1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/InstructionSimplify.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/ProfileSummaryInfo.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/Analysis/VectorUtils.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/ISDOpcodes.h" 35 #include "llvm/CodeGen/SelectionDAGNodes.h" 36 #include "llvm/CodeGen/TargetLowering.h" 37 #include "llvm/CodeGen/TargetPassConfig.h" 38 #include "llvm/CodeGen/TargetSubtargetInfo.h" 39 #include "llvm/CodeGen/ValueTypes.h" 40 #include "llvm/Config/llvm-config.h" 41 #include "llvm/IR/Argument.h" 42 #include "llvm/IR/Attributes.h" 43 #include "llvm/IR/BasicBlock.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfo.h" 48 #include "llvm/IR/DerivedTypes.h" 49 #include "llvm/IR/Dominators.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/GetElementPtrTypeIterator.h" 52 #include "llvm/IR/GlobalValue.h" 53 #include "llvm/IR/GlobalVariable.h" 54 #include "llvm/IR/IRBuilder.h" 55 #include "llvm/IR/InlineAsm.h" 56 #include "llvm/IR/InstrTypes.h" 57 #include "llvm/IR/Instruction.h" 58 #include "llvm/IR/Instructions.h" 59 #include "llvm/IR/IntrinsicInst.h" 60 #include "llvm/IR/Intrinsics.h" 61 #include "llvm/IR/IntrinsicsAArch64.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/Operator.h" 66 #include "llvm/IR/PatternMatch.h" 67 #include "llvm/IR/Statepoint.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/IR/ValueMap.h" 74 #include "llvm/InitializePasses.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/BlockFrequency.h" 77 #include "llvm/Support/BranchProbability.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/MachineValueType.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Target/TargetMachine.h" 87 #include "llvm/Target/TargetOptions.h" 88 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 89 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 90 #include "llvm/Transforms/Utils/Local.h" 91 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 92 #include "llvm/Transforms/Utils/SizeOpts.h" 93 #include <algorithm> 94 #include <cassert> 95 #include <cstdint> 96 #include <iterator> 97 #include <limits> 98 #include <memory> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 using namespace llvm::PatternMatch; 104 105 #define DEBUG_TYPE "codegenprepare" 106 107 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 108 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 109 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 110 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 111 "sunken Cmps"); 112 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 113 "of sunken Casts"); 114 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 115 "computations were sunk"); 116 STATISTIC(NumMemoryInstsPhiCreated, 117 "Number of phis created when address " 118 "computations were sunk to memory instructions"); 119 STATISTIC(NumMemoryInstsSelectCreated, 120 "Number of select created when address " 121 "computations were sunk to memory instructions"); 122 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 123 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 124 STATISTIC(NumAndsAdded, 125 "Number of and mask instructions added to form ext loads"); 126 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 127 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 128 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 129 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 130 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 131 132 static cl::opt<bool> DisableBranchOpts( 133 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 134 cl::desc("Disable branch optimizations in CodeGenPrepare")); 135 136 static cl::opt<bool> 137 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 138 cl::desc("Disable GC optimizations in CodeGenPrepare")); 139 140 static cl::opt<bool> DisableSelectToBranch( 141 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 142 cl::desc("Disable select to branch conversion.")); 143 144 static cl::opt<bool> AddrSinkUsingGEPs( 145 "addr-sink-using-gep", cl::Hidden, cl::init(true), 146 cl::desc("Address sinking in CGP using GEPs.")); 147 148 static cl::opt<bool> EnableAndCmpSinking( 149 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 150 cl::desc("Enable sinkinig and/cmp into branches.")); 151 152 static cl::opt<bool> DisableStoreExtract( 153 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 154 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 155 156 static cl::opt<bool> StressStoreExtract( 157 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 158 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 159 160 static cl::opt<bool> DisableExtLdPromotion( 161 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 162 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 163 "CodeGenPrepare")); 164 165 static cl::opt<bool> StressExtLdPromotion( 166 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 167 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 168 "optimization in CodeGenPrepare")); 169 170 static cl::opt<bool> DisablePreheaderProtect( 171 "disable-preheader-prot", cl::Hidden, cl::init(false), 172 cl::desc("Disable protection against removing loop preheaders")); 173 174 static cl::opt<bool> ProfileGuidedSectionPrefix( 175 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 176 cl::desc("Use profile info to add section prefix for hot/cold functions")); 177 178 static cl::opt<bool> ProfileUnknownInSpecialSection( 179 "profile-unknown-in-special-section", cl::Hidden, cl::init(false), 180 cl::ZeroOrMore, 181 cl::desc("In profiling mode like sampleFDO, if a function doesn't have " 182 "profile, we cannot tell the function is cold for sure because " 183 "it may be a function newly added without ever being sampled. " 184 "With the flag enabled, compiler can put such profile unknown " 185 "functions into a special section, so runtime system can choose " 186 "to handle it in a different way than .text section, to save " 187 "RAM for example. ")); 188 189 static cl::opt<unsigned> FreqRatioToSkipMerge( 190 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 191 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 192 "(frequency of destination block) is greater than this ratio")); 193 194 static cl::opt<bool> ForceSplitStore( 195 "force-split-store", cl::Hidden, cl::init(false), 196 cl::desc("Force store splitting no matter what the target query says.")); 197 198 static cl::opt<bool> 199 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 200 cl::desc("Enable merging of redundant sexts when one is dominating" 201 " the other."), cl::init(true)); 202 203 static cl::opt<bool> DisableComplexAddrModes( 204 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 205 cl::desc("Disables combining addressing modes with different parts " 206 "in optimizeMemoryInst.")); 207 208 static cl::opt<bool> 209 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 210 cl::desc("Allow creation of Phis in Address sinking.")); 211 212 static cl::opt<bool> 213 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 214 cl::desc("Allow creation of selects in Address sinking.")); 215 216 static cl::opt<bool> AddrSinkCombineBaseReg( 217 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 218 cl::desc("Allow combining of BaseReg field in Address sinking.")); 219 220 static cl::opt<bool> AddrSinkCombineBaseGV( 221 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 222 cl::desc("Allow combining of BaseGV field in Address sinking.")); 223 224 static cl::opt<bool> AddrSinkCombineBaseOffs( 225 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 226 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 227 228 static cl::opt<bool> AddrSinkCombineScaledReg( 229 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 230 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 231 232 static cl::opt<bool> 233 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 234 cl::init(true), 235 cl::desc("Enable splitting large offset of GEP.")); 236 237 static cl::opt<bool> EnableICMP_EQToICMP_ST( 238 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 239 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 240 241 static cl::opt<bool> 242 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), 243 cl::desc("Enable BFI update verification for " 244 "CodeGenPrepare.")); 245 246 static cl::opt<bool> OptimizePhiTypes( 247 "cgp-optimize-phi-types", cl::Hidden, cl::init(false), 248 cl::desc("Enable converting phi types in CodeGenPrepare")); 249 250 namespace { 251 252 enum ExtType { 253 ZeroExtension, // Zero extension has been seen. 254 SignExtension, // Sign extension has been seen. 255 BothExtension // This extension type is used if we saw sext after 256 // ZeroExtension had been set, or if we saw zext after 257 // SignExtension had been set. It makes the type 258 // information of a promoted instruction invalid. 259 }; 260 261 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 262 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 263 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 264 using SExts = SmallVector<Instruction *, 16>; 265 using ValueToSExts = DenseMap<Value *, SExts>; 266 267 class TypePromotionTransaction; 268 269 class CodeGenPrepare : public FunctionPass { 270 const TargetMachine *TM = nullptr; 271 const TargetSubtargetInfo *SubtargetInfo; 272 const TargetLowering *TLI = nullptr; 273 const TargetRegisterInfo *TRI; 274 const TargetTransformInfo *TTI = nullptr; 275 const TargetLibraryInfo *TLInfo; 276 const LoopInfo *LI; 277 std::unique_ptr<BlockFrequencyInfo> BFI; 278 std::unique_ptr<BranchProbabilityInfo> BPI; 279 ProfileSummaryInfo *PSI; 280 281 /// As we scan instructions optimizing them, this is the next instruction 282 /// to optimize. Transforms that can invalidate this should update it. 283 BasicBlock::iterator CurInstIterator; 284 285 /// Keeps track of non-local addresses that have been sunk into a block. 286 /// This allows us to avoid inserting duplicate code for blocks with 287 /// multiple load/stores of the same address. The usage of WeakTrackingVH 288 /// enables SunkAddrs to be treated as a cache whose entries can be 289 /// invalidated if a sunken address computation has been erased. 290 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 291 292 /// Keeps track of all instructions inserted for the current function. 293 SetOfInstrs InsertedInsts; 294 295 /// Keeps track of the type of the related instruction before their 296 /// promotion for the current function. 297 InstrToOrigTy PromotedInsts; 298 299 /// Keep track of instructions removed during promotion. 300 SetOfInstrs RemovedInsts; 301 302 /// Keep track of sext chains based on their initial value. 303 DenseMap<Value *, Instruction *> SeenChainsForSExt; 304 305 /// Keep track of GEPs accessing the same data structures such as structs or 306 /// arrays that are candidates to be split later because of their large 307 /// size. 308 MapVector< 309 AssertingVH<Value>, 310 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 311 LargeOffsetGEPMap; 312 313 /// Keep track of new GEP base after splitting the GEPs having large offset. 314 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 315 316 /// Map serial numbers to Large offset GEPs. 317 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 318 319 /// Keep track of SExt promoted. 320 ValueToSExts ValToSExtendedUses; 321 322 /// True if the function has the OptSize attribute. 323 bool OptSize; 324 325 /// DataLayout for the Function being processed. 326 const DataLayout *DL = nullptr; 327 328 /// Building the dominator tree can be expensive, so we only build it 329 /// lazily and update it when required. 330 std::unique_ptr<DominatorTree> DT; 331 332 public: 333 static char ID; // Pass identification, replacement for typeid 334 335 CodeGenPrepare() : FunctionPass(ID) { 336 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 337 } 338 339 bool runOnFunction(Function &F) override; 340 341 StringRef getPassName() const override { return "CodeGen Prepare"; } 342 343 void getAnalysisUsage(AnalysisUsage &AU) const override { 344 // FIXME: When we can selectively preserve passes, preserve the domtree. 345 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 346 AU.addRequired<TargetLibraryInfoWrapperPass>(); 347 AU.addRequired<TargetPassConfig>(); 348 AU.addRequired<TargetTransformInfoWrapperPass>(); 349 AU.addRequired<LoopInfoWrapperPass>(); 350 } 351 352 private: 353 template <typename F> 354 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 355 // Substituting can cause recursive simplifications, which can invalidate 356 // our iterator. Use a WeakTrackingVH to hold onto it in case this 357 // happens. 358 Value *CurValue = &*CurInstIterator; 359 WeakTrackingVH IterHandle(CurValue); 360 361 f(); 362 363 // If the iterator instruction was recursively deleted, start over at the 364 // start of the block. 365 if (IterHandle != CurValue) { 366 CurInstIterator = BB->begin(); 367 SunkAddrs.clear(); 368 } 369 } 370 371 // Get the DominatorTree, building if necessary. 372 DominatorTree &getDT(Function &F) { 373 if (!DT) 374 DT = std::make_unique<DominatorTree>(F); 375 return *DT; 376 } 377 378 void removeAllAssertingVHReferences(Value *V); 379 bool eliminateAssumptions(Function &F); 380 bool eliminateFallThrough(Function &F); 381 bool eliminateMostlyEmptyBlocks(Function &F); 382 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 383 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 384 void eliminateMostlyEmptyBlock(BasicBlock *BB); 385 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 386 bool isPreheader); 387 bool makeBitReverse(Instruction &I); 388 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 389 bool optimizeInst(Instruction *I, bool &ModifiedDT); 390 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 391 Type *AccessTy, unsigned AddrSpace); 392 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); 393 bool optimizeInlineAsmInst(CallInst *CS); 394 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 395 bool optimizeExt(Instruction *&I); 396 bool optimizeExtUses(Instruction *I); 397 bool optimizeLoadExt(LoadInst *Load); 398 bool optimizeShiftInst(BinaryOperator *BO); 399 bool optimizeFunnelShift(IntrinsicInst *Fsh); 400 bool optimizeSelectInst(SelectInst *SI); 401 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 402 bool optimizeSwitchType(SwitchInst *SI); 403 bool optimizeSwitchPhiConstants(SwitchInst *SI); 404 bool optimizeSwitchInst(SwitchInst *SI); 405 bool optimizeExtractElementInst(Instruction *Inst); 406 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 407 bool fixupDbgValue(Instruction *I); 408 bool placeDbgValues(Function &F); 409 bool placePseudoProbes(Function &F); 410 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 411 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 412 bool tryToPromoteExts(TypePromotionTransaction &TPT, 413 const SmallVectorImpl<Instruction *> &Exts, 414 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 415 unsigned CreatedInstsCost = 0); 416 bool mergeSExts(Function &F); 417 bool splitLargeGEPOffsets(); 418 bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, 419 SmallPtrSetImpl<Instruction *> &DeletedInstrs); 420 bool optimizePhiTypes(Function &F); 421 bool performAddressTypePromotion( 422 Instruction *&Inst, 423 bool AllowPromotionWithoutCommonHeader, 424 bool HasPromoted, TypePromotionTransaction &TPT, 425 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 426 bool splitBranchCondition(Function &F, bool &ModifiedDT); 427 bool simplifyOffsetableRelocate(GCStatepointInst &I); 428 429 bool tryToSinkFreeOperands(Instruction *I); 430 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, 431 Value *Arg1, CmpInst *Cmp, 432 Intrinsic::ID IID); 433 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 434 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 435 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 436 void verifyBFIUpdates(Function &F); 437 }; 438 439 } // end anonymous namespace 440 441 char CodeGenPrepare::ID = 0; 442 443 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 444 "Optimize for code generation", false, false) 445 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 446 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 447 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 448 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 449 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 450 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 451 "Optimize for code generation", false, false) 452 453 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 454 455 bool CodeGenPrepare::runOnFunction(Function &F) { 456 if (skipFunction(F)) 457 return false; 458 459 DL = &F.getParent()->getDataLayout(); 460 461 bool EverMadeChange = false; 462 // Clear per function information. 463 InsertedInsts.clear(); 464 PromotedInsts.clear(); 465 466 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 467 SubtargetInfo = TM->getSubtargetImpl(F); 468 TLI = SubtargetInfo->getTargetLowering(); 469 TRI = SubtargetInfo->getRegisterInfo(); 470 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 471 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 472 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 473 BPI.reset(new BranchProbabilityInfo(F, *LI)); 474 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 475 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 476 OptSize = F.hasOptSize(); 477 if (ProfileGuidedSectionPrefix) { 478 // The hot attribute overwrites profile count based hotness while profile 479 // counts based hotness overwrite the cold attribute. 480 // This is a conservative behabvior. 481 if (F.hasFnAttribute(Attribute::Hot) || 482 PSI->isFunctionHotInCallGraph(&F, *BFI)) 483 F.setSectionPrefix("hot"); 484 // If PSI shows this function is not hot, we will placed the function 485 // into unlikely section if (1) PSI shows this is a cold function, or 486 // (2) the function has a attribute of cold. 487 else if (PSI->isFunctionColdInCallGraph(&F, *BFI) || 488 F.hasFnAttribute(Attribute::Cold)) 489 F.setSectionPrefix("unlikely"); 490 else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && 491 PSI->isFunctionHotnessUnknown(F)) 492 F.setSectionPrefix("unknown"); 493 } 494 495 /// This optimization identifies DIV instructions that can be 496 /// profitably bypassed and carried out with a shorter, faster divide. 497 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 498 const DenseMap<unsigned int, unsigned int> &BypassWidths = 499 TLI->getBypassSlowDivWidths(); 500 BasicBlock* BB = &*F.begin(); 501 while (BB != nullptr) { 502 // bypassSlowDivision may create new BBs, but we don't want to reapply the 503 // optimization to those blocks. 504 BasicBlock* Next = BB->getNextNode(); 505 // F.hasOptSize is already checked in the outer if statement. 506 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 507 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 508 BB = Next; 509 } 510 } 511 512 // Get rid of @llvm.assume builtins before attempting to eliminate empty 513 // blocks, since there might be blocks that only contain @llvm.assume calls 514 // (plus arguments that we can get rid of). 515 EverMadeChange |= eliminateAssumptions(F); 516 517 // Eliminate blocks that contain only PHI nodes and an 518 // unconditional branch. 519 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 520 521 bool ModifiedDT = false; 522 if (!DisableBranchOpts) 523 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 524 525 // Split some critical edges where one of the sources is an indirect branch, 526 // to help generate sane code for PHIs involving such edges. 527 EverMadeChange |= 528 SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/true); 529 530 bool MadeChange = true; 531 while (MadeChange) { 532 MadeChange = false; 533 DT.reset(); 534 for (BasicBlock &BB : llvm::make_early_inc_range(F)) { 535 bool ModifiedDTOnIteration = false; 536 MadeChange |= optimizeBlock(BB, ModifiedDTOnIteration); 537 538 // Restart BB iteration if the dominator tree of the Function was changed 539 if (ModifiedDTOnIteration) 540 break; 541 } 542 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 543 MadeChange |= mergeSExts(F); 544 if (!LargeOffsetGEPMap.empty()) 545 MadeChange |= splitLargeGEPOffsets(); 546 MadeChange |= optimizePhiTypes(F); 547 548 if (MadeChange) 549 eliminateFallThrough(F); 550 551 // Really free removed instructions during promotion. 552 for (Instruction *I : RemovedInsts) 553 I->deleteValue(); 554 555 EverMadeChange |= MadeChange; 556 SeenChainsForSExt.clear(); 557 ValToSExtendedUses.clear(); 558 RemovedInsts.clear(); 559 LargeOffsetGEPMap.clear(); 560 LargeOffsetGEPID.clear(); 561 } 562 563 NewGEPBases.clear(); 564 SunkAddrs.clear(); 565 566 if (!DisableBranchOpts) { 567 MadeChange = false; 568 // Use a set vector to get deterministic iteration order. The order the 569 // blocks are removed may affect whether or not PHI nodes in successors 570 // are removed. 571 SmallSetVector<BasicBlock*, 8> WorkList; 572 for (BasicBlock &BB : F) { 573 SmallVector<BasicBlock *, 2> Successors(successors(&BB)); 574 MadeChange |= ConstantFoldTerminator(&BB, true); 575 if (!MadeChange) continue; 576 577 for (BasicBlock *Succ : Successors) 578 if (pred_empty(Succ)) 579 WorkList.insert(Succ); 580 } 581 582 // Delete the dead blocks and any of their dead successors. 583 MadeChange |= !WorkList.empty(); 584 while (!WorkList.empty()) { 585 BasicBlock *BB = WorkList.pop_back_val(); 586 SmallVector<BasicBlock*, 2> Successors(successors(BB)); 587 588 DeleteDeadBlock(BB); 589 590 for (BasicBlock *Succ : Successors) 591 if (pred_empty(Succ)) 592 WorkList.insert(Succ); 593 } 594 595 // Merge pairs of basic blocks with unconditional branches, connected by 596 // a single edge. 597 if (EverMadeChange || MadeChange) 598 MadeChange |= eliminateFallThrough(F); 599 600 EverMadeChange |= MadeChange; 601 } 602 603 if (!DisableGCOpts) { 604 SmallVector<GCStatepointInst *, 2> Statepoints; 605 for (BasicBlock &BB : F) 606 for (Instruction &I : BB) 607 if (auto *SP = dyn_cast<GCStatepointInst>(&I)) 608 Statepoints.push_back(SP); 609 for (auto &I : Statepoints) 610 EverMadeChange |= simplifyOffsetableRelocate(*I); 611 } 612 613 // Do this last to clean up use-before-def scenarios introduced by other 614 // preparatory transforms. 615 EverMadeChange |= placeDbgValues(F); 616 EverMadeChange |= placePseudoProbes(F); 617 618 #ifndef NDEBUG 619 if (VerifyBFIUpdates) 620 verifyBFIUpdates(F); 621 #endif 622 623 return EverMadeChange; 624 } 625 626 bool CodeGenPrepare::eliminateAssumptions(Function &F) { 627 bool MadeChange = false; 628 for (BasicBlock &BB : F) { 629 CurInstIterator = BB.begin(); 630 while (CurInstIterator != BB.end()) { 631 Instruction *I = &*(CurInstIterator++); 632 if (auto *Assume = dyn_cast<AssumeInst>(I)) { 633 MadeChange = true; 634 Value *Operand = Assume->getOperand(0); 635 Assume->eraseFromParent(); 636 637 resetIteratorIfInvalidatedWhileCalling(&BB, [&]() { 638 RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr); 639 }); 640 } 641 } 642 } 643 return MadeChange; 644 } 645 646 /// An instruction is about to be deleted, so remove all references to it in our 647 /// GEP-tracking data strcutures. 648 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) { 649 LargeOffsetGEPMap.erase(V); 650 NewGEPBases.erase(V); 651 652 auto GEP = dyn_cast<GetElementPtrInst>(V); 653 if (!GEP) 654 return; 655 656 LargeOffsetGEPID.erase(GEP); 657 658 auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand()); 659 if (VecI == LargeOffsetGEPMap.end()) 660 return; 661 662 auto &GEPVector = VecI->second; 663 llvm::erase_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; }); 664 665 if (GEPVector.empty()) 666 LargeOffsetGEPMap.erase(VecI); 667 } 668 669 // Verify BFI has been updated correctly by recomputing BFI and comparing them. 670 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) { 671 DominatorTree NewDT(F); 672 LoopInfo NewLI(NewDT); 673 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); 674 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); 675 NewBFI.verifyMatch(*BFI); 676 } 677 678 /// Merge basic blocks which are connected by a single edge, where one of the 679 /// basic blocks has a single successor pointing to the other basic block, 680 /// which has a single predecessor. 681 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 682 bool Changed = false; 683 // Scan all of the blocks in the function, except for the entry block. 684 // Use a temporary array to avoid iterator being invalidated when 685 // deleting blocks. 686 SmallVector<WeakTrackingVH, 16> Blocks; 687 for (auto &Block : llvm::drop_begin(F)) 688 Blocks.push_back(&Block); 689 690 SmallSet<WeakTrackingVH, 16> Preds; 691 for (auto &Block : Blocks) { 692 auto *BB = cast_or_null<BasicBlock>(Block); 693 if (!BB) 694 continue; 695 // If the destination block has a single pred, then this is a trivial 696 // edge, just collapse it. 697 BasicBlock *SinglePred = BB->getSinglePredecessor(); 698 699 // Don't merge if BB's address is taken. 700 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 701 702 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 703 if (Term && !Term->isConditional()) { 704 Changed = true; 705 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 706 707 // Merge BB into SinglePred and delete it. 708 MergeBlockIntoPredecessor(BB); 709 Preds.insert(SinglePred); 710 } 711 } 712 713 // (Repeatedly) merging blocks into their predecessors can create redundant 714 // debug intrinsics. 715 for (auto &Pred : Preds) 716 if (auto *BB = cast_or_null<BasicBlock>(Pred)) 717 RemoveRedundantDbgInstrs(BB); 718 719 return Changed; 720 } 721 722 /// Find a destination block from BB if BB is mergeable empty block. 723 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 724 // If this block doesn't end with an uncond branch, ignore it. 725 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 726 if (!BI || !BI->isUnconditional()) 727 return nullptr; 728 729 // If the instruction before the branch (skipping debug info) isn't a phi 730 // node, then other stuff is happening here. 731 BasicBlock::iterator BBI = BI->getIterator(); 732 if (BBI != BB->begin()) { 733 --BBI; 734 while (isa<DbgInfoIntrinsic>(BBI)) { 735 if (BBI == BB->begin()) 736 break; 737 --BBI; 738 } 739 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 740 return nullptr; 741 } 742 743 // Do not break infinite loops. 744 BasicBlock *DestBB = BI->getSuccessor(0); 745 if (DestBB == BB) 746 return nullptr; 747 748 if (!canMergeBlocks(BB, DestBB)) 749 DestBB = nullptr; 750 751 return DestBB; 752 } 753 754 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 755 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 756 /// edges in ways that are non-optimal for isel. Start by eliminating these 757 /// blocks so we can split them the way we want them. 758 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 759 SmallPtrSet<BasicBlock *, 16> Preheaders; 760 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 761 while (!LoopList.empty()) { 762 Loop *L = LoopList.pop_back_val(); 763 llvm::append_range(LoopList, *L); 764 if (BasicBlock *Preheader = L->getLoopPreheader()) 765 Preheaders.insert(Preheader); 766 } 767 768 bool MadeChange = false; 769 // Copy blocks into a temporary array to avoid iterator invalidation issues 770 // as we remove them. 771 // Note that this intentionally skips the entry block. 772 SmallVector<WeakTrackingVH, 16> Blocks; 773 for (auto &Block : llvm::drop_begin(F)) 774 Blocks.push_back(&Block); 775 776 for (auto &Block : Blocks) { 777 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 778 if (!BB) 779 continue; 780 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 781 if (!DestBB || 782 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 783 continue; 784 785 eliminateMostlyEmptyBlock(BB); 786 MadeChange = true; 787 } 788 return MadeChange; 789 } 790 791 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 792 BasicBlock *DestBB, 793 bool isPreheader) { 794 // Do not delete loop preheaders if doing so would create a critical edge. 795 // Loop preheaders can be good locations to spill registers. If the 796 // preheader is deleted and we create a critical edge, registers may be 797 // spilled in the loop body instead. 798 if (!DisablePreheaderProtect && isPreheader && 799 !(BB->getSinglePredecessor() && 800 BB->getSinglePredecessor()->getSingleSuccessor())) 801 return false; 802 803 // Skip merging if the block's successor is also a successor to any callbr 804 // that leads to this block. 805 // FIXME: Is this really needed? Is this a correctness issue? 806 for (BasicBlock *Pred : predecessors(BB)) { 807 if (auto *CBI = dyn_cast<CallBrInst>((Pred)->getTerminator())) 808 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 809 if (DestBB == CBI->getSuccessor(i)) 810 return false; 811 } 812 813 // Try to skip merging if the unique predecessor of BB is terminated by a 814 // switch or indirect branch instruction, and BB is used as an incoming block 815 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 816 // add COPY instructions in the predecessor of BB instead of BB (if it is not 817 // merged). Note that the critical edge created by merging such blocks wont be 818 // split in MachineSink because the jump table is not analyzable. By keeping 819 // such empty block (BB), ISel will place COPY instructions in BB, not in the 820 // predecessor of BB. 821 BasicBlock *Pred = BB->getUniquePredecessor(); 822 if (!Pred || 823 !(isa<SwitchInst>(Pred->getTerminator()) || 824 isa<IndirectBrInst>(Pred->getTerminator()))) 825 return true; 826 827 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 828 return true; 829 830 // We use a simple cost heuristic which determine skipping merging is 831 // profitable if the cost of skipping merging is less than the cost of 832 // merging : Cost(skipping merging) < Cost(merging BB), where the 833 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 834 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 835 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 836 // Freq(Pred) / Freq(BB) > 2. 837 // Note that if there are multiple empty blocks sharing the same incoming 838 // value for the PHIs in the DestBB, we consider them together. In such 839 // case, Cost(merging BB) will be the sum of their frequencies. 840 841 if (!isa<PHINode>(DestBB->begin())) 842 return true; 843 844 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 845 846 // Find all other incoming blocks from which incoming values of all PHIs in 847 // DestBB are the same as the ones from BB. 848 for (BasicBlock *DestBBPred : predecessors(DestBB)) { 849 if (DestBBPred == BB) 850 continue; 851 852 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 853 return DestPN.getIncomingValueForBlock(BB) == 854 DestPN.getIncomingValueForBlock(DestBBPred); 855 })) 856 SameIncomingValueBBs.insert(DestBBPred); 857 } 858 859 // See if all BB's incoming values are same as the value from Pred. In this 860 // case, no reason to skip merging because COPYs are expected to be place in 861 // Pred already. 862 if (SameIncomingValueBBs.count(Pred)) 863 return true; 864 865 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 866 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 867 868 for (auto *SameValueBB : SameIncomingValueBBs) 869 if (SameValueBB->getUniquePredecessor() == Pred && 870 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 871 BBFreq += BFI->getBlockFreq(SameValueBB); 872 873 return PredFreq.getFrequency() <= 874 BBFreq.getFrequency() * FreqRatioToSkipMerge; 875 } 876 877 /// Return true if we can merge BB into DestBB if there is a single 878 /// unconditional branch between them, and BB contains no other non-phi 879 /// instructions. 880 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 881 const BasicBlock *DestBB) const { 882 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 883 // the successor. If there are more complex condition (e.g. preheaders), 884 // don't mess around with them. 885 for (const PHINode &PN : BB->phis()) { 886 for (const User *U : PN.users()) { 887 const Instruction *UI = cast<Instruction>(U); 888 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 889 return false; 890 // If User is inside DestBB block and it is a PHINode then check 891 // incoming value. If incoming value is not from BB then this is 892 // a complex condition (e.g. preheaders) we want to avoid here. 893 if (UI->getParent() == DestBB) { 894 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 895 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 896 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 897 if (Insn && Insn->getParent() == BB && 898 Insn->getParent() != UPN->getIncomingBlock(I)) 899 return false; 900 } 901 } 902 } 903 } 904 905 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 906 // and DestBB may have conflicting incoming values for the block. If so, we 907 // can't merge the block. 908 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 909 if (!DestBBPN) return true; // no conflict. 910 911 // Collect the preds of BB. 912 SmallPtrSet<const BasicBlock*, 16> BBPreds; 913 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 914 // It is faster to get preds from a PHI than with pred_iterator. 915 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 916 BBPreds.insert(BBPN->getIncomingBlock(i)); 917 } else { 918 BBPreds.insert(pred_begin(BB), pred_end(BB)); 919 } 920 921 // Walk the preds of DestBB. 922 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 923 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 924 if (BBPreds.count(Pred)) { // Common predecessor? 925 for (const PHINode &PN : DestBB->phis()) { 926 const Value *V1 = PN.getIncomingValueForBlock(Pred); 927 const Value *V2 = PN.getIncomingValueForBlock(BB); 928 929 // If V2 is a phi node in BB, look up what the mapped value will be. 930 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 931 if (V2PN->getParent() == BB) 932 V2 = V2PN->getIncomingValueForBlock(Pred); 933 934 // If there is a conflict, bail out. 935 if (V1 != V2) return false; 936 } 937 } 938 } 939 940 return true; 941 } 942 943 /// Eliminate a basic block that has only phi's and an unconditional branch in 944 /// it. 945 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 946 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 947 BasicBlock *DestBB = BI->getSuccessor(0); 948 949 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 950 << *BB << *DestBB); 951 952 // If the destination block has a single pred, then this is a trivial edge, 953 // just collapse it. 954 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 955 if (SinglePred != DestBB) { 956 assert(SinglePred == BB && 957 "Single predecessor not the same as predecessor"); 958 // Merge DestBB into SinglePred/BB and delete it. 959 MergeBlockIntoPredecessor(DestBB); 960 // Note: BB(=SinglePred) will not be deleted on this path. 961 // DestBB(=its single successor) is the one that was deleted. 962 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 963 return; 964 } 965 } 966 967 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 968 // to handle the new incoming edges it is about to have. 969 for (PHINode &PN : DestBB->phis()) { 970 // Remove the incoming value for BB, and remember it. 971 Value *InVal = PN.removeIncomingValue(BB, false); 972 973 // Two options: either the InVal is a phi node defined in BB or it is some 974 // value that dominates BB. 975 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 976 if (InValPhi && InValPhi->getParent() == BB) { 977 // Add all of the input values of the input PHI as inputs of this phi. 978 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 979 PN.addIncoming(InValPhi->getIncomingValue(i), 980 InValPhi->getIncomingBlock(i)); 981 } else { 982 // Otherwise, add one instance of the dominating value for each edge that 983 // we will be adding. 984 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 985 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 986 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 987 } else { 988 for (BasicBlock *Pred : predecessors(BB)) 989 PN.addIncoming(InVal, Pred); 990 } 991 } 992 } 993 994 // The PHIs are now updated, change everything that refers to BB to use 995 // DestBB and remove BB. 996 BB->replaceAllUsesWith(DestBB); 997 BB->eraseFromParent(); 998 ++NumBlocksElim; 999 1000 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 1001 } 1002 1003 // Computes a map of base pointer relocation instructions to corresponding 1004 // derived pointer relocation instructions given a vector of all relocate calls 1005 static void computeBaseDerivedRelocateMap( 1006 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 1007 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 1008 &RelocateInstMap) { 1009 // Collect information in two maps: one primarily for locating the base object 1010 // while filling the second map; the second map is the final structure holding 1011 // a mapping between Base and corresponding Derived relocate calls 1012 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 1013 for (auto *ThisRelocate : AllRelocateCalls) { 1014 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 1015 ThisRelocate->getDerivedPtrIndex()); 1016 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 1017 } 1018 for (auto &Item : RelocateIdxMap) { 1019 std::pair<unsigned, unsigned> Key = Item.first; 1020 if (Key.first == Key.second) 1021 // Base relocation: nothing to insert 1022 continue; 1023 1024 GCRelocateInst *I = Item.second; 1025 auto BaseKey = std::make_pair(Key.first, Key.first); 1026 1027 // We're iterating over RelocateIdxMap so we cannot modify it. 1028 auto MaybeBase = RelocateIdxMap.find(BaseKey); 1029 if (MaybeBase == RelocateIdxMap.end()) 1030 // TODO: We might want to insert a new base object relocate and gep off 1031 // that, if there are enough derived object relocates. 1032 continue; 1033 1034 RelocateInstMap[MaybeBase->second].push_back(I); 1035 } 1036 } 1037 1038 // Accepts a GEP and extracts the operands into a vector provided they're all 1039 // small integer constants 1040 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 1041 SmallVectorImpl<Value *> &OffsetV) { 1042 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 1043 // Only accept small constant integer operands 1044 auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 1045 if (!Op || Op->getZExtValue() > 20) 1046 return false; 1047 } 1048 1049 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 1050 OffsetV.push_back(GEP->getOperand(i)); 1051 return true; 1052 } 1053 1054 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 1055 // replace, computes a replacement, and affects it. 1056 static bool 1057 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 1058 const SmallVectorImpl<GCRelocateInst *> &Targets) { 1059 bool MadeChange = false; 1060 // We must ensure the relocation of derived pointer is defined after 1061 // relocation of base pointer. If we find a relocation corresponding to base 1062 // defined earlier than relocation of base then we move relocation of base 1063 // right before found relocation. We consider only relocation in the same 1064 // basic block as relocation of base. Relocations from other basic block will 1065 // be skipped by optimization and we do not care about them. 1066 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 1067 &*R != RelocatedBase; ++R) 1068 if (auto *RI = dyn_cast<GCRelocateInst>(R)) 1069 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 1070 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 1071 RelocatedBase->moveBefore(RI); 1072 break; 1073 } 1074 1075 for (GCRelocateInst *ToReplace : Targets) { 1076 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 1077 "Not relocating a derived object of the original base object"); 1078 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 1079 // A duplicate relocate call. TODO: coalesce duplicates. 1080 continue; 1081 } 1082 1083 if (RelocatedBase->getParent() != ToReplace->getParent()) { 1084 // Base and derived relocates are in different basic blocks. 1085 // In this case transform is only valid when base dominates derived 1086 // relocate. However it would be too expensive to check dominance 1087 // for each such relocate, so we skip the whole transformation. 1088 continue; 1089 } 1090 1091 Value *Base = ToReplace->getBasePtr(); 1092 auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 1093 if (!Derived || Derived->getPointerOperand() != Base) 1094 continue; 1095 1096 SmallVector<Value *, 2> OffsetV; 1097 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 1098 continue; 1099 1100 // Create a Builder and replace the target callsite with a gep 1101 assert(RelocatedBase->getNextNode() && 1102 "Should always have one since it's not a terminator"); 1103 1104 // Insert after RelocatedBase 1105 IRBuilder<> Builder(RelocatedBase->getNextNode()); 1106 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1107 1108 // If gc_relocate does not match the actual type, cast it to the right type. 1109 // In theory, there must be a bitcast after gc_relocate if the type does not 1110 // match, and we should reuse it to get the derived pointer. But it could be 1111 // cases like this: 1112 // bb1: 1113 // ... 1114 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1115 // br label %merge 1116 // 1117 // bb2: 1118 // ... 1119 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1120 // br label %merge 1121 // 1122 // merge: 1123 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1124 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1125 // 1126 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1127 // no matter there is already one or not. In this way, we can handle all cases, and 1128 // the extra bitcast should be optimized away in later passes. 1129 Value *ActualRelocatedBase = RelocatedBase; 1130 if (RelocatedBase->getType() != Base->getType()) { 1131 ActualRelocatedBase = 1132 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1133 } 1134 Value *Replacement = Builder.CreateGEP( 1135 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1136 Replacement->takeName(ToReplace); 1137 // If the newly generated derived pointer's type does not match the original derived 1138 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1139 Value *ActualReplacement = Replacement; 1140 if (Replacement->getType() != ToReplace->getType()) { 1141 ActualReplacement = 1142 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1143 } 1144 ToReplace->replaceAllUsesWith(ActualReplacement); 1145 ToReplace->eraseFromParent(); 1146 1147 MadeChange = true; 1148 } 1149 return MadeChange; 1150 } 1151 1152 // Turns this: 1153 // 1154 // %base = ... 1155 // %ptr = gep %base + 15 1156 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1157 // %base' = relocate(%tok, i32 4, i32 4) 1158 // %ptr' = relocate(%tok, i32 4, i32 5) 1159 // %val = load %ptr' 1160 // 1161 // into this: 1162 // 1163 // %base = ... 1164 // %ptr = gep %base + 15 1165 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1166 // %base' = gc.relocate(%tok, i32 4, i32 4) 1167 // %ptr' = gep %base' + 15 1168 // %val = load %ptr' 1169 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { 1170 bool MadeChange = false; 1171 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1172 for (auto *U : I.users()) 1173 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1174 // Collect all the relocate calls associated with a statepoint 1175 AllRelocateCalls.push_back(Relocate); 1176 1177 // We need at least one base pointer relocation + one derived pointer 1178 // relocation to mangle 1179 if (AllRelocateCalls.size() < 2) 1180 return false; 1181 1182 // RelocateInstMap is a mapping from the base relocate instruction to the 1183 // corresponding derived relocate instructions 1184 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1185 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1186 if (RelocateInstMap.empty()) 1187 return false; 1188 1189 for (auto &Item : RelocateInstMap) 1190 // Item.first is the RelocatedBase to offset against 1191 // Item.second is the vector of Targets to replace 1192 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1193 return MadeChange; 1194 } 1195 1196 /// Sink the specified cast instruction into its user blocks. 1197 static bool SinkCast(CastInst *CI) { 1198 BasicBlock *DefBB = CI->getParent(); 1199 1200 /// InsertedCasts - Only insert a cast in each block once. 1201 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1202 1203 bool MadeChange = false; 1204 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1205 UI != E; ) { 1206 Use &TheUse = UI.getUse(); 1207 Instruction *User = cast<Instruction>(*UI); 1208 1209 // Figure out which BB this cast is used in. For PHI's this is the 1210 // appropriate predecessor block. 1211 BasicBlock *UserBB = User->getParent(); 1212 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1213 UserBB = PN->getIncomingBlock(TheUse); 1214 } 1215 1216 // Preincrement use iterator so we don't invalidate it. 1217 ++UI; 1218 1219 // The first insertion point of a block containing an EH pad is after the 1220 // pad. If the pad is the user, we cannot sink the cast past the pad. 1221 if (User->isEHPad()) 1222 continue; 1223 1224 // If the block selected to receive the cast is an EH pad that does not 1225 // allow non-PHI instructions before the terminator, we can't sink the 1226 // cast. 1227 if (UserBB->getTerminator()->isEHPad()) 1228 continue; 1229 1230 // If this user is in the same block as the cast, don't change the cast. 1231 if (UserBB == DefBB) continue; 1232 1233 // If we have already inserted a cast into this block, use it. 1234 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1235 1236 if (!InsertedCast) { 1237 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1238 assert(InsertPt != UserBB->end()); 1239 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1240 CI->getType(), "", &*InsertPt); 1241 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1242 } 1243 1244 // Replace a use of the cast with a use of the new cast. 1245 TheUse = InsertedCast; 1246 MadeChange = true; 1247 ++NumCastUses; 1248 } 1249 1250 // If we removed all uses, nuke the cast. 1251 if (CI->use_empty()) { 1252 salvageDebugInfo(*CI); 1253 CI->eraseFromParent(); 1254 MadeChange = true; 1255 } 1256 1257 return MadeChange; 1258 } 1259 1260 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1261 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1262 /// reduce the number of virtual registers that must be created and coalesced. 1263 /// 1264 /// Return true if any changes are made. 1265 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1266 const DataLayout &DL) { 1267 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1268 // than sinking only nop casts, but is helpful on some platforms. 1269 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1270 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1271 ASC->getDestAddressSpace())) 1272 return false; 1273 } 1274 1275 // If this is a noop copy, 1276 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1277 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1278 1279 // This is an fp<->int conversion? 1280 if (SrcVT.isInteger() != DstVT.isInteger()) 1281 return false; 1282 1283 // If this is an extension, it will be a zero or sign extension, which 1284 // isn't a noop. 1285 if (SrcVT.bitsLT(DstVT)) return false; 1286 1287 // If these values will be promoted, find out what they will be promoted 1288 // to. This helps us consider truncates on PPC as noop copies when they 1289 // are. 1290 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1291 TargetLowering::TypePromoteInteger) 1292 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1293 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1294 TargetLowering::TypePromoteInteger) 1295 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1296 1297 // If, after promotion, these are the same types, this is a noop copy. 1298 if (SrcVT != DstVT) 1299 return false; 1300 1301 return SinkCast(CI); 1302 } 1303 1304 // Match a simple increment by constant operation. Note that if a sub is 1305 // matched, the step is negated (as if the step had been canonicalized to 1306 // an add, even though we leave the instruction alone.) 1307 bool matchIncrement(const Instruction* IVInc, Instruction *&LHS, 1308 Constant *&Step) { 1309 if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) || 1310 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>( 1311 m_Instruction(LHS), m_Constant(Step))))) 1312 return true; 1313 if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) || 1314 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>( 1315 m_Instruction(LHS), m_Constant(Step))))) { 1316 Step = ConstantExpr::getNeg(Step); 1317 return true; 1318 } 1319 return false; 1320 } 1321 1322 /// If given \p PN is an inductive variable with value IVInc coming from the 1323 /// backedge, and on each iteration it gets increased by Step, return pair 1324 /// <IVInc, Step>. Otherwise, return None. 1325 static Optional<std::pair<Instruction *, Constant *> > 1326 getIVIncrement(const PHINode *PN, const LoopInfo *LI) { 1327 const Loop *L = LI->getLoopFor(PN->getParent()); 1328 if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch()) 1329 return None; 1330 auto *IVInc = 1331 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 1332 if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L) 1333 return None; 1334 Instruction *LHS = nullptr; 1335 Constant *Step = nullptr; 1336 if (matchIncrement(IVInc, LHS, Step) && LHS == PN) 1337 return std::make_pair(IVInc, Step); 1338 return None; 1339 } 1340 1341 static bool isIVIncrement(const Value *V, const LoopInfo *LI) { 1342 auto *I = dyn_cast<Instruction>(V); 1343 if (!I) 1344 return false; 1345 Instruction *LHS = nullptr; 1346 Constant *Step = nullptr; 1347 if (!matchIncrement(I, LHS, Step)) 1348 return false; 1349 if (auto *PN = dyn_cast<PHINode>(LHS)) 1350 if (auto IVInc = getIVIncrement(PN, LI)) 1351 return IVInc->first == I; 1352 return false; 1353 } 1354 1355 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1356 Value *Arg0, Value *Arg1, 1357 CmpInst *Cmp, 1358 Intrinsic::ID IID) { 1359 auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) { 1360 if (!isIVIncrement(BO, LI)) 1361 return false; 1362 const Loop *L = LI->getLoopFor(BO->getParent()); 1363 assert(L && "L should not be null after isIVIncrement()"); 1364 // Do not risk on moving increment into a child loop. 1365 if (LI->getLoopFor(Cmp->getParent()) != L) 1366 return false; 1367 1368 // Finally, we need to ensure that the insert point will dominate all 1369 // existing uses of the increment. 1370 1371 auto &DT = getDT(*BO->getParent()->getParent()); 1372 if (DT.dominates(Cmp->getParent(), BO->getParent())) 1373 // If we're moving up the dom tree, all uses are trivially dominated. 1374 // (This is the common case for code produced by LSR.) 1375 return true; 1376 1377 // Otherwise, special case the single use in the phi recurrence. 1378 return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch()); 1379 }; 1380 if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) { 1381 // We used to use a dominator tree here to allow multi-block optimization. 1382 // But that was problematic because: 1383 // 1. It could cause a perf regression by hoisting the math op into the 1384 // critical path. 1385 // 2. It could cause a perf regression by creating a value that was live 1386 // across multiple blocks and increasing register pressure. 1387 // 3. Use of a dominator tree could cause large compile-time regression. 1388 // This is because we recompute the DT on every change in the main CGP 1389 // run-loop. The recomputing is probably unnecessary in many cases, so if 1390 // that was fixed, using a DT here would be ok. 1391 // 1392 // There is one important particular case we still want to handle: if BO is 1393 // the IV increment. Important properties that make it profitable: 1394 // - We can speculate IV increment anywhere in the loop (as long as the 1395 // indvar Phi is its only user); 1396 // - Upon computing Cmp, we effectively compute something equivalent to the 1397 // IV increment (despite it loops differently in the IR). So moving it up 1398 // to the cmp point does not really increase register pressure. 1399 return false; 1400 } 1401 1402 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1403 if (BO->getOpcode() == Instruction::Add && 1404 IID == Intrinsic::usub_with_overflow) { 1405 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1406 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1407 } 1408 1409 // Insert at the first instruction of the pair. 1410 Instruction *InsertPt = nullptr; 1411 for (Instruction &Iter : *Cmp->getParent()) { 1412 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1413 // the overflow intrinsic are defined. 1414 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1415 InsertPt = &Iter; 1416 break; 1417 } 1418 } 1419 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1420 1421 IRBuilder<> Builder(InsertPt); 1422 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1423 if (BO->getOpcode() != Instruction::Xor) { 1424 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1425 BO->replaceAllUsesWith(Math); 1426 } else 1427 assert(BO->hasOneUse() && 1428 "Patterns with XOr should use the BO only in the compare"); 1429 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1430 Cmp->replaceAllUsesWith(OV); 1431 Cmp->eraseFromParent(); 1432 BO->eraseFromParent(); 1433 return true; 1434 } 1435 1436 /// Match special-case patterns that check for unsigned add overflow. 1437 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1438 BinaryOperator *&Add) { 1439 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1440 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1441 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1442 1443 // We are not expecting non-canonical/degenerate code. Just bail out. 1444 if (isa<Constant>(A)) 1445 return false; 1446 1447 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1448 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1449 B = ConstantInt::get(B->getType(), 1); 1450 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1451 B = ConstantInt::get(B->getType(), -1); 1452 else 1453 return false; 1454 1455 // Check the users of the variable operand of the compare looking for an add 1456 // with the adjusted constant. 1457 for (User *U : A->users()) { 1458 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1459 Add = cast<BinaryOperator>(U); 1460 return true; 1461 } 1462 } 1463 return false; 1464 } 1465 1466 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1467 /// intrinsic. Return true if any changes were made. 1468 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1469 bool &ModifiedDT) { 1470 Value *A, *B; 1471 BinaryOperator *Add; 1472 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1473 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1474 return false; 1475 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1476 A = Add->getOperand(0); 1477 B = Add->getOperand(1); 1478 } 1479 1480 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1481 TLI->getValueType(*DL, Add->getType()), 1482 Add->hasNUsesOrMore(2))) 1483 return false; 1484 1485 // We don't want to move around uses of condition values this late, so we 1486 // check if it is legal to create the call to the intrinsic in the basic 1487 // block containing the icmp. 1488 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1489 return false; 1490 1491 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1492 Intrinsic::uadd_with_overflow)) 1493 return false; 1494 1495 // Reset callers - do not crash by iterating over a dead instruction. 1496 ModifiedDT = true; 1497 return true; 1498 } 1499 1500 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1501 bool &ModifiedDT) { 1502 // We are not expecting non-canonical/degenerate code. Just bail out. 1503 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1504 if (isa<Constant>(A) && isa<Constant>(B)) 1505 return false; 1506 1507 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1508 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1509 if (Pred == ICmpInst::ICMP_UGT) { 1510 std::swap(A, B); 1511 Pred = ICmpInst::ICMP_ULT; 1512 } 1513 // Convert special-case: (A == 0) is the same as (A u< 1). 1514 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1515 B = ConstantInt::get(B->getType(), 1); 1516 Pred = ICmpInst::ICMP_ULT; 1517 } 1518 // Convert special-case: (A != 0) is the same as (0 u< A). 1519 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1520 std::swap(A, B); 1521 Pred = ICmpInst::ICMP_ULT; 1522 } 1523 if (Pred != ICmpInst::ICMP_ULT) 1524 return false; 1525 1526 // Walk the users of a variable operand of a compare looking for a subtract or 1527 // add with that same operand. Also match the 2nd operand of the compare to 1528 // the add/sub, but that may be a negated constant operand of an add. 1529 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1530 BinaryOperator *Sub = nullptr; 1531 for (User *U : CmpVariableOperand->users()) { 1532 // A - B, A u< B --> usubo(A, B) 1533 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1534 Sub = cast<BinaryOperator>(U); 1535 break; 1536 } 1537 1538 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1539 const APInt *CmpC, *AddC; 1540 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1541 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1542 Sub = cast<BinaryOperator>(U); 1543 break; 1544 } 1545 } 1546 if (!Sub) 1547 return false; 1548 1549 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1550 TLI->getValueType(*DL, Sub->getType()), 1551 Sub->hasNUsesOrMore(2))) 1552 return false; 1553 1554 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1555 Cmp, Intrinsic::usub_with_overflow)) 1556 return false; 1557 1558 // Reset callers - do not crash by iterating over a dead instruction. 1559 ModifiedDT = true; 1560 return true; 1561 } 1562 1563 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1564 /// registers that must be created and coalesced. This is a clear win except on 1565 /// targets with multiple condition code registers (PowerPC), where it might 1566 /// lose; some adjustment may be wanted there. 1567 /// 1568 /// Return true if any changes are made. 1569 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1570 if (TLI.hasMultipleConditionRegisters()) 1571 return false; 1572 1573 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1574 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1575 return false; 1576 1577 // Only insert a cmp in each block once. 1578 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1579 1580 bool MadeChange = false; 1581 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1582 UI != E; ) { 1583 Use &TheUse = UI.getUse(); 1584 Instruction *User = cast<Instruction>(*UI); 1585 1586 // Preincrement use iterator so we don't invalidate it. 1587 ++UI; 1588 1589 // Don't bother for PHI nodes. 1590 if (isa<PHINode>(User)) 1591 continue; 1592 1593 // Figure out which BB this cmp is used in. 1594 BasicBlock *UserBB = User->getParent(); 1595 BasicBlock *DefBB = Cmp->getParent(); 1596 1597 // If this user is in the same block as the cmp, don't change the cmp. 1598 if (UserBB == DefBB) continue; 1599 1600 // If we have already inserted a cmp into this block, use it. 1601 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1602 1603 if (!InsertedCmp) { 1604 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1605 assert(InsertPt != UserBB->end()); 1606 InsertedCmp = 1607 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1608 Cmp->getOperand(0), Cmp->getOperand(1), "", 1609 &*InsertPt); 1610 // Propagate the debug info. 1611 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1612 } 1613 1614 // Replace a use of the cmp with a use of the new cmp. 1615 TheUse = InsertedCmp; 1616 MadeChange = true; 1617 ++NumCmpUses; 1618 } 1619 1620 // If we removed all uses, nuke the cmp. 1621 if (Cmp->use_empty()) { 1622 Cmp->eraseFromParent(); 1623 MadeChange = true; 1624 } 1625 1626 return MadeChange; 1627 } 1628 1629 /// For pattern like: 1630 /// 1631 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1632 /// ... 1633 /// DomBB: 1634 /// ... 1635 /// br DomCond, TrueBB, CmpBB 1636 /// CmpBB: (with DomBB being the single predecessor) 1637 /// ... 1638 /// Cmp = icmp eq CmpOp0, CmpOp1 1639 /// ... 1640 /// 1641 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1642 /// different from lowering of icmp eq (PowerPC). This function try to convert 1643 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1644 /// After that, DomCond and Cmp can use the same comparison so reduce one 1645 /// comparison. 1646 /// 1647 /// Return true if any changes are made. 1648 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1649 const TargetLowering &TLI) { 1650 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1651 return false; 1652 1653 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1654 if (Pred != ICmpInst::ICMP_EQ) 1655 return false; 1656 1657 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1658 // icmp slt/sgt would introduce more redundant LLVM IR. 1659 for (User *U : Cmp->users()) { 1660 if (isa<BranchInst>(U)) 1661 continue; 1662 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1663 continue; 1664 return false; 1665 } 1666 1667 // This is a cheap/incomplete check for dominance - just match a single 1668 // predecessor with a conditional branch. 1669 BasicBlock *CmpBB = Cmp->getParent(); 1670 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1671 if (!DomBB) 1672 return false; 1673 1674 // We want to ensure that the only way control gets to the comparison of 1675 // interest is that a less/greater than comparison on the same operands is 1676 // false. 1677 Value *DomCond; 1678 BasicBlock *TrueBB, *FalseBB; 1679 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1680 return false; 1681 if (CmpBB != FalseBB) 1682 return false; 1683 1684 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1685 ICmpInst::Predicate DomPred; 1686 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1687 return false; 1688 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1689 return false; 1690 1691 // Convert the equality comparison to the opposite of the dominating 1692 // comparison and swap the direction for all branch/select users. 1693 // We have conceptually converted: 1694 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1695 // to 1696 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1697 // And similarly for branches. 1698 for (User *U : Cmp->users()) { 1699 if (auto *BI = dyn_cast<BranchInst>(U)) { 1700 assert(BI->isConditional() && "Must be conditional"); 1701 BI->swapSuccessors(); 1702 continue; 1703 } 1704 if (auto *SI = dyn_cast<SelectInst>(U)) { 1705 // Swap operands 1706 SI->swapValues(); 1707 SI->swapProfMetadata(); 1708 continue; 1709 } 1710 llvm_unreachable("Must be a branch or a select"); 1711 } 1712 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1713 return true; 1714 } 1715 1716 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1717 if (sinkCmpExpression(Cmp, *TLI)) 1718 return true; 1719 1720 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1721 return true; 1722 1723 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1724 return true; 1725 1726 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1727 return true; 1728 1729 return false; 1730 } 1731 1732 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1733 /// used in a compare to allow isel to generate better code for targets where 1734 /// this operation can be combined. 1735 /// 1736 /// Return true if any changes are made. 1737 static bool sinkAndCmp0Expression(Instruction *AndI, 1738 const TargetLowering &TLI, 1739 SetOfInstrs &InsertedInsts) { 1740 // Double-check that we're not trying to optimize an instruction that was 1741 // already optimized by some other part of this pass. 1742 assert(!InsertedInsts.count(AndI) && 1743 "Attempting to optimize already optimized and instruction"); 1744 (void) InsertedInsts; 1745 1746 // Nothing to do for single use in same basic block. 1747 if (AndI->hasOneUse() && 1748 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1749 return false; 1750 1751 // Try to avoid cases where sinking/duplicating is likely to increase register 1752 // pressure. 1753 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1754 !isa<ConstantInt>(AndI->getOperand(1)) && 1755 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1756 return false; 1757 1758 for (auto *U : AndI->users()) { 1759 Instruction *User = cast<Instruction>(U); 1760 1761 // Only sink 'and' feeding icmp with 0. 1762 if (!isa<ICmpInst>(User)) 1763 return false; 1764 1765 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1766 if (!CmpC || !CmpC->isZero()) 1767 return false; 1768 } 1769 1770 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1771 return false; 1772 1773 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1774 LLVM_DEBUG(AndI->getParent()->dump()); 1775 1776 // Push the 'and' into the same block as the icmp 0. There should only be 1777 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1778 // others, so we don't need to keep track of which BBs we insert into. 1779 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1780 UI != E; ) { 1781 Use &TheUse = UI.getUse(); 1782 Instruction *User = cast<Instruction>(*UI); 1783 1784 // Preincrement use iterator so we don't invalidate it. 1785 ++UI; 1786 1787 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1788 1789 // Keep the 'and' in the same place if the use is already in the same block. 1790 Instruction *InsertPt = 1791 User->getParent() == AndI->getParent() ? AndI : User; 1792 Instruction *InsertedAnd = 1793 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1794 AndI->getOperand(1), "", InsertPt); 1795 // Propagate the debug info. 1796 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1797 1798 // Replace a use of the 'and' with a use of the new 'and'. 1799 TheUse = InsertedAnd; 1800 ++NumAndUses; 1801 LLVM_DEBUG(User->getParent()->dump()); 1802 } 1803 1804 // We removed all uses, nuke the and. 1805 AndI->eraseFromParent(); 1806 return true; 1807 } 1808 1809 /// Check if the candidates could be combined with a shift instruction, which 1810 /// includes: 1811 /// 1. Truncate instruction 1812 /// 2. And instruction and the imm is a mask of the low bits: 1813 /// imm & (imm+1) == 0 1814 static bool isExtractBitsCandidateUse(Instruction *User) { 1815 if (!isa<TruncInst>(User)) { 1816 if (User->getOpcode() != Instruction::And || 1817 !isa<ConstantInt>(User->getOperand(1))) 1818 return false; 1819 1820 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1821 1822 if ((Cimm & (Cimm + 1)).getBoolValue()) 1823 return false; 1824 } 1825 return true; 1826 } 1827 1828 /// Sink both shift and truncate instruction to the use of truncate's BB. 1829 static bool 1830 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1831 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1832 const TargetLowering &TLI, const DataLayout &DL) { 1833 BasicBlock *UserBB = User->getParent(); 1834 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1835 auto *TruncI = cast<TruncInst>(User); 1836 bool MadeChange = false; 1837 1838 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1839 TruncE = TruncI->user_end(); 1840 TruncUI != TruncE;) { 1841 1842 Use &TruncTheUse = TruncUI.getUse(); 1843 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1844 // Preincrement use iterator so we don't invalidate it. 1845 1846 ++TruncUI; 1847 1848 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1849 if (!ISDOpcode) 1850 continue; 1851 1852 // If the use is actually a legal node, there will not be an 1853 // implicit truncate. 1854 // FIXME: always querying the result type is just an 1855 // approximation; some nodes' legality is determined by the 1856 // operand or other means. There's no good way to find out though. 1857 if (TLI.isOperationLegalOrCustom( 1858 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1859 continue; 1860 1861 // Don't bother for PHI nodes. 1862 if (isa<PHINode>(TruncUser)) 1863 continue; 1864 1865 BasicBlock *TruncUserBB = TruncUser->getParent(); 1866 1867 if (UserBB == TruncUserBB) 1868 continue; 1869 1870 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1871 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1872 1873 if (!InsertedShift && !InsertedTrunc) { 1874 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1875 assert(InsertPt != TruncUserBB->end()); 1876 // Sink the shift 1877 if (ShiftI->getOpcode() == Instruction::AShr) 1878 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1879 "", &*InsertPt); 1880 else 1881 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1882 "", &*InsertPt); 1883 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1884 1885 // Sink the trunc 1886 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1887 TruncInsertPt++; 1888 assert(TruncInsertPt != TruncUserBB->end()); 1889 1890 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1891 TruncI->getType(), "", &*TruncInsertPt); 1892 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1893 1894 MadeChange = true; 1895 1896 TruncTheUse = InsertedTrunc; 1897 } 1898 } 1899 return MadeChange; 1900 } 1901 1902 /// Sink the shift *right* instruction into user blocks if the uses could 1903 /// potentially be combined with this shift instruction and generate BitExtract 1904 /// instruction. It will only be applied if the architecture supports BitExtract 1905 /// instruction. Here is an example: 1906 /// BB1: 1907 /// %x.extract.shift = lshr i64 %arg1, 32 1908 /// BB2: 1909 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1910 /// ==> 1911 /// 1912 /// BB2: 1913 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1914 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1915 /// 1916 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1917 /// instruction. 1918 /// Return true if any changes are made. 1919 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1920 const TargetLowering &TLI, 1921 const DataLayout &DL) { 1922 BasicBlock *DefBB = ShiftI->getParent(); 1923 1924 /// Only insert instructions in each block once. 1925 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1926 1927 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1928 1929 bool MadeChange = false; 1930 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1931 UI != E;) { 1932 Use &TheUse = UI.getUse(); 1933 Instruction *User = cast<Instruction>(*UI); 1934 // Preincrement use iterator so we don't invalidate it. 1935 ++UI; 1936 1937 // Don't bother for PHI nodes. 1938 if (isa<PHINode>(User)) 1939 continue; 1940 1941 if (!isExtractBitsCandidateUse(User)) 1942 continue; 1943 1944 BasicBlock *UserBB = User->getParent(); 1945 1946 if (UserBB == DefBB) { 1947 // If the shift and truncate instruction are in the same BB. The use of 1948 // the truncate(TruncUse) may still introduce another truncate if not 1949 // legal. In this case, we would like to sink both shift and truncate 1950 // instruction to the BB of TruncUse. 1951 // for example: 1952 // BB1: 1953 // i64 shift.result = lshr i64 opnd, imm 1954 // trunc.result = trunc shift.result to i16 1955 // 1956 // BB2: 1957 // ----> We will have an implicit truncate here if the architecture does 1958 // not have i16 compare. 1959 // cmp i16 trunc.result, opnd2 1960 // 1961 if (isa<TruncInst>(User) && shiftIsLegal 1962 // If the type of the truncate is legal, no truncate will be 1963 // introduced in other basic blocks. 1964 && 1965 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1966 MadeChange = 1967 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1968 1969 continue; 1970 } 1971 // If we have already inserted a shift into this block, use it. 1972 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1973 1974 if (!InsertedShift) { 1975 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1976 assert(InsertPt != UserBB->end()); 1977 1978 if (ShiftI->getOpcode() == Instruction::AShr) 1979 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1980 "", &*InsertPt); 1981 else 1982 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1983 "", &*InsertPt); 1984 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1985 1986 MadeChange = true; 1987 } 1988 1989 // Replace a use of the shift with a use of the new shift. 1990 TheUse = InsertedShift; 1991 } 1992 1993 // If we removed all uses, or there are none, nuke the shift. 1994 if (ShiftI->use_empty()) { 1995 salvageDebugInfo(*ShiftI); 1996 ShiftI->eraseFromParent(); 1997 MadeChange = true; 1998 } 1999 2000 return MadeChange; 2001 } 2002 2003 /// If counting leading or trailing zeros is an expensive operation and a zero 2004 /// input is defined, add a check for zero to avoid calling the intrinsic. 2005 /// 2006 /// We want to transform: 2007 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 2008 /// 2009 /// into: 2010 /// entry: 2011 /// %cmpz = icmp eq i64 %A, 0 2012 /// br i1 %cmpz, label %cond.end, label %cond.false 2013 /// cond.false: 2014 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 2015 /// br label %cond.end 2016 /// cond.end: 2017 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 2018 /// 2019 /// If the transform is performed, return true and set ModifiedDT to true. 2020 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 2021 const TargetLowering *TLI, 2022 const DataLayout *DL, 2023 bool &ModifiedDT) { 2024 // If a zero input is undefined, it doesn't make sense to despeculate that. 2025 if (match(CountZeros->getOperand(1), m_One())) 2026 return false; 2027 2028 // If it's cheap to speculate, there's nothing to do. 2029 auto IntrinsicID = CountZeros->getIntrinsicID(); 2030 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 2031 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 2032 return false; 2033 2034 // Only handle legal scalar cases. Anything else requires too much work. 2035 Type *Ty = CountZeros->getType(); 2036 unsigned SizeInBits = Ty->getScalarSizeInBits(); 2037 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 2038 return false; 2039 2040 // Bail if the value is never zero. 2041 Value *Op = CountZeros->getOperand(0); 2042 if (isKnownNonZero(Op, *DL)) 2043 return false; 2044 2045 // The intrinsic will be sunk behind a compare against zero and branch. 2046 BasicBlock *StartBlock = CountZeros->getParent(); 2047 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 2048 2049 // Create another block after the count zero intrinsic. A PHI will be added 2050 // in this block to select the result of the intrinsic or the bit-width 2051 // constant if the input to the intrinsic is zero. 2052 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 2053 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 2054 2055 // Set up a builder to create a compare, conditional branch, and PHI. 2056 IRBuilder<> Builder(CountZeros->getContext()); 2057 Builder.SetInsertPoint(StartBlock->getTerminator()); 2058 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 2059 2060 // Replace the unconditional branch that was created by the first split with 2061 // a compare against zero and a conditional branch. 2062 Value *Zero = Constant::getNullValue(Ty); 2063 // Avoid introducing branch on poison. 2064 if (!isGuaranteedNotToBeUndefOrPoison(Op)) 2065 Op = Builder.CreateFreeze(Op, Op->getName() + ".fr"); 2066 Value *Cmp = Builder.CreateICmpEQ(Op, Zero, "cmpz"); 2067 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 2068 StartBlock->getTerminator()->eraseFromParent(); 2069 2070 // Create a PHI in the end block to select either the output of the intrinsic 2071 // or the bit width of the operand. 2072 Builder.SetInsertPoint(&EndBlock->front()); 2073 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 2074 CountZeros->replaceAllUsesWith(PN); 2075 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 2076 PN->addIncoming(BitWidth, StartBlock); 2077 PN->addIncoming(CountZeros, CallBlock); 2078 2079 // We are explicitly handling the zero case, so we can set the intrinsic's 2080 // undefined zero argument to 'true'. This will also prevent reprocessing the 2081 // intrinsic; we only despeculate when a zero input is defined. 2082 CountZeros->setArgOperand(1, Builder.getTrue()); 2083 ModifiedDT = true; 2084 return true; 2085 } 2086 2087 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 2088 BasicBlock *BB = CI->getParent(); 2089 2090 // Lower inline assembly if we can. 2091 // If we found an inline asm expession, and if the target knows how to 2092 // lower it to normal LLVM code, do so now. 2093 if (CI->isInlineAsm()) { 2094 if (TLI->ExpandInlineAsm(CI)) { 2095 // Avoid invalidating the iterator. 2096 CurInstIterator = BB->begin(); 2097 // Avoid processing instructions out of order, which could cause 2098 // reuse before a value is defined. 2099 SunkAddrs.clear(); 2100 return true; 2101 } 2102 // Sink address computing for memory operands into the block. 2103 if (optimizeInlineAsmInst(CI)) 2104 return true; 2105 } 2106 2107 // Align the pointer arguments to this call if the target thinks it's a good 2108 // idea 2109 unsigned MinSize, PrefAlign; 2110 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 2111 for (auto &Arg : CI->args()) { 2112 // We want to align both objects whose address is used directly and 2113 // objects whose address is used in casts and GEPs, though it only makes 2114 // sense for GEPs if the offset is a multiple of the desired alignment and 2115 // if size - offset meets the size threshold. 2116 if (!Arg->getType()->isPointerTy()) 2117 continue; 2118 APInt Offset(DL->getIndexSizeInBits( 2119 cast<PointerType>(Arg->getType())->getAddressSpace()), 2120 0); 2121 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 2122 uint64_t Offset2 = Offset.getLimitedValue(); 2123 if ((Offset2 & (PrefAlign-1)) != 0) 2124 continue; 2125 AllocaInst *AI; 2126 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 2127 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2128 AI->setAlignment(Align(PrefAlign)); 2129 // Global variables can only be aligned if they are defined in this 2130 // object (i.e. they are uniquely initialized in this object), and 2131 // over-aligning global variables that have an explicit section is 2132 // forbidden. 2133 GlobalVariable *GV; 2134 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2135 GV->getPointerAlignment(*DL) < PrefAlign && 2136 DL->getTypeAllocSize(GV->getValueType()) >= 2137 MinSize + Offset2) 2138 GV->setAlignment(MaybeAlign(PrefAlign)); 2139 } 2140 // If this is a memcpy (or similar) then we may be able to improve the 2141 // alignment 2142 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2143 Align DestAlign = getKnownAlignment(MI->getDest(), *DL); 2144 MaybeAlign MIDestAlign = MI->getDestAlign(); 2145 if (!MIDestAlign || DestAlign > *MIDestAlign) 2146 MI->setDestAlignment(DestAlign); 2147 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 2148 MaybeAlign MTISrcAlign = MTI->getSourceAlign(); 2149 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 2150 if (!MTISrcAlign || SrcAlign > *MTISrcAlign) 2151 MTI->setSourceAlignment(SrcAlign); 2152 } 2153 } 2154 } 2155 2156 // If we have a cold call site, try to sink addressing computation into the 2157 // cold block. This interacts with our handling for loads and stores to 2158 // ensure that we can fold all uses of a potential addressing computation 2159 // into their uses. TODO: generalize this to work over profiling data 2160 if (CI->hasFnAttr(Attribute::Cold) && 2161 !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 2162 for (auto &Arg : CI->args()) { 2163 if (!Arg->getType()->isPointerTy()) 2164 continue; 2165 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2166 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 2167 } 2168 2169 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2170 if (II) { 2171 switch (II->getIntrinsicID()) { 2172 default: break; 2173 case Intrinsic::assume: 2174 llvm_unreachable("llvm.assume should have been removed already"); 2175 case Intrinsic::experimental_widenable_condition: { 2176 // Give up on future widening oppurtunties so that we can fold away dead 2177 // paths and merge blocks before going into block-local instruction 2178 // selection. 2179 if (II->use_empty()) { 2180 II->eraseFromParent(); 2181 return true; 2182 } 2183 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 2184 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2185 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2186 }); 2187 return true; 2188 } 2189 case Intrinsic::objectsize: 2190 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2191 case Intrinsic::is_constant: 2192 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2193 case Intrinsic::aarch64_stlxr: 2194 case Intrinsic::aarch64_stxr: { 2195 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2196 if (!ExtVal || !ExtVal->hasOneUse() || 2197 ExtVal->getParent() == CI->getParent()) 2198 return false; 2199 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2200 ExtVal->moveBefore(CI); 2201 // Mark this instruction as "inserted by CGP", so that other 2202 // optimizations don't touch it. 2203 InsertedInsts.insert(ExtVal); 2204 return true; 2205 } 2206 2207 case Intrinsic::launder_invariant_group: 2208 case Intrinsic::strip_invariant_group: { 2209 Value *ArgVal = II->getArgOperand(0); 2210 auto it = LargeOffsetGEPMap.find(II); 2211 if (it != LargeOffsetGEPMap.end()) { 2212 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2213 // Make sure not to have to deal with iterator invalidation 2214 // after possibly adding ArgVal to LargeOffsetGEPMap. 2215 auto GEPs = std::move(it->second); 2216 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2217 LargeOffsetGEPMap.erase(II); 2218 } 2219 2220 II->replaceAllUsesWith(ArgVal); 2221 II->eraseFromParent(); 2222 return true; 2223 } 2224 case Intrinsic::cttz: 2225 case Intrinsic::ctlz: 2226 // If counting zeros is expensive, try to avoid it. 2227 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2228 case Intrinsic::fshl: 2229 case Intrinsic::fshr: 2230 return optimizeFunnelShift(II); 2231 case Intrinsic::dbg_value: 2232 return fixupDbgValue(II); 2233 case Intrinsic::vscale: { 2234 // If datalayout has no special restrictions on vector data layout, 2235 // replace `llvm.vscale` by an equivalent constant expression 2236 // to benefit from cheap constant propagation. 2237 Type *ScalableVectorTy = 2238 VectorType::get(Type::getInt8Ty(II->getContext()), 1, true); 2239 if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) { 2240 auto *Null = Constant::getNullValue(ScalableVectorTy->getPointerTo()); 2241 auto *One = ConstantInt::getSigned(II->getType(), 1); 2242 auto *CGep = 2243 ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One); 2244 II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType())); 2245 II->eraseFromParent(); 2246 return true; 2247 } 2248 break; 2249 } 2250 case Intrinsic::masked_gather: 2251 return optimizeGatherScatterInst(II, II->getArgOperand(0)); 2252 case Intrinsic::masked_scatter: 2253 return optimizeGatherScatterInst(II, II->getArgOperand(1)); 2254 } 2255 2256 SmallVector<Value *, 2> PtrOps; 2257 Type *AccessTy; 2258 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2259 while (!PtrOps.empty()) { 2260 Value *PtrVal = PtrOps.pop_back_val(); 2261 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2262 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2263 return true; 2264 } 2265 } 2266 2267 // From here on out we're working with named functions. 2268 if (!CI->getCalledFunction()) return false; 2269 2270 // Lower all default uses of _chk calls. This is very similar 2271 // to what InstCombineCalls does, but here we are only lowering calls 2272 // to fortified library functions (e.g. __memcpy_chk) that have the default 2273 // "don't know" as the objectsize. Anything else should be left alone. 2274 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2275 IRBuilder<> Builder(CI); 2276 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2277 CI->replaceAllUsesWith(V); 2278 CI->eraseFromParent(); 2279 return true; 2280 } 2281 2282 return false; 2283 } 2284 2285 /// Look for opportunities to duplicate return instructions to the predecessor 2286 /// to enable tail call optimizations. The case it is currently looking for is: 2287 /// @code 2288 /// bb0: 2289 /// %tmp0 = tail call i32 @f0() 2290 /// br label %return 2291 /// bb1: 2292 /// %tmp1 = tail call i32 @f1() 2293 /// br label %return 2294 /// bb2: 2295 /// %tmp2 = tail call i32 @f2() 2296 /// br label %return 2297 /// return: 2298 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2299 /// ret i32 %retval 2300 /// @endcode 2301 /// 2302 /// => 2303 /// 2304 /// @code 2305 /// bb0: 2306 /// %tmp0 = tail call i32 @f0() 2307 /// ret i32 %tmp0 2308 /// bb1: 2309 /// %tmp1 = tail call i32 @f1() 2310 /// ret i32 %tmp1 2311 /// bb2: 2312 /// %tmp2 = tail call i32 @f2() 2313 /// ret i32 %tmp2 2314 /// @endcode 2315 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 2316 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2317 if (!RetI) 2318 return false; 2319 2320 PHINode *PN = nullptr; 2321 ExtractValueInst *EVI = nullptr; 2322 BitCastInst *BCI = nullptr; 2323 Value *V = RetI->getReturnValue(); 2324 if (V) { 2325 BCI = dyn_cast<BitCastInst>(V); 2326 if (BCI) 2327 V = BCI->getOperand(0); 2328 2329 EVI = dyn_cast<ExtractValueInst>(V); 2330 if (EVI) { 2331 V = EVI->getOperand(0); 2332 if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; })) 2333 return false; 2334 } 2335 2336 PN = dyn_cast<PHINode>(V); 2337 if (!PN) 2338 return false; 2339 } 2340 2341 if (PN && PN->getParent() != BB) 2342 return false; 2343 2344 auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) { 2345 const BitCastInst *BC = dyn_cast<BitCastInst>(Inst); 2346 if (BC && BC->hasOneUse()) 2347 Inst = BC->user_back(); 2348 2349 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 2350 return II->getIntrinsicID() == Intrinsic::lifetime_end; 2351 return false; 2352 }; 2353 2354 // Make sure there are no instructions between the first instruction 2355 // and return. 2356 const Instruction *BI = BB->getFirstNonPHI(); 2357 // Skip over debug and the bitcast. 2358 while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI || 2359 isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI)) 2360 BI = BI->getNextNode(); 2361 if (BI != RetI) 2362 return false; 2363 2364 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2365 /// call. 2366 const Function *F = BB->getParent(); 2367 SmallVector<BasicBlock*, 4> TailCallBBs; 2368 if (PN) { 2369 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2370 // Look through bitcasts. 2371 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2372 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2373 BasicBlock *PredBB = PN->getIncomingBlock(I); 2374 // Make sure the phi value is indeed produced by the tail call. 2375 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2376 TLI->mayBeEmittedAsTailCall(CI) && 2377 attributesPermitTailCall(F, CI, RetI, *TLI)) 2378 TailCallBBs.push_back(PredBB); 2379 } 2380 } else { 2381 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2382 for (BasicBlock *Pred : predecessors(BB)) { 2383 if (!VisitedBBs.insert(Pred).second) 2384 continue; 2385 if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) { 2386 CallInst *CI = dyn_cast<CallInst>(I); 2387 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2388 attributesPermitTailCall(F, CI, RetI, *TLI)) 2389 TailCallBBs.push_back(Pred); 2390 } 2391 } 2392 } 2393 2394 bool Changed = false; 2395 for (auto const &TailCallBB : TailCallBBs) { 2396 // Make sure the call instruction is followed by an unconditional branch to 2397 // the return block. 2398 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2399 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2400 continue; 2401 2402 // Duplicate the return into TailCallBB. 2403 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2404 assert(!VerifyBFIUpdates || 2405 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); 2406 BFI->setBlockFreq( 2407 BB, 2408 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency()); 2409 ModifiedDT = Changed = true; 2410 ++NumRetsDup; 2411 } 2412 2413 // If we eliminated all predecessors of the block, delete the block now. 2414 if (Changed && !BB->hasAddressTaken() && pred_empty(BB)) 2415 BB->eraseFromParent(); 2416 2417 return Changed; 2418 } 2419 2420 //===----------------------------------------------------------------------===// 2421 // Memory Optimization 2422 //===----------------------------------------------------------------------===// 2423 2424 namespace { 2425 2426 /// This is an extended version of TargetLowering::AddrMode 2427 /// which holds actual Value*'s for register values. 2428 struct ExtAddrMode : public TargetLowering::AddrMode { 2429 Value *BaseReg = nullptr; 2430 Value *ScaledReg = nullptr; 2431 Value *OriginalValue = nullptr; 2432 bool InBounds = true; 2433 2434 enum FieldName { 2435 NoField = 0x00, 2436 BaseRegField = 0x01, 2437 BaseGVField = 0x02, 2438 BaseOffsField = 0x04, 2439 ScaledRegField = 0x08, 2440 ScaleField = 0x10, 2441 MultipleFields = 0xff 2442 }; 2443 2444 2445 ExtAddrMode() = default; 2446 2447 void print(raw_ostream &OS) const; 2448 void dump() const; 2449 2450 FieldName compare(const ExtAddrMode &other) { 2451 // First check that the types are the same on each field, as differing types 2452 // is something we can't cope with later on. 2453 if (BaseReg && other.BaseReg && 2454 BaseReg->getType() != other.BaseReg->getType()) 2455 return MultipleFields; 2456 if (BaseGV && other.BaseGV && 2457 BaseGV->getType() != other.BaseGV->getType()) 2458 return MultipleFields; 2459 if (ScaledReg && other.ScaledReg && 2460 ScaledReg->getType() != other.ScaledReg->getType()) 2461 return MultipleFields; 2462 2463 // Conservatively reject 'inbounds' mismatches. 2464 if (InBounds != other.InBounds) 2465 return MultipleFields; 2466 2467 // Check each field to see if it differs. 2468 unsigned Result = NoField; 2469 if (BaseReg != other.BaseReg) 2470 Result |= BaseRegField; 2471 if (BaseGV != other.BaseGV) 2472 Result |= BaseGVField; 2473 if (BaseOffs != other.BaseOffs) 2474 Result |= BaseOffsField; 2475 if (ScaledReg != other.ScaledReg) 2476 Result |= ScaledRegField; 2477 // Don't count 0 as being a different scale, because that actually means 2478 // unscaled (which will already be counted by having no ScaledReg). 2479 if (Scale && other.Scale && Scale != other.Scale) 2480 Result |= ScaleField; 2481 2482 if (countPopulation(Result) > 1) 2483 return MultipleFields; 2484 else 2485 return static_cast<FieldName>(Result); 2486 } 2487 2488 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2489 // with no offset. 2490 bool isTrivial() { 2491 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2492 // trivial if at most one of these terms is nonzero, except that BaseGV and 2493 // BaseReg both being zero actually means a null pointer value, which we 2494 // consider to be 'non-zero' here. 2495 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2496 } 2497 2498 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2499 switch (Field) { 2500 default: 2501 return nullptr; 2502 case BaseRegField: 2503 return BaseReg; 2504 case BaseGVField: 2505 return BaseGV; 2506 case ScaledRegField: 2507 return ScaledReg; 2508 case BaseOffsField: 2509 return ConstantInt::get(IntPtrTy, BaseOffs); 2510 } 2511 } 2512 2513 void SetCombinedField(FieldName Field, Value *V, 2514 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2515 switch (Field) { 2516 default: 2517 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2518 break; 2519 case ExtAddrMode::BaseRegField: 2520 BaseReg = V; 2521 break; 2522 case ExtAddrMode::BaseGVField: 2523 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2524 // in the BaseReg field. 2525 assert(BaseReg == nullptr); 2526 BaseReg = V; 2527 BaseGV = nullptr; 2528 break; 2529 case ExtAddrMode::ScaledRegField: 2530 ScaledReg = V; 2531 // If we have a mix of scaled and unscaled addrmodes then we want scale 2532 // to be the scale and not zero. 2533 if (!Scale) 2534 for (const ExtAddrMode &AM : AddrModes) 2535 if (AM.Scale) { 2536 Scale = AM.Scale; 2537 break; 2538 } 2539 break; 2540 case ExtAddrMode::BaseOffsField: 2541 // The offset is no longer a constant, so it goes in ScaledReg with a 2542 // scale of 1. 2543 assert(ScaledReg == nullptr); 2544 ScaledReg = V; 2545 Scale = 1; 2546 BaseOffs = 0; 2547 break; 2548 } 2549 } 2550 }; 2551 2552 } // end anonymous namespace 2553 2554 #ifndef NDEBUG 2555 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2556 AM.print(OS); 2557 return OS; 2558 } 2559 #endif 2560 2561 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2562 void ExtAddrMode::print(raw_ostream &OS) const { 2563 bool NeedPlus = false; 2564 OS << "["; 2565 if (InBounds) 2566 OS << "inbounds "; 2567 if (BaseGV) { 2568 OS << (NeedPlus ? " + " : "") 2569 << "GV:"; 2570 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2571 NeedPlus = true; 2572 } 2573 2574 if (BaseOffs) { 2575 OS << (NeedPlus ? " + " : "") 2576 << BaseOffs; 2577 NeedPlus = true; 2578 } 2579 2580 if (BaseReg) { 2581 OS << (NeedPlus ? " + " : "") 2582 << "Base:"; 2583 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2584 NeedPlus = true; 2585 } 2586 if (Scale) { 2587 OS << (NeedPlus ? " + " : "") 2588 << Scale << "*"; 2589 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2590 } 2591 2592 OS << ']'; 2593 } 2594 2595 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2596 print(dbgs()); 2597 dbgs() << '\n'; 2598 } 2599 #endif 2600 2601 namespace { 2602 2603 /// This class provides transaction based operation on the IR. 2604 /// Every change made through this class is recorded in the internal state and 2605 /// can be undone (rollback) until commit is called. 2606 /// CGP does not check if instructions could be speculatively executed when 2607 /// moved. Preserving the original location would pessimize the debugging 2608 /// experience, as well as negatively impact the quality of sample PGO. 2609 class TypePromotionTransaction { 2610 /// This represents the common interface of the individual transaction. 2611 /// Each class implements the logic for doing one specific modification on 2612 /// the IR via the TypePromotionTransaction. 2613 class TypePromotionAction { 2614 protected: 2615 /// The Instruction modified. 2616 Instruction *Inst; 2617 2618 public: 2619 /// Constructor of the action. 2620 /// The constructor performs the related action on the IR. 2621 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2622 2623 virtual ~TypePromotionAction() = default; 2624 2625 /// Undo the modification done by this action. 2626 /// When this method is called, the IR must be in the same state as it was 2627 /// before this action was applied. 2628 /// \pre Undoing the action works if and only if the IR is in the exact same 2629 /// state as it was directly after this action was applied. 2630 virtual void undo() = 0; 2631 2632 /// Advocate every change made by this action. 2633 /// When the results on the IR of the action are to be kept, it is important 2634 /// to call this function, otherwise hidden information may be kept forever. 2635 virtual void commit() { 2636 // Nothing to be done, this action is not doing anything. 2637 } 2638 }; 2639 2640 /// Utility to remember the position of an instruction. 2641 class InsertionHandler { 2642 /// Position of an instruction. 2643 /// Either an instruction: 2644 /// - Is the first in a basic block: BB is used. 2645 /// - Has a previous instruction: PrevInst is used. 2646 union { 2647 Instruction *PrevInst; 2648 BasicBlock *BB; 2649 } Point; 2650 2651 /// Remember whether or not the instruction had a previous instruction. 2652 bool HasPrevInstruction; 2653 2654 public: 2655 /// Record the position of \p Inst. 2656 InsertionHandler(Instruction *Inst) { 2657 BasicBlock::iterator It = Inst->getIterator(); 2658 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2659 if (HasPrevInstruction) 2660 Point.PrevInst = &*--It; 2661 else 2662 Point.BB = Inst->getParent(); 2663 } 2664 2665 /// Insert \p Inst at the recorded position. 2666 void insert(Instruction *Inst) { 2667 if (HasPrevInstruction) { 2668 if (Inst->getParent()) 2669 Inst->removeFromParent(); 2670 Inst->insertAfter(Point.PrevInst); 2671 } else { 2672 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2673 if (Inst->getParent()) 2674 Inst->moveBefore(Position); 2675 else 2676 Inst->insertBefore(Position); 2677 } 2678 } 2679 }; 2680 2681 /// Move an instruction before another. 2682 class InstructionMoveBefore : public TypePromotionAction { 2683 /// Original position of the instruction. 2684 InsertionHandler Position; 2685 2686 public: 2687 /// Move \p Inst before \p Before. 2688 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2689 : TypePromotionAction(Inst), Position(Inst) { 2690 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2691 << "\n"); 2692 Inst->moveBefore(Before); 2693 } 2694 2695 /// Move the instruction back to its original position. 2696 void undo() override { 2697 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2698 Position.insert(Inst); 2699 } 2700 }; 2701 2702 /// Set the operand of an instruction with a new value. 2703 class OperandSetter : public TypePromotionAction { 2704 /// Original operand of the instruction. 2705 Value *Origin; 2706 2707 /// Index of the modified instruction. 2708 unsigned Idx; 2709 2710 public: 2711 /// Set \p Idx operand of \p Inst with \p NewVal. 2712 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2713 : TypePromotionAction(Inst), Idx(Idx) { 2714 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2715 << "for:" << *Inst << "\n" 2716 << "with:" << *NewVal << "\n"); 2717 Origin = Inst->getOperand(Idx); 2718 Inst->setOperand(Idx, NewVal); 2719 } 2720 2721 /// Restore the original value of the instruction. 2722 void undo() override { 2723 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2724 << "for: " << *Inst << "\n" 2725 << "with: " << *Origin << "\n"); 2726 Inst->setOperand(Idx, Origin); 2727 } 2728 }; 2729 2730 /// Hide the operands of an instruction. 2731 /// Do as if this instruction was not using any of its operands. 2732 class OperandsHider : public TypePromotionAction { 2733 /// The list of original operands. 2734 SmallVector<Value *, 4> OriginalValues; 2735 2736 public: 2737 /// Remove \p Inst from the uses of the operands of \p Inst. 2738 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2739 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2740 unsigned NumOpnds = Inst->getNumOperands(); 2741 OriginalValues.reserve(NumOpnds); 2742 for (unsigned It = 0; It < NumOpnds; ++It) { 2743 // Save the current operand. 2744 Value *Val = Inst->getOperand(It); 2745 OriginalValues.push_back(Val); 2746 // Set a dummy one. 2747 // We could use OperandSetter here, but that would imply an overhead 2748 // that we are not willing to pay. 2749 Inst->setOperand(It, UndefValue::get(Val->getType())); 2750 } 2751 } 2752 2753 /// Restore the original list of uses. 2754 void undo() override { 2755 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2756 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2757 Inst->setOperand(It, OriginalValues[It]); 2758 } 2759 }; 2760 2761 /// Build a truncate instruction. 2762 class TruncBuilder : public TypePromotionAction { 2763 Value *Val; 2764 2765 public: 2766 /// Build a truncate instruction of \p Opnd producing a \p Ty 2767 /// result. 2768 /// trunc Opnd to Ty. 2769 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2770 IRBuilder<> Builder(Opnd); 2771 Builder.SetCurrentDebugLocation(DebugLoc()); 2772 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2773 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2774 } 2775 2776 /// Get the built value. 2777 Value *getBuiltValue() { return Val; } 2778 2779 /// Remove the built instruction. 2780 void undo() override { 2781 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2782 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2783 IVal->eraseFromParent(); 2784 } 2785 }; 2786 2787 /// Build a sign extension instruction. 2788 class SExtBuilder : public TypePromotionAction { 2789 Value *Val; 2790 2791 public: 2792 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2793 /// result. 2794 /// sext Opnd to Ty. 2795 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2796 : TypePromotionAction(InsertPt) { 2797 IRBuilder<> Builder(InsertPt); 2798 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2799 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2800 } 2801 2802 /// Get the built value. 2803 Value *getBuiltValue() { return Val; } 2804 2805 /// Remove the built instruction. 2806 void undo() override { 2807 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2808 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2809 IVal->eraseFromParent(); 2810 } 2811 }; 2812 2813 /// Build a zero extension instruction. 2814 class ZExtBuilder : public TypePromotionAction { 2815 Value *Val; 2816 2817 public: 2818 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2819 /// result. 2820 /// zext Opnd to Ty. 2821 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2822 : TypePromotionAction(InsertPt) { 2823 IRBuilder<> Builder(InsertPt); 2824 Builder.SetCurrentDebugLocation(DebugLoc()); 2825 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2826 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2827 } 2828 2829 /// Get the built value. 2830 Value *getBuiltValue() { return Val; } 2831 2832 /// Remove the built instruction. 2833 void undo() override { 2834 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2835 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2836 IVal->eraseFromParent(); 2837 } 2838 }; 2839 2840 /// Mutate an instruction to another type. 2841 class TypeMutator : public TypePromotionAction { 2842 /// Record the original type. 2843 Type *OrigTy; 2844 2845 public: 2846 /// Mutate the type of \p Inst into \p NewTy. 2847 TypeMutator(Instruction *Inst, Type *NewTy) 2848 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2849 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2850 << "\n"); 2851 Inst->mutateType(NewTy); 2852 } 2853 2854 /// Mutate the instruction back to its original type. 2855 void undo() override { 2856 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2857 << "\n"); 2858 Inst->mutateType(OrigTy); 2859 } 2860 }; 2861 2862 /// Replace the uses of an instruction by another instruction. 2863 class UsesReplacer : public TypePromotionAction { 2864 /// Helper structure to keep track of the replaced uses. 2865 struct InstructionAndIdx { 2866 /// The instruction using the instruction. 2867 Instruction *Inst; 2868 2869 /// The index where this instruction is used for Inst. 2870 unsigned Idx; 2871 2872 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2873 : Inst(Inst), Idx(Idx) {} 2874 }; 2875 2876 /// Keep track of the original uses (pair Instruction, Index). 2877 SmallVector<InstructionAndIdx, 4> OriginalUses; 2878 /// Keep track of the debug users. 2879 SmallVector<DbgValueInst *, 1> DbgValues; 2880 2881 /// Keep track of the new value so that we can undo it by replacing 2882 /// instances of the new value with the original value. 2883 Value *New; 2884 2885 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2886 2887 public: 2888 /// Replace all the use of \p Inst by \p New. 2889 UsesReplacer(Instruction *Inst, Value *New) 2890 : TypePromotionAction(Inst), New(New) { 2891 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2892 << "\n"); 2893 // Record the original uses. 2894 for (Use &U : Inst->uses()) { 2895 Instruction *UserI = cast<Instruction>(U.getUser()); 2896 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2897 } 2898 // Record the debug uses separately. They are not in the instruction's 2899 // use list, but they are replaced by RAUW. 2900 findDbgValues(DbgValues, Inst); 2901 2902 // Now, we can replace the uses. 2903 Inst->replaceAllUsesWith(New); 2904 } 2905 2906 /// Reassign the original uses of Inst to Inst. 2907 void undo() override { 2908 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2909 for (InstructionAndIdx &Use : OriginalUses) 2910 Use.Inst->setOperand(Use.Idx, Inst); 2911 // RAUW has replaced all original uses with references to the new value, 2912 // including the debug uses. Since we are undoing the replacements, 2913 // the original debug uses must also be reinstated to maintain the 2914 // correctness and utility of debug value instructions. 2915 for (auto *DVI : DbgValues) 2916 DVI->replaceVariableLocationOp(New, Inst); 2917 } 2918 }; 2919 2920 /// Remove an instruction from the IR. 2921 class InstructionRemover : public TypePromotionAction { 2922 /// Original position of the instruction. 2923 InsertionHandler Inserter; 2924 2925 /// Helper structure to hide all the link to the instruction. In other 2926 /// words, this helps to do as if the instruction was removed. 2927 OperandsHider Hider; 2928 2929 /// Keep track of the uses replaced, if any. 2930 UsesReplacer *Replacer = nullptr; 2931 2932 /// Keep track of instructions removed. 2933 SetOfInstrs &RemovedInsts; 2934 2935 public: 2936 /// Remove all reference of \p Inst and optionally replace all its 2937 /// uses with New. 2938 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2939 /// \pre If !Inst->use_empty(), then New != nullptr 2940 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2941 Value *New = nullptr) 2942 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2943 RemovedInsts(RemovedInsts) { 2944 if (New) 2945 Replacer = new UsesReplacer(Inst, New); 2946 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2947 RemovedInsts.insert(Inst); 2948 /// The instructions removed here will be freed after completing 2949 /// optimizeBlock() for all blocks as we need to keep track of the 2950 /// removed instructions during promotion. 2951 Inst->removeFromParent(); 2952 } 2953 2954 ~InstructionRemover() override { delete Replacer; } 2955 2956 /// Resurrect the instruction and reassign it to the proper uses if 2957 /// new value was provided when build this action. 2958 void undo() override { 2959 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2960 Inserter.insert(Inst); 2961 if (Replacer) 2962 Replacer->undo(); 2963 Hider.undo(); 2964 RemovedInsts.erase(Inst); 2965 } 2966 }; 2967 2968 public: 2969 /// Restoration point. 2970 /// The restoration point is a pointer to an action instead of an iterator 2971 /// because the iterator may be invalidated but not the pointer. 2972 using ConstRestorationPt = const TypePromotionAction *; 2973 2974 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2975 : RemovedInsts(RemovedInsts) {} 2976 2977 /// Advocate every changes made in that transaction. Return true if any change 2978 /// happen. 2979 bool commit(); 2980 2981 /// Undo all the changes made after the given point. 2982 void rollback(ConstRestorationPt Point); 2983 2984 /// Get the current restoration point. 2985 ConstRestorationPt getRestorationPoint() const; 2986 2987 /// \name API for IR modification with state keeping to support rollback. 2988 /// @{ 2989 /// Same as Instruction::setOperand. 2990 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2991 2992 /// Same as Instruction::eraseFromParent. 2993 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2994 2995 /// Same as Value::replaceAllUsesWith. 2996 void replaceAllUsesWith(Instruction *Inst, Value *New); 2997 2998 /// Same as Value::mutateType. 2999 void mutateType(Instruction *Inst, Type *NewTy); 3000 3001 /// Same as IRBuilder::createTrunc. 3002 Value *createTrunc(Instruction *Opnd, Type *Ty); 3003 3004 /// Same as IRBuilder::createSExt. 3005 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 3006 3007 /// Same as IRBuilder::createZExt. 3008 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 3009 3010 /// Same as Instruction::moveBefore. 3011 void moveBefore(Instruction *Inst, Instruction *Before); 3012 /// @} 3013 3014 private: 3015 /// The ordered list of actions made so far. 3016 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 3017 3018 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 3019 3020 SetOfInstrs &RemovedInsts; 3021 }; 3022 3023 } // end anonymous namespace 3024 3025 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 3026 Value *NewVal) { 3027 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 3028 Inst, Idx, NewVal)); 3029 } 3030 3031 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 3032 Value *NewVal) { 3033 Actions.push_back( 3034 std::make_unique<TypePromotionTransaction::InstructionRemover>( 3035 Inst, RemovedInsts, NewVal)); 3036 } 3037 3038 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 3039 Value *New) { 3040 Actions.push_back( 3041 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 3042 } 3043 3044 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 3045 Actions.push_back( 3046 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 3047 } 3048 3049 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 3050 Type *Ty) { 3051 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 3052 Value *Val = Ptr->getBuiltValue(); 3053 Actions.push_back(std::move(Ptr)); 3054 return Val; 3055 } 3056 3057 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 3058 Value *Opnd, Type *Ty) { 3059 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 3060 Value *Val = Ptr->getBuiltValue(); 3061 Actions.push_back(std::move(Ptr)); 3062 return Val; 3063 } 3064 3065 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 3066 Value *Opnd, Type *Ty) { 3067 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 3068 Value *Val = Ptr->getBuiltValue(); 3069 Actions.push_back(std::move(Ptr)); 3070 return Val; 3071 } 3072 3073 void TypePromotionTransaction::moveBefore(Instruction *Inst, 3074 Instruction *Before) { 3075 Actions.push_back( 3076 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 3077 Inst, Before)); 3078 } 3079 3080 TypePromotionTransaction::ConstRestorationPt 3081 TypePromotionTransaction::getRestorationPoint() const { 3082 return !Actions.empty() ? Actions.back().get() : nullptr; 3083 } 3084 3085 bool TypePromotionTransaction::commit() { 3086 for (std::unique_ptr<TypePromotionAction> &Action : Actions) 3087 Action->commit(); 3088 bool Modified = !Actions.empty(); 3089 Actions.clear(); 3090 return Modified; 3091 } 3092 3093 void TypePromotionTransaction::rollback( 3094 TypePromotionTransaction::ConstRestorationPt Point) { 3095 while (!Actions.empty() && Point != Actions.back().get()) { 3096 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 3097 Curr->undo(); 3098 } 3099 } 3100 3101 namespace { 3102 3103 /// A helper class for matching addressing modes. 3104 /// 3105 /// This encapsulates the logic for matching the target-legal addressing modes. 3106 class AddressingModeMatcher { 3107 SmallVectorImpl<Instruction*> &AddrModeInsts; 3108 const TargetLowering &TLI; 3109 const TargetRegisterInfo &TRI; 3110 const DataLayout &DL; 3111 const LoopInfo &LI; 3112 const std::function<const DominatorTree &()> getDTFn; 3113 3114 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 3115 /// the memory instruction that we're computing this address for. 3116 Type *AccessTy; 3117 unsigned AddrSpace; 3118 Instruction *MemoryInst; 3119 3120 /// This is the addressing mode that we're building up. This is 3121 /// part of the return value of this addressing mode matching stuff. 3122 ExtAddrMode &AddrMode; 3123 3124 /// The instructions inserted by other CodeGenPrepare optimizations. 3125 const SetOfInstrs &InsertedInsts; 3126 3127 /// A map from the instructions to their type before promotion. 3128 InstrToOrigTy &PromotedInsts; 3129 3130 /// The ongoing transaction where every action should be registered. 3131 TypePromotionTransaction &TPT; 3132 3133 // A GEP which has too large offset to be folded into the addressing mode. 3134 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 3135 3136 /// This is set to true when we should not do profitability checks. 3137 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 3138 bool IgnoreProfitability; 3139 3140 /// True if we are optimizing for size. 3141 bool OptSize; 3142 3143 ProfileSummaryInfo *PSI; 3144 BlockFrequencyInfo *BFI; 3145 3146 AddressingModeMatcher( 3147 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 3148 const TargetRegisterInfo &TRI, const LoopInfo &LI, 3149 const std::function<const DominatorTree &()> getDTFn, 3150 Type *AT, unsigned AS, Instruction *MI, ExtAddrMode &AM, 3151 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 3152 TypePromotionTransaction &TPT, 3153 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3154 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 3155 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 3156 DL(MI->getModule()->getDataLayout()), LI(LI), getDTFn(getDTFn), 3157 AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM), 3158 InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT), 3159 LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) { 3160 IgnoreProfitability = false; 3161 } 3162 3163 public: 3164 /// Find the maximal addressing mode that a load/store of V can fold, 3165 /// give an access type of AccessTy. This returns a list of involved 3166 /// instructions in AddrModeInsts. 3167 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3168 /// optimizations. 3169 /// \p PromotedInsts maps the instructions to their type before promotion. 3170 /// \p The ongoing transaction where every action should be registered. 3171 static ExtAddrMode 3172 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 3173 SmallVectorImpl<Instruction *> &AddrModeInsts, 3174 const TargetLowering &TLI, const LoopInfo &LI, 3175 const std::function<const DominatorTree &()> getDTFn, 3176 const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts, 3177 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 3178 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3179 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 3180 ExtAddrMode Result; 3181 3182 bool Success = AddressingModeMatcher( 3183 AddrModeInsts, TLI, TRI, LI, getDTFn, AccessTy, AS, MemoryInst, Result, 3184 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 3185 BFI).matchAddr(V, 0); 3186 (void)Success; assert(Success && "Couldn't select *anything*?"); 3187 return Result; 3188 } 3189 3190 private: 3191 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3192 bool matchAddr(Value *Addr, unsigned Depth); 3193 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 3194 bool *MovedAway = nullptr); 3195 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3196 ExtAddrMode &AMBefore, 3197 ExtAddrMode &AMAfter); 3198 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3199 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3200 Value *PromotedOperand) const; 3201 }; 3202 3203 class PhiNodeSet; 3204 3205 /// An iterator for PhiNodeSet. 3206 class PhiNodeSetIterator { 3207 PhiNodeSet * const Set; 3208 size_t CurrentIndex = 0; 3209 3210 public: 3211 /// The constructor. Start should point to either a valid element, or be equal 3212 /// to the size of the underlying SmallVector of the PhiNodeSet. 3213 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 3214 PHINode * operator*() const; 3215 PhiNodeSetIterator& operator++(); 3216 bool operator==(const PhiNodeSetIterator &RHS) const; 3217 bool operator!=(const PhiNodeSetIterator &RHS) const; 3218 }; 3219 3220 /// Keeps a set of PHINodes. 3221 /// 3222 /// This is a minimal set implementation for a specific use case: 3223 /// It is very fast when there are very few elements, but also provides good 3224 /// performance when there are many. It is similar to SmallPtrSet, but also 3225 /// provides iteration by insertion order, which is deterministic and stable 3226 /// across runs. It is also similar to SmallSetVector, but provides removing 3227 /// elements in O(1) time. This is achieved by not actually removing the element 3228 /// from the underlying vector, so comes at the cost of using more memory, but 3229 /// that is fine, since PhiNodeSets are used as short lived objects. 3230 class PhiNodeSet { 3231 friend class PhiNodeSetIterator; 3232 3233 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3234 using iterator = PhiNodeSetIterator; 3235 3236 /// Keeps the elements in the order of their insertion in the underlying 3237 /// vector. To achieve constant time removal, it never deletes any element. 3238 SmallVector<PHINode *, 32> NodeList; 3239 3240 /// Keeps the elements in the underlying set implementation. This (and not the 3241 /// NodeList defined above) is the source of truth on whether an element 3242 /// is actually in the collection. 3243 MapType NodeMap; 3244 3245 /// Points to the first valid (not deleted) element when the set is not empty 3246 /// and the value is not zero. Equals to the size of the underlying vector 3247 /// when the set is empty. When the value is 0, as in the beginning, the 3248 /// first element may or may not be valid. 3249 size_t FirstValidElement = 0; 3250 3251 public: 3252 /// Inserts a new element to the collection. 3253 /// \returns true if the element is actually added, i.e. was not in the 3254 /// collection before the operation. 3255 bool insert(PHINode *Ptr) { 3256 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3257 NodeList.push_back(Ptr); 3258 return true; 3259 } 3260 return false; 3261 } 3262 3263 /// Removes the element from the collection. 3264 /// \returns whether the element is actually removed, i.e. was in the 3265 /// collection before the operation. 3266 bool erase(PHINode *Ptr) { 3267 if (NodeMap.erase(Ptr)) { 3268 SkipRemovedElements(FirstValidElement); 3269 return true; 3270 } 3271 return false; 3272 } 3273 3274 /// Removes all elements and clears the collection. 3275 void clear() { 3276 NodeMap.clear(); 3277 NodeList.clear(); 3278 FirstValidElement = 0; 3279 } 3280 3281 /// \returns an iterator that will iterate the elements in the order of 3282 /// insertion. 3283 iterator begin() { 3284 if (FirstValidElement == 0) 3285 SkipRemovedElements(FirstValidElement); 3286 return PhiNodeSetIterator(this, FirstValidElement); 3287 } 3288 3289 /// \returns an iterator that points to the end of the collection. 3290 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3291 3292 /// Returns the number of elements in the collection. 3293 size_t size() const { 3294 return NodeMap.size(); 3295 } 3296 3297 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3298 size_t count(PHINode *Ptr) const { 3299 return NodeMap.count(Ptr); 3300 } 3301 3302 private: 3303 /// Updates the CurrentIndex so that it will point to a valid element. 3304 /// 3305 /// If the element of NodeList at CurrentIndex is valid, it does not 3306 /// change it. If there are no more valid elements, it updates CurrentIndex 3307 /// to point to the end of the NodeList. 3308 void SkipRemovedElements(size_t &CurrentIndex) { 3309 while (CurrentIndex < NodeList.size()) { 3310 auto it = NodeMap.find(NodeList[CurrentIndex]); 3311 // If the element has been deleted and added again later, NodeMap will 3312 // point to a different index, so CurrentIndex will still be invalid. 3313 if (it != NodeMap.end() && it->second == CurrentIndex) 3314 break; 3315 ++CurrentIndex; 3316 } 3317 } 3318 }; 3319 3320 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3321 : Set(Set), CurrentIndex(Start) {} 3322 3323 PHINode * PhiNodeSetIterator::operator*() const { 3324 assert(CurrentIndex < Set->NodeList.size() && 3325 "PhiNodeSet access out of range"); 3326 return Set->NodeList[CurrentIndex]; 3327 } 3328 3329 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 3330 assert(CurrentIndex < Set->NodeList.size() && 3331 "PhiNodeSet access out of range"); 3332 ++CurrentIndex; 3333 Set->SkipRemovedElements(CurrentIndex); 3334 return *this; 3335 } 3336 3337 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3338 return CurrentIndex == RHS.CurrentIndex; 3339 } 3340 3341 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3342 return !((*this) == RHS); 3343 } 3344 3345 /// Keep track of simplification of Phi nodes. 3346 /// Accept the set of all phi nodes and erase phi node from this set 3347 /// if it is simplified. 3348 class SimplificationTracker { 3349 DenseMap<Value *, Value *> Storage; 3350 const SimplifyQuery &SQ; 3351 // Tracks newly created Phi nodes. The elements are iterated by insertion 3352 // order. 3353 PhiNodeSet AllPhiNodes; 3354 // Tracks newly created Select nodes. 3355 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3356 3357 public: 3358 SimplificationTracker(const SimplifyQuery &sq) 3359 : SQ(sq) {} 3360 3361 Value *Get(Value *V) { 3362 do { 3363 auto SV = Storage.find(V); 3364 if (SV == Storage.end()) 3365 return V; 3366 V = SV->second; 3367 } while (true); 3368 } 3369 3370 Value *Simplify(Value *Val) { 3371 SmallVector<Value *, 32> WorkList; 3372 SmallPtrSet<Value *, 32> Visited; 3373 WorkList.push_back(Val); 3374 while (!WorkList.empty()) { 3375 auto *P = WorkList.pop_back_val(); 3376 if (!Visited.insert(P).second) 3377 continue; 3378 if (auto *PI = dyn_cast<Instruction>(P)) 3379 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3380 for (auto *U : PI->users()) 3381 WorkList.push_back(cast<Value>(U)); 3382 Put(PI, V); 3383 PI->replaceAllUsesWith(V); 3384 if (auto *PHI = dyn_cast<PHINode>(PI)) 3385 AllPhiNodes.erase(PHI); 3386 if (auto *Select = dyn_cast<SelectInst>(PI)) 3387 AllSelectNodes.erase(Select); 3388 PI->eraseFromParent(); 3389 } 3390 } 3391 return Get(Val); 3392 } 3393 3394 void Put(Value *From, Value *To) { 3395 Storage.insert({ From, To }); 3396 } 3397 3398 void ReplacePhi(PHINode *From, PHINode *To) { 3399 Value* OldReplacement = Get(From); 3400 while (OldReplacement != From) { 3401 From = To; 3402 To = dyn_cast<PHINode>(OldReplacement); 3403 OldReplacement = Get(From); 3404 } 3405 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3406 Put(From, To); 3407 From->replaceAllUsesWith(To); 3408 AllPhiNodes.erase(From); 3409 From->eraseFromParent(); 3410 } 3411 3412 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3413 3414 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3415 3416 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3417 3418 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3419 3420 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3421 3422 void destroyNewNodes(Type *CommonType) { 3423 // For safe erasing, replace the uses with dummy value first. 3424 auto *Dummy = UndefValue::get(CommonType); 3425 for (auto *I : AllPhiNodes) { 3426 I->replaceAllUsesWith(Dummy); 3427 I->eraseFromParent(); 3428 } 3429 AllPhiNodes.clear(); 3430 for (auto *I : AllSelectNodes) { 3431 I->replaceAllUsesWith(Dummy); 3432 I->eraseFromParent(); 3433 } 3434 AllSelectNodes.clear(); 3435 } 3436 }; 3437 3438 /// A helper class for combining addressing modes. 3439 class AddressingModeCombiner { 3440 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3441 typedef std::pair<PHINode *, PHINode *> PHIPair; 3442 3443 private: 3444 /// The addressing modes we've collected. 3445 SmallVector<ExtAddrMode, 16> AddrModes; 3446 3447 /// The field in which the AddrModes differ, when we have more than one. 3448 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3449 3450 /// Are the AddrModes that we have all just equal to their original values? 3451 bool AllAddrModesTrivial = true; 3452 3453 /// Common Type for all different fields in addressing modes. 3454 Type *CommonType = nullptr; 3455 3456 /// SimplifyQuery for simplifyInstruction utility. 3457 const SimplifyQuery &SQ; 3458 3459 /// Original Address. 3460 Value *Original; 3461 3462 public: 3463 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3464 : SQ(_SQ), Original(OriginalValue) {} 3465 3466 /// Get the combined AddrMode 3467 const ExtAddrMode &getAddrMode() const { 3468 return AddrModes[0]; 3469 } 3470 3471 /// Add a new AddrMode if it's compatible with the AddrModes we already 3472 /// have. 3473 /// \return True iff we succeeded in doing so. 3474 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3475 // Take note of if we have any non-trivial AddrModes, as we need to detect 3476 // when all AddrModes are trivial as then we would introduce a phi or select 3477 // which just duplicates what's already there. 3478 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3479 3480 // If this is the first addrmode then everything is fine. 3481 if (AddrModes.empty()) { 3482 AddrModes.emplace_back(NewAddrMode); 3483 return true; 3484 } 3485 3486 // Figure out how different this is from the other address modes, which we 3487 // can do just by comparing against the first one given that we only care 3488 // about the cumulative difference. 3489 ExtAddrMode::FieldName ThisDifferentField = 3490 AddrModes[0].compare(NewAddrMode); 3491 if (DifferentField == ExtAddrMode::NoField) 3492 DifferentField = ThisDifferentField; 3493 else if (DifferentField != ThisDifferentField) 3494 DifferentField = ExtAddrMode::MultipleFields; 3495 3496 // If NewAddrMode differs in more than one dimension we cannot handle it. 3497 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3498 3499 // If Scale Field is different then we reject. 3500 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3501 3502 // We also must reject the case when base offset is different and 3503 // scale reg is not null, we cannot handle this case due to merge of 3504 // different offsets will be used as ScaleReg. 3505 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3506 !NewAddrMode.ScaledReg); 3507 3508 // We also must reject the case when GV is different and BaseReg installed 3509 // due to we want to use base reg as a merge of GV values. 3510 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3511 !NewAddrMode.HasBaseReg); 3512 3513 // Even if NewAddMode is the same we still need to collect it due to 3514 // original value is different. And later we will need all original values 3515 // as anchors during finding the common Phi node. 3516 if (CanHandle) 3517 AddrModes.emplace_back(NewAddrMode); 3518 else 3519 AddrModes.clear(); 3520 3521 return CanHandle; 3522 } 3523 3524 /// Combine the addressing modes we've collected into a single 3525 /// addressing mode. 3526 /// \return True iff we successfully combined them or we only had one so 3527 /// didn't need to combine them anyway. 3528 bool combineAddrModes() { 3529 // If we have no AddrModes then they can't be combined. 3530 if (AddrModes.size() == 0) 3531 return false; 3532 3533 // A single AddrMode can trivially be combined. 3534 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3535 return true; 3536 3537 // If the AddrModes we collected are all just equal to the value they are 3538 // derived from then combining them wouldn't do anything useful. 3539 if (AllAddrModesTrivial) 3540 return false; 3541 3542 if (!addrModeCombiningAllowed()) 3543 return false; 3544 3545 // Build a map between <original value, basic block where we saw it> to 3546 // value of base register. 3547 // Bail out if there is no common type. 3548 FoldAddrToValueMapping Map; 3549 if (!initializeMap(Map)) 3550 return false; 3551 3552 Value *CommonValue = findCommon(Map); 3553 if (CommonValue) 3554 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3555 return CommonValue != nullptr; 3556 } 3557 3558 private: 3559 /// Initialize Map with anchor values. For address seen 3560 /// we set the value of different field saw in this address. 3561 /// At the same time we find a common type for different field we will 3562 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3563 /// Return false if there is no common type found. 3564 bool initializeMap(FoldAddrToValueMapping &Map) { 3565 // Keep track of keys where the value is null. We will need to replace it 3566 // with constant null when we know the common type. 3567 SmallVector<Value *, 2> NullValue; 3568 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3569 for (auto &AM : AddrModes) { 3570 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3571 if (DV) { 3572 auto *Type = DV->getType(); 3573 if (CommonType && CommonType != Type) 3574 return false; 3575 CommonType = Type; 3576 Map[AM.OriginalValue] = DV; 3577 } else { 3578 NullValue.push_back(AM.OriginalValue); 3579 } 3580 } 3581 assert(CommonType && "At least one non-null value must be!"); 3582 for (auto *V : NullValue) 3583 Map[V] = Constant::getNullValue(CommonType); 3584 return true; 3585 } 3586 3587 /// We have mapping between value A and other value B where B was a field in 3588 /// addressing mode represented by A. Also we have an original value C 3589 /// representing an address we start with. Traversing from C through phi and 3590 /// selects we ended up with A's in a map. This utility function tries to find 3591 /// a value V which is a field in addressing mode C and traversing through phi 3592 /// nodes and selects we will end up in corresponded values B in a map. 3593 /// The utility will create a new Phi/Selects if needed. 3594 // The simple example looks as follows: 3595 // BB1: 3596 // p1 = b1 + 40 3597 // br cond BB2, BB3 3598 // BB2: 3599 // p2 = b2 + 40 3600 // br BB3 3601 // BB3: 3602 // p = phi [p1, BB1], [p2, BB2] 3603 // v = load p 3604 // Map is 3605 // p1 -> b1 3606 // p2 -> b2 3607 // Request is 3608 // p -> ? 3609 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3610 Value *findCommon(FoldAddrToValueMapping &Map) { 3611 // Tracks the simplification of newly created phi nodes. The reason we use 3612 // this mapping is because we will add new created Phi nodes in AddrToBase. 3613 // Simplification of Phi nodes is recursive, so some Phi node may 3614 // be simplified after we added it to AddrToBase. In reality this 3615 // simplification is possible only if original phi/selects were not 3616 // simplified yet. 3617 // Using this mapping we can find the current value in AddrToBase. 3618 SimplificationTracker ST(SQ); 3619 3620 // First step, DFS to create PHI nodes for all intermediate blocks. 3621 // Also fill traverse order for the second step. 3622 SmallVector<Value *, 32> TraverseOrder; 3623 InsertPlaceholders(Map, TraverseOrder, ST); 3624 3625 // Second Step, fill new nodes by merged values and simplify if possible. 3626 FillPlaceholders(Map, TraverseOrder, ST); 3627 3628 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3629 ST.destroyNewNodes(CommonType); 3630 return nullptr; 3631 } 3632 3633 // Now we'd like to match New Phi nodes to existed ones. 3634 unsigned PhiNotMatchedCount = 0; 3635 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3636 ST.destroyNewNodes(CommonType); 3637 return nullptr; 3638 } 3639 3640 auto *Result = ST.Get(Map.find(Original)->second); 3641 if (Result) { 3642 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3643 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3644 } 3645 return Result; 3646 } 3647 3648 /// Try to match PHI node to Candidate. 3649 /// Matcher tracks the matched Phi nodes. 3650 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3651 SmallSetVector<PHIPair, 8> &Matcher, 3652 PhiNodeSet &PhiNodesToMatch) { 3653 SmallVector<PHIPair, 8> WorkList; 3654 Matcher.insert({ PHI, Candidate }); 3655 SmallSet<PHINode *, 8> MatchedPHIs; 3656 MatchedPHIs.insert(PHI); 3657 WorkList.push_back({ PHI, Candidate }); 3658 SmallSet<PHIPair, 8> Visited; 3659 while (!WorkList.empty()) { 3660 auto Item = WorkList.pop_back_val(); 3661 if (!Visited.insert(Item).second) 3662 continue; 3663 // We iterate over all incoming values to Phi to compare them. 3664 // If values are different and both of them Phi and the first one is a 3665 // Phi we added (subject to match) and both of them is in the same basic 3666 // block then we can match our pair if values match. So we state that 3667 // these values match and add it to work list to verify that. 3668 for (auto B : Item.first->blocks()) { 3669 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3670 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3671 if (FirstValue == SecondValue) 3672 continue; 3673 3674 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3675 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3676 3677 // One of them is not Phi or 3678 // The first one is not Phi node from the set we'd like to match or 3679 // Phi nodes from different basic blocks then 3680 // we will not be able to match. 3681 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3682 FirstPhi->getParent() != SecondPhi->getParent()) 3683 return false; 3684 3685 // If we already matched them then continue. 3686 if (Matcher.count({ FirstPhi, SecondPhi })) 3687 continue; 3688 // So the values are different and does not match. So we need them to 3689 // match. (But we register no more than one match per PHI node, so that 3690 // we won't later try to replace them twice.) 3691 if (MatchedPHIs.insert(FirstPhi).second) 3692 Matcher.insert({ FirstPhi, SecondPhi }); 3693 // But me must check it. 3694 WorkList.push_back({ FirstPhi, SecondPhi }); 3695 } 3696 } 3697 return true; 3698 } 3699 3700 /// For the given set of PHI nodes (in the SimplificationTracker) try 3701 /// to find their equivalents. 3702 /// Returns false if this matching fails and creation of new Phi is disabled. 3703 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3704 unsigned &PhiNotMatchedCount) { 3705 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3706 // order, so the replacements (ReplacePhi) are also done in a deterministic 3707 // order. 3708 SmallSetVector<PHIPair, 8> Matched; 3709 SmallPtrSet<PHINode *, 8> WillNotMatch; 3710 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3711 while (PhiNodesToMatch.size()) { 3712 PHINode *PHI = *PhiNodesToMatch.begin(); 3713 3714 // Add us, if no Phi nodes in the basic block we do not match. 3715 WillNotMatch.clear(); 3716 WillNotMatch.insert(PHI); 3717 3718 // Traverse all Phis until we found equivalent or fail to do that. 3719 bool IsMatched = false; 3720 for (auto &P : PHI->getParent()->phis()) { 3721 // Skip new Phi nodes. 3722 if (PhiNodesToMatch.count(&P)) 3723 continue; 3724 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3725 break; 3726 // If it does not match, collect all Phi nodes from matcher. 3727 // if we end up with no match, them all these Phi nodes will not match 3728 // later. 3729 for (auto M : Matched) 3730 WillNotMatch.insert(M.first); 3731 Matched.clear(); 3732 } 3733 if (IsMatched) { 3734 // Replace all matched values and erase them. 3735 for (auto MV : Matched) 3736 ST.ReplacePhi(MV.first, MV.second); 3737 Matched.clear(); 3738 continue; 3739 } 3740 // If we are not allowed to create new nodes then bail out. 3741 if (!AllowNewPhiNodes) 3742 return false; 3743 // Just remove all seen values in matcher. They will not match anything. 3744 PhiNotMatchedCount += WillNotMatch.size(); 3745 for (auto *P : WillNotMatch) 3746 PhiNodesToMatch.erase(P); 3747 } 3748 return true; 3749 } 3750 /// Fill the placeholders with values from predecessors and simplify them. 3751 void FillPlaceholders(FoldAddrToValueMapping &Map, 3752 SmallVectorImpl<Value *> &TraverseOrder, 3753 SimplificationTracker &ST) { 3754 while (!TraverseOrder.empty()) { 3755 Value *Current = TraverseOrder.pop_back_val(); 3756 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3757 Value *V = Map[Current]; 3758 3759 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3760 // CurrentValue also must be Select. 3761 auto *CurrentSelect = cast<SelectInst>(Current); 3762 auto *TrueValue = CurrentSelect->getTrueValue(); 3763 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3764 Select->setTrueValue(ST.Get(Map[TrueValue])); 3765 auto *FalseValue = CurrentSelect->getFalseValue(); 3766 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3767 Select->setFalseValue(ST.Get(Map[FalseValue])); 3768 } else { 3769 // Must be a Phi node then. 3770 auto *PHI = cast<PHINode>(V); 3771 // Fill the Phi node with values from predecessors. 3772 for (auto *B : predecessors(PHI->getParent())) { 3773 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3774 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3775 PHI->addIncoming(ST.Get(Map[PV]), B); 3776 } 3777 } 3778 Map[Current] = ST.Simplify(V); 3779 } 3780 } 3781 3782 /// Starting from original value recursively iterates over def-use chain up to 3783 /// known ending values represented in a map. For each traversed phi/select 3784 /// inserts a placeholder Phi or Select. 3785 /// Reports all new created Phi/Select nodes by adding them to set. 3786 /// Also reports and order in what values have been traversed. 3787 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3788 SmallVectorImpl<Value *> &TraverseOrder, 3789 SimplificationTracker &ST) { 3790 SmallVector<Value *, 32> Worklist; 3791 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3792 "Address must be a Phi or Select node"); 3793 auto *Dummy = UndefValue::get(CommonType); 3794 Worklist.push_back(Original); 3795 while (!Worklist.empty()) { 3796 Value *Current = Worklist.pop_back_val(); 3797 // if it is already visited or it is an ending value then skip it. 3798 if (Map.find(Current) != Map.end()) 3799 continue; 3800 TraverseOrder.push_back(Current); 3801 3802 // CurrentValue must be a Phi node or select. All others must be covered 3803 // by anchors. 3804 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3805 // Is it OK to get metadata from OrigSelect?! 3806 // Create a Select placeholder with dummy value. 3807 SelectInst *Select = SelectInst::Create( 3808 CurrentSelect->getCondition(), Dummy, Dummy, 3809 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3810 Map[Current] = Select; 3811 ST.insertNewSelect(Select); 3812 // We are interested in True and False values. 3813 Worklist.push_back(CurrentSelect->getTrueValue()); 3814 Worklist.push_back(CurrentSelect->getFalseValue()); 3815 } else { 3816 // It must be a Phi node then. 3817 PHINode *CurrentPhi = cast<PHINode>(Current); 3818 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3819 PHINode *PHI = 3820 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3821 Map[Current] = PHI; 3822 ST.insertNewPhi(PHI); 3823 append_range(Worklist, CurrentPhi->incoming_values()); 3824 } 3825 } 3826 } 3827 3828 bool addrModeCombiningAllowed() { 3829 if (DisableComplexAddrModes) 3830 return false; 3831 switch (DifferentField) { 3832 default: 3833 return false; 3834 case ExtAddrMode::BaseRegField: 3835 return AddrSinkCombineBaseReg; 3836 case ExtAddrMode::BaseGVField: 3837 return AddrSinkCombineBaseGV; 3838 case ExtAddrMode::BaseOffsField: 3839 return AddrSinkCombineBaseOffs; 3840 case ExtAddrMode::ScaledRegField: 3841 return AddrSinkCombineScaledReg; 3842 } 3843 } 3844 }; 3845 } // end anonymous namespace 3846 3847 /// Try adding ScaleReg*Scale to the current addressing mode. 3848 /// Return true and update AddrMode if this addr mode is legal for the target, 3849 /// false if not. 3850 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3851 unsigned Depth) { 3852 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3853 // mode. Just process that directly. 3854 if (Scale == 1) 3855 return matchAddr(ScaleReg, Depth); 3856 3857 // If the scale is 0, it takes nothing to add this. 3858 if (Scale == 0) 3859 return true; 3860 3861 // If we already have a scale of this value, we can add to it, otherwise, we 3862 // need an available scale field. 3863 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3864 return false; 3865 3866 ExtAddrMode TestAddrMode = AddrMode; 3867 3868 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3869 // [A+B + A*7] -> [B+A*8]. 3870 TestAddrMode.Scale += Scale; 3871 TestAddrMode.ScaledReg = ScaleReg; 3872 3873 // If the new address isn't legal, bail out. 3874 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3875 return false; 3876 3877 // It was legal, so commit it. 3878 AddrMode = TestAddrMode; 3879 3880 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3881 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3882 // X*Scale + C*Scale to addr mode. If we found available IV increment, do not 3883 // go any further: we can reuse it and cannot eliminate it. 3884 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3885 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3886 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) && 3887 !isIVIncrement(ScaleReg, &LI) && CI->getValue().isSignedIntN(64)) { 3888 TestAddrMode.InBounds = false; 3889 TestAddrMode.ScaledReg = AddLHS; 3890 TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; 3891 3892 // If this addressing mode is legal, commit it and remember that we folded 3893 // this instruction. 3894 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3895 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3896 AddrMode = TestAddrMode; 3897 return true; 3898 } 3899 // Restore status quo. 3900 TestAddrMode = AddrMode; 3901 } 3902 3903 // If this is an add recurrence with a constant step, return the increment 3904 // instruction and the canonicalized step. 3905 auto GetConstantStep = [this](const Value * V) 3906 ->Optional<std::pair<Instruction *, APInt> > { 3907 auto *PN = dyn_cast<PHINode>(V); 3908 if (!PN) 3909 return None; 3910 auto IVInc = getIVIncrement(PN, &LI); 3911 if (!IVInc) 3912 return None; 3913 // TODO: The result of the intrinsics above is two-compliment. However when 3914 // IV inc is expressed as add or sub, iv.next is potentially a poison value. 3915 // If it has nuw or nsw flags, we need to make sure that these flags are 3916 // inferrable at the point of memory instruction. Otherwise we are replacing 3917 // well-defined two-compliment computation with poison. Currently, to avoid 3918 // potentially complex analysis needed to prove this, we reject such cases. 3919 if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first)) 3920 if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap()) 3921 return None; 3922 if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second)) 3923 return std::make_pair(IVInc->first, ConstantStep->getValue()); 3924 return None; 3925 }; 3926 3927 // Try to account for the following special case: 3928 // 1. ScaleReg is an inductive variable; 3929 // 2. We use it with non-zero offset; 3930 // 3. IV's increment is available at the point of memory instruction. 3931 // 3932 // In this case, we may reuse the IV increment instead of the IV Phi to 3933 // achieve the following advantages: 3934 // 1. If IV step matches the offset, we will have no need in the offset; 3935 // 2. Even if they don't match, we will reduce the overlap of living IV 3936 // and IV increment, that will potentially lead to better register 3937 // assignment. 3938 if (AddrMode.BaseOffs) { 3939 if (auto IVStep = GetConstantStep(ScaleReg)) { 3940 Instruction *IVInc = IVStep->first; 3941 // The following assert is important to ensure a lack of infinite loops. 3942 // This transforms is (intentionally) the inverse of the one just above. 3943 // If they don't agree on the definition of an increment, we'd alternate 3944 // back and forth indefinitely. 3945 assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep"); 3946 APInt Step = IVStep->second; 3947 APInt Offset = Step * AddrMode.Scale; 3948 if (Offset.isSignedIntN(64)) { 3949 TestAddrMode.InBounds = false; 3950 TestAddrMode.ScaledReg = IVInc; 3951 TestAddrMode.BaseOffs -= Offset.getLimitedValue(); 3952 // If this addressing mode is legal, commit it.. 3953 // (Note that we defer the (expensive) domtree base legality check 3954 // to the very last possible point.) 3955 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) && 3956 getDTFn().dominates(IVInc, MemoryInst)) { 3957 AddrModeInsts.push_back(cast<Instruction>(IVInc)); 3958 AddrMode = TestAddrMode; 3959 return true; 3960 } 3961 // Restore status quo. 3962 TestAddrMode = AddrMode; 3963 } 3964 } 3965 } 3966 3967 // Otherwise, just return what we have. 3968 return true; 3969 } 3970 3971 /// This is a little filter, which returns true if an addressing computation 3972 /// involving I might be folded into a load/store accessing it. 3973 /// This doesn't need to be perfect, but needs to accept at least 3974 /// the set of instructions that MatchOperationAddr can. 3975 static bool MightBeFoldableInst(Instruction *I) { 3976 switch (I->getOpcode()) { 3977 case Instruction::BitCast: 3978 case Instruction::AddrSpaceCast: 3979 // Don't touch identity bitcasts. 3980 if (I->getType() == I->getOperand(0)->getType()) 3981 return false; 3982 return I->getType()->isIntOrPtrTy(); 3983 case Instruction::PtrToInt: 3984 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3985 return true; 3986 case Instruction::IntToPtr: 3987 // We know the input is intptr_t, so this is foldable. 3988 return true; 3989 case Instruction::Add: 3990 return true; 3991 case Instruction::Mul: 3992 case Instruction::Shl: 3993 // Can only handle X*C and X << C. 3994 return isa<ConstantInt>(I->getOperand(1)); 3995 case Instruction::GetElementPtr: 3996 return true; 3997 default: 3998 return false; 3999 } 4000 } 4001 4002 /// Check whether or not \p Val is a legal instruction for \p TLI. 4003 /// \note \p Val is assumed to be the product of some type promotion. 4004 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 4005 /// to be legal, as the non-promoted value would have had the same state. 4006 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 4007 const DataLayout &DL, Value *Val) { 4008 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 4009 if (!PromotedInst) 4010 return false; 4011 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 4012 // If the ISDOpcode is undefined, it was undefined before the promotion. 4013 if (!ISDOpcode) 4014 return true; 4015 // Otherwise, check if the promoted instruction is legal or not. 4016 return TLI.isOperationLegalOrCustom( 4017 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 4018 } 4019 4020 namespace { 4021 4022 /// Hepler class to perform type promotion. 4023 class TypePromotionHelper { 4024 /// Utility function to add a promoted instruction \p ExtOpnd to 4025 /// \p PromotedInsts and record the type of extension we have seen. 4026 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 4027 Instruction *ExtOpnd, 4028 bool IsSExt) { 4029 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4030 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 4031 if (It != PromotedInsts.end()) { 4032 // If the new extension is same as original, the information in 4033 // PromotedInsts[ExtOpnd] is still correct. 4034 if (It->second.getInt() == ExtTy) 4035 return; 4036 4037 // Now the new extension is different from old extension, we make 4038 // the type information invalid by setting extension type to 4039 // BothExtension. 4040 ExtTy = BothExtension; 4041 } 4042 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 4043 } 4044 4045 /// Utility function to query the original type of instruction \p Opnd 4046 /// with a matched extension type. If the extension doesn't match, we 4047 /// cannot use the information we had on the original type. 4048 /// BothExtension doesn't match any extension type. 4049 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 4050 Instruction *Opnd, 4051 bool IsSExt) { 4052 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4053 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 4054 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 4055 return It->second.getPointer(); 4056 return nullptr; 4057 } 4058 4059 /// Utility function to check whether or not a sign or zero extension 4060 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 4061 /// either using the operands of \p Inst or promoting \p Inst. 4062 /// The type of the extension is defined by \p IsSExt. 4063 /// In other words, check if: 4064 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 4065 /// #1 Promotion applies: 4066 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 4067 /// #2 Operand reuses: 4068 /// ext opnd1 to ConsideredExtType. 4069 /// \p PromotedInsts maps the instructions to their type before promotion. 4070 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 4071 const InstrToOrigTy &PromotedInsts, bool IsSExt); 4072 4073 /// Utility function to determine if \p OpIdx should be promoted when 4074 /// promoting \p Inst. 4075 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 4076 return !(isa<SelectInst>(Inst) && OpIdx == 0); 4077 } 4078 4079 /// Utility function to promote the operand of \p Ext when this 4080 /// operand is a promotable trunc or sext or zext. 4081 /// \p PromotedInsts maps the instructions to their type before promotion. 4082 /// \p CreatedInstsCost[out] contains the cost of all instructions 4083 /// created to promote the operand of Ext. 4084 /// Newly added extensions are inserted in \p Exts. 4085 /// Newly added truncates are inserted in \p Truncs. 4086 /// Should never be called directly. 4087 /// \return The promoted value which is used instead of Ext. 4088 static Value *promoteOperandForTruncAndAnyExt( 4089 Instruction *Ext, TypePromotionTransaction &TPT, 4090 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4091 SmallVectorImpl<Instruction *> *Exts, 4092 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 4093 4094 /// Utility function to promote the operand of \p Ext when this 4095 /// operand is promotable and is not a supported trunc or sext. 4096 /// \p PromotedInsts maps the instructions to their type before promotion. 4097 /// \p CreatedInstsCost[out] contains the cost of all the instructions 4098 /// created to promote the operand of Ext. 4099 /// Newly added extensions are inserted in \p Exts. 4100 /// Newly added truncates are inserted in \p Truncs. 4101 /// Should never be called directly. 4102 /// \return The promoted value which is used instead of Ext. 4103 static Value *promoteOperandForOther(Instruction *Ext, 4104 TypePromotionTransaction &TPT, 4105 InstrToOrigTy &PromotedInsts, 4106 unsigned &CreatedInstsCost, 4107 SmallVectorImpl<Instruction *> *Exts, 4108 SmallVectorImpl<Instruction *> *Truncs, 4109 const TargetLowering &TLI, bool IsSExt); 4110 4111 /// \see promoteOperandForOther. 4112 static Value *signExtendOperandForOther( 4113 Instruction *Ext, TypePromotionTransaction &TPT, 4114 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4115 SmallVectorImpl<Instruction *> *Exts, 4116 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4117 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4118 Exts, Truncs, TLI, true); 4119 } 4120 4121 /// \see promoteOperandForOther. 4122 static Value *zeroExtendOperandForOther( 4123 Instruction *Ext, TypePromotionTransaction &TPT, 4124 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4125 SmallVectorImpl<Instruction *> *Exts, 4126 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4127 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4128 Exts, Truncs, TLI, false); 4129 } 4130 4131 public: 4132 /// Type for the utility function that promotes the operand of Ext. 4133 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 4134 InstrToOrigTy &PromotedInsts, 4135 unsigned &CreatedInstsCost, 4136 SmallVectorImpl<Instruction *> *Exts, 4137 SmallVectorImpl<Instruction *> *Truncs, 4138 const TargetLowering &TLI); 4139 4140 /// Given a sign/zero extend instruction \p Ext, return the appropriate 4141 /// action to promote the operand of \p Ext instead of using Ext. 4142 /// \return NULL if no promotable action is possible with the current 4143 /// sign extension. 4144 /// \p InsertedInsts keeps track of all the instructions inserted by the 4145 /// other CodeGenPrepare optimizations. This information is important 4146 /// because we do not want to promote these instructions as CodeGenPrepare 4147 /// will reinsert them later. Thus creating an infinite loop: create/remove. 4148 /// \p PromotedInsts maps the instructions to their type before promotion. 4149 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 4150 const TargetLowering &TLI, 4151 const InstrToOrigTy &PromotedInsts); 4152 }; 4153 4154 } // end anonymous namespace 4155 4156 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 4157 Type *ConsideredExtType, 4158 const InstrToOrigTy &PromotedInsts, 4159 bool IsSExt) { 4160 // The promotion helper does not know how to deal with vector types yet. 4161 // To be able to fix that, we would need to fix the places where we 4162 // statically extend, e.g., constants and such. 4163 if (Inst->getType()->isVectorTy()) 4164 return false; 4165 4166 // We can always get through zext. 4167 if (isa<ZExtInst>(Inst)) 4168 return true; 4169 4170 // sext(sext) is ok too. 4171 if (IsSExt && isa<SExtInst>(Inst)) 4172 return true; 4173 4174 // We can get through binary operator, if it is legal. In other words, the 4175 // binary operator must have a nuw or nsw flag. 4176 if (const auto *BinOp = dyn_cast<BinaryOperator>(Inst)) 4177 if (isa<OverflowingBinaryOperator>(BinOp) && 4178 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 4179 (IsSExt && BinOp->hasNoSignedWrap()))) 4180 return true; 4181 4182 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 4183 if ((Inst->getOpcode() == Instruction::And || 4184 Inst->getOpcode() == Instruction::Or)) 4185 return true; 4186 4187 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 4188 if (Inst->getOpcode() == Instruction::Xor) { 4189 // Make sure it is not a NOT. 4190 if (const auto *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1))) 4191 if (!Cst->getValue().isAllOnes()) 4192 return true; 4193 } 4194 4195 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 4196 // It may change a poisoned value into a regular value, like 4197 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 4198 // poisoned value regular value 4199 // It should be OK since undef covers valid value. 4200 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 4201 return true; 4202 4203 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 4204 // It may change a poisoned value into a regular value, like 4205 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 4206 // poisoned value regular value 4207 // It should be OK since undef covers valid value. 4208 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 4209 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 4210 if (ExtInst->hasOneUse()) { 4211 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 4212 if (AndInst && AndInst->getOpcode() == Instruction::And) { 4213 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 4214 if (Cst && 4215 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 4216 return true; 4217 } 4218 } 4219 } 4220 4221 // Check if we can do the following simplification. 4222 // ext(trunc(opnd)) --> ext(opnd) 4223 if (!isa<TruncInst>(Inst)) 4224 return false; 4225 4226 Value *OpndVal = Inst->getOperand(0); 4227 // Check if we can use this operand in the extension. 4228 // If the type is larger than the result type of the extension, we cannot. 4229 if (!OpndVal->getType()->isIntegerTy() || 4230 OpndVal->getType()->getIntegerBitWidth() > 4231 ConsideredExtType->getIntegerBitWidth()) 4232 return false; 4233 4234 // If the operand of the truncate is not an instruction, we will not have 4235 // any information on the dropped bits. 4236 // (Actually we could for constant but it is not worth the extra logic). 4237 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 4238 if (!Opnd) 4239 return false; 4240 4241 // Check if the source of the type is narrow enough. 4242 // I.e., check that trunc just drops extended bits of the same kind of 4243 // the extension. 4244 // #1 get the type of the operand and check the kind of the extended bits. 4245 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 4246 if (OpndType) 4247 ; 4248 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 4249 OpndType = Opnd->getOperand(0)->getType(); 4250 else 4251 return false; 4252 4253 // #2 check that the truncate just drops extended bits. 4254 return Inst->getType()->getIntegerBitWidth() >= 4255 OpndType->getIntegerBitWidth(); 4256 } 4257 4258 TypePromotionHelper::Action TypePromotionHelper::getAction( 4259 Instruction *Ext, const SetOfInstrs &InsertedInsts, 4260 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 4261 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4262 "Unexpected instruction type"); 4263 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 4264 Type *ExtTy = Ext->getType(); 4265 bool IsSExt = isa<SExtInst>(Ext); 4266 // If the operand of the extension is not an instruction, we cannot 4267 // get through. 4268 // If it, check we can get through. 4269 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 4270 return nullptr; 4271 4272 // Do not promote if the operand has been added by codegenprepare. 4273 // Otherwise, it means we are undoing an optimization that is likely to be 4274 // redone, thus causing potential infinite loop. 4275 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 4276 return nullptr; 4277 4278 // SExt or Trunc instructions. 4279 // Return the related handler. 4280 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 4281 isa<ZExtInst>(ExtOpnd)) 4282 return promoteOperandForTruncAndAnyExt; 4283 4284 // Regular instruction. 4285 // Abort early if we will have to insert non-free instructions. 4286 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 4287 return nullptr; 4288 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 4289 } 4290 4291 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 4292 Instruction *SExt, TypePromotionTransaction &TPT, 4293 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4294 SmallVectorImpl<Instruction *> *Exts, 4295 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4296 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4297 // get through it and this method should not be called. 4298 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4299 Value *ExtVal = SExt; 4300 bool HasMergedNonFreeExt = false; 4301 if (isa<ZExtInst>(SExtOpnd)) { 4302 // Replace s|zext(zext(opnd)) 4303 // => zext(opnd). 4304 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4305 Value *ZExt = 4306 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4307 TPT.replaceAllUsesWith(SExt, ZExt); 4308 TPT.eraseInstruction(SExt); 4309 ExtVal = ZExt; 4310 } else { 4311 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4312 // => z|sext(opnd). 4313 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4314 } 4315 CreatedInstsCost = 0; 4316 4317 // Remove dead code. 4318 if (SExtOpnd->use_empty()) 4319 TPT.eraseInstruction(SExtOpnd); 4320 4321 // Check if the extension is still needed. 4322 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4323 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4324 if (ExtInst) { 4325 if (Exts) 4326 Exts->push_back(ExtInst); 4327 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4328 } 4329 return ExtVal; 4330 } 4331 4332 // At this point we have: ext ty opnd to ty. 4333 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4334 Value *NextVal = ExtInst->getOperand(0); 4335 TPT.eraseInstruction(ExtInst, NextVal); 4336 return NextVal; 4337 } 4338 4339 Value *TypePromotionHelper::promoteOperandForOther( 4340 Instruction *Ext, TypePromotionTransaction &TPT, 4341 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4342 SmallVectorImpl<Instruction *> *Exts, 4343 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4344 bool IsSExt) { 4345 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4346 // get through it and this method should not be called. 4347 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4348 CreatedInstsCost = 0; 4349 if (!ExtOpnd->hasOneUse()) { 4350 // ExtOpnd will be promoted. 4351 // All its uses, but Ext, will need to use a truncated value of the 4352 // promoted version. 4353 // Create the truncate now. 4354 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4355 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4356 // Insert it just after the definition. 4357 ITrunc->moveAfter(ExtOpnd); 4358 if (Truncs) 4359 Truncs->push_back(ITrunc); 4360 } 4361 4362 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4363 // Restore the operand of Ext (which has been replaced by the previous call 4364 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4365 TPT.setOperand(Ext, 0, ExtOpnd); 4366 } 4367 4368 // Get through the Instruction: 4369 // 1. Update its type. 4370 // 2. Replace the uses of Ext by Inst. 4371 // 3. Extend each operand that needs to be extended. 4372 4373 // Remember the original type of the instruction before promotion. 4374 // This is useful to know that the high bits are sign extended bits. 4375 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4376 // Step #1. 4377 TPT.mutateType(ExtOpnd, Ext->getType()); 4378 // Step #2. 4379 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4380 // Step #3. 4381 Instruction *ExtForOpnd = Ext; 4382 4383 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4384 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4385 ++OpIdx) { 4386 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4387 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4388 !shouldExtOperand(ExtOpnd, OpIdx)) { 4389 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4390 continue; 4391 } 4392 // Check if we can statically extend the operand. 4393 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4394 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4395 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4396 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4397 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4398 : Cst->getValue().zext(BitWidth); 4399 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4400 continue; 4401 } 4402 // UndefValue are typed, so we have to statically sign extend them. 4403 if (isa<UndefValue>(Opnd)) { 4404 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4405 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4406 continue; 4407 } 4408 4409 // Otherwise we have to explicitly sign extend the operand. 4410 // Check if Ext was reused to extend an operand. 4411 if (!ExtForOpnd) { 4412 // If yes, create a new one. 4413 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 4414 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 4415 : TPT.createZExt(Ext, Opnd, Ext->getType()); 4416 if (!isa<Instruction>(ValForExtOpnd)) { 4417 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4418 continue; 4419 } 4420 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4421 } 4422 if (Exts) 4423 Exts->push_back(ExtForOpnd); 4424 TPT.setOperand(ExtForOpnd, 0, Opnd); 4425 4426 // Move the sign extension before the insertion point. 4427 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4428 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4429 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4430 // If more sext are required, new instructions will have to be created. 4431 ExtForOpnd = nullptr; 4432 } 4433 if (ExtForOpnd == Ext) { 4434 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4435 TPT.eraseInstruction(Ext); 4436 } 4437 return ExtOpnd; 4438 } 4439 4440 /// Check whether or not promoting an instruction to a wider type is profitable. 4441 /// \p NewCost gives the cost of extension instructions created by the 4442 /// promotion. 4443 /// \p OldCost gives the cost of extension instructions before the promotion 4444 /// plus the number of instructions that have been 4445 /// matched in the addressing mode the promotion. 4446 /// \p PromotedOperand is the value that has been promoted. 4447 /// \return True if the promotion is profitable, false otherwise. 4448 bool AddressingModeMatcher::isPromotionProfitable( 4449 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4450 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4451 << '\n'); 4452 // The cost of the new extensions is greater than the cost of the 4453 // old extension plus what we folded. 4454 // This is not profitable. 4455 if (NewCost > OldCost) 4456 return false; 4457 if (NewCost < OldCost) 4458 return true; 4459 // The promotion is neutral but it may help folding the sign extension in 4460 // loads for instance. 4461 // Check that we did not create an illegal instruction. 4462 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4463 } 4464 4465 /// Given an instruction or constant expr, see if we can fold the operation 4466 /// into the addressing mode. If so, update the addressing mode and return 4467 /// true, otherwise return false without modifying AddrMode. 4468 /// If \p MovedAway is not NULL, it contains the information of whether or 4469 /// not AddrInst has to be folded into the addressing mode on success. 4470 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4471 /// because it has been moved away. 4472 /// Thus AddrInst must not be added in the matched instructions. 4473 /// This state can happen when AddrInst is a sext, since it may be moved away. 4474 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4475 /// not be referenced anymore. 4476 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4477 unsigned Depth, 4478 bool *MovedAway) { 4479 // Avoid exponential behavior on extremely deep expression trees. 4480 if (Depth >= 5) return false; 4481 4482 // By default, all matched instructions stay in place. 4483 if (MovedAway) 4484 *MovedAway = false; 4485 4486 switch (Opcode) { 4487 case Instruction::PtrToInt: 4488 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4489 return matchAddr(AddrInst->getOperand(0), Depth); 4490 case Instruction::IntToPtr: { 4491 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4492 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4493 // This inttoptr is a no-op if the integer type is pointer sized. 4494 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4495 return matchAddr(AddrInst->getOperand(0), Depth); 4496 return false; 4497 } 4498 case Instruction::BitCast: 4499 // BitCast is always a noop, and we can handle it as long as it is 4500 // int->int or pointer->pointer (we don't want int<->fp or something). 4501 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4502 // Don't touch identity bitcasts. These were probably put here by LSR, 4503 // and we don't want to mess around with them. Assume it knows what it 4504 // is doing. 4505 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4506 return matchAddr(AddrInst->getOperand(0), Depth); 4507 return false; 4508 case Instruction::AddrSpaceCast: { 4509 unsigned SrcAS 4510 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4511 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4512 if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS)) 4513 return matchAddr(AddrInst->getOperand(0), Depth); 4514 return false; 4515 } 4516 case Instruction::Add: { 4517 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4518 ExtAddrMode BackupAddrMode = AddrMode; 4519 unsigned OldSize = AddrModeInsts.size(); 4520 // Start a transaction at this point. 4521 // The LHS may match but not the RHS. 4522 // Therefore, we need a higher level restoration point to undo partially 4523 // matched operation. 4524 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4525 TPT.getRestorationPoint(); 4526 4527 AddrMode.InBounds = false; 4528 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4529 matchAddr(AddrInst->getOperand(0), Depth+1)) 4530 return true; 4531 4532 // Restore the old addr mode info. 4533 AddrMode = BackupAddrMode; 4534 AddrModeInsts.resize(OldSize); 4535 TPT.rollback(LastKnownGood); 4536 4537 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4538 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4539 matchAddr(AddrInst->getOperand(1), Depth+1)) 4540 return true; 4541 4542 // Otherwise we definitely can't merge the ADD in. 4543 AddrMode = BackupAddrMode; 4544 AddrModeInsts.resize(OldSize); 4545 TPT.rollback(LastKnownGood); 4546 break; 4547 } 4548 //case Instruction::Or: 4549 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4550 //break; 4551 case Instruction::Mul: 4552 case Instruction::Shl: { 4553 // Can only handle X*C and X << C. 4554 AddrMode.InBounds = false; 4555 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4556 if (!RHS || RHS->getBitWidth() > 64) 4557 return false; 4558 int64_t Scale = Opcode == Instruction::Shl 4559 ? 1LL << RHS->getLimitedValue(RHS->getBitWidth() - 1) 4560 : RHS->getSExtValue(); 4561 4562 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4563 } 4564 case Instruction::GetElementPtr: { 4565 // Scan the GEP. We check it if it contains constant offsets and at most 4566 // one variable offset. 4567 int VariableOperand = -1; 4568 unsigned VariableScale = 0; 4569 4570 int64_t ConstantOffset = 0; 4571 gep_type_iterator GTI = gep_type_begin(AddrInst); 4572 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4573 if (StructType *STy = GTI.getStructTypeOrNull()) { 4574 const StructLayout *SL = DL.getStructLayout(STy); 4575 unsigned Idx = 4576 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4577 ConstantOffset += SL->getElementOffset(Idx); 4578 } else { 4579 TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType()); 4580 if (TS.isNonZero()) { 4581 // The optimisations below currently only work for fixed offsets. 4582 if (TS.isScalable()) 4583 return false; 4584 int64_t TypeSize = TS.getFixedSize(); 4585 if (ConstantInt *CI = 4586 dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4587 const APInt &CVal = CI->getValue(); 4588 if (CVal.getMinSignedBits() <= 64) { 4589 ConstantOffset += CVal.getSExtValue() * TypeSize; 4590 continue; 4591 } 4592 } 4593 // We only allow one variable index at the moment. 4594 if (VariableOperand != -1) 4595 return false; 4596 4597 // Remember the variable index. 4598 VariableOperand = i; 4599 VariableScale = TypeSize; 4600 } 4601 } 4602 } 4603 4604 // A common case is for the GEP to only do a constant offset. In this case, 4605 // just add it to the disp field and check validity. 4606 if (VariableOperand == -1) { 4607 AddrMode.BaseOffs += ConstantOffset; 4608 if (ConstantOffset == 0 || 4609 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4610 // Check to see if we can fold the base pointer in too. 4611 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4612 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4613 AddrMode.InBounds = false; 4614 return true; 4615 } 4616 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4617 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4618 ConstantOffset > 0) { 4619 // Record GEPs with non-zero offsets as candidates for splitting in the 4620 // event that the offset cannot fit into the r+i addressing mode. 4621 // Simple and common case that only one GEP is used in calculating the 4622 // address for the memory access. 4623 Value *Base = AddrInst->getOperand(0); 4624 auto *BaseI = dyn_cast<Instruction>(Base); 4625 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4626 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4627 (BaseI && !isa<CastInst>(BaseI) && 4628 !isa<GetElementPtrInst>(BaseI))) { 4629 // Make sure the parent block allows inserting non-PHI instructions 4630 // before the terminator. 4631 BasicBlock *Parent = 4632 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4633 if (!Parent->getTerminator()->isEHPad()) 4634 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4635 } 4636 } 4637 AddrMode.BaseOffs -= ConstantOffset; 4638 return false; 4639 } 4640 4641 // Save the valid addressing mode in case we can't match. 4642 ExtAddrMode BackupAddrMode = AddrMode; 4643 unsigned OldSize = AddrModeInsts.size(); 4644 4645 // See if the scale and offset amount is valid for this target. 4646 AddrMode.BaseOffs += ConstantOffset; 4647 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4648 AddrMode.InBounds = false; 4649 4650 // Match the base operand of the GEP. 4651 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4652 // If it couldn't be matched, just stuff the value in a register. 4653 if (AddrMode.HasBaseReg) { 4654 AddrMode = BackupAddrMode; 4655 AddrModeInsts.resize(OldSize); 4656 return false; 4657 } 4658 AddrMode.HasBaseReg = true; 4659 AddrMode.BaseReg = AddrInst->getOperand(0); 4660 } 4661 4662 // Match the remaining variable portion of the GEP. 4663 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4664 Depth)) { 4665 // If it couldn't be matched, try stuffing the base into a register 4666 // instead of matching it, and retrying the match of the scale. 4667 AddrMode = BackupAddrMode; 4668 AddrModeInsts.resize(OldSize); 4669 if (AddrMode.HasBaseReg) 4670 return false; 4671 AddrMode.HasBaseReg = true; 4672 AddrMode.BaseReg = AddrInst->getOperand(0); 4673 AddrMode.BaseOffs += ConstantOffset; 4674 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4675 VariableScale, Depth)) { 4676 // If even that didn't work, bail. 4677 AddrMode = BackupAddrMode; 4678 AddrModeInsts.resize(OldSize); 4679 return false; 4680 } 4681 } 4682 4683 return true; 4684 } 4685 case Instruction::SExt: 4686 case Instruction::ZExt: { 4687 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4688 if (!Ext) 4689 return false; 4690 4691 // Try to move this ext out of the way of the addressing mode. 4692 // Ask for a method for doing so. 4693 TypePromotionHelper::Action TPH = 4694 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4695 if (!TPH) 4696 return false; 4697 4698 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4699 TPT.getRestorationPoint(); 4700 unsigned CreatedInstsCost = 0; 4701 unsigned ExtCost = !TLI.isExtFree(Ext); 4702 Value *PromotedOperand = 4703 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4704 // SExt has been moved away. 4705 // Thus either it will be rematched later in the recursive calls or it is 4706 // gone. Anyway, we must not fold it into the addressing mode at this point. 4707 // E.g., 4708 // op = add opnd, 1 4709 // idx = ext op 4710 // addr = gep base, idx 4711 // is now: 4712 // promotedOpnd = ext opnd <- no match here 4713 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4714 // addr = gep base, op <- match 4715 if (MovedAway) 4716 *MovedAway = true; 4717 4718 assert(PromotedOperand && 4719 "TypePromotionHelper should have filtered out those cases"); 4720 4721 ExtAddrMode BackupAddrMode = AddrMode; 4722 unsigned OldSize = AddrModeInsts.size(); 4723 4724 if (!matchAddr(PromotedOperand, Depth) || 4725 // The total of the new cost is equal to the cost of the created 4726 // instructions. 4727 // The total of the old cost is equal to the cost of the extension plus 4728 // what we have saved in the addressing mode. 4729 !isPromotionProfitable(CreatedInstsCost, 4730 ExtCost + (AddrModeInsts.size() - OldSize), 4731 PromotedOperand)) { 4732 AddrMode = BackupAddrMode; 4733 AddrModeInsts.resize(OldSize); 4734 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4735 TPT.rollback(LastKnownGood); 4736 return false; 4737 } 4738 return true; 4739 } 4740 } 4741 return false; 4742 } 4743 4744 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4745 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4746 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4747 /// for the target. 4748 /// 4749 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4750 // Start a transaction at this point that we will rollback if the matching 4751 // fails. 4752 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4753 TPT.getRestorationPoint(); 4754 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4755 if (CI->getValue().isSignedIntN(64)) { 4756 // Fold in immediates if legal for the target. 4757 AddrMode.BaseOffs += CI->getSExtValue(); 4758 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4759 return true; 4760 AddrMode.BaseOffs -= CI->getSExtValue(); 4761 } 4762 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4763 // If this is a global variable, try to fold it into the addressing mode. 4764 if (!AddrMode.BaseGV) { 4765 AddrMode.BaseGV = GV; 4766 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4767 return true; 4768 AddrMode.BaseGV = nullptr; 4769 } 4770 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4771 ExtAddrMode BackupAddrMode = AddrMode; 4772 unsigned OldSize = AddrModeInsts.size(); 4773 4774 // Check to see if it is possible to fold this operation. 4775 bool MovedAway = false; 4776 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4777 // This instruction may have been moved away. If so, there is nothing 4778 // to check here. 4779 if (MovedAway) 4780 return true; 4781 // Okay, it's possible to fold this. Check to see if it is actually 4782 // *profitable* to do so. We use a simple cost model to avoid increasing 4783 // register pressure too much. 4784 if (I->hasOneUse() || 4785 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4786 AddrModeInsts.push_back(I); 4787 return true; 4788 } 4789 4790 // It isn't profitable to do this, roll back. 4791 //cerr << "NOT FOLDING: " << *I; 4792 AddrMode = BackupAddrMode; 4793 AddrModeInsts.resize(OldSize); 4794 TPT.rollback(LastKnownGood); 4795 } 4796 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4797 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4798 return true; 4799 TPT.rollback(LastKnownGood); 4800 } else if (isa<ConstantPointerNull>(Addr)) { 4801 // Null pointer gets folded without affecting the addressing mode. 4802 return true; 4803 } 4804 4805 // Worse case, the target should support [reg] addressing modes. :) 4806 if (!AddrMode.HasBaseReg) { 4807 AddrMode.HasBaseReg = true; 4808 AddrMode.BaseReg = Addr; 4809 // Still check for legality in case the target supports [imm] but not [i+r]. 4810 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4811 return true; 4812 AddrMode.HasBaseReg = false; 4813 AddrMode.BaseReg = nullptr; 4814 } 4815 4816 // If the base register is already taken, see if we can do [r+r]. 4817 if (AddrMode.Scale == 0) { 4818 AddrMode.Scale = 1; 4819 AddrMode.ScaledReg = Addr; 4820 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4821 return true; 4822 AddrMode.Scale = 0; 4823 AddrMode.ScaledReg = nullptr; 4824 } 4825 // Couldn't match. 4826 TPT.rollback(LastKnownGood); 4827 return false; 4828 } 4829 4830 /// Check to see if all uses of OpVal by the specified inline asm call are due 4831 /// to memory operands. If so, return true, otherwise return false. 4832 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4833 const TargetLowering &TLI, 4834 const TargetRegisterInfo &TRI) { 4835 const Function *F = CI->getFunction(); 4836 TargetLowering::AsmOperandInfoVector TargetConstraints = 4837 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI); 4838 4839 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { 4840 // Compute the constraint code and ConstraintType to use. 4841 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4842 4843 // If this asm operand is our Value*, and if it isn't an indirect memory 4844 // operand, we can't fold it! TODO: Also handle C_Address? 4845 if (OpInfo.CallOperandVal == OpVal && 4846 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4847 !OpInfo.isIndirect)) 4848 return false; 4849 } 4850 4851 return true; 4852 } 4853 4854 // Max number of memory uses to look at before aborting the search to conserve 4855 // compile time. 4856 static constexpr int MaxMemoryUsesToScan = 20; 4857 4858 /// Recursively walk all the uses of I until we find a memory use. 4859 /// If we find an obviously non-foldable instruction, return true. 4860 /// Add accessed addresses and types to MemoryUses. 4861 static bool FindAllMemoryUses( 4862 Instruction *I, SmallVectorImpl<std::pair<Value *, Type *>> &MemoryUses, 4863 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4864 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 4865 BlockFrequencyInfo *BFI, int SeenInsts = 0) { 4866 // If we already considered this instruction, we're done. 4867 if (!ConsideredInsts.insert(I).second) 4868 return false; 4869 4870 // If this is an obviously unfoldable instruction, bail out. 4871 if (!MightBeFoldableInst(I)) 4872 return true; 4873 4874 // Loop over all the uses, recursively processing them. 4875 for (Use &U : I->uses()) { 4876 // Conservatively return true if we're seeing a large number or a deep chain 4877 // of users. This avoids excessive compilation times in pathological cases. 4878 if (SeenInsts++ >= MaxMemoryUsesToScan) 4879 return true; 4880 4881 Instruction *UserI = cast<Instruction>(U.getUser()); 4882 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4883 MemoryUses.push_back({U.get(), LI->getType()}); 4884 continue; 4885 } 4886 4887 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4888 if (U.getOperandNo() != StoreInst::getPointerOperandIndex()) 4889 return true; // Storing addr, not into addr. 4890 MemoryUses.push_back({U.get(), SI->getValueOperand()->getType()}); 4891 continue; 4892 } 4893 4894 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4895 if (U.getOperandNo() != AtomicRMWInst::getPointerOperandIndex()) 4896 return true; // Storing addr, not into addr. 4897 MemoryUses.push_back({U.get(), RMW->getValOperand()->getType()}); 4898 continue; 4899 } 4900 4901 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4902 if (U.getOperandNo() != AtomicCmpXchgInst::getPointerOperandIndex()) 4903 return true; // Storing addr, not into addr. 4904 MemoryUses.push_back({U.get(), CmpX->getCompareOperand()->getType()}); 4905 continue; 4906 } 4907 4908 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4909 if (CI->hasFnAttr(Attribute::Cold)) { 4910 // If this is a cold call, we can sink the addressing calculation into 4911 // the cold path. See optimizeCallInst 4912 bool OptForSize = OptSize || 4913 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 4914 if (!OptForSize) 4915 continue; 4916 } 4917 4918 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); 4919 if (!IA) return true; 4920 4921 // If this is a memory operand, we're cool, otherwise bail out. 4922 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4923 return true; 4924 continue; 4925 } 4926 4927 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4928 PSI, BFI, SeenInsts)) 4929 return true; 4930 } 4931 4932 return false; 4933 } 4934 4935 /// Return true if Val is already known to be live at the use site that we're 4936 /// folding it into. If so, there is no cost to include it in the addressing 4937 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4938 /// instruction already. 4939 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4940 Value *KnownLive2) { 4941 // If Val is either of the known-live values, we know it is live! 4942 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4943 return true; 4944 4945 // All values other than instructions and arguments (e.g. constants) are live. 4946 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4947 4948 // If Val is a constant sized alloca in the entry block, it is live, this is 4949 // true because it is just a reference to the stack/frame pointer, which is 4950 // live for the whole function. 4951 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4952 if (AI->isStaticAlloca()) 4953 return true; 4954 4955 // Check to see if this value is already used in the memory instruction's 4956 // block. If so, it's already live into the block at the very least, so we 4957 // can reasonably fold it. 4958 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4959 } 4960 4961 /// It is possible for the addressing mode of the machine to fold the specified 4962 /// instruction into a load or store that ultimately uses it. 4963 /// However, the specified instruction has multiple uses. 4964 /// Given this, it may actually increase register pressure to fold it 4965 /// into the load. For example, consider this code: 4966 /// 4967 /// X = ... 4968 /// Y = X+1 4969 /// use(Y) -> nonload/store 4970 /// Z = Y+1 4971 /// load Z 4972 /// 4973 /// In this case, Y has multiple uses, and can be folded into the load of Z 4974 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4975 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4976 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4977 /// number of computations either. 4978 /// 4979 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4980 /// X was live across 'load Z' for other reasons, we actually *would* want to 4981 /// fold the addressing mode in the Z case. This would make Y die earlier. 4982 bool AddressingModeMatcher:: 4983 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4984 ExtAddrMode &AMAfter) { 4985 if (IgnoreProfitability) return true; 4986 4987 // AMBefore is the addressing mode before this instruction was folded into it, 4988 // and AMAfter is the addressing mode after the instruction was folded. Get 4989 // the set of registers referenced by AMAfter and subtract out those 4990 // referenced by AMBefore: this is the set of values which folding in this 4991 // address extends the lifetime of. 4992 // 4993 // Note that there are only two potential values being referenced here, 4994 // BaseReg and ScaleReg (global addresses are always available, as are any 4995 // folded immediates). 4996 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4997 4998 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4999 // lifetime wasn't extended by adding this instruction. 5000 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 5001 BaseReg = nullptr; 5002 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 5003 ScaledReg = nullptr; 5004 5005 // If folding this instruction (and it's subexprs) didn't extend any live 5006 // ranges, we're ok with it. 5007 if (!BaseReg && !ScaledReg) 5008 return true; 5009 5010 // If all uses of this instruction can have the address mode sunk into them, 5011 // we can remove the addressing mode and effectively trade one live register 5012 // for another (at worst.) In this context, folding an addressing mode into 5013 // the use is just a particularly nice way of sinking it. 5014 SmallVector<std::pair<Value *, Type *>, 16> MemoryUses; 5015 SmallPtrSet<Instruction*, 16> ConsideredInsts; 5016 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 5017 PSI, BFI)) 5018 return false; // Has a non-memory, non-foldable use! 5019 5020 // Now that we know that all uses of this instruction are part of a chain of 5021 // computation involving only operations that could theoretically be folded 5022 // into a memory use, loop over each of these memory operation uses and see 5023 // if they could *actually* fold the instruction. The assumption is that 5024 // addressing modes are cheap and that duplicating the computation involved 5025 // many times is worthwhile, even on a fastpath. For sinking candidates 5026 // (i.e. cold call sites), this serves as a way to prevent excessive code 5027 // growth since most architectures have some reasonable small and fast way to 5028 // compute an effective address. (i.e LEA on x86) 5029 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 5030 for (const std::pair<Value *, Type *> &Pair : MemoryUses) { 5031 Value *Address = Pair.first; 5032 Type *AddressAccessTy = Pair.second; 5033 unsigned AS = Address->getType()->getPointerAddressSpace(); 5034 5035 // Do a match against the root of this address, ignoring profitability. This 5036 // will tell us if the addressing mode for the memory operation will 5037 // *actually* cover the shared instruction. 5038 ExtAddrMode Result; 5039 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5040 0); 5041 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5042 TPT.getRestorationPoint(); 5043 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn, 5044 AddressAccessTy, AS, MemoryInst, Result, 5045 InsertedInsts, PromotedInsts, TPT, 5046 LargeOffsetGEP, OptSize, PSI, BFI); 5047 Matcher.IgnoreProfitability = true; 5048 bool Success = Matcher.matchAddr(Address, 0); 5049 (void)Success; assert(Success && "Couldn't select *anything*?"); 5050 5051 // The match was to check the profitability, the changes made are not 5052 // part of the original matcher. Therefore, they should be dropped 5053 // otherwise the original matcher will not present the right state. 5054 TPT.rollback(LastKnownGood); 5055 5056 // If the match didn't cover I, then it won't be shared by it. 5057 if (!is_contained(MatchedAddrModeInsts, I)) 5058 return false; 5059 5060 MatchedAddrModeInsts.clear(); 5061 } 5062 5063 return true; 5064 } 5065 5066 /// Return true if the specified values are defined in a 5067 /// different basic block than BB. 5068 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 5069 if (Instruction *I = dyn_cast<Instruction>(V)) 5070 return I->getParent() != BB; 5071 return false; 5072 } 5073 5074 /// Sink addressing mode computation immediate before MemoryInst if doing so 5075 /// can be done without increasing register pressure. The need for the 5076 /// register pressure constraint means this can end up being an all or nothing 5077 /// decision for all uses of the same addressing computation. 5078 /// 5079 /// Load and Store Instructions often have addressing modes that can do 5080 /// significant amounts of computation. As such, instruction selection will try 5081 /// to get the load or store to do as much computation as possible for the 5082 /// program. The problem is that isel can only see within a single block. As 5083 /// such, we sink as much legal addressing mode work into the block as possible. 5084 /// 5085 /// This method is used to optimize both load/store and inline asms with memory 5086 /// operands. It's also used to sink addressing computations feeding into cold 5087 /// call sites into their (cold) basic block. 5088 /// 5089 /// The motivation for handling sinking into cold blocks is that doing so can 5090 /// both enable other address mode sinking (by satisfying the register pressure 5091 /// constraint above), and reduce register pressure globally (by removing the 5092 /// addressing mode computation from the fast path entirely.). 5093 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 5094 Type *AccessTy, unsigned AddrSpace) { 5095 Value *Repl = Addr; 5096 5097 // Try to collapse single-value PHI nodes. This is necessary to undo 5098 // unprofitable PRE transformations. 5099 SmallVector<Value*, 8> worklist; 5100 SmallPtrSet<Value*, 16> Visited; 5101 worklist.push_back(Addr); 5102 5103 // Use a worklist to iteratively look through PHI and select nodes, and 5104 // ensure that the addressing mode obtained from the non-PHI/select roots of 5105 // the graph are compatible. 5106 bool PhiOrSelectSeen = false; 5107 SmallVector<Instruction*, 16> AddrModeInsts; 5108 const SimplifyQuery SQ(*DL, TLInfo); 5109 AddressingModeCombiner AddrModes(SQ, Addr); 5110 TypePromotionTransaction TPT(RemovedInsts); 5111 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5112 TPT.getRestorationPoint(); 5113 while (!worklist.empty()) { 5114 Value *V = worklist.pop_back_val(); 5115 5116 // We allow traversing cyclic Phi nodes. 5117 // In case of success after this loop we ensure that traversing through 5118 // Phi nodes ends up with all cases to compute address of the form 5119 // BaseGV + Base + Scale * Index + Offset 5120 // where Scale and Offset are constans and BaseGV, Base and Index 5121 // are exactly the same Values in all cases. 5122 // It means that BaseGV, Scale and Offset dominate our memory instruction 5123 // and have the same value as they had in address computation represented 5124 // as Phi. So we can safely sink address computation to memory instruction. 5125 if (!Visited.insert(V).second) 5126 continue; 5127 5128 // For a PHI node, push all of its incoming values. 5129 if (PHINode *P = dyn_cast<PHINode>(V)) { 5130 append_range(worklist, P->incoming_values()); 5131 PhiOrSelectSeen = true; 5132 continue; 5133 } 5134 // Similar for select. 5135 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 5136 worklist.push_back(SI->getFalseValue()); 5137 worklist.push_back(SI->getTrueValue()); 5138 PhiOrSelectSeen = true; 5139 continue; 5140 } 5141 5142 // For non-PHIs, determine the addressing mode being computed. Note that 5143 // the result may differ depending on what other uses our candidate 5144 // addressing instructions might have. 5145 AddrModeInsts.clear(); 5146 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5147 0); 5148 // Defer the query (and possible computation of) the dom tree to point of 5149 // actual use. It's expected that most address matches don't actually need 5150 // the domtree. 5151 auto getDTFn = [MemoryInst, this]() -> const DominatorTree & { 5152 Function *F = MemoryInst->getParent()->getParent(); 5153 return this->getDT(*F); 5154 }; 5155 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 5156 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn, 5157 *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 5158 BFI.get()); 5159 5160 GetElementPtrInst *GEP = LargeOffsetGEP.first; 5161 if (GEP && !NewGEPBases.count(GEP)) { 5162 // If splitting the underlying data structure can reduce the offset of a 5163 // GEP, collect the GEP. Skip the GEPs that are the new bases of 5164 // previously split data structures. 5165 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 5166 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 5167 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 5168 } 5169 5170 NewAddrMode.OriginalValue = V; 5171 if (!AddrModes.addNewAddrMode(NewAddrMode)) 5172 break; 5173 } 5174 5175 // Try to combine the AddrModes we've collected. If we couldn't collect any, 5176 // or we have multiple but either couldn't combine them or combining them 5177 // wouldn't do anything useful, bail out now. 5178 if (!AddrModes.combineAddrModes()) { 5179 TPT.rollback(LastKnownGood); 5180 return false; 5181 } 5182 bool Modified = TPT.commit(); 5183 5184 // Get the combined AddrMode (or the only AddrMode, if we only had one). 5185 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 5186 5187 // If all the instructions matched are already in this BB, don't do anything. 5188 // If we saw a Phi node then it is not local definitely, and if we saw a select 5189 // then we want to push the address calculation past it even if it's already 5190 // in this BB. 5191 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 5192 return IsNonLocalValue(V, MemoryInst->getParent()); 5193 })) { 5194 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 5195 << "\n"); 5196 return Modified; 5197 } 5198 5199 // Insert this computation right after this user. Since our caller is 5200 // scanning from the top of the BB to the bottom, reuse of the expr are 5201 // guaranteed to happen later. 5202 IRBuilder<> Builder(MemoryInst); 5203 5204 // Now that we determined the addressing expression we want to use and know 5205 // that we have to sink it into this block. Check to see if we have already 5206 // done this for some other load/store instr in this block. If so, reuse 5207 // the computation. Before attempting reuse, check if the address is valid 5208 // as it may have been erased. 5209 5210 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 5211 5212 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 5213 if (SunkAddr) { 5214 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 5215 << " for " << *MemoryInst << "\n"); 5216 if (SunkAddr->getType() != Addr->getType()) 5217 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5218 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 5219 SubtargetInfo->addrSinkUsingGEPs())) { 5220 // By default, we use the GEP-based method when AA is used later. This 5221 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 5222 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5223 << " for " << *MemoryInst << "\n"); 5224 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5225 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 5226 5227 // First, find the pointer. 5228 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 5229 ResultPtr = AddrMode.BaseReg; 5230 AddrMode.BaseReg = nullptr; 5231 } 5232 5233 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 5234 // We can't add more than one pointer together, nor can we scale a 5235 // pointer (both of which seem meaningless). 5236 if (ResultPtr || AddrMode.Scale != 1) 5237 return Modified; 5238 5239 ResultPtr = AddrMode.ScaledReg; 5240 AddrMode.Scale = 0; 5241 } 5242 5243 // It is only safe to sign extend the BaseReg if we know that the math 5244 // required to create it did not overflow before we extend it. Since 5245 // the original IR value was tossed in favor of a constant back when 5246 // the AddrMode was created we need to bail out gracefully if widths 5247 // do not match instead of extending it. 5248 // 5249 // (See below for code to add the scale.) 5250 if (AddrMode.Scale) { 5251 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 5252 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 5253 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 5254 return Modified; 5255 } 5256 5257 if (AddrMode.BaseGV) { 5258 if (ResultPtr) 5259 return Modified; 5260 5261 ResultPtr = AddrMode.BaseGV; 5262 } 5263 5264 // If the real base value actually came from an inttoptr, then the matcher 5265 // will look through it and provide only the integer value. In that case, 5266 // use it here. 5267 if (!DL->isNonIntegralPointerType(Addr->getType())) { 5268 if (!ResultPtr && AddrMode.BaseReg) { 5269 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 5270 "sunkaddr"); 5271 AddrMode.BaseReg = nullptr; 5272 } else if (!ResultPtr && AddrMode.Scale == 1) { 5273 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 5274 "sunkaddr"); 5275 AddrMode.Scale = 0; 5276 } 5277 } 5278 5279 if (!ResultPtr && 5280 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 5281 SunkAddr = Constant::getNullValue(Addr->getType()); 5282 } else if (!ResultPtr) { 5283 return Modified; 5284 } else { 5285 Type *I8PtrTy = 5286 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 5287 Type *I8Ty = Builder.getInt8Ty(); 5288 5289 // Start with the base register. Do this first so that subsequent address 5290 // matching finds it last, which will prevent it from trying to match it 5291 // as the scaled value in case it happens to be a mul. That would be 5292 // problematic if we've sunk a different mul for the scale, because then 5293 // we'd end up sinking both muls. 5294 if (AddrMode.BaseReg) { 5295 Value *V = AddrMode.BaseReg; 5296 if (V->getType() != IntPtrTy) 5297 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5298 5299 ResultIndex = V; 5300 } 5301 5302 // Add the scale value. 5303 if (AddrMode.Scale) { 5304 Value *V = AddrMode.ScaledReg; 5305 if (V->getType() == IntPtrTy) { 5306 // done. 5307 } else { 5308 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5309 cast<IntegerType>(V->getType())->getBitWidth() && 5310 "We can't transform if ScaledReg is too narrow"); 5311 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5312 } 5313 5314 if (AddrMode.Scale != 1) 5315 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5316 "sunkaddr"); 5317 if (ResultIndex) 5318 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5319 else 5320 ResultIndex = V; 5321 } 5322 5323 // Add in the Base Offset if present. 5324 if (AddrMode.BaseOffs) { 5325 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5326 if (ResultIndex) { 5327 // We need to add this separately from the scale above to help with 5328 // SDAG consecutive load/store merging. 5329 if (ResultPtr->getType() != I8PtrTy) 5330 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5331 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, 5332 "sunkaddr", AddrMode.InBounds); 5333 } 5334 5335 ResultIndex = V; 5336 } 5337 5338 if (!ResultIndex) { 5339 SunkAddr = ResultPtr; 5340 } else { 5341 if (ResultPtr->getType() != I8PtrTy) 5342 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5343 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr", 5344 AddrMode.InBounds); 5345 } 5346 5347 if (SunkAddr->getType() != Addr->getType()) 5348 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5349 } 5350 } else { 5351 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5352 // non-integral pointers, so in that case bail out now. 5353 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5354 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5355 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5356 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5357 if (DL->isNonIntegralPointerType(Addr->getType()) || 5358 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5359 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5360 (AddrMode.BaseGV && 5361 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5362 return Modified; 5363 5364 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5365 << " for " << *MemoryInst << "\n"); 5366 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5367 Value *Result = nullptr; 5368 5369 // Start with the base register. Do this first so that subsequent address 5370 // matching finds it last, which will prevent it from trying to match it 5371 // as the scaled value in case it happens to be a mul. That would be 5372 // problematic if we've sunk a different mul for the scale, because then 5373 // we'd end up sinking both muls. 5374 if (AddrMode.BaseReg) { 5375 Value *V = AddrMode.BaseReg; 5376 if (V->getType()->isPointerTy()) 5377 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5378 if (V->getType() != IntPtrTy) 5379 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5380 Result = V; 5381 } 5382 5383 // Add the scale value. 5384 if (AddrMode.Scale) { 5385 Value *V = AddrMode.ScaledReg; 5386 if (V->getType() == IntPtrTy) { 5387 // done. 5388 } else if (V->getType()->isPointerTy()) { 5389 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5390 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5391 cast<IntegerType>(V->getType())->getBitWidth()) { 5392 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5393 } else { 5394 // It is only safe to sign extend the BaseReg if we know that the math 5395 // required to create it did not overflow before we extend it. Since 5396 // the original IR value was tossed in favor of a constant back when 5397 // the AddrMode was created we need to bail out gracefully if widths 5398 // do not match instead of extending it. 5399 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5400 if (I && (Result != AddrMode.BaseReg)) 5401 I->eraseFromParent(); 5402 return Modified; 5403 } 5404 if (AddrMode.Scale != 1) 5405 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5406 "sunkaddr"); 5407 if (Result) 5408 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5409 else 5410 Result = V; 5411 } 5412 5413 // Add in the BaseGV if present. 5414 if (AddrMode.BaseGV) { 5415 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5416 if (Result) 5417 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5418 else 5419 Result = V; 5420 } 5421 5422 // Add in the Base Offset if present. 5423 if (AddrMode.BaseOffs) { 5424 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5425 if (Result) 5426 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5427 else 5428 Result = V; 5429 } 5430 5431 if (!Result) 5432 SunkAddr = Constant::getNullValue(Addr->getType()); 5433 else 5434 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5435 } 5436 5437 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5438 // Store the newly computed address into the cache. In the case we reused a 5439 // value, this should be idempotent. 5440 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5441 5442 // If we have no uses, recursively delete the value and all dead instructions 5443 // using it. 5444 if (Repl->use_empty()) { 5445 resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() { 5446 RecursivelyDeleteTriviallyDeadInstructions( 5447 Repl, TLInfo, nullptr, 5448 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5449 }); 5450 } 5451 ++NumMemoryInsts; 5452 return true; 5453 } 5454 5455 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find 5456 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can 5457 /// only handle a 2 operand GEP in the same basic block or a splat constant 5458 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector 5459 /// index. 5460 /// 5461 /// If the existing GEP has a vector base pointer that is splat, we can look 5462 /// through the splat to find the scalar pointer. If we can't find a scalar 5463 /// pointer there's nothing we can do. 5464 /// 5465 /// If we have a GEP with more than 2 indices where the middle indices are all 5466 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. 5467 /// 5468 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP 5469 /// followed by a GEP with an all zeroes vector index. This will enable 5470 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a 5471 /// zero index. 5472 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, 5473 Value *Ptr) { 5474 Value *NewAddr; 5475 5476 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 5477 // Don't optimize GEPs that don't have indices. 5478 if (!GEP->hasIndices()) 5479 return false; 5480 5481 // If the GEP and the gather/scatter aren't in the same BB, don't optimize. 5482 // FIXME: We should support this by sinking the GEP. 5483 if (MemoryInst->getParent() != GEP->getParent()) 5484 return false; 5485 5486 SmallVector<Value *, 2> Ops(GEP->operands()); 5487 5488 bool RewriteGEP = false; 5489 5490 if (Ops[0]->getType()->isVectorTy()) { 5491 Ops[0] = getSplatValue(Ops[0]); 5492 if (!Ops[0]) 5493 return false; 5494 RewriteGEP = true; 5495 } 5496 5497 unsigned FinalIndex = Ops.size() - 1; 5498 5499 // Ensure all but the last index is 0. 5500 // FIXME: This isn't strictly required. All that's required is that they are 5501 // all scalars or splats. 5502 for (unsigned i = 1; i < FinalIndex; ++i) { 5503 auto *C = dyn_cast<Constant>(Ops[i]); 5504 if (!C) 5505 return false; 5506 if (isa<VectorType>(C->getType())) 5507 C = C->getSplatValue(); 5508 auto *CI = dyn_cast_or_null<ConstantInt>(C); 5509 if (!CI || !CI->isZero()) 5510 return false; 5511 // Scalarize the index if needed. 5512 Ops[i] = CI; 5513 } 5514 5515 // Try to scalarize the final index. 5516 if (Ops[FinalIndex]->getType()->isVectorTy()) { 5517 if (Value *V = getSplatValue(Ops[FinalIndex])) { 5518 auto *C = dyn_cast<ConstantInt>(V); 5519 // Don't scalarize all zeros vector. 5520 if (!C || !C->isZero()) { 5521 Ops[FinalIndex] = V; 5522 RewriteGEP = true; 5523 } 5524 } 5525 } 5526 5527 // If we made any changes or the we have extra operands, we need to generate 5528 // new instructions. 5529 if (!RewriteGEP && Ops.size() == 2) 5530 return false; 5531 5532 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5533 5534 IRBuilder<> Builder(MemoryInst); 5535 5536 Type *SourceTy = GEP->getSourceElementType(); 5537 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); 5538 5539 // If the final index isn't a vector, emit a scalar GEP containing all ops 5540 // and a vector GEP with all zeroes final index. 5541 if (!Ops[FinalIndex]->getType()->isVectorTy()) { 5542 NewAddr = Builder.CreateGEP(SourceTy, Ops[0], 5543 makeArrayRef(Ops).drop_front()); 5544 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5545 auto *SecondTy = GetElementPtrInst::getIndexedType( 5546 SourceTy, makeArrayRef(Ops).drop_front()); 5547 NewAddr = 5548 Builder.CreateGEP(SecondTy, NewAddr, Constant::getNullValue(IndexTy)); 5549 } else { 5550 Value *Base = Ops[0]; 5551 Value *Index = Ops[FinalIndex]; 5552 5553 // Create a scalar GEP if there are more than 2 operands. 5554 if (Ops.size() != 2) { 5555 // Replace the last index with 0. 5556 Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy); 5557 Base = Builder.CreateGEP(SourceTy, Base, 5558 makeArrayRef(Ops).drop_front()); 5559 SourceTy = GetElementPtrInst::getIndexedType( 5560 SourceTy, makeArrayRef(Ops).drop_front()); 5561 } 5562 5563 // Now create the GEP with scalar pointer and vector index. 5564 NewAddr = Builder.CreateGEP(SourceTy, Base, Index); 5565 } 5566 } else if (!isa<Constant>(Ptr)) { 5567 // Not a GEP, maybe its a splat and we can create a GEP to enable 5568 // SelectionDAGBuilder to use it as a uniform base. 5569 Value *V = getSplatValue(Ptr); 5570 if (!V) 5571 return false; 5572 5573 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5574 5575 IRBuilder<> Builder(MemoryInst); 5576 5577 // Emit a vector GEP with a scalar pointer and all 0s vector index. 5578 Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType()); 5579 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5580 Type *ScalarTy; 5581 if (cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == 5582 Intrinsic::masked_gather) { 5583 ScalarTy = MemoryInst->getType()->getScalarType(); 5584 } else { 5585 assert(cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == 5586 Intrinsic::masked_scatter); 5587 ScalarTy = MemoryInst->getOperand(0)->getType()->getScalarType(); 5588 } 5589 NewAddr = Builder.CreateGEP(ScalarTy, V, Constant::getNullValue(IndexTy)); 5590 } else { 5591 // Constant, SelectionDAGBuilder knows to check if its a splat. 5592 return false; 5593 } 5594 5595 MemoryInst->replaceUsesOfWith(Ptr, NewAddr); 5596 5597 // If we have no uses, recursively delete the value and all dead instructions 5598 // using it. 5599 if (Ptr->use_empty()) 5600 RecursivelyDeleteTriviallyDeadInstructions( 5601 Ptr, TLInfo, nullptr, 5602 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5603 5604 return true; 5605 } 5606 5607 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5608 /// address computing into the block when possible / profitable. 5609 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5610 bool MadeChange = false; 5611 5612 const TargetRegisterInfo *TRI = 5613 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5614 TargetLowering::AsmOperandInfoVector TargetConstraints = 5615 TLI->ParseConstraints(*DL, TRI, *CS); 5616 unsigned ArgNo = 0; 5617 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { 5618 // Compute the constraint code and ConstraintType to use. 5619 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5620 5621 // TODO: Also handle C_Address? 5622 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5623 OpInfo.isIndirect) { 5624 Value *OpVal = CS->getArgOperand(ArgNo++); 5625 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5626 } else if (OpInfo.Type == InlineAsm::isInput) 5627 ArgNo++; 5628 } 5629 5630 return MadeChange; 5631 } 5632 5633 /// Check if all the uses of \p Val are equivalent (or free) zero or 5634 /// sign extensions. 5635 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5636 assert(!Val->use_empty() && "Input must have at least one use"); 5637 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5638 bool IsSExt = isa<SExtInst>(FirstUser); 5639 Type *ExtTy = FirstUser->getType(); 5640 for (const User *U : Val->users()) { 5641 const Instruction *UI = cast<Instruction>(U); 5642 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5643 return false; 5644 Type *CurTy = UI->getType(); 5645 // Same input and output types: Same instruction after CSE. 5646 if (CurTy == ExtTy) 5647 continue; 5648 5649 // If IsSExt is true, we are in this situation: 5650 // a = Val 5651 // b = sext ty1 a to ty2 5652 // c = sext ty1 a to ty3 5653 // Assuming ty2 is shorter than ty3, this could be turned into: 5654 // a = Val 5655 // b = sext ty1 a to ty2 5656 // c = sext ty2 b to ty3 5657 // However, the last sext is not free. 5658 if (IsSExt) 5659 return false; 5660 5661 // This is a ZExt, maybe this is free to extend from one type to another. 5662 // In that case, we would not account for a different use. 5663 Type *NarrowTy; 5664 Type *LargeTy; 5665 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5666 CurTy->getScalarType()->getIntegerBitWidth()) { 5667 NarrowTy = CurTy; 5668 LargeTy = ExtTy; 5669 } else { 5670 NarrowTy = ExtTy; 5671 LargeTy = CurTy; 5672 } 5673 5674 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5675 return false; 5676 } 5677 // All uses are the same or can be derived from one another for free. 5678 return true; 5679 } 5680 5681 /// Try to speculatively promote extensions in \p Exts and continue 5682 /// promoting through newly promoted operands recursively as far as doing so is 5683 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5684 /// When some promotion happened, \p TPT contains the proper state to revert 5685 /// them. 5686 /// 5687 /// \return true if some promotion happened, false otherwise. 5688 bool CodeGenPrepare::tryToPromoteExts( 5689 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5690 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5691 unsigned CreatedInstsCost) { 5692 bool Promoted = false; 5693 5694 // Iterate over all the extensions to try to promote them. 5695 for (auto *I : Exts) { 5696 // Early check if we directly have ext(load). 5697 if (isa<LoadInst>(I->getOperand(0))) { 5698 ProfitablyMovedExts.push_back(I); 5699 continue; 5700 } 5701 5702 // Check whether or not we want to do any promotion. The reason we have 5703 // this check inside the for loop is to catch the case where an extension 5704 // is directly fed by a load because in such case the extension can be moved 5705 // up without any promotion on its operands. 5706 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5707 return false; 5708 5709 // Get the action to perform the promotion. 5710 TypePromotionHelper::Action TPH = 5711 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5712 // Check if we can promote. 5713 if (!TPH) { 5714 // Save the current extension as we cannot move up through its operand. 5715 ProfitablyMovedExts.push_back(I); 5716 continue; 5717 } 5718 5719 // Save the current state. 5720 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5721 TPT.getRestorationPoint(); 5722 SmallVector<Instruction *, 4> NewExts; 5723 unsigned NewCreatedInstsCost = 0; 5724 unsigned ExtCost = !TLI->isExtFree(I); 5725 // Promote. 5726 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5727 &NewExts, nullptr, *TLI); 5728 assert(PromotedVal && 5729 "TypePromotionHelper should have filtered out those cases"); 5730 5731 // We would be able to merge only one extension in a load. 5732 // Therefore, if we have more than 1 new extension we heuristically 5733 // cut this search path, because it means we degrade the code quality. 5734 // With exactly 2, the transformation is neutral, because we will merge 5735 // one extension but leave one. However, we optimistically keep going, 5736 // because the new extension may be removed too. 5737 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5738 // FIXME: It would be possible to propagate a negative value instead of 5739 // conservatively ceiling it to 0. 5740 TotalCreatedInstsCost = 5741 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5742 if (!StressExtLdPromotion && 5743 (TotalCreatedInstsCost > 1 || 5744 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5745 // This promotion is not profitable, rollback to the previous state, and 5746 // save the current extension in ProfitablyMovedExts as the latest 5747 // speculative promotion turned out to be unprofitable. 5748 TPT.rollback(LastKnownGood); 5749 ProfitablyMovedExts.push_back(I); 5750 continue; 5751 } 5752 // Continue promoting NewExts as far as doing so is profitable. 5753 SmallVector<Instruction *, 2> NewlyMovedExts; 5754 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5755 bool NewPromoted = false; 5756 for (auto *ExtInst : NewlyMovedExts) { 5757 Instruction *MovedExt = cast<Instruction>(ExtInst); 5758 Value *ExtOperand = MovedExt->getOperand(0); 5759 // If we have reached to a load, we need this extra profitability check 5760 // as it could potentially be merged into an ext(load). 5761 if (isa<LoadInst>(ExtOperand) && 5762 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5763 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5764 continue; 5765 5766 ProfitablyMovedExts.push_back(MovedExt); 5767 NewPromoted = true; 5768 } 5769 5770 // If none of speculative promotions for NewExts is profitable, rollback 5771 // and save the current extension (I) as the last profitable extension. 5772 if (!NewPromoted) { 5773 TPT.rollback(LastKnownGood); 5774 ProfitablyMovedExts.push_back(I); 5775 continue; 5776 } 5777 // The promotion is profitable. 5778 Promoted = true; 5779 } 5780 return Promoted; 5781 } 5782 5783 /// Merging redundant sexts when one is dominating the other. 5784 bool CodeGenPrepare::mergeSExts(Function &F) { 5785 bool Changed = false; 5786 for (auto &Entry : ValToSExtendedUses) { 5787 SExts &Insts = Entry.second; 5788 SExts CurPts; 5789 for (Instruction *Inst : Insts) { 5790 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5791 Inst->getOperand(0) != Entry.first) 5792 continue; 5793 bool inserted = false; 5794 for (auto &Pt : CurPts) { 5795 if (getDT(F).dominates(Inst, Pt)) { 5796 Pt->replaceAllUsesWith(Inst); 5797 RemovedInsts.insert(Pt); 5798 Pt->removeFromParent(); 5799 Pt = Inst; 5800 inserted = true; 5801 Changed = true; 5802 break; 5803 } 5804 if (!getDT(F).dominates(Pt, Inst)) 5805 // Give up if we need to merge in a common dominator as the 5806 // experiments show it is not profitable. 5807 continue; 5808 Inst->replaceAllUsesWith(Pt); 5809 RemovedInsts.insert(Inst); 5810 Inst->removeFromParent(); 5811 inserted = true; 5812 Changed = true; 5813 break; 5814 } 5815 if (!inserted) 5816 CurPts.push_back(Inst); 5817 } 5818 } 5819 return Changed; 5820 } 5821 5822 // Splitting large data structures so that the GEPs accessing them can have 5823 // smaller offsets so that they can be sunk to the same blocks as their users. 5824 // For example, a large struct starting from %base is split into two parts 5825 // where the second part starts from %new_base. 5826 // 5827 // Before: 5828 // BB0: 5829 // %base = 5830 // 5831 // BB1: 5832 // %gep0 = gep %base, off0 5833 // %gep1 = gep %base, off1 5834 // %gep2 = gep %base, off2 5835 // 5836 // BB2: 5837 // %load1 = load %gep0 5838 // %load2 = load %gep1 5839 // %load3 = load %gep2 5840 // 5841 // After: 5842 // BB0: 5843 // %base = 5844 // %new_base = gep %base, off0 5845 // 5846 // BB1: 5847 // %new_gep0 = %new_base 5848 // %new_gep1 = gep %new_base, off1 - off0 5849 // %new_gep2 = gep %new_base, off2 - off0 5850 // 5851 // BB2: 5852 // %load1 = load i32, i32* %new_gep0 5853 // %load2 = load i32, i32* %new_gep1 5854 // %load3 = load i32, i32* %new_gep2 5855 // 5856 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5857 // their offsets are smaller enough to fit into the addressing mode. 5858 bool CodeGenPrepare::splitLargeGEPOffsets() { 5859 bool Changed = false; 5860 for (auto &Entry : LargeOffsetGEPMap) { 5861 Value *OldBase = Entry.first; 5862 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5863 &LargeOffsetGEPs = Entry.second; 5864 auto compareGEPOffset = 5865 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5866 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5867 if (LHS.first == RHS.first) 5868 return false; 5869 if (LHS.second != RHS.second) 5870 return LHS.second < RHS.second; 5871 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5872 }; 5873 // Sorting all the GEPs of the same data structures based on the offsets. 5874 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5875 LargeOffsetGEPs.erase( 5876 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5877 LargeOffsetGEPs.end()); 5878 // Skip if all the GEPs have the same offsets. 5879 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5880 continue; 5881 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5882 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5883 Value *NewBaseGEP = nullptr; 5884 5885 auto *LargeOffsetGEP = LargeOffsetGEPs.begin(); 5886 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5887 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5888 int64_t Offset = LargeOffsetGEP->second; 5889 if (Offset != BaseOffset) { 5890 TargetLowering::AddrMode AddrMode; 5891 AddrMode.BaseOffs = Offset - BaseOffset; 5892 // The result type of the GEP might not be the type of the memory 5893 // access. 5894 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5895 GEP->getResultElementType(), 5896 GEP->getAddressSpace())) { 5897 // We need to create a new base if the offset to the current base is 5898 // too large to fit into the addressing mode. So, a very large struct 5899 // may be split into several parts. 5900 BaseGEP = GEP; 5901 BaseOffset = Offset; 5902 NewBaseGEP = nullptr; 5903 } 5904 } 5905 5906 // Generate a new GEP to replace the current one. 5907 LLVMContext &Ctx = GEP->getContext(); 5908 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5909 Type *I8PtrTy = 5910 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5911 Type *I8Ty = Type::getInt8Ty(Ctx); 5912 5913 if (!NewBaseGEP) { 5914 // Create a new base if we don't have one yet. Find the insertion 5915 // pointer for the new base first. 5916 BasicBlock::iterator NewBaseInsertPt; 5917 BasicBlock *NewBaseInsertBB; 5918 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5919 // If the base of the struct is an instruction, the new base will be 5920 // inserted close to it. 5921 NewBaseInsertBB = BaseI->getParent(); 5922 if (isa<PHINode>(BaseI)) 5923 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5924 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5925 NewBaseInsertBB = 5926 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5927 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5928 } else 5929 NewBaseInsertPt = std::next(BaseI->getIterator()); 5930 } else { 5931 // If the current base is an argument or global value, the new base 5932 // will be inserted to the entry block. 5933 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5934 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5935 } 5936 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5937 // Create a new base. 5938 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5939 NewBaseGEP = OldBase; 5940 if (NewBaseGEP->getType() != I8PtrTy) 5941 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5942 NewBaseGEP = 5943 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5944 NewGEPBases.insert(NewBaseGEP); 5945 } 5946 5947 IRBuilder<> Builder(GEP); 5948 Value *NewGEP = NewBaseGEP; 5949 if (Offset == BaseOffset) { 5950 if (GEP->getType() != I8PtrTy) 5951 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5952 } else { 5953 // Calculate the new offset for the new GEP. 5954 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5955 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5956 5957 if (GEP->getType() != I8PtrTy) 5958 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5959 } 5960 GEP->replaceAllUsesWith(NewGEP); 5961 LargeOffsetGEPID.erase(GEP); 5962 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5963 GEP->eraseFromParent(); 5964 Changed = true; 5965 } 5966 } 5967 return Changed; 5968 } 5969 5970 bool CodeGenPrepare::optimizePhiType( 5971 PHINode *I, SmallPtrSetImpl<PHINode *> &Visited, 5972 SmallPtrSetImpl<Instruction *> &DeletedInstrs) { 5973 // We are looking for a collection on interconnected phi nodes that together 5974 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts 5975 // are of the same type. Convert the whole set of nodes to the type of the 5976 // bitcast. 5977 Type *PhiTy = I->getType(); 5978 Type *ConvertTy = nullptr; 5979 if (Visited.count(I) || 5980 (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy())) 5981 return false; 5982 5983 SmallVector<Instruction *, 4> Worklist; 5984 Worklist.push_back(cast<Instruction>(I)); 5985 SmallPtrSet<PHINode *, 4> PhiNodes; 5986 PhiNodes.insert(I); 5987 Visited.insert(I); 5988 SmallPtrSet<Instruction *, 4> Defs; 5989 SmallPtrSet<Instruction *, 4> Uses; 5990 // This works by adding extra bitcasts between load/stores and removing 5991 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi)) 5992 // we can get in the situation where we remove a bitcast in one iteration 5993 // just to add it again in the next. We need to ensure that at least one 5994 // bitcast we remove are anchored to something that will not change back. 5995 bool AnyAnchored = false; 5996 5997 while (!Worklist.empty()) { 5998 Instruction *II = Worklist.pop_back_val(); 5999 6000 if (auto *Phi = dyn_cast<PHINode>(II)) { 6001 // Handle Defs, which might also be PHI's 6002 for (Value *V : Phi->incoming_values()) { 6003 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6004 if (!PhiNodes.count(OpPhi)) { 6005 if (Visited.count(OpPhi)) 6006 return false; 6007 PhiNodes.insert(OpPhi); 6008 Visited.insert(OpPhi); 6009 Worklist.push_back(OpPhi); 6010 } 6011 } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) { 6012 if (!OpLoad->isSimple()) 6013 return false; 6014 if (!Defs.count(OpLoad)) { 6015 Defs.insert(OpLoad); 6016 Worklist.push_back(OpLoad); 6017 } 6018 } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) { 6019 if (!Defs.count(OpEx)) { 6020 Defs.insert(OpEx); 6021 Worklist.push_back(OpEx); 6022 } 6023 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6024 if (!ConvertTy) 6025 ConvertTy = OpBC->getOperand(0)->getType(); 6026 if (OpBC->getOperand(0)->getType() != ConvertTy) 6027 return false; 6028 if (!Defs.count(OpBC)) { 6029 Defs.insert(OpBC); 6030 Worklist.push_back(OpBC); 6031 AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) && 6032 !isa<ExtractElementInst>(OpBC->getOperand(0)); 6033 } 6034 } else if (!isa<UndefValue>(V)) { 6035 return false; 6036 } 6037 } 6038 } 6039 6040 // Handle uses which might also be phi's 6041 for (User *V : II->users()) { 6042 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6043 if (!PhiNodes.count(OpPhi)) { 6044 if (Visited.count(OpPhi)) 6045 return false; 6046 PhiNodes.insert(OpPhi); 6047 Visited.insert(OpPhi); 6048 Worklist.push_back(OpPhi); 6049 } 6050 } else if (auto *OpStore = dyn_cast<StoreInst>(V)) { 6051 if (!OpStore->isSimple() || OpStore->getOperand(0) != II) 6052 return false; 6053 Uses.insert(OpStore); 6054 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6055 if (!ConvertTy) 6056 ConvertTy = OpBC->getType(); 6057 if (OpBC->getType() != ConvertTy) 6058 return false; 6059 Uses.insert(OpBC); 6060 AnyAnchored |= 6061 any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); }); 6062 } else { 6063 return false; 6064 } 6065 } 6066 } 6067 6068 if (!ConvertTy || !AnyAnchored || !TLI->shouldConvertPhiType(PhiTy, ConvertTy)) 6069 return false; 6070 6071 LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to " 6072 << *ConvertTy << "\n"); 6073 6074 // Create all the new phi nodes of the new type, and bitcast any loads to the 6075 // correct type. 6076 ValueToValueMap ValMap; 6077 ValMap[UndefValue::get(PhiTy)] = UndefValue::get(ConvertTy); 6078 for (Instruction *D : Defs) { 6079 if (isa<BitCastInst>(D)) { 6080 ValMap[D] = D->getOperand(0); 6081 DeletedInstrs.insert(D); 6082 } else { 6083 ValMap[D] = 6084 new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode()); 6085 } 6086 } 6087 for (PHINode *Phi : PhiNodes) 6088 ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(), 6089 Phi->getName() + ".tc", Phi); 6090 // Pipe together all the PhiNodes. 6091 for (PHINode *Phi : PhiNodes) { 6092 PHINode *NewPhi = cast<PHINode>(ValMap[Phi]); 6093 for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++) 6094 NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)], 6095 Phi->getIncomingBlock(i)); 6096 Visited.insert(NewPhi); 6097 } 6098 // And finally pipe up the stores and bitcasts 6099 for (Instruction *U : Uses) { 6100 if (isa<BitCastInst>(U)) { 6101 DeletedInstrs.insert(U); 6102 U->replaceAllUsesWith(ValMap[U->getOperand(0)]); 6103 } else { 6104 U->setOperand(0, 6105 new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U)); 6106 } 6107 } 6108 6109 // Save the removed phis to be deleted later. 6110 for (PHINode *Phi : PhiNodes) 6111 DeletedInstrs.insert(Phi); 6112 return true; 6113 } 6114 6115 bool CodeGenPrepare::optimizePhiTypes(Function &F) { 6116 if (!OptimizePhiTypes) 6117 return false; 6118 6119 bool Changed = false; 6120 SmallPtrSet<PHINode *, 4> Visited; 6121 SmallPtrSet<Instruction *, 4> DeletedInstrs; 6122 6123 // Attempt to optimize all the phis in the functions to the correct type. 6124 for (auto &BB : F) 6125 for (auto &Phi : BB.phis()) 6126 Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs); 6127 6128 // Remove any old phi's that have been converted. 6129 for (auto *I : DeletedInstrs) { 6130 I->replaceAllUsesWith(UndefValue::get(I->getType())); 6131 I->eraseFromParent(); 6132 } 6133 6134 return Changed; 6135 } 6136 6137 /// Return true, if an ext(load) can be formed from an extension in 6138 /// \p MovedExts. 6139 bool CodeGenPrepare::canFormExtLd( 6140 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 6141 Instruction *&Inst, bool HasPromoted) { 6142 for (auto *MovedExtInst : MovedExts) { 6143 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 6144 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 6145 Inst = MovedExtInst; 6146 break; 6147 } 6148 } 6149 if (!LI) 6150 return false; 6151 6152 // If they're already in the same block, there's nothing to do. 6153 // Make the cheap checks first if we did not promote. 6154 // If we promoted, we need to check if it is indeed profitable. 6155 if (!HasPromoted && LI->getParent() == Inst->getParent()) 6156 return false; 6157 6158 return TLI->isExtLoad(LI, Inst, *DL); 6159 } 6160 6161 /// Move a zext or sext fed by a load into the same basic block as the load, 6162 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 6163 /// extend into the load. 6164 /// 6165 /// E.g., 6166 /// \code 6167 /// %ld = load i32* %addr 6168 /// %add = add nuw i32 %ld, 4 6169 /// %zext = zext i32 %add to i64 6170 // \endcode 6171 /// => 6172 /// \code 6173 /// %ld = load i32* %addr 6174 /// %zext = zext i32 %ld to i64 6175 /// %add = add nuw i64 %zext, 4 6176 /// \encode 6177 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 6178 /// allow us to match zext(load i32*) to i64. 6179 /// 6180 /// Also, try to promote the computations used to obtain a sign extended 6181 /// value used into memory accesses. 6182 /// E.g., 6183 /// \code 6184 /// a = add nsw i32 b, 3 6185 /// d = sext i32 a to i64 6186 /// e = getelementptr ..., i64 d 6187 /// \endcode 6188 /// => 6189 /// \code 6190 /// f = sext i32 b to i64 6191 /// a = add nsw i64 f, 3 6192 /// e = getelementptr ..., i64 a 6193 /// \endcode 6194 /// 6195 /// \p Inst[in/out] the extension may be modified during the process if some 6196 /// promotions apply. 6197 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 6198 bool AllowPromotionWithoutCommonHeader = false; 6199 /// See if it is an interesting sext operations for the address type 6200 /// promotion before trying to promote it, e.g., the ones with the right 6201 /// type and used in memory accesses. 6202 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 6203 *Inst, AllowPromotionWithoutCommonHeader); 6204 TypePromotionTransaction TPT(RemovedInsts); 6205 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6206 TPT.getRestorationPoint(); 6207 SmallVector<Instruction *, 1> Exts; 6208 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 6209 Exts.push_back(Inst); 6210 6211 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 6212 6213 // Look for a load being extended. 6214 LoadInst *LI = nullptr; 6215 Instruction *ExtFedByLoad; 6216 6217 // Try to promote a chain of computation if it allows to form an extended 6218 // load. 6219 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 6220 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 6221 TPT.commit(); 6222 // Move the extend into the same block as the load. 6223 ExtFedByLoad->moveAfter(LI); 6224 ++NumExtsMoved; 6225 Inst = ExtFedByLoad; 6226 return true; 6227 } 6228 6229 // Continue promoting SExts if known as considerable depending on targets. 6230 if (ATPConsiderable && 6231 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 6232 HasPromoted, TPT, SpeculativelyMovedExts)) 6233 return true; 6234 6235 TPT.rollback(LastKnownGood); 6236 return false; 6237 } 6238 6239 // Perform address type promotion if doing so is profitable. 6240 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 6241 // instructions that sign extended the same initial value. However, if 6242 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 6243 // extension is just profitable. 6244 bool CodeGenPrepare::performAddressTypePromotion( 6245 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 6246 bool HasPromoted, TypePromotionTransaction &TPT, 6247 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 6248 bool Promoted = false; 6249 SmallPtrSet<Instruction *, 1> UnhandledExts; 6250 bool AllSeenFirst = true; 6251 for (auto *I : SpeculativelyMovedExts) { 6252 Value *HeadOfChain = I->getOperand(0); 6253 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 6254 SeenChainsForSExt.find(HeadOfChain); 6255 // If there is an unhandled SExt which has the same header, try to promote 6256 // it as well. 6257 if (AlreadySeen != SeenChainsForSExt.end()) { 6258 if (AlreadySeen->second != nullptr) 6259 UnhandledExts.insert(AlreadySeen->second); 6260 AllSeenFirst = false; 6261 } 6262 } 6263 6264 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 6265 SpeculativelyMovedExts.size() == 1)) { 6266 TPT.commit(); 6267 if (HasPromoted) 6268 Promoted = true; 6269 for (auto *I : SpeculativelyMovedExts) { 6270 Value *HeadOfChain = I->getOperand(0); 6271 SeenChainsForSExt[HeadOfChain] = nullptr; 6272 ValToSExtendedUses[HeadOfChain].push_back(I); 6273 } 6274 // Update Inst as promotion happen. 6275 Inst = SpeculativelyMovedExts.pop_back_val(); 6276 } else { 6277 // This is the first chain visited from the header, keep the current chain 6278 // as unhandled. Defer to promote this until we encounter another SExt 6279 // chain derived from the same header. 6280 for (auto *I : SpeculativelyMovedExts) { 6281 Value *HeadOfChain = I->getOperand(0); 6282 SeenChainsForSExt[HeadOfChain] = Inst; 6283 } 6284 return false; 6285 } 6286 6287 if (!AllSeenFirst && !UnhandledExts.empty()) 6288 for (auto *VisitedSExt : UnhandledExts) { 6289 if (RemovedInsts.count(VisitedSExt)) 6290 continue; 6291 TypePromotionTransaction TPT(RemovedInsts); 6292 SmallVector<Instruction *, 1> Exts; 6293 SmallVector<Instruction *, 2> Chains; 6294 Exts.push_back(VisitedSExt); 6295 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 6296 TPT.commit(); 6297 if (HasPromoted) 6298 Promoted = true; 6299 for (auto *I : Chains) { 6300 Value *HeadOfChain = I->getOperand(0); 6301 // Mark this as handled. 6302 SeenChainsForSExt[HeadOfChain] = nullptr; 6303 ValToSExtendedUses[HeadOfChain].push_back(I); 6304 } 6305 } 6306 return Promoted; 6307 } 6308 6309 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 6310 BasicBlock *DefBB = I->getParent(); 6311 6312 // If the result of a {s|z}ext and its source are both live out, rewrite all 6313 // other uses of the source with result of extension. 6314 Value *Src = I->getOperand(0); 6315 if (Src->hasOneUse()) 6316 return false; 6317 6318 // Only do this xform if truncating is free. 6319 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 6320 return false; 6321 6322 // Only safe to perform the optimization if the source is also defined in 6323 // this block. 6324 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 6325 return false; 6326 6327 bool DefIsLiveOut = false; 6328 for (User *U : I->users()) { 6329 Instruction *UI = cast<Instruction>(U); 6330 6331 // Figure out which BB this ext is used in. 6332 BasicBlock *UserBB = UI->getParent(); 6333 if (UserBB == DefBB) continue; 6334 DefIsLiveOut = true; 6335 break; 6336 } 6337 if (!DefIsLiveOut) 6338 return false; 6339 6340 // Make sure none of the uses are PHI nodes. 6341 for (User *U : Src->users()) { 6342 Instruction *UI = cast<Instruction>(U); 6343 BasicBlock *UserBB = UI->getParent(); 6344 if (UserBB == DefBB) continue; 6345 // Be conservative. We don't want this xform to end up introducing 6346 // reloads just before load / store instructions. 6347 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 6348 return false; 6349 } 6350 6351 // InsertedTruncs - Only insert one trunc in each block once. 6352 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 6353 6354 bool MadeChange = false; 6355 for (Use &U : Src->uses()) { 6356 Instruction *User = cast<Instruction>(U.getUser()); 6357 6358 // Figure out which BB this ext is used in. 6359 BasicBlock *UserBB = User->getParent(); 6360 if (UserBB == DefBB) continue; 6361 6362 // Both src and def are live in this block. Rewrite the use. 6363 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 6364 6365 if (!InsertedTrunc) { 6366 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6367 assert(InsertPt != UserBB->end()); 6368 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 6369 InsertedInsts.insert(InsertedTrunc); 6370 } 6371 6372 // Replace a use of the {s|z}ext source with a use of the result. 6373 U = InsertedTrunc; 6374 ++NumExtUses; 6375 MadeChange = true; 6376 } 6377 6378 return MadeChange; 6379 } 6380 6381 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 6382 // just after the load if the target can fold this into one extload instruction, 6383 // with the hope of eliminating some of the other later "and" instructions using 6384 // the loaded value. "and"s that are made trivially redundant by the insertion 6385 // of the new "and" are removed by this function, while others (e.g. those whose 6386 // path from the load goes through a phi) are left for isel to potentially 6387 // remove. 6388 // 6389 // For example: 6390 // 6391 // b0: 6392 // x = load i32 6393 // ... 6394 // b1: 6395 // y = and x, 0xff 6396 // z = use y 6397 // 6398 // becomes: 6399 // 6400 // b0: 6401 // x = load i32 6402 // x' = and x, 0xff 6403 // ... 6404 // b1: 6405 // z = use x' 6406 // 6407 // whereas: 6408 // 6409 // b0: 6410 // x1 = load i32 6411 // ... 6412 // b1: 6413 // x2 = load i32 6414 // ... 6415 // b2: 6416 // x = phi x1, x2 6417 // y = and x, 0xff 6418 // 6419 // becomes (after a call to optimizeLoadExt for each load): 6420 // 6421 // b0: 6422 // x1 = load i32 6423 // x1' = and x1, 0xff 6424 // ... 6425 // b1: 6426 // x2 = load i32 6427 // x2' = and x2, 0xff 6428 // ... 6429 // b2: 6430 // x = phi x1', x2' 6431 // y = and x, 0xff 6432 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 6433 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 6434 return false; 6435 6436 // Skip loads we've already transformed. 6437 if (Load->hasOneUse() && 6438 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 6439 return false; 6440 6441 // Look at all uses of Load, looking through phis, to determine how many bits 6442 // of the loaded value are needed. 6443 SmallVector<Instruction *, 8> WorkList; 6444 SmallPtrSet<Instruction *, 16> Visited; 6445 SmallVector<Instruction *, 8> AndsToMaybeRemove; 6446 for (auto *U : Load->users()) 6447 WorkList.push_back(cast<Instruction>(U)); 6448 6449 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 6450 unsigned BitWidth = LoadResultVT.getSizeInBits(); 6451 // If the BitWidth is 0, do not try to optimize the type 6452 if (BitWidth == 0) 6453 return false; 6454 6455 APInt DemandBits(BitWidth, 0); 6456 APInt WidestAndBits(BitWidth, 0); 6457 6458 while (!WorkList.empty()) { 6459 Instruction *I = WorkList.pop_back_val(); 6460 6461 // Break use-def graph loops. 6462 if (!Visited.insert(I).second) 6463 continue; 6464 6465 // For a PHI node, push all of its users. 6466 if (auto *Phi = dyn_cast<PHINode>(I)) { 6467 for (auto *U : Phi->users()) 6468 WorkList.push_back(cast<Instruction>(U)); 6469 continue; 6470 } 6471 6472 switch (I->getOpcode()) { 6473 case Instruction::And: { 6474 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 6475 if (!AndC) 6476 return false; 6477 APInt AndBits = AndC->getValue(); 6478 DemandBits |= AndBits; 6479 // Keep track of the widest and mask we see. 6480 if (AndBits.ugt(WidestAndBits)) 6481 WidestAndBits = AndBits; 6482 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 6483 AndsToMaybeRemove.push_back(I); 6484 break; 6485 } 6486 6487 case Instruction::Shl: { 6488 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 6489 if (!ShlC) 6490 return false; 6491 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 6492 DemandBits.setLowBits(BitWidth - ShiftAmt); 6493 break; 6494 } 6495 6496 case Instruction::Trunc: { 6497 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 6498 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 6499 DemandBits.setLowBits(TruncBitWidth); 6500 break; 6501 } 6502 6503 default: 6504 return false; 6505 } 6506 } 6507 6508 uint32_t ActiveBits = DemandBits.getActiveBits(); 6509 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 6510 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 6511 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 6512 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 6513 // followed by an AND. 6514 // TODO: Look into removing this restriction by fixing backends to either 6515 // return false for isLoadExtLegal for i1 or have them select this pattern to 6516 // a single instruction. 6517 // 6518 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 6519 // mask, since these are the only ands that will be removed by isel. 6520 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 6521 WidestAndBits != DemandBits) 6522 return false; 6523 6524 LLVMContext &Ctx = Load->getType()->getContext(); 6525 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 6526 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 6527 6528 // Reject cases that won't be matched as extloads. 6529 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 6530 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 6531 return false; 6532 6533 IRBuilder<> Builder(Load->getNextNode()); 6534 auto *NewAnd = cast<Instruction>( 6535 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 6536 // Mark this instruction as "inserted by CGP", so that other 6537 // optimizations don't touch it. 6538 InsertedInsts.insert(NewAnd); 6539 6540 // Replace all uses of load with new and (except for the use of load in the 6541 // new and itself). 6542 Load->replaceAllUsesWith(NewAnd); 6543 NewAnd->setOperand(0, Load); 6544 6545 // Remove any and instructions that are now redundant. 6546 for (auto *And : AndsToMaybeRemove) 6547 // Check that the and mask is the same as the one we decided to put on the 6548 // new and. 6549 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 6550 And->replaceAllUsesWith(NewAnd); 6551 if (&*CurInstIterator == And) 6552 CurInstIterator = std::next(And->getIterator()); 6553 And->eraseFromParent(); 6554 ++NumAndUses; 6555 } 6556 6557 ++NumAndsAdded; 6558 return true; 6559 } 6560 6561 /// Check if V (an operand of a select instruction) is an expensive instruction 6562 /// that is only used once. 6563 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 6564 auto *I = dyn_cast<Instruction>(V); 6565 // If it's safe to speculatively execute, then it should not have side 6566 // effects; therefore, it's safe to sink and possibly *not* execute. 6567 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 6568 TTI->getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency) >= 6569 TargetTransformInfo::TCC_Expensive; 6570 } 6571 6572 /// Returns true if a SelectInst should be turned into an explicit branch. 6573 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 6574 const TargetLowering *TLI, 6575 SelectInst *SI) { 6576 // If even a predictable select is cheap, then a branch can't be cheaper. 6577 if (!TLI->isPredictableSelectExpensive()) 6578 return false; 6579 6580 // FIXME: This should use the same heuristics as IfConversion to determine 6581 // whether a select is better represented as a branch. 6582 6583 // If metadata tells us that the select condition is obviously predictable, 6584 // then we want to replace the select with a branch. 6585 uint64_t TrueWeight, FalseWeight; 6586 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 6587 uint64_t Max = std::max(TrueWeight, FalseWeight); 6588 uint64_t Sum = TrueWeight + FalseWeight; 6589 if (Sum != 0) { 6590 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 6591 if (Probability > TTI->getPredictableBranchThreshold()) 6592 return true; 6593 } 6594 } 6595 6596 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 6597 6598 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 6599 // comparison condition. If the compare has more than one use, there's 6600 // probably another cmov or setcc around, so it's not worth emitting a branch. 6601 if (!Cmp || !Cmp->hasOneUse()) 6602 return false; 6603 6604 // If either operand of the select is expensive and only needed on one side 6605 // of the select, we should form a branch. 6606 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 6607 sinkSelectOperand(TTI, SI->getFalseValue())) 6608 return true; 6609 6610 return false; 6611 } 6612 6613 /// If \p isTrue is true, return the true value of \p SI, otherwise return 6614 /// false value of \p SI. If the true/false value of \p SI is defined by any 6615 /// select instructions in \p Selects, look through the defining select 6616 /// instruction until the true/false value is not defined in \p Selects. 6617 static Value *getTrueOrFalseValue( 6618 SelectInst *SI, bool isTrue, 6619 const SmallPtrSet<const Instruction *, 2> &Selects) { 6620 Value *V = nullptr; 6621 6622 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 6623 DefSI = dyn_cast<SelectInst>(V)) { 6624 assert(DefSI->getCondition() == SI->getCondition() && 6625 "The condition of DefSI does not match with SI"); 6626 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 6627 } 6628 6629 assert(V && "Failed to get select true/false value"); 6630 return V; 6631 } 6632 6633 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 6634 assert(Shift->isShift() && "Expected a shift"); 6635 6636 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 6637 // general vector shifts, and (3) the shift amount is a select-of-splatted 6638 // values, hoist the shifts before the select: 6639 // shift Op0, (select Cond, TVal, FVal) --> 6640 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6641 // 6642 // This is inverting a generic IR transform when we know that the cost of a 6643 // general vector shift is more than the cost of 2 shift-by-scalars. 6644 // We can't do this effectively in SDAG because we may not be able to 6645 // determine if the select operands are splats from within a basic block. 6646 Type *Ty = Shift->getType(); 6647 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6648 return false; 6649 Value *Cond, *TVal, *FVal; 6650 if (!match(Shift->getOperand(1), 6651 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6652 return false; 6653 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6654 return false; 6655 6656 IRBuilder<> Builder(Shift); 6657 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6658 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6659 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6660 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6661 Shift->replaceAllUsesWith(NewSel); 6662 Shift->eraseFromParent(); 6663 return true; 6664 } 6665 6666 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) { 6667 Intrinsic::ID Opcode = Fsh->getIntrinsicID(); 6668 assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && 6669 "Expected a funnel shift"); 6670 6671 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper 6672 // than general vector shifts, and (3) the shift amount is select-of-splatted 6673 // values, hoist the funnel shifts before the select: 6674 // fsh Op0, Op1, (select Cond, TVal, FVal) --> 6675 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal) 6676 // 6677 // This is inverting a generic IR transform when we know that the cost of a 6678 // general vector shift is more than the cost of 2 shift-by-scalars. 6679 // We can't do this effectively in SDAG because we may not be able to 6680 // determine if the select operands are splats from within a basic block. 6681 Type *Ty = Fsh->getType(); 6682 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6683 return false; 6684 Value *Cond, *TVal, *FVal; 6685 if (!match(Fsh->getOperand(2), 6686 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6687 return false; 6688 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6689 return false; 6690 6691 IRBuilder<> Builder(Fsh); 6692 Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1); 6693 Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, TVal }); 6694 Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, FVal }); 6695 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6696 Fsh->replaceAllUsesWith(NewSel); 6697 Fsh->eraseFromParent(); 6698 return true; 6699 } 6700 6701 /// If we have a SelectInst that will likely profit from branch prediction, 6702 /// turn it into a branch. 6703 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6704 if (DisableSelectToBranch) 6705 return false; 6706 6707 // Find all consecutive select instructions that share the same condition. 6708 SmallVector<SelectInst *, 2> ASI; 6709 ASI.push_back(SI); 6710 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 6711 It != SI->getParent()->end(); ++It) { 6712 SelectInst *I = dyn_cast<SelectInst>(&*It); 6713 if (I && SI->getCondition() == I->getCondition()) { 6714 ASI.push_back(I); 6715 } else { 6716 break; 6717 } 6718 } 6719 6720 SelectInst *LastSI = ASI.back(); 6721 // Increment the current iterator to skip all the rest of select instructions 6722 // because they will be either "not lowered" or "all lowered" to branch. 6723 CurInstIterator = std::next(LastSI->getIterator()); 6724 6725 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 6726 6727 // Can we convert the 'select' to CF ? 6728 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 6729 return false; 6730 6731 TargetLowering::SelectSupportKind SelectKind; 6732 if (VectorCond) 6733 SelectKind = TargetLowering::VectorMaskSelect; 6734 else if (SI->getType()->isVectorTy()) 6735 SelectKind = TargetLowering::ScalarCondVectorVal; 6736 else 6737 SelectKind = TargetLowering::ScalarValSelect; 6738 6739 if (TLI->isSelectSupported(SelectKind) && 6740 (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize || 6741 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()))) 6742 return false; 6743 6744 // The DominatorTree needs to be rebuilt by any consumers after this 6745 // transformation. We simply reset here rather than setting the ModifiedDT 6746 // flag to avoid restarting the function walk in runOnFunction for each 6747 // select optimized. 6748 DT.reset(); 6749 6750 // Transform a sequence like this: 6751 // start: 6752 // %cmp = cmp uge i32 %a, %b 6753 // %sel = select i1 %cmp, i32 %c, i32 %d 6754 // 6755 // Into: 6756 // start: 6757 // %cmp = cmp uge i32 %a, %b 6758 // %cmp.frozen = freeze %cmp 6759 // br i1 %cmp.frozen, label %select.true, label %select.false 6760 // select.true: 6761 // br label %select.end 6762 // select.false: 6763 // br label %select.end 6764 // select.end: 6765 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6766 // 6767 // %cmp should be frozen, otherwise it may introduce undefined behavior. 6768 // In addition, we may sink instructions that produce %c or %d from 6769 // the entry block into the destination(s) of the new branch. 6770 // If the true or false blocks do not contain a sunken instruction, that 6771 // block and its branch may be optimized away. In that case, one side of the 6772 // first branch will point directly to select.end, and the corresponding PHI 6773 // predecessor block will be the start block. 6774 6775 // First, we split the block containing the select into 2 blocks. 6776 BasicBlock *StartBlock = SI->getParent(); 6777 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6778 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6779 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); 6780 6781 // Delete the unconditional branch that was just created by the split. 6782 StartBlock->getTerminator()->eraseFromParent(); 6783 6784 // These are the new basic blocks for the conditional branch. 6785 // At least one will become an actual new basic block. 6786 BasicBlock *TrueBlock = nullptr; 6787 BasicBlock *FalseBlock = nullptr; 6788 BranchInst *TrueBranch = nullptr; 6789 BranchInst *FalseBranch = nullptr; 6790 6791 // Sink expensive instructions into the conditional blocks to avoid executing 6792 // them speculatively. 6793 for (SelectInst *SI : ASI) { 6794 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6795 if (TrueBlock == nullptr) { 6796 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6797 EndBlock->getParent(), EndBlock); 6798 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6799 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6800 } 6801 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6802 TrueInst->moveBefore(TrueBranch); 6803 } 6804 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6805 if (FalseBlock == nullptr) { 6806 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6807 EndBlock->getParent(), EndBlock); 6808 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6809 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6810 } 6811 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6812 FalseInst->moveBefore(FalseBranch); 6813 } 6814 } 6815 6816 // If there was nothing to sink, then arbitrarily choose the 'false' side 6817 // for a new input value to the PHI. 6818 if (TrueBlock == FalseBlock) { 6819 assert(TrueBlock == nullptr && 6820 "Unexpected basic block transform while optimizing select"); 6821 6822 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6823 EndBlock->getParent(), EndBlock); 6824 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6825 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6826 } 6827 6828 // Insert the real conditional branch based on the original condition. 6829 // If we did not create a new block for one of the 'true' or 'false' paths 6830 // of the condition, it means that side of the branch goes to the end block 6831 // directly and the path originates from the start block from the point of 6832 // view of the new PHI. 6833 BasicBlock *TT, *FT; 6834 if (TrueBlock == nullptr) { 6835 TT = EndBlock; 6836 FT = FalseBlock; 6837 TrueBlock = StartBlock; 6838 } else if (FalseBlock == nullptr) { 6839 TT = TrueBlock; 6840 FT = EndBlock; 6841 FalseBlock = StartBlock; 6842 } else { 6843 TT = TrueBlock; 6844 FT = FalseBlock; 6845 } 6846 IRBuilder<> IB(SI); 6847 auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 6848 IB.CreateCondBr(CondFr, TT, FT, SI); 6849 6850 SmallPtrSet<const Instruction *, 2> INS; 6851 INS.insert(ASI.begin(), ASI.end()); 6852 // Use reverse iterator because later select may use the value of the 6853 // earlier select, and we need to propagate value through earlier select 6854 // to get the PHI operand. 6855 for (SelectInst *SI : llvm::reverse(ASI)) { 6856 // The select itself is replaced with a PHI Node. 6857 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6858 PN->takeName(SI); 6859 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6860 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6861 PN->setDebugLoc(SI->getDebugLoc()); 6862 6863 SI->replaceAllUsesWith(PN); 6864 SI->eraseFromParent(); 6865 INS.erase(SI); 6866 ++NumSelectsExpanded; 6867 } 6868 6869 // Instruct OptimizeBlock to skip to the next block. 6870 CurInstIterator = StartBlock->end(); 6871 return true; 6872 } 6873 6874 /// Some targets only accept certain types for splat inputs. For example a VDUP 6875 /// in MVE takes a GPR (integer) register, and the instruction that incorporate 6876 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register. 6877 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6878 // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only 6879 if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 6880 m_Undef(), m_ZeroMask()))) 6881 return false; 6882 Type *NewType = TLI->shouldConvertSplatType(SVI); 6883 if (!NewType) 6884 return false; 6885 6886 auto *SVIVecType = cast<FixedVectorType>(SVI->getType()); 6887 assert(!NewType->isVectorTy() && "Expected a scalar type!"); 6888 assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && 6889 "Expected a type of the same size!"); 6890 auto *NewVecType = 6891 FixedVectorType::get(NewType, SVIVecType->getNumElements()); 6892 6893 // Create a bitcast (shuffle (insert (bitcast(..)))) 6894 IRBuilder<> Builder(SVI->getContext()); 6895 Builder.SetInsertPoint(SVI); 6896 Value *BC1 = Builder.CreateBitCast( 6897 cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType); 6898 Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1); 6899 Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType); 6900 6901 SVI->replaceAllUsesWith(BC2); 6902 RecursivelyDeleteTriviallyDeadInstructions( 6903 SVI, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); 6904 6905 // Also hoist the bitcast up to its operand if it they are not in the same 6906 // block. 6907 if (auto *BCI = dyn_cast<Instruction>(BC1)) 6908 if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0))) 6909 if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) && 6910 !Op->isTerminator() && !Op->isEHPad()) 6911 BCI->moveAfter(Op); 6912 6913 return true; 6914 } 6915 6916 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6917 // If the operands of I can be folded into a target instruction together with 6918 // I, duplicate and sink them. 6919 SmallVector<Use *, 4> OpsToSink; 6920 if (!TLI->shouldSinkOperands(I, OpsToSink)) 6921 return false; 6922 6923 // OpsToSink can contain multiple uses in a use chain (e.g. 6924 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6925 // uses must come first, so we process the ops in reverse order so as to not 6926 // create invalid IR. 6927 BasicBlock *TargetBB = I->getParent(); 6928 bool Changed = false; 6929 SmallVector<Use *, 4> ToReplace; 6930 Instruction *InsertPoint = I; 6931 DenseMap<const Instruction *, unsigned long> InstOrdering; 6932 unsigned long InstNumber = 0; 6933 for (const auto &I : *TargetBB) 6934 InstOrdering[&I] = InstNumber++; 6935 6936 for (Use *U : reverse(OpsToSink)) { 6937 auto *UI = cast<Instruction>(U->get()); 6938 if (isa<PHINode>(UI)) 6939 continue; 6940 if (UI->getParent() == TargetBB) { 6941 if (InstOrdering[UI] < InstOrdering[InsertPoint]) 6942 InsertPoint = UI; 6943 continue; 6944 } 6945 ToReplace.push_back(U); 6946 } 6947 6948 SetVector<Instruction *> MaybeDead; 6949 DenseMap<Instruction *, Instruction *> NewInstructions; 6950 for (Use *U : ToReplace) { 6951 auto *UI = cast<Instruction>(U->get()); 6952 Instruction *NI = UI->clone(); 6953 NewInstructions[UI] = NI; 6954 MaybeDead.insert(UI); 6955 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6956 NI->insertBefore(InsertPoint); 6957 InsertPoint = NI; 6958 InsertedInsts.insert(NI); 6959 6960 // Update the use for the new instruction, making sure that we update the 6961 // sunk instruction uses, if it is part of a chain that has already been 6962 // sunk. 6963 Instruction *OldI = cast<Instruction>(U->getUser()); 6964 if (NewInstructions.count(OldI)) 6965 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 6966 else 6967 U->set(NI); 6968 Changed = true; 6969 } 6970 6971 // Remove instructions that are dead after sinking. 6972 for (auto *I : MaybeDead) { 6973 if (!I->hasNUsesOrMore(1)) { 6974 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 6975 I->eraseFromParent(); 6976 } 6977 } 6978 6979 return Changed; 6980 } 6981 6982 bool CodeGenPrepare::optimizeSwitchType(SwitchInst *SI) { 6983 Value *Cond = SI->getCondition(); 6984 Type *OldType = Cond->getType(); 6985 LLVMContext &Context = Cond->getContext(); 6986 EVT OldVT = TLI->getValueType(*DL, OldType); 6987 MVT RegType = TLI->getPreferredSwitchConditionType(Context, OldVT); 6988 unsigned RegWidth = RegType.getSizeInBits(); 6989 6990 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6991 return false; 6992 6993 // If the register width is greater than the type width, expand the condition 6994 // of the switch instruction and each case constant to the width of the 6995 // register. By widening the type of the switch condition, subsequent 6996 // comparisons (for case comparisons) will not need to be extended to the 6997 // preferred register width, so we will potentially eliminate N-1 extends, 6998 // where N is the number of cases in the switch. 6999 auto *NewType = Type::getIntNTy(Context, RegWidth); 7000 7001 // Extend the switch condition and case constants using the target preferred 7002 // extend unless the switch condition is a function argument with an extend 7003 // attribute. In that case, we can avoid an unnecessary mask/extension by 7004 // matching the argument extension instead. 7005 Instruction::CastOps ExtType = Instruction::ZExt; 7006 // Some targets prefer SExt over ZExt. 7007 if (TLI->isSExtCheaperThanZExt(OldVT, RegType)) 7008 ExtType = Instruction::SExt; 7009 7010 if (auto *Arg = dyn_cast<Argument>(Cond)) { 7011 if (Arg->hasSExtAttr()) 7012 ExtType = Instruction::SExt; 7013 if (Arg->hasZExtAttr()) 7014 ExtType = Instruction::ZExt; 7015 } 7016 7017 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 7018 ExtInst->insertBefore(SI); 7019 ExtInst->setDebugLoc(SI->getDebugLoc()); 7020 SI->setCondition(ExtInst); 7021 for (auto Case : SI->cases()) { 7022 const APInt &NarrowConst = Case.getCaseValue()->getValue(); 7023 APInt WideConst = (ExtType == Instruction::ZExt) ? 7024 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 7025 Case.setValue(ConstantInt::get(Context, WideConst)); 7026 } 7027 7028 return true; 7029 } 7030 7031 bool CodeGenPrepare::optimizeSwitchPhiConstants(SwitchInst *SI) { 7032 // The SCCP optimization tends to produce code like this: 7033 // switch(x) { case 42: phi(42, ...) } 7034 // Materializing the constant for the phi-argument needs instructions; So we 7035 // change the code to: 7036 // switch(x) { case 42: phi(x, ...) } 7037 7038 Value *Condition = SI->getCondition(); 7039 // Avoid endless loop in degenerate case. 7040 if (isa<ConstantInt>(*Condition)) 7041 return false; 7042 7043 bool Changed = false; 7044 BasicBlock *SwitchBB = SI->getParent(); 7045 Type *ConditionType = Condition->getType(); 7046 7047 for (const SwitchInst::CaseHandle &Case : SI->cases()) { 7048 ConstantInt *CaseValue = Case.getCaseValue(); 7049 BasicBlock *CaseBB = Case.getCaseSuccessor(); 7050 // Set to true if we previously checked that `CaseBB` is only reached by 7051 // a single case from this switch. 7052 bool CheckedForSinglePred = false; 7053 for (PHINode &PHI : CaseBB->phis()) { 7054 Type *PHIType = PHI.getType(); 7055 // If ZExt is free then we can also catch patterns like this: 7056 // switch((i32)x) { case 42: phi((i64)42, ...); } 7057 // and replace `(i64)42` with `zext i32 %x to i64`. 7058 bool TryZExt = 7059 PHIType->isIntegerTy() && 7060 PHIType->getIntegerBitWidth() > ConditionType->getIntegerBitWidth() && 7061 TLI->isZExtFree(ConditionType, PHIType); 7062 if (PHIType == ConditionType || TryZExt) { 7063 // Set to true to skip this case because of multiple preds. 7064 bool SkipCase = false; 7065 Value *Replacement = nullptr; 7066 for (unsigned I = 0, E = PHI.getNumIncomingValues(); I != E; I++) { 7067 Value *PHIValue = PHI.getIncomingValue(I); 7068 if (PHIValue != CaseValue) { 7069 if (!TryZExt) 7070 continue; 7071 ConstantInt *PHIValueInt = dyn_cast<ConstantInt>(PHIValue); 7072 if (!PHIValueInt || 7073 PHIValueInt->getValue() != 7074 CaseValue->getValue().zext(PHIType->getIntegerBitWidth())) 7075 continue; 7076 } 7077 if (PHI.getIncomingBlock(I) != SwitchBB) 7078 continue; 7079 // We cannot optimize if there are multiple case labels jumping to 7080 // this block. This check may get expensive when there are many 7081 // case labels so we test for it last. 7082 if (!CheckedForSinglePred) { 7083 CheckedForSinglePred = true; 7084 if (SI->findCaseDest(CaseBB) == nullptr) { 7085 SkipCase = true; 7086 break; 7087 } 7088 } 7089 7090 if (Replacement == nullptr) { 7091 if (PHIValue == CaseValue) { 7092 Replacement = Condition; 7093 } else { 7094 IRBuilder<> Builder(SI); 7095 Replacement = Builder.CreateZExt(Condition, PHIType); 7096 } 7097 } 7098 PHI.setIncomingValue(I, Replacement); 7099 Changed = true; 7100 } 7101 if (SkipCase) 7102 break; 7103 } 7104 } 7105 } 7106 return Changed; 7107 } 7108 7109 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 7110 bool Changed = optimizeSwitchType(SI); 7111 Changed |= optimizeSwitchPhiConstants(SI); 7112 return Changed; 7113 } 7114 7115 namespace { 7116 7117 /// Helper class to promote a scalar operation to a vector one. 7118 /// This class is used to move downward extractelement transition. 7119 /// E.g., 7120 /// a = vector_op <2 x i32> 7121 /// b = extractelement <2 x i32> a, i32 0 7122 /// c = scalar_op b 7123 /// store c 7124 /// 7125 /// => 7126 /// a = vector_op <2 x i32> 7127 /// c = vector_op a (equivalent to scalar_op on the related lane) 7128 /// * d = extractelement <2 x i32> c, i32 0 7129 /// * store d 7130 /// Assuming both extractelement and store can be combine, we get rid of the 7131 /// transition. 7132 class VectorPromoteHelper { 7133 /// DataLayout associated with the current module. 7134 const DataLayout &DL; 7135 7136 /// Used to perform some checks on the legality of vector operations. 7137 const TargetLowering &TLI; 7138 7139 /// Used to estimated the cost of the promoted chain. 7140 const TargetTransformInfo &TTI; 7141 7142 /// The transition being moved downwards. 7143 Instruction *Transition; 7144 7145 /// The sequence of instructions to be promoted. 7146 SmallVector<Instruction *, 4> InstsToBePromoted; 7147 7148 /// Cost of combining a store and an extract. 7149 unsigned StoreExtractCombineCost; 7150 7151 /// Instruction that will be combined with the transition. 7152 Instruction *CombineInst = nullptr; 7153 7154 /// The instruction that represents the current end of the transition. 7155 /// Since we are faking the promotion until we reach the end of the chain 7156 /// of computation, we need a way to get the current end of the transition. 7157 Instruction *getEndOfTransition() const { 7158 if (InstsToBePromoted.empty()) 7159 return Transition; 7160 return InstsToBePromoted.back(); 7161 } 7162 7163 /// Return the index of the original value in the transition. 7164 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 7165 /// c, is at index 0. 7166 unsigned getTransitionOriginalValueIdx() const { 7167 assert(isa<ExtractElementInst>(Transition) && 7168 "Other kind of transitions are not supported yet"); 7169 return 0; 7170 } 7171 7172 /// Return the index of the index in the transition. 7173 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 7174 /// is at index 1. 7175 unsigned getTransitionIdx() const { 7176 assert(isa<ExtractElementInst>(Transition) && 7177 "Other kind of transitions are not supported yet"); 7178 return 1; 7179 } 7180 7181 /// Get the type of the transition. 7182 /// This is the type of the original value. 7183 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 7184 /// transition is <2 x i32>. 7185 Type *getTransitionType() const { 7186 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 7187 } 7188 7189 /// Promote \p ToBePromoted by moving \p Def downward through. 7190 /// I.e., we have the following sequence: 7191 /// Def = Transition <ty1> a to <ty2> 7192 /// b = ToBePromoted <ty2> Def, ... 7193 /// => 7194 /// b = ToBePromoted <ty1> a, ... 7195 /// Def = Transition <ty1> ToBePromoted to <ty2> 7196 void promoteImpl(Instruction *ToBePromoted); 7197 7198 /// Check whether or not it is profitable to promote all the 7199 /// instructions enqueued to be promoted. 7200 bool isProfitableToPromote() { 7201 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 7202 unsigned Index = isa<ConstantInt>(ValIdx) 7203 ? cast<ConstantInt>(ValIdx)->getZExtValue() 7204 : -1; 7205 Type *PromotedType = getTransitionType(); 7206 7207 StoreInst *ST = cast<StoreInst>(CombineInst); 7208 unsigned AS = ST->getPointerAddressSpace(); 7209 // Check if this store is supported. 7210 if (!TLI.allowsMisalignedMemoryAccesses( 7211 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 7212 ST->getAlign())) { 7213 // If this is not supported, there is no way we can combine 7214 // the extract with the store. 7215 return false; 7216 } 7217 7218 // The scalar chain of computation has to pay for the transition 7219 // scalar to vector. 7220 // The vector chain has to account for the combining cost. 7221 InstructionCost ScalarCost = 7222 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 7223 InstructionCost VectorCost = StoreExtractCombineCost; 7224 enum TargetTransformInfo::TargetCostKind CostKind = 7225 TargetTransformInfo::TCK_RecipThroughput; 7226 for (const auto &Inst : InstsToBePromoted) { 7227 // Compute the cost. 7228 // By construction, all instructions being promoted are arithmetic ones. 7229 // Moreover, one argument is a constant that can be viewed as a splat 7230 // constant. 7231 Value *Arg0 = Inst->getOperand(0); 7232 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 7233 isa<ConstantFP>(Arg0); 7234 TargetTransformInfo::OperandValueKind Arg0OVK = 7235 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 7236 : TargetTransformInfo::OK_AnyValue; 7237 TargetTransformInfo::OperandValueKind Arg1OVK = 7238 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 7239 : TargetTransformInfo::OK_AnyValue; 7240 ScalarCost += TTI.getArithmeticInstrCost( 7241 Inst->getOpcode(), Inst->getType(), CostKind, Arg0OVK, Arg1OVK); 7242 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 7243 CostKind, 7244 Arg0OVK, Arg1OVK); 7245 } 7246 LLVM_DEBUG( 7247 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 7248 << ScalarCost << "\nVector: " << VectorCost << '\n'); 7249 return ScalarCost > VectorCost; 7250 } 7251 7252 /// Generate a constant vector with \p Val with the same 7253 /// number of elements as the transition. 7254 /// \p UseSplat defines whether or not \p Val should be replicated 7255 /// across the whole vector. 7256 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 7257 /// otherwise we generate a vector with as many undef as possible: 7258 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 7259 /// used at the index of the extract. 7260 Value *getConstantVector(Constant *Val, bool UseSplat) const { 7261 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 7262 if (!UseSplat) { 7263 // If we cannot determine where the constant must be, we have to 7264 // use a splat constant. 7265 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 7266 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 7267 ExtractIdx = CstVal->getSExtValue(); 7268 else 7269 UseSplat = true; 7270 } 7271 7272 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); 7273 if (UseSplat) 7274 return ConstantVector::getSplat(EC, Val); 7275 7276 if (!EC.isScalable()) { 7277 SmallVector<Constant *, 4> ConstVec; 7278 UndefValue *UndefVal = UndefValue::get(Val->getType()); 7279 for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) { 7280 if (Idx == ExtractIdx) 7281 ConstVec.push_back(Val); 7282 else 7283 ConstVec.push_back(UndefVal); 7284 } 7285 return ConstantVector::get(ConstVec); 7286 } else 7287 llvm_unreachable( 7288 "Generate scalable vector for non-splat is unimplemented"); 7289 } 7290 7291 /// Check if promoting to a vector type an operand at \p OperandIdx 7292 /// in \p Use can trigger undefined behavior. 7293 static bool canCauseUndefinedBehavior(const Instruction *Use, 7294 unsigned OperandIdx) { 7295 // This is not safe to introduce undef when the operand is on 7296 // the right hand side of a division-like instruction. 7297 if (OperandIdx != 1) 7298 return false; 7299 switch (Use->getOpcode()) { 7300 default: 7301 return false; 7302 case Instruction::SDiv: 7303 case Instruction::UDiv: 7304 case Instruction::SRem: 7305 case Instruction::URem: 7306 return true; 7307 case Instruction::FDiv: 7308 case Instruction::FRem: 7309 return !Use->hasNoNaNs(); 7310 } 7311 llvm_unreachable(nullptr); 7312 } 7313 7314 public: 7315 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 7316 const TargetTransformInfo &TTI, Instruction *Transition, 7317 unsigned CombineCost) 7318 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 7319 StoreExtractCombineCost(CombineCost) { 7320 assert(Transition && "Do not know how to promote null"); 7321 } 7322 7323 /// Check if we can promote \p ToBePromoted to \p Type. 7324 bool canPromote(const Instruction *ToBePromoted) const { 7325 // We could support CastInst too. 7326 return isa<BinaryOperator>(ToBePromoted); 7327 } 7328 7329 /// Check if it is profitable to promote \p ToBePromoted 7330 /// by moving downward the transition through. 7331 bool shouldPromote(const Instruction *ToBePromoted) const { 7332 // Promote only if all the operands can be statically expanded. 7333 // Indeed, we do not want to introduce any new kind of transitions. 7334 for (const Use &U : ToBePromoted->operands()) { 7335 const Value *Val = U.get(); 7336 if (Val == getEndOfTransition()) { 7337 // If the use is a division and the transition is on the rhs, 7338 // we cannot promote the operation, otherwise we may create a 7339 // division by zero. 7340 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 7341 return false; 7342 continue; 7343 } 7344 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 7345 !isa<ConstantFP>(Val)) 7346 return false; 7347 } 7348 // Check that the resulting operation is legal. 7349 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 7350 if (!ISDOpcode) 7351 return false; 7352 return StressStoreExtract || 7353 TLI.isOperationLegalOrCustom( 7354 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 7355 } 7356 7357 /// Check whether or not \p Use can be combined 7358 /// with the transition. 7359 /// I.e., is it possible to do Use(Transition) => AnotherUse? 7360 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 7361 7362 /// Record \p ToBePromoted as part of the chain to be promoted. 7363 void enqueueForPromotion(Instruction *ToBePromoted) { 7364 InstsToBePromoted.push_back(ToBePromoted); 7365 } 7366 7367 /// Set the instruction that will be combined with the transition. 7368 void recordCombineInstruction(Instruction *ToBeCombined) { 7369 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 7370 CombineInst = ToBeCombined; 7371 } 7372 7373 /// Promote all the instructions enqueued for promotion if it is 7374 /// is profitable. 7375 /// \return True if the promotion happened, false otherwise. 7376 bool promote() { 7377 // Check if there is something to promote. 7378 // Right now, if we do not have anything to combine with, 7379 // we assume the promotion is not profitable. 7380 if (InstsToBePromoted.empty() || !CombineInst) 7381 return false; 7382 7383 // Check cost. 7384 if (!StressStoreExtract && !isProfitableToPromote()) 7385 return false; 7386 7387 // Promote. 7388 for (auto &ToBePromoted : InstsToBePromoted) 7389 promoteImpl(ToBePromoted); 7390 InstsToBePromoted.clear(); 7391 return true; 7392 } 7393 }; 7394 7395 } // end anonymous namespace 7396 7397 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 7398 // At this point, we know that all the operands of ToBePromoted but Def 7399 // can be statically promoted. 7400 // For Def, we need to use its parameter in ToBePromoted: 7401 // b = ToBePromoted ty1 a 7402 // Def = Transition ty1 b to ty2 7403 // Move the transition down. 7404 // 1. Replace all uses of the promoted operation by the transition. 7405 // = ... b => = ... Def. 7406 assert(ToBePromoted->getType() == Transition->getType() && 7407 "The type of the result of the transition does not match " 7408 "the final type"); 7409 ToBePromoted->replaceAllUsesWith(Transition); 7410 // 2. Update the type of the uses. 7411 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 7412 Type *TransitionTy = getTransitionType(); 7413 ToBePromoted->mutateType(TransitionTy); 7414 // 3. Update all the operands of the promoted operation with promoted 7415 // operands. 7416 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 7417 for (Use &U : ToBePromoted->operands()) { 7418 Value *Val = U.get(); 7419 Value *NewVal = nullptr; 7420 if (Val == Transition) 7421 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 7422 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 7423 isa<ConstantFP>(Val)) { 7424 // Use a splat constant if it is not safe to use undef. 7425 NewVal = getConstantVector( 7426 cast<Constant>(Val), 7427 isa<UndefValue>(Val) || 7428 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 7429 } else 7430 llvm_unreachable("Did you modified shouldPromote and forgot to update " 7431 "this?"); 7432 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 7433 } 7434 Transition->moveAfter(ToBePromoted); 7435 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 7436 } 7437 7438 /// Some targets can do store(extractelement) with one instruction. 7439 /// Try to push the extractelement towards the stores when the target 7440 /// has this feature and this is profitable. 7441 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 7442 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 7443 if (DisableStoreExtract || 7444 (!StressStoreExtract && 7445 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 7446 Inst->getOperand(1), CombineCost))) 7447 return false; 7448 7449 // At this point we know that Inst is a vector to scalar transition. 7450 // Try to move it down the def-use chain, until: 7451 // - We can combine the transition with its single use 7452 // => we got rid of the transition. 7453 // - We escape the current basic block 7454 // => we would need to check that we are moving it at a cheaper place and 7455 // we do not do that for now. 7456 BasicBlock *Parent = Inst->getParent(); 7457 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 7458 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 7459 // If the transition has more than one use, assume this is not going to be 7460 // beneficial. 7461 while (Inst->hasOneUse()) { 7462 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 7463 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 7464 7465 if (ToBePromoted->getParent() != Parent) { 7466 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 7467 << ToBePromoted->getParent()->getName() 7468 << ") than the transition (" << Parent->getName() 7469 << ").\n"); 7470 return false; 7471 } 7472 7473 if (VPH.canCombine(ToBePromoted)) { 7474 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 7475 << "will be combined with: " << *ToBePromoted << '\n'); 7476 VPH.recordCombineInstruction(ToBePromoted); 7477 bool Changed = VPH.promote(); 7478 NumStoreExtractExposed += Changed; 7479 return Changed; 7480 } 7481 7482 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 7483 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 7484 return false; 7485 7486 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 7487 7488 VPH.enqueueForPromotion(ToBePromoted); 7489 Inst = ToBePromoted; 7490 } 7491 return false; 7492 } 7493 7494 /// For the instruction sequence of store below, F and I values 7495 /// are bundled together as an i64 value before being stored into memory. 7496 /// Sometimes it is more efficient to generate separate stores for F and I, 7497 /// which can remove the bitwise instructions or sink them to colder places. 7498 /// 7499 /// (store (or (zext (bitcast F to i32) to i64), 7500 /// (shl (zext I to i64), 32)), addr) --> 7501 /// (store F, addr) and (store I, addr+4) 7502 /// 7503 /// Similarly, splitting for other merged store can also be beneficial, like: 7504 /// For pair of {i32, i32}, i64 store --> two i32 stores. 7505 /// For pair of {i32, i16}, i64 store --> two i32 stores. 7506 /// For pair of {i16, i16}, i32 store --> two i16 stores. 7507 /// For pair of {i16, i8}, i32 store --> two i16 stores. 7508 /// For pair of {i8, i8}, i16 store --> two i8 stores. 7509 /// 7510 /// We allow each target to determine specifically which kind of splitting is 7511 /// supported. 7512 /// 7513 /// The store patterns are commonly seen from the simple code snippet below 7514 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 7515 /// void goo(const std::pair<int, float> &); 7516 /// hoo() { 7517 /// ... 7518 /// goo(std::make_pair(tmp, ftmp)); 7519 /// ... 7520 /// } 7521 /// 7522 /// Although we already have similar splitting in DAG Combine, we duplicate 7523 /// it in CodeGenPrepare to catch the case in which pattern is across 7524 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 7525 /// during code expansion. 7526 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 7527 const TargetLowering &TLI) { 7528 // Handle simple but common cases only. 7529 Type *StoreType = SI.getValueOperand()->getType(); 7530 7531 // The code below assumes shifting a value by <number of bits>, 7532 // whereas scalable vectors would have to be shifted by 7533 // <2log(vscale) + number of bits> in order to store the 7534 // low/high parts. Bailing out for now. 7535 if (isa<ScalableVectorType>(StoreType)) 7536 return false; 7537 7538 if (!DL.typeSizeEqualsStoreSize(StoreType) || 7539 DL.getTypeSizeInBits(StoreType) == 0) 7540 return false; 7541 7542 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 7543 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 7544 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 7545 return false; 7546 7547 // Don't split the store if it is volatile. 7548 if (SI.isVolatile()) 7549 return false; 7550 7551 // Match the following patterns: 7552 // (store (or (zext LValue to i64), 7553 // (shl (zext HValue to i64), 32)), HalfValBitSize) 7554 // or 7555 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 7556 // (zext LValue to i64), 7557 // Expect both operands of OR and the first operand of SHL have only 7558 // one use. 7559 Value *LValue, *HValue; 7560 if (!match(SI.getValueOperand(), 7561 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 7562 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 7563 m_SpecificInt(HalfValBitSize)))))) 7564 return false; 7565 7566 // Check LValue and HValue are int with size less or equal than 32. 7567 if (!LValue->getType()->isIntegerTy() || 7568 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 7569 !HValue->getType()->isIntegerTy() || 7570 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 7571 return false; 7572 7573 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 7574 // as the input of target query. 7575 auto *LBC = dyn_cast<BitCastInst>(LValue); 7576 auto *HBC = dyn_cast<BitCastInst>(HValue); 7577 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 7578 : EVT::getEVT(LValue->getType()); 7579 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 7580 : EVT::getEVT(HValue->getType()); 7581 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 7582 return false; 7583 7584 // Start to split store. 7585 IRBuilder<> Builder(SI.getContext()); 7586 Builder.SetInsertPoint(&SI); 7587 7588 // If LValue/HValue is a bitcast in another BB, create a new one in current 7589 // BB so it may be merged with the splitted stores by dag combiner. 7590 if (LBC && LBC->getParent() != SI.getParent()) 7591 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 7592 if (HBC && HBC->getParent() != SI.getParent()) 7593 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 7594 7595 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 7596 auto CreateSplitStore = [&](Value *V, bool Upper) { 7597 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 7598 Value *Addr = Builder.CreateBitCast( 7599 SI.getOperand(1), 7600 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 7601 Align Alignment = SI.getAlign(); 7602 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 7603 if (IsOffsetStore) { 7604 Addr = Builder.CreateGEP( 7605 SplitStoreType, Addr, 7606 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 7607 7608 // When splitting the store in half, naturally one half will retain the 7609 // alignment of the original wider store, regardless of whether it was 7610 // over-aligned or not, while the other will require adjustment. 7611 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 7612 } 7613 Builder.CreateAlignedStore(V, Addr, Alignment); 7614 }; 7615 7616 CreateSplitStore(LValue, false); 7617 CreateSplitStore(HValue, true); 7618 7619 // Delete the old store. 7620 SI.eraseFromParent(); 7621 return true; 7622 } 7623 7624 // Return true if the GEP has two operands, the first operand is of a sequential 7625 // type, and the second operand is a constant. 7626 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 7627 gep_type_iterator I = gep_type_begin(*GEP); 7628 return GEP->getNumOperands() == 2 && 7629 I.isSequential() && 7630 isa<ConstantInt>(GEP->getOperand(1)); 7631 } 7632 7633 // Try unmerging GEPs to reduce liveness interference (register pressure) across 7634 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 7635 // reducing liveness interference across those edges benefits global register 7636 // allocation. Currently handles only certain cases. 7637 // 7638 // For example, unmerge %GEPI and %UGEPI as below. 7639 // 7640 // ---------- BEFORE ---------- 7641 // SrcBlock: 7642 // ... 7643 // %GEPIOp = ... 7644 // ... 7645 // %GEPI = gep %GEPIOp, Idx 7646 // ... 7647 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 7648 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 7649 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 7650 // %UGEPI) 7651 // 7652 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 7653 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 7654 // ... 7655 // 7656 // DstBi: 7657 // ... 7658 // %UGEPI = gep %GEPIOp, UIdx 7659 // ... 7660 // --------------------------- 7661 // 7662 // ---------- AFTER ---------- 7663 // SrcBlock: 7664 // ... (same as above) 7665 // (* %GEPI is still alive on the indirectbr edges) 7666 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 7667 // unmerging) 7668 // ... 7669 // 7670 // DstBi: 7671 // ... 7672 // %UGEPI = gep %GEPI, (UIdx-Idx) 7673 // ... 7674 // --------------------------- 7675 // 7676 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 7677 // no longer alive on them. 7678 // 7679 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 7680 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 7681 // not to disable further simplications and optimizations as a result of GEP 7682 // merging. 7683 // 7684 // Note this unmerging may increase the length of the data flow critical path 7685 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 7686 // between the register pressure and the length of data-flow critical 7687 // path. Restricting this to the uncommon IndirectBr case would minimize the 7688 // impact of potentially longer critical path, if any, and the impact on compile 7689 // time. 7690 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 7691 const TargetTransformInfo *TTI) { 7692 BasicBlock *SrcBlock = GEPI->getParent(); 7693 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 7694 // (non-IndirectBr) cases exit early here. 7695 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 7696 return false; 7697 // Check that GEPI is a simple gep with a single constant index. 7698 if (!GEPSequentialConstIndexed(GEPI)) 7699 return false; 7700 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 7701 // Check that GEPI is a cheap one. 7702 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), 7703 TargetTransformInfo::TCK_SizeAndLatency) 7704 > TargetTransformInfo::TCC_Basic) 7705 return false; 7706 Value *GEPIOp = GEPI->getOperand(0); 7707 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 7708 if (!isa<Instruction>(GEPIOp)) 7709 return false; 7710 auto *GEPIOpI = cast<Instruction>(GEPIOp); 7711 if (GEPIOpI->getParent() != SrcBlock) 7712 return false; 7713 // Check that GEP is used outside the block, meaning it's alive on the 7714 // IndirectBr edge(s). 7715 if (find_if(GEPI->users(), [&](User *Usr) { 7716 if (auto *I = dyn_cast<Instruction>(Usr)) { 7717 if (I->getParent() != SrcBlock) { 7718 return true; 7719 } 7720 } 7721 return false; 7722 }) == GEPI->users().end()) 7723 return false; 7724 // The second elements of the GEP chains to be unmerged. 7725 std::vector<GetElementPtrInst *> UGEPIs; 7726 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 7727 // on IndirectBr edges. 7728 for (User *Usr : GEPIOp->users()) { 7729 if (Usr == GEPI) continue; 7730 // Check if Usr is an Instruction. If not, give up. 7731 if (!isa<Instruction>(Usr)) 7732 return false; 7733 auto *UI = cast<Instruction>(Usr); 7734 // Check if Usr in the same block as GEPIOp, which is fine, skip. 7735 if (UI->getParent() == SrcBlock) 7736 continue; 7737 // Check if Usr is a GEP. If not, give up. 7738 if (!isa<GetElementPtrInst>(Usr)) 7739 return false; 7740 auto *UGEPI = cast<GetElementPtrInst>(Usr); 7741 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 7742 // the pointer operand to it. If so, record it in the vector. If not, give 7743 // up. 7744 if (!GEPSequentialConstIndexed(UGEPI)) 7745 return false; 7746 if (UGEPI->getOperand(0) != GEPIOp) 7747 return false; 7748 if (GEPIIdx->getType() != 7749 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 7750 return false; 7751 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7752 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), 7753 TargetTransformInfo::TCK_SizeAndLatency) 7754 > TargetTransformInfo::TCC_Basic) 7755 return false; 7756 UGEPIs.push_back(UGEPI); 7757 } 7758 if (UGEPIs.size() == 0) 7759 return false; 7760 // Check the materializing cost of (Uidx-Idx). 7761 for (GetElementPtrInst *UGEPI : UGEPIs) { 7762 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7763 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 7764 InstructionCost ImmCost = TTI->getIntImmCost( 7765 NewIdx, GEPIIdx->getType(), TargetTransformInfo::TCK_SizeAndLatency); 7766 if (ImmCost > TargetTransformInfo::TCC_Basic) 7767 return false; 7768 } 7769 // Now unmerge between GEPI and UGEPIs. 7770 for (GetElementPtrInst *UGEPI : UGEPIs) { 7771 UGEPI->setOperand(0, GEPI); 7772 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7773 Constant *NewUGEPIIdx = 7774 ConstantInt::get(GEPIIdx->getType(), 7775 UGEPIIdx->getValue() - GEPIIdx->getValue()); 7776 UGEPI->setOperand(1, NewUGEPIIdx); 7777 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 7778 // inbounds to avoid UB. 7779 if (!GEPI->isInBounds()) { 7780 UGEPI->setIsInBounds(false); 7781 } 7782 } 7783 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 7784 // alive on IndirectBr edges). 7785 assert(find_if(GEPIOp->users(), [&](User *Usr) { 7786 return cast<Instruction>(Usr)->getParent() != SrcBlock; 7787 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 7788 return true; 7789 } 7790 7791 static bool optimizeBranch(BranchInst *Branch, const TargetLowering &TLI) { 7792 // Try and convert 7793 // %c = icmp ult %x, 8 7794 // br %c, bla, blb 7795 // %tc = lshr %x, 3 7796 // to 7797 // %tc = lshr %x, 3 7798 // %c = icmp eq %tc, 0 7799 // br %c, bla, blb 7800 // Creating the cmp to zero can be better for the backend, especially if the 7801 // lshr produces flags that can be used automatically. 7802 if (!TLI.preferZeroCompareBranch() || !Branch->isConditional()) 7803 return false; 7804 7805 ICmpInst *Cmp = dyn_cast<ICmpInst>(Branch->getCondition()); 7806 if (!Cmp || !isa<ConstantInt>(Cmp->getOperand(1)) || !Cmp->hasOneUse()) 7807 return false; 7808 7809 Value *X = Cmp->getOperand(0); 7810 APInt CmpC = cast<ConstantInt>(Cmp->getOperand(1))->getValue(); 7811 7812 for (auto *U : X->users()) { 7813 Instruction *UI = dyn_cast<Instruction>(U); 7814 // A quick dominance check 7815 if (!UI || 7816 (UI->getParent() != Branch->getParent() && 7817 UI->getParent() != Branch->getSuccessor(0) && 7818 UI->getParent() != Branch->getSuccessor(1)) || 7819 (UI->getParent() != Branch->getParent() && 7820 !UI->getParent()->getSinglePredecessor())) 7821 continue; 7822 7823 if (CmpC.isPowerOf2() && Cmp->getPredicate() == ICmpInst::ICMP_ULT && 7824 match(UI, m_Shr(m_Specific(X), m_SpecificInt(CmpC.logBase2())))) { 7825 IRBuilder<> Builder(Branch); 7826 if (UI->getParent() != Branch->getParent()) 7827 UI->moveBefore(Branch); 7828 Value *NewCmp = Builder.CreateCmp(ICmpInst::ICMP_EQ, UI, 7829 ConstantInt::get(UI->getType(), 0)); 7830 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); 7831 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); 7832 Cmp->replaceAllUsesWith(NewCmp); 7833 return true; 7834 } 7835 if (Cmp->isEquality() && 7836 (match(UI, m_Add(m_Specific(X), m_SpecificInt(-CmpC))) || 7837 match(UI, m_Sub(m_Specific(X), m_SpecificInt(CmpC))))) { 7838 IRBuilder<> Builder(Branch); 7839 if (UI->getParent() != Branch->getParent()) 7840 UI->moveBefore(Branch); 7841 Value *NewCmp = Builder.CreateCmp(Cmp->getPredicate(), UI, 7842 ConstantInt::get(UI->getType(), 0)); 7843 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); 7844 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); 7845 Cmp->replaceAllUsesWith(NewCmp); 7846 return true; 7847 } 7848 } 7849 return false; 7850 } 7851 7852 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 7853 // Bail out if we inserted the instruction to prevent optimizations from 7854 // stepping on each other's toes. 7855 if (InsertedInsts.count(I)) 7856 return false; 7857 7858 // TODO: Move into the switch on opcode below here. 7859 if (PHINode *P = dyn_cast<PHINode>(I)) { 7860 // It is possible for very late stage optimizations (such as SimplifyCFG) 7861 // to introduce PHI nodes too late to be cleaned up. If we detect such a 7862 // trivial PHI, go ahead and zap it here. 7863 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 7864 LargeOffsetGEPMap.erase(P); 7865 P->replaceAllUsesWith(V); 7866 P->eraseFromParent(); 7867 ++NumPHIsElim; 7868 return true; 7869 } 7870 return false; 7871 } 7872 7873 if (CastInst *CI = dyn_cast<CastInst>(I)) { 7874 // If the source of the cast is a constant, then this should have 7875 // already been constant folded. The only reason NOT to constant fold 7876 // it is if something (e.g. LSR) was careful to place the constant 7877 // evaluation in a block other than then one that uses it (e.g. to hoist 7878 // the address of globals out of a loop). If this is the case, we don't 7879 // want to forward-subst the cast. 7880 if (isa<Constant>(CI->getOperand(0))) 7881 return false; 7882 7883 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 7884 return true; 7885 7886 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 7887 /// Sink a zext or sext into its user blocks if the target type doesn't 7888 /// fit in one register 7889 if (TLI->getTypeAction(CI->getContext(), 7890 TLI->getValueType(*DL, CI->getType())) == 7891 TargetLowering::TypeExpandInteger) { 7892 return SinkCast(CI); 7893 } else { 7894 bool MadeChange = optimizeExt(I); 7895 return MadeChange | optimizeExtUses(I); 7896 } 7897 } 7898 return false; 7899 } 7900 7901 if (auto *Cmp = dyn_cast<CmpInst>(I)) 7902 if (optimizeCmp(Cmp, ModifiedDT)) 7903 return true; 7904 7905 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7906 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7907 bool Modified = optimizeLoadExt(LI); 7908 unsigned AS = LI->getPointerAddressSpace(); 7909 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 7910 return Modified; 7911 } 7912 7913 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 7914 if (splitMergedValStore(*SI, *DL, *TLI)) 7915 return true; 7916 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7917 unsigned AS = SI->getPointerAddressSpace(); 7918 return optimizeMemoryInst(I, SI->getOperand(1), 7919 SI->getOperand(0)->getType(), AS); 7920 } 7921 7922 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 7923 unsigned AS = RMW->getPointerAddressSpace(); 7924 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7925 RMW->getType(), AS); 7926 } 7927 7928 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7929 unsigned AS = CmpX->getPointerAddressSpace(); 7930 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7931 CmpX->getCompareOperand()->getType(), AS); 7932 } 7933 7934 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7935 7936 if (BinOp && BinOp->getOpcode() == Instruction::And && EnableAndCmpSinking && 7937 sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts)) 7938 return true; 7939 7940 // TODO: Move this into the switch on opcode - it handles shifts already. 7941 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7942 BinOp->getOpcode() == Instruction::LShr)) { 7943 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7944 if (CI && TLI->hasExtractBitsInsn()) 7945 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7946 return true; 7947 } 7948 7949 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7950 if (GEPI->hasAllZeroIndices()) { 7951 /// The GEP operand must be a pointer, so must its result -> BitCast 7952 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7953 GEPI->getName(), GEPI); 7954 NC->setDebugLoc(GEPI->getDebugLoc()); 7955 GEPI->replaceAllUsesWith(NC); 7956 GEPI->eraseFromParent(); 7957 ++NumGEPsElim; 7958 optimizeInst(NC, ModifiedDT); 7959 return true; 7960 } 7961 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7962 return true; 7963 } 7964 return false; 7965 } 7966 7967 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 7968 // freeze(icmp a, const)) -> icmp (freeze a), const 7969 // This helps generate efficient conditional jumps. 7970 Instruction *CmpI = nullptr; 7971 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 7972 CmpI = II; 7973 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 7974 CmpI = F->getFastMathFlags().none() ? F : nullptr; 7975 7976 if (CmpI && CmpI->hasOneUse()) { 7977 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 7978 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 7979 isa<ConstantPointerNull>(Op0); 7980 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 7981 isa<ConstantPointerNull>(Op1); 7982 if (Const0 || Const1) { 7983 if (!Const0 || !Const1) { 7984 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI); 7985 F->takeName(FI); 7986 CmpI->setOperand(Const0 ? 1 : 0, F); 7987 } 7988 FI->replaceAllUsesWith(CmpI); 7989 FI->eraseFromParent(); 7990 return true; 7991 } 7992 } 7993 return false; 7994 } 7995 7996 if (tryToSinkFreeOperands(I)) 7997 return true; 7998 7999 switch (I->getOpcode()) { 8000 case Instruction::Shl: 8001 case Instruction::LShr: 8002 case Instruction::AShr: 8003 return optimizeShiftInst(cast<BinaryOperator>(I)); 8004 case Instruction::Call: 8005 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 8006 case Instruction::Select: 8007 return optimizeSelectInst(cast<SelectInst>(I)); 8008 case Instruction::ShuffleVector: 8009 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 8010 case Instruction::Switch: 8011 return optimizeSwitchInst(cast<SwitchInst>(I)); 8012 case Instruction::ExtractElement: 8013 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 8014 case Instruction::Br: 8015 return optimizeBranch(cast<BranchInst>(I), *TLI); 8016 } 8017 8018 return false; 8019 } 8020 8021 /// Given an OR instruction, check to see if this is a bitreverse 8022 /// idiom. If so, insert the new intrinsic and return true. 8023 bool CodeGenPrepare::makeBitReverse(Instruction &I) { 8024 if (!I.getType()->isIntegerTy() || 8025 !TLI->isOperationLegalOrCustom(ISD::BITREVERSE, 8026 TLI->getValueType(*DL, I.getType(), true))) 8027 return false; 8028 8029 SmallVector<Instruction*, 4> Insts; 8030 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 8031 return false; 8032 Instruction *LastInst = Insts.back(); 8033 I.replaceAllUsesWith(LastInst); 8034 RecursivelyDeleteTriviallyDeadInstructions( 8035 &I, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); 8036 return true; 8037 } 8038 8039 // In this pass we look for GEP and cast instructions that are used 8040 // across basic blocks and rewrite them to improve basic-block-at-a-time 8041 // selection. 8042 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 8043 SunkAddrs.clear(); 8044 bool MadeChange = false; 8045 8046 CurInstIterator = BB.begin(); 8047 while (CurInstIterator != BB.end()) { 8048 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 8049 if (ModifiedDT) 8050 return true; 8051 } 8052 8053 bool MadeBitReverse = true; 8054 while (MadeBitReverse) { 8055 MadeBitReverse = false; 8056 for (auto &I : reverse(BB)) { 8057 if (makeBitReverse(I)) { 8058 MadeBitReverse = MadeChange = true; 8059 break; 8060 } 8061 } 8062 } 8063 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 8064 8065 return MadeChange; 8066 } 8067 8068 // Some CGP optimizations may move or alter what's computed in a block. Check 8069 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 8070 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 8071 assert(isa<DbgValueInst>(I)); 8072 DbgValueInst &DVI = *cast<DbgValueInst>(I); 8073 8074 // Does this dbg.value refer to a sunk address calculation? 8075 bool AnyChange = false; 8076 SmallDenseSet<Value *> LocationOps(DVI.location_ops().begin(), 8077 DVI.location_ops().end()); 8078 for (Value *Location : LocationOps) { 8079 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 8080 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 8081 if (SunkAddr) { 8082 // Point dbg.value at locally computed address, which should give the best 8083 // opportunity to be accurately lowered. This update may change the type 8084 // of pointer being referred to; however this makes no difference to 8085 // debugging information, and we can't generate bitcasts that may affect 8086 // codegen. 8087 DVI.replaceVariableLocationOp(Location, SunkAddr); 8088 AnyChange = true; 8089 } 8090 } 8091 return AnyChange; 8092 } 8093 8094 // A llvm.dbg.value may be using a value before its definition, due to 8095 // optimizations in this pass and others. Scan for such dbg.values, and rescue 8096 // them by moving the dbg.value to immediately after the value definition. 8097 // FIXME: Ideally this should never be necessary, and this has the potential 8098 // to re-order dbg.value intrinsics. 8099 bool CodeGenPrepare::placeDbgValues(Function &F) { 8100 bool MadeChange = false; 8101 DominatorTree DT(F); 8102 8103 for (BasicBlock &BB : F) { 8104 for (Instruction &Insn : llvm::make_early_inc_range(BB)) { 8105 DbgValueInst *DVI = dyn_cast<DbgValueInst>(&Insn); 8106 if (!DVI) 8107 continue; 8108 8109 SmallVector<Instruction *, 4> VIs; 8110 for (Value *V : DVI->getValues()) 8111 if (Instruction *VI = dyn_cast_or_null<Instruction>(V)) 8112 VIs.push_back(VI); 8113 8114 // This DVI may depend on multiple instructions, complicating any 8115 // potential sink. This block takes the defensive approach, opting to 8116 // "undef" the DVI if it has more than one instruction and any of them do 8117 // not dominate DVI. 8118 for (Instruction *VI : VIs) { 8119 if (VI->isTerminator()) 8120 continue; 8121 8122 // If VI is a phi in a block with an EHPad terminator, we can't insert 8123 // after it. 8124 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 8125 continue; 8126 8127 // If the defining instruction dominates the dbg.value, we do not need 8128 // to move the dbg.value. 8129 if (DT.dominates(VI, DVI)) 8130 continue; 8131 8132 // If we depend on multiple instructions and any of them doesn't 8133 // dominate this DVI, we probably can't salvage it: moving it to 8134 // after any of the instructions could cause us to lose the others. 8135 if (VIs.size() > 1) { 8136 LLVM_DEBUG( 8137 dbgs() 8138 << "Unable to find valid location for Debug Value, undefing:\n" 8139 << *DVI); 8140 DVI->setUndef(); 8141 break; 8142 } 8143 8144 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 8145 << *DVI << ' ' << *VI); 8146 DVI->removeFromParent(); 8147 if (isa<PHINode>(VI)) 8148 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 8149 else 8150 DVI->insertAfter(VI); 8151 MadeChange = true; 8152 ++NumDbgValueMoved; 8153 } 8154 } 8155 } 8156 return MadeChange; 8157 } 8158 8159 // Group scattered pseudo probes in a block to favor SelectionDAG. Scattered 8160 // probes can be chained dependencies of other regular DAG nodes and block DAG 8161 // combine optimizations. 8162 bool CodeGenPrepare::placePseudoProbes(Function &F) { 8163 bool MadeChange = false; 8164 for (auto &Block : F) { 8165 // Move the rest probes to the beginning of the block. 8166 auto FirstInst = Block.getFirstInsertionPt(); 8167 while (FirstInst != Block.end() && FirstInst->isDebugOrPseudoInst()) 8168 ++FirstInst; 8169 BasicBlock::iterator I(FirstInst); 8170 I++; 8171 while (I != Block.end()) { 8172 if (auto *II = dyn_cast<PseudoProbeInst>(I++)) { 8173 II->moveBefore(&*FirstInst); 8174 MadeChange = true; 8175 } 8176 } 8177 } 8178 return MadeChange; 8179 } 8180 8181 /// Scale down both weights to fit into uint32_t. 8182 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 8183 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 8184 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 8185 NewTrue = NewTrue / Scale; 8186 NewFalse = NewFalse / Scale; 8187 } 8188 8189 /// Some targets prefer to split a conditional branch like: 8190 /// \code 8191 /// %0 = icmp ne i32 %a, 0 8192 /// %1 = icmp ne i32 %b, 0 8193 /// %or.cond = or i1 %0, %1 8194 /// br i1 %or.cond, label %TrueBB, label %FalseBB 8195 /// \endcode 8196 /// into multiple branch instructions like: 8197 /// \code 8198 /// bb1: 8199 /// %0 = icmp ne i32 %a, 0 8200 /// br i1 %0, label %TrueBB, label %bb2 8201 /// bb2: 8202 /// %1 = icmp ne i32 %b, 0 8203 /// br i1 %1, label %TrueBB, label %FalseBB 8204 /// \endcode 8205 /// This usually allows instruction selection to do even further optimizations 8206 /// and combine the compare with the branch instruction. Currently this is 8207 /// applied for targets which have "cheap" jump instructions. 8208 /// 8209 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 8210 /// 8211 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 8212 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 8213 return false; 8214 8215 bool MadeChange = false; 8216 for (auto &BB : F) { 8217 // Does this BB end with the following? 8218 // %cond1 = icmp|fcmp|binary instruction ... 8219 // %cond2 = icmp|fcmp|binary instruction ... 8220 // %cond.or = or|and i1 %cond1, cond2 8221 // br i1 %cond.or label %dest1, label %dest2" 8222 Instruction *LogicOp; 8223 BasicBlock *TBB, *FBB; 8224 if (!match(BB.getTerminator(), 8225 m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB))) 8226 continue; 8227 8228 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 8229 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 8230 continue; 8231 8232 // The merging of mostly empty BB can cause a degenerate branch. 8233 if (TBB == FBB) 8234 continue; 8235 8236 unsigned Opc; 8237 Value *Cond1, *Cond2; 8238 if (match(LogicOp, 8239 m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2))))) 8240 Opc = Instruction::And; 8241 else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)), 8242 m_OneUse(m_Value(Cond2))))) 8243 Opc = Instruction::Or; 8244 else 8245 continue; 8246 8247 auto IsGoodCond = [](Value *Cond) { 8248 return match( 8249 Cond, 8250 m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()), 8251 m_LogicalOr(m_Value(), m_Value())))); 8252 }; 8253 if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2)) 8254 continue; 8255 8256 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 8257 8258 // Create a new BB. 8259 auto *TmpBB = 8260 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 8261 BB.getParent(), BB.getNextNode()); 8262 8263 // Update original basic block by using the first condition directly by the 8264 // branch instruction and removing the no longer needed and/or instruction. 8265 Br1->setCondition(Cond1); 8266 LogicOp->eraseFromParent(); 8267 8268 // Depending on the condition we have to either replace the true or the 8269 // false successor of the original branch instruction. 8270 if (Opc == Instruction::And) 8271 Br1->setSuccessor(0, TmpBB); 8272 else 8273 Br1->setSuccessor(1, TmpBB); 8274 8275 // Fill in the new basic block. 8276 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 8277 if (auto *I = dyn_cast<Instruction>(Cond2)) { 8278 I->removeFromParent(); 8279 I->insertBefore(Br2); 8280 } 8281 8282 // Update PHI nodes in both successors. The original BB needs to be 8283 // replaced in one successor's PHI nodes, because the branch comes now from 8284 // the newly generated BB (NewBB). In the other successor we need to add one 8285 // incoming edge to the PHI nodes, because both branch instructions target 8286 // now the same successor. Depending on the original branch condition 8287 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 8288 // we perform the correct update for the PHI nodes. 8289 // This doesn't change the successor order of the just created branch 8290 // instruction (or any other instruction). 8291 if (Opc == Instruction::Or) 8292 std::swap(TBB, FBB); 8293 8294 // Replace the old BB with the new BB. 8295 TBB->replacePhiUsesWith(&BB, TmpBB); 8296 8297 // Add another incoming edge form the new BB. 8298 for (PHINode &PN : FBB->phis()) { 8299 auto *Val = PN.getIncomingValueForBlock(&BB); 8300 PN.addIncoming(Val, TmpBB); 8301 } 8302 8303 // Update the branch weights (from SelectionDAGBuilder:: 8304 // FindMergedConditions). 8305 if (Opc == Instruction::Or) { 8306 // Codegen X | Y as: 8307 // BB1: 8308 // jmp_if_X TBB 8309 // jmp TmpBB 8310 // TmpBB: 8311 // jmp_if_Y TBB 8312 // jmp FBB 8313 // 8314 8315 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 8316 // The requirement is that 8317 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 8318 // = TrueProb for original BB. 8319 // Assuming the original weights are A and B, one choice is to set BB1's 8320 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 8321 // assumes that 8322 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 8323 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 8324 // TmpBB, but the math is more complicated. 8325 uint64_t TrueWeight, FalseWeight; 8326 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 8327 uint64_t NewTrueWeight = TrueWeight; 8328 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 8329 scaleWeights(NewTrueWeight, NewFalseWeight); 8330 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 8331 .createBranchWeights(TrueWeight, FalseWeight)); 8332 8333 NewTrueWeight = TrueWeight; 8334 NewFalseWeight = 2 * FalseWeight; 8335 scaleWeights(NewTrueWeight, NewFalseWeight); 8336 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 8337 .createBranchWeights(TrueWeight, FalseWeight)); 8338 } 8339 } else { 8340 // Codegen X & Y as: 8341 // BB1: 8342 // jmp_if_X TmpBB 8343 // jmp FBB 8344 // TmpBB: 8345 // jmp_if_Y TBB 8346 // jmp FBB 8347 // 8348 // This requires creation of TmpBB after CurBB. 8349 8350 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 8351 // The requirement is that 8352 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 8353 // = FalseProb for original BB. 8354 // Assuming the original weights are A and B, one choice is to set BB1's 8355 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 8356 // assumes that 8357 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 8358 uint64_t TrueWeight, FalseWeight; 8359 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 8360 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 8361 uint64_t NewFalseWeight = FalseWeight; 8362 scaleWeights(NewTrueWeight, NewFalseWeight); 8363 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 8364 .createBranchWeights(TrueWeight, FalseWeight)); 8365 8366 NewTrueWeight = 2 * TrueWeight; 8367 NewFalseWeight = FalseWeight; 8368 scaleWeights(NewTrueWeight, NewFalseWeight); 8369 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 8370 .createBranchWeights(TrueWeight, FalseWeight)); 8371 } 8372 } 8373 8374 ModifiedDT = true; 8375 MadeChange = true; 8376 8377 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 8378 TmpBB->dump()); 8379 } 8380 return MadeChange; 8381 } 8382