1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/Passes.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/BlockFrequencyInfo.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/ProfileSummaryInfo.h" 25 #include "llvm/Analysis/TargetLibraryInfo.h" 26 #include "llvm/Analysis/TargetTransformInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/CodeGen/Analysis.h" 30 #include "llvm/IR/CallSite.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/GetElementPtrTypeIterator.h" 37 #include "llvm/IR/IRBuilder.h" 38 #include "llvm/IR/InlineAsm.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/MDBuilder.h" 42 #include "llvm/IR/PatternMatch.h" 43 #include "llvm/IR/Statepoint.h" 44 #include "llvm/IR/ValueHandle.h" 45 #include "llvm/IR/ValueMap.h" 46 #include "llvm/Pass.h" 47 #include "llvm/Support/BranchProbability.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetSubtargetInfo.h" 53 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 54 #include "llvm/Transforms/Utils/BuildLibCalls.h" 55 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 56 #include "llvm/Transforms/Utils/Local.h" 57 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 58 using namespace llvm; 59 using namespace llvm::PatternMatch; 60 61 #define DEBUG_TYPE "codegenprepare" 62 63 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 64 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 65 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 66 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 67 "sunken Cmps"); 68 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 69 "of sunken Casts"); 70 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 71 "computations were sunk"); 72 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 73 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 74 STATISTIC(NumAndsAdded, 75 "Number of and mask instructions added to form ext loads"); 76 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 77 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 78 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 79 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 80 STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches"); 81 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 82 83 static cl::opt<bool> DisableBranchOpts( 84 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 85 cl::desc("Disable branch optimizations in CodeGenPrepare")); 86 87 static cl::opt<bool> 88 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 89 cl::desc("Disable GC optimizations in CodeGenPrepare")); 90 91 static cl::opt<bool> DisableSelectToBranch( 92 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 93 cl::desc("Disable select to branch conversion.")); 94 95 static cl::opt<bool> AddrSinkUsingGEPs( 96 "addr-sink-using-gep", cl::Hidden, cl::init(false), 97 cl::desc("Address sinking in CGP using GEPs.")); 98 99 static cl::opt<bool> EnableAndCmpSinking( 100 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 101 cl::desc("Enable sinkinig and/cmp into branches.")); 102 103 static cl::opt<bool> DisableStoreExtract( 104 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 105 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 106 107 static cl::opt<bool> StressStoreExtract( 108 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 109 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 110 111 static cl::opt<bool> DisableExtLdPromotion( 112 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 113 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 114 "CodeGenPrepare")); 115 116 static cl::opt<bool> StressExtLdPromotion( 117 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 118 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 119 "optimization in CodeGenPrepare")); 120 121 static cl::opt<bool> DisablePreheaderProtect( 122 "disable-preheader-prot", cl::Hidden, cl::init(false), 123 cl::desc("Disable protection against removing loop preheaders")); 124 125 static cl::opt<bool> ProfileGuidedSectionPrefix( 126 "profile-guided-section-prefix", cl::Hidden, cl::init(true), 127 cl::desc("Use profile info to add section prefix for hot/cold functions")); 128 129 static cl::opt<unsigned> FreqRatioToSkipMerge( 130 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 131 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 132 "(frequency of destination block) is greater than this ratio")); 133 134 static cl::opt<bool> ForceSplitStore( 135 "force-split-store", cl::Hidden, cl::init(false), 136 cl::desc("Force store splitting no matter what the target query says.")); 137 138 namespace { 139 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; 140 typedef PointerIntPair<Type *, 1, bool> TypeIsSExt; 141 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy; 142 class TypePromotionTransaction; 143 144 class CodeGenPrepare : public FunctionPass { 145 const TargetMachine *TM; 146 const TargetSubtargetInfo *SubtargetInfo; 147 const TargetLowering *TLI; 148 const TargetRegisterInfo *TRI; 149 const TargetTransformInfo *TTI; 150 const TargetLibraryInfo *TLInfo; 151 const LoopInfo *LI; 152 std::unique_ptr<BlockFrequencyInfo> BFI; 153 std::unique_ptr<BranchProbabilityInfo> BPI; 154 155 /// As we scan instructions optimizing them, this is the next instruction 156 /// to optimize. Transforms that can invalidate this should update it. 157 BasicBlock::iterator CurInstIterator; 158 159 /// Keeps track of non-local addresses that have been sunk into a block. 160 /// This allows us to avoid inserting duplicate code for blocks with 161 /// multiple load/stores of the same address. 162 ValueMap<Value*, Value*> SunkAddrs; 163 164 /// Keeps track of all instructions inserted for the current function. 165 SetOfInstrs InsertedInsts; 166 /// Keeps track of the type of the related instruction before their 167 /// promotion for the current function. 168 InstrToOrigTy PromotedInsts; 169 170 /// True if CFG is modified in any way. 171 bool ModifiedDT; 172 173 /// True if optimizing for size. 174 bool OptSize; 175 176 /// DataLayout for the Function being processed. 177 const DataLayout *DL; 178 179 public: 180 static char ID; // Pass identification, replacement for typeid 181 explicit CodeGenPrepare(const TargetMachine *TM = nullptr) 182 : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr), DL(nullptr) { 183 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 184 } 185 bool runOnFunction(Function &F) override; 186 187 StringRef getPassName() const override { return "CodeGen Prepare"; } 188 189 void getAnalysisUsage(AnalysisUsage &AU) const override { 190 // FIXME: When we can selectively preserve passes, preserve the domtree. 191 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 192 AU.addRequired<TargetLibraryInfoWrapperPass>(); 193 AU.addRequired<TargetTransformInfoWrapperPass>(); 194 AU.addRequired<LoopInfoWrapperPass>(); 195 } 196 197 private: 198 bool eliminateFallThrough(Function &F); 199 bool eliminateMostlyEmptyBlocks(Function &F); 200 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 201 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 202 void eliminateMostlyEmptyBlock(BasicBlock *BB); 203 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 204 bool isPreheader); 205 bool optimizeBlock(BasicBlock &BB, bool& ModifiedDT); 206 bool optimizeInst(Instruction *I, bool& ModifiedDT); 207 bool optimizeMemoryInst(Instruction *I, Value *Addr, 208 Type *AccessTy, unsigned AS); 209 bool optimizeInlineAsmInst(CallInst *CS); 210 bool optimizeCallInst(CallInst *CI, bool& ModifiedDT); 211 bool moveExtToFormExtLoad(Instruction *&I); 212 bool optimizeExtUses(Instruction *I); 213 bool optimizeLoadExt(LoadInst *I); 214 bool optimizeSelectInst(SelectInst *SI); 215 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); 216 bool optimizeSwitchInst(SwitchInst *CI); 217 bool optimizeExtractElementInst(Instruction *Inst); 218 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 219 bool placeDbgValues(Function &F); 220 bool sinkAndCmp(Function &F); 221 bool extLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI, 222 Instruction *&Inst, 223 const SmallVectorImpl<Instruction *> &Exts, 224 unsigned CreatedInstCost); 225 bool splitBranchCondition(Function &F); 226 bool simplifyOffsetableRelocate(Instruction &I); 227 }; 228 } 229 230 char CodeGenPrepare::ID = 0; 231 INITIALIZE_TM_PASS_BEGIN(CodeGenPrepare, "codegenprepare", 232 "Optimize for code generation", false, false) 233 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 234 INITIALIZE_TM_PASS_END(CodeGenPrepare, "codegenprepare", 235 "Optimize for code generation", false, false) 236 237 FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) { 238 return new CodeGenPrepare(TM); 239 } 240 241 bool CodeGenPrepare::runOnFunction(Function &F) { 242 if (skipFunction(F)) 243 return false; 244 245 DL = &F.getParent()->getDataLayout(); 246 247 bool EverMadeChange = false; 248 // Clear per function information. 249 InsertedInsts.clear(); 250 PromotedInsts.clear(); 251 BFI.reset(); 252 BPI.reset(); 253 254 ModifiedDT = false; 255 if (TM) { 256 SubtargetInfo = TM->getSubtargetImpl(F); 257 TLI = SubtargetInfo->getTargetLowering(); 258 TRI = SubtargetInfo->getRegisterInfo(); 259 } 260 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 261 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 262 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 263 OptSize = F.optForSize(); 264 265 if (ProfileGuidedSectionPrefix) { 266 ProfileSummaryInfo *PSI = 267 getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 268 if (PSI->isFunctionEntryHot(&F)) 269 F.setSectionPrefix(".hot"); 270 else if (PSI->isFunctionEntryCold(&F)) 271 F.setSectionPrefix(".cold"); 272 } 273 274 /// This optimization identifies DIV instructions that can be 275 /// profitably bypassed and carried out with a shorter, faster divide. 276 if (!OptSize && TLI && TLI->isSlowDivBypassed()) { 277 const DenseMap<unsigned int, unsigned int> &BypassWidths = 278 TLI->getBypassSlowDivWidths(); 279 BasicBlock* BB = &*F.begin(); 280 while (BB != nullptr) { 281 // bypassSlowDivision may create new BBs, but we don't want to reapply the 282 // optimization to those blocks. 283 BasicBlock* Next = BB->getNextNode(); 284 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 285 BB = Next; 286 } 287 } 288 289 // Eliminate blocks that contain only PHI nodes and an 290 // unconditional branch. 291 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 292 293 // llvm.dbg.value is far away from the value then iSel may not be able 294 // handle it properly. iSel will drop llvm.dbg.value if it can not 295 // find a node corresponding to the value. 296 EverMadeChange |= placeDbgValues(F); 297 298 // If there is a mask, compare against zero, and branch that can be combined 299 // into a single target instruction, push the mask and compare into branch 300 // users. Do this before OptimizeBlock -> OptimizeInst -> 301 // OptimizeCmpExpression, which perturbs the pattern being searched for. 302 if (!DisableBranchOpts) { 303 EverMadeChange |= sinkAndCmp(F); 304 EverMadeChange |= splitBranchCondition(F); 305 } 306 307 bool MadeChange = true; 308 while (MadeChange) { 309 MadeChange = false; 310 for (Function::iterator I = F.begin(); I != F.end(); ) { 311 BasicBlock *BB = &*I++; 312 bool ModifiedDTOnIteration = false; 313 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 314 315 // Restart BB iteration if the dominator tree of the Function was changed 316 if (ModifiedDTOnIteration) 317 break; 318 } 319 EverMadeChange |= MadeChange; 320 } 321 322 SunkAddrs.clear(); 323 324 if (!DisableBranchOpts) { 325 MadeChange = false; 326 SmallPtrSet<BasicBlock*, 8> WorkList; 327 for (BasicBlock &BB : F) { 328 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 329 MadeChange |= ConstantFoldTerminator(&BB, true); 330 if (!MadeChange) continue; 331 332 for (SmallVectorImpl<BasicBlock*>::iterator 333 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 334 if (pred_begin(*II) == pred_end(*II)) 335 WorkList.insert(*II); 336 } 337 338 // Delete the dead blocks and any of their dead successors. 339 MadeChange |= !WorkList.empty(); 340 while (!WorkList.empty()) { 341 BasicBlock *BB = *WorkList.begin(); 342 WorkList.erase(BB); 343 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 344 345 DeleteDeadBlock(BB); 346 347 for (SmallVectorImpl<BasicBlock*>::iterator 348 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 349 if (pred_begin(*II) == pred_end(*II)) 350 WorkList.insert(*II); 351 } 352 353 // Merge pairs of basic blocks with unconditional branches, connected by 354 // a single edge. 355 if (EverMadeChange || MadeChange) 356 MadeChange |= eliminateFallThrough(F); 357 358 EverMadeChange |= MadeChange; 359 } 360 361 if (!DisableGCOpts) { 362 SmallVector<Instruction *, 2> Statepoints; 363 for (BasicBlock &BB : F) 364 for (Instruction &I : BB) 365 if (isStatepoint(I)) 366 Statepoints.push_back(&I); 367 for (auto &I : Statepoints) 368 EverMadeChange |= simplifyOffsetableRelocate(*I); 369 } 370 371 return EverMadeChange; 372 } 373 374 /// Merge basic blocks which are connected by a single edge, where one of the 375 /// basic blocks has a single successor pointing to the other basic block, 376 /// which has a single predecessor. 377 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 378 bool Changed = false; 379 // Scan all of the blocks in the function, except for the entry block. 380 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 381 BasicBlock *BB = &*I++; 382 // If the destination block has a single pred, then this is a trivial 383 // edge, just collapse it. 384 BasicBlock *SinglePred = BB->getSinglePredecessor(); 385 386 // Don't merge if BB's address is taken. 387 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 388 389 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 390 if (Term && !Term->isConditional()) { 391 Changed = true; 392 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 393 // Remember if SinglePred was the entry block of the function. 394 // If so, we will need to move BB back to the entry position. 395 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 396 MergeBasicBlockIntoOnlyPred(BB, nullptr); 397 398 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 399 BB->moveBefore(&BB->getParent()->getEntryBlock()); 400 401 // We have erased a block. Update the iterator. 402 I = BB->getIterator(); 403 } 404 } 405 return Changed; 406 } 407 408 /// Find a destination block from BB if BB is mergeable empty block. 409 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 410 // If this block doesn't end with an uncond branch, ignore it. 411 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 412 if (!BI || !BI->isUnconditional()) 413 return nullptr; 414 415 // If the instruction before the branch (skipping debug info) isn't a phi 416 // node, then other stuff is happening here. 417 BasicBlock::iterator BBI = BI->getIterator(); 418 if (BBI != BB->begin()) { 419 --BBI; 420 while (isa<DbgInfoIntrinsic>(BBI)) { 421 if (BBI == BB->begin()) 422 break; 423 --BBI; 424 } 425 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 426 return nullptr; 427 } 428 429 // Do not break infinite loops. 430 BasicBlock *DestBB = BI->getSuccessor(0); 431 if (DestBB == BB) 432 return nullptr; 433 434 if (!canMergeBlocks(BB, DestBB)) 435 DestBB = nullptr; 436 437 return DestBB; 438 } 439 440 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 441 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 442 /// edges in ways that are non-optimal for isel. Start by eliminating these 443 /// blocks so we can split them the way we want them. 444 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 445 SmallPtrSet<BasicBlock *, 16> Preheaders; 446 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 447 while (!LoopList.empty()) { 448 Loop *L = LoopList.pop_back_val(); 449 LoopList.insert(LoopList.end(), L->begin(), L->end()); 450 if (BasicBlock *Preheader = L->getLoopPreheader()) 451 Preheaders.insert(Preheader); 452 } 453 454 bool MadeChange = false; 455 // Note that this intentionally skips the entry block. 456 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 457 BasicBlock *BB = &*I++; 458 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 459 if (!DestBB || 460 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 461 continue; 462 463 eliminateMostlyEmptyBlock(BB); 464 MadeChange = true; 465 } 466 return MadeChange; 467 } 468 469 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 470 BasicBlock *DestBB, 471 bool isPreheader) { 472 // Do not delete loop preheaders if doing so would create a critical edge. 473 // Loop preheaders can be good locations to spill registers. If the 474 // preheader is deleted and we create a critical edge, registers may be 475 // spilled in the loop body instead. 476 if (!DisablePreheaderProtect && isPreheader && 477 !(BB->getSinglePredecessor() && 478 BB->getSinglePredecessor()->getSingleSuccessor())) 479 return false; 480 481 // Try to skip merging if the unique predecessor of BB is terminated by a 482 // switch or indirect branch instruction, and BB is used as an incoming block 483 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 484 // add COPY instructions in the predecessor of BB instead of BB (if it is not 485 // merged). Note that the critical edge created by merging such blocks wont be 486 // split in MachineSink because the jump table is not analyzable. By keeping 487 // such empty block (BB), ISel will place COPY instructions in BB, not in the 488 // predecessor of BB. 489 BasicBlock *Pred = BB->getUniquePredecessor(); 490 if (!Pred || 491 !(isa<SwitchInst>(Pred->getTerminator()) || 492 isa<IndirectBrInst>(Pred->getTerminator()))) 493 return true; 494 495 if (BB->getTerminator() != BB->getFirstNonPHI()) 496 return true; 497 498 // We use a simple cost heuristic which determine skipping merging is 499 // profitable if the cost of skipping merging is less than the cost of 500 // merging : Cost(skipping merging) < Cost(merging BB), where the 501 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 502 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 503 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 504 // Freq(Pred) / Freq(BB) > 2. 505 // Note that if there are multiple empty blocks sharing the same incoming 506 // value for the PHIs in the DestBB, we consider them together. In such 507 // case, Cost(merging BB) will be the sum of their frequencies. 508 509 if (!isa<PHINode>(DestBB->begin())) 510 return true; 511 512 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 513 514 // Find all other incoming blocks from which incoming values of all PHIs in 515 // DestBB are the same as the ones from BB. 516 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 517 ++PI) { 518 BasicBlock *DestBBPred = *PI; 519 if (DestBBPred == BB) 520 continue; 521 522 bool HasAllSameValue = true; 523 BasicBlock::const_iterator DestBBI = DestBB->begin(); 524 while (const PHINode *DestPN = dyn_cast<PHINode>(DestBBI++)) { 525 if (DestPN->getIncomingValueForBlock(BB) != 526 DestPN->getIncomingValueForBlock(DestBBPred)) { 527 HasAllSameValue = false; 528 break; 529 } 530 } 531 if (HasAllSameValue) 532 SameIncomingValueBBs.insert(DestBBPred); 533 } 534 535 // See if all BB's incoming values are same as the value from Pred. In this 536 // case, no reason to skip merging because COPYs are expected to be place in 537 // Pred already. 538 if (SameIncomingValueBBs.count(Pred)) 539 return true; 540 541 if (!BFI) { 542 Function &F = *BB->getParent(); 543 LoopInfo LI{DominatorTree(F)}; 544 BPI.reset(new BranchProbabilityInfo(F, LI)); 545 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 546 } 547 548 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 549 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 550 551 for (auto SameValueBB : SameIncomingValueBBs) 552 if (SameValueBB->getUniquePredecessor() == Pred && 553 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 554 BBFreq += BFI->getBlockFreq(SameValueBB); 555 556 return PredFreq.getFrequency() <= 557 BBFreq.getFrequency() * FreqRatioToSkipMerge; 558 } 559 560 /// Return true if we can merge BB into DestBB if there is a single 561 /// unconditional branch between them, and BB contains no other non-phi 562 /// instructions. 563 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 564 const BasicBlock *DestBB) const { 565 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 566 // the successor. If there are more complex condition (e.g. preheaders), 567 // don't mess around with them. 568 BasicBlock::const_iterator BBI = BB->begin(); 569 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 570 for (const User *U : PN->users()) { 571 const Instruction *UI = cast<Instruction>(U); 572 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 573 return false; 574 // If User is inside DestBB block and it is a PHINode then check 575 // incoming value. If incoming value is not from BB then this is 576 // a complex condition (e.g. preheaders) we want to avoid here. 577 if (UI->getParent() == DestBB) { 578 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 579 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 580 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 581 if (Insn && Insn->getParent() == BB && 582 Insn->getParent() != UPN->getIncomingBlock(I)) 583 return false; 584 } 585 } 586 } 587 } 588 589 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 590 // and DestBB may have conflicting incoming values for the block. If so, we 591 // can't merge the block. 592 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 593 if (!DestBBPN) return true; // no conflict. 594 595 // Collect the preds of BB. 596 SmallPtrSet<const BasicBlock*, 16> BBPreds; 597 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 598 // It is faster to get preds from a PHI than with pred_iterator. 599 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 600 BBPreds.insert(BBPN->getIncomingBlock(i)); 601 } else { 602 BBPreds.insert(pred_begin(BB), pred_end(BB)); 603 } 604 605 // Walk the preds of DestBB. 606 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 607 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 608 if (BBPreds.count(Pred)) { // Common predecessor? 609 BBI = DestBB->begin(); 610 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 611 const Value *V1 = PN->getIncomingValueForBlock(Pred); 612 const Value *V2 = PN->getIncomingValueForBlock(BB); 613 614 // If V2 is a phi node in BB, look up what the mapped value will be. 615 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 616 if (V2PN->getParent() == BB) 617 V2 = V2PN->getIncomingValueForBlock(Pred); 618 619 // If there is a conflict, bail out. 620 if (V1 != V2) return false; 621 } 622 } 623 } 624 625 return true; 626 } 627 628 629 /// Eliminate a basic block that has only phi's and an unconditional branch in 630 /// it. 631 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 632 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 633 BasicBlock *DestBB = BI->getSuccessor(0); 634 635 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 636 637 // If the destination block has a single pred, then this is a trivial edge, 638 // just collapse it. 639 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 640 if (SinglePred != DestBB) { 641 // Remember if SinglePred was the entry block of the function. If so, we 642 // will need to move BB back to the entry position. 643 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 644 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 645 646 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 647 BB->moveBefore(&BB->getParent()->getEntryBlock()); 648 649 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 650 return; 651 } 652 } 653 654 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 655 // to handle the new incoming edges it is about to have. 656 PHINode *PN; 657 for (BasicBlock::iterator BBI = DestBB->begin(); 658 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 659 // Remove the incoming value for BB, and remember it. 660 Value *InVal = PN->removeIncomingValue(BB, false); 661 662 // Two options: either the InVal is a phi node defined in BB or it is some 663 // value that dominates BB. 664 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 665 if (InValPhi && InValPhi->getParent() == BB) { 666 // Add all of the input values of the input PHI as inputs of this phi. 667 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 668 PN->addIncoming(InValPhi->getIncomingValue(i), 669 InValPhi->getIncomingBlock(i)); 670 } else { 671 // Otherwise, add one instance of the dominating value for each edge that 672 // we will be adding. 673 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 674 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 675 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 676 } else { 677 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 678 PN->addIncoming(InVal, *PI); 679 } 680 } 681 } 682 683 // The PHIs are now updated, change everything that refers to BB to use 684 // DestBB and remove BB. 685 BB->replaceAllUsesWith(DestBB); 686 BB->eraseFromParent(); 687 ++NumBlocksElim; 688 689 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 690 } 691 692 // Computes a map of base pointer relocation instructions to corresponding 693 // derived pointer relocation instructions given a vector of all relocate calls 694 static void computeBaseDerivedRelocateMap( 695 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 696 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 697 &RelocateInstMap) { 698 // Collect information in two maps: one primarily for locating the base object 699 // while filling the second map; the second map is the final structure holding 700 // a mapping between Base and corresponding Derived relocate calls 701 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 702 for (auto *ThisRelocate : AllRelocateCalls) { 703 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 704 ThisRelocate->getDerivedPtrIndex()); 705 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 706 } 707 for (auto &Item : RelocateIdxMap) { 708 std::pair<unsigned, unsigned> Key = Item.first; 709 if (Key.first == Key.second) 710 // Base relocation: nothing to insert 711 continue; 712 713 GCRelocateInst *I = Item.second; 714 auto BaseKey = std::make_pair(Key.first, Key.first); 715 716 // We're iterating over RelocateIdxMap so we cannot modify it. 717 auto MaybeBase = RelocateIdxMap.find(BaseKey); 718 if (MaybeBase == RelocateIdxMap.end()) 719 // TODO: We might want to insert a new base object relocate and gep off 720 // that, if there are enough derived object relocates. 721 continue; 722 723 RelocateInstMap[MaybeBase->second].push_back(I); 724 } 725 } 726 727 // Accepts a GEP and extracts the operands into a vector provided they're all 728 // small integer constants 729 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 730 SmallVectorImpl<Value *> &OffsetV) { 731 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 732 // Only accept small constant integer operands 733 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 734 if (!Op || Op->getZExtValue() > 20) 735 return false; 736 } 737 738 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 739 OffsetV.push_back(GEP->getOperand(i)); 740 return true; 741 } 742 743 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 744 // replace, computes a replacement, and affects it. 745 static bool 746 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 747 const SmallVectorImpl<GCRelocateInst *> &Targets) { 748 bool MadeChange = false; 749 for (GCRelocateInst *ToReplace : Targets) { 750 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 751 "Not relocating a derived object of the original base object"); 752 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 753 // A duplicate relocate call. TODO: coalesce duplicates. 754 continue; 755 } 756 757 if (RelocatedBase->getParent() != ToReplace->getParent()) { 758 // Base and derived relocates are in different basic blocks. 759 // In this case transform is only valid when base dominates derived 760 // relocate. However it would be too expensive to check dominance 761 // for each such relocate, so we skip the whole transformation. 762 continue; 763 } 764 765 Value *Base = ToReplace->getBasePtr(); 766 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 767 if (!Derived || Derived->getPointerOperand() != Base) 768 continue; 769 770 SmallVector<Value *, 2> OffsetV; 771 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 772 continue; 773 774 // Create a Builder and replace the target callsite with a gep 775 assert(RelocatedBase->getNextNode() && 776 "Should always have one since it's not a terminator"); 777 778 // Insert after RelocatedBase 779 IRBuilder<> Builder(RelocatedBase->getNextNode()); 780 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 781 782 // If gc_relocate does not match the actual type, cast it to the right type. 783 // In theory, there must be a bitcast after gc_relocate if the type does not 784 // match, and we should reuse it to get the derived pointer. But it could be 785 // cases like this: 786 // bb1: 787 // ... 788 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 789 // br label %merge 790 // 791 // bb2: 792 // ... 793 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 794 // br label %merge 795 // 796 // merge: 797 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 798 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 799 // 800 // In this case, we can not find the bitcast any more. So we insert a new bitcast 801 // no matter there is already one or not. In this way, we can handle all cases, and 802 // the extra bitcast should be optimized away in later passes. 803 Value *ActualRelocatedBase = RelocatedBase; 804 if (RelocatedBase->getType() != Base->getType()) { 805 ActualRelocatedBase = 806 Builder.CreateBitCast(RelocatedBase, Base->getType()); 807 } 808 Value *Replacement = Builder.CreateGEP( 809 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 810 Replacement->takeName(ToReplace); 811 // If the newly generated derived pointer's type does not match the original derived 812 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 813 Value *ActualReplacement = Replacement; 814 if (Replacement->getType() != ToReplace->getType()) { 815 ActualReplacement = 816 Builder.CreateBitCast(Replacement, ToReplace->getType()); 817 } 818 ToReplace->replaceAllUsesWith(ActualReplacement); 819 ToReplace->eraseFromParent(); 820 821 MadeChange = true; 822 } 823 return MadeChange; 824 } 825 826 // Turns this: 827 // 828 // %base = ... 829 // %ptr = gep %base + 15 830 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 831 // %base' = relocate(%tok, i32 4, i32 4) 832 // %ptr' = relocate(%tok, i32 4, i32 5) 833 // %val = load %ptr' 834 // 835 // into this: 836 // 837 // %base = ... 838 // %ptr = gep %base + 15 839 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 840 // %base' = gc.relocate(%tok, i32 4, i32 4) 841 // %ptr' = gep %base' + 15 842 // %val = load %ptr' 843 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 844 bool MadeChange = false; 845 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 846 847 for (auto *U : I.users()) 848 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 849 // Collect all the relocate calls associated with a statepoint 850 AllRelocateCalls.push_back(Relocate); 851 852 // We need atleast one base pointer relocation + one derived pointer 853 // relocation to mangle 854 if (AllRelocateCalls.size() < 2) 855 return false; 856 857 // RelocateInstMap is a mapping from the base relocate instruction to the 858 // corresponding derived relocate instructions 859 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 860 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 861 if (RelocateInstMap.empty()) 862 return false; 863 864 for (auto &Item : RelocateInstMap) 865 // Item.first is the RelocatedBase to offset against 866 // Item.second is the vector of Targets to replace 867 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 868 return MadeChange; 869 } 870 871 /// SinkCast - Sink the specified cast instruction into its user blocks 872 static bool SinkCast(CastInst *CI) { 873 BasicBlock *DefBB = CI->getParent(); 874 875 /// InsertedCasts - Only insert a cast in each block once. 876 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 877 878 bool MadeChange = false; 879 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 880 UI != E; ) { 881 Use &TheUse = UI.getUse(); 882 Instruction *User = cast<Instruction>(*UI); 883 884 // Figure out which BB this cast is used in. For PHI's this is the 885 // appropriate predecessor block. 886 BasicBlock *UserBB = User->getParent(); 887 if (PHINode *PN = dyn_cast<PHINode>(User)) { 888 UserBB = PN->getIncomingBlock(TheUse); 889 } 890 891 // Preincrement use iterator so we don't invalidate it. 892 ++UI; 893 894 // The first insertion point of a block containing an EH pad is after the 895 // pad. If the pad is the user, we cannot sink the cast past the pad. 896 if (User->isEHPad()) 897 continue; 898 899 // If the block selected to receive the cast is an EH pad that does not 900 // allow non-PHI instructions before the terminator, we can't sink the 901 // cast. 902 if (UserBB->getTerminator()->isEHPad()) 903 continue; 904 905 // If this user is in the same block as the cast, don't change the cast. 906 if (UserBB == DefBB) continue; 907 908 // If we have already inserted a cast into this block, use it. 909 CastInst *&InsertedCast = InsertedCasts[UserBB]; 910 911 if (!InsertedCast) { 912 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 913 assert(InsertPt != UserBB->end()); 914 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 915 CI->getType(), "", &*InsertPt); 916 } 917 918 // Replace a use of the cast with a use of the new cast. 919 TheUse = InsertedCast; 920 MadeChange = true; 921 ++NumCastUses; 922 } 923 924 // If we removed all uses, nuke the cast. 925 if (CI->use_empty()) { 926 CI->eraseFromParent(); 927 MadeChange = true; 928 } 929 930 return MadeChange; 931 } 932 933 /// If the specified cast instruction is a noop copy (e.g. it's casting from 934 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 935 /// reduce the number of virtual registers that must be created and coalesced. 936 /// 937 /// Return true if any changes are made. 938 /// 939 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 940 const DataLayout &DL) { 941 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 942 // than sinking only nop casts, but is helpful on some platforms. 943 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 944 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), 945 ASC->getDestAddressSpace())) 946 return false; 947 } 948 949 // If this is a noop copy, 950 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 951 EVT DstVT = TLI.getValueType(DL, CI->getType()); 952 953 // This is an fp<->int conversion? 954 if (SrcVT.isInteger() != DstVT.isInteger()) 955 return false; 956 957 // If this is an extension, it will be a zero or sign extension, which 958 // isn't a noop. 959 if (SrcVT.bitsLT(DstVT)) return false; 960 961 // If these values will be promoted, find out what they will be promoted 962 // to. This helps us consider truncates on PPC as noop copies when they 963 // are. 964 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 965 TargetLowering::TypePromoteInteger) 966 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 967 if (TLI.getTypeAction(CI->getContext(), DstVT) == 968 TargetLowering::TypePromoteInteger) 969 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 970 971 // If, after promotion, these are the same types, this is a noop copy. 972 if (SrcVT != DstVT) 973 return false; 974 975 return SinkCast(CI); 976 } 977 978 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 979 /// possible. 980 /// 981 /// Return true if any changes were made. 982 static bool CombineUAddWithOverflow(CmpInst *CI) { 983 Value *A, *B; 984 Instruction *AddI; 985 if (!match(CI, 986 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 987 return false; 988 989 Type *Ty = AddI->getType(); 990 if (!isa<IntegerType>(Ty)) 991 return false; 992 993 // We don't want to move around uses of condition values this late, so we we 994 // check if it is legal to create the call to the intrinsic in the basic 995 // block containing the icmp: 996 997 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 998 return false; 999 1000 #ifndef NDEBUG 1001 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 1002 // for now: 1003 if (AddI->hasOneUse()) 1004 assert(*AddI->user_begin() == CI && "expected!"); 1005 #endif 1006 1007 Module *M = CI->getModule(); 1008 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 1009 1010 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 1011 1012 auto *UAddWithOverflow = 1013 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 1014 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 1015 auto *Overflow = 1016 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 1017 1018 CI->replaceAllUsesWith(Overflow); 1019 AddI->replaceAllUsesWith(UAdd); 1020 CI->eraseFromParent(); 1021 AddI->eraseFromParent(); 1022 return true; 1023 } 1024 1025 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1026 /// registers that must be created and coalesced. This is a clear win except on 1027 /// targets with multiple condition code registers (PowerPC), where it might 1028 /// lose; some adjustment may be wanted there. 1029 /// 1030 /// Return true if any changes are made. 1031 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1032 BasicBlock *DefBB = CI->getParent(); 1033 1034 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1035 if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI)) 1036 return false; 1037 1038 // Only insert a cmp in each block once. 1039 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1040 1041 bool MadeChange = false; 1042 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1043 UI != E; ) { 1044 Use &TheUse = UI.getUse(); 1045 Instruction *User = cast<Instruction>(*UI); 1046 1047 // Preincrement use iterator so we don't invalidate it. 1048 ++UI; 1049 1050 // Don't bother for PHI nodes. 1051 if (isa<PHINode>(User)) 1052 continue; 1053 1054 // Figure out which BB this cmp is used in. 1055 BasicBlock *UserBB = User->getParent(); 1056 1057 // If this user is in the same block as the cmp, don't change the cmp. 1058 if (UserBB == DefBB) continue; 1059 1060 // If we have already inserted a cmp into this block, use it. 1061 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1062 1063 if (!InsertedCmp) { 1064 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1065 assert(InsertPt != UserBB->end()); 1066 InsertedCmp = 1067 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 1068 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 1069 // Propagate the debug info. 1070 InsertedCmp->setDebugLoc(CI->getDebugLoc()); 1071 } 1072 1073 // Replace a use of the cmp with a use of the new cmp. 1074 TheUse = InsertedCmp; 1075 MadeChange = true; 1076 ++NumCmpUses; 1077 } 1078 1079 // If we removed all uses, nuke the cmp. 1080 if (CI->use_empty()) { 1081 CI->eraseFromParent(); 1082 MadeChange = true; 1083 } 1084 1085 return MadeChange; 1086 } 1087 1088 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1089 if (SinkCmpExpression(CI, TLI)) 1090 return true; 1091 1092 if (CombineUAddWithOverflow(CI)) 1093 return true; 1094 1095 return false; 1096 } 1097 1098 /// Check if the candidates could be combined with a shift instruction, which 1099 /// includes: 1100 /// 1. Truncate instruction 1101 /// 2. And instruction and the imm is a mask of the low bits: 1102 /// imm & (imm+1) == 0 1103 static bool isExtractBitsCandidateUse(Instruction *User) { 1104 if (!isa<TruncInst>(User)) { 1105 if (User->getOpcode() != Instruction::And || 1106 !isa<ConstantInt>(User->getOperand(1))) 1107 return false; 1108 1109 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1110 1111 if ((Cimm & (Cimm + 1)).getBoolValue()) 1112 return false; 1113 } 1114 return true; 1115 } 1116 1117 /// Sink both shift and truncate instruction to the use of truncate's BB. 1118 static bool 1119 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1120 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1121 const TargetLowering &TLI, const DataLayout &DL) { 1122 BasicBlock *UserBB = User->getParent(); 1123 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1124 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1125 bool MadeChange = false; 1126 1127 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1128 TruncE = TruncI->user_end(); 1129 TruncUI != TruncE;) { 1130 1131 Use &TruncTheUse = TruncUI.getUse(); 1132 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1133 // Preincrement use iterator so we don't invalidate it. 1134 1135 ++TruncUI; 1136 1137 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1138 if (!ISDOpcode) 1139 continue; 1140 1141 // If the use is actually a legal node, there will not be an 1142 // implicit truncate. 1143 // FIXME: always querying the result type is just an 1144 // approximation; some nodes' legality is determined by the 1145 // operand or other means. There's no good way to find out though. 1146 if (TLI.isOperationLegalOrCustom( 1147 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1148 continue; 1149 1150 // Don't bother for PHI nodes. 1151 if (isa<PHINode>(TruncUser)) 1152 continue; 1153 1154 BasicBlock *TruncUserBB = TruncUser->getParent(); 1155 1156 if (UserBB == TruncUserBB) 1157 continue; 1158 1159 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1160 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1161 1162 if (!InsertedShift && !InsertedTrunc) { 1163 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1164 assert(InsertPt != TruncUserBB->end()); 1165 // Sink the shift 1166 if (ShiftI->getOpcode() == Instruction::AShr) 1167 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1168 "", &*InsertPt); 1169 else 1170 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1171 "", &*InsertPt); 1172 1173 // Sink the trunc 1174 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1175 TruncInsertPt++; 1176 assert(TruncInsertPt != TruncUserBB->end()); 1177 1178 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1179 TruncI->getType(), "", &*TruncInsertPt); 1180 1181 MadeChange = true; 1182 1183 TruncTheUse = InsertedTrunc; 1184 } 1185 } 1186 return MadeChange; 1187 } 1188 1189 /// Sink the shift *right* instruction into user blocks if the uses could 1190 /// potentially be combined with this shift instruction and generate BitExtract 1191 /// instruction. It will only be applied if the architecture supports BitExtract 1192 /// instruction. Here is an example: 1193 /// BB1: 1194 /// %x.extract.shift = lshr i64 %arg1, 32 1195 /// BB2: 1196 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1197 /// ==> 1198 /// 1199 /// BB2: 1200 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1201 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1202 /// 1203 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1204 /// instruction. 1205 /// Return true if any changes are made. 1206 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1207 const TargetLowering &TLI, 1208 const DataLayout &DL) { 1209 BasicBlock *DefBB = ShiftI->getParent(); 1210 1211 /// Only insert instructions in each block once. 1212 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1213 1214 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1215 1216 bool MadeChange = false; 1217 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1218 UI != E;) { 1219 Use &TheUse = UI.getUse(); 1220 Instruction *User = cast<Instruction>(*UI); 1221 // Preincrement use iterator so we don't invalidate it. 1222 ++UI; 1223 1224 // Don't bother for PHI nodes. 1225 if (isa<PHINode>(User)) 1226 continue; 1227 1228 if (!isExtractBitsCandidateUse(User)) 1229 continue; 1230 1231 BasicBlock *UserBB = User->getParent(); 1232 1233 if (UserBB == DefBB) { 1234 // If the shift and truncate instruction are in the same BB. The use of 1235 // the truncate(TruncUse) may still introduce another truncate if not 1236 // legal. In this case, we would like to sink both shift and truncate 1237 // instruction to the BB of TruncUse. 1238 // for example: 1239 // BB1: 1240 // i64 shift.result = lshr i64 opnd, imm 1241 // trunc.result = trunc shift.result to i16 1242 // 1243 // BB2: 1244 // ----> We will have an implicit truncate here if the architecture does 1245 // not have i16 compare. 1246 // cmp i16 trunc.result, opnd2 1247 // 1248 if (isa<TruncInst>(User) && shiftIsLegal 1249 // If the type of the truncate is legal, no trucate will be 1250 // introduced in other basic blocks. 1251 && 1252 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1253 MadeChange = 1254 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1255 1256 continue; 1257 } 1258 // If we have already inserted a shift into this block, use it. 1259 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1260 1261 if (!InsertedShift) { 1262 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1263 assert(InsertPt != UserBB->end()); 1264 1265 if (ShiftI->getOpcode() == Instruction::AShr) 1266 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1267 "", &*InsertPt); 1268 else 1269 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1270 "", &*InsertPt); 1271 1272 MadeChange = true; 1273 } 1274 1275 // Replace a use of the shift with a use of the new shift. 1276 TheUse = InsertedShift; 1277 } 1278 1279 // If we removed all uses, nuke the shift. 1280 if (ShiftI->use_empty()) 1281 ShiftI->eraseFromParent(); 1282 1283 return MadeChange; 1284 } 1285 1286 // Translate a masked load intrinsic like 1287 // <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align, 1288 // <16 x i1> %mask, <16 x i32> %passthru) 1289 // to a chain of basic blocks, with loading element one-by-one if 1290 // the appropriate mask bit is set 1291 // 1292 // %1 = bitcast i8* %addr to i32* 1293 // %2 = extractelement <16 x i1> %mask, i32 0 1294 // %3 = icmp eq i1 %2, true 1295 // br i1 %3, label %cond.load, label %else 1296 // 1297 //cond.load: ; preds = %0 1298 // %4 = getelementptr i32* %1, i32 0 1299 // %5 = load i32* %4 1300 // %6 = insertelement <16 x i32> undef, i32 %5, i32 0 1301 // br label %else 1302 // 1303 //else: ; preds = %0, %cond.load 1304 // %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ] 1305 // %7 = extractelement <16 x i1> %mask, i32 1 1306 // %8 = icmp eq i1 %7, true 1307 // br i1 %8, label %cond.load1, label %else2 1308 // 1309 //cond.load1: ; preds = %else 1310 // %9 = getelementptr i32* %1, i32 1 1311 // %10 = load i32* %9 1312 // %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1 1313 // br label %else2 1314 // 1315 //else2: ; preds = %else, %cond.load1 1316 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1317 // %12 = extractelement <16 x i1> %mask, i32 2 1318 // %13 = icmp eq i1 %12, true 1319 // br i1 %13, label %cond.load4, label %else5 1320 // 1321 static void scalarizeMaskedLoad(CallInst *CI) { 1322 Value *Ptr = CI->getArgOperand(0); 1323 Value *Alignment = CI->getArgOperand(1); 1324 Value *Mask = CI->getArgOperand(2); 1325 Value *Src0 = CI->getArgOperand(3); 1326 1327 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1328 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1329 assert(VecType && "Unexpected return type of masked load intrinsic"); 1330 1331 Type *EltTy = CI->getType()->getVectorElementType(); 1332 1333 IRBuilder<> Builder(CI->getContext()); 1334 Instruction *InsertPt = CI; 1335 BasicBlock *IfBlock = CI->getParent(); 1336 BasicBlock *CondBlock = nullptr; 1337 BasicBlock *PrevIfBlock = CI->getParent(); 1338 1339 Builder.SetInsertPoint(InsertPt); 1340 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1341 1342 // Short-cut if the mask is all-true. 1343 bool IsAllOnesMask = isa<Constant>(Mask) && 1344 cast<Constant>(Mask)->isAllOnesValue(); 1345 1346 if (IsAllOnesMask) { 1347 Value *NewI = Builder.CreateAlignedLoad(Ptr, AlignVal); 1348 CI->replaceAllUsesWith(NewI); 1349 CI->eraseFromParent(); 1350 return; 1351 } 1352 1353 // Adjust alignment for the scalar instruction. 1354 AlignVal = std::min(AlignVal, VecType->getScalarSizeInBits()/8); 1355 // Bitcast %addr fron i8* to EltTy* 1356 Type *NewPtrType = 1357 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1358 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1359 unsigned VectorWidth = VecType->getNumElements(); 1360 1361 Value *UndefVal = UndefValue::get(VecType); 1362 1363 // The result vector 1364 Value *VResult = UndefVal; 1365 1366 if (isa<ConstantVector>(Mask)) { 1367 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1368 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1369 continue; 1370 Value *Gep = 1371 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1372 LoadInst* Load = Builder.CreateAlignedLoad(Gep, AlignVal); 1373 VResult = Builder.CreateInsertElement(VResult, Load, 1374 Builder.getInt32(Idx)); 1375 } 1376 Value *NewI = Builder.CreateSelect(Mask, VResult, Src0); 1377 CI->replaceAllUsesWith(NewI); 1378 CI->eraseFromParent(); 1379 return; 1380 } 1381 1382 PHINode *Phi = nullptr; 1383 Value *PrevPhi = UndefVal; 1384 1385 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1386 1387 // Fill the "else" block, created in the previous iteration 1388 // 1389 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1390 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1391 // %to_load = icmp eq i1 %mask_1, true 1392 // br i1 %to_load, label %cond.load, label %else 1393 // 1394 if (Idx > 0) { 1395 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1396 Phi->addIncoming(VResult, CondBlock); 1397 Phi->addIncoming(PrevPhi, PrevIfBlock); 1398 PrevPhi = Phi; 1399 VResult = Phi; 1400 } 1401 1402 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1403 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1404 ConstantInt::get(Predicate->getType(), 1)); 1405 1406 // Create "cond" block 1407 // 1408 // %EltAddr = getelementptr i32* %1, i32 0 1409 // %Elt = load i32* %EltAddr 1410 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1411 // 1412 CondBlock = IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.load"); 1413 Builder.SetInsertPoint(InsertPt); 1414 1415 Value *Gep = 1416 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1417 LoadInst *Load = Builder.CreateAlignedLoad(Gep, AlignVal); 1418 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx)); 1419 1420 // Create "else" block, fill it in the next iteration 1421 BasicBlock *NewIfBlock = 1422 CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); 1423 Builder.SetInsertPoint(InsertPt); 1424 Instruction *OldBr = IfBlock->getTerminator(); 1425 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1426 OldBr->eraseFromParent(); 1427 PrevIfBlock = IfBlock; 1428 IfBlock = NewIfBlock; 1429 } 1430 1431 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1432 Phi->addIncoming(VResult, CondBlock); 1433 Phi->addIncoming(PrevPhi, PrevIfBlock); 1434 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1435 CI->replaceAllUsesWith(NewI); 1436 CI->eraseFromParent(); 1437 } 1438 1439 // Translate a masked store intrinsic, like 1440 // void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align, 1441 // <16 x i1> %mask) 1442 // to a chain of basic blocks, that stores element one-by-one if 1443 // the appropriate mask bit is set 1444 // 1445 // %1 = bitcast i8* %addr to i32* 1446 // %2 = extractelement <16 x i1> %mask, i32 0 1447 // %3 = icmp eq i1 %2, true 1448 // br i1 %3, label %cond.store, label %else 1449 // 1450 // cond.store: ; preds = %0 1451 // %4 = extractelement <16 x i32> %val, i32 0 1452 // %5 = getelementptr i32* %1, i32 0 1453 // store i32 %4, i32* %5 1454 // br label %else 1455 // 1456 // else: ; preds = %0, %cond.store 1457 // %6 = extractelement <16 x i1> %mask, i32 1 1458 // %7 = icmp eq i1 %6, true 1459 // br i1 %7, label %cond.store1, label %else2 1460 // 1461 // cond.store1: ; preds = %else 1462 // %8 = extractelement <16 x i32> %val, i32 1 1463 // %9 = getelementptr i32* %1, i32 1 1464 // store i32 %8, i32* %9 1465 // br label %else2 1466 // . . . 1467 static void scalarizeMaskedStore(CallInst *CI) { 1468 Value *Src = CI->getArgOperand(0); 1469 Value *Ptr = CI->getArgOperand(1); 1470 Value *Alignment = CI->getArgOperand(2); 1471 Value *Mask = CI->getArgOperand(3); 1472 1473 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1474 VectorType *VecType = dyn_cast<VectorType>(Src->getType()); 1475 assert(VecType && "Unexpected data type in masked store intrinsic"); 1476 1477 Type *EltTy = VecType->getElementType(); 1478 1479 IRBuilder<> Builder(CI->getContext()); 1480 Instruction *InsertPt = CI; 1481 BasicBlock *IfBlock = CI->getParent(); 1482 Builder.SetInsertPoint(InsertPt); 1483 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1484 1485 // Short-cut if the mask is all-true. 1486 bool IsAllOnesMask = isa<Constant>(Mask) && 1487 cast<Constant>(Mask)->isAllOnesValue(); 1488 1489 if (IsAllOnesMask) { 1490 Builder.CreateAlignedStore(Src, Ptr, AlignVal); 1491 CI->eraseFromParent(); 1492 return; 1493 } 1494 1495 // Adjust alignment for the scalar instruction. 1496 AlignVal = std::max(AlignVal, VecType->getScalarSizeInBits()/8); 1497 // Bitcast %addr fron i8* to EltTy* 1498 Type *NewPtrType = 1499 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1500 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1501 unsigned VectorWidth = VecType->getNumElements(); 1502 1503 if (isa<ConstantVector>(Mask)) { 1504 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1505 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1506 continue; 1507 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1508 Value *Gep = 1509 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1510 Builder.CreateAlignedStore(OneElt, Gep, AlignVal); 1511 } 1512 CI->eraseFromParent(); 1513 return; 1514 } 1515 1516 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1517 1518 // Fill the "else" block, created in the previous iteration 1519 // 1520 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1521 // %to_store = icmp eq i1 %mask_1, true 1522 // br i1 %to_store, label %cond.store, label %else 1523 // 1524 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1525 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1526 ConstantInt::get(Predicate->getType(), 1)); 1527 1528 // Create "cond" block 1529 // 1530 // %OneElt = extractelement <16 x i32> %Src, i32 Idx 1531 // %EltAddr = getelementptr i32* %1, i32 0 1532 // %store i32 %OneElt, i32* %EltAddr 1533 // 1534 BasicBlock *CondBlock = 1535 IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.store"); 1536 Builder.SetInsertPoint(InsertPt); 1537 1538 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1539 Value *Gep = 1540 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1541 Builder.CreateAlignedStore(OneElt, Gep, AlignVal); 1542 1543 // Create "else" block, fill it in the next iteration 1544 BasicBlock *NewIfBlock = 1545 CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); 1546 Builder.SetInsertPoint(InsertPt); 1547 Instruction *OldBr = IfBlock->getTerminator(); 1548 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1549 OldBr->eraseFromParent(); 1550 IfBlock = NewIfBlock; 1551 } 1552 CI->eraseFromParent(); 1553 } 1554 1555 // Translate a masked gather intrinsic like 1556 // <16 x i32 > @llvm.masked.gather.v16i32( <16 x i32*> %Ptrs, i32 4, 1557 // <16 x i1> %Mask, <16 x i32> %Src) 1558 // to a chain of basic blocks, with loading element one-by-one if 1559 // the appropriate mask bit is set 1560 // 1561 // % Ptrs = getelementptr i32, i32* %base, <16 x i64> %ind 1562 // % Mask0 = extractelement <16 x i1> %Mask, i32 0 1563 // % ToLoad0 = icmp eq i1 % Mask0, true 1564 // br i1 % ToLoad0, label %cond.load, label %else 1565 // 1566 // cond.load: 1567 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0 1568 // % Load0 = load i32, i32* % Ptr0, align 4 1569 // % Res0 = insertelement <16 x i32> undef, i32 % Load0, i32 0 1570 // br label %else 1571 // 1572 // else: 1573 // %res.phi.else = phi <16 x i32>[% Res0, %cond.load], [undef, % 0] 1574 // % Mask1 = extractelement <16 x i1> %Mask, i32 1 1575 // % ToLoad1 = icmp eq i1 % Mask1, true 1576 // br i1 % ToLoad1, label %cond.load1, label %else2 1577 // 1578 // cond.load1: 1579 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1580 // % Load1 = load i32, i32* % Ptr1, align 4 1581 // % Res1 = insertelement <16 x i32> %res.phi.else, i32 % Load1, i32 1 1582 // br label %else2 1583 // . . . 1584 // % Result = select <16 x i1> %Mask, <16 x i32> %res.phi.select, <16 x i32> %Src 1585 // ret <16 x i32> %Result 1586 static void scalarizeMaskedGather(CallInst *CI) { 1587 Value *Ptrs = CI->getArgOperand(0); 1588 Value *Alignment = CI->getArgOperand(1); 1589 Value *Mask = CI->getArgOperand(2); 1590 Value *Src0 = CI->getArgOperand(3); 1591 1592 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1593 1594 assert(VecType && "Unexpected return type of masked load intrinsic"); 1595 1596 IRBuilder<> Builder(CI->getContext()); 1597 Instruction *InsertPt = CI; 1598 BasicBlock *IfBlock = CI->getParent(); 1599 BasicBlock *CondBlock = nullptr; 1600 BasicBlock *PrevIfBlock = CI->getParent(); 1601 Builder.SetInsertPoint(InsertPt); 1602 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1603 1604 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1605 1606 Value *UndefVal = UndefValue::get(VecType); 1607 1608 // The result vector 1609 Value *VResult = UndefVal; 1610 unsigned VectorWidth = VecType->getNumElements(); 1611 1612 // Shorten the way if the mask is a vector of constants. 1613 bool IsConstMask = isa<ConstantVector>(Mask); 1614 1615 if (IsConstMask) { 1616 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1617 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1618 continue; 1619 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1620 "Ptr" + Twine(Idx)); 1621 LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal, 1622 "Load" + Twine(Idx)); 1623 VResult = Builder.CreateInsertElement(VResult, Load, 1624 Builder.getInt32(Idx), 1625 "Res" + Twine(Idx)); 1626 } 1627 Value *NewI = Builder.CreateSelect(Mask, VResult, Src0); 1628 CI->replaceAllUsesWith(NewI); 1629 CI->eraseFromParent(); 1630 return; 1631 } 1632 1633 PHINode *Phi = nullptr; 1634 Value *PrevPhi = UndefVal; 1635 1636 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1637 1638 // Fill the "else" block, created in the previous iteration 1639 // 1640 // %Mask1 = extractelement <16 x i1> %Mask, i32 1 1641 // %ToLoad1 = icmp eq i1 %Mask1, true 1642 // br i1 %ToLoad1, label %cond.load, label %else 1643 // 1644 if (Idx > 0) { 1645 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1646 Phi->addIncoming(VResult, CondBlock); 1647 Phi->addIncoming(PrevPhi, PrevIfBlock); 1648 PrevPhi = Phi; 1649 VResult = Phi; 1650 } 1651 1652 Value *Predicate = Builder.CreateExtractElement(Mask, 1653 Builder.getInt32(Idx), 1654 "Mask" + Twine(Idx)); 1655 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1656 ConstantInt::get(Predicate->getType(), 1), 1657 "ToLoad" + Twine(Idx)); 1658 1659 // Create "cond" block 1660 // 1661 // %EltAddr = getelementptr i32* %1, i32 0 1662 // %Elt = load i32* %EltAddr 1663 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1664 // 1665 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load"); 1666 Builder.SetInsertPoint(InsertPt); 1667 1668 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1669 "Ptr" + Twine(Idx)); 1670 LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal, 1671 "Load" + Twine(Idx)); 1672 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx), 1673 "Res" + Twine(Idx)); 1674 1675 // Create "else" block, fill it in the next iteration 1676 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1677 Builder.SetInsertPoint(InsertPt); 1678 Instruction *OldBr = IfBlock->getTerminator(); 1679 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1680 OldBr->eraseFromParent(); 1681 PrevIfBlock = IfBlock; 1682 IfBlock = NewIfBlock; 1683 } 1684 1685 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1686 Phi->addIncoming(VResult, CondBlock); 1687 Phi->addIncoming(PrevPhi, PrevIfBlock); 1688 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1689 CI->replaceAllUsesWith(NewI); 1690 CI->eraseFromParent(); 1691 } 1692 1693 // Translate a masked scatter intrinsic, like 1694 // void @llvm.masked.scatter.v16i32(<16 x i32> %Src, <16 x i32*>* %Ptrs, i32 4, 1695 // <16 x i1> %Mask) 1696 // to a chain of basic blocks, that stores element one-by-one if 1697 // the appropriate mask bit is set. 1698 // 1699 // % Ptrs = getelementptr i32, i32* %ptr, <16 x i64> %ind 1700 // % Mask0 = extractelement <16 x i1> % Mask, i32 0 1701 // % ToStore0 = icmp eq i1 % Mask0, true 1702 // br i1 %ToStore0, label %cond.store, label %else 1703 // 1704 // cond.store: 1705 // % Elt0 = extractelement <16 x i32> %Src, i32 0 1706 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0 1707 // store i32 %Elt0, i32* % Ptr0, align 4 1708 // br label %else 1709 // 1710 // else: 1711 // % Mask1 = extractelement <16 x i1> % Mask, i32 1 1712 // % ToStore1 = icmp eq i1 % Mask1, true 1713 // br i1 % ToStore1, label %cond.store1, label %else2 1714 // 1715 // cond.store1: 1716 // % Elt1 = extractelement <16 x i32> %Src, i32 1 1717 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1718 // store i32 % Elt1, i32* % Ptr1, align 4 1719 // br label %else2 1720 // . . . 1721 static void scalarizeMaskedScatter(CallInst *CI) { 1722 Value *Src = CI->getArgOperand(0); 1723 Value *Ptrs = CI->getArgOperand(1); 1724 Value *Alignment = CI->getArgOperand(2); 1725 Value *Mask = CI->getArgOperand(3); 1726 1727 assert(isa<VectorType>(Src->getType()) && 1728 "Unexpected data type in masked scatter intrinsic"); 1729 assert(isa<VectorType>(Ptrs->getType()) && 1730 isa<PointerType>(Ptrs->getType()->getVectorElementType()) && 1731 "Vector of pointers is expected in masked scatter intrinsic"); 1732 1733 IRBuilder<> Builder(CI->getContext()); 1734 Instruction *InsertPt = CI; 1735 BasicBlock *IfBlock = CI->getParent(); 1736 Builder.SetInsertPoint(InsertPt); 1737 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1738 1739 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1740 unsigned VectorWidth = Src->getType()->getVectorNumElements(); 1741 1742 // Shorten the way if the mask is a vector of constants. 1743 bool IsConstMask = isa<ConstantVector>(Mask); 1744 1745 if (IsConstMask) { 1746 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1747 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1748 continue; 1749 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx), 1750 "Elt" + Twine(Idx)); 1751 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1752 "Ptr" + Twine(Idx)); 1753 Builder.CreateAlignedStore(OneElt, Ptr, AlignVal); 1754 } 1755 CI->eraseFromParent(); 1756 return; 1757 } 1758 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1759 // Fill the "else" block, created in the previous iteration 1760 // 1761 // % Mask1 = extractelement <16 x i1> % Mask, i32 Idx 1762 // % ToStore = icmp eq i1 % Mask1, true 1763 // br i1 % ToStore, label %cond.store, label %else 1764 // 1765 Value *Predicate = Builder.CreateExtractElement(Mask, 1766 Builder.getInt32(Idx), 1767 "Mask" + Twine(Idx)); 1768 Value *Cmp = 1769 Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1770 ConstantInt::get(Predicate->getType(), 1), 1771 "ToStore" + Twine(Idx)); 1772 1773 // Create "cond" block 1774 // 1775 // % Elt1 = extractelement <16 x i32> %Src, i32 1 1776 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1777 // %store i32 % Elt1, i32* % Ptr1 1778 // 1779 BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1780 Builder.SetInsertPoint(InsertPt); 1781 1782 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx), 1783 "Elt" + Twine(Idx)); 1784 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1785 "Ptr" + Twine(Idx)); 1786 Builder.CreateAlignedStore(OneElt, Ptr, AlignVal); 1787 1788 // Create "else" block, fill it in the next iteration 1789 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1790 Builder.SetInsertPoint(InsertPt); 1791 Instruction *OldBr = IfBlock->getTerminator(); 1792 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1793 OldBr->eraseFromParent(); 1794 IfBlock = NewIfBlock; 1795 } 1796 CI->eraseFromParent(); 1797 } 1798 1799 /// If counting leading or trailing zeros is an expensive operation and a zero 1800 /// input is defined, add a check for zero to avoid calling the intrinsic. 1801 /// 1802 /// We want to transform: 1803 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1804 /// 1805 /// into: 1806 /// entry: 1807 /// %cmpz = icmp eq i64 %A, 0 1808 /// br i1 %cmpz, label %cond.end, label %cond.false 1809 /// cond.false: 1810 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1811 /// br label %cond.end 1812 /// cond.end: 1813 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1814 /// 1815 /// If the transform is performed, return true and set ModifiedDT to true. 1816 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1817 const TargetLowering *TLI, 1818 const DataLayout *DL, 1819 bool &ModifiedDT) { 1820 if (!TLI || !DL) 1821 return false; 1822 1823 // If a zero input is undefined, it doesn't make sense to despeculate that. 1824 if (match(CountZeros->getOperand(1), m_One())) 1825 return false; 1826 1827 // If it's cheap to speculate, there's nothing to do. 1828 auto IntrinsicID = CountZeros->getIntrinsicID(); 1829 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1830 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1831 return false; 1832 1833 // Only handle legal scalar cases. Anything else requires too much work. 1834 Type *Ty = CountZeros->getType(); 1835 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1836 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1837 return false; 1838 1839 // The intrinsic will be sunk behind a compare against zero and branch. 1840 BasicBlock *StartBlock = CountZeros->getParent(); 1841 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1842 1843 // Create another block after the count zero intrinsic. A PHI will be added 1844 // in this block to select the result of the intrinsic or the bit-width 1845 // constant if the input to the intrinsic is zero. 1846 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1847 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1848 1849 // Set up a builder to create a compare, conditional branch, and PHI. 1850 IRBuilder<> Builder(CountZeros->getContext()); 1851 Builder.SetInsertPoint(StartBlock->getTerminator()); 1852 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1853 1854 // Replace the unconditional branch that was created by the first split with 1855 // a compare against zero and a conditional branch. 1856 Value *Zero = Constant::getNullValue(Ty); 1857 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1858 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1859 StartBlock->getTerminator()->eraseFromParent(); 1860 1861 // Create a PHI in the end block to select either the output of the intrinsic 1862 // or the bit width of the operand. 1863 Builder.SetInsertPoint(&EndBlock->front()); 1864 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1865 CountZeros->replaceAllUsesWith(PN); 1866 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1867 PN->addIncoming(BitWidth, StartBlock); 1868 PN->addIncoming(CountZeros, CallBlock); 1869 1870 // We are explicitly handling the zero case, so we can set the intrinsic's 1871 // undefined zero argument to 'true'. This will also prevent reprocessing the 1872 // intrinsic; we only despeculate when a zero input is defined. 1873 CountZeros->setArgOperand(1, Builder.getTrue()); 1874 ModifiedDT = true; 1875 return true; 1876 } 1877 1878 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool& ModifiedDT) { 1879 BasicBlock *BB = CI->getParent(); 1880 1881 // Lower inline assembly if we can. 1882 // If we found an inline asm expession, and if the target knows how to 1883 // lower it to normal LLVM code, do so now. 1884 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1885 if (TLI->ExpandInlineAsm(CI)) { 1886 // Avoid invalidating the iterator. 1887 CurInstIterator = BB->begin(); 1888 // Avoid processing instructions out of order, which could cause 1889 // reuse before a value is defined. 1890 SunkAddrs.clear(); 1891 return true; 1892 } 1893 // Sink address computing for memory operands into the block. 1894 if (optimizeInlineAsmInst(CI)) 1895 return true; 1896 } 1897 1898 // Align the pointer arguments to this call if the target thinks it's a good 1899 // idea 1900 unsigned MinSize, PrefAlign; 1901 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1902 for (auto &Arg : CI->arg_operands()) { 1903 // We want to align both objects whose address is used directly and 1904 // objects whose address is used in casts and GEPs, though it only makes 1905 // sense for GEPs if the offset is a multiple of the desired alignment and 1906 // if size - offset meets the size threshold. 1907 if (!Arg->getType()->isPointerTy()) 1908 continue; 1909 APInt Offset(DL->getPointerSizeInBits( 1910 cast<PointerType>(Arg->getType())->getAddressSpace()), 1911 0); 1912 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1913 uint64_t Offset2 = Offset.getLimitedValue(); 1914 if ((Offset2 & (PrefAlign-1)) != 0) 1915 continue; 1916 AllocaInst *AI; 1917 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1918 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1919 AI->setAlignment(PrefAlign); 1920 // Global variables can only be aligned if they are defined in this 1921 // object (i.e. they are uniquely initialized in this object), and 1922 // over-aligning global variables that have an explicit section is 1923 // forbidden. 1924 GlobalVariable *GV; 1925 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1926 GV->getPointerAlignment(*DL) < PrefAlign && 1927 DL->getTypeAllocSize(GV->getValueType()) >= 1928 MinSize + Offset2) 1929 GV->setAlignment(PrefAlign); 1930 } 1931 // If this is a memcpy (or similar) then we may be able to improve the 1932 // alignment 1933 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1934 unsigned Align = getKnownAlignment(MI->getDest(), *DL); 1935 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 1936 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL)); 1937 if (Align > MI->getAlignment()) 1938 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align)); 1939 } 1940 } 1941 1942 // If we have a cold call site, try to sink addressing computation into the 1943 // cold block. This interacts with our handling for loads and stores to 1944 // ensure that we can fold all uses of a potential addressing computation 1945 // into their uses. TODO: generalize this to work over profiling data 1946 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1947 for (auto &Arg : CI->arg_operands()) { 1948 if (!Arg->getType()->isPointerTy()) 1949 continue; 1950 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1951 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1952 } 1953 1954 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1955 if (II) { 1956 switch (II->getIntrinsicID()) { 1957 default: break; 1958 case Intrinsic::objectsize: { 1959 // Lower all uses of llvm.objectsize.* 1960 ConstantInt *RetVal = 1961 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 1962 // Substituting this can cause recursive simplifications, which can 1963 // invalidate our iterator. Use a WeakVH to hold onto it in case this 1964 // happens. 1965 Value *CurValue = &*CurInstIterator; 1966 WeakVH IterHandle(CurValue); 1967 1968 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1969 1970 // If the iterator instruction was recursively deleted, start over at the 1971 // start of the block. 1972 if (IterHandle != CurValue) { 1973 CurInstIterator = BB->begin(); 1974 SunkAddrs.clear(); 1975 } 1976 return true; 1977 } 1978 case Intrinsic::masked_load: { 1979 // Scalarize unsupported vector masked load 1980 if (!TTI->isLegalMaskedLoad(CI->getType())) { 1981 scalarizeMaskedLoad(CI); 1982 ModifiedDT = true; 1983 return true; 1984 } 1985 return false; 1986 } 1987 case Intrinsic::masked_store: { 1988 if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType())) { 1989 scalarizeMaskedStore(CI); 1990 ModifiedDT = true; 1991 return true; 1992 } 1993 return false; 1994 } 1995 case Intrinsic::masked_gather: { 1996 if (!TTI->isLegalMaskedGather(CI->getType())) { 1997 scalarizeMaskedGather(CI); 1998 ModifiedDT = true; 1999 return true; 2000 } 2001 return false; 2002 } 2003 case Intrinsic::masked_scatter: { 2004 if (!TTI->isLegalMaskedScatter(CI->getArgOperand(0)->getType())) { 2005 scalarizeMaskedScatter(CI); 2006 ModifiedDT = true; 2007 return true; 2008 } 2009 return false; 2010 } 2011 case Intrinsic::aarch64_stlxr: 2012 case Intrinsic::aarch64_stxr: { 2013 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2014 if (!ExtVal || !ExtVal->hasOneUse() || 2015 ExtVal->getParent() == CI->getParent()) 2016 return false; 2017 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2018 ExtVal->moveBefore(CI); 2019 // Mark this instruction as "inserted by CGP", so that other 2020 // optimizations don't touch it. 2021 InsertedInsts.insert(ExtVal); 2022 return true; 2023 } 2024 case Intrinsic::invariant_group_barrier: 2025 II->replaceAllUsesWith(II->getArgOperand(0)); 2026 II->eraseFromParent(); 2027 return true; 2028 2029 case Intrinsic::cttz: 2030 case Intrinsic::ctlz: 2031 // If counting zeros is expensive, try to avoid it. 2032 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2033 } 2034 2035 if (TLI) { 2036 // Unknown address space. 2037 // TODO: Target hook to pick which address space the intrinsic cares 2038 // about? 2039 unsigned AddrSpace = ~0u; 2040 SmallVector<Value*, 2> PtrOps; 2041 Type *AccessTy; 2042 if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy, AddrSpace)) 2043 while (!PtrOps.empty()) 2044 if (optimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy, AddrSpace)) 2045 return true; 2046 } 2047 } 2048 2049 // From here on out we're working with named functions. 2050 if (!CI->getCalledFunction()) return false; 2051 2052 // Lower all default uses of _chk calls. This is very similar 2053 // to what InstCombineCalls does, but here we are only lowering calls 2054 // to fortified library functions (e.g. __memcpy_chk) that have the default 2055 // "don't know" as the objectsize. Anything else should be left alone. 2056 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2057 if (Value *V = Simplifier.optimizeCall(CI)) { 2058 CI->replaceAllUsesWith(V); 2059 CI->eraseFromParent(); 2060 return true; 2061 } 2062 return false; 2063 } 2064 2065 /// Look for opportunities to duplicate return instructions to the predecessor 2066 /// to enable tail call optimizations. The case it is currently looking for is: 2067 /// @code 2068 /// bb0: 2069 /// %tmp0 = tail call i32 @f0() 2070 /// br label %return 2071 /// bb1: 2072 /// %tmp1 = tail call i32 @f1() 2073 /// br label %return 2074 /// bb2: 2075 /// %tmp2 = tail call i32 @f2() 2076 /// br label %return 2077 /// return: 2078 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2079 /// ret i32 %retval 2080 /// @endcode 2081 /// 2082 /// => 2083 /// 2084 /// @code 2085 /// bb0: 2086 /// %tmp0 = tail call i32 @f0() 2087 /// ret i32 %tmp0 2088 /// bb1: 2089 /// %tmp1 = tail call i32 @f1() 2090 /// ret i32 %tmp1 2091 /// bb2: 2092 /// %tmp2 = tail call i32 @f2() 2093 /// ret i32 %tmp2 2094 /// @endcode 2095 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 2096 if (!TLI) 2097 return false; 2098 2099 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2100 if (!RetI) 2101 return false; 2102 2103 PHINode *PN = nullptr; 2104 BitCastInst *BCI = nullptr; 2105 Value *V = RetI->getReturnValue(); 2106 if (V) { 2107 BCI = dyn_cast<BitCastInst>(V); 2108 if (BCI) 2109 V = BCI->getOperand(0); 2110 2111 PN = dyn_cast<PHINode>(V); 2112 if (!PN) 2113 return false; 2114 } 2115 2116 if (PN && PN->getParent() != BB) 2117 return false; 2118 2119 // Make sure there are no instructions between the PHI and return, or that the 2120 // return is the first instruction in the block. 2121 if (PN) { 2122 BasicBlock::iterator BI = BB->begin(); 2123 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 2124 if (&*BI == BCI) 2125 // Also skip over the bitcast. 2126 ++BI; 2127 if (&*BI != RetI) 2128 return false; 2129 } else { 2130 BasicBlock::iterator BI = BB->begin(); 2131 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2132 if (&*BI != RetI) 2133 return false; 2134 } 2135 2136 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2137 /// call. 2138 const Function *F = BB->getParent(); 2139 SmallVector<CallInst*, 4> TailCalls; 2140 if (PN) { 2141 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2142 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 2143 // Make sure the phi value is indeed produced by the tail call. 2144 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 2145 TLI->mayBeEmittedAsTailCall(CI) && 2146 attributesPermitTailCall(F, CI, RetI, *TLI)) 2147 TailCalls.push_back(CI); 2148 } 2149 } else { 2150 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2151 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2152 if (!VisitedBBs.insert(*PI).second) 2153 continue; 2154 2155 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2156 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2157 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2158 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2159 if (RI == RE) 2160 continue; 2161 2162 CallInst *CI = dyn_cast<CallInst>(&*RI); 2163 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2164 attributesPermitTailCall(F, CI, RetI, *TLI)) 2165 TailCalls.push_back(CI); 2166 } 2167 } 2168 2169 bool Changed = false; 2170 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 2171 CallInst *CI = TailCalls[i]; 2172 CallSite CS(CI); 2173 2174 // Conservatively require the attributes of the call to match those of the 2175 // return. Ignore noalias because it doesn't affect the call sequence. 2176 AttributeSet CalleeAttrs = CS.getAttributes(); 2177 if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 2178 removeAttribute(Attribute::NoAlias) != 2179 AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 2180 removeAttribute(Attribute::NoAlias)) 2181 continue; 2182 2183 // Make sure the call instruction is followed by an unconditional branch to 2184 // the return block. 2185 BasicBlock *CallBB = CI->getParent(); 2186 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 2187 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2188 continue; 2189 2190 // Duplicate the return into CallBB. 2191 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 2192 ModifiedDT = Changed = true; 2193 ++NumRetsDup; 2194 } 2195 2196 // If we eliminated all predecessors of the block, delete the block now. 2197 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2198 BB->eraseFromParent(); 2199 2200 return Changed; 2201 } 2202 2203 //===----------------------------------------------------------------------===// 2204 // Memory Optimization 2205 //===----------------------------------------------------------------------===// 2206 2207 namespace { 2208 2209 /// This is an extended version of TargetLowering::AddrMode 2210 /// which holds actual Value*'s for register values. 2211 struct ExtAddrMode : public TargetLowering::AddrMode { 2212 Value *BaseReg; 2213 Value *ScaledReg; 2214 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} 2215 void print(raw_ostream &OS) const; 2216 void dump() const; 2217 2218 bool operator==(const ExtAddrMode& O) const { 2219 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && 2220 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && 2221 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); 2222 } 2223 }; 2224 2225 #ifndef NDEBUG 2226 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2227 AM.print(OS); 2228 return OS; 2229 } 2230 #endif 2231 2232 void ExtAddrMode::print(raw_ostream &OS) const { 2233 bool NeedPlus = false; 2234 OS << "["; 2235 if (BaseGV) { 2236 OS << (NeedPlus ? " + " : "") 2237 << "GV:"; 2238 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2239 NeedPlus = true; 2240 } 2241 2242 if (BaseOffs) { 2243 OS << (NeedPlus ? " + " : "") 2244 << BaseOffs; 2245 NeedPlus = true; 2246 } 2247 2248 if (BaseReg) { 2249 OS << (NeedPlus ? " + " : "") 2250 << "Base:"; 2251 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2252 NeedPlus = true; 2253 } 2254 if (Scale) { 2255 OS << (NeedPlus ? " + " : "") 2256 << Scale << "*"; 2257 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2258 } 2259 2260 OS << ']'; 2261 } 2262 2263 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2264 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2265 print(dbgs()); 2266 dbgs() << '\n'; 2267 } 2268 #endif 2269 2270 /// \brief This class provides transaction based operation on the IR. 2271 /// Every change made through this class is recorded in the internal state and 2272 /// can be undone (rollback) until commit is called. 2273 class TypePromotionTransaction { 2274 2275 /// \brief This represents the common interface of the individual transaction. 2276 /// Each class implements the logic for doing one specific modification on 2277 /// the IR via the TypePromotionTransaction. 2278 class TypePromotionAction { 2279 protected: 2280 /// The Instruction modified. 2281 Instruction *Inst; 2282 2283 public: 2284 /// \brief Constructor of the action. 2285 /// The constructor performs the related action on the IR. 2286 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2287 2288 virtual ~TypePromotionAction() {} 2289 2290 /// \brief Undo the modification done by this action. 2291 /// When this method is called, the IR must be in the same state as it was 2292 /// before this action was applied. 2293 /// \pre Undoing the action works if and only if the IR is in the exact same 2294 /// state as it was directly after this action was applied. 2295 virtual void undo() = 0; 2296 2297 /// \brief Advocate every change made by this action. 2298 /// When the results on the IR of the action are to be kept, it is important 2299 /// to call this function, otherwise hidden information may be kept forever. 2300 virtual void commit() { 2301 // Nothing to be done, this action is not doing anything. 2302 } 2303 }; 2304 2305 /// \brief Utility to remember the position of an instruction. 2306 class InsertionHandler { 2307 /// Position of an instruction. 2308 /// Either an instruction: 2309 /// - Is the first in a basic block: BB is used. 2310 /// - Has a previous instructon: PrevInst is used. 2311 union { 2312 Instruction *PrevInst; 2313 BasicBlock *BB; 2314 } Point; 2315 /// Remember whether or not the instruction had a previous instruction. 2316 bool HasPrevInstruction; 2317 2318 public: 2319 /// \brief Record the position of \p Inst. 2320 InsertionHandler(Instruction *Inst) { 2321 BasicBlock::iterator It = Inst->getIterator(); 2322 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2323 if (HasPrevInstruction) 2324 Point.PrevInst = &*--It; 2325 else 2326 Point.BB = Inst->getParent(); 2327 } 2328 2329 /// \brief Insert \p Inst at the recorded position. 2330 void insert(Instruction *Inst) { 2331 if (HasPrevInstruction) { 2332 if (Inst->getParent()) 2333 Inst->removeFromParent(); 2334 Inst->insertAfter(Point.PrevInst); 2335 } else { 2336 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2337 if (Inst->getParent()) 2338 Inst->moveBefore(Position); 2339 else 2340 Inst->insertBefore(Position); 2341 } 2342 } 2343 }; 2344 2345 /// \brief Move an instruction before another. 2346 class InstructionMoveBefore : public TypePromotionAction { 2347 /// Original position of the instruction. 2348 InsertionHandler Position; 2349 2350 public: 2351 /// \brief Move \p Inst before \p Before. 2352 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2353 : TypePromotionAction(Inst), Position(Inst) { 2354 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 2355 Inst->moveBefore(Before); 2356 } 2357 2358 /// \brief Move the instruction back to its original position. 2359 void undo() override { 2360 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2361 Position.insert(Inst); 2362 } 2363 }; 2364 2365 /// \brief Set the operand of an instruction with a new value. 2366 class OperandSetter : public TypePromotionAction { 2367 /// Original operand of the instruction. 2368 Value *Origin; 2369 /// Index of the modified instruction. 2370 unsigned Idx; 2371 2372 public: 2373 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 2374 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2375 : TypePromotionAction(Inst), Idx(Idx) { 2376 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2377 << "for:" << *Inst << "\n" 2378 << "with:" << *NewVal << "\n"); 2379 Origin = Inst->getOperand(Idx); 2380 Inst->setOperand(Idx, NewVal); 2381 } 2382 2383 /// \brief Restore the original value of the instruction. 2384 void undo() override { 2385 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2386 << "for: " << *Inst << "\n" 2387 << "with: " << *Origin << "\n"); 2388 Inst->setOperand(Idx, Origin); 2389 } 2390 }; 2391 2392 /// \brief Hide the operands of an instruction. 2393 /// Do as if this instruction was not using any of its operands. 2394 class OperandsHider : public TypePromotionAction { 2395 /// The list of original operands. 2396 SmallVector<Value *, 4> OriginalValues; 2397 2398 public: 2399 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 2400 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2401 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2402 unsigned NumOpnds = Inst->getNumOperands(); 2403 OriginalValues.reserve(NumOpnds); 2404 for (unsigned It = 0; It < NumOpnds; ++It) { 2405 // Save the current operand. 2406 Value *Val = Inst->getOperand(It); 2407 OriginalValues.push_back(Val); 2408 // Set a dummy one. 2409 // We could use OperandSetter here, but that would imply an overhead 2410 // that we are not willing to pay. 2411 Inst->setOperand(It, UndefValue::get(Val->getType())); 2412 } 2413 } 2414 2415 /// \brief Restore the original list of uses. 2416 void undo() override { 2417 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2418 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2419 Inst->setOperand(It, OriginalValues[It]); 2420 } 2421 }; 2422 2423 /// \brief Build a truncate instruction. 2424 class TruncBuilder : public TypePromotionAction { 2425 Value *Val; 2426 public: 2427 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 2428 /// result. 2429 /// trunc Opnd to Ty. 2430 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2431 IRBuilder<> Builder(Opnd); 2432 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2433 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2434 } 2435 2436 /// \brief Get the built value. 2437 Value *getBuiltValue() { return Val; } 2438 2439 /// \brief Remove the built instruction. 2440 void undo() override { 2441 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2442 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2443 IVal->eraseFromParent(); 2444 } 2445 }; 2446 2447 /// \brief Build a sign extension instruction. 2448 class SExtBuilder : public TypePromotionAction { 2449 Value *Val; 2450 public: 2451 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 2452 /// result. 2453 /// sext Opnd to Ty. 2454 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2455 : TypePromotionAction(InsertPt) { 2456 IRBuilder<> Builder(InsertPt); 2457 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2458 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2459 } 2460 2461 /// \brief Get the built value. 2462 Value *getBuiltValue() { return Val; } 2463 2464 /// \brief Remove the built instruction. 2465 void undo() override { 2466 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2467 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2468 IVal->eraseFromParent(); 2469 } 2470 }; 2471 2472 /// \brief Build a zero extension instruction. 2473 class ZExtBuilder : public TypePromotionAction { 2474 Value *Val; 2475 public: 2476 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 2477 /// result. 2478 /// zext Opnd to Ty. 2479 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2480 : TypePromotionAction(InsertPt) { 2481 IRBuilder<> Builder(InsertPt); 2482 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2483 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2484 } 2485 2486 /// \brief Get the built value. 2487 Value *getBuiltValue() { return Val; } 2488 2489 /// \brief Remove the built instruction. 2490 void undo() override { 2491 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2492 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2493 IVal->eraseFromParent(); 2494 } 2495 }; 2496 2497 /// \brief Mutate an instruction to another type. 2498 class TypeMutator : public TypePromotionAction { 2499 /// Record the original type. 2500 Type *OrigTy; 2501 2502 public: 2503 /// \brief Mutate the type of \p Inst into \p NewTy. 2504 TypeMutator(Instruction *Inst, Type *NewTy) 2505 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2506 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2507 << "\n"); 2508 Inst->mutateType(NewTy); 2509 } 2510 2511 /// \brief Mutate the instruction back to its original type. 2512 void undo() override { 2513 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2514 << "\n"); 2515 Inst->mutateType(OrigTy); 2516 } 2517 }; 2518 2519 /// \brief Replace the uses of an instruction by another instruction. 2520 class UsesReplacer : public TypePromotionAction { 2521 /// Helper structure to keep track of the replaced uses. 2522 struct InstructionAndIdx { 2523 /// The instruction using the instruction. 2524 Instruction *Inst; 2525 /// The index where this instruction is used for Inst. 2526 unsigned Idx; 2527 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2528 : Inst(Inst), Idx(Idx) {} 2529 }; 2530 2531 /// Keep track of the original uses (pair Instruction, Index). 2532 SmallVector<InstructionAndIdx, 4> OriginalUses; 2533 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator; 2534 2535 public: 2536 /// \brief Replace all the use of \p Inst by \p New. 2537 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2538 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2539 << "\n"); 2540 // Record the original uses. 2541 for (Use &U : Inst->uses()) { 2542 Instruction *UserI = cast<Instruction>(U.getUser()); 2543 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2544 } 2545 // Now, we can replace the uses. 2546 Inst->replaceAllUsesWith(New); 2547 } 2548 2549 /// \brief Reassign the original uses of Inst to Inst. 2550 void undo() override { 2551 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2552 for (use_iterator UseIt = OriginalUses.begin(), 2553 EndIt = OriginalUses.end(); 2554 UseIt != EndIt; ++UseIt) { 2555 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2556 } 2557 } 2558 }; 2559 2560 /// \brief Remove an instruction from the IR. 2561 class InstructionRemover : public TypePromotionAction { 2562 /// Original position of the instruction. 2563 InsertionHandler Inserter; 2564 /// Helper structure to hide all the link to the instruction. In other 2565 /// words, this helps to do as if the instruction was removed. 2566 OperandsHider Hider; 2567 /// Keep track of the uses replaced, if any. 2568 UsesReplacer *Replacer; 2569 2570 public: 2571 /// \brief Remove all reference of \p Inst and optinally replace all its 2572 /// uses with New. 2573 /// \pre If !Inst->use_empty(), then New != nullptr 2574 InstructionRemover(Instruction *Inst, Value *New = nullptr) 2575 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2576 Replacer(nullptr) { 2577 if (New) 2578 Replacer = new UsesReplacer(Inst, New); 2579 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2580 Inst->removeFromParent(); 2581 } 2582 2583 ~InstructionRemover() override { delete Replacer; } 2584 2585 /// \brief Really remove the instruction. 2586 void commit() override { delete Inst; } 2587 2588 /// \brief Resurrect the instruction and reassign it to the proper uses if 2589 /// new value was provided when build this action. 2590 void undo() override { 2591 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2592 Inserter.insert(Inst); 2593 if (Replacer) 2594 Replacer->undo(); 2595 Hider.undo(); 2596 } 2597 }; 2598 2599 public: 2600 /// Restoration point. 2601 /// The restoration point is a pointer to an action instead of an iterator 2602 /// because the iterator may be invalidated but not the pointer. 2603 typedef const TypePromotionAction *ConstRestorationPt; 2604 /// Advocate every changes made in that transaction. 2605 void commit(); 2606 /// Undo all the changes made after the given point. 2607 void rollback(ConstRestorationPt Point); 2608 /// Get the current restoration point. 2609 ConstRestorationPt getRestorationPoint() const; 2610 2611 /// \name API for IR modification with state keeping to support rollback. 2612 /// @{ 2613 /// Same as Instruction::setOperand. 2614 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2615 /// Same as Instruction::eraseFromParent. 2616 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2617 /// Same as Value::replaceAllUsesWith. 2618 void replaceAllUsesWith(Instruction *Inst, Value *New); 2619 /// Same as Value::mutateType. 2620 void mutateType(Instruction *Inst, Type *NewTy); 2621 /// Same as IRBuilder::createTrunc. 2622 Value *createTrunc(Instruction *Opnd, Type *Ty); 2623 /// Same as IRBuilder::createSExt. 2624 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2625 /// Same as IRBuilder::createZExt. 2626 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2627 /// Same as Instruction::moveBefore. 2628 void moveBefore(Instruction *Inst, Instruction *Before); 2629 /// @} 2630 2631 private: 2632 /// The ordered list of actions made so far. 2633 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2634 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt; 2635 }; 2636 2637 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2638 Value *NewVal) { 2639 Actions.push_back( 2640 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal)); 2641 } 2642 2643 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2644 Value *NewVal) { 2645 Actions.push_back( 2646 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal)); 2647 } 2648 2649 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2650 Value *New) { 2651 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2652 } 2653 2654 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2655 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2656 } 2657 2658 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2659 Type *Ty) { 2660 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2661 Value *Val = Ptr->getBuiltValue(); 2662 Actions.push_back(std::move(Ptr)); 2663 return Val; 2664 } 2665 2666 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2667 Value *Opnd, Type *Ty) { 2668 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2669 Value *Val = Ptr->getBuiltValue(); 2670 Actions.push_back(std::move(Ptr)); 2671 return Val; 2672 } 2673 2674 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2675 Value *Opnd, Type *Ty) { 2676 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2677 Value *Val = Ptr->getBuiltValue(); 2678 Actions.push_back(std::move(Ptr)); 2679 return Val; 2680 } 2681 2682 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2683 Instruction *Before) { 2684 Actions.push_back( 2685 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before)); 2686 } 2687 2688 TypePromotionTransaction::ConstRestorationPt 2689 TypePromotionTransaction::getRestorationPoint() const { 2690 return !Actions.empty() ? Actions.back().get() : nullptr; 2691 } 2692 2693 void TypePromotionTransaction::commit() { 2694 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2695 ++It) 2696 (*It)->commit(); 2697 Actions.clear(); 2698 } 2699 2700 void TypePromotionTransaction::rollback( 2701 TypePromotionTransaction::ConstRestorationPt Point) { 2702 while (!Actions.empty() && Point != Actions.back().get()) { 2703 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2704 Curr->undo(); 2705 } 2706 } 2707 2708 /// \brief A helper class for matching addressing modes. 2709 /// 2710 /// This encapsulates the logic for matching the target-legal addressing modes. 2711 class AddressingModeMatcher { 2712 SmallVectorImpl<Instruction*> &AddrModeInsts; 2713 const TargetLowering &TLI; 2714 const TargetRegisterInfo &TRI; 2715 const DataLayout &DL; 2716 2717 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2718 /// the memory instruction that we're computing this address for. 2719 Type *AccessTy; 2720 unsigned AddrSpace; 2721 Instruction *MemoryInst; 2722 2723 /// This is the addressing mode that we're building up. This is 2724 /// part of the return value of this addressing mode matching stuff. 2725 ExtAddrMode &AddrMode; 2726 2727 /// The instructions inserted by other CodeGenPrepare optimizations. 2728 const SetOfInstrs &InsertedInsts; 2729 /// A map from the instructions to their type before promotion. 2730 InstrToOrigTy &PromotedInsts; 2731 /// The ongoing transaction where every action should be registered. 2732 TypePromotionTransaction &TPT; 2733 2734 /// This is set to true when we should not do profitability checks. 2735 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2736 bool IgnoreProfitability; 2737 2738 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, 2739 const TargetLowering &TLI, 2740 const TargetRegisterInfo &TRI, 2741 Type *AT, unsigned AS, 2742 Instruction *MI, ExtAddrMode &AM, 2743 const SetOfInstrs &InsertedInsts, 2744 InstrToOrigTy &PromotedInsts, 2745 TypePromotionTransaction &TPT) 2746 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2747 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2748 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2749 PromotedInsts(PromotedInsts), TPT(TPT) { 2750 IgnoreProfitability = false; 2751 } 2752 public: 2753 2754 /// Find the maximal addressing mode that a load/store of V can fold, 2755 /// give an access type of AccessTy. This returns a list of involved 2756 /// instructions in AddrModeInsts. 2757 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2758 /// optimizations. 2759 /// \p PromotedInsts maps the instructions to their type before promotion. 2760 /// \p The ongoing transaction where every action should be registered. 2761 static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, 2762 Instruction *MemoryInst, 2763 SmallVectorImpl<Instruction*> &AddrModeInsts, 2764 const TargetLowering &TLI, 2765 const TargetRegisterInfo &TRI, 2766 const SetOfInstrs &InsertedInsts, 2767 InstrToOrigTy &PromotedInsts, 2768 TypePromotionTransaction &TPT) { 2769 ExtAddrMode Result; 2770 2771 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, 2772 AccessTy, AS, 2773 MemoryInst, Result, InsertedInsts, 2774 PromotedInsts, TPT).matchAddr(V, 0); 2775 (void)Success; assert(Success && "Couldn't select *anything*?"); 2776 return Result; 2777 } 2778 private: 2779 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2780 bool matchAddr(Value *V, unsigned Depth); 2781 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 2782 bool *MovedAway = nullptr); 2783 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2784 ExtAddrMode &AMBefore, 2785 ExtAddrMode &AMAfter); 2786 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2787 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2788 Value *PromotedOperand) const; 2789 }; 2790 2791 /// Try adding ScaleReg*Scale to the current addressing mode. 2792 /// Return true and update AddrMode if this addr mode is legal for the target, 2793 /// false if not. 2794 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 2795 unsigned Depth) { 2796 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 2797 // mode. Just process that directly. 2798 if (Scale == 1) 2799 return matchAddr(ScaleReg, Depth); 2800 2801 // If the scale is 0, it takes nothing to add this. 2802 if (Scale == 0) 2803 return true; 2804 2805 // If we already have a scale of this value, we can add to it, otherwise, we 2806 // need an available scale field. 2807 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 2808 return false; 2809 2810 ExtAddrMode TestAddrMode = AddrMode; 2811 2812 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 2813 // [A+B + A*7] -> [B+A*8]. 2814 TestAddrMode.Scale += Scale; 2815 TestAddrMode.ScaledReg = ScaleReg; 2816 2817 // If the new address isn't legal, bail out. 2818 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 2819 return false; 2820 2821 // It was legal, so commit it. 2822 AddrMode = TestAddrMode; 2823 2824 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 2825 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 2826 // X*Scale + C*Scale to addr mode. 2827 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 2828 if (isa<Instruction>(ScaleReg) && // not a constant expr. 2829 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 2830 TestAddrMode.ScaledReg = AddLHS; 2831 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 2832 2833 // If this addressing mode is legal, commit it and remember that we folded 2834 // this instruction. 2835 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 2836 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 2837 AddrMode = TestAddrMode; 2838 return true; 2839 } 2840 } 2841 2842 // Otherwise, not (x+c)*scale, just return what we have. 2843 return true; 2844 } 2845 2846 /// This is a little filter, which returns true if an addressing computation 2847 /// involving I might be folded into a load/store accessing it. 2848 /// This doesn't need to be perfect, but needs to accept at least 2849 /// the set of instructions that MatchOperationAddr can. 2850 static bool MightBeFoldableInst(Instruction *I) { 2851 switch (I->getOpcode()) { 2852 case Instruction::BitCast: 2853 case Instruction::AddrSpaceCast: 2854 // Don't touch identity bitcasts. 2855 if (I->getType() == I->getOperand(0)->getType()) 2856 return false; 2857 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 2858 case Instruction::PtrToInt: 2859 // PtrToInt is always a noop, as we know that the int type is pointer sized. 2860 return true; 2861 case Instruction::IntToPtr: 2862 // We know the input is intptr_t, so this is foldable. 2863 return true; 2864 case Instruction::Add: 2865 return true; 2866 case Instruction::Mul: 2867 case Instruction::Shl: 2868 // Can only handle X*C and X << C. 2869 return isa<ConstantInt>(I->getOperand(1)); 2870 case Instruction::GetElementPtr: 2871 return true; 2872 default: 2873 return false; 2874 } 2875 } 2876 2877 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 2878 /// \note \p Val is assumed to be the product of some type promotion. 2879 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 2880 /// to be legal, as the non-promoted value would have had the same state. 2881 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 2882 const DataLayout &DL, Value *Val) { 2883 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 2884 if (!PromotedInst) 2885 return false; 2886 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 2887 // If the ISDOpcode is undefined, it was undefined before the promotion. 2888 if (!ISDOpcode) 2889 return true; 2890 // Otherwise, check if the promoted instruction is legal or not. 2891 return TLI.isOperationLegalOrCustom( 2892 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 2893 } 2894 2895 /// \brief Hepler class to perform type promotion. 2896 class TypePromotionHelper { 2897 /// \brief Utility function to check whether or not a sign or zero extension 2898 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 2899 /// either using the operands of \p Inst or promoting \p Inst. 2900 /// The type of the extension is defined by \p IsSExt. 2901 /// In other words, check if: 2902 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 2903 /// #1 Promotion applies: 2904 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 2905 /// #2 Operand reuses: 2906 /// ext opnd1 to ConsideredExtType. 2907 /// \p PromotedInsts maps the instructions to their type before promotion. 2908 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 2909 const InstrToOrigTy &PromotedInsts, bool IsSExt); 2910 2911 /// \brief Utility function to determine if \p OpIdx should be promoted when 2912 /// promoting \p Inst. 2913 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 2914 return !(isa<SelectInst>(Inst) && OpIdx == 0); 2915 } 2916 2917 /// \brief Utility function to promote the operand of \p Ext when this 2918 /// operand is a promotable trunc or sext or zext. 2919 /// \p PromotedInsts maps the instructions to their type before promotion. 2920 /// \p CreatedInstsCost[out] contains the cost of all instructions 2921 /// created to promote the operand of Ext. 2922 /// Newly added extensions are inserted in \p Exts. 2923 /// Newly added truncates are inserted in \p Truncs. 2924 /// Should never be called directly. 2925 /// \return The promoted value which is used instead of Ext. 2926 static Value *promoteOperandForTruncAndAnyExt( 2927 Instruction *Ext, TypePromotionTransaction &TPT, 2928 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2929 SmallVectorImpl<Instruction *> *Exts, 2930 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 2931 2932 /// \brief Utility function to promote the operand of \p Ext when this 2933 /// operand is promotable and is not a supported trunc or sext. 2934 /// \p PromotedInsts maps the instructions to their type before promotion. 2935 /// \p CreatedInstsCost[out] contains the cost of all the instructions 2936 /// created to promote the operand of Ext. 2937 /// Newly added extensions are inserted in \p Exts. 2938 /// Newly added truncates are inserted in \p Truncs. 2939 /// Should never be called directly. 2940 /// \return The promoted value which is used instead of Ext. 2941 static Value *promoteOperandForOther(Instruction *Ext, 2942 TypePromotionTransaction &TPT, 2943 InstrToOrigTy &PromotedInsts, 2944 unsigned &CreatedInstsCost, 2945 SmallVectorImpl<Instruction *> *Exts, 2946 SmallVectorImpl<Instruction *> *Truncs, 2947 const TargetLowering &TLI, bool IsSExt); 2948 2949 /// \see promoteOperandForOther. 2950 static Value *signExtendOperandForOther( 2951 Instruction *Ext, TypePromotionTransaction &TPT, 2952 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2953 SmallVectorImpl<Instruction *> *Exts, 2954 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2955 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2956 Exts, Truncs, TLI, true); 2957 } 2958 2959 /// \see promoteOperandForOther. 2960 static Value *zeroExtendOperandForOther( 2961 Instruction *Ext, TypePromotionTransaction &TPT, 2962 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2963 SmallVectorImpl<Instruction *> *Exts, 2964 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2965 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2966 Exts, Truncs, TLI, false); 2967 } 2968 2969 public: 2970 /// Type for the utility function that promotes the operand of Ext. 2971 typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT, 2972 InstrToOrigTy &PromotedInsts, 2973 unsigned &CreatedInstsCost, 2974 SmallVectorImpl<Instruction *> *Exts, 2975 SmallVectorImpl<Instruction *> *Truncs, 2976 const TargetLowering &TLI); 2977 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 2978 /// action to promote the operand of \p Ext instead of using Ext. 2979 /// \return NULL if no promotable action is possible with the current 2980 /// sign extension. 2981 /// \p InsertedInsts keeps track of all the instructions inserted by the 2982 /// other CodeGenPrepare optimizations. This information is important 2983 /// because we do not want to promote these instructions as CodeGenPrepare 2984 /// will reinsert them later. Thus creating an infinite loop: create/remove. 2985 /// \p PromotedInsts maps the instructions to their type before promotion. 2986 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 2987 const TargetLowering &TLI, 2988 const InstrToOrigTy &PromotedInsts); 2989 }; 2990 2991 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 2992 Type *ConsideredExtType, 2993 const InstrToOrigTy &PromotedInsts, 2994 bool IsSExt) { 2995 // The promotion helper does not know how to deal with vector types yet. 2996 // To be able to fix that, we would need to fix the places where we 2997 // statically extend, e.g., constants and such. 2998 if (Inst->getType()->isVectorTy()) 2999 return false; 3000 3001 // We can always get through zext. 3002 if (isa<ZExtInst>(Inst)) 3003 return true; 3004 3005 // sext(sext) is ok too. 3006 if (IsSExt && isa<SExtInst>(Inst)) 3007 return true; 3008 3009 // We can get through binary operator, if it is legal. In other words, the 3010 // binary operator must have a nuw or nsw flag. 3011 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3012 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3013 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3014 (IsSExt && BinOp->hasNoSignedWrap()))) 3015 return true; 3016 3017 // Check if we can do the following simplification. 3018 // ext(trunc(opnd)) --> ext(opnd) 3019 if (!isa<TruncInst>(Inst)) 3020 return false; 3021 3022 Value *OpndVal = Inst->getOperand(0); 3023 // Check if we can use this operand in the extension. 3024 // If the type is larger than the result type of the extension, we cannot. 3025 if (!OpndVal->getType()->isIntegerTy() || 3026 OpndVal->getType()->getIntegerBitWidth() > 3027 ConsideredExtType->getIntegerBitWidth()) 3028 return false; 3029 3030 // If the operand of the truncate is not an instruction, we will not have 3031 // any information on the dropped bits. 3032 // (Actually we could for constant but it is not worth the extra logic). 3033 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3034 if (!Opnd) 3035 return false; 3036 3037 // Check if the source of the type is narrow enough. 3038 // I.e., check that trunc just drops extended bits of the same kind of 3039 // the extension. 3040 // #1 get the type of the operand and check the kind of the extended bits. 3041 const Type *OpndType; 3042 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3043 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 3044 OpndType = It->second.getPointer(); 3045 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3046 OpndType = Opnd->getOperand(0)->getType(); 3047 else 3048 return false; 3049 3050 // #2 check that the truncate just drops extended bits. 3051 return Inst->getType()->getIntegerBitWidth() >= 3052 OpndType->getIntegerBitWidth(); 3053 } 3054 3055 TypePromotionHelper::Action TypePromotionHelper::getAction( 3056 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3057 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3058 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3059 "Unexpected instruction type"); 3060 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3061 Type *ExtTy = Ext->getType(); 3062 bool IsSExt = isa<SExtInst>(Ext); 3063 // If the operand of the extension is not an instruction, we cannot 3064 // get through. 3065 // If it, check we can get through. 3066 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3067 return nullptr; 3068 3069 // Do not promote if the operand has been added by codegenprepare. 3070 // Otherwise, it means we are undoing an optimization that is likely to be 3071 // redone, thus causing potential infinite loop. 3072 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3073 return nullptr; 3074 3075 // SExt or Trunc instructions. 3076 // Return the related handler. 3077 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3078 isa<ZExtInst>(ExtOpnd)) 3079 return promoteOperandForTruncAndAnyExt; 3080 3081 // Regular instruction. 3082 // Abort early if we will have to insert non-free instructions. 3083 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3084 return nullptr; 3085 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3086 } 3087 3088 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3089 llvm::Instruction *SExt, TypePromotionTransaction &TPT, 3090 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3091 SmallVectorImpl<Instruction *> *Exts, 3092 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3093 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3094 // get through it and this method should not be called. 3095 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3096 Value *ExtVal = SExt; 3097 bool HasMergedNonFreeExt = false; 3098 if (isa<ZExtInst>(SExtOpnd)) { 3099 // Replace s|zext(zext(opnd)) 3100 // => zext(opnd). 3101 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3102 Value *ZExt = 3103 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3104 TPT.replaceAllUsesWith(SExt, ZExt); 3105 TPT.eraseInstruction(SExt); 3106 ExtVal = ZExt; 3107 } else { 3108 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3109 // => z|sext(opnd). 3110 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3111 } 3112 CreatedInstsCost = 0; 3113 3114 // Remove dead code. 3115 if (SExtOpnd->use_empty()) 3116 TPT.eraseInstruction(SExtOpnd); 3117 3118 // Check if the extension is still needed. 3119 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3120 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3121 if (ExtInst) { 3122 if (Exts) 3123 Exts->push_back(ExtInst); 3124 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3125 } 3126 return ExtVal; 3127 } 3128 3129 // At this point we have: ext ty opnd to ty. 3130 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3131 Value *NextVal = ExtInst->getOperand(0); 3132 TPT.eraseInstruction(ExtInst, NextVal); 3133 return NextVal; 3134 } 3135 3136 Value *TypePromotionHelper::promoteOperandForOther( 3137 Instruction *Ext, TypePromotionTransaction &TPT, 3138 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3139 SmallVectorImpl<Instruction *> *Exts, 3140 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3141 bool IsSExt) { 3142 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3143 // get through it and this method should not be called. 3144 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3145 CreatedInstsCost = 0; 3146 if (!ExtOpnd->hasOneUse()) { 3147 // ExtOpnd will be promoted. 3148 // All its uses, but Ext, will need to use a truncated value of the 3149 // promoted version. 3150 // Create the truncate now. 3151 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3152 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3153 ITrunc->removeFromParent(); 3154 // Insert it just after the definition. 3155 ITrunc->insertAfter(ExtOpnd); 3156 if (Truncs) 3157 Truncs->push_back(ITrunc); 3158 } 3159 3160 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3161 // Restore the operand of Ext (which has been replaced by the previous call 3162 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3163 TPT.setOperand(Ext, 0, ExtOpnd); 3164 } 3165 3166 // Get through the Instruction: 3167 // 1. Update its type. 3168 // 2. Replace the uses of Ext by Inst. 3169 // 3. Extend each operand that needs to be extended. 3170 3171 // Remember the original type of the instruction before promotion. 3172 // This is useful to know that the high bits are sign extended bits. 3173 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 3174 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 3175 // Step #1. 3176 TPT.mutateType(ExtOpnd, Ext->getType()); 3177 // Step #2. 3178 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3179 // Step #3. 3180 Instruction *ExtForOpnd = Ext; 3181 3182 DEBUG(dbgs() << "Propagate Ext to operands\n"); 3183 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3184 ++OpIdx) { 3185 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3186 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3187 !shouldExtOperand(ExtOpnd, OpIdx)) { 3188 DEBUG(dbgs() << "No need to propagate\n"); 3189 continue; 3190 } 3191 // Check if we can statically extend the operand. 3192 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3193 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3194 DEBUG(dbgs() << "Statically extend\n"); 3195 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3196 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3197 : Cst->getValue().zext(BitWidth); 3198 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3199 continue; 3200 } 3201 // UndefValue are typed, so we have to statically sign extend them. 3202 if (isa<UndefValue>(Opnd)) { 3203 DEBUG(dbgs() << "Statically extend\n"); 3204 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3205 continue; 3206 } 3207 3208 // Otherwise we have to explicity sign extend the operand. 3209 // Check if Ext was reused to extend an operand. 3210 if (!ExtForOpnd) { 3211 // If yes, create a new one. 3212 DEBUG(dbgs() << "More operands to ext\n"); 3213 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3214 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3215 if (!isa<Instruction>(ValForExtOpnd)) { 3216 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3217 continue; 3218 } 3219 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3220 } 3221 if (Exts) 3222 Exts->push_back(ExtForOpnd); 3223 TPT.setOperand(ExtForOpnd, 0, Opnd); 3224 3225 // Move the sign extension before the insertion point. 3226 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3227 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3228 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3229 // If more sext are required, new instructions will have to be created. 3230 ExtForOpnd = nullptr; 3231 } 3232 if (ExtForOpnd == Ext) { 3233 DEBUG(dbgs() << "Extension is useless now\n"); 3234 TPT.eraseInstruction(Ext); 3235 } 3236 return ExtOpnd; 3237 } 3238 3239 /// Check whether or not promoting an instruction to a wider type is profitable. 3240 /// \p NewCost gives the cost of extension instructions created by the 3241 /// promotion. 3242 /// \p OldCost gives the cost of extension instructions before the promotion 3243 /// plus the number of instructions that have been 3244 /// matched in the addressing mode the promotion. 3245 /// \p PromotedOperand is the value that has been promoted. 3246 /// \return True if the promotion is profitable, false otherwise. 3247 bool AddressingModeMatcher::isPromotionProfitable( 3248 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3249 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); 3250 // The cost of the new extensions is greater than the cost of the 3251 // old extension plus what we folded. 3252 // This is not profitable. 3253 if (NewCost > OldCost) 3254 return false; 3255 if (NewCost < OldCost) 3256 return true; 3257 // The promotion is neutral but it may help folding the sign extension in 3258 // loads for instance. 3259 // Check that we did not create an illegal instruction. 3260 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3261 } 3262 3263 /// Given an instruction or constant expr, see if we can fold the operation 3264 /// into the addressing mode. If so, update the addressing mode and return 3265 /// true, otherwise return false without modifying AddrMode. 3266 /// If \p MovedAway is not NULL, it contains the information of whether or 3267 /// not AddrInst has to be folded into the addressing mode on success. 3268 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3269 /// because it has been moved away. 3270 /// Thus AddrInst must not be added in the matched instructions. 3271 /// This state can happen when AddrInst is a sext, since it may be moved away. 3272 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3273 /// not be referenced anymore. 3274 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3275 unsigned Depth, 3276 bool *MovedAway) { 3277 // Avoid exponential behavior on extremely deep expression trees. 3278 if (Depth >= 5) return false; 3279 3280 // By default, all matched instructions stay in place. 3281 if (MovedAway) 3282 *MovedAway = false; 3283 3284 switch (Opcode) { 3285 case Instruction::PtrToInt: 3286 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3287 return matchAddr(AddrInst->getOperand(0), Depth); 3288 case Instruction::IntToPtr: { 3289 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3290 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3291 // This inttoptr is a no-op if the integer type is pointer sized. 3292 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3293 return matchAddr(AddrInst->getOperand(0), Depth); 3294 return false; 3295 } 3296 case Instruction::BitCast: 3297 // BitCast is always a noop, and we can handle it as long as it is 3298 // int->int or pointer->pointer (we don't want int<->fp or something). 3299 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 3300 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 3301 // Don't touch identity bitcasts. These were probably put here by LSR, 3302 // and we don't want to mess around with them. Assume it knows what it 3303 // is doing. 3304 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3305 return matchAddr(AddrInst->getOperand(0), Depth); 3306 return false; 3307 case Instruction::AddrSpaceCast: { 3308 unsigned SrcAS 3309 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3310 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3311 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3312 return matchAddr(AddrInst->getOperand(0), Depth); 3313 return false; 3314 } 3315 case Instruction::Add: { 3316 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3317 ExtAddrMode BackupAddrMode = AddrMode; 3318 unsigned OldSize = AddrModeInsts.size(); 3319 // Start a transaction at this point. 3320 // The LHS may match but not the RHS. 3321 // Therefore, we need a higher level restoration point to undo partially 3322 // matched operation. 3323 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3324 TPT.getRestorationPoint(); 3325 3326 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3327 matchAddr(AddrInst->getOperand(0), Depth+1)) 3328 return true; 3329 3330 // Restore the old addr mode info. 3331 AddrMode = BackupAddrMode; 3332 AddrModeInsts.resize(OldSize); 3333 TPT.rollback(LastKnownGood); 3334 3335 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3336 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3337 matchAddr(AddrInst->getOperand(1), Depth+1)) 3338 return true; 3339 3340 // Otherwise we definitely can't merge the ADD in. 3341 AddrMode = BackupAddrMode; 3342 AddrModeInsts.resize(OldSize); 3343 TPT.rollback(LastKnownGood); 3344 break; 3345 } 3346 //case Instruction::Or: 3347 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3348 //break; 3349 case Instruction::Mul: 3350 case Instruction::Shl: { 3351 // Can only handle X*C and X << C. 3352 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3353 if (!RHS) 3354 return false; 3355 int64_t Scale = RHS->getSExtValue(); 3356 if (Opcode == Instruction::Shl) 3357 Scale = 1LL << Scale; 3358 3359 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3360 } 3361 case Instruction::GetElementPtr: { 3362 // Scan the GEP. We check it if it contains constant offsets and at most 3363 // one variable offset. 3364 int VariableOperand = -1; 3365 unsigned VariableScale = 0; 3366 3367 int64_t ConstantOffset = 0; 3368 gep_type_iterator GTI = gep_type_begin(AddrInst); 3369 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3370 if (StructType *STy = GTI.getStructTypeOrNull()) { 3371 const StructLayout *SL = DL.getStructLayout(STy); 3372 unsigned Idx = 3373 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3374 ConstantOffset += SL->getElementOffset(Idx); 3375 } else { 3376 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3377 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3378 ConstantOffset += CI->getSExtValue()*TypeSize; 3379 } else if (TypeSize) { // Scales of zero don't do anything. 3380 // We only allow one variable index at the moment. 3381 if (VariableOperand != -1) 3382 return false; 3383 3384 // Remember the variable index. 3385 VariableOperand = i; 3386 VariableScale = TypeSize; 3387 } 3388 } 3389 } 3390 3391 // A common case is for the GEP to only do a constant offset. In this case, 3392 // just add it to the disp field and check validity. 3393 if (VariableOperand == -1) { 3394 AddrMode.BaseOffs += ConstantOffset; 3395 if (ConstantOffset == 0 || 3396 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 3397 // Check to see if we can fold the base pointer in too. 3398 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 3399 return true; 3400 } 3401 AddrMode.BaseOffs -= ConstantOffset; 3402 return false; 3403 } 3404 3405 // Save the valid addressing mode in case we can't match. 3406 ExtAddrMode BackupAddrMode = AddrMode; 3407 unsigned OldSize = AddrModeInsts.size(); 3408 3409 // See if the scale and offset amount is valid for this target. 3410 AddrMode.BaseOffs += ConstantOffset; 3411 3412 // Match the base operand of the GEP. 3413 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 3414 // If it couldn't be matched, just stuff the value in a register. 3415 if (AddrMode.HasBaseReg) { 3416 AddrMode = BackupAddrMode; 3417 AddrModeInsts.resize(OldSize); 3418 return false; 3419 } 3420 AddrMode.HasBaseReg = true; 3421 AddrMode.BaseReg = AddrInst->getOperand(0); 3422 } 3423 3424 // Match the remaining variable portion of the GEP. 3425 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 3426 Depth)) { 3427 // If it couldn't be matched, try stuffing the base into a register 3428 // instead of matching it, and retrying the match of the scale. 3429 AddrMode = BackupAddrMode; 3430 AddrModeInsts.resize(OldSize); 3431 if (AddrMode.HasBaseReg) 3432 return false; 3433 AddrMode.HasBaseReg = true; 3434 AddrMode.BaseReg = AddrInst->getOperand(0); 3435 AddrMode.BaseOffs += ConstantOffset; 3436 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 3437 VariableScale, Depth)) { 3438 // If even that didn't work, bail. 3439 AddrMode = BackupAddrMode; 3440 AddrModeInsts.resize(OldSize); 3441 return false; 3442 } 3443 } 3444 3445 return true; 3446 } 3447 case Instruction::SExt: 3448 case Instruction::ZExt: { 3449 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 3450 if (!Ext) 3451 return false; 3452 3453 // Try to move this ext out of the way of the addressing mode. 3454 // Ask for a method for doing so. 3455 TypePromotionHelper::Action TPH = 3456 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 3457 if (!TPH) 3458 return false; 3459 3460 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3461 TPT.getRestorationPoint(); 3462 unsigned CreatedInstsCost = 0; 3463 unsigned ExtCost = !TLI.isExtFree(Ext); 3464 Value *PromotedOperand = 3465 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 3466 // SExt has been moved away. 3467 // Thus either it will be rematched later in the recursive calls or it is 3468 // gone. Anyway, we must not fold it into the addressing mode at this point. 3469 // E.g., 3470 // op = add opnd, 1 3471 // idx = ext op 3472 // addr = gep base, idx 3473 // is now: 3474 // promotedOpnd = ext opnd <- no match here 3475 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 3476 // addr = gep base, op <- match 3477 if (MovedAway) 3478 *MovedAway = true; 3479 3480 assert(PromotedOperand && 3481 "TypePromotionHelper should have filtered out those cases"); 3482 3483 ExtAddrMode BackupAddrMode = AddrMode; 3484 unsigned OldSize = AddrModeInsts.size(); 3485 3486 if (!matchAddr(PromotedOperand, Depth) || 3487 // The total of the new cost is equal to the cost of the created 3488 // instructions. 3489 // The total of the old cost is equal to the cost of the extension plus 3490 // what we have saved in the addressing mode. 3491 !isPromotionProfitable(CreatedInstsCost, 3492 ExtCost + (AddrModeInsts.size() - OldSize), 3493 PromotedOperand)) { 3494 AddrMode = BackupAddrMode; 3495 AddrModeInsts.resize(OldSize); 3496 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 3497 TPT.rollback(LastKnownGood); 3498 return false; 3499 } 3500 return true; 3501 } 3502 } 3503 return false; 3504 } 3505 3506 /// If we can, try to add the value of 'Addr' into the current addressing mode. 3507 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 3508 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 3509 /// for the target. 3510 /// 3511 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 3512 // Start a transaction at this point that we will rollback if the matching 3513 // fails. 3514 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3515 TPT.getRestorationPoint(); 3516 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 3517 // Fold in immediates if legal for the target. 3518 AddrMode.BaseOffs += CI->getSExtValue(); 3519 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3520 return true; 3521 AddrMode.BaseOffs -= CI->getSExtValue(); 3522 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 3523 // If this is a global variable, try to fold it into the addressing mode. 3524 if (!AddrMode.BaseGV) { 3525 AddrMode.BaseGV = GV; 3526 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3527 return true; 3528 AddrMode.BaseGV = nullptr; 3529 } 3530 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 3531 ExtAddrMode BackupAddrMode = AddrMode; 3532 unsigned OldSize = AddrModeInsts.size(); 3533 3534 // Check to see if it is possible to fold this operation. 3535 bool MovedAway = false; 3536 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 3537 // This instruction may have been moved away. If so, there is nothing 3538 // to check here. 3539 if (MovedAway) 3540 return true; 3541 // Okay, it's possible to fold this. Check to see if it is actually 3542 // *profitable* to do so. We use a simple cost model to avoid increasing 3543 // register pressure too much. 3544 if (I->hasOneUse() || 3545 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 3546 AddrModeInsts.push_back(I); 3547 return true; 3548 } 3549 3550 // It isn't profitable to do this, roll back. 3551 //cerr << "NOT FOLDING: " << *I; 3552 AddrMode = BackupAddrMode; 3553 AddrModeInsts.resize(OldSize); 3554 TPT.rollback(LastKnownGood); 3555 } 3556 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 3557 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 3558 return true; 3559 TPT.rollback(LastKnownGood); 3560 } else if (isa<ConstantPointerNull>(Addr)) { 3561 // Null pointer gets folded without affecting the addressing mode. 3562 return true; 3563 } 3564 3565 // Worse case, the target should support [reg] addressing modes. :) 3566 if (!AddrMode.HasBaseReg) { 3567 AddrMode.HasBaseReg = true; 3568 AddrMode.BaseReg = Addr; 3569 // Still check for legality in case the target supports [imm] but not [i+r]. 3570 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3571 return true; 3572 AddrMode.HasBaseReg = false; 3573 AddrMode.BaseReg = nullptr; 3574 } 3575 3576 // If the base register is already taken, see if we can do [r+r]. 3577 if (AddrMode.Scale == 0) { 3578 AddrMode.Scale = 1; 3579 AddrMode.ScaledReg = Addr; 3580 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3581 return true; 3582 AddrMode.Scale = 0; 3583 AddrMode.ScaledReg = nullptr; 3584 } 3585 // Couldn't match. 3586 TPT.rollback(LastKnownGood); 3587 return false; 3588 } 3589 3590 /// Check to see if all uses of OpVal by the specified inline asm call are due 3591 /// to memory operands. If so, return true, otherwise return false. 3592 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 3593 const TargetLowering &TLI, 3594 const TargetRegisterInfo &TRI) { 3595 const Function *F = CI->getParent()->getParent(); 3596 TargetLowering::AsmOperandInfoVector TargetConstraints = 3597 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 3598 ImmutableCallSite(CI)); 3599 3600 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3601 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3602 3603 // Compute the constraint code and ConstraintType to use. 3604 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 3605 3606 // If this asm operand is our Value*, and if it isn't an indirect memory 3607 // operand, we can't fold it! 3608 if (OpInfo.CallOperandVal == OpVal && 3609 (OpInfo.ConstraintType != TargetLowering::C_Memory || 3610 !OpInfo.isIndirect)) 3611 return false; 3612 } 3613 3614 return true; 3615 } 3616 3617 /// Recursively walk all the uses of I until we find a memory use. 3618 /// If we find an obviously non-foldable instruction, return true. 3619 /// Add the ultimately found memory instructions to MemoryUses. 3620 static bool FindAllMemoryUses( 3621 Instruction *I, 3622 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 3623 SmallPtrSetImpl<Instruction *> &ConsideredInsts, 3624 const TargetLowering &TLI, const TargetRegisterInfo &TRI) { 3625 // If we already considered this instruction, we're done. 3626 if (!ConsideredInsts.insert(I).second) 3627 return false; 3628 3629 // If this is an obviously unfoldable instruction, bail out. 3630 if (!MightBeFoldableInst(I)) 3631 return true; 3632 3633 const bool OptSize = I->getFunction()->optForSize(); 3634 3635 // Loop over all the uses, recursively processing them. 3636 for (Use &U : I->uses()) { 3637 Instruction *UserI = cast<Instruction>(U.getUser()); 3638 3639 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 3640 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 3641 continue; 3642 } 3643 3644 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 3645 unsigned opNo = U.getOperandNo(); 3646 if (opNo == 0) return true; // Storing addr, not into addr. 3647 MemoryUses.push_back(std::make_pair(SI, opNo)); 3648 continue; 3649 } 3650 3651 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 3652 // If this is a cold call, we can sink the addressing calculation into 3653 // the cold path. See optimizeCallInst 3654 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 3655 continue; 3656 3657 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 3658 if (!IA) return true; 3659 3660 // If this is a memory operand, we're cool, otherwise bail out. 3661 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 3662 return true; 3663 continue; 3664 } 3665 3666 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI)) 3667 return true; 3668 } 3669 3670 return false; 3671 } 3672 3673 /// Return true if Val is already known to be live at the use site that we're 3674 /// folding it into. If so, there is no cost to include it in the addressing 3675 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 3676 /// instruction already. 3677 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 3678 Value *KnownLive2) { 3679 // If Val is either of the known-live values, we know it is live! 3680 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 3681 return true; 3682 3683 // All values other than instructions and arguments (e.g. constants) are live. 3684 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 3685 3686 // If Val is a constant sized alloca in the entry block, it is live, this is 3687 // true because it is just a reference to the stack/frame pointer, which is 3688 // live for the whole function. 3689 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 3690 if (AI->isStaticAlloca()) 3691 return true; 3692 3693 // Check to see if this value is already used in the memory instruction's 3694 // block. If so, it's already live into the block at the very least, so we 3695 // can reasonably fold it. 3696 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 3697 } 3698 3699 /// It is possible for the addressing mode of the machine to fold the specified 3700 /// instruction into a load or store that ultimately uses it. 3701 /// However, the specified instruction has multiple uses. 3702 /// Given this, it may actually increase register pressure to fold it 3703 /// into the load. For example, consider this code: 3704 /// 3705 /// X = ... 3706 /// Y = X+1 3707 /// use(Y) -> nonload/store 3708 /// Z = Y+1 3709 /// load Z 3710 /// 3711 /// In this case, Y has multiple uses, and can be folded into the load of Z 3712 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 3713 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 3714 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 3715 /// number of computations either. 3716 /// 3717 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 3718 /// X was live across 'load Z' for other reasons, we actually *would* want to 3719 /// fold the addressing mode in the Z case. This would make Y die earlier. 3720 bool AddressingModeMatcher:: 3721 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 3722 ExtAddrMode &AMAfter) { 3723 if (IgnoreProfitability) return true; 3724 3725 // AMBefore is the addressing mode before this instruction was folded into it, 3726 // and AMAfter is the addressing mode after the instruction was folded. Get 3727 // the set of registers referenced by AMAfter and subtract out those 3728 // referenced by AMBefore: this is the set of values which folding in this 3729 // address extends the lifetime of. 3730 // 3731 // Note that there are only two potential values being referenced here, 3732 // BaseReg and ScaleReg (global addresses are always available, as are any 3733 // folded immediates). 3734 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 3735 3736 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 3737 // lifetime wasn't extended by adding this instruction. 3738 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3739 BaseReg = nullptr; 3740 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3741 ScaledReg = nullptr; 3742 3743 // If folding this instruction (and it's subexprs) didn't extend any live 3744 // ranges, we're ok with it. 3745 if (!BaseReg && !ScaledReg) 3746 return true; 3747 3748 // If all uses of this instruction can have the address mode sunk into them, 3749 // we can remove the addressing mode and effectively trade one live register 3750 // for another (at worst.) In this context, folding an addressing mode into 3751 // the use is just a particularly nice way of sinking it. 3752 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 3753 SmallPtrSet<Instruction*, 16> ConsideredInsts; 3754 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 3755 return false; // Has a non-memory, non-foldable use! 3756 3757 // Now that we know that all uses of this instruction are part of a chain of 3758 // computation involving only operations that could theoretically be folded 3759 // into a memory use, loop over each of these memory operation uses and see 3760 // if they could *actually* fold the instruction. The assumption is that 3761 // addressing modes are cheap and that duplicating the computation involved 3762 // many times is worthwhile, even on a fastpath. For sinking candidates 3763 // (i.e. cold call sites), this serves as a way to prevent excessive code 3764 // growth since most architectures have some reasonable small and fast way to 3765 // compute an effective address. (i.e LEA on x86) 3766 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 3767 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 3768 Instruction *User = MemoryUses[i].first; 3769 unsigned OpNo = MemoryUses[i].second; 3770 3771 // Get the access type of this use. If the use isn't a pointer, we don't 3772 // know what it accesses. 3773 Value *Address = User->getOperand(OpNo); 3774 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 3775 if (!AddrTy) 3776 return false; 3777 Type *AddressAccessTy = AddrTy->getElementType(); 3778 unsigned AS = AddrTy->getAddressSpace(); 3779 3780 // Do a match against the root of this address, ignoring profitability. This 3781 // will tell us if the addressing mode for the memory operation will 3782 // *actually* cover the shared instruction. 3783 ExtAddrMode Result; 3784 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3785 TPT.getRestorationPoint(); 3786 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, 3787 AddressAccessTy, AS, 3788 MemoryInst, Result, InsertedInsts, 3789 PromotedInsts, TPT); 3790 Matcher.IgnoreProfitability = true; 3791 bool Success = Matcher.matchAddr(Address, 0); 3792 (void)Success; assert(Success && "Couldn't select *anything*?"); 3793 3794 // The match was to check the profitability, the changes made are not 3795 // part of the original matcher. Therefore, they should be dropped 3796 // otherwise the original matcher will not present the right state. 3797 TPT.rollback(LastKnownGood); 3798 3799 // If the match didn't cover I, then it won't be shared by it. 3800 if (!is_contained(MatchedAddrModeInsts, I)) 3801 return false; 3802 3803 MatchedAddrModeInsts.clear(); 3804 } 3805 3806 return true; 3807 } 3808 3809 } // end anonymous namespace 3810 3811 /// Return true if the specified values are defined in a 3812 /// different basic block than BB. 3813 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 3814 if (Instruction *I = dyn_cast<Instruction>(V)) 3815 return I->getParent() != BB; 3816 return false; 3817 } 3818 3819 /// Sink addressing mode computation immediate before MemoryInst if doing so 3820 /// can be done without increasing register pressure. The need for the 3821 /// register pressure constraint means this can end up being an all or nothing 3822 /// decision for all uses of the same addressing computation. 3823 /// 3824 /// Load and Store Instructions often have addressing modes that can do 3825 /// significant amounts of computation. As such, instruction selection will try 3826 /// to get the load or store to do as much computation as possible for the 3827 /// program. The problem is that isel can only see within a single block. As 3828 /// such, we sink as much legal addressing mode work into the block as possible. 3829 /// 3830 /// This method is used to optimize both load/store and inline asms with memory 3831 /// operands. It's also used to sink addressing computations feeding into cold 3832 /// call sites into their (cold) basic block. 3833 /// 3834 /// The motivation for handling sinking into cold blocks is that doing so can 3835 /// both enable other address mode sinking (by satisfying the register pressure 3836 /// constraint above), and reduce register pressure globally (by removing the 3837 /// addressing mode computation from the fast path entirely.). 3838 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 3839 Type *AccessTy, unsigned AddrSpace) { 3840 Value *Repl = Addr; 3841 3842 // Try to collapse single-value PHI nodes. This is necessary to undo 3843 // unprofitable PRE transformations. 3844 SmallVector<Value*, 8> worklist; 3845 SmallPtrSet<Value*, 16> Visited; 3846 worklist.push_back(Addr); 3847 3848 // Use a worklist to iteratively look through PHI nodes, and ensure that 3849 // the addressing mode obtained from the non-PHI roots of the graph 3850 // are equivalent. 3851 Value *Consensus = nullptr; 3852 unsigned NumUsesConsensus = 0; 3853 bool IsNumUsesConsensusValid = false; 3854 SmallVector<Instruction*, 16> AddrModeInsts; 3855 ExtAddrMode AddrMode; 3856 TypePromotionTransaction TPT; 3857 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3858 TPT.getRestorationPoint(); 3859 while (!worklist.empty()) { 3860 Value *V = worklist.back(); 3861 worklist.pop_back(); 3862 3863 // Break use-def graph loops. 3864 if (!Visited.insert(V).second) { 3865 Consensus = nullptr; 3866 break; 3867 } 3868 3869 // For a PHI node, push all of its incoming values. 3870 if (PHINode *P = dyn_cast<PHINode>(V)) { 3871 for (Value *IncValue : P->incoming_values()) 3872 worklist.push_back(IncValue); 3873 continue; 3874 } 3875 3876 // For non-PHIs, determine the addressing mode being computed. Note that 3877 // the result may differ depending on what other uses our candidate 3878 // addressing instructions might have. 3879 SmallVector<Instruction*, 16> NewAddrModeInsts; 3880 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 3881 V, AccessTy, AddrSpace, MemoryInst, NewAddrModeInsts, *TLI, *TRI, 3882 InsertedInsts, PromotedInsts, TPT); 3883 3884 // This check is broken into two cases with very similar code to avoid using 3885 // getNumUses() as much as possible. Some values have a lot of uses, so 3886 // calling getNumUses() unconditionally caused a significant compile-time 3887 // regression. 3888 if (!Consensus) { 3889 Consensus = V; 3890 AddrMode = NewAddrMode; 3891 AddrModeInsts = NewAddrModeInsts; 3892 continue; 3893 } else if (NewAddrMode == AddrMode) { 3894 if (!IsNumUsesConsensusValid) { 3895 NumUsesConsensus = Consensus->getNumUses(); 3896 IsNumUsesConsensusValid = true; 3897 } 3898 3899 // Ensure that the obtained addressing mode is equivalent to that obtained 3900 // for all other roots of the PHI traversal. Also, when choosing one 3901 // such root as representative, select the one with the most uses in order 3902 // to keep the cost modeling heuristics in AddressingModeMatcher 3903 // applicable. 3904 unsigned NumUses = V->getNumUses(); 3905 if (NumUses > NumUsesConsensus) { 3906 Consensus = V; 3907 NumUsesConsensus = NumUses; 3908 AddrModeInsts = NewAddrModeInsts; 3909 } 3910 continue; 3911 } 3912 3913 Consensus = nullptr; 3914 break; 3915 } 3916 3917 // If the addressing mode couldn't be determined, or if multiple different 3918 // ones were determined, bail out now. 3919 if (!Consensus) { 3920 TPT.rollback(LastKnownGood); 3921 return false; 3922 } 3923 TPT.commit(); 3924 3925 // If all the instructions matched are already in this BB, don't do anything. 3926 if (none_of(AddrModeInsts, [&](Value *V) { 3927 return IsNonLocalValue(V, MemoryInst->getParent()); 3928 })) { 3929 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 3930 return false; 3931 } 3932 3933 // Insert this computation right after this user. Since our caller is 3934 // scanning from the top of the BB to the bottom, reuse of the expr are 3935 // guaranteed to happen later. 3936 IRBuilder<> Builder(MemoryInst); 3937 3938 // Now that we determined the addressing expression we want to use and know 3939 // that we have to sink it into this block. Check to see if we have already 3940 // done this for some other load/store instr in this block. If so, reuse the 3941 // computation. 3942 Value *&SunkAddr = SunkAddrs[Addr]; 3943 if (SunkAddr) { 3944 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 3945 << *MemoryInst << "\n"); 3946 if (SunkAddr->getType() != Addr->getType()) 3947 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3948 } else if (AddrSinkUsingGEPs || 3949 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 3950 SubtargetInfo->useAA())) { 3951 // By default, we use the GEP-based method when AA is used later. This 3952 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 3953 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3954 << *MemoryInst << "\n"); 3955 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 3956 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 3957 3958 // First, find the pointer. 3959 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 3960 ResultPtr = AddrMode.BaseReg; 3961 AddrMode.BaseReg = nullptr; 3962 } 3963 3964 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 3965 // We can't add more than one pointer together, nor can we scale a 3966 // pointer (both of which seem meaningless). 3967 if (ResultPtr || AddrMode.Scale != 1) 3968 return false; 3969 3970 ResultPtr = AddrMode.ScaledReg; 3971 AddrMode.Scale = 0; 3972 } 3973 3974 if (AddrMode.BaseGV) { 3975 if (ResultPtr) 3976 return false; 3977 3978 ResultPtr = AddrMode.BaseGV; 3979 } 3980 3981 // If the real base value actually came from an inttoptr, then the matcher 3982 // will look through it and provide only the integer value. In that case, 3983 // use it here. 3984 if (!ResultPtr && AddrMode.BaseReg) { 3985 ResultPtr = 3986 Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr"); 3987 AddrMode.BaseReg = nullptr; 3988 } else if (!ResultPtr && AddrMode.Scale == 1) { 3989 ResultPtr = 3990 Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr"); 3991 AddrMode.Scale = 0; 3992 } 3993 3994 if (!ResultPtr && 3995 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 3996 SunkAddr = Constant::getNullValue(Addr->getType()); 3997 } else if (!ResultPtr) { 3998 return false; 3999 } else { 4000 Type *I8PtrTy = 4001 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4002 Type *I8Ty = Builder.getInt8Ty(); 4003 4004 // Start with the base register. Do this first so that subsequent address 4005 // matching finds it last, which will prevent it from trying to match it 4006 // as the scaled value in case it happens to be a mul. That would be 4007 // problematic if we've sunk a different mul for the scale, because then 4008 // we'd end up sinking both muls. 4009 if (AddrMode.BaseReg) { 4010 Value *V = AddrMode.BaseReg; 4011 if (V->getType() != IntPtrTy) 4012 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4013 4014 ResultIndex = V; 4015 } 4016 4017 // Add the scale value. 4018 if (AddrMode.Scale) { 4019 Value *V = AddrMode.ScaledReg; 4020 if (V->getType() == IntPtrTy) { 4021 // done. 4022 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4023 cast<IntegerType>(V->getType())->getBitWidth()) { 4024 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4025 } else { 4026 // It is only safe to sign extend the BaseReg if we know that the math 4027 // required to create it did not overflow before we extend it. Since 4028 // the original IR value was tossed in favor of a constant back when 4029 // the AddrMode was created we need to bail out gracefully if widths 4030 // do not match instead of extending it. 4031 Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex); 4032 if (I && (ResultIndex != AddrMode.BaseReg)) 4033 I->eraseFromParent(); 4034 return false; 4035 } 4036 4037 if (AddrMode.Scale != 1) 4038 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4039 "sunkaddr"); 4040 if (ResultIndex) 4041 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4042 else 4043 ResultIndex = V; 4044 } 4045 4046 // Add in the Base Offset if present. 4047 if (AddrMode.BaseOffs) { 4048 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4049 if (ResultIndex) { 4050 // We need to add this separately from the scale above to help with 4051 // SDAG consecutive load/store merging. 4052 if (ResultPtr->getType() != I8PtrTy) 4053 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 4054 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4055 } 4056 4057 ResultIndex = V; 4058 } 4059 4060 if (!ResultIndex) { 4061 SunkAddr = ResultPtr; 4062 } else { 4063 if (ResultPtr->getType() != I8PtrTy) 4064 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 4065 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4066 } 4067 4068 if (SunkAddr->getType() != Addr->getType()) 4069 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 4070 } 4071 } else { 4072 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 4073 << *MemoryInst << "\n"); 4074 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4075 Value *Result = nullptr; 4076 4077 // Start with the base register. Do this first so that subsequent address 4078 // matching finds it last, which will prevent it from trying to match it 4079 // as the scaled value in case it happens to be a mul. That would be 4080 // problematic if we've sunk a different mul for the scale, because then 4081 // we'd end up sinking both muls. 4082 if (AddrMode.BaseReg) { 4083 Value *V = AddrMode.BaseReg; 4084 if (V->getType()->isPointerTy()) 4085 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4086 if (V->getType() != IntPtrTy) 4087 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4088 Result = V; 4089 } 4090 4091 // Add the scale value. 4092 if (AddrMode.Scale) { 4093 Value *V = AddrMode.ScaledReg; 4094 if (V->getType() == IntPtrTy) { 4095 // done. 4096 } else if (V->getType()->isPointerTy()) { 4097 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4098 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4099 cast<IntegerType>(V->getType())->getBitWidth()) { 4100 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4101 } else { 4102 // It is only safe to sign extend the BaseReg if we know that the math 4103 // required to create it did not overflow before we extend it. Since 4104 // the original IR value was tossed in favor of a constant back when 4105 // the AddrMode was created we need to bail out gracefully if widths 4106 // do not match instead of extending it. 4107 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4108 if (I && (Result != AddrMode.BaseReg)) 4109 I->eraseFromParent(); 4110 return false; 4111 } 4112 if (AddrMode.Scale != 1) 4113 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4114 "sunkaddr"); 4115 if (Result) 4116 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4117 else 4118 Result = V; 4119 } 4120 4121 // Add in the BaseGV if present. 4122 if (AddrMode.BaseGV) { 4123 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 4124 if (Result) 4125 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4126 else 4127 Result = V; 4128 } 4129 4130 // Add in the Base Offset if present. 4131 if (AddrMode.BaseOffs) { 4132 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4133 if (Result) 4134 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4135 else 4136 Result = V; 4137 } 4138 4139 if (!Result) 4140 SunkAddr = Constant::getNullValue(Addr->getType()); 4141 else 4142 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 4143 } 4144 4145 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 4146 4147 // If we have no uses, recursively delete the value and all dead instructions 4148 // using it. 4149 if (Repl->use_empty()) { 4150 // This can cause recursive deletion, which can invalidate our iterator. 4151 // Use a WeakVH to hold onto it in case this happens. 4152 Value *CurValue = &*CurInstIterator; 4153 WeakVH IterHandle(CurValue); 4154 BasicBlock *BB = CurInstIterator->getParent(); 4155 4156 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 4157 4158 if (IterHandle != CurValue) { 4159 // If the iterator instruction was recursively deleted, start over at the 4160 // start of the block. 4161 CurInstIterator = BB->begin(); 4162 SunkAddrs.clear(); 4163 } 4164 } 4165 ++NumMemoryInsts; 4166 return true; 4167 } 4168 4169 /// If there are any memory operands, use OptimizeMemoryInst to sink their 4170 /// address computing into the block when possible / profitable. 4171 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 4172 bool MadeChange = false; 4173 4174 const TargetRegisterInfo *TRI = 4175 TM->getSubtargetImpl(*CS->getParent()->getParent())->getRegisterInfo(); 4176 TargetLowering::AsmOperandInfoVector TargetConstraints = 4177 TLI->ParseConstraints(*DL, TRI, CS); 4178 unsigned ArgNo = 0; 4179 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4180 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4181 4182 // Compute the constraint code and ConstraintType to use. 4183 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 4184 4185 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4186 OpInfo.isIndirect) { 4187 Value *OpVal = CS->getArgOperand(ArgNo++); 4188 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 4189 } else if (OpInfo.Type == InlineAsm::isInput) 4190 ArgNo++; 4191 } 4192 4193 return MadeChange; 4194 } 4195 4196 /// \brief Check if all the uses of \p Inst are equivalent (or free) zero or 4197 /// sign extensions. 4198 static bool hasSameExtUse(Instruction *Inst, const TargetLowering &TLI) { 4199 assert(!Inst->use_empty() && "Input must have at least one use"); 4200 const Instruction *FirstUser = cast<Instruction>(*Inst->user_begin()); 4201 bool IsSExt = isa<SExtInst>(FirstUser); 4202 Type *ExtTy = FirstUser->getType(); 4203 for (const User *U : Inst->users()) { 4204 const Instruction *UI = cast<Instruction>(U); 4205 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 4206 return false; 4207 Type *CurTy = UI->getType(); 4208 // Same input and output types: Same instruction after CSE. 4209 if (CurTy == ExtTy) 4210 continue; 4211 4212 // If IsSExt is true, we are in this situation: 4213 // a = Inst 4214 // b = sext ty1 a to ty2 4215 // c = sext ty1 a to ty3 4216 // Assuming ty2 is shorter than ty3, this could be turned into: 4217 // a = Inst 4218 // b = sext ty1 a to ty2 4219 // c = sext ty2 b to ty3 4220 // However, the last sext is not free. 4221 if (IsSExt) 4222 return false; 4223 4224 // This is a ZExt, maybe this is free to extend from one type to another. 4225 // In that case, we would not account for a different use. 4226 Type *NarrowTy; 4227 Type *LargeTy; 4228 if (ExtTy->getScalarType()->getIntegerBitWidth() > 4229 CurTy->getScalarType()->getIntegerBitWidth()) { 4230 NarrowTy = CurTy; 4231 LargeTy = ExtTy; 4232 } else { 4233 NarrowTy = ExtTy; 4234 LargeTy = CurTy; 4235 } 4236 4237 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 4238 return false; 4239 } 4240 // All uses are the same or can be derived from one another for free. 4241 return true; 4242 } 4243 4244 /// \brief Try to form ExtLd by promoting \p Exts until they reach a 4245 /// load instruction. 4246 /// If an ext(load) can be formed, it is returned via \p LI for the load 4247 /// and \p Inst for the extension. 4248 /// Otherwise LI == nullptr and Inst == nullptr. 4249 /// When some promotion happened, \p TPT contains the proper state to 4250 /// revert them. 4251 /// 4252 /// \return true when promoting was necessary to expose the ext(load) 4253 /// opportunity, false otherwise. 4254 /// 4255 /// Example: 4256 /// \code 4257 /// %ld = load i32* %addr 4258 /// %add = add nuw i32 %ld, 4 4259 /// %zext = zext i32 %add to i64 4260 /// \endcode 4261 /// => 4262 /// \code 4263 /// %ld = load i32* %addr 4264 /// %zext = zext i32 %ld to i64 4265 /// %add = add nuw i64 %zext, 4 4266 /// \endcode 4267 /// Thanks to the promotion, we can match zext(load i32*) to i64. 4268 bool CodeGenPrepare::extLdPromotion(TypePromotionTransaction &TPT, 4269 LoadInst *&LI, Instruction *&Inst, 4270 const SmallVectorImpl<Instruction *> &Exts, 4271 unsigned CreatedInstsCost = 0) { 4272 // Iterate over all the extensions to see if one form an ext(load). 4273 for (auto I : Exts) { 4274 // Check if we directly have ext(load). 4275 if ((LI = dyn_cast<LoadInst>(I->getOperand(0)))) { 4276 Inst = I; 4277 // No promotion happened here. 4278 return false; 4279 } 4280 // Check whether or not we want to do any promotion. 4281 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4282 continue; 4283 // Get the action to perform the promotion. 4284 TypePromotionHelper::Action TPH = TypePromotionHelper::getAction( 4285 I, InsertedInsts, *TLI, PromotedInsts); 4286 // Check if we can promote. 4287 if (!TPH) 4288 continue; 4289 // Save the current state. 4290 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4291 TPT.getRestorationPoint(); 4292 SmallVector<Instruction *, 4> NewExts; 4293 unsigned NewCreatedInstsCost = 0; 4294 unsigned ExtCost = !TLI->isExtFree(I); 4295 // Promote. 4296 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4297 &NewExts, nullptr, *TLI); 4298 assert(PromotedVal && 4299 "TypePromotionHelper should have filtered out those cases"); 4300 4301 // We would be able to merge only one extension in a load. 4302 // Therefore, if we have more than 1 new extension we heuristically 4303 // cut this search path, because it means we degrade the code quality. 4304 // With exactly 2, the transformation is neutral, because we will merge 4305 // one extension but leave one. However, we optimistically keep going, 4306 // because the new extension may be removed too. 4307 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4308 // FIXME: It would be possible to propagate a negative value instead of 4309 // conservatively ceiling it to 0. 4310 TotalCreatedInstsCost = 4311 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 4312 if (!StressExtLdPromotion && 4313 (TotalCreatedInstsCost > 1 || 4314 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 4315 // The promotion is not profitable, rollback to the previous state. 4316 TPT.rollback(LastKnownGood); 4317 continue; 4318 } 4319 // The promotion is profitable. 4320 // Check if it exposes an ext(load). 4321 (void)extLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInstsCost); 4322 if (LI && (StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 4323 // If we have created a new extension, i.e., now we have two 4324 // extensions. We must make sure one of them is merged with 4325 // the load, otherwise we may degrade the code quality. 4326 (LI->hasOneUse() || hasSameExtUse(LI, *TLI)))) 4327 // Promotion happened. 4328 return true; 4329 // If this does not help to expose an ext(load) then, rollback. 4330 TPT.rollback(LastKnownGood); 4331 } 4332 // None of the extension can form an ext(load). 4333 LI = nullptr; 4334 Inst = nullptr; 4335 return false; 4336 } 4337 4338 /// Move a zext or sext fed by a load into the same basic block as the load, 4339 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 4340 /// extend into the load. 4341 /// \p I[in/out] the extension may be modified during the process if some 4342 /// promotions apply. 4343 /// 4344 bool CodeGenPrepare::moveExtToFormExtLoad(Instruction *&I) { 4345 // ExtLoad formation infrastructure requires TLI to be effective. 4346 if (!TLI) 4347 return false; 4348 4349 // Try to promote a chain of computation if it allows to form 4350 // an extended load. 4351 TypePromotionTransaction TPT; 4352 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4353 TPT.getRestorationPoint(); 4354 SmallVector<Instruction *, 1> Exts; 4355 Exts.push_back(I); 4356 // Look for a load being extended. 4357 LoadInst *LI = nullptr; 4358 Instruction *OldExt = I; 4359 bool HasPromoted = extLdPromotion(TPT, LI, I, Exts); 4360 if (!LI || !I) { 4361 assert(!HasPromoted && !LI && "If we did not match any load instruction " 4362 "the code must remain the same"); 4363 I = OldExt; 4364 return false; 4365 } 4366 4367 // If they're already in the same block, there's nothing to do. 4368 // Make the cheap checks first if we did not promote. 4369 // If we promoted, we need to check if it is indeed profitable. 4370 if (!HasPromoted && LI->getParent() == I->getParent()) 4371 return false; 4372 4373 EVT VT = TLI->getValueType(*DL, I->getType()); 4374 EVT LoadVT = TLI->getValueType(*DL, LI->getType()); 4375 4376 // If the load has other users and the truncate is not free, this probably 4377 // isn't worthwhile. 4378 if (!LI->hasOneUse() && 4379 (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) && 4380 !TLI->isTruncateFree(I->getType(), LI->getType())) { 4381 I = OldExt; 4382 TPT.rollback(LastKnownGood); 4383 return false; 4384 } 4385 4386 // Check whether the target supports casts folded into loads. 4387 unsigned LType; 4388 if (isa<ZExtInst>(I)) 4389 LType = ISD::ZEXTLOAD; 4390 else { 4391 assert(isa<SExtInst>(I) && "Unexpected ext type!"); 4392 LType = ISD::SEXTLOAD; 4393 } 4394 if (!TLI->isLoadExtLegal(LType, VT, LoadVT)) { 4395 I = OldExt; 4396 TPT.rollback(LastKnownGood); 4397 return false; 4398 } 4399 4400 // Move the extend into the same block as the load, so that SelectionDAG 4401 // can fold it. 4402 TPT.commit(); 4403 I->removeFromParent(); 4404 I->insertAfter(LI); 4405 // CGP does not check if the zext would be speculatively executed when moved 4406 // to the same basic block as the load. Preserving its original location would 4407 // pessimize the debugging experience, as well as negatively impact the 4408 // quality of sample pgo. We don't want to use "line 0" as that has a 4409 // size cost in the line-table section and logically the zext can be seen as 4410 // part of the load. Therefore we conservatively reuse the same debug location 4411 // for the load and the zext. 4412 I->setDebugLoc(LI->getDebugLoc()); 4413 ++NumExtsMoved; 4414 return true; 4415 } 4416 4417 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 4418 BasicBlock *DefBB = I->getParent(); 4419 4420 // If the result of a {s|z}ext and its source are both live out, rewrite all 4421 // other uses of the source with result of extension. 4422 Value *Src = I->getOperand(0); 4423 if (Src->hasOneUse()) 4424 return false; 4425 4426 // Only do this xform if truncating is free. 4427 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 4428 return false; 4429 4430 // Only safe to perform the optimization if the source is also defined in 4431 // this block. 4432 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 4433 return false; 4434 4435 bool DefIsLiveOut = false; 4436 for (User *U : I->users()) { 4437 Instruction *UI = cast<Instruction>(U); 4438 4439 // Figure out which BB this ext is used in. 4440 BasicBlock *UserBB = UI->getParent(); 4441 if (UserBB == DefBB) continue; 4442 DefIsLiveOut = true; 4443 break; 4444 } 4445 if (!DefIsLiveOut) 4446 return false; 4447 4448 // Make sure none of the uses are PHI nodes. 4449 for (User *U : Src->users()) { 4450 Instruction *UI = cast<Instruction>(U); 4451 BasicBlock *UserBB = UI->getParent(); 4452 if (UserBB == DefBB) continue; 4453 // Be conservative. We don't want this xform to end up introducing 4454 // reloads just before load / store instructions. 4455 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 4456 return false; 4457 } 4458 4459 // InsertedTruncs - Only insert one trunc in each block once. 4460 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 4461 4462 bool MadeChange = false; 4463 for (Use &U : Src->uses()) { 4464 Instruction *User = cast<Instruction>(U.getUser()); 4465 4466 // Figure out which BB this ext is used in. 4467 BasicBlock *UserBB = User->getParent(); 4468 if (UserBB == DefBB) continue; 4469 4470 // Both src and def are live in this block. Rewrite the use. 4471 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 4472 4473 if (!InsertedTrunc) { 4474 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 4475 assert(InsertPt != UserBB->end()); 4476 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 4477 InsertedInsts.insert(InsertedTrunc); 4478 } 4479 4480 // Replace a use of the {s|z}ext source with a use of the result. 4481 U = InsertedTrunc; 4482 ++NumExtUses; 4483 MadeChange = true; 4484 } 4485 4486 return MadeChange; 4487 } 4488 4489 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 4490 // just after the load if the target can fold this into one extload instruction, 4491 // with the hope of eliminating some of the other later "and" instructions using 4492 // the loaded value. "and"s that are made trivially redundant by the insertion 4493 // of the new "and" are removed by this function, while others (e.g. those whose 4494 // path from the load goes through a phi) are left for isel to potentially 4495 // remove. 4496 // 4497 // For example: 4498 // 4499 // b0: 4500 // x = load i32 4501 // ... 4502 // b1: 4503 // y = and x, 0xff 4504 // z = use y 4505 // 4506 // becomes: 4507 // 4508 // b0: 4509 // x = load i32 4510 // x' = and x, 0xff 4511 // ... 4512 // b1: 4513 // z = use x' 4514 // 4515 // whereas: 4516 // 4517 // b0: 4518 // x1 = load i32 4519 // ... 4520 // b1: 4521 // x2 = load i32 4522 // ... 4523 // b2: 4524 // x = phi x1, x2 4525 // y = and x, 0xff 4526 // 4527 // becomes (after a call to optimizeLoadExt for each load): 4528 // 4529 // b0: 4530 // x1 = load i32 4531 // x1' = and x1, 0xff 4532 // ... 4533 // b1: 4534 // x2 = load i32 4535 // x2' = and x2, 0xff 4536 // ... 4537 // b2: 4538 // x = phi x1', x2' 4539 // y = and x, 0xff 4540 // 4541 4542 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 4543 4544 if (!Load->isSimple() || 4545 !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy())) 4546 return false; 4547 4548 // Skip loads we've already transformed or have no reason to transform. 4549 if (Load->hasOneUse()) { 4550 User *LoadUser = *Load->user_begin(); 4551 if (cast<Instruction>(LoadUser)->getParent() == Load->getParent() && 4552 !dyn_cast<PHINode>(LoadUser)) 4553 return false; 4554 } 4555 4556 // Look at all uses of Load, looking through phis, to determine how many bits 4557 // of the loaded value are needed. 4558 SmallVector<Instruction *, 8> WorkList; 4559 SmallPtrSet<Instruction *, 16> Visited; 4560 SmallVector<Instruction *, 8> AndsToMaybeRemove; 4561 for (auto *U : Load->users()) 4562 WorkList.push_back(cast<Instruction>(U)); 4563 4564 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 4565 unsigned BitWidth = LoadResultVT.getSizeInBits(); 4566 APInt DemandBits(BitWidth, 0); 4567 APInt WidestAndBits(BitWidth, 0); 4568 4569 while (!WorkList.empty()) { 4570 Instruction *I = WorkList.back(); 4571 WorkList.pop_back(); 4572 4573 // Break use-def graph loops. 4574 if (!Visited.insert(I).second) 4575 continue; 4576 4577 // For a PHI node, push all of its users. 4578 if (auto *Phi = dyn_cast<PHINode>(I)) { 4579 for (auto *U : Phi->users()) 4580 WorkList.push_back(cast<Instruction>(U)); 4581 continue; 4582 } 4583 4584 switch (I->getOpcode()) { 4585 case llvm::Instruction::And: { 4586 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 4587 if (!AndC) 4588 return false; 4589 APInt AndBits = AndC->getValue(); 4590 DemandBits |= AndBits; 4591 // Keep track of the widest and mask we see. 4592 if (AndBits.ugt(WidestAndBits)) 4593 WidestAndBits = AndBits; 4594 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 4595 AndsToMaybeRemove.push_back(I); 4596 break; 4597 } 4598 4599 case llvm::Instruction::Shl: { 4600 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 4601 if (!ShlC) 4602 return false; 4603 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 4604 auto ShlDemandBits = APInt::getAllOnesValue(BitWidth).lshr(ShiftAmt); 4605 DemandBits |= ShlDemandBits; 4606 break; 4607 } 4608 4609 case llvm::Instruction::Trunc: { 4610 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 4611 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 4612 auto TruncBits = APInt::getAllOnesValue(TruncBitWidth).zext(BitWidth); 4613 DemandBits |= TruncBits; 4614 break; 4615 } 4616 4617 default: 4618 return false; 4619 } 4620 } 4621 4622 uint32_t ActiveBits = DemandBits.getActiveBits(); 4623 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 4624 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 4625 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 4626 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 4627 // followed by an AND. 4628 // TODO: Look into removing this restriction by fixing backends to either 4629 // return false for isLoadExtLegal for i1 or have them select this pattern to 4630 // a single instruction. 4631 // 4632 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 4633 // mask, since these are the only ands that will be removed by isel. 4634 if (ActiveBits <= 1 || !APIntOps::isMask(ActiveBits, DemandBits) || 4635 WidestAndBits != DemandBits) 4636 return false; 4637 4638 LLVMContext &Ctx = Load->getType()->getContext(); 4639 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 4640 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 4641 4642 // Reject cases that won't be matched as extloads. 4643 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 4644 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 4645 return false; 4646 4647 IRBuilder<> Builder(Load->getNextNode()); 4648 auto *NewAnd = dyn_cast<Instruction>( 4649 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 4650 4651 // Replace all uses of load with new and (except for the use of load in the 4652 // new and itself). 4653 Load->replaceAllUsesWith(NewAnd); 4654 NewAnd->setOperand(0, Load); 4655 4656 // Remove any and instructions that are now redundant. 4657 for (auto *And : AndsToMaybeRemove) 4658 // Check that the and mask is the same as the one we decided to put on the 4659 // new and. 4660 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 4661 And->replaceAllUsesWith(NewAnd); 4662 if (&*CurInstIterator == And) 4663 CurInstIterator = std::next(And->getIterator()); 4664 And->eraseFromParent(); 4665 ++NumAndUses; 4666 } 4667 4668 ++NumAndsAdded; 4669 return true; 4670 } 4671 4672 /// Check if V (an operand of a select instruction) is an expensive instruction 4673 /// that is only used once. 4674 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 4675 auto *I = dyn_cast<Instruction>(V); 4676 // If it's safe to speculatively execute, then it should not have side 4677 // effects; therefore, it's safe to sink and possibly *not* execute. 4678 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 4679 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 4680 } 4681 4682 /// Returns true if a SelectInst should be turned into an explicit branch. 4683 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 4684 const TargetLowering *TLI, 4685 SelectInst *SI) { 4686 // If even a predictable select is cheap, then a branch can't be cheaper. 4687 if (!TLI->isPredictableSelectExpensive()) 4688 return false; 4689 4690 // FIXME: This should use the same heuristics as IfConversion to determine 4691 // whether a select is better represented as a branch. 4692 4693 // If metadata tells us that the select condition is obviously predictable, 4694 // then we want to replace the select with a branch. 4695 uint64_t TrueWeight, FalseWeight; 4696 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 4697 uint64_t Max = std::max(TrueWeight, FalseWeight); 4698 uint64_t Sum = TrueWeight + FalseWeight; 4699 if (Sum != 0) { 4700 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 4701 if (Probability > TLI->getPredictableBranchThreshold()) 4702 return true; 4703 } 4704 } 4705 4706 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 4707 4708 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 4709 // comparison condition. If the compare has more than one use, there's 4710 // probably another cmov or setcc around, so it's not worth emitting a branch. 4711 if (!Cmp || !Cmp->hasOneUse()) 4712 return false; 4713 4714 // If either operand of the select is expensive and only needed on one side 4715 // of the select, we should form a branch. 4716 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 4717 sinkSelectOperand(TTI, SI->getFalseValue())) 4718 return true; 4719 4720 return false; 4721 } 4722 4723 /// If \p isTrue is true, return the true value of \p SI, otherwise return 4724 /// false value of \p SI. If the true/false value of \p SI is defined by any 4725 /// select instructions in \p Selects, look through the defining select 4726 /// instruction until the true/false value is not defined in \p Selects. 4727 static Value *getTrueOrFalseValue( 4728 SelectInst *SI, bool isTrue, 4729 const SmallPtrSet<const Instruction *, 2> &Selects) { 4730 Value *V; 4731 4732 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 4733 DefSI = dyn_cast<SelectInst>(V)) { 4734 assert(DefSI->getCondition() == SI->getCondition() && 4735 "The condition of DefSI does not match with SI"); 4736 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 4737 } 4738 return V; 4739 } 4740 4741 /// If we have a SelectInst that will likely profit from branch prediction, 4742 /// turn it into a branch. 4743 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 4744 // Find all consecutive select instructions that share the same condition. 4745 SmallVector<SelectInst *, 2> ASI; 4746 ASI.push_back(SI); 4747 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 4748 It != SI->getParent()->end(); ++It) { 4749 SelectInst *I = dyn_cast<SelectInst>(&*It); 4750 if (I && SI->getCondition() == I->getCondition()) { 4751 ASI.push_back(I); 4752 } else { 4753 break; 4754 } 4755 } 4756 4757 SelectInst *LastSI = ASI.back(); 4758 // Increment the current iterator to skip all the rest of select instructions 4759 // because they will be either "not lowered" or "all lowered" to branch. 4760 CurInstIterator = std::next(LastSI->getIterator()); 4761 4762 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 4763 4764 // Can we convert the 'select' to CF ? 4765 if (DisableSelectToBranch || OptSize || !TLI || VectorCond || 4766 SI->getMetadata(LLVMContext::MD_unpredictable)) 4767 return false; 4768 4769 TargetLowering::SelectSupportKind SelectKind; 4770 if (VectorCond) 4771 SelectKind = TargetLowering::VectorMaskSelect; 4772 else if (SI->getType()->isVectorTy()) 4773 SelectKind = TargetLowering::ScalarCondVectorVal; 4774 else 4775 SelectKind = TargetLowering::ScalarValSelect; 4776 4777 if (TLI->isSelectSupported(SelectKind) && 4778 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 4779 return false; 4780 4781 ModifiedDT = true; 4782 4783 // Transform a sequence like this: 4784 // start: 4785 // %cmp = cmp uge i32 %a, %b 4786 // %sel = select i1 %cmp, i32 %c, i32 %d 4787 // 4788 // Into: 4789 // start: 4790 // %cmp = cmp uge i32 %a, %b 4791 // br i1 %cmp, label %select.true, label %select.false 4792 // select.true: 4793 // br label %select.end 4794 // select.false: 4795 // br label %select.end 4796 // select.end: 4797 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 4798 // 4799 // In addition, we may sink instructions that produce %c or %d from 4800 // the entry block into the destination(s) of the new branch. 4801 // If the true or false blocks do not contain a sunken instruction, that 4802 // block and its branch may be optimized away. In that case, one side of the 4803 // first branch will point directly to select.end, and the corresponding PHI 4804 // predecessor block will be the start block. 4805 4806 // First, we split the block containing the select into 2 blocks. 4807 BasicBlock *StartBlock = SI->getParent(); 4808 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 4809 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 4810 4811 // Delete the unconditional branch that was just created by the split. 4812 StartBlock->getTerminator()->eraseFromParent(); 4813 4814 // These are the new basic blocks for the conditional branch. 4815 // At least one will become an actual new basic block. 4816 BasicBlock *TrueBlock = nullptr; 4817 BasicBlock *FalseBlock = nullptr; 4818 BranchInst *TrueBranch = nullptr; 4819 BranchInst *FalseBranch = nullptr; 4820 4821 // Sink expensive instructions into the conditional blocks to avoid executing 4822 // them speculatively. 4823 for (SelectInst *SI : ASI) { 4824 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 4825 if (TrueBlock == nullptr) { 4826 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 4827 EndBlock->getParent(), EndBlock); 4828 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 4829 } 4830 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 4831 TrueInst->moveBefore(TrueBranch); 4832 } 4833 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 4834 if (FalseBlock == nullptr) { 4835 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 4836 EndBlock->getParent(), EndBlock); 4837 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 4838 } 4839 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 4840 FalseInst->moveBefore(FalseBranch); 4841 } 4842 } 4843 4844 // If there was nothing to sink, then arbitrarily choose the 'false' side 4845 // for a new input value to the PHI. 4846 if (TrueBlock == FalseBlock) { 4847 assert(TrueBlock == nullptr && 4848 "Unexpected basic block transform while optimizing select"); 4849 4850 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 4851 EndBlock->getParent(), EndBlock); 4852 BranchInst::Create(EndBlock, FalseBlock); 4853 } 4854 4855 // Insert the real conditional branch based on the original condition. 4856 // If we did not create a new block for one of the 'true' or 'false' paths 4857 // of the condition, it means that side of the branch goes to the end block 4858 // directly and the path originates from the start block from the point of 4859 // view of the new PHI. 4860 BasicBlock *TT, *FT; 4861 if (TrueBlock == nullptr) { 4862 TT = EndBlock; 4863 FT = FalseBlock; 4864 TrueBlock = StartBlock; 4865 } else if (FalseBlock == nullptr) { 4866 TT = TrueBlock; 4867 FT = EndBlock; 4868 FalseBlock = StartBlock; 4869 } else { 4870 TT = TrueBlock; 4871 FT = FalseBlock; 4872 } 4873 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 4874 4875 SmallPtrSet<const Instruction *, 2> INS; 4876 INS.insert(ASI.begin(), ASI.end()); 4877 // Use reverse iterator because later select may use the value of the 4878 // earlier select, and we need to propagate value through earlier select 4879 // to get the PHI operand. 4880 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 4881 SelectInst *SI = *It; 4882 // The select itself is replaced with a PHI Node. 4883 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 4884 PN->takeName(SI); 4885 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 4886 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 4887 4888 SI->replaceAllUsesWith(PN); 4889 SI->eraseFromParent(); 4890 INS.erase(SI); 4891 ++NumSelectsExpanded; 4892 } 4893 4894 // Instruct OptimizeBlock to skip to the next block. 4895 CurInstIterator = StartBlock->end(); 4896 return true; 4897 } 4898 4899 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 4900 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 4901 int SplatElem = -1; 4902 for (unsigned i = 0; i < Mask.size(); ++i) { 4903 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 4904 return false; 4905 SplatElem = Mask[i]; 4906 } 4907 4908 return true; 4909 } 4910 4911 /// Some targets have expensive vector shifts if the lanes aren't all the same 4912 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 4913 /// it's often worth sinking a shufflevector splat down to its use so that 4914 /// codegen can spot all lanes are identical. 4915 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 4916 BasicBlock *DefBB = SVI->getParent(); 4917 4918 // Only do this xform if variable vector shifts are particularly expensive. 4919 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 4920 return false; 4921 4922 // We only expect better codegen by sinking a shuffle if we can recognise a 4923 // constant splat. 4924 if (!isBroadcastShuffle(SVI)) 4925 return false; 4926 4927 // InsertedShuffles - Only insert a shuffle in each block once. 4928 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 4929 4930 bool MadeChange = false; 4931 for (User *U : SVI->users()) { 4932 Instruction *UI = cast<Instruction>(U); 4933 4934 // Figure out which BB this ext is used in. 4935 BasicBlock *UserBB = UI->getParent(); 4936 if (UserBB == DefBB) continue; 4937 4938 // For now only apply this when the splat is used by a shift instruction. 4939 if (!UI->isShift()) continue; 4940 4941 // Everything checks out, sink the shuffle if the user's block doesn't 4942 // already have a copy. 4943 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 4944 4945 if (!InsertedShuffle) { 4946 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 4947 assert(InsertPt != UserBB->end()); 4948 InsertedShuffle = 4949 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 4950 SVI->getOperand(2), "", &*InsertPt); 4951 } 4952 4953 UI->replaceUsesOfWith(SVI, InsertedShuffle); 4954 MadeChange = true; 4955 } 4956 4957 // If we removed all uses, nuke the shuffle. 4958 if (SVI->use_empty()) { 4959 SVI->eraseFromParent(); 4960 MadeChange = true; 4961 } 4962 4963 return MadeChange; 4964 } 4965 4966 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 4967 if (!TLI || !DL) 4968 return false; 4969 4970 Value *Cond = SI->getCondition(); 4971 Type *OldType = Cond->getType(); 4972 LLVMContext &Context = Cond->getContext(); 4973 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 4974 unsigned RegWidth = RegType.getSizeInBits(); 4975 4976 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 4977 return false; 4978 4979 // If the register width is greater than the type width, expand the condition 4980 // of the switch instruction and each case constant to the width of the 4981 // register. By widening the type of the switch condition, subsequent 4982 // comparisons (for case comparisons) will not need to be extended to the 4983 // preferred register width, so we will potentially eliminate N-1 extends, 4984 // where N is the number of cases in the switch. 4985 auto *NewType = Type::getIntNTy(Context, RegWidth); 4986 4987 // Zero-extend the switch condition and case constants unless the switch 4988 // condition is a function argument that is already being sign-extended. 4989 // In that case, we can avoid an unnecessary mask/extension by sign-extending 4990 // everything instead. 4991 Instruction::CastOps ExtType = Instruction::ZExt; 4992 if (auto *Arg = dyn_cast<Argument>(Cond)) 4993 if (Arg->hasSExtAttr()) 4994 ExtType = Instruction::SExt; 4995 4996 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 4997 ExtInst->insertBefore(SI); 4998 SI->setCondition(ExtInst); 4999 for (SwitchInst::CaseIt Case : SI->cases()) { 5000 APInt NarrowConst = Case.getCaseValue()->getValue(); 5001 APInt WideConst = (ExtType == Instruction::ZExt) ? 5002 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 5003 Case.setValue(ConstantInt::get(Context, WideConst)); 5004 } 5005 5006 return true; 5007 } 5008 5009 namespace { 5010 /// \brief Helper class to promote a scalar operation to a vector one. 5011 /// This class is used to move downward extractelement transition. 5012 /// E.g., 5013 /// a = vector_op <2 x i32> 5014 /// b = extractelement <2 x i32> a, i32 0 5015 /// c = scalar_op b 5016 /// store c 5017 /// 5018 /// => 5019 /// a = vector_op <2 x i32> 5020 /// c = vector_op a (equivalent to scalar_op on the related lane) 5021 /// * d = extractelement <2 x i32> c, i32 0 5022 /// * store d 5023 /// Assuming both extractelement and store can be combine, we get rid of the 5024 /// transition. 5025 class VectorPromoteHelper { 5026 /// DataLayout associated with the current module. 5027 const DataLayout &DL; 5028 5029 /// Used to perform some checks on the legality of vector operations. 5030 const TargetLowering &TLI; 5031 5032 /// Used to estimated the cost of the promoted chain. 5033 const TargetTransformInfo &TTI; 5034 5035 /// The transition being moved downwards. 5036 Instruction *Transition; 5037 /// The sequence of instructions to be promoted. 5038 SmallVector<Instruction *, 4> InstsToBePromoted; 5039 /// Cost of combining a store and an extract. 5040 unsigned StoreExtractCombineCost; 5041 /// Instruction that will be combined with the transition. 5042 Instruction *CombineInst; 5043 5044 /// \brief The instruction that represents the current end of the transition. 5045 /// Since we are faking the promotion until we reach the end of the chain 5046 /// of computation, we need a way to get the current end of the transition. 5047 Instruction *getEndOfTransition() const { 5048 if (InstsToBePromoted.empty()) 5049 return Transition; 5050 return InstsToBePromoted.back(); 5051 } 5052 5053 /// \brief Return the index of the original value in the transition. 5054 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 5055 /// c, is at index 0. 5056 unsigned getTransitionOriginalValueIdx() const { 5057 assert(isa<ExtractElementInst>(Transition) && 5058 "Other kind of transitions are not supported yet"); 5059 return 0; 5060 } 5061 5062 /// \brief Return the index of the index in the transition. 5063 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 5064 /// is at index 1. 5065 unsigned getTransitionIdx() const { 5066 assert(isa<ExtractElementInst>(Transition) && 5067 "Other kind of transitions are not supported yet"); 5068 return 1; 5069 } 5070 5071 /// \brief Get the type of the transition. 5072 /// This is the type of the original value. 5073 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 5074 /// transition is <2 x i32>. 5075 Type *getTransitionType() const { 5076 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 5077 } 5078 5079 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 5080 /// I.e., we have the following sequence: 5081 /// Def = Transition <ty1> a to <ty2> 5082 /// b = ToBePromoted <ty2> Def, ... 5083 /// => 5084 /// b = ToBePromoted <ty1> a, ... 5085 /// Def = Transition <ty1> ToBePromoted to <ty2> 5086 void promoteImpl(Instruction *ToBePromoted); 5087 5088 /// \brief Check whether or not it is profitable to promote all the 5089 /// instructions enqueued to be promoted. 5090 bool isProfitableToPromote() { 5091 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 5092 unsigned Index = isa<ConstantInt>(ValIdx) 5093 ? cast<ConstantInt>(ValIdx)->getZExtValue() 5094 : -1; 5095 Type *PromotedType = getTransitionType(); 5096 5097 StoreInst *ST = cast<StoreInst>(CombineInst); 5098 unsigned AS = ST->getPointerAddressSpace(); 5099 unsigned Align = ST->getAlignment(); 5100 // Check if this store is supported. 5101 if (!TLI.allowsMisalignedMemoryAccesses( 5102 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 5103 Align)) { 5104 // If this is not supported, there is no way we can combine 5105 // the extract with the store. 5106 return false; 5107 } 5108 5109 // The scalar chain of computation has to pay for the transition 5110 // scalar to vector. 5111 // The vector chain has to account for the combining cost. 5112 uint64_t ScalarCost = 5113 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 5114 uint64_t VectorCost = StoreExtractCombineCost; 5115 for (const auto &Inst : InstsToBePromoted) { 5116 // Compute the cost. 5117 // By construction, all instructions being promoted are arithmetic ones. 5118 // Moreover, one argument is a constant that can be viewed as a splat 5119 // constant. 5120 Value *Arg0 = Inst->getOperand(0); 5121 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 5122 isa<ConstantFP>(Arg0); 5123 TargetTransformInfo::OperandValueKind Arg0OVK = 5124 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5125 : TargetTransformInfo::OK_AnyValue; 5126 TargetTransformInfo::OperandValueKind Arg1OVK = 5127 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5128 : TargetTransformInfo::OK_AnyValue; 5129 ScalarCost += TTI.getArithmeticInstrCost( 5130 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 5131 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 5132 Arg0OVK, Arg1OVK); 5133 } 5134 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 5135 << ScalarCost << "\nVector: " << VectorCost << '\n'); 5136 return ScalarCost > VectorCost; 5137 } 5138 5139 /// \brief Generate a constant vector with \p Val with the same 5140 /// number of elements as the transition. 5141 /// \p UseSplat defines whether or not \p Val should be replicated 5142 /// across the whole vector. 5143 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 5144 /// otherwise we generate a vector with as many undef as possible: 5145 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 5146 /// used at the index of the extract. 5147 Value *getConstantVector(Constant *Val, bool UseSplat) const { 5148 unsigned ExtractIdx = UINT_MAX; 5149 if (!UseSplat) { 5150 // If we cannot determine where the constant must be, we have to 5151 // use a splat constant. 5152 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 5153 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 5154 ExtractIdx = CstVal->getSExtValue(); 5155 else 5156 UseSplat = true; 5157 } 5158 5159 unsigned End = getTransitionType()->getVectorNumElements(); 5160 if (UseSplat) 5161 return ConstantVector::getSplat(End, Val); 5162 5163 SmallVector<Constant *, 4> ConstVec; 5164 UndefValue *UndefVal = UndefValue::get(Val->getType()); 5165 for (unsigned Idx = 0; Idx != End; ++Idx) { 5166 if (Idx == ExtractIdx) 5167 ConstVec.push_back(Val); 5168 else 5169 ConstVec.push_back(UndefVal); 5170 } 5171 return ConstantVector::get(ConstVec); 5172 } 5173 5174 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 5175 /// in \p Use can trigger undefined behavior. 5176 static bool canCauseUndefinedBehavior(const Instruction *Use, 5177 unsigned OperandIdx) { 5178 // This is not safe to introduce undef when the operand is on 5179 // the right hand side of a division-like instruction. 5180 if (OperandIdx != 1) 5181 return false; 5182 switch (Use->getOpcode()) { 5183 default: 5184 return false; 5185 case Instruction::SDiv: 5186 case Instruction::UDiv: 5187 case Instruction::SRem: 5188 case Instruction::URem: 5189 return true; 5190 case Instruction::FDiv: 5191 case Instruction::FRem: 5192 return !Use->hasNoNaNs(); 5193 } 5194 llvm_unreachable(nullptr); 5195 } 5196 5197 public: 5198 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 5199 const TargetTransformInfo &TTI, Instruction *Transition, 5200 unsigned CombineCost) 5201 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 5202 StoreExtractCombineCost(CombineCost), CombineInst(nullptr) { 5203 assert(Transition && "Do not know how to promote null"); 5204 } 5205 5206 /// \brief Check if we can promote \p ToBePromoted to \p Type. 5207 bool canPromote(const Instruction *ToBePromoted) const { 5208 // We could support CastInst too. 5209 return isa<BinaryOperator>(ToBePromoted); 5210 } 5211 5212 /// \brief Check if it is profitable to promote \p ToBePromoted 5213 /// by moving downward the transition through. 5214 bool shouldPromote(const Instruction *ToBePromoted) const { 5215 // Promote only if all the operands can be statically expanded. 5216 // Indeed, we do not want to introduce any new kind of transitions. 5217 for (const Use &U : ToBePromoted->operands()) { 5218 const Value *Val = U.get(); 5219 if (Val == getEndOfTransition()) { 5220 // If the use is a division and the transition is on the rhs, 5221 // we cannot promote the operation, otherwise we may create a 5222 // division by zero. 5223 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 5224 return false; 5225 continue; 5226 } 5227 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 5228 !isa<ConstantFP>(Val)) 5229 return false; 5230 } 5231 // Check that the resulting operation is legal. 5232 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 5233 if (!ISDOpcode) 5234 return false; 5235 return StressStoreExtract || 5236 TLI.isOperationLegalOrCustom( 5237 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 5238 } 5239 5240 /// \brief Check whether or not \p Use can be combined 5241 /// with the transition. 5242 /// I.e., is it possible to do Use(Transition) => AnotherUse? 5243 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 5244 5245 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 5246 void enqueueForPromotion(Instruction *ToBePromoted) { 5247 InstsToBePromoted.push_back(ToBePromoted); 5248 } 5249 5250 /// \brief Set the instruction that will be combined with the transition. 5251 void recordCombineInstruction(Instruction *ToBeCombined) { 5252 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 5253 CombineInst = ToBeCombined; 5254 } 5255 5256 /// \brief Promote all the instructions enqueued for promotion if it is 5257 /// is profitable. 5258 /// \return True if the promotion happened, false otherwise. 5259 bool promote() { 5260 // Check if there is something to promote. 5261 // Right now, if we do not have anything to combine with, 5262 // we assume the promotion is not profitable. 5263 if (InstsToBePromoted.empty() || !CombineInst) 5264 return false; 5265 5266 // Check cost. 5267 if (!StressStoreExtract && !isProfitableToPromote()) 5268 return false; 5269 5270 // Promote. 5271 for (auto &ToBePromoted : InstsToBePromoted) 5272 promoteImpl(ToBePromoted); 5273 InstsToBePromoted.clear(); 5274 return true; 5275 } 5276 }; 5277 } // End of anonymous namespace. 5278 5279 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 5280 // At this point, we know that all the operands of ToBePromoted but Def 5281 // can be statically promoted. 5282 // For Def, we need to use its parameter in ToBePromoted: 5283 // b = ToBePromoted ty1 a 5284 // Def = Transition ty1 b to ty2 5285 // Move the transition down. 5286 // 1. Replace all uses of the promoted operation by the transition. 5287 // = ... b => = ... Def. 5288 assert(ToBePromoted->getType() == Transition->getType() && 5289 "The type of the result of the transition does not match " 5290 "the final type"); 5291 ToBePromoted->replaceAllUsesWith(Transition); 5292 // 2. Update the type of the uses. 5293 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 5294 Type *TransitionTy = getTransitionType(); 5295 ToBePromoted->mutateType(TransitionTy); 5296 // 3. Update all the operands of the promoted operation with promoted 5297 // operands. 5298 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 5299 for (Use &U : ToBePromoted->operands()) { 5300 Value *Val = U.get(); 5301 Value *NewVal = nullptr; 5302 if (Val == Transition) 5303 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 5304 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 5305 isa<ConstantFP>(Val)) { 5306 // Use a splat constant if it is not safe to use undef. 5307 NewVal = getConstantVector( 5308 cast<Constant>(Val), 5309 isa<UndefValue>(Val) || 5310 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 5311 } else 5312 llvm_unreachable("Did you modified shouldPromote and forgot to update " 5313 "this?"); 5314 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 5315 } 5316 Transition->removeFromParent(); 5317 Transition->insertAfter(ToBePromoted); 5318 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 5319 } 5320 5321 /// Some targets can do store(extractelement) with one instruction. 5322 /// Try to push the extractelement towards the stores when the target 5323 /// has this feature and this is profitable. 5324 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 5325 unsigned CombineCost = UINT_MAX; 5326 if (DisableStoreExtract || !TLI || 5327 (!StressStoreExtract && 5328 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 5329 Inst->getOperand(1), CombineCost))) 5330 return false; 5331 5332 // At this point we know that Inst is a vector to scalar transition. 5333 // Try to move it down the def-use chain, until: 5334 // - We can combine the transition with its single use 5335 // => we got rid of the transition. 5336 // - We escape the current basic block 5337 // => we would need to check that we are moving it at a cheaper place and 5338 // we do not do that for now. 5339 BasicBlock *Parent = Inst->getParent(); 5340 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 5341 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 5342 // If the transition has more than one use, assume this is not going to be 5343 // beneficial. 5344 while (Inst->hasOneUse()) { 5345 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 5346 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 5347 5348 if (ToBePromoted->getParent() != Parent) { 5349 DEBUG(dbgs() << "Instruction to promote is in a different block (" 5350 << ToBePromoted->getParent()->getName() 5351 << ") than the transition (" << Parent->getName() << ").\n"); 5352 return false; 5353 } 5354 5355 if (VPH.canCombine(ToBePromoted)) { 5356 DEBUG(dbgs() << "Assume " << *Inst << '\n' 5357 << "will be combined with: " << *ToBePromoted << '\n'); 5358 VPH.recordCombineInstruction(ToBePromoted); 5359 bool Changed = VPH.promote(); 5360 NumStoreExtractExposed += Changed; 5361 return Changed; 5362 } 5363 5364 DEBUG(dbgs() << "Try promoting.\n"); 5365 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 5366 return false; 5367 5368 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 5369 5370 VPH.enqueueForPromotion(ToBePromoted); 5371 Inst = ToBePromoted; 5372 } 5373 return false; 5374 } 5375 5376 /// For the instruction sequence of store below, F and I values 5377 /// are bundled together as an i64 value before being stored into memory. 5378 /// Sometimes it is more efficent to generate separate stores for F and I, 5379 /// which can remove the bitwise instructions or sink them to colder places. 5380 /// 5381 /// (store (or (zext (bitcast F to i32) to i64), 5382 /// (shl (zext I to i64), 32)), addr) --> 5383 /// (store F, addr) and (store I, addr+4) 5384 /// 5385 /// Similarly, splitting for other merged store can also be beneficial, like: 5386 /// For pair of {i32, i32}, i64 store --> two i32 stores. 5387 /// For pair of {i32, i16}, i64 store --> two i32 stores. 5388 /// For pair of {i16, i16}, i32 store --> two i16 stores. 5389 /// For pair of {i16, i8}, i32 store --> two i16 stores. 5390 /// For pair of {i8, i8}, i16 store --> two i8 stores. 5391 /// 5392 /// We allow each target to determine specifically which kind of splitting is 5393 /// supported. 5394 /// 5395 /// The store patterns are commonly seen from the simple code snippet below 5396 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 5397 /// void goo(const std::pair<int, float> &); 5398 /// hoo() { 5399 /// ... 5400 /// goo(std::make_pair(tmp, ftmp)); 5401 /// ... 5402 /// } 5403 /// 5404 /// Although we already have similar splitting in DAG Combine, we duplicate 5405 /// it in CodeGenPrepare to catch the case in which pattern is across 5406 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 5407 /// during code expansion. 5408 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 5409 const TargetLowering &TLI) { 5410 // Handle simple but common cases only. 5411 Type *StoreType = SI.getValueOperand()->getType(); 5412 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || 5413 DL.getTypeSizeInBits(StoreType) == 0) 5414 return false; 5415 5416 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 5417 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 5418 if (DL.getTypeStoreSizeInBits(SplitStoreType) != 5419 DL.getTypeSizeInBits(SplitStoreType)) 5420 return false; 5421 5422 // Match the following patterns: 5423 // (store (or (zext LValue to i64), 5424 // (shl (zext HValue to i64), 32)), HalfValBitSize) 5425 // or 5426 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 5427 // (zext LValue to i64), 5428 // Expect both operands of OR and the first operand of SHL have only 5429 // one use. 5430 Value *LValue, *HValue; 5431 if (!match(SI.getValueOperand(), 5432 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 5433 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 5434 m_SpecificInt(HalfValBitSize)))))) 5435 return false; 5436 5437 // Check LValue and HValue are int with size less or equal than 32. 5438 if (!LValue->getType()->isIntegerTy() || 5439 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 5440 !HValue->getType()->isIntegerTy() || 5441 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 5442 return false; 5443 5444 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 5445 // as the input of target query. 5446 auto *LBC = dyn_cast<BitCastInst>(LValue); 5447 auto *HBC = dyn_cast<BitCastInst>(HValue); 5448 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 5449 : EVT::getEVT(LValue->getType()); 5450 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 5451 : EVT::getEVT(HValue->getType()); 5452 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 5453 return false; 5454 5455 // Start to split store. 5456 IRBuilder<> Builder(SI.getContext()); 5457 Builder.SetInsertPoint(&SI); 5458 5459 // If LValue/HValue is a bitcast in another BB, create a new one in current 5460 // BB so it may be merged with the splitted stores by dag combiner. 5461 if (LBC && LBC->getParent() != SI.getParent()) 5462 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 5463 if (HBC && HBC->getParent() != SI.getParent()) 5464 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 5465 5466 auto CreateSplitStore = [&](Value *V, bool Upper) { 5467 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 5468 Value *Addr = Builder.CreateBitCast( 5469 SI.getOperand(1), 5470 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 5471 if (Upper) 5472 Addr = Builder.CreateGEP( 5473 SplitStoreType, Addr, 5474 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 5475 Builder.CreateAlignedStore( 5476 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 5477 }; 5478 5479 CreateSplitStore(LValue, false); 5480 CreateSplitStore(HValue, true); 5481 5482 // Delete the old store. 5483 SI.eraseFromParent(); 5484 return true; 5485 } 5486 5487 bool CodeGenPrepare::optimizeInst(Instruction *I, bool& ModifiedDT) { 5488 // Bail out if we inserted the instruction to prevent optimizations from 5489 // stepping on each other's toes. 5490 if (InsertedInsts.count(I)) 5491 return false; 5492 5493 if (PHINode *P = dyn_cast<PHINode>(I)) { 5494 // It is possible for very late stage optimizations (such as SimplifyCFG) 5495 // to introduce PHI nodes too late to be cleaned up. If we detect such a 5496 // trivial PHI, go ahead and zap it here. 5497 if (Value *V = SimplifyInstruction(P, *DL, TLInfo, nullptr)) { 5498 P->replaceAllUsesWith(V); 5499 P->eraseFromParent(); 5500 ++NumPHIsElim; 5501 return true; 5502 } 5503 return false; 5504 } 5505 5506 if (CastInst *CI = dyn_cast<CastInst>(I)) { 5507 // If the source of the cast is a constant, then this should have 5508 // already been constant folded. The only reason NOT to constant fold 5509 // it is if something (e.g. LSR) was careful to place the constant 5510 // evaluation in a block other than then one that uses it (e.g. to hoist 5511 // the address of globals out of a loop). If this is the case, we don't 5512 // want to forward-subst the cast. 5513 if (isa<Constant>(CI->getOperand(0))) 5514 return false; 5515 5516 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 5517 return true; 5518 5519 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 5520 /// Sink a zext or sext into its user blocks if the target type doesn't 5521 /// fit in one register 5522 if (TLI && 5523 TLI->getTypeAction(CI->getContext(), 5524 TLI->getValueType(*DL, CI->getType())) == 5525 TargetLowering::TypeExpandInteger) { 5526 return SinkCast(CI); 5527 } else { 5528 bool MadeChange = moveExtToFormExtLoad(I); 5529 return MadeChange | optimizeExtUses(I); 5530 } 5531 } 5532 return false; 5533 } 5534 5535 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5536 if (!TLI || !TLI->hasMultipleConditionRegisters()) 5537 return OptimizeCmpExpression(CI, TLI); 5538 5539 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5540 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 5541 if (TLI) { 5542 bool Modified = optimizeLoadExt(LI); 5543 unsigned AS = LI->getPointerAddressSpace(); 5544 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 5545 return Modified; 5546 } 5547 return false; 5548 } 5549 5550 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 5551 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 5552 return true; 5553 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 5554 if (TLI) { 5555 unsigned AS = SI->getPointerAddressSpace(); 5556 return optimizeMemoryInst(I, SI->getOperand(1), 5557 SI->getOperand(0)->getType(), AS); 5558 } 5559 return false; 5560 } 5561 5562 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 5563 5564 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 5565 BinOp->getOpcode() == Instruction::LShr)) { 5566 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 5567 if (TLI && CI && TLI->hasExtractBitsInsn()) 5568 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 5569 5570 return false; 5571 } 5572 5573 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 5574 if (GEPI->hasAllZeroIndices()) { 5575 /// The GEP operand must be a pointer, so must its result -> BitCast 5576 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 5577 GEPI->getName(), GEPI); 5578 GEPI->replaceAllUsesWith(NC); 5579 GEPI->eraseFromParent(); 5580 ++NumGEPsElim; 5581 optimizeInst(NC, ModifiedDT); 5582 return true; 5583 } 5584 return false; 5585 } 5586 5587 if (CallInst *CI = dyn_cast<CallInst>(I)) 5588 return optimizeCallInst(CI, ModifiedDT); 5589 5590 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 5591 return optimizeSelectInst(SI); 5592 5593 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 5594 return optimizeShuffleVectorInst(SVI); 5595 5596 if (auto *Switch = dyn_cast<SwitchInst>(I)) 5597 return optimizeSwitchInst(Switch); 5598 5599 if (isa<ExtractElementInst>(I)) 5600 return optimizeExtractElementInst(I); 5601 5602 return false; 5603 } 5604 5605 /// Given an OR instruction, check to see if this is a bitreverse 5606 /// idiom. If so, insert the new intrinsic and return true. 5607 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 5608 const TargetLowering &TLI) { 5609 if (!I.getType()->isIntegerTy() || 5610 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 5611 TLI.getValueType(DL, I.getType(), true))) 5612 return false; 5613 5614 SmallVector<Instruction*, 4> Insts; 5615 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 5616 return false; 5617 Instruction *LastInst = Insts.back(); 5618 I.replaceAllUsesWith(LastInst); 5619 RecursivelyDeleteTriviallyDeadInstructions(&I); 5620 return true; 5621 } 5622 5623 // In this pass we look for GEP and cast instructions that are used 5624 // across basic blocks and rewrite them to improve basic-block-at-a-time 5625 // selection. 5626 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool& ModifiedDT) { 5627 SunkAddrs.clear(); 5628 bool MadeChange = false; 5629 5630 CurInstIterator = BB.begin(); 5631 while (CurInstIterator != BB.end()) { 5632 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 5633 if (ModifiedDT) 5634 return true; 5635 } 5636 5637 bool MadeBitReverse = true; 5638 while (TLI && MadeBitReverse) { 5639 MadeBitReverse = false; 5640 for (auto &I : reverse(BB)) { 5641 if (makeBitReverse(I, *DL, *TLI)) { 5642 MadeBitReverse = MadeChange = true; 5643 ModifiedDT = true; 5644 break; 5645 } 5646 } 5647 } 5648 MadeChange |= dupRetToEnableTailCallOpts(&BB); 5649 5650 return MadeChange; 5651 } 5652 5653 // llvm.dbg.value is far away from the value then iSel may not be able 5654 // handle it properly. iSel will drop llvm.dbg.value if it can not 5655 // find a node corresponding to the value. 5656 bool CodeGenPrepare::placeDbgValues(Function &F) { 5657 bool MadeChange = false; 5658 for (BasicBlock &BB : F) { 5659 Instruction *PrevNonDbgInst = nullptr; 5660 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 5661 Instruction *Insn = &*BI++; 5662 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 5663 // Leave dbg.values that refer to an alloca alone. These 5664 // instrinsics describe the address of a variable (= the alloca) 5665 // being taken. They should not be moved next to the alloca 5666 // (and to the beginning of the scope), but rather stay close to 5667 // where said address is used. 5668 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 5669 PrevNonDbgInst = Insn; 5670 continue; 5671 } 5672 5673 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 5674 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 5675 // If VI is a phi in a block with an EHPad terminator, we can't insert 5676 // after it. 5677 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 5678 continue; 5679 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 5680 DVI->removeFromParent(); 5681 if (isa<PHINode>(VI)) 5682 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 5683 else 5684 DVI->insertAfter(VI); 5685 MadeChange = true; 5686 ++NumDbgValueMoved; 5687 } 5688 } 5689 } 5690 return MadeChange; 5691 } 5692 5693 // If there is a sequence that branches based on comparing a single bit 5694 // against zero that can be combined into a single instruction, and the 5695 // target supports folding these into a single instruction, sink the 5696 // mask and compare into the branch uses. Do this before OptimizeBlock -> 5697 // OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being 5698 // searched for. 5699 bool CodeGenPrepare::sinkAndCmp(Function &F) { 5700 if (!EnableAndCmpSinking) 5701 return false; 5702 if (!TLI || !TLI->isMaskAndBranchFoldingLegal()) 5703 return false; 5704 bool MadeChange = false; 5705 for (BasicBlock &BB : F) { 5706 // Does this BB end with the following? 5707 // %andVal = and %val, #single-bit-set 5708 // %icmpVal = icmp %andResult, 0 5709 // br i1 %cmpVal label %dest1, label %dest2" 5710 BranchInst *Brcc = dyn_cast<BranchInst>(BB.getTerminator()); 5711 if (!Brcc || !Brcc->isConditional()) 5712 continue; 5713 ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0)); 5714 if (!Cmp || Cmp->getParent() != &BB) 5715 continue; 5716 ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 5717 if (!Zero || !Zero->isZero()) 5718 continue; 5719 Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0)); 5720 if (!And || And->getOpcode() != Instruction::And || And->getParent() != &BB) 5721 continue; 5722 ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1)); 5723 if (!Mask || !Mask->getUniqueInteger().isPowerOf2()) 5724 continue; 5725 DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB.dump()); 5726 5727 // Push the "and; icmp" for any users that are conditional branches. 5728 // Since there can only be one branch use per BB, we don't need to keep 5729 // track of which BBs we insert into. 5730 for (Use &TheUse : Cmp->uses()) { 5731 // Find brcc use. 5732 BranchInst *BrccUser = dyn_cast<BranchInst>(TheUse); 5733 if (!BrccUser || !BrccUser->isConditional()) 5734 continue; 5735 BasicBlock *UserBB = BrccUser->getParent(); 5736 if (UserBB == &BB) continue; 5737 DEBUG(dbgs() << "found Brcc use\n"); 5738 5739 // Sink the "and; icmp" to use. 5740 MadeChange = true; 5741 BinaryOperator *NewAnd = 5742 BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "", 5743 BrccUser); 5744 CmpInst *NewCmp = 5745 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero, 5746 "", BrccUser); 5747 TheUse = NewCmp; 5748 ++NumAndCmpsMoved; 5749 DEBUG(BrccUser->getParent()->dump()); 5750 } 5751 } 5752 return MadeChange; 5753 } 5754 5755 /// \brief Scale down both weights to fit into uint32_t. 5756 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 5757 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 5758 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 5759 NewTrue = NewTrue / Scale; 5760 NewFalse = NewFalse / Scale; 5761 } 5762 5763 /// \brief Some targets prefer to split a conditional branch like: 5764 /// \code 5765 /// %0 = icmp ne i32 %a, 0 5766 /// %1 = icmp ne i32 %b, 0 5767 /// %or.cond = or i1 %0, %1 5768 /// br i1 %or.cond, label %TrueBB, label %FalseBB 5769 /// \endcode 5770 /// into multiple branch instructions like: 5771 /// \code 5772 /// bb1: 5773 /// %0 = icmp ne i32 %a, 0 5774 /// br i1 %0, label %TrueBB, label %bb2 5775 /// bb2: 5776 /// %1 = icmp ne i32 %b, 0 5777 /// br i1 %1, label %TrueBB, label %FalseBB 5778 /// \endcode 5779 /// This usually allows instruction selection to do even further optimizations 5780 /// and combine the compare with the branch instruction. Currently this is 5781 /// applied for targets which have "cheap" jump instructions. 5782 /// 5783 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 5784 /// 5785 bool CodeGenPrepare::splitBranchCondition(Function &F) { 5786 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 5787 return false; 5788 5789 bool MadeChange = false; 5790 for (auto &BB : F) { 5791 // Does this BB end with the following? 5792 // %cond1 = icmp|fcmp|binary instruction ... 5793 // %cond2 = icmp|fcmp|binary instruction ... 5794 // %cond.or = or|and i1 %cond1, cond2 5795 // br i1 %cond.or label %dest1, label %dest2" 5796 BinaryOperator *LogicOp; 5797 BasicBlock *TBB, *FBB; 5798 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 5799 continue; 5800 5801 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 5802 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 5803 continue; 5804 5805 unsigned Opc; 5806 Value *Cond1, *Cond2; 5807 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 5808 m_OneUse(m_Value(Cond2))))) 5809 Opc = Instruction::And; 5810 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 5811 m_OneUse(m_Value(Cond2))))) 5812 Opc = Instruction::Or; 5813 else 5814 continue; 5815 5816 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 5817 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 5818 continue; 5819 5820 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 5821 5822 // Create a new BB. 5823 auto TmpBB = 5824 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 5825 BB.getParent(), BB.getNextNode()); 5826 5827 // Update original basic block by using the first condition directly by the 5828 // branch instruction and removing the no longer needed and/or instruction. 5829 Br1->setCondition(Cond1); 5830 LogicOp->eraseFromParent(); 5831 5832 // Depending on the conditon we have to either replace the true or the false 5833 // successor of the original branch instruction. 5834 if (Opc == Instruction::And) 5835 Br1->setSuccessor(0, TmpBB); 5836 else 5837 Br1->setSuccessor(1, TmpBB); 5838 5839 // Fill in the new basic block. 5840 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 5841 if (auto *I = dyn_cast<Instruction>(Cond2)) { 5842 I->removeFromParent(); 5843 I->insertBefore(Br2); 5844 } 5845 5846 // Update PHI nodes in both successors. The original BB needs to be 5847 // replaced in one succesor's PHI nodes, because the branch comes now from 5848 // the newly generated BB (NewBB). In the other successor we need to add one 5849 // incoming edge to the PHI nodes, because both branch instructions target 5850 // now the same successor. Depending on the original branch condition 5851 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 5852 // we perform the correct update for the PHI nodes. 5853 // This doesn't change the successor order of the just created branch 5854 // instruction (or any other instruction). 5855 if (Opc == Instruction::Or) 5856 std::swap(TBB, FBB); 5857 5858 // Replace the old BB with the new BB. 5859 for (auto &I : *TBB) { 5860 PHINode *PN = dyn_cast<PHINode>(&I); 5861 if (!PN) 5862 break; 5863 int i; 5864 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 5865 PN->setIncomingBlock(i, TmpBB); 5866 } 5867 5868 // Add another incoming edge form the new BB. 5869 for (auto &I : *FBB) { 5870 PHINode *PN = dyn_cast<PHINode>(&I); 5871 if (!PN) 5872 break; 5873 auto *Val = PN->getIncomingValueForBlock(&BB); 5874 PN->addIncoming(Val, TmpBB); 5875 } 5876 5877 // Update the branch weights (from SelectionDAGBuilder:: 5878 // FindMergedConditions). 5879 if (Opc == Instruction::Or) { 5880 // Codegen X | Y as: 5881 // BB1: 5882 // jmp_if_X TBB 5883 // jmp TmpBB 5884 // TmpBB: 5885 // jmp_if_Y TBB 5886 // jmp FBB 5887 // 5888 5889 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 5890 // The requirement is that 5891 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 5892 // = TrueProb for orignal BB. 5893 // Assuming the orignal weights are A and B, one choice is to set BB1's 5894 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 5895 // assumes that 5896 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 5897 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 5898 // TmpBB, but the math is more complicated. 5899 uint64_t TrueWeight, FalseWeight; 5900 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 5901 uint64_t NewTrueWeight = TrueWeight; 5902 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 5903 scaleWeights(NewTrueWeight, NewFalseWeight); 5904 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 5905 .createBranchWeights(TrueWeight, FalseWeight)); 5906 5907 NewTrueWeight = TrueWeight; 5908 NewFalseWeight = 2 * FalseWeight; 5909 scaleWeights(NewTrueWeight, NewFalseWeight); 5910 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 5911 .createBranchWeights(TrueWeight, FalseWeight)); 5912 } 5913 } else { 5914 // Codegen X & Y as: 5915 // BB1: 5916 // jmp_if_X TmpBB 5917 // jmp FBB 5918 // TmpBB: 5919 // jmp_if_Y TBB 5920 // jmp FBB 5921 // 5922 // This requires creation of TmpBB after CurBB. 5923 5924 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 5925 // The requirement is that 5926 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 5927 // = FalseProb for orignal BB. 5928 // Assuming the orignal weights are A and B, one choice is to set BB1's 5929 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 5930 // assumes that 5931 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 5932 uint64_t TrueWeight, FalseWeight; 5933 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 5934 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 5935 uint64_t NewFalseWeight = FalseWeight; 5936 scaleWeights(NewTrueWeight, NewFalseWeight); 5937 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 5938 .createBranchWeights(TrueWeight, FalseWeight)); 5939 5940 NewTrueWeight = 2 * TrueWeight; 5941 NewFalseWeight = FalseWeight; 5942 scaleWeights(NewTrueWeight, NewFalseWeight); 5943 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 5944 .createBranchWeights(TrueWeight, FalseWeight)); 5945 } 5946 } 5947 5948 // Note: No point in getting fancy here, since the DT info is never 5949 // available to CodeGenPrepare. 5950 ModifiedDT = true; 5951 5952 MadeChange = true; 5953 5954 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 5955 TmpBB->dump()); 5956 } 5957 return MadeChange; 5958 } 5959