point of a block containing an EH pad is after the
1199     // pad.  If the pad is the user, we cannot sink the cast past the pad.
1200     if (User->isEHPad())
1201       continue;
1202 
1203     // If the block selected to receive the cast is an EH pad that does not
1204     // allow non-PHI instructions before the terminator, we can't sink the
1205     // cast.
1206     if (UserBB->getTerminator()->isEHPad())
1207       continue;
1208 
1209     // If this user is in the same block as the cast, don't change the cast.
1210     if (UserBB == DefBB) continue;
1211 
1212     // If we have already inserted a cast into this block, use it.
1213     CastInst *&InsertedCast = InsertedCasts[UserBB];
1214 
1215     if (!InsertedCast) {
1216       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1217       assert(InsertPt != UserBB->end());
1218       InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1219                                       CI->getType(), "", &*InsertPt);
1220       InsertedCast->setDebugLoc(CI->getDebugLoc());
1221     }
1222 
1223     // Replace a use of the cast with a use of the new cast.
1224     TheUse = InsertedCast;
1225     MadeChange = true;
1226     ++NumCastUses;
1227   }
1228 
1229   // If we removed all uses, nuke the cast.
1230   if (CI->use_empty()) {
1231     salvageDebugInfo(*CI);
1232     CI->eraseFromParent();
1233     MadeChange = true;
1234   }
1235 
1236   return MadeChange;
1237 }
1238 
1239 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1240 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1241 /// reduce the number of virtual registers that must be created and coalesced.
1242 ///
1243 /// Return true if any changes are made.
1244 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1245                                        const DataLayout &DL) {
1246   // Sink only "cheap" (or nop) address-space casts.  This is a weaker condition
1247   // than sinking only nop casts, but is helpful on some platforms.
1248   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1249     if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(),
1250                                  ASC->getDestAddressSpace()))
1251       return false;
1252   }
1253 
1254   // If this is a noop copy,
1255   EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1256   EVT DstVT = TLI.getValueType(DL, CI->getType());
1257 
1258   // This is an fp<->int conversion?
1259   if (SrcVT.isInteger() != DstVT.isInteger())
1260     return false;
1261 
1262   // If this is an extension, it will be a zero or sign extension, which
1263   // isn't a noop.
1264   if (SrcVT.bitsLT(DstVT)) return false;
1265 
1266   // If these values will be promoted, find out what they will be promoted
1267   // to.  This helps us consider truncates on PPC as noop copies when they
1268   // are.
1269   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1270       TargetLowering::TypePromoteInteger)
1271     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1272   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1273       TargetLowering::TypePromoteInteger)
1274     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1275 
1276   // If, after promotion, these are the same types, this is a noop copy.
1277   if (SrcVT != DstVT)
1278     return false;
1279 
1280   return SinkCast(CI);
1281 }
1282 
1283 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO,
1284                                                  Value *Arg0, Value *Arg1,
1285                                                  CmpInst *Cmp,
1286                                                  Intrinsic::ID IID) {
1287   if (BO->getParent() != Cmp->getParent()) {
1288     // We used to use a dominator tree here to allow multi-block optimization.
1289     // But that was problematic because:
1290     // 1. It could cause a perf regression by hoisting the math op into the
1291     //    critical path.
1292     // 2. It could cause a perf regression by creating a value that was live
1293     //    across multiple blocks and increasing register pressure.
1294     // 3. Use of a dominator tree could cause large compile-time regression.
1295     //    This is because we recompute the DT on every change in the main CGP
1296     //    run-loop. The recomputing is probably unnecessary in many cases, so if
1297     //    that was fixed, using a DT here would be ok.
1298     return false;
1299   }
1300 
1301   // We allow matching the canonical IR (add X, C) back to (usubo X, -C).
1302   if (BO->getOpcode() == Instruction::Add &&
1303       IID == Intrinsic::usub_with_overflow) {
1304     assert(isa<Constant>(Arg1) && "Unexpected input for usubo");
1305     Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1));
1306   }
1307 
1308   // Insert at the first instruction of the pair.
1309   Instruction *InsertPt = nullptr;
1310   for (Instruction &Iter : *Cmp->getParent()) {
1311     // If BO is an XOR, it is not guaranteed that it comes after both inputs to
1312     // the overflow intrinsic are defined.
1313     if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) {
1314       InsertPt = &Iter;
1315       break;
1316     }
1317   }
1318   assert(InsertPt != nullptr && "Parent block did not contain cmp or binop");
1319 
1320   IRBuilder<> Builder(InsertPt);
1321   Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1);
1322   if (BO->getOpcode() != Instruction::Xor) {
1323     Value *Math = Builder.CreateExtractValue(MathOV, 0, "math");
1324     BO->replaceAllUsesWith(Math);
1325   } else
1326     assert(BO->hasOneUse() &&
1327            "Patterns with XOr should use the BO only in the compare");
1328   Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov");
1329   Cmp->replaceAllUsesWith(OV);
1330   Cmp->eraseFromParent();
1331   BO->eraseFromParent();
1332   return true;
1333 }
1334 
1335 /// Match special-case patterns that check for unsigned add overflow.
1336 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp,
1337                                                    BinaryOperator *&Add) {
1338   // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val)
1339   // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero)
1340   Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1341 
1342   // We are not expecting non-canonical/degenerate code. Just bail out.
1343   if (isa<Constant>(A))
1344     return false;
1345 
1346   ICmpInst::Predicate Pred = Cmp->getPredicate();
1347   if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes()))
1348     B = ConstantInt::get(B->getType(), 1);
1349   else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt()))
1350     B = ConstantInt::get(B->getType(), -1);
1351   else
1352     return false;
1353 
1354   // Check the users of the variable operand of the compare looking for an add
1355   // with the adjusted constant.
1356   for (User *U : A->users()) {
1357     if (match(U, m_Add(m_Specific(A), m_Specific(B)))) {
1358       Add = cast<BinaryOperator>(U);
1359       return true;
1360     }
1361   }
1362   return false;
1363 }
1364 
1365 /// Try to combine the compare into a call to the llvm.uadd.with.overflow
1366 /// intrinsic. Return true if any changes were made.
1367 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp,
1368                                                bool &ModifiedDT) {
1369   Value *A, *B;
1370   BinaryOperator *Add;
1371   if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) {
1372     if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add))
1373       return false;
1374     // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases.
1375     A = Add->getOperand(0);
1376     B = Add->getOperand(1);
1377   }
1378 
1379   if (!TLI->shouldFormOverflowOp(ISD::UADDO,
1380                                  TLI->getValueType(*DL, Add->getType()),
1381                                  Add->hasNUsesOrMore(2)))
1382     return false;
1383 
1384   // We don't want to move around uses of condition values this late, so we
1385   // check if it is legal to create the call to the intrinsic in the basic
1386   // block containing the icmp.
1387   if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse())
1388     return false;
1389 
1390   if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp,
1391                                    Intrinsic::uadd_with_overflow))
1392     return false;
1393 
1394   // Reset callers - do not crash by iterating over a dead instruction.
1395   ModifiedDT = true;
1396   return true;
1397 }
1398 
1399 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp,
1400                                                bool &ModifiedDT) {
1401   // We are not expecting non-canonical/degenerate code. Just bail out.
1402   Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1403   if (isa<Constant>(A) && isa<Constant>(B))
1404     return false;
1405 
1406   // Convert (A u> B) to (A u< B) to simplify pattern matching.
1407   ICmpInst::Predicate Pred = Cmp->getPredicate();
1408   if (Pred == ICmpInst::ICMP_UGT) {
1409     std::swap(A, B);
1410     Pred = ICmpInst::ICMP_ULT;
1411   }
1412   // Convert special-case: (A == 0) is the same as (A u< 1).
1413   if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) {
1414     B = ConstantInt::get(B->getType(), 1);
1415     Pred = ICmpInst::ICMP_ULT;
1416   }
1417   // Convert special-case: (A != 0) is the same as (0 u< A).
1418   if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) {
1419     std::swap(A, B);
1420     Pred = ICmpInst::ICMP_ULT;
1421   }
1422   if (Pred != ICmpInst::ICMP_ULT)
1423     return false;
1424 
1425   // Walk the users of a variable operand of a compare looking for a subtract or
1426   // add with that same operand. Also match the 2nd operand of the compare to
1427   // the add/sub, but that may be a negated constant operand of an add.
1428   Value *CmpVariableOperand = isa<Constant>(A) ? B : A;
1429   BinaryOperator *Sub = nullptr;
1430   for (User *U : CmpVariableOperand->users()) {
1431     // A - B, A u< B --> usubo(A, B)
1432     if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) {
1433       Sub = cast<BinaryOperator>(U);
1434       break;
1435     }
1436 
1437     // A + (-C), A u< C (canonicalized form of (sub A, C))
1438     const APInt *CmpC, *AddC;
1439     if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) &&
1440         match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) {
1441       Sub = cast<BinaryOperator>(U);
1442       break;
1443     }
1444   }
1445   if (!Sub)
1446     return false;
1447 
1448   if (!TLI->shouldFormOverflowOp(ISD::USUBO,
1449                                  TLI->getValueType(*DL, Sub->getType()),
1450                                  Sub->hasNUsesOrMore(2)))
1451     return false;
1452 
1453   if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1),
1454                                    Cmp, Intrinsic::usub_with_overflow))
1455     return false;
1456 
1457   // Reset callers - do not crash by iterating over a dead instruction.
1458   ModifiedDT = true;
1459   return true;
1460 }
1461 
1462 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1463 /// registers that must be created and coalesced. This is a clear win except on
1464 /// targets with multiple condition code registers (PowerPC), where it might
1465 /// lose; some adjustment may be wanted there.
1466 ///
1467 /// Return true if any changes are made.
1468 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) {
1469   if (TLI.hasMultipleConditionRegisters())
1470     return false;
1471 
1472   // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1473   if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp))
1474     return false;
1475 
1476   // Only insert a cmp in each block once.
1477   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
1478 
1479   bool MadeChange = false;
1480   for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end();
1481        UI != E; ) {
1482     Use &TheUse = UI.getUse();
1483     Instruction *User = cast<Instruction>(*UI);
1484 
1485     // Preincrement use iterator so we don't invalidate it.
1486     ++UI;
1487 
1488     // Don't bother for PHI nodes.
1489     if (isa<PHINode>(User))
1490       continue;
1491 
1492     // Figure out which BB this cmp is used in.
1493     BasicBlock *UserBB = User->getParent();
1494     BasicBlock *DefBB = Cmp->getParent();
1495 
1496     // If this user is in the same block as the cmp, don't change the cmp.
1497     if (UserBB == DefBB) continue;
1498 
1499     // If we have already inserted a cmp into this block, use it.
1500     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1501 
1502     if (!InsertedCmp) {
1503       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1504       assert(InsertPt != UserBB->end());
1505       InsertedCmp =
1506           CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(),
1507                           Cmp->getOperand(0), Cmp->getOperand(1), "",
1508                           &*InsertPt);
1509       // Propagate the debug info.
1510       InsertedCmp->setDebugLoc(Cmp->getDebugLoc());
1511     }
1512 
1513     // Replace a use of the cmp with a use of the new cmp.
1514     TheUse = InsertedCmp;
1515     MadeChange = true;
1516     ++NumCmpUses;
1517   }
1518 
1519   // If we removed all uses, nuke the cmp.
1520   if (Cmp->use_empty()) {
1521     Cmp->eraseFromParent();
1522     MadeChange = true;
1523   }
1524 
1525   return MadeChange;
1526 }
1527 
1528 /// For pattern like:
1529 ///
1530 ///   DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB)
1531 ///   ...
1532 /// DomBB:
1533 ///   ...
1534 ///   br DomCond, TrueBB, CmpBB
1535 /// CmpBB: (with DomBB being the single predecessor)
1536 ///   ...
1537 ///   Cmp = icmp eq CmpOp0, CmpOp1
1538 ///   ...
1539 ///
1540 /// It would use two comparison on targets that lowering of icmp sgt/slt is
1541 /// different from lowering of icmp eq (PowerPC). This function try to convert
1542 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'.
1543 /// After that, DomCond and Cmp can use the same comparison so reduce one
1544 /// comparison.
1545 ///
1546 /// Return true if any changes are made.
1547 static bool foldICmpWithDominatingICmp(CmpInst *Cmp,
1548                                        const TargetLowering &TLI) {
1549   if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp())
1550     return false;
1551 
1552   ICmpInst::Predicate Pred = Cmp->getPredicate();
1553   if (Pred != ICmpInst::ICMP_EQ)
1554     return false;
1555 
1556   // If icmp eq has users other than BranchInst and SelectInst, converting it to
1557   // icmp slt/sgt would introduce more redundant LLVM IR.
1558   for (User *U : Cmp->users()) {
1559     if (isa<BranchInst>(U))
1560       continue;
1561     if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp)
1562       continue;
1563     return false;
1564   }
1565 
1566   // This is a cheap/incomplete check for dominance - just match a single
1567   // predecessor with a conditional branch.
1568   BasicBlock *CmpBB = Cmp->getParent();
1569   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1570   if (!DomBB)
1571     return false;
1572 
1573   // We want to ensure that the only way control gets to the comparison of
1574   // interest is that a less/greater than comparison on the same operands is
1575   // false.
1576   Value *DomCond;
1577   BasicBlock *TrueBB, *FalseBB;
1578   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1579     return false;
1580   if (CmpBB != FalseBB)
1581     return false;
1582 
1583   Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1);
1584   ICmpInst::Predicate DomPred;
1585   if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1))))
1586     return false;
1587   if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT)
1588     return false;
1589 
1590   // Convert the equality comparison to the opposite of the dominating
1591   // comparison and swap the direction for all branch/select users.
1592   // We have conceptually converted:
1593   // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>;
1594   // to
1595   // Res = (a < b) ? <LT_RES> : (a > b)  ? <GT_RES> : <EQ_RES>;
1596   // And similarly for branches.
1597   for (User *U : Cmp->users()) {
1598     if (auto *BI = dyn_cast<BranchInst>(U)) {
1599       assert(BI->isConditional() && "Must be conditional");
1600       BI->swapSuccessors();
1601       continue;
1602     }
1603     if (auto *SI = dyn_cast<SelectInst>(U)) {
1604       // Swap operands
1605       SI->swapValues();
1606       SI->swapProfMetadata();
1607       continue;
1608     }
1609     llvm_unreachable("Must be a branch or a select");
1610   }
1611   Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred));
1612   return true;
1613 }
1614 
1615 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) {
1616   if (sinkCmpExpression(Cmp, *TLI))
1617     return true;
1618 
1619   if (combineToUAddWithOverflow(Cmp, ModifiedDT))
1620     return true;
1621 
1622   if (combineToUSubWithOverflow(Cmp, ModifiedDT))
1623     return true;
1624 
1625   if (foldICmpWithDominatingICmp(Cmp, *TLI))
1626     return true;
1627 
1628   return false;
1629 }
1630 
1631 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1632 /// used in a compare to allow isel to generate better code for targets where
1633 /// this operation can be combined.
1634 ///
1635 /// Return true if any changes are made.
1636 static bool sinkAndCmp0Expression(Instruction *AndI,
1637                                   const TargetLowering &TLI,
1638                                   SetOfInstrs &InsertedInsts) {
1639   // Double-check that we're not trying to optimize an instruction that was
1640   // already optimized by some other part of this pass.
1641   assert(!InsertedInsts.count(AndI) &&
1642          "Attempting to optimize already optimized and instruction");
1643   (void) InsertedInsts;
1644 
1645   // Nothing to do for single use in same basic block.
1646   if (AndI->hasOneUse() &&
1647       AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
1648     return false;
1649 
1650   // Try to avoid cases where sinking/duplicating is likely to increase register
1651   // pressure.
1652   if (!isa<ConstantInt>(AndI->getOperand(0)) &&
1653       !isa<ConstantInt>(AndI->getOperand(1)) &&
1654       AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
1655     return false;
1656 
1657   for (auto *U : AndI->users()) {
1658     Instruction *User = cast<Instruction>(U);
1659 
1660     // Only sink 'and' feeding icmp with 0.
1661     if (!isa<ICmpInst>(User))
1662       return false;
1663 
1664     auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
1665     if (!CmpC || !CmpC->isZero())
1666       return false;
1667   }
1668 
1669   if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
1670     return false;
1671 
1672   LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1673   LLVM_DEBUG(AndI->getParent()->dump());
1674 
1675   // Push the 'and' into the same block as the icmp 0.  There should only be
1676   // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1677   // others, so we don't need to keep track of which BBs we insert into.
1678   for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
1679        UI != E; ) {
1680     Use &TheUse = UI.getUse();
1681     Instruction *User = cast<Instruction>(*UI);
1682 
1683     // Preincrement use iterator so we don't invalidate it.
1684     ++UI;
1685 
1686     LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
1687 
1688     // Keep the 'and' in the same place if the use is already in the same block.
1689     Instruction *InsertPt =
1690         User->getParent() == AndI->getParent() ? AndI : User;
1691     Instruction *InsertedAnd =
1692         BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
1693                                AndI->getOperand(1), "", InsertPt);
1694     // Propagate the debug info.
1695     InsertedAnd->setDebugLoc(AndI->getDebugLoc());
1696 
1697     // Replace a use of the 'and' with a use of the new 'and'.
1698     TheUse = InsertedAnd;
1699     ++NumAndUses;
1700     LLVM_DEBUG(User->getParent()->dump());
1701   }
1702 
1703   // We removed all uses, nuke the and.
1704   AndI->eraseFromParent();
1705   return true;
1706 }
1707 
1708 /// Check if the candidates could be combined with a shift instruction, which
1709 /// includes:
1710 /// 1. Truncate instruction
1711 /// 2. And instruction and the imm is a mask of the low bits:
1712 /// imm & (imm+1) == 0
1713 static bool isExtractBitsCandidateUse(Instruction *User) {
1714   if (!isa<TruncInst>(User)) {
1715     if (User->getOpcode() != Instruction::And ||
1716         !isa<ConstantInt>(User->getOperand(1)))
1717       return false;
1718 
1719     const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
1720 
1721     if ((Cimm & (Cimm + 1)).getBoolValue())
1722       return false;
1723   }
1724   return true;
1725 }
1726 
1727 /// Sink both shift and truncate instruction to the use of truncate's BB.
1728 static bool
1729 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
1730                      DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
1731                      const TargetLowering &TLI, const DataLayout &DL) {
1732   BasicBlock *UserBB = User->getParent();
1733   DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
1734   auto *TruncI = cast<TruncInst>(User);
1735   bool MadeChange = false;
1736 
1737   for (Value::user_iterator TruncUI = TruncI->user_begin(),
1738                             TruncE = TruncI->user_end();
1739        TruncUI != TruncE;) {
1740 
1741     Use &TruncTheUse = TruncUI.getUse();
1742     Instruction *TruncUser = cast<Instruction>(*TruncUI);
1743     // Preincrement use iterator so we don't invalidate it.
1744 
1745     ++TruncUI;
1746 
1747     int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
1748     if (!ISDOpcode)
1749       continue;
1750 
1751     // If the use is actually a legal node, there will not be an
1752     // implicit truncate.
1753     // FIXME: always querying the result type is just an
1754     // approximation; some nodes' legality is determined by the
1755     // operand or other means. There's no good way to find out though.
1756     if (TLI.isOperationLegalOrCustom(
1757             ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
1758       continue;
1759 
1760     // Don't bother for PHI nodes.
1761     if (isa<PHINode>(TruncUser))
1762       continue;
1763 
1764     BasicBlock *TruncUserBB = TruncUser->getParent();
1765 
1766     if (UserBB == TruncUserBB)
1767       continue;
1768 
1769     BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
1770     CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
1771 
1772     if (!InsertedShift && !InsertedTrunc) {
1773       BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
1774       assert(InsertPt != TruncUserBB->end());
1775       // Sink the shift
1776       if (ShiftI->getOpcode() == Instruction::AShr)
1777         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1778                                                    "", &*InsertPt);
1779       else
1780         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1781                                                    "", &*InsertPt);
1782       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1783 
1784       // Sink the trunc
1785       BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
1786       TruncInsertPt++;
1787       assert(TruncInsertPt != TruncUserBB->end());
1788 
1789       InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
1790                                        TruncI->getType(), "", &*TruncInsertPt);
1791       InsertedTrunc->setDebugLoc(TruncI->getDebugLoc());
1792 
1793       MadeChange = true;
1794 
1795       TruncTheUse = InsertedTrunc;
1796     }
1797   }
1798   return MadeChange;
1799 }
1800 
1801 /// Sink the shift *right* instruction into user blocks if the uses could
1802 /// potentially be combined with this shift instruction and generate BitExtract
1803 /// instruction. It will only be applied if the architecture supports BitExtract
1804 /// instruction. Here is an example:
1805 /// BB1:
1806 ///   %x.extract.shift = lshr i64 %arg1, 32
1807 /// BB2:
1808 ///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
1809 /// ==>
1810 ///
1811 /// BB2:
1812 ///   %x.extract.shift.1 = lshr i64 %arg1, 32
1813 ///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1814 ///
1815 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
1816 /// instruction.
1817 /// Return true if any changes are made.
1818 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1819                                 const TargetLowering &TLI,
1820                                 const DataLayout &DL) {
1821   BasicBlock *DefBB = ShiftI->getParent();
1822 
1823   /// Only insert instructions in each block once.
1824   DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1825 
1826   bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1827 
1828   bool MadeChange = false;
1829   for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1830        UI != E;) {
1831     Use &TheUse = UI.getUse();
1832     Instruction *User = cast<Instruction>(*UI);
1833     // Preincrement use iterator so we don't invalidate it.
1834     ++UI;
1835 
1836     // Don't bother for PHI nodes.
1837     if (isa<PHINode>(User))
1838       continue;
1839 
1840     if (!isExtractBitsCandidateUse(User))
1841       continue;
1842 
1843     BasicBlock *UserBB = User->getParent();
1844 
1845     if (UserBB == DefBB) {
1846       // If the shift and truncate instruction are in the same BB. The use of
1847       // the truncate(TruncUse) may still introduce another truncate if not
1848       // legal. In this case, we would like to sink both shift and truncate
1849       // instruction to the BB of TruncUse.
1850       // for example:
1851       // BB1:
1852       // i64 shift.result = lshr i64 opnd, imm
1853       // trunc.result = trunc shift.result to i16
1854       //
1855       // BB2:
1856       //   ----> We will have an implicit truncate here if the architecture does
1857       //   not have i16 compare.
1858       // cmp i16 trunc.result, opnd2
1859       //
1860       if (isa<TruncInst>(User) && shiftIsLegal
1861           // If the type of the truncate is legal, no truncate will be
1862           // introduced in other basic blocks.
1863           &&
1864           (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1865         MadeChange =
1866             SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1867 
1868       continue;
1869     }
1870     // If we have already inserted a shift into this block, use it.
1871     BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1872 
1873     if (!InsertedShift) {
1874       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1875       assert(InsertPt != UserBB->end());
1876 
1877       if (ShiftI->getOpcode() == Instruction::AShr)
1878         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1879                                                    "", &*InsertPt);
1880       else
1881         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1882                                                    "", &*InsertPt);
1883       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1884 
1885       MadeChange = true;
1886     }
1887 
1888     // Replace a use of the shift with a use of the new shift.
1889     TheUse = InsertedShift;
1890   }
1891 
1892   // If we removed all uses, or there are none, nuke the shift.
1893   if (ShiftI->use_empty()) {
1894     salvageDebugInfo(*ShiftI);
1895     ShiftI->eraseFromParent();
1896     MadeChange = true;
1897   }
1898 
1899   return MadeChange;
1900 }
1901 
1902 /// If counting leading or trailing zeros is an expensive operation and a zero
1903 /// input is defined, add a check for zero to avoid calling the intrinsic.
1904 ///
1905 /// We want to transform:
1906 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
1907 ///
1908 /// into:
1909 ///   entry:
1910 ///     %cmpz = icmp eq i64 %A, 0
1911 ///     br i1 %cmpz, label %cond.end, label %cond.false
1912 ///   cond.false:
1913 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
1914 ///     br label %cond.end
1915 ///   cond.end:
1916 ///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
1917 ///
1918 /// If the transform is performed, return true and set ModifiedDT to true.
1919 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
1920                                   const TargetLowering *TLI,
1921                                   const DataLayout *DL,
1922                                   bool &ModifiedDT) {
1923   // If a zero input is undefined, it doesn't make sense to despeculate that.
1924   if (match(CountZeros->getOperand(1), m_One()))
1925     return false;
1926 
1927   // If it's cheap to speculate, there's nothing to do.
1928   auto IntrinsicID = CountZeros->getIntrinsicID();
1929   if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
1930       (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
1931     return false;
1932 
1933   // Only handle legal scalar cases. Anything else requires too much work.
1934   Type *Ty = CountZeros->getType();
1935   unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
1936   if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
1937     return false;
1938 
1939   // The intrinsic will be sunk behind a compare against zero and branch.
1940   BasicBlock *StartBlock = CountZeros->getParent();
1941   BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
1942 
1943   // Create another block after the count zero intrinsic. A PHI will be added
1944   // in this block to select the result of the intrinsic or the bit-width
1945   // constant if the input to the intrinsic is zero.
1946   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
1947   BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
1948 
1949   // Set up a builder to create a compare, conditional branch, and PHI.
1950   IRBuilder<> Builder(CountZeros->getContext());
1951   Builder.SetInsertPoint(StartBlock->getTerminator());
1952   Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
1953 
1954   // Replace the unconditional branch that was created by the first split with
1955   // a compare against zero and a conditional branch.
1956   Value *Zero = Constant::getNullValue(Ty);
1957   Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
1958   Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
1959   StartBlock->getTerminator()->eraseFromParent();
1960 
1961   // Create a PHI in the end block to select either the output of the intrinsic
1962   // or the bit width of the operand.
1963   Builder.SetInsertPoint(&EndBlock->front());
1964   PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
1965   CountZeros->replaceAllUsesWith(PN);
1966   Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
1967   PN->addIncoming(BitWidth, StartBlock);
1968   PN->addIncoming(CountZeros, CallBlock);
1969 
1970   // We are explicitly handling the zero case, so we can set the intrinsic's
1971   // undefined zero argument to 'true'. This will also prevent reprocessing the
1972   // intrinsic; we only despeculate when a zero input is defined.
1973   CountZeros->setArgOperand(1, Builder.getTrue());
1974   ModifiedDT = true;
1975   return true;
1976 }
1977 
1978 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
1979   BasicBlock *BB = CI->getParent();
1980 
1981   // Lower inline assembly if we can.
1982   // If we found an inline asm expession, and if the target knows how to
1983   // lower it to normal LLVM code, do so now.
1984   if (CI->isInlineAsm()) {
1985     if (TLI->ExpandInlineAsm(CI)) {
1986       // Avoid invalidating the iterator.
1987       CurInstIterator = BB->begin();
1988       // Avoid processing instructions out of order, which could cause
1989       // reuse before a value is defined.
1990       SunkAddrs.clear();
1991       return true;
1992     }
1993     // Sink address computing for memory operands into the block.
1994     if (optimizeInlineAsmInst(CI))
1995       return true;
1996   }
1997 
1998   // Align the pointer arguments to this call if the target thinks it's a good
1999   // idea
2000   unsigned MinSize, PrefAlign;
2001   if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
2002     for (auto &Arg : CI->arg_operands()) {
2003       // We want to align both objects whose address is used directly and
2004       // objects whose address is used in casts and GEPs, though it only makes
2005       // sense for GEPs if the offset is a multiple of the desired alignment and
2006       // if size - offset meets the size threshold.
2007       if (!Arg->getType()->isPointerTy())
2008         continue;
2009       APInt Offset(DL->getIndexSizeInBits(
2010                        cast<PointerType>(Arg->getType())->getAddressSpace()),
2011                    0);
2012       Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
2013       uint64_t Offset2 = Offset.getLimitedValue();
2014       if ((Offset2 & (PrefAlign-1)) != 0)
2015         continue;
2016       AllocaInst *AI;
2017       if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
2018           DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
2019         AI->setAlignment(Align(PrefAlign));
2020       // Global variables can only be aligned if they are defined in this
2021       // object (i.e. they are uniquely initialized in this object), and
2022       // over-aligning global variables that have an explicit section is
2023       // forbidden.
2024       GlobalVariable *GV;
2025       if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
2026           GV->getPointerAlignment(*DL) < PrefAlign &&
2027           DL->getTypeAllocSize(GV->getValueType()) >=
2028               MinSize + Offset2)
2029         GV->setAlignment(MaybeAlign(PrefAlign));
2030     }
2031     // If this is a memcpy (or similar) then we may be able to improve the
2032     // alignment
2033     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
2034       Align DestAlign = getKnownAlignment(MI->getDest(), *DL);
2035       MaybeAlign MIDestAlign = MI->getDestAlign();
2036       if (!MIDestAlign || DestAlign > *MIDestAlign)
2037         MI->setDestAlignment(DestAlign);
2038       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
2039         MaybeAlign MTISrcAlign = MTI->getSourceAlign();
2040         Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
2041         if (!MTISrcAlign || SrcAlign > *MTISrcAlign)
2042           MTI->setSourceAlignment(SrcAlign);
2043       }
2044     }
2045   }
2046 
2047   // If we have a cold call site, try to sink addressing computation into the
2048   // cold block.  This interacts with our handling for loads and stores to
2049   // ensure that we can fold all uses of a potential addressing computation
2050   // into their uses.  TODO: generalize this to work over profiling data
2051   if (CI->hasFnAttr(Attribute::Cold) &&
2052       !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
2053     for (auto &Arg : CI->arg_operands()) {
2054       if (!Arg->getType()->isPointerTy())
2055         continue;
2056       unsigned AS = Arg->getType()->getPointerAddressSpace();
2057       return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
2058     }
2059 
2060   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
2061   if (II) {
2062     switch (II->getIntrinsicID()) {
2063     default: break;
2064     case Intrinsic::assume: {
2065       Value *Operand = II->getOperand(0);
2066       II->eraseFromParent();
2067       // Prune the operand, it's most likely dead.
2068       resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
2069         RecursivelyDeleteTriviallyDeadInstructions(
2070             Operand, TLInfo, nullptr,
2071             [&](Value *V) { removeAllAssertingVHReferences(V); });
2072       });
2073       return true;
2074     }
2075 
2076     case Intrinsic::experimental_widenable_condition: {
2077       // Give up on future widening oppurtunties so that we can fold away dead
2078       // paths and merge blocks before going into block-local instruction
2079       // selection.
2080       if (II->use_empty()) {
2081         II->eraseFromParent();
2082         return true;
2083       }
2084       Constant *RetVal = ConstantInt::getTrue(II->getContext());
2085       resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
2086         replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
2087       });
2088       return true;
2089     }
2090     case Intrinsic::objectsize:
2091       llvm_unreachable("llvm.objectsize.* should have been lowered already");
2092     case Intrinsic::is_constant:
2093       llvm_unreachable("llvm.is.constant.* should have been lowered already");
2094     case Intrinsic::aarch64_stlxr:
2095     case Intrinsic::aarch64_stxr: {
2096       ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
2097       if (!ExtVal || !ExtVal->hasOneUse() ||
2098           ExtVal->getParent() == CI->getParent())
2099         return false;
2100       // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
2101       ExtVal->moveBefore(CI);
2102       // Mark this instruction as "inserted by CGP", so that other
2103       // optimizations don't touch it.
2104       InsertedInsts.insert(ExtVal);
2105       return true;
2106     }
2107 
2108     case Intrinsic::launder_invariant_group:
2109     case Intrinsic::strip_invariant_group: {
2110       Value *ArgVal = II->getArgOperand(0);
2111       auto it = LargeOffsetGEPMap.find(II);
2112       if (it != LargeOffsetGEPMap.end()) {
2113           // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
2114           // Make sure not to have to deal with iterator invalidation
2115           // after possibly adding ArgVal to LargeOffsetGEPMap.
2116           auto GEPs = std::move(it->second);
2117           LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end());
2118           LargeOffsetGEPMap.erase(II);
2119       }
2120 
2121       II->replaceAllUsesWith(ArgVal);
2122       II->eraseFromParent();
2123       return true;
2124     }
2125     case Intrinsic::cttz:
2126     case Intrinsic::ctlz:
2127       // If counting zeros is expensive, try to avoid it.
2128       return despeculateCountZeros(II, TLI, DL, ModifiedDT);
2129     case Intrinsic::fshl:
2130     case Intrinsic::fshr:
2131       return optimizeFunnelShift(II);
2132     case Intrinsic::dbg_value:
2133       return fixupDbgValue(II);
2134     case Intrinsic::vscale: {
2135       // If datalayout has no special restrictions on vector data layout,
2136       // replace `llvm.vscale` by an equivalent constant expression
2137       // to benefit from cheap constant propagation.
2138       Type *ScalableVectorTy =
2139           VectorType::get(Type::getInt8Ty(II->getContext()), 1, true);
2140       if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) {
2141         auto *Null = Constant::getNullValue(ScalableVectorTy->getPointerTo());
2142         auto *One = ConstantInt::getSigned(II->getType(), 1);
2143         auto *CGep =
2144             ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One);
2145         II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType()));
2146         II->eraseFromParent();
2147         return true;
2148       }
2149       break;
2150     }
2151     case Intrinsic::masked_gather:
2152       return optimizeGatherScatterInst(II, II->getArgOperand(0));
2153     case Intrinsic::masked_scatter:
2154       return optimizeGatherScatterInst(II, II->getArgOperand(1));
2155     }
2156 
2157     SmallVector<Value *, 2> PtrOps;
2158     Type *AccessTy;
2159     if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
2160       while (!PtrOps.empty()) {
2161         Value *PtrVal = PtrOps.pop_back_val();
2162         unsigned AS = PtrVal->getType()->getPointerAddressSpace();
2163         if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
2164           return true;
2165       }
2166   }
2167 
2168   // From here on out we're working with named functions.
2169   if (!CI->getCalledFunction()) return false;
2170 
2171   // Lower all default uses of _chk calls.  This is very similar
2172   // to what InstCombineCalls does, but here we are only lowering calls
2173   // to fortified library functions (e.g. __memcpy_chk) that have the default
2174   // "don't know" as the objectsize.  Anything else should be left alone.
2175   FortifiedLibCallSimplifier Simplifier(TLInfo, true);
2176   IRBuilder<> Builder(CI);
2177   if (Value *V = Simplifier.optimizeCall(CI, Builder)) {
2178     CI->replaceAllUsesWith(V);
2179     CI->eraseFromParent();
2180     return true;
2181   }
2182 
2183   return false;
2184 }
2185 
2186 /// Look for opportunities to duplicate return instructions to the predecessor
2187 /// to enable tail call optimizations. The case it is currently looking for is:
2188 /// @code
2189 /// bb0:
2190 ///   %tmp0 = tail call i32 @f0()
2191 ///   br label %return
2192 /// bb1:
2193 ///   %tmp1 = tail call i32 @f1()
2194 ///   br label %return
2195 /// bb2:
2196 ///   %tmp2 = tail call i32 @f2()
2197 ///   br label %return
2198 /// return:
2199 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
2200 ///   ret i32 %retval
2201 /// @endcode
2202 ///
2203 /// =>
2204 ///
2205 /// @code
2206 /// bb0:
2207 ///   %tmp0 = tail call i32 @f0()
2208 ///   ret i32 %tmp0
2209 /// bb1:
2210 ///   %tmp1 = tail call i32 @f1()
2211 ///   ret i32 %tmp1
2212 /// bb2:
2213 ///   %tmp2 = tail call i32 @f2()
2214 ///   ret i32 %tmp2
2215 /// @endcode
2216 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) {
2217   ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
2218   if (!RetI)
2219     return false;
2220 
2221   PHINode *PN = nullptr;
2222   ExtractValueInst *EVI = nullptr;
2223   BitCastInst *BCI = nullptr;
2224   Value *V = RetI->getReturnValue();
2225   if (V) {
2226     BCI = dyn_cast<BitCastInst>(V);
2227     if (BCI)
2228       V = BCI->getOperand(0);
2229 
2230     EVI = dyn_cast<ExtractValueInst>(V);
2231     if (EVI) {
2232       V = EVI->getOperand(0);
2233       if (!std::all_of(EVI->idx_begin(), EVI->idx_end(),
2234                        [](unsigned idx) { return idx == 0; }))
2235         return false;
2236     }
2237 
2238     PN = dyn_cast<PHINode>(V);
2239     if (!PN)
2240       return false;
2241   }
2242 
2243   if (PN && PN->getParent() != BB)
2244     return false;
2245 
2246   // Make sure there are no instructions between the PHI and return, or that the
2247   // return is the first instruction in the block.
2248   if (PN) {
2249     BasicBlock::iterator BI = BB->begin();
2250     // Skip over debug and the bitcast.
2251     do {
2252       ++BI;
2253     } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI || &*BI == EVI ||
2254              isa<PseudoProbeInst>(BI));
2255     if (&*BI != RetI)
2256       return false;
2257   } else {
2258     if (BB->getFirstNonPHIOrDbg(true) != RetI)
2259       return false;
2260   }
2261 
2262   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
2263   /// call.
2264   const Function *F = BB->getParent();
2265   SmallVector<BasicBlock*, 4> TailCallBBs;
2266   if (PN) {
2267     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
2268       // Look through bitcasts.
2269       Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts();
2270       CallInst *CI = dyn_cast<CallInst>(IncomingVal);
2271       BasicBlock *PredBB = PN->getIncomingBlock(I);
2272       // Make sure the phi value is indeed produced by the tail call.
2273       if (CI && CI->hasOneUse() && CI->getParent() == PredBB &&
2274           TLI->mayBeEmittedAsTailCall(CI) &&
2275           attributesPermitTailCall(F, CI, RetI, *TLI))
2276         TailCallBBs.push_back(PredBB);
2277     }
2278   } else {
2279     SmallPtrSet<BasicBlock*, 4> VisitedBBs;
2280     for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
2281       if (!VisitedBBs.insert(*PI).second)
2282         continue;
2283       if (Instruction *I = (*PI)->rbegin()->getPrevNonDebugInstruction(true)) {
2284         CallInst *CI = dyn_cast<CallInst>(I);
2285         if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
2286             attributesPermitTailCall(F, CI, RetI, *TLI))
2287           TailCallBBs.push_back(*PI);
2288       }
2289     }
2290   }
2291 
2292   bool Changed = false;
2293   for (auto const &TailCallBB : TailCallBBs) {
2294     // Make sure the call instruction is followed by an unconditional branch to
2295     // the return block.
2296     BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator());
2297     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
2298       continue;
2299 
2300     // Duplicate the return into TailCallBB.
2301     (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB);
2302     assert(!VerifyBFIUpdates ||
2303            BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB));
2304     BFI->setBlockFreq(
2305         BB,
2306         (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency());
2307     ModifiedDT = Changed = true;
2308     ++NumRetsDup;
2309   }
2310 
2311   // If we eliminated all predecessors of the block, delete the block now.
2312   if (Changed && !BB->hasAddressTaken() && pred_empty(BB))
2313     BB->eraseFromParent();
2314 
2315   return Changed;
2316 }
2317 
2318 //===----------------------------------------------------------------------===//
2319 // Memory Optimization
2320 //===----------------------------------------------------------------------===//
2321 
2322 namespace {
2323 
2324 /// This is an extended version of TargetLowering::AddrMode
2325 /// which holds actual Value*'s for register values.
2326 struct ExtAddrMode : public TargetLowering::AddrMode {
2327   Value *BaseReg = nullptr;
2328   Value *ScaledReg = nullptr;
2329   Value *OriginalValue = nullptr;
2330   bool InBounds = true;
2331 
2332   enum FieldName {
2333     NoField        = 0x00,
2334     BaseRegField   = 0x01,
2335     BaseGVField    = 0x02,
2336     BaseOffsField  = 0x04,
2337     ScaledRegField = 0x08,
2338     ScaleField     = 0x10,
2339     MultipleFields = 0xff
2340   };
2341 
2342 
2343   ExtAddrMode() = default;
2344 
2345   void print(raw_ostream &OS) const;
2346   void dump() const;
2347 
2348   FieldName compare(const ExtAddrMode &other) {
2349     // First check that the types are the same on each field, as differing types
2350     // is something we can't cope with later on.
2351     if (BaseReg && other.BaseReg &&
2352         BaseReg->getType() != other.BaseReg->getType())
2353       return MultipleFields;
2354     if (BaseGV && other.BaseGV &&
2355         BaseGV->getType() != other.BaseGV->getType())
2356       return MultipleFields;
2357     if (ScaledReg && other.ScaledReg &&
2358         ScaledReg->getType() != other.ScaledReg->getType())
2359       return MultipleFields;
2360 
2361     // Conservatively reject 'inbounds' mismatches.
2362     if (InBounds != other.InBounds)
2363       return MultipleFields;
2364 
2365     // Check each field to see if it differs.
2366     unsigned Result = NoField;
2367     if (BaseReg != other.BaseReg)
2368       Result |= BaseRegField;
2369     if (BaseGV != other.BaseGV)
2370       Result |= BaseGVField;
2371     if (BaseOffs != other.BaseOffs)
2372       Result |= BaseOffsField;
2373     if (ScaledReg != other.ScaledReg)
2374       Result |= ScaledRegField;
2375     // Don't count 0 as being a different scale, because that actually means
2376     // unscaled (which will already be counted by having no ScaledReg).
2377     if (Scale && other.Scale && Scale != other.Scale)
2378       Result |= ScaleField;
2379 
2380     if (countPopulation(Result) > 1)
2381       return MultipleFields;
2382     else
2383       return static_cast<FieldName>(Result);
2384   }
2385 
2386   // An AddrMode is trivial if it involves no calculation i.e. it is just a base
2387   // with no offset.
2388   bool isTrivial() {
2389     // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
2390     // trivial if at most one of these terms is nonzero, except that BaseGV and
2391     // BaseReg both being zero actually means a null pointer value, which we
2392     // consider to be 'non-zero' here.
2393     return !BaseOffs && !Scale && !(BaseGV && BaseReg);
2394   }
2395 
2396   Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
2397     switch (Field) {
2398     default:
2399       return nullptr;
2400     case BaseRegField:
2401       return BaseReg;
2402     case BaseGVField:
2403       return BaseGV;
2404     case ScaledRegField:
2405       return ScaledReg;
2406     case BaseOffsField:
2407       return ConstantInt::get(IntPtrTy, BaseOffs);
2408     }
2409   }
2410 
2411   void SetCombinedField(FieldName Field, Value *V,
2412                         const SmallVectorImpl<ExtAddrMode> &AddrModes) {
2413     switch (Field) {
2414     default:
2415       llvm_unreachable("Unhandled fields are expected to be rejected earlier");
2416       break;
2417     case ExtAddrMode::BaseRegField:
2418       BaseReg = V;
2419       break;
2420     case ExtAddrMode::BaseGVField:
2421       // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
2422       // in the BaseReg field.
2423       assert(BaseReg == nullptr);
2424       BaseReg = V;
2425       BaseGV = nullptr;
2426       break;
2427     case ExtAddrMode::ScaledRegField:
2428       ScaledReg = V;
2429       // If we have a mix of scaled and unscaled addrmodes then we want scale
2430       // to be the scale and not zero.
2431       if (!Scale)
2432         for (const ExtAddrMode &AM : AddrModes)
2433           if (AM.Scale) {
2434             Scale = AM.Scale;
2435             break;
2436           }
2437       break;
2438     case ExtAddrMode::BaseOffsField:
2439       // The offset is no longer a constant, so it goes in ScaledReg with a
2440       // scale of 1.
2441       assert(ScaledReg == nullptr);
2442       ScaledReg = V;
2443       Scale = 1;
2444       BaseOffs = 0;
2445       break;
2446     }
2447   }
2448 };
2449 
2450 } // end anonymous namespace
2451 
2452 #ifndef NDEBUG
2453 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2454   AM.print(OS);
2455   return OS;
2456 }
2457 #endif
2458 
2459 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2460 void ExtAddrMode::print(raw_ostream &OS) const {
2461   bool NeedPlus = false;
2462   OS << "[";
2463   if (InBounds)
2464     OS << "inbounds ";
2465   if (BaseGV) {
2466     OS << (NeedPlus ? " + " : "")
2467        << "GV:";
2468     BaseGV->printAsOperand(OS, /*PrintType=*/false);
2469     NeedPlus = true;
2470   }
2471 
2472   if (BaseOffs) {
2473     OS << (NeedPlus ? " + " : "")
2474        << BaseOffs;
2475     NeedPlus = true;
2476   }
2477 
2478   if (BaseReg) {
2479     OS << (NeedPlus ? " + " : "")
2480        << "Base:";
2481     BaseReg->printAsOperand(OS, /*PrintType=*/false);
2482     NeedPlus = true;
2483   }
2484   if (Scale) {
2485     OS << (NeedPlus ? " + " : "")
2486        << Scale << "*";
2487     ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2488   }
2489 
2490   OS << ']';
2491 }
2492 
2493 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2494   print(dbgs());
2495   dbgs() << '\n';
2496 }
2497 #endif
2498 
2499 namespace {
2500 
2501 /// This class provides transaction based operation on the IR.
2502 /// Every change made through this class is recorded in the internal state and
2503 /// can be undone (rollback) until commit is called.
2504 /// CGP does not check if instructions could be speculatively executed when
2505 /// moved. Preserving the original location would pessimize the debugging
2506 /// experience, as well as negatively impact the quality of sample PGO.
2507 class TypePromotionTransaction {
2508   /// This represents the common interface of the individual transaction.
2509   /// Each class implements the logic for doing one specific modification on
2510   /// the IR via the TypePromotionTransaction.
2511   class TypePromotionAction {
2512   protected:
2513     /// The Instruction modified.
2514     Instruction *Inst;
2515 
2516   public:
2517     /// Constructor of the action.
2518     /// The constructor performs the related action on the IR.
2519     TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2520 
2521     virtual ~TypePromotionAction() = default;
2522 
2523     /// Undo the modification done by this action.
2524     /// When this method is called, the IR must be in the same state as it was
2525     /// before this action was applied.
2526     /// \pre Undoing the action works if and only if the IR is in the exact same
2527     /// state as it was directly after this action was applied.
2528     virtual void undo() = 0;
2529 
2530     /// Advocate every change made by this action.
2531     /// When the results on the IR of the action are to be kept, it is important
2532     /// to call this function, otherwise hidden information may be kept forever.
2533     virtual void commit() {
2534       // Nothing to be done, this action is not doing anything.
2535     }
2536   };
2537 
2538   /// Utility to remember the position of an instruction.
2539   class InsertionHandler {
2540     /// Position of an instruction.
2541     /// Either an instruction:
2542     /// - Is the first in a basic block: BB is used.
2543     /// - Has a previous instruction: PrevInst is used.
2544     union {
2545       Instruction *PrevInst;
2546       BasicBlock *BB;
2547     } Point;
2548 
2549     /// Remember whether or not the instruction had a previous instruction.
2550     bool HasPrevInstruction;
2551 
2552   public:
2553     /// Record the position of \p Inst.
2554     InsertionHandler(Instruction *Inst) {
2555       BasicBlock::iterator It = Inst->getIterator();
2556       HasPrevInstruction = (It != (Inst->getParent()->begin()));
2557       if (HasPrevInstruction)
2558         Point.PrevInst = &*--It;
2559       else
2560         Point.BB = Inst->getParent();
2561     }
2562 
2563     /// Insert \p Inst at the recorded position.
2564     void insert(Instruction *Inst) {
2565       if (HasPrevInstruction) {
2566         if (Inst->getParent())
2567           Inst->removeFromParent();
2568         Inst->insertAfter(Point.PrevInst);
2569       } else {
2570         Instruction *Position = &*Point.BB->getFirstInsertionPt();
2571         if (Inst->getParent())
2572           Inst->moveBefore(Position);
2573         else
2574           Inst->insertBefore(Position);
2575       }
2576     }
2577   };
2578 
2579   /// Move an instruction before another.
2580   class InstructionMoveBefore : public TypePromotionAction {
2581     /// Original position of the instruction.
2582     InsertionHandler Position;
2583 
2584   public:
2585     /// Move \p Inst before \p Before.
2586     InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2587         : TypePromotionAction(Inst), Position(Inst) {
2588       LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
2589                         << "\n");
2590       Inst->moveBefore(Before);
2591     }
2592 
2593     /// Move the instruction back to its original position.
2594     void undo() override {
2595       LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2596       Position.insert(Inst);
2597     }
2598   };
2599 
2600   /// Set the operand of an instruction with a new value.
2601   class OperandSetter : public TypePromotionAction {
2602     /// Original operand of the instruction.
2603     Value *Origin;
2604 
2605     /// Index of the modified instruction.
2606     unsigned Idx;
2607 
2608   public:
2609     /// Set \p Idx operand of \p Inst with \p NewVal.
2610     OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2611         : TypePromotionAction(Inst), Idx(Idx) {
2612       LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2613                         << "for:" << *Inst << "\n"
2614                         << "with:" << *NewVal << "\n");
2615       Origin = Inst->getOperand(Idx);
2616       Inst->setOperand(Idx, NewVal);
2617     }
2618 
2619     /// Restore the original value of the instruction.
2620     void undo() override {
2621       LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2622                         << "for: " << *Inst << "\n"
2623                         << "with: " << *Origin << "\n");
2624       Inst->setOperand(Idx, Origin);
2625     }
2626   };
2627 
2628   /// Hide the operands of an instruction.
2629   /// Do as if this instruction was not using any of its operands.
2630   class OperandsHider : public TypePromotionAction {
2631     /// The list of original operands.
2632     SmallVector<Value *, 4> OriginalValues;
2633 
2634   public:
2635     /// Remove \p Inst from the uses of the operands of \p Inst.
2636     OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2637       LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2638       unsigned NumOpnds = Inst->getNumOperands();
2639       OriginalValues.reserve(NumOpnds);
2640       for (unsigned It = 0; It < NumOpnds; ++It) {
2641         // Save the current operand.
2642         Value *Val = Inst->getOperand(It);
2643         OriginalValues.push_back(Val);
2644         // Set a dummy one.
2645         // We could use OperandSetter here, but that would imply an overhead
2646         // that we are not willing to pay.
2647         Inst->setOperand(It, UndefValue::get(Val->getType()));
2648       }
2649     }
2650 
2651     /// Restore the original list of uses.
2652     void undo() override {
2653       LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2654       for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2655         Inst->setOperand(It, OriginalValues[It]);
2656     }
2657   };
2658 
2659   /// Build a truncate instruction.
2660   class TruncBuilder : public TypePromotionAction {
2661     Value *Val;
2662 
2663   public:
2664     /// Build a truncate instruction of \p Opnd producing a \p Ty
2665     /// result.
2666     /// trunc Opnd to Ty.
2667     TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2668       IRBuilder<> Builder(Opnd);
2669       Builder.SetCurrentDebugLocation(DebugLoc());
2670       Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2671       LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2672     }
2673 
2674     /// Get the built value.
2675     Value *getBuiltValue() { return Val; }
2676 
2677     /// Remove the built instruction.
2678     void undo() override {
2679       LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2680       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2681         IVal->eraseFromParent();
2682     }
2683   };
2684 
2685   /// Build a sign extension instruction.
2686   class SExtBuilder : public TypePromotionAction {
2687     Value *Val;
2688 
2689   public:
2690     /// Build a sign extension instruction of \p Opnd producing a \p Ty
2691     /// result.
2692     /// sext Opnd to Ty.
2693     SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2694         : TypePromotionAction(InsertPt) {
2695       IRBuilder<> Builder(InsertPt);
2696       Val = Builder.CreateSExt(Opnd, Ty, "promoted");
2697       LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
2698     }
2699 
2700     /// Get the built value.
2701     Value *getBuiltValue() { return Val; }
2702 
2703     /// Remove the built instruction.
2704     void undo() override {
2705       LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
2706       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2707         IVal->eraseFromParent();
2708     }
2709   };
2710 
2711   /// Build a zero extension instruction.
2712   class ZExtBuilder : public TypePromotionAction {
2713     Value *Val;
2714 
2715   public:
2716     /// Build a zero extension instruction of \p Opnd producing a \p Ty
2717     /// result.
2718     /// zext Opnd to Ty.
2719     ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2720         : TypePromotionAction(InsertPt) {
2721       IRBuilder<> Builder(InsertPt);
2722       Builder.SetCurrentDebugLocation(DebugLoc());
2723       Val = Builder.CreateZExt(Opnd, Ty, "promoted");
2724       LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
2725     }
2726 
2727     /// Get the built value.
2728     Value *getBuiltValue() { return Val; }
2729 
2730     /// Remove the built instruction.
2731     void undo() override {
2732       LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
2733       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2734         IVal->eraseFromParent();
2735     }
2736   };
2737 
2738   /// Mutate an instruction to another type.
2739   class TypeMutator : public TypePromotionAction {
2740     /// Record the original type.
2741     Type *OrigTy;
2742 
2743   public:
2744     /// Mutate the type of \p Inst into \p NewTy.
2745     TypeMutator(Instruction *Inst, Type *NewTy)
2746         : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
2747       LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
2748                         << "\n");
2749       Inst->mutateType(NewTy);
2750     }
2751 
2752     /// Mutate the instruction back to its original type.
2753     void undo() override {
2754       LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
2755                         << "\n");
2756       Inst->mutateType(OrigTy);
2757     }
2758   };
2759 
2760   /// Replace the uses of an instruction by another instruction.
2761   class UsesReplacer : public TypePromotionAction {
2762     /// Helper structure to keep track of the replaced uses.
2763     struct InstructionAndIdx {
2764       /// The instruction using the instruction.
2765       Instruction *Inst;
2766 
2767       /// The index where this instruction is used for Inst.
2768       unsigned Idx;
2769 
2770       InstructionAndIdx(Instruction *Inst, unsigned Idx)
2771           : Inst(Inst), Idx(Idx) {}
2772     };
2773 
2774     /// Keep track of the original uses (pair Instruction, Index).
2775     SmallVector<InstructionAndIdx, 4> OriginalUses;
2776     /// Keep track of the debug users.
2777     SmallVector<DbgValueInst *, 1> DbgValues;
2778 
2779     using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
2780 
2781   public:
2782     /// Replace all the use of \p Inst by \p New.
2783     UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
2784       LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
2785                         << "\n");
2786       // Record the original uses.
2787       for (Use &U : Inst->uses()) {
2788         Instruction *UserI = cast<Instruction>(U.getUser());
2789         OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
2790       }
2791       // Record the debug uses separately. They are not in the instruction's
2792       // use list, but they are replaced by RAUW.
2793       findDbgValues(DbgValues, Inst);
2794 
2795       // Now, we can replace the uses.
2796       Inst->replaceAllUsesWith(New);
2797     }
2798 
2799     /// Reassign the original uses of Inst to Inst.
2800     void undo() override {
2801       LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
2802       for (use_iterator UseIt = OriginalUses.begin(),
2803                         EndIt = OriginalUses.end();
2804            UseIt != EndIt; ++UseIt) {
2805         UseIt->Inst->setOperand(UseIt->Idx, Inst);
2806       }
2807       // RAUW has replaced all original uses with references to the new value,
2808       // including the debug uses. Since we are undoing the replacements,
2809       // the original debug uses must also be reinstated to maintain the
2810       // correctness and utility of debug value instructions.
2811       for (auto *DVI: DbgValues) {
2812         LLVMContext &Ctx = Inst->getType()->getContext();
2813         auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst));
2814         DVI->setOperand(0, MV);
2815       }
2816     }
2817   };
2818 
2819   /// Remove an instruction from the IR.
2820   class InstructionRemover : public TypePromotionAction {
2821     /// Original position of the instruction.
2822     InsertionHandler Inserter;
2823 
2824     /// Helper structure to hide all the link to the instruction. In other
2825     /// words, this helps to do as if the instruction was removed.
2826     OperandsHider Hider;
2827 
2828     /// Keep track of the uses replaced, if any.
2829     UsesReplacer *Replacer = nullptr;
2830 
2831     /// Keep track of instructions removed.
2832     SetOfInstrs &RemovedInsts;
2833 
2834   public:
2835     /// Remove all reference of \p Inst and optionally replace all its
2836     /// uses with New.
2837     /// \p RemovedInsts Keep track of the instructions removed by this Action.
2838     /// \pre If !Inst->use_empty(), then New != nullptr
2839     InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
2840                        Value *New = nullptr)
2841         : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
2842           RemovedInsts(RemovedInsts) {
2843       if (New)
2844         Replacer = new UsesReplacer(Inst, New);
2845       LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
2846       RemovedInsts.insert(Inst);
2847       /// The instructions removed here will be freed after completing
2848       /// optimizeBlock() for all blocks as we need to keep track of the
2849       /// removed instructions during promotion.
2850       Inst->removeFromParent();
2851     }
2852 
2853     ~InstructionRemover() override { delete Replacer; }
2854 
2855     /// Resurrect the instruction and reassign it to the proper uses if
2856     /// new value was provided when build this action.
2857     void undo() override {
2858       LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
2859       Inserter.insert(Inst);
2860       if (Replacer)
2861         Replacer->undo();
2862       Hider.undo();
2863       RemovedInsts.erase(Inst);
2864     }
2865   };
2866 
2867 public:
2868   /// Restoration point.
2869   /// The restoration point is a pointer to an action instead of an iterator
2870   /// because the iterator may be invalidated but not the pointer.
2871   using ConstRestorationPt = const TypePromotionAction *;
2872 
2873   TypePromotionTransaction(SetOfInstrs &RemovedInsts)
2874       : RemovedInsts(RemovedInsts) {}
2875 
2876   /// Advocate every changes made in that transaction. Return true if any change
2877   /// happen.
2878   bool commit();
2879 
2880   /// Undo all the changes made after the given point.
2881   void rollback(ConstRestorationPt Point);
2882 
2883   /// Get the current restoration point.
2884   ConstRestorationPt getRestorationPoint() const;
2885 
2886   /// \name API for IR modification with state keeping to support rollback.
2887   /// @{
2888   /// Same as Instruction::setOperand.
2889   void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
2890 
2891   /// Same as Instruction::eraseFromParent.
2892   void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
2893 
2894   /// Same as Value::replaceAllUsesWith.
2895   void replaceAllUsesWith(Instruction *Inst, Value *New);
2896 
2897   /// Same as Value::mutateType.
2898   void mutateType(Instruction *Inst, Type *NewTy);
2899 
2900   /// Same as IRBuilder::createTrunc.
2901   Value *createTrunc(Instruction *Opnd, Type *Ty);
2902 
2903   /// Same as IRBuilder::createSExt.
2904   Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
2905 
2906   /// Same as IRBuilder::createZExt.
2907   Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
2908 
2909   /// Same as Instruction::moveBefore.
2910   void moveBefore(Instruction *Inst, Instruction *Before);
2911   /// @}
2912 
2913 private:
2914   /// The ordered list of actions made so far.
2915   SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
2916 
2917   using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
2918 
2919   SetOfInstrs &RemovedInsts;
2920 };
2921 
2922 } // end anonymous namespace
2923 
2924 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
2925                                           Value *NewVal) {
2926   Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>(
2927       Inst, Idx, NewVal));
2928 }
2929 
2930 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
2931                                                 Value *NewVal) {
2932   Actions.push_back(
2933       std::make_unique<TypePromotionTransaction::InstructionRemover>(
2934           Inst, RemovedInsts, NewVal));
2935 }
2936 
2937 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
2938                                                   Value *New) {
2939   Actions.push_back(
2940       std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
2941 }
2942 
2943 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
2944   Actions.push_back(
2945       std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
2946 }
2947 
2948 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
2949                                              Type *Ty) {
2950   std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
2951   Value *Val = Ptr->getBuiltValue();
2952   Actions.push_back(std::move(Ptr));
2953   return Val;
2954 }
2955 
2956 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
2957                                             Value *Opnd, Type *Ty) {
2958   std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
2959   Value *Val = Ptr->getBuiltValue();
2960   Actions.push_back(std::move(Ptr));
2961   return Val;
2962 }
2963 
2964 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
2965                                             Value *Opnd, Type *Ty) {
2966   std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
2967   Value *Val = Ptr->getBuiltValue();
2968   Actions.push_back(std::move(Ptr));
2969   return Val;
2970 }
2971 
2972 void TypePromotionTransaction::moveBefore(Instruction *Inst,
2973                                           Instruction *Before) {
2974   Actions.push_back(
2975       std::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
2976           Inst, Before));
2977 }
2978 
2979 TypePromotionTransaction::ConstRestorationPt
2980 TypePromotionTransaction::getRestorationPoint() const {
2981   return !Actions.empty() ? Actions.back().get() : nullptr;
2982 }
2983 
2984 bool TypePromotionTransaction::commit() {
2985   for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
2986        ++It)
2987     (*It)->commit();
2988   bool Modified = !Actions.empty();
2989   Actions.clear();
2990   return Modified;
2991 }
2992 
2993 void TypePromotionTransaction::rollback(
2994     TypePromotionTransaction::ConstRestorationPt Point) {
2995   while (!Actions.empty() && Point != Actions.back().get()) {
2996     std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
2997     Curr->undo();
2998   }
2999 }
3000 
3001 namespace {
3002 
3003 /// A helper class for matching addressing modes.
3004 ///
3005 /// This encapsulates the logic for matching the target-legal addressing modes.
3006 class AddressingModeMatcher {
3007   SmallVectorImpl<Instruction*> &AddrModeInsts;
3008   const TargetLowering &TLI;
3009   const TargetRegisterInfo &TRI;
3010   const DataLayout &DL;
3011 
3012   /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
3013   /// the memory instruction that we're computing this address for.
3014   Type *AccessTy;
3015   unsigned AddrSpace;
3016   Instruction *MemoryInst;
3017 
3018   /// This is the addressing mode that we're building up. This is
3019   /// part of the return value of this addressing mode matching stuff.
3020   ExtAddrMode &AddrMode;
3021 
3022   /// The instructions inserted by other CodeGenPrepare optimizations.
3023   const SetOfInstrs &InsertedInsts;
3024 
3025   /// A map from the instructions to their type before promotion.
3026   InstrToOrigTy &PromotedInsts;
3027 
3028   /// The ongoing transaction where every action should be registered.
3029   TypePromotionTransaction &TPT;
3030 
3031   // A GEP which has too large offset to be folded into the addressing mode.
3032   std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;
3033 
3034   /// This is set to true when we should not do profitability checks.
3035   /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
3036   bool IgnoreProfitability;
3037 
3038   /// True if we are optimizing for size.
3039   bool OptSize;
3040 
3041   ProfileSummaryInfo *PSI;
3042   BlockFrequencyInfo *BFI;
3043 
3044   AddressingModeMatcher(
3045       SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
3046       const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI,
3047       ExtAddrMode &AM, const SetOfInstrs &InsertedInsts,
3048       InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
3049       std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
3050       bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
3051       : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
3052         DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
3053         MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
3054         PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP),
3055         OptSize(OptSize), PSI(PSI), BFI(BFI) {
3056     IgnoreProfitability = false;
3057   }
3058 
3059 public:
3060   /// Find the maximal addressing mode that a load/store of V can fold,
3061   /// give an access type of AccessTy.  This returns a list of involved
3062   /// instructions in AddrModeInsts.
3063   /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
3064   /// optimizations.
3065   /// \p PromotedInsts maps the instructions to their type before promotion.
3066   /// \p The ongoing transaction where every action should be registered.
3067   static ExtAddrMode
3068   Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
3069         SmallVectorImpl<Instruction *> &AddrModeInsts,
3070         const TargetLowering &TLI, const TargetRegisterInfo &TRI,
3071         const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
3072         TypePromotionTransaction &TPT,
3073         std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
3074         bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
3075     ExtAddrMode Result;
3076 
3077     bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS,
3078                                          MemoryInst, Result, InsertedInsts,
3079                                          PromotedInsts, TPT, LargeOffsetGEP,
3080                                          OptSize, PSI, BFI)
3081                        .matchAddr(V, 0);
3082     (void)Success; assert(Success && "Couldn't select *anything*?");
3083     return Result;
3084   }
3085 
3086 private:
3087   bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
3088   bool matchAddr(Value *Addr, unsigned Depth);
3089   bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth,
3090                           bool *MovedAway = nullptr);
3091   bool isProfitableToFoldIntoAddressingMode(Instruction *I,
3092                                             ExtAddrMode &AMBefore,
3093                                             ExtAddrMode &AMAfter);
3094   bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
3095   bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
3096                              Value *PromotedOperand) const;
3097 };
3098 
3099 class PhiNodeSet;
3100 
3101 /// An iterator for PhiNodeSet.
3102 class PhiNodeSetIterator {
3103   PhiNodeSet * const Set;
3104   size_t CurrentIndex = 0;
3105 
3106 public:
3107   /// The constructor. Start should point to either a valid element, or be equal
3108   /// to the size of the underlying SmallVector of the PhiNodeSet.
3109   PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start);
3110   PHINode * operator*() const;
3111   PhiNodeSetIterator& operator++();
3112   bool operator==(const PhiNodeSetIterator &RHS) const;
3113   bool operator!=(const PhiNodeSetIterator &RHS) const;
3114 };
3115 
3116 /// Keeps a set of PHINodes.
3117 ///
3118 /// This is a minimal set implementation for a specific use case:
3119 /// It is very fast when there are very few elements, but also provides good
3120 /// performance when there are many. It is similar to SmallPtrSet, but also
3121 /// provides iteration by insertion order, which is deterministic and stable
3122 /// across runs. It is also similar to SmallSetVector, but provides removing
3123 /// elements in O(1) time. This is achieved by not actually removing the element
3124 /// from the underlying vector, so comes at the cost of using more memory, but
3125 /// that is fine, since PhiNodeSets are used as short lived objects.
3126 class PhiNodeSet {
3127   friend class PhiNodeSetIterator;
3128 
3129   using MapType = SmallDenseMap<PHINode *, size_t, 32>;
3130   using iterator =  PhiNodeSetIterator;
3131 
3132   /// Keeps the elements in the order of their insertion in the underlying
3133   /// vector. To achieve constant time removal, it never deletes any element.
3134   SmallVector<PHINode *, 32> NodeList;
3135 
3136   /// Keeps the elements in the underlying set implementation. This (and not the
3137   /// NodeList defined above) is the source of truth on whether an element
3138   /// is actually in the collection.
3139   MapType NodeMap;
3140 
3141   /// Points to the first valid (not deleted) element when the set is not empty
3142   /// and the value is not zero. Equals to the size of the underlying vector
3143   /// when the set is empty. When the value is 0, as in the beginning, the
3144   /// first element may or may not be valid.
3145   size_t FirstValidElement = 0;
3146 
3147 public:
3148   /// Inserts a new element to the collection.
3149   /// \returns true if the element is actually added, i.e. was not in the
3150   /// collection before the operation.
3151   bool insert(PHINode *Ptr) {
3152     if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) {
3153       NodeList.push_back(Ptr);
3154       return true;
3155     }
3156     return false;
3157   }
3158 
3159   /// Removes the element from the collection.
3160   /// \returns whether the element is actually removed, i.e. was in the
3161   /// collection before the operation.
3162   bool erase(PHINode *Ptr) {
3163     if (NodeMap.erase(Ptr)) {
3164       SkipRemovedElements(FirstValidElement);
3165       return true;
3166     }
3167     return false;
3168   }
3169 
3170   /// Removes all elements and clears the collection.
3171   void clear() {
3172     NodeMap.clear();
3173     NodeList.clear();
3174     FirstValidElement = 0;
3175   }
3176 
3177   /// \returns an iterator that will iterate the elements in the order of
3178   /// insertion.
3179   iterator begin() {
3180     if (FirstValidElement == 0)
3181       SkipRemovedElements(FirstValidElement);
3182     return PhiNodeSetIterator(this, FirstValidElement);
3183   }
3184 
3185   /// \returns an iterator that points to the end of the collection.
3186   iterator end() { return PhiNodeSetIterator(this, NodeList.size()); }
3187 
3188   /// Returns the number of elements in the collection.
3189   size_t size() const {
3190     return NodeMap.size();
3191   }
3192 
3193   /// \returns 1 if the given element is in the collection, and 0 if otherwise.
3194   size_t count(PHINode *Ptr) const {
3195     return NodeMap.count(Ptr);
3196   }
3197 
3198 private:
3199   /// Updates the CurrentIndex so that it will point to a valid element.
3200   ///
3201   /// If the element of NodeList at CurrentIndex is valid, it does not
3202   /// change it. If there are no more valid elements, it updates CurrentIndex
3203   /// to point to the end of the NodeList.
3204   void SkipRemovedElements(size_t &CurrentIndex) {
3205     while (CurrentIndex < NodeList.size()) {
3206       auto it = NodeMap.find(NodeList[CurrentIndex]);
3207       // If the element has been deleted and added again later, NodeMap will
3208       // point to a different index, so CurrentIndex will still be invalid.
3209       if (it != NodeMap.end() && it->second == CurrentIndex)
3210         break;
3211       ++CurrentIndex;
3212     }
3213   }
3214 };
3215 
3216 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start)
3217     : Set(Set), CurrentIndex(Start) {}
3218 
3219 PHINode * PhiNodeSetIterator::operator*() const {
3220   assert(CurrentIndex < Set->NodeList.size() &&
3221          "PhiNodeSet access out of range");
3222   return Set->NodeList[CurrentIndex];
3223 }
3224 
3225 PhiNodeSetIterator& PhiNodeSetIterator::operator++() {
3226   assert(CurrentIndex < Set->NodeList.size() &&
3227          "PhiNodeSet access out of range");
3228   ++CurrentIndex;
3229   Set->SkipRemovedElements(CurrentIndex);
3230   return *this;
3231 }
3232 
3233 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const {
3234   return CurrentIndex == RHS.CurrentIndex;
3235 }
3236 
3237 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const {
3238   return !((*this) == RHS);
3239 }
3240 
3241 /// Keep track of simplification of Phi nodes.
3242 /// Accept the set of all phi nodes and erase phi node from this set
3243 /// if it is simplified.
3244 class SimplificationTracker {
3245   DenseMap<Value *, Value *> Storage;
3246   const SimplifyQuery &SQ;
3247   // Tracks newly created Phi nodes. The elements are iterated by insertion
3248   // order.
3249   PhiNodeSet AllPhiNodes;
3250   // Tracks newly created Select nodes.
3251   SmallPtrSet<SelectInst *, 32> AllSelectNodes;
3252 
3253 public:
3254   SimplificationTracker(const SimplifyQuery &sq)
3255       : SQ(sq) {}
3256 
3257   Value *Get(Value *V) {
3258     do {
3259       auto SV = Storage.find(V);
3260       if (SV == Storage.end())
3261         return V;
3262       V = SV->second;
3263     } while (true);
3264   }
3265 
3266   Value *Simplify(Value *Val) {
3267     SmallVector<Value *, 32> WorkList;
3268     SmallPtrSet<Value *, 32> Visited;
3269     WorkList.push_back(Val);
3270     while (!WorkList.empty()) {
3271       auto *P = WorkList.pop_back_val();
3272       if (!Visited.insert(P).second)
3273         continue;
3274       if (auto *PI = dyn_cast<Instruction>(P))
3275         if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) {
3276           for (auto *U : PI->users())
3277             WorkList.push_back(cast<Value>(U));
3278           Put(PI, V);
3279           PI->replaceAllUsesWith(V);
3280           if (auto *PHI = dyn_cast<PHINode>(PI))
3281             AllPhiNodes.erase(PHI);
3282           if (auto *Select = dyn_cast<SelectInst>(PI))
3283             AllSelectNodes.erase(Select);
3284           PI->eraseFromParent();
3285         }
3286     }
3287     return Get(Val);
3288   }
3289 
3290   void Put(Value *From, Value *To) {
3291     Storage.insert({ From, To });
3292   }
3293 
3294   void ReplacePhi(PHINode *From, PHINode *To) {
3295     Value* OldReplacement = Get(From);
3296     while (OldReplacement != From) {
3297       From = To;
3298       To = dyn_cast<PHINode>(OldReplacement);
3299       OldReplacement = Get(From);
3300     }
3301     assert(To && Get(To) == To && "Replacement PHI node is already replaced.");
3302     Put(From, To);
3303     From->replaceAllUsesWith(To);
3304     AllPhiNodes.erase(From);
3305     From->eraseFromParent();
3306   }
3307 
3308   PhiNodeSet& newPhiNodes() { return AllPhiNodes; }
3309 
3310   void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }
3311 
3312   void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }
3313 
3314   unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }
3315 
3316   unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }
3317 
3318   void destroyNewNodes(Type *CommonType) {
3319     // For safe erasing, replace the uses with dummy value first.
3320     auto *Dummy = UndefValue::get(CommonType);
3321     for (auto *I : AllPhiNodes) {
3322       I->replaceAllUsesWith(Dummy);
3323       I->eraseFromParent();
3324     }
3325     AllPhiNodes.clear();
3326     for (auto *I : AllSelectNodes) {
3327       I->replaceAllUsesWith(Dummy);
3328       I->eraseFromParent();
3329     }
3330     AllSelectNodes.clear();
3331   }
3332 };
3333 
3334 /// A helper class for combining addressing modes.
3335 class AddressingModeCombiner {
3336   typedef DenseMap<Value *, Value *> FoldAddrToValueMapping;
3337   typedef std::pair<PHINode *, PHINode *> PHIPair;
3338 
3339 private:
3340   /// The addressing modes we've collected.
3341   SmallVector<ExtAddrMode, 16> AddrModes;
3342 
3343   /// The field in which the AddrModes differ, when we have more than one.
3344   ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
3345 
3346   /// Are the AddrModes that we have all just equal to their original values?
3347   bool AllAddrModesTrivial = true;
3348 
3349   /// Common Type for all different fields in addressing modes.
3350   Type *CommonType;
3351 
3352   /// SimplifyQuery for simplifyInstruction utility.
3353   const SimplifyQuery &SQ;
3354 
3355   /// Original Address.
3356   Value *Original;
3357 
3358 public:
3359   AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue)
3360       : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {}
3361 
3362   /// Get the combined AddrMode
3363   const ExtAddrMode &getAddrMode() const {
3364     return AddrModes[0];
3365   }
3366 
3367   /// Add a new AddrMode if it's compatible with the AddrModes we already
3368   /// have.
3369   /// \return True iff we succeeded in doing so.
3370   bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
3371     // Take note of if we have any non-trivial AddrModes, as we need to detect
3372     // when all AddrModes are trivial as then we would introduce a phi or select
3373     // which just duplicates what's already there.
3374     AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
3375 
3376     // If this is the first addrmode then everything is fine.
3377     if (AddrModes.empty()) {
3378       AddrModes.emplace_back(NewAddrMode);
3379       return true;
3380     }
3381 
3382     // Figure out how different this is from the other address modes, which we
3383     // can do just by comparing against the first one given that we only care
3384     // about the cumulative difference.
3385     ExtAddrMode::FieldName ThisDifferentField =
3386       AddrModes[0].compare(NewAddrMode);
3387     if (DifferentField == ExtAddrMode::NoField)
3388       DifferentField = ThisDifferentField;
3389     else if (DifferentField != ThisDifferentField)
3390       DifferentField = ExtAddrMode::MultipleFields;
3391 
3392     // If NewAddrMode differs in more than one dimension we cannot handle it.
3393     bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
3394 
3395     // If Scale Field is different then we reject.
3396     CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
3397 
3398     // We also must reject the case when base offset is different and
3399     // scale reg is not null, we cannot handle this case due to merge of
3400     // different offsets will be used as ScaleReg.
3401     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
3402                               !NewAddrMode.ScaledReg);
3403 
3404     // We also must reject the case when GV is different and BaseReg installed
3405     // due to we want to use base reg as a merge of GV values.
3406     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
3407                               !NewAddrMode.HasBaseReg);
3408 
3409     // Even if NewAddMode is the same we still need to collect it due to
3410     // original value is different. And later we will need all original values
3411     // as anchors during finding the common Phi node.
3412     if (CanHandle)
3413       AddrModes.emplace_back(NewAddrMode);
3414     else
3415       AddrModes.clear();
3416 
3417     return CanHandle;
3418   }
3419 
3420   /// Combine the addressing modes we've collected into a single
3421   /// addressing mode.
3422   /// \return True iff we successfully combined them or we only had one so
3423   /// didn't need to combine them anyway.
3424   bool combineAddrModes() {
3425     // If we have no AddrModes then they can't be combined.
3426     if (AddrModes.size() == 0)
3427       return false;
3428 
3429     // A single AddrMode can trivially be combined.
3430     if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
3431       return true;
3432 
3433     // If the AddrModes we collected are all just equal to the value they are
3434     // derived from then combining them wouldn't do anything useful.
3435     if (AllAddrModesTrivial)
3436       return false;
3437 
3438     if (!addrModeCombiningAllowed())
3439       return false;
3440 
3441     // Build a map between <original value, basic block where we saw it> to
3442     // value of base register.
3443     // Bail out if there is no common type.
3444     FoldAddrToValueMapping Map;
3445     if (!initializeMap(Map))
3446       return false;
3447 
3448     Value *CommonValue = findCommon(Map);
3449     if (CommonValue)
3450       AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
3451     return CommonValue != nullptr;
3452   }
3453 
3454 private:
3455   /// Initialize Map with anchor values. For address seen
3456   /// we set the value of different field saw in this address.
3457   /// At the same time we find a common type for different field we will
3458   /// use to create new Phi/Select nodes. Keep it in CommonType field.
3459   /// Return false if there is no common type found.
3460   bool initializeMap(FoldAddrToValueMapping &Map) {
3461     // Keep track of keys where the value is null. We will need to replace it
3462     // with constant null when we know the common type.
3463     SmallVector<Value *, 2> NullValue;
3464     Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
3465     for (auto &AM : AddrModes) {
3466       Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
3467       if (DV) {
3468         auto *Type = DV->getType();
3469         if (CommonType && CommonType != Type)
3470           return false;
3471         CommonType = Type;
3472         Map[AM.OriginalValue] = DV;
3473       } else {
3474         NullValue.push_back(AM.OriginalValue);
3475       }
3476     }
3477     assert(CommonType && "At least one non-null value must be!");
3478     for (auto *V : NullValue)
3479       Map[V] = Constant::getNullValue(CommonType);
3480     return true;
3481   }
3482 
3483   /// We have mapping between value A and other value B where B was a field in
3484   /// addressing mode represented by A. Also we have an original value C
3485   /// representing an address we start with. Traversing from C through phi and
3486   /// selects we ended up with A's in a map. This utility function tries to find
3487   /// a value V which is a field in addressing mode C and traversing through phi
3488   /// nodes and selects we will end up in corresponded values B in a map.
3489   /// The utility will create a new Phi/Selects if needed.
3490   // The simple example looks as follows:
3491   // BB1:
3492   //   p1 = b1 + 40
3493   //   br cond BB2, BB3
3494   // BB2:
3495   //   p2 = b2 + 40
3496   //   br BB3
3497   // BB3:
3498   //   p = phi [p1, BB1], [p2, BB2]
3499   //   v = load p
3500   // Map is
3501   //   p1 -> b1
3502   //   p2 -> b2
3503   // Request is
3504   //   p -> ?
3505   // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
3506   Value *findCommon(FoldAddrToValueMapping &Map) {
3507     // Tracks the simplification of newly created phi nodes. The reason we use
3508     // this mapping is because we will add new created Phi nodes in AddrToBase.
3509     // Simplification of Phi nodes is recursive, so some Phi node may
3510     // be simplified after we added it to AddrToBase. In reality this
3511     // simplification is possible only if original phi/selects were not
3512     // simplified yet.
3513     // Using this mapping we can find the current value in AddrToBase.
3514     SimplificationTracker ST(SQ);
3515 
3516     // First step, DFS to create PHI nodes for all intermediate blocks.
3517     // Also fill traverse order for the second step.
3518     SmallVector<Value *, 32> TraverseOrder;
3519     InsertPlaceholders(Map, TraverseOrder, ST);
3520 
3521     // Second Step, fill new nodes by merged values and simplify if possible.
3522     FillPlaceholders(Map, TraverseOrder, ST);
3523 
3524     if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
3525       ST.destroyNewNodes(CommonType);
3526       return nullptr;
3527     }
3528 
3529     // Now we'd like to match New Phi nodes to existed ones.
3530     unsigned PhiNotMatchedCount = 0;
3531     if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
3532       ST.destroyNewNodes(CommonType);
3533       return nullptr;
3534     }
3535 
3536     auto *Result = ST.Get(Map.find(Original)->second);
3537     if (Result) {
3538       NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
3539       NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
3540     }
3541     return Result;
3542   }
3543 
3544   /// Try to match PHI node to Candidate.
3545   /// Matcher tracks the matched Phi nodes.
3546   bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
3547                     SmallSetVector<PHIPair, 8> &Matcher,
3548                     PhiNodeSet &PhiNodesToMatch) {
3549     SmallVector<PHIPair, 8> WorkList;
3550     Matcher.insert({ PHI, Candidate });
3551     SmallSet<PHINode *, 8> MatchedPHIs;
3552     MatchedPHIs.insert(PHI);
3553     WorkList.push_back({ PHI, Candidate });
3554     SmallSet<PHIPair, 8> Visited;
3555     while (!WorkList.empty()) {
3556       auto Item = WorkList.pop_back_val();
3557       if (!Visited.insert(Item).second)
3558         continue;
3559       // We iterate over all incoming values to Phi to compare them.
3560       // If values are different and both of them Phi and the first one is a
3561       // Phi we added (subject to match) and both of them is in the same basic
3562       // block then we can match our pair if values match. So we state that
3563       // these values match and add it to work list to verify that.
3564       for (auto B : Item.first->blocks()) {
3565         Value *FirstValue = Item.first->getIncomingValueForBlock(B);
3566         Value *SecondValue = Item.second->getIncomingValueForBlock(B);
3567         if (FirstValue == SecondValue)
3568           continue;
3569 
3570         PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
3571         PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
3572 
3573         // One of them is not Phi or
3574         // The first one is not Phi node from the set we'd like to match or
3575         // Phi nodes from different basic blocks then
3576         // we will not be able to match.
3577         if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
3578             FirstPhi->getParent() != SecondPhi->getParent())
3579           return false;
3580 
3581         // If we already matched them then continue.
3582         if (Matcher.count({ FirstPhi, SecondPhi }))
3583           continue;
3584         // So the values are different and does not match. So we need them to
3585         // match. (But we register no more than one match per PHI node, so that
3586         // we won't later try to replace them twice.)
3587         if (MatchedPHIs.insert(FirstPhi).second)
3588           Matcher.insert({ FirstPhi, SecondPhi });
3589         // But me must check it.
3590         WorkList.push_back({ FirstPhi, SecondPhi });
3591       }
3592     }
3593     return true;
3594   }
3595 
3596   /// For the given set of PHI nodes (in the SimplificationTracker) try
3597   /// to find their equivalents.
3598   /// Returns false if this matching fails and creation of new Phi is disabled.
3599   bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
3600                    unsigned &PhiNotMatchedCount) {
3601     // Matched and PhiNodesToMatch iterate their elements in a deterministic
3602     // order, so the replacements (ReplacePhi) are also done in a deterministic
3603     // order.
3604     SmallSetVector<PHIPair, 8> Matched;
3605     SmallPtrSet<PHINode *, 8> WillNotMatch;
3606     PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes();
3607     while (PhiNodesToMatch.size()) {
3608       PHINode *PHI = *PhiNodesToMatch.begin();
3609 
3610       // Add us, if no Phi nodes in the basic block we do not match.
3611       WillNotMatch.clear();
3612       WillNotMatch.insert(PHI);
3613 
3614       // Traverse all Phis until we found equivalent or fail to do that.
3615       bool IsMatched = false;
3616       for (auto &P : PHI->getParent()->phis()) {
3617         if (&P == PHI)
3618           continue;
3619         if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
3620           break;
3621         // If it does not match, collect all Phi nodes from matcher.
3622         // if we end up with no match, them all these Phi nodes will not match
3623         // later.
3624         for (auto M : Matched)
3625           WillNotMatch.insert(M.first);
3626         Matched.clear();
3627       }
3628       if (IsMatched) {
3629         // Replace all matched values and erase them.
3630         for (auto MV : Matched)
3631           ST.ReplacePhi(MV.first, MV.second);
3632         Matched.clear();
3633         continue;
3634       }
3635       // If we are not allowed to create new nodes then bail out.
3636       if (!AllowNewPhiNodes)
3637         return false;
3638       // Just remove all seen values in matcher. They will not match anything.
3639       PhiNotMatchedCount += WillNotMatch.size();
3640       for (auto *P : WillNotMatch)
3641         PhiNodesToMatch.erase(P);
3642     }
3643     return true;
3644   }
3645   /// Fill the placeholders with values from predecessors and simplify them.
3646   void FillPlaceholders(FoldAddrToValueMapping &Map,
3647                         SmallVectorImpl<Value *> &TraverseOrder,
3648                         SimplificationTracker &ST) {
3649     while (!TraverseOrder.empty()) {
3650       Value *Current = TraverseOrder.pop_back_val();
3651       assert(Map.find(Current) != Map.end() && "No node to fill!!!");
3652       Value *V = Map[Current];
3653 
3654       if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
3655         // CurrentValue also must be Select.
3656         auto *CurrentSelect = cast<SelectInst>(Current);
3657         auto *TrueValue = CurrentSelect->getTrueValue();
3658         assert(Map.find(TrueValue) != Map.end() && "No True Value!");
3659         Select->setTrueValue(ST.Get(Map[TrueValue]));
3660         auto *FalseValue = CurrentSelect->getFalseValue();
3661         assert(Map.find(FalseValue) != Map.end() && "No False Value!");
3662         Select->setFalseValue(ST.Get(Map[FalseValue]));
3663       } else {
3664         // Must be a Phi node then.
3665         auto *PHI = cast<PHINode>(V);
3666         // Fill the Phi node with values from predecessors.
3667         for (auto *B : predecessors(PHI->getParent())) {
3668           Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B);
3669           assert(Map.find(PV) != Map.end() && "No predecessor Value!");
3670           PHI->addIncoming(ST.Get(Map[PV]), B);
3671         }
3672       }
3673       Map[Current] = ST.Simplify(V);
3674     }
3675   }
3676 
3677   /// Starting from original value recursively iterates over def-use chain up to
3678   /// known ending values represented in a map. For each traversed phi/select
3679   /// inserts a placeholder Phi or Select.
3680   /// Reports all new created Phi/Select nodes by adding them to set.
3681   /// Also reports and order in what values have been traversed.
3682   void InsertPlaceholders(FoldAddrToValueMapping &Map,
3683                           SmallVectorImpl<Value *> &TraverseOrder,
3684                           SimplificationTracker &ST) {
3685     SmallVector<Value *, 32> Worklist;
3686     assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&
3687            "Address must be a Phi or Select node");
3688     auto *Dummy = UndefValue::get(CommonType);
3689     Worklist.push_back(Original);
3690     while (!Worklist.empty()) {
3691       Value *Current = Worklist.pop_back_val();
3692       // if it is already visited or it is an ending value then skip it.
3693       if (Map.find(Current) != Map.end())
3694         continue;
3695       TraverseOrder.push_back(Current);
3696 
3697       // CurrentValue must be a Phi node or select. All others must be covered
3698       // by anchors.
3699       if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) {
3700         // Is it OK to get metadata from OrigSelect?!
3701         // Create a Select placeholder with dummy value.
3702         SelectInst *Select = SelectInst::Create(
3703             CurrentSelect->getCondition(), Dummy, Dummy,
3704             CurrentSelect->getName(), CurrentSelect, CurrentSelect);
3705         Map[Current] = Select;
3706         ST.insertNewSelect(Select);
3707         // We are interested in True and False values.
3708         Worklist.push_back(CurrentSelect->getTrueValue());
3709         Worklist.push_back(CurrentSelect->getFalseValue());
3710       } else {
3711         // It must be a Phi node then.
3712         PHINode *CurrentPhi = cast<PHINode>(Current);
3713         unsigned PredCount = CurrentPhi->getNumIncomingValues();
3714         PHINode *PHI =
3715             PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi);
3716         Map[Current] = PHI;
3717         ST.insertNewPhi(PHI);
3718         for (Value *P : CurrentPhi->incoming_values())
3719           Worklist.push_back(P);
3720       }
3721     }
3722   }
3723 
3724   bool addrModeCombiningAllowed() {
3725     if (DisableComplexAddrModes)
3726       return false;
3727     switch (DifferentField) {
3728     default:
3729       return false;
3730     case ExtAddrMode::BaseRegField:
3731       return AddrSinkCombineBaseReg;
3732     case ExtAddrMode::BaseGVField:
3733       return AddrSinkCombineBaseGV;
3734     case ExtAddrMode::BaseOffsField:
3735       return AddrSinkCombineBaseOffs;
3736     case ExtAddrMode::ScaledRegField:
3737       return AddrSinkCombineScaledReg;
3738     }
3739   }
3740 };
3741 } // end anonymous namespace
3742 
3743 /// Try adding ScaleReg*Scale to the current addressing mode.
3744 /// Return true and update AddrMode if this addr mode is legal for the target,
3745 /// false if not.
3746 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
3747                                              unsigned Depth) {
3748   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3749   // mode.  Just process that directly.
3750   if (Scale == 1)
3751     return matchAddr(ScaleReg, Depth);
3752 
3753   // If the scale is 0, it takes nothing to add this.
3754   if (Scale == 0)
3755     return true;
3756 
3757   // If we already have a scale of this value, we can add to it, otherwise, we
3758   // need an available scale field.
3759   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
3760     return false;
3761 
3762   ExtAddrMode TestAddrMode = AddrMode;
3763 
3764   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
3765   // [A+B + A*7] -> [B+A*8].
3766   TestAddrMode.Scale += Scale;
3767   TestAddrMode.ScaledReg = ScaleReg;
3768 
3769   // If the new address isn't legal, bail out.
3770   if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
3771     return false;
3772 
3773   // It was legal, so commit it.
3774   AddrMode = TestAddrMode;
3775 
3776   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
3777   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
3778   // X*Scale + C*Scale to addr mode.
3779   ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
3780   if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
3781       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) &&
3782       CI->getValue().isSignedIntN(64)) {
3783     TestAddrMode.InBounds = false;
3784     TestAddrMode.ScaledReg = AddLHS;
3785     TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale;
3786 
3787     // If this addressing mode is legal, commit it and remember that we folded
3788     // this instruction.
3789     if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
3790       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
3791       AddrMode = TestAddrMode;
3792       return true;
3793     }
3794   }
3795 
3796   // Otherwise, not (x+c)*scale, just return what we have.
3797   return true;
3798 }
3799 
3800 /// This is a little filter, which returns true if an addressing computation
3801 /// involving I might be folded into a load/store accessing it.
3802 /// This doesn't need to be perfect, but needs to accept at least
3803 /// the set of instructions that MatchOperationAddr can.
3804 static bool MightBeFoldableInst(Instruction *I) {
3805   switch (I->getOpcode()) {
3806   case Instruction::BitCast:
3807   case Instruction::AddrSpaceCast:
3808     // Don't touch identity bitcasts.
3809     if (I->getType() == I->getOperand(0)->getType())
3810       return false;
3811     return I->getType()->isIntOrPtrTy();
3812   case Instruction::PtrToInt:
3813     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3814     return true;
3815   case Instruction::IntToPtr:
3816     // We know the input is intptr_t, so this is foldable.
3817     return true;
3818   case Instruction::Add:
3819     return true;
3820   case Instruction::Mul:
3821   case Instruction::Shl:
3822     // Can only handle X*C and X << C.
3823     return isa<ConstantInt>(I->getOperand(1));
3824   case Instruction::GetElementPtr:
3825     return true;
3826   default:
3827     return false;
3828   }
3829 }
3830 
3831 /// Check whether or not \p Val is a legal instruction for \p TLI.
3832 /// \note \p Val is assumed to be the product of some type promotion.
3833 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
3834 /// to be legal, as the non-promoted value would have had the same state.
3835 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
3836                                        const DataLayout &DL, Value *Val) {
3837   Instruction *PromotedInst = dyn_cast<Instruction>(Val);
3838   if (!PromotedInst)
3839     return false;
3840   int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
3841   // If the ISDOpcode is undefined, it was undefined before the promotion.
3842   if (!ISDOpcode)
3843     return true;
3844   // Otherwise, check if the promoted instruction is legal or not.
3845   return TLI.isOperationLegalOrCustom(
3846       ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
3847 }
3848 
3849 namespace {
3850 
3851 /// Hepler class to perform type promotion.
3852 class TypePromotionHelper {
3853   /// Utility function to add a promoted instruction \p ExtOpnd to
3854   /// \p PromotedInsts and record the type of extension we have seen.
3855   static void addPromotedInst(InstrToOrigTy &PromotedInsts,
3856                               Instruction *ExtOpnd,
3857                               bool IsSExt) {
3858     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3859     InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd);
3860     if (It != PromotedInsts.end()) {
3861       // If the new extension is same as original, the information in
3862       // PromotedInsts[ExtOpnd] is still correct.
3863       if (It->second.getInt() == ExtTy)
3864         return;
3865 
3866       // Now the new extension is different from old extension, we make
3867       // the type information invalid by setting extension type to
3868       // BothExtension.
3869       ExtTy = BothExtension;
3870     }
3871     PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy);
3872   }
3873 
3874   /// Utility function to query the original type of instruction \p Opnd
3875   /// with a matched extension type. If the extension doesn't match, we
3876   /// cannot use the information we had on the original type.
3877   /// BothExtension doesn't match any extension type.
3878   static const Type *getOrigType(const InstrToOrigTy &PromotedInsts,
3879                                  Instruction *Opnd,
3880                                  bool IsSExt) {
3881     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3882     InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
3883     if (It != PromotedInsts.end() && It->second.getInt() == ExtTy)
3884       return It->second.getPointer();
3885     return nullptr;
3886   }
3887 
3888   /// Utility function to check whether or not a sign or zero extension
3889   /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
3890   /// either using the operands of \p Inst or promoting \p Inst.
3891   /// The type of the extension is defined by \p IsSExt.
3892   /// In other words, check if:
3893   /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
3894   /// #1 Promotion applies:
3895   /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
3896   /// #2 Operand reuses:
3897   /// ext opnd1 to ConsideredExtType.
3898   /// \p PromotedInsts maps the instructions to their type before promotion.
3899   static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
3900                             const InstrToOrigTy &PromotedInsts, bool IsSExt);
3901 
3902   /// Utility function to determine if \p OpIdx should be promoted when
3903   /// promoting \p Inst.
3904   static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
3905     return !(isa<SelectInst>(Inst) && OpIdx == 0);
3906   }
3907 
3908   /// Utility function to promote the operand of \p Ext when this
3909   /// operand is a promotable trunc or sext or zext.
3910   /// \p PromotedInsts maps the instructions to their type before promotion.
3911   /// \p CreatedInstsCost[out] contains the cost of all instructions
3912   /// created to promote the operand of Ext.
3913   /// Newly added extensions are inserted in \p Exts.
3914   /// Newly added truncates are inserted in \p Truncs.
3915   /// Should never be called directly.
3916   /// \return The promoted value which is used instead of Ext.
3917   static Value *promoteOperandForTruncAndAnyExt(
3918       Instruction *Ext, TypePromotionTransaction &TPT,
3919       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3920       SmallVectorImpl<Instruction *> *Exts,
3921       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
3922 
3923   /// Utility function to promote the operand of \p Ext when this
3924   /// operand is promotable and is not a supported trunc or sext.
3925   /// \p PromotedInsts maps the instructions to their type before promotion.
3926   /// \p CreatedInstsCost[out] contains the cost of all the instructions
3927   /// created to promote the operand of Ext.
3928   /// Newly added extensions are inserted in \p Exts.
3929   /// Newly added truncates are inserted in \p Truncs.
3930   /// Should never be called directly.
3931   /// \return The promoted value which is used instead of Ext.
3932   static Value *promoteOperandForOther(Instruction *Ext,
3933                                        TypePromotionTransaction &TPT,
3934                                        InstrToOrigTy &PromotedInsts,
3935                                        unsigned &CreatedInstsCost,
3936                                        SmallVectorImpl<Instruction *> *Exts,
3937                                        SmallVectorImpl<Instruction *> *Truncs,
3938                                        const TargetLowering &TLI, bool IsSExt);
3939 
3940   /// \see promoteOperandForOther.
3941   static Value *signExtendOperandForOther(
3942       Instruction *Ext, TypePromotionTransaction &TPT,
3943       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3944       SmallVectorImpl<Instruction *> *Exts,
3945       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3946     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3947                                   Exts, Truncs, TLI, true);
3948   }
3949 
3950   /// \see promoteOperandForOther.
3951   static Value *zeroExtendOperandForOther(
3952       Instruction *Ext, TypePromotionTransaction &TPT,
3953       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3954       SmallVectorImpl<Instruction *> *Exts,
3955       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3956     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3957                                   Exts, Truncs, TLI, false);
3958   }
3959 
3960 public:
3961   /// Type for the utility function that promotes the operand of Ext.
3962   using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
3963                             InstrToOrigTy &PromotedInsts,
3964                             unsigned &CreatedInstsCost,
3965                             SmallVectorImpl<Instruction *> *Exts,
3966                             SmallVectorImpl<Instruction *> *Truncs,
3967                             const TargetLowering &TLI);
3968 
3969   /// Given a sign/zero extend instruction \p Ext, return the appropriate
3970   /// action to promote the operand of \p Ext instead of using Ext.
3971   /// \return NULL if no promotable action is possible with the current
3972   /// sign extension.
3973   /// \p InsertedInsts keeps track of all the instructions inserted by the
3974   /// other CodeGenPrepare optimizations. This information is important
3975   /// because we do not want to promote these instructions as CodeGenPrepare
3976   /// will reinsert them later. Thus creating an infinite loop: create/remove.
3977   /// \p PromotedInsts maps the instructions to their type before promotion.
3978   static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
3979                           const TargetLowering &TLI,
3980                           const InstrToOrigTy &PromotedInsts);
3981 };
3982 
3983 } // end anonymous namespace
3984 
3985 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
3986                                         Type *ConsideredExtType,
3987                                         const InstrToOrigTy &PromotedInsts,
3988                                         bool IsSExt) {
3989   // The promotion helper does not know how to deal with vector types yet.
3990   // To be able to fix that, we would need to fix the places where we
3991   // statically extend, e.g., constants and such.
3992   if (Inst->getType()->isVectorTy())
3993     return false;
3994 
3995   // We can always get through zext.
3996   if (isa<ZExtInst>(Inst))
3997     return true;
3998 
3999   // sext(sext) is ok too.
4000   if (IsSExt && isa<SExtInst>(Inst))
4001     return true;
4002 
4003   // We can get through binary operator, if it is legal. In other words, the
4004   // binary operator must have a nuw or nsw flag.
4005   const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
4006   if (isa_and_nonnull<OverflowingBinaryOperator>(BinOp) &&
4007       ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
4008        (IsSExt && BinOp->hasNoSignedWrap())))
4009     return true;
4010 
4011   // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
4012   if ((Inst->getOpcode() == Instruction::And ||
4013        Inst->getOpcode() == Instruction::Or))
4014     return true;
4015 
4016   // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
4017   if (Inst->getOpcode() == Instruction::Xor) {
4018     const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1));
4019     // Make sure it is not a NOT.
4020     if (Cst && !Cst->getValue().isAllOnesValue())
4021       return true;
4022   }
4023 
4024   // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
4025   // It may change a poisoned value into a regular value, like
4026   //     zext i32 (shrl i8 %val, 12)  -->  shrl i32 (zext i8 %val), 12
4027   //          poisoned value                    regular value
4028   // It should be OK since undef covers valid value.
4029   if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
4030     return true;
4031 
4032   // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
4033   // It may change a poisoned value into a regular value, like
4034   //     zext i32 (shl i8 %val, 12)  -->  shl i32 (zext i8 %val), 12
4035   //          poisoned value                    regular value
4036   // It should be OK since undef covers valid value.
4037   if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
4038     const auto *ExtInst = cast<const Instruction>(*Inst->user_begin());
4039     if (ExtInst->hasOneUse()) {
4040       const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin());
4041       if (AndInst && AndInst->getOpcode() == Instruction::And) {
4042         const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
4043         if (Cst &&
4044             Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
4045           return true;
4046       }
4047     }
4048   }
4049 
4050   // Check if we can do the following simplification.
4051   // ext(trunc(opnd)) --> ext(opnd)
4052   if (!isa<TruncInst>(Inst))
4053     return false;
4054 
4055   Value *OpndVal = Inst->getOperand(0);
4056   // Check if we can use this operand in the extension.
4057   // If the type is larger than the result type of the extension, we cannot.
4058   if (!OpndVal->getType()->isIntegerTy() ||
4059       OpndVal->getType()->getIntegerBitWidth() >
4060           ConsideredExtType->getIntegerBitWidth())
4061     return false;
4062 
4063   // If the operand of the truncate is not an instruction, we will not have
4064   // any information on the dropped bits.
4065   // (Actually we could for constant but it is not worth the extra logic).
4066   Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
4067   if (!Opnd)
4068     return false;
4069 
4070   // Check if the source of the type is narrow enough.
4071   // I.e., check that trunc just drops extended bits of the same kind of
4072   // the extension.
4073   // #1 get the type of the operand and check the kind of the extended bits.
4074   const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt);
4075   if (OpndType)
4076     ;
4077   else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
4078     OpndType = Opnd->getOperand(0)->getType();
4079   else
4080     return false;
4081 
4082   // #2 check that the truncate just drops extended bits.
4083   return Inst->getType()->getIntegerBitWidth() >=
4084          OpndType->getIntegerBitWidth();
4085 }
4086 
4087 TypePromotionHelper::Action TypePromotionHelper::getAction(
4088     Instruction *Ext, const SetOfInstrs &InsertedInsts,
4089     const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
4090   assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
4091          "Unexpected instruction type");
4092   Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
4093   Type *ExtTy = Ext->getType();
4094   bool IsSExt = isa<SExtInst>(Ext);
4095   // If the operand of the extension is not an instruction, we cannot
4096   // get through.
4097   // If it, check we can get through.
4098   if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
4099     return nullptr;
4100 
4101   // Do not promote if the operand has been added by codegenprepare.
4102   // Otherwise, it means we are undoing an optimization that is likely to be
4103   // redone, thus causing potential infinite loop.
4104   if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
4105     return nullptr;
4106 
4107   // SExt or Trunc instructions.
4108   // Return the related handler.
4109   if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
4110       isa<ZExtInst>(ExtOpnd))
4111     return promoteOperandForTruncAndAnyExt;
4112 
4113   // Regular instruction.
4114   // Abort early if we will have to insert non-free instructions.
4115   if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
4116     return nullptr;
4117   return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
4118 }
4119 
4120 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
4121     Instruction *SExt, TypePromotionTransaction &TPT,
4122     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4123     SmallVectorImpl<Instruction *> *Exts,
4124     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4125   // By construction, the operand of SExt is an instruction. Otherwise we cannot
4126   // get through it and this method should not be called.
4127   Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
4128   Value *ExtVal = SExt;
4129   bool HasMergedNonFreeExt = false;
4130   if (isa<ZExtInst>(SExtOpnd)) {
4131     // Replace s|zext(zext(opnd))
4132     // => zext(opnd).
4133     HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
4134     Value *ZExt =
4135         TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
4136     TPT.replaceAllUsesWith(SExt, ZExt);
4137     TPT.eraseInstruction(SExt);
4138     ExtVal = ZExt;
4139   } else {
4140     // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
4141     // => z|sext(opnd).
4142     TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
4143   }
4144   CreatedInstsCost = 0;
4145 
4146   // Remove dead code.
4147   if (SExtOpnd->use_empty())
4148     TPT.eraseInstruction(SExtOpnd);
4149 
4150   // Check if the extension is still needed.
4151   Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
4152   if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
4153     if (ExtInst) {
4154       if (Exts)
4155         Exts->push_back(ExtInst);
4156       CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
4157     }
4158     return ExtVal;
4159   }
4160 
4161   // At this point we have: ext ty opnd to ty.
4162   // Reassign the uses of ExtInst to the opnd and remove ExtInst.
4163   Value *NextVal = ExtInst->getOperand(0);
4164   TPT.eraseInstruction(ExtInst, NextVal);
4165   return NextVal;
4166 }
4167 
4168 Value *TypePromotionHelper::promoteOperandForOther(
4169     Instruction *Ext, TypePromotionTransaction &TPT,
4170     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4171     SmallVectorImpl<Instruction *> *Exts,
4172     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
4173     bool IsSExt) {
4174   // By construction, the operand of Ext is an instruction. Otherwise we cannot
4175   // get through it and this method should not be called.
4176   Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
4177   CreatedInstsCost = 0;
4178   if (!ExtOpnd->hasOneUse()) {
4179     // ExtOpnd will be promoted.
4180     // All its uses, but Ext, will need to use a truncated value of the
4181     // promoted version.
4182     // Create the truncate now.
4183     Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
4184     if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
4185       // Insert it just after the definition.
4186       ITrunc->moveAfter(ExtOpnd);
4187       if (Truncs)
4188         Truncs->push_back(ITrunc);
4189     }
4190 
4191     TPT.replaceAllUsesWith(ExtOpnd, Trunc);
4192     // Restore the operand of Ext (which has been replaced by the previous call
4193     // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
4194     TPT.setOperand(Ext, 0, ExtOpnd);
4195   }
4196 
4197   // Get through the Instruction:
4198   // 1. Update its type.
4199   // 2. Replace the uses of Ext by Inst.
4200   // 3. Extend each operand that needs to be extended.
4201 
4202   // Remember the original type of the instruction before promotion.
4203   // This is useful to know that the high bits are sign extended bits.
4204   addPromotedInst(PromotedInsts, ExtOpnd, IsSExt);
4205   // Step #1.
4206   TPT.mutateType(ExtOpnd, Ext->getType());
4207   // Step #2.
4208   TPT.replaceAllUsesWith(Ext, ExtOpnd);
4209   // Step #3.
4210   Instruction *ExtForOpnd = Ext;
4211 
4212   LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
4213   for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
4214        ++OpIdx) {
4215     LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
4216     if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
4217         !shouldExtOperand(ExtOpnd, OpIdx)) {
4218       LLVM_DEBUG(dbgs() << "No need to propagate\n");
4219       continue;
4220     }
4221     // Check if we can statically extend the operand.
4222     Value *Opnd = ExtOpnd->getOperand(OpIdx);
4223     if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
4224       LLVM_DEBUG(dbgs() << "Statically extend\n");
4225       unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
4226       APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
4227                             : Cst->getValue().zext(BitWidth);
4228       TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
4229       continue;
4230     }
4231     // UndefValue are typed, so we have to statically sign extend them.
4232     if (isa<UndefValue>(Opnd)) {
4233       LLVM_DEBUG(dbgs() << "Statically extend\n");
4234       TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
4235       continue;
4236     }
4237 
4238     // Otherwise we have to explicitly sign extend the operand.
4239     // Check if Ext was reused to extend an operand.
4240     if (!ExtForOpnd) {
4241       // If yes, create a new one.
4242       LLVM_DEBUG(dbgs() << "More operands to ext\n");
4243       Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
4244         : TPT.createZExt(Ext, Opnd, Ext->getType());
4245       if (!isa<Instruction>(ValForExtOpnd)) {
4246         TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
4247         continue;
4248       }
4249       ExtForOpnd = cast<Instruction>(ValForExtOpnd);
4250     }
4251     if (Exts)
4252       Exts->push_back(ExtForOpnd);
4253     TPT.setOperand(ExtForOpnd, 0, Opnd);
4254 
4255     // Move the sign extension before the insertion point.
4256     TPT.moveBefore(ExtForOpnd, ExtOpnd);
4257     TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
4258     CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
4259     // If more sext are required, new instructions will have to be created.
4260     ExtForOpnd = nullptr;
4261   }
4262   if (ExtForOpnd == Ext) {
4263     LLVM_DEBUG(dbgs() << "Extension is useless now\n");
4264     TPT.eraseInstruction(Ext);
4265   }
4266   return ExtOpnd;
4267 }
4268 
4269 /// Check whether or not promoting an instruction to a wider type is profitable.
4270 /// \p NewCost gives the cost of extension instructions created by the
4271 /// promotion.
4272 /// \p OldCost gives the cost of extension instructions before the promotion
4273 /// plus the number of instructions that have been
4274 /// matched in the addressing mode the promotion.
4275 /// \p PromotedOperand is the value that has been promoted.
4276 /// \return True if the promotion is profitable, false otherwise.
4277 bool AddressingModeMatcher::isPromotionProfitable(
4278     unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
4279   LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
4280                     << '\n');
4281   // The cost of the new extensions is greater than the cost of the
4282   // old extension plus what we folded.
4283   // This is not profitable.
4284   if (NewCost > OldCost)
4285     return false;
4286   if (NewCost < OldCost)
4287     return true;
4288   // The promotion is neutral but it may help folding the sign extension in
4289   // loads for instance.
4290   // Check that we did not create an illegal instruction.
4291   return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
4292 }
4293 
4294 /// Given an instruction or constant expr, see if we can fold the operation
4295 /// into the addressing mode. If so, update the addressing mode and return
4296 /// true, otherwise return false without modifying AddrMode.
4297 /// If \p MovedAway is not NULL, it contains the information of whether or
4298 /// not AddrInst has to be folded into the addressing mode on success.
4299 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
4300 /// because it has been moved away.
4301 /// Thus AddrInst must not be added in the matched instructions.
4302 /// This state can happen when AddrInst is a sext, since it may be moved away.
4303 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
4304 /// not be referenced anymore.
4305 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
4306                                                unsigned Depth,
4307                                                bool *MovedAway) {
4308   // Avoid exponential behavior on extremely deep expression trees.
4309   if (Depth >= 5) return false;
4310 
4311   // By default, all matched instructions stay in place.
4312   if (MovedAway)
4313     *MovedAway = false;
4314 
4315   switch (Opcode) {
4316   case Instruction::PtrToInt:
4317     // PtrToInt is always a noop, as we know that the int type is pointer sized.
4318     return matchAddr(AddrInst->getOperand(0), Depth);
4319   case Instruction::IntToPtr: {
4320     auto AS = AddrInst->getType()->getPointerAddressSpace();
4321     auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
4322     // This inttoptr is a no-op if the integer type is pointer sized.
4323     if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
4324       return matchAddr(AddrInst->getOperand(0), Depth);
4325     return false;
4326   }
4327   case Instruction::BitCast:
4328     // BitCast is always a noop, and we can handle it as long as it is
4329     // int->int or pointer->pointer (we don't want int<->fp or something).
4330     if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() &&
4331         // Don't touch identity bitcasts.  These were probably put here by LSR,
4332         // and we don't want to mess around with them.  Assume it knows what it
4333         // is doing.
4334         AddrInst->getOperand(0)->getType() != AddrInst->getType())
4335       return matchAddr(AddrInst->getOperand(0), Depth);
4336     return false;
4337   case Instruction::AddrSpaceCast: {
4338     unsigned SrcAS
4339       = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
4340     unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
4341     if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS))
4342       return matchAddr(AddrInst->getOperand(0), Depth);
4343     return false;
4344   }
4345   case Instruction::Add: {
4346     // Check to see if we can merge in the RHS then the LHS.  If so, we win.
4347     ExtAddrMode BackupAddrMode = AddrMode;
4348     unsigned OldSize = AddrModeInsts.size();
4349     // Start a transaction at this point.
4350     // The LHS may match but not the RHS.
4351     // Therefore, we need a higher level restoration point to undo partially
4352     // matched operation.
4353     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4354         TPT.getRestorationPoint();
4355 
4356     AddrMode.InBounds = false;
4357     if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
4358         matchAddr(AddrInst->getOperand(0), Depth+1))
4359       return true;
4360 
4361     // Restore the old addr mode info.
4362     AddrMode = BackupAddrMode;
4363     AddrModeInsts.resize(OldSize);
4364     TPT.rollback(LastKnownGood);
4365 
4366     // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
4367     if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
4368         matchAddr(AddrInst->getOperand(1), Depth+1))
4369       return true;
4370 
4371     // Otherwise we definitely can't merge the ADD in.
4372     AddrMode = BackupAddrMode;
4373     AddrModeInsts.resize(OldSize);
4374     TPT.rollback(LastKnownGood);
4375     break;
4376   }
4377   //case Instruction::Or:
4378   // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
4379   //break;
4380   case Instruction::Mul:
4381   case Instruction::Shl: {
4382     // Can only handle X*C and X << C.
4383     AddrMode.InBounds = false;
4384     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
4385     if (!RHS || RHS->getBitWidth() > 64)
4386       return false;
4387     int64_t Scale = RHS->getSExtValue();
4388     if (Opcode == Instruction::Shl)
4389       Scale = 1LL << Scale;
4390 
4391     return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
4392   }
4393   case Instruction::GetElementPtr: {
4394     // Scan the GEP.  We check it if it contains constant offsets and at most
4395     // one variable offset.
4396     int VariableOperand = -1;
4397     unsigned VariableScale = 0;
4398 
4399     int64_t ConstantOffset = 0;
4400     gep_type_iterator GTI = gep_type_begin(AddrInst);
4401     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
4402       if (StructType *STy = GTI.getStructTypeOrNull()) {
4403         const StructLayout *SL = DL.getStructLayout(STy);
4404         unsigned Idx =
4405           cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
4406         ConstantOffset += SL->getElementOffset(Idx);
4407       } else {
4408         TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType());
4409         if (TS.isNonZero()) {
4410           // The optimisations below currently only work for fixed offsets.
4411           if (TS.isScalable())
4412             return false;
4413           int64_t TypeSize = TS.getFixedSize();
4414           if (ConstantInt *CI =
4415                   dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
4416             const APInt &CVal = CI->getValue();
4417             if (CVal.getMinSignedBits() <= 64) {
4418               ConstantOffset += CVal.getSExtValue() * TypeSize;
4419               continue;
4420             }
4421           }
4422           // We only allow one variable index at the moment.
4423           if (VariableOperand != -1)
4424             return false;
4425 
4426           // Remember the variable index.
4427           VariableOperand = i;
4428           VariableScale = TypeSize;
4429         }
4430       }
4431     }
4432 
4433     // A common case is for the GEP to only do a constant offset.  In this case,
4434     // just add it to the disp field and check validity.
4435     if (VariableOperand == -1) {
4436       AddrMode.BaseOffs += ConstantOffset;
4437       if (ConstantOffset == 0 ||
4438           TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
4439         // Check to see if we can fold the base pointer in too.
4440         if (matchAddr(AddrInst->getOperand(0), Depth+1)) {
4441           if (!cast<GEPOperator>(AddrInst)->isInBounds())
4442             AddrMode.InBounds = false;
4443           return true;
4444         }
4445       } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
4446                  TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
4447                  ConstantOffset > 0) {
4448         // Record GEPs with non-zero offsets as candidates for splitting in the
4449         // event that the offset cannot fit into the r+i addressing mode.
4450         // Simple and common case that only one GEP is used in calculating the
4451         // address for the memory access.
4452         Value *Base = AddrInst->getOperand(0);
4453         auto *BaseI = dyn_cast<Instruction>(Base);
4454         auto *GEP = cast<GetElementPtrInst>(AddrInst);
4455         if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
4456             (BaseI && !isa<CastInst>(BaseI) &&
4457              !isa<GetElementPtrInst>(BaseI))) {
4458           // Make sure the parent block allows inserting non-PHI instructions
4459           // before the terminator.
4460           BasicBlock *Parent =
4461               BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock();
4462           if (!Parent->getTerminator()->isEHPad())
4463             LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
4464         }
4465       }
4466       AddrMode.BaseOffs -= ConstantOffset;
4467       return false;
4468     }
4469 
4470     // Save the valid addressing mode in case we can't match.
4471     ExtAddrMode BackupAddrMode = AddrMode;
4472     unsigned OldSize = AddrModeInsts.size();
4473 
4474     // See if the scale and offset amount is valid for this target.
4475     AddrMode.BaseOffs += ConstantOffset;
4476     if (!cast<GEPOperator>(AddrInst)->isInBounds())
4477       AddrMode.InBounds = false;
4478 
4479     // Match the base operand of the GEP.
4480     if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
4481       // If it couldn't be matched, just stuff the value in a register.
4482       if (AddrMode.HasBaseReg) {
4483         AddrMode = BackupAddrMode;
4484         AddrModeInsts.resize(OldSize);
4485         return false;
4486       }
4487       AddrMode.HasBaseReg = true;
4488       AddrMode.BaseReg = AddrInst->getOperand(0);
4489     }
4490 
4491     // Match the remaining variable portion of the GEP.
4492     if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
4493                           Depth)) {
4494       // If it couldn't be matched, try stuffing the base into a register
4495       // instead of matching it, and retrying the match of the scale.
4496       AddrMode = BackupAddrMode;
4497       AddrModeInsts.resize(OldSize);
4498       if (AddrMode.HasBaseReg)
4499         return false;
4500       AddrMode.HasBaseReg = true;
4501       AddrMode.BaseReg = AddrInst->getOperand(0);
4502       AddrMode.BaseOffs += ConstantOffset;
4503       if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
4504                             VariableScale, Depth)) {
4505         // If even that didn't work, bail.
4506         AddrMode = BackupAddrMode;
4507         AddrModeInsts.resize(OldSize);
4508         return false;
4509       }
4510     }
4511 
4512     return true;
4513   }
4514   case Instruction::SExt:
4515   case Instruction::ZExt: {
4516     Instruction *Ext = dyn_cast<Instruction>(AddrInst);
4517     if (!Ext)
4518       return false;
4519 
4520     // Try to move this ext out of the way of the addressing mode.
4521     // Ask for a method for doing so.
4522     TypePromotionHelper::Action TPH =
4523         TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
4524     if (!TPH)
4525       return false;
4526 
4527     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4528         TPT.getRestorationPoint();
4529     unsigned CreatedInstsCost = 0;
4530     unsigned ExtCost = !TLI.isExtFree(Ext);
4531     Value *PromotedOperand =
4532         TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
4533     // SExt has been moved away.
4534     // Thus either it will be rematched later in the recursive calls or it is
4535     // gone. Anyway, we must not fold it into the addressing mode at this point.
4536     // E.g.,
4537     // op = add opnd, 1
4538     // idx = ext op
4539     // addr = gep base, idx
4540     // is now:
4541     // promotedOpnd = ext opnd            <- no match here
4542     // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
4543     // addr = gep base, op                <- match
4544     if (MovedAway)
4545       *MovedAway = true;
4546 
4547     assert(PromotedOperand &&
4548            "TypePromotionHelper should have filtered out those cases");
4549 
4550     ExtAddrMode BackupAddrMode = AddrMode;
4551     unsigned OldSize = AddrModeInsts.size();
4552 
4553     if (!matchAddr(PromotedOperand, Depth) ||
4554         // The total of the new cost is equal to the cost of the created
4555         // instructions.
4556         // The total of the old cost is equal to the cost of the extension plus
4557         // what we have saved in the addressing mode.
4558         !isPromotionProfitable(CreatedInstsCost,
4559                                ExtCost + (AddrModeInsts.size() - OldSize),
4560                                PromotedOperand)) {
4561       AddrMode = BackupAddrMode;
4562       AddrModeInsts.resize(OldSize);
4563       LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
4564       TPT.rollback(LastKnownGood);
4565       return false;
4566     }
4567     return true;
4568   }
4569   }
4570   return false;
4571 }
4572 
4573 /// If we can, try to add the value of 'Addr' into the current addressing mode.
4574 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4575 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
4576 /// for the target.
4577 ///
4578 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
4579   // Start a transaction at this point that we will rollback if the matching
4580   // fails.
4581   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4582       TPT.getRestorationPoint();
4583   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
4584     if (CI->getValue().isSignedIntN(64)) {
4585       // Fold in immediates if legal for the target.
4586       AddrMode.BaseOffs += CI->getSExtValue();
4587       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4588         return true;
4589       AddrMode.BaseOffs -= CI->getSExtValue();
4590     }
4591   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
4592     // If this is a global variable, try to fold it into the addressing mode.
4593     if (!AddrMode.BaseGV) {
4594       AddrMode.BaseGV = GV;
4595       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4596         return true;
4597       AddrMode.BaseGV = nullptr;
4598     }
4599   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
4600     ExtAddrMode BackupAddrMode = AddrMode;
4601     unsigned OldSize = AddrModeInsts.size();
4602 
4603     // Check to see if it is possible to fold this operation.
4604     bool MovedAway = false;
4605     if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
4606       // This instruction may have been moved away. If so, there is nothing
4607       // to check here.
4608       if (MovedAway)
4609         return true;
4610       // Okay, it's possible to fold this.  Check to see if it is actually
4611       // *profitable* to do so.  We use a simple cost model to avoid increasing
4612       // register pressure too much.
4613       if (I->hasOneUse() ||
4614           isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
4615         AddrModeInsts.push_back(I);
4616         return true;
4617       }
4618 
4619       // It isn't profitable to do this, roll back.
4620       //cerr << "NOT FOLDING: " << *I;
4621       AddrMode = BackupAddrMode;
4622       AddrModeInsts.resize(OldSize);
4623       TPT.rollback(LastKnownGood);
4624     }
4625   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
4626     if (matchOperationAddr(CE, CE->getOpcode(), Depth))
4627       return true;
4628     TPT.rollback(LastKnownGood);
4629   } else if (isa<ConstantPointerNull>(Addr)) {
4630     // Null pointer gets folded without affecting the addressing mode.
4631     return true;
4632   }
4633 
4634   // Worse case, the target should support [reg] addressing modes. :)
4635   if (!AddrMode.HasBaseReg) {
4636     AddrMode.HasBaseReg = true;
4637     AddrMode.BaseReg = Addr;
4638     // Still check for legality in case the target supports [imm] but not [i+r].
4639     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4640       return true;
4641     AddrMode.HasBaseReg = false;
4642     AddrMode.BaseReg = nullptr;
4643   }
4644 
4645   // If the base register is already taken, see if we can do [r+r].
4646   if (AddrMode.Scale == 0) {
4647     AddrMode.Scale = 1;
4648     AddrMode.ScaledReg = Addr;
4649     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4650       return true;
4651     AddrMode.Scale = 0;
4652     AddrMode.ScaledReg = nullptr;
4653   }
4654   // Couldn't match.
4655   TPT.rollback(LastKnownGood);
4656   return false;
4657 }
4658 
4659 /// Check to see if all uses of OpVal by the specified inline asm call are due
4660 /// to memory operands. If so, return true, otherwise return false.
4661 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
4662                                     const TargetLowering &TLI,
4663                                     const TargetRegisterInfo &TRI) {
4664   const Function *F = CI->getFunction();
4665   TargetLowering::AsmOperandInfoVector TargetConstraints =
4666       TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI);
4667 
4668   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4669     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4670 
4671     // Compute the constraint code and ConstraintType to use.
4672     TLI.ComputeConstraintToUse(OpInfo, SDValue());
4673 
4674     // If this asm operand is our Value*, and if it isn't an indirect memory
4675     // operand, we can't fold it!
4676     if (OpInfo.CallOperandVal == OpVal &&
4677         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
4678          !OpInfo.isIndirect))
4679       return false;
4680   }
4681 
4682   return true;
4683 }
4684 
4685 // Max number of memory uses to look at before aborting the search to conserve
4686 // compile time.
4687 static constexpr int MaxMemoryUsesToScan = 20;
4688 
4689 /// Recursively walk all the uses of I until we find a memory use.
4690 /// If we find an obviously non-foldable instruction, return true.
4691 /// Add the ultimately found memory instructions to MemoryUses.
4692 static bool FindAllMemoryUses(
4693     Instruction *I,
4694     SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
4695     SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
4696     const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI,
4697     BlockFrequencyInfo *BFI, int SeenInsts = 0) {
4698   // If we already considered this instruction, we're done.
4699   if (!ConsideredInsts.insert(I).second)
4700     return false;
4701 
4702   // If this is an obviously unfoldable instruction, bail out.
4703   if (!MightBeFoldableInst(I))
4704     return true;
4705 
4706   // Loop over all the uses, recursively processing them.
4707   for (Use &U : I->uses()) {
4708     // Conservatively return true if we're seeing a large number or a deep chain
4709     // of users. This avoids excessive compilation times in pathological cases.
4710     if (SeenInsts++ >= MaxMemoryUsesToScan)
4711       return true;
4712 
4713     Instruction *UserI = cast<Instruction>(U.getUser());
4714     if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
4715       MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
4716       continue;
4717     }
4718 
4719     if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
4720       unsigned opNo = U.getOperandNo();
4721       if (opNo != StoreInst::getPointerOperandIndex())
4722         return true; // Storing addr, not into addr.
4723       MemoryUses.push_back(std::make_pair(SI, opNo));
4724       continue;
4725     }
4726 
4727     if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
4728       unsigned opNo = U.getOperandNo();
4729       if (opNo != AtomicRMWInst::getPointerOperandIndex())
4730         return true; // Storing addr, not into addr.
4731       MemoryUses.push_back(std::make_pair(RMW, opNo));
4732       continue;
4733     }
4734 
4735     if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
4736       unsigned opNo = U.getOperandNo();
4737       if (opNo != AtomicCmpXchgInst::getPointerOperandIndex())
4738         return true; // Storing addr, not into addr.
4739       MemoryUses.push_back(std::make_pair(CmpX, opNo));
4740       continue;
4741     }
4742 
4743     if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
4744       if (CI->hasFnAttr(Attribute::Cold)) {
4745         // If this is a cold call, we can sink the addressing calculation into
4746         // the cold path.  See optimizeCallInst
4747         bool OptForSize = OptSize ||
4748           llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
4749         if (!OptForSize)
4750           continue;
4751       }
4752 
4753       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand());
4754       if (!IA) return true;
4755 
4756       // If this is a memory operand, we're cool, otherwise bail out.
4757       if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
4758         return true;
4759       continue;
4760     }
4761 
4762     if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
4763                           PSI, BFI, SeenInsts))
4764       return true;
4765   }
4766 
4767   return false;
4768 }
4769 
4770 /// Return true if Val is already known to be live at the use site that we're
4771 /// folding it into. If so, there is no cost to include it in the addressing
4772 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4773 /// instruction already.
4774 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
4775                                                    Value *KnownLive2) {
4776   // If Val is either of the known-live values, we know it is live!
4777   if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
4778     return true;
4779 
4780   // All values other than instructions and arguments (e.g. constants) are live.
4781   if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
4782 
4783   // If Val is a constant sized alloca in the entry block, it is live, this is
4784   // true because it is just a reference to the stack/frame pointer, which is
4785   // live for the whole function.
4786   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
4787     if (AI->isStaticAlloca())
4788       return true;
4789 
4790   // Check to see if this value is already used in the memory instruction's
4791   // block.  If so, it's already live into the block at the very least, so we
4792   // can reasonably fold it.
4793   return Val->isUsedInBasicBlock(MemoryInst->getParent());
4794 }
4795 
4796 /// It is possible for the addressing mode of the machine to fold the specified
4797 /// instruction into a load or store that ultimately uses it.
4798 /// However, the specified instruction has multiple uses.
4799 /// Given this, it may actually increase register pressure to fold it
4800 /// into the load. For example, consider this code:
4801 ///
4802 ///     X = ...
4803 ///     Y = X+1
4804 ///     use(Y)   -> nonload/store
4805 ///     Z = Y+1
4806 ///     load Z
4807 ///
4808 /// In this case, Y has multiple uses, and can be folded into the load of Z
4809 /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
4810 /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
4811 /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
4812 /// number of computations either.
4813 ///
4814 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
4815 /// X was live across 'load Z' for other reasons, we actually *would* want to
4816 /// fold the addressing mode in the Z case.  This would make Y die earlier.
4817 bool AddressingModeMatcher::
4818 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
4819                                      ExtAddrMode &AMAfter) {
4820   if (IgnoreProfitability) return true;
4821 
4822   // AMBefore is the addressing mode before this instruction was folded into it,
4823   // and AMAfter is the addressing mode after the instruction was folded.  Get
4824   // the set of registers referenced by AMAfter and subtract out those
4825   // referenced by AMBefore: this is the set of values which folding in this
4826   // address extends the lifetime of.
4827   //
4828   // Note that there are only two potential values being referenced here,
4829   // BaseReg and ScaleReg (global addresses are always available, as are any
4830   // folded immediates).
4831   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
4832 
4833   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
4834   // lifetime wasn't extended by adding this instruction.
4835   if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4836     BaseReg = nullptr;
4837   if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4838     ScaledReg = nullptr;
4839 
4840   // If folding this instruction (and it's subexprs) didn't extend any live
4841   // ranges, we're ok with it.
4842   if (!BaseReg && !ScaledReg)
4843     return true;
4844 
4845   // If all uses of this instruction can have the address mode sunk into them,
4846   // we can remove the addressing mode and effectively trade one live register
4847   // for another (at worst.)  In this context, folding an addressing mode into
4848   // the use is just a particularly nice way of sinking it.
4849   SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
4850   SmallPtrSet<Instruction*, 16> ConsideredInsts;
4851   if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
4852                         PSI, BFI))
4853     return false;  // Has a non-memory, non-foldable use!
4854 
4855   // Now that we know that all uses of this instruction are part of a chain of
4856   // computation involving only operations that could theoretically be folded
4857   // into a memory use, loop over each of these memory operation uses and see
4858   // if they could  *actually* fold the instruction.  The assumption is that
4859   // addressing modes are cheap and that duplicating the computation involved
4860   // many times is worthwhile, even on a fastpath. For sinking candidates
4861   // (i.e. cold call sites), this serves as a way to prevent excessive code
4862   // growth since most architectures have some reasonable small and fast way to
4863   // compute an effective address.  (i.e LEA on x86)
4864   SmallVector<Instruction*, 32> MatchedAddrModeInsts;
4865   for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
4866     Instruction *User = MemoryUses[i].first;
4867     unsigned OpNo = MemoryUses[i].second;
4868 
4869     // Get the access type of this use.  If the use isn't a pointer, we don't
4870     // know what it accesses.
4871     Value *Address = User->getOperand(OpNo);
4872     PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
4873     if (!AddrTy)
4874       return false;
4875     Type *AddressAccessTy = AddrTy->getElementType();
4876     unsigned AS = AddrTy->getAddressSpace();
4877 
4878     // Do a match against the root of this address, ignoring profitability. This
4879     // will tell us if the addressing mode for the memory operation will
4880     // *actually* cover the shared instruction.
4881     ExtAddrMode Result;
4882     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4883                                                                       0);
4884     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4885         TPT.getRestorationPoint();
4886     AddressingModeMatcher Matcher(
4887         MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result,
4888         InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, BFI);
4889     Matcher.IgnoreProfitability = true;
4890     bool Success = Matcher.matchAddr(Address, 0);
4891     (void)Success; assert(Success && "Couldn't select *anything*?");
4892 
4893     // The match was to check the profitability, the changes made are not
4894     // part of the original matcher. Therefore, they should be dropped
4895     // otherwise the original matcher will not present the right state.
4896     TPT.rollback(LastKnownGood);
4897 
4898     // If the match didn't cover I, then it won't be shared by it.
4899     if (!is_contained(MatchedAddrModeInsts, I))
4900       return false;
4901 
4902     MatchedAddrModeInsts.clear();
4903   }
4904 
4905   return true;
4906 }
4907 
4908 /// Return true if the specified values are defined in a
4909 /// different basic block than BB.
4910 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
4911   if (Instruction *I = dyn_cast<Instruction>(V))
4912     return I->getParent() != BB;
4913   return false;
4914 }
4915 
4916 /// Sink addressing mode computation immediate before MemoryInst if doing so
4917 /// can be done without increasing register pressure.  The need for the
4918 /// register pressure constraint means this can end up being an all or nothing
4919 /// decision for all uses of the same addressing computation.
4920 ///
4921 /// Load and Store Instructions often have addressing modes that can do
4922 /// significant amounts of computation. As such, instruction selection will try
4923 /// to get the load or store to do as much computation as possible for the
4924 /// program. The problem is that isel can only see within a single block. As
4925 /// such, we sink as much legal addressing mode work into the block as possible.
4926 ///
4927 /// This method is used to optimize both load/store and inline asms with memory
4928 /// operands.  It's also used to sink addressing computations feeding into cold
4929 /// call sites into their (cold) basic block.
4930 ///
4931 /// The motivation for handling sinking into cold blocks is that doing so can
4932 /// both enable other address mode sinking (by satisfying the register pressure
4933 /// constraint above), and reduce register pressure globally (by removing the
4934 /// addressing mode computation from the fast path entirely.).
4935 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
4936                                         Type *AccessTy, unsigned AddrSpace) {
4937   Value *Repl = Addr;
4938 
4939   // Try to collapse single-value PHI nodes.  This is necessary to undo
4940   // unprofitable PRE transformations.
4941   SmallVector<Value*, 8> worklist;
4942   SmallPtrSet<Value*, 16> Visited;
4943   worklist.push_back(Addr);
4944 
4945   // Use a worklist to iteratively look through PHI and select nodes, and
4946   // ensure that the addressing mode obtained from the non-PHI/select roots of
4947   // the graph are compatible.
4948   bool PhiOrSelectSeen = false;
4949   SmallVector<Instruction*, 16> AddrModeInsts;
4950   const SimplifyQuery SQ(*DL, TLInfo);
4951   AddressingModeCombiner AddrModes(SQ, Addr);
4952   TypePromotionTransaction TPT(RemovedInsts);
4953   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4954       TPT.getRestorationPoint();
4955   while (!worklist.empty()) {
4956     Value *V = worklist.back();
4957     worklist.pop_back();
4958 
4959     // We allow traversing cyclic Phi nodes.
4960     // In case of success after this loop we ensure that traversing through
4961     // Phi nodes ends up with all cases to compute address of the form
4962     //    BaseGV + Base + Scale * Index + Offset
4963     // where Scale and Offset are constans and BaseGV, Base and Index
4964     // are exactly the same Values in all cases.
4965     // It means that BaseGV, Scale and Offset dominate our memory instruction
4966     // and have the same value as they had in address computation represented
4967     // as Phi. So we can safely sink address computation to memory instruction.
4968     if (!Visited.insert(V).second)
4969       continue;
4970 
4971     // For a PHI node, push all of its incoming values.
4972     if (PHINode *P = dyn_cast<PHINode>(V)) {
4973       for (Value *IncValue : P->incoming_values())
4974         worklist.push_back(IncValue);
4975       PhiOrSelectSeen = true;
4976       continue;
4977     }
4978     // Similar for select.
4979     if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
4980       worklist.push_back(SI->getFalseValue());
4981       worklist.push_back(SI->getTrueValue());
4982       PhiOrSelectSeen = true;
4983       continue;
4984     }
4985 
4986     // For non-PHIs, determine the addressing mode being computed.  Note that
4987     // the result may differ depending on what other uses our candidate
4988     // addressing instructions might have.
4989     AddrModeInsts.clear();
4990     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4991                                                                       0);
4992     ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
4993         V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI,
4994         InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI,
4995         BFI.get());
4996 
4997     GetElementPtrInst *GEP = LargeOffsetGEP.first;
4998     if (GEP && !NewGEPBases.count(GEP)) {
4999       // If splitting the underlying data structure can reduce the offset of a
5000       // GEP, collect the GEP.  Skip the GEPs that are the new bases of
5001       // previously split data structures.
5002       LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
5003       if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end())
5004         LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size();
5005     }
5006 
5007     NewAddrMode.OriginalValue = V;
5008     if (!AddrModes.addNewAddrMode(NewAddrMode))
5009       break;
5010   }
5011 
5012   // Try to combine the AddrModes we've collected. If we couldn't collect any,
5013   // or we have multiple but either couldn't combine them or combining them
5014   // wouldn't do anything useful, bail out now.
5015   if (!AddrModes.combineAddrModes()) {
5016     TPT.rollback(LastKnownGood);
5017     return false;
5018   }
5019   bool Modified = TPT.commit();
5020 
5021   // Get the combined AddrMode (or the only AddrMode, if we only had one).
5022   ExtAddrMode AddrMode = AddrModes.getAddrMode();
5023 
5024   // If all the instructions matched are already in this BB, don't do anything.
5025   // If we saw a Phi node then it is not local definitely, and if we saw a select
5026   // then we want to push the address calculation past it even if it's already
5027   // in this BB.
5028   if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
5029         return IsNonLocalValue(V, MemoryInst->getParent());
5030                   })) {
5031     LLVM_DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode
5032                       << "\n");
5033     return Modified;
5034   }
5035 
5036   // Insert this computation right after this user.  Since our caller is
5037   // scanning from the top of the BB to the bottom, reuse of the expr are
5038   // guaranteed to happen later.
5039   IRBuilder<> Builder(MemoryInst);
5040 
5041   // Now that we determined the addressing expression we want to use and know
5042   // that we have to sink it into this block.  Check to see if we have already
5043   // done this for some other load/store instr in this block.  If so, reuse
5044   // the computation.  Before attempting reuse, check if the address is valid
5045   // as it may have been erased.
5046 
5047   WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
5048 
5049   Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
5050   if (SunkAddr) {
5051     LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
5052                       << " for " << *MemoryInst << "\n");
5053     if (SunkAddr->getType() != Addr->getType())
5054       SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
5055   } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() &&
5056                                    SubtargetInfo->addrSinkUsingGEPs())) {
5057     // By default, we use the GEP-based method when AA is used later. This
5058     // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
5059     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5060                       << " for " << *MemoryInst << "\n");
5061     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
5062     Value *ResultPtr = nullptr, *ResultIndex = nullptr;
5063 
5064     // First, find the pointer.
5065     if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
5066       ResultPtr = AddrMode.BaseReg;
5067       AddrMode.BaseReg = nullptr;
5068     }
5069 
5070     if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
5071       // We can't add more than one pointer together, nor can we scale a
5072       // pointer (both of which seem meaningless).
5073       if (ResultPtr || AddrMode.Scale != 1)
5074         return Modified;
5075 
5076       ResultPtr = AddrMode.ScaledReg;
5077       AddrMode.Scale = 0;
5078     }
5079 
5080     // It is only safe to sign extend the BaseReg if we know that the math
5081     // required to create it did not overflow before we extend it. Since
5082     // the original IR value was tossed in favor of a constant back when
5083     // the AddrMode was created we need to bail out gracefully if widths
5084     // do not match instead of extending it.
5085     //
5086     // (See below for code to add the scale.)
5087     if (AddrMode.Scale) {
5088       Type *ScaledRegTy = AddrMode.ScaledReg->getType();
5089       if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
5090           cast<IntegerType>(ScaledRegTy)->getBitWidth())
5091         return Modified;
5092     }
5093 
5094     if (AddrMode.BaseGV) {
5095       if (ResultPtr)
5096         return Modified;
5097 
5098       ResultPtr = AddrMode.BaseGV;
5099     }
5100 
5101     // If the real base value actually came from an inttoptr, then the matcher
5102     // will look through it and provide only the integer value. In that case,
5103     // use it here.
5104     if (!DL->isNonIntegralPointerType(Addr->getType())) {
5105       if (!ResultPtr && AddrMode.BaseReg) {
5106         ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
5107                                            "sunkaddr");
5108         AddrMode.BaseReg = nullptr;
5109       } else if (!ResultPtr && AddrMode.Scale == 1) {
5110         ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
5111                                            "sunkaddr");
5112         AddrMode.Scale = 0;
5113       }
5114     }
5115 
5116     if (!ResultPtr &&
5117         !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
5118       SunkAddr = Constant::getNullValue(Addr->getType());
5119     } else if (!ResultPtr) {
5120       return Modified;
5121     } else {
5122       Type *I8PtrTy =
5123           Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
5124       Type *I8Ty = Builder.getInt8Ty();
5125 
5126       // Start with the base register. Do this first so that subsequent address
5127       // matching finds it last, which will prevent it from trying to match it
5128       // as the scaled value in case it happens to be a mul. That would be
5129       // problematic if we've sunk a different mul for the scale, because then
5130       // we'd end up sinking both muls.
5131       if (AddrMode.BaseReg) {
5132         Value *V = AddrMode.BaseReg;
5133         if (V->getType() != IntPtrTy)
5134           V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
5135 
5136         ResultIndex = V;
5137       }
5138 
5139       // Add the scale value.
5140       if (AddrMode.Scale) {
5141         Value *V = AddrMode.ScaledReg;
5142         if (V->getType() == IntPtrTy) {
5143           // done.
5144         } else {
5145           assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
5146                  cast<IntegerType>(V->getType())->getBitWidth() &&
5147                  "We can't transform if ScaledReg is too narrow");
5148           V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
5149         }
5150 
5151         if (AddrMode.Scale != 1)
5152           V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
5153                                 "sunkaddr");
5154         if (ResultIndex)
5155           ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
5156         else
5157           ResultIndex = V;
5158       }
5159 
5160       // Add in the Base Offset if present.
5161       if (AddrMode.BaseOffs) {
5162         Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5163         if (ResultIndex) {
5164           // We need to add this separately from the scale above to help with
5165           // SDAG consecutive load/store merging.
5166           if (ResultPtr->getType() != I8PtrTy)
5167             ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5168           ResultPtr =
5169               AddrMode.InBounds
5170                   ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
5171                                               "sunkaddr")
5172                   : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
5173         }
5174 
5175         ResultIndex = V;
5176       }
5177 
5178       if (!ResultIndex) {
5179         SunkAddr = ResultPtr;
5180       } else {
5181         if (ResultPtr->getType() != I8PtrTy)
5182           ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5183         SunkAddr =
5184             AddrMode.InBounds
5185                 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
5186                                             "sunkaddr")
5187                 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
5188       }
5189 
5190       if (SunkAddr->getType() != Addr->getType())
5191         SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
5192     }
5193   } else {
5194     // We'd require a ptrtoint/inttoptr down the line, which we can't do for
5195     // non-integral pointers, so in that case bail out now.
5196     Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
5197     Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
5198     PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
5199     PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
5200     if (DL->isNonIntegralPointerType(Addr->getType()) ||
5201         (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
5202         (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
5203         (AddrMode.BaseGV &&
5204          DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
5205       return Modified;
5206 
5207     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5208                       << " for " << *MemoryInst << "\n");
5209     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
5210     Value *Result = nullptr;
5211 
5212     // Start with the base register. Do this first so that subsequent address
5213     // matching finds it last, which will prevent it from trying to match it
5214     // as the scaled value in case it happens to be a mul. That would be
5215     // problematic if we've sunk a different mul for the scale, because then
5216     // we'd end up sinking both muls.
5217     if (AddrMode.BaseReg) {
5218       Value *V = AddrMode.BaseReg;
5219       if (V->getType()->isPointerTy())
5220         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5221       if (V->getType() != IntPtrTy)
5222         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
5223       Result = V;
5224     }
5225 
5226     // Add the scale value.
5227     if (AddrMode.Scale) {
5228       Value *V = AddrMode.ScaledReg;
5229       if (V->getType() == IntPtrTy) {
5230         // done.
5231       } else if (V->getType()->isPointerTy()) {
5232         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5233       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
5234                  cast<IntegerType>(V->getType())->getBitWidth()) {
5235         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
5236       } else {
5237         // It is only safe to sign extend the BaseReg if we know that the math
5238         // required to create it did not overflow before we extend it. Since
5239         // the original IR value was tossed in favor of a constant back when
5240         // the AddrMode was created we need to bail out gracefully if widths
5241         // do not match instead of extending it.
5242         Instruction *I = dyn_cast_or_null<Instruction>(Result);
5243         if (I && (Result != AddrMode.BaseReg))
5244           I->eraseFromParent();
5245         return Modified;
5246       }
5247       if (AddrMode.Scale != 1)
5248         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
5249                               "sunkaddr");
5250       if (Result)
5251         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5252       else
5253         Result = V;
5254     }
5255 
5256     // Add in the BaseGV if present.
5257     if (AddrMode.BaseGV) {
5258       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
5259       if (Result)
5260         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5261       else
5262         Result = V;
5263     }
5264 
5265     // Add in the Base Offset if present.
5266     if (AddrMode.BaseOffs) {
5267       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5268       if (Result)
5269         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5270       else
5271         Result = V;
5272     }
5273 
5274     if (!Result)
5275       SunkAddr = Constant::getNullValue(Addr->getType());
5276     else
5277       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
5278   }
5279 
5280   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
5281   // Store the newly computed address into the cache. In the case we reused a
5282   // value, this should be idempotent.
5283   SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
5284 
5285   // If we have no uses, recursively delete the value and all dead instructions
5286   // using it.
5287   if (Repl->use_empty()) {
5288     resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() {
5289       RecursivelyDeleteTriviallyDeadInstructions(
5290           Repl, TLInfo, nullptr,
5291           [&](Value *V) { removeAllAssertingVHReferences(V); });
5292     });
5293   }
5294   ++NumMemoryInsts;
5295   return true;
5296 }
5297 
5298 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find
5299 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can
5300 /// only handle a 2 operand GEP in the same basic block or a splat constant
5301 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector
5302 /// index.
5303 ///
5304 /// If the existing GEP has a vector base pointer that is splat, we can look
5305 /// through the splat to find the scalar pointer. If we can't find a scalar
5306 /// pointer there's nothing we can do.
5307 ///
5308 /// If we have a GEP with more than 2 indices where the middle indices are all
5309 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands.
5310 ///
5311 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP
5312 /// followed by a GEP with an all zeroes vector index. This will enable
5313 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a
5314 /// zero index.
5315 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst,
5316                                                Value *Ptr) {
5317   Value *NewAddr;
5318 
5319   if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
5320     // Don't optimize GEPs that don't have indices.
5321     if (!GEP->hasIndices())
5322       return false;
5323 
5324     // If the GEP and the gather/scatter aren't in the same BB, don't optimize.
5325     // FIXME: We should support this by sinking the GEP.
5326     if (MemoryInst->getParent() != GEP->getParent())
5327       return false;
5328 
5329     SmallVector<Value *, 2> Ops(GEP->operands());
5330 
5331     bool RewriteGEP = false;
5332 
5333     if (Ops[0]->getType()->isVectorTy()) {
5334       Ops[0] = getSplatValue(Ops[0]);
5335       if (!Ops[0])
5336         return false;
5337       RewriteGEP = true;
5338     }
5339 
5340     unsigned FinalIndex = Ops.size() - 1;
5341 
5342     // Ensure all but the last index is 0.
5343     // FIXME: This isn't strictly required. All that's required is that they are
5344     // all scalars or splats.
5345     for (unsigned i = 1; i < FinalIndex; ++i) {
5346       auto *C = dyn_cast<Constant>(Ops[i]);
5347       if (!C)
5348         return false;
5349       if (isa<VectorType>(C->getType()))
5350         C = C->getSplatValue();
5351       auto *CI = dyn_cast_or_null<ConstantInt>(C);
5352       if (!CI || !CI->isZero())
5353         return false;
5354       // Scalarize the index if needed.
5355       Ops[i] = CI;
5356     }
5357 
5358     // Try to scalarize the final index.
5359     if (Ops[FinalIndex]->getType()->isVectorTy()) {
5360       if (Value *V = getSplatValue(Ops[FinalIndex])) {
5361         auto *C = dyn_cast<ConstantInt>(V);
5362         // Don't scalarize all zeros vector.
5363         if (!C || !C->isZero()) {
5364           Ops[FinalIndex] = V;
5365           RewriteGEP = true;
5366         }
5367       }
5368     }
5369 
5370     // If we made any changes or the we have extra operands, we need to generate
5371     // new instructions.
5372     if (!RewriteGEP && Ops.size() == 2)
5373       return false;
5374 
5375     auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
5376 
5377     IRBuilder<> Builder(MemoryInst);
5378 
5379     Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType());
5380 
5381     // If the final index isn't a vector, emit a scalar GEP containing all ops
5382     // and a vector GEP with all zeroes final index.
5383     if (!Ops[FinalIndex]->getType()->isVectorTy()) {
5384       NewAddr = Builder.CreateGEP(Ops[0], makeArrayRef(Ops).drop_front());
5385       auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts);
5386       NewAddr = Builder.CreateGEP(NewAddr, Constant::getNullValue(IndexTy));
5387     } else {
5388       Value *Base = Ops[0];
5389       Value *Index = Ops[FinalIndex];
5390 
5391       // Create a scalar GEP if there are more than 2 operands.
5392       if (Ops.size() != 2) {
5393         // Replace the last index with 0.
5394         Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy);
5395         Base = Builder.CreateGEP(Base, makeArrayRef(Ops).drop_front());
5396       }
5397 
5398       // Now create the GEP with scalar pointer and vector index.
5399       NewAddr = Builder.CreateGEP(Base, Index);
5400     }
5401   } else if (!isa<Constant>(Ptr)) {
5402     // Not a GEP, maybe its a splat and we can create a GEP to enable
5403     // SelectionDAGBuilder to use it as a uniform base.
5404     Value *V = getSplatValue(Ptr);
5405     if (!V)
5406       return false;
5407 
5408     auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
5409 
5410     IRBuilder<> Builder(MemoryInst);
5411 
5412     // Emit a vector GEP with a scalar pointer and all 0s vector index.
5413     Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType());
5414     auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts);
5415     NewAddr = Builder.CreateGEP(V, Constant::getNullValue(IndexTy));
5416   } else {
5417     // Constant, SelectionDAGBuilder knows to check if its a splat.
5418     return false;
5419   }
5420 
5421   MemoryInst->replaceUsesOfWith(Ptr, NewAddr);
5422 
5423   // If we have no uses, recursively delete the value and all dead instructions
5424   // using it.
5425   if (Ptr->use_empty())
5426     RecursivelyDeleteTriviallyDeadInstructions(
5427         Ptr, TLInfo, nullptr,
5428         [&](Value *V) { removeAllAssertingVHReferences(V); });
5429 
5430   return true;
5431 }
5432 
5433 /// If there are any memory operands, use OptimizeMemoryInst to sink their
5434 /// address computing into the block when possible / profitable.
5435 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
5436   bool MadeChange = false;
5437 
5438   const TargetRegisterInfo *TRI =
5439       TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
5440   TargetLowering::AsmOperandInfoVector TargetConstraints =
5441       TLI->ParseConstraints(*DL, TRI, *CS);
5442   unsigned ArgNo = 0;
5443   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5444     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
5445 
5446     // Compute the constraint code and ConstraintType to use.
5447     TLI->ComputeConstraintToUse(OpInfo, SDValue());
5448 
5449     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5450         OpInfo.isIndirect) {
5451       Value *OpVal = CS->getArgOperand(ArgNo++);
5452       MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
5453     } else if (OpInfo.Type == InlineAsm::isInput)
5454       ArgNo++;
5455   }
5456 
5457   return MadeChange;
5458 }
5459 
5460 /// Check if all the uses of \p Val are equivalent (or free) zero or
5461 /// sign extensions.
5462 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
5463   assert(!Val->use_empty() && "Input must have at least one use");
5464   const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
5465   bool IsSExt = isa<SExtInst>(FirstUser);
5466   Type *ExtTy = FirstUser->getType();
5467   for (const User *U : Val->users()) {
5468     const Instruction *UI = cast<Instruction>(U);
5469     if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
5470       return false;
5471     Type *CurTy = UI->getType();
5472     // Same input and output types: Same instruction after CSE.
5473     if (CurTy == ExtTy)
5474       continue;
5475 
5476     // If IsSExt is true, we are in this situation:
5477     // a = Val
5478     // b = sext ty1 a to ty2
5479     // c = sext ty1 a to ty3
5480     // Assuming ty2 is shorter than ty3, this could be turned into:
5481     // a = Val
5482     // b = sext ty1 a to ty2
5483     // c = sext ty2 b to ty3
5484     // However, the last sext is not free.
5485     if (IsSExt)
5486       return false;
5487 
5488     // This is a ZExt, maybe this is free to extend from one type to another.
5489     // In that case, we would not account for a different use.
5490     Type *NarrowTy;
5491     Type *LargeTy;
5492     if (ExtTy->getScalarType()->getIntegerBitWidth() >
5493         CurTy->getScalarType()->getIntegerBitWidth()) {
5494       NarrowTy = CurTy;
5495       LargeTy = ExtTy;
5496     } else {
5497       NarrowTy = ExtTy;
5498       LargeTy = CurTy;
5499     }
5500 
5501     if (!TLI.isZExtFree(NarrowTy, LargeTy))
5502       return false;
5503   }
5504   // All uses are the same or can be derived from one another for free.
5505   return true;
5506 }
5507 
5508 /// Try to speculatively promote extensions in \p Exts and continue
5509 /// promoting through newly promoted operands recursively as far as doing so is
5510 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
5511 /// When some promotion happened, \p TPT contains the proper state to revert
5512 /// them.
5513 ///
5514 /// \return true if some promotion happened, false otherwise.
5515 bool CodeGenPrepare::tryToPromoteExts(
5516     TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
5517     SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
5518     unsigned CreatedInstsCost) {
5519   bool Promoted = false;
5520 
5521   // Iterate over all the extensions to try to promote them.
5522   for (auto *I : Exts) {
5523     // Early check if we directly have ext(load).
5524     if (isa<LoadInst>(I->getOperand(0))) {
5525       ProfitablyMovedExts.push_back(I);
5526       continue;
5527     }
5528 
5529     // Check whether or not we want to do any promotion.  The reason we have
5530     // this check inside the for loop is to catch the case where an extension
5531     // is directly fed by a load because in such case the extension can be moved
5532     // up without any promotion on its operands.
5533     if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion)
5534       return false;
5535 
5536     // Get the action to perform the promotion.
5537     TypePromotionHelper::Action TPH =
5538         TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
5539     // Check if we can promote.
5540     if (!TPH) {
5541       // Save the current extension as we cannot move up through its operand.
5542       ProfitablyMovedExts.push_back(I);
5543       continue;
5544     }
5545 
5546     // Save the current state.
5547     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5548         TPT.getRestorationPoint();
5549     SmallVector<Instruction *, 4> NewExts;
5550     unsigned NewCreatedInstsCost = 0;
5551     unsigned ExtCost = !TLI->isExtFree(I);
5552     // Promote.
5553     Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
5554                              &NewExts, nullptr, *TLI);
5555     assert(PromotedVal &&
5556            "TypePromotionHelper should have filtered out those cases");
5557 
5558     // We would be able to merge only one extension in a load.
5559     // Therefore, if we have more than 1 new extension we heuristically
5560     // cut this search path, because it means we degrade the code quality.
5561     // With exactly 2, the transformation is neutral, because we will merge
5562     // one extension but leave one. However, we optimistically keep going,
5563     // because the new extension may be removed too.
5564     long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
5565     // FIXME: It would be possible to propagate a negative value instead of
5566     // conservatively ceiling it to 0.
5567     TotalCreatedInstsCost =
5568         std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
5569     if (!StressExtLdPromotion &&
5570         (TotalCreatedInstsCost > 1 ||
5571          !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
5572       // This promotion is not profitable, rollback to the previous state, and
5573       // save the current extension in ProfitablyMovedExts as the latest
5574       // speculative promotion turned out to be unprofitable.
5575       TPT.rollback(LastKnownGood);
5576       ProfitablyMovedExts.push_back(I);
5577       continue;
5578     }
5579     // Continue promoting NewExts as far as doing so is profitable.
5580     SmallVector<Instruction *, 2> NewlyMovedExts;
5581     (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
5582     bool NewPromoted = false;
5583     for (auto *ExtInst : NewlyMovedExts) {
5584       Instruction *MovedExt = cast<Instruction>(ExtInst);
5585       Value *ExtOperand = MovedExt->getOperand(0);
5586       // If we have reached to a load, we need this extra profitability check
5587       // as it could potentially be merged into an ext(load).
5588       if (isa<LoadInst>(ExtOperand) &&
5589           !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
5590             (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
5591         continue;
5592 
5593       ProfitablyMovedExts.push_back(MovedExt);
5594       NewPromoted = true;
5595     }
5596 
5597     // If none of speculative promotions for NewExts is profitable, rollback
5598     // and save the current extension (I) as the last profitable extension.
5599     if (!NewPromoted) {
5600       TPT.rollback(LastKnownGood);
5601       ProfitablyMovedExts.push_back(I);
5602       continue;
5603     }
5604     // The promotion is profitable.
5605     Promoted = true;
5606   }
5607   return Promoted;
5608 }
5609 
5610 /// Merging redundant sexts when one is dominating the other.
5611 bool CodeGenPrepare::mergeSExts(Function &F) {
5612   bool Changed = false;
5613   for (auto &Entry : ValToSExtendedUses) {
5614     SExts &Insts = Entry.second;
5615     SExts CurPts;
5616     for (Instruction *Inst : Insts) {
5617       if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
5618           Inst->getOperand(0) != Entry.first)
5619         continue;
5620       bool inserted = false;
5621       for (auto &Pt : CurPts) {
5622         if (getDT(F).dominates(Inst, Pt)) {
5623           Pt->replaceAllUsesWith(Inst);
5624           RemovedInsts.insert(Pt);
5625           Pt->removeFromParent();
5626           Pt = Inst;
5627           inserted = true;
5628           Changed = true;
5629           break;
5630         }
5631         if (!getDT(F).dominates(Pt, Inst))
5632           // Give up if we need to merge in a common dominator as the
5633           // experiments show it is not profitable.
5634           continue;
5635         Inst->replaceAllUsesWith(Pt);
5636         RemovedInsts.insert(Inst);
5637         Inst->removeFromParent();
5638         inserted = true;
5639         Changed = true;
5640         break;
5641       }
5642       if (!inserted)
5643         CurPts.push_back(Inst);
5644     }
5645   }
5646   return Changed;
5647 }
5648 
5649 // Splitting large data structures so that the GEPs accessing them can have
5650 // smaller offsets so that they can be sunk to the same blocks as their users.
5651 // For example, a large struct starting from %base is split into two parts
5652 // where the second part starts from %new_base.
5653 //
5654 // Before:
5655 // BB0:
5656 //   %base     =
5657 //
5658 // BB1:
5659 //   %gep0     = gep %base, off0
5660 //   %gep1     = gep %base, off1
5661 //   %gep2     = gep %base, off2
5662 //
5663 // BB2:
5664 //   %load1    = load %gep0
5665 //   %load2    = load %gep1
5666 //   %load3    = load %gep2
5667 //
5668 // After:
5669 // BB0:
5670 //   %base     =
5671 //   %new_base = gep %base, off0
5672 //
5673 // BB1:
5674 //   %new_gep0 = %new_base
5675 //   %new_gep1 = gep %new_base, off1 - off0
5676 //   %new_gep2 = gep %new_base, off2 - off0
5677 //
5678 // BB2:
5679 //   %load1    = load i32, i32* %new_gep0
5680 //   %load2    = load i32, i32* %new_gep1
5681 //   %load3    = load i32, i32* %new_gep2
5682 //
5683 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
5684 // their offsets are smaller enough to fit into the addressing mode.
5685 bool CodeGenPrepare::splitLargeGEPOffsets() {
5686   bool Changed = false;
5687   for (auto &Entry : LargeOffsetGEPMap) {
5688     Value *OldBase = Entry.first;
5689     SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
5690         &LargeOffsetGEPs = Entry.second;
5691     auto compareGEPOffset =
5692         [&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
5693             const std::pair<GetElementPtrInst *, int64_t> &RHS) {
5694           if (LHS.first == RHS.first)
5695             return false;
5696           if (LHS.second != RHS.second)
5697             return LHS.second < RHS.second;
5698           return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
5699         };
5700     // Sorting all the GEPs of the same data structures based on the offsets.
5701     llvm::sort(LargeOffsetGEPs, compareGEPOffset);
5702     LargeOffsetGEPs.erase(
5703         std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()),
5704         LargeOffsetGEPs.end());
5705     // Skip if all the GEPs have the same offsets.
5706     if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
5707       continue;
5708     GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
5709     int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
5710     Value *NewBaseGEP = nullptr;
5711 
5712     auto *LargeOffsetGEP = LargeOffsetGEPs.begin();
5713     while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
5714       GetElementPtrInst *GEP = LargeOffsetGEP->first;
5715       int64_t Offset = LargeOffsetGEP->second;
5716       if (Offset != BaseOffset) {
5717         TargetLowering::AddrMode AddrMode;
5718         AddrMode.BaseOffs = Offset - BaseOffset;
5719         // The result type of the GEP might not be the type of the memory
5720         // access.
5721         if (!TLI->isLegalAddressingMode(*DL, AddrMode,
5722                                         GEP->getResultElementType(),
5723                                         GEP->getAddressSpace())) {
5724           // We need to create a new base if the offset to the current base is
5725           // too large to fit into the addressing mode. So, a very large struct
5726           // may be split into several parts.
5727           BaseGEP = GEP;
5728           BaseOffset = Offset;
5729           NewBaseGEP = nullptr;
5730         }
5731       }
5732 
5733       // Generate a new GEP to replace the current one.
5734       LLVMContext &Ctx = GEP->getContext();
5735       Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
5736       Type *I8PtrTy =
5737           Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace());
5738       Type *I8Ty = Type::getInt8Ty(Ctx);
5739 
5740       if (!NewBaseGEP) {
5741         // Create a new base if we don't have one yet.  Find the insertion
5742         // pointer for the new base first.
5743         BasicBlock::iterator NewBaseInsertPt;
5744         BasicBlock *NewBaseInsertBB;
5745         if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
5746           // If the base of the struct is an instruction, the new base will be
5747           // inserted close to it.
5748           NewBaseInsertBB = BaseI->getParent();
5749           if (isa<PHINode>(BaseI))
5750             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5751           else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
5752             NewBaseInsertBB =
5753                 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest());
5754             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5755           } else
5756             NewBaseInsertPt = std::next(BaseI->getIterator());
5757         } else {
5758           // If the current base is an argument or global value, the new base
5759           // will be inserted to the entry block.
5760           NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
5761           NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5762         }
5763         IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
5764         // Create a new base.
5765         Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset);
5766         NewBaseGEP = OldBase;
5767         if (NewBaseGEP->getType() != I8PtrTy)
5768           NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
5769         NewBaseGEP =
5770             NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep");
5771         NewGEPBases.insert(NewBaseGEP);
5772       }
5773 
5774       IRBuilder<> Builder(GEP);
5775       Value *NewGEP = NewBaseGEP;
5776       if (Offset == BaseOffset) {
5777         if (GEP->getType() != I8PtrTy)
5778           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5779       } else {
5780         // Calculate the new offset for the new GEP.
5781         Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset);
5782         NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index);
5783 
5784         if (GEP->getType() != I8PtrTy)
5785           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5786       }
5787       GEP->replaceAllUsesWith(NewGEP);
5788       LargeOffsetGEPID.erase(GEP);
5789       LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
5790       GEP->eraseFromParent();
5791       Changed = true;
5792     }
5793   }
5794   return Changed;
5795 }
5796 
5797 bool CodeGenPrepare::optimizePhiType(
5798     PHINode *I, SmallPtrSetImpl<PHINode *> &Visited,
5799     SmallPtrSetImpl<Instruction *> &DeletedInstrs) {
5800   // We are looking for a collection on interconnected phi nodes that together
5801   // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts
5802   // are of the same type. Convert the whole set of nodes to the type of the
5803   // bitcast.
5804   Type *PhiTy = I->getType();
5805   Type *ConvertTy = nullptr;
5806   if (Visited.count(I) ||
5807       (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy()))
5808     return false;
5809 
5810   SmallVector<Instruction *, 4> Worklist;
5811   Worklist.push_back(cast<Instruction>(I));
5812   SmallPtrSet<PHINode *, 4> PhiNodes;
5813   PhiNodes.insert(I);
5814   Visited.insert(I);
5815   SmallPtrSet<Instruction *, 4> Defs;
5816   SmallPtrSet<Instruction *, 4> Uses;
5817   // This works by adding extra bitcasts between load/stores and removing
5818   // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi))
5819   // we can get in the situation where we remove a bitcast in one iteration
5820   // just to add it again in the next. We need to ensure that at least one
5821   // bitcast we remove are anchored to something that will not change back.
5822   bool AnyAnchored = false;
5823 
5824   while (!Worklist.empty()) {
5825     Instruction *II = Worklist.pop_back_val();
5826 
5827     if (auto *Phi = dyn_cast<PHINode>(II)) {
5828       // Handle Defs, which might also be PHI's
5829       for (Value *V : Phi->incoming_values()) {
5830         if (auto *OpPhi = dyn_cast<PHINode>(V)) {
5831           if (!PhiNodes.count(OpPhi)) {
5832             if (Visited.count(OpPhi))
5833               return false;
5834             PhiNodes.insert(OpPhi);
5835             Visited.insert(OpPhi);
5836             Worklist.push_back(OpPhi);
5837           }
5838         } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) {
5839           if (!OpLoad->isSimple())
5840             return false;
5841           if (!Defs.count(OpLoad)) {
5842             Defs.insert(OpLoad);
5843             Worklist.push_back(OpLoad);
5844           }
5845         } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) {
5846           if (!Defs.count(OpEx)) {
5847             Defs.insert(OpEx);
5848             Worklist.push_back(OpEx);
5849           }
5850         } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) {
5851           if (!ConvertTy)
5852             ConvertTy = OpBC->getOperand(0)->getType();
5853           if (OpBC->getOperand(0)->getType() != ConvertTy)
5854             return false;
5855           if (!Defs.count(OpBC)) {
5856             Defs.insert(OpBC);
5857             Worklist.push_back(OpBC);
5858             AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) &&
5859                            !isa<ExtractElementInst>(OpBC->getOperand(0));
5860           }
5861         } else if (!isa<UndefValue>(V)) {
5862           return false;
5863         }
5864       }
5865     }
5866 
5867     // Handle uses which might also be phi's
5868     for (User *V : II->users()) {
5869       if (auto *OpPhi = dyn_cast<PHINode>(V)) {
5870         if (!PhiNodes.count(OpPhi)) {
5871           if (Visited.count(OpPhi))
5872             return false;
5873           PhiNodes.insert(OpPhi);
5874           Visited.insert(OpPhi);
5875           Worklist.push_back(OpPhi);
5876         }
5877       } else if (auto *OpStore = dyn_cast<StoreInst>(V)) {
5878         if (!OpStore->isSimple() || OpStore->getOperand(0) != II)
5879           return false;
5880         Uses.insert(OpStore);
5881       } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) {
5882         if (!ConvertTy)
5883           ConvertTy = OpBC->getType();
5884         if (OpBC->getType() != ConvertTy)
5885           return false;
5886         Uses.insert(OpBC);
5887         AnyAnchored |=
5888             any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); });
5889       } else {
5890         return false;
5891       }
5892     }
5893   }
5894 
5895   if (!ConvertTy || !AnyAnchored || !TLI->shouldConvertPhiType(PhiTy, ConvertTy))
5896     return false;
5897 
5898   LLVM_DEBUG(dbgs() << "Converting " << *I << "\n  and connected nodes to "
5899                     << *ConvertTy << "\n");
5900 
5901   // Create all the new phi nodes of the new type, and bitcast any loads to the
5902   // correct type.
5903   ValueToValueMap ValMap;
5904   ValMap[UndefValue::get(PhiTy)] = UndefValue::get(ConvertTy);
5905   for (Instruction *D : Defs) {
5906     if (isa<BitCastInst>(D)) {
5907       ValMap[D] = D->getOperand(0);
5908       DeletedInstrs.insert(D);
5909     } else {
5910       ValMap[D] =
5911           new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode());
5912     }
5913   }
5914   for (PHINode *Phi : PhiNodes)
5915     ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(),
5916                                   Phi->getName() + ".tc", Phi);
5917   // Pipe together all the PhiNodes.
5918   for (PHINode *Phi : PhiNodes) {
5919     PHINode *NewPhi = cast<PHINode>(ValMap[Phi]);
5920     for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++)
5921       NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)],
5922                           Phi->getIncomingBlock(i));
5923     Visited.insert(NewPhi);
5924   }
5925   // And finally pipe up the stores and bitcasts
5926   for (Instruction *U : Uses) {
5927     if (isa<BitCastInst>(U)) {
5928       DeletedInstrs.insert(U);
5929       U->replaceAllUsesWith(ValMap[U->getOperand(0)]);
5930     } else {
5931       U->setOperand(0,
5932                     new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U));
5933     }
5934   }
5935 
5936   // Save the removed phis to be deleted later.
5937   for (PHINode *Phi : PhiNodes)
5938     DeletedInstrs.insert(Phi);
5939   return true;
5940 }
5941 
5942 bool CodeGenPrepare::optimizePhiTypes(Function &F) {
5943   if (!OptimizePhiTypes)
5944     return false;
5945 
5946   bool Changed = false;
5947   SmallPtrSet<PHINode *, 4> Visited;
5948   SmallPtrSet<Instruction *, 4> DeletedInstrs;
5949 
5950   // Attempt to optimize all the phis in the functions to the correct type.
5951   for (auto &BB : F)
5952     for (auto &Phi : BB.phis())
5953       Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs);
5954 
5955   // Remove any old phi's that have been converted.
5956   for (auto *I : DeletedInstrs) {
5957     I->replaceAllUsesWith(UndefValue::get(I->getType()));
5958     I->eraseFromParent();
5959   }
5960 
5961   return Changed;
5962 }
5963 
5964 /// Return true, if an ext(load) can be formed from an extension in
5965 /// \p MovedExts.
5966 bool CodeGenPrepare::canFormExtLd(
5967     const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
5968     Instruction *&Inst, bool HasPromoted) {
5969   for (auto *MovedExtInst : MovedExts) {
5970     if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
5971       LI = cast<LoadInst>(MovedExtInst->getOperand(0));
5972       Inst = MovedExtInst;
5973       break;
5974     }
5975   }
5976   if (!LI)
5977     return false;
5978 
5979   // If they're already in the same block, there's nothing to do.
5980   // Make the cheap checks first if we did not promote.
5981   // If we promoted, we need to check if it is indeed profitable.
5982   if (!HasPromoted && LI->getParent() == Inst->getParent())
5983     return false;
5984 
5985   return TLI->isExtLoad(LI, Inst, *DL);
5986 }
5987 
5988 /// Move a zext or sext fed by a load into the same basic block as the load,
5989 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
5990 /// extend into the load.
5991 ///
5992 /// E.g.,
5993 /// \code
5994 /// %ld = load i32* %addr
5995 /// %add = add nuw i32 %ld, 4
5996 /// %zext = zext i32 %add to i64
5997 // \endcode
5998 /// =>
5999 /// \code
6000 /// %ld = load i32* %addr
6001 /// %zext = zext i32 %ld to i64
6002 /// %add = add nuw i64 %zext, 4
6003 /// \encode
6004 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
6005 /// allow us to match zext(load i32*) to i64.
6006 ///
6007 /// Also, try to promote the computations used to obtain a sign extended
6008 /// value used into memory accesses.
6009 /// E.g.,
6010 /// \code
6011 /// a = add nsw i32 b, 3
6012 /// d = sext i32 a to i64
6013 /// e = getelementptr ..., i64 d
6014 /// \endcode
6015 /// =>
6016 /// \code
6017 /// f = sext i32 b to i64
6018 /// a = add nsw i64 f, 3
6019 /// e = getelementptr ..., i64 a
6020 /// \endcode
6021 ///
6022 /// \p Inst[in/out] the extension may be modified during the process if some
6023 /// promotions apply.
6024 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
6025   bool AllowPromotionWithoutCommonHeader = false;
6026   /// See if it is an interesting sext operations for the address type
6027   /// promotion before trying to promote it, e.g., the ones with the right
6028   /// type and used in memory accesses.
6029   bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
6030       *Inst, AllowPromotionWithoutCommonHeader);
6031   TypePromotionTransaction TPT(RemovedInsts);
6032   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
6033       TPT.getRestorationPoint();
6034   SmallVector<Instruction *, 1> Exts;
6035   SmallVector<Instruction *, 2> SpeculativelyMovedExts;
6036   Exts.push_back(Inst);
6037 
6038   bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
6039 
6040   // Look for a load being extended.
6041   LoadInst *LI = nullptr;
6042   Instruction *ExtFedByLoad;
6043 
6044   // Try to promote a chain of computation if it allows to form an extended
6045   // load.
6046   if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
6047     assert(LI && ExtFedByLoad && "Expect a valid load and extension");
6048     TPT.commit();
6049     // Move the extend into the same block as the load.
6050     ExtFedByLoad->moveAfter(LI);
6051     ++NumExtsMoved;
6052     Inst = ExtFedByLoad;
6053     return true;
6054   }
6055 
6056   // Continue promoting SExts if known as considerable depending on targets.
6057   if (ATPConsiderable &&
6058       performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
6059                                   HasPromoted, TPT, SpeculativelyMovedExts))
6060     return true;
6061 
6062   TPT.rollback(LastKnownGood);
6063   return false;
6064 }
6065 
6066 // Perform address type promotion if doing so is profitable.
6067 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
6068 // instructions that sign extended the same initial value. However, if
6069 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
6070 // extension is just profitable.
6071 bool CodeGenPrepare::performAddressTypePromotion(
6072     Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
6073     bool HasPromoted, TypePromotionTransaction &TPT,
6074     SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
6075   bool Promoted = false;
6076   SmallPtrSet<Instruction *, 1> UnhandledExts;
6077   bool AllSeenFirst = true;
6078   for (auto *I : SpeculativelyMovedExts) {
6079     Value *HeadOfChain = I->getOperand(0);
6080     DenseMap<Value *, Instruction *>::iterator AlreadySeen =
6081         SeenChainsForSExt.find(HeadOfChain);
6082     // If there is an unhandled SExt which has the same header, try to promote
6083     // it as well.
6084     if (AlreadySeen != SeenChainsForSExt.end()) {
6085       if (AlreadySeen->second != nullptr)
6086         UnhandledExts.insert(AlreadySeen->second);
6087       AllSeenFirst = false;
6088     }
6089   }
6090 
6091   if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
6092                         SpeculativelyMovedExts.size() == 1)) {
6093     TPT.commit();
6094     if (HasPromoted)
6095       Promoted = true;
6096     for (auto *I : SpeculativelyMovedExts) {
6097       Value *HeadOfChain = I->getOperand(0);
6098       SeenChainsForSExt[HeadOfChain] = nullptr;
6099       ValToSExtendedUses[HeadOfChain].push_back(I);
6100     }
6101     // Update Inst as promotion happen.
6102     Inst = SpeculativelyMovedExts.pop_back_val();
6103   } else {
6104     // This is the first chain visited from the header, keep the current chain
6105     // as unhandled. Defer to promote this until we encounter another SExt
6106     // chain derived from the same header.
6107     for (auto *I : SpeculativelyMovedExts) {
6108       Value *HeadOfChain = I->getOperand(0);
6109       SeenChainsForSExt[HeadOfChain] = Inst;
6110     }
6111     return false;
6112   }
6113 
6114   if (!AllSeenFirst && !UnhandledExts.empty())
6115     for (auto *VisitedSExt : UnhandledExts) {
6116       if (RemovedInsts.count(VisitedSExt))
6117         continue;
6118       TypePromotionTransaction TPT(RemovedInsts);
6119       SmallVector<Instruction *, 1> Exts;
6120       SmallVector<Instruction *, 2> Chains;
6121       Exts.push_back(VisitedSExt);
6122       bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
6123       TPT.commit();
6124       if (HasPromoted)
6125         Promoted = true;
6126       for (auto *I : Chains) {
6127         Value *HeadOfChain = I->getOperand(0);
6128         // Mark this as handled.
6129         SeenChainsForSExt[HeadOfChain] = nullptr;
6130         ValToSExtendedUses[HeadOfChain].push_back(I);
6131       }
6132     }
6133   return Promoted;
6134 }
6135 
6136 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
6137   BasicBlock *DefBB = I->getParent();
6138 
6139   // If the result of a {s|z}ext and its source are both live out, rewrite all
6140   // other uses of the source with result of extension.
6141   Value *Src = I->getOperand(0);
6142   if (Src->hasOneUse())
6143     return false;
6144 
6145   // Only do this xform if truncating is free.
6146   if (!TLI->isTruncateFree(I->getType(), Src->getType()))
6147     return false;
6148 
6149   // Only safe to perform the optimization if the source is also defined in
6150   // this block.
6151   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
6152     return false;
6153 
6154   bool DefIsLiveOut = false;
6155   for (User *U : I->users()) {
6156     Instruction *UI = cast<Instruction>(U);
6157 
6158     // Figure out which BB this ext is used in.
6159     BasicBlock *UserBB = UI->getParent();
6160     if (UserBB == DefBB) continue;
6161     DefIsLiveOut = true;
6162     break;
6163   }
6164   if (!DefIsLiveOut)
6165     return false;
6166 
6167   // Make sure none of the uses are PHI nodes.
6168   for (User *U : Src->users()) {
6169     Instruction *UI = cast<Instruction>(U);
6170     BasicBlock *UserBB = UI->getParent();
6171     if (UserBB == DefBB) continue;
6172     // Be conservative. We don't want this xform to end up introducing
6173     // reloads just before load / store instructions.
6174     if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
6175       return false;
6176   }
6177 
6178   // InsertedTruncs - Only insert one trunc in each block once.
6179   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
6180 
6181   bool MadeChange = false;
6182   for (Use &U : Src->uses()) {
6183     Instruction *User = cast<Instruction>(U.getUser());
6184 
6185     // Figure out which BB this ext is used in.
6186     BasicBlock *UserBB = User->getParent();
6187     if (UserBB == DefBB) continue;
6188 
6189     // Both src and def are live in this block. Rewrite the use.
6190     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
6191 
6192     if (!InsertedTrunc) {
6193       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
6194       assert(InsertPt != UserBB->end());
6195       InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
6196       InsertedInsts.insert(InsertedTrunc);
6197     }
6198 
6199     // Replace a use of the {s|z}ext source with a use of the result.
6200     U = InsertedTrunc;
6201     ++NumExtUses;
6202     MadeChange = true;
6203   }
6204 
6205   return MadeChange;
6206 }
6207 
6208 // Find loads whose uses only use some of the loaded value's bits.  Add an "and"
6209 // just after the load if the target can fold this into one extload instruction,
6210 // with the hope of eliminating some of the other later "and" instructions using
6211 // the loaded value.  "and"s that are made trivially redundant by the insertion
6212 // of the new "and" are removed by this function, while others (e.g. those whose
6213 // path from the load goes through a phi) are left for isel to potentially
6214 // remove.
6215 //
6216 // For example:
6217 //
6218 // b0:
6219 //   x = load i32
6220 //   ...
6221 // b1:
6222 //   y = and x, 0xff
6223 //   z = use y
6224 //
6225 // becomes:
6226 //
6227 // b0:
6228 //   x = load i32
6229 //   x' = and x, 0xff
6230 //   ...
6231 // b1:
6232 //   z = use x'
6233 //
6234 // whereas:
6235 //
6236 // b0:
6237 //   x1 = load i32
6238 //   ...
6239 // b1:
6240 //   x2 = load i32
6241 //   ...
6242 // b2:
6243 //   x = phi x1, x2
6244 //   y = and x, 0xff
6245 //
6246 // becomes (after a call to optimizeLoadExt for each load):
6247 //
6248 // b0:
6249 //   x1 = load i32
6250 //   x1' = and x1, 0xff
6251 //   ...
6252 // b1:
6253 //   x2 = load i32
6254 //   x2' = and x2, 0xff
6255 //   ...
6256 // b2:
6257 //   x = phi x1', x2'
6258 //   y = and x, 0xff
6259 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
6260   if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy())
6261     return false;
6262 
6263   // Skip loads we've already transformed.
6264   if (Load->hasOneUse() &&
6265       InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
6266     return false;
6267 
6268   // Look at all uses of Load, looking through phis, to determine how many bits
6269   // of the loaded value are needed.
6270   SmallVector<Instruction *, 8> WorkList;
6271   SmallPtrSet<Instruction *, 16> Visited;
6272   SmallVector<Instruction *, 8> AndsToMaybeRemove;
6273   for (auto *U : Load->users())
6274     WorkList.push_back(cast<Instruction>(U));
6275 
6276   EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
6277   unsigned BitWidth = LoadResultVT.getSizeInBits();
6278   APInt DemandBits(BitWidth, 0);
6279   APInt WidestAndBits(BitWidth, 0);
6280 
6281   while (!WorkList.empty()) {
6282     Instruction *I = WorkList.back();
6283     WorkList.pop_back();
6284 
6285     // Break use-def graph loops.
6286     if (!Visited.insert(I).second)
6287       continue;
6288 
6289     // For a PHI node, push all of its users.
6290     if (auto *Phi = dyn_cast<PHINode>(I)) {
6291       for (auto *U : Phi->users())
6292         WorkList.push_back(cast<Instruction>(U));
6293       continue;
6294     }
6295 
6296     switch (I->getOpcode()) {
6297     case Instruction::And: {
6298       auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
6299       if (!AndC)
6300         return false;
6301       APInt AndBits = AndC->getValue();
6302       DemandBits |= AndBits;
6303       // Keep track of the widest and mask we see.
6304       if (AndBits.ugt(WidestAndBits))
6305         WidestAndBits = AndBits;
6306       if (AndBits == WidestAndBits && I->getOperand(0) == Load)
6307         AndsToMaybeRemove.push_back(I);
6308       break;
6309     }
6310 
6311     case Instruction::Shl: {
6312       auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
6313       if (!ShlC)
6314         return false;
6315       uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
6316       DemandBits.setLowBits(BitWidth - ShiftAmt);
6317       break;
6318     }
6319 
6320     case Instruction::Trunc: {
6321       EVT TruncVT = TLI->getValueType(*DL, I->getType());
6322       unsigned TruncBitWidth = TruncVT.getSizeInBits();
6323       DemandBits.setLowBits(TruncBitWidth);
6324       break;
6325     }
6326 
6327     default:
6328       return false;
6329     }
6330   }
6331 
6332   uint32_t ActiveBits = DemandBits.getActiveBits();
6333   // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
6334   // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
6335   // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
6336   // (and (load x) 1) is not matched as a single instruction, rather as a LDR
6337   // followed by an AND.
6338   // TODO: Look into removing this restriction by fixing backends to either
6339   // return false for isLoadExtLegal for i1 or have them select this pattern to
6340   // a single instruction.
6341   //
6342   // Also avoid hoisting if we didn't see any ands with the exact DemandBits
6343   // mask, since these are the only ands that will be removed by isel.
6344   if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
6345       WidestAndBits != DemandBits)
6346     return false;
6347 
6348   LLVMContext &Ctx = Load->getType()->getContext();
6349   Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
6350   EVT TruncVT = TLI->getValueType(*DL, TruncTy);
6351 
6352   // Reject cases that won't be matched as extloads.
6353   if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
6354       !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
6355     return false;
6356 
6357   IRBuilder<> Builder(Load->getNextNode());
6358   auto *NewAnd = cast<Instruction>(
6359       Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
6360   // Mark this instruction as "inserted by CGP", so that other
6361   // optimizations don't touch it.
6362   InsertedInsts.insert(NewAnd);
6363 
6364   // Replace all uses of load with new and (except for the use of load in the
6365   // new and itself).
6366   Load->replaceAllUsesWith(NewAnd);
6367   NewAnd->setOperand(0, Load);
6368 
6369   // Remove any and instructions that are now redundant.
6370   for (auto *And : AndsToMaybeRemove)
6371     // Check that the and mask is the same as the one we decided to put on the
6372     // new and.
6373     if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
6374       And->replaceAllUsesWith(NewAnd);
6375       if (&*CurInstIterator == And)
6376         CurInstIterator = std::next(And->getIterator());
6377       And->eraseFromParent();
6378       ++NumAndUses;
6379     }
6380 
6381   ++NumAndsAdded;
6382   return true;
6383 }
6384 
6385 /// Check if V (an operand of a select instruction) is an expensive instruction
6386 /// that is only used once.
6387 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
6388   auto *I = dyn_cast<Instruction>(V);
6389   // If it's safe to speculatively execute, then it should not have side
6390   // effects; therefore, it's safe to sink and possibly *not* execute.
6391   return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
6392          TTI->getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency) >=
6393          TargetTransformInfo::TCC_Expensive;
6394 }
6395 
6396 /// Returns true if a SelectInst should be turned into an explicit branch.
6397 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
6398                                                 const TargetLowering *TLI,
6399                                                 SelectInst *SI) {
6400   // If even a predictable select is cheap, then a branch can't be cheaper.
6401   if (!TLI->isPredictableSelectExpensive())
6402     return false;
6403 
6404   // FIXME: This should use the same heuristics as IfConversion to determine
6405   // whether a select is better represented as a branch.
6406 
6407   // If metadata tells us that the select condition is obviously predictable,
6408   // then we want to replace the select with a branch.
6409   uint64_t TrueWeight, FalseWeight;
6410   if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
6411     uint64_t Max = std::max(TrueWeight, FalseWeight);
6412     uint64_t Sum = TrueWeight + FalseWeight;
6413     if (Sum != 0) {
6414       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
6415       if (Probability > TLI->getPredictableBranchThreshold())
6416         return true;
6417     }
6418   }
6419 
6420   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
6421 
6422   // If a branch is predictable, an out-of-order CPU can avoid blocking on its
6423   // comparison condition. If the compare has more than one use, there's
6424   // probably another cmov or setcc around, so it's not worth emitting a branch.
6425   if (!Cmp || !Cmp->hasOneUse())
6426     return false;
6427 
6428   // If either operand of the select is expensive and only needed on one side
6429   // of the select, we should form a branch.
6430   if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
6431       sinkSelectOperand(TTI, SI->getFalseValue()))
6432     return true;
6433 
6434   return false;
6435 }
6436 
6437 /// If \p isTrue is true, return the true value of \p SI, otherwise return
6438 /// false value of \p SI. If the true/false value of \p SI is defined by any
6439 /// select instructions in \p Selects, look through the defining select
6440 /// instruction until the true/false value is not defined in \p Selects.
6441 static Value *getTrueOrFalseValue(
6442     SelectInst *SI, bool isTrue,
6443     const SmallPtrSet<const Instruction *, 2> &Selects) {
6444   Value *V = nullptr;
6445 
6446   for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
6447        DefSI = dyn_cast<SelectInst>(V)) {
6448     assert(DefSI->getCondition() == SI->getCondition() &&
6449            "The condition of DefSI does not match with SI");
6450     V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
6451   }
6452 
6453   assert(V && "Failed to get select true/false value");
6454   return V;
6455 }
6456 
6457 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) {
6458   assert(Shift->isShift() && "Expected a shift");
6459 
6460   // If this is (1) a vector shift, (2) shifts by scalars are cheaper than
6461   // general vector shifts, and (3) the shift amount is a select-of-splatted
6462   // values, hoist the shifts before the select:
6463   //   shift Op0, (select Cond, TVal, FVal) -->
6464   //   select Cond, (shift Op0, TVal), (shift Op0, FVal)
6465   //
6466   // This is inverting a generic IR transform when we know that the cost of a
6467   // general vector shift is more than the cost of 2 shift-by-scalars.
6468   // We can't do this effectively in SDAG because we may not be able to
6469   // determine if the select operands are splats from within a basic block.
6470   Type *Ty = Shift->getType();
6471   if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
6472     return false;
6473   Value *Cond, *TVal, *FVal;
6474   if (!match(Shift->getOperand(1),
6475              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
6476     return false;
6477   if (!isSplatValue(TVal) || !isSplatValue(FVal))
6478     return false;
6479 
6480   IRBuilder<> Builder(Shift);
6481   BinaryOperator::BinaryOps Opcode = Shift->getOpcode();
6482   Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal);
6483   Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal);
6484   Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
6485   Shift->replaceAllUsesWith(NewSel);
6486   Shift->eraseFromParent();
6487   return true;
6488 }
6489 
6490 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) {
6491   Intrinsic::ID Opcode = Fsh->getIntrinsicID();
6492   assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) &&
6493          "Expected a funnel shift");
6494 
6495   // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper
6496   // than general vector shifts, and (3) the shift amount is select-of-splatted
6497   // values, hoist the funnel shifts before the select:
6498   //   fsh Op0, Op1, (select Cond, TVal, FVal) -->
6499   //   select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal)
6500   //
6501   // This is inverting a generic IR transform when we know that the cost of a
6502   // general vector shift is more than the cost of 2 shift-by-scalars.
6503   // We can't do this effectively in SDAG because we may not be able to
6504   // determine if the select operands are splats from within a basic block.
6505   Type *Ty = Fsh->getType();
6506   if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
6507     return false;
6508   Value *Cond, *TVal, *FVal;
6509   if (!match(Fsh->getOperand(2),
6510              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
6511     return false;
6512   if (!isSplatValue(TVal) || !isSplatValue(FVal))
6513     return false;
6514 
6515   IRBuilder<> Builder(Fsh);
6516   Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1);
6517   Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, TVal });
6518   Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, FVal });
6519   Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
6520   Fsh->replaceAllUsesWith(NewSel);
6521   Fsh->eraseFromParent();
6522   return true;
6523 }
6524 
6525 /// If we have a SelectInst that will likely profit from branch prediction,
6526 /// turn it into a branch.
6527 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
6528   if (DisableSelectToBranch)
6529     return false;
6530 
6531   // Find all consecutive select instructions that share the same condition.
6532   SmallVector<SelectInst *, 2> ASI;
6533   ASI.push_back(SI);
6534   for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
6535        It != SI->getParent()->end(); ++It) {
6536     SelectInst *I = dyn_cast<SelectInst>(&*It);
6537     if (I && SI->getCondition() == I->getCondition()) {
6538       ASI.push_back(I);
6539     } else {
6540       break;
6541     }
6542   }
6543 
6544   SelectInst *LastSI = ASI.back();
6545   // Increment the current iterator to skip all the rest of select instructions
6546   // because they will be either "not lowered" or "all lowered" to branch.
6547   CurInstIterator = std::next(LastSI->getIterator());
6548 
6549   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
6550 
6551   // Can we convert the 'select' to CF ?
6552   if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable))
6553     return false;
6554 
6555   TargetLowering::SelectSupportKind SelectKind;
6556   if (VectorCond)
6557     SelectKind = TargetLowering::VectorMaskSelect;
6558   else if (SI->getType()->isVectorTy())
6559     SelectKind = TargetLowering::ScalarCondVectorVal;
6560   else
6561     SelectKind = TargetLowering::ScalarValSelect;
6562 
6563   if (TLI->isSelectSupported(SelectKind) &&
6564       (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize ||
6565        llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get())))
6566     return false;
6567 
6568   // The DominatorTree needs to be rebuilt by any consumers after this
6569   // transformation. We simply reset here rather than setting the ModifiedDT
6570   // flag to avoid restarting the function walk in runOnFunction for each
6571   // select optimized.
6572   DT.reset();
6573 
6574   // Transform a sequence like this:
6575   //    start:
6576   //       %cmp = cmp uge i32 %a, %b
6577   //       %sel = select i1 %cmp, i32 %c, i32 %d
6578   //
6579   // Into:
6580   //    start:
6581   //       %cmp = cmp uge i32 %a, %b
6582   //       %cmp.frozen = freeze %cmp
6583   //       br i1 %cmp.frozen, label %select.true, label %select.false
6584   //    select.true:
6585   //       br label %select.end
6586   //    select.false:
6587   //       br label %select.end
6588   //    select.end:
6589   //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
6590   //
6591   // %cmp should be frozen, otherwise it may introduce undefined behavior.
6592   // In addition, we may sink instructions that produce %c or %d from
6593   // the entry block into the destination(s) of the new branch.
6594   // If the true or false blocks do not contain a sunken instruction, that
6595   // block and its branch may be optimized away. In that case, one side of the
6596   // first branch will point directly to select.end, and the corresponding PHI
6597   // predecessor block will be the start block.
6598 
6599   // First, we split the block containing the select into 2 blocks.
6600   BasicBlock *StartBlock = SI->getParent();
6601   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
6602   BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
6603   BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency());
6604 
6605   // Delete the unconditional branch that was just created by the split.
6606   StartBlock->getTerminator()->eraseFromParent();
6607 
6608   // These are the new basic blocks for the conditional branch.
6609   // At least one will become an actual new basic block.
6610   BasicBlock *TrueBlock = nullptr;
6611   BasicBlock *FalseBlock = nullptr;
6612   BranchInst *TrueBranch = nullptr;
6613   BranchInst *FalseBranch = nullptr;
6614 
6615   // Sink expensive instructions into the conditional blocks to avoid executing
6616   // them speculatively.
6617   for (SelectInst *SI : ASI) {
6618     if (sinkSelectOperand(TTI, SI->getTrueValue())) {
6619       if (TrueBlock == nullptr) {
6620         TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
6621                                        EndBlock->getParent(), EndBlock);
6622         TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
6623         TrueBranch->setDebugLoc(SI->getDebugLoc());
6624       }
6625       auto *TrueInst = cast<Instruction>(SI->getTrueValue());
6626       TrueInst->moveBefore(TrueBranch);
6627     }
6628     if (sinkSelectOperand(TTI, SI->getFalseValue())) {
6629       if (FalseBlock == nullptr) {
6630         FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
6631                                         EndBlock->getParent(), EndBlock);
6632         FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6633         FalseBranch->setDebugLoc(SI->getDebugLoc());
6634       }
6635       auto *FalseInst = cast<Instruction>(SI->getFalseValue());
6636       FalseInst->moveBefore(FalseBranch);
6637     }
6638   }
6639 
6640   // If there was nothing to sink, then arbitrarily choose the 'false' side
6641   // for a new input value to the PHI.
6642   if (TrueBlock == FalseBlock) {
6643     assert(TrueBlock == nullptr &&
6644            "Unexpected basic block transform while optimizing select");
6645 
6646     FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
6647                                     EndBlock->getParent(), EndBlock);
6648     auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6649     FalseBranch->setDebugLoc(SI->getDebugLoc());
6650   }
6651 
6652   // Insert the real conditional branch based on the original condition.
6653   // If we did not create a new block for one of the 'true' or 'false' paths
6654   // of the condition, it means that side of the branch goes to the end block
6655   // directly and the path originates from the start block from the point of
6656   // view of the new PHI.
6657   BasicBlock *TT, *FT;
6658   if (TrueBlock == nullptr) {
6659     TT = EndBlock;
6660     FT = FalseBlock;
6661     TrueBlock = StartBlock;
6662   } else if (FalseBlock == nullptr) {
6663     TT = TrueBlock;
6664     FT = EndBlock;
6665     FalseBlock = StartBlock;
6666   } else {
6667     TT = TrueBlock;
6668     FT = FalseBlock;
6669   }
6670   IRBuilder<> IB(SI);
6671   auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen");
6672   IB.CreateCondBr(CondFr, TT, FT, SI);
6673 
6674   SmallPtrSet<const Instruction *, 2> INS;
6675   INS.insert(ASI.begin(), ASI.end());
6676   // Use reverse iterator because later select may use the value of the
6677   // earlier select, and we need to propagate value through earlier select
6678   // to get the PHI operand.
6679   for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
6680     SelectInst *SI = *It;
6681     // The select itself is replaced with a PHI Node.
6682     PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
6683     PN->takeName(SI);
6684     PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
6685     PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
6686     PN->setDebugLoc(SI->getDebugLoc());
6687 
6688     SI->replaceAllUsesWith(PN);
6689     SI->eraseFromParent();
6690     INS.erase(SI);
6691     ++NumSelectsExpanded;
6692   }
6693 
6694   // Instruct OptimizeBlock to skip to the next block.
6695   CurInstIterator = StartBlock->end();
6696   return true;
6697 }
6698 
6699 /// Some targets only accept certain types for splat inputs. For example a VDUP
6700 /// in MVE takes a GPR (integer) register, and the instruction that incorporate
6701 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register.
6702 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
6703   if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
6704                             m_Undef(), m_ZeroMask())))
6705     return false;
6706   Type *NewType = TLI->shouldConvertSplatType(SVI);
6707   if (!NewType)
6708     return false;
6709 
6710   auto *SVIVecType = cast<FixedVectorType>(SVI->getType());
6711   assert(!NewType->isVectorTy() && "Expected a scalar type!");
6712   assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() &&
6713          "Expected a type of the same size!");
6714   auto *NewVecType =
6715       FixedVectorType::get(NewType, SVIVecType->getNumElements());
6716 
6717   // Create a bitcast (shuffle (insert (bitcast(..))))
6718   IRBuilder<> Builder(SVI->getContext());
6719   Builder.SetInsertPoint(SVI);
6720   Value *BC1 = Builder.CreateBitCast(
6721       cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType);
6722   Value *Insert = Builder.CreateInsertElement(UndefValue::get(NewVecType), BC1,
6723                                               (uint64_t)0);
6724   Value *Shuffle = Builder.CreateShuffleVector(Insert, SVI->getShuffleMask());
6725   Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType);
6726 
6727   SVI->replaceAllUsesWith(BC2);
6728   RecursivelyDeleteTriviallyDeadInstructions(
6729       SVI, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); });
6730 
6731   // Also hoist the bitcast up to its operand if it they are not in the same
6732   // block.
6733   if (auto *BCI = dyn_cast<Instruction>(BC1))
6734     if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0)))
6735       if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) &&
6736           !Op->isTerminator() && !Op->isEHPad())
6737         BCI->moveAfter(Op);
6738 
6739   return true;
6740 }
6741 
6742 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) {
6743   // If the operands of I can be folded into a target instruction together with
6744   // I, duplicate and sink them.
6745   SmallVector<Use *, 4> OpsToSink;
6746   if (!TLI->shouldSinkOperands(I, OpsToSink))
6747     return false;
6748 
6749   // OpsToSink can contain multiple uses in a use chain (e.g.
6750   // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
6751   // uses must come first, so we process the ops in reverse order so as to not
6752   // create invalid IR.
6753   BasicBlock *TargetBB = I->getParent();
6754   bool Changed = false;
6755   SmallVector<Use *, 4> ToReplace;
6756   for (Use *U : reverse(OpsToSink)) {
6757     auto *UI = cast<Instruction>(U->get());
6758     if (UI->getParent() == TargetBB || isa<PHINode>(UI))
6759       continue;
6760     ToReplace.push_back(U);
6761   }
6762 
6763   SetVector<Instruction *> MaybeDead;
6764   DenseMap<Instruction *, Instruction *> NewInstructions;
6765   Instruction *InsertPoint = I;
6766   for (Use *U : ToReplace) {
6767     auto *UI = cast<Instruction>(U->get());
6768     Instruction *NI = UI->clone();
6769     NewInstructions[UI] = NI;
6770     MaybeDead.insert(UI);
6771     LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n");
6772     NI->insertBefore(InsertPoint);
6773     InsertPoint = NI;
6774     InsertedInsts.insert(NI);
6775 
6776     // Update the use for the new instruction, making sure that we update the
6777     // sunk instruction uses, if it is part of a chain that has already been
6778     // sunk.
6779     Instruction *OldI = cast<Instruction>(U->getUser());
6780     if (NewInstructions.count(OldI))
6781       NewInstructions[OldI]->setOperand(U->getOperandNo(), NI);
6782     else
6783       U->set(NI);
6784     Changed = true;
6785   }
6786 
6787   // Remove instructions that are dead after sinking.
6788   for (auto *I : MaybeDead) {
6789     if (!I->hasNUsesOrMore(1)) {
6790       LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n");
6791       I->eraseFromParent();
6792     }
6793   }
6794 
6795   return Changed;
6796 }
6797 
6798 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
6799   Value *Cond = SI->getCondition();
6800   Type *OldType = Cond->getType();
6801   LLVMContext &Context = Cond->getContext();
6802   MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
6803   unsigned RegWidth = RegType.getSizeInBits();
6804 
6805   if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
6806     return false;
6807 
6808   // If the register width is greater than the type width, expand the condition
6809   // of the switch instruction and each case constant to the width of the
6810   // register. By widening the type of the switch condition, subsequent
6811   // comparisons (for case comparisons) will not need to be extended to the
6812   // preferred register width, so we will potentially eliminate N-1 extends,
6813   // where N is the number of cases in the switch.
6814   auto *NewType = Type::getIntNTy(Context, RegWidth);
6815 
6816   // Zero-extend the switch condition and case constants unless the switch
6817   // condition is a function argument that is already being sign-extended.
6818   // In that case, we can avoid an unnecessary mask/extension by sign-extending
6819   // everything instead.
6820   Instruction::CastOps ExtType = Instruction::ZExt;
6821   if (auto *Arg = dyn_cast<Argument>(Cond))
6822     if (Arg->hasSExtAttr())
6823       ExtType = Instruction::SExt;
6824 
6825   auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
6826   ExtInst->insertBefore(SI);
6827   ExtInst->setDebugLoc(SI->getDebugLoc());
6828   SI->setCondition(ExtInst);
6829   for (auto Case : SI->cases()) {
6830     APInt NarrowConst = Case.getCaseValue()->getValue();
6831     APInt WideConst = (ExtType == Instruction::ZExt) ?
6832                       NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
6833     Case.setValue(ConstantInt::get(Context, WideConst));
6834   }
6835 
6836   return true;
6837 }
6838 
6839 
6840 namespace {
6841 
6842 /// Helper class to promote a scalar operation to a vector one.
6843 /// This class is used to move downward extractelement transition.
6844 /// E.g.,
6845 /// a = vector_op <2 x i32>
6846 /// b = extractelement <2 x i32> a, i32 0
6847 /// c = scalar_op b
6848 /// store c
6849 ///
6850 /// =>
6851 /// a = vector_op <2 x i32>
6852 /// c = vector_op a (equivalent to scalar_op on the related lane)
6853 /// * d = extractelement <2 x i32> c, i32 0
6854 /// * store d
6855 /// Assuming both extractelement and store can be combine, we get rid of the
6856 /// transition.
6857 class VectorPromoteHelper {
6858   /// DataLayout associated with the current module.
6859   const DataLayout &DL;
6860 
6861   /// Used to perform some checks on the legality of vector operations.
6862   const TargetLowering &TLI;
6863 
6864   /// Used to estimated the cost of the promoted chain.
6865   const TargetTransformInfo &TTI;
6866 
6867   /// The transition being moved downwards.
6868   Instruction *Transition;
6869 
6870   /// The sequence of instructions to be promoted.
6871   SmallVector<Instruction *, 4> InstsToBePromoted;
6872 
6873   /// Cost of combining a store and an extract.
6874   unsigned StoreExtractCombineCost;
6875 
6876   /// Instruction that will be combined with the transition.
6877   Instruction *CombineInst = nullptr;
6878 
6879   /// The instruction that represents the current end of the transition.
6880   /// Since we are faking the promotion until we reach the end of the chain
6881   /// of computation, we need a way to get the current end of the transition.
6882   Instruction *getEndOfTransition() const {
6883     if (InstsToBePromoted.empty())
6884       return Transition;
6885     return InstsToBePromoted.back();
6886   }
6887 
6888   /// Return the index of the original value in the transition.
6889   /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
6890   /// c, is at index 0.
6891   unsigned getTransitionOriginalValueIdx() const {
6892     assert(isa<ExtractElementInst>(Transition) &&
6893            "Other kind of transitions are not supported yet");
6894     return 0;
6895   }
6896 
6897   /// Return the index of the index in the transition.
6898   /// E.g., for "extractelement <2 x i32> c, i32 0" the index
6899   /// is at index 1.
6900   unsigned getTransitionIdx() const {
6901     assert(isa<ExtractElementInst>(Transition) &&
6902            "Other kind of transitions are not supported yet");
6903     return 1;
6904   }
6905 
6906   /// Get the type of the transition.
6907   /// This is the type of the original value.
6908   /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
6909   /// transition is <2 x i32>.
6910   Type *getTransitionType() const {
6911     return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
6912   }
6913 
6914   /// Promote \p ToBePromoted by moving \p Def downward through.
6915   /// I.e., we have the following sequence:
6916   /// Def = Transition <ty1> a to <ty2>
6917   /// b = ToBePromoted <ty2> Def, ...
6918   /// =>
6919   /// b = ToBePromoted <ty1> a, ...
6920   /// Def = Transition <ty1> ToBePromoted to <ty2>
6921   void promoteImpl(Instruction *ToBePromoted);
6922 
6923   /// Check whether or not it is profitable to promote all the
6924   /// instructions enqueued to be promoted.
6925   bool isProfitableToPromote() {
6926     Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
6927     unsigned Index = isa<ConstantInt>(ValIdx)
6928                          ? cast<ConstantInt>(ValIdx)->getZExtValue()
6929                          : -1;
6930     Type *PromotedType = getTransitionType();
6931 
6932     StoreInst *ST = cast<StoreInst>(CombineInst);
6933     unsigned AS = ST->getPointerAddressSpace();
6934     unsigned Align = ST->getAlignment();
6935     // Check if this store is supported.
6936     if (!TLI.allowsMisalignedMemoryAccesses(
6937             TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
6938             Align)) {
6939       // If this is not supported, there is no way we can combine
6940       // the extract with the store.
6941       return false;
6942     }
6943 
6944     // The scalar chain of computation has to pay for the transition
6945     // scalar to vector.
6946     // The vector chain has to account for the combining cost.
6947     uint64_t ScalarCost =
6948         TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
6949     uint64_t VectorCost = StoreExtractCombineCost;
6950     enum TargetTransformInfo::TargetCostKind CostKind =
6951       TargetTransformInfo::TCK_RecipThroughput;
6952     for (const auto &Inst : InstsToBePromoted) {
6953       // Compute the cost.
6954       // By construction, all instructions being promoted are arithmetic ones.
6955       // Moreover, one argument is a constant that can be viewed as a splat
6956       // constant.
6957       Value *Arg0 = Inst->getOperand(0);
6958       bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
6959                             isa<ConstantFP>(Arg0);
6960       TargetTransformInfo::OperandValueKind Arg0OVK =
6961           IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6962                          : TargetTransformInfo::OK_AnyValue;
6963       TargetTransformInfo::OperandValueKind Arg1OVK =
6964           !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6965                           : TargetTransformInfo::OK_AnyValue;
6966       ScalarCost += TTI.getArithmeticInstrCost(
6967           Inst->getOpcode(), Inst->getType(), CostKind, Arg0OVK, Arg1OVK);
6968       VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
6969                                                CostKind,
6970                                                Arg0OVK, Arg1OVK);
6971     }
6972     LLVM_DEBUG(
6973         dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
6974                << ScalarCost << "\nVector: " << VectorCost << '\n');
6975     return ScalarCost > VectorCost;
6976   }
6977 
6978   /// Generate a constant vector with \p Val with the same
6979   /// number of elements as the transition.
6980   /// \p UseSplat defines whether or not \p Val should be replicated
6981   /// across the whole vector.
6982   /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
6983   /// otherwise we generate a vector with as many undef as possible:
6984   /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
6985   /// used at the index of the extract.
6986   Value *getConstantVector(Constant *Val, bool UseSplat) const {
6987     unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
6988     if (!UseSplat) {
6989       // If we cannot determine where the constant must be, we have to
6990       // use a splat constant.
6991       Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
6992       if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
6993         ExtractIdx = CstVal->getSExtValue();
6994       else
6995         UseSplat = true;
6996     }
6997 
6998     ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount();
6999     if (UseSplat)
7000       return ConstantVector::getSplat(EC, Val);
7001 
7002     if (!EC.isScalable()) {
7003       SmallVector<Constant *, 4> ConstVec;
7004       UndefValue *UndefVal = UndefValue::get(Val->getType());
7005       for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) {
7006         if (Idx == ExtractIdx)
7007           ConstVec.push_back(Val);
7008         else
7009           ConstVec.push_back(UndefVal);
7010       }
7011       return ConstantVector::get(ConstVec);
7012     } else
7013       llvm_unreachable(
7014           "Generate scalable vector for non-splat is unimplemented");
7015   }
7016 
7017   /// Check if promoting to a vector type an operand at \p OperandIdx
7018   /// in \p Use can trigger undefined behavior.
7019   static bool canCauseUndefinedBehavior(const Instruction *Use,
7020                                         unsigned OperandIdx) {
7021     // This is not safe to introduce undef when the operand is on
7022     // the right hand side of a division-like instruction.
7023     if (OperandIdx != 1)
7024       return false;
7025     switch (Use->getOpcode()) {
7026     default:
7027       return false;
7028     case Instruction::SDiv:
7029     case Instruction::UDiv:
7030     case Instruction::SRem:
7031     case Instruction::URem:
7032       return true;
7033     case Instruction::FDiv:
7034     case Instruction::FRem:
7035       return !Use->hasNoNaNs();
7036     }
7037     llvm_unreachable(nullptr);
7038   }
7039 
7040 public:
7041   VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
7042                       const TargetTransformInfo &TTI, Instruction *Transition,
7043                       unsigned CombineCost)
7044       : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
7045         StoreExtractCombineCost(CombineCost) {
7046     assert(Transition && "Do not know how to promote null");
7047   }
7048 
7049   /// Check if we can promote \p ToBePromoted to \p Type.
7050   bool canPromote(const Instruction *ToBePromoted) const {
7051     // We could support CastInst too.
7052     return isa<BinaryOperator>(ToBePromoted);
7053   }
7054 
7055   /// Check if it is profitable to promote \p ToBePromoted
7056   /// by moving downward the transition through.
7057   bool shouldPromote(const Instruction *ToBePromoted) const {
7058     // Promote only if all the operands can be statically expanded.
7059     // Indeed, we do not want to introduce any new kind of transitions.
7060     for (const Use &U : ToBePromoted->operands()) {
7061       const Value *Val = U.get();
7062       if (Val == getEndOfTransition()) {
7063         // If the use is a division and the transition is on the rhs,
7064         // we cannot promote the operation, otherwise we may create a
7065         // division by zero.
7066         if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
7067           return false;
7068         continue;
7069       }
7070       if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
7071           !isa<ConstantFP>(Val))
7072         return false;
7073     }
7074     // Check that the resulting operation is legal.
7075     int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
7076     if (!ISDOpcode)
7077       return false;
7078     return StressStoreExtract ||
7079            TLI.isOperationLegalOrCustom(
7080                ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
7081   }
7082 
7083   /// Check whether or not \p Use can be combined
7084   /// with the transition.
7085   /// I.e., is it possible to do Use(Transition) => AnotherUse?
7086   bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
7087 
7088   /// Record \p ToBePromoted as part of the chain to be promoted.
7089   void enqueueForPromotion(Instruction *ToBePromoted) {
7090     InstsToBePromoted.push_back(ToBePromoted);
7091   }
7092 
7093   /// Set the instruction that will be combined with the transition.
7094   void recordCombineInstruction(Instruction *ToBeCombined) {
7095     assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
7096     CombineInst = ToBeCombined;
7097   }
7098 
7099   /// Promote all the instructions enqueued for promotion if it is
7100   /// is profitable.
7101   /// \return True if the promotion happened, false otherwise.
7102   bool promote() {
7103     // Check if there is something to promote.
7104     // Right now, if we do not have anything to combine with,
7105     // we assume the promotion is not profitable.
7106     if (InstsToBePromoted.empty() || !CombineInst)
7107       return false;
7108 
7109     // Check cost.
7110     if (!StressStoreExtract && !isProfitableToPromote())
7111       return false;
7112 
7113     // Promote.
7114     for (auto &ToBePromoted : InstsToBePromoted)
7115       promoteImpl(ToBePromoted);
7116     InstsToBePromoted.clear();
7117     return true;
7118   }
7119 };
7120 
7121 } // end anonymous namespace
7122 
7123 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
7124   // At this point, we know that all the operands of ToBePromoted but Def
7125   // can be statically promoted.
7126   // For Def, we need to use its parameter in ToBePromoted:
7127   // b = ToBePromoted ty1 a
7128   // Def = Transition ty1 b to ty2
7129   // Move the transition down.
7130   // 1. Replace all uses of the promoted operation by the transition.
7131   // = ... b => = ... Def.
7132   assert(ToBePromoted->getType() == Transition->getType() &&
7133          "The type of the result of the transition does not match "
7134          "the final type");
7135   ToBePromoted->replaceAllUsesWith(Transition);
7136   // 2. Update the type of the uses.
7137   // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
7138   Type *TransitionTy = getTransitionType();
7139   ToBePromoted->mutateType(TransitionTy);
7140   // 3. Update all the operands of the promoted operation with promoted
7141   // operands.
7142   // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
7143   for (Use &U : ToBePromoted->operands()) {
7144     Value *Val = U.get();
7145     Value *NewVal = nullptr;
7146     if (Val == Transition)
7147       NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
7148     else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
7149              isa<ConstantFP>(Val)) {
7150       // Use a splat constant if it is not safe to use undef.
7151       NewVal = getConstantVector(
7152           cast<Constant>(Val),
7153           isa<UndefValue>(Val) ||
7154               canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
7155     } else
7156       llvm_unreachable("Did you modified shouldPromote and forgot to update "
7157                        "this?");
7158     ToBePromoted->setOperand(U.getOperandNo(), NewVal);
7159   }
7160   Transition->moveAfter(ToBePromoted);
7161   Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
7162 }
7163 
7164 /// Some targets can do store(extractelement) with one instruction.
7165 /// Try to push the extractelement towards the stores when the target
7166 /// has this feature and this is profitable.
7167 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
7168   unsigned CombineCost = std::numeric_limits<unsigned>::max();
7169   if (DisableStoreExtract ||
7170       (!StressStoreExtract &&
7171        !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
7172                                        Inst->getOperand(1), CombineCost)))
7173     return false;
7174 
7175   // At this point we know that Inst is a vector to scalar transition.
7176   // Try to move it down the def-use chain, until:
7177   // - We can combine the transition with its single use
7178   //   => we got rid of the transition.
7179   // - We escape the current basic block
7180   //   => we would need to check that we are moving it at a cheaper place and
7181   //      we do not do that for now.
7182   BasicBlock *Parent = Inst->getParent();
7183   LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
7184   VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
7185   // If the transition has more than one use, assume this is not going to be
7186   // beneficial.
7187   while (Inst->hasOneUse()) {
7188     Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
7189     LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
7190 
7191     if (ToBePromoted->getParent() != Parent) {
7192       LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
7193                         << ToBePromoted->getParent()->getName()
7194                         << ") than the transition (" << Parent->getName()
7195                         << ").\n");
7196       return false;
7197     }
7198 
7199     if (VPH.canCombine(ToBePromoted)) {
7200       LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
7201                         << "will be combined with: " << *ToBePromoted << '\n');
7202       VPH.recordCombineInstruction(ToBePromoted);
7203       bool Changed = VPH.promote();
7204       NumStoreExtractExposed += Changed;
7205       return Changed;
7206     }
7207 
7208     LLVM_DEBUG(dbgs() << "Try promoting.\n");
7209     if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
7210       return false;
7211 
7212     LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
7213 
7214     VPH.enqueueForPromotion(ToBePromoted);
7215     Inst = ToBePromoted;
7216   }
7217   return false;
7218 }
7219 
7220 /// For the instruction sequence of store below, F and I values
7221 /// are bundled together as an i64 value before being stored into memory.
7222 /// Sometimes it is more efficient to generate separate stores for F and I,
7223 /// which can remove the bitwise instructions or sink them to colder places.
7224 ///
7225 ///   (store (or (zext (bitcast F to i32) to i64),
7226 ///              (shl (zext I to i64), 32)), addr)  -->
7227 ///   (store F, addr) and (store I, addr+4)
7228 ///
7229 /// Similarly, splitting for other merged store can also be beneficial, like:
7230 /// For pair of {i32, i32}, i64 store --> two i32 stores.
7231 /// For pair of {i32, i16}, i64 store --> two i32 stores.
7232 /// For pair of {i16, i16}, i32 store --> two i16 stores.
7233 /// For pair of {i16, i8},  i32 store --> two i16 stores.
7234 /// For pair of {i8, i8},   i16 store --> two i8 stores.
7235 ///
7236 /// We allow each target to determine specifically which kind of splitting is
7237 /// supported.
7238 ///
7239 /// The store patterns are commonly seen from the simple code snippet below
7240 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
7241 ///   void goo(const std::pair<int, float> &);
7242 ///   hoo() {
7243 ///     ...
7244 ///     goo(std::make_pair(tmp, ftmp));
7245 ///     ...
7246 ///   }
7247 ///
7248 /// Although we already have similar splitting in DAG Combine, we duplicate
7249 /// it in CodeGenPrepare to catch the case in which pattern is across
7250 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
7251 /// during code expansion.
7252 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
7253                                 const TargetLowering &TLI) {
7254   // Handle simple but common cases only.
7255   Type *StoreType = SI.getValueOperand()->getType();
7256 
7257   // The code below assumes shifting a value by <number of bits>,
7258   // whereas scalable vectors would have to be shifted by
7259   // <2log(vscale) + number of bits> in order to store the
7260   // low/high parts. Bailing out for now.
7261   if (isa<ScalableVectorType>(StoreType))
7262     return false;
7263 
7264   if (!DL.typeSizeEqualsStoreSize(StoreType) ||
7265       DL.getTypeSizeInBits(StoreType) == 0)
7266     return false;
7267 
7268   unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
7269   Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
7270   if (!DL.typeSizeEqualsStoreSize(SplitStoreType))
7271     return false;
7272 
7273   // Don't split the store if it is volatile.
7274   if (SI.isVolatile())
7275     return false;
7276 
7277   // Match the following patterns:
7278   // (store (or (zext LValue to i64),
7279   //            (shl (zext HValue to i64), 32)), HalfValBitSize)
7280   //  or
7281   // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
7282   //            (zext LValue to i64),
7283   // Expect both operands of OR and the first operand of SHL have only
7284   // one use.
7285   Value *LValue, *HValue;
7286   if (!match(SI.getValueOperand(),
7287              m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
7288                     m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
7289                                    m_SpecificInt(HalfValBitSize))))))
7290     return false;
7291 
7292   // Check LValue and HValue are int with size less or equal than 32.
7293   if (!LValue->getType()->isIntegerTy() ||
7294       DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
7295       !HValue->getType()->isIntegerTy() ||
7296       DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
7297     return false;
7298 
7299   // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
7300   // as the input of target query.
7301   auto *LBC = dyn_cast<BitCastInst>(LValue);
7302   auto *HBC = dyn_cast<BitCastInst>(HValue);
7303   EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
7304                   : EVT::getEVT(LValue->getType());
7305   EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
7306                    : EVT::getEVT(HValue->getType());
7307   if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
7308     return false;
7309 
7310   // Start to split store.
7311   IRBuilder<> Builder(SI.getContext());
7312   Builder.SetInsertPoint(&SI);
7313 
7314   // If LValue/HValue is a bitcast in another BB, create a new one in current
7315   // BB so it may be merged with the splitted stores by dag combiner.
7316   if (LBC && LBC->getParent() != SI.getParent())
7317     LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
7318   if (HBC && HBC->getParent() != SI.getParent())
7319     HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
7320 
7321   bool IsLE = SI.getModule()->getDataLayout().isLittleEndian();
7322   auto CreateSplitStore = [&](Value *V, bool Upper) {
7323     V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
7324     Value *Addr = Builder.CreateBitCast(
7325         SI.getOperand(1),
7326         SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
7327     Align Alignment = SI.getAlign();
7328     const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper);
7329     if (IsOffsetStore) {
7330       Addr = Builder.CreateGEP(
7331           SplitStoreType, Addr,
7332           ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
7333 
7334       // When splitting the store in half, naturally one half will retain the
7335       // alignment of the original wider store, regardless of whether it was
7336       // over-aligned or not, while the other will require adjustment.
7337       Alignment = commonAlignment(Alignment, HalfValBitSize / 8);
7338     }
7339     Builder.CreateAlignedStore(V, Addr, Alignment);
7340   };
7341 
7342   CreateSplitStore(LValue, false);
7343   CreateSplitStore(HValue, true);
7344 
7345   // Delete the old store.
7346   SI.eraseFromParent();
7347   return true;
7348 }
7349 
7350 // Return true if the GEP has two operands, the first operand is of a sequential
7351 // type, and the second operand is a constant.
7352 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
7353   gep_type_iterator I = gep_type_begin(*GEP);
7354   return GEP->getNumOperands() == 2 &&
7355       I.isSequential() &&
7356       isa<ConstantInt>(GEP->getOperand(1));
7357 }
7358 
7359 // Try unmerging GEPs to reduce liveness interference (register pressure) across
7360 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
7361 // reducing liveness interference across those edges benefits global register
7362 // allocation. Currently handles only certain cases.
7363 //
7364 // For example, unmerge %GEPI and %UGEPI as below.
7365 //
7366 // ---------- BEFORE ----------
7367 // SrcBlock:
7368 //   ...
7369 //   %GEPIOp = ...
7370 //   ...
7371 //   %GEPI = gep %GEPIOp, Idx
7372 //   ...
7373 //   indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
7374 //   (* %GEPI is alive on the indirectbr edges due to other uses ahead)
7375 //   (* %GEPIOp is alive on the indirectbr edges only because of it's used by
7376 //   %UGEPI)
7377 //
7378 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
7379 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
7380 // ...
7381 //
7382 // DstBi:
7383 //   ...
7384 //   %UGEPI = gep %GEPIOp, UIdx
7385 // ...
7386 // ---------------------------
7387 //
7388 // ---------- AFTER ----------
7389 // SrcBlock:
7390 //   ... (same as above)
7391 //    (* %GEPI is still alive on the indirectbr edges)
7392 //    (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
7393 //    unmerging)
7394 // ...
7395 //
7396 // DstBi:
7397 //   ...
7398 //   %UGEPI = gep %GEPI, (UIdx-Idx)
7399 //   ...
7400 // ---------------------------
7401 //
7402 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
7403 // no longer alive on them.
7404 //
7405 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
7406 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
7407 // not to disable further simplications and optimizations as a result of GEP
7408 // merging.
7409 //
7410 // Note this unmerging may increase the length of the data flow critical path
7411 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
7412 // between the register pressure and the length of data-flow critical
7413 // path. Restricting this to the uncommon IndirectBr case would minimize the
7414 // impact of potentially longer critical path, if any, and the impact on compile
7415 // time.
7416 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
7417                                              const TargetTransformInfo *TTI) {
7418   BasicBlock *SrcBlock = GEPI->getParent();
7419   // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
7420   // (non-IndirectBr) cases exit early here.
7421   if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
7422     return false;
7423   // Check that GEPI is a simple gep with a single constant index.
7424   if (!GEPSequentialConstIndexed(GEPI))
7425     return false;
7426   ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
7427   // Check that GEPI is a cheap one.
7428   if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(),
7429                          TargetTransformInfo::TCK_SizeAndLatency)
7430       > TargetTransformInfo::TCC_Basic)
7431     return false;
7432   Value *GEPIOp = GEPI->getOperand(0);
7433   // Check that GEPIOp is an instruction that's also defined in SrcBlock.
7434   if (!isa<Instruction>(GEPIOp))
7435     return false;
7436   auto *GEPIOpI = cast<Instruction>(GEPIOp);
7437   if (GEPIOpI->getParent() != SrcBlock)
7438     return false;
7439   // Check that GEP is used outside the block, meaning it's alive on the
7440   // IndirectBr edge(s).
7441   if (find_if(GEPI->users(), [&](User *Usr) {
7442         if (auto *I = dyn_cast<Instruction>(Usr)) {
7443           if (I->getParent() != SrcBlock) {
7444             return true;
7445           }
7446         }
7447         return false;
7448       }) == GEPI->users().end())
7449     return false;
7450   // The second elements of the GEP chains to be unmerged.
7451   std::vector<GetElementPtrInst *> UGEPIs;
7452   // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
7453   // on IndirectBr edges.
7454   for (User *Usr : GEPIOp->users()) {
7455     if (Usr == GEPI) continue;
7456     // Check if Usr is an Instruction. If not, give up.
7457     if (!isa<Instruction>(Usr))
7458       return false;
7459     auto *UI = cast<Instruction>(Usr);
7460     // Check if Usr in the same block as GEPIOp, which is fine, skip.
7461     if (UI->getParent() == SrcBlock)
7462       continue;
7463     // Check if Usr is a GEP. If not, give up.
7464     if (!isa<GetElementPtrInst>(Usr))
7465       return false;
7466     auto *UGEPI = cast<GetElementPtrInst>(Usr);
7467     // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
7468     // the pointer operand to it. If so, record it in the vector. If not, give
7469     // up.
7470     if (!GEPSequentialConstIndexed(UGEPI))
7471       return false;
7472     if (UGEPI->getOperand(0) != GEPIOp)
7473       return false;
7474     if (GEPIIdx->getType() !=
7475         cast<ConstantInt>(UGEPI->getOperand(1))->getType())
7476       return false;
7477     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7478     if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(),
7479                            TargetTransformInfo::TCK_SizeAndLatency)
7480         > TargetTransformInfo::TCC_Basic)
7481       return false;
7482     UGEPIs.push_back(UGEPI);
7483   }
7484   if (UGEPIs.size() == 0)
7485     return false;
7486   // Check the materializing cost of (Uidx-Idx).
7487   for (GetElementPtrInst *UGEPI : UGEPIs) {
7488     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7489     APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
7490     unsigned ImmCost =
7491       TTI->getIntImmCost(NewIdx, GEPIIdx->getType(),
7492                          TargetTransformInfo::TCK_SizeAndLatency);
7493     if (ImmCost > TargetTransformInfo::TCC_Basic)
7494       return false;
7495   }
7496   // Now unmerge between GEPI and UGEPIs.
7497   for (GetElementPtrInst *UGEPI : UGEPIs) {
7498     UGEPI->setOperand(0, GEPI);
7499     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7500     Constant *NewUGEPIIdx =
7501         ConstantInt::get(GEPIIdx->getType(),
7502                          UGEPIIdx->getValue() - GEPIIdx->getValue());
7503     UGEPI->setOperand(1, NewUGEPIIdx);
7504     // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
7505     // inbounds to avoid UB.
7506     if (!GEPI->isInBounds()) {
7507       UGEPI->setIsInBounds(false);
7508     }
7509   }
7510   // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
7511   // alive on IndirectBr edges).
7512   assert(find_if(GEPIOp->users(), [&](User *Usr) {
7513         return cast<Instruction>(Usr)->getParent() != SrcBlock;
7514       }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock");
7515   return true;
7516 }
7517 
7518 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) {
7519   // Bail out if we inserted the instruction to prevent optimizations from
7520   // stepping on each other's toes.
7521   if (InsertedInsts.count(I))
7522     return false;
7523 
7524   // TODO: Move into the switch on opcode below here.
7525   if (PHINode *P = dyn_cast<PHINode>(I)) {
7526     // It is possible for very late stage optimizations (such as SimplifyCFG)
7527     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
7528     // trivial PHI, go ahead and zap it here.
7529     if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
7530       LargeOffsetGEPMap.erase(P);
7531       P->replaceAllUsesWith(V);
7532       P->eraseFromParent();
7533       ++NumPHIsElim;
7534       return true;
7535     }
7536     return false;
7537   }
7538 
7539   if (CastInst *CI = dyn_cast<CastInst>(I)) {
7540     // If the source of the cast is a constant, then this should have
7541     // already been constant folded.  The only reason NOT to constant fold
7542     // it is if something (e.g. LSR) was careful to place the constant
7543     // evaluation in a block other than then one that uses it (e.g. to hoist
7544     // the address of globals out of a loop).  If this is the case, we don't
7545     // want to forward-subst the cast.
7546     if (isa<Constant>(CI->getOperand(0)))
7547       return false;
7548 
7549     if (OptimizeNoopCopyExpression(CI, *TLI, *DL))
7550       return true;
7551 
7552     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
7553       /// Sink a zext or sext into its user blocks if the target type doesn't
7554       /// fit in one register
7555       if (TLI->getTypeAction(CI->getContext(),
7556                              TLI->getValueType(*DL, CI->getType())) ==
7557           TargetLowering::TypeExpandInteger) {
7558         return SinkCast(CI);
7559       } else {
7560         bool MadeChange = optimizeExt(I);
7561         return MadeChange | optimizeExtUses(I);
7562       }
7563     }
7564     return false;
7565   }
7566 
7567   if (auto *Cmp = dyn_cast<CmpInst>(I))
7568     if (optimizeCmp(Cmp, ModifiedDT))
7569       return true;
7570 
7571   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
7572     LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
7573     bool Modified = optimizeLoadExt(LI);
7574     unsigned AS = LI->getPointerAddressSpace();
7575     Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
7576     return Modified;
7577   }
7578 
7579   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
7580     if (splitMergedValStore(*SI, *DL, *TLI))
7581       return true;
7582     SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
7583     unsigned AS = SI->getPointerAddressSpace();
7584     return optimizeMemoryInst(I, SI->getOperand(1),
7585                               SI->getOperand(0)->getType(), AS);
7586   }
7587 
7588   if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
7589       unsigned AS = RMW->getPointerAddressSpace();
7590       return optimizeMemoryInst(I, RMW->getPointerOperand(),
7591                                 RMW->getType(), AS);
7592   }
7593 
7594   if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
7595       unsigned AS = CmpX->getPointerAddressSpace();
7596       return optimizeMemoryInst(I, CmpX->getPointerOperand(),
7597                                 CmpX->getCompareOperand()->getType(), AS);
7598   }
7599 
7600   BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
7601 
7602   if (BinOp && (BinOp->getOpcode() == Instruction::And) && EnableAndCmpSinking)
7603     return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts);
7604 
7605   // TODO: Move this into the switch on opcode - it handles shifts already.
7606   if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
7607                 BinOp->getOpcode() == Instruction::LShr)) {
7608     ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
7609     if (CI && TLI->hasExtractBitsInsn())
7610       if (OptimizeExtractBits(BinOp, CI, *TLI, *DL))
7611         return true;
7612   }
7613 
7614   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
7615     if (GEPI->hasAllZeroIndices()) {
7616       /// The GEP operand must be a pointer, so must its result -> BitCast
7617       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
7618                                         GEPI->getName(), GEPI);
7619       NC->setDebugLoc(GEPI->getDebugLoc());
7620       GEPI->replaceAllUsesWith(NC);
7621       GEPI->eraseFromParent();
7622       ++NumGEPsElim;
7623       optimizeInst(NC, ModifiedDT);
7624       return true;
7625     }
7626     if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
7627       return true;
7628     }
7629     return false;
7630   }
7631 
7632   if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
7633     // freeze(icmp a, const)) -> icmp (freeze a), const
7634     // This helps generate efficient conditional jumps.
7635     Instruction *CmpI = nullptr;
7636     if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0)))
7637       CmpI = II;
7638     else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0)))
7639       CmpI = F->getFastMathFlags().none() ? F : nullptr;
7640 
7641     if (CmpI && CmpI->hasOneUse()) {
7642       auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1);
7643       bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) ||
7644                     isa<ConstantPointerNull>(Op0);
7645       bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) ||
7646                     isa<ConstantPointerNull>(Op1);
7647       if (Const0 || Const1) {
7648         if (!Const0 || !Const1) {
7649           auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI);
7650           F->takeName(FI);
7651           CmpI->setOperand(Const0 ? 1 : 0, F);
7652         }
7653         FI->replaceAllUsesWith(CmpI);
7654         FI->eraseFromParent();
7655         return true;
7656       }
7657     }
7658     return false;
7659   }
7660 
7661   if (tryToSinkFreeOperands(I))
7662     return true;
7663 
7664   switch (I->getOpcode()) {
7665   case Instruction::Shl:
7666   case Instruction::LShr:
7667   case Instruction::AShr:
7668     return optimizeShiftInst(cast<BinaryOperator>(I));
7669   case Instruction::Call:
7670     return optimizeCallInst(cast<CallInst>(I), ModifiedDT);
7671   case Instruction::Select:
7672     return optimizeSelectInst(cast<SelectInst>(I));
7673   case Instruction::ShuffleVector:
7674     return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I));
7675   case Instruction::Switch:
7676     return optimizeSwitchInst(cast<SwitchInst>(I));
7677   case Instruction::ExtractElement:
7678     return optimizeExtractElementInst(cast<ExtractElementInst>(I));
7679   }
7680 
7681   return false;
7682 }
7683 
7684 /// Given an OR instruction, check to see if this is a bitreverse
7685 /// idiom. If so, insert the new intrinsic and return true.
7686 bool CodeGenPrepare::makeBitReverse(Instruction &I) {
7687   if (!I.getType()->isIntegerTy() ||
7688       !TLI->isOperationLegalOrCustom(ISD::BITREVERSE,
7689                                      TLI->getValueType(*DL, I.getType(), true)))
7690     return false;
7691 
7692   SmallVector<Instruction*, 4> Insts;
7693   if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
7694     return false;
7695   Instruction *LastInst = Insts.back();
7696   I.replaceAllUsesWith(LastInst);
7697   RecursivelyDeleteTriviallyDeadInstructions(
7698       &I, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); });
7699   return true;
7700 }
7701 
7702 // In this pass we look for GEP and cast instructions that are used
7703 // across basic blocks and rewrite them to improve basic-block-at-a-time
7704 // selection.
7705 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) {
7706   SunkAddrs.clear();
7707   bool MadeChange = false;
7708 
7709   CurInstIterator = BB.begin();
7710   while (CurInstIterator != BB.end()) {
7711     MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
7712     if (ModifiedDT)
7713       return true;
7714   }
7715 
7716   bool MadeBitReverse = true;
7717   while (MadeBitReverse) {
7718     MadeBitReverse = false;
7719     for (auto &I : reverse(BB)) {
7720       if (makeBitReverse(I)) {
7721         MadeBitReverse = MadeChange = true;
7722         break;
7723       }
7724     }
7725   }
7726   MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT);
7727 
7728   return MadeChange;
7729 }
7730 
7731 // Some CGP optimizations may move or alter what's computed in a block. Check
7732 // whether a dbg.value intrinsic could be pointed at a more appropriate operand.
7733 bool CodeGenPrepare::fixupDbgValue(Instruction *I) {
7734   assert(isa<DbgValueInst>(I));
7735   DbgValueInst &DVI = *cast<DbgValueInst>(I);
7736 
7737   // Does this dbg.value refer to a sunk address calculation?
7738   Value *Location = DVI.getVariableLocation();
7739   WeakTrackingVH SunkAddrVH = SunkAddrs[Location];
7740   Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
7741   if (SunkAddr) {
7742     // Point dbg.value at locally computed address, which should give the best
7743     // opportunity to be accurately lowered. This update may change the type of
7744     // pointer being referred to; however this makes no difference to debugging
7745     // information, and we can't generate bitcasts that may affect codegen.
7746     DVI.setOperand(0, MetadataAsValue::get(DVI.getContext(),
7747                                            ValueAsMetadata::get(SunkAddr)));
7748     return true;
7749   }
7750   return false;
7751 }
7752 
7753 // A llvm.dbg.value may be using a value before its definition, due to
7754 // optimizations in this pass and others. Scan for such dbg.values, and rescue
7755 // them by moving the dbg.value to immediately after the value definition.
7756 // FIXME: Ideally this should never be necessary, and this has the potential
7757 // to re-order dbg.value intrinsics.
7758 bool CodeGenPrepare::placeDbgValues(Function &F) {
7759   bool MadeChange = false;
7760   DominatorTree DT(F);
7761 
7762   for (BasicBlock &BB : F) {
7763     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
7764       Instruction *Insn = &*BI++;
7765       DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
7766       if (!DVI)
7767         continue;
7768 
7769       Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
7770 
7771       if (!VI || VI->isTerminator())
7772         continue;
7773 
7774       // If VI is a phi in a block with an EHPad terminator, we can't insert
7775       // after it.
7776       if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
7777         continue;
7778 
7779       // If the defining instruction dominates the dbg.value, we do not need
7780       // to move the dbg.value.
7781       if (DT.dominates(VI, DVI))
7782         continue;
7783 
7784       LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
7785                         << *DVI << ' ' << *VI);
7786       DVI->removeFromParent();
7787       if (isa<PHINode>(VI))
7788         DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
7789       else
7790         DVI->insertAfter(VI);
7791       MadeChange = true;
7792       ++NumDbgValueMoved;
7793     }
7794   }
7795   return MadeChange;
7796 }
7797 
7798 /// Scale down both weights to fit into uint32_t.
7799 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
7800   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
7801   uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
7802   NewTrue = NewTrue / Scale;
7803   NewFalse = NewFalse / Scale;
7804 }
7805 
7806 /// Some targets prefer to split a conditional branch like:
7807 /// \code
7808 ///   %0 = icmp ne i32 %a, 0
7809 ///   %1 = icmp ne i32 %b, 0
7810 ///   %or.cond = or i1 %0, %1
7811 ///   br i1 %or.cond, label %TrueBB, label %FalseBB
7812 /// \endcode
7813 /// into multiple branch instructions like:
7814 /// \code
7815 ///   bb1:
7816 ///     %0 = icmp ne i32 %a, 0
7817 ///     br i1 %0, label %TrueBB, label %bb2
7818 ///   bb2:
7819 ///     %1 = icmp ne i32 %b, 0
7820 ///     br i1 %1, label %TrueBB, label %FalseBB
7821 /// \endcode
7822 /// This usually allows instruction selection to do even further optimizations
7823 /// and combine the compare with the branch instruction. Currently this is
7824 /// applied for targets which have "cheap" jump instructions.
7825 ///
7826 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
7827 ///
7828 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) {
7829   if (!TM->Options.EnableFastISel || TLI->isJumpExpensive())
7830     return false;
7831 
7832   bool MadeChange = false;
7833   for (auto &BB : F) {
7834     // Does this BB end with the following?
7835     //   %cond1 = icmp|fcmp|binary instruction ...
7836     //   %cond2 = icmp|fcmp|binary instruction ...
7837     //   %cond.or = or|and i1 %cond1, cond2
7838     //   br i1 %cond.or label %dest1, label %dest2"
7839     Instruction *LogicOp;
7840     BasicBlock *TBB, *FBB;
7841     if (!match(BB.getTerminator(),
7842                m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB)))
7843       continue;
7844 
7845     auto *Br1 = cast<BranchInst>(BB.getTerminator());
7846     if (Br1->getMetadata(LLVMContext::MD_unpredictable))
7847       continue;
7848 
7849     // The merging of mostly empty BB can cause a degenerate branch.
7850     if (TBB == FBB)
7851       continue;
7852 
7853     unsigned Opc;
7854     Value *Cond1, *Cond2;
7855     if (match(LogicOp,
7856               m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2)))))
7857       Opc = Instruction::And;
7858     else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)),
7859                                         m_OneUse(m_Value(Cond2)))))
7860       Opc = Instruction::Or;
7861     else
7862       continue;
7863 
7864     auto IsGoodCond = [](Value *Cond) {
7865       return match(
7866           Cond,
7867           m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()),
7868                                            m_LogicalOr(m_Value(), m_Value()))));
7869     };
7870     if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2))
7871       continue;
7872 
7873     LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
7874 
7875     // Create a new BB.
7876     auto *TmpBB =
7877         BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
7878                            BB.getParent(), BB.getNextNode());
7879 
7880     // Update original basic block by using the first condition directly by the
7881     // branch instruction and removing the no longer needed and/or instruction.
7882     Br1->setCondition(Cond1);
7883     LogicOp->eraseFromParent();
7884 
7885     // Depending on the condition we have to either replace the true or the
7886     // false successor of the original branch instruction.
7887     if (Opc == Instruction::And)
7888       Br1->setSuccessor(0, TmpBB);
7889     else
7890       Br1->setSuccessor(1, TmpBB);
7891 
7892     // Fill in the new basic block.
7893     auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
7894     if (auto *I = dyn_cast<Instruction>(Cond2)) {
7895       I->removeFromParent();
7896       I->insertBefore(Br2);
7897     }
7898 
7899     // Update PHI nodes in both successors. The original BB needs to be
7900     // replaced in one successor's PHI nodes, because the branch comes now from
7901     // the newly generated BB (NewBB). In the other successor we need to add one
7902     // incoming edge to the PHI nodes, because both branch instructions target
7903     // now the same successor. Depending on the original branch condition
7904     // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
7905     // we perform the correct update for the PHI nodes.
7906     // This doesn't change the successor order of the just created branch
7907     // instruction (or any other instruction).
7908     if (Opc == Instruction::Or)
7909       std::swap(TBB, FBB);
7910 
7911     // Replace the old BB with the new BB.
7912     TBB->replacePhiUsesWith(&BB, TmpBB);
7913 
7914     // Add another incoming edge form the new BB.
7915     for (PHINode &PN : FBB->phis()) {
7916       auto *Val = PN.getIncomingValueForBlock(&BB);
7917       PN.addIncoming(Val, TmpBB);
7918     }
7919 
7920     // Update the branch weights (from SelectionDAGBuilder::
7921     // FindMergedConditions).
7922     if (Opc == Instruction::Or) {
7923       // Codegen X | Y as:
7924       // BB1:
7925       //   jmp_if_X TBB
7926       //   jmp TmpBB
7927       // TmpBB:
7928       //   jmp_if_Y TBB
7929       //   jmp FBB
7930       //
7931 
7932       // We have flexibility in setting Prob for BB1 and Prob for NewBB.
7933       // The requirement is that
7934       //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
7935       //     = TrueProb for original BB.
7936       // Assuming the original weights are A and B, one choice is to set BB1's
7937       // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
7938       // assumes that
7939       //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
7940       // Another choice is to assume TrueProb for BB1 equals to TrueProb for
7941       // TmpBB, but the math is more complicated.
7942       uint64_t TrueWeight, FalseWeight;
7943       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7944         uint64_t NewTrueWeight = TrueWeight;
7945         uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
7946         scaleWeights(NewTrueWeight, NewFalseWeight);
7947         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7948                          .createBranchWeights(TrueWeight, FalseWeight));
7949 
7950         NewTrueWeight = TrueWeight;
7951         NewFalseWeight = 2 * FalseWeight;
7952         scaleWeights(NewTrueWeight, NewFalseWeight);
7953         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7954                          .createBranchWeights(TrueWeight, FalseWeight));
7955       }
7956     } else {
7957       // Codegen X & Y as:
7958       // BB1:
7959       //   jmp_if_X TmpBB
7960       //   jmp FBB
7961       // TmpBB:
7962       //   jmp_if_Y TBB
7963       //   jmp FBB
7964       //
7965       //  This requires creation of TmpBB after CurBB.
7966 
7967       // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
7968       // The requirement is that
7969       //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
7970       //     = FalseProb for original BB.
7971       // Assuming the original weights are A and B, one choice is to set BB1's
7972       // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
7973       // assumes that
7974       //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
7975       uint64_t TrueWeight, FalseWeight;
7976       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7977         uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
7978         uint64_t NewFalseWeight = FalseWeight;
7979         scaleWeights(NewTrueWeight, NewFalseWeight);
7980         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7981                          .createBranchWeights(TrueWeight, FalseWeight));
7982 
7983         NewTrueWeight = 2 * TrueWeight;
7984         NewFalseWeight = FalseWeight;
7985         scaleWeights(NewTrueWeight, NewFalseWeight);
7986         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7987                          .createBranchWeights(TrueWeight, FalseWeight));
7988       }
7989     }
7990 
7991     ModifiedDT = true;
7992     MadeChange = true;
7993 
7994     LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
7995                TmpBB->dump());
7996   }
7997   return MadeChange;
7998 }
7999