1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/Passes.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/IR/CallSite.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GetElementPtrTypeIterator.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/InlineAsm.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/IR/Statepoint.h" 37 #include "llvm/IR/ValueHandle.h" 38 #include "llvm/IR/ValueMap.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Target/TargetLowering.h" 44 #include "llvm/Target/TargetSubtargetInfo.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/BuildLibCalls.h" 47 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 48 #include "llvm/Transforms/Utils/Local.h" 49 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 50 using namespace llvm; 51 using namespace llvm::PatternMatch; 52 53 #define DEBUG_TYPE "codegenprepare" 54 55 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 56 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 57 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 58 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 59 "sunken Cmps"); 60 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 61 "of sunken Casts"); 62 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 63 "computations were sunk"); 64 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 65 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 66 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 67 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 68 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 69 STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches"); 70 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 71 72 static cl::opt<bool> DisableBranchOpts( 73 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 74 cl::desc("Disable branch optimizations in CodeGenPrepare")); 75 76 static cl::opt<bool> 77 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 78 cl::desc("Disable GC optimizations in CodeGenPrepare")); 79 80 static cl::opt<bool> DisableSelectToBranch( 81 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 82 cl::desc("Disable select to branch conversion.")); 83 84 static cl::opt<bool> AddrSinkUsingGEPs( 85 "addr-sink-using-gep", cl::Hidden, cl::init(false), 86 cl::desc("Address sinking in CGP using GEPs.")); 87 88 static cl::opt<bool> EnableAndCmpSinking( 89 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 90 cl::desc("Enable sinkinig and/cmp into branches.")); 91 92 static cl::opt<bool> DisableStoreExtract( 93 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 94 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 95 96 static cl::opt<bool> StressStoreExtract( 97 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 98 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 99 100 static cl::opt<bool> DisableExtLdPromotion( 101 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 102 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 103 "CodeGenPrepare")); 104 105 static cl::opt<bool> StressExtLdPromotion( 106 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 107 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 108 "optimization in CodeGenPrepare")); 109 110 namespace { 111 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; 112 typedef PointerIntPair<Type *, 1, bool> TypeIsSExt; 113 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy; 114 class TypePromotionTransaction; 115 116 class CodeGenPrepare : public FunctionPass { 117 /// TLI - Keep a pointer of a TargetLowering to consult for determining 118 /// transformation profitability. 119 const TargetMachine *TM; 120 const TargetLowering *TLI; 121 const TargetTransformInfo *TTI; 122 const TargetLibraryInfo *TLInfo; 123 124 /// CurInstIterator - As we scan instructions optimizing them, this is the 125 /// next instruction to optimize. Xforms that can invalidate this should 126 /// update it. 127 BasicBlock::iterator CurInstIterator; 128 129 /// Keeps track of non-local addresses that have been sunk into a block. 130 /// This allows us to avoid inserting duplicate code for blocks with 131 /// multiple load/stores of the same address. 132 ValueMap<Value*, Value*> SunkAddrs; 133 134 /// Keeps track of all instructions inserted for the current function. 135 SetOfInstrs InsertedInsts; 136 /// Keeps track of the type of the related instruction before their 137 /// promotion for the current function. 138 InstrToOrigTy PromotedInsts; 139 140 /// ModifiedDT - If CFG is modified in anyway. 141 bool ModifiedDT; 142 143 /// OptSize - True if optimizing for size. 144 bool OptSize; 145 146 /// DataLayout for the Function being processed. 147 const DataLayout *DL; 148 149 public: 150 static char ID; // Pass identification, replacement for typeid 151 explicit CodeGenPrepare(const TargetMachine *TM = nullptr) 152 : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr), DL(nullptr) { 153 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 154 } 155 bool runOnFunction(Function &F) override; 156 157 const char *getPassName() const override { return "CodeGen Prepare"; } 158 159 void getAnalysisUsage(AnalysisUsage &AU) const override { 160 AU.addPreserved<DominatorTreeWrapperPass>(); 161 AU.addRequired<TargetLibraryInfoWrapperPass>(); 162 AU.addRequired<TargetTransformInfoWrapperPass>(); 163 } 164 165 private: 166 bool EliminateFallThrough(Function &F); 167 bool EliminateMostlyEmptyBlocks(Function &F); 168 bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 169 void EliminateMostlyEmptyBlock(BasicBlock *BB); 170 bool OptimizeBlock(BasicBlock &BB, bool& ModifiedDT); 171 bool OptimizeInst(Instruction *I, bool& ModifiedDT); 172 bool OptimizeMemoryInst(Instruction *I, Value *Addr, 173 Type *AccessTy, unsigned AS); 174 bool OptimizeInlineAsmInst(CallInst *CS); 175 bool OptimizeCallInst(CallInst *CI, bool& ModifiedDT); 176 bool MoveExtToFormExtLoad(Instruction *&I); 177 bool OptimizeExtUses(Instruction *I); 178 bool OptimizeSelectInst(SelectInst *SI); 179 bool OptimizeShuffleVectorInst(ShuffleVectorInst *SI); 180 bool OptimizeExtractElementInst(Instruction *Inst); 181 bool DupRetToEnableTailCallOpts(BasicBlock *BB); 182 bool PlaceDbgValues(Function &F); 183 bool sinkAndCmp(Function &F); 184 bool ExtLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI, 185 Instruction *&Inst, 186 const SmallVectorImpl<Instruction *> &Exts, 187 unsigned CreatedInstCost); 188 bool splitBranchCondition(Function &F); 189 bool simplifyOffsetableRelocate(Instruction &I); 190 }; 191 } 192 193 char CodeGenPrepare::ID = 0; 194 INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare", 195 "Optimize for code generation", false, false) 196 197 FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) { 198 return new CodeGenPrepare(TM); 199 } 200 201 bool CodeGenPrepare::runOnFunction(Function &F) { 202 if (skipOptnoneFunction(F)) 203 return false; 204 205 DL = &F.getParent()->getDataLayout(); 206 207 bool EverMadeChange = false; 208 // Clear per function information. 209 InsertedInsts.clear(); 210 PromotedInsts.clear(); 211 212 ModifiedDT = false; 213 if (TM) 214 TLI = TM->getSubtargetImpl(F)->getTargetLowering(); 215 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 216 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 217 OptSize = F.optForSize(); 218 219 /// This optimization identifies DIV instructions that can be 220 /// profitably bypassed and carried out with a shorter, faster divide. 221 if (!OptSize && TLI && TLI->isSlowDivBypassed()) { 222 const DenseMap<unsigned int, unsigned int> &BypassWidths = 223 TLI->getBypassSlowDivWidths(); 224 for (Function::iterator I = F.begin(); I != F.end(); I++) 225 EverMadeChange |= bypassSlowDivision(F, I, BypassWidths); 226 } 227 228 // Eliminate blocks that contain only PHI nodes and an 229 // unconditional branch. 230 EverMadeChange |= EliminateMostlyEmptyBlocks(F); 231 232 // llvm.dbg.value is far away from the value then iSel may not be able 233 // handle it properly. iSel will drop llvm.dbg.value if it can not 234 // find a node corresponding to the value. 235 EverMadeChange |= PlaceDbgValues(F); 236 237 // If there is a mask, compare against zero, and branch that can be combined 238 // into a single target instruction, push the mask and compare into branch 239 // users. Do this before OptimizeBlock -> OptimizeInst -> 240 // OptimizeCmpExpression, which perturbs the pattern being searched for. 241 if (!DisableBranchOpts) { 242 EverMadeChange |= sinkAndCmp(F); 243 EverMadeChange |= splitBranchCondition(F); 244 } 245 246 bool MadeChange = true; 247 while (MadeChange) { 248 MadeChange = false; 249 for (Function::iterator I = F.begin(); I != F.end(); ) { 250 BasicBlock *BB = I++; 251 bool ModifiedDTOnIteration = false; 252 MadeChange |= OptimizeBlock(*BB, ModifiedDTOnIteration); 253 254 // Restart BB iteration if the dominator tree of the Function was changed 255 if (ModifiedDTOnIteration) 256 break; 257 } 258 EverMadeChange |= MadeChange; 259 } 260 261 SunkAddrs.clear(); 262 263 if (!DisableBranchOpts) { 264 MadeChange = false; 265 SmallPtrSet<BasicBlock*, 8> WorkList; 266 for (BasicBlock &BB : F) { 267 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 268 MadeChange |= ConstantFoldTerminator(&BB, true); 269 if (!MadeChange) continue; 270 271 for (SmallVectorImpl<BasicBlock*>::iterator 272 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 273 if (pred_begin(*II) == pred_end(*II)) 274 WorkList.insert(*II); 275 } 276 277 // Delete the dead blocks and any of their dead successors. 278 MadeChange |= !WorkList.empty(); 279 while (!WorkList.empty()) { 280 BasicBlock *BB = *WorkList.begin(); 281 WorkList.erase(BB); 282 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 283 284 DeleteDeadBlock(BB); 285 286 for (SmallVectorImpl<BasicBlock*>::iterator 287 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 288 if (pred_begin(*II) == pred_end(*II)) 289 WorkList.insert(*II); 290 } 291 292 // Merge pairs of basic blocks with unconditional branches, connected by 293 // a single edge. 294 if (EverMadeChange || MadeChange) 295 MadeChange |= EliminateFallThrough(F); 296 297 EverMadeChange |= MadeChange; 298 } 299 300 if (!DisableGCOpts) { 301 SmallVector<Instruction *, 2> Statepoints; 302 for (BasicBlock &BB : F) 303 for (Instruction &I : BB) 304 if (isStatepoint(I)) 305 Statepoints.push_back(&I); 306 for (auto &I : Statepoints) 307 EverMadeChange |= simplifyOffsetableRelocate(*I); 308 } 309 310 return EverMadeChange; 311 } 312 313 /// EliminateFallThrough - Merge basic blocks which are connected 314 /// by a single edge, where one of the basic blocks has a single successor 315 /// pointing to the other basic block, which has a single predecessor. 316 bool CodeGenPrepare::EliminateFallThrough(Function &F) { 317 bool Changed = false; 318 // Scan all of the blocks in the function, except for the entry block. 319 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 320 BasicBlock *BB = I++; 321 // If the destination block has a single pred, then this is a trivial 322 // edge, just collapse it. 323 BasicBlock *SinglePred = BB->getSinglePredecessor(); 324 325 // Don't merge if BB's address is taken. 326 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 327 328 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 329 if (Term && !Term->isConditional()) { 330 Changed = true; 331 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 332 // Remember if SinglePred was the entry block of the function. 333 // If so, we will need to move BB back to the entry position. 334 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 335 MergeBasicBlockIntoOnlyPred(BB, nullptr); 336 337 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 338 BB->moveBefore(&BB->getParent()->getEntryBlock()); 339 340 // We have erased a block. Update the iterator. 341 I = BB; 342 } 343 } 344 return Changed; 345 } 346 347 /// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes, 348 /// debug info directives, and an unconditional branch. Passes before isel 349 /// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for 350 /// isel. Start by eliminating these blocks so we can split them the way we 351 /// want them. 352 bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) { 353 bool MadeChange = false; 354 // Note that this intentionally skips the entry block. 355 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 356 BasicBlock *BB = I++; 357 358 // If this block doesn't end with an uncond branch, ignore it. 359 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 360 if (!BI || !BI->isUnconditional()) 361 continue; 362 363 // If the instruction before the branch (skipping debug info) isn't a phi 364 // node, then other stuff is happening here. 365 BasicBlock::iterator BBI = BI; 366 if (BBI != BB->begin()) { 367 --BBI; 368 while (isa<DbgInfoIntrinsic>(BBI)) { 369 if (BBI == BB->begin()) 370 break; 371 --BBI; 372 } 373 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 374 continue; 375 } 376 377 // Do not break infinite loops. 378 BasicBlock *DestBB = BI->getSuccessor(0); 379 if (DestBB == BB) 380 continue; 381 382 if (!CanMergeBlocks(BB, DestBB)) 383 continue; 384 385 EliminateMostlyEmptyBlock(BB); 386 MadeChange = true; 387 } 388 return MadeChange; 389 } 390 391 /// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a 392 /// single uncond branch between them, and BB contains no other non-phi 393 /// instructions. 394 bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB, 395 const BasicBlock *DestBB) const { 396 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 397 // the successor. If there are more complex condition (e.g. preheaders), 398 // don't mess around with them. 399 BasicBlock::const_iterator BBI = BB->begin(); 400 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 401 for (const User *U : PN->users()) { 402 const Instruction *UI = cast<Instruction>(U); 403 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 404 return false; 405 // If User is inside DestBB block and it is a PHINode then check 406 // incoming value. If incoming value is not from BB then this is 407 // a complex condition (e.g. preheaders) we want to avoid here. 408 if (UI->getParent() == DestBB) { 409 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 410 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 411 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 412 if (Insn && Insn->getParent() == BB && 413 Insn->getParent() != UPN->getIncomingBlock(I)) 414 return false; 415 } 416 } 417 } 418 } 419 420 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 421 // and DestBB may have conflicting incoming values for the block. If so, we 422 // can't merge the block. 423 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 424 if (!DestBBPN) return true; // no conflict. 425 426 // Collect the preds of BB. 427 SmallPtrSet<const BasicBlock*, 16> BBPreds; 428 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 429 // It is faster to get preds from a PHI than with pred_iterator. 430 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 431 BBPreds.insert(BBPN->getIncomingBlock(i)); 432 } else { 433 BBPreds.insert(pred_begin(BB), pred_end(BB)); 434 } 435 436 // Walk the preds of DestBB. 437 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 438 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 439 if (BBPreds.count(Pred)) { // Common predecessor? 440 BBI = DestBB->begin(); 441 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 442 const Value *V1 = PN->getIncomingValueForBlock(Pred); 443 const Value *V2 = PN->getIncomingValueForBlock(BB); 444 445 // If V2 is a phi node in BB, look up what the mapped value will be. 446 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 447 if (V2PN->getParent() == BB) 448 V2 = V2PN->getIncomingValueForBlock(Pred); 449 450 // If there is a conflict, bail out. 451 if (V1 != V2) return false; 452 } 453 } 454 } 455 456 return true; 457 } 458 459 460 /// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and 461 /// an unconditional branch in it. 462 void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) { 463 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 464 BasicBlock *DestBB = BI->getSuccessor(0); 465 466 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 467 468 // If the destination block has a single pred, then this is a trivial edge, 469 // just collapse it. 470 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 471 if (SinglePred != DestBB) { 472 // Remember if SinglePred was the entry block of the function. If so, we 473 // will need to move BB back to the entry position. 474 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 475 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 476 477 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 478 BB->moveBefore(&BB->getParent()->getEntryBlock()); 479 480 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 481 return; 482 } 483 } 484 485 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 486 // to handle the new incoming edges it is about to have. 487 PHINode *PN; 488 for (BasicBlock::iterator BBI = DestBB->begin(); 489 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 490 // Remove the incoming value for BB, and remember it. 491 Value *InVal = PN->removeIncomingValue(BB, false); 492 493 // Two options: either the InVal is a phi node defined in BB or it is some 494 // value that dominates BB. 495 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 496 if (InValPhi && InValPhi->getParent() == BB) { 497 // Add all of the input values of the input PHI as inputs of this phi. 498 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 499 PN->addIncoming(InValPhi->getIncomingValue(i), 500 InValPhi->getIncomingBlock(i)); 501 } else { 502 // Otherwise, add one instance of the dominating value for each edge that 503 // we will be adding. 504 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 505 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 506 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 507 } else { 508 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 509 PN->addIncoming(InVal, *PI); 510 } 511 } 512 } 513 514 // The PHIs are now updated, change everything that refers to BB to use 515 // DestBB and remove BB. 516 BB->replaceAllUsesWith(DestBB); 517 BB->eraseFromParent(); 518 ++NumBlocksElim; 519 520 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 521 } 522 523 // Computes a map of base pointer relocation instructions to corresponding 524 // derived pointer relocation instructions given a vector of all relocate calls 525 static void computeBaseDerivedRelocateMap( 526 const SmallVectorImpl<User *> &AllRelocateCalls, 527 DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> & 528 RelocateInstMap) { 529 // Collect information in two maps: one primarily for locating the base object 530 // while filling the second map; the second map is the final structure holding 531 // a mapping between Base and corresponding Derived relocate calls 532 DenseMap<std::pair<unsigned, unsigned>, IntrinsicInst *> RelocateIdxMap; 533 for (auto &U : AllRelocateCalls) { 534 GCRelocateOperands ThisRelocate(U); 535 IntrinsicInst *I = cast<IntrinsicInst>(U); 536 auto K = std::make_pair(ThisRelocate.getBasePtrIndex(), 537 ThisRelocate.getDerivedPtrIndex()); 538 RelocateIdxMap.insert(std::make_pair(K, I)); 539 } 540 for (auto &Item : RelocateIdxMap) { 541 std::pair<unsigned, unsigned> Key = Item.first; 542 if (Key.first == Key.second) 543 // Base relocation: nothing to insert 544 continue; 545 546 IntrinsicInst *I = Item.second; 547 auto BaseKey = std::make_pair(Key.first, Key.first); 548 549 // We're iterating over RelocateIdxMap so we cannot modify it. 550 auto MaybeBase = RelocateIdxMap.find(BaseKey); 551 if (MaybeBase == RelocateIdxMap.end()) 552 // TODO: We might want to insert a new base object relocate and gep off 553 // that, if there are enough derived object relocates. 554 continue; 555 556 RelocateInstMap[MaybeBase->second].push_back(I); 557 } 558 } 559 560 // Accepts a GEP and extracts the operands into a vector provided they're all 561 // small integer constants 562 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 563 SmallVectorImpl<Value *> &OffsetV) { 564 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 565 // Only accept small constant integer operands 566 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 567 if (!Op || Op->getZExtValue() > 20) 568 return false; 569 } 570 571 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 572 OffsetV.push_back(GEP->getOperand(i)); 573 return true; 574 } 575 576 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 577 // replace, computes a replacement, and affects it. 578 static bool 579 simplifyRelocatesOffABase(IntrinsicInst *RelocatedBase, 580 const SmallVectorImpl<IntrinsicInst *> &Targets) { 581 bool MadeChange = false; 582 for (auto &ToReplace : Targets) { 583 GCRelocateOperands MasterRelocate(RelocatedBase); 584 GCRelocateOperands ThisRelocate(ToReplace); 585 586 assert(ThisRelocate.getBasePtrIndex() == MasterRelocate.getBasePtrIndex() && 587 "Not relocating a derived object of the original base object"); 588 if (ThisRelocate.getBasePtrIndex() == ThisRelocate.getDerivedPtrIndex()) { 589 // A duplicate relocate call. TODO: coalesce duplicates. 590 continue; 591 } 592 593 Value *Base = ThisRelocate.getBasePtr(); 594 auto Derived = dyn_cast<GetElementPtrInst>(ThisRelocate.getDerivedPtr()); 595 if (!Derived || Derived->getPointerOperand() != Base) 596 continue; 597 598 SmallVector<Value *, 2> OffsetV; 599 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 600 continue; 601 602 // Create a Builder and replace the target callsite with a gep 603 assert(RelocatedBase->getNextNode() && "Should always have one since it's not a terminator"); 604 605 // Insert after RelocatedBase 606 IRBuilder<> Builder(RelocatedBase->getNextNode()); 607 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 608 609 // If gc_relocate does not match the actual type, cast it to the right type. 610 // In theory, there must be a bitcast after gc_relocate if the type does not 611 // match, and we should reuse it to get the derived pointer. But it could be 612 // cases like this: 613 // bb1: 614 // ... 615 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 616 // br label %merge 617 // 618 // bb2: 619 // ... 620 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 621 // br label %merge 622 // 623 // merge: 624 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 625 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 626 // 627 // In this case, we can not find the bitcast any more. So we insert a new bitcast 628 // no matter there is already one or not. In this way, we can handle all cases, and 629 // the extra bitcast should be optimized away in later passes. 630 Instruction *ActualRelocatedBase = RelocatedBase; 631 if (RelocatedBase->getType() != Base->getType()) { 632 ActualRelocatedBase = 633 cast<Instruction>(Builder.CreateBitCast(RelocatedBase, Base->getType())); 634 } 635 Value *Replacement = Builder.CreateGEP( 636 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 637 Instruction *ReplacementInst = cast<Instruction>(Replacement); 638 Replacement->takeName(ToReplace); 639 // If the newly generated derived pointer's type does not match the original derived 640 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 641 Instruction *ActualReplacement = ReplacementInst; 642 if (ReplacementInst->getType() != ToReplace->getType()) { 643 ActualReplacement = 644 cast<Instruction>(Builder.CreateBitCast(ReplacementInst, ToReplace->getType())); 645 } 646 ToReplace->replaceAllUsesWith(ActualReplacement); 647 ToReplace->eraseFromParent(); 648 649 MadeChange = true; 650 } 651 return MadeChange; 652 } 653 654 // Turns this: 655 // 656 // %base = ... 657 // %ptr = gep %base + 15 658 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 659 // %base' = relocate(%tok, i32 4, i32 4) 660 // %ptr' = relocate(%tok, i32 4, i32 5) 661 // %val = load %ptr' 662 // 663 // into this: 664 // 665 // %base = ... 666 // %ptr = gep %base + 15 667 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 668 // %base' = gc.relocate(%tok, i32 4, i32 4) 669 // %ptr' = gep %base' + 15 670 // %val = load %ptr' 671 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 672 bool MadeChange = false; 673 SmallVector<User *, 2> AllRelocateCalls; 674 675 for (auto *U : I.users()) 676 if (isGCRelocate(dyn_cast<Instruction>(U))) 677 // Collect all the relocate calls associated with a statepoint 678 AllRelocateCalls.push_back(U); 679 680 // We need atleast one base pointer relocation + one derived pointer 681 // relocation to mangle 682 if (AllRelocateCalls.size() < 2) 683 return false; 684 685 // RelocateInstMap is a mapping from the base relocate instruction to the 686 // corresponding derived relocate instructions 687 DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> RelocateInstMap; 688 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 689 if (RelocateInstMap.empty()) 690 return false; 691 692 for (auto &Item : RelocateInstMap) 693 // Item.first is the RelocatedBase to offset against 694 // Item.second is the vector of Targets to replace 695 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 696 return MadeChange; 697 } 698 699 /// SinkCast - Sink the specified cast instruction into its user blocks 700 static bool SinkCast(CastInst *CI) { 701 BasicBlock *DefBB = CI->getParent(); 702 703 /// InsertedCasts - Only insert a cast in each block once. 704 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 705 706 bool MadeChange = false; 707 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 708 UI != E; ) { 709 Use &TheUse = UI.getUse(); 710 Instruction *User = cast<Instruction>(*UI); 711 712 // Figure out which BB this cast is used in. For PHI's this is the 713 // appropriate predecessor block. 714 BasicBlock *UserBB = User->getParent(); 715 if (PHINode *PN = dyn_cast<PHINode>(User)) { 716 UserBB = PN->getIncomingBlock(TheUse); 717 } 718 719 // Preincrement use iterator so we don't invalidate it. 720 ++UI; 721 722 // If this user is in the same block as the cast, don't change the cast. 723 if (UserBB == DefBB) continue; 724 725 // If we have already inserted a cast into this block, use it. 726 CastInst *&InsertedCast = InsertedCasts[UserBB]; 727 728 if (!InsertedCast) { 729 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 730 InsertedCast = 731 CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "", 732 InsertPt); 733 } 734 735 // Replace a use of the cast with a use of the new cast. 736 TheUse = InsertedCast; 737 MadeChange = true; 738 ++NumCastUses; 739 } 740 741 // If we removed all uses, nuke the cast. 742 if (CI->use_empty()) { 743 CI->eraseFromParent(); 744 MadeChange = true; 745 } 746 747 return MadeChange; 748 } 749 750 /// OptimizeNoopCopyExpression - If the specified cast instruction is a noop 751 /// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC), 752 /// sink it into user blocks to reduce the number of virtual 753 /// registers that must be created and coalesced. 754 /// 755 /// Return true if any changes are made. 756 /// 757 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 758 const DataLayout &DL) { 759 // If this is a noop copy, 760 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 761 EVT DstVT = TLI.getValueType(DL, CI->getType()); 762 763 // This is an fp<->int conversion? 764 if (SrcVT.isInteger() != DstVT.isInteger()) 765 return false; 766 767 // If this is an extension, it will be a zero or sign extension, which 768 // isn't a noop. 769 if (SrcVT.bitsLT(DstVT)) return false; 770 771 // If these values will be promoted, find out what they will be promoted 772 // to. This helps us consider truncates on PPC as noop copies when they 773 // are. 774 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 775 TargetLowering::TypePromoteInteger) 776 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 777 if (TLI.getTypeAction(CI->getContext(), DstVT) == 778 TargetLowering::TypePromoteInteger) 779 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 780 781 // If, after promotion, these are the same types, this is a noop copy. 782 if (SrcVT != DstVT) 783 return false; 784 785 return SinkCast(CI); 786 } 787 788 /// CombineUAddWithOverflow - try to combine CI into a call to the 789 /// llvm.uadd.with.overflow intrinsic if possible. 790 /// 791 /// Return true if any changes were made. 792 static bool CombineUAddWithOverflow(CmpInst *CI) { 793 Value *A, *B; 794 Instruction *AddI; 795 if (!match(CI, 796 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 797 return false; 798 799 Type *Ty = AddI->getType(); 800 if (!isa<IntegerType>(Ty)) 801 return false; 802 803 // We don't want to move around uses of condition values this late, so we we 804 // check if it is legal to create the call to the intrinsic in the basic 805 // block containing the icmp: 806 807 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 808 return false; 809 810 #ifndef NDEBUG 811 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 812 // for now: 813 if (AddI->hasOneUse()) 814 assert(*AddI->user_begin() == CI && "expected!"); 815 #endif 816 817 Module *M = CI->getParent()->getParent()->getParent(); 818 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 819 820 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 821 822 auto *UAddWithOverflow = 823 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 824 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 825 auto *Overflow = 826 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 827 828 CI->replaceAllUsesWith(Overflow); 829 AddI->replaceAllUsesWith(UAdd); 830 CI->eraseFromParent(); 831 AddI->eraseFromParent(); 832 return true; 833 } 834 835 /// SinkCmpExpression - Sink the given CmpInst into user blocks to reduce 836 /// the number of virtual registers that must be created and coalesced. This is 837 /// a clear win except on targets with multiple condition code registers 838 /// (PowerPC), where it might lose; some adjustment may be wanted there. 839 /// 840 /// Return true if any changes are made. 841 static bool SinkCmpExpression(CmpInst *CI) { 842 BasicBlock *DefBB = CI->getParent(); 843 844 /// InsertedCmp - Only insert a cmp in each block once. 845 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 846 847 bool MadeChange = false; 848 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 849 UI != E; ) { 850 Use &TheUse = UI.getUse(); 851 Instruction *User = cast<Instruction>(*UI); 852 853 // Preincrement use iterator so we don't invalidate it. 854 ++UI; 855 856 // Don't bother for PHI nodes. 857 if (isa<PHINode>(User)) 858 continue; 859 860 // Figure out which BB this cmp is used in. 861 BasicBlock *UserBB = User->getParent(); 862 863 // If this user is in the same block as the cmp, don't change the cmp. 864 if (UserBB == DefBB) continue; 865 866 // If we have already inserted a cmp into this block, use it. 867 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 868 869 if (!InsertedCmp) { 870 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 871 InsertedCmp = 872 CmpInst::Create(CI->getOpcode(), 873 CI->getPredicate(), CI->getOperand(0), 874 CI->getOperand(1), "", InsertPt); 875 } 876 877 // Replace a use of the cmp with a use of the new cmp. 878 TheUse = InsertedCmp; 879 MadeChange = true; 880 ++NumCmpUses; 881 } 882 883 // If we removed all uses, nuke the cmp. 884 if (CI->use_empty()) { 885 CI->eraseFromParent(); 886 MadeChange = true; 887 } 888 889 return MadeChange; 890 } 891 892 static bool OptimizeCmpExpression(CmpInst *CI) { 893 if (SinkCmpExpression(CI)) 894 return true; 895 896 if (CombineUAddWithOverflow(CI)) 897 return true; 898 899 return false; 900 } 901 902 /// isExtractBitsCandidateUse - Check if the candidates could 903 /// be combined with shift instruction, which includes: 904 /// 1. Truncate instruction 905 /// 2. And instruction and the imm is a mask of the low bits: 906 /// imm & (imm+1) == 0 907 static bool isExtractBitsCandidateUse(Instruction *User) { 908 if (!isa<TruncInst>(User)) { 909 if (User->getOpcode() != Instruction::And || 910 !isa<ConstantInt>(User->getOperand(1))) 911 return false; 912 913 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 914 915 if ((Cimm & (Cimm + 1)).getBoolValue()) 916 return false; 917 } 918 return true; 919 } 920 921 /// SinkShiftAndTruncate - sink both shift and truncate instruction 922 /// to the use of truncate's BB. 923 static bool 924 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 925 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 926 const TargetLowering &TLI, const DataLayout &DL) { 927 BasicBlock *UserBB = User->getParent(); 928 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 929 TruncInst *TruncI = dyn_cast<TruncInst>(User); 930 bool MadeChange = false; 931 932 for (Value::user_iterator TruncUI = TruncI->user_begin(), 933 TruncE = TruncI->user_end(); 934 TruncUI != TruncE;) { 935 936 Use &TruncTheUse = TruncUI.getUse(); 937 Instruction *TruncUser = cast<Instruction>(*TruncUI); 938 // Preincrement use iterator so we don't invalidate it. 939 940 ++TruncUI; 941 942 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 943 if (!ISDOpcode) 944 continue; 945 946 // If the use is actually a legal node, there will not be an 947 // implicit truncate. 948 // FIXME: always querying the result type is just an 949 // approximation; some nodes' legality is determined by the 950 // operand or other means. There's no good way to find out though. 951 if (TLI.isOperationLegalOrCustom( 952 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 953 continue; 954 955 // Don't bother for PHI nodes. 956 if (isa<PHINode>(TruncUser)) 957 continue; 958 959 BasicBlock *TruncUserBB = TruncUser->getParent(); 960 961 if (UserBB == TruncUserBB) 962 continue; 963 964 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 965 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 966 967 if (!InsertedShift && !InsertedTrunc) { 968 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 969 // Sink the shift 970 if (ShiftI->getOpcode() == Instruction::AShr) 971 InsertedShift = 972 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt); 973 else 974 InsertedShift = 975 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt); 976 977 // Sink the trunc 978 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 979 TruncInsertPt++; 980 981 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 982 TruncI->getType(), "", TruncInsertPt); 983 984 MadeChange = true; 985 986 TruncTheUse = InsertedTrunc; 987 } 988 } 989 return MadeChange; 990 } 991 992 /// OptimizeExtractBits - sink the shift *right* instruction into user blocks if 993 /// the uses could potentially be combined with this shift instruction and 994 /// generate BitExtract instruction. It will only be applied if the architecture 995 /// supports BitExtract instruction. Here is an example: 996 /// BB1: 997 /// %x.extract.shift = lshr i64 %arg1, 32 998 /// BB2: 999 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1000 /// ==> 1001 /// 1002 /// BB2: 1003 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1004 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1005 /// 1006 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1007 /// instruction. 1008 /// Return true if any changes are made. 1009 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1010 const TargetLowering &TLI, 1011 const DataLayout &DL) { 1012 BasicBlock *DefBB = ShiftI->getParent(); 1013 1014 /// Only insert instructions in each block once. 1015 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1016 1017 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1018 1019 bool MadeChange = false; 1020 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1021 UI != E;) { 1022 Use &TheUse = UI.getUse(); 1023 Instruction *User = cast<Instruction>(*UI); 1024 // Preincrement use iterator so we don't invalidate it. 1025 ++UI; 1026 1027 // Don't bother for PHI nodes. 1028 if (isa<PHINode>(User)) 1029 continue; 1030 1031 if (!isExtractBitsCandidateUse(User)) 1032 continue; 1033 1034 BasicBlock *UserBB = User->getParent(); 1035 1036 if (UserBB == DefBB) { 1037 // If the shift and truncate instruction are in the same BB. The use of 1038 // the truncate(TruncUse) may still introduce another truncate if not 1039 // legal. In this case, we would like to sink both shift and truncate 1040 // instruction to the BB of TruncUse. 1041 // for example: 1042 // BB1: 1043 // i64 shift.result = lshr i64 opnd, imm 1044 // trunc.result = trunc shift.result to i16 1045 // 1046 // BB2: 1047 // ----> We will have an implicit truncate here if the architecture does 1048 // not have i16 compare. 1049 // cmp i16 trunc.result, opnd2 1050 // 1051 if (isa<TruncInst>(User) && shiftIsLegal 1052 // If the type of the truncate is legal, no trucate will be 1053 // introduced in other basic blocks. 1054 && 1055 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1056 MadeChange = 1057 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1058 1059 continue; 1060 } 1061 // If we have already inserted a shift into this block, use it. 1062 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1063 1064 if (!InsertedShift) { 1065 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1066 1067 if (ShiftI->getOpcode() == Instruction::AShr) 1068 InsertedShift = 1069 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt); 1070 else 1071 InsertedShift = 1072 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt); 1073 1074 MadeChange = true; 1075 } 1076 1077 // Replace a use of the shift with a use of the new shift. 1078 TheUse = InsertedShift; 1079 } 1080 1081 // If we removed all uses, nuke the shift. 1082 if (ShiftI->use_empty()) 1083 ShiftI->eraseFromParent(); 1084 1085 return MadeChange; 1086 } 1087 1088 // ScalarizeMaskedLoad() translates masked load intrinsic, like 1089 // <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align, 1090 // <16 x i1> %mask, <16 x i32> %passthru) 1091 // to a chain of basic blocks, with loading element one-by-one if 1092 // the appropriate mask bit is set 1093 // 1094 // %1 = bitcast i8* %addr to i32* 1095 // %2 = extractelement <16 x i1> %mask, i32 0 1096 // %3 = icmp eq i1 %2, true 1097 // br i1 %3, label %cond.load, label %else 1098 // 1099 //cond.load: ; preds = %0 1100 // %4 = getelementptr i32* %1, i32 0 1101 // %5 = load i32* %4 1102 // %6 = insertelement <16 x i32> undef, i32 %5, i32 0 1103 // br label %else 1104 // 1105 //else: ; preds = %0, %cond.load 1106 // %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ] 1107 // %7 = extractelement <16 x i1> %mask, i32 1 1108 // %8 = icmp eq i1 %7, true 1109 // br i1 %8, label %cond.load1, label %else2 1110 // 1111 //cond.load1: ; preds = %else 1112 // %9 = getelementptr i32* %1, i32 1 1113 // %10 = load i32* %9 1114 // %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1 1115 // br label %else2 1116 // 1117 //else2: ; preds = %else, %cond.load1 1118 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1119 // %12 = extractelement <16 x i1> %mask, i32 2 1120 // %13 = icmp eq i1 %12, true 1121 // br i1 %13, label %cond.load4, label %else5 1122 // 1123 static void ScalarizeMaskedLoad(CallInst *CI) { 1124 Value *Ptr = CI->getArgOperand(0); 1125 Value *Src0 = CI->getArgOperand(3); 1126 Value *Mask = CI->getArgOperand(2); 1127 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1128 Type *EltTy = VecType->getElementType(); 1129 1130 assert(VecType && "Unexpected return type of masked load intrinsic"); 1131 1132 IRBuilder<> Builder(CI->getContext()); 1133 Instruction *InsertPt = CI; 1134 BasicBlock *IfBlock = CI->getParent(); 1135 BasicBlock *CondBlock = nullptr; 1136 BasicBlock *PrevIfBlock = CI->getParent(); 1137 Builder.SetInsertPoint(InsertPt); 1138 1139 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1140 1141 // Bitcast %addr fron i8* to EltTy* 1142 Type *NewPtrType = 1143 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1144 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1145 Value *UndefVal = UndefValue::get(VecType); 1146 1147 // The result vector 1148 Value *VResult = UndefVal; 1149 1150 PHINode *Phi = nullptr; 1151 Value *PrevPhi = UndefVal; 1152 1153 unsigned VectorWidth = VecType->getNumElements(); 1154 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1155 1156 // Fill the "else" block, created in the previous iteration 1157 // 1158 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1159 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1160 // %to_load = icmp eq i1 %mask_1, true 1161 // br i1 %to_load, label %cond.load, label %else 1162 // 1163 if (Idx > 0) { 1164 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1165 Phi->addIncoming(VResult, CondBlock); 1166 Phi->addIncoming(PrevPhi, PrevIfBlock); 1167 PrevPhi = Phi; 1168 VResult = Phi; 1169 } 1170 1171 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1172 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1173 ConstantInt::get(Predicate->getType(), 1)); 1174 1175 // Create "cond" block 1176 // 1177 // %EltAddr = getelementptr i32* %1, i32 0 1178 // %Elt = load i32* %EltAddr 1179 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1180 // 1181 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load"); 1182 Builder.SetInsertPoint(InsertPt); 1183 1184 Value *Gep = 1185 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1186 LoadInst* Load = Builder.CreateLoad(Gep, false); 1187 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx)); 1188 1189 // Create "else" block, fill it in the next iteration 1190 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1191 Builder.SetInsertPoint(InsertPt); 1192 Instruction *OldBr = IfBlock->getTerminator(); 1193 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1194 OldBr->eraseFromParent(); 1195 PrevIfBlock = IfBlock; 1196 IfBlock = NewIfBlock; 1197 } 1198 1199 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1200 Phi->addIncoming(VResult, CondBlock); 1201 Phi->addIncoming(PrevPhi, PrevIfBlock); 1202 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1203 CI->replaceAllUsesWith(NewI); 1204 CI->eraseFromParent(); 1205 } 1206 1207 // ScalarizeMaskedStore() translates masked store intrinsic, like 1208 // void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align, 1209 // <16 x i1> %mask) 1210 // to a chain of basic blocks, that stores element one-by-one if 1211 // the appropriate mask bit is set 1212 // 1213 // %1 = bitcast i8* %addr to i32* 1214 // %2 = extractelement <16 x i1> %mask, i32 0 1215 // %3 = icmp eq i1 %2, true 1216 // br i1 %3, label %cond.store, label %else 1217 // 1218 // cond.store: ; preds = %0 1219 // %4 = extractelement <16 x i32> %val, i32 0 1220 // %5 = getelementptr i32* %1, i32 0 1221 // store i32 %4, i32* %5 1222 // br label %else 1223 // 1224 // else: ; preds = %0, %cond.store 1225 // %6 = extractelement <16 x i1> %mask, i32 1 1226 // %7 = icmp eq i1 %6, true 1227 // br i1 %7, label %cond.store1, label %else2 1228 // 1229 // cond.store1: ; preds = %else 1230 // %8 = extractelement <16 x i32> %val, i32 1 1231 // %9 = getelementptr i32* %1, i32 1 1232 // store i32 %8, i32* %9 1233 // br label %else2 1234 // . . . 1235 static void ScalarizeMaskedStore(CallInst *CI) { 1236 Value *Ptr = CI->getArgOperand(1); 1237 Value *Src = CI->getArgOperand(0); 1238 Value *Mask = CI->getArgOperand(3); 1239 1240 VectorType *VecType = dyn_cast<VectorType>(Src->getType()); 1241 Type *EltTy = VecType->getElementType(); 1242 1243 assert(VecType && "Unexpected data type in masked store intrinsic"); 1244 1245 IRBuilder<> Builder(CI->getContext()); 1246 Instruction *InsertPt = CI; 1247 BasicBlock *IfBlock = CI->getParent(); 1248 Builder.SetInsertPoint(InsertPt); 1249 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1250 1251 // Bitcast %addr fron i8* to EltTy* 1252 Type *NewPtrType = 1253 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1254 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1255 1256 unsigned VectorWidth = VecType->getNumElements(); 1257 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1258 1259 // Fill the "else" block, created in the previous iteration 1260 // 1261 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1262 // %to_store = icmp eq i1 %mask_1, true 1263 // br i1 %to_load, label %cond.store, label %else 1264 // 1265 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1266 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1267 ConstantInt::get(Predicate->getType(), 1)); 1268 1269 // Create "cond" block 1270 // 1271 // %OneElt = extractelement <16 x i32> %Src, i32 Idx 1272 // %EltAddr = getelementptr i32* %1, i32 0 1273 // %store i32 %OneElt, i32* %EltAddr 1274 // 1275 BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1276 Builder.SetInsertPoint(InsertPt); 1277 1278 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1279 Value *Gep = 1280 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1281 Builder.CreateStore(OneElt, Gep); 1282 1283 // Create "else" block, fill it in the next iteration 1284 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1285 Builder.SetInsertPoint(InsertPt); 1286 Instruction *OldBr = IfBlock->getTerminator(); 1287 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1288 OldBr->eraseFromParent(); 1289 IfBlock = NewIfBlock; 1290 } 1291 CI->eraseFromParent(); 1292 } 1293 1294 bool CodeGenPrepare::OptimizeCallInst(CallInst *CI, bool& ModifiedDT) { 1295 BasicBlock *BB = CI->getParent(); 1296 1297 // Lower inline assembly if we can. 1298 // If we found an inline asm expession, and if the target knows how to 1299 // lower it to normal LLVM code, do so now. 1300 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1301 if (TLI->ExpandInlineAsm(CI)) { 1302 // Avoid invalidating the iterator. 1303 CurInstIterator = BB->begin(); 1304 // Avoid processing instructions out of order, which could cause 1305 // reuse before a value is defined. 1306 SunkAddrs.clear(); 1307 return true; 1308 } 1309 // Sink address computing for memory operands into the block. 1310 if (OptimizeInlineAsmInst(CI)) 1311 return true; 1312 } 1313 1314 // Align the pointer arguments to this call if the target thinks it's a good 1315 // idea 1316 unsigned MinSize, PrefAlign; 1317 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1318 for (auto &Arg : CI->arg_operands()) { 1319 // We want to align both objects whose address is used directly and 1320 // objects whose address is used in casts and GEPs, though it only makes 1321 // sense for GEPs if the offset is a multiple of the desired alignment and 1322 // if size - offset meets the size threshold. 1323 if (!Arg->getType()->isPointerTy()) 1324 continue; 1325 APInt Offset(DL->getPointerSizeInBits( 1326 cast<PointerType>(Arg->getType())->getAddressSpace()), 1327 0); 1328 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1329 uint64_t Offset2 = Offset.getLimitedValue(); 1330 if ((Offset2 & (PrefAlign-1)) != 0) 1331 continue; 1332 AllocaInst *AI; 1333 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1334 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1335 AI->setAlignment(PrefAlign); 1336 // Global variables can only be aligned if they are defined in this 1337 // object (i.e. they are uniquely initialized in this object), and 1338 // over-aligning global variables that have an explicit section is 1339 // forbidden. 1340 GlobalVariable *GV; 1341 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->hasUniqueInitializer() && 1342 !GV->hasSection() && GV->getAlignment() < PrefAlign && 1343 DL->getTypeAllocSize(GV->getType()->getElementType()) >= 1344 MinSize + Offset2) 1345 GV->setAlignment(PrefAlign); 1346 } 1347 // If this is a memcpy (or similar) then we may be able to improve the 1348 // alignment 1349 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1350 unsigned Align = getKnownAlignment(MI->getDest(), *DL); 1351 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 1352 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL)); 1353 if (Align > MI->getAlignment()) 1354 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align)); 1355 } 1356 } 1357 1358 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1359 if (II) { 1360 switch (II->getIntrinsicID()) { 1361 default: break; 1362 case Intrinsic::objectsize: { 1363 // Lower all uses of llvm.objectsize.* 1364 bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1); 1365 Type *ReturnTy = CI->getType(); 1366 Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL); 1367 1368 // Substituting this can cause recursive simplifications, which can 1369 // invalidate our iterator. Use a WeakVH to hold onto it in case this 1370 // happens. 1371 WeakVH IterHandle(CurInstIterator); 1372 1373 replaceAndRecursivelySimplify(CI, RetVal, 1374 TLInfo, nullptr); 1375 1376 // If the iterator instruction was recursively deleted, start over at the 1377 // start of the block. 1378 if (IterHandle != CurInstIterator) { 1379 CurInstIterator = BB->begin(); 1380 SunkAddrs.clear(); 1381 } 1382 return true; 1383 } 1384 case Intrinsic::masked_load: { 1385 // Scalarize unsupported vector masked load 1386 if (!TTI->isLegalMaskedLoad(CI->getType(), 1)) { 1387 ScalarizeMaskedLoad(CI); 1388 ModifiedDT = true; 1389 return true; 1390 } 1391 return false; 1392 } 1393 case Intrinsic::masked_store: { 1394 if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType(), 1)) { 1395 ScalarizeMaskedStore(CI); 1396 ModifiedDT = true; 1397 return true; 1398 } 1399 return false; 1400 } 1401 case Intrinsic::aarch64_stlxr: 1402 case Intrinsic::aarch64_stxr: { 1403 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1404 if (!ExtVal || !ExtVal->hasOneUse() || 1405 ExtVal->getParent() == CI->getParent()) 1406 return false; 1407 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1408 ExtVal->moveBefore(CI); 1409 // Mark this instruction as "inserted by CGP", so that other 1410 // optimizations don't touch it. 1411 InsertedInsts.insert(ExtVal); 1412 return true; 1413 } 1414 } 1415 1416 if (TLI) { 1417 // Unknown address space. 1418 // TODO: Target hook to pick which address space the intrinsic cares 1419 // about? 1420 unsigned AddrSpace = ~0u; 1421 SmallVector<Value*, 2> PtrOps; 1422 Type *AccessTy; 1423 if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy, AddrSpace)) 1424 while (!PtrOps.empty()) 1425 if (OptimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy, AddrSpace)) 1426 return true; 1427 } 1428 } 1429 1430 // From here on out we're working with named functions. 1431 if (!CI->getCalledFunction()) return false; 1432 1433 // Lower all default uses of _chk calls. This is very similar 1434 // to what InstCombineCalls does, but here we are only lowering calls 1435 // to fortified library functions (e.g. __memcpy_chk) that have the default 1436 // "don't know" as the objectsize. Anything else should be left alone. 1437 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1438 if (Value *V = Simplifier.optimizeCall(CI)) { 1439 CI->replaceAllUsesWith(V); 1440 CI->eraseFromParent(); 1441 return true; 1442 } 1443 return false; 1444 } 1445 1446 /// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return 1447 /// instructions to the predecessor to enable tail call optimizations. The 1448 /// case it is currently looking for is: 1449 /// @code 1450 /// bb0: 1451 /// %tmp0 = tail call i32 @f0() 1452 /// br label %return 1453 /// bb1: 1454 /// %tmp1 = tail call i32 @f1() 1455 /// br label %return 1456 /// bb2: 1457 /// %tmp2 = tail call i32 @f2() 1458 /// br label %return 1459 /// return: 1460 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1461 /// ret i32 %retval 1462 /// @endcode 1463 /// 1464 /// => 1465 /// 1466 /// @code 1467 /// bb0: 1468 /// %tmp0 = tail call i32 @f0() 1469 /// ret i32 %tmp0 1470 /// bb1: 1471 /// %tmp1 = tail call i32 @f1() 1472 /// ret i32 %tmp1 1473 /// bb2: 1474 /// %tmp2 = tail call i32 @f2() 1475 /// ret i32 %tmp2 1476 /// @endcode 1477 bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) { 1478 if (!TLI) 1479 return false; 1480 1481 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()); 1482 if (!RI) 1483 return false; 1484 1485 PHINode *PN = nullptr; 1486 BitCastInst *BCI = nullptr; 1487 Value *V = RI->getReturnValue(); 1488 if (V) { 1489 BCI = dyn_cast<BitCastInst>(V); 1490 if (BCI) 1491 V = BCI->getOperand(0); 1492 1493 PN = dyn_cast<PHINode>(V); 1494 if (!PN) 1495 return false; 1496 } 1497 1498 if (PN && PN->getParent() != BB) 1499 return false; 1500 1501 // It's not safe to eliminate the sign / zero extension of the return value. 1502 // See llvm::isInTailCallPosition(). 1503 const Function *F = BB->getParent(); 1504 AttributeSet CallerAttrs = F->getAttributes(); 1505 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 1506 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 1507 return false; 1508 1509 // Make sure there are no instructions between the PHI and return, or that the 1510 // return is the first instruction in the block. 1511 if (PN) { 1512 BasicBlock::iterator BI = BB->begin(); 1513 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1514 if (&*BI == BCI) 1515 // Also skip over the bitcast. 1516 ++BI; 1517 if (&*BI != RI) 1518 return false; 1519 } else { 1520 BasicBlock::iterator BI = BB->begin(); 1521 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1522 if (&*BI != RI) 1523 return false; 1524 } 1525 1526 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1527 /// call. 1528 SmallVector<CallInst*, 4> TailCalls; 1529 if (PN) { 1530 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 1531 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 1532 // Make sure the phi value is indeed produced by the tail call. 1533 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 1534 TLI->mayBeEmittedAsTailCall(CI)) 1535 TailCalls.push_back(CI); 1536 } 1537 } else { 1538 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 1539 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 1540 if (!VisitedBBs.insert(*PI).second) 1541 continue; 1542 1543 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 1544 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 1545 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 1546 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 1547 if (RI == RE) 1548 continue; 1549 1550 CallInst *CI = dyn_cast<CallInst>(&*RI); 1551 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI)) 1552 TailCalls.push_back(CI); 1553 } 1554 } 1555 1556 bool Changed = false; 1557 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1558 CallInst *CI = TailCalls[i]; 1559 CallSite CS(CI); 1560 1561 // Conservatively require the attributes of the call to match those of the 1562 // return. Ignore noalias because it doesn't affect the call sequence. 1563 AttributeSet CalleeAttrs = CS.getAttributes(); 1564 if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 1565 removeAttribute(Attribute::NoAlias) != 1566 AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 1567 removeAttribute(Attribute::NoAlias)) 1568 continue; 1569 1570 // Make sure the call instruction is followed by an unconditional branch to 1571 // the return block. 1572 BasicBlock *CallBB = CI->getParent(); 1573 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 1574 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 1575 continue; 1576 1577 // Duplicate the return into CallBB. 1578 (void)FoldReturnIntoUncondBranch(RI, BB, CallBB); 1579 ModifiedDT = Changed = true; 1580 ++NumRetsDup; 1581 } 1582 1583 // If we eliminated all predecessors of the block, delete the block now. 1584 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 1585 BB->eraseFromParent(); 1586 1587 return Changed; 1588 } 1589 1590 //===----------------------------------------------------------------------===// 1591 // Memory Optimization 1592 //===----------------------------------------------------------------------===// 1593 1594 namespace { 1595 1596 /// ExtAddrMode - This is an extended version of TargetLowering::AddrMode 1597 /// which holds actual Value*'s for register values. 1598 struct ExtAddrMode : public TargetLowering::AddrMode { 1599 Value *BaseReg; 1600 Value *ScaledReg; 1601 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} 1602 void print(raw_ostream &OS) const; 1603 void dump() const; 1604 1605 bool operator==(const ExtAddrMode& O) const { 1606 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && 1607 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && 1608 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); 1609 } 1610 }; 1611 1612 #ifndef NDEBUG 1613 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 1614 AM.print(OS); 1615 return OS; 1616 } 1617 #endif 1618 1619 void ExtAddrMode::print(raw_ostream &OS) const { 1620 bool NeedPlus = false; 1621 OS << "["; 1622 if (BaseGV) { 1623 OS << (NeedPlus ? " + " : "") 1624 << "GV:"; 1625 BaseGV->printAsOperand(OS, /*PrintType=*/false); 1626 NeedPlus = true; 1627 } 1628 1629 if (BaseOffs) { 1630 OS << (NeedPlus ? " + " : "") 1631 << BaseOffs; 1632 NeedPlus = true; 1633 } 1634 1635 if (BaseReg) { 1636 OS << (NeedPlus ? " + " : "") 1637 << "Base:"; 1638 BaseReg->printAsOperand(OS, /*PrintType=*/false); 1639 NeedPlus = true; 1640 } 1641 if (Scale) { 1642 OS << (NeedPlus ? " + " : "") 1643 << Scale << "*"; 1644 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 1645 } 1646 1647 OS << ']'; 1648 } 1649 1650 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1651 void ExtAddrMode::dump() const { 1652 print(dbgs()); 1653 dbgs() << '\n'; 1654 } 1655 #endif 1656 1657 /// \brief This class provides transaction based operation on the IR. 1658 /// Every change made through this class is recorded in the internal state and 1659 /// can be undone (rollback) until commit is called. 1660 class TypePromotionTransaction { 1661 1662 /// \brief This represents the common interface of the individual transaction. 1663 /// Each class implements the logic for doing one specific modification on 1664 /// the IR via the TypePromotionTransaction. 1665 class TypePromotionAction { 1666 protected: 1667 /// The Instruction modified. 1668 Instruction *Inst; 1669 1670 public: 1671 /// \brief Constructor of the action. 1672 /// The constructor performs the related action on the IR. 1673 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 1674 1675 virtual ~TypePromotionAction() {} 1676 1677 /// \brief Undo the modification done by this action. 1678 /// When this method is called, the IR must be in the same state as it was 1679 /// before this action was applied. 1680 /// \pre Undoing the action works if and only if the IR is in the exact same 1681 /// state as it was directly after this action was applied. 1682 virtual void undo() = 0; 1683 1684 /// \brief Advocate every change made by this action. 1685 /// When the results on the IR of the action are to be kept, it is important 1686 /// to call this function, otherwise hidden information may be kept forever. 1687 virtual void commit() { 1688 // Nothing to be done, this action is not doing anything. 1689 } 1690 }; 1691 1692 /// \brief Utility to remember the position of an instruction. 1693 class InsertionHandler { 1694 /// Position of an instruction. 1695 /// Either an instruction: 1696 /// - Is the first in a basic block: BB is used. 1697 /// - Has a previous instructon: PrevInst is used. 1698 union { 1699 Instruction *PrevInst; 1700 BasicBlock *BB; 1701 } Point; 1702 /// Remember whether or not the instruction had a previous instruction. 1703 bool HasPrevInstruction; 1704 1705 public: 1706 /// \brief Record the position of \p Inst. 1707 InsertionHandler(Instruction *Inst) { 1708 BasicBlock::iterator It = Inst; 1709 HasPrevInstruction = (It != (Inst->getParent()->begin())); 1710 if (HasPrevInstruction) 1711 Point.PrevInst = --It; 1712 else 1713 Point.BB = Inst->getParent(); 1714 } 1715 1716 /// \brief Insert \p Inst at the recorded position. 1717 void insert(Instruction *Inst) { 1718 if (HasPrevInstruction) { 1719 if (Inst->getParent()) 1720 Inst->removeFromParent(); 1721 Inst->insertAfter(Point.PrevInst); 1722 } else { 1723 Instruction *Position = Point.BB->getFirstInsertionPt(); 1724 if (Inst->getParent()) 1725 Inst->moveBefore(Position); 1726 else 1727 Inst->insertBefore(Position); 1728 } 1729 } 1730 }; 1731 1732 /// \brief Move an instruction before another. 1733 class InstructionMoveBefore : public TypePromotionAction { 1734 /// Original position of the instruction. 1735 InsertionHandler Position; 1736 1737 public: 1738 /// \brief Move \p Inst before \p Before. 1739 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 1740 : TypePromotionAction(Inst), Position(Inst) { 1741 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 1742 Inst->moveBefore(Before); 1743 } 1744 1745 /// \brief Move the instruction back to its original position. 1746 void undo() override { 1747 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 1748 Position.insert(Inst); 1749 } 1750 }; 1751 1752 /// \brief Set the operand of an instruction with a new value. 1753 class OperandSetter : public TypePromotionAction { 1754 /// Original operand of the instruction. 1755 Value *Origin; 1756 /// Index of the modified instruction. 1757 unsigned Idx; 1758 1759 public: 1760 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 1761 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 1762 : TypePromotionAction(Inst), Idx(Idx) { 1763 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 1764 << "for:" << *Inst << "\n" 1765 << "with:" << *NewVal << "\n"); 1766 Origin = Inst->getOperand(Idx); 1767 Inst->setOperand(Idx, NewVal); 1768 } 1769 1770 /// \brief Restore the original value of the instruction. 1771 void undo() override { 1772 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 1773 << "for: " << *Inst << "\n" 1774 << "with: " << *Origin << "\n"); 1775 Inst->setOperand(Idx, Origin); 1776 } 1777 }; 1778 1779 /// \brief Hide the operands of an instruction. 1780 /// Do as if this instruction was not using any of its operands. 1781 class OperandsHider : public TypePromotionAction { 1782 /// The list of original operands. 1783 SmallVector<Value *, 4> OriginalValues; 1784 1785 public: 1786 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 1787 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 1788 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 1789 unsigned NumOpnds = Inst->getNumOperands(); 1790 OriginalValues.reserve(NumOpnds); 1791 for (unsigned It = 0; It < NumOpnds; ++It) { 1792 // Save the current operand. 1793 Value *Val = Inst->getOperand(It); 1794 OriginalValues.push_back(Val); 1795 // Set a dummy one. 1796 // We could use OperandSetter here, but that would implied an overhead 1797 // that we are not willing to pay. 1798 Inst->setOperand(It, UndefValue::get(Val->getType())); 1799 } 1800 } 1801 1802 /// \brief Restore the original list of uses. 1803 void undo() override { 1804 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 1805 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 1806 Inst->setOperand(It, OriginalValues[It]); 1807 } 1808 }; 1809 1810 /// \brief Build a truncate instruction. 1811 class TruncBuilder : public TypePromotionAction { 1812 Value *Val; 1813 public: 1814 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 1815 /// result. 1816 /// trunc Opnd to Ty. 1817 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 1818 IRBuilder<> Builder(Opnd); 1819 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 1820 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 1821 } 1822 1823 /// \brief Get the built value. 1824 Value *getBuiltValue() { return Val; } 1825 1826 /// \brief Remove the built instruction. 1827 void undo() override { 1828 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 1829 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 1830 IVal->eraseFromParent(); 1831 } 1832 }; 1833 1834 /// \brief Build a sign extension instruction. 1835 class SExtBuilder : public TypePromotionAction { 1836 Value *Val; 1837 public: 1838 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 1839 /// result. 1840 /// sext Opnd to Ty. 1841 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 1842 : TypePromotionAction(InsertPt) { 1843 IRBuilder<> Builder(InsertPt); 1844 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 1845 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 1846 } 1847 1848 /// \brief Get the built value. 1849 Value *getBuiltValue() { return Val; } 1850 1851 /// \brief Remove the built instruction. 1852 void undo() override { 1853 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 1854 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 1855 IVal->eraseFromParent(); 1856 } 1857 }; 1858 1859 /// \brief Build a zero extension instruction. 1860 class ZExtBuilder : public TypePromotionAction { 1861 Value *Val; 1862 public: 1863 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 1864 /// result. 1865 /// zext Opnd to Ty. 1866 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 1867 : TypePromotionAction(InsertPt) { 1868 IRBuilder<> Builder(InsertPt); 1869 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 1870 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 1871 } 1872 1873 /// \brief Get the built value. 1874 Value *getBuiltValue() { return Val; } 1875 1876 /// \brief Remove the built instruction. 1877 void undo() override { 1878 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 1879 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 1880 IVal->eraseFromParent(); 1881 } 1882 }; 1883 1884 /// \brief Mutate an instruction to another type. 1885 class TypeMutator : public TypePromotionAction { 1886 /// Record the original type. 1887 Type *OrigTy; 1888 1889 public: 1890 /// \brief Mutate the type of \p Inst into \p NewTy. 1891 TypeMutator(Instruction *Inst, Type *NewTy) 1892 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 1893 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 1894 << "\n"); 1895 Inst->mutateType(NewTy); 1896 } 1897 1898 /// \brief Mutate the instruction back to its original type. 1899 void undo() override { 1900 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 1901 << "\n"); 1902 Inst->mutateType(OrigTy); 1903 } 1904 }; 1905 1906 /// \brief Replace the uses of an instruction by another instruction. 1907 class UsesReplacer : public TypePromotionAction { 1908 /// Helper structure to keep track of the replaced uses. 1909 struct InstructionAndIdx { 1910 /// The instruction using the instruction. 1911 Instruction *Inst; 1912 /// The index where this instruction is used for Inst. 1913 unsigned Idx; 1914 InstructionAndIdx(Instruction *Inst, unsigned Idx) 1915 : Inst(Inst), Idx(Idx) {} 1916 }; 1917 1918 /// Keep track of the original uses (pair Instruction, Index). 1919 SmallVector<InstructionAndIdx, 4> OriginalUses; 1920 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator; 1921 1922 public: 1923 /// \brief Replace all the use of \p Inst by \p New. 1924 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 1925 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 1926 << "\n"); 1927 // Record the original uses. 1928 for (Use &U : Inst->uses()) { 1929 Instruction *UserI = cast<Instruction>(U.getUser()); 1930 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 1931 } 1932 // Now, we can replace the uses. 1933 Inst->replaceAllUsesWith(New); 1934 } 1935 1936 /// \brief Reassign the original uses of Inst to Inst. 1937 void undo() override { 1938 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 1939 for (use_iterator UseIt = OriginalUses.begin(), 1940 EndIt = OriginalUses.end(); 1941 UseIt != EndIt; ++UseIt) { 1942 UseIt->Inst->setOperand(UseIt->Idx, Inst); 1943 } 1944 } 1945 }; 1946 1947 /// \brief Remove an instruction from the IR. 1948 class InstructionRemover : public TypePromotionAction { 1949 /// Original position of the instruction. 1950 InsertionHandler Inserter; 1951 /// Helper structure to hide all the link to the instruction. In other 1952 /// words, this helps to do as if the instruction was removed. 1953 OperandsHider Hider; 1954 /// Keep track of the uses replaced, if any. 1955 UsesReplacer *Replacer; 1956 1957 public: 1958 /// \brief Remove all reference of \p Inst and optinally replace all its 1959 /// uses with New. 1960 /// \pre If !Inst->use_empty(), then New != nullptr 1961 InstructionRemover(Instruction *Inst, Value *New = nullptr) 1962 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 1963 Replacer(nullptr) { 1964 if (New) 1965 Replacer = new UsesReplacer(Inst, New); 1966 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 1967 Inst->removeFromParent(); 1968 } 1969 1970 ~InstructionRemover() override { delete Replacer; } 1971 1972 /// \brief Really remove the instruction. 1973 void commit() override { delete Inst; } 1974 1975 /// \brief Resurrect the instruction and reassign it to the proper uses if 1976 /// new value was provided when build this action. 1977 void undo() override { 1978 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 1979 Inserter.insert(Inst); 1980 if (Replacer) 1981 Replacer->undo(); 1982 Hider.undo(); 1983 } 1984 }; 1985 1986 public: 1987 /// Restoration point. 1988 /// The restoration point is a pointer to an action instead of an iterator 1989 /// because the iterator may be invalidated but not the pointer. 1990 typedef const TypePromotionAction *ConstRestorationPt; 1991 /// Advocate every changes made in that transaction. 1992 void commit(); 1993 /// Undo all the changes made after the given point. 1994 void rollback(ConstRestorationPt Point); 1995 /// Get the current restoration point. 1996 ConstRestorationPt getRestorationPoint() const; 1997 1998 /// \name API for IR modification with state keeping to support rollback. 1999 /// @{ 2000 /// Same as Instruction::setOperand. 2001 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2002 /// Same as Instruction::eraseFromParent. 2003 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2004 /// Same as Value::replaceAllUsesWith. 2005 void replaceAllUsesWith(Instruction *Inst, Value *New); 2006 /// Same as Value::mutateType. 2007 void mutateType(Instruction *Inst, Type *NewTy); 2008 /// Same as IRBuilder::createTrunc. 2009 Value *createTrunc(Instruction *Opnd, Type *Ty); 2010 /// Same as IRBuilder::createSExt. 2011 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2012 /// Same as IRBuilder::createZExt. 2013 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2014 /// Same as Instruction::moveBefore. 2015 void moveBefore(Instruction *Inst, Instruction *Before); 2016 /// @} 2017 2018 private: 2019 /// The ordered list of actions made so far. 2020 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2021 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt; 2022 }; 2023 2024 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2025 Value *NewVal) { 2026 Actions.push_back( 2027 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal)); 2028 } 2029 2030 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2031 Value *NewVal) { 2032 Actions.push_back( 2033 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal)); 2034 } 2035 2036 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2037 Value *New) { 2038 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2039 } 2040 2041 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2042 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2043 } 2044 2045 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2046 Type *Ty) { 2047 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2048 Value *Val = Ptr->getBuiltValue(); 2049 Actions.push_back(std::move(Ptr)); 2050 return Val; 2051 } 2052 2053 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2054 Value *Opnd, Type *Ty) { 2055 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2056 Value *Val = Ptr->getBuiltValue(); 2057 Actions.push_back(std::move(Ptr)); 2058 return Val; 2059 } 2060 2061 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2062 Value *Opnd, Type *Ty) { 2063 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2064 Value *Val = Ptr->getBuiltValue(); 2065 Actions.push_back(std::move(Ptr)); 2066 return Val; 2067 } 2068 2069 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2070 Instruction *Before) { 2071 Actions.push_back( 2072 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before)); 2073 } 2074 2075 TypePromotionTransaction::ConstRestorationPt 2076 TypePromotionTransaction::getRestorationPoint() const { 2077 return !Actions.empty() ? Actions.back().get() : nullptr; 2078 } 2079 2080 void TypePromotionTransaction::commit() { 2081 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2082 ++It) 2083 (*It)->commit(); 2084 Actions.clear(); 2085 } 2086 2087 void TypePromotionTransaction::rollback( 2088 TypePromotionTransaction::ConstRestorationPt Point) { 2089 while (!Actions.empty() && Point != Actions.back().get()) { 2090 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2091 Curr->undo(); 2092 } 2093 } 2094 2095 /// \brief A helper class for matching addressing modes. 2096 /// 2097 /// This encapsulates the logic for matching the target-legal addressing modes. 2098 class AddressingModeMatcher { 2099 SmallVectorImpl<Instruction*> &AddrModeInsts; 2100 const TargetMachine &TM; 2101 const TargetLowering &TLI; 2102 const DataLayout &DL; 2103 2104 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2105 /// the memory instruction that we're computing this address for. 2106 Type *AccessTy; 2107 unsigned AddrSpace; 2108 Instruction *MemoryInst; 2109 2110 /// AddrMode - This is the addressing mode that we're building up. This is 2111 /// part of the return value of this addressing mode matching stuff. 2112 ExtAddrMode &AddrMode; 2113 2114 /// The instructions inserted by other CodeGenPrepare optimizations. 2115 const SetOfInstrs &InsertedInsts; 2116 /// A map from the instructions to their type before promotion. 2117 InstrToOrigTy &PromotedInsts; 2118 /// The ongoing transaction where every action should be registered. 2119 TypePromotionTransaction &TPT; 2120 2121 /// IgnoreProfitability - This is set to true when we should not do 2122 /// profitability checks. When true, IsProfitableToFoldIntoAddressingMode 2123 /// always returns true. 2124 bool IgnoreProfitability; 2125 2126 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, 2127 const TargetMachine &TM, Type *AT, unsigned AS, 2128 Instruction *MI, ExtAddrMode &AM, 2129 const SetOfInstrs &InsertedInsts, 2130 InstrToOrigTy &PromotedInsts, 2131 TypePromotionTransaction &TPT) 2132 : AddrModeInsts(AMI), TM(TM), 2133 TLI(*TM.getSubtargetImpl(*MI->getParent()->getParent()) 2134 ->getTargetLowering()), 2135 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2136 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2137 PromotedInsts(PromotedInsts), TPT(TPT) { 2138 IgnoreProfitability = false; 2139 } 2140 public: 2141 2142 /// Match - Find the maximal addressing mode that a load/store of V can fold, 2143 /// give an access type of AccessTy. This returns a list of involved 2144 /// instructions in AddrModeInsts. 2145 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2146 /// optimizations. 2147 /// \p PromotedInsts maps the instructions to their type before promotion. 2148 /// \p The ongoing transaction where every action should be registered. 2149 static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, 2150 Instruction *MemoryInst, 2151 SmallVectorImpl<Instruction*> &AddrModeInsts, 2152 const TargetMachine &TM, 2153 const SetOfInstrs &InsertedInsts, 2154 InstrToOrigTy &PromotedInsts, 2155 TypePromotionTransaction &TPT) { 2156 ExtAddrMode Result; 2157 2158 bool Success = AddressingModeMatcher(AddrModeInsts, TM, AccessTy, AS, 2159 MemoryInst, Result, InsertedInsts, 2160 PromotedInsts, TPT).MatchAddr(V, 0); 2161 (void)Success; assert(Success && "Couldn't select *anything*?"); 2162 return Result; 2163 } 2164 private: 2165 bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2166 bool MatchAddr(Value *V, unsigned Depth); 2167 bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 2168 bool *MovedAway = nullptr); 2169 bool IsProfitableToFoldIntoAddressingMode(Instruction *I, 2170 ExtAddrMode &AMBefore, 2171 ExtAddrMode &AMAfter); 2172 bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2173 bool IsPromotionProfitable(unsigned NewCost, unsigned OldCost, 2174 Value *PromotedOperand) const; 2175 }; 2176 2177 /// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode. 2178 /// Return true and update AddrMode if this addr mode is legal for the target, 2179 /// false if not. 2180 bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale, 2181 unsigned Depth) { 2182 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 2183 // mode. Just process that directly. 2184 if (Scale == 1) 2185 return MatchAddr(ScaleReg, Depth); 2186 2187 // If the scale is 0, it takes nothing to add this. 2188 if (Scale == 0) 2189 return true; 2190 2191 // If we already have a scale of this value, we can add to it, otherwise, we 2192 // need an available scale field. 2193 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 2194 return false; 2195 2196 ExtAddrMode TestAddrMode = AddrMode; 2197 2198 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 2199 // [A+B + A*7] -> [B+A*8]. 2200 TestAddrMode.Scale += Scale; 2201 TestAddrMode.ScaledReg = ScaleReg; 2202 2203 // If the new address isn't legal, bail out. 2204 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 2205 return false; 2206 2207 // It was legal, so commit it. 2208 AddrMode = TestAddrMode; 2209 2210 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 2211 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 2212 // X*Scale + C*Scale to addr mode. 2213 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 2214 if (isa<Instruction>(ScaleReg) && // not a constant expr. 2215 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 2216 TestAddrMode.ScaledReg = AddLHS; 2217 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 2218 2219 // If this addressing mode is legal, commit it and remember that we folded 2220 // this instruction. 2221 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 2222 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 2223 AddrMode = TestAddrMode; 2224 return true; 2225 } 2226 } 2227 2228 // Otherwise, not (x+c)*scale, just return what we have. 2229 return true; 2230 } 2231 2232 /// MightBeFoldableInst - This is a little filter, which returns true if an 2233 /// addressing computation involving I might be folded into a load/store 2234 /// accessing it. This doesn't need to be perfect, but needs to accept at least 2235 /// the set of instructions that MatchOperationAddr can. 2236 static bool MightBeFoldableInst(Instruction *I) { 2237 switch (I->getOpcode()) { 2238 case Instruction::BitCast: 2239 case Instruction::AddrSpaceCast: 2240 // Don't touch identity bitcasts. 2241 if (I->getType() == I->getOperand(0)->getType()) 2242 return false; 2243 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 2244 case Instruction::PtrToInt: 2245 // PtrToInt is always a noop, as we know that the int type is pointer sized. 2246 return true; 2247 case Instruction::IntToPtr: 2248 // We know the input is intptr_t, so this is foldable. 2249 return true; 2250 case Instruction::Add: 2251 return true; 2252 case Instruction::Mul: 2253 case Instruction::Shl: 2254 // Can only handle X*C and X << C. 2255 return isa<ConstantInt>(I->getOperand(1)); 2256 case Instruction::GetElementPtr: 2257 return true; 2258 default: 2259 return false; 2260 } 2261 } 2262 2263 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 2264 /// \note \p Val is assumed to be the product of some type promotion. 2265 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 2266 /// to be legal, as the non-promoted value would have had the same state. 2267 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 2268 const DataLayout &DL, Value *Val) { 2269 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 2270 if (!PromotedInst) 2271 return false; 2272 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 2273 // If the ISDOpcode is undefined, it was undefined before the promotion. 2274 if (!ISDOpcode) 2275 return true; 2276 // Otherwise, check if the promoted instruction is legal or not. 2277 return TLI.isOperationLegalOrCustom( 2278 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 2279 } 2280 2281 /// \brief Hepler class to perform type promotion. 2282 class TypePromotionHelper { 2283 /// \brief Utility function to check whether or not a sign or zero extension 2284 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 2285 /// either using the operands of \p Inst or promoting \p Inst. 2286 /// The type of the extension is defined by \p IsSExt. 2287 /// In other words, check if: 2288 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 2289 /// #1 Promotion applies: 2290 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 2291 /// #2 Operand reuses: 2292 /// ext opnd1 to ConsideredExtType. 2293 /// \p PromotedInsts maps the instructions to their type before promotion. 2294 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 2295 const InstrToOrigTy &PromotedInsts, bool IsSExt); 2296 2297 /// \brief Utility function to determine if \p OpIdx should be promoted when 2298 /// promoting \p Inst. 2299 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 2300 if (isa<SelectInst>(Inst) && OpIdx == 0) 2301 return false; 2302 return true; 2303 } 2304 2305 /// \brief Utility function to promote the operand of \p Ext when this 2306 /// operand is a promotable trunc or sext or zext. 2307 /// \p PromotedInsts maps the instructions to their type before promotion. 2308 /// \p CreatedInstsCost[out] contains the cost of all instructions 2309 /// created to promote the operand of Ext. 2310 /// Newly added extensions are inserted in \p Exts. 2311 /// Newly added truncates are inserted in \p Truncs. 2312 /// Should never be called directly. 2313 /// \return The promoted value which is used instead of Ext. 2314 static Value *promoteOperandForTruncAndAnyExt( 2315 Instruction *Ext, TypePromotionTransaction &TPT, 2316 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2317 SmallVectorImpl<Instruction *> *Exts, 2318 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 2319 2320 /// \brief Utility function to promote the operand of \p Ext when this 2321 /// operand is promotable and is not a supported trunc or sext. 2322 /// \p PromotedInsts maps the instructions to their type before promotion. 2323 /// \p CreatedInstsCost[out] contains the cost of all the instructions 2324 /// created to promote the operand of Ext. 2325 /// Newly added extensions are inserted in \p Exts. 2326 /// Newly added truncates are inserted in \p Truncs. 2327 /// Should never be called directly. 2328 /// \return The promoted value which is used instead of Ext. 2329 static Value *promoteOperandForOther(Instruction *Ext, 2330 TypePromotionTransaction &TPT, 2331 InstrToOrigTy &PromotedInsts, 2332 unsigned &CreatedInstsCost, 2333 SmallVectorImpl<Instruction *> *Exts, 2334 SmallVectorImpl<Instruction *> *Truncs, 2335 const TargetLowering &TLI, bool IsSExt); 2336 2337 /// \see promoteOperandForOther. 2338 static Value *signExtendOperandForOther( 2339 Instruction *Ext, TypePromotionTransaction &TPT, 2340 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2341 SmallVectorImpl<Instruction *> *Exts, 2342 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2343 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2344 Exts, Truncs, TLI, true); 2345 } 2346 2347 /// \see promoteOperandForOther. 2348 static Value *zeroExtendOperandForOther( 2349 Instruction *Ext, TypePromotionTransaction &TPT, 2350 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2351 SmallVectorImpl<Instruction *> *Exts, 2352 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2353 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2354 Exts, Truncs, TLI, false); 2355 } 2356 2357 public: 2358 /// Type for the utility function that promotes the operand of Ext. 2359 typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT, 2360 InstrToOrigTy &PromotedInsts, 2361 unsigned &CreatedInstsCost, 2362 SmallVectorImpl<Instruction *> *Exts, 2363 SmallVectorImpl<Instruction *> *Truncs, 2364 const TargetLowering &TLI); 2365 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 2366 /// action to promote the operand of \p Ext instead of using Ext. 2367 /// \return NULL if no promotable action is possible with the current 2368 /// sign extension. 2369 /// \p InsertedInsts keeps track of all the instructions inserted by the 2370 /// other CodeGenPrepare optimizations. This information is important 2371 /// because we do not want to promote these instructions as CodeGenPrepare 2372 /// will reinsert them later. Thus creating an infinite loop: create/remove. 2373 /// \p PromotedInsts maps the instructions to their type before promotion. 2374 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 2375 const TargetLowering &TLI, 2376 const InstrToOrigTy &PromotedInsts); 2377 }; 2378 2379 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 2380 Type *ConsideredExtType, 2381 const InstrToOrigTy &PromotedInsts, 2382 bool IsSExt) { 2383 // The promotion helper does not know how to deal with vector types yet. 2384 // To be able to fix that, we would need to fix the places where we 2385 // statically extend, e.g., constants and such. 2386 if (Inst->getType()->isVectorTy()) 2387 return false; 2388 2389 // We can always get through zext. 2390 if (isa<ZExtInst>(Inst)) 2391 return true; 2392 2393 // sext(sext) is ok too. 2394 if (IsSExt && isa<SExtInst>(Inst)) 2395 return true; 2396 2397 // We can get through binary operator, if it is legal. In other words, the 2398 // binary operator must have a nuw or nsw flag. 2399 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 2400 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 2401 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 2402 (IsSExt && BinOp->hasNoSignedWrap()))) 2403 return true; 2404 2405 // Check if we can do the following simplification. 2406 // ext(trunc(opnd)) --> ext(opnd) 2407 if (!isa<TruncInst>(Inst)) 2408 return false; 2409 2410 Value *OpndVal = Inst->getOperand(0); 2411 // Check if we can use this operand in the extension. 2412 // If the type is larger than the result type of the extension, 2413 // we cannot. 2414 if (!OpndVal->getType()->isIntegerTy() || 2415 OpndVal->getType()->getIntegerBitWidth() > 2416 ConsideredExtType->getIntegerBitWidth()) 2417 return false; 2418 2419 // If the operand of the truncate is not an instruction, we will not have 2420 // any information on the dropped bits. 2421 // (Actually we could for constant but it is not worth the extra logic). 2422 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 2423 if (!Opnd) 2424 return false; 2425 2426 // Check if the source of the type is narrow enough. 2427 // I.e., check that trunc just drops extended bits of the same kind of 2428 // the extension. 2429 // #1 get the type of the operand and check the kind of the extended bits. 2430 const Type *OpndType; 2431 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 2432 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 2433 OpndType = It->second.getPointer(); 2434 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 2435 OpndType = Opnd->getOperand(0)->getType(); 2436 else 2437 return false; 2438 2439 // #2 check that the truncate just drop extended bits. 2440 if (Inst->getType()->getIntegerBitWidth() >= OpndType->getIntegerBitWidth()) 2441 return true; 2442 2443 return false; 2444 } 2445 2446 TypePromotionHelper::Action TypePromotionHelper::getAction( 2447 Instruction *Ext, const SetOfInstrs &InsertedInsts, 2448 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 2449 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2450 "Unexpected instruction type"); 2451 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 2452 Type *ExtTy = Ext->getType(); 2453 bool IsSExt = isa<SExtInst>(Ext); 2454 // If the operand of the extension is not an instruction, we cannot 2455 // get through. 2456 // If it, check we can get through. 2457 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 2458 return nullptr; 2459 2460 // Do not promote if the operand has been added by codegenprepare. 2461 // Otherwise, it means we are undoing an optimization that is likely to be 2462 // redone, thus causing potential infinite loop. 2463 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 2464 return nullptr; 2465 2466 // SExt or Trunc instructions. 2467 // Return the related handler. 2468 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 2469 isa<ZExtInst>(ExtOpnd)) 2470 return promoteOperandForTruncAndAnyExt; 2471 2472 // Regular instruction. 2473 // Abort early if we will have to insert non-free instructions. 2474 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 2475 return nullptr; 2476 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 2477 } 2478 2479 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 2480 llvm::Instruction *SExt, TypePromotionTransaction &TPT, 2481 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2482 SmallVectorImpl<Instruction *> *Exts, 2483 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2484 // By construction, the operand of SExt is an instruction. Otherwise we cannot 2485 // get through it and this method should not be called. 2486 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 2487 Value *ExtVal = SExt; 2488 bool HasMergedNonFreeExt = false; 2489 if (isa<ZExtInst>(SExtOpnd)) { 2490 // Replace s|zext(zext(opnd)) 2491 // => zext(opnd). 2492 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 2493 Value *ZExt = 2494 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 2495 TPT.replaceAllUsesWith(SExt, ZExt); 2496 TPT.eraseInstruction(SExt); 2497 ExtVal = ZExt; 2498 } else { 2499 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 2500 // => z|sext(opnd). 2501 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 2502 } 2503 CreatedInstsCost = 0; 2504 2505 // Remove dead code. 2506 if (SExtOpnd->use_empty()) 2507 TPT.eraseInstruction(SExtOpnd); 2508 2509 // Check if the extension is still needed. 2510 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 2511 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 2512 if (ExtInst) { 2513 if (Exts) 2514 Exts->push_back(ExtInst); 2515 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 2516 } 2517 return ExtVal; 2518 } 2519 2520 // At this point we have: ext ty opnd to ty. 2521 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 2522 Value *NextVal = ExtInst->getOperand(0); 2523 TPT.eraseInstruction(ExtInst, NextVal); 2524 return NextVal; 2525 } 2526 2527 Value *TypePromotionHelper::promoteOperandForOther( 2528 Instruction *Ext, TypePromotionTransaction &TPT, 2529 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2530 SmallVectorImpl<Instruction *> *Exts, 2531 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 2532 bool IsSExt) { 2533 // By construction, the operand of Ext is an instruction. Otherwise we cannot 2534 // get through it and this method should not be called. 2535 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 2536 CreatedInstsCost = 0; 2537 if (!ExtOpnd->hasOneUse()) { 2538 // ExtOpnd will be promoted. 2539 // All its uses, but Ext, will need to use a truncated value of the 2540 // promoted version. 2541 // Create the truncate now. 2542 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 2543 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 2544 ITrunc->removeFromParent(); 2545 // Insert it just after the definition. 2546 ITrunc->insertAfter(ExtOpnd); 2547 if (Truncs) 2548 Truncs->push_back(ITrunc); 2549 } 2550 2551 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 2552 // Restore the operand of Ext (which has been replace by the previous call 2553 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 2554 TPT.setOperand(Ext, 0, ExtOpnd); 2555 } 2556 2557 // Get through the Instruction: 2558 // 1. Update its type. 2559 // 2. Replace the uses of Ext by Inst. 2560 // 3. Extend each operand that needs to be extended. 2561 2562 // Remember the original type of the instruction before promotion. 2563 // This is useful to know that the high bits are sign extended bits. 2564 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 2565 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 2566 // Step #1. 2567 TPT.mutateType(ExtOpnd, Ext->getType()); 2568 // Step #2. 2569 TPT.replaceAllUsesWith(Ext, ExtOpnd); 2570 // Step #3. 2571 Instruction *ExtForOpnd = Ext; 2572 2573 DEBUG(dbgs() << "Propagate Ext to operands\n"); 2574 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 2575 ++OpIdx) { 2576 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 2577 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 2578 !shouldExtOperand(ExtOpnd, OpIdx)) { 2579 DEBUG(dbgs() << "No need to propagate\n"); 2580 continue; 2581 } 2582 // Check if we can statically extend the operand. 2583 Value *Opnd = ExtOpnd->getOperand(OpIdx); 2584 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 2585 DEBUG(dbgs() << "Statically extend\n"); 2586 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 2587 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 2588 : Cst->getValue().zext(BitWidth); 2589 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 2590 continue; 2591 } 2592 // UndefValue are typed, so we have to statically sign extend them. 2593 if (isa<UndefValue>(Opnd)) { 2594 DEBUG(dbgs() << "Statically extend\n"); 2595 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 2596 continue; 2597 } 2598 2599 // Otherwise we have to explicity sign extend the operand. 2600 // Check if Ext was reused to extend an operand. 2601 if (!ExtForOpnd) { 2602 // If yes, create a new one. 2603 DEBUG(dbgs() << "More operands to ext\n"); 2604 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 2605 : TPT.createZExt(Ext, Opnd, Ext->getType()); 2606 if (!isa<Instruction>(ValForExtOpnd)) { 2607 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 2608 continue; 2609 } 2610 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 2611 } 2612 if (Exts) 2613 Exts->push_back(ExtForOpnd); 2614 TPT.setOperand(ExtForOpnd, 0, Opnd); 2615 2616 // Move the sign extension before the insertion point. 2617 TPT.moveBefore(ExtForOpnd, ExtOpnd); 2618 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 2619 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 2620 // If more sext are required, new instructions will have to be created. 2621 ExtForOpnd = nullptr; 2622 } 2623 if (ExtForOpnd == Ext) { 2624 DEBUG(dbgs() << "Extension is useless now\n"); 2625 TPT.eraseInstruction(Ext); 2626 } 2627 return ExtOpnd; 2628 } 2629 2630 /// IsPromotionProfitable - Check whether or not promoting an instruction 2631 /// to a wider type was profitable. 2632 /// \p NewCost gives the cost of extension instructions created by the 2633 /// promotion. 2634 /// \p OldCost gives the cost of extension instructions before the promotion 2635 /// plus the number of instructions that have been 2636 /// matched in the addressing mode the promotion. 2637 /// \p PromotedOperand is the value that has been promoted. 2638 /// \return True if the promotion is profitable, false otherwise. 2639 bool AddressingModeMatcher::IsPromotionProfitable( 2640 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 2641 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); 2642 // The cost of the new extensions is greater than the cost of the 2643 // old extension plus what we folded. 2644 // This is not profitable. 2645 if (NewCost > OldCost) 2646 return false; 2647 if (NewCost < OldCost) 2648 return true; 2649 // The promotion is neutral but it may help folding the sign extension in 2650 // loads for instance. 2651 // Check that we did not create an illegal instruction. 2652 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 2653 } 2654 2655 /// MatchOperationAddr - Given an instruction or constant expr, see if we can 2656 /// fold the operation into the addressing mode. If so, update the addressing 2657 /// mode and return true, otherwise return false without modifying AddrMode. 2658 /// If \p MovedAway is not NULL, it contains the information of whether or 2659 /// not AddrInst has to be folded into the addressing mode on success. 2660 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 2661 /// because it has been moved away. 2662 /// Thus AddrInst must not be added in the matched instructions. 2663 /// This state can happen when AddrInst is a sext, since it may be moved away. 2664 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 2665 /// not be referenced anymore. 2666 bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode, 2667 unsigned Depth, 2668 bool *MovedAway) { 2669 // Avoid exponential behavior on extremely deep expression trees. 2670 if (Depth >= 5) return false; 2671 2672 // By default, all matched instructions stay in place. 2673 if (MovedAway) 2674 *MovedAway = false; 2675 2676 switch (Opcode) { 2677 case Instruction::PtrToInt: 2678 // PtrToInt is always a noop, as we know that the int type is pointer sized. 2679 return MatchAddr(AddrInst->getOperand(0), Depth); 2680 case Instruction::IntToPtr: { 2681 auto AS = AddrInst->getType()->getPointerAddressSpace(); 2682 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 2683 // This inttoptr is a no-op if the integer type is pointer sized. 2684 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 2685 return MatchAddr(AddrInst->getOperand(0), Depth); 2686 return false; 2687 } 2688 case Instruction::BitCast: 2689 // BitCast is always a noop, and we can handle it as long as it is 2690 // int->int or pointer->pointer (we don't want int<->fp or something). 2691 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 2692 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 2693 // Don't touch identity bitcasts. These were probably put here by LSR, 2694 // and we don't want to mess around with them. Assume it knows what it 2695 // is doing. 2696 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 2697 return MatchAddr(AddrInst->getOperand(0), Depth); 2698 return false; 2699 case Instruction::AddrSpaceCast: { 2700 unsigned SrcAS 2701 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 2702 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 2703 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2704 return MatchAddr(AddrInst->getOperand(0), Depth); 2705 return false; 2706 } 2707 case Instruction::Add: { 2708 // Check to see if we can merge in the RHS then the LHS. If so, we win. 2709 ExtAddrMode BackupAddrMode = AddrMode; 2710 unsigned OldSize = AddrModeInsts.size(); 2711 // Start a transaction at this point. 2712 // The LHS may match but not the RHS. 2713 // Therefore, we need a higher level restoration point to undo partially 2714 // matched operation. 2715 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2716 TPT.getRestorationPoint(); 2717 2718 if (MatchAddr(AddrInst->getOperand(1), Depth+1) && 2719 MatchAddr(AddrInst->getOperand(0), Depth+1)) 2720 return true; 2721 2722 // Restore the old addr mode info. 2723 AddrMode = BackupAddrMode; 2724 AddrModeInsts.resize(OldSize); 2725 TPT.rollback(LastKnownGood); 2726 2727 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 2728 if (MatchAddr(AddrInst->getOperand(0), Depth+1) && 2729 MatchAddr(AddrInst->getOperand(1), Depth+1)) 2730 return true; 2731 2732 // Otherwise we definitely can't merge the ADD in. 2733 AddrMode = BackupAddrMode; 2734 AddrModeInsts.resize(OldSize); 2735 TPT.rollback(LastKnownGood); 2736 break; 2737 } 2738 //case Instruction::Or: 2739 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 2740 //break; 2741 case Instruction::Mul: 2742 case Instruction::Shl: { 2743 // Can only handle X*C and X << C. 2744 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 2745 if (!RHS) 2746 return false; 2747 int64_t Scale = RHS->getSExtValue(); 2748 if (Opcode == Instruction::Shl) 2749 Scale = 1LL << Scale; 2750 2751 return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth); 2752 } 2753 case Instruction::GetElementPtr: { 2754 // Scan the GEP. We check it if it contains constant offsets and at most 2755 // one variable offset. 2756 int VariableOperand = -1; 2757 unsigned VariableScale = 0; 2758 2759 int64_t ConstantOffset = 0; 2760 gep_type_iterator GTI = gep_type_begin(AddrInst); 2761 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 2762 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 2763 const StructLayout *SL = DL.getStructLayout(STy); 2764 unsigned Idx = 2765 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 2766 ConstantOffset += SL->getElementOffset(Idx); 2767 } else { 2768 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 2769 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 2770 ConstantOffset += CI->getSExtValue()*TypeSize; 2771 } else if (TypeSize) { // Scales of zero don't do anything. 2772 // We only allow one variable index at the moment. 2773 if (VariableOperand != -1) 2774 return false; 2775 2776 // Remember the variable index. 2777 VariableOperand = i; 2778 VariableScale = TypeSize; 2779 } 2780 } 2781 } 2782 2783 // A common case is for the GEP to only do a constant offset. In this case, 2784 // just add it to the disp field and check validity. 2785 if (VariableOperand == -1) { 2786 AddrMode.BaseOffs += ConstantOffset; 2787 if (ConstantOffset == 0 || 2788 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 2789 // Check to see if we can fold the base pointer in too. 2790 if (MatchAddr(AddrInst->getOperand(0), Depth+1)) 2791 return true; 2792 } 2793 AddrMode.BaseOffs -= ConstantOffset; 2794 return false; 2795 } 2796 2797 // Save the valid addressing mode in case we can't match. 2798 ExtAddrMode BackupAddrMode = AddrMode; 2799 unsigned OldSize = AddrModeInsts.size(); 2800 2801 // See if the scale and offset amount is valid for this target. 2802 AddrMode.BaseOffs += ConstantOffset; 2803 2804 // Match the base operand of the GEP. 2805 if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) { 2806 // If it couldn't be matched, just stuff the value in a register. 2807 if (AddrMode.HasBaseReg) { 2808 AddrMode = BackupAddrMode; 2809 AddrModeInsts.resize(OldSize); 2810 return false; 2811 } 2812 AddrMode.HasBaseReg = true; 2813 AddrMode.BaseReg = AddrInst->getOperand(0); 2814 } 2815 2816 // Match the remaining variable portion of the GEP. 2817 if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 2818 Depth)) { 2819 // If it couldn't be matched, try stuffing the base into a register 2820 // instead of matching it, and retrying the match of the scale. 2821 AddrMode = BackupAddrMode; 2822 AddrModeInsts.resize(OldSize); 2823 if (AddrMode.HasBaseReg) 2824 return false; 2825 AddrMode.HasBaseReg = true; 2826 AddrMode.BaseReg = AddrInst->getOperand(0); 2827 AddrMode.BaseOffs += ConstantOffset; 2828 if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), 2829 VariableScale, Depth)) { 2830 // If even that didn't work, bail. 2831 AddrMode = BackupAddrMode; 2832 AddrModeInsts.resize(OldSize); 2833 return false; 2834 } 2835 } 2836 2837 return true; 2838 } 2839 case Instruction::SExt: 2840 case Instruction::ZExt: { 2841 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 2842 if (!Ext) 2843 return false; 2844 2845 // Try to move this ext out of the way of the addressing mode. 2846 // Ask for a method for doing so. 2847 TypePromotionHelper::Action TPH = 2848 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 2849 if (!TPH) 2850 return false; 2851 2852 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2853 TPT.getRestorationPoint(); 2854 unsigned CreatedInstsCost = 0; 2855 unsigned ExtCost = !TLI.isExtFree(Ext); 2856 Value *PromotedOperand = 2857 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 2858 // SExt has been moved away. 2859 // Thus either it will be rematched later in the recursive calls or it is 2860 // gone. Anyway, we must not fold it into the addressing mode at this point. 2861 // E.g., 2862 // op = add opnd, 1 2863 // idx = ext op 2864 // addr = gep base, idx 2865 // is now: 2866 // promotedOpnd = ext opnd <- no match here 2867 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 2868 // addr = gep base, op <- match 2869 if (MovedAway) 2870 *MovedAway = true; 2871 2872 assert(PromotedOperand && 2873 "TypePromotionHelper should have filtered out those cases"); 2874 2875 ExtAddrMode BackupAddrMode = AddrMode; 2876 unsigned OldSize = AddrModeInsts.size(); 2877 2878 if (!MatchAddr(PromotedOperand, Depth) || 2879 // The total of the new cost is equals to the cost of the created 2880 // instructions. 2881 // The total of the old cost is equals to the cost of the extension plus 2882 // what we have saved in the addressing mode. 2883 !IsPromotionProfitable(CreatedInstsCost, 2884 ExtCost + (AddrModeInsts.size() - OldSize), 2885 PromotedOperand)) { 2886 AddrMode = BackupAddrMode; 2887 AddrModeInsts.resize(OldSize); 2888 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 2889 TPT.rollback(LastKnownGood); 2890 return false; 2891 } 2892 return true; 2893 } 2894 } 2895 return false; 2896 } 2897 2898 /// MatchAddr - If we can, try to add the value of 'Addr' into the current 2899 /// addressing mode. If Addr can't be added to AddrMode this returns false and 2900 /// leaves AddrMode unmodified. This assumes that Addr is either a pointer type 2901 /// or intptr_t for the target. 2902 /// 2903 bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) { 2904 // Start a transaction at this point that we will rollback if the matching 2905 // fails. 2906 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2907 TPT.getRestorationPoint(); 2908 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 2909 // Fold in immediates if legal for the target. 2910 AddrMode.BaseOffs += CI->getSExtValue(); 2911 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 2912 return true; 2913 AddrMode.BaseOffs -= CI->getSExtValue(); 2914 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 2915 // If this is a global variable, try to fold it into the addressing mode. 2916 if (!AddrMode.BaseGV) { 2917 AddrMode.BaseGV = GV; 2918 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 2919 return true; 2920 AddrMode.BaseGV = nullptr; 2921 } 2922 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 2923 ExtAddrMode BackupAddrMode = AddrMode; 2924 unsigned OldSize = AddrModeInsts.size(); 2925 2926 // Check to see if it is possible to fold this operation. 2927 bool MovedAway = false; 2928 if (MatchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 2929 // This instruction may have been move away. If so, there is nothing 2930 // to check here. 2931 if (MovedAway) 2932 return true; 2933 // Okay, it's possible to fold this. Check to see if it is actually 2934 // *profitable* to do so. We use a simple cost model to avoid increasing 2935 // register pressure too much. 2936 if (I->hasOneUse() || 2937 IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 2938 AddrModeInsts.push_back(I); 2939 return true; 2940 } 2941 2942 // It isn't profitable to do this, roll back. 2943 //cerr << "NOT FOLDING: " << *I; 2944 AddrMode = BackupAddrMode; 2945 AddrModeInsts.resize(OldSize); 2946 TPT.rollback(LastKnownGood); 2947 } 2948 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 2949 if (MatchOperationAddr(CE, CE->getOpcode(), Depth)) 2950 return true; 2951 TPT.rollback(LastKnownGood); 2952 } else if (isa<ConstantPointerNull>(Addr)) { 2953 // Null pointer gets folded without affecting the addressing mode. 2954 return true; 2955 } 2956 2957 // Worse case, the target should support [reg] addressing modes. :) 2958 if (!AddrMode.HasBaseReg) { 2959 AddrMode.HasBaseReg = true; 2960 AddrMode.BaseReg = Addr; 2961 // Still check for legality in case the target supports [imm] but not [i+r]. 2962 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 2963 return true; 2964 AddrMode.HasBaseReg = false; 2965 AddrMode.BaseReg = nullptr; 2966 } 2967 2968 // If the base register is already taken, see if we can do [r+r]. 2969 if (AddrMode.Scale == 0) { 2970 AddrMode.Scale = 1; 2971 AddrMode.ScaledReg = Addr; 2972 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 2973 return true; 2974 AddrMode.Scale = 0; 2975 AddrMode.ScaledReg = nullptr; 2976 } 2977 // Couldn't match. 2978 TPT.rollback(LastKnownGood); 2979 return false; 2980 } 2981 2982 /// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified 2983 /// inline asm call are due to memory operands. If so, return true, otherwise 2984 /// return false. 2985 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 2986 const TargetMachine &TM) { 2987 const Function *F = CI->getParent()->getParent(); 2988 const TargetLowering *TLI = TM.getSubtargetImpl(*F)->getTargetLowering(); 2989 const TargetRegisterInfo *TRI = TM.getSubtargetImpl(*F)->getRegisterInfo(); 2990 TargetLowering::AsmOperandInfoVector TargetConstraints = 2991 TLI->ParseConstraints(F->getParent()->getDataLayout(), TRI, 2992 ImmutableCallSite(CI)); 2993 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 2994 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 2995 2996 // Compute the constraint code and ConstraintType to use. 2997 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 2998 2999 // If this asm operand is our Value*, and if it isn't an indirect memory 3000 // operand, we can't fold it! 3001 if (OpInfo.CallOperandVal == OpVal && 3002 (OpInfo.ConstraintType != TargetLowering::C_Memory || 3003 !OpInfo.isIndirect)) 3004 return false; 3005 } 3006 3007 return true; 3008 } 3009 3010 /// FindAllMemoryUses - Recursively walk all the uses of I until we find a 3011 /// memory use. If we find an obviously non-foldable instruction, return true. 3012 /// Add the ultimately found memory instructions to MemoryUses. 3013 static bool FindAllMemoryUses( 3014 Instruction *I, 3015 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 3016 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetMachine &TM) { 3017 // If we already considered this instruction, we're done. 3018 if (!ConsideredInsts.insert(I).second) 3019 return false; 3020 3021 // If this is an obviously unfoldable instruction, bail out. 3022 if (!MightBeFoldableInst(I)) 3023 return true; 3024 3025 // Loop over all the uses, recursively processing them. 3026 for (Use &U : I->uses()) { 3027 Instruction *UserI = cast<Instruction>(U.getUser()); 3028 3029 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 3030 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 3031 continue; 3032 } 3033 3034 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 3035 unsigned opNo = U.getOperandNo(); 3036 if (opNo == 0) return true; // Storing addr, not into addr. 3037 MemoryUses.push_back(std::make_pair(SI, opNo)); 3038 continue; 3039 } 3040 3041 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 3042 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 3043 if (!IA) return true; 3044 3045 // If this is a memory operand, we're cool, otherwise bail out. 3046 if (!IsOperandAMemoryOperand(CI, IA, I, TM)) 3047 return true; 3048 continue; 3049 } 3050 3051 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TM)) 3052 return true; 3053 } 3054 3055 return false; 3056 } 3057 3058 /// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at 3059 /// the use site that we're folding it into. If so, there is no cost to 3060 /// include it in the addressing mode. KnownLive1 and KnownLive2 are two values 3061 /// that we know are live at the instruction already. 3062 bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 3063 Value *KnownLive2) { 3064 // If Val is either of the known-live values, we know it is live! 3065 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 3066 return true; 3067 3068 // All values other than instructions and arguments (e.g. constants) are live. 3069 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 3070 3071 // If Val is a constant sized alloca in the entry block, it is live, this is 3072 // true because it is just a reference to the stack/frame pointer, which is 3073 // live for the whole function. 3074 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 3075 if (AI->isStaticAlloca()) 3076 return true; 3077 3078 // Check to see if this value is already used in the memory instruction's 3079 // block. If so, it's already live into the block at the very least, so we 3080 // can reasonably fold it. 3081 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 3082 } 3083 3084 /// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing 3085 /// mode of the machine to fold the specified instruction into a load or store 3086 /// that ultimately uses it. However, the specified instruction has multiple 3087 /// uses. Given this, it may actually increase register pressure to fold it 3088 /// into the load. For example, consider this code: 3089 /// 3090 /// X = ... 3091 /// Y = X+1 3092 /// use(Y) -> nonload/store 3093 /// Z = Y+1 3094 /// load Z 3095 /// 3096 /// In this case, Y has multiple uses, and can be folded into the load of Z 3097 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 3098 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 3099 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 3100 /// number of computations either. 3101 /// 3102 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 3103 /// X was live across 'load Z' for other reasons, we actually *would* want to 3104 /// fold the addressing mode in the Z case. This would make Y die earlier. 3105 bool AddressingModeMatcher:: 3106 IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 3107 ExtAddrMode &AMAfter) { 3108 if (IgnoreProfitability) return true; 3109 3110 // AMBefore is the addressing mode before this instruction was folded into it, 3111 // and AMAfter is the addressing mode after the instruction was folded. Get 3112 // the set of registers referenced by AMAfter and subtract out those 3113 // referenced by AMBefore: this is the set of values which folding in this 3114 // address extends the lifetime of. 3115 // 3116 // Note that there are only two potential values being referenced here, 3117 // BaseReg and ScaleReg (global addresses are always available, as are any 3118 // folded immediates). 3119 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 3120 3121 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 3122 // lifetime wasn't extended by adding this instruction. 3123 if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3124 BaseReg = nullptr; 3125 if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3126 ScaledReg = nullptr; 3127 3128 // If folding this instruction (and it's subexprs) didn't extend any live 3129 // ranges, we're ok with it. 3130 if (!BaseReg && !ScaledReg) 3131 return true; 3132 3133 // If all uses of this instruction are ultimately load/store/inlineasm's, 3134 // check to see if their addressing modes will include this instruction. If 3135 // so, we can fold it into all uses, so it doesn't matter if it has multiple 3136 // uses. 3137 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 3138 SmallPtrSet<Instruction*, 16> ConsideredInsts; 3139 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TM)) 3140 return false; // Has a non-memory, non-foldable use! 3141 3142 // Now that we know that all uses of this instruction are part of a chain of 3143 // computation involving only operations that could theoretically be folded 3144 // into a memory use, loop over each of these uses and see if they could 3145 // *actually* fold the instruction. 3146 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 3147 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 3148 Instruction *User = MemoryUses[i].first; 3149 unsigned OpNo = MemoryUses[i].second; 3150 3151 // Get the access type of this use. If the use isn't a pointer, we don't 3152 // know what it accesses. 3153 Value *Address = User->getOperand(OpNo); 3154 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 3155 if (!AddrTy) 3156 return false; 3157 Type *AddressAccessTy = AddrTy->getElementType(); 3158 unsigned AS = AddrTy->getAddressSpace(); 3159 3160 // Do a match against the root of this address, ignoring profitability. This 3161 // will tell us if the addressing mode for the memory operation will 3162 // *actually* cover the shared instruction. 3163 ExtAddrMode Result; 3164 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3165 TPT.getRestorationPoint(); 3166 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TM, AddressAccessTy, AS, 3167 MemoryInst, Result, InsertedInsts, 3168 PromotedInsts, TPT); 3169 Matcher.IgnoreProfitability = true; 3170 bool Success = Matcher.MatchAddr(Address, 0); 3171 (void)Success; assert(Success && "Couldn't select *anything*?"); 3172 3173 // The match was to check the profitability, the changes made are not 3174 // part of the original matcher. Therefore, they should be dropped 3175 // otherwise the original matcher will not present the right state. 3176 TPT.rollback(LastKnownGood); 3177 3178 // If the match didn't cover I, then it won't be shared by it. 3179 if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(), 3180 I) == MatchedAddrModeInsts.end()) 3181 return false; 3182 3183 MatchedAddrModeInsts.clear(); 3184 } 3185 3186 return true; 3187 } 3188 3189 } // end anonymous namespace 3190 3191 /// IsNonLocalValue - Return true if the specified values are defined in a 3192 /// different basic block than BB. 3193 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 3194 if (Instruction *I = dyn_cast<Instruction>(V)) 3195 return I->getParent() != BB; 3196 return false; 3197 } 3198 3199 /// OptimizeMemoryInst - Load and Store Instructions often have 3200 /// addressing modes that can do significant amounts of computation. As such, 3201 /// instruction selection will try to get the load or store to do as much 3202 /// computation as possible for the program. The problem is that isel can only 3203 /// see within a single block. As such, we sink as much legal addressing mode 3204 /// stuff into the block as possible. 3205 /// 3206 /// This method is used to optimize both load/store and inline asms with memory 3207 /// operands. 3208 bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 3209 Type *AccessTy, unsigned AddrSpace) { 3210 Value *Repl = Addr; 3211 3212 // Try to collapse single-value PHI nodes. This is necessary to undo 3213 // unprofitable PRE transformations. 3214 SmallVector<Value*, 8> worklist; 3215 SmallPtrSet<Value*, 16> Visited; 3216 worklist.push_back(Addr); 3217 3218 // Use a worklist to iteratively look through PHI nodes, and ensure that 3219 // the addressing mode obtained from the non-PHI roots of the graph 3220 // are equivalent. 3221 Value *Consensus = nullptr; 3222 unsigned NumUsesConsensus = 0; 3223 bool IsNumUsesConsensusValid = false; 3224 SmallVector<Instruction*, 16> AddrModeInsts; 3225 ExtAddrMode AddrMode; 3226 TypePromotionTransaction TPT; 3227 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3228 TPT.getRestorationPoint(); 3229 while (!worklist.empty()) { 3230 Value *V = worklist.back(); 3231 worklist.pop_back(); 3232 3233 // Break use-def graph loops. 3234 if (!Visited.insert(V).second) { 3235 Consensus = nullptr; 3236 break; 3237 } 3238 3239 // For a PHI node, push all of its incoming values. 3240 if (PHINode *P = dyn_cast<PHINode>(V)) { 3241 for (Value *IncValue : P->incoming_values()) 3242 worklist.push_back(IncValue); 3243 continue; 3244 } 3245 3246 // For non-PHIs, determine the addressing mode being computed. 3247 SmallVector<Instruction*, 16> NewAddrModeInsts; 3248 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 3249 V, AccessTy, AddrSpace, MemoryInst, NewAddrModeInsts, *TM, 3250 InsertedInsts, PromotedInsts, TPT); 3251 3252 // This check is broken into two cases with very similar code to avoid using 3253 // getNumUses() as much as possible. Some values have a lot of uses, so 3254 // calling getNumUses() unconditionally caused a significant compile-time 3255 // regression. 3256 if (!Consensus) { 3257 Consensus = V; 3258 AddrMode = NewAddrMode; 3259 AddrModeInsts = NewAddrModeInsts; 3260 continue; 3261 } else if (NewAddrMode == AddrMode) { 3262 if (!IsNumUsesConsensusValid) { 3263 NumUsesConsensus = Consensus->getNumUses(); 3264 IsNumUsesConsensusValid = true; 3265 } 3266 3267 // Ensure that the obtained addressing mode is equivalent to that obtained 3268 // for all other roots of the PHI traversal. Also, when choosing one 3269 // such root as representative, select the one with the most uses in order 3270 // to keep the cost modeling heuristics in AddressingModeMatcher 3271 // applicable. 3272 unsigned NumUses = V->getNumUses(); 3273 if (NumUses > NumUsesConsensus) { 3274 Consensus = V; 3275 NumUsesConsensus = NumUses; 3276 AddrModeInsts = NewAddrModeInsts; 3277 } 3278 continue; 3279 } 3280 3281 Consensus = nullptr; 3282 break; 3283 } 3284 3285 // If the addressing mode couldn't be determined, or if multiple different 3286 // ones were determined, bail out now. 3287 if (!Consensus) { 3288 TPT.rollback(LastKnownGood); 3289 return false; 3290 } 3291 TPT.commit(); 3292 3293 // Check to see if any of the instructions supersumed by this addr mode are 3294 // non-local to I's BB. 3295 bool AnyNonLocal = false; 3296 for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) { 3297 if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) { 3298 AnyNonLocal = true; 3299 break; 3300 } 3301 } 3302 3303 // If all the instructions matched are already in this BB, don't do anything. 3304 if (!AnyNonLocal) { 3305 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 3306 return false; 3307 } 3308 3309 // Insert this computation right after this user. Since our caller is 3310 // scanning from the top of the BB to the bottom, reuse of the expr are 3311 // guaranteed to happen later. 3312 IRBuilder<> Builder(MemoryInst); 3313 3314 // Now that we determined the addressing expression we want to use and know 3315 // that we have to sink it into this block. Check to see if we have already 3316 // done this for some other load/store instr in this block. If so, reuse the 3317 // computation. 3318 Value *&SunkAddr = SunkAddrs[Addr]; 3319 if (SunkAddr) { 3320 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 3321 << *MemoryInst << "\n"); 3322 if (SunkAddr->getType() != Addr->getType()) 3323 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3324 } else if (AddrSinkUsingGEPs || 3325 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 3326 TM->getSubtargetImpl(*MemoryInst->getParent()->getParent()) 3327 ->useAA())) { 3328 // By default, we use the GEP-based method when AA is used later. This 3329 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 3330 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3331 << *MemoryInst << "\n"); 3332 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 3333 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 3334 3335 // First, find the pointer. 3336 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 3337 ResultPtr = AddrMode.BaseReg; 3338 AddrMode.BaseReg = nullptr; 3339 } 3340 3341 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 3342 // We can't add more than one pointer together, nor can we scale a 3343 // pointer (both of which seem meaningless). 3344 if (ResultPtr || AddrMode.Scale != 1) 3345 return false; 3346 3347 ResultPtr = AddrMode.ScaledReg; 3348 AddrMode.Scale = 0; 3349 } 3350 3351 if (AddrMode.BaseGV) { 3352 if (ResultPtr) 3353 return false; 3354 3355 ResultPtr = AddrMode.BaseGV; 3356 } 3357 3358 // If the real base value actually came from an inttoptr, then the matcher 3359 // will look through it and provide only the integer value. In that case, 3360 // use it here. 3361 if (!ResultPtr && AddrMode.BaseReg) { 3362 ResultPtr = 3363 Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr"); 3364 AddrMode.BaseReg = nullptr; 3365 } else if (!ResultPtr && AddrMode.Scale == 1) { 3366 ResultPtr = 3367 Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr"); 3368 AddrMode.Scale = 0; 3369 } 3370 3371 if (!ResultPtr && 3372 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 3373 SunkAddr = Constant::getNullValue(Addr->getType()); 3374 } else if (!ResultPtr) { 3375 return false; 3376 } else { 3377 Type *I8PtrTy = 3378 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 3379 Type *I8Ty = Builder.getInt8Ty(); 3380 3381 // Start with the base register. Do this first so that subsequent address 3382 // matching finds it last, which will prevent it from trying to match it 3383 // as the scaled value in case it happens to be a mul. That would be 3384 // problematic if we've sunk a different mul for the scale, because then 3385 // we'd end up sinking both muls. 3386 if (AddrMode.BaseReg) { 3387 Value *V = AddrMode.BaseReg; 3388 if (V->getType() != IntPtrTy) 3389 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3390 3391 ResultIndex = V; 3392 } 3393 3394 // Add the scale value. 3395 if (AddrMode.Scale) { 3396 Value *V = AddrMode.ScaledReg; 3397 if (V->getType() == IntPtrTy) { 3398 // done. 3399 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3400 cast<IntegerType>(V->getType())->getBitWidth()) { 3401 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3402 } else { 3403 // It is only safe to sign extend the BaseReg if we know that the math 3404 // required to create it did not overflow before we extend it. Since 3405 // the original IR value was tossed in favor of a constant back when 3406 // the AddrMode was created we need to bail out gracefully if widths 3407 // do not match instead of extending it. 3408 Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex); 3409 if (I && (ResultIndex != AddrMode.BaseReg)) 3410 I->eraseFromParent(); 3411 return false; 3412 } 3413 3414 if (AddrMode.Scale != 1) 3415 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3416 "sunkaddr"); 3417 if (ResultIndex) 3418 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 3419 else 3420 ResultIndex = V; 3421 } 3422 3423 // Add in the Base Offset if present. 3424 if (AddrMode.BaseOffs) { 3425 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3426 if (ResultIndex) { 3427 // We need to add this separately from the scale above to help with 3428 // SDAG consecutive load/store merging. 3429 if (ResultPtr->getType() != I8PtrTy) 3430 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3431 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 3432 } 3433 3434 ResultIndex = V; 3435 } 3436 3437 if (!ResultIndex) { 3438 SunkAddr = ResultPtr; 3439 } else { 3440 if (ResultPtr->getType() != I8PtrTy) 3441 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3442 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 3443 } 3444 3445 if (SunkAddr->getType() != Addr->getType()) 3446 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3447 } 3448 } else { 3449 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3450 << *MemoryInst << "\n"); 3451 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 3452 Value *Result = nullptr; 3453 3454 // Start with the base register. Do this first so that subsequent address 3455 // matching finds it last, which will prevent it from trying to match it 3456 // as the scaled value in case it happens to be a mul. That would be 3457 // problematic if we've sunk a different mul for the scale, because then 3458 // we'd end up sinking both muls. 3459 if (AddrMode.BaseReg) { 3460 Value *V = AddrMode.BaseReg; 3461 if (V->getType()->isPointerTy()) 3462 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3463 if (V->getType() != IntPtrTy) 3464 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3465 Result = V; 3466 } 3467 3468 // Add the scale value. 3469 if (AddrMode.Scale) { 3470 Value *V = AddrMode.ScaledReg; 3471 if (V->getType() == IntPtrTy) { 3472 // done. 3473 } else if (V->getType()->isPointerTy()) { 3474 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3475 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3476 cast<IntegerType>(V->getType())->getBitWidth()) { 3477 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3478 } else { 3479 // It is only safe to sign extend the BaseReg if we know that the math 3480 // required to create it did not overflow before we extend it. Since 3481 // the original IR value was tossed in favor of a constant back when 3482 // the AddrMode was created we need to bail out gracefully if widths 3483 // do not match instead of extending it. 3484 Instruction *I = dyn_cast_or_null<Instruction>(Result); 3485 if (I && (Result != AddrMode.BaseReg)) 3486 I->eraseFromParent(); 3487 return false; 3488 } 3489 if (AddrMode.Scale != 1) 3490 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3491 "sunkaddr"); 3492 if (Result) 3493 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3494 else 3495 Result = V; 3496 } 3497 3498 // Add in the BaseGV if present. 3499 if (AddrMode.BaseGV) { 3500 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 3501 if (Result) 3502 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3503 else 3504 Result = V; 3505 } 3506 3507 // Add in the Base Offset if present. 3508 if (AddrMode.BaseOffs) { 3509 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3510 if (Result) 3511 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3512 else 3513 Result = V; 3514 } 3515 3516 if (!Result) 3517 SunkAddr = Constant::getNullValue(Addr->getType()); 3518 else 3519 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 3520 } 3521 3522 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 3523 3524 // If we have no uses, recursively delete the value and all dead instructions 3525 // using it. 3526 if (Repl->use_empty()) { 3527 // This can cause recursive deletion, which can invalidate our iterator. 3528 // Use a WeakVH to hold onto it in case this happens. 3529 WeakVH IterHandle(CurInstIterator); 3530 BasicBlock *BB = CurInstIterator->getParent(); 3531 3532 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 3533 3534 if (IterHandle != CurInstIterator) { 3535 // If the iterator instruction was recursively deleted, start over at the 3536 // start of the block. 3537 CurInstIterator = BB->begin(); 3538 SunkAddrs.clear(); 3539 } 3540 } 3541 ++NumMemoryInsts; 3542 return true; 3543 } 3544 3545 /// OptimizeInlineAsmInst - If there are any memory operands, use 3546 /// OptimizeMemoryInst to sink their address computing into the block when 3547 /// possible / profitable. 3548 bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) { 3549 bool MadeChange = false; 3550 3551 const TargetRegisterInfo *TRI = 3552 TM->getSubtargetImpl(*CS->getParent()->getParent())->getRegisterInfo(); 3553 TargetLowering::AsmOperandInfoVector TargetConstraints = 3554 TLI->ParseConstraints(*DL, TRI, CS); 3555 unsigned ArgNo = 0; 3556 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3557 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3558 3559 // Compute the constraint code and ConstraintType to use. 3560 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 3561 3562 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 3563 OpInfo.isIndirect) { 3564 Value *OpVal = CS->getArgOperand(ArgNo++); 3565 MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 3566 } else if (OpInfo.Type == InlineAsm::isInput) 3567 ArgNo++; 3568 } 3569 3570 return MadeChange; 3571 } 3572 3573 /// \brief Check if all the uses of \p Inst are equivalent (or free) zero or 3574 /// sign extensions. 3575 static bool hasSameExtUse(Instruction *Inst, const TargetLowering &TLI) { 3576 assert(!Inst->use_empty() && "Input must have at least one use"); 3577 const Instruction *FirstUser = cast<Instruction>(*Inst->user_begin()); 3578 bool IsSExt = isa<SExtInst>(FirstUser); 3579 Type *ExtTy = FirstUser->getType(); 3580 for (const User *U : Inst->users()) { 3581 const Instruction *UI = cast<Instruction>(U); 3582 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 3583 return false; 3584 Type *CurTy = UI->getType(); 3585 // Same input and output types: Same instruction after CSE. 3586 if (CurTy == ExtTy) 3587 continue; 3588 3589 // If IsSExt is true, we are in this situation: 3590 // a = Inst 3591 // b = sext ty1 a to ty2 3592 // c = sext ty1 a to ty3 3593 // Assuming ty2 is shorter than ty3, this could be turned into: 3594 // a = Inst 3595 // b = sext ty1 a to ty2 3596 // c = sext ty2 b to ty3 3597 // However, the last sext is not free. 3598 if (IsSExt) 3599 return false; 3600 3601 // This is a ZExt, maybe this is free to extend from one type to another. 3602 // In that case, we would not account for a different use. 3603 Type *NarrowTy; 3604 Type *LargeTy; 3605 if (ExtTy->getScalarType()->getIntegerBitWidth() > 3606 CurTy->getScalarType()->getIntegerBitWidth()) { 3607 NarrowTy = CurTy; 3608 LargeTy = ExtTy; 3609 } else { 3610 NarrowTy = ExtTy; 3611 LargeTy = CurTy; 3612 } 3613 3614 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 3615 return false; 3616 } 3617 // All uses are the same or can be derived from one another for free. 3618 return true; 3619 } 3620 3621 /// \brief Try to form ExtLd by promoting \p Exts until they reach a 3622 /// load instruction. 3623 /// If an ext(load) can be formed, it is returned via \p LI for the load 3624 /// and \p Inst for the extension. 3625 /// Otherwise LI == nullptr and Inst == nullptr. 3626 /// When some promotion happened, \p TPT contains the proper state to 3627 /// revert them. 3628 /// 3629 /// \return true when promoting was necessary to expose the ext(load) 3630 /// opportunity, false otherwise. 3631 /// 3632 /// Example: 3633 /// \code 3634 /// %ld = load i32* %addr 3635 /// %add = add nuw i32 %ld, 4 3636 /// %zext = zext i32 %add to i64 3637 /// \endcode 3638 /// => 3639 /// \code 3640 /// %ld = load i32* %addr 3641 /// %zext = zext i32 %ld to i64 3642 /// %add = add nuw i64 %zext, 4 3643 /// \encode 3644 /// Thanks to the promotion, we can match zext(load i32*) to i64. 3645 bool CodeGenPrepare::ExtLdPromotion(TypePromotionTransaction &TPT, 3646 LoadInst *&LI, Instruction *&Inst, 3647 const SmallVectorImpl<Instruction *> &Exts, 3648 unsigned CreatedInstsCost = 0) { 3649 // Iterate over all the extensions to see if one form an ext(load). 3650 for (auto I : Exts) { 3651 // Check if we directly have ext(load). 3652 if ((LI = dyn_cast<LoadInst>(I->getOperand(0)))) { 3653 Inst = I; 3654 // No promotion happened here. 3655 return false; 3656 } 3657 // Check whether or not we want to do any promotion. 3658 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 3659 continue; 3660 // Get the action to perform the promotion. 3661 TypePromotionHelper::Action TPH = TypePromotionHelper::getAction( 3662 I, InsertedInsts, *TLI, PromotedInsts); 3663 // Check if we can promote. 3664 if (!TPH) 3665 continue; 3666 // Save the current state. 3667 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3668 TPT.getRestorationPoint(); 3669 SmallVector<Instruction *, 4> NewExts; 3670 unsigned NewCreatedInstsCost = 0; 3671 unsigned ExtCost = !TLI->isExtFree(I); 3672 // Promote. 3673 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 3674 &NewExts, nullptr, *TLI); 3675 assert(PromotedVal && 3676 "TypePromotionHelper should have filtered out those cases"); 3677 3678 // We would be able to merge only one extension in a load. 3679 // Therefore, if we have more than 1 new extension we heuristically 3680 // cut this search path, because it means we degrade the code quality. 3681 // With exactly 2, the transformation is neutral, because we will merge 3682 // one extension but leave one. However, we optimistically keep going, 3683 // because the new extension may be removed too. 3684 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 3685 TotalCreatedInstsCost -= ExtCost; 3686 if (!StressExtLdPromotion && 3687 (TotalCreatedInstsCost > 1 || 3688 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 3689 // The promotion is not profitable, rollback to the previous state. 3690 TPT.rollback(LastKnownGood); 3691 continue; 3692 } 3693 // The promotion is profitable. 3694 // Check if it exposes an ext(load). 3695 (void)ExtLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInstsCost); 3696 if (LI && (StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 3697 // If we have created a new extension, i.e., now we have two 3698 // extensions. We must make sure one of them is merged with 3699 // the load, otherwise we may degrade the code quality. 3700 (LI->hasOneUse() || hasSameExtUse(LI, *TLI)))) 3701 // Promotion happened. 3702 return true; 3703 // If this does not help to expose an ext(load) then, rollback. 3704 TPT.rollback(LastKnownGood); 3705 } 3706 // None of the extension can form an ext(load). 3707 LI = nullptr; 3708 Inst = nullptr; 3709 return false; 3710 } 3711 3712 /// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same 3713 /// basic block as the load, unless conditions are unfavorable. This allows 3714 /// SelectionDAG to fold the extend into the load. 3715 /// \p I[in/out] the extension may be modified during the process if some 3716 /// promotions apply. 3717 /// 3718 bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *&I) { 3719 // Try to promote a chain of computation if it allows to form 3720 // an extended load. 3721 TypePromotionTransaction TPT; 3722 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3723 TPT.getRestorationPoint(); 3724 SmallVector<Instruction *, 1> Exts; 3725 Exts.push_back(I); 3726 // Look for a load being extended. 3727 LoadInst *LI = nullptr; 3728 Instruction *OldExt = I; 3729 bool HasPromoted = ExtLdPromotion(TPT, LI, I, Exts); 3730 if (!LI || !I) { 3731 assert(!HasPromoted && !LI && "If we did not match any load instruction " 3732 "the code must remain the same"); 3733 I = OldExt; 3734 return false; 3735 } 3736 3737 // If they're already in the same block, there's nothing to do. 3738 // Make the cheap checks first if we did not promote. 3739 // If we promoted, we need to check if it is indeed profitable. 3740 if (!HasPromoted && LI->getParent() == I->getParent()) 3741 return false; 3742 3743 EVT VT = TLI->getValueType(*DL, I->getType()); 3744 EVT LoadVT = TLI->getValueType(*DL, LI->getType()); 3745 3746 // If the load has other users and the truncate is not free, this probably 3747 // isn't worthwhile. 3748 if (!LI->hasOneUse() && TLI && 3749 (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) && 3750 !TLI->isTruncateFree(I->getType(), LI->getType())) { 3751 I = OldExt; 3752 TPT.rollback(LastKnownGood); 3753 return false; 3754 } 3755 3756 // Check whether the target supports casts folded into loads. 3757 unsigned LType; 3758 if (isa<ZExtInst>(I)) 3759 LType = ISD::ZEXTLOAD; 3760 else { 3761 assert(isa<SExtInst>(I) && "Unexpected ext type!"); 3762 LType = ISD::SEXTLOAD; 3763 } 3764 if (TLI && !TLI->isLoadExtLegal(LType, VT, LoadVT)) { 3765 I = OldExt; 3766 TPT.rollback(LastKnownGood); 3767 return false; 3768 } 3769 3770 // Move the extend into the same block as the load, so that SelectionDAG 3771 // can fold it. 3772 TPT.commit(); 3773 I->removeFromParent(); 3774 I->insertAfter(LI); 3775 ++NumExtsMoved; 3776 return true; 3777 } 3778 3779 bool CodeGenPrepare::OptimizeExtUses(Instruction *I) { 3780 BasicBlock *DefBB = I->getParent(); 3781 3782 // If the result of a {s|z}ext and its source are both live out, rewrite all 3783 // other uses of the source with result of extension. 3784 Value *Src = I->getOperand(0); 3785 if (Src->hasOneUse()) 3786 return false; 3787 3788 // Only do this xform if truncating is free. 3789 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 3790 return false; 3791 3792 // Only safe to perform the optimization if the source is also defined in 3793 // this block. 3794 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 3795 return false; 3796 3797 bool DefIsLiveOut = false; 3798 for (User *U : I->users()) { 3799 Instruction *UI = cast<Instruction>(U); 3800 3801 // Figure out which BB this ext is used in. 3802 BasicBlock *UserBB = UI->getParent(); 3803 if (UserBB == DefBB) continue; 3804 DefIsLiveOut = true; 3805 break; 3806 } 3807 if (!DefIsLiveOut) 3808 return false; 3809 3810 // Make sure none of the uses are PHI nodes. 3811 for (User *U : Src->users()) { 3812 Instruction *UI = cast<Instruction>(U); 3813 BasicBlock *UserBB = UI->getParent(); 3814 if (UserBB == DefBB) continue; 3815 // Be conservative. We don't want this xform to end up introducing 3816 // reloads just before load / store instructions. 3817 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 3818 return false; 3819 } 3820 3821 // InsertedTruncs - Only insert one trunc in each block once. 3822 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 3823 3824 bool MadeChange = false; 3825 for (Use &U : Src->uses()) { 3826 Instruction *User = cast<Instruction>(U.getUser()); 3827 3828 // Figure out which BB this ext is used in. 3829 BasicBlock *UserBB = User->getParent(); 3830 if (UserBB == DefBB) continue; 3831 3832 // Both src and def are live in this block. Rewrite the use. 3833 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 3834 3835 if (!InsertedTrunc) { 3836 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 3837 InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt); 3838 InsertedInsts.insert(InsertedTrunc); 3839 } 3840 3841 // Replace a use of the {s|z}ext source with a use of the result. 3842 U = InsertedTrunc; 3843 ++NumExtUses; 3844 MadeChange = true; 3845 } 3846 3847 return MadeChange; 3848 } 3849 3850 /// isFormingBranchFromSelectProfitable - Returns true if a SelectInst should be 3851 /// turned into an explicit branch. 3852 static bool isFormingBranchFromSelectProfitable(SelectInst *SI) { 3853 // FIXME: This should use the same heuristics as IfConversion to determine 3854 // whether a select is better represented as a branch. This requires that 3855 // branch probability metadata is preserved for the select, which is not the 3856 // case currently. 3857 3858 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 3859 3860 // If the branch is predicted right, an out of order CPU can avoid blocking on 3861 // the compare. Emit cmovs on compares with a memory operand as branches to 3862 // avoid stalls on the load from memory. If the compare has more than one use 3863 // there's probably another cmov or setcc around so it's not worth emitting a 3864 // branch. 3865 if (!Cmp) 3866 return false; 3867 3868 Value *CmpOp0 = Cmp->getOperand(0); 3869 Value *CmpOp1 = Cmp->getOperand(1); 3870 3871 // We check that the memory operand has one use to avoid uses of the loaded 3872 // value directly after the compare, making branches unprofitable. 3873 return Cmp->hasOneUse() && 3874 ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) || 3875 (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse())); 3876 } 3877 3878 3879 /// If we have a SelectInst that will likely profit from branch prediction, 3880 /// turn it into a branch. 3881 bool CodeGenPrepare::OptimizeSelectInst(SelectInst *SI) { 3882 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 3883 3884 // Can we convert the 'select' to CF ? 3885 if (DisableSelectToBranch || OptSize || !TLI || VectorCond) 3886 return false; 3887 3888 TargetLowering::SelectSupportKind SelectKind; 3889 if (VectorCond) 3890 SelectKind = TargetLowering::VectorMaskSelect; 3891 else if (SI->getType()->isVectorTy()) 3892 SelectKind = TargetLowering::ScalarCondVectorVal; 3893 else 3894 SelectKind = TargetLowering::ScalarValSelect; 3895 3896 // Do we have efficient codegen support for this kind of 'selects' ? 3897 if (TLI->isSelectSupported(SelectKind)) { 3898 // We have efficient codegen support for the select instruction. 3899 // Check if it is profitable to keep this 'select'. 3900 if (!TLI->isPredictableSelectExpensive() || 3901 !isFormingBranchFromSelectProfitable(SI)) 3902 return false; 3903 } 3904 3905 ModifiedDT = true; 3906 3907 // First, we split the block containing the select into 2 blocks. 3908 BasicBlock *StartBlock = SI->getParent(); 3909 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI)); 3910 BasicBlock *NextBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 3911 3912 // Create a new block serving as the landing pad for the branch. 3913 BasicBlock *SmallBlock = BasicBlock::Create(SI->getContext(), "select.mid", 3914 NextBlock->getParent(), NextBlock); 3915 3916 // Move the unconditional branch from the block with the select in it into our 3917 // landing pad block. 3918 StartBlock->getTerminator()->eraseFromParent(); 3919 BranchInst::Create(NextBlock, SmallBlock); 3920 3921 // Insert the real conditional branch based on the original condition. 3922 BranchInst::Create(NextBlock, SmallBlock, SI->getCondition(), SI); 3923 3924 // The select itself is replaced with a PHI Node. 3925 PHINode *PN = PHINode::Create(SI->getType(), 2, "", NextBlock->begin()); 3926 PN->takeName(SI); 3927 PN->addIncoming(SI->getTrueValue(), StartBlock); 3928 PN->addIncoming(SI->getFalseValue(), SmallBlock); 3929 SI->replaceAllUsesWith(PN); 3930 SI->eraseFromParent(); 3931 3932 // Instruct OptimizeBlock to skip to the next block. 3933 CurInstIterator = StartBlock->end(); 3934 ++NumSelectsExpanded; 3935 return true; 3936 } 3937 3938 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 3939 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 3940 int SplatElem = -1; 3941 for (unsigned i = 0; i < Mask.size(); ++i) { 3942 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 3943 return false; 3944 SplatElem = Mask[i]; 3945 } 3946 3947 return true; 3948 } 3949 3950 /// Some targets have expensive vector shifts if the lanes aren't all the same 3951 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 3952 /// it's often worth sinking a shufflevector splat down to its use so that 3953 /// codegen can spot all lanes are identical. 3954 bool CodeGenPrepare::OptimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 3955 BasicBlock *DefBB = SVI->getParent(); 3956 3957 // Only do this xform if variable vector shifts are particularly expensive. 3958 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 3959 return false; 3960 3961 // We only expect better codegen by sinking a shuffle if we can recognise a 3962 // constant splat. 3963 if (!isBroadcastShuffle(SVI)) 3964 return false; 3965 3966 // InsertedShuffles - Only insert a shuffle in each block once. 3967 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 3968 3969 bool MadeChange = false; 3970 for (User *U : SVI->users()) { 3971 Instruction *UI = cast<Instruction>(U); 3972 3973 // Figure out which BB this ext is used in. 3974 BasicBlock *UserBB = UI->getParent(); 3975 if (UserBB == DefBB) continue; 3976 3977 // For now only apply this when the splat is used by a shift instruction. 3978 if (!UI->isShift()) continue; 3979 3980 // Everything checks out, sink the shuffle if the user's block doesn't 3981 // already have a copy. 3982 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 3983 3984 if (!InsertedShuffle) { 3985 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 3986 InsertedShuffle = new ShuffleVectorInst(SVI->getOperand(0), 3987 SVI->getOperand(1), 3988 SVI->getOperand(2), "", InsertPt); 3989 } 3990 3991 UI->replaceUsesOfWith(SVI, InsertedShuffle); 3992 MadeChange = true; 3993 } 3994 3995 // If we removed all uses, nuke the shuffle. 3996 if (SVI->use_empty()) { 3997 SVI->eraseFromParent(); 3998 MadeChange = true; 3999 } 4000 4001 return MadeChange; 4002 } 4003 4004 namespace { 4005 /// \brief Helper class to promote a scalar operation to a vector one. 4006 /// This class is used to move downward extractelement transition. 4007 /// E.g., 4008 /// a = vector_op <2 x i32> 4009 /// b = extractelement <2 x i32> a, i32 0 4010 /// c = scalar_op b 4011 /// store c 4012 /// 4013 /// => 4014 /// a = vector_op <2 x i32> 4015 /// c = vector_op a (equivalent to scalar_op on the related lane) 4016 /// * d = extractelement <2 x i32> c, i32 0 4017 /// * store d 4018 /// Assuming both extractelement and store can be combine, we get rid of the 4019 /// transition. 4020 class VectorPromoteHelper { 4021 /// DataLayout associated with the current module. 4022 const DataLayout &DL; 4023 4024 /// Used to perform some checks on the legality of vector operations. 4025 const TargetLowering &TLI; 4026 4027 /// Used to estimated the cost of the promoted chain. 4028 const TargetTransformInfo &TTI; 4029 4030 /// The transition being moved downwards. 4031 Instruction *Transition; 4032 /// The sequence of instructions to be promoted. 4033 SmallVector<Instruction *, 4> InstsToBePromoted; 4034 /// Cost of combining a store and an extract. 4035 unsigned StoreExtractCombineCost; 4036 /// Instruction that will be combined with the transition. 4037 Instruction *CombineInst; 4038 4039 /// \brief The instruction that represents the current end of the transition. 4040 /// Since we are faking the promotion until we reach the end of the chain 4041 /// of computation, we need a way to get the current end of the transition. 4042 Instruction *getEndOfTransition() const { 4043 if (InstsToBePromoted.empty()) 4044 return Transition; 4045 return InstsToBePromoted.back(); 4046 } 4047 4048 /// \brief Return the index of the original value in the transition. 4049 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 4050 /// c, is at index 0. 4051 unsigned getTransitionOriginalValueIdx() const { 4052 assert(isa<ExtractElementInst>(Transition) && 4053 "Other kind of transitions are not supported yet"); 4054 return 0; 4055 } 4056 4057 /// \brief Return the index of the index in the transition. 4058 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 4059 /// is at index 1. 4060 unsigned getTransitionIdx() const { 4061 assert(isa<ExtractElementInst>(Transition) && 4062 "Other kind of transitions are not supported yet"); 4063 return 1; 4064 } 4065 4066 /// \brief Get the type of the transition. 4067 /// This is the type of the original value. 4068 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 4069 /// transition is <2 x i32>. 4070 Type *getTransitionType() const { 4071 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 4072 } 4073 4074 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 4075 /// I.e., we have the following sequence: 4076 /// Def = Transition <ty1> a to <ty2> 4077 /// b = ToBePromoted <ty2> Def, ... 4078 /// => 4079 /// b = ToBePromoted <ty1> a, ... 4080 /// Def = Transition <ty1> ToBePromoted to <ty2> 4081 void promoteImpl(Instruction *ToBePromoted); 4082 4083 /// \brief Check whether or not it is profitable to promote all the 4084 /// instructions enqueued to be promoted. 4085 bool isProfitableToPromote() { 4086 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 4087 unsigned Index = isa<ConstantInt>(ValIdx) 4088 ? cast<ConstantInt>(ValIdx)->getZExtValue() 4089 : -1; 4090 Type *PromotedType = getTransitionType(); 4091 4092 StoreInst *ST = cast<StoreInst>(CombineInst); 4093 unsigned AS = ST->getPointerAddressSpace(); 4094 unsigned Align = ST->getAlignment(); 4095 // Check if this store is supported. 4096 if (!TLI.allowsMisalignedMemoryAccesses( 4097 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 4098 Align)) { 4099 // If this is not supported, there is no way we can combine 4100 // the extract with the store. 4101 return false; 4102 } 4103 4104 // The scalar chain of computation has to pay for the transition 4105 // scalar to vector. 4106 // The vector chain has to account for the combining cost. 4107 uint64_t ScalarCost = 4108 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 4109 uint64_t VectorCost = StoreExtractCombineCost; 4110 for (const auto &Inst : InstsToBePromoted) { 4111 // Compute the cost. 4112 // By construction, all instructions being promoted are arithmetic ones. 4113 // Moreover, one argument is a constant that can be viewed as a splat 4114 // constant. 4115 Value *Arg0 = Inst->getOperand(0); 4116 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 4117 isa<ConstantFP>(Arg0); 4118 TargetTransformInfo::OperandValueKind Arg0OVK = 4119 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 4120 : TargetTransformInfo::OK_AnyValue; 4121 TargetTransformInfo::OperandValueKind Arg1OVK = 4122 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 4123 : TargetTransformInfo::OK_AnyValue; 4124 ScalarCost += TTI.getArithmeticInstrCost( 4125 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 4126 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 4127 Arg0OVK, Arg1OVK); 4128 } 4129 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 4130 << ScalarCost << "\nVector: " << VectorCost << '\n'); 4131 return ScalarCost > VectorCost; 4132 } 4133 4134 /// \brief Generate a constant vector with \p Val with the same 4135 /// number of elements as the transition. 4136 /// \p UseSplat defines whether or not \p Val should be replicated 4137 /// across the whole vector. 4138 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 4139 /// otherwise we generate a vector with as many undef as possible: 4140 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 4141 /// used at the index of the extract. 4142 Value *getConstantVector(Constant *Val, bool UseSplat) const { 4143 unsigned ExtractIdx = UINT_MAX; 4144 if (!UseSplat) { 4145 // If we cannot determine where the constant must be, we have to 4146 // use a splat constant. 4147 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 4148 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 4149 ExtractIdx = CstVal->getSExtValue(); 4150 else 4151 UseSplat = true; 4152 } 4153 4154 unsigned End = getTransitionType()->getVectorNumElements(); 4155 if (UseSplat) 4156 return ConstantVector::getSplat(End, Val); 4157 4158 SmallVector<Constant *, 4> ConstVec; 4159 UndefValue *UndefVal = UndefValue::get(Val->getType()); 4160 for (unsigned Idx = 0; Idx != End; ++Idx) { 4161 if (Idx == ExtractIdx) 4162 ConstVec.push_back(Val); 4163 else 4164 ConstVec.push_back(UndefVal); 4165 } 4166 return ConstantVector::get(ConstVec); 4167 } 4168 4169 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 4170 /// in \p Use can trigger undefined behavior. 4171 static bool canCauseUndefinedBehavior(const Instruction *Use, 4172 unsigned OperandIdx) { 4173 // This is not safe to introduce undef when the operand is on 4174 // the right hand side of a division-like instruction. 4175 if (OperandIdx != 1) 4176 return false; 4177 switch (Use->getOpcode()) { 4178 default: 4179 return false; 4180 case Instruction::SDiv: 4181 case Instruction::UDiv: 4182 case Instruction::SRem: 4183 case Instruction::URem: 4184 return true; 4185 case Instruction::FDiv: 4186 case Instruction::FRem: 4187 return !Use->hasNoNaNs(); 4188 } 4189 llvm_unreachable(nullptr); 4190 } 4191 4192 public: 4193 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 4194 const TargetTransformInfo &TTI, Instruction *Transition, 4195 unsigned CombineCost) 4196 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 4197 StoreExtractCombineCost(CombineCost), CombineInst(nullptr) { 4198 assert(Transition && "Do not know how to promote null"); 4199 } 4200 4201 /// \brief Check if we can promote \p ToBePromoted to \p Type. 4202 bool canPromote(const Instruction *ToBePromoted) const { 4203 // We could support CastInst too. 4204 return isa<BinaryOperator>(ToBePromoted); 4205 } 4206 4207 /// \brief Check if it is profitable to promote \p ToBePromoted 4208 /// by moving downward the transition through. 4209 bool shouldPromote(const Instruction *ToBePromoted) const { 4210 // Promote only if all the operands can be statically expanded. 4211 // Indeed, we do not want to introduce any new kind of transitions. 4212 for (const Use &U : ToBePromoted->operands()) { 4213 const Value *Val = U.get(); 4214 if (Val == getEndOfTransition()) { 4215 // If the use is a division and the transition is on the rhs, 4216 // we cannot promote the operation, otherwise we may create a 4217 // division by zero. 4218 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 4219 return false; 4220 continue; 4221 } 4222 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 4223 !isa<ConstantFP>(Val)) 4224 return false; 4225 } 4226 // Check that the resulting operation is legal. 4227 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 4228 if (!ISDOpcode) 4229 return false; 4230 return StressStoreExtract || 4231 TLI.isOperationLegalOrCustom( 4232 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 4233 } 4234 4235 /// \brief Check whether or not \p Use can be combined 4236 /// with the transition. 4237 /// I.e., is it possible to do Use(Transition) => AnotherUse? 4238 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 4239 4240 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 4241 void enqueueForPromotion(Instruction *ToBePromoted) { 4242 InstsToBePromoted.push_back(ToBePromoted); 4243 } 4244 4245 /// \brief Set the instruction that will be combined with the transition. 4246 void recordCombineInstruction(Instruction *ToBeCombined) { 4247 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 4248 CombineInst = ToBeCombined; 4249 } 4250 4251 /// \brief Promote all the instructions enqueued for promotion if it is 4252 /// is profitable. 4253 /// \return True if the promotion happened, false otherwise. 4254 bool promote() { 4255 // Check if there is something to promote. 4256 // Right now, if we do not have anything to combine with, 4257 // we assume the promotion is not profitable. 4258 if (InstsToBePromoted.empty() || !CombineInst) 4259 return false; 4260 4261 // Check cost. 4262 if (!StressStoreExtract && !isProfitableToPromote()) 4263 return false; 4264 4265 // Promote. 4266 for (auto &ToBePromoted : InstsToBePromoted) 4267 promoteImpl(ToBePromoted); 4268 InstsToBePromoted.clear(); 4269 return true; 4270 } 4271 }; 4272 } // End of anonymous namespace. 4273 4274 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 4275 // At this point, we know that all the operands of ToBePromoted but Def 4276 // can be statically promoted. 4277 // For Def, we need to use its parameter in ToBePromoted: 4278 // b = ToBePromoted ty1 a 4279 // Def = Transition ty1 b to ty2 4280 // Move the transition down. 4281 // 1. Replace all uses of the promoted operation by the transition. 4282 // = ... b => = ... Def. 4283 assert(ToBePromoted->getType() == Transition->getType() && 4284 "The type of the result of the transition does not match " 4285 "the final type"); 4286 ToBePromoted->replaceAllUsesWith(Transition); 4287 // 2. Update the type of the uses. 4288 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 4289 Type *TransitionTy = getTransitionType(); 4290 ToBePromoted->mutateType(TransitionTy); 4291 // 3. Update all the operands of the promoted operation with promoted 4292 // operands. 4293 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 4294 for (Use &U : ToBePromoted->operands()) { 4295 Value *Val = U.get(); 4296 Value *NewVal = nullptr; 4297 if (Val == Transition) 4298 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 4299 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 4300 isa<ConstantFP>(Val)) { 4301 // Use a splat constant if it is not safe to use undef. 4302 NewVal = getConstantVector( 4303 cast<Constant>(Val), 4304 isa<UndefValue>(Val) || 4305 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 4306 } else 4307 llvm_unreachable("Did you modified shouldPromote and forgot to update " 4308 "this?"); 4309 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 4310 } 4311 Transition->removeFromParent(); 4312 Transition->insertAfter(ToBePromoted); 4313 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 4314 } 4315 4316 /// Some targets can do store(extractelement) with one instruction. 4317 /// Try to push the extractelement towards the stores when the target 4318 /// has this feature and this is profitable. 4319 bool CodeGenPrepare::OptimizeExtractElementInst(Instruction *Inst) { 4320 unsigned CombineCost = UINT_MAX; 4321 if (DisableStoreExtract || !TLI || 4322 (!StressStoreExtract && 4323 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 4324 Inst->getOperand(1), CombineCost))) 4325 return false; 4326 4327 // At this point we know that Inst is a vector to scalar transition. 4328 // Try to move it down the def-use chain, until: 4329 // - We can combine the transition with its single use 4330 // => we got rid of the transition. 4331 // - We escape the current basic block 4332 // => we would need to check that we are moving it at a cheaper place and 4333 // we do not do that for now. 4334 BasicBlock *Parent = Inst->getParent(); 4335 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 4336 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 4337 // If the transition has more than one use, assume this is not going to be 4338 // beneficial. 4339 while (Inst->hasOneUse()) { 4340 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 4341 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 4342 4343 if (ToBePromoted->getParent() != Parent) { 4344 DEBUG(dbgs() << "Instruction to promote is in a different block (" 4345 << ToBePromoted->getParent()->getName() 4346 << ") than the transition (" << Parent->getName() << ").\n"); 4347 return false; 4348 } 4349 4350 if (VPH.canCombine(ToBePromoted)) { 4351 DEBUG(dbgs() << "Assume " << *Inst << '\n' 4352 << "will be combined with: " << *ToBePromoted << '\n'); 4353 VPH.recordCombineInstruction(ToBePromoted); 4354 bool Changed = VPH.promote(); 4355 NumStoreExtractExposed += Changed; 4356 return Changed; 4357 } 4358 4359 DEBUG(dbgs() << "Try promoting.\n"); 4360 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 4361 return false; 4362 4363 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 4364 4365 VPH.enqueueForPromotion(ToBePromoted); 4366 Inst = ToBePromoted; 4367 } 4368 return false; 4369 } 4370 4371 bool CodeGenPrepare::OptimizeInst(Instruction *I, bool& ModifiedDT) { 4372 // Bail out if we inserted the instruction to prevent optimizations from 4373 // stepping on each other's toes. 4374 if (InsertedInsts.count(I)) 4375 return false; 4376 4377 if (PHINode *P = dyn_cast<PHINode>(I)) { 4378 // It is possible for very late stage optimizations (such as SimplifyCFG) 4379 // to introduce PHI nodes too late to be cleaned up. If we detect such a 4380 // trivial PHI, go ahead and zap it here. 4381 if (Value *V = SimplifyInstruction(P, *DL, TLInfo, nullptr)) { 4382 P->replaceAllUsesWith(V); 4383 P->eraseFromParent(); 4384 ++NumPHIsElim; 4385 return true; 4386 } 4387 return false; 4388 } 4389 4390 if (CastInst *CI = dyn_cast<CastInst>(I)) { 4391 // If the source of the cast is a constant, then this should have 4392 // already been constant folded. The only reason NOT to constant fold 4393 // it is if something (e.g. LSR) was careful to place the constant 4394 // evaluation in a block other than then one that uses it (e.g. to hoist 4395 // the address of globals out of a loop). If this is the case, we don't 4396 // want to forward-subst the cast. 4397 if (isa<Constant>(CI->getOperand(0))) 4398 return false; 4399 4400 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 4401 return true; 4402 4403 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 4404 /// Sink a zext or sext into its user blocks if the target type doesn't 4405 /// fit in one register 4406 if (TLI && 4407 TLI->getTypeAction(CI->getContext(), 4408 TLI->getValueType(*DL, CI->getType())) == 4409 TargetLowering::TypeExpandInteger) { 4410 return SinkCast(CI); 4411 } else { 4412 bool MadeChange = MoveExtToFormExtLoad(I); 4413 return MadeChange | OptimizeExtUses(I); 4414 } 4415 } 4416 return false; 4417 } 4418 4419 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 4420 if (!TLI || !TLI->hasMultipleConditionRegisters()) 4421 return OptimizeCmpExpression(CI); 4422 4423 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 4424 if (TLI) { 4425 unsigned AS = LI->getPointerAddressSpace(); 4426 return OptimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 4427 } 4428 return false; 4429 } 4430 4431 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 4432 if (TLI) { 4433 unsigned AS = SI->getPointerAddressSpace(); 4434 return OptimizeMemoryInst(I, SI->getOperand(1), 4435 SI->getOperand(0)->getType(), AS); 4436 } 4437 return false; 4438 } 4439 4440 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 4441 4442 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 4443 BinOp->getOpcode() == Instruction::LShr)) { 4444 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 4445 if (TLI && CI && TLI->hasExtractBitsInsn()) 4446 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 4447 4448 return false; 4449 } 4450 4451 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 4452 if (GEPI->hasAllZeroIndices()) { 4453 /// The GEP operand must be a pointer, so must its result -> BitCast 4454 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 4455 GEPI->getName(), GEPI); 4456 GEPI->replaceAllUsesWith(NC); 4457 GEPI->eraseFromParent(); 4458 ++NumGEPsElim; 4459 OptimizeInst(NC, ModifiedDT); 4460 return true; 4461 } 4462 return false; 4463 } 4464 4465 if (CallInst *CI = dyn_cast<CallInst>(I)) 4466 return OptimizeCallInst(CI, ModifiedDT); 4467 4468 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 4469 return OptimizeSelectInst(SI); 4470 4471 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 4472 return OptimizeShuffleVectorInst(SVI); 4473 4474 if (isa<ExtractElementInst>(I)) 4475 return OptimizeExtractElementInst(I); 4476 4477 return false; 4478 } 4479 4480 // In this pass we look for GEP and cast instructions that are used 4481 // across basic blocks and rewrite them to improve basic-block-at-a-time 4482 // selection. 4483 bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB, bool& ModifiedDT) { 4484 SunkAddrs.clear(); 4485 bool MadeChange = false; 4486 4487 CurInstIterator = BB.begin(); 4488 while (CurInstIterator != BB.end()) { 4489 MadeChange |= OptimizeInst(CurInstIterator++, ModifiedDT); 4490 if (ModifiedDT) 4491 return true; 4492 } 4493 MadeChange |= DupRetToEnableTailCallOpts(&BB); 4494 4495 return MadeChange; 4496 } 4497 4498 // llvm.dbg.value is far away from the value then iSel may not be able 4499 // handle it properly. iSel will drop llvm.dbg.value if it can not 4500 // find a node corresponding to the value. 4501 bool CodeGenPrepare::PlaceDbgValues(Function &F) { 4502 bool MadeChange = false; 4503 for (BasicBlock &BB : F) { 4504 Instruction *PrevNonDbgInst = nullptr; 4505 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 4506 Instruction *Insn = BI++; 4507 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 4508 // Leave dbg.values that refer to an alloca alone. These 4509 // instrinsics describe the address of a variable (= the alloca) 4510 // being taken. They should not be moved next to the alloca 4511 // (and to the beginning of the scope), but rather stay close to 4512 // where said address is used. 4513 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 4514 PrevNonDbgInst = Insn; 4515 continue; 4516 } 4517 4518 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 4519 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 4520 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 4521 DVI->removeFromParent(); 4522 if (isa<PHINode>(VI)) 4523 DVI->insertBefore(VI->getParent()->getFirstInsertionPt()); 4524 else 4525 DVI->insertAfter(VI); 4526 MadeChange = true; 4527 ++NumDbgValueMoved; 4528 } 4529 } 4530 } 4531 return MadeChange; 4532 } 4533 4534 // If there is a sequence that branches based on comparing a single bit 4535 // against zero that can be combined into a single instruction, and the 4536 // target supports folding these into a single instruction, sink the 4537 // mask and compare into the branch uses. Do this before OptimizeBlock -> 4538 // OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being 4539 // searched for. 4540 bool CodeGenPrepare::sinkAndCmp(Function &F) { 4541 if (!EnableAndCmpSinking) 4542 return false; 4543 if (!TLI || !TLI->isMaskAndBranchFoldingLegal()) 4544 return false; 4545 bool MadeChange = false; 4546 for (Function::iterator I = F.begin(), E = F.end(); I != E; ) { 4547 BasicBlock *BB = I++; 4548 4549 // Does this BB end with the following? 4550 // %andVal = and %val, #single-bit-set 4551 // %icmpVal = icmp %andResult, 0 4552 // br i1 %cmpVal label %dest1, label %dest2" 4553 BranchInst *Brcc = dyn_cast<BranchInst>(BB->getTerminator()); 4554 if (!Brcc || !Brcc->isConditional()) 4555 continue; 4556 ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0)); 4557 if (!Cmp || Cmp->getParent() != BB) 4558 continue; 4559 ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 4560 if (!Zero || !Zero->isZero()) 4561 continue; 4562 Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0)); 4563 if (!And || And->getOpcode() != Instruction::And || And->getParent() != BB) 4564 continue; 4565 ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1)); 4566 if (!Mask || !Mask->getUniqueInteger().isPowerOf2()) 4567 continue; 4568 DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB->dump()); 4569 4570 // Push the "and; icmp" for any users that are conditional branches. 4571 // Since there can only be one branch use per BB, we don't need to keep 4572 // track of which BBs we insert into. 4573 for (Value::use_iterator UI = Cmp->use_begin(), E = Cmp->use_end(); 4574 UI != E; ) { 4575 Use &TheUse = *UI; 4576 // Find brcc use. 4577 BranchInst *BrccUser = dyn_cast<BranchInst>(*UI); 4578 ++UI; 4579 if (!BrccUser || !BrccUser->isConditional()) 4580 continue; 4581 BasicBlock *UserBB = BrccUser->getParent(); 4582 if (UserBB == BB) continue; 4583 DEBUG(dbgs() << "found Brcc use\n"); 4584 4585 // Sink the "and; icmp" to use. 4586 MadeChange = true; 4587 BinaryOperator *NewAnd = 4588 BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "", 4589 BrccUser); 4590 CmpInst *NewCmp = 4591 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero, 4592 "", BrccUser); 4593 TheUse = NewCmp; 4594 ++NumAndCmpsMoved; 4595 DEBUG(BrccUser->getParent()->dump()); 4596 } 4597 } 4598 return MadeChange; 4599 } 4600 4601 /// \brief Retrieve the probabilities of a conditional branch. Returns true on 4602 /// success, or returns false if no or invalid metadata was found. 4603 static bool extractBranchMetadata(BranchInst *BI, 4604 uint64_t &ProbTrue, uint64_t &ProbFalse) { 4605 assert(BI->isConditional() && 4606 "Looking for probabilities on unconditional branch?"); 4607 auto *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 4608 if (!ProfileData || ProfileData->getNumOperands() != 3) 4609 return false; 4610 4611 const auto *CITrue = 4612 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 4613 const auto *CIFalse = 4614 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 4615 if (!CITrue || !CIFalse) 4616 return false; 4617 4618 ProbTrue = CITrue->getValue().getZExtValue(); 4619 ProbFalse = CIFalse->getValue().getZExtValue(); 4620 4621 return true; 4622 } 4623 4624 /// \brief Scale down both weights to fit into uint32_t. 4625 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 4626 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 4627 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 4628 NewTrue = NewTrue / Scale; 4629 NewFalse = NewFalse / Scale; 4630 } 4631 4632 /// \brief Some targets prefer to split a conditional branch like: 4633 /// \code 4634 /// %0 = icmp ne i32 %a, 0 4635 /// %1 = icmp ne i32 %b, 0 4636 /// %or.cond = or i1 %0, %1 4637 /// br i1 %or.cond, label %TrueBB, label %FalseBB 4638 /// \endcode 4639 /// into multiple branch instructions like: 4640 /// \code 4641 /// bb1: 4642 /// %0 = icmp ne i32 %a, 0 4643 /// br i1 %0, label %TrueBB, label %bb2 4644 /// bb2: 4645 /// %1 = icmp ne i32 %b, 0 4646 /// br i1 %1, label %TrueBB, label %FalseBB 4647 /// \endcode 4648 /// This usually allows instruction selection to do even further optimizations 4649 /// and combine the compare with the branch instruction. Currently this is 4650 /// applied for targets which have "cheap" jump instructions. 4651 /// 4652 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 4653 /// 4654 bool CodeGenPrepare::splitBranchCondition(Function &F) { 4655 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 4656 return false; 4657 4658 bool MadeChange = false; 4659 for (auto &BB : F) { 4660 // Does this BB end with the following? 4661 // %cond1 = icmp|fcmp|binary instruction ... 4662 // %cond2 = icmp|fcmp|binary instruction ... 4663 // %cond.or = or|and i1 %cond1, cond2 4664 // br i1 %cond.or label %dest1, label %dest2" 4665 BinaryOperator *LogicOp; 4666 BasicBlock *TBB, *FBB; 4667 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 4668 continue; 4669 4670 unsigned Opc; 4671 Value *Cond1, *Cond2; 4672 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 4673 m_OneUse(m_Value(Cond2))))) 4674 Opc = Instruction::And; 4675 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 4676 m_OneUse(m_Value(Cond2))))) 4677 Opc = Instruction::Or; 4678 else 4679 continue; 4680 4681 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 4682 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 4683 continue; 4684 4685 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 4686 4687 // Create a new BB. 4688 auto *InsertBefore = std::next(Function::iterator(BB)) 4689 .getNodePtrUnchecked(); 4690 auto TmpBB = BasicBlock::Create(BB.getContext(), 4691 BB.getName() + ".cond.split", 4692 BB.getParent(), InsertBefore); 4693 4694 // Update original basic block by using the first condition directly by the 4695 // branch instruction and removing the no longer needed and/or instruction. 4696 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 4697 Br1->setCondition(Cond1); 4698 LogicOp->eraseFromParent(); 4699 4700 // Depending on the conditon we have to either replace the true or the false 4701 // successor of the original branch instruction. 4702 if (Opc == Instruction::And) 4703 Br1->setSuccessor(0, TmpBB); 4704 else 4705 Br1->setSuccessor(1, TmpBB); 4706 4707 // Fill in the new basic block. 4708 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 4709 if (auto *I = dyn_cast<Instruction>(Cond2)) { 4710 I->removeFromParent(); 4711 I->insertBefore(Br2); 4712 } 4713 4714 // Update PHI nodes in both successors. The original BB needs to be 4715 // replaced in one succesor's PHI nodes, because the branch comes now from 4716 // the newly generated BB (NewBB). In the other successor we need to add one 4717 // incoming edge to the PHI nodes, because both branch instructions target 4718 // now the same successor. Depending on the original branch condition 4719 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 4720 // we perfrom the correct update for the PHI nodes. 4721 // This doesn't change the successor order of the just created branch 4722 // instruction (or any other instruction). 4723 if (Opc == Instruction::Or) 4724 std::swap(TBB, FBB); 4725 4726 // Replace the old BB with the new BB. 4727 for (auto &I : *TBB) { 4728 PHINode *PN = dyn_cast<PHINode>(&I); 4729 if (!PN) 4730 break; 4731 int i; 4732 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 4733 PN->setIncomingBlock(i, TmpBB); 4734 } 4735 4736 // Add another incoming edge form the new BB. 4737 for (auto &I : *FBB) { 4738 PHINode *PN = dyn_cast<PHINode>(&I); 4739 if (!PN) 4740 break; 4741 auto *Val = PN->getIncomingValueForBlock(&BB); 4742 PN->addIncoming(Val, TmpBB); 4743 } 4744 4745 // Update the branch weights (from SelectionDAGBuilder:: 4746 // FindMergedConditions). 4747 if (Opc == Instruction::Or) { 4748 // Codegen X | Y as: 4749 // BB1: 4750 // jmp_if_X TBB 4751 // jmp TmpBB 4752 // TmpBB: 4753 // jmp_if_Y TBB 4754 // jmp FBB 4755 // 4756 4757 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 4758 // The requirement is that 4759 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 4760 // = TrueProb for orignal BB. 4761 // Assuming the orignal weights are A and B, one choice is to set BB1's 4762 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 4763 // assumes that 4764 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 4765 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 4766 // TmpBB, but the math is more complicated. 4767 uint64_t TrueWeight, FalseWeight; 4768 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { 4769 uint64_t NewTrueWeight = TrueWeight; 4770 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 4771 scaleWeights(NewTrueWeight, NewFalseWeight); 4772 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 4773 .createBranchWeights(TrueWeight, FalseWeight)); 4774 4775 NewTrueWeight = TrueWeight; 4776 NewFalseWeight = 2 * FalseWeight; 4777 scaleWeights(NewTrueWeight, NewFalseWeight); 4778 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 4779 .createBranchWeights(TrueWeight, FalseWeight)); 4780 } 4781 } else { 4782 // Codegen X & Y as: 4783 // BB1: 4784 // jmp_if_X TmpBB 4785 // jmp FBB 4786 // TmpBB: 4787 // jmp_if_Y TBB 4788 // jmp FBB 4789 // 4790 // This requires creation of TmpBB after CurBB. 4791 4792 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 4793 // The requirement is that 4794 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 4795 // = FalseProb for orignal BB. 4796 // Assuming the orignal weights are A and B, one choice is to set BB1's 4797 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 4798 // assumes that 4799 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 4800 uint64_t TrueWeight, FalseWeight; 4801 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { 4802 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 4803 uint64_t NewFalseWeight = FalseWeight; 4804 scaleWeights(NewTrueWeight, NewFalseWeight); 4805 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 4806 .createBranchWeights(TrueWeight, FalseWeight)); 4807 4808 NewTrueWeight = 2 * TrueWeight; 4809 NewFalseWeight = FalseWeight; 4810 scaleWeights(NewTrueWeight, NewFalseWeight); 4811 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 4812 .createBranchWeights(TrueWeight, FalseWeight)); 4813 } 4814 } 4815 4816 // Note: No point in getting fancy here, since the DT info is never 4817 // available to CodeGenPrepare. 4818 ModifiedDT = true; 4819 4820 MadeChange = true; 4821 4822 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 4823 TmpBB->dump()); 4824 } 4825 return MadeChange; 4826 } 4827