1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/Passes.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GetElementPtrTypeIterator.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/InlineAsm.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/PatternMatch.h" 37 #include "llvm/IR/Statepoint.h" 38 #include "llvm/IR/ValueHandle.h" 39 #include "llvm/IR/ValueMap.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Target/TargetLowering.h" 45 #include "llvm/Target/TargetSubtargetInfo.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/BuildLibCalls.h" 48 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 49 #include "llvm/Transforms/Utils/Local.h" 50 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 51 using namespace llvm; 52 using namespace llvm::PatternMatch; 53 54 #define DEBUG_TYPE "codegenprepare" 55 56 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 57 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 58 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 59 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 60 "sunken Cmps"); 61 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 62 "of sunken Casts"); 63 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 64 "computations were sunk"); 65 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 66 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 67 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 68 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 69 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 70 STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches"); 71 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 72 73 static cl::opt<bool> DisableBranchOpts( 74 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 75 cl::desc("Disable branch optimizations in CodeGenPrepare")); 76 77 static cl::opt<bool> 78 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 79 cl::desc("Disable GC optimizations in CodeGenPrepare")); 80 81 static cl::opt<bool> DisableSelectToBranch( 82 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 83 cl::desc("Disable select to branch conversion.")); 84 85 static cl::opt<bool> AddrSinkUsingGEPs( 86 "addr-sink-using-gep", cl::Hidden, cl::init(false), 87 cl::desc("Address sinking in CGP using GEPs.")); 88 89 static cl::opt<bool> EnableAndCmpSinking( 90 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 91 cl::desc("Enable sinkinig and/cmp into branches.")); 92 93 static cl::opt<bool> DisableStoreExtract( 94 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 95 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 96 97 static cl::opt<bool> StressStoreExtract( 98 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 99 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 100 101 static cl::opt<bool> DisableExtLdPromotion( 102 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 103 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 104 "CodeGenPrepare")); 105 106 static cl::opt<bool> StressExtLdPromotion( 107 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 108 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 109 "optimization in CodeGenPrepare")); 110 111 namespace { 112 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; 113 typedef PointerIntPair<Type *, 1, bool> TypeIsSExt; 114 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy; 115 class TypePromotionTransaction; 116 117 class CodeGenPrepare : public FunctionPass { 118 const TargetMachine *TM; 119 const TargetLowering *TLI; 120 const TargetTransformInfo *TTI; 121 const TargetLibraryInfo *TLInfo; 122 123 /// As we scan instructions optimizing them, this is the next instruction 124 /// to optimize. Transforms that can invalidate this should update it. 125 BasicBlock::iterator CurInstIterator; 126 127 /// Keeps track of non-local addresses that have been sunk into a block. 128 /// This allows us to avoid inserting duplicate code for blocks with 129 /// multiple load/stores of the same address. 130 ValueMap<Value*, Value*> SunkAddrs; 131 132 /// Keeps track of all instructions inserted for the current function. 133 SetOfInstrs InsertedInsts; 134 /// Keeps track of the type of the related instruction before their 135 /// promotion for the current function. 136 InstrToOrigTy PromotedInsts; 137 138 /// True if CFG is modified in any way. 139 bool ModifiedDT; 140 141 /// True if optimizing for size. 142 bool OptSize; 143 144 /// DataLayout for the Function being processed. 145 const DataLayout *DL; 146 147 public: 148 static char ID; // Pass identification, replacement for typeid 149 explicit CodeGenPrepare(const TargetMachine *TM = nullptr) 150 : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr), DL(nullptr) { 151 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 152 } 153 bool runOnFunction(Function &F) override; 154 155 const char *getPassName() const override { return "CodeGen Prepare"; } 156 157 void getAnalysisUsage(AnalysisUsage &AU) const override { 158 AU.addPreserved<DominatorTreeWrapperPass>(); 159 AU.addRequired<TargetLibraryInfoWrapperPass>(); 160 AU.addRequired<TargetTransformInfoWrapperPass>(); 161 } 162 163 private: 164 bool eliminateFallThrough(Function &F); 165 bool eliminateMostlyEmptyBlocks(Function &F); 166 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 167 void eliminateMostlyEmptyBlock(BasicBlock *BB); 168 bool optimizeBlock(BasicBlock &BB, bool& ModifiedDT); 169 bool optimizeInst(Instruction *I, bool& ModifiedDT); 170 bool optimizeMemoryInst(Instruction *I, Value *Addr, 171 Type *AccessTy, unsigned AS); 172 bool optimizeInlineAsmInst(CallInst *CS); 173 bool optimizeCallInst(CallInst *CI, bool& ModifiedDT); 174 bool moveExtToFormExtLoad(Instruction *&I); 175 bool optimizeExtUses(Instruction *I); 176 bool optimizeSelectInst(SelectInst *SI); 177 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); 178 bool optimizeExtractElementInst(Instruction *Inst); 179 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 180 bool placeDbgValues(Function &F); 181 bool sinkAndCmp(Function &F); 182 bool extLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI, 183 Instruction *&Inst, 184 const SmallVectorImpl<Instruction *> &Exts, 185 unsigned CreatedInstCost); 186 bool splitBranchCondition(Function &F); 187 bool simplifyOffsetableRelocate(Instruction &I); 188 void stripInvariantGroupMetadata(Instruction &I); 189 }; 190 } 191 192 char CodeGenPrepare::ID = 0; 193 INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare", 194 "Optimize for code generation", false, false) 195 196 FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) { 197 return new CodeGenPrepare(TM); 198 } 199 200 bool CodeGenPrepare::runOnFunction(Function &F) { 201 if (skipOptnoneFunction(F)) 202 return false; 203 204 DL = &F.getParent()->getDataLayout(); 205 206 bool EverMadeChange = false; 207 // Clear per function information. 208 InsertedInsts.clear(); 209 PromotedInsts.clear(); 210 211 ModifiedDT = false; 212 if (TM) 213 TLI = TM->getSubtargetImpl(F)->getTargetLowering(); 214 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 215 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 216 OptSize = F.optForSize(); 217 218 /// This optimization identifies DIV instructions that can be 219 /// profitably bypassed and carried out with a shorter, faster divide. 220 if (!OptSize && TLI && TLI->isSlowDivBypassed()) { 221 const DenseMap<unsigned int, unsigned int> &BypassWidths = 222 TLI->getBypassSlowDivWidths(); 223 for (Function::iterator I = F.begin(); I != F.end(); I++) 224 EverMadeChange |= bypassSlowDivision(F, I, BypassWidths); 225 } 226 227 // Eliminate blocks that contain only PHI nodes and an 228 // unconditional branch. 229 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 230 231 // llvm.dbg.value is far away from the value then iSel may not be able 232 // handle it properly. iSel will drop llvm.dbg.value if it can not 233 // find a node corresponding to the value. 234 EverMadeChange |= placeDbgValues(F); 235 236 // If there is a mask, compare against zero, and branch that can be combined 237 // into a single target instruction, push the mask and compare into branch 238 // users. Do this before OptimizeBlock -> OptimizeInst -> 239 // OptimizeCmpExpression, which perturbs the pattern being searched for. 240 if (!DisableBranchOpts) { 241 EverMadeChange |= sinkAndCmp(F); 242 EverMadeChange |= splitBranchCondition(F); 243 } 244 245 bool MadeChange = true; 246 while (MadeChange) { 247 MadeChange = false; 248 for (Function::iterator I = F.begin(); I != F.end(); ) { 249 BasicBlock *BB = &*I++; 250 bool ModifiedDTOnIteration = false; 251 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 252 253 // Restart BB iteration if the dominator tree of the Function was changed 254 if (ModifiedDTOnIteration) 255 break; 256 } 257 EverMadeChange |= MadeChange; 258 } 259 260 SunkAddrs.clear(); 261 262 if (!DisableBranchOpts) { 263 MadeChange = false; 264 SmallPtrSet<BasicBlock*, 8> WorkList; 265 for (BasicBlock &BB : F) { 266 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 267 MadeChange |= ConstantFoldTerminator(&BB, true); 268 if (!MadeChange) continue; 269 270 for (SmallVectorImpl<BasicBlock*>::iterator 271 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 272 if (pred_begin(*II) == pred_end(*II)) 273 WorkList.insert(*II); 274 } 275 276 // Delete the dead blocks and any of their dead successors. 277 MadeChange |= !WorkList.empty(); 278 while (!WorkList.empty()) { 279 BasicBlock *BB = *WorkList.begin(); 280 WorkList.erase(BB); 281 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 282 283 DeleteDeadBlock(BB); 284 285 for (SmallVectorImpl<BasicBlock*>::iterator 286 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 287 if (pred_begin(*II) == pred_end(*II)) 288 WorkList.insert(*II); 289 } 290 291 // Merge pairs of basic blocks with unconditional branches, connected by 292 // a single edge. 293 if (EverMadeChange || MadeChange) 294 MadeChange |= eliminateFallThrough(F); 295 296 EverMadeChange |= MadeChange; 297 } 298 299 if (!DisableGCOpts) { 300 SmallVector<Instruction *, 2> Statepoints; 301 for (BasicBlock &BB : F) 302 for (Instruction &I : BB) 303 if (isStatepoint(I)) 304 Statepoints.push_back(&I); 305 for (auto &I : Statepoints) 306 EverMadeChange |= simplifyOffsetableRelocate(*I); 307 } 308 309 return EverMadeChange; 310 } 311 312 /// Merge basic blocks which are connected by a single edge, where one of the 313 /// basic blocks has a single successor pointing to the other basic block, 314 /// which has a single predecessor. 315 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 316 bool Changed = false; 317 // Scan all of the blocks in the function, except for the entry block. 318 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 319 BasicBlock *BB = &*I++; 320 // If the destination block has a single pred, then this is a trivial 321 // edge, just collapse it. 322 BasicBlock *SinglePred = BB->getSinglePredecessor(); 323 324 // Don't merge if BB's address is taken. 325 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 326 327 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 328 if (Term && !Term->isConditional()) { 329 Changed = true; 330 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 331 // Remember if SinglePred was the entry block of the function. 332 // If so, we will need to move BB back to the entry position. 333 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 334 MergeBasicBlockIntoOnlyPred(BB, nullptr); 335 336 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 337 BB->moveBefore(&BB->getParent()->getEntryBlock()); 338 339 // We have erased a block. Update the iterator. 340 I = BB->getIterator(); 341 } 342 } 343 return Changed; 344 } 345 346 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 347 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 348 /// edges in ways that are non-optimal for isel. Start by eliminating these 349 /// blocks so we can split them the way we want them. 350 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 351 bool MadeChange = false; 352 // Note that this intentionally skips the entry block. 353 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 354 BasicBlock *BB = &*I++; 355 356 // If this block doesn't end with an uncond branch, ignore it. 357 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 358 if (!BI || !BI->isUnconditional()) 359 continue; 360 361 // If the instruction before the branch (skipping debug info) isn't a phi 362 // node, then other stuff is happening here. 363 BasicBlock::iterator BBI = BI->getIterator(); 364 if (BBI != BB->begin()) { 365 --BBI; 366 while (isa<DbgInfoIntrinsic>(BBI)) { 367 if (BBI == BB->begin()) 368 break; 369 --BBI; 370 } 371 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 372 continue; 373 } 374 375 // Do not break infinite loops. 376 BasicBlock *DestBB = BI->getSuccessor(0); 377 if (DestBB == BB) 378 continue; 379 380 if (!canMergeBlocks(BB, DestBB)) 381 continue; 382 383 eliminateMostlyEmptyBlock(BB); 384 MadeChange = true; 385 } 386 return MadeChange; 387 } 388 389 /// Return true if we can merge BB into DestBB if there is a single 390 /// unconditional branch between them, and BB contains no other non-phi 391 /// instructions. 392 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 393 const BasicBlock *DestBB) const { 394 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 395 // the successor. If there are more complex condition (e.g. preheaders), 396 // don't mess around with them. 397 BasicBlock::const_iterator BBI = BB->begin(); 398 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 399 for (const User *U : PN->users()) { 400 const Instruction *UI = cast<Instruction>(U); 401 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 402 return false; 403 // If User is inside DestBB block and it is a PHINode then check 404 // incoming value. If incoming value is not from BB then this is 405 // a complex condition (e.g. preheaders) we want to avoid here. 406 if (UI->getParent() == DestBB) { 407 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 408 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 409 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 410 if (Insn && Insn->getParent() == BB && 411 Insn->getParent() != UPN->getIncomingBlock(I)) 412 return false; 413 } 414 } 415 } 416 } 417 418 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 419 // and DestBB may have conflicting incoming values for the block. If so, we 420 // can't merge the block. 421 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 422 if (!DestBBPN) return true; // no conflict. 423 424 // Collect the preds of BB. 425 SmallPtrSet<const BasicBlock*, 16> BBPreds; 426 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 427 // It is faster to get preds from a PHI than with pred_iterator. 428 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 429 BBPreds.insert(BBPN->getIncomingBlock(i)); 430 } else { 431 BBPreds.insert(pred_begin(BB), pred_end(BB)); 432 } 433 434 // Walk the preds of DestBB. 435 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 436 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 437 if (BBPreds.count(Pred)) { // Common predecessor? 438 BBI = DestBB->begin(); 439 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 440 const Value *V1 = PN->getIncomingValueForBlock(Pred); 441 const Value *V2 = PN->getIncomingValueForBlock(BB); 442 443 // If V2 is a phi node in BB, look up what the mapped value will be. 444 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 445 if (V2PN->getParent() == BB) 446 V2 = V2PN->getIncomingValueForBlock(Pred); 447 448 // If there is a conflict, bail out. 449 if (V1 != V2) return false; 450 } 451 } 452 } 453 454 return true; 455 } 456 457 458 /// Eliminate a basic block that has only phi's and an unconditional branch in 459 /// it. 460 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 461 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 462 BasicBlock *DestBB = BI->getSuccessor(0); 463 464 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 465 466 // If the destination block has a single pred, then this is a trivial edge, 467 // just collapse it. 468 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 469 if (SinglePred != DestBB) { 470 // Remember if SinglePred was the entry block of the function. If so, we 471 // will need to move BB back to the entry position. 472 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 473 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 474 475 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 476 BB->moveBefore(&BB->getParent()->getEntryBlock()); 477 478 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 479 return; 480 } 481 } 482 483 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 484 // to handle the new incoming edges it is about to have. 485 PHINode *PN; 486 for (BasicBlock::iterator BBI = DestBB->begin(); 487 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 488 // Remove the incoming value for BB, and remember it. 489 Value *InVal = PN->removeIncomingValue(BB, false); 490 491 // Two options: either the InVal is a phi node defined in BB or it is some 492 // value that dominates BB. 493 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 494 if (InValPhi && InValPhi->getParent() == BB) { 495 // Add all of the input values of the input PHI as inputs of this phi. 496 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 497 PN->addIncoming(InValPhi->getIncomingValue(i), 498 InValPhi->getIncomingBlock(i)); 499 } else { 500 // Otherwise, add one instance of the dominating value for each edge that 501 // we will be adding. 502 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 503 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 504 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 505 } else { 506 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 507 PN->addIncoming(InVal, *PI); 508 } 509 } 510 } 511 512 // The PHIs are now updated, change everything that refers to BB to use 513 // DestBB and remove BB. 514 BB->replaceAllUsesWith(DestBB); 515 BB->eraseFromParent(); 516 ++NumBlocksElim; 517 518 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 519 } 520 521 // Computes a map of base pointer relocation instructions to corresponding 522 // derived pointer relocation instructions given a vector of all relocate calls 523 static void computeBaseDerivedRelocateMap( 524 const SmallVectorImpl<User *> &AllRelocateCalls, 525 DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> & 526 RelocateInstMap) { 527 // Collect information in two maps: one primarily for locating the base object 528 // while filling the second map; the second map is the final structure holding 529 // a mapping between Base and corresponding Derived relocate calls 530 DenseMap<std::pair<unsigned, unsigned>, IntrinsicInst *> RelocateIdxMap; 531 for (auto &U : AllRelocateCalls) { 532 GCRelocateOperands ThisRelocate(U); 533 IntrinsicInst *I = cast<IntrinsicInst>(U); 534 auto K = std::make_pair(ThisRelocate.getBasePtrIndex(), 535 ThisRelocate.getDerivedPtrIndex()); 536 RelocateIdxMap.insert(std::make_pair(K, I)); 537 } 538 for (auto &Item : RelocateIdxMap) { 539 std::pair<unsigned, unsigned> Key = Item.first; 540 if (Key.first == Key.second) 541 // Base relocation: nothing to insert 542 continue; 543 544 IntrinsicInst *I = Item.second; 545 auto BaseKey = std::make_pair(Key.first, Key.first); 546 547 // We're iterating over RelocateIdxMap so we cannot modify it. 548 auto MaybeBase = RelocateIdxMap.find(BaseKey); 549 if (MaybeBase == RelocateIdxMap.end()) 550 // TODO: We might want to insert a new base object relocate and gep off 551 // that, if there are enough derived object relocates. 552 continue; 553 554 RelocateInstMap[MaybeBase->second].push_back(I); 555 } 556 } 557 558 // Accepts a GEP and extracts the operands into a vector provided they're all 559 // small integer constants 560 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 561 SmallVectorImpl<Value *> &OffsetV) { 562 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 563 // Only accept small constant integer operands 564 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 565 if (!Op || Op->getZExtValue() > 20) 566 return false; 567 } 568 569 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 570 OffsetV.push_back(GEP->getOperand(i)); 571 return true; 572 } 573 574 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 575 // replace, computes a replacement, and affects it. 576 static bool 577 simplifyRelocatesOffABase(IntrinsicInst *RelocatedBase, 578 const SmallVectorImpl<IntrinsicInst *> &Targets) { 579 bool MadeChange = false; 580 for (auto &ToReplace : Targets) { 581 GCRelocateOperands MasterRelocate(RelocatedBase); 582 GCRelocateOperands ThisRelocate(ToReplace); 583 584 assert(ThisRelocate.getBasePtrIndex() == MasterRelocate.getBasePtrIndex() && 585 "Not relocating a derived object of the original base object"); 586 if (ThisRelocate.getBasePtrIndex() == ThisRelocate.getDerivedPtrIndex()) { 587 // A duplicate relocate call. TODO: coalesce duplicates. 588 continue; 589 } 590 591 Value *Base = ThisRelocate.getBasePtr(); 592 auto Derived = dyn_cast<GetElementPtrInst>(ThisRelocate.getDerivedPtr()); 593 if (!Derived || Derived->getPointerOperand() != Base) 594 continue; 595 596 SmallVector<Value *, 2> OffsetV; 597 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 598 continue; 599 600 // Create a Builder and replace the target callsite with a gep 601 assert(RelocatedBase->getNextNode() && "Should always have one since it's not a terminator"); 602 603 // Insert after RelocatedBase 604 IRBuilder<> Builder(RelocatedBase->getNextNode()); 605 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 606 607 // If gc_relocate does not match the actual type, cast it to the right type. 608 // In theory, there must be a bitcast after gc_relocate if the type does not 609 // match, and we should reuse it to get the derived pointer. But it could be 610 // cases like this: 611 // bb1: 612 // ... 613 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 614 // br label %merge 615 // 616 // bb2: 617 // ... 618 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 619 // br label %merge 620 // 621 // merge: 622 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 623 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 624 // 625 // In this case, we can not find the bitcast any more. So we insert a new bitcast 626 // no matter there is already one or not. In this way, we can handle all cases, and 627 // the extra bitcast should be optimized away in later passes. 628 Instruction *ActualRelocatedBase = RelocatedBase; 629 if (RelocatedBase->getType() != Base->getType()) { 630 ActualRelocatedBase = 631 cast<Instruction>(Builder.CreateBitCast(RelocatedBase, Base->getType())); 632 } 633 Value *Replacement = Builder.CreateGEP( 634 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 635 Instruction *ReplacementInst = cast<Instruction>(Replacement); 636 Replacement->takeName(ToReplace); 637 // If the newly generated derived pointer's type does not match the original derived 638 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 639 Instruction *ActualReplacement = ReplacementInst; 640 if (ReplacementInst->getType() != ToReplace->getType()) { 641 ActualReplacement = 642 cast<Instruction>(Builder.CreateBitCast(ReplacementInst, ToReplace->getType())); 643 } 644 ToReplace->replaceAllUsesWith(ActualReplacement); 645 ToReplace->eraseFromParent(); 646 647 MadeChange = true; 648 } 649 return MadeChange; 650 } 651 652 // Turns this: 653 // 654 // %base = ... 655 // %ptr = gep %base + 15 656 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 657 // %base' = relocate(%tok, i32 4, i32 4) 658 // %ptr' = relocate(%tok, i32 4, i32 5) 659 // %val = load %ptr' 660 // 661 // into this: 662 // 663 // %base = ... 664 // %ptr = gep %base + 15 665 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 666 // %base' = gc.relocate(%tok, i32 4, i32 4) 667 // %ptr' = gep %base' + 15 668 // %val = load %ptr' 669 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 670 bool MadeChange = false; 671 SmallVector<User *, 2> AllRelocateCalls; 672 673 for (auto *U : I.users()) 674 if (isGCRelocate(dyn_cast<Instruction>(U))) 675 // Collect all the relocate calls associated with a statepoint 676 AllRelocateCalls.push_back(U); 677 678 // We need atleast one base pointer relocation + one derived pointer 679 // relocation to mangle 680 if (AllRelocateCalls.size() < 2) 681 return false; 682 683 // RelocateInstMap is a mapping from the base relocate instruction to the 684 // corresponding derived relocate instructions 685 DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> RelocateInstMap; 686 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 687 if (RelocateInstMap.empty()) 688 return false; 689 690 for (auto &Item : RelocateInstMap) 691 // Item.first is the RelocatedBase to offset against 692 // Item.second is the vector of Targets to replace 693 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 694 return MadeChange; 695 } 696 697 /// SinkCast - Sink the specified cast instruction into its user blocks 698 static bool SinkCast(CastInst *CI) { 699 BasicBlock *DefBB = CI->getParent(); 700 701 /// InsertedCasts - Only insert a cast in each block once. 702 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 703 704 bool MadeChange = false; 705 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 706 UI != E; ) { 707 Use &TheUse = UI.getUse(); 708 Instruction *User = cast<Instruction>(*UI); 709 710 // Figure out which BB this cast is used in. For PHI's this is the 711 // appropriate predecessor block. 712 BasicBlock *UserBB = User->getParent(); 713 if (PHINode *PN = dyn_cast<PHINode>(User)) { 714 UserBB = PN->getIncomingBlock(TheUse); 715 } 716 717 // Preincrement use iterator so we don't invalidate it. 718 ++UI; 719 720 // If this user is in the same block as the cast, don't change the cast. 721 if (UserBB == DefBB) continue; 722 723 // If we have already inserted a cast into this block, use it. 724 CastInst *&InsertedCast = InsertedCasts[UserBB]; 725 726 if (!InsertedCast) { 727 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 728 assert(InsertPt != UserBB->end()); 729 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 730 CI->getType(), "", &*InsertPt); 731 } 732 733 // Replace a use of the cast with a use of the new cast. 734 TheUse = InsertedCast; 735 MadeChange = true; 736 ++NumCastUses; 737 } 738 739 // If we removed all uses, nuke the cast. 740 if (CI->use_empty()) { 741 CI->eraseFromParent(); 742 MadeChange = true; 743 } 744 745 return MadeChange; 746 } 747 748 /// If the specified cast instruction is a noop copy (e.g. it's casting from 749 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 750 /// reduce the number of virtual registers that must be created and coalesced. 751 /// 752 /// Return true if any changes are made. 753 /// 754 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 755 const DataLayout &DL) { 756 // If this is a noop copy, 757 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 758 EVT DstVT = TLI.getValueType(DL, CI->getType()); 759 760 // This is an fp<->int conversion? 761 if (SrcVT.isInteger() != DstVT.isInteger()) 762 return false; 763 764 // If this is an extension, it will be a zero or sign extension, which 765 // isn't a noop. 766 if (SrcVT.bitsLT(DstVT)) return false; 767 768 // If these values will be promoted, find out what they will be promoted 769 // to. This helps us consider truncates on PPC as noop copies when they 770 // are. 771 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 772 TargetLowering::TypePromoteInteger) 773 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 774 if (TLI.getTypeAction(CI->getContext(), DstVT) == 775 TargetLowering::TypePromoteInteger) 776 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 777 778 // If, after promotion, these are the same types, this is a noop copy. 779 if (SrcVT != DstVT) 780 return false; 781 782 return SinkCast(CI); 783 } 784 785 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 786 /// possible. 787 /// 788 /// Return true if any changes were made. 789 static bool CombineUAddWithOverflow(CmpInst *CI) { 790 Value *A, *B; 791 Instruction *AddI; 792 if (!match(CI, 793 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 794 return false; 795 796 Type *Ty = AddI->getType(); 797 if (!isa<IntegerType>(Ty)) 798 return false; 799 800 // We don't want to move around uses of condition values this late, so we we 801 // check if it is legal to create the call to the intrinsic in the basic 802 // block containing the icmp: 803 804 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 805 return false; 806 807 #ifndef NDEBUG 808 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 809 // for now: 810 if (AddI->hasOneUse()) 811 assert(*AddI->user_begin() == CI && "expected!"); 812 #endif 813 814 Module *M = CI->getParent()->getParent()->getParent(); 815 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 816 817 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 818 819 auto *UAddWithOverflow = 820 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 821 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 822 auto *Overflow = 823 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 824 825 CI->replaceAllUsesWith(Overflow); 826 AddI->replaceAllUsesWith(UAdd); 827 CI->eraseFromParent(); 828 AddI->eraseFromParent(); 829 return true; 830 } 831 832 /// Sink the given CmpInst into user blocks to reduce the number of virtual 833 /// registers that must be created and coalesced. This is a clear win except on 834 /// targets with multiple condition code registers (PowerPC), where it might 835 /// lose; some adjustment may be wanted there. 836 /// 837 /// Return true if any changes are made. 838 static bool SinkCmpExpression(CmpInst *CI) { 839 BasicBlock *DefBB = CI->getParent(); 840 841 /// Only insert a cmp in each block once. 842 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 843 844 bool MadeChange = false; 845 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 846 UI != E; ) { 847 Use &TheUse = UI.getUse(); 848 Instruction *User = cast<Instruction>(*UI); 849 850 // Preincrement use iterator so we don't invalidate it. 851 ++UI; 852 853 // Don't bother for PHI nodes. 854 if (isa<PHINode>(User)) 855 continue; 856 857 // Figure out which BB this cmp is used in. 858 BasicBlock *UserBB = User->getParent(); 859 860 // If this user is in the same block as the cmp, don't change the cmp. 861 if (UserBB == DefBB) continue; 862 863 // If we have already inserted a cmp into this block, use it. 864 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 865 866 if (!InsertedCmp) { 867 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 868 assert(InsertPt != UserBB->end()); 869 InsertedCmp = 870 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 871 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 872 } 873 874 // Replace a use of the cmp with a use of the new cmp. 875 TheUse = InsertedCmp; 876 MadeChange = true; 877 ++NumCmpUses; 878 } 879 880 // If we removed all uses, nuke the cmp. 881 if (CI->use_empty()) { 882 CI->eraseFromParent(); 883 MadeChange = true; 884 } 885 886 return MadeChange; 887 } 888 889 static bool OptimizeCmpExpression(CmpInst *CI) { 890 if (SinkCmpExpression(CI)) 891 return true; 892 893 if (CombineUAddWithOverflow(CI)) 894 return true; 895 896 return false; 897 } 898 899 /// Check if the candidates could be combined with a shift instruction, which 900 /// includes: 901 /// 1. Truncate instruction 902 /// 2. And instruction and the imm is a mask of the low bits: 903 /// imm & (imm+1) == 0 904 static bool isExtractBitsCandidateUse(Instruction *User) { 905 if (!isa<TruncInst>(User)) { 906 if (User->getOpcode() != Instruction::And || 907 !isa<ConstantInt>(User->getOperand(1))) 908 return false; 909 910 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 911 912 if ((Cimm & (Cimm + 1)).getBoolValue()) 913 return false; 914 } 915 return true; 916 } 917 918 /// Sink both shift and truncate instruction to the use of truncate's BB. 919 static bool 920 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 921 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 922 const TargetLowering &TLI, const DataLayout &DL) { 923 BasicBlock *UserBB = User->getParent(); 924 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 925 TruncInst *TruncI = dyn_cast<TruncInst>(User); 926 bool MadeChange = false; 927 928 for (Value::user_iterator TruncUI = TruncI->user_begin(), 929 TruncE = TruncI->user_end(); 930 TruncUI != TruncE;) { 931 932 Use &TruncTheUse = TruncUI.getUse(); 933 Instruction *TruncUser = cast<Instruction>(*TruncUI); 934 // Preincrement use iterator so we don't invalidate it. 935 936 ++TruncUI; 937 938 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 939 if (!ISDOpcode) 940 continue; 941 942 // If the use is actually a legal node, there will not be an 943 // implicit truncate. 944 // FIXME: always querying the result type is just an 945 // approximation; some nodes' legality is determined by the 946 // operand or other means. There's no good way to find out though. 947 if (TLI.isOperationLegalOrCustom( 948 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 949 continue; 950 951 // Don't bother for PHI nodes. 952 if (isa<PHINode>(TruncUser)) 953 continue; 954 955 BasicBlock *TruncUserBB = TruncUser->getParent(); 956 957 if (UserBB == TruncUserBB) 958 continue; 959 960 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 961 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 962 963 if (!InsertedShift && !InsertedTrunc) { 964 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 965 assert(InsertPt != TruncUserBB->end()); 966 // Sink the shift 967 if (ShiftI->getOpcode() == Instruction::AShr) 968 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 969 "", &*InsertPt); 970 else 971 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 972 "", &*InsertPt); 973 974 // Sink the trunc 975 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 976 TruncInsertPt++; 977 assert(TruncInsertPt != TruncUserBB->end()); 978 979 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 980 TruncI->getType(), "", &*TruncInsertPt); 981 982 MadeChange = true; 983 984 TruncTheUse = InsertedTrunc; 985 } 986 } 987 return MadeChange; 988 } 989 990 /// Sink the shift *right* instruction into user blocks if the uses could 991 /// potentially be combined with this shift instruction and generate BitExtract 992 /// instruction. It will only be applied if the architecture supports BitExtract 993 /// instruction. Here is an example: 994 /// BB1: 995 /// %x.extract.shift = lshr i64 %arg1, 32 996 /// BB2: 997 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 998 /// ==> 999 /// 1000 /// BB2: 1001 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1002 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1003 /// 1004 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1005 /// instruction. 1006 /// Return true if any changes are made. 1007 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1008 const TargetLowering &TLI, 1009 const DataLayout &DL) { 1010 BasicBlock *DefBB = ShiftI->getParent(); 1011 1012 /// Only insert instructions in each block once. 1013 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1014 1015 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1016 1017 bool MadeChange = false; 1018 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1019 UI != E;) { 1020 Use &TheUse = UI.getUse(); 1021 Instruction *User = cast<Instruction>(*UI); 1022 // Preincrement use iterator so we don't invalidate it. 1023 ++UI; 1024 1025 // Don't bother for PHI nodes. 1026 if (isa<PHINode>(User)) 1027 continue; 1028 1029 if (!isExtractBitsCandidateUse(User)) 1030 continue; 1031 1032 BasicBlock *UserBB = User->getParent(); 1033 1034 if (UserBB == DefBB) { 1035 // If the shift and truncate instruction are in the same BB. The use of 1036 // the truncate(TruncUse) may still introduce another truncate if not 1037 // legal. In this case, we would like to sink both shift and truncate 1038 // instruction to the BB of TruncUse. 1039 // for example: 1040 // BB1: 1041 // i64 shift.result = lshr i64 opnd, imm 1042 // trunc.result = trunc shift.result to i16 1043 // 1044 // BB2: 1045 // ----> We will have an implicit truncate here if the architecture does 1046 // not have i16 compare. 1047 // cmp i16 trunc.result, opnd2 1048 // 1049 if (isa<TruncInst>(User) && shiftIsLegal 1050 // If the type of the truncate is legal, no trucate will be 1051 // introduced in other basic blocks. 1052 && 1053 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1054 MadeChange = 1055 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1056 1057 continue; 1058 } 1059 // If we have already inserted a shift into this block, use it. 1060 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1061 1062 if (!InsertedShift) { 1063 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1064 assert(InsertPt != UserBB->end()); 1065 1066 if (ShiftI->getOpcode() == Instruction::AShr) 1067 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1068 "", &*InsertPt); 1069 else 1070 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1071 "", &*InsertPt); 1072 1073 MadeChange = true; 1074 } 1075 1076 // Replace a use of the shift with a use of the new shift. 1077 TheUse = InsertedShift; 1078 } 1079 1080 // If we removed all uses, nuke the shift. 1081 if (ShiftI->use_empty()) 1082 ShiftI->eraseFromParent(); 1083 1084 return MadeChange; 1085 } 1086 1087 // Translate a masked load intrinsic like 1088 // <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align, 1089 // <16 x i1> %mask, <16 x i32> %passthru) 1090 // to a chain of basic blocks, with loading element one-by-one if 1091 // the appropriate mask bit is set 1092 // 1093 // %1 = bitcast i8* %addr to i32* 1094 // %2 = extractelement <16 x i1> %mask, i32 0 1095 // %3 = icmp eq i1 %2, true 1096 // br i1 %3, label %cond.load, label %else 1097 // 1098 //cond.load: ; preds = %0 1099 // %4 = getelementptr i32* %1, i32 0 1100 // %5 = load i32* %4 1101 // %6 = insertelement <16 x i32> undef, i32 %5, i32 0 1102 // br label %else 1103 // 1104 //else: ; preds = %0, %cond.load 1105 // %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ] 1106 // %7 = extractelement <16 x i1> %mask, i32 1 1107 // %8 = icmp eq i1 %7, true 1108 // br i1 %8, label %cond.load1, label %else2 1109 // 1110 //cond.load1: ; preds = %else 1111 // %9 = getelementptr i32* %1, i32 1 1112 // %10 = load i32* %9 1113 // %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1 1114 // br label %else2 1115 // 1116 //else2: ; preds = %else, %cond.load1 1117 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1118 // %12 = extractelement <16 x i1> %mask, i32 2 1119 // %13 = icmp eq i1 %12, true 1120 // br i1 %13, label %cond.load4, label %else5 1121 // 1122 static void ScalarizeMaskedLoad(CallInst *CI) { 1123 Value *Ptr = CI->getArgOperand(0); 1124 Value *Src0 = CI->getArgOperand(3); 1125 Value *Mask = CI->getArgOperand(2); 1126 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1127 Type *EltTy = VecType->getElementType(); 1128 1129 assert(VecType && "Unexpected return type of masked load intrinsic"); 1130 1131 IRBuilder<> Builder(CI->getContext()); 1132 Instruction *InsertPt = CI; 1133 BasicBlock *IfBlock = CI->getParent(); 1134 BasicBlock *CondBlock = nullptr; 1135 BasicBlock *PrevIfBlock = CI->getParent(); 1136 Builder.SetInsertPoint(InsertPt); 1137 1138 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1139 1140 // Bitcast %addr fron i8* to EltTy* 1141 Type *NewPtrType = 1142 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1143 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1144 Value *UndefVal = UndefValue::get(VecType); 1145 1146 // The result vector 1147 Value *VResult = UndefVal; 1148 1149 PHINode *Phi = nullptr; 1150 Value *PrevPhi = UndefVal; 1151 1152 unsigned VectorWidth = VecType->getNumElements(); 1153 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1154 1155 // Fill the "else" block, created in the previous iteration 1156 // 1157 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1158 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1159 // %to_load = icmp eq i1 %mask_1, true 1160 // br i1 %to_load, label %cond.load, label %else 1161 // 1162 if (Idx > 0) { 1163 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1164 Phi->addIncoming(VResult, CondBlock); 1165 Phi->addIncoming(PrevPhi, PrevIfBlock); 1166 PrevPhi = Phi; 1167 VResult = Phi; 1168 } 1169 1170 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1171 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1172 ConstantInt::get(Predicate->getType(), 1)); 1173 1174 // Create "cond" block 1175 // 1176 // %EltAddr = getelementptr i32* %1, i32 0 1177 // %Elt = load i32* %EltAddr 1178 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1179 // 1180 CondBlock = IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.load"); 1181 Builder.SetInsertPoint(InsertPt); 1182 1183 Value *Gep = 1184 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1185 LoadInst* Load = Builder.CreateLoad(Gep, false); 1186 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx)); 1187 1188 // Create "else" block, fill it in the next iteration 1189 BasicBlock *NewIfBlock = 1190 CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); 1191 Builder.SetInsertPoint(InsertPt); 1192 Instruction *OldBr = IfBlock->getTerminator(); 1193 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1194 OldBr->eraseFromParent(); 1195 PrevIfBlock = IfBlock; 1196 IfBlock = NewIfBlock; 1197 } 1198 1199 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1200 Phi->addIncoming(VResult, CondBlock); 1201 Phi->addIncoming(PrevPhi, PrevIfBlock); 1202 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1203 CI->replaceAllUsesWith(NewI); 1204 CI->eraseFromParent(); 1205 } 1206 1207 // Translate a masked store intrinsic, like 1208 // void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align, 1209 // <16 x i1> %mask) 1210 // to a chain of basic blocks, that stores element one-by-one if 1211 // the appropriate mask bit is set 1212 // 1213 // %1 = bitcast i8* %addr to i32* 1214 // %2 = extractelement <16 x i1> %mask, i32 0 1215 // %3 = icmp eq i1 %2, true 1216 // br i1 %3, label %cond.store, label %else 1217 // 1218 // cond.store: ; preds = %0 1219 // %4 = extractelement <16 x i32> %val, i32 0 1220 // %5 = getelementptr i32* %1, i32 0 1221 // store i32 %4, i32* %5 1222 // br label %else 1223 // 1224 // else: ; preds = %0, %cond.store 1225 // %6 = extractelement <16 x i1> %mask, i32 1 1226 // %7 = icmp eq i1 %6, true 1227 // br i1 %7, label %cond.store1, label %else2 1228 // 1229 // cond.store1: ; preds = %else 1230 // %8 = extractelement <16 x i32> %val, i32 1 1231 // %9 = getelementptr i32* %1, i32 1 1232 // store i32 %8, i32* %9 1233 // br label %else2 1234 // . . . 1235 static void ScalarizeMaskedStore(CallInst *CI) { 1236 Value *Ptr = CI->getArgOperand(1); 1237 Value *Src = CI->getArgOperand(0); 1238 Value *Mask = CI->getArgOperand(3); 1239 1240 VectorType *VecType = dyn_cast<VectorType>(Src->getType()); 1241 Type *EltTy = VecType->getElementType(); 1242 1243 assert(VecType && "Unexpected data type in masked store intrinsic"); 1244 1245 IRBuilder<> Builder(CI->getContext()); 1246 Instruction *InsertPt = CI; 1247 BasicBlock *IfBlock = CI->getParent(); 1248 Builder.SetInsertPoint(InsertPt); 1249 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1250 1251 // Bitcast %addr fron i8* to EltTy* 1252 Type *NewPtrType = 1253 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1254 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1255 1256 unsigned VectorWidth = VecType->getNumElements(); 1257 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1258 1259 // Fill the "else" block, created in the previous iteration 1260 // 1261 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1262 // %to_store = icmp eq i1 %mask_1, true 1263 // br i1 %to_load, label %cond.store, label %else 1264 // 1265 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1266 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1267 ConstantInt::get(Predicate->getType(), 1)); 1268 1269 // Create "cond" block 1270 // 1271 // %OneElt = extractelement <16 x i32> %Src, i32 Idx 1272 // %EltAddr = getelementptr i32* %1, i32 0 1273 // %store i32 %OneElt, i32* %EltAddr 1274 // 1275 BasicBlock *CondBlock = 1276 IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.store"); 1277 Builder.SetInsertPoint(InsertPt); 1278 1279 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1280 Value *Gep = 1281 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1282 Builder.CreateStore(OneElt, Gep); 1283 1284 // Create "else" block, fill it in the next iteration 1285 BasicBlock *NewIfBlock = 1286 CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); 1287 Builder.SetInsertPoint(InsertPt); 1288 Instruction *OldBr = IfBlock->getTerminator(); 1289 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1290 OldBr->eraseFromParent(); 1291 IfBlock = NewIfBlock; 1292 } 1293 CI->eraseFromParent(); 1294 } 1295 1296 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool& ModifiedDT) { 1297 BasicBlock *BB = CI->getParent(); 1298 1299 // Lower inline assembly if we can. 1300 // If we found an inline asm expession, and if the target knows how to 1301 // lower it to normal LLVM code, do so now. 1302 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1303 if (TLI->ExpandInlineAsm(CI)) { 1304 // Avoid invalidating the iterator. 1305 CurInstIterator = BB->begin(); 1306 // Avoid processing instructions out of order, which could cause 1307 // reuse before a value is defined. 1308 SunkAddrs.clear(); 1309 return true; 1310 } 1311 // Sink address computing for memory operands into the block. 1312 if (optimizeInlineAsmInst(CI)) 1313 return true; 1314 } 1315 1316 // Align the pointer arguments to this call if the target thinks it's a good 1317 // idea 1318 unsigned MinSize, PrefAlign; 1319 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1320 for (auto &Arg : CI->arg_operands()) { 1321 // We want to align both objects whose address is used directly and 1322 // objects whose address is used in casts and GEPs, though it only makes 1323 // sense for GEPs if the offset is a multiple of the desired alignment and 1324 // if size - offset meets the size threshold. 1325 if (!Arg->getType()->isPointerTy()) 1326 continue; 1327 APInt Offset(DL->getPointerSizeInBits( 1328 cast<PointerType>(Arg->getType())->getAddressSpace()), 1329 0); 1330 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1331 uint64_t Offset2 = Offset.getLimitedValue(); 1332 if ((Offset2 & (PrefAlign-1)) != 0) 1333 continue; 1334 AllocaInst *AI; 1335 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1336 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1337 AI->setAlignment(PrefAlign); 1338 // Global variables can only be aligned if they are defined in this 1339 // object (i.e. they are uniquely initialized in this object), and 1340 // over-aligning global variables that have an explicit section is 1341 // forbidden. 1342 GlobalVariable *GV; 1343 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->hasUniqueInitializer() && 1344 !GV->hasSection() && GV->getAlignment() < PrefAlign && 1345 DL->getTypeAllocSize(GV->getType()->getElementType()) >= 1346 MinSize + Offset2) 1347 GV->setAlignment(PrefAlign); 1348 } 1349 // If this is a memcpy (or similar) then we may be able to improve the 1350 // alignment 1351 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1352 unsigned Align = getKnownAlignment(MI->getDest(), *DL); 1353 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 1354 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL)); 1355 if (Align > MI->getAlignment()) 1356 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align)); 1357 } 1358 } 1359 1360 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1361 if (II) { 1362 switch (II->getIntrinsicID()) { 1363 default: break; 1364 case Intrinsic::objectsize: { 1365 // Lower all uses of llvm.objectsize.* 1366 bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1); 1367 Type *ReturnTy = CI->getType(); 1368 Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL); 1369 1370 // Substituting this can cause recursive simplifications, which can 1371 // invalidate our iterator. Use a WeakVH to hold onto it in case this 1372 // happens. 1373 WeakVH IterHandle(&*CurInstIterator); 1374 1375 replaceAndRecursivelySimplify(CI, RetVal, 1376 TLInfo, nullptr); 1377 1378 // If the iterator instruction was recursively deleted, start over at the 1379 // start of the block. 1380 if (IterHandle != CurInstIterator.getNodePtrUnchecked()) { 1381 CurInstIterator = BB->begin(); 1382 SunkAddrs.clear(); 1383 } 1384 return true; 1385 } 1386 case Intrinsic::masked_load: { 1387 // Scalarize unsupported vector masked load 1388 if (!TTI->isLegalMaskedLoad(CI->getType())) { 1389 ScalarizeMaskedLoad(CI); 1390 ModifiedDT = true; 1391 return true; 1392 } 1393 return false; 1394 } 1395 case Intrinsic::masked_store: { 1396 if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType())) { 1397 ScalarizeMaskedStore(CI); 1398 ModifiedDT = true; 1399 return true; 1400 } 1401 return false; 1402 } 1403 case Intrinsic::aarch64_stlxr: 1404 case Intrinsic::aarch64_stxr: { 1405 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1406 if (!ExtVal || !ExtVal->hasOneUse() || 1407 ExtVal->getParent() == CI->getParent()) 1408 return false; 1409 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1410 ExtVal->moveBefore(CI); 1411 // Mark this instruction as "inserted by CGP", so that other 1412 // optimizations don't touch it. 1413 InsertedInsts.insert(ExtVal); 1414 return true; 1415 } 1416 case Intrinsic::invariant_group_barrier: 1417 II->replaceAllUsesWith(II->getArgOperand(0)); 1418 II->eraseFromParent(); 1419 return true; 1420 } 1421 1422 if (TLI) { 1423 // Unknown address space. 1424 // TODO: Target hook to pick which address space the intrinsic cares 1425 // about? 1426 unsigned AddrSpace = ~0u; 1427 SmallVector<Value*, 2> PtrOps; 1428 Type *AccessTy; 1429 if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy, AddrSpace)) 1430 while (!PtrOps.empty()) 1431 if (optimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy, AddrSpace)) 1432 return true; 1433 } 1434 } 1435 1436 // From here on out we're working with named functions. 1437 if (!CI->getCalledFunction()) return false; 1438 1439 // Lower all default uses of _chk calls. This is very similar 1440 // to what InstCombineCalls does, but here we are only lowering calls 1441 // to fortified library functions (e.g. __memcpy_chk) that have the default 1442 // "don't know" as the objectsize. Anything else should be left alone. 1443 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1444 if (Value *V = Simplifier.optimizeCall(CI)) { 1445 CI->replaceAllUsesWith(V); 1446 CI->eraseFromParent(); 1447 return true; 1448 } 1449 return false; 1450 } 1451 1452 /// Look for opportunities to duplicate return instructions to the predecessor 1453 /// to enable tail call optimizations. The case it is currently looking for is: 1454 /// @code 1455 /// bb0: 1456 /// %tmp0 = tail call i32 @f0() 1457 /// br label %return 1458 /// bb1: 1459 /// %tmp1 = tail call i32 @f1() 1460 /// br label %return 1461 /// bb2: 1462 /// %tmp2 = tail call i32 @f2() 1463 /// br label %return 1464 /// return: 1465 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1466 /// ret i32 %retval 1467 /// @endcode 1468 /// 1469 /// => 1470 /// 1471 /// @code 1472 /// bb0: 1473 /// %tmp0 = tail call i32 @f0() 1474 /// ret i32 %tmp0 1475 /// bb1: 1476 /// %tmp1 = tail call i32 @f1() 1477 /// ret i32 %tmp1 1478 /// bb2: 1479 /// %tmp2 = tail call i32 @f2() 1480 /// ret i32 %tmp2 1481 /// @endcode 1482 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 1483 if (!TLI) 1484 return false; 1485 1486 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()); 1487 if (!RI) 1488 return false; 1489 1490 PHINode *PN = nullptr; 1491 BitCastInst *BCI = nullptr; 1492 Value *V = RI->getReturnValue(); 1493 if (V) { 1494 BCI = dyn_cast<BitCastInst>(V); 1495 if (BCI) 1496 V = BCI->getOperand(0); 1497 1498 PN = dyn_cast<PHINode>(V); 1499 if (!PN) 1500 return false; 1501 } 1502 1503 if (PN && PN->getParent() != BB) 1504 return false; 1505 1506 // It's not safe to eliminate the sign / zero extension of the return value. 1507 // See llvm::isInTailCallPosition(). 1508 const Function *F = BB->getParent(); 1509 AttributeSet CallerAttrs = F->getAttributes(); 1510 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 1511 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 1512 return false; 1513 1514 // Make sure there are no instructions between the PHI and return, or that the 1515 // return is the first instruction in the block. 1516 if (PN) { 1517 BasicBlock::iterator BI = BB->begin(); 1518 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1519 if (&*BI == BCI) 1520 // Also skip over the bitcast. 1521 ++BI; 1522 if (&*BI != RI) 1523 return false; 1524 } else { 1525 BasicBlock::iterator BI = BB->begin(); 1526 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1527 if (&*BI != RI) 1528 return false; 1529 } 1530 1531 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1532 /// call. 1533 SmallVector<CallInst*, 4> TailCalls; 1534 if (PN) { 1535 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 1536 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 1537 // Make sure the phi value is indeed produced by the tail call. 1538 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 1539 TLI->mayBeEmittedAsTailCall(CI)) 1540 TailCalls.push_back(CI); 1541 } 1542 } else { 1543 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 1544 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 1545 if (!VisitedBBs.insert(*PI).second) 1546 continue; 1547 1548 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 1549 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 1550 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 1551 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 1552 if (RI == RE) 1553 continue; 1554 1555 CallInst *CI = dyn_cast<CallInst>(&*RI); 1556 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI)) 1557 TailCalls.push_back(CI); 1558 } 1559 } 1560 1561 bool Changed = false; 1562 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1563 CallInst *CI = TailCalls[i]; 1564 CallSite CS(CI); 1565 1566 // Conservatively require the attributes of the call to match those of the 1567 // return. Ignore noalias because it doesn't affect the call sequence. 1568 AttributeSet CalleeAttrs = CS.getAttributes(); 1569 if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 1570 removeAttribute(Attribute::NoAlias) != 1571 AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 1572 removeAttribute(Attribute::NoAlias)) 1573 continue; 1574 1575 // Make sure the call instruction is followed by an unconditional branch to 1576 // the return block. 1577 BasicBlock *CallBB = CI->getParent(); 1578 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 1579 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 1580 continue; 1581 1582 // Duplicate the return into CallBB. 1583 (void)FoldReturnIntoUncondBranch(RI, BB, CallBB); 1584 ModifiedDT = Changed = true; 1585 ++NumRetsDup; 1586 } 1587 1588 // If we eliminated all predecessors of the block, delete the block now. 1589 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 1590 BB->eraseFromParent(); 1591 1592 return Changed; 1593 } 1594 1595 //===----------------------------------------------------------------------===// 1596 // Memory Optimization 1597 //===----------------------------------------------------------------------===// 1598 1599 namespace { 1600 1601 /// This is an extended version of TargetLowering::AddrMode 1602 /// which holds actual Value*'s for register values. 1603 struct ExtAddrMode : public TargetLowering::AddrMode { 1604 Value *BaseReg; 1605 Value *ScaledReg; 1606 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} 1607 void print(raw_ostream &OS) const; 1608 void dump() const; 1609 1610 bool operator==(const ExtAddrMode& O) const { 1611 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && 1612 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && 1613 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); 1614 } 1615 }; 1616 1617 #ifndef NDEBUG 1618 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 1619 AM.print(OS); 1620 return OS; 1621 } 1622 #endif 1623 1624 void ExtAddrMode::print(raw_ostream &OS) const { 1625 bool NeedPlus = false; 1626 OS << "["; 1627 if (BaseGV) { 1628 OS << (NeedPlus ? " + " : "") 1629 << "GV:"; 1630 BaseGV->printAsOperand(OS, /*PrintType=*/false); 1631 NeedPlus = true; 1632 } 1633 1634 if (BaseOffs) { 1635 OS << (NeedPlus ? " + " : "") 1636 << BaseOffs; 1637 NeedPlus = true; 1638 } 1639 1640 if (BaseReg) { 1641 OS << (NeedPlus ? " + " : "") 1642 << "Base:"; 1643 BaseReg->printAsOperand(OS, /*PrintType=*/false); 1644 NeedPlus = true; 1645 } 1646 if (Scale) { 1647 OS << (NeedPlus ? " + " : "") 1648 << Scale << "*"; 1649 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 1650 } 1651 1652 OS << ']'; 1653 } 1654 1655 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1656 void ExtAddrMode::dump() const { 1657 print(dbgs()); 1658 dbgs() << '\n'; 1659 } 1660 #endif 1661 1662 /// \brief This class provides transaction based operation on the IR. 1663 /// Every change made through this class is recorded in the internal state and 1664 /// can be undone (rollback) until commit is called. 1665 class TypePromotionTransaction { 1666 1667 /// \brief This represents the common interface of the individual transaction. 1668 /// Each class implements the logic for doing one specific modification on 1669 /// the IR via the TypePromotionTransaction. 1670 class TypePromotionAction { 1671 protected: 1672 /// The Instruction modified. 1673 Instruction *Inst; 1674 1675 public: 1676 /// \brief Constructor of the action. 1677 /// The constructor performs the related action on the IR. 1678 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 1679 1680 virtual ~TypePromotionAction() {} 1681 1682 /// \brief Undo the modification done by this action. 1683 /// When this method is called, the IR must be in the same state as it was 1684 /// before this action was applied. 1685 /// \pre Undoing the action works if and only if the IR is in the exact same 1686 /// state as it was directly after this action was applied. 1687 virtual void undo() = 0; 1688 1689 /// \brief Advocate every change made by this action. 1690 /// When the results on the IR of the action are to be kept, it is important 1691 /// to call this function, otherwise hidden information may be kept forever. 1692 virtual void commit() { 1693 // Nothing to be done, this action is not doing anything. 1694 } 1695 }; 1696 1697 /// \brief Utility to remember the position of an instruction. 1698 class InsertionHandler { 1699 /// Position of an instruction. 1700 /// Either an instruction: 1701 /// - Is the first in a basic block: BB is used. 1702 /// - Has a previous instructon: PrevInst is used. 1703 union { 1704 Instruction *PrevInst; 1705 BasicBlock *BB; 1706 } Point; 1707 /// Remember whether or not the instruction had a previous instruction. 1708 bool HasPrevInstruction; 1709 1710 public: 1711 /// \brief Record the position of \p Inst. 1712 InsertionHandler(Instruction *Inst) { 1713 BasicBlock::iterator It = Inst->getIterator(); 1714 HasPrevInstruction = (It != (Inst->getParent()->begin())); 1715 if (HasPrevInstruction) 1716 Point.PrevInst = &*--It; 1717 else 1718 Point.BB = Inst->getParent(); 1719 } 1720 1721 /// \brief Insert \p Inst at the recorded position. 1722 void insert(Instruction *Inst) { 1723 if (HasPrevInstruction) { 1724 if (Inst->getParent()) 1725 Inst->removeFromParent(); 1726 Inst->insertAfter(Point.PrevInst); 1727 } else { 1728 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 1729 if (Inst->getParent()) 1730 Inst->moveBefore(Position); 1731 else 1732 Inst->insertBefore(Position); 1733 } 1734 } 1735 }; 1736 1737 /// \brief Move an instruction before another. 1738 class InstructionMoveBefore : public TypePromotionAction { 1739 /// Original position of the instruction. 1740 InsertionHandler Position; 1741 1742 public: 1743 /// \brief Move \p Inst before \p Before. 1744 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 1745 : TypePromotionAction(Inst), Position(Inst) { 1746 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 1747 Inst->moveBefore(Before); 1748 } 1749 1750 /// \brief Move the instruction back to its original position. 1751 void undo() override { 1752 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 1753 Position.insert(Inst); 1754 } 1755 }; 1756 1757 /// \brief Set the operand of an instruction with a new value. 1758 class OperandSetter : public TypePromotionAction { 1759 /// Original operand of the instruction. 1760 Value *Origin; 1761 /// Index of the modified instruction. 1762 unsigned Idx; 1763 1764 public: 1765 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 1766 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 1767 : TypePromotionAction(Inst), Idx(Idx) { 1768 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 1769 << "for:" << *Inst << "\n" 1770 << "with:" << *NewVal << "\n"); 1771 Origin = Inst->getOperand(Idx); 1772 Inst->setOperand(Idx, NewVal); 1773 } 1774 1775 /// \brief Restore the original value of the instruction. 1776 void undo() override { 1777 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 1778 << "for: " << *Inst << "\n" 1779 << "with: " << *Origin << "\n"); 1780 Inst->setOperand(Idx, Origin); 1781 } 1782 }; 1783 1784 /// \brief Hide the operands of an instruction. 1785 /// Do as if this instruction was not using any of its operands. 1786 class OperandsHider : public TypePromotionAction { 1787 /// The list of original operands. 1788 SmallVector<Value *, 4> OriginalValues; 1789 1790 public: 1791 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 1792 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 1793 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 1794 unsigned NumOpnds = Inst->getNumOperands(); 1795 OriginalValues.reserve(NumOpnds); 1796 for (unsigned It = 0; It < NumOpnds; ++It) { 1797 // Save the current operand. 1798 Value *Val = Inst->getOperand(It); 1799 OriginalValues.push_back(Val); 1800 // Set a dummy one. 1801 // We could use OperandSetter here, but that would imply an overhead 1802 // that we are not willing to pay. 1803 Inst->setOperand(It, UndefValue::get(Val->getType())); 1804 } 1805 } 1806 1807 /// \brief Restore the original list of uses. 1808 void undo() override { 1809 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 1810 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 1811 Inst->setOperand(It, OriginalValues[It]); 1812 } 1813 }; 1814 1815 /// \brief Build a truncate instruction. 1816 class TruncBuilder : public TypePromotionAction { 1817 Value *Val; 1818 public: 1819 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 1820 /// result. 1821 /// trunc Opnd to Ty. 1822 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 1823 IRBuilder<> Builder(Opnd); 1824 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 1825 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 1826 } 1827 1828 /// \brief Get the built value. 1829 Value *getBuiltValue() { return Val; } 1830 1831 /// \brief Remove the built instruction. 1832 void undo() override { 1833 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 1834 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 1835 IVal->eraseFromParent(); 1836 } 1837 }; 1838 1839 /// \brief Build a sign extension instruction. 1840 class SExtBuilder : public TypePromotionAction { 1841 Value *Val; 1842 public: 1843 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 1844 /// result. 1845 /// sext Opnd to Ty. 1846 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 1847 : TypePromotionAction(InsertPt) { 1848 IRBuilder<> Builder(InsertPt); 1849 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 1850 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 1851 } 1852 1853 /// \brief Get the built value. 1854 Value *getBuiltValue() { return Val; } 1855 1856 /// \brief Remove the built instruction. 1857 void undo() override { 1858 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 1859 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 1860 IVal->eraseFromParent(); 1861 } 1862 }; 1863 1864 /// \brief Build a zero extension instruction. 1865 class ZExtBuilder : public TypePromotionAction { 1866 Value *Val; 1867 public: 1868 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 1869 /// result. 1870 /// zext Opnd to Ty. 1871 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 1872 : TypePromotionAction(InsertPt) { 1873 IRBuilder<> Builder(InsertPt); 1874 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 1875 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 1876 } 1877 1878 /// \brief Get the built value. 1879 Value *getBuiltValue() { return Val; } 1880 1881 /// \brief Remove the built instruction. 1882 void undo() override { 1883 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 1884 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 1885 IVal->eraseFromParent(); 1886 } 1887 }; 1888 1889 /// \brief Mutate an instruction to another type. 1890 class TypeMutator : public TypePromotionAction { 1891 /// Record the original type. 1892 Type *OrigTy; 1893 1894 public: 1895 /// \brief Mutate the type of \p Inst into \p NewTy. 1896 TypeMutator(Instruction *Inst, Type *NewTy) 1897 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 1898 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 1899 << "\n"); 1900 Inst->mutateType(NewTy); 1901 } 1902 1903 /// \brief Mutate the instruction back to its original type. 1904 void undo() override { 1905 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 1906 << "\n"); 1907 Inst->mutateType(OrigTy); 1908 } 1909 }; 1910 1911 /// \brief Replace the uses of an instruction by another instruction. 1912 class UsesReplacer : public TypePromotionAction { 1913 /// Helper structure to keep track of the replaced uses. 1914 struct InstructionAndIdx { 1915 /// The instruction using the instruction. 1916 Instruction *Inst; 1917 /// The index where this instruction is used for Inst. 1918 unsigned Idx; 1919 InstructionAndIdx(Instruction *Inst, unsigned Idx) 1920 : Inst(Inst), Idx(Idx) {} 1921 }; 1922 1923 /// Keep track of the original uses (pair Instruction, Index). 1924 SmallVector<InstructionAndIdx, 4> OriginalUses; 1925 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator; 1926 1927 public: 1928 /// \brief Replace all the use of \p Inst by \p New. 1929 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 1930 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 1931 << "\n"); 1932 // Record the original uses. 1933 for (Use &U : Inst->uses()) { 1934 Instruction *UserI = cast<Instruction>(U.getUser()); 1935 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 1936 } 1937 // Now, we can replace the uses. 1938 Inst->replaceAllUsesWith(New); 1939 } 1940 1941 /// \brief Reassign the original uses of Inst to Inst. 1942 void undo() override { 1943 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 1944 for (use_iterator UseIt = OriginalUses.begin(), 1945 EndIt = OriginalUses.end(); 1946 UseIt != EndIt; ++UseIt) { 1947 UseIt->Inst->setOperand(UseIt->Idx, Inst); 1948 } 1949 } 1950 }; 1951 1952 /// \brief Remove an instruction from the IR. 1953 class InstructionRemover : public TypePromotionAction { 1954 /// Original position of the instruction. 1955 InsertionHandler Inserter; 1956 /// Helper structure to hide all the link to the instruction. In other 1957 /// words, this helps to do as if the instruction was removed. 1958 OperandsHider Hider; 1959 /// Keep track of the uses replaced, if any. 1960 UsesReplacer *Replacer; 1961 1962 public: 1963 /// \brief Remove all reference of \p Inst and optinally replace all its 1964 /// uses with New. 1965 /// \pre If !Inst->use_empty(), then New != nullptr 1966 InstructionRemover(Instruction *Inst, Value *New = nullptr) 1967 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 1968 Replacer(nullptr) { 1969 if (New) 1970 Replacer = new UsesReplacer(Inst, New); 1971 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 1972 Inst->removeFromParent(); 1973 } 1974 1975 ~InstructionRemover() override { delete Replacer; } 1976 1977 /// \brief Really remove the instruction. 1978 void commit() override { delete Inst; } 1979 1980 /// \brief Resurrect the instruction and reassign it to the proper uses if 1981 /// new value was provided when build this action. 1982 void undo() override { 1983 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 1984 Inserter.insert(Inst); 1985 if (Replacer) 1986 Replacer->undo(); 1987 Hider.undo(); 1988 } 1989 }; 1990 1991 public: 1992 /// Restoration point. 1993 /// The restoration point is a pointer to an action instead of an iterator 1994 /// because the iterator may be invalidated but not the pointer. 1995 typedef const TypePromotionAction *ConstRestorationPt; 1996 /// Advocate every changes made in that transaction. 1997 void commit(); 1998 /// Undo all the changes made after the given point. 1999 void rollback(ConstRestorationPt Point); 2000 /// Get the current restoration point. 2001 ConstRestorationPt getRestorationPoint() const; 2002 2003 /// \name API for IR modification with state keeping to support rollback. 2004 /// @{ 2005 /// Same as Instruction::setOperand. 2006 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2007 /// Same as Instruction::eraseFromParent. 2008 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2009 /// Same as Value::replaceAllUsesWith. 2010 void replaceAllUsesWith(Instruction *Inst, Value *New); 2011 /// Same as Value::mutateType. 2012 void mutateType(Instruction *Inst, Type *NewTy); 2013 /// Same as IRBuilder::createTrunc. 2014 Value *createTrunc(Instruction *Opnd, Type *Ty); 2015 /// Same as IRBuilder::createSExt. 2016 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2017 /// Same as IRBuilder::createZExt. 2018 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2019 /// Same as Instruction::moveBefore. 2020 void moveBefore(Instruction *Inst, Instruction *Before); 2021 /// @} 2022 2023 private: 2024 /// The ordered list of actions made so far. 2025 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2026 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt; 2027 }; 2028 2029 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2030 Value *NewVal) { 2031 Actions.push_back( 2032 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal)); 2033 } 2034 2035 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2036 Value *NewVal) { 2037 Actions.push_back( 2038 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal)); 2039 } 2040 2041 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2042 Value *New) { 2043 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2044 } 2045 2046 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2047 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2048 } 2049 2050 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2051 Type *Ty) { 2052 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2053 Value *Val = Ptr->getBuiltValue(); 2054 Actions.push_back(std::move(Ptr)); 2055 return Val; 2056 } 2057 2058 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2059 Value *Opnd, Type *Ty) { 2060 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2061 Value *Val = Ptr->getBuiltValue(); 2062 Actions.push_back(std::move(Ptr)); 2063 return Val; 2064 } 2065 2066 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2067 Value *Opnd, Type *Ty) { 2068 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2069 Value *Val = Ptr->getBuiltValue(); 2070 Actions.push_back(std::move(Ptr)); 2071 return Val; 2072 } 2073 2074 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2075 Instruction *Before) { 2076 Actions.push_back( 2077 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before)); 2078 } 2079 2080 TypePromotionTransaction::ConstRestorationPt 2081 TypePromotionTransaction::getRestorationPoint() const { 2082 return !Actions.empty() ? Actions.back().get() : nullptr; 2083 } 2084 2085 void TypePromotionTransaction::commit() { 2086 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2087 ++It) 2088 (*It)->commit(); 2089 Actions.clear(); 2090 } 2091 2092 void TypePromotionTransaction::rollback( 2093 TypePromotionTransaction::ConstRestorationPt Point) { 2094 while (!Actions.empty() && Point != Actions.back().get()) { 2095 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2096 Curr->undo(); 2097 } 2098 } 2099 2100 /// \brief A helper class for matching addressing modes. 2101 /// 2102 /// This encapsulates the logic for matching the target-legal addressing modes. 2103 class AddressingModeMatcher { 2104 SmallVectorImpl<Instruction*> &AddrModeInsts; 2105 const TargetMachine &TM; 2106 const TargetLowering &TLI; 2107 const DataLayout &DL; 2108 2109 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2110 /// the memory instruction that we're computing this address for. 2111 Type *AccessTy; 2112 unsigned AddrSpace; 2113 Instruction *MemoryInst; 2114 2115 /// This is the addressing mode that we're building up. This is 2116 /// part of the return value of this addressing mode matching stuff. 2117 ExtAddrMode &AddrMode; 2118 2119 /// The instructions inserted by other CodeGenPrepare optimizations. 2120 const SetOfInstrs &InsertedInsts; 2121 /// A map from the instructions to their type before promotion. 2122 InstrToOrigTy &PromotedInsts; 2123 /// The ongoing transaction where every action should be registered. 2124 TypePromotionTransaction &TPT; 2125 2126 /// This is set to true when we should not do profitability checks. 2127 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2128 bool IgnoreProfitability; 2129 2130 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, 2131 const TargetMachine &TM, Type *AT, unsigned AS, 2132 Instruction *MI, ExtAddrMode &AM, 2133 const SetOfInstrs &InsertedInsts, 2134 InstrToOrigTy &PromotedInsts, 2135 TypePromotionTransaction &TPT) 2136 : AddrModeInsts(AMI), TM(TM), 2137 TLI(*TM.getSubtargetImpl(*MI->getParent()->getParent()) 2138 ->getTargetLowering()), 2139 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2140 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2141 PromotedInsts(PromotedInsts), TPT(TPT) { 2142 IgnoreProfitability = false; 2143 } 2144 public: 2145 2146 /// Find the maximal addressing mode that a load/store of V can fold, 2147 /// give an access type of AccessTy. This returns a list of involved 2148 /// instructions in AddrModeInsts. 2149 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2150 /// optimizations. 2151 /// \p PromotedInsts maps the instructions to their type before promotion. 2152 /// \p The ongoing transaction where every action should be registered. 2153 static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, 2154 Instruction *MemoryInst, 2155 SmallVectorImpl<Instruction*> &AddrModeInsts, 2156 const TargetMachine &TM, 2157 const SetOfInstrs &InsertedInsts, 2158 InstrToOrigTy &PromotedInsts, 2159 TypePromotionTransaction &TPT) { 2160 ExtAddrMode Result; 2161 2162 bool Success = AddressingModeMatcher(AddrModeInsts, TM, AccessTy, AS, 2163 MemoryInst, Result, InsertedInsts, 2164 PromotedInsts, TPT).matchAddr(V, 0); 2165 (void)Success; assert(Success && "Couldn't select *anything*?"); 2166 return Result; 2167 } 2168 private: 2169 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2170 bool matchAddr(Value *V, unsigned Depth); 2171 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 2172 bool *MovedAway = nullptr); 2173 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2174 ExtAddrMode &AMBefore, 2175 ExtAddrMode &AMAfter); 2176 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2177 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2178 Value *PromotedOperand) const; 2179 }; 2180 2181 /// Try adding ScaleReg*Scale to the current addressing mode. 2182 /// Return true and update AddrMode if this addr mode is legal for the target, 2183 /// false if not. 2184 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 2185 unsigned Depth) { 2186 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 2187 // mode. Just process that directly. 2188 if (Scale == 1) 2189 return matchAddr(ScaleReg, Depth); 2190 2191 // If the scale is 0, it takes nothing to add this. 2192 if (Scale == 0) 2193 return true; 2194 2195 // If we already have a scale of this value, we can add to it, otherwise, we 2196 // need an available scale field. 2197 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 2198 return false; 2199 2200 ExtAddrMode TestAddrMode = AddrMode; 2201 2202 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 2203 // [A+B + A*7] -> [B+A*8]. 2204 TestAddrMode.Scale += Scale; 2205 TestAddrMode.ScaledReg = ScaleReg; 2206 2207 // If the new address isn't legal, bail out. 2208 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 2209 return false; 2210 2211 // It was legal, so commit it. 2212 AddrMode = TestAddrMode; 2213 2214 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 2215 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 2216 // X*Scale + C*Scale to addr mode. 2217 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 2218 if (isa<Instruction>(ScaleReg) && // not a constant expr. 2219 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 2220 TestAddrMode.ScaledReg = AddLHS; 2221 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 2222 2223 // If this addressing mode is legal, commit it and remember that we folded 2224 // this instruction. 2225 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 2226 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 2227 AddrMode = TestAddrMode; 2228 return true; 2229 } 2230 } 2231 2232 // Otherwise, not (x+c)*scale, just return what we have. 2233 return true; 2234 } 2235 2236 /// This is a little filter, which returns true if an addressing computation 2237 /// involving I might be folded into a load/store accessing it. 2238 /// This doesn't need to be perfect, but needs to accept at least 2239 /// the set of instructions that MatchOperationAddr can. 2240 static bool MightBeFoldableInst(Instruction *I) { 2241 switch (I->getOpcode()) { 2242 case Instruction::BitCast: 2243 case Instruction::AddrSpaceCast: 2244 // Don't touch identity bitcasts. 2245 if (I->getType() == I->getOperand(0)->getType()) 2246 return false; 2247 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 2248 case Instruction::PtrToInt: 2249 // PtrToInt is always a noop, as we know that the int type is pointer sized. 2250 return true; 2251 case Instruction::IntToPtr: 2252 // We know the input is intptr_t, so this is foldable. 2253 return true; 2254 case Instruction::Add: 2255 return true; 2256 case Instruction::Mul: 2257 case Instruction::Shl: 2258 // Can only handle X*C and X << C. 2259 return isa<ConstantInt>(I->getOperand(1)); 2260 case Instruction::GetElementPtr: 2261 return true; 2262 default: 2263 return false; 2264 } 2265 } 2266 2267 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 2268 /// \note \p Val is assumed to be the product of some type promotion. 2269 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 2270 /// to be legal, as the non-promoted value would have had the same state. 2271 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 2272 const DataLayout &DL, Value *Val) { 2273 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 2274 if (!PromotedInst) 2275 return false; 2276 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 2277 // If the ISDOpcode is undefined, it was undefined before the promotion. 2278 if (!ISDOpcode) 2279 return true; 2280 // Otherwise, check if the promoted instruction is legal or not. 2281 return TLI.isOperationLegalOrCustom( 2282 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 2283 } 2284 2285 /// \brief Hepler class to perform type promotion. 2286 class TypePromotionHelper { 2287 /// \brief Utility function to check whether or not a sign or zero extension 2288 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 2289 /// either using the operands of \p Inst or promoting \p Inst. 2290 /// The type of the extension is defined by \p IsSExt. 2291 /// In other words, check if: 2292 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 2293 /// #1 Promotion applies: 2294 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 2295 /// #2 Operand reuses: 2296 /// ext opnd1 to ConsideredExtType. 2297 /// \p PromotedInsts maps the instructions to their type before promotion. 2298 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 2299 const InstrToOrigTy &PromotedInsts, bool IsSExt); 2300 2301 /// \brief Utility function to determine if \p OpIdx should be promoted when 2302 /// promoting \p Inst. 2303 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 2304 if (isa<SelectInst>(Inst) && OpIdx == 0) 2305 return false; 2306 return true; 2307 } 2308 2309 /// \brief Utility function to promote the operand of \p Ext when this 2310 /// operand is a promotable trunc or sext or zext. 2311 /// \p PromotedInsts maps the instructions to their type before promotion. 2312 /// \p CreatedInstsCost[out] contains the cost of all instructions 2313 /// created to promote the operand of Ext. 2314 /// Newly added extensions are inserted in \p Exts. 2315 /// Newly added truncates are inserted in \p Truncs. 2316 /// Should never be called directly. 2317 /// \return The promoted value which is used instead of Ext. 2318 static Value *promoteOperandForTruncAndAnyExt( 2319 Instruction *Ext, TypePromotionTransaction &TPT, 2320 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2321 SmallVectorImpl<Instruction *> *Exts, 2322 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 2323 2324 /// \brief Utility function to promote the operand of \p Ext when this 2325 /// operand is promotable and is not a supported trunc or sext. 2326 /// \p PromotedInsts maps the instructions to their type before promotion. 2327 /// \p CreatedInstsCost[out] contains the cost of all the instructions 2328 /// created to promote the operand of Ext. 2329 /// Newly added extensions are inserted in \p Exts. 2330 /// Newly added truncates are inserted in \p Truncs. 2331 /// Should never be called directly. 2332 /// \return The promoted value which is used instead of Ext. 2333 static Value *promoteOperandForOther(Instruction *Ext, 2334 TypePromotionTransaction &TPT, 2335 InstrToOrigTy &PromotedInsts, 2336 unsigned &CreatedInstsCost, 2337 SmallVectorImpl<Instruction *> *Exts, 2338 SmallVectorImpl<Instruction *> *Truncs, 2339 const TargetLowering &TLI, bool IsSExt); 2340 2341 /// \see promoteOperandForOther. 2342 static Value *signExtendOperandForOther( 2343 Instruction *Ext, TypePromotionTransaction &TPT, 2344 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2345 SmallVectorImpl<Instruction *> *Exts, 2346 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2347 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2348 Exts, Truncs, TLI, true); 2349 } 2350 2351 /// \see promoteOperandForOther. 2352 static Value *zeroExtendOperandForOther( 2353 Instruction *Ext, TypePromotionTransaction &TPT, 2354 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2355 SmallVectorImpl<Instruction *> *Exts, 2356 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2357 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2358 Exts, Truncs, TLI, false); 2359 } 2360 2361 public: 2362 /// Type for the utility function that promotes the operand of Ext. 2363 typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT, 2364 InstrToOrigTy &PromotedInsts, 2365 unsigned &CreatedInstsCost, 2366 SmallVectorImpl<Instruction *> *Exts, 2367 SmallVectorImpl<Instruction *> *Truncs, 2368 const TargetLowering &TLI); 2369 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 2370 /// action to promote the operand of \p Ext instead of using Ext. 2371 /// \return NULL if no promotable action is possible with the current 2372 /// sign extension. 2373 /// \p InsertedInsts keeps track of all the instructions inserted by the 2374 /// other CodeGenPrepare optimizations. This information is important 2375 /// because we do not want to promote these instructions as CodeGenPrepare 2376 /// will reinsert them later. Thus creating an infinite loop: create/remove. 2377 /// \p PromotedInsts maps the instructions to their type before promotion. 2378 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 2379 const TargetLowering &TLI, 2380 const InstrToOrigTy &PromotedInsts); 2381 }; 2382 2383 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 2384 Type *ConsideredExtType, 2385 const InstrToOrigTy &PromotedInsts, 2386 bool IsSExt) { 2387 // The promotion helper does not know how to deal with vector types yet. 2388 // To be able to fix that, we would need to fix the places where we 2389 // statically extend, e.g., constants and such. 2390 if (Inst->getType()->isVectorTy()) 2391 return false; 2392 2393 // We can always get through zext. 2394 if (isa<ZExtInst>(Inst)) 2395 return true; 2396 2397 // sext(sext) is ok too. 2398 if (IsSExt && isa<SExtInst>(Inst)) 2399 return true; 2400 2401 // We can get through binary operator, if it is legal. In other words, the 2402 // binary operator must have a nuw or nsw flag. 2403 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 2404 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 2405 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 2406 (IsSExt && BinOp->hasNoSignedWrap()))) 2407 return true; 2408 2409 // Check if we can do the following simplification. 2410 // ext(trunc(opnd)) --> ext(opnd) 2411 if (!isa<TruncInst>(Inst)) 2412 return false; 2413 2414 Value *OpndVal = Inst->getOperand(0); 2415 // Check if we can use this operand in the extension. 2416 // If the type is larger than the result type of the extension, we cannot. 2417 if (!OpndVal->getType()->isIntegerTy() || 2418 OpndVal->getType()->getIntegerBitWidth() > 2419 ConsideredExtType->getIntegerBitWidth()) 2420 return false; 2421 2422 // If the operand of the truncate is not an instruction, we will not have 2423 // any information on the dropped bits. 2424 // (Actually we could for constant but it is not worth the extra logic). 2425 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 2426 if (!Opnd) 2427 return false; 2428 2429 // Check if the source of the type is narrow enough. 2430 // I.e., check that trunc just drops extended bits of the same kind of 2431 // the extension. 2432 // #1 get the type of the operand and check the kind of the extended bits. 2433 const Type *OpndType; 2434 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 2435 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 2436 OpndType = It->second.getPointer(); 2437 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 2438 OpndType = Opnd->getOperand(0)->getType(); 2439 else 2440 return false; 2441 2442 // #2 check that the truncate just drops extended bits. 2443 if (Inst->getType()->getIntegerBitWidth() >= OpndType->getIntegerBitWidth()) 2444 return true; 2445 2446 return false; 2447 } 2448 2449 TypePromotionHelper::Action TypePromotionHelper::getAction( 2450 Instruction *Ext, const SetOfInstrs &InsertedInsts, 2451 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 2452 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2453 "Unexpected instruction type"); 2454 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 2455 Type *ExtTy = Ext->getType(); 2456 bool IsSExt = isa<SExtInst>(Ext); 2457 // If the operand of the extension is not an instruction, we cannot 2458 // get through. 2459 // If it, check we can get through. 2460 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 2461 return nullptr; 2462 2463 // Do not promote if the operand has been added by codegenprepare. 2464 // Otherwise, it means we are undoing an optimization that is likely to be 2465 // redone, thus causing potential infinite loop. 2466 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 2467 return nullptr; 2468 2469 // SExt or Trunc instructions. 2470 // Return the related handler. 2471 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 2472 isa<ZExtInst>(ExtOpnd)) 2473 return promoteOperandForTruncAndAnyExt; 2474 2475 // Regular instruction. 2476 // Abort early if we will have to insert non-free instructions. 2477 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 2478 return nullptr; 2479 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 2480 } 2481 2482 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 2483 llvm::Instruction *SExt, TypePromotionTransaction &TPT, 2484 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2485 SmallVectorImpl<Instruction *> *Exts, 2486 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2487 // By construction, the operand of SExt is an instruction. Otherwise we cannot 2488 // get through it and this method should not be called. 2489 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 2490 Value *ExtVal = SExt; 2491 bool HasMergedNonFreeExt = false; 2492 if (isa<ZExtInst>(SExtOpnd)) { 2493 // Replace s|zext(zext(opnd)) 2494 // => zext(opnd). 2495 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 2496 Value *ZExt = 2497 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 2498 TPT.replaceAllUsesWith(SExt, ZExt); 2499 TPT.eraseInstruction(SExt); 2500 ExtVal = ZExt; 2501 } else { 2502 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 2503 // => z|sext(opnd). 2504 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 2505 } 2506 CreatedInstsCost = 0; 2507 2508 // Remove dead code. 2509 if (SExtOpnd->use_empty()) 2510 TPT.eraseInstruction(SExtOpnd); 2511 2512 // Check if the extension is still needed. 2513 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 2514 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 2515 if (ExtInst) { 2516 if (Exts) 2517 Exts->push_back(ExtInst); 2518 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 2519 } 2520 return ExtVal; 2521 } 2522 2523 // At this point we have: ext ty opnd to ty. 2524 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 2525 Value *NextVal = ExtInst->getOperand(0); 2526 TPT.eraseInstruction(ExtInst, NextVal); 2527 return NextVal; 2528 } 2529 2530 Value *TypePromotionHelper::promoteOperandForOther( 2531 Instruction *Ext, TypePromotionTransaction &TPT, 2532 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2533 SmallVectorImpl<Instruction *> *Exts, 2534 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 2535 bool IsSExt) { 2536 // By construction, the operand of Ext is an instruction. Otherwise we cannot 2537 // get through it and this method should not be called. 2538 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 2539 CreatedInstsCost = 0; 2540 if (!ExtOpnd->hasOneUse()) { 2541 // ExtOpnd will be promoted. 2542 // All its uses, but Ext, will need to use a truncated value of the 2543 // promoted version. 2544 // Create the truncate now. 2545 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 2546 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 2547 ITrunc->removeFromParent(); 2548 // Insert it just after the definition. 2549 ITrunc->insertAfter(ExtOpnd); 2550 if (Truncs) 2551 Truncs->push_back(ITrunc); 2552 } 2553 2554 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 2555 // Restore the operand of Ext (which has been replaced by the previous call 2556 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 2557 TPT.setOperand(Ext, 0, ExtOpnd); 2558 } 2559 2560 // Get through the Instruction: 2561 // 1. Update its type. 2562 // 2. Replace the uses of Ext by Inst. 2563 // 3. Extend each operand that needs to be extended. 2564 2565 // Remember the original type of the instruction before promotion. 2566 // This is useful to know that the high bits are sign extended bits. 2567 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 2568 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 2569 // Step #1. 2570 TPT.mutateType(ExtOpnd, Ext->getType()); 2571 // Step #2. 2572 TPT.replaceAllUsesWith(Ext, ExtOpnd); 2573 // Step #3. 2574 Instruction *ExtForOpnd = Ext; 2575 2576 DEBUG(dbgs() << "Propagate Ext to operands\n"); 2577 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 2578 ++OpIdx) { 2579 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 2580 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 2581 !shouldExtOperand(ExtOpnd, OpIdx)) { 2582 DEBUG(dbgs() << "No need to propagate\n"); 2583 continue; 2584 } 2585 // Check if we can statically extend the operand. 2586 Value *Opnd = ExtOpnd->getOperand(OpIdx); 2587 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 2588 DEBUG(dbgs() << "Statically extend\n"); 2589 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 2590 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 2591 : Cst->getValue().zext(BitWidth); 2592 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 2593 continue; 2594 } 2595 // UndefValue are typed, so we have to statically sign extend them. 2596 if (isa<UndefValue>(Opnd)) { 2597 DEBUG(dbgs() << "Statically extend\n"); 2598 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 2599 continue; 2600 } 2601 2602 // Otherwise we have to explicity sign extend the operand. 2603 // Check if Ext was reused to extend an operand. 2604 if (!ExtForOpnd) { 2605 // If yes, create a new one. 2606 DEBUG(dbgs() << "More operands to ext\n"); 2607 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 2608 : TPT.createZExt(Ext, Opnd, Ext->getType()); 2609 if (!isa<Instruction>(ValForExtOpnd)) { 2610 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 2611 continue; 2612 } 2613 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 2614 } 2615 if (Exts) 2616 Exts->push_back(ExtForOpnd); 2617 TPT.setOperand(ExtForOpnd, 0, Opnd); 2618 2619 // Move the sign extension before the insertion point. 2620 TPT.moveBefore(ExtForOpnd, ExtOpnd); 2621 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 2622 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 2623 // If more sext are required, new instructions will have to be created. 2624 ExtForOpnd = nullptr; 2625 } 2626 if (ExtForOpnd == Ext) { 2627 DEBUG(dbgs() << "Extension is useless now\n"); 2628 TPT.eraseInstruction(Ext); 2629 } 2630 return ExtOpnd; 2631 } 2632 2633 /// Check whether or not promoting an instruction to a wider type is profitable. 2634 /// \p NewCost gives the cost of extension instructions created by the 2635 /// promotion. 2636 /// \p OldCost gives the cost of extension instructions before the promotion 2637 /// plus the number of instructions that have been 2638 /// matched in the addressing mode the promotion. 2639 /// \p PromotedOperand is the value that has been promoted. 2640 /// \return True if the promotion is profitable, false otherwise. 2641 bool AddressingModeMatcher::isPromotionProfitable( 2642 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 2643 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); 2644 // The cost of the new extensions is greater than the cost of the 2645 // old extension plus what we folded. 2646 // This is not profitable. 2647 if (NewCost > OldCost) 2648 return false; 2649 if (NewCost < OldCost) 2650 return true; 2651 // The promotion is neutral but it may help folding the sign extension in 2652 // loads for instance. 2653 // Check that we did not create an illegal instruction. 2654 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 2655 } 2656 2657 /// Given an instruction or constant expr, see if we can fold the operation 2658 /// into the addressing mode. If so, update the addressing mode and return 2659 /// true, otherwise return false without modifying AddrMode. 2660 /// If \p MovedAway is not NULL, it contains the information of whether or 2661 /// not AddrInst has to be folded into the addressing mode on success. 2662 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 2663 /// because it has been moved away. 2664 /// Thus AddrInst must not be added in the matched instructions. 2665 /// This state can happen when AddrInst is a sext, since it may be moved away. 2666 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 2667 /// not be referenced anymore. 2668 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 2669 unsigned Depth, 2670 bool *MovedAway) { 2671 // Avoid exponential behavior on extremely deep expression trees. 2672 if (Depth >= 5) return false; 2673 2674 // By default, all matched instructions stay in place. 2675 if (MovedAway) 2676 *MovedAway = false; 2677 2678 switch (Opcode) { 2679 case Instruction::PtrToInt: 2680 // PtrToInt is always a noop, as we know that the int type is pointer sized. 2681 return matchAddr(AddrInst->getOperand(0), Depth); 2682 case Instruction::IntToPtr: { 2683 auto AS = AddrInst->getType()->getPointerAddressSpace(); 2684 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 2685 // This inttoptr is a no-op if the integer type is pointer sized. 2686 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 2687 return matchAddr(AddrInst->getOperand(0), Depth); 2688 return false; 2689 } 2690 case Instruction::BitCast: 2691 // BitCast is always a noop, and we can handle it as long as it is 2692 // int->int or pointer->pointer (we don't want int<->fp or something). 2693 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 2694 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 2695 // Don't touch identity bitcasts. These were probably put here by LSR, 2696 // and we don't want to mess around with them. Assume it knows what it 2697 // is doing. 2698 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 2699 return matchAddr(AddrInst->getOperand(0), Depth); 2700 return false; 2701 case Instruction::AddrSpaceCast: { 2702 unsigned SrcAS 2703 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 2704 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 2705 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2706 return matchAddr(AddrInst->getOperand(0), Depth); 2707 return false; 2708 } 2709 case Instruction::Add: { 2710 // Check to see if we can merge in the RHS then the LHS. If so, we win. 2711 ExtAddrMode BackupAddrMode = AddrMode; 2712 unsigned OldSize = AddrModeInsts.size(); 2713 // Start a transaction at this point. 2714 // The LHS may match but not the RHS. 2715 // Therefore, we need a higher level restoration point to undo partially 2716 // matched operation. 2717 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2718 TPT.getRestorationPoint(); 2719 2720 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 2721 matchAddr(AddrInst->getOperand(0), Depth+1)) 2722 return true; 2723 2724 // Restore the old addr mode info. 2725 AddrMode = BackupAddrMode; 2726 AddrModeInsts.resize(OldSize); 2727 TPT.rollback(LastKnownGood); 2728 2729 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 2730 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 2731 matchAddr(AddrInst->getOperand(1), Depth+1)) 2732 return true; 2733 2734 // Otherwise we definitely can't merge the ADD in. 2735 AddrMode = BackupAddrMode; 2736 AddrModeInsts.resize(OldSize); 2737 TPT.rollback(LastKnownGood); 2738 break; 2739 } 2740 //case Instruction::Or: 2741 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 2742 //break; 2743 case Instruction::Mul: 2744 case Instruction::Shl: { 2745 // Can only handle X*C and X << C. 2746 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 2747 if (!RHS) 2748 return false; 2749 int64_t Scale = RHS->getSExtValue(); 2750 if (Opcode == Instruction::Shl) 2751 Scale = 1LL << Scale; 2752 2753 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 2754 } 2755 case Instruction::GetElementPtr: { 2756 // Scan the GEP. We check it if it contains constant offsets and at most 2757 // one variable offset. 2758 int VariableOperand = -1; 2759 unsigned VariableScale = 0; 2760 2761 int64_t ConstantOffset = 0; 2762 gep_type_iterator GTI = gep_type_begin(AddrInst); 2763 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 2764 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 2765 const StructLayout *SL = DL.getStructLayout(STy); 2766 unsigned Idx = 2767 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 2768 ConstantOffset += SL->getElementOffset(Idx); 2769 } else { 2770 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 2771 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 2772 ConstantOffset += CI->getSExtValue()*TypeSize; 2773 } else if (TypeSize) { // Scales of zero don't do anything. 2774 // We only allow one variable index at the moment. 2775 if (VariableOperand != -1) 2776 return false; 2777 2778 // Remember the variable index. 2779 VariableOperand = i; 2780 VariableScale = TypeSize; 2781 } 2782 } 2783 } 2784 2785 // A common case is for the GEP to only do a constant offset. In this case, 2786 // just add it to the disp field and check validity. 2787 if (VariableOperand == -1) { 2788 AddrMode.BaseOffs += ConstantOffset; 2789 if (ConstantOffset == 0 || 2790 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 2791 // Check to see if we can fold the base pointer in too. 2792 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 2793 return true; 2794 } 2795 AddrMode.BaseOffs -= ConstantOffset; 2796 return false; 2797 } 2798 2799 // Save the valid addressing mode in case we can't match. 2800 ExtAddrMode BackupAddrMode = AddrMode; 2801 unsigned OldSize = AddrModeInsts.size(); 2802 2803 // See if the scale and offset amount is valid for this target. 2804 AddrMode.BaseOffs += ConstantOffset; 2805 2806 // Match the base operand of the GEP. 2807 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 2808 // If it couldn't be matched, just stuff the value in a register. 2809 if (AddrMode.HasBaseReg) { 2810 AddrMode = BackupAddrMode; 2811 AddrModeInsts.resize(OldSize); 2812 return false; 2813 } 2814 AddrMode.HasBaseReg = true; 2815 AddrMode.BaseReg = AddrInst->getOperand(0); 2816 } 2817 2818 // Match the remaining variable portion of the GEP. 2819 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 2820 Depth)) { 2821 // If it couldn't be matched, try stuffing the base into a register 2822 // instead of matching it, and retrying the match of the scale. 2823 AddrMode = BackupAddrMode; 2824 AddrModeInsts.resize(OldSize); 2825 if (AddrMode.HasBaseReg) 2826 return false; 2827 AddrMode.HasBaseReg = true; 2828 AddrMode.BaseReg = AddrInst->getOperand(0); 2829 AddrMode.BaseOffs += ConstantOffset; 2830 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 2831 VariableScale, Depth)) { 2832 // If even that didn't work, bail. 2833 AddrMode = BackupAddrMode; 2834 AddrModeInsts.resize(OldSize); 2835 return false; 2836 } 2837 } 2838 2839 return true; 2840 } 2841 case Instruction::SExt: 2842 case Instruction::ZExt: { 2843 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 2844 if (!Ext) 2845 return false; 2846 2847 // Try to move this ext out of the way of the addressing mode. 2848 // Ask for a method for doing so. 2849 TypePromotionHelper::Action TPH = 2850 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 2851 if (!TPH) 2852 return false; 2853 2854 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2855 TPT.getRestorationPoint(); 2856 unsigned CreatedInstsCost = 0; 2857 unsigned ExtCost = !TLI.isExtFree(Ext); 2858 Value *PromotedOperand = 2859 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 2860 // SExt has been moved away. 2861 // Thus either it will be rematched later in the recursive calls or it is 2862 // gone. Anyway, we must not fold it into the addressing mode at this point. 2863 // E.g., 2864 // op = add opnd, 1 2865 // idx = ext op 2866 // addr = gep base, idx 2867 // is now: 2868 // promotedOpnd = ext opnd <- no match here 2869 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 2870 // addr = gep base, op <- match 2871 if (MovedAway) 2872 *MovedAway = true; 2873 2874 assert(PromotedOperand && 2875 "TypePromotionHelper should have filtered out those cases"); 2876 2877 ExtAddrMode BackupAddrMode = AddrMode; 2878 unsigned OldSize = AddrModeInsts.size(); 2879 2880 if (!matchAddr(PromotedOperand, Depth) || 2881 // The total of the new cost is equal to the cost of the created 2882 // instructions. 2883 // The total of the old cost is equal to the cost of the extension plus 2884 // what we have saved in the addressing mode. 2885 !isPromotionProfitable(CreatedInstsCost, 2886 ExtCost + (AddrModeInsts.size() - OldSize), 2887 PromotedOperand)) { 2888 AddrMode = BackupAddrMode; 2889 AddrModeInsts.resize(OldSize); 2890 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 2891 TPT.rollback(LastKnownGood); 2892 return false; 2893 } 2894 return true; 2895 } 2896 } 2897 return false; 2898 } 2899 2900 /// If we can, try to add the value of 'Addr' into the current addressing mode. 2901 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 2902 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 2903 /// for the target. 2904 /// 2905 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 2906 // Start a transaction at this point that we will rollback if the matching 2907 // fails. 2908 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2909 TPT.getRestorationPoint(); 2910 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 2911 // Fold in immediates if legal for the target. 2912 AddrMode.BaseOffs += CI->getSExtValue(); 2913 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 2914 return true; 2915 AddrMode.BaseOffs -= CI->getSExtValue(); 2916 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 2917 // If this is a global variable, try to fold it into the addressing mode. 2918 if (!AddrMode.BaseGV) { 2919 AddrMode.BaseGV = GV; 2920 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 2921 return true; 2922 AddrMode.BaseGV = nullptr; 2923 } 2924 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 2925 ExtAddrMode BackupAddrMode = AddrMode; 2926 unsigned OldSize = AddrModeInsts.size(); 2927 2928 // Check to see if it is possible to fold this operation. 2929 bool MovedAway = false; 2930 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 2931 // This instruction may have been moved away. If so, there is nothing 2932 // to check here. 2933 if (MovedAway) 2934 return true; 2935 // Okay, it's possible to fold this. Check to see if it is actually 2936 // *profitable* to do so. We use a simple cost model to avoid increasing 2937 // register pressure too much. 2938 if (I->hasOneUse() || 2939 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 2940 AddrModeInsts.push_back(I); 2941 return true; 2942 } 2943 2944 // It isn't profitable to do this, roll back. 2945 //cerr << "NOT FOLDING: " << *I; 2946 AddrMode = BackupAddrMode; 2947 AddrModeInsts.resize(OldSize); 2948 TPT.rollback(LastKnownGood); 2949 } 2950 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 2951 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 2952 return true; 2953 TPT.rollback(LastKnownGood); 2954 } else if (isa<ConstantPointerNull>(Addr)) { 2955 // Null pointer gets folded without affecting the addressing mode. 2956 return true; 2957 } 2958 2959 // Worse case, the target should support [reg] addressing modes. :) 2960 if (!AddrMode.HasBaseReg) { 2961 AddrMode.HasBaseReg = true; 2962 AddrMode.BaseReg = Addr; 2963 // Still check for legality in case the target supports [imm] but not [i+r]. 2964 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 2965 return true; 2966 AddrMode.HasBaseReg = false; 2967 AddrMode.BaseReg = nullptr; 2968 } 2969 2970 // If the base register is already taken, see if we can do [r+r]. 2971 if (AddrMode.Scale == 0) { 2972 AddrMode.Scale = 1; 2973 AddrMode.ScaledReg = Addr; 2974 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 2975 return true; 2976 AddrMode.Scale = 0; 2977 AddrMode.ScaledReg = nullptr; 2978 } 2979 // Couldn't match. 2980 TPT.rollback(LastKnownGood); 2981 return false; 2982 } 2983 2984 /// Check to see if all uses of OpVal by the specified inline asm call are due 2985 /// to memory operands. If so, return true, otherwise return false. 2986 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 2987 const TargetMachine &TM) { 2988 const Function *F = CI->getParent()->getParent(); 2989 const TargetLowering *TLI = TM.getSubtargetImpl(*F)->getTargetLowering(); 2990 const TargetRegisterInfo *TRI = TM.getSubtargetImpl(*F)->getRegisterInfo(); 2991 TargetLowering::AsmOperandInfoVector TargetConstraints = 2992 TLI->ParseConstraints(F->getParent()->getDataLayout(), TRI, 2993 ImmutableCallSite(CI)); 2994 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 2995 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 2996 2997 // Compute the constraint code and ConstraintType to use. 2998 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 2999 3000 // If this asm operand is our Value*, and if it isn't an indirect memory 3001 // operand, we can't fold it! 3002 if (OpInfo.CallOperandVal == OpVal && 3003 (OpInfo.ConstraintType != TargetLowering::C_Memory || 3004 !OpInfo.isIndirect)) 3005 return false; 3006 } 3007 3008 return true; 3009 } 3010 3011 /// Recursively walk all the uses of I until we find a memory use. 3012 /// If we find an obviously non-foldable instruction, return true. 3013 /// Add the ultimately found memory instructions to MemoryUses. 3014 static bool FindAllMemoryUses( 3015 Instruction *I, 3016 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 3017 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetMachine &TM) { 3018 // If we already considered this instruction, we're done. 3019 if (!ConsideredInsts.insert(I).second) 3020 return false; 3021 3022 // If this is an obviously unfoldable instruction, bail out. 3023 if (!MightBeFoldableInst(I)) 3024 return true; 3025 3026 // Loop over all the uses, recursively processing them. 3027 for (Use &U : I->uses()) { 3028 Instruction *UserI = cast<Instruction>(U.getUser()); 3029 3030 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 3031 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 3032 continue; 3033 } 3034 3035 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 3036 unsigned opNo = U.getOperandNo(); 3037 if (opNo == 0) return true; // Storing addr, not into addr. 3038 MemoryUses.push_back(std::make_pair(SI, opNo)); 3039 continue; 3040 } 3041 3042 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 3043 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 3044 if (!IA) return true; 3045 3046 // If this is a memory operand, we're cool, otherwise bail out. 3047 if (!IsOperandAMemoryOperand(CI, IA, I, TM)) 3048 return true; 3049 continue; 3050 } 3051 3052 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TM)) 3053 return true; 3054 } 3055 3056 return false; 3057 } 3058 3059 /// Return true if Val is already known to be live at the use site that we're 3060 /// folding it into. If so, there is no cost to include it in the addressing 3061 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 3062 /// instruction already. 3063 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 3064 Value *KnownLive2) { 3065 // If Val is either of the known-live values, we know it is live! 3066 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 3067 return true; 3068 3069 // All values other than instructions and arguments (e.g. constants) are live. 3070 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 3071 3072 // If Val is a constant sized alloca in the entry block, it is live, this is 3073 // true because it is just a reference to the stack/frame pointer, which is 3074 // live for the whole function. 3075 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 3076 if (AI->isStaticAlloca()) 3077 return true; 3078 3079 // Check to see if this value is already used in the memory instruction's 3080 // block. If so, it's already live into the block at the very least, so we 3081 // can reasonably fold it. 3082 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 3083 } 3084 3085 /// It is possible for the addressing mode of the machine to fold the specified 3086 /// instruction into a load or store that ultimately uses it. 3087 /// However, the specified instruction has multiple uses. 3088 /// Given this, it may actually increase register pressure to fold it 3089 /// into the load. For example, consider this code: 3090 /// 3091 /// X = ... 3092 /// Y = X+1 3093 /// use(Y) -> nonload/store 3094 /// Z = Y+1 3095 /// load Z 3096 /// 3097 /// In this case, Y has multiple uses, and can be folded into the load of Z 3098 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 3099 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 3100 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 3101 /// number of computations either. 3102 /// 3103 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 3104 /// X was live across 'load Z' for other reasons, we actually *would* want to 3105 /// fold the addressing mode in the Z case. This would make Y die earlier. 3106 bool AddressingModeMatcher:: 3107 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 3108 ExtAddrMode &AMAfter) { 3109 if (IgnoreProfitability) return true; 3110 3111 // AMBefore is the addressing mode before this instruction was folded into it, 3112 // and AMAfter is the addressing mode after the instruction was folded. Get 3113 // the set of registers referenced by AMAfter and subtract out those 3114 // referenced by AMBefore: this is the set of values which folding in this 3115 // address extends the lifetime of. 3116 // 3117 // Note that there are only two potential values being referenced here, 3118 // BaseReg and ScaleReg (global addresses are always available, as are any 3119 // folded immediates). 3120 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 3121 3122 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 3123 // lifetime wasn't extended by adding this instruction. 3124 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3125 BaseReg = nullptr; 3126 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3127 ScaledReg = nullptr; 3128 3129 // If folding this instruction (and it's subexprs) didn't extend any live 3130 // ranges, we're ok with it. 3131 if (!BaseReg && !ScaledReg) 3132 return true; 3133 3134 // If all uses of this instruction are ultimately load/store/inlineasm's, 3135 // check to see if their addressing modes will include this instruction. If 3136 // so, we can fold it into all uses, so it doesn't matter if it has multiple 3137 // uses. 3138 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 3139 SmallPtrSet<Instruction*, 16> ConsideredInsts; 3140 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TM)) 3141 return false; // Has a non-memory, non-foldable use! 3142 3143 // Now that we know that all uses of this instruction are part of a chain of 3144 // computation involving only operations that could theoretically be folded 3145 // into a memory use, loop over each of these uses and see if they could 3146 // *actually* fold the instruction. 3147 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 3148 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 3149 Instruction *User = MemoryUses[i].first; 3150 unsigned OpNo = MemoryUses[i].second; 3151 3152 // Get the access type of this use. If the use isn't a pointer, we don't 3153 // know what it accesses. 3154 Value *Address = User->getOperand(OpNo); 3155 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 3156 if (!AddrTy) 3157 return false; 3158 Type *AddressAccessTy = AddrTy->getElementType(); 3159 unsigned AS = AddrTy->getAddressSpace(); 3160 3161 // Do a match against the root of this address, ignoring profitability. This 3162 // will tell us if the addressing mode for the memory operation will 3163 // *actually* cover the shared instruction. 3164 ExtAddrMode Result; 3165 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3166 TPT.getRestorationPoint(); 3167 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TM, AddressAccessTy, AS, 3168 MemoryInst, Result, InsertedInsts, 3169 PromotedInsts, TPT); 3170 Matcher.IgnoreProfitability = true; 3171 bool Success = Matcher.matchAddr(Address, 0); 3172 (void)Success; assert(Success && "Couldn't select *anything*?"); 3173 3174 // The match was to check the profitability, the changes made are not 3175 // part of the original matcher. Therefore, they should be dropped 3176 // otherwise the original matcher will not present the right state. 3177 TPT.rollback(LastKnownGood); 3178 3179 // If the match didn't cover I, then it won't be shared by it. 3180 if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(), 3181 I) == MatchedAddrModeInsts.end()) 3182 return false; 3183 3184 MatchedAddrModeInsts.clear(); 3185 } 3186 3187 return true; 3188 } 3189 3190 } // end anonymous namespace 3191 3192 /// Return true if the specified values are defined in a 3193 /// different basic block than BB. 3194 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 3195 if (Instruction *I = dyn_cast<Instruction>(V)) 3196 return I->getParent() != BB; 3197 return false; 3198 } 3199 3200 /// Load and Store Instructions often have addressing modes that can do 3201 /// significant amounts of computation. As such, instruction selection will try 3202 /// to get the load or store to do as much computation as possible for the 3203 /// program. The problem is that isel can only see within a single block. As 3204 /// such, we sink as much legal addressing mode work into the block as possible. 3205 /// 3206 /// This method is used to optimize both load/store and inline asms with memory 3207 /// operands. 3208 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 3209 Type *AccessTy, unsigned AddrSpace) { 3210 Value *Repl = Addr; 3211 3212 // Try to collapse single-value PHI nodes. This is necessary to undo 3213 // unprofitable PRE transformations. 3214 SmallVector<Value*, 8> worklist; 3215 SmallPtrSet<Value*, 16> Visited; 3216 worklist.push_back(Addr); 3217 3218 // Use a worklist to iteratively look through PHI nodes, and ensure that 3219 // the addressing mode obtained from the non-PHI roots of the graph 3220 // are equivalent. 3221 Value *Consensus = nullptr; 3222 unsigned NumUsesConsensus = 0; 3223 bool IsNumUsesConsensusValid = false; 3224 SmallVector<Instruction*, 16> AddrModeInsts; 3225 ExtAddrMode AddrMode; 3226 TypePromotionTransaction TPT; 3227 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3228 TPT.getRestorationPoint(); 3229 while (!worklist.empty()) { 3230 Value *V = worklist.back(); 3231 worklist.pop_back(); 3232 3233 // Break use-def graph loops. 3234 if (!Visited.insert(V).second) { 3235 Consensus = nullptr; 3236 break; 3237 } 3238 3239 // For a PHI node, push all of its incoming values. 3240 if (PHINode *P = dyn_cast<PHINode>(V)) { 3241 for (Value *IncValue : P->incoming_values()) 3242 worklist.push_back(IncValue); 3243 continue; 3244 } 3245 3246 // For non-PHIs, determine the addressing mode being computed. 3247 SmallVector<Instruction*, 16> NewAddrModeInsts; 3248 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 3249 V, AccessTy, AddrSpace, MemoryInst, NewAddrModeInsts, *TM, 3250 InsertedInsts, PromotedInsts, TPT); 3251 3252 // This check is broken into two cases with very similar code to avoid using 3253 // getNumUses() as much as possible. Some values have a lot of uses, so 3254 // calling getNumUses() unconditionally caused a significant compile-time 3255 // regression. 3256 if (!Consensus) { 3257 Consensus = V; 3258 AddrMode = NewAddrMode; 3259 AddrModeInsts = NewAddrModeInsts; 3260 continue; 3261 } else if (NewAddrMode == AddrMode) { 3262 if (!IsNumUsesConsensusValid) { 3263 NumUsesConsensus = Consensus->getNumUses(); 3264 IsNumUsesConsensusValid = true; 3265 } 3266 3267 // Ensure that the obtained addressing mode is equivalent to that obtained 3268 // for all other roots of the PHI traversal. Also, when choosing one 3269 // such root as representative, select the one with the most uses in order 3270 // to keep the cost modeling heuristics in AddressingModeMatcher 3271 // applicable. 3272 unsigned NumUses = V->getNumUses(); 3273 if (NumUses > NumUsesConsensus) { 3274 Consensus = V; 3275 NumUsesConsensus = NumUses; 3276 AddrModeInsts = NewAddrModeInsts; 3277 } 3278 continue; 3279 } 3280 3281 Consensus = nullptr; 3282 break; 3283 } 3284 3285 // If the addressing mode couldn't be determined, or if multiple different 3286 // ones were determined, bail out now. 3287 if (!Consensus) { 3288 TPT.rollback(LastKnownGood); 3289 return false; 3290 } 3291 TPT.commit(); 3292 3293 // Check to see if any of the instructions supersumed by this addr mode are 3294 // non-local to I's BB. 3295 bool AnyNonLocal = false; 3296 for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) { 3297 if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) { 3298 AnyNonLocal = true; 3299 break; 3300 } 3301 } 3302 3303 // If all the instructions matched are already in this BB, don't do anything. 3304 if (!AnyNonLocal) { 3305 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 3306 return false; 3307 } 3308 3309 // Insert this computation right after this user. Since our caller is 3310 // scanning from the top of the BB to the bottom, reuse of the expr are 3311 // guaranteed to happen later. 3312 IRBuilder<> Builder(MemoryInst); 3313 3314 // Now that we determined the addressing expression we want to use and know 3315 // that we have to sink it into this block. Check to see if we have already 3316 // done this for some other load/store instr in this block. If so, reuse the 3317 // computation. 3318 Value *&SunkAddr = SunkAddrs[Addr]; 3319 if (SunkAddr) { 3320 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 3321 << *MemoryInst << "\n"); 3322 if (SunkAddr->getType() != Addr->getType()) 3323 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3324 } else if (AddrSinkUsingGEPs || 3325 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 3326 TM->getSubtargetImpl(*MemoryInst->getParent()->getParent()) 3327 ->useAA())) { 3328 // By default, we use the GEP-based method when AA is used later. This 3329 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 3330 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3331 << *MemoryInst << "\n"); 3332 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 3333 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 3334 3335 // First, find the pointer. 3336 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 3337 ResultPtr = AddrMode.BaseReg; 3338 AddrMode.BaseReg = nullptr; 3339 } 3340 3341 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 3342 // We can't add more than one pointer together, nor can we scale a 3343 // pointer (both of which seem meaningless). 3344 if (ResultPtr || AddrMode.Scale != 1) 3345 return false; 3346 3347 ResultPtr = AddrMode.ScaledReg; 3348 AddrMode.Scale = 0; 3349 } 3350 3351 if (AddrMode.BaseGV) { 3352 if (ResultPtr) 3353 return false; 3354 3355 ResultPtr = AddrMode.BaseGV; 3356 } 3357 3358 // If the real base value actually came from an inttoptr, then the matcher 3359 // will look through it and provide only the integer value. In that case, 3360 // use it here. 3361 if (!ResultPtr && AddrMode.BaseReg) { 3362 ResultPtr = 3363 Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr"); 3364 AddrMode.BaseReg = nullptr; 3365 } else if (!ResultPtr && AddrMode.Scale == 1) { 3366 ResultPtr = 3367 Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr"); 3368 AddrMode.Scale = 0; 3369 } 3370 3371 if (!ResultPtr && 3372 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 3373 SunkAddr = Constant::getNullValue(Addr->getType()); 3374 } else if (!ResultPtr) { 3375 return false; 3376 } else { 3377 Type *I8PtrTy = 3378 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 3379 Type *I8Ty = Builder.getInt8Ty(); 3380 3381 // Start with the base register. Do this first so that subsequent address 3382 // matching finds it last, which will prevent it from trying to match it 3383 // as the scaled value in case it happens to be a mul. That would be 3384 // problematic if we've sunk a different mul for the scale, because then 3385 // we'd end up sinking both muls. 3386 if (AddrMode.BaseReg) { 3387 Value *V = AddrMode.BaseReg; 3388 if (V->getType() != IntPtrTy) 3389 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3390 3391 ResultIndex = V; 3392 } 3393 3394 // Add the scale value. 3395 if (AddrMode.Scale) { 3396 Value *V = AddrMode.ScaledReg; 3397 if (V->getType() == IntPtrTy) { 3398 // done. 3399 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3400 cast<IntegerType>(V->getType())->getBitWidth()) { 3401 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3402 } else { 3403 // It is only safe to sign extend the BaseReg if we know that the math 3404 // required to create it did not overflow before we extend it. Since 3405 // the original IR value was tossed in favor of a constant back when 3406 // the AddrMode was created we need to bail out gracefully if widths 3407 // do not match instead of extending it. 3408 Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex); 3409 if (I && (ResultIndex != AddrMode.BaseReg)) 3410 I->eraseFromParent(); 3411 return false; 3412 } 3413 3414 if (AddrMode.Scale != 1) 3415 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3416 "sunkaddr"); 3417 if (ResultIndex) 3418 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 3419 else 3420 ResultIndex = V; 3421 } 3422 3423 // Add in the Base Offset if present. 3424 if (AddrMode.BaseOffs) { 3425 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3426 if (ResultIndex) { 3427 // We need to add this separately from the scale above to help with 3428 // SDAG consecutive load/store merging. 3429 if (ResultPtr->getType() != I8PtrTy) 3430 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3431 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 3432 } 3433 3434 ResultIndex = V; 3435 } 3436 3437 if (!ResultIndex) { 3438 SunkAddr = ResultPtr; 3439 } else { 3440 if (ResultPtr->getType() != I8PtrTy) 3441 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3442 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 3443 } 3444 3445 if (SunkAddr->getType() != Addr->getType()) 3446 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3447 } 3448 } else { 3449 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3450 << *MemoryInst << "\n"); 3451 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 3452 Value *Result = nullptr; 3453 3454 // Start with the base register. Do this first so that subsequent address 3455 // matching finds it last, which will prevent it from trying to match it 3456 // as the scaled value in case it happens to be a mul. That would be 3457 // problematic if we've sunk a different mul for the scale, because then 3458 // we'd end up sinking both muls. 3459 if (AddrMode.BaseReg) { 3460 Value *V = AddrMode.BaseReg; 3461 if (V->getType()->isPointerTy()) 3462 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3463 if (V->getType() != IntPtrTy) 3464 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3465 Result = V; 3466 } 3467 3468 // Add the scale value. 3469 if (AddrMode.Scale) { 3470 Value *V = AddrMode.ScaledReg; 3471 if (V->getType() == IntPtrTy) { 3472 // done. 3473 } else if (V->getType()->isPointerTy()) { 3474 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3475 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3476 cast<IntegerType>(V->getType())->getBitWidth()) { 3477 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3478 } else { 3479 // It is only safe to sign extend the BaseReg if we know that the math 3480 // required to create it did not overflow before we extend it. Since 3481 // the original IR value was tossed in favor of a constant back when 3482 // the AddrMode was created we need to bail out gracefully if widths 3483 // do not match instead of extending it. 3484 Instruction *I = dyn_cast_or_null<Instruction>(Result); 3485 if (I && (Result != AddrMode.BaseReg)) 3486 I->eraseFromParent(); 3487 return false; 3488 } 3489 if (AddrMode.Scale != 1) 3490 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3491 "sunkaddr"); 3492 if (Result) 3493 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3494 else 3495 Result = V; 3496 } 3497 3498 // Add in the BaseGV if present. 3499 if (AddrMode.BaseGV) { 3500 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 3501 if (Result) 3502 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3503 else 3504 Result = V; 3505 } 3506 3507 // Add in the Base Offset if present. 3508 if (AddrMode.BaseOffs) { 3509 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3510 if (Result) 3511 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3512 else 3513 Result = V; 3514 } 3515 3516 if (!Result) 3517 SunkAddr = Constant::getNullValue(Addr->getType()); 3518 else 3519 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 3520 } 3521 3522 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 3523 3524 // If we have no uses, recursively delete the value and all dead instructions 3525 // using it. 3526 if (Repl->use_empty()) { 3527 // This can cause recursive deletion, which can invalidate our iterator. 3528 // Use a WeakVH to hold onto it in case this happens. 3529 WeakVH IterHandle(&*CurInstIterator); 3530 BasicBlock *BB = CurInstIterator->getParent(); 3531 3532 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 3533 3534 if (IterHandle != CurInstIterator.getNodePtrUnchecked()) { 3535 // If the iterator instruction was recursively deleted, start over at the 3536 // start of the block. 3537 CurInstIterator = BB->begin(); 3538 SunkAddrs.clear(); 3539 } 3540 } 3541 ++NumMemoryInsts; 3542 return true; 3543 } 3544 3545 /// If there are any memory operands, use OptimizeMemoryInst to sink their 3546 /// address computing into the block when possible / profitable. 3547 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 3548 bool MadeChange = false; 3549 3550 const TargetRegisterInfo *TRI = 3551 TM->getSubtargetImpl(*CS->getParent()->getParent())->getRegisterInfo(); 3552 TargetLowering::AsmOperandInfoVector TargetConstraints = 3553 TLI->ParseConstraints(*DL, TRI, CS); 3554 unsigned ArgNo = 0; 3555 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3556 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3557 3558 // Compute the constraint code and ConstraintType to use. 3559 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 3560 3561 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 3562 OpInfo.isIndirect) { 3563 Value *OpVal = CS->getArgOperand(ArgNo++); 3564 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 3565 } else if (OpInfo.Type == InlineAsm::isInput) 3566 ArgNo++; 3567 } 3568 3569 return MadeChange; 3570 } 3571 3572 /// \brief Check if all the uses of \p Inst are equivalent (or free) zero or 3573 /// sign extensions. 3574 static bool hasSameExtUse(Instruction *Inst, const TargetLowering &TLI) { 3575 assert(!Inst->use_empty() && "Input must have at least one use"); 3576 const Instruction *FirstUser = cast<Instruction>(*Inst->user_begin()); 3577 bool IsSExt = isa<SExtInst>(FirstUser); 3578 Type *ExtTy = FirstUser->getType(); 3579 for (const User *U : Inst->users()) { 3580 const Instruction *UI = cast<Instruction>(U); 3581 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 3582 return false; 3583 Type *CurTy = UI->getType(); 3584 // Same input and output types: Same instruction after CSE. 3585 if (CurTy == ExtTy) 3586 continue; 3587 3588 // If IsSExt is true, we are in this situation: 3589 // a = Inst 3590 // b = sext ty1 a to ty2 3591 // c = sext ty1 a to ty3 3592 // Assuming ty2 is shorter than ty3, this could be turned into: 3593 // a = Inst 3594 // b = sext ty1 a to ty2 3595 // c = sext ty2 b to ty3 3596 // However, the last sext is not free. 3597 if (IsSExt) 3598 return false; 3599 3600 // This is a ZExt, maybe this is free to extend from one type to another. 3601 // In that case, we would not account for a different use. 3602 Type *NarrowTy; 3603 Type *LargeTy; 3604 if (ExtTy->getScalarType()->getIntegerBitWidth() > 3605 CurTy->getScalarType()->getIntegerBitWidth()) { 3606 NarrowTy = CurTy; 3607 LargeTy = ExtTy; 3608 } else { 3609 NarrowTy = ExtTy; 3610 LargeTy = CurTy; 3611 } 3612 3613 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 3614 return false; 3615 } 3616 // All uses are the same or can be derived from one another for free. 3617 return true; 3618 } 3619 3620 /// \brief Try to form ExtLd by promoting \p Exts until they reach a 3621 /// load instruction. 3622 /// If an ext(load) can be formed, it is returned via \p LI for the load 3623 /// and \p Inst for the extension. 3624 /// Otherwise LI == nullptr and Inst == nullptr. 3625 /// When some promotion happened, \p TPT contains the proper state to 3626 /// revert them. 3627 /// 3628 /// \return true when promoting was necessary to expose the ext(load) 3629 /// opportunity, false otherwise. 3630 /// 3631 /// Example: 3632 /// \code 3633 /// %ld = load i32* %addr 3634 /// %add = add nuw i32 %ld, 4 3635 /// %zext = zext i32 %add to i64 3636 /// \endcode 3637 /// => 3638 /// \code 3639 /// %ld = load i32* %addr 3640 /// %zext = zext i32 %ld to i64 3641 /// %add = add nuw i64 %zext, 4 3642 /// \encode 3643 /// Thanks to the promotion, we can match zext(load i32*) to i64. 3644 bool CodeGenPrepare::extLdPromotion(TypePromotionTransaction &TPT, 3645 LoadInst *&LI, Instruction *&Inst, 3646 const SmallVectorImpl<Instruction *> &Exts, 3647 unsigned CreatedInstsCost = 0) { 3648 // Iterate over all the extensions to see if one form an ext(load). 3649 for (auto I : Exts) { 3650 // Check if we directly have ext(load). 3651 if ((LI = dyn_cast<LoadInst>(I->getOperand(0)))) { 3652 Inst = I; 3653 // No promotion happened here. 3654 return false; 3655 } 3656 // Check whether or not we want to do any promotion. 3657 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 3658 continue; 3659 // Get the action to perform the promotion. 3660 TypePromotionHelper::Action TPH = TypePromotionHelper::getAction( 3661 I, InsertedInsts, *TLI, PromotedInsts); 3662 // Check if we can promote. 3663 if (!TPH) 3664 continue; 3665 // Save the current state. 3666 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3667 TPT.getRestorationPoint(); 3668 SmallVector<Instruction *, 4> NewExts; 3669 unsigned NewCreatedInstsCost = 0; 3670 unsigned ExtCost = !TLI->isExtFree(I); 3671 // Promote. 3672 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 3673 &NewExts, nullptr, *TLI); 3674 assert(PromotedVal && 3675 "TypePromotionHelper should have filtered out those cases"); 3676 3677 // We would be able to merge only one extension in a load. 3678 // Therefore, if we have more than 1 new extension we heuristically 3679 // cut this search path, because it means we degrade the code quality. 3680 // With exactly 2, the transformation is neutral, because we will merge 3681 // one extension but leave one. However, we optimistically keep going, 3682 // because the new extension may be removed too. 3683 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 3684 TotalCreatedInstsCost -= ExtCost; 3685 if (!StressExtLdPromotion && 3686 (TotalCreatedInstsCost > 1 || 3687 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 3688 // The promotion is not profitable, rollback to the previous state. 3689 TPT.rollback(LastKnownGood); 3690 continue; 3691 } 3692 // The promotion is profitable. 3693 // Check if it exposes an ext(load). 3694 (void)extLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInstsCost); 3695 if (LI && (StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 3696 // If we have created a new extension, i.e., now we have two 3697 // extensions. We must make sure one of them is merged with 3698 // the load, otherwise we may degrade the code quality. 3699 (LI->hasOneUse() || hasSameExtUse(LI, *TLI)))) 3700 // Promotion happened. 3701 return true; 3702 // If this does not help to expose an ext(load) then, rollback. 3703 TPT.rollback(LastKnownGood); 3704 } 3705 // None of the extension can form an ext(load). 3706 LI = nullptr; 3707 Inst = nullptr; 3708 return false; 3709 } 3710 3711 /// Move a zext or sext fed by a load into the same basic block as the load, 3712 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 3713 /// extend into the load. 3714 /// \p I[in/out] the extension may be modified during the process if some 3715 /// promotions apply. 3716 /// 3717 bool CodeGenPrepare::moveExtToFormExtLoad(Instruction *&I) { 3718 // Try to promote a chain of computation if it allows to form 3719 // an extended load. 3720 TypePromotionTransaction TPT; 3721 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3722 TPT.getRestorationPoint(); 3723 SmallVector<Instruction *, 1> Exts; 3724 Exts.push_back(I); 3725 // Look for a load being extended. 3726 LoadInst *LI = nullptr; 3727 Instruction *OldExt = I; 3728 bool HasPromoted = extLdPromotion(TPT, LI, I, Exts); 3729 if (!LI || !I) { 3730 assert(!HasPromoted && !LI && "If we did not match any load instruction " 3731 "the code must remain the same"); 3732 I = OldExt; 3733 return false; 3734 } 3735 3736 // If they're already in the same block, there's nothing to do. 3737 // Make the cheap checks first if we did not promote. 3738 // If we promoted, we need to check if it is indeed profitable. 3739 if (!HasPromoted && LI->getParent() == I->getParent()) 3740 return false; 3741 3742 EVT VT = TLI->getValueType(*DL, I->getType()); 3743 EVT LoadVT = TLI->getValueType(*DL, LI->getType()); 3744 3745 // If the load has other users and the truncate is not free, this probably 3746 // isn't worthwhile. 3747 if (!LI->hasOneUse() && TLI && 3748 (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) && 3749 !TLI->isTruncateFree(I->getType(), LI->getType())) { 3750 I = OldExt; 3751 TPT.rollback(LastKnownGood); 3752 return false; 3753 } 3754 3755 // Check whether the target supports casts folded into loads. 3756 unsigned LType; 3757 if (isa<ZExtInst>(I)) 3758 LType = ISD::ZEXTLOAD; 3759 else { 3760 assert(isa<SExtInst>(I) && "Unexpected ext type!"); 3761 LType = ISD::SEXTLOAD; 3762 } 3763 if (TLI && !TLI->isLoadExtLegal(LType, VT, LoadVT)) { 3764 I = OldExt; 3765 TPT.rollback(LastKnownGood); 3766 return false; 3767 } 3768 3769 // Move the extend into the same block as the load, so that SelectionDAG 3770 // can fold it. 3771 TPT.commit(); 3772 I->removeFromParent(); 3773 I->insertAfter(LI); 3774 ++NumExtsMoved; 3775 return true; 3776 } 3777 3778 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 3779 BasicBlock *DefBB = I->getParent(); 3780 3781 // If the result of a {s|z}ext and its source are both live out, rewrite all 3782 // other uses of the source with result of extension. 3783 Value *Src = I->getOperand(0); 3784 if (Src->hasOneUse()) 3785 return false; 3786 3787 // Only do this xform if truncating is free. 3788 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 3789 return false; 3790 3791 // Only safe to perform the optimization if the source is also defined in 3792 // this block. 3793 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 3794 return false; 3795 3796 bool DefIsLiveOut = false; 3797 for (User *U : I->users()) { 3798 Instruction *UI = cast<Instruction>(U); 3799 3800 // Figure out which BB this ext is used in. 3801 BasicBlock *UserBB = UI->getParent(); 3802 if (UserBB == DefBB) continue; 3803 DefIsLiveOut = true; 3804 break; 3805 } 3806 if (!DefIsLiveOut) 3807 return false; 3808 3809 // Make sure none of the uses are PHI nodes. 3810 for (User *U : Src->users()) { 3811 Instruction *UI = cast<Instruction>(U); 3812 BasicBlock *UserBB = UI->getParent(); 3813 if (UserBB == DefBB) continue; 3814 // Be conservative. We don't want this xform to end up introducing 3815 // reloads just before load / store instructions. 3816 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 3817 return false; 3818 } 3819 3820 // InsertedTruncs - Only insert one trunc in each block once. 3821 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 3822 3823 bool MadeChange = false; 3824 for (Use &U : Src->uses()) { 3825 Instruction *User = cast<Instruction>(U.getUser()); 3826 3827 // Figure out which BB this ext is used in. 3828 BasicBlock *UserBB = User->getParent(); 3829 if (UserBB == DefBB) continue; 3830 3831 // Both src and def are live in this block. Rewrite the use. 3832 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 3833 3834 if (!InsertedTrunc) { 3835 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 3836 assert(InsertPt != UserBB->end()); 3837 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 3838 InsertedInsts.insert(InsertedTrunc); 3839 } 3840 3841 // Replace a use of the {s|z}ext source with a use of the result. 3842 U = InsertedTrunc; 3843 ++NumExtUses; 3844 MadeChange = true; 3845 } 3846 3847 return MadeChange; 3848 } 3849 3850 /// Check if V (an operand of a select instruction) is an expensive instruction 3851 /// that is only used once. 3852 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 3853 auto *I = dyn_cast<Instruction>(V); 3854 // If it's safe to speculatively execute, then it should not have side 3855 // effects; therefore, it's safe to sink and possibly *not* execute. 3856 if (I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 3857 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive) 3858 return true; 3859 3860 return false; 3861 } 3862 3863 /// Returns true if a SelectInst should be turned into an explicit branch. 3864 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 3865 SelectInst *SI) { 3866 // FIXME: This should use the same heuristics as IfConversion to determine 3867 // whether a select is better represented as a branch. This requires that 3868 // branch probability metadata is preserved for the select, which is not the 3869 // case currently. 3870 3871 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 3872 3873 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 3874 // comparison condition. If the compare has more than one use, there's 3875 // probably another cmov or setcc around, so it's not worth emitting a branch. 3876 if (!Cmp || !Cmp->hasOneUse()) 3877 return false; 3878 3879 Value *CmpOp0 = Cmp->getOperand(0); 3880 Value *CmpOp1 = Cmp->getOperand(1); 3881 3882 // Emit "cmov on compare with a memory operand" as a branch to avoid stalls 3883 // on a load from memory. But if the load is used more than once, do not 3884 // change the select to a branch because the load is probably needed 3885 // regardless of whether the branch is taken or not. 3886 if ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) || 3887 (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse())) 3888 return true; 3889 3890 // If either operand of the select is expensive and only needed on one side 3891 // of the select, we should form a branch. 3892 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 3893 sinkSelectOperand(TTI, SI->getFalseValue())) 3894 return true; 3895 3896 return false; 3897 } 3898 3899 3900 /// If we have a SelectInst that will likely profit from branch prediction, 3901 /// turn it into a branch. 3902 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 3903 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 3904 3905 // Can we convert the 'select' to CF ? 3906 if (DisableSelectToBranch || OptSize || !TLI || VectorCond) 3907 return false; 3908 3909 TargetLowering::SelectSupportKind SelectKind; 3910 if (VectorCond) 3911 SelectKind = TargetLowering::VectorMaskSelect; 3912 else if (SI->getType()->isVectorTy()) 3913 SelectKind = TargetLowering::ScalarCondVectorVal; 3914 else 3915 SelectKind = TargetLowering::ScalarValSelect; 3916 3917 // Do we have efficient codegen support for this kind of 'selects' ? 3918 if (TLI->isSelectSupported(SelectKind)) { 3919 // We have efficient codegen support for the select instruction. 3920 // Check if it is profitable to keep this 'select'. 3921 if (!TLI->isPredictableSelectExpensive() || 3922 !isFormingBranchFromSelectProfitable(TTI, SI)) 3923 return false; 3924 } 3925 3926 ModifiedDT = true; 3927 3928 // Transform a sequence like this: 3929 // start: 3930 // %cmp = cmp uge i32 %a, %b 3931 // %sel = select i1 %cmp, i32 %c, i32 %d 3932 // 3933 // Into: 3934 // start: 3935 // %cmp = cmp uge i32 %a, %b 3936 // br i1 %cmp, label %select.true, label %select.false 3937 // select.true: 3938 // br label %select.end 3939 // select.false: 3940 // br label %select.end 3941 // select.end: 3942 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 3943 // 3944 // In addition, we may sink instructions that produce %c or %d from 3945 // the entry block into the destination(s) of the new branch. 3946 // If the true or false blocks do not contain a sunken instruction, that 3947 // block and its branch may be optimized away. In that case, one side of the 3948 // first branch will point directly to select.end, and the corresponding PHI 3949 // predecessor block will be the start block. 3950 3951 // First, we split the block containing the select into 2 blocks. 3952 BasicBlock *StartBlock = SI->getParent(); 3953 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI)); 3954 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 3955 3956 // Delete the unconditional branch that was just created by the split. 3957 StartBlock->getTerminator()->eraseFromParent(); 3958 3959 // These are the new basic blocks for the conditional branch. 3960 // At least one will become an actual new basic block. 3961 BasicBlock *TrueBlock = nullptr; 3962 BasicBlock *FalseBlock = nullptr; 3963 3964 // Sink expensive instructions into the conditional blocks to avoid executing 3965 // them speculatively. 3966 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 3967 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 3968 EndBlock->getParent(), EndBlock); 3969 auto *TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 3970 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 3971 TrueInst->moveBefore(TrueBranch); 3972 } 3973 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 3974 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 3975 EndBlock->getParent(), EndBlock); 3976 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 3977 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 3978 FalseInst->moveBefore(FalseBranch); 3979 } 3980 3981 // If there was nothing to sink, then arbitrarily choose the 'false' side 3982 // for a new input value to the PHI. 3983 if (TrueBlock == FalseBlock) { 3984 assert(TrueBlock == nullptr && 3985 "Unexpected basic block transform while optimizing select"); 3986 3987 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 3988 EndBlock->getParent(), EndBlock); 3989 BranchInst::Create(EndBlock, FalseBlock); 3990 } 3991 3992 // Insert the real conditional branch based on the original condition. 3993 // If we did not create a new block for one of the 'true' or 'false' paths 3994 // of the condition, it means that side of the branch goes to the end block 3995 // directly and the path originates from the start block from the point of 3996 // view of the new PHI. 3997 if (TrueBlock == nullptr) { 3998 BranchInst::Create(EndBlock, FalseBlock, SI->getCondition(), SI); 3999 TrueBlock = StartBlock; 4000 } else if (FalseBlock == nullptr) { 4001 BranchInst::Create(TrueBlock, EndBlock, SI->getCondition(), SI); 4002 FalseBlock = StartBlock; 4003 } else { 4004 BranchInst::Create(TrueBlock, FalseBlock, SI->getCondition(), SI); 4005 } 4006 4007 // The select itself is replaced with a PHI Node. 4008 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 4009 PN->takeName(SI); 4010 PN->addIncoming(SI->getTrueValue(), TrueBlock); 4011 PN->addIncoming(SI->getFalseValue(), FalseBlock); 4012 4013 SI->replaceAllUsesWith(PN); 4014 SI->eraseFromParent(); 4015 4016 // Instruct OptimizeBlock to skip to the next block. 4017 CurInstIterator = StartBlock->end(); 4018 ++NumSelectsExpanded; 4019 return true; 4020 } 4021 4022 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 4023 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 4024 int SplatElem = -1; 4025 for (unsigned i = 0; i < Mask.size(); ++i) { 4026 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 4027 return false; 4028 SplatElem = Mask[i]; 4029 } 4030 4031 return true; 4032 } 4033 4034 /// Some targets have expensive vector shifts if the lanes aren't all the same 4035 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 4036 /// it's often worth sinking a shufflevector splat down to its use so that 4037 /// codegen can spot all lanes are identical. 4038 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 4039 BasicBlock *DefBB = SVI->getParent(); 4040 4041 // Only do this xform if variable vector shifts are particularly expensive. 4042 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 4043 return false; 4044 4045 // We only expect better codegen by sinking a shuffle if we can recognise a 4046 // constant splat. 4047 if (!isBroadcastShuffle(SVI)) 4048 return false; 4049 4050 // InsertedShuffles - Only insert a shuffle in each block once. 4051 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 4052 4053 bool MadeChange = false; 4054 for (User *U : SVI->users()) { 4055 Instruction *UI = cast<Instruction>(U); 4056 4057 // Figure out which BB this ext is used in. 4058 BasicBlock *UserBB = UI->getParent(); 4059 if (UserBB == DefBB) continue; 4060 4061 // For now only apply this when the splat is used by a shift instruction. 4062 if (!UI->isShift()) continue; 4063 4064 // Everything checks out, sink the shuffle if the user's block doesn't 4065 // already have a copy. 4066 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 4067 4068 if (!InsertedShuffle) { 4069 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 4070 assert(InsertPt != UserBB->end()); 4071 InsertedShuffle = 4072 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 4073 SVI->getOperand(2), "", &*InsertPt); 4074 } 4075 4076 UI->replaceUsesOfWith(SVI, InsertedShuffle); 4077 MadeChange = true; 4078 } 4079 4080 // If we removed all uses, nuke the shuffle. 4081 if (SVI->use_empty()) { 4082 SVI->eraseFromParent(); 4083 MadeChange = true; 4084 } 4085 4086 return MadeChange; 4087 } 4088 4089 namespace { 4090 /// \brief Helper class to promote a scalar operation to a vector one. 4091 /// This class is used to move downward extractelement transition. 4092 /// E.g., 4093 /// a = vector_op <2 x i32> 4094 /// b = extractelement <2 x i32> a, i32 0 4095 /// c = scalar_op b 4096 /// store c 4097 /// 4098 /// => 4099 /// a = vector_op <2 x i32> 4100 /// c = vector_op a (equivalent to scalar_op on the related lane) 4101 /// * d = extractelement <2 x i32> c, i32 0 4102 /// * store d 4103 /// Assuming both extractelement and store can be combine, we get rid of the 4104 /// transition. 4105 class VectorPromoteHelper { 4106 /// DataLayout associated with the current module. 4107 const DataLayout &DL; 4108 4109 /// Used to perform some checks on the legality of vector operations. 4110 const TargetLowering &TLI; 4111 4112 /// Used to estimated the cost of the promoted chain. 4113 const TargetTransformInfo &TTI; 4114 4115 /// The transition being moved downwards. 4116 Instruction *Transition; 4117 /// The sequence of instructions to be promoted. 4118 SmallVector<Instruction *, 4> InstsToBePromoted; 4119 /// Cost of combining a store and an extract. 4120 unsigned StoreExtractCombineCost; 4121 /// Instruction that will be combined with the transition. 4122 Instruction *CombineInst; 4123 4124 /// \brief The instruction that represents the current end of the transition. 4125 /// Since we are faking the promotion until we reach the end of the chain 4126 /// of computation, we need a way to get the current end of the transition. 4127 Instruction *getEndOfTransition() const { 4128 if (InstsToBePromoted.empty()) 4129 return Transition; 4130 return InstsToBePromoted.back(); 4131 } 4132 4133 /// \brief Return the index of the original value in the transition. 4134 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 4135 /// c, is at index 0. 4136 unsigned getTransitionOriginalValueIdx() const { 4137 assert(isa<ExtractElementInst>(Transition) && 4138 "Other kind of transitions are not supported yet"); 4139 return 0; 4140 } 4141 4142 /// \brief Return the index of the index in the transition. 4143 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 4144 /// is at index 1. 4145 unsigned getTransitionIdx() const { 4146 assert(isa<ExtractElementInst>(Transition) && 4147 "Other kind of transitions are not supported yet"); 4148 return 1; 4149 } 4150 4151 /// \brief Get the type of the transition. 4152 /// This is the type of the original value. 4153 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 4154 /// transition is <2 x i32>. 4155 Type *getTransitionType() const { 4156 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 4157 } 4158 4159 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 4160 /// I.e., we have the following sequence: 4161 /// Def = Transition <ty1> a to <ty2> 4162 /// b = ToBePromoted <ty2> Def, ... 4163 /// => 4164 /// b = ToBePromoted <ty1> a, ... 4165 /// Def = Transition <ty1> ToBePromoted to <ty2> 4166 void promoteImpl(Instruction *ToBePromoted); 4167 4168 /// \brief Check whether or not it is profitable to promote all the 4169 /// instructions enqueued to be promoted. 4170 bool isProfitableToPromote() { 4171 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 4172 unsigned Index = isa<ConstantInt>(ValIdx) 4173 ? cast<ConstantInt>(ValIdx)->getZExtValue() 4174 : -1; 4175 Type *PromotedType = getTransitionType(); 4176 4177 StoreInst *ST = cast<StoreInst>(CombineInst); 4178 unsigned AS = ST->getPointerAddressSpace(); 4179 unsigned Align = ST->getAlignment(); 4180 // Check if this store is supported. 4181 if (!TLI.allowsMisalignedMemoryAccesses( 4182 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 4183 Align)) { 4184 // If this is not supported, there is no way we can combine 4185 // the extract with the store. 4186 return false; 4187 } 4188 4189 // The scalar chain of computation has to pay for the transition 4190 // scalar to vector. 4191 // The vector chain has to account for the combining cost. 4192 uint64_t ScalarCost = 4193 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 4194 uint64_t VectorCost = StoreExtractCombineCost; 4195 for (const auto &Inst : InstsToBePromoted) { 4196 // Compute the cost. 4197 // By construction, all instructions being promoted are arithmetic ones. 4198 // Moreover, one argument is a constant that can be viewed as a splat 4199 // constant. 4200 Value *Arg0 = Inst->getOperand(0); 4201 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 4202 isa<ConstantFP>(Arg0); 4203 TargetTransformInfo::OperandValueKind Arg0OVK = 4204 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 4205 : TargetTransformInfo::OK_AnyValue; 4206 TargetTransformInfo::OperandValueKind Arg1OVK = 4207 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 4208 : TargetTransformInfo::OK_AnyValue; 4209 ScalarCost += TTI.getArithmeticInstrCost( 4210 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 4211 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 4212 Arg0OVK, Arg1OVK); 4213 } 4214 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 4215 << ScalarCost << "\nVector: " << VectorCost << '\n'); 4216 return ScalarCost > VectorCost; 4217 } 4218 4219 /// \brief Generate a constant vector with \p Val with the same 4220 /// number of elements as the transition. 4221 /// \p UseSplat defines whether or not \p Val should be replicated 4222 /// across the whole vector. 4223 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 4224 /// otherwise we generate a vector with as many undef as possible: 4225 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 4226 /// used at the index of the extract. 4227 Value *getConstantVector(Constant *Val, bool UseSplat) const { 4228 unsigned ExtractIdx = UINT_MAX; 4229 if (!UseSplat) { 4230 // If we cannot determine where the constant must be, we have to 4231 // use a splat constant. 4232 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 4233 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 4234 ExtractIdx = CstVal->getSExtValue(); 4235 else 4236 UseSplat = true; 4237 } 4238 4239 unsigned End = getTransitionType()->getVectorNumElements(); 4240 if (UseSplat) 4241 return ConstantVector::getSplat(End, Val); 4242 4243 SmallVector<Constant *, 4> ConstVec; 4244 UndefValue *UndefVal = UndefValue::get(Val->getType()); 4245 for (unsigned Idx = 0; Idx != End; ++Idx) { 4246 if (Idx == ExtractIdx) 4247 ConstVec.push_back(Val); 4248 else 4249 ConstVec.push_back(UndefVal); 4250 } 4251 return ConstantVector::get(ConstVec); 4252 } 4253 4254 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 4255 /// in \p Use can trigger undefined behavior. 4256 static bool canCauseUndefinedBehavior(const Instruction *Use, 4257 unsigned OperandIdx) { 4258 // This is not safe to introduce undef when the operand is on 4259 // the right hand side of a division-like instruction. 4260 if (OperandIdx != 1) 4261 return false; 4262 switch (Use->getOpcode()) { 4263 default: 4264 return false; 4265 case Instruction::SDiv: 4266 case Instruction::UDiv: 4267 case Instruction::SRem: 4268 case Instruction::URem: 4269 return true; 4270 case Instruction::FDiv: 4271 case Instruction::FRem: 4272 return !Use->hasNoNaNs(); 4273 } 4274 llvm_unreachable(nullptr); 4275 } 4276 4277 public: 4278 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 4279 const TargetTransformInfo &TTI, Instruction *Transition, 4280 unsigned CombineCost) 4281 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 4282 StoreExtractCombineCost(CombineCost), CombineInst(nullptr) { 4283 assert(Transition && "Do not know how to promote null"); 4284 } 4285 4286 /// \brief Check if we can promote \p ToBePromoted to \p Type. 4287 bool canPromote(const Instruction *ToBePromoted) const { 4288 // We could support CastInst too. 4289 return isa<BinaryOperator>(ToBePromoted); 4290 } 4291 4292 /// \brief Check if it is profitable to promote \p ToBePromoted 4293 /// by moving downward the transition through. 4294 bool shouldPromote(const Instruction *ToBePromoted) const { 4295 // Promote only if all the operands can be statically expanded. 4296 // Indeed, we do not want to introduce any new kind of transitions. 4297 for (const Use &U : ToBePromoted->operands()) { 4298 const Value *Val = U.get(); 4299 if (Val == getEndOfTransition()) { 4300 // If the use is a division and the transition is on the rhs, 4301 // we cannot promote the operation, otherwise we may create a 4302 // division by zero. 4303 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 4304 return false; 4305 continue; 4306 } 4307 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 4308 !isa<ConstantFP>(Val)) 4309 return false; 4310 } 4311 // Check that the resulting operation is legal. 4312 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 4313 if (!ISDOpcode) 4314 return false; 4315 return StressStoreExtract || 4316 TLI.isOperationLegalOrCustom( 4317 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 4318 } 4319 4320 /// \brief Check whether or not \p Use can be combined 4321 /// with the transition. 4322 /// I.e., is it possible to do Use(Transition) => AnotherUse? 4323 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 4324 4325 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 4326 void enqueueForPromotion(Instruction *ToBePromoted) { 4327 InstsToBePromoted.push_back(ToBePromoted); 4328 } 4329 4330 /// \brief Set the instruction that will be combined with the transition. 4331 void recordCombineInstruction(Instruction *ToBeCombined) { 4332 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 4333 CombineInst = ToBeCombined; 4334 } 4335 4336 /// \brief Promote all the instructions enqueued for promotion if it is 4337 /// is profitable. 4338 /// \return True if the promotion happened, false otherwise. 4339 bool promote() { 4340 // Check if there is something to promote. 4341 // Right now, if we do not have anything to combine with, 4342 // we assume the promotion is not profitable. 4343 if (InstsToBePromoted.empty() || !CombineInst) 4344 return false; 4345 4346 // Check cost. 4347 if (!StressStoreExtract && !isProfitableToPromote()) 4348 return false; 4349 4350 // Promote. 4351 for (auto &ToBePromoted : InstsToBePromoted) 4352 promoteImpl(ToBePromoted); 4353 InstsToBePromoted.clear(); 4354 return true; 4355 } 4356 }; 4357 } // End of anonymous namespace. 4358 4359 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 4360 // At this point, we know that all the operands of ToBePromoted but Def 4361 // can be statically promoted. 4362 // For Def, we need to use its parameter in ToBePromoted: 4363 // b = ToBePromoted ty1 a 4364 // Def = Transition ty1 b to ty2 4365 // Move the transition down. 4366 // 1. Replace all uses of the promoted operation by the transition. 4367 // = ... b => = ... Def. 4368 assert(ToBePromoted->getType() == Transition->getType() && 4369 "The type of the result of the transition does not match " 4370 "the final type"); 4371 ToBePromoted->replaceAllUsesWith(Transition); 4372 // 2. Update the type of the uses. 4373 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 4374 Type *TransitionTy = getTransitionType(); 4375 ToBePromoted->mutateType(TransitionTy); 4376 // 3. Update all the operands of the promoted operation with promoted 4377 // operands. 4378 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 4379 for (Use &U : ToBePromoted->operands()) { 4380 Value *Val = U.get(); 4381 Value *NewVal = nullptr; 4382 if (Val == Transition) 4383 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 4384 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 4385 isa<ConstantFP>(Val)) { 4386 // Use a splat constant if it is not safe to use undef. 4387 NewVal = getConstantVector( 4388 cast<Constant>(Val), 4389 isa<UndefValue>(Val) || 4390 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 4391 } else 4392 llvm_unreachable("Did you modified shouldPromote and forgot to update " 4393 "this?"); 4394 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 4395 } 4396 Transition->removeFromParent(); 4397 Transition->insertAfter(ToBePromoted); 4398 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 4399 } 4400 4401 /// Some targets can do store(extractelement) with one instruction. 4402 /// Try to push the extractelement towards the stores when the target 4403 /// has this feature and this is profitable. 4404 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 4405 unsigned CombineCost = UINT_MAX; 4406 if (DisableStoreExtract || !TLI || 4407 (!StressStoreExtract && 4408 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 4409 Inst->getOperand(1), CombineCost))) 4410 return false; 4411 4412 // At this point we know that Inst is a vector to scalar transition. 4413 // Try to move it down the def-use chain, until: 4414 // - We can combine the transition with its single use 4415 // => we got rid of the transition. 4416 // - We escape the current basic block 4417 // => we would need to check that we are moving it at a cheaper place and 4418 // we do not do that for now. 4419 BasicBlock *Parent = Inst->getParent(); 4420 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 4421 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 4422 // If the transition has more than one use, assume this is not going to be 4423 // beneficial. 4424 while (Inst->hasOneUse()) { 4425 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 4426 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 4427 4428 if (ToBePromoted->getParent() != Parent) { 4429 DEBUG(dbgs() << "Instruction to promote is in a different block (" 4430 << ToBePromoted->getParent()->getName() 4431 << ") than the transition (" << Parent->getName() << ").\n"); 4432 return false; 4433 } 4434 4435 if (VPH.canCombine(ToBePromoted)) { 4436 DEBUG(dbgs() << "Assume " << *Inst << '\n' 4437 << "will be combined with: " << *ToBePromoted << '\n'); 4438 VPH.recordCombineInstruction(ToBePromoted); 4439 bool Changed = VPH.promote(); 4440 NumStoreExtractExposed += Changed; 4441 return Changed; 4442 } 4443 4444 DEBUG(dbgs() << "Try promoting.\n"); 4445 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 4446 return false; 4447 4448 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 4449 4450 VPH.enqueueForPromotion(ToBePromoted); 4451 Inst = ToBePromoted; 4452 } 4453 return false; 4454 } 4455 4456 bool CodeGenPrepare::optimizeInst(Instruction *I, bool& ModifiedDT) { 4457 // Bail out if we inserted the instruction to prevent optimizations from 4458 // stepping on each other's toes. 4459 if (InsertedInsts.count(I)) 4460 return false; 4461 4462 if (PHINode *P = dyn_cast<PHINode>(I)) { 4463 // It is possible for very late stage optimizations (such as SimplifyCFG) 4464 // to introduce PHI nodes too late to be cleaned up. If we detect such a 4465 // trivial PHI, go ahead and zap it here. 4466 if (Value *V = SimplifyInstruction(P, *DL, TLInfo, nullptr)) { 4467 P->replaceAllUsesWith(V); 4468 P->eraseFromParent(); 4469 ++NumPHIsElim; 4470 return true; 4471 } 4472 return false; 4473 } 4474 4475 if (CastInst *CI = dyn_cast<CastInst>(I)) { 4476 // If the source of the cast is a constant, then this should have 4477 // already been constant folded. The only reason NOT to constant fold 4478 // it is if something (e.g. LSR) was careful to place the constant 4479 // evaluation in a block other than then one that uses it (e.g. to hoist 4480 // the address of globals out of a loop). If this is the case, we don't 4481 // want to forward-subst the cast. 4482 if (isa<Constant>(CI->getOperand(0))) 4483 return false; 4484 4485 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 4486 return true; 4487 4488 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 4489 /// Sink a zext or sext into its user blocks if the target type doesn't 4490 /// fit in one register 4491 if (TLI && 4492 TLI->getTypeAction(CI->getContext(), 4493 TLI->getValueType(*DL, CI->getType())) == 4494 TargetLowering::TypeExpandInteger) { 4495 return SinkCast(CI); 4496 } else { 4497 bool MadeChange = moveExtToFormExtLoad(I); 4498 return MadeChange | optimizeExtUses(I); 4499 } 4500 } 4501 return false; 4502 } 4503 4504 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 4505 if (!TLI || !TLI->hasMultipleConditionRegisters()) 4506 return OptimizeCmpExpression(CI); 4507 4508 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 4509 stripInvariantGroupMetadata(*LI); 4510 if (TLI) { 4511 unsigned AS = LI->getPointerAddressSpace(); 4512 return optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 4513 } 4514 return false; 4515 } 4516 4517 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 4518 stripInvariantGroupMetadata(*SI); 4519 if (TLI) { 4520 unsigned AS = SI->getPointerAddressSpace(); 4521 return optimizeMemoryInst(I, SI->getOperand(1), 4522 SI->getOperand(0)->getType(), AS); 4523 } 4524 return false; 4525 } 4526 4527 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 4528 4529 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 4530 BinOp->getOpcode() == Instruction::LShr)) { 4531 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 4532 if (TLI && CI && TLI->hasExtractBitsInsn()) 4533 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 4534 4535 return false; 4536 } 4537 4538 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 4539 if (GEPI->hasAllZeroIndices()) { 4540 /// The GEP operand must be a pointer, so must its result -> BitCast 4541 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 4542 GEPI->getName(), GEPI); 4543 GEPI->replaceAllUsesWith(NC); 4544 GEPI->eraseFromParent(); 4545 ++NumGEPsElim; 4546 optimizeInst(NC, ModifiedDT); 4547 return true; 4548 } 4549 return false; 4550 } 4551 4552 if (CallInst *CI = dyn_cast<CallInst>(I)) 4553 return optimizeCallInst(CI, ModifiedDT); 4554 4555 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 4556 return optimizeSelectInst(SI); 4557 4558 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 4559 return optimizeShuffleVectorInst(SVI); 4560 4561 if (isa<ExtractElementInst>(I)) 4562 return optimizeExtractElementInst(I); 4563 4564 return false; 4565 } 4566 4567 // In this pass we look for GEP and cast instructions that are used 4568 // across basic blocks and rewrite them to improve basic-block-at-a-time 4569 // selection. 4570 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool& ModifiedDT) { 4571 SunkAddrs.clear(); 4572 bool MadeChange = false; 4573 4574 CurInstIterator = BB.begin(); 4575 while (CurInstIterator != BB.end()) { 4576 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 4577 if (ModifiedDT) 4578 return true; 4579 } 4580 MadeChange |= dupRetToEnableTailCallOpts(&BB); 4581 4582 return MadeChange; 4583 } 4584 4585 // llvm.dbg.value is far away from the value then iSel may not be able 4586 // handle it properly. iSel will drop llvm.dbg.value if it can not 4587 // find a node corresponding to the value. 4588 bool CodeGenPrepare::placeDbgValues(Function &F) { 4589 bool MadeChange = false; 4590 for (BasicBlock &BB : F) { 4591 Instruction *PrevNonDbgInst = nullptr; 4592 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 4593 Instruction *Insn = &*BI++; 4594 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 4595 // Leave dbg.values that refer to an alloca alone. These 4596 // instrinsics describe the address of a variable (= the alloca) 4597 // being taken. They should not be moved next to the alloca 4598 // (and to the beginning of the scope), but rather stay close to 4599 // where said address is used. 4600 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 4601 PrevNonDbgInst = Insn; 4602 continue; 4603 } 4604 4605 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 4606 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 4607 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 4608 DVI->removeFromParent(); 4609 if (isa<PHINode>(VI)) 4610 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 4611 else 4612 DVI->insertAfter(VI); 4613 MadeChange = true; 4614 ++NumDbgValueMoved; 4615 } 4616 } 4617 } 4618 return MadeChange; 4619 } 4620 4621 // If there is a sequence that branches based on comparing a single bit 4622 // against zero that can be combined into a single instruction, and the 4623 // target supports folding these into a single instruction, sink the 4624 // mask and compare into the branch uses. Do this before OptimizeBlock -> 4625 // OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being 4626 // searched for. 4627 bool CodeGenPrepare::sinkAndCmp(Function &F) { 4628 if (!EnableAndCmpSinking) 4629 return false; 4630 if (!TLI || !TLI->isMaskAndBranchFoldingLegal()) 4631 return false; 4632 bool MadeChange = false; 4633 for (Function::iterator I = F.begin(), E = F.end(); I != E; ) { 4634 BasicBlock *BB = &*I++; 4635 4636 // Does this BB end with the following? 4637 // %andVal = and %val, #single-bit-set 4638 // %icmpVal = icmp %andResult, 0 4639 // br i1 %cmpVal label %dest1, label %dest2" 4640 BranchInst *Brcc = dyn_cast<BranchInst>(BB->getTerminator()); 4641 if (!Brcc || !Brcc->isConditional()) 4642 continue; 4643 ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0)); 4644 if (!Cmp || Cmp->getParent() != BB) 4645 continue; 4646 ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 4647 if (!Zero || !Zero->isZero()) 4648 continue; 4649 Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0)); 4650 if (!And || And->getOpcode() != Instruction::And || And->getParent() != BB) 4651 continue; 4652 ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1)); 4653 if (!Mask || !Mask->getUniqueInteger().isPowerOf2()) 4654 continue; 4655 DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB->dump()); 4656 4657 // Push the "and; icmp" for any users that are conditional branches. 4658 // Since there can only be one branch use per BB, we don't need to keep 4659 // track of which BBs we insert into. 4660 for (Value::use_iterator UI = Cmp->use_begin(), E = Cmp->use_end(); 4661 UI != E; ) { 4662 Use &TheUse = *UI; 4663 // Find brcc use. 4664 BranchInst *BrccUser = dyn_cast<BranchInst>(*UI); 4665 ++UI; 4666 if (!BrccUser || !BrccUser->isConditional()) 4667 continue; 4668 BasicBlock *UserBB = BrccUser->getParent(); 4669 if (UserBB == BB) continue; 4670 DEBUG(dbgs() << "found Brcc use\n"); 4671 4672 // Sink the "and; icmp" to use. 4673 MadeChange = true; 4674 BinaryOperator *NewAnd = 4675 BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "", 4676 BrccUser); 4677 CmpInst *NewCmp = 4678 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero, 4679 "", BrccUser); 4680 TheUse = NewCmp; 4681 ++NumAndCmpsMoved; 4682 DEBUG(BrccUser->getParent()->dump()); 4683 } 4684 } 4685 return MadeChange; 4686 } 4687 4688 /// \brief Retrieve the probabilities of a conditional branch. Returns true on 4689 /// success, or returns false if no or invalid metadata was found. 4690 static bool extractBranchMetadata(BranchInst *BI, 4691 uint64_t &ProbTrue, uint64_t &ProbFalse) { 4692 assert(BI->isConditional() && 4693 "Looking for probabilities on unconditional branch?"); 4694 auto *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 4695 if (!ProfileData || ProfileData->getNumOperands() != 3) 4696 return false; 4697 4698 const auto *CITrue = 4699 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 4700 const auto *CIFalse = 4701 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 4702 if (!CITrue || !CIFalse) 4703 return false; 4704 4705 ProbTrue = CITrue->getValue().getZExtValue(); 4706 ProbFalse = CIFalse->getValue().getZExtValue(); 4707 4708 return true; 4709 } 4710 4711 /// \brief Scale down both weights to fit into uint32_t. 4712 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 4713 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 4714 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 4715 NewTrue = NewTrue / Scale; 4716 NewFalse = NewFalse / Scale; 4717 } 4718 4719 /// \brief Some targets prefer to split a conditional branch like: 4720 /// \code 4721 /// %0 = icmp ne i32 %a, 0 4722 /// %1 = icmp ne i32 %b, 0 4723 /// %or.cond = or i1 %0, %1 4724 /// br i1 %or.cond, label %TrueBB, label %FalseBB 4725 /// \endcode 4726 /// into multiple branch instructions like: 4727 /// \code 4728 /// bb1: 4729 /// %0 = icmp ne i32 %a, 0 4730 /// br i1 %0, label %TrueBB, label %bb2 4731 /// bb2: 4732 /// %1 = icmp ne i32 %b, 0 4733 /// br i1 %1, label %TrueBB, label %FalseBB 4734 /// \endcode 4735 /// This usually allows instruction selection to do even further optimizations 4736 /// and combine the compare with the branch instruction. Currently this is 4737 /// applied for targets which have "cheap" jump instructions. 4738 /// 4739 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 4740 /// 4741 bool CodeGenPrepare::splitBranchCondition(Function &F) { 4742 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 4743 return false; 4744 4745 bool MadeChange = false; 4746 for (auto &BB : F) { 4747 // Does this BB end with the following? 4748 // %cond1 = icmp|fcmp|binary instruction ... 4749 // %cond2 = icmp|fcmp|binary instruction ... 4750 // %cond.or = or|and i1 %cond1, cond2 4751 // br i1 %cond.or label %dest1, label %dest2" 4752 BinaryOperator *LogicOp; 4753 BasicBlock *TBB, *FBB; 4754 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 4755 continue; 4756 4757 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 4758 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 4759 continue; 4760 4761 unsigned Opc; 4762 Value *Cond1, *Cond2; 4763 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 4764 m_OneUse(m_Value(Cond2))))) 4765 Opc = Instruction::And; 4766 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 4767 m_OneUse(m_Value(Cond2))))) 4768 Opc = Instruction::Or; 4769 else 4770 continue; 4771 4772 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 4773 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 4774 continue; 4775 4776 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 4777 4778 // Create a new BB. 4779 auto *InsertBefore = std::next(Function::iterator(BB)) 4780 .getNodePtrUnchecked(); 4781 auto TmpBB = BasicBlock::Create(BB.getContext(), 4782 BB.getName() + ".cond.split", 4783 BB.getParent(), InsertBefore); 4784 4785 // Update original basic block by using the first condition directly by the 4786 // branch instruction and removing the no longer needed and/or instruction. 4787 Br1->setCondition(Cond1); 4788 LogicOp->eraseFromParent(); 4789 4790 // Depending on the conditon we have to either replace the true or the false 4791 // successor of the original branch instruction. 4792 if (Opc == Instruction::And) 4793 Br1->setSuccessor(0, TmpBB); 4794 else 4795 Br1->setSuccessor(1, TmpBB); 4796 4797 // Fill in the new basic block. 4798 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 4799 if (auto *I = dyn_cast<Instruction>(Cond2)) { 4800 I->removeFromParent(); 4801 I->insertBefore(Br2); 4802 } 4803 4804 // Update PHI nodes in both successors. The original BB needs to be 4805 // replaced in one succesor's PHI nodes, because the branch comes now from 4806 // the newly generated BB (NewBB). In the other successor we need to add one 4807 // incoming edge to the PHI nodes, because both branch instructions target 4808 // now the same successor. Depending on the original branch condition 4809 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 4810 // we perfrom the correct update for the PHI nodes. 4811 // This doesn't change the successor order of the just created branch 4812 // instruction (or any other instruction). 4813 if (Opc == Instruction::Or) 4814 std::swap(TBB, FBB); 4815 4816 // Replace the old BB with the new BB. 4817 for (auto &I : *TBB) { 4818 PHINode *PN = dyn_cast<PHINode>(&I); 4819 if (!PN) 4820 break; 4821 int i; 4822 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 4823 PN->setIncomingBlock(i, TmpBB); 4824 } 4825 4826 // Add another incoming edge form the new BB. 4827 for (auto &I : *FBB) { 4828 PHINode *PN = dyn_cast<PHINode>(&I); 4829 if (!PN) 4830 break; 4831 auto *Val = PN->getIncomingValueForBlock(&BB); 4832 PN->addIncoming(Val, TmpBB); 4833 } 4834 4835 // Update the branch weights (from SelectionDAGBuilder:: 4836 // FindMergedConditions). 4837 if (Opc == Instruction::Or) { 4838 // Codegen X | Y as: 4839 // BB1: 4840 // jmp_if_X TBB 4841 // jmp TmpBB 4842 // TmpBB: 4843 // jmp_if_Y TBB 4844 // jmp FBB 4845 // 4846 4847 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 4848 // The requirement is that 4849 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 4850 // = TrueProb for orignal BB. 4851 // Assuming the orignal weights are A and B, one choice is to set BB1's 4852 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 4853 // assumes that 4854 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 4855 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 4856 // TmpBB, but the math is more complicated. 4857 uint64_t TrueWeight, FalseWeight; 4858 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { 4859 uint64_t NewTrueWeight = TrueWeight; 4860 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 4861 scaleWeights(NewTrueWeight, NewFalseWeight); 4862 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 4863 .createBranchWeights(TrueWeight, FalseWeight)); 4864 4865 NewTrueWeight = TrueWeight; 4866 NewFalseWeight = 2 * FalseWeight; 4867 scaleWeights(NewTrueWeight, NewFalseWeight); 4868 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 4869 .createBranchWeights(TrueWeight, FalseWeight)); 4870 } 4871 } else { 4872 // Codegen X & Y as: 4873 // BB1: 4874 // jmp_if_X TmpBB 4875 // jmp FBB 4876 // TmpBB: 4877 // jmp_if_Y TBB 4878 // jmp FBB 4879 // 4880 // This requires creation of TmpBB after CurBB. 4881 4882 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 4883 // The requirement is that 4884 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 4885 // = FalseProb for orignal BB. 4886 // Assuming the orignal weights are A and B, one choice is to set BB1's 4887 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 4888 // assumes that 4889 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 4890 uint64_t TrueWeight, FalseWeight; 4891 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { 4892 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 4893 uint64_t NewFalseWeight = FalseWeight; 4894 scaleWeights(NewTrueWeight, NewFalseWeight); 4895 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 4896 .createBranchWeights(TrueWeight, FalseWeight)); 4897 4898 NewTrueWeight = 2 * TrueWeight; 4899 NewFalseWeight = FalseWeight; 4900 scaleWeights(NewTrueWeight, NewFalseWeight); 4901 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 4902 .createBranchWeights(TrueWeight, FalseWeight)); 4903 } 4904 } 4905 4906 // Note: No point in getting fancy here, since the DT info is never 4907 // available to CodeGenPrepare. 4908 ModifiedDT = true; 4909 4910 MadeChange = true; 4911 4912 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 4913 TmpBB->dump()); 4914 } 4915 return MadeChange; 4916 } 4917 4918 void CodeGenPrepare::stripInvariantGroupMetadata(Instruction &I) { 4919 if (auto *InvariantMD = I.getMetadata(LLVMContext::MD_invariant_group)) 4920 I.dropUnknownNonDebugMetadata(InvariantMD->getMetadataID()); 4921 } 4922