1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass munges the code in the input function to better prepare it for
10 // SelectionDAG-based code generation. This works around limitations in it's
11 // basic-block-at-a-time approach. It should eventually be removed.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/ProfileSummaryInfo.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/Analysis/VectorUtils.h"
33 #include "llvm/CodeGen/Analysis.h"
34 #include "llvm/CodeGen/ISDOpcodes.h"
35 #include "llvm/CodeGen/SelectionDAGNodes.h"
36 #include "llvm/CodeGen/TargetLowering.h"
37 #include "llvm/CodeGen/TargetPassConfig.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/CodeGen/ValueTypes.h"
40 #include "llvm/Config/llvm-config.h"
41 #include "llvm/IR/Argument.h"
42 #include "llvm/IR/Attributes.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DebugInfo.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/Dominators.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/GetElementPtrTypeIterator.h"
52 #include "llvm/IR/GlobalValue.h"
53 #include "llvm/IR/GlobalVariable.h"
54 #include "llvm/IR/IRBuilder.h"
55 #include "llvm/IR/InlineAsm.h"
56 #include "llvm/IR/InstrTypes.h"
57 #include "llvm/IR/Instruction.h"
58 #include "llvm/IR/Instructions.h"
59 #include "llvm/IR/IntrinsicInst.h"
60 #include "llvm/IR/Intrinsics.h"
61 #include "llvm/IR/IntrinsicsAArch64.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/MDBuilder.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/Operator.h"
66 #include "llvm/IR/PatternMatch.h"
67 #include "llvm/IR/Statepoint.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/IR/ValueMap.h"
74 #include "llvm/InitializePasses.h"
75 #include "llvm/Pass.h"
76 #include "llvm/Support/BlockFrequency.h"
77 #include "llvm/Support/BranchProbability.h"
78 #include "llvm/Support/Casting.h"
79 #include "llvm/Support/CommandLine.h"
80 #include "llvm/Support/Compiler.h"
81 #include "llvm/Support/Debug.h"
82 #include "llvm/Support/ErrorHandling.h"
83 #include "llvm/Support/MachineValueType.h"
84 #include "llvm/Support/MathExtras.h"
85 #include "llvm/Support/raw_ostream.h"
86 #include "llvm/Target/TargetMachine.h"
87 #include "llvm/Target/TargetOptions.h"
88 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
89 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
90 #include "llvm/Transforms/Utils/Local.h"
91 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
92 #include "llvm/Transforms/Utils/SizeOpts.h"
93 #include <algorithm>
94 #include <cassert>
95 #include <cstdint>
96 #include <iterator>
97 #include <limits>
98 #include <memory>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 using namespace llvm::PatternMatch;
104 
105 #define DEBUG_TYPE "codegenprepare"
106 
107 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
108 STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
109 STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
110 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
111                       "sunken Cmps");
112 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
113                        "of sunken Casts");
114 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
115                           "computations were sunk");
116 STATISTIC(NumMemoryInstsPhiCreated,
117           "Number of phis created when address "
118           "computations were sunk to memory instructions");
119 STATISTIC(NumMemoryInstsSelectCreated,
120           "Number of select created when address "
121           "computations were sunk to memory instructions");
122 STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
123 STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
124 STATISTIC(NumAndsAdded,
125           "Number of and mask instructions added to form ext loads");
126 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
127 STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
128 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
129 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
130 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
131 
132 static cl::opt<bool> DisableBranchOpts(
133   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
134   cl::desc("Disable branch optimizations in CodeGenPrepare"));
135 
136 static cl::opt<bool>
137     DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
138                   cl::desc("Disable GC optimizations in CodeGenPrepare"));
139 
140 static cl::opt<bool> DisableSelectToBranch(
141   "disable-cgp-select2branch", cl::Hidden, cl::init(false),
142   cl::desc("Disable select to branch conversion."));
143 
144 static cl::opt<bool> AddrSinkUsingGEPs(
145   "addr-sink-using-gep", cl::Hidden, cl::init(true),
146   cl::desc("Address sinking in CGP using GEPs."));
147 
148 static cl::opt<bool> EnableAndCmpSinking(
149    "enable-andcmp-sinking", cl::Hidden, cl::init(true),
150    cl::desc("Enable sinkinig and/cmp into branches."));
151 
152 static cl::opt<bool> DisableStoreExtract(
153     "disable-cgp-store-extract", cl::Hidden, cl::init(false),
154     cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
155 
156 static cl::opt<bool> StressStoreExtract(
157     "stress-cgp-store-extract", cl::Hidden, cl::init(false),
158     cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
159 
160 static cl::opt<bool> DisableExtLdPromotion(
161     "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
162     cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
163              "CodeGenPrepare"));
164 
165 static cl::opt<bool> StressExtLdPromotion(
166     "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
167     cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
168              "optimization in CodeGenPrepare"));
169 
170 static cl::opt<bool> DisablePreheaderProtect(
171     "disable-preheader-prot", cl::Hidden, cl::init(false),
172     cl::desc("Disable protection against removing loop preheaders"));
173 
174 static cl::opt<bool> ProfileGuidedSectionPrefix(
175     "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
176     cl::desc("Use profile info to add section prefix for hot/cold functions"));
177 
178 static cl::opt<bool> ProfileUnknownInSpecialSection(
179     "profile-unknown-in-special-section", cl::Hidden, cl::init(false),
180     cl::ZeroOrMore,
181     cl::desc("In profiling mode like sampleFDO, if a function doesn't have "
182              "profile, we cannot tell the function is cold for sure because "
183              "it may be a function newly added without ever being sampled. "
184              "With the flag enabled, compiler can put such profile unknown "
185              "functions into a special section, so runtime system can choose "
186              "to handle it in a different way than .text section, to save "
187              "RAM for example. "));
188 
189 static cl::opt<unsigned> FreqRatioToSkipMerge(
190     "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
191     cl::desc("Skip merging empty blocks if (frequency of empty block) / "
192              "(frequency of destination block) is greater than this ratio"));
193 
194 static cl::opt<bool> ForceSplitStore(
195     "force-split-store", cl::Hidden, cl::init(false),
196     cl::desc("Force store splitting no matter what the target query says."));
197 
198 static cl::opt<bool>
199 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
200     cl::desc("Enable merging of redundant sexts when one is dominating"
201     " the other."), cl::init(true));
202 
203 static cl::opt<bool> DisableComplexAddrModes(
204     "disable-complex-addr-modes", cl::Hidden, cl::init(false),
205     cl::desc("Disables combining addressing modes with different parts "
206              "in optimizeMemoryInst."));
207 
208 static cl::opt<bool>
209 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
210                 cl::desc("Allow creation of Phis in Address sinking."));
211 
212 static cl::opt<bool>
213 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true),
214                    cl::desc("Allow creation of selects in Address sinking."));
215 
216 static cl::opt<bool> AddrSinkCombineBaseReg(
217     "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
218     cl::desc("Allow combining of BaseReg field in Address sinking."));
219 
220 static cl::opt<bool> AddrSinkCombineBaseGV(
221     "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
222     cl::desc("Allow combining of BaseGV field in Address sinking."));
223 
224 static cl::opt<bool> AddrSinkCombineBaseOffs(
225     "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
226     cl::desc("Allow combining of BaseOffs field in Address sinking."));
227 
228 static cl::opt<bool> AddrSinkCombineScaledReg(
229     "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
230     cl::desc("Allow combining of ScaledReg field in Address sinking."));
231 
232 static cl::opt<bool>
233     EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
234                          cl::init(true),
235                          cl::desc("Enable splitting large offset of GEP."));
236 
237 static cl::opt<bool> EnableICMP_EQToICMP_ST(
238     "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false),
239     cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion."));
240 
241 static cl::opt<bool>
242     VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false),
243                      cl::desc("Enable BFI update verification for "
244                               "CodeGenPrepare."));
245 
246 static cl::opt<bool> OptimizePhiTypes(
247     "cgp-optimize-phi-types", cl::Hidden, cl::init(false),
248     cl::desc("Enable converting phi types in CodeGenPrepare"));
249 
250 namespace {
251 
252 enum ExtType {
253   ZeroExtension,   // Zero extension has been seen.
254   SignExtension,   // Sign extension has been seen.
255   BothExtension    // This extension type is used if we saw sext after
256                    // ZeroExtension had been set, or if we saw zext after
257                    // SignExtension had been set. It makes the type
258                    // information of a promoted instruction invalid.
259 };
260 
261 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
262 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>;
263 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
264 using SExts = SmallVector<Instruction *, 16>;
265 using ValueToSExts = DenseMap<Value *, SExts>;
266 
267 class TypePromotionTransaction;
268 
269   class CodeGenPrepare : public FunctionPass {
270     const TargetMachine *TM = nullptr;
271     const TargetSubtargetInfo *SubtargetInfo;
272     const TargetLowering *TLI = nullptr;
273     const TargetRegisterInfo *TRI;
274     const TargetTransformInfo *TTI = nullptr;
275     const TargetLibraryInfo *TLInfo;
276     const LoopInfo *LI;
277     std::unique_ptr<BlockFrequencyInfo> BFI;
278     std::unique_ptr<BranchProbabilityInfo> BPI;
279     ProfileSummaryInfo *PSI;
280 
281     /// As we scan instructions optimizing them, this is the next instruction
282     /// to optimize. Transforms that can invalidate this should update it.
283     BasicBlock::iterator CurInstIterator;
284 
285     /// Keeps track of non-local addresses that have been sunk into a block.
286     /// This allows us to avoid inserting duplicate code for blocks with
287     /// multiple load/stores of the same address. The usage of WeakTrackingVH
288     /// enables SunkAddrs to be treated as a cache whose entries can be
289     /// invalidated if a sunken address computation has been erased.
290     ValueMap<Value*, WeakTrackingVH> SunkAddrs;
291 
292     /// Keeps track of all instructions inserted for the current function.
293     SetOfInstrs InsertedInsts;
294 
295     /// Keeps track of the type of the related instruction before their
296     /// promotion for the current function.
297     InstrToOrigTy PromotedInsts;
298 
299     /// Keep track of instructions removed during promotion.
300     SetOfInstrs RemovedInsts;
301 
302     /// Keep track of sext chains based on their initial value.
303     DenseMap<Value *, Instruction *> SeenChainsForSExt;
304 
305     /// Keep track of GEPs accessing the same data structures such as structs or
306     /// arrays that are candidates to be split later because of their large
307     /// size.
308     MapVector<
309         AssertingVH<Value>,
310         SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
311         LargeOffsetGEPMap;
312 
313     /// Keep track of new GEP base after splitting the GEPs having large offset.
314     SmallSet<AssertingVH<Value>, 2> NewGEPBases;
315 
316     /// Map serial numbers to Large offset GEPs.
317     DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;
318 
319     /// Keep track of SExt promoted.
320     ValueToSExts ValToSExtendedUses;
321 
322     /// True if the function has the OptSize attribute.
323     bool OptSize;
324 
325     /// DataLayout for the Function being processed.
326     const DataLayout *DL = nullptr;
327 
328     /// Building the dominator tree can be expensive, so we only build it
329     /// lazily and update it when required.
330     std::unique_ptr<DominatorTree> DT;
331 
332   public:
333     static char ID; // Pass identification, replacement for typeid
334 
335     CodeGenPrepare() : FunctionPass(ID) {
336       initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
337     }
338 
339     bool runOnFunction(Function &F) override;
340 
341     StringRef getPassName() const override { return "CodeGen Prepare"; }
342 
343     void getAnalysisUsage(AnalysisUsage &AU) const override {
344       // FIXME: When we can selectively preserve passes, preserve the domtree.
345       AU.addRequired<ProfileSummaryInfoWrapperPass>();
346       AU.addRequired<TargetLibraryInfoWrapperPass>();
347       AU.addRequired<TargetPassConfig>();
348       AU.addRequired<TargetTransformInfoWrapperPass>();
349       AU.addRequired<LoopInfoWrapperPass>();
350     }
351 
352   private:
353     template <typename F>
354     void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) {
355       // Substituting can cause recursive simplifications, which can invalidate
356       // our iterator.  Use a WeakTrackingVH to hold onto it in case this
357       // happens.
358       Value *CurValue = &*CurInstIterator;
359       WeakTrackingVH IterHandle(CurValue);
360 
361       f();
362 
363       // If the iterator instruction was recursively deleted, start over at the
364       // start of the block.
365       if (IterHandle != CurValue) {
366         CurInstIterator = BB->begin();
367         SunkAddrs.clear();
368       }
369     }
370 
371     // Get the DominatorTree, building if necessary.
372     DominatorTree &getDT(Function &F) {
373       if (!DT)
374         DT = std::make_unique<DominatorTree>(F);
375       return *DT;
376     }
377 
378     void removeAllAssertingVHReferences(Value *V);
379     bool eliminateAssumptions(Function &F);
380     bool eliminateFallThrough(Function &F);
381     bool eliminateMostlyEmptyBlocks(Function &F);
382     BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
383     bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
384     void eliminateMostlyEmptyBlock(BasicBlock *BB);
385     bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
386                                        bool isPreheader);
387     bool makeBitReverse(Instruction &I);
388     bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT);
389     bool optimizeInst(Instruction *I, bool &ModifiedDT);
390     bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
391                             Type *AccessTy, unsigned AddrSpace);
392     bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr);
393     bool optimizeInlineAsmInst(CallInst *CS);
394     bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
395     bool optimizeExt(Instruction *&I);
396     bool optimizeExtUses(Instruction *I);
397     bool optimizeLoadExt(LoadInst *Load);
398     bool optimizeShiftInst(BinaryOperator *BO);
399     bool optimizeFunnelShift(IntrinsicInst *Fsh);
400     bool optimizeSelectInst(SelectInst *SI);
401     bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI);
402     bool optimizeSwitchType(SwitchInst *SI);
403     bool optimizeSwitchPhiConstants(SwitchInst *SI);
404     bool optimizeSwitchInst(SwitchInst *SI);
405     bool optimizeExtractElementInst(Instruction *Inst);
406     bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT);
407     bool fixupDbgValue(Instruction *I);
408     bool placeDbgValues(Function &F);
409     bool placePseudoProbes(Function &F);
410     bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
411                       LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
412     bool tryToPromoteExts(TypePromotionTransaction &TPT,
413                           const SmallVectorImpl<Instruction *> &Exts,
414                           SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
415                           unsigned CreatedInstsCost = 0);
416     bool mergeSExts(Function &F);
417     bool splitLargeGEPOffsets();
418     bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited,
419                          SmallPtrSetImpl<Instruction *> &DeletedInstrs);
420     bool optimizePhiTypes(Function &F);
421     bool performAddressTypePromotion(
422         Instruction *&Inst,
423         bool AllowPromotionWithoutCommonHeader,
424         bool HasPromoted, TypePromotionTransaction &TPT,
425         SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
426     bool splitBranchCondition(Function &F, bool &ModifiedDT);
427     bool simplifyOffsetableRelocate(GCStatepointInst &I);
428 
429     bool tryToSinkFreeOperands(Instruction *I);
430     bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0,
431                                      Value *Arg1, CmpInst *Cmp,
432                                      Intrinsic::ID IID);
433     bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT);
434     bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
435     bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
436     void verifyBFIUpdates(Function &F);
437   };
438 
439 } // end anonymous namespace
440 
441 char CodeGenPrepare::ID = 0;
442 
443 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
444                       "Optimize for code generation", false, false)
445 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
446 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
447 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
448 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
449 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
450 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
451                     "Optimize for code generation", false, false)
452 
453 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
454 
455 bool CodeGenPrepare::runOnFunction(Function &F) {
456   if (skipFunction(F))
457     return false;
458 
459   DL = &F.getParent()->getDataLayout();
460 
461   bool EverMadeChange = false;
462   // Clear per function information.
463   InsertedInsts.clear();
464   PromotedInsts.clear();
465 
466   TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
467   SubtargetInfo = TM->getSubtargetImpl(F);
468   TLI = SubtargetInfo->getTargetLowering();
469   TRI = SubtargetInfo->getRegisterInfo();
470   TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
471   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
472   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
473   BPI.reset(new BranchProbabilityInfo(F, *LI));
474   BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
475   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
476   OptSize = F.hasOptSize();
477   if (ProfileGuidedSectionPrefix) {
478     // The hot attribute overwrites profile count based hotness while profile
479     // counts based hotness overwrite the cold attribute.
480     // This is a conservative behabvior.
481     if (F.hasFnAttribute(Attribute::Hot) ||
482         PSI->isFunctionHotInCallGraph(&F, *BFI))
483       F.setSectionPrefix("hot");
484     // If PSI shows this function is not hot, we will placed the function
485     // into unlikely section if (1) PSI shows this is a cold function, or
486     // (2) the function has a attribute of cold.
487     else if (PSI->isFunctionColdInCallGraph(&F, *BFI) ||
488              F.hasFnAttribute(Attribute::Cold))
489       F.setSectionPrefix("unlikely");
490     else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() &&
491              PSI->isFunctionHotnessUnknown(F))
492       F.setSectionPrefix("unknown");
493   }
494 
495   /// This optimization identifies DIV instructions that can be
496   /// profitably bypassed and carried out with a shorter, faster divide.
497   if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) {
498     const DenseMap<unsigned int, unsigned int> &BypassWidths =
499         TLI->getBypassSlowDivWidths();
500     BasicBlock* BB = &*F.begin();
501     while (BB != nullptr) {
502       // bypassSlowDivision may create new BBs, but we don't want to reapply the
503       // optimization to those blocks.
504       BasicBlock* Next = BB->getNextNode();
505       // F.hasOptSize is already checked in the outer if statement.
506       if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
507         EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
508       BB = Next;
509     }
510   }
511 
512   // Get rid of @llvm.assume builtins before attempting to eliminate empty
513   // blocks, since there might be blocks that only contain @llvm.assume calls
514   // (plus arguments that we can get rid of).
515   EverMadeChange |= eliminateAssumptions(F);
516 
517   // Eliminate blocks that contain only PHI nodes and an
518   // unconditional branch.
519   EverMadeChange |= eliminateMostlyEmptyBlocks(F);
520 
521   bool ModifiedDT = false;
522   if (!DisableBranchOpts)
523     EverMadeChange |= splitBranchCondition(F, ModifiedDT);
524 
525   // Split some critical edges where one of the sources is an indirect branch,
526   // to help generate sane code for PHIs involving such edges.
527   EverMadeChange |=
528       SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/true);
529 
530   bool MadeChange = true;
531   while (MadeChange) {
532     MadeChange = false;
533     DT.reset();
534     for (BasicBlock &BB : llvm::make_early_inc_range(F)) {
535       bool ModifiedDTOnIteration = false;
536       MadeChange |= optimizeBlock(BB, ModifiedDTOnIteration);
537 
538       // Restart BB iteration if the dominator tree of the Function was changed
539       if (ModifiedDTOnIteration)
540         break;
541     }
542     if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
543       MadeChange |= mergeSExts(F);
544     if (!LargeOffsetGEPMap.empty())
545       MadeChange |= splitLargeGEPOffsets();
546     MadeChange |= optimizePhiTypes(F);
547 
548     if (MadeChange)
549       eliminateFallThrough(F);
550 
551     // Really free removed instructions during promotion.
552     for (Instruction *I : RemovedInsts)
553       I->deleteValue();
554 
555     EverMadeChange |= MadeChange;
556     SeenChainsForSExt.clear();
557     ValToSExtendedUses.clear();
558     RemovedInsts.clear();
559     LargeOffsetGEPMap.clear();
560     LargeOffsetGEPID.clear();
561   }
562 
563   NewGEPBases.clear();
564   SunkAddrs.clear();
565 
566   if (!DisableBranchOpts) {
567     MadeChange = false;
568     // Use a set vector to get deterministic iteration order. The order the
569     // blocks are removed may affect whether or not PHI nodes in successors
570     // are removed.
571     SmallSetVector<BasicBlock*, 8> WorkList;
572     for (BasicBlock &BB : F) {
573       SmallVector<BasicBlock *, 2> Successors(successors(&BB));
574       MadeChange |= ConstantFoldTerminator(&BB, true);
575       if (!MadeChange) continue;
576 
577       for (BasicBlock *Succ : Successors)
578         if (pred_empty(Succ))
579           WorkList.insert(Succ);
580     }
581 
582     // Delete the dead blocks and any of their dead successors.
583     MadeChange |= !WorkList.empty();
584     while (!WorkList.empty()) {
585       BasicBlock *BB = WorkList.pop_back_val();
586       SmallVector<BasicBlock*, 2> Successors(successors(BB));
587 
588       DeleteDeadBlock(BB);
589 
590       for (BasicBlock *Succ : Successors)
591         if (pred_empty(Succ))
592           WorkList.insert(Succ);
593     }
594 
595     // Merge pairs of basic blocks with unconditional branches, connected by
596     // a single edge.
597     if (EverMadeChange || MadeChange)
598       MadeChange |= eliminateFallThrough(F);
599 
600     EverMadeChange |= MadeChange;
601   }
602 
603   if (!DisableGCOpts) {
604     SmallVector<GCStatepointInst *, 2> Statepoints;
605     for (BasicBlock &BB : F)
606       for (Instruction &I : BB)
607         if (auto *SP = dyn_cast<GCStatepointInst>(&I))
608           Statepoints.push_back(SP);
609     for (auto &I : Statepoints)
610       EverMadeChange |= simplifyOffsetableRelocate(*I);
611   }
612 
613   // Do this last to clean up use-before-def scenarios introduced by other
614   // preparatory transforms.
615   EverMadeChange |= placeDbgValues(F);
616   EverMadeChange |= placePseudoProbes(F);
617 
618 #ifndef NDEBUG
619   if (VerifyBFIUpdates)
620     verifyBFIUpdates(F);
621 #endif
622 
623   return EverMadeChange;
624 }
625 
626 bool CodeGenPrepare::eliminateAssumptions(Function &F) {
627   bool MadeChange = false;
628   for (BasicBlock &BB : F) {
629     CurInstIterator = BB.begin();
630     while (CurInstIterator != BB.end()) {
631       Instruction *I = &*(CurInstIterator++);
632       if (auto *Assume = dyn_cast<AssumeInst>(I)) {
633         MadeChange = true;
634         Value *Operand = Assume->getOperand(0);
635         Assume->eraseFromParent();
636 
637         resetIteratorIfInvalidatedWhileCalling(&BB, [&]() {
638           RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr);
639         });
640       }
641     }
642   }
643   return MadeChange;
644 }
645 
646 /// An instruction is about to be deleted, so remove all references to it in our
647 /// GEP-tracking data strcutures.
648 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) {
649   LargeOffsetGEPMap.erase(V);
650   NewGEPBases.erase(V);
651 
652   auto GEP = dyn_cast<GetElementPtrInst>(V);
653   if (!GEP)
654     return;
655 
656   LargeOffsetGEPID.erase(GEP);
657 
658   auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand());
659   if (VecI == LargeOffsetGEPMap.end())
660     return;
661 
662   auto &GEPVector = VecI->second;
663   llvm::erase_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; });
664 
665   if (GEPVector.empty())
666     LargeOffsetGEPMap.erase(VecI);
667 }
668 
669 // Verify BFI has been updated correctly by recomputing BFI and comparing them.
670 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) {
671   DominatorTree NewDT(F);
672   LoopInfo NewLI(NewDT);
673   BranchProbabilityInfo NewBPI(F, NewLI, TLInfo);
674   BlockFrequencyInfo NewBFI(F, NewBPI, NewLI);
675   NewBFI.verifyMatch(*BFI);
676 }
677 
678 /// Merge basic blocks which are connected by a single edge, where one of the
679 /// basic blocks has a single successor pointing to the other basic block,
680 /// which has a single predecessor.
681 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
682   bool Changed = false;
683   // Scan all of the blocks in the function, except for the entry block.
684   // Use a temporary array to avoid iterator being invalidated when
685   // deleting blocks.
686   SmallVector<WeakTrackingVH, 16> Blocks;
687   for (auto &Block : llvm::drop_begin(F))
688     Blocks.push_back(&Block);
689 
690   SmallSet<WeakTrackingVH, 16> Preds;
691   for (auto &Block : Blocks) {
692     auto *BB = cast_or_null<BasicBlock>(Block);
693     if (!BB)
694       continue;
695     // If the destination block has a single pred, then this is a trivial
696     // edge, just collapse it.
697     BasicBlock *SinglePred = BB->getSinglePredecessor();
698 
699     // Don't merge if BB's address is taken.
700     if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
701 
702     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
703     if (Term && !Term->isConditional()) {
704       Changed = true;
705       LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");
706 
707       // Merge BB into SinglePred and delete it.
708       MergeBlockIntoPredecessor(BB);
709       Preds.insert(SinglePred);
710     }
711   }
712 
713   // (Repeatedly) merging blocks into their predecessors can create redundant
714   // debug intrinsics.
715   for (auto &Pred : Preds)
716     if (auto *BB = cast_or_null<BasicBlock>(Pred))
717       RemoveRedundantDbgInstrs(BB);
718 
719   return Changed;
720 }
721 
722 /// Find a destination block from BB if BB is mergeable empty block.
723 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
724   // If this block doesn't end with an uncond branch, ignore it.
725   BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
726   if (!BI || !BI->isUnconditional())
727     return nullptr;
728 
729   // If the instruction before the branch (skipping debug info) isn't a phi
730   // node, then other stuff is happening here.
731   BasicBlock::iterator BBI = BI->getIterator();
732   if (BBI != BB->begin()) {
733     --BBI;
734     while (isa<DbgInfoIntrinsic>(BBI)) {
735       if (BBI == BB->begin())
736         break;
737       --BBI;
738     }
739     if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
740       return nullptr;
741   }
742 
743   // Do not break infinite loops.
744   BasicBlock *DestBB = BI->getSuccessor(0);
745   if (DestBB == BB)
746     return nullptr;
747 
748   if (!canMergeBlocks(BB, DestBB))
749     DestBB = nullptr;
750 
751   return DestBB;
752 }
753 
754 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
755 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
756 /// edges in ways that are non-optimal for isel. Start by eliminating these
757 /// blocks so we can split them the way we want them.
758 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
759   SmallPtrSet<BasicBlock *, 16> Preheaders;
760   SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
761   while (!LoopList.empty()) {
762     Loop *L = LoopList.pop_back_val();
763     llvm::append_range(LoopList, *L);
764     if (BasicBlock *Preheader = L->getLoopPreheader())
765       Preheaders.insert(Preheader);
766   }
767 
768   bool MadeChange = false;
769   // Copy blocks into a temporary array to avoid iterator invalidation issues
770   // as we remove them.
771   // Note that this intentionally skips the entry block.
772   SmallVector<WeakTrackingVH, 16> Blocks;
773   for (auto &Block : llvm::drop_begin(F))
774     Blocks.push_back(&Block);
775 
776   for (auto &Block : Blocks) {
777     BasicBlock *BB = cast_or_null<BasicBlock>(Block);
778     if (!BB)
779       continue;
780     BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
781     if (!DestBB ||
782         !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
783       continue;
784 
785     eliminateMostlyEmptyBlock(BB);
786     MadeChange = true;
787   }
788   return MadeChange;
789 }
790 
791 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
792                                                    BasicBlock *DestBB,
793                                                    bool isPreheader) {
794   // Do not delete loop preheaders if doing so would create a critical edge.
795   // Loop preheaders can be good locations to spill registers. If the
796   // preheader is deleted and we create a critical edge, registers may be
797   // spilled in the loop body instead.
798   if (!DisablePreheaderProtect && isPreheader &&
799       !(BB->getSinglePredecessor() &&
800         BB->getSinglePredecessor()->getSingleSuccessor()))
801     return false;
802 
803   // Skip merging if the block's successor is also a successor to any callbr
804   // that leads to this block.
805   // FIXME: Is this really needed? Is this a correctness issue?
806   for (BasicBlock *Pred : predecessors(BB)) {
807     if (auto *CBI = dyn_cast<CallBrInst>((Pred)->getTerminator()))
808       for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i)
809         if (DestBB == CBI->getSuccessor(i))
810           return false;
811   }
812 
813   // Try to skip merging if the unique predecessor of BB is terminated by a
814   // switch or indirect branch instruction, and BB is used as an incoming block
815   // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
816   // add COPY instructions in the predecessor of BB instead of BB (if it is not
817   // merged). Note that the critical edge created by merging such blocks wont be
818   // split in MachineSink because the jump table is not analyzable. By keeping
819   // such empty block (BB), ISel will place COPY instructions in BB, not in the
820   // predecessor of BB.
821   BasicBlock *Pred = BB->getUniquePredecessor();
822   if (!Pred ||
823       !(isa<SwitchInst>(Pred->getTerminator()) ||
824         isa<IndirectBrInst>(Pred->getTerminator())))
825     return true;
826 
827   if (BB->getTerminator() != BB->getFirstNonPHIOrDbg())
828     return true;
829 
830   // We use a simple cost heuristic which determine skipping merging is
831   // profitable if the cost of skipping merging is less than the cost of
832   // merging : Cost(skipping merging) < Cost(merging BB), where the
833   // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
834   // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
835   // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
836   //   Freq(Pred) / Freq(BB) > 2.
837   // Note that if there are multiple empty blocks sharing the same incoming
838   // value for the PHIs in the DestBB, we consider them together. In such
839   // case, Cost(merging BB) will be the sum of their frequencies.
840 
841   if (!isa<PHINode>(DestBB->begin()))
842     return true;
843 
844   SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
845 
846   // Find all other incoming blocks from which incoming values of all PHIs in
847   // DestBB are the same as the ones from BB.
848   for (BasicBlock *DestBBPred : predecessors(DestBB)) {
849     if (DestBBPred == BB)
850       continue;
851 
852     if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
853           return DestPN.getIncomingValueForBlock(BB) ==
854                  DestPN.getIncomingValueForBlock(DestBBPred);
855         }))
856       SameIncomingValueBBs.insert(DestBBPred);
857   }
858 
859   // See if all BB's incoming values are same as the value from Pred. In this
860   // case, no reason to skip merging because COPYs are expected to be place in
861   // Pred already.
862   if (SameIncomingValueBBs.count(Pred))
863     return true;
864 
865   BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
866   BlockFrequency BBFreq = BFI->getBlockFreq(BB);
867 
868   for (auto *SameValueBB : SameIncomingValueBBs)
869     if (SameValueBB->getUniquePredecessor() == Pred &&
870         DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
871       BBFreq += BFI->getBlockFreq(SameValueBB);
872 
873   return PredFreq.getFrequency() <=
874          BBFreq.getFrequency() * FreqRatioToSkipMerge;
875 }
876 
877 /// Return true if we can merge BB into DestBB if there is a single
878 /// unconditional branch between them, and BB contains no other non-phi
879 /// instructions.
880 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
881                                     const BasicBlock *DestBB) const {
882   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
883   // the successor.  If there are more complex condition (e.g. preheaders),
884   // don't mess around with them.
885   for (const PHINode &PN : BB->phis()) {
886     for (const User *U : PN.users()) {
887       const Instruction *UI = cast<Instruction>(U);
888       if (UI->getParent() != DestBB || !isa<PHINode>(UI))
889         return false;
890       // If User is inside DestBB block and it is a PHINode then check
891       // incoming value. If incoming value is not from BB then this is
892       // a complex condition (e.g. preheaders) we want to avoid here.
893       if (UI->getParent() == DestBB) {
894         if (const PHINode *UPN = dyn_cast<PHINode>(UI))
895           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
896             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
897             if (Insn && Insn->getParent() == BB &&
898                 Insn->getParent() != UPN->getIncomingBlock(I))
899               return false;
900           }
901       }
902     }
903   }
904 
905   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
906   // and DestBB may have conflicting incoming values for the block.  If so, we
907   // can't merge the block.
908   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
909   if (!DestBBPN) return true;  // no conflict.
910 
911   // Collect the preds of BB.
912   SmallPtrSet<const BasicBlock*, 16> BBPreds;
913   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
914     // It is faster to get preds from a PHI than with pred_iterator.
915     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
916       BBPreds.insert(BBPN->getIncomingBlock(i));
917   } else {
918     BBPreds.insert(pred_begin(BB), pred_end(BB));
919   }
920 
921   // Walk the preds of DestBB.
922   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
923     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
924     if (BBPreds.count(Pred)) {   // Common predecessor?
925       for (const PHINode &PN : DestBB->phis()) {
926         const Value *V1 = PN.getIncomingValueForBlock(Pred);
927         const Value *V2 = PN.getIncomingValueForBlock(BB);
928 
929         // If V2 is a phi node in BB, look up what the mapped value will be.
930         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
931           if (V2PN->getParent() == BB)
932             V2 = V2PN->getIncomingValueForBlock(Pred);
933 
934         // If there is a conflict, bail out.
935         if (V1 != V2) return false;
936       }
937     }
938   }
939 
940   return true;
941 }
942 
943 /// Eliminate a basic block that has only phi's and an unconditional branch in
944 /// it.
945 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
946   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
947   BasicBlock *DestBB = BI->getSuccessor(0);
948 
949   LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
950                     << *BB << *DestBB);
951 
952   // If the destination block has a single pred, then this is a trivial edge,
953   // just collapse it.
954   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
955     if (SinglePred != DestBB) {
956       assert(SinglePred == BB &&
957              "Single predecessor not the same as predecessor");
958       // Merge DestBB into SinglePred/BB and delete it.
959       MergeBlockIntoPredecessor(DestBB);
960       // Note: BB(=SinglePred) will not be deleted on this path.
961       // DestBB(=its single successor) is the one that was deleted.
962       LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
963       return;
964     }
965   }
966 
967   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
968   // to handle the new incoming edges it is about to have.
969   for (PHINode &PN : DestBB->phis()) {
970     // Remove the incoming value for BB, and remember it.
971     Value *InVal = PN.removeIncomingValue(BB, false);
972 
973     // Two options: either the InVal is a phi node defined in BB or it is some
974     // value that dominates BB.
975     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
976     if (InValPhi && InValPhi->getParent() == BB) {
977       // Add all of the input values of the input PHI as inputs of this phi.
978       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
979         PN.addIncoming(InValPhi->getIncomingValue(i),
980                        InValPhi->getIncomingBlock(i));
981     } else {
982       // Otherwise, add one instance of the dominating value for each edge that
983       // we will be adding.
984       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
985         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
986           PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
987       } else {
988         for (BasicBlock *Pred : predecessors(BB))
989           PN.addIncoming(InVal, Pred);
990       }
991     }
992   }
993 
994   // The PHIs are now updated, change everything that refers to BB to use
995   // DestBB and remove BB.
996   BB->replaceAllUsesWith(DestBB);
997   BB->eraseFromParent();
998   ++NumBlocksElim;
999 
1000   LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
1001 }
1002 
1003 // Computes a map of base pointer relocation instructions to corresponding
1004 // derived pointer relocation instructions given a vector of all relocate calls
1005 static void computeBaseDerivedRelocateMap(
1006     const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
1007     DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
1008         &RelocateInstMap) {
1009   // Collect information in two maps: one primarily for locating the base object
1010   // while filling the second map; the second map is the final structure holding
1011   // a mapping between Base and corresponding Derived relocate calls
1012   DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
1013   for (auto *ThisRelocate : AllRelocateCalls) {
1014     auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
1015                             ThisRelocate->getDerivedPtrIndex());
1016     RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
1017   }
1018   for (auto &Item : RelocateIdxMap) {
1019     std::pair<unsigned, unsigned> Key = Item.first;
1020     if (Key.first == Key.second)
1021       // Base relocation: nothing to insert
1022       continue;
1023 
1024     GCRelocateInst *I = Item.second;
1025     auto BaseKey = std::make_pair(Key.first, Key.first);
1026 
1027     // We're iterating over RelocateIdxMap so we cannot modify it.
1028     auto MaybeBase = RelocateIdxMap.find(BaseKey);
1029     if (MaybeBase == RelocateIdxMap.end())
1030       // TODO: We might want to insert a new base object relocate and gep off
1031       // that, if there are enough derived object relocates.
1032       continue;
1033 
1034     RelocateInstMap[MaybeBase->second].push_back(I);
1035   }
1036 }
1037 
1038 // Accepts a GEP and extracts the operands into a vector provided they're all
1039 // small integer constants
1040 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
1041                                           SmallVectorImpl<Value *> &OffsetV) {
1042   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
1043     // Only accept small constant integer operands
1044     auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
1045     if (!Op || Op->getZExtValue() > 20)
1046       return false;
1047   }
1048 
1049   for (unsigned i = 1; i < GEP->getNumOperands(); i++)
1050     OffsetV.push_back(GEP->getOperand(i));
1051   return true;
1052 }
1053 
1054 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
1055 // replace, computes a replacement, and affects it.
1056 static bool
1057 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
1058                           const SmallVectorImpl<GCRelocateInst *> &Targets) {
1059   bool MadeChange = false;
1060   // We must ensure the relocation of derived pointer is defined after
1061   // relocation of base pointer. If we find a relocation corresponding to base
1062   // defined earlier than relocation of base then we move relocation of base
1063   // right before found relocation. We consider only relocation in the same
1064   // basic block as relocation of base. Relocations from other basic block will
1065   // be skipped by optimization and we do not care about them.
1066   for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
1067        &*R != RelocatedBase; ++R)
1068     if (auto *RI = dyn_cast<GCRelocateInst>(R))
1069       if (RI->getStatepoint() == RelocatedBase->getStatepoint())
1070         if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
1071           RelocatedBase->moveBefore(RI);
1072           break;
1073         }
1074 
1075   for (GCRelocateInst *ToReplace : Targets) {
1076     assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
1077            "Not relocating a derived object of the original base object");
1078     if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
1079       // A duplicate relocate call. TODO: coalesce duplicates.
1080       continue;
1081     }
1082 
1083     if (RelocatedBase->getParent() != ToReplace->getParent()) {
1084       // Base and derived relocates are in different basic blocks.
1085       // In this case transform is only valid when base dominates derived
1086       // relocate. However it would be too expensive to check dominance
1087       // for each such relocate, so we skip the whole transformation.
1088       continue;
1089     }
1090 
1091     Value *Base = ToReplace->getBasePtr();
1092     auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
1093     if (!Derived || Derived->getPointerOperand() != Base)
1094       continue;
1095 
1096     SmallVector<Value *, 2> OffsetV;
1097     if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
1098       continue;
1099 
1100     // Create a Builder and replace the target callsite with a gep
1101     assert(RelocatedBase->getNextNode() &&
1102            "Should always have one since it's not a terminator");
1103 
1104     // Insert after RelocatedBase
1105     IRBuilder<> Builder(RelocatedBase->getNextNode());
1106     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1107 
1108     // If gc_relocate does not match the actual type, cast it to the right type.
1109     // In theory, there must be a bitcast after gc_relocate if the type does not
1110     // match, and we should reuse it to get the derived pointer. But it could be
1111     // cases like this:
1112     // bb1:
1113     //  ...
1114     //  %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
1115     //  br label %merge
1116     //
1117     // bb2:
1118     //  ...
1119     //  %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
1120     //  br label %merge
1121     //
1122     // merge:
1123     //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
1124     //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
1125     //
1126     // In this case, we can not find the bitcast any more. So we insert a new bitcast
1127     // no matter there is already one or not. In this way, we can handle all cases, and
1128     // the extra bitcast should be optimized away in later passes.
1129     Value *ActualRelocatedBase = RelocatedBase;
1130     if (RelocatedBase->getType() != Base->getType()) {
1131       ActualRelocatedBase =
1132           Builder.CreateBitCast(RelocatedBase, Base->getType());
1133     }
1134     Value *Replacement = Builder.CreateGEP(
1135         Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
1136     Replacement->takeName(ToReplace);
1137     // If the newly generated derived pointer's type does not match the original derived
1138     // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
1139     Value *ActualReplacement = Replacement;
1140     if (Replacement->getType() != ToReplace->getType()) {
1141       ActualReplacement =
1142           Builder.CreateBitCast(Replacement, ToReplace->getType());
1143     }
1144     ToReplace->replaceAllUsesWith(ActualReplacement);
1145     ToReplace->eraseFromParent();
1146 
1147     MadeChange = true;
1148   }
1149   return MadeChange;
1150 }
1151 
1152 // Turns this:
1153 //
1154 // %base = ...
1155 // %ptr = gep %base + 15
1156 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1157 // %base' = relocate(%tok, i32 4, i32 4)
1158 // %ptr' = relocate(%tok, i32 4, i32 5)
1159 // %val = load %ptr'
1160 //
1161 // into this:
1162 //
1163 // %base = ...
1164 // %ptr = gep %base + 15
1165 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1166 // %base' = gc.relocate(%tok, i32 4, i32 4)
1167 // %ptr' = gep %base' + 15
1168 // %val = load %ptr'
1169 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) {
1170   bool MadeChange = false;
1171   SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1172   for (auto *U : I.users())
1173     if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1174       // Collect all the relocate calls associated with a statepoint
1175       AllRelocateCalls.push_back(Relocate);
1176 
1177   // We need at least one base pointer relocation + one derived pointer
1178   // relocation to mangle
1179   if (AllRelocateCalls.size() < 2)
1180     return false;
1181 
1182   // RelocateInstMap is a mapping from the base relocate instruction to the
1183   // corresponding derived relocate instructions
1184   DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
1185   computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1186   if (RelocateInstMap.empty())
1187     return false;
1188 
1189   for (auto &Item : RelocateInstMap)
1190     // Item.first is the RelocatedBase to offset against
1191     // Item.second is the vector of Targets to replace
1192     MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1193   return MadeChange;
1194 }
1195 
1196 /// Sink the specified cast instruction into its user blocks.
1197 static bool SinkCast(CastInst *CI) {
1198   BasicBlock *DefBB = CI->getParent();
1199 
1200   /// InsertedCasts - Only insert a cast in each block once.
1201   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
1202 
1203   bool MadeChange = false;
1204   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1205        UI != E; ) {
1206     Use &TheUse = UI.getUse();
1207     Instruction *User = cast<Instruction>(*UI);
1208 
1209     // Figure out which BB this cast is used in.  For PHI's this is the
1210     // appropriate predecessor block.
1211     BasicBlock *UserBB = User->getParent();
1212     if (PHINode *PN = dyn_cast<PHINode>(User)) {
1213       UserBB = PN->getIncomingBlock(TheUse);
1214     }
1215 
1216     // Preincrement use iterator so we don't invalidate it.
1217     ++UI;
1218 
1219     // The first insertion point of a block containing an EH pad is after the
1220     // pad.  If the pad is the user, we cannot sink the cast past the pad.
1221     if (User->isEHPad())
1222       continue;
1223 
1224     // If the block selected to receive the cast is an EH pad that does not
1225     // allow non-PHI instructions before the terminator, we can't sink the
1226     // cast.
1227     if (UserBB->getTerminator()->isEHPad())
1228       continue;
1229 
1230     // If this user is in the same block as the cast, don't change the cast.
1231     if (UserBB == DefBB) continue;
1232 
1233     // If we have already inserted a cast into this block, use it.
1234     CastInst *&InsertedCast = InsertedCasts[UserBB];
1235 
1236     if (!InsertedCast) {
1237       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1238       assert(InsertPt != UserBB->end());
1239       InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1240                                       CI->getType(), "", &*InsertPt);
1241       InsertedCast->setDebugLoc(CI->getDebugLoc());
1242     }
1243 
1244     // Replace a use of the cast with a use of the new cast.
1245     TheUse = InsertedCast;
1246     MadeChange = true;
1247     ++NumCastUses;
1248   }
1249 
1250   // If we removed all uses, nuke the cast.
1251   if (CI->use_empty()) {
1252     salvageDebugInfo(*CI);
1253     CI->eraseFromParent();
1254     MadeChange = true;
1255   }
1256 
1257   return MadeChange;
1258 }
1259 
1260 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1261 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1262 /// reduce the number of virtual registers that must be created and coalesced.
1263 ///
1264 /// Return true if any changes are made.
1265 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1266                                        const DataLayout &DL) {
1267   // Sink only "cheap" (or nop) address-space casts.  This is a weaker condition
1268   // than sinking only nop casts, but is helpful on some platforms.
1269   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1270     if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(),
1271                                  ASC->getDestAddressSpace()))
1272       return false;
1273   }
1274 
1275   // If this is a noop copy,
1276   EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1277   EVT DstVT = TLI.getValueType(DL, CI->getType());
1278 
1279   // This is an fp<->int conversion?
1280   if (SrcVT.isInteger() != DstVT.isInteger())
1281     return false;
1282 
1283   // If this is an extension, it will be a zero or sign extension, which
1284   // isn't a noop.
1285   if (SrcVT.bitsLT(DstVT)) return false;
1286 
1287   // If these values will be promoted, find out what they will be promoted
1288   // to.  This helps us consider truncates on PPC as noop copies when they
1289   // are.
1290   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1291       TargetLowering::TypePromoteInteger)
1292     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1293   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1294       TargetLowering::TypePromoteInteger)
1295     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1296 
1297   // If, after promotion, these are the same types, this is a noop copy.
1298   if (SrcVT != DstVT)
1299     return false;
1300 
1301   return SinkCast(CI);
1302 }
1303 
1304 // Match a simple increment by constant operation.  Note that if a sub is
1305 // matched, the step is negated (as if the step had been canonicalized to
1306 // an add, even though we leave the instruction alone.)
1307 bool matchIncrement(const Instruction* IVInc, Instruction *&LHS,
1308                     Constant *&Step) {
1309   if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) ||
1310       match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>(
1311                        m_Instruction(LHS), m_Constant(Step)))))
1312     return true;
1313   if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) ||
1314       match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>(
1315                        m_Instruction(LHS), m_Constant(Step))))) {
1316     Step = ConstantExpr::getNeg(Step);
1317     return true;
1318   }
1319   return false;
1320 }
1321 
1322 /// If given \p PN is an inductive variable with value IVInc coming from the
1323 /// backedge, and on each iteration it gets increased by Step, return pair
1324 /// <IVInc, Step>. Otherwise, return None.
1325 static Optional<std::pair<Instruction *, Constant *> >
1326 getIVIncrement(const PHINode *PN, const LoopInfo *LI) {
1327   const Loop *L = LI->getLoopFor(PN->getParent());
1328   if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch())
1329     return None;
1330   auto *IVInc =
1331       dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
1332   if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L)
1333     return None;
1334   Instruction *LHS = nullptr;
1335   Constant *Step = nullptr;
1336   if (matchIncrement(IVInc, LHS, Step) && LHS == PN)
1337     return std::make_pair(IVInc, Step);
1338   return None;
1339 }
1340 
1341 static bool isIVIncrement(const Value *V, const LoopInfo *LI) {
1342   auto *I = dyn_cast<Instruction>(V);
1343   if (!I)
1344     return false;
1345   Instruction *LHS = nullptr;
1346   Constant *Step = nullptr;
1347   if (!matchIncrement(I, LHS, Step))
1348     return false;
1349   if (auto *PN = dyn_cast<PHINode>(LHS))
1350     if (auto IVInc = getIVIncrement(PN, LI))
1351       return IVInc->first == I;
1352   return false;
1353 }
1354 
1355 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO,
1356                                                  Value *Arg0, Value *Arg1,
1357                                                  CmpInst *Cmp,
1358                                                  Intrinsic::ID IID) {
1359   auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) {
1360     if (!isIVIncrement(BO, LI))
1361       return false;
1362     const Loop *L = LI->getLoopFor(BO->getParent());
1363     assert(L && "L should not be null after isIVIncrement()");
1364     // Do not risk on moving increment into a child loop.
1365     if (LI->getLoopFor(Cmp->getParent()) != L)
1366       return false;
1367 
1368     // Finally, we need to ensure that the insert point will dominate all
1369     // existing uses of the increment.
1370 
1371     auto &DT = getDT(*BO->getParent()->getParent());
1372     if (DT.dominates(Cmp->getParent(), BO->getParent()))
1373       // If we're moving up the dom tree, all uses are trivially dominated.
1374       // (This is the common case for code produced by LSR.)
1375       return true;
1376 
1377     // Otherwise, special case the single use in the phi recurrence.
1378     return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch());
1379   };
1380   if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) {
1381     // We used to use a dominator tree here to allow multi-block optimization.
1382     // But that was problematic because:
1383     // 1. It could cause a perf regression by hoisting the math op into the
1384     //    critical path.
1385     // 2. It could cause a perf regression by creating a value that was live
1386     //    across multiple blocks and increasing register pressure.
1387     // 3. Use of a dominator tree could cause large compile-time regression.
1388     //    This is because we recompute the DT on every change in the main CGP
1389     //    run-loop. The recomputing is probably unnecessary in many cases, so if
1390     //    that was fixed, using a DT here would be ok.
1391     //
1392     // There is one important particular case we still want to handle: if BO is
1393     // the IV increment. Important properties that make it profitable:
1394     // - We can speculate IV increment anywhere in the loop (as long as the
1395     //   indvar Phi is its only user);
1396     // - Upon computing Cmp, we effectively compute something equivalent to the
1397     //   IV increment (despite it loops differently in the IR). So moving it up
1398     //   to the cmp point does not really increase register pressure.
1399     return false;
1400   }
1401 
1402   // We allow matching the canonical IR (add X, C) back to (usubo X, -C).
1403   if (BO->getOpcode() == Instruction::Add &&
1404       IID == Intrinsic::usub_with_overflow) {
1405     assert(isa<Constant>(Arg1) && "Unexpected input for usubo");
1406     Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1));
1407   }
1408 
1409   // Insert at the first instruction of the pair.
1410   Instruction *InsertPt = nullptr;
1411   for (Instruction &Iter : *Cmp->getParent()) {
1412     // If BO is an XOR, it is not guaranteed that it comes after both inputs to
1413     // the overflow intrinsic are defined.
1414     if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) {
1415       InsertPt = &Iter;
1416       break;
1417     }
1418   }
1419   assert(InsertPt != nullptr && "Parent block did not contain cmp or binop");
1420 
1421   IRBuilder<> Builder(InsertPt);
1422   Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1);
1423   if (BO->getOpcode() != Instruction::Xor) {
1424     Value *Math = Builder.CreateExtractValue(MathOV, 0, "math");
1425     BO->replaceAllUsesWith(Math);
1426   } else
1427     assert(BO->hasOneUse() &&
1428            "Patterns with XOr should use the BO only in the compare");
1429   Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov");
1430   Cmp->replaceAllUsesWith(OV);
1431   Cmp->eraseFromParent();
1432   BO->eraseFromParent();
1433   return true;
1434 }
1435 
1436 /// Match special-case patterns that check for unsigned add overflow.
1437 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp,
1438                                                    BinaryOperator *&Add) {
1439   // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val)
1440   // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero)
1441   Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1442 
1443   // We are not expecting non-canonical/degenerate code. Just bail out.
1444   if (isa<Constant>(A))
1445     return false;
1446 
1447   ICmpInst::Predicate Pred = Cmp->getPredicate();
1448   if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes()))
1449     B = ConstantInt::get(B->getType(), 1);
1450   else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt()))
1451     B = ConstantInt::get(B->getType(), -1);
1452   else
1453     return false;
1454 
1455   // Check the users of the variable operand of the compare looking for an add
1456   // with the adjusted constant.
1457   for (User *U : A->users()) {
1458     if (match(U, m_Add(m_Specific(A), m_Specific(B)))) {
1459       Add = cast<BinaryOperator>(U);
1460       return true;
1461     }
1462   }
1463   return false;
1464 }
1465 
1466 /// Try to combine the compare into a call to the llvm.uadd.with.overflow
1467 /// intrinsic. Return true if any changes were made.
1468 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp,
1469                                                bool &ModifiedDT) {
1470   Value *A, *B;
1471   BinaryOperator *Add;
1472   if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) {
1473     if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add))
1474       return false;
1475     // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases.
1476     A = Add->getOperand(0);
1477     B = Add->getOperand(1);
1478   }
1479 
1480   if (!TLI->shouldFormOverflowOp(ISD::UADDO,
1481                                  TLI->getValueType(*DL, Add->getType()),
1482                                  Add->hasNUsesOrMore(2)))
1483     return false;
1484 
1485   // We don't want to move around uses of condition values this late, so we
1486   // check if it is legal to create the call to the intrinsic in the basic
1487   // block containing the icmp.
1488   if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse())
1489     return false;
1490 
1491   if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp,
1492                                    Intrinsic::uadd_with_overflow))
1493     return false;
1494 
1495   // Reset callers - do not crash by iterating over a dead instruction.
1496   ModifiedDT = true;
1497   return true;
1498 }
1499 
1500 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp,
1501                                                bool &ModifiedDT) {
1502   // We are not expecting non-canonical/degenerate code. Just bail out.
1503   Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1504   if (isa<Constant>(A) && isa<Constant>(B))
1505     return false;
1506 
1507   // Convert (A u> B) to (A u< B) to simplify pattern matching.
1508   ICmpInst::Predicate Pred = Cmp->getPredicate();
1509   if (Pred == ICmpInst::ICMP_UGT) {
1510     std::swap(A, B);
1511     Pred = ICmpInst::ICMP_ULT;
1512   }
1513   // Convert special-case: (A == 0) is the same as (A u< 1).
1514   if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) {
1515     B = ConstantInt::get(B->getType(), 1);
1516     Pred = ICmpInst::ICMP_ULT;
1517   }
1518   // Convert special-case: (A != 0) is the same as (0 u< A).
1519   if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) {
1520     std::swap(A, B);
1521     Pred = ICmpInst::ICMP_ULT;
1522   }
1523   if (Pred != ICmpInst::ICMP_ULT)
1524     return false;
1525 
1526   // Walk the users of a variable operand of a compare looking for a subtract or
1527   // add with that same operand. Also match the 2nd operand of the compare to
1528   // the add/sub, but that may be a negated constant operand of an add.
1529   Value *CmpVariableOperand = isa<Constant>(A) ? B : A;
1530   BinaryOperator *Sub = nullptr;
1531   for (User *U : CmpVariableOperand->users()) {
1532     // A - B, A u< B --> usubo(A, B)
1533     if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) {
1534       Sub = cast<BinaryOperator>(U);
1535       break;
1536     }
1537 
1538     // A + (-C), A u< C (canonicalized form of (sub A, C))
1539     const APInt *CmpC, *AddC;
1540     if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) &&
1541         match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) {
1542       Sub = cast<BinaryOperator>(U);
1543       break;
1544     }
1545   }
1546   if (!Sub)
1547     return false;
1548 
1549   if (!TLI->shouldFormOverflowOp(ISD::USUBO,
1550                                  TLI->getValueType(*DL, Sub->getType()),
1551                                  Sub->hasNUsesOrMore(2)))
1552     return false;
1553 
1554   if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1),
1555                                    Cmp, Intrinsic::usub_with_overflow))
1556     return false;
1557 
1558   // Reset callers - do not crash by iterating over a dead instruction.
1559   ModifiedDT = true;
1560   return true;
1561 }
1562 
1563 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1564 /// registers that must be created and coalesced. This is a clear win except on
1565 /// targets with multiple condition code registers (PowerPC), where it might
1566 /// lose; some adjustment may be wanted there.
1567 ///
1568 /// Return true if any changes are made.
1569 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) {
1570   if (TLI.hasMultipleConditionRegisters())
1571     return false;
1572 
1573   // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1574   if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp))
1575     return false;
1576 
1577   // Only insert a cmp in each block once.
1578   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
1579 
1580   bool MadeChange = false;
1581   for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end();
1582        UI != E; ) {
1583     Use &TheUse = UI.getUse();
1584     Instruction *User = cast<Instruction>(*UI);
1585 
1586     // Preincrement use iterator so we don't invalidate it.
1587     ++UI;
1588 
1589     // Don't bother for PHI nodes.
1590     if (isa<PHINode>(User))
1591       continue;
1592 
1593     // Figure out which BB this cmp is used in.
1594     BasicBlock *UserBB = User->getParent();
1595     BasicBlock *DefBB = Cmp->getParent();
1596 
1597     // If this user is in the same block as the cmp, don't change the cmp.
1598     if (UserBB == DefBB) continue;
1599 
1600     // If we have already inserted a cmp into this block, use it.
1601     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1602 
1603     if (!InsertedCmp) {
1604       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1605       assert(InsertPt != UserBB->end());
1606       InsertedCmp =
1607           CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(),
1608                           Cmp->getOperand(0), Cmp->getOperand(1), "",
1609                           &*InsertPt);
1610       // Propagate the debug info.
1611       InsertedCmp->setDebugLoc(Cmp->getDebugLoc());
1612     }
1613 
1614     // Replace a use of the cmp with a use of the new cmp.
1615     TheUse = InsertedCmp;
1616     MadeChange = true;
1617     ++NumCmpUses;
1618   }
1619 
1620   // If we removed all uses, nuke the cmp.
1621   if (Cmp->use_empty()) {
1622     Cmp->eraseFromParent();
1623     MadeChange = true;
1624   }
1625 
1626   return MadeChange;
1627 }
1628 
1629 /// For pattern like:
1630 ///
1631 ///   DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB)
1632 ///   ...
1633 /// DomBB:
1634 ///   ...
1635 ///   br DomCond, TrueBB, CmpBB
1636 /// CmpBB: (with DomBB being the single predecessor)
1637 ///   ...
1638 ///   Cmp = icmp eq CmpOp0, CmpOp1
1639 ///   ...
1640 ///
1641 /// It would use two comparison on targets that lowering of icmp sgt/slt is
1642 /// different from lowering of icmp eq (PowerPC). This function try to convert
1643 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'.
1644 /// After that, DomCond and Cmp can use the same comparison so reduce one
1645 /// comparison.
1646 ///
1647 /// Return true if any changes are made.
1648 static bool foldICmpWithDominatingICmp(CmpInst *Cmp,
1649                                        const TargetLowering &TLI) {
1650   if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp())
1651     return false;
1652 
1653   ICmpInst::Predicate Pred = Cmp->getPredicate();
1654   if (Pred != ICmpInst::ICMP_EQ)
1655     return false;
1656 
1657   // If icmp eq has users other than BranchInst and SelectInst, converting it to
1658   // icmp slt/sgt would introduce more redundant LLVM IR.
1659   for (User *U : Cmp->users()) {
1660     if (isa<BranchInst>(U))
1661       continue;
1662     if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp)
1663       continue;
1664     return false;
1665   }
1666 
1667   // This is a cheap/incomplete check for dominance - just match a single
1668   // predecessor with a conditional branch.
1669   BasicBlock *CmpBB = Cmp->getParent();
1670   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1671   if (!DomBB)
1672     return false;
1673 
1674   // We want to ensure that the only way control gets to the comparison of
1675   // interest is that a less/greater than comparison on the same operands is
1676   // false.
1677   Value *DomCond;
1678   BasicBlock *TrueBB, *FalseBB;
1679   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1680     return false;
1681   if (CmpBB != FalseBB)
1682     return false;
1683 
1684   Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1);
1685   ICmpInst::Predicate DomPred;
1686   if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1))))
1687     return false;
1688   if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT)
1689     return false;
1690 
1691   // Convert the equality comparison to the opposite of the dominating
1692   // comparison and swap the direction for all branch/select users.
1693   // We have conceptually converted:
1694   // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>;
1695   // to
1696   // Res = (a < b) ? <LT_RES> : (a > b)  ? <GT_RES> : <EQ_RES>;
1697   // And similarly for branches.
1698   for (User *U : Cmp->users()) {
1699     if (auto *BI = dyn_cast<BranchInst>(U)) {
1700       assert(BI->isConditional() && "Must be conditional");
1701       BI->swapSuccessors();
1702       continue;
1703     }
1704     if (auto *SI = dyn_cast<SelectInst>(U)) {
1705       // Swap operands
1706       SI->swapValues();
1707       SI->swapProfMetadata();
1708       continue;
1709     }
1710     llvm_unreachable("Must be a branch or a select");
1711   }
1712   Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred));
1713   return true;
1714 }
1715 
1716 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) {
1717   if (sinkCmpExpression(Cmp, *TLI))
1718     return true;
1719 
1720   if (combineToUAddWithOverflow(Cmp, ModifiedDT))
1721     return true;
1722 
1723   if (combineToUSubWithOverflow(Cmp, ModifiedDT))
1724     return true;
1725 
1726   if (foldICmpWithDominatingICmp(Cmp, *TLI))
1727     return true;
1728 
1729   return false;
1730 }
1731 
1732 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1733 /// used in a compare to allow isel to generate better code for targets where
1734 /// this operation can be combined.
1735 ///
1736 /// Return true if any changes are made.
1737 static bool sinkAndCmp0Expression(Instruction *AndI,
1738                                   const TargetLowering &TLI,
1739                                   SetOfInstrs &InsertedInsts) {
1740   // Double-check that we're not trying to optimize an instruction that was
1741   // already optimized by some other part of this pass.
1742   assert(!InsertedInsts.count(AndI) &&
1743          "Attempting to optimize already optimized and instruction");
1744   (void) InsertedInsts;
1745 
1746   // Nothing to do for single use in same basic block.
1747   if (AndI->hasOneUse() &&
1748       AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
1749     return false;
1750 
1751   // Try to avoid cases where sinking/duplicating is likely to increase register
1752   // pressure.
1753   if (!isa<ConstantInt>(AndI->getOperand(0)) &&
1754       !isa<ConstantInt>(AndI->getOperand(1)) &&
1755       AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
1756     return false;
1757 
1758   for (auto *U : AndI->users()) {
1759     Instruction *User = cast<Instruction>(U);
1760 
1761     // Only sink 'and' feeding icmp with 0.
1762     if (!isa<ICmpInst>(User))
1763       return false;
1764 
1765     auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
1766     if (!CmpC || !CmpC->isZero())
1767       return false;
1768   }
1769 
1770   if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
1771     return false;
1772 
1773   LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1774   LLVM_DEBUG(AndI->getParent()->dump());
1775 
1776   // Push the 'and' into the same block as the icmp 0.  There should only be
1777   // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1778   // others, so we don't need to keep track of which BBs we insert into.
1779   for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
1780        UI != E; ) {
1781     Use &TheUse = UI.getUse();
1782     Instruction *User = cast<Instruction>(*UI);
1783 
1784     // Preincrement use iterator so we don't invalidate it.
1785     ++UI;
1786 
1787     LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
1788 
1789     // Keep the 'and' in the same place if the use is already in the same block.
1790     Instruction *InsertPt =
1791         User->getParent() == AndI->getParent() ? AndI : User;
1792     Instruction *InsertedAnd =
1793         BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
1794                                AndI->getOperand(1), "", InsertPt);
1795     // Propagate the debug info.
1796     InsertedAnd->setDebugLoc(AndI->getDebugLoc());
1797 
1798     // Replace a use of the 'and' with a use of the new 'and'.
1799     TheUse = InsertedAnd;
1800     ++NumAndUses;
1801     LLVM_DEBUG(User->getParent()->dump());
1802   }
1803 
1804   // We removed all uses, nuke the and.
1805   AndI->eraseFromParent();
1806   return true;
1807 }
1808 
1809 /// Check if the candidates could be combined with a shift instruction, which
1810 /// includes:
1811 /// 1. Truncate instruction
1812 /// 2. And instruction and the imm is a mask of the low bits:
1813 /// imm & (imm+1) == 0
1814 static bool isExtractBitsCandidateUse(Instruction *User) {
1815   if (!isa<TruncInst>(User)) {
1816     if (User->getOpcode() != Instruction::And ||
1817         !isa<ConstantInt>(User->getOperand(1)))
1818       return false;
1819 
1820     const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
1821 
1822     if ((Cimm & (Cimm + 1)).getBoolValue())
1823       return false;
1824   }
1825   return true;
1826 }
1827 
1828 /// Sink both shift and truncate instruction to the use of truncate's BB.
1829 static bool
1830 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
1831                      DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
1832                      const TargetLowering &TLI, const DataLayout &DL) {
1833   BasicBlock *UserBB = User->getParent();
1834   DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
1835   auto *TruncI = cast<TruncInst>(User);
1836   bool MadeChange = false;
1837 
1838   for (Value::user_iterator TruncUI = TruncI->user_begin(),
1839                             TruncE = TruncI->user_end();
1840        TruncUI != TruncE;) {
1841 
1842     Use &TruncTheUse = TruncUI.getUse();
1843     Instruction *TruncUser = cast<Instruction>(*TruncUI);
1844     // Preincrement use iterator so we don't invalidate it.
1845 
1846     ++TruncUI;
1847 
1848     int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
1849     if (!ISDOpcode)
1850       continue;
1851 
1852     // If the use is actually a legal node, there will not be an
1853     // implicit truncate.
1854     // FIXME: always querying the result type is just an
1855     // approximation; some nodes' legality is determined by the
1856     // operand or other means. There's no good way to find out though.
1857     if (TLI.isOperationLegalOrCustom(
1858             ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
1859       continue;
1860 
1861     // Don't bother for PHI nodes.
1862     if (isa<PHINode>(TruncUser))
1863       continue;
1864 
1865     BasicBlock *TruncUserBB = TruncUser->getParent();
1866 
1867     if (UserBB == TruncUserBB)
1868       continue;
1869 
1870     BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
1871     CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
1872 
1873     if (!InsertedShift && !InsertedTrunc) {
1874       BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
1875       assert(InsertPt != TruncUserBB->end());
1876       // Sink the shift
1877       if (ShiftI->getOpcode() == Instruction::AShr)
1878         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1879                                                    "", &*InsertPt);
1880       else
1881         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1882                                                    "", &*InsertPt);
1883       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1884 
1885       // Sink the trunc
1886       BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
1887       TruncInsertPt++;
1888       assert(TruncInsertPt != TruncUserBB->end());
1889 
1890       InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
1891                                        TruncI->getType(), "", &*TruncInsertPt);
1892       InsertedTrunc->setDebugLoc(TruncI->getDebugLoc());
1893 
1894       MadeChange = true;
1895 
1896       TruncTheUse = InsertedTrunc;
1897     }
1898   }
1899   return MadeChange;
1900 }
1901 
1902 /// Sink the shift *right* instruction into user blocks if the uses could
1903 /// potentially be combined with this shift instruction and generate BitExtract
1904 /// instruction. It will only be applied if the architecture supports BitExtract
1905 /// instruction. Here is an example:
1906 /// BB1:
1907 ///   %x.extract.shift = lshr i64 %arg1, 32
1908 /// BB2:
1909 ///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
1910 /// ==>
1911 ///
1912 /// BB2:
1913 ///   %x.extract.shift.1 = lshr i64 %arg1, 32
1914 ///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1915 ///
1916 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
1917 /// instruction.
1918 /// Return true if any changes are made.
1919 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1920                                 const TargetLowering &TLI,
1921                                 const DataLayout &DL) {
1922   BasicBlock *DefBB = ShiftI->getParent();
1923 
1924   /// Only insert instructions in each block once.
1925   DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1926 
1927   bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1928 
1929   bool MadeChange = false;
1930   for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1931        UI != E;) {
1932     Use &TheUse = UI.getUse();
1933     Instruction *User = cast<Instruction>(*UI);
1934     // Preincrement use iterator so we don't invalidate it.
1935     ++UI;
1936 
1937     // Don't bother for PHI nodes.
1938     if (isa<PHINode>(User))
1939       continue;
1940 
1941     if (!isExtractBitsCandidateUse(User))
1942       continue;
1943 
1944     BasicBlock *UserBB = User->getParent();
1945 
1946     if (UserBB == DefBB) {
1947       // If the shift and truncate instruction are in the same BB. The use of
1948       // the truncate(TruncUse) may still introduce another truncate if not
1949       // legal. In this case, we would like to sink both shift and truncate
1950       // instruction to the BB of TruncUse.
1951       // for example:
1952       // BB1:
1953       // i64 shift.result = lshr i64 opnd, imm
1954       // trunc.result = trunc shift.result to i16
1955       //
1956       // BB2:
1957       //   ----> We will have an implicit truncate here if the architecture does
1958       //   not have i16 compare.
1959       // cmp i16 trunc.result, opnd2
1960       //
1961       if (isa<TruncInst>(User) && shiftIsLegal
1962           // If the type of the truncate is legal, no truncate will be
1963           // introduced in other basic blocks.
1964           &&
1965           (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1966         MadeChange =
1967             SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1968 
1969       continue;
1970     }
1971     // If we have already inserted a shift into this block, use it.
1972     BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1973 
1974     if (!InsertedShift) {
1975       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1976       assert(InsertPt != UserBB->end());
1977 
1978       if (ShiftI->getOpcode() == Instruction::AShr)
1979         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1980                                                    "", &*InsertPt);
1981       else
1982         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1983                                                    "", &*InsertPt);
1984       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1985 
1986       MadeChange = true;
1987     }
1988 
1989     // Replace a use of the shift with a use of the new shift.
1990     TheUse = InsertedShift;
1991   }
1992 
1993   // If we removed all uses, or there are none, nuke the shift.
1994   if (ShiftI->use_empty()) {
1995     salvageDebugInfo(*ShiftI);
1996     ShiftI->eraseFromParent();
1997     MadeChange = true;
1998   }
1999 
2000   return MadeChange;
2001 }
2002 
2003 /// If counting leading or trailing zeros is an expensive operation and a zero
2004 /// input is defined, add a check for zero to avoid calling the intrinsic.
2005 ///
2006 /// We want to transform:
2007 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
2008 ///
2009 /// into:
2010 ///   entry:
2011 ///     %cmpz = icmp eq i64 %A, 0
2012 ///     br i1 %cmpz, label %cond.end, label %cond.false
2013 ///   cond.false:
2014 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
2015 ///     br label %cond.end
2016 ///   cond.end:
2017 ///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
2018 ///
2019 /// If the transform is performed, return true and set ModifiedDT to true.
2020 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
2021                                   const TargetLowering *TLI,
2022                                   const DataLayout *DL,
2023                                   bool &ModifiedDT) {
2024   // If a zero input is undefined, it doesn't make sense to despeculate that.
2025   if (match(CountZeros->getOperand(1), m_One()))
2026     return false;
2027 
2028   // If it's cheap to speculate, there's nothing to do.
2029   auto IntrinsicID = CountZeros->getIntrinsicID();
2030   if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
2031       (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
2032     return false;
2033 
2034   // Only handle legal scalar cases. Anything else requires too much work.
2035   Type *Ty = CountZeros->getType();
2036   unsigned SizeInBits = Ty->getScalarSizeInBits();
2037   if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
2038     return false;
2039 
2040   // Bail if the value is never zero.
2041   Value *Op = CountZeros->getOperand(0);
2042   if (isKnownNonZero(Op, *DL))
2043     return false;
2044 
2045   // The intrinsic will be sunk behind a compare against zero and branch.
2046   BasicBlock *StartBlock = CountZeros->getParent();
2047   BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
2048 
2049   // Create another block after the count zero intrinsic. A PHI will be added
2050   // in this block to select the result of the intrinsic or the bit-width
2051   // constant if the input to the intrinsic is zero.
2052   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
2053   BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
2054 
2055   // Set up a builder to create a compare, conditional branch, and PHI.
2056   IRBuilder<> Builder(CountZeros->getContext());
2057   Builder.SetInsertPoint(StartBlock->getTerminator());
2058   Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
2059 
2060   // Replace the unconditional branch that was created by the first split with
2061   // a compare against zero and a conditional branch.
2062   Value *Zero = Constant::getNullValue(Ty);
2063   // Avoid introducing branch on poison.
2064   if (!isGuaranteedNotToBeUndefOrPoison(Op))
2065     Op = Builder.CreateFreeze(Op, Op->getName() + ".fr");
2066   Value *Cmp = Builder.CreateICmpEQ(Op, Zero, "cmpz");
2067   Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
2068   StartBlock->getTerminator()->eraseFromParent();
2069 
2070   // Create a PHI in the end block to select either the output of the intrinsic
2071   // or the bit width of the operand.
2072   Builder.SetInsertPoint(&EndBlock->front());
2073   PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
2074   CountZeros->replaceAllUsesWith(PN);
2075   Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
2076   PN->addIncoming(BitWidth, StartBlock);
2077   PN->addIncoming(CountZeros, CallBlock);
2078 
2079   // We are explicitly handling the zero case, so we can set the intrinsic's
2080   // undefined zero argument to 'true'. This will also prevent reprocessing the
2081   // intrinsic; we only despeculate when a zero input is defined.
2082   CountZeros->setArgOperand(1, Builder.getTrue());
2083   ModifiedDT = true;
2084   return true;
2085 }
2086 
2087 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
2088   BasicBlock *BB = CI->getParent();
2089 
2090   // Lower inline assembly if we can.
2091   // If we found an inline asm expession, and if the target knows how to
2092   // lower it to normal LLVM code, do so now.
2093   if (CI->isInlineAsm()) {
2094     if (TLI->ExpandInlineAsm(CI)) {
2095       // Avoid invalidating the iterator.
2096       CurInstIterator = BB->begin();
2097       // Avoid processing instructions out of order, which could cause
2098       // reuse before a value is defined.
2099       SunkAddrs.clear();
2100       return true;
2101     }
2102     // Sink address computing for memory operands into the block.
2103     if (optimizeInlineAsmInst(CI))
2104       return true;
2105   }
2106 
2107   // Align the pointer arguments to this call if the target thinks it's a good
2108   // idea
2109   unsigned MinSize, PrefAlign;
2110   if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
2111     for (auto &Arg : CI->args()) {
2112       // We want to align both objects whose address is used directly and
2113       // objects whose address is used in casts and GEPs, though it only makes
2114       // sense for GEPs if the offset is a multiple of the desired alignment and
2115       // if size - offset meets the size threshold.
2116       if (!Arg->getType()->isPointerTy())
2117         continue;
2118       APInt Offset(DL->getIndexSizeInBits(
2119                        cast<PointerType>(Arg->getType())->getAddressSpace()),
2120                    0);
2121       Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
2122       uint64_t Offset2 = Offset.getLimitedValue();
2123       if ((Offset2 & (PrefAlign-1)) != 0)
2124         continue;
2125       AllocaInst *AI;
2126       if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
2127           DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
2128         AI->setAlignment(Align(PrefAlign));
2129       // Global variables can only be aligned if they are defined in this
2130       // object (i.e. they are uniquely initialized in this object), and
2131       // over-aligning global variables that have an explicit section is
2132       // forbidden.
2133       GlobalVariable *GV;
2134       if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
2135           GV->getPointerAlignment(*DL) < PrefAlign &&
2136           DL->getTypeAllocSize(GV->getValueType()) >=
2137               MinSize + Offset2)
2138         GV->setAlignment(MaybeAlign(PrefAlign));
2139     }
2140     // If this is a memcpy (or similar) then we may be able to improve the
2141     // alignment
2142     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
2143       Align DestAlign = getKnownAlignment(MI->getDest(), *DL);
2144       MaybeAlign MIDestAlign = MI->getDestAlign();
2145       if (!MIDestAlign || DestAlign > *MIDestAlign)
2146         MI->setDestAlignment(DestAlign);
2147       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
2148         MaybeAlign MTISrcAlign = MTI->getSourceAlign();
2149         Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
2150         if (!MTISrcAlign || SrcAlign > *MTISrcAlign)
2151           MTI->setSourceAlignment(SrcAlign);
2152       }
2153     }
2154   }
2155 
2156   // If we have a cold call site, try to sink addressing computation into the
2157   // cold block.  This interacts with our handling for loads and stores to
2158   // ensure that we can fold all uses of a potential addressing computation
2159   // into their uses.  TODO: generalize this to work over profiling data
2160   if (CI->hasFnAttr(Attribute::Cold) &&
2161       !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
2162     for (auto &Arg : CI->args()) {
2163       if (!Arg->getType()->isPointerTy())
2164         continue;
2165       unsigned AS = Arg->getType()->getPointerAddressSpace();
2166       return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
2167     }
2168 
2169   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
2170   if (II) {
2171     switch (II->getIntrinsicID()) {
2172     default: break;
2173     case Intrinsic::assume:
2174       llvm_unreachable("llvm.assume should have been removed already");
2175     case Intrinsic::experimental_widenable_condition: {
2176       // Give up on future widening oppurtunties so that we can fold away dead
2177       // paths and merge blocks before going into block-local instruction
2178       // selection.
2179       if (II->use_empty()) {
2180         II->eraseFromParent();
2181         return true;
2182       }
2183       Constant *RetVal = ConstantInt::getTrue(II->getContext());
2184       resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
2185         replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
2186       });
2187       return true;
2188     }
2189     case Intrinsic::objectsize:
2190       llvm_unreachable("llvm.objectsize.* should have been lowered already");
2191     case Intrinsic::is_constant:
2192       llvm_unreachable("llvm.is.constant.* should have been lowered already");
2193     case Intrinsic::aarch64_stlxr:
2194     case Intrinsic::aarch64_stxr: {
2195       ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
2196       if (!ExtVal || !ExtVal->hasOneUse() ||
2197           ExtVal->getParent() == CI->getParent())
2198         return false;
2199       // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
2200       ExtVal->moveBefore(CI);
2201       // Mark this instruction as "inserted by CGP", so that other
2202       // optimizations don't touch it.
2203       InsertedInsts.insert(ExtVal);
2204       return true;
2205     }
2206 
2207     case Intrinsic::launder_invariant_group:
2208     case Intrinsic::strip_invariant_group: {
2209       Value *ArgVal = II->getArgOperand(0);
2210       auto it = LargeOffsetGEPMap.find(II);
2211       if (it != LargeOffsetGEPMap.end()) {
2212           // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
2213           // Make sure not to have to deal with iterator invalidation
2214           // after possibly adding ArgVal to LargeOffsetGEPMap.
2215           auto GEPs = std::move(it->second);
2216           LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end());
2217           LargeOffsetGEPMap.erase(II);
2218       }
2219 
2220       II->replaceAllUsesWith(ArgVal);
2221       II->eraseFromParent();
2222       return true;
2223     }
2224     case Intrinsic::cttz:
2225     case Intrinsic::ctlz:
2226       // If counting zeros is expensive, try to avoid it.
2227       return despeculateCountZeros(II, TLI, DL, ModifiedDT);
2228     case Intrinsic::fshl:
2229     case Intrinsic::fshr:
2230       return optimizeFunnelShift(II);
2231     case Intrinsic::dbg_value:
2232       return fixupDbgValue(II);
2233     case Intrinsic::vscale: {
2234       // If datalayout has no special restrictions on vector data layout,
2235       // replace `llvm.vscale` by an equivalent constant expression
2236       // to benefit from cheap constant propagation.
2237       Type *ScalableVectorTy =
2238           VectorType::get(Type::getInt8Ty(II->getContext()), 1, true);
2239       if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) {
2240         auto *Null = Constant::getNullValue(ScalableVectorTy->getPointerTo());
2241         auto *One = ConstantInt::getSigned(II->getType(), 1);
2242         auto *CGep =
2243             ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One);
2244         II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType()));
2245         II->eraseFromParent();
2246         return true;
2247       }
2248       break;
2249     }
2250     case Intrinsic::masked_gather:
2251       return optimizeGatherScatterInst(II, II->getArgOperand(0));
2252     case Intrinsic::masked_scatter:
2253       return optimizeGatherScatterInst(II, II->getArgOperand(1));
2254     }
2255 
2256     SmallVector<Value *, 2> PtrOps;
2257     Type *AccessTy;
2258     if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
2259       while (!PtrOps.empty()) {
2260         Value *PtrVal = PtrOps.pop_back_val();
2261         unsigned AS = PtrVal->getType()->getPointerAddressSpace();
2262         if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
2263           return true;
2264       }
2265   }
2266 
2267   // From here on out we're working with named functions.
2268   if (!CI->getCalledFunction()) return false;
2269 
2270   // Lower all default uses of _chk calls.  This is very similar
2271   // to what InstCombineCalls does, but here we are only lowering calls
2272   // to fortified library functions (e.g. __memcpy_chk) that have the default
2273   // "don't know" as the objectsize.  Anything else should be left alone.
2274   FortifiedLibCallSimplifier Simplifier(TLInfo, true);
2275   IRBuilder<> Builder(CI);
2276   if (Value *V = Simplifier.optimizeCall(CI, Builder)) {
2277     CI->replaceAllUsesWith(V);
2278     CI->eraseFromParent();
2279     return true;
2280   }
2281 
2282   return false;
2283 }
2284 
2285 /// Look for opportunities to duplicate return instructions to the predecessor
2286 /// to enable tail call optimizations. The case it is currently looking for is:
2287 /// @code
2288 /// bb0:
2289 ///   %tmp0 = tail call i32 @f0()
2290 ///   br label %return
2291 /// bb1:
2292 ///   %tmp1 = tail call i32 @f1()
2293 ///   br label %return
2294 /// bb2:
2295 ///   %tmp2 = tail call i32 @f2()
2296 ///   br label %return
2297 /// return:
2298 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
2299 ///   ret i32 %retval
2300 /// @endcode
2301 ///
2302 /// =>
2303 ///
2304 /// @code
2305 /// bb0:
2306 ///   %tmp0 = tail call i32 @f0()
2307 ///   ret i32 %tmp0
2308 /// bb1:
2309 ///   %tmp1 = tail call i32 @f1()
2310 ///   ret i32 %tmp1
2311 /// bb2:
2312 ///   %tmp2 = tail call i32 @f2()
2313 ///   ret i32 %tmp2
2314 /// @endcode
2315 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) {
2316   ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
2317   if (!RetI)
2318     return false;
2319 
2320   PHINode *PN = nullptr;
2321   ExtractValueInst *EVI = nullptr;
2322   BitCastInst *BCI = nullptr;
2323   Value *V = RetI->getReturnValue();
2324   if (V) {
2325     BCI = dyn_cast<BitCastInst>(V);
2326     if (BCI)
2327       V = BCI->getOperand(0);
2328 
2329     EVI = dyn_cast<ExtractValueInst>(V);
2330     if (EVI) {
2331       V = EVI->getOperand(0);
2332       if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; }))
2333         return false;
2334     }
2335 
2336     PN = dyn_cast<PHINode>(V);
2337     if (!PN)
2338       return false;
2339   }
2340 
2341   if (PN && PN->getParent() != BB)
2342     return false;
2343 
2344   auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) {
2345     const BitCastInst *BC = dyn_cast<BitCastInst>(Inst);
2346     if (BC && BC->hasOneUse())
2347       Inst = BC->user_back();
2348 
2349     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
2350       return II->getIntrinsicID() == Intrinsic::lifetime_end;
2351     return false;
2352   };
2353 
2354   // Make sure there are no instructions between the first instruction
2355   // and return.
2356   const Instruction *BI = BB->getFirstNonPHI();
2357   // Skip over debug and the bitcast.
2358   while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI ||
2359          isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI))
2360     BI = BI->getNextNode();
2361   if (BI != RetI)
2362     return false;
2363 
2364   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
2365   /// call.
2366   const Function *F = BB->getParent();
2367   SmallVector<BasicBlock*, 4> TailCallBBs;
2368   if (PN) {
2369     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
2370       // Look through bitcasts.
2371       Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts();
2372       CallInst *CI = dyn_cast<CallInst>(IncomingVal);
2373       BasicBlock *PredBB = PN->getIncomingBlock(I);
2374       // Make sure the phi value is indeed produced by the tail call.
2375       if (CI && CI->hasOneUse() && CI->getParent() == PredBB &&
2376           TLI->mayBeEmittedAsTailCall(CI) &&
2377           attributesPermitTailCall(F, CI, RetI, *TLI))
2378         TailCallBBs.push_back(PredBB);
2379     }
2380   } else {
2381     SmallPtrSet<BasicBlock*, 4> VisitedBBs;
2382     for (BasicBlock *Pred : predecessors(BB)) {
2383       if (!VisitedBBs.insert(Pred).second)
2384         continue;
2385       if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) {
2386         CallInst *CI = dyn_cast<CallInst>(I);
2387         if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
2388             attributesPermitTailCall(F, CI, RetI, *TLI))
2389           TailCallBBs.push_back(Pred);
2390       }
2391     }
2392   }
2393 
2394   bool Changed = false;
2395   for (auto const &TailCallBB : TailCallBBs) {
2396     // Make sure the call instruction is followed by an unconditional branch to
2397     // the return block.
2398     BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator());
2399     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
2400       continue;
2401 
2402     // Duplicate the return into TailCallBB.
2403     (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB);
2404     assert(!VerifyBFIUpdates ||
2405            BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB));
2406     BFI->setBlockFreq(
2407         BB,
2408         (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency());
2409     ModifiedDT = Changed = true;
2410     ++NumRetsDup;
2411   }
2412 
2413   // If we eliminated all predecessors of the block, delete the block now.
2414   if (Changed && !BB->hasAddressTaken() && pred_empty(BB))
2415     BB->eraseFromParent();
2416 
2417   return Changed;
2418 }
2419 
2420 //===----------------------------------------------------------------------===//
2421 // Memory Optimization
2422 //===----------------------------------------------------------------------===//
2423 
2424 namespace {
2425 
2426 /// This is an extended version of TargetLowering::AddrMode
2427 /// which holds actual Value*'s for register values.
2428 struct ExtAddrMode : public TargetLowering::AddrMode {
2429   Value *BaseReg = nullptr;
2430   Value *ScaledReg = nullptr;
2431   Value *OriginalValue = nullptr;
2432   bool InBounds = true;
2433 
2434   enum FieldName {
2435     NoField        = 0x00,
2436     BaseRegField   = 0x01,
2437     BaseGVField    = 0x02,
2438     BaseOffsField  = 0x04,
2439     ScaledRegField = 0x08,
2440     ScaleField     = 0x10,
2441     MultipleFields = 0xff
2442   };
2443 
2444 
2445   ExtAddrMode() = default;
2446 
2447   void print(raw_ostream &OS) const;
2448   void dump() const;
2449 
2450   FieldName compare(const ExtAddrMode &other) {
2451     // First check that the types are the same on each field, as differing types
2452     // is something we can't cope with later on.
2453     if (BaseReg && other.BaseReg &&
2454         BaseReg->getType() != other.BaseReg->getType())
2455       return MultipleFields;
2456     if (BaseGV && other.BaseGV &&
2457         BaseGV->getType() != other.BaseGV->getType())
2458       return MultipleFields;
2459     if (ScaledReg && other.ScaledReg &&
2460         ScaledReg->getType() != other.ScaledReg->getType())
2461       return MultipleFields;
2462 
2463     // Conservatively reject 'inbounds' mismatches.
2464     if (InBounds != other.InBounds)
2465       return MultipleFields;
2466 
2467     // Check each field to see if it differs.
2468     unsigned Result = NoField;
2469     if (BaseReg != other.BaseReg)
2470       Result |= BaseRegField;
2471     if (BaseGV != other.BaseGV)
2472       Result |= BaseGVField;
2473     if (BaseOffs != other.BaseOffs)
2474       Result |= BaseOffsField;
2475     if (ScaledReg != other.ScaledReg)
2476       Result |= ScaledRegField;
2477     // Don't count 0 as being a different scale, because that actually means
2478     // unscaled (which will already be counted by having no ScaledReg).
2479     if (Scale && other.Scale && Scale != other.Scale)
2480       Result |= ScaleField;
2481 
2482     if (countPopulation(Result) > 1)
2483       return MultipleFields;
2484     else
2485       return static_cast<FieldName>(Result);
2486   }
2487 
2488   // An AddrMode is trivial if it involves no calculation i.e. it is just a base
2489   // with no offset.
2490   bool isTrivial() {
2491     // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
2492     // trivial if at most one of these terms is nonzero, except that BaseGV and
2493     // BaseReg both being zero actually means a null pointer value, which we
2494     // consider to be 'non-zero' here.
2495     return !BaseOffs && !Scale && !(BaseGV && BaseReg);
2496   }
2497 
2498   Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
2499     switch (Field) {
2500     default:
2501       return nullptr;
2502     case BaseRegField:
2503       return BaseReg;
2504     case BaseGVField:
2505       return BaseGV;
2506     case ScaledRegField:
2507       return ScaledReg;
2508     case BaseOffsField:
2509       return ConstantInt::get(IntPtrTy, BaseOffs);
2510     }
2511   }
2512 
2513   void SetCombinedField(FieldName Field, Value *V,
2514                         const SmallVectorImpl<ExtAddrMode> &AddrModes) {
2515     switch (Field) {
2516     default:
2517       llvm_unreachable("Unhandled fields are expected to be rejected earlier");
2518       break;
2519     case ExtAddrMode::BaseRegField:
2520       BaseReg = V;
2521       break;
2522     case ExtAddrMode::BaseGVField:
2523       // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
2524       // in the BaseReg field.
2525       assert(BaseReg == nullptr);
2526       BaseReg = V;
2527       BaseGV = nullptr;
2528       break;
2529     case ExtAddrMode::ScaledRegField:
2530       ScaledReg = V;
2531       // If we have a mix of scaled and unscaled addrmodes then we want scale
2532       // to be the scale and not zero.
2533       if (!Scale)
2534         for (const ExtAddrMode &AM : AddrModes)
2535           if (AM.Scale) {
2536             Scale = AM.Scale;
2537             break;
2538           }
2539       break;
2540     case ExtAddrMode::BaseOffsField:
2541       // The offset is no longer a constant, so it goes in ScaledReg with a
2542       // scale of 1.
2543       assert(ScaledReg == nullptr);
2544       ScaledReg = V;
2545       Scale = 1;
2546       BaseOffs = 0;
2547       break;
2548     }
2549   }
2550 };
2551 
2552 } // end anonymous namespace
2553 
2554 #ifndef NDEBUG
2555 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2556   AM.print(OS);
2557   return OS;
2558 }
2559 #endif
2560 
2561 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2562 void ExtAddrMode::print(raw_ostream &OS) const {
2563   bool NeedPlus = false;
2564   OS << "[";
2565   if (InBounds)
2566     OS << "inbounds ";
2567   if (BaseGV) {
2568     OS << (NeedPlus ? " + " : "")
2569        << "GV:";
2570     BaseGV->printAsOperand(OS, /*PrintType=*/false);
2571     NeedPlus = true;
2572   }
2573 
2574   if (BaseOffs) {
2575     OS << (NeedPlus ? " + " : "")
2576        << BaseOffs;
2577     NeedPlus = true;
2578   }
2579 
2580   if (BaseReg) {
2581     OS << (NeedPlus ? " + " : "")
2582        << "Base:";
2583     BaseReg->printAsOperand(OS, /*PrintType=*/false);
2584     NeedPlus = true;
2585   }
2586   if (Scale) {
2587     OS << (NeedPlus ? " + " : "")
2588        << Scale << "*";
2589     ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2590   }
2591 
2592   OS << ']';
2593 }
2594 
2595 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2596   print(dbgs());
2597   dbgs() << '\n';
2598 }
2599 #endif
2600 
2601 namespace {
2602 
2603 /// This class provides transaction based operation on the IR.
2604 /// Every change made through this class is recorded in the internal state and
2605 /// can be undone (rollback) until commit is called.
2606 /// CGP does not check if instructions could be speculatively executed when
2607 /// moved. Preserving the original location would pessimize the debugging
2608 /// experience, as well as negatively impact the quality of sample PGO.
2609 class TypePromotionTransaction {
2610   /// This represents the common interface of the individual transaction.
2611   /// Each class implements the logic for doing one specific modification on
2612   /// the IR via the TypePromotionTransaction.
2613   class TypePromotionAction {
2614   protected:
2615     /// The Instruction modified.
2616     Instruction *Inst;
2617 
2618   public:
2619     /// Constructor of the action.
2620     /// The constructor performs the related action on the IR.
2621     TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2622 
2623     virtual ~TypePromotionAction() = default;
2624 
2625     /// Undo the modification done by this action.
2626     /// When this method is called, the IR must be in the same state as it was
2627     /// before this action was applied.
2628     /// \pre Undoing the action works if and only if the IR is in the exact same
2629     /// state as it was directly after this action was applied.
2630     virtual void undo() = 0;
2631 
2632     /// Advocate every change made by this action.
2633     /// When the results on the IR of the action are to be kept, it is important
2634     /// to call this function, otherwise hidden information may be kept forever.
2635     virtual void commit() {
2636       // Nothing to be done, this action is not doing anything.
2637     }
2638   };
2639 
2640   /// Utility to remember the position of an instruction.
2641   class InsertionHandler {
2642     /// Position of an instruction.
2643     /// Either an instruction:
2644     /// - Is the first in a basic block: BB is used.
2645     /// - Has a previous instruction: PrevInst is used.
2646     union {
2647       Instruction *PrevInst;
2648       BasicBlock *BB;
2649     } Point;
2650 
2651     /// Remember whether or not the instruction had a previous instruction.
2652     bool HasPrevInstruction;
2653 
2654   public:
2655     /// Record the position of \p Inst.
2656     InsertionHandler(Instruction *Inst) {
2657       BasicBlock::iterator It = Inst->getIterator();
2658       HasPrevInstruction = (It != (Inst->getParent()->begin()));
2659       if (HasPrevInstruction)
2660         Point.PrevInst = &*--It;
2661       else
2662         Point.BB = Inst->getParent();
2663     }
2664 
2665     /// Insert \p Inst at the recorded position.
2666     void insert(Instruction *Inst) {
2667       if (HasPrevInstruction) {
2668         if (Inst->getParent())
2669           Inst->removeFromParent();
2670         Inst->insertAfter(Point.PrevInst);
2671       } else {
2672         Instruction *Position = &*Point.BB->getFirstInsertionPt();
2673         if (Inst->getParent())
2674           Inst->moveBefore(Position);
2675         else
2676           Inst->insertBefore(Position);
2677       }
2678     }
2679   };
2680 
2681   /// Move an instruction before another.
2682   class InstructionMoveBefore : public TypePromotionAction {
2683     /// Original position of the instruction.
2684     InsertionHandler Position;
2685 
2686   public:
2687     /// Move \p Inst before \p Before.
2688     InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2689         : TypePromotionAction(Inst), Position(Inst) {
2690       LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
2691                         << "\n");
2692       Inst->moveBefore(Before);
2693     }
2694 
2695     /// Move the instruction back to its original position.
2696     void undo() override {
2697       LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2698       Position.insert(Inst);
2699     }
2700   };
2701 
2702   /// Set the operand of an instruction with a new value.
2703   class OperandSetter : public TypePromotionAction {
2704     /// Original operand of the instruction.
2705     Value *Origin;
2706 
2707     /// Index of the modified instruction.
2708     unsigned Idx;
2709 
2710   public:
2711     /// Set \p Idx operand of \p Inst with \p NewVal.
2712     OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2713         : TypePromotionAction(Inst), Idx(Idx) {
2714       LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2715                         << "for:" << *Inst << "\n"
2716                         << "with:" << *NewVal << "\n");
2717       Origin = Inst->getOperand(Idx);
2718       Inst->setOperand(Idx, NewVal);
2719     }
2720 
2721     /// Restore the original value of the instruction.
2722     void undo() override {
2723       LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2724                         << "for: " << *Inst << "\n"
2725                         << "with: " << *Origin << "\n");
2726       Inst->setOperand(Idx, Origin);
2727     }
2728   };
2729 
2730   /// Hide the operands of an instruction.
2731   /// Do as if this instruction was not using any of its operands.
2732   class OperandsHider : public TypePromotionAction {
2733     /// The list of original operands.
2734     SmallVector<Value *, 4> OriginalValues;
2735 
2736   public:
2737     /// Remove \p Inst from the uses of the operands of \p Inst.
2738     OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2739       LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2740       unsigned NumOpnds = Inst->getNumOperands();
2741       OriginalValues.reserve(NumOpnds);
2742       for (unsigned It = 0; It < NumOpnds; ++It) {
2743         // Save the current operand.
2744         Value *Val = Inst->getOperand(It);
2745         OriginalValues.push_back(Val);
2746         // Set a dummy one.
2747         // We could use OperandSetter here, but that would imply an overhead
2748         // that we are not willing to pay.
2749         Inst->setOperand(It, UndefValue::get(Val->getType()));
2750       }
2751     }
2752 
2753     /// Restore the original list of uses.
2754     void undo() override {
2755       LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2756       for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2757         Inst->setOperand(It, OriginalValues[It]);
2758     }
2759   };
2760 
2761   /// Build a truncate instruction.
2762   class TruncBuilder : public TypePromotionAction {
2763     Value *Val;
2764 
2765   public:
2766     /// Build a truncate instruction of \p Opnd producing a \p Ty
2767     /// result.
2768     /// trunc Opnd to Ty.
2769     TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2770       IRBuilder<> Builder(Opnd);
2771       Builder.SetCurrentDebugLocation(DebugLoc());
2772       Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2773       LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2774     }
2775 
2776     /// Get the built value.
2777     Value *getBuiltValue() { return Val; }
2778 
2779     /// Remove the built instruction.
2780     void undo() override {
2781       LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2782       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2783         IVal->eraseFromParent();
2784     }
2785   };
2786 
2787   /// Build a sign extension instruction.
2788   class SExtBuilder : public TypePromotionAction {
2789     Value *Val;
2790 
2791   public:
2792     /// Build a sign extension instruction of \p Opnd producing a \p Ty
2793     /// result.
2794     /// sext Opnd to Ty.
2795     SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2796         : TypePromotionAction(InsertPt) {
2797       IRBuilder<> Builder(InsertPt);
2798       Val = Builder.CreateSExt(Opnd, Ty, "promoted");
2799       LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
2800     }
2801 
2802     /// Get the built value.
2803     Value *getBuiltValue() { return Val; }
2804 
2805     /// Remove the built instruction.
2806     void undo() override {
2807       LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
2808       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2809         IVal->eraseFromParent();
2810     }
2811   };
2812 
2813   /// Build a zero extension instruction.
2814   class ZExtBuilder : public TypePromotionAction {
2815     Value *Val;
2816 
2817   public:
2818     /// Build a zero extension instruction of \p Opnd producing a \p Ty
2819     /// result.
2820     /// zext Opnd to Ty.
2821     ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2822         : TypePromotionAction(InsertPt) {
2823       IRBuilder<> Builder(InsertPt);
2824       Builder.SetCurrentDebugLocation(DebugLoc());
2825       Val = Builder.CreateZExt(Opnd, Ty, "promoted");
2826       LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
2827     }
2828 
2829     /// Get the built value.
2830     Value *getBuiltValue() { return Val; }
2831 
2832     /// Remove the built instruction.
2833     void undo() override {
2834       LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
2835       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2836         IVal->eraseFromParent();
2837     }
2838   };
2839 
2840   /// Mutate an instruction to another type.
2841   class TypeMutator : public TypePromotionAction {
2842     /// Record the original type.
2843     Type *OrigTy;
2844 
2845   public:
2846     /// Mutate the type of \p Inst into \p NewTy.
2847     TypeMutator(Instruction *Inst, Type *NewTy)
2848         : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
2849       LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
2850                         << "\n");
2851       Inst->mutateType(NewTy);
2852     }
2853 
2854     /// Mutate the instruction back to its original type.
2855     void undo() override {
2856       LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
2857                         << "\n");
2858       Inst->mutateType(OrigTy);
2859     }
2860   };
2861 
2862   /// Replace the uses of an instruction by another instruction.
2863   class UsesReplacer : public TypePromotionAction {
2864     /// Helper structure to keep track of the replaced uses.
2865     struct InstructionAndIdx {
2866       /// The instruction using the instruction.
2867       Instruction *Inst;
2868 
2869       /// The index where this instruction is used for Inst.
2870       unsigned Idx;
2871 
2872       InstructionAndIdx(Instruction *Inst, unsigned Idx)
2873           : Inst(Inst), Idx(Idx) {}
2874     };
2875 
2876     /// Keep track of the original uses (pair Instruction, Index).
2877     SmallVector<InstructionAndIdx, 4> OriginalUses;
2878     /// Keep track of the debug users.
2879     SmallVector<DbgValueInst *, 1> DbgValues;
2880 
2881     /// Keep track of the new value so that we can undo it by replacing
2882     /// instances of the new value with the original value.
2883     Value *New;
2884 
2885     using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
2886 
2887   public:
2888     /// Replace all the use of \p Inst by \p New.
2889     UsesReplacer(Instruction *Inst, Value *New)
2890         : TypePromotionAction(Inst), New(New) {
2891       LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
2892                         << "\n");
2893       // Record the original uses.
2894       for (Use &U : Inst->uses()) {
2895         Instruction *UserI = cast<Instruction>(U.getUser());
2896         OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
2897       }
2898       // Record the debug uses separately. They are not in the instruction's
2899       // use list, but they are replaced by RAUW.
2900       findDbgValues(DbgValues, Inst);
2901 
2902       // Now, we can replace the uses.
2903       Inst->replaceAllUsesWith(New);
2904     }
2905 
2906     /// Reassign the original uses of Inst to Inst.
2907     void undo() override {
2908       LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
2909       for (InstructionAndIdx &Use : OriginalUses)
2910         Use.Inst->setOperand(Use.Idx, Inst);
2911       // RAUW has replaced all original uses with references to the new value,
2912       // including the debug uses. Since we are undoing the replacements,
2913       // the original debug uses must also be reinstated to maintain the
2914       // correctness and utility of debug value instructions.
2915       for (auto *DVI : DbgValues)
2916         DVI->replaceVariableLocationOp(New, Inst);
2917     }
2918   };
2919 
2920   /// Remove an instruction from the IR.
2921   class InstructionRemover : public TypePromotionAction {
2922     /// Original position of the instruction.
2923     InsertionHandler Inserter;
2924 
2925     /// Helper structure to hide all the link to the instruction. In other
2926     /// words, this helps to do as if the instruction was removed.
2927     OperandsHider Hider;
2928 
2929     /// Keep track of the uses replaced, if any.
2930     UsesReplacer *Replacer = nullptr;
2931 
2932     /// Keep track of instructions removed.
2933     SetOfInstrs &RemovedInsts;
2934 
2935   public:
2936     /// Remove all reference of \p Inst and optionally replace all its
2937     /// uses with New.
2938     /// \p RemovedInsts Keep track of the instructions removed by this Action.
2939     /// \pre If !Inst->use_empty(), then New != nullptr
2940     InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
2941                        Value *New = nullptr)
2942         : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
2943           RemovedInsts(RemovedInsts) {
2944       if (New)
2945         Replacer = new UsesReplacer(Inst, New);
2946       LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
2947       RemovedInsts.insert(Inst);
2948       /// The instructions removed here will be freed after completing
2949       /// optimizeBlock() for all blocks as we need to keep track of the
2950       /// removed instructions during promotion.
2951       Inst->removeFromParent();
2952     }
2953 
2954     ~InstructionRemover() override { delete Replacer; }
2955 
2956     /// Resurrect the instruction and reassign it to the proper uses if
2957     /// new value was provided when build this action.
2958     void undo() override {
2959       LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
2960       Inserter.insert(Inst);
2961       if (Replacer)
2962         Replacer->undo();
2963       Hider.undo();
2964       RemovedInsts.erase(Inst);
2965     }
2966   };
2967 
2968 public:
2969   /// Restoration point.
2970   /// The restoration point is a pointer to an action instead of an iterator
2971   /// because the iterator may be invalidated but not the pointer.
2972   using ConstRestorationPt = const TypePromotionAction *;
2973 
2974   TypePromotionTransaction(SetOfInstrs &RemovedInsts)
2975       : RemovedInsts(RemovedInsts) {}
2976 
2977   /// Advocate every changes made in that transaction. Return true if any change
2978   /// happen.
2979   bool commit();
2980 
2981   /// Undo all the changes made after the given point.
2982   void rollback(ConstRestorationPt Point);
2983 
2984   /// Get the current restoration point.
2985   ConstRestorationPt getRestorationPoint() const;
2986 
2987   /// \name API for IR modification with state keeping to support rollback.
2988   /// @{
2989   /// Same as Instruction::setOperand.
2990   void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
2991 
2992   /// Same as Instruction::eraseFromParent.
2993   void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
2994 
2995   /// Same as Value::replaceAllUsesWith.
2996   void replaceAllUsesWith(Instruction *Inst, Value *New);
2997 
2998   /// Same as Value::mutateType.
2999   void mutateType(Instruction *Inst, Type *NewTy);
3000 
3001   /// Same as IRBuilder::createTrunc.
3002   Value *createTrunc(Instruction *Opnd, Type *Ty);
3003 
3004   /// Same as IRBuilder::createSExt.
3005   Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
3006 
3007   /// Same as IRBuilder::createZExt.
3008   Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
3009 
3010   /// Same as Instruction::moveBefore.
3011   void moveBefore(Instruction *Inst, Instruction *Before);
3012   /// @}
3013 
3014 private:
3015   /// The ordered list of actions made so far.
3016   SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
3017 
3018   using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
3019 
3020   SetOfInstrs &RemovedInsts;
3021 };
3022 
3023 } // end anonymous namespace
3024 
3025 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
3026                                           Value *NewVal) {
3027   Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>(
3028       Inst, Idx, NewVal));
3029 }
3030 
3031 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
3032                                                 Value *NewVal) {
3033   Actions.push_back(
3034       std::make_unique<TypePromotionTransaction::InstructionRemover>(
3035           Inst, RemovedInsts, NewVal));
3036 }
3037 
3038 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
3039                                                   Value *New) {
3040   Actions.push_back(
3041       std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
3042 }
3043 
3044 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
3045   Actions.push_back(
3046       std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
3047 }
3048 
3049 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
3050                                              Type *Ty) {
3051   std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
3052   Value *Val = Ptr->getBuiltValue();
3053   Actions.push_back(std::move(Ptr));
3054   return Val;
3055 }
3056 
3057 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
3058                                             Value *Opnd, Type *Ty) {
3059   std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
3060   Value *Val = Ptr->getBuiltValue();
3061   Actions.push_back(std::move(Ptr));
3062   return Val;
3063 }
3064 
3065 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
3066                                             Value *Opnd, Type *Ty) {
3067   std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
3068   Value *Val = Ptr->getBuiltValue();
3069   Actions.push_back(std::move(Ptr));
3070   return Val;
3071 }
3072 
3073 void TypePromotionTransaction::moveBefore(Instruction *Inst,
3074                                           Instruction *Before) {
3075   Actions.push_back(
3076       std::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
3077           Inst, Before));
3078 }
3079 
3080 TypePromotionTransaction::ConstRestorationPt
3081 TypePromotionTransaction::getRestorationPoint() const {
3082   return !Actions.empty() ? Actions.back().get() : nullptr;
3083 }
3084 
3085 bool TypePromotionTransaction::commit() {
3086   for (std::unique_ptr<TypePromotionAction> &Action : Actions)
3087     Action->commit();
3088   bool Modified = !Actions.empty();
3089   Actions.clear();
3090   return Modified;
3091 }
3092 
3093 void TypePromotionTransaction::rollback(
3094     TypePromotionTransaction::ConstRestorationPt Point) {
3095   while (!Actions.empty() && Point != Actions.back().get()) {
3096     std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
3097     Curr->undo();
3098   }
3099 }
3100 
3101 namespace {
3102 
3103 /// A helper class for matching addressing modes.
3104 ///
3105 /// This encapsulates the logic for matching the target-legal addressing modes.
3106 class AddressingModeMatcher {
3107   SmallVectorImpl<Instruction*> &AddrModeInsts;
3108   const TargetLowering &TLI;
3109   const TargetRegisterInfo &TRI;
3110   const DataLayout &DL;
3111   const LoopInfo &LI;
3112   const std::function<const DominatorTree &()> getDTFn;
3113 
3114   /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
3115   /// the memory instruction that we're computing this address for.
3116   Type *AccessTy;
3117   unsigned AddrSpace;
3118   Instruction *MemoryInst;
3119 
3120   /// This is the addressing mode that we're building up. This is
3121   /// part of the return value of this addressing mode matching stuff.
3122   ExtAddrMode &AddrMode;
3123 
3124   /// The instructions inserted by other CodeGenPrepare optimizations.
3125   const SetOfInstrs &InsertedInsts;
3126 
3127   /// A map from the instructions to their type before promotion.
3128   InstrToOrigTy &PromotedInsts;
3129 
3130   /// The ongoing transaction where every action should be registered.
3131   TypePromotionTransaction &TPT;
3132 
3133   // A GEP which has too large offset to be folded into the addressing mode.
3134   std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;
3135 
3136   /// This is set to true when we should not do profitability checks.
3137   /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
3138   bool IgnoreProfitability;
3139 
3140   /// True if we are optimizing for size.
3141   bool OptSize;
3142 
3143   ProfileSummaryInfo *PSI;
3144   BlockFrequencyInfo *BFI;
3145 
3146   AddressingModeMatcher(
3147       SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
3148       const TargetRegisterInfo &TRI, const LoopInfo &LI,
3149       const std::function<const DominatorTree &()> getDTFn,
3150       Type *AT, unsigned AS, Instruction *MI, ExtAddrMode &AM,
3151       const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
3152       TypePromotionTransaction &TPT,
3153       std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
3154       bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
3155       : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
3156         DL(MI->getModule()->getDataLayout()), LI(LI), getDTFn(getDTFn),
3157         AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM),
3158         InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT),
3159         LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) {
3160     IgnoreProfitability = false;
3161   }
3162 
3163 public:
3164   /// Find the maximal addressing mode that a load/store of V can fold,
3165   /// give an access type of AccessTy.  This returns a list of involved
3166   /// instructions in AddrModeInsts.
3167   /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
3168   /// optimizations.
3169   /// \p PromotedInsts maps the instructions to their type before promotion.
3170   /// \p The ongoing transaction where every action should be registered.
3171   static ExtAddrMode
3172   Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
3173         SmallVectorImpl<Instruction *> &AddrModeInsts,
3174         const TargetLowering &TLI, const LoopInfo &LI,
3175         const std::function<const DominatorTree &()> getDTFn,
3176         const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts,
3177         InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
3178         std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
3179         bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
3180     ExtAddrMode Result;
3181 
3182     bool Success = AddressingModeMatcher(
3183         AddrModeInsts, TLI, TRI, LI, getDTFn, AccessTy, AS, MemoryInst, Result,
3184         InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI,
3185         BFI).matchAddr(V, 0);
3186     (void)Success; assert(Success && "Couldn't select *anything*?");
3187     return Result;
3188   }
3189 
3190 private:
3191   bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
3192   bool matchAddr(Value *Addr, unsigned Depth);
3193   bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth,
3194                           bool *MovedAway = nullptr);
3195   bool isProfitableToFoldIntoAddressingMode(Instruction *I,
3196                                             ExtAddrMode &AMBefore,
3197                                             ExtAddrMode &AMAfter);
3198   bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
3199   bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
3200                              Value *PromotedOperand) const;
3201 };
3202 
3203 class PhiNodeSet;
3204 
3205 /// An iterator for PhiNodeSet.
3206 class PhiNodeSetIterator {
3207   PhiNodeSet * const Set;
3208   size_t CurrentIndex = 0;
3209 
3210 public:
3211   /// The constructor. Start should point to either a valid element, or be equal
3212   /// to the size of the underlying SmallVector of the PhiNodeSet.
3213   PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start);
3214   PHINode * operator*() const;
3215   PhiNodeSetIterator& operator++();
3216   bool operator==(const PhiNodeSetIterator &RHS) const;
3217   bool operator!=(const PhiNodeSetIterator &RHS) const;
3218 };
3219 
3220 /// Keeps a set of PHINodes.
3221 ///
3222 /// This is a minimal set implementation for a specific use case:
3223 /// It is very fast when there are very few elements, but also provides good
3224 /// performance when there are many. It is similar to SmallPtrSet, but also
3225 /// provides iteration by insertion order, which is deterministic and stable
3226 /// across runs. It is also similar to SmallSetVector, but provides removing
3227 /// elements in O(1) time. This is achieved by not actually removing the element
3228 /// from the underlying vector, so comes at the cost of using more memory, but
3229 /// that is fine, since PhiNodeSets are used as short lived objects.
3230 class PhiNodeSet {
3231   friend class PhiNodeSetIterator;
3232 
3233   using MapType = SmallDenseMap<PHINode *, size_t, 32>;
3234   using iterator =  PhiNodeSetIterator;
3235 
3236   /// Keeps the elements in the order of their insertion in the underlying
3237   /// vector. To achieve constant time removal, it never deletes any element.
3238   SmallVector<PHINode *, 32> NodeList;
3239 
3240   /// Keeps the elements in the underlying set implementation. This (and not the
3241   /// NodeList defined above) is the source of truth on whether an element
3242   /// is actually in the collection.
3243   MapType NodeMap;
3244 
3245   /// Points to the first valid (not deleted) element when the set is not empty
3246   /// and the value is not zero. Equals to the size of the underlying vector
3247   /// when the set is empty. When the value is 0, as in the beginning, the
3248   /// first element may or may not be valid.
3249   size_t FirstValidElement = 0;
3250 
3251 public:
3252   /// Inserts a new element to the collection.
3253   /// \returns true if the element is actually added, i.e. was not in the
3254   /// collection before the operation.
3255   bool insert(PHINode *Ptr) {
3256     if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) {
3257       NodeList.push_back(Ptr);
3258       return true;
3259     }
3260     return false;
3261   }
3262 
3263   /// Removes the element from the collection.
3264   /// \returns whether the element is actually removed, i.e. was in the
3265   /// collection before the operation.
3266   bool erase(PHINode *Ptr) {
3267     if (NodeMap.erase(Ptr)) {
3268       SkipRemovedElements(FirstValidElement);
3269       return true;
3270     }
3271     return false;
3272   }
3273 
3274   /// Removes all elements and clears the collection.
3275   void clear() {
3276     NodeMap.clear();
3277     NodeList.clear();
3278     FirstValidElement = 0;
3279   }
3280 
3281   /// \returns an iterator that will iterate the elements in the order of
3282   /// insertion.
3283   iterator begin() {
3284     if (FirstValidElement == 0)
3285       SkipRemovedElements(FirstValidElement);
3286     return PhiNodeSetIterator(this, FirstValidElement);
3287   }
3288 
3289   /// \returns an iterator that points to the end of the collection.
3290   iterator end() { return PhiNodeSetIterator(this, NodeList.size()); }
3291 
3292   /// Returns the number of elements in the collection.
3293   size_t size() const {
3294     return NodeMap.size();
3295   }
3296 
3297   /// \returns 1 if the given element is in the collection, and 0 if otherwise.
3298   size_t count(PHINode *Ptr) const {
3299     return NodeMap.count(Ptr);
3300   }
3301 
3302 private:
3303   /// Updates the CurrentIndex so that it will point to a valid element.
3304   ///
3305   /// If the element of NodeList at CurrentIndex is valid, it does not
3306   /// change it. If there are no more valid elements, it updates CurrentIndex
3307   /// to point to the end of the NodeList.
3308   void SkipRemovedElements(size_t &CurrentIndex) {
3309     while (CurrentIndex < NodeList.size()) {
3310       auto it = NodeMap.find(NodeList[CurrentIndex]);
3311       // If the element has been deleted and added again later, NodeMap will
3312       // point to a different index, so CurrentIndex will still be invalid.
3313       if (it != NodeMap.end() && it->second == CurrentIndex)
3314         break;
3315       ++CurrentIndex;
3316     }
3317   }
3318 };
3319 
3320 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start)
3321     : Set(Set), CurrentIndex(Start) {}
3322 
3323 PHINode * PhiNodeSetIterator::operator*() const {
3324   assert(CurrentIndex < Set->NodeList.size() &&
3325          "PhiNodeSet access out of range");
3326   return Set->NodeList[CurrentIndex];
3327 }
3328 
3329 PhiNodeSetIterator& PhiNodeSetIterator::operator++() {
3330   assert(CurrentIndex < Set->NodeList.size() &&
3331          "PhiNodeSet access out of range");
3332   ++CurrentIndex;
3333   Set->SkipRemovedElements(CurrentIndex);
3334   return *this;
3335 }
3336 
3337 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const {
3338   return CurrentIndex == RHS.CurrentIndex;
3339 }
3340 
3341 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const {
3342   return !((*this) == RHS);
3343 }
3344 
3345 /// Keep track of simplification of Phi nodes.
3346 /// Accept the set of all phi nodes and erase phi node from this set
3347 /// if it is simplified.
3348 class SimplificationTracker {
3349   DenseMap<Value *, Value *> Storage;
3350   const SimplifyQuery &SQ;
3351   // Tracks newly created Phi nodes. The elements are iterated by insertion
3352   // order.
3353   PhiNodeSet AllPhiNodes;
3354   // Tracks newly created Select nodes.
3355   SmallPtrSet<SelectInst *, 32> AllSelectNodes;
3356 
3357 public:
3358   SimplificationTracker(const SimplifyQuery &sq)
3359       : SQ(sq) {}
3360 
3361   Value *Get(Value *V) {
3362     do {
3363       auto SV = Storage.find(V);
3364       if (SV == Storage.end())
3365         return V;
3366       V = SV->second;
3367     } while (true);
3368   }
3369 
3370   Value *Simplify(Value *Val) {
3371     SmallVector<Value *, 32> WorkList;
3372     SmallPtrSet<Value *, 32> Visited;
3373     WorkList.push_back(Val);
3374     while (!WorkList.empty()) {
3375       auto *P = WorkList.pop_back_val();
3376       if (!Visited.insert(P).second)
3377         continue;
3378       if (auto *PI = dyn_cast<Instruction>(P))
3379         if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) {
3380           for (auto *U : PI->users())
3381             WorkList.push_back(cast<Value>(U));
3382           Put(PI, V);
3383           PI->replaceAllUsesWith(V);
3384           if (auto *PHI = dyn_cast<PHINode>(PI))
3385             AllPhiNodes.erase(PHI);
3386           if (auto *Select = dyn_cast<SelectInst>(PI))
3387             AllSelectNodes.erase(Select);
3388           PI->eraseFromParent();
3389         }
3390     }
3391     return Get(Val);
3392   }
3393 
3394   void Put(Value *From, Value *To) {
3395     Storage.insert({ From, To });
3396   }
3397 
3398   void ReplacePhi(PHINode *From, PHINode *To) {
3399     Value* OldReplacement = Get(From);
3400     while (OldReplacement != From) {
3401       From = To;
3402       To = dyn_cast<PHINode>(OldReplacement);
3403       OldReplacement = Get(From);
3404     }
3405     assert(To && Get(To) == To && "Replacement PHI node is already replaced.");
3406     Put(From, To);
3407     From->replaceAllUsesWith(To);
3408     AllPhiNodes.erase(From);
3409     From->eraseFromParent();
3410   }
3411 
3412   PhiNodeSet& newPhiNodes() { return AllPhiNodes; }
3413 
3414   void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }
3415 
3416   void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }
3417 
3418   unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }
3419 
3420   unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }
3421 
3422   void destroyNewNodes(Type *CommonType) {
3423     // For safe erasing, replace the uses with dummy value first.
3424     auto *Dummy = UndefValue::get(CommonType);
3425     for (auto *I : AllPhiNodes) {
3426       I->replaceAllUsesWith(Dummy);
3427       I->eraseFromParent();
3428     }
3429     AllPhiNodes.clear();
3430     for (auto *I : AllSelectNodes) {
3431       I->replaceAllUsesWith(Dummy);
3432       I->eraseFromParent();
3433     }
3434     AllSelectNodes.clear();
3435   }
3436 };
3437 
3438 /// A helper class for combining addressing modes.
3439 class AddressingModeCombiner {
3440   typedef DenseMap<Value *, Value *> FoldAddrToValueMapping;
3441   typedef std::pair<PHINode *, PHINode *> PHIPair;
3442 
3443 private:
3444   /// The addressing modes we've collected.
3445   SmallVector<ExtAddrMode, 16> AddrModes;
3446 
3447   /// The field in which the AddrModes differ, when we have more than one.
3448   ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
3449 
3450   /// Are the AddrModes that we have all just equal to their original values?
3451   bool AllAddrModesTrivial = true;
3452 
3453   /// Common Type for all different fields in addressing modes.
3454   Type *CommonType = nullptr;
3455 
3456   /// SimplifyQuery for simplifyInstruction utility.
3457   const SimplifyQuery &SQ;
3458 
3459   /// Original Address.
3460   Value *Original;
3461 
3462 public:
3463   AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue)
3464       : SQ(_SQ), Original(OriginalValue) {}
3465 
3466   /// Get the combined AddrMode
3467   const ExtAddrMode &getAddrMode() const {
3468     return AddrModes[0];
3469   }
3470 
3471   /// Add a new AddrMode if it's compatible with the AddrModes we already
3472   /// have.
3473   /// \return True iff we succeeded in doing so.
3474   bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
3475     // Take note of if we have any non-trivial AddrModes, as we need to detect
3476     // when all AddrModes are trivial as then we would introduce a phi or select
3477     // which just duplicates what's already there.
3478     AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
3479 
3480     // If this is the first addrmode then everything is fine.
3481     if (AddrModes.empty()) {
3482       AddrModes.emplace_back(NewAddrMode);
3483       return true;
3484     }
3485 
3486     // Figure out how different this is from the other address modes, which we
3487     // can do just by comparing against the first one given that we only care
3488     // about the cumulative difference.
3489     ExtAddrMode::FieldName ThisDifferentField =
3490       AddrModes[0].compare(NewAddrMode);
3491     if (DifferentField == ExtAddrMode::NoField)
3492       DifferentField = ThisDifferentField;
3493     else if (DifferentField != ThisDifferentField)
3494       DifferentField = ExtAddrMode::MultipleFields;
3495 
3496     // If NewAddrMode differs in more than one dimension we cannot handle it.
3497     bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
3498 
3499     // If Scale Field is different then we reject.
3500     CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
3501 
3502     // We also must reject the case when base offset is different and
3503     // scale reg is not null, we cannot handle this case due to merge of
3504     // different offsets will be used as ScaleReg.
3505     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
3506                               !NewAddrMode.ScaledReg);
3507 
3508     // We also must reject the case when GV is different and BaseReg installed
3509     // due to we want to use base reg as a merge of GV values.
3510     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
3511                               !NewAddrMode.HasBaseReg);
3512 
3513     // Even if NewAddMode is the same we still need to collect it due to
3514     // original value is different. And later we will need all original values
3515     // as anchors during finding the common Phi node.
3516     if (CanHandle)
3517       AddrModes.emplace_back(NewAddrMode);
3518     else
3519       AddrModes.clear();
3520 
3521     return CanHandle;
3522   }
3523 
3524   /// Combine the addressing modes we've collected into a single
3525   /// addressing mode.
3526   /// \return True iff we successfully combined them or we only had one so
3527   /// didn't need to combine them anyway.
3528   bool combineAddrModes() {
3529     // If we have no AddrModes then they can't be combined.
3530     if (AddrModes.size() == 0)
3531       return false;
3532 
3533     // A single AddrMode can trivially be combined.
3534     if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
3535       return true;
3536 
3537     // If the AddrModes we collected are all just equal to the value they are
3538     // derived from then combining them wouldn't do anything useful.
3539     if (AllAddrModesTrivial)
3540       return false;
3541 
3542     if (!addrModeCombiningAllowed())
3543       return false;
3544 
3545     // Build a map between <original value, basic block where we saw it> to
3546     // value of base register.
3547     // Bail out if there is no common type.
3548     FoldAddrToValueMapping Map;
3549     if (!initializeMap(Map))
3550       return false;
3551 
3552     Value *CommonValue = findCommon(Map);
3553     if (CommonValue)
3554       AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
3555     return CommonValue != nullptr;
3556   }
3557 
3558 private:
3559   /// Initialize Map with anchor values. For address seen
3560   /// we set the value of different field saw in this address.
3561   /// At the same time we find a common type for different field we will
3562   /// use to create new Phi/Select nodes. Keep it in CommonType field.
3563   /// Return false if there is no common type found.
3564   bool initializeMap(FoldAddrToValueMapping &Map) {
3565     // Keep track of keys where the value is null. We will need to replace it
3566     // with constant null when we know the common type.
3567     SmallVector<Value *, 2> NullValue;
3568     Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
3569     for (auto &AM : AddrModes) {
3570       Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
3571       if (DV) {
3572         auto *Type = DV->getType();
3573         if (CommonType && CommonType != Type)
3574           return false;
3575         CommonType = Type;
3576         Map[AM.OriginalValue] = DV;
3577       } else {
3578         NullValue.push_back(AM.OriginalValue);
3579       }
3580     }
3581     assert(CommonType && "At least one non-null value must be!");
3582     for (auto *V : NullValue)
3583       Map[V] = Constant::getNullValue(CommonType);
3584     return true;
3585   }
3586 
3587   /// We have mapping between value A and other value B where B was a field in
3588   /// addressing mode represented by A. Also we have an original value C
3589   /// representing an address we start with. Traversing from C through phi and
3590   /// selects we ended up with A's in a map. This utility function tries to find
3591   /// a value V which is a field in addressing mode C and traversing through phi
3592   /// nodes and selects we will end up in corresponded values B in a map.
3593   /// The utility will create a new Phi/Selects if needed.
3594   // The simple example looks as follows:
3595   // BB1:
3596   //   p1 = b1 + 40
3597   //   br cond BB2, BB3
3598   // BB2:
3599   //   p2 = b2 + 40
3600   //   br BB3
3601   // BB3:
3602   //   p = phi [p1, BB1], [p2, BB2]
3603   //   v = load p
3604   // Map is
3605   //   p1 -> b1
3606   //   p2 -> b2
3607   // Request is
3608   //   p -> ?
3609   // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
3610   Value *findCommon(FoldAddrToValueMapping &Map) {
3611     // Tracks the simplification of newly created phi nodes. The reason we use
3612     // this mapping is because we will add new created Phi nodes in AddrToBase.
3613     // Simplification of Phi nodes is recursive, so some Phi node may
3614     // be simplified after we added it to AddrToBase. In reality this
3615     // simplification is possible only if original phi/selects were not
3616     // simplified yet.
3617     // Using this mapping we can find the current value in AddrToBase.
3618     SimplificationTracker ST(SQ);
3619 
3620     // First step, DFS to create PHI nodes for all intermediate blocks.
3621     // Also fill traverse order for the second step.
3622     SmallVector<Value *, 32> TraverseOrder;
3623     InsertPlaceholders(Map, TraverseOrder, ST);
3624 
3625     // Second Step, fill new nodes by merged values and simplify if possible.
3626     FillPlaceholders(Map, TraverseOrder, ST);
3627 
3628     if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
3629       ST.destroyNewNodes(CommonType);
3630       return nullptr;
3631     }
3632 
3633     // Now we'd like to match New Phi nodes to existed ones.
3634     unsigned PhiNotMatchedCount = 0;
3635     if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
3636       ST.destroyNewNodes(CommonType);
3637       return nullptr;
3638     }
3639 
3640     auto *Result = ST.Get(Map.find(Original)->second);
3641     if (Result) {
3642       NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
3643       NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
3644     }
3645     return Result;
3646   }
3647 
3648   /// Try to match PHI node to Candidate.
3649   /// Matcher tracks the matched Phi nodes.
3650   bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
3651                     SmallSetVector<PHIPair, 8> &Matcher,
3652                     PhiNodeSet &PhiNodesToMatch) {
3653     SmallVector<PHIPair, 8> WorkList;
3654     Matcher.insert({ PHI, Candidate });
3655     SmallSet<PHINode *, 8> MatchedPHIs;
3656     MatchedPHIs.insert(PHI);
3657     WorkList.push_back({ PHI, Candidate });
3658     SmallSet<PHIPair, 8> Visited;
3659     while (!WorkList.empty()) {
3660       auto Item = WorkList.pop_back_val();
3661       if (!Visited.insert(Item).second)
3662         continue;
3663       // We iterate over all incoming values to Phi to compare them.
3664       // If values are different and both of them Phi and the first one is a
3665       // Phi we added (subject to match) and both of them is in the same basic
3666       // block then we can match our pair if values match. So we state that
3667       // these values match and add it to work list to verify that.
3668       for (auto B : Item.first->blocks()) {
3669         Value *FirstValue = Item.first->getIncomingValueForBlock(B);
3670         Value *SecondValue = Item.second->getIncomingValueForBlock(B);
3671         if (FirstValue == SecondValue)
3672           continue;
3673 
3674         PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
3675         PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
3676 
3677         // One of them is not Phi or
3678         // The first one is not Phi node from the set we'd like to match or
3679         // Phi nodes from different basic blocks then
3680         // we will not be able to match.
3681         if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
3682             FirstPhi->getParent() != SecondPhi->getParent())
3683           return false;
3684 
3685         // If we already matched them then continue.
3686         if (Matcher.count({ FirstPhi, SecondPhi }))
3687           continue;
3688         // So the values are different and does not match. So we need them to
3689         // match. (But we register no more than one match per PHI node, so that
3690         // we won't later try to replace them twice.)
3691         if (MatchedPHIs.insert(FirstPhi).second)
3692           Matcher.insert({ FirstPhi, SecondPhi });
3693         // But me must check it.
3694         WorkList.push_back({ FirstPhi, SecondPhi });
3695       }
3696     }
3697     return true;
3698   }
3699 
3700   /// For the given set of PHI nodes (in the SimplificationTracker) try
3701   /// to find their equivalents.
3702   /// Returns false if this matching fails and creation of new Phi is disabled.
3703   bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
3704                    unsigned &PhiNotMatchedCount) {
3705     // Matched and PhiNodesToMatch iterate their elements in a deterministic
3706     // order, so the replacements (ReplacePhi) are also done in a deterministic
3707     // order.
3708     SmallSetVector<PHIPair, 8> Matched;
3709     SmallPtrSet<PHINode *, 8> WillNotMatch;
3710     PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes();
3711     while (PhiNodesToMatch.size()) {
3712       PHINode *PHI = *PhiNodesToMatch.begin();
3713 
3714       // Add us, if no Phi nodes in the basic block we do not match.
3715       WillNotMatch.clear();
3716       WillNotMatch.insert(PHI);
3717 
3718       // Traverse all Phis until we found equivalent or fail to do that.
3719       bool IsMatched = false;
3720       for (auto &P : PHI->getParent()->phis()) {
3721         // Skip new Phi nodes.
3722         if (PhiNodesToMatch.count(&P))
3723           continue;
3724         if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
3725           break;
3726         // If it does not match, collect all Phi nodes from matcher.
3727         // if we end up with no match, them all these Phi nodes will not match
3728         // later.
3729         for (auto M : Matched)
3730           WillNotMatch.insert(M.first);
3731         Matched.clear();
3732       }
3733       if (IsMatched) {
3734         // Replace all matched values and erase them.
3735         for (auto MV : Matched)
3736           ST.ReplacePhi(MV.first, MV.second);
3737         Matched.clear();
3738         continue;
3739       }
3740       // If we are not allowed to create new nodes then bail out.
3741       if (!AllowNewPhiNodes)
3742         return false;
3743       // Just remove all seen values in matcher. They will not match anything.
3744       PhiNotMatchedCount += WillNotMatch.size();
3745       for (auto *P : WillNotMatch)
3746         PhiNodesToMatch.erase(P);
3747     }
3748     return true;
3749   }
3750   /// Fill the placeholders with values from predecessors and simplify them.
3751   void FillPlaceholders(FoldAddrToValueMapping &Map,
3752                         SmallVectorImpl<Value *> &TraverseOrder,
3753                         SimplificationTracker &ST) {
3754     while (!TraverseOrder.empty()) {
3755       Value *Current = TraverseOrder.pop_back_val();
3756       assert(Map.find(Current) != Map.end() && "No node to fill!!!");
3757       Value *V = Map[Current];
3758 
3759       if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
3760         // CurrentValue also must be Select.
3761         auto *CurrentSelect = cast<SelectInst>(Current);
3762         auto *TrueValue = CurrentSelect->getTrueValue();
3763         assert(Map.find(TrueValue) != Map.end() && "No True Value!");
3764         Select->setTrueValue(ST.Get(Map[TrueValue]));
3765         auto *FalseValue = CurrentSelect->getFalseValue();
3766         assert(Map.find(FalseValue) != Map.end() && "No False Value!");
3767         Select->setFalseValue(ST.Get(Map[FalseValue]));
3768       } else {
3769         // Must be a Phi node then.
3770         auto *PHI = cast<PHINode>(V);
3771         // Fill the Phi node with values from predecessors.
3772         for (auto *B : predecessors(PHI->getParent())) {
3773           Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B);
3774           assert(Map.find(PV) != Map.end() && "No predecessor Value!");
3775           PHI->addIncoming(ST.Get(Map[PV]), B);
3776         }
3777       }
3778       Map[Current] = ST.Simplify(V);
3779     }
3780   }
3781 
3782   /// Starting from original value recursively iterates over def-use chain up to
3783   /// known ending values represented in a map. For each traversed phi/select
3784   /// inserts a placeholder Phi or Select.
3785   /// Reports all new created Phi/Select nodes by adding them to set.
3786   /// Also reports and order in what values have been traversed.
3787   void InsertPlaceholders(FoldAddrToValueMapping &Map,
3788                           SmallVectorImpl<Value *> &TraverseOrder,
3789                           SimplificationTracker &ST) {
3790     SmallVector<Value *, 32> Worklist;
3791     assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&
3792            "Address must be a Phi or Select node");
3793     auto *Dummy = UndefValue::get(CommonType);
3794     Worklist.push_back(Original);
3795     while (!Worklist.empty()) {
3796       Value *Current = Worklist.pop_back_val();
3797       // if it is already visited or it is an ending value then skip it.
3798       if (Map.find(Current) != Map.end())
3799         continue;
3800       TraverseOrder.push_back(Current);
3801 
3802       // CurrentValue must be a Phi node or select. All others must be covered
3803       // by anchors.
3804       if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) {
3805         // Is it OK to get metadata from OrigSelect?!
3806         // Create a Select placeholder with dummy value.
3807         SelectInst *Select = SelectInst::Create(
3808             CurrentSelect->getCondition(), Dummy, Dummy,
3809             CurrentSelect->getName(), CurrentSelect, CurrentSelect);
3810         Map[Current] = Select;
3811         ST.insertNewSelect(Select);
3812         // We are interested in True and False values.
3813         Worklist.push_back(CurrentSelect->getTrueValue());
3814         Worklist.push_back(CurrentSelect->getFalseValue());
3815       } else {
3816         // It must be a Phi node then.
3817         PHINode *CurrentPhi = cast<PHINode>(Current);
3818         unsigned PredCount = CurrentPhi->getNumIncomingValues();
3819         PHINode *PHI =
3820             PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi);
3821         Map[Current] = PHI;
3822         ST.insertNewPhi(PHI);
3823         append_range(Worklist, CurrentPhi->incoming_values());
3824       }
3825     }
3826   }
3827 
3828   bool addrModeCombiningAllowed() {
3829     if (DisableComplexAddrModes)
3830       return false;
3831     switch (DifferentField) {
3832     default:
3833       return false;
3834     case ExtAddrMode::BaseRegField:
3835       return AddrSinkCombineBaseReg;
3836     case ExtAddrMode::BaseGVField:
3837       return AddrSinkCombineBaseGV;
3838     case ExtAddrMode::BaseOffsField:
3839       return AddrSinkCombineBaseOffs;
3840     case ExtAddrMode::ScaledRegField:
3841       return AddrSinkCombineScaledReg;
3842     }
3843   }
3844 };
3845 } // end anonymous namespace
3846 
3847 /// Try adding ScaleReg*Scale to the current addressing mode.
3848 /// Return true and update AddrMode if this addr mode is legal for the target,
3849 /// false if not.
3850 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
3851                                              unsigned Depth) {
3852   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3853   // mode.  Just process that directly.
3854   if (Scale == 1)
3855     return matchAddr(ScaleReg, Depth);
3856 
3857   // If the scale is 0, it takes nothing to add this.
3858   if (Scale == 0)
3859     return true;
3860 
3861   // If we already have a scale of this value, we can add to it, otherwise, we
3862   // need an available scale field.
3863   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
3864     return false;
3865 
3866   ExtAddrMode TestAddrMode = AddrMode;
3867 
3868   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
3869   // [A+B + A*7] -> [B+A*8].
3870   TestAddrMode.Scale += Scale;
3871   TestAddrMode.ScaledReg = ScaleReg;
3872 
3873   // If the new address isn't legal, bail out.
3874   if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
3875     return false;
3876 
3877   // It was legal, so commit it.
3878   AddrMode = TestAddrMode;
3879 
3880   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
3881   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
3882   // X*Scale + C*Scale to addr mode. If we found available IV increment, do not
3883   // go any further: we can reuse it and cannot eliminate it.
3884   ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
3885   if (isa<Instruction>(ScaleReg) && // not a constant expr.
3886       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) &&
3887       !isIVIncrement(ScaleReg, &LI) && CI->getValue().isSignedIntN(64)) {
3888     TestAddrMode.InBounds = false;
3889     TestAddrMode.ScaledReg = AddLHS;
3890     TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale;
3891 
3892     // If this addressing mode is legal, commit it and remember that we folded
3893     // this instruction.
3894     if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
3895       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
3896       AddrMode = TestAddrMode;
3897       return true;
3898     }
3899     // Restore status quo.
3900     TestAddrMode = AddrMode;
3901   }
3902 
3903   // If this is an add recurrence with a constant step, return the increment
3904   // instruction and the canonicalized step.
3905   auto GetConstantStep = [this](const Value * V)
3906       ->Optional<std::pair<Instruction *, APInt> > {
3907     auto *PN = dyn_cast<PHINode>(V);
3908     if (!PN)
3909       return None;
3910     auto IVInc = getIVIncrement(PN, &LI);
3911     if (!IVInc)
3912       return None;
3913     // TODO: The result of the intrinsics above is two-compliment. However when
3914     // IV inc is expressed as add or sub, iv.next is potentially a poison value.
3915     // If it has nuw or nsw flags, we need to make sure that these flags are
3916     // inferrable at the point of memory instruction. Otherwise we are replacing
3917     // well-defined two-compliment computation with poison. Currently, to avoid
3918     // potentially complex analysis needed to prove this, we reject such cases.
3919     if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first))
3920       if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap())
3921         return None;
3922     if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second))
3923       return std::make_pair(IVInc->first, ConstantStep->getValue());
3924     return None;
3925   };
3926 
3927   // Try to account for the following special case:
3928   // 1. ScaleReg is an inductive variable;
3929   // 2. We use it with non-zero offset;
3930   // 3. IV's increment is available at the point of memory instruction.
3931   //
3932   // In this case, we may reuse the IV increment instead of the IV Phi to
3933   // achieve the following advantages:
3934   // 1. If IV step matches the offset, we will have no need in the offset;
3935   // 2. Even if they don't match, we will reduce the overlap of living IV
3936   //    and IV increment, that will potentially lead to better register
3937   //    assignment.
3938   if (AddrMode.BaseOffs) {
3939     if (auto IVStep = GetConstantStep(ScaleReg)) {
3940       Instruction *IVInc = IVStep->first;
3941       // The following assert is important to ensure a lack of infinite loops.
3942       // This transforms is (intentionally) the inverse of the one just above.
3943       // If they don't agree on the definition of an increment, we'd alternate
3944       // back and forth indefinitely.
3945       assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep");
3946       APInt Step = IVStep->second;
3947       APInt Offset = Step * AddrMode.Scale;
3948       if (Offset.isSignedIntN(64)) {
3949         TestAddrMode.InBounds = false;
3950         TestAddrMode.ScaledReg = IVInc;
3951         TestAddrMode.BaseOffs -= Offset.getLimitedValue();
3952         // If this addressing mode is legal, commit it..
3953         // (Note that we defer the (expensive) domtree base legality check
3954         // to the very last possible point.)
3955         if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) &&
3956             getDTFn().dominates(IVInc, MemoryInst)) {
3957           AddrModeInsts.push_back(cast<Instruction>(IVInc));
3958           AddrMode = TestAddrMode;
3959           return true;
3960         }
3961         // Restore status quo.
3962         TestAddrMode = AddrMode;
3963       }
3964     }
3965   }
3966 
3967   // Otherwise, just return what we have.
3968   return true;
3969 }
3970 
3971 /// This is a little filter, which returns true if an addressing computation
3972 /// involving I might be folded into a load/store accessing it.
3973 /// This doesn't need to be perfect, but needs to accept at least
3974 /// the set of instructions that MatchOperationAddr can.
3975 static bool MightBeFoldableInst(Instruction *I) {
3976   switch (I->getOpcode()) {
3977   case Instruction::BitCast:
3978   case Instruction::AddrSpaceCast:
3979     // Don't touch identity bitcasts.
3980     if (I->getType() == I->getOperand(0)->getType())
3981       return false;
3982     return I->getType()->isIntOrPtrTy();
3983   case Instruction::PtrToInt:
3984     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3985     return true;
3986   case Instruction::IntToPtr:
3987     // We know the input is intptr_t, so this is foldable.
3988     return true;
3989   case Instruction::Add:
3990     return true;
3991   case Instruction::Mul:
3992   case Instruction::Shl:
3993     // Can only handle X*C and X << C.
3994     return isa<ConstantInt>(I->getOperand(1));
3995   case Instruction::GetElementPtr:
3996     return true;
3997   default:
3998     return false;
3999   }
4000 }
4001 
4002 /// Check whether or not \p Val is a legal instruction for \p TLI.
4003 /// \note \p Val is assumed to be the product of some type promotion.
4004 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
4005 /// to be legal, as the non-promoted value would have had the same state.
4006 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
4007                                        const DataLayout &DL, Value *Val) {
4008   Instruction *PromotedInst = dyn_cast<Instruction>(Val);
4009   if (!PromotedInst)
4010     return false;
4011   int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
4012   // If the ISDOpcode is undefined, it was undefined before the promotion.
4013   if (!ISDOpcode)
4014     return true;
4015   // Otherwise, check if the promoted instruction is legal or not.
4016   return TLI.isOperationLegalOrCustom(
4017       ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
4018 }
4019 
4020 namespace {
4021 
4022 /// Hepler class to perform type promotion.
4023 class TypePromotionHelper {
4024   /// Utility function to add a promoted instruction \p ExtOpnd to
4025   /// \p PromotedInsts and record the type of extension we have seen.
4026   static void addPromotedInst(InstrToOrigTy &PromotedInsts,
4027                               Instruction *ExtOpnd,
4028                               bool IsSExt) {
4029     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
4030     InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd);
4031     if (It != PromotedInsts.end()) {
4032       // If the new extension is same as original, the information in
4033       // PromotedInsts[ExtOpnd] is still correct.
4034       if (It->second.getInt() == ExtTy)
4035         return;
4036 
4037       // Now the new extension is different from old extension, we make
4038       // the type information invalid by setting extension type to
4039       // BothExtension.
4040       ExtTy = BothExtension;
4041     }
4042     PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy);
4043   }
4044 
4045   /// Utility function to query the original type of instruction \p Opnd
4046   /// with a matched extension type. If the extension doesn't match, we
4047   /// cannot use the information we had on the original type.
4048   /// BothExtension doesn't match any extension type.
4049   static const Type *getOrigType(const InstrToOrigTy &PromotedInsts,
4050                                  Instruction *Opnd,
4051                                  bool IsSExt) {
4052     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
4053     InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
4054     if (It != PromotedInsts.end() && It->second.getInt() == ExtTy)
4055       return It->second.getPointer();
4056     return nullptr;
4057   }
4058 
4059   /// Utility function to check whether or not a sign or zero extension
4060   /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
4061   /// either using the operands of \p Inst or promoting \p Inst.
4062   /// The type of the extension is defined by \p IsSExt.
4063   /// In other words, check if:
4064   /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
4065   /// #1 Promotion applies:
4066   /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
4067   /// #2 Operand reuses:
4068   /// ext opnd1 to ConsideredExtType.
4069   /// \p PromotedInsts maps the instructions to their type before promotion.
4070   static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
4071                             const InstrToOrigTy &PromotedInsts, bool IsSExt);
4072 
4073   /// Utility function to determine if \p OpIdx should be promoted when
4074   /// promoting \p Inst.
4075   static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
4076     return !(isa<SelectInst>(Inst) && OpIdx == 0);
4077   }
4078 
4079   /// Utility function to promote the operand of \p Ext when this
4080   /// operand is a promotable trunc or sext or zext.
4081   /// \p PromotedInsts maps the instructions to their type before promotion.
4082   /// \p CreatedInstsCost[out] contains the cost of all instructions
4083   /// created to promote the operand of Ext.
4084   /// Newly added extensions are inserted in \p Exts.
4085   /// Newly added truncates are inserted in \p Truncs.
4086   /// Should never be called directly.
4087   /// \return The promoted value which is used instead of Ext.
4088   static Value *promoteOperandForTruncAndAnyExt(
4089       Instruction *Ext, TypePromotionTransaction &TPT,
4090       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4091       SmallVectorImpl<Instruction *> *Exts,
4092       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
4093 
4094   /// Utility function to promote the operand of \p Ext when this
4095   /// operand is promotable and is not a supported trunc or sext.
4096   /// \p PromotedInsts maps the instructions to their type before promotion.
4097   /// \p CreatedInstsCost[out] contains the cost of all the instructions
4098   /// created to promote the operand of Ext.
4099   /// Newly added extensions are inserted in \p Exts.
4100   /// Newly added truncates are inserted in \p Truncs.
4101   /// Should never be called directly.
4102   /// \return The promoted value which is used instead of Ext.
4103   static Value *promoteOperandForOther(Instruction *Ext,
4104                                        TypePromotionTransaction &TPT,
4105                                        InstrToOrigTy &PromotedInsts,
4106                                        unsigned &CreatedInstsCost,
4107                                        SmallVectorImpl<Instruction *> *Exts,
4108                                        SmallVectorImpl<Instruction *> *Truncs,
4109                                        const TargetLowering &TLI, bool IsSExt);
4110 
4111   /// \see promoteOperandForOther.
4112   static Value *signExtendOperandForOther(
4113       Instruction *Ext, TypePromotionTransaction &TPT,
4114       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4115       SmallVectorImpl<Instruction *> *Exts,
4116       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4117     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
4118                                   Exts, Truncs, TLI, true);
4119   }
4120 
4121   /// \see promoteOperandForOther.
4122   static Value *zeroExtendOperandForOther(
4123       Instruction *Ext, TypePromotionTransaction &TPT,
4124       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4125       SmallVectorImpl<Instruction *> *Exts,
4126       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4127     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
4128                                   Exts, Truncs, TLI, false);
4129   }
4130 
4131 public:
4132   /// Type for the utility function that promotes the operand of Ext.
4133   using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
4134                             InstrToOrigTy &PromotedInsts,
4135                             unsigned &CreatedInstsCost,
4136                             SmallVectorImpl<Instruction *> *Exts,
4137                             SmallVectorImpl<Instruction *> *Truncs,
4138                             const TargetLowering &TLI);
4139 
4140   /// Given a sign/zero extend instruction \p Ext, return the appropriate
4141   /// action to promote the operand of \p Ext instead of using Ext.
4142   /// \return NULL if no promotable action is possible with the current
4143   /// sign extension.
4144   /// \p InsertedInsts keeps track of all the instructions inserted by the
4145   /// other CodeGenPrepare optimizations. This information is important
4146   /// because we do not want to promote these instructions as CodeGenPrepare
4147   /// will reinsert them later. Thus creating an infinite loop: create/remove.
4148   /// \p PromotedInsts maps the instructions to their type before promotion.
4149   static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
4150                           const TargetLowering &TLI,
4151                           const InstrToOrigTy &PromotedInsts);
4152 };
4153 
4154 } // end anonymous namespace
4155 
4156 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
4157                                         Type *ConsideredExtType,
4158                                         const InstrToOrigTy &PromotedInsts,
4159                                         bool IsSExt) {
4160   // The promotion helper does not know how to deal with vector types yet.
4161   // To be able to fix that, we would need to fix the places where we
4162   // statically extend, e.g., constants and such.
4163   if (Inst->getType()->isVectorTy())
4164     return false;
4165 
4166   // We can always get through zext.
4167   if (isa<ZExtInst>(Inst))
4168     return true;
4169 
4170   // sext(sext) is ok too.
4171   if (IsSExt && isa<SExtInst>(Inst))
4172     return true;
4173 
4174   // We can get through binary operator, if it is legal. In other words, the
4175   // binary operator must have a nuw or nsw flag.
4176   if (const auto *BinOp = dyn_cast<BinaryOperator>(Inst))
4177     if (isa<OverflowingBinaryOperator>(BinOp) &&
4178         ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
4179          (IsSExt && BinOp->hasNoSignedWrap())))
4180       return true;
4181 
4182   // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
4183   if ((Inst->getOpcode() == Instruction::And ||
4184        Inst->getOpcode() == Instruction::Or))
4185     return true;
4186 
4187   // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
4188   if (Inst->getOpcode() == Instruction::Xor) {
4189     // Make sure it is not a NOT.
4190     if (const auto *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)))
4191       if (!Cst->getValue().isAllOnes())
4192         return true;
4193   }
4194 
4195   // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
4196   // It may change a poisoned value into a regular value, like
4197   //     zext i32 (shrl i8 %val, 12)  -->  shrl i32 (zext i8 %val), 12
4198   //          poisoned value                    regular value
4199   // It should be OK since undef covers valid value.
4200   if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
4201     return true;
4202 
4203   // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
4204   // It may change a poisoned value into a regular value, like
4205   //     zext i32 (shl i8 %val, 12)  -->  shl i32 (zext i8 %val), 12
4206   //          poisoned value                    regular value
4207   // It should be OK since undef covers valid value.
4208   if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
4209     const auto *ExtInst = cast<const Instruction>(*Inst->user_begin());
4210     if (ExtInst->hasOneUse()) {
4211       const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin());
4212       if (AndInst && AndInst->getOpcode() == Instruction::And) {
4213         const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
4214         if (Cst &&
4215             Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
4216           return true;
4217       }
4218     }
4219   }
4220 
4221   // Check if we can do the following simplification.
4222   // ext(trunc(opnd)) --> ext(opnd)
4223   if (!isa<TruncInst>(Inst))
4224     return false;
4225 
4226   Value *OpndVal = Inst->getOperand(0);
4227   // Check if we can use this operand in the extension.
4228   // If the type is larger than the result type of the extension, we cannot.
4229   if (!OpndVal->getType()->isIntegerTy() ||
4230       OpndVal->getType()->getIntegerBitWidth() >
4231           ConsideredExtType->getIntegerBitWidth())
4232     return false;
4233 
4234   // If the operand of the truncate is not an instruction, we will not have
4235   // any information on the dropped bits.
4236   // (Actually we could for constant but it is not worth the extra logic).
4237   Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
4238   if (!Opnd)
4239     return false;
4240 
4241   // Check if the source of the type is narrow enough.
4242   // I.e., check that trunc just drops extended bits of the same kind of
4243   // the extension.
4244   // #1 get the type of the operand and check the kind of the extended bits.
4245   const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt);
4246   if (OpndType)
4247     ;
4248   else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
4249     OpndType = Opnd->getOperand(0)->getType();
4250   else
4251     return false;
4252 
4253   // #2 check that the truncate just drops extended bits.
4254   return Inst->getType()->getIntegerBitWidth() >=
4255          OpndType->getIntegerBitWidth();
4256 }
4257 
4258 TypePromotionHelper::Action TypePromotionHelper::getAction(
4259     Instruction *Ext, const SetOfInstrs &InsertedInsts,
4260     const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
4261   assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
4262          "Unexpected instruction type");
4263   Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
4264   Type *ExtTy = Ext->getType();
4265   bool IsSExt = isa<SExtInst>(Ext);
4266   // If the operand of the extension is not an instruction, we cannot
4267   // get through.
4268   // If it, check we can get through.
4269   if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
4270     return nullptr;
4271 
4272   // Do not promote if the operand has been added by codegenprepare.
4273   // Otherwise, it means we are undoing an optimization that is likely to be
4274   // redone, thus causing potential infinite loop.
4275   if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
4276     return nullptr;
4277 
4278   // SExt or Trunc instructions.
4279   // Return the related handler.
4280   if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
4281       isa<ZExtInst>(ExtOpnd))
4282     return promoteOperandForTruncAndAnyExt;
4283 
4284   // Regular instruction.
4285   // Abort early if we will have to insert non-free instructions.
4286   if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
4287     return nullptr;
4288   return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
4289 }
4290 
4291 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
4292     Instruction *SExt, TypePromotionTransaction &TPT,
4293     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4294     SmallVectorImpl<Instruction *> *Exts,
4295     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4296   // By construction, the operand of SExt is an instruction. Otherwise we cannot
4297   // get through it and this method should not be called.
4298   Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
4299   Value *ExtVal = SExt;
4300   bool HasMergedNonFreeExt = false;
4301   if (isa<ZExtInst>(SExtOpnd)) {
4302     // Replace s|zext(zext(opnd))
4303     // => zext(opnd).
4304     HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
4305     Value *ZExt =
4306         TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
4307     TPT.replaceAllUsesWith(SExt, ZExt);
4308     TPT.eraseInstruction(SExt);
4309     ExtVal = ZExt;
4310   } else {
4311     // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
4312     // => z|sext(opnd).
4313     TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
4314   }
4315   CreatedInstsCost = 0;
4316 
4317   // Remove dead code.
4318   if (SExtOpnd->use_empty())
4319     TPT.eraseInstruction(SExtOpnd);
4320 
4321   // Check if the extension is still needed.
4322   Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
4323   if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
4324     if (ExtInst) {
4325       if (Exts)
4326         Exts->push_back(ExtInst);
4327       CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
4328     }
4329     return ExtVal;
4330   }
4331 
4332   // At this point we have: ext ty opnd to ty.
4333   // Reassign the uses of ExtInst to the opnd and remove ExtInst.
4334   Value *NextVal = ExtInst->getOperand(0);
4335   TPT.eraseInstruction(ExtInst, NextVal);
4336   return NextVal;
4337 }
4338 
4339 Value *TypePromotionHelper::promoteOperandForOther(
4340     Instruction *Ext, TypePromotionTransaction &TPT,
4341     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4342     SmallVectorImpl<Instruction *> *Exts,
4343     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
4344     bool IsSExt) {
4345   // By construction, the operand of Ext is an instruction. Otherwise we cannot
4346   // get through it and this method should not be called.
4347   Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
4348   CreatedInstsCost = 0;
4349   if (!ExtOpnd->hasOneUse()) {
4350     // ExtOpnd will be promoted.
4351     // All its uses, but Ext, will need to use a truncated value of the
4352     // promoted version.
4353     // Create the truncate now.
4354     Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
4355     if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
4356       // Insert it just after the definition.
4357       ITrunc->moveAfter(ExtOpnd);
4358       if (Truncs)
4359         Truncs->push_back(ITrunc);
4360     }
4361 
4362     TPT.replaceAllUsesWith(ExtOpnd, Trunc);
4363     // Restore the operand of Ext (which has been replaced by the previous call
4364     // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
4365     TPT.setOperand(Ext, 0, ExtOpnd);
4366   }
4367 
4368   // Get through the Instruction:
4369   // 1. Update its type.
4370   // 2. Replace the uses of Ext by Inst.
4371   // 3. Extend each operand that needs to be extended.
4372 
4373   // Remember the original type of the instruction before promotion.
4374   // This is useful to know that the high bits are sign extended bits.
4375   addPromotedInst(PromotedInsts, ExtOpnd, IsSExt);
4376   // Step #1.
4377   TPT.mutateType(ExtOpnd, Ext->getType());
4378   // Step #2.
4379   TPT.replaceAllUsesWith(Ext, ExtOpnd);
4380   // Step #3.
4381   Instruction *ExtForOpnd = Ext;
4382 
4383   LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
4384   for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
4385        ++OpIdx) {
4386     LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
4387     if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
4388         !shouldExtOperand(ExtOpnd, OpIdx)) {
4389       LLVM_DEBUG(dbgs() << "No need to propagate\n");
4390       continue;
4391     }
4392     // Check if we can statically extend the operand.
4393     Value *Opnd = ExtOpnd->getOperand(OpIdx);
4394     if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
4395       LLVM_DEBUG(dbgs() << "Statically extend\n");
4396       unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
4397       APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
4398                             : Cst->getValue().zext(BitWidth);
4399       TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
4400       continue;
4401     }
4402     // UndefValue are typed, so we have to statically sign extend them.
4403     if (isa<UndefValue>(Opnd)) {
4404       LLVM_DEBUG(dbgs() << "Statically extend\n");
4405       TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
4406       continue;
4407     }
4408 
4409     // Otherwise we have to explicitly sign extend the operand.
4410     // Check if Ext was reused to extend an operand.
4411     if (!ExtForOpnd) {
4412       // If yes, create a new one.
4413       LLVM_DEBUG(dbgs() << "More operands to ext\n");
4414       Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
4415         : TPT.createZExt(Ext, Opnd, Ext->getType());
4416       if (!isa<Instruction>(ValForExtOpnd)) {
4417         TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
4418         continue;
4419       }
4420       ExtForOpnd = cast<Instruction>(ValForExtOpnd);
4421     }
4422     if (Exts)
4423       Exts->push_back(ExtForOpnd);
4424     TPT.setOperand(ExtForOpnd, 0, Opnd);
4425 
4426     // Move the sign extension before the insertion point.
4427     TPT.moveBefore(ExtForOpnd, ExtOpnd);
4428     TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
4429     CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
4430     // If more sext are required, new instructions will have to be created.
4431     ExtForOpnd = nullptr;
4432   }
4433   if (ExtForOpnd == Ext) {
4434     LLVM_DEBUG(dbgs() << "Extension is useless now\n");
4435     TPT.eraseInstruction(Ext);
4436   }
4437   return ExtOpnd;
4438 }
4439 
4440 /// Check whether or not promoting an instruction to a wider type is profitable.
4441 /// \p NewCost gives the cost of extension instructions created by the
4442 /// promotion.
4443 /// \p OldCost gives the cost of extension instructions before the promotion
4444 /// plus the number of instructions that have been
4445 /// matched in the addressing mode the promotion.
4446 /// \p PromotedOperand is the value that has been promoted.
4447 /// \return True if the promotion is profitable, false otherwise.
4448 bool AddressingModeMatcher::isPromotionProfitable(
4449     unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
4450   LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
4451                     << '\n');
4452   // The cost of the new extensions is greater than the cost of the
4453   // old extension plus what we folded.
4454   // This is not profitable.
4455   if (NewCost > OldCost)
4456     return false;
4457   if (NewCost < OldCost)
4458     return true;
4459   // The promotion is neutral but it may help folding the sign extension in
4460   // loads for instance.
4461   // Check that we did not create an illegal instruction.
4462   return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
4463 }
4464 
4465 /// Given an instruction or constant expr, see if we can fold the operation
4466 /// into the addressing mode. If so, update the addressing mode and return
4467 /// true, otherwise return false without modifying AddrMode.
4468 /// If \p MovedAway is not NULL, it contains the information of whether or
4469 /// not AddrInst has to be folded into the addressing mode on success.
4470 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
4471 /// because it has been moved away.
4472 /// Thus AddrInst must not be added in the matched instructions.
4473 /// This state can happen when AddrInst is a sext, since it may be moved away.
4474 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
4475 /// not be referenced anymore.
4476 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
4477                                                unsigned Depth,
4478                                                bool *MovedAway) {
4479   // Avoid exponential behavior on extremely deep expression trees.
4480   if (Depth >= 5) return false;
4481 
4482   // By default, all matched instructions stay in place.
4483   if (MovedAway)
4484     *MovedAway = false;
4485 
4486   switch (Opcode) {
4487   case Instruction::PtrToInt:
4488     // PtrToInt is always a noop, as we know that the int type is pointer sized.
4489     return matchAddr(AddrInst->getOperand(0), Depth);
4490   case Instruction::IntToPtr: {
4491     auto AS = AddrInst->getType()->getPointerAddressSpace();
4492     auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
4493     // This inttoptr is a no-op if the integer type is pointer sized.
4494     if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
4495       return matchAddr(AddrInst->getOperand(0), Depth);
4496     return false;
4497   }
4498   case Instruction::BitCast:
4499     // BitCast is always a noop, and we can handle it as long as it is
4500     // int->int or pointer->pointer (we don't want int<->fp or something).
4501     if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() &&
4502         // Don't touch identity bitcasts.  These were probably put here by LSR,
4503         // and we don't want to mess around with them.  Assume it knows what it
4504         // is doing.
4505         AddrInst->getOperand(0)->getType() != AddrInst->getType())
4506       return matchAddr(AddrInst->getOperand(0), Depth);
4507     return false;
4508   case Instruction::AddrSpaceCast: {
4509     unsigned SrcAS
4510       = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
4511     unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
4512     if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS))
4513       return matchAddr(AddrInst->getOperand(0), Depth);
4514     return false;
4515   }
4516   case Instruction::Add: {
4517     // Check to see if we can merge in the RHS then the LHS.  If so, we win.
4518     ExtAddrMode BackupAddrMode = AddrMode;
4519     unsigned OldSize = AddrModeInsts.size();
4520     // Start a transaction at this point.
4521     // The LHS may match but not the RHS.
4522     // Therefore, we need a higher level restoration point to undo partially
4523     // matched operation.
4524     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4525         TPT.getRestorationPoint();
4526 
4527     AddrMode.InBounds = false;
4528     if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
4529         matchAddr(AddrInst->getOperand(0), Depth+1))
4530       return true;
4531 
4532     // Restore the old addr mode info.
4533     AddrMode = BackupAddrMode;
4534     AddrModeInsts.resize(OldSize);
4535     TPT.rollback(LastKnownGood);
4536 
4537     // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
4538     if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
4539         matchAddr(AddrInst->getOperand(1), Depth+1))
4540       return true;
4541 
4542     // Otherwise we definitely can't merge the ADD in.
4543     AddrMode = BackupAddrMode;
4544     AddrModeInsts.resize(OldSize);
4545     TPT.rollback(LastKnownGood);
4546     break;
4547   }
4548   //case Instruction::Or:
4549   // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
4550   //break;
4551   case Instruction::Mul:
4552   case Instruction::Shl: {
4553     // Can only handle X*C and X << C.
4554     AddrMode.InBounds = false;
4555     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
4556     if (!RHS || RHS->getBitWidth() > 64)
4557       return false;
4558     int64_t Scale = Opcode == Instruction::Shl
4559                         ? 1LL << RHS->getLimitedValue(RHS->getBitWidth() - 1)
4560                         : RHS->getSExtValue();
4561 
4562     return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
4563   }
4564   case Instruction::GetElementPtr: {
4565     // Scan the GEP.  We check it if it contains constant offsets and at most
4566     // one variable offset.
4567     int VariableOperand = -1;
4568     unsigned VariableScale = 0;
4569 
4570     int64_t ConstantOffset = 0;
4571     gep_type_iterator GTI = gep_type_begin(AddrInst);
4572     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
4573       if (StructType *STy = GTI.getStructTypeOrNull()) {
4574         const StructLayout *SL = DL.getStructLayout(STy);
4575         unsigned Idx =
4576           cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
4577         ConstantOffset += SL->getElementOffset(Idx);
4578       } else {
4579         TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType());
4580         if (TS.isNonZero()) {
4581           // The optimisations below currently only work for fixed offsets.
4582           if (TS.isScalable())
4583             return false;
4584           int64_t TypeSize = TS.getFixedSize();
4585           if (ConstantInt *CI =
4586                   dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
4587             const APInt &CVal = CI->getValue();
4588             if (CVal.getMinSignedBits() <= 64) {
4589               ConstantOffset += CVal.getSExtValue() * TypeSize;
4590               continue;
4591             }
4592           }
4593           // We only allow one variable index at the moment.
4594           if (VariableOperand != -1)
4595             return false;
4596 
4597           // Remember the variable index.
4598           VariableOperand = i;
4599           VariableScale = TypeSize;
4600         }
4601       }
4602     }
4603 
4604     // A common case is for the GEP to only do a constant offset.  In this case,
4605     // just add it to the disp field and check validity.
4606     if (VariableOperand == -1) {
4607       AddrMode.BaseOffs += ConstantOffset;
4608       if (ConstantOffset == 0 ||
4609           TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
4610         // Check to see if we can fold the base pointer in too.
4611         if (matchAddr(AddrInst->getOperand(0), Depth+1)) {
4612           if (!cast<GEPOperator>(AddrInst)->isInBounds())
4613             AddrMode.InBounds = false;
4614           return true;
4615         }
4616       } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
4617                  TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
4618                  ConstantOffset > 0) {
4619         // Record GEPs with non-zero offsets as candidates for splitting in the
4620         // event that the offset cannot fit into the r+i addressing mode.
4621         // Simple and common case that only one GEP is used in calculating the
4622         // address for the memory access.
4623         Value *Base = AddrInst->getOperand(0);
4624         auto *BaseI = dyn_cast<Instruction>(Base);
4625         auto *GEP = cast<GetElementPtrInst>(AddrInst);
4626         if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
4627             (BaseI && !isa<CastInst>(BaseI) &&
4628              !isa<GetElementPtrInst>(BaseI))) {
4629           // Make sure the parent block allows inserting non-PHI instructions
4630           // before the terminator.
4631           BasicBlock *Parent =
4632               BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock();
4633           if (!Parent->getTerminator()->isEHPad())
4634             LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
4635         }
4636       }
4637       AddrMode.BaseOffs -= ConstantOffset;
4638       return false;
4639     }
4640 
4641     // Save the valid addressing mode in case we can't match.
4642     ExtAddrMode BackupAddrMode = AddrMode;
4643     unsigned OldSize = AddrModeInsts.size();
4644 
4645     // See if the scale and offset amount is valid for this target.
4646     AddrMode.BaseOffs += ConstantOffset;
4647     if (!cast<GEPOperator>(AddrInst)->isInBounds())
4648       AddrMode.InBounds = false;
4649 
4650     // Match the base operand of the GEP.
4651     if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
4652       // If it couldn't be matched, just stuff the value in a register.
4653       if (AddrMode.HasBaseReg) {
4654         AddrMode = BackupAddrMode;
4655         AddrModeInsts.resize(OldSize);
4656         return false;
4657       }
4658       AddrMode.HasBaseReg = true;
4659       AddrMode.BaseReg = AddrInst->getOperand(0);
4660     }
4661 
4662     // Match the remaining variable portion of the GEP.
4663     if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
4664                           Depth)) {
4665       // If it couldn't be matched, try stuffing the base into a register
4666       // instead of matching it, and retrying the match of the scale.
4667       AddrMode = BackupAddrMode;
4668       AddrModeInsts.resize(OldSize);
4669       if (AddrMode.HasBaseReg)
4670         return false;
4671       AddrMode.HasBaseReg = true;
4672       AddrMode.BaseReg = AddrInst->getOperand(0);
4673       AddrMode.BaseOffs += ConstantOffset;
4674       if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
4675                             VariableScale, Depth)) {
4676         // If even that didn't work, bail.
4677         AddrMode = BackupAddrMode;
4678         AddrModeInsts.resize(OldSize);
4679         return false;
4680       }
4681     }
4682 
4683     return true;
4684   }
4685   case Instruction::SExt:
4686   case Instruction::ZExt: {
4687     Instruction *Ext = dyn_cast<Instruction>(AddrInst);
4688     if (!Ext)
4689       return false;
4690 
4691     // Try to move this ext out of the way of the addressing mode.
4692     // Ask for a method for doing so.
4693     TypePromotionHelper::Action TPH =
4694         TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
4695     if (!TPH)
4696       return false;
4697 
4698     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4699         TPT.getRestorationPoint();
4700     unsigned CreatedInstsCost = 0;
4701     unsigned ExtCost = !TLI.isExtFree(Ext);
4702     Value *PromotedOperand =
4703         TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
4704     // SExt has been moved away.
4705     // Thus either it will be rematched later in the recursive calls or it is
4706     // gone. Anyway, we must not fold it into the addressing mode at this point.
4707     // E.g.,
4708     // op = add opnd, 1
4709     // idx = ext op
4710     // addr = gep base, idx
4711     // is now:
4712     // promotedOpnd = ext opnd            <- no match here
4713     // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
4714     // addr = gep base, op                <- match
4715     if (MovedAway)
4716       *MovedAway = true;
4717 
4718     assert(PromotedOperand &&
4719            "TypePromotionHelper should have filtered out those cases");
4720 
4721     ExtAddrMode BackupAddrMode = AddrMode;
4722     unsigned OldSize = AddrModeInsts.size();
4723 
4724     if (!matchAddr(PromotedOperand, Depth) ||
4725         // The total of the new cost is equal to the cost of the created
4726         // instructions.
4727         // The total of the old cost is equal to the cost of the extension plus
4728         // what we have saved in the addressing mode.
4729         !isPromotionProfitable(CreatedInstsCost,
4730                                ExtCost + (AddrModeInsts.size() - OldSize),
4731                                PromotedOperand)) {
4732       AddrMode = BackupAddrMode;
4733       AddrModeInsts.resize(OldSize);
4734       LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
4735       TPT.rollback(LastKnownGood);
4736       return false;
4737     }
4738     return true;
4739   }
4740   }
4741   return false;
4742 }
4743 
4744 /// If we can, try to add the value of 'Addr' into the current addressing mode.
4745 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4746 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
4747 /// for the target.
4748 ///
4749 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
4750   // Start a transaction at this point that we will rollback if the matching
4751   // fails.
4752   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4753       TPT.getRestorationPoint();
4754   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
4755     if (CI->getValue().isSignedIntN(64)) {
4756       // Fold in immediates if legal for the target.
4757       AddrMode.BaseOffs += CI->getSExtValue();
4758       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4759         return true;
4760       AddrMode.BaseOffs -= CI->getSExtValue();
4761     }
4762   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
4763     // If this is a global variable, try to fold it into the addressing mode.
4764     if (!AddrMode.BaseGV) {
4765       AddrMode.BaseGV = GV;
4766       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4767         return true;
4768       AddrMode.BaseGV = nullptr;
4769     }
4770   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
4771     ExtAddrMode BackupAddrMode = AddrMode;
4772     unsigned OldSize = AddrModeInsts.size();
4773 
4774     // Check to see if it is possible to fold this operation.
4775     bool MovedAway = false;
4776     if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
4777       // This instruction may have been moved away. If so, there is nothing
4778       // to check here.
4779       if (MovedAway)
4780         return true;
4781       // Okay, it's possible to fold this.  Check to see if it is actually
4782       // *profitable* to do so.  We use a simple cost model to avoid increasing
4783       // register pressure too much.
4784       if (I->hasOneUse() ||
4785           isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
4786         AddrModeInsts.push_back(I);
4787         return true;
4788       }
4789 
4790       // It isn't profitable to do this, roll back.
4791       //cerr << "NOT FOLDING: " << *I;
4792       AddrMode = BackupAddrMode;
4793       AddrModeInsts.resize(OldSize);
4794       TPT.rollback(LastKnownGood);
4795     }
4796   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
4797     if (matchOperationAddr(CE, CE->getOpcode(), Depth))
4798       return true;
4799     TPT.rollback(LastKnownGood);
4800   } else if (isa<ConstantPointerNull>(Addr)) {
4801     // Null pointer gets folded without affecting the addressing mode.
4802     return true;
4803   }
4804 
4805   // Worse case, the target should support [reg] addressing modes. :)
4806   if (!AddrMode.HasBaseReg) {
4807     AddrMode.HasBaseReg = true;
4808     AddrMode.BaseReg = Addr;
4809     // Still check for legality in case the target supports [imm] but not [i+r].
4810     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4811       return true;
4812     AddrMode.HasBaseReg = false;
4813     AddrMode.BaseReg = nullptr;
4814   }
4815 
4816   // If the base register is already taken, see if we can do [r+r].
4817   if (AddrMode.Scale == 0) {
4818     AddrMode.Scale = 1;
4819     AddrMode.ScaledReg = Addr;
4820     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4821       return true;
4822     AddrMode.Scale = 0;
4823     AddrMode.ScaledReg = nullptr;
4824   }
4825   // Couldn't match.
4826   TPT.rollback(LastKnownGood);
4827   return false;
4828 }
4829 
4830 /// Check to see if all uses of OpVal by the specified inline asm call are due
4831 /// to memory operands. If so, return true, otherwise return false.
4832 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
4833                                     const TargetLowering &TLI,
4834                                     const TargetRegisterInfo &TRI) {
4835   const Function *F = CI->getFunction();
4836   TargetLowering::AsmOperandInfoVector TargetConstraints =
4837       TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI);
4838 
4839   for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) {
4840     // Compute the constraint code and ConstraintType to use.
4841     TLI.ComputeConstraintToUse(OpInfo, SDValue());
4842 
4843     // If this asm operand is our Value*, and if it isn't an indirect memory
4844     // operand, we can't fold it!  TODO: Also handle C_Address?
4845     if (OpInfo.CallOperandVal == OpVal &&
4846         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
4847          !OpInfo.isIndirect))
4848       return false;
4849   }
4850 
4851   return true;
4852 }
4853 
4854 // Max number of memory uses to look at before aborting the search to conserve
4855 // compile time.
4856 static constexpr int MaxMemoryUsesToScan = 20;
4857 
4858 /// Recursively walk all the uses of I until we find a memory use.
4859 /// If we find an obviously non-foldable instruction, return true.
4860 /// Add accessed addresses and types to MemoryUses.
4861 static bool FindAllMemoryUses(
4862     Instruction *I, SmallVectorImpl<std::pair<Value *, Type *>> &MemoryUses,
4863     SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
4864     const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI,
4865     BlockFrequencyInfo *BFI, int SeenInsts = 0) {
4866   // If we already considered this instruction, we're done.
4867   if (!ConsideredInsts.insert(I).second)
4868     return false;
4869 
4870   // If this is an obviously unfoldable instruction, bail out.
4871   if (!MightBeFoldableInst(I))
4872     return true;
4873 
4874   // Loop over all the uses, recursively processing them.
4875   for (Use &U : I->uses()) {
4876     // Conservatively return true if we're seeing a large number or a deep chain
4877     // of users. This avoids excessive compilation times in pathological cases.
4878     if (SeenInsts++ >= MaxMemoryUsesToScan)
4879       return true;
4880 
4881     Instruction *UserI = cast<Instruction>(U.getUser());
4882     if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
4883       MemoryUses.push_back({U.get(), LI->getType()});
4884       continue;
4885     }
4886 
4887     if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
4888       if (U.getOperandNo() != StoreInst::getPointerOperandIndex())
4889         return true; // Storing addr, not into addr.
4890       MemoryUses.push_back({U.get(), SI->getValueOperand()->getType()});
4891       continue;
4892     }
4893 
4894     if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
4895       if (U.getOperandNo() != AtomicRMWInst::getPointerOperandIndex())
4896         return true; // Storing addr, not into addr.
4897       MemoryUses.push_back({U.get(), RMW->getValOperand()->getType()});
4898       continue;
4899     }
4900 
4901     if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
4902       if (U.getOperandNo() != AtomicCmpXchgInst::getPointerOperandIndex())
4903         return true; // Storing addr, not into addr.
4904       MemoryUses.push_back({U.get(), CmpX->getCompareOperand()->getType()});
4905       continue;
4906     }
4907 
4908     if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
4909       if (CI->hasFnAttr(Attribute::Cold)) {
4910         // If this is a cold call, we can sink the addressing calculation into
4911         // the cold path.  See optimizeCallInst
4912         bool OptForSize = OptSize ||
4913           llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
4914         if (!OptForSize)
4915           continue;
4916       }
4917 
4918       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand());
4919       if (!IA) return true;
4920 
4921       // If this is a memory operand, we're cool, otherwise bail out.
4922       if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
4923         return true;
4924       continue;
4925     }
4926 
4927     if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
4928                           PSI, BFI, SeenInsts))
4929       return true;
4930   }
4931 
4932   return false;
4933 }
4934 
4935 /// Return true if Val is already known to be live at the use site that we're
4936 /// folding it into. If so, there is no cost to include it in the addressing
4937 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4938 /// instruction already.
4939 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
4940                                                    Value *KnownLive2) {
4941   // If Val is either of the known-live values, we know it is live!
4942   if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
4943     return true;
4944 
4945   // All values other than instructions and arguments (e.g. constants) are live.
4946   if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
4947 
4948   // If Val is a constant sized alloca in the entry block, it is live, this is
4949   // true because it is just a reference to the stack/frame pointer, which is
4950   // live for the whole function.
4951   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
4952     if (AI->isStaticAlloca())
4953       return true;
4954 
4955   // Check to see if this value is already used in the memory instruction's
4956   // block.  If so, it's already live into the block at the very least, so we
4957   // can reasonably fold it.
4958   return Val->isUsedInBasicBlock(MemoryInst->getParent());
4959 }
4960 
4961 /// It is possible for the addressing mode of the machine to fold the specified
4962 /// instruction into a load or store that ultimately uses it.
4963 /// However, the specified instruction has multiple uses.
4964 /// Given this, it may actually increase register pressure to fold it
4965 /// into the load. For example, consider this code:
4966 ///
4967 ///     X = ...
4968 ///     Y = X+1
4969 ///     use(Y)   -> nonload/store
4970 ///     Z = Y+1
4971 ///     load Z
4972 ///
4973 /// In this case, Y has multiple uses, and can be folded into the load of Z
4974 /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
4975 /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
4976 /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
4977 /// number of computations either.
4978 ///
4979 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
4980 /// X was live across 'load Z' for other reasons, we actually *would* want to
4981 /// fold the addressing mode in the Z case.  This would make Y die earlier.
4982 bool AddressingModeMatcher::
4983 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
4984                                      ExtAddrMode &AMAfter) {
4985   if (IgnoreProfitability) return true;
4986 
4987   // AMBefore is the addressing mode before this instruction was folded into it,
4988   // and AMAfter is the addressing mode after the instruction was folded.  Get
4989   // the set of registers referenced by AMAfter and subtract out those
4990   // referenced by AMBefore: this is the set of values which folding in this
4991   // address extends the lifetime of.
4992   //
4993   // Note that there are only two potential values being referenced here,
4994   // BaseReg and ScaleReg (global addresses are always available, as are any
4995   // folded immediates).
4996   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
4997 
4998   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
4999   // lifetime wasn't extended by adding this instruction.
5000   if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
5001     BaseReg = nullptr;
5002   if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
5003     ScaledReg = nullptr;
5004 
5005   // If folding this instruction (and it's subexprs) didn't extend any live
5006   // ranges, we're ok with it.
5007   if (!BaseReg && !ScaledReg)
5008     return true;
5009 
5010   // If all uses of this instruction can have the address mode sunk into them,
5011   // we can remove the addressing mode and effectively trade one live register
5012   // for another (at worst.)  In this context, folding an addressing mode into
5013   // the use is just a particularly nice way of sinking it.
5014   SmallVector<std::pair<Value *, Type *>, 16> MemoryUses;
5015   SmallPtrSet<Instruction*, 16> ConsideredInsts;
5016   if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
5017                         PSI, BFI))
5018     return false;  // Has a non-memory, non-foldable use!
5019 
5020   // Now that we know that all uses of this instruction are part of a chain of
5021   // computation involving only operations that could theoretically be folded
5022   // into a memory use, loop over each of these memory operation uses and see
5023   // if they could  *actually* fold the instruction.  The assumption is that
5024   // addressing modes are cheap and that duplicating the computation involved
5025   // many times is worthwhile, even on a fastpath. For sinking candidates
5026   // (i.e. cold call sites), this serves as a way to prevent excessive code
5027   // growth since most architectures have some reasonable small and fast way to
5028   // compute an effective address.  (i.e LEA on x86)
5029   SmallVector<Instruction*, 32> MatchedAddrModeInsts;
5030   for (const std::pair<Value *, Type *> &Pair : MemoryUses) {
5031     Value *Address = Pair.first;
5032     Type *AddressAccessTy = Pair.second;
5033     unsigned AS = Address->getType()->getPointerAddressSpace();
5034 
5035     // Do a match against the root of this address, ignoring profitability. This
5036     // will tell us if the addressing mode for the memory operation will
5037     // *actually* cover the shared instruction.
5038     ExtAddrMode Result;
5039     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
5040                                                                       0);
5041     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5042         TPT.getRestorationPoint();
5043     AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn,
5044                                   AddressAccessTy, AS, MemoryInst, Result,
5045                                   InsertedInsts, PromotedInsts, TPT,
5046                                   LargeOffsetGEP, OptSize, PSI, BFI);
5047     Matcher.IgnoreProfitability = true;
5048     bool Success = Matcher.matchAddr(Address, 0);
5049     (void)Success; assert(Success && "Couldn't select *anything*?");
5050 
5051     // The match was to check the profitability, the changes made are not
5052     // part of the original matcher. Therefore, they should be dropped
5053     // otherwise the original matcher will not present the right state.
5054     TPT.rollback(LastKnownGood);
5055 
5056     // If the match didn't cover I, then it won't be shared by it.
5057     if (!is_contained(MatchedAddrModeInsts, I))
5058       return false;
5059 
5060     MatchedAddrModeInsts.clear();
5061   }
5062 
5063   return true;
5064 }
5065 
5066 /// Return true if the specified values are defined in a
5067 /// different basic block than BB.
5068 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
5069   if (Instruction *I = dyn_cast<Instruction>(V))
5070     return I->getParent() != BB;
5071   return false;
5072 }
5073 
5074 /// Sink addressing mode computation immediate before MemoryInst if doing so
5075 /// can be done without increasing register pressure.  The need for the
5076 /// register pressure constraint means this can end up being an all or nothing
5077 /// decision for all uses of the same addressing computation.
5078 ///
5079 /// Load and Store Instructions often have addressing modes that can do
5080 /// significant amounts of computation. As such, instruction selection will try
5081 /// to get the load or store to do as much computation as possible for the
5082 /// program. The problem is that isel can only see within a single block. As
5083 /// such, we sink as much legal addressing mode work into the block as possible.
5084 ///
5085 /// This method is used to optimize both load/store and inline asms with memory
5086 /// operands.  It's also used to sink addressing computations feeding into cold
5087 /// call sites into their (cold) basic block.
5088 ///
5089 /// The motivation for handling sinking into cold blocks is that doing so can
5090 /// both enable other address mode sinking (by satisfying the register pressure
5091 /// constraint above), and reduce register pressure globally (by removing the
5092 /// addressing mode computation from the fast path entirely.).
5093 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
5094                                         Type *AccessTy, unsigned AddrSpace) {
5095   Value *Repl = Addr;
5096 
5097   // Try to collapse single-value PHI nodes.  This is necessary to undo
5098   // unprofitable PRE transformations.
5099   SmallVector<Value*, 8> worklist;
5100   SmallPtrSet<Value*, 16> Visited;
5101   worklist.push_back(Addr);
5102 
5103   // Use a worklist to iteratively look through PHI and select nodes, and
5104   // ensure that the addressing mode obtained from the non-PHI/select roots of
5105   // the graph are compatible.
5106   bool PhiOrSelectSeen = false;
5107   SmallVector<Instruction*, 16> AddrModeInsts;
5108   const SimplifyQuery SQ(*DL, TLInfo);
5109   AddressingModeCombiner AddrModes(SQ, Addr);
5110   TypePromotionTransaction TPT(RemovedInsts);
5111   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5112       TPT.getRestorationPoint();
5113   while (!worklist.empty()) {
5114     Value *V = worklist.pop_back_val();
5115 
5116     // We allow traversing cyclic Phi nodes.
5117     // In case of success after this loop we ensure that traversing through
5118     // Phi nodes ends up with all cases to compute address of the form
5119     //    BaseGV + Base + Scale * Index + Offset
5120     // where Scale and Offset are constans and BaseGV, Base and Index
5121     // are exactly the same Values in all cases.
5122     // It means that BaseGV, Scale and Offset dominate our memory instruction
5123     // and have the same value as they had in address computation represented
5124     // as Phi. So we can safely sink address computation to memory instruction.
5125     if (!Visited.insert(V).second)
5126       continue;
5127 
5128     // For a PHI node, push all of its incoming values.
5129     if (PHINode *P = dyn_cast<PHINode>(V)) {
5130       append_range(worklist, P->incoming_values());
5131       PhiOrSelectSeen = true;
5132       continue;
5133     }
5134     // Similar for select.
5135     if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
5136       worklist.push_back(SI->getFalseValue());
5137       worklist.push_back(SI->getTrueValue());
5138       PhiOrSelectSeen = true;
5139       continue;
5140     }
5141 
5142     // For non-PHIs, determine the addressing mode being computed.  Note that
5143     // the result may differ depending on what other uses our candidate
5144     // addressing instructions might have.
5145     AddrModeInsts.clear();
5146     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
5147                                                                       0);
5148     // Defer the query (and possible computation of) the dom tree to point of
5149     // actual use.  It's expected that most address matches don't actually need
5150     // the domtree.
5151     auto getDTFn = [MemoryInst, this]() -> const DominatorTree & {
5152       Function *F = MemoryInst->getParent()->getParent();
5153       return this->getDT(*F);
5154     };
5155     ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
5156         V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn,
5157         *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI,
5158         BFI.get());
5159 
5160     GetElementPtrInst *GEP = LargeOffsetGEP.first;
5161     if (GEP && !NewGEPBases.count(GEP)) {
5162       // If splitting the underlying data structure can reduce the offset of a
5163       // GEP, collect the GEP.  Skip the GEPs that are the new bases of
5164       // previously split data structures.
5165       LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
5166       if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end())
5167         LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size();
5168     }
5169 
5170     NewAddrMode.OriginalValue = V;
5171     if (!AddrModes.addNewAddrMode(NewAddrMode))
5172       break;
5173   }
5174 
5175   // Try to combine the AddrModes we've collected. If we couldn't collect any,
5176   // or we have multiple but either couldn't combine them or combining them
5177   // wouldn't do anything useful, bail out now.
5178   if (!AddrModes.combineAddrModes()) {
5179     TPT.rollback(LastKnownGood);
5180     return false;
5181   }
5182   bool Modified = TPT.commit();
5183 
5184   // Get the combined AddrMode (or the only AddrMode, if we only had one).
5185   ExtAddrMode AddrMode = AddrModes.getAddrMode();
5186 
5187   // If all the instructions matched are already in this BB, don't do anything.
5188   // If we saw a Phi node then it is not local definitely, and if we saw a select
5189   // then we want to push the address calculation past it even if it's already
5190   // in this BB.
5191   if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
5192         return IsNonLocalValue(V, MemoryInst->getParent());
5193                   })) {
5194     LLVM_DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode
5195                       << "\n");
5196     return Modified;
5197   }
5198 
5199   // Insert this computation right after this user.  Since our caller is
5200   // scanning from the top of the BB to the bottom, reuse of the expr are
5201   // guaranteed to happen later.
5202   IRBuilder<> Builder(MemoryInst);
5203 
5204   // Now that we determined the addressing expression we want to use and know
5205   // that we have to sink it into this block.  Check to see if we have already
5206   // done this for some other load/store instr in this block.  If so, reuse
5207   // the computation.  Before attempting reuse, check if the address is valid
5208   // as it may have been erased.
5209 
5210   WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
5211 
5212   Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
5213   if (SunkAddr) {
5214     LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
5215                       << " for " << *MemoryInst << "\n");
5216     if (SunkAddr->getType() != Addr->getType())
5217       SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
5218   } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() &&
5219                                    SubtargetInfo->addrSinkUsingGEPs())) {
5220     // By default, we use the GEP-based method when AA is used later. This
5221     // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
5222     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5223                       << " for " << *MemoryInst << "\n");
5224     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
5225     Value *ResultPtr = nullptr, *ResultIndex = nullptr;
5226 
5227     // First, find the pointer.
5228     if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
5229       ResultPtr = AddrMode.BaseReg;
5230       AddrMode.BaseReg = nullptr;
5231     }
5232 
5233     if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
5234       // We can't add more than one pointer together, nor can we scale a
5235       // pointer (both of which seem meaningless).
5236       if (ResultPtr || AddrMode.Scale != 1)
5237         return Modified;
5238 
5239       ResultPtr = AddrMode.ScaledReg;
5240       AddrMode.Scale = 0;
5241     }
5242 
5243     // It is only safe to sign extend the BaseReg if we know that the math
5244     // required to create it did not overflow before we extend it. Since
5245     // the original IR value was tossed in favor of a constant back when
5246     // the AddrMode was created we need to bail out gracefully if widths
5247     // do not match instead of extending it.
5248     //
5249     // (See below for code to add the scale.)
5250     if (AddrMode.Scale) {
5251       Type *ScaledRegTy = AddrMode.ScaledReg->getType();
5252       if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
5253           cast<IntegerType>(ScaledRegTy)->getBitWidth())
5254         return Modified;
5255     }
5256 
5257     if (AddrMode.BaseGV) {
5258       if (ResultPtr)
5259         return Modified;
5260 
5261       ResultPtr = AddrMode.BaseGV;
5262     }
5263 
5264     // If the real base value actually came from an inttoptr, then the matcher
5265     // will look through it and provide only the integer value. In that case,
5266     // use it here.
5267     if (!DL->isNonIntegralPointerType(Addr->getType())) {
5268       if (!ResultPtr && AddrMode.BaseReg) {
5269         ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
5270                                            "sunkaddr");
5271         AddrMode.BaseReg = nullptr;
5272       } else if (!ResultPtr && AddrMode.Scale == 1) {
5273         ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
5274                                            "sunkaddr");
5275         AddrMode.Scale = 0;
5276       }
5277     }
5278 
5279     if (!ResultPtr &&
5280         !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
5281       SunkAddr = Constant::getNullValue(Addr->getType());
5282     } else if (!ResultPtr) {
5283       return Modified;
5284     } else {
5285       Type *I8PtrTy =
5286           Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
5287       Type *I8Ty = Builder.getInt8Ty();
5288 
5289       // Start with the base register. Do this first so that subsequent address
5290       // matching finds it last, which will prevent it from trying to match it
5291       // as the scaled value in case it happens to be a mul. That would be
5292       // problematic if we've sunk a different mul for the scale, because then
5293       // we'd end up sinking both muls.
5294       if (AddrMode.BaseReg) {
5295         Value *V = AddrMode.BaseReg;
5296         if (V->getType() != IntPtrTy)
5297           V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
5298 
5299         ResultIndex = V;
5300       }
5301 
5302       // Add the scale value.
5303       if (AddrMode.Scale) {
5304         Value *V = AddrMode.ScaledReg;
5305         if (V->getType() == IntPtrTy) {
5306           // done.
5307         } else {
5308           assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
5309                  cast<IntegerType>(V->getType())->getBitWidth() &&
5310                  "We can't transform if ScaledReg is too narrow");
5311           V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
5312         }
5313 
5314         if (AddrMode.Scale != 1)
5315           V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
5316                                 "sunkaddr");
5317         if (ResultIndex)
5318           ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
5319         else
5320           ResultIndex = V;
5321       }
5322 
5323       // Add in the Base Offset if present.
5324       if (AddrMode.BaseOffs) {
5325         Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5326         if (ResultIndex) {
5327           // We need to add this separately from the scale above to help with
5328           // SDAG consecutive load/store merging.
5329           if (ResultPtr->getType() != I8PtrTy)
5330             ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5331           ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex,
5332                                         "sunkaddr", AddrMode.InBounds);
5333         }
5334 
5335         ResultIndex = V;
5336       }
5337 
5338       if (!ResultIndex) {
5339         SunkAddr = ResultPtr;
5340       } else {
5341         if (ResultPtr->getType() != I8PtrTy)
5342           ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5343         SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr",
5344                                      AddrMode.InBounds);
5345       }
5346 
5347       if (SunkAddr->getType() != Addr->getType())
5348         SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
5349     }
5350   } else {
5351     // We'd require a ptrtoint/inttoptr down the line, which we can't do for
5352     // non-integral pointers, so in that case bail out now.
5353     Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
5354     Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
5355     PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
5356     PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
5357     if (DL->isNonIntegralPointerType(Addr->getType()) ||
5358         (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
5359         (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
5360         (AddrMode.BaseGV &&
5361          DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
5362       return Modified;
5363 
5364     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5365                       << " for " << *MemoryInst << "\n");
5366     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
5367     Value *Result = nullptr;
5368 
5369     // Start with the base register. Do this first so that subsequent address
5370     // matching finds it last, which will prevent it from trying to match it
5371     // as the scaled value in case it happens to be a mul. That would be
5372     // problematic if we've sunk a different mul for the scale, because then
5373     // we'd end up sinking both muls.
5374     if (AddrMode.BaseReg) {
5375       Value *V = AddrMode.BaseReg;
5376       if (V->getType()->isPointerTy())
5377         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5378       if (V->getType() != IntPtrTy)
5379         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
5380       Result = V;
5381     }
5382 
5383     // Add the scale value.
5384     if (AddrMode.Scale) {
5385       Value *V = AddrMode.ScaledReg;
5386       if (V->getType() == IntPtrTy) {
5387         // done.
5388       } else if (V->getType()->isPointerTy()) {
5389         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5390       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
5391                  cast<IntegerType>(V->getType())->getBitWidth()) {
5392         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
5393       } else {
5394         // It is only safe to sign extend the BaseReg if we know that the math
5395         // required to create it did not overflow before we extend it. Since
5396         // the original IR value was tossed in favor of a constant back when
5397         // the AddrMode was created we need to bail out gracefully if widths
5398         // do not match instead of extending it.
5399         Instruction *I = dyn_cast_or_null<Instruction>(Result);
5400         if (I && (Result != AddrMode.BaseReg))
5401           I->eraseFromParent();
5402         return Modified;
5403       }
5404       if (AddrMode.Scale != 1)
5405         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
5406                               "sunkaddr");
5407       if (Result)
5408         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5409       else
5410         Result = V;
5411     }
5412 
5413     // Add in the BaseGV if present.
5414     if (AddrMode.BaseGV) {
5415       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
5416       if (Result)
5417         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5418       else
5419         Result = V;
5420     }
5421 
5422     // Add in the Base Offset if present.
5423     if (AddrMode.BaseOffs) {
5424       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5425       if (Result)
5426         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5427       else
5428         Result = V;
5429     }
5430 
5431     if (!Result)
5432       SunkAddr = Constant::getNullValue(Addr->getType());
5433     else
5434       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
5435   }
5436 
5437   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
5438   // Store the newly computed address into the cache. In the case we reused a
5439   // value, this should be idempotent.
5440   SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
5441 
5442   // If we have no uses, recursively delete the value and all dead instructions
5443   // using it.
5444   if (Repl->use_empty()) {
5445     resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() {
5446       RecursivelyDeleteTriviallyDeadInstructions(
5447           Repl, TLInfo, nullptr,
5448           [&](Value *V) { removeAllAssertingVHReferences(V); });
5449     });
5450   }
5451   ++NumMemoryInsts;
5452   return true;
5453 }
5454 
5455 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find
5456 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can
5457 /// only handle a 2 operand GEP in the same basic block or a splat constant
5458 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector
5459 /// index.
5460 ///
5461 /// If the existing GEP has a vector base pointer that is splat, we can look
5462 /// through the splat to find the scalar pointer. If we can't find a scalar
5463 /// pointer there's nothing we can do.
5464 ///
5465 /// If we have a GEP with more than 2 indices where the middle indices are all
5466 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands.
5467 ///
5468 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP
5469 /// followed by a GEP with an all zeroes vector index. This will enable
5470 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a
5471 /// zero index.
5472 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst,
5473                                                Value *Ptr) {
5474   Value *NewAddr;
5475 
5476   if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
5477     // Don't optimize GEPs that don't have indices.
5478     if (!GEP->hasIndices())
5479       return false;
5480 
5481     // If the GEP and the gather/scatter aren't in the same BB, don't optimize.
5482     // FIXME: We should support this by sinking the GEP.
5483     if (MemoryInst->getParent() != GEP->getParent())
5484       return false;
5485 
5486     SmallVector<Value *, 2> Ops(GEP->operands());
5487 
5488     bool RewriteGEP = false;
5489 
5490     if (Ops[0]->getType()->isVectorTy()) {
5491       Ops[0] = getSplatValue(Ops[0]);
5492       if (!Ops[0])
5493         return false;
5494       RewriteGEP = true;
5495     }
5496 
5497     unsigned FinalIndex = Ops.size() - 1;
5498 
5499     // Ensure all but the last index is 0.
5500     // FIXME: This isn't strictly required. All that's required is that they are
5501     // all scalars or splats.
5502     for (unsigned i = 1; i < FinalIndex; ++i) {
5503       auto *C = dyn_cast<Constant>(Ops[i]);
5504       if (!C)
5505         return false;
5506       if (isa<VectorType>(C->getType()))
5507         C = C->getSplatValue();
5508       auto *CI = dyn_cast_or_null<ConstantInt>(C);
5509       if (!CI || !CI->isZero())
5510         return false;
5511       // Scalarize the index if needed.
5512       Ops[i] = CI;
5513     }
5514 
5515     // Try to scalarize the final index.
5516     if (Ops[FinalIndex]->getType()->isVectorTy()) {
5517       if (Value *V = getSplatValue(Ops[FinalIndex])) {
5518         auto *C = dyn_cast<ConstantInt>(V);
5519         // Don't scalarize all zeros vector.
5520         if (!C || !C->isZero()) {
5521           Ops[FinalIndex] = V;
5522           RewriteGEP = true;
5523         }
5524       }
5525     }
5526 
5527     // If we made any changes or the we have extra operands, we need to generate
5528     // new instructions.
5529     if (!RewriteGEP && Ops.size() == 2)
5530       return false;
5531 
5532     auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
5533 
5534     IRBuilder<> Builder(MemoryInst);
5535 
5536     Type *SourceTy = GEP->getSourceElementType();
5537     Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType());
5538 
5539     // If the final index isn't a vector, emit a scalar GEP containing all ops
5540     // and a vector GEP with all zeroes final index.
5541     if (!Ops[FinalIndex]->getType()->isVectorTy()) {
5542       NewAddr = Builder.CreateGEP(SourceTy, Ops[0],
5543                                   makeArrayRef(Ops).drop_front());
5544       auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts);
5545       auto *SecondTy = GetElementPtrInst::getIndexedType(
5546           SourceTy, makeArrayRef(Ops).drop_front());
5547       NewAddr =
5548           Builder.CreateGEP(SecondTy, NewAddr, Constant::getNullValue(IndexTy));
5549     } else {
5550       Value *Base = Ops[0];
5551       Value *Index = Ops[FinalIndex];
5552 
5553       // Create a scalar GEP if there are more than 2 operands.
5554       if (Ops.size() != 2) {
5555         // Replace the last index with 0.
5556         Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy);
5557         Base = Builder.CreateGEP(SourceTy, Base,
5558                                  makeArrayRef(Ops).drop_front());
5559         SourceTy = GetElementPtrInst::getIndexedType(
5560             SourceTy, makeArrayRef(Ops).drop_front());
5561       }
5562 
5563       // Now create the GEP with scalar pointer and vector index.
5564       NewAddr = Builder.CreateGEP(SourceTy, Base, Index);
5565     }
5566   } else if (!isa<Constant>(Ptr)) {
5567     // Not a GEP, maybe its a splat and we can create a GEP to enable
5568     // SelectionDAGBuilder to use it as a uniform base.
5569     Value *V = getSplatValue(Ptr);
5570     if (!V)
5571       return false;
5572 
5573     auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
5574 
5575     IRBuilder<> Builder(MemoryInst);
5576 
5577     // Emit a vector GEP with a scalar pointer and all 0s vector index.
5578     Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType());
5579     auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts);
5580     Type *ScalarTy;
5581     if (cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() ==
5582         Intrinsic::masked_gather) {
5583       ScalarTy = MemoryInst->getType()->getScalarType();
5584     } else {
5585       assert(cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() ==
5586              Intrinsic::masked_scatter);
5587       ScalarTy = MemoryInst->getOperand(0)->getType()->getScalarType();
5588     }
5589     NewAddr = Builder.CreateGEP(ScalarTy, V, Constant::getNullValue(IndexTy));
5590   } else {
5591     // Constant, SelectionDAGBuilder knows to check if its a splat.
5592     return false;
5593   }
5594 
5595   MemoryInst->replaceUsesOfWith(Ptr, NewAddr);
5596 
5597   // If we have no uses, recursively delete the value and all dead instructions
5598   // using it.
5599   if (Ptr->use_empty())
5600     RecursivelyDeleteTriviallyDeadInstructions(
5601         Ptr, TLInfo, nullptr,
5602         [&](Value *V) { removeAllAssertingVHReferences(V); });
5603 
5604   return true;
5605 }
5606 
5607 /// If there are any memory operands, use OptimizeMemoryInst to sink their
5608 /// address computing into the block when possible / profitable.
5609 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
5610   bool MadeChange = false;
5611 
5612   const TargetRegisterInfo *TRI =
5613       TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
5614   TargetLowering::AsmOperandInfoVector TargetConstraints =
5615       TLI->ParseConstraints(*DL, TRI, *CS);
5616   unsigned ArgNo = 0;
5617   for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) {
5618     // Compute the constraint code and ConstraintType to use.
5619     TLI->ComputeConstraintToUse(OpInfo, SDValue());
5620 
5621     // TODO: Also handle C_Address?
5622     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5623         OpInfo.isIndirect) {
5624       Value *OpVal = CS->getArgOperand(ArgNo++);
5625       MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
5626     } else if (OpInfo.Type == InlineAsm::isInput)
5627       ArgNo++;
5628   }
5629 
5630   return MadeChange;
5631 }
5632 
5633 /// Check if all the uses of \p Val are equivalent (or free) zero or
5634 /// sign extensions.
5635 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
5636   assert(!Val->use_empty() && "Input must have at least one use");
5637   const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
5638   bool IsSExt = isa<SExtInst>(FirstUser);
5639   Type *ExtTy = FirstUser->getType();
5640   for (const User *U : Val->users()) {
5641     const Instruction *UI = cast<Instruction>(U);
5642     if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
5643       return false;
5644     Type *CurTy = UI->getType();
5645     // Same input and output types: Same instruction after CSE.
5646     if (CurTy == ExtTy)
5647       continue;
5648 
5649     // If IsSExt is true, we are in this situation:
5650     // a = Val
5651     // b = sext ty1 a to ty2
5652     // c = sext ty1 a to ty3
5653     // Assuming ty2 is shorter than ty3, this could be turned into:
5654     // a = Val
5655     // b = sext ty1 a to ty2
5656     // c = sext ty2 b to ty3
5657     // However, the last sext is not free.
5658     if (IsSExt)
5659       return false;
5660 
5661     // This is a ZExt, maybe this is free to extend from one type to another.
5662     // In that case, we would not account for a different use.
5663     Type *NarrowTy;
5664     Type *LargeTy;
5665     if (ExtTy->getScalarType()->getIntegerBitWidth() >
5666         CurTy->getScalarType()->getIntegerBitWidth()) {
5667       NarrowTy = CurTy;
5668       LargeTy = ExtTy;
5669     } else {
5670       NarrowTy = ExtTy;
5671       LargeTy = CurTy;
5672     }
5673 
5674     if (!TLI.isZExtFree(NarrowTy, LargeTy))
5675       return false;
5676   }
5677   // All uses are the same or can be derived from one another for free.
5678   return true;
5679 }
5680 
5681 /// Try to speculatively promote extensions in \p Exts and continue
5682 /// promoting through newly promoted operands recursively as far as doing so is
5683 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
5684 /// When some promotion happened, \p TPT contains the proper state to revert
5685 /// them.
5686 ///
5687 /// \return true if some promotion happened, false otherwise.
5688 bool CodeGenPrepare::tryToPromoteExts(
5689     TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
5690     SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
5691     unsigned CreatedInstsCost) {
5692   bool Promoted = false;
5693 
5694   // Iterate over all the extensions to try to promote them.
5695   for (auto *I : Exts) {
5696     // Early check if we directly have ext(load).
5697     if (isa<LoadInst>(I->getOperand(0))) {
5698       ProfitablyMovedExts.push_back(I);
5699       continue;
5700     }
5701 
5702     // Check whether or not we want to do any promotion.  The reason we have
5703     // this check inside the for loop is to catch the case where an extension
5704     // is directly fed by a load because in such case the extension can be moved
5705     // up without any promotion on its operands.
5706     if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion)
5707       return false;
5708 
5709     // Get the action to perform the promotion.
5710     TypePromotionHelper::Action TPH =
5711         TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
5712     // Check if we can promote.
5713     if (!TPH) {
5714       // Save the current extension as we cannot move up through its operand.
5715       ProfitablyMovedExts.push_back(I);
5716       continue;
5717     }
5718 
5719     // Save the current state.
5720     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5721         TPT.getRestorationPoint();
5722     SmallVector<Instruction *, 4> NewExts;
5723     unsigned NewCreatedInstsCost = 0;
5724     unsigned ExtCost = !TLI->isExtFree(I);
5725     // Promote.
5726     Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
5727                              &NewExts, nullptr, *TLI);
5728     assert(PromotedVal &&
5729            "TypePromotionHelper should have filtered out those cases");
5730 
5731     // We would be able to merge only one extension in a load.
5732     // Therefore, if we have more than 1 new extension we heuristically
5733     // cut this search path, because it means we degrade the code quality.
5734     // With exactly 2, the transformation is neutral, because we will merge
5735     // one extension but leave one. However, we optimistically keep going,
5736     // because the new extension may be removed too.
5737     long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
5738     // FIXME: It would be possible to propagate a negative value instead of
5739     // conservatively ceiling it to 0.
5740     TotalCreatedInstsCost =
5741         std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
5742     if (!StressExtLdPromotion &&
5743         (TotalCreatedInstsCost > 1 ||
5744          !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
5745       // This promotion is not profitable, rollback to the previous state, and
5746       // save the current extension in ProfitablyMovedExts as the latest
5747       // speculative promotion turned out to be unprofitable.
5748       TPT.rollback(LastKnownGood);
5749       ProfitablyMovedExts.push_back(I);
5750       continue;
5751     }
5752     // Continue promoting NewExts as far as doing so is profitable.
5753     SmallVector<Instruction *, 2> NewlyMovedExts;
5754     (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
5755     bool NewPromoted = false;
5756     for (auto *ExtInst : NewlyMovedExts) {
5757       Instruction *MovedExt = cast<Instruction>(ExtInst);
5758       Value *ExtOperand = MovedExt->getOperand(0);
5759       // If we have reached to a load, we need this extra profitability check
5760       // as it could potentially be merged into an ext(load).
5761       if (isa<LoadInst>(ExtOperand) &&
5762           !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
5763             (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
5764         continue;
5765 
5766       ProfitablyMovedExts.push_back(MovedExt);
5767       NewPromoted = true;
5768     }
5769 
5770     // If none of speculative promotions for NewExts is profitable, rollback
5771     // and save the current extension (I) as the last profitable extension.
5772     if (!NewPromoted) {
5773       TPT.rollback(LastKnownGood);
5774       ProfitablyMovedExts.push_back(I);
5775       continue;
5776     }
5777     // The promotion is profitable.
5778     Promoted = true;
5779   }
5780   return Promoted;
5781 }
5782 
5783 /// Merging redundant sexts when one is dominating the other.
5784 bool CodeGenPrepare::mergeSExts(Function &F) {
5785   bool Changed = false;
5786   for (auto &Entry : ValToSExtendedUses) {
5787     SExts &Insts = Entry.second;
5788     SExts CurPts;
5789     for (Instruction *Inst : Insts) {
5790       if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
5791           Inst->getOperand(0) != Entry.first)
5792         continue;
5793       bool inserted = false;
5794       for (auto &Pt : CurPts) {
5795         if (getDT(F).dominates(Inst, Pt)) {
5796           Pt->replaceAllUsesWith(Inst);
5797           RemovedInsts.insert(Pt);
5798           Pt->removeFromParent();
5799           Pt = Inst;
5800           inserted = true;
5801           Changed = true;
5802           break;
5803         }
5804         if (!getDT(F).dominates(Pt, Inst))
5805           // Give up if we need to merge in a common dominator as the
5806           // experiments show it is not profitable.
5807           continue;
5808         Inst->replaceAllUsesWith(Pt);
5809         RemovedInsts.insert(Inst);
5810         Inst->removeFromParent();
5811         inserted = true;
5812         Changed = true;
5813         break;
5814       }
5815       if (!inserted)
5816         CurPts.push_back(Inst);
5817     }
5818   }
5819   return Changed;
5820 }
5821 
5822 // Splitting large data structures so that the GEPs accessing them can have
5823 // smaller offsets so that they can be sunk to the same blocks as their users.
5824 // For example, a large struct starting from %base is split into two parts
5825 // where the second part starts from %new_base.
5826 //
5827 // Before:
5828 // BB0:
5829 //   %base     =
5830 //
5831 // BB1:
5832 //   %gep0     = gep %base, off0
5833 //   %gep1     = gep %base, off1
5834 //   %gep2     = gep %base, off2
5835 //
5836 // BB2:
5837 //   %load1    = load %gep0
5838 //   %load2    = load %gep1
5839 //   %load3    = load %gep2
5840 //
5841 // After:
5842 // BB0:
5843 //   %base     =
5844 //   %new_base = gep %base, off0
5845 //
5846 // BB1:
5847 //   %new_gep0 = %new_base
5848 //   %new_gep1 = gep %new_base, off1 - off0
5849 //   %new_gep2 = gep %new_base, off2 - off0
5850 //
5851 // BB2:
5852 //   %load1    = load i32, i32* %new_gep0
5853 //   %load2    = load i32, i32* %new_gep1
5854 //   %load3    = load i32, i32* %new_gep2
5855 //
5856 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
5857 // their offsets are smaller enough to fit into the addressing mode.
5858 bool CodeGenPrepare::splitLargeGEPOffsets() {
5859   bool Changed = false;
5860   for (auto &Entry : LargeOffsetGEPMap) {
5861     Value *OldBase = Entry.first;
5862     SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
5863         &LargeOffsetGEPs = Entry.second;
5864     auto compareGEPOffset =
5865         [&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
5866             const std::pair<GetElementPtrInst *, int64_t> &RHS) {
5867           if (LHS.first == RHS.first)
5868             return false;
5869           if (LHS.second != RHS.second)
5870             return LHS.second < RHS.second;
5871           return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
5872         };
5873     // Sorting all the GEPs of the same data structures based on the offsets.
5874     llvm::sort(LargeOffsetGEPs, compareGEPOffset);
5875     LargeOffsetGEPs.erase(
5876         std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()),
5877         LargeOffsetGEPs.end());
5878     // Skip if all the GEPs have the same offsets.
5879     if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
5880       continue;
5881     GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
5882     int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
5883     Value *NewBaseGEP = nullptr;
5884 
5885     auto *LargeOffsetGEP = LargeOffsetGEPs.begin();
5886     while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
5887       GetElementPtrInst *GEP = LargeOffsetGEP->first;
5888       int64_t Offset = LargeOffsetGEP->second;
5889       if (Offset != BaseOffset) {
5890         TargetLowering::AddrMode AddrMode;
5891         AddrMode.BaseOffs = Offset - BaseOffset;
5892         // The result type of the GEP might not be the type of the memory
5893         // access.
5894         if (!TLI->isLegalAddressingMode(*DL, AddrMode,
5895                                         GEP->getResultElementType(),
5896                                         GEP->getAddressSpace())) {
5897           // We need to create a new base if the offset to the current base is
5898           // too large to fit into the addressing mode. So, a very large struct
5899           // may be split into several parts.
5900           BaseGEP = GEP;
5901           BaseOffset = Offset;
5902           NewBaseGEP = nullptr;
5903         }
5904       }
5905 
5906       // Generate a new GEP to replace the current one.
5907       LLVMContext &Ctx = GEP->getContext();
5908       Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
5909       Type *I8PtrTy =
5910           Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace());
5911       Type *I8Ty = Type::getInt8Ty(Ctx);
5912 
5913       if (!NewBaseGEP) {
5914         // Create a new base if we don't have one yet.  Find the insertion
5915         // pointer for the new base first.
5916         BasicBlock::iterator NewBaseInsertPt;
5917         BasicBlock *NewBaseInsertBB;
5918         if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
5919           // If the base of the struct is an instruction, the new base will be
5920           // inserted close to it.
5921           NewBaseInsertBB = BaseI->getParent();
5922           if (isa<PHINode>(BaseI))
5923             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5924           else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
5925             NewBaseInsertBB =
5926                 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest());
5927             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5928           } else
5929             NewBaseInsertPt = std::next(BaseI->getIterator());
5930         } else {
5931           // If the current base is an argument or global value, the new base
5932           // will be inserted to the entry block.
5933           NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
5934           NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5935         }
5936         IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
5937         // Create a new base.
5938         Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset);
5939         NewBaseGEP = OldBase;
5940         if (NewBaseGEP->getType() != I8PtrTy)
5941           NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
5942         NewBaseGEP =
5943             NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep");
5944         NewGEPBases.insert(NewBaseGEP);
5945       }
5946 
5947       IRBuilder<> Builder(GEP);
5948       Value *NewGEP = NewBaseGEP;
5949       if (Offset == BaseOffset) {
5950         if (GEP->getType() != I8PtrTy)
5951           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5952       } else {
5953         // Calculate the new offset for the new GEP.
5954         Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset);
5955         NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index);
5956 
5957         if (GEP->getType() != I8PtrTy)
5958           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5959       }
5960       GEP->replaceAllUsesWith(NewGEP);
5961       LargeOffsetGEPID.erase(GEP);
5962       LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
5963       GEP->eraseFromParent();
5964       Changed = true;
5965     }
5966   }
5967   return Changed;
5968 }
5969 
5970 bool CodeGenPrepare::optimizePhiType(
5971     PHINode *I, SmallPtrSetImpl<PHINode *> &Visited,
5972     SmallPtrSetImpl<Instruction *> &DeletedInstrs) {
5973   // We are looking for a collection on interconnected phi nodes that together
5974   // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts
5975   // are of the same type. Convert the whole set of nodes to the type of the
5976   // bitcast.
5977   Type *PhiTy = I->getType();
5978   Type *ConvertTy = nullptr;
5979   if (Visited.count(I) ||
5980       (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy()))
5981     return false;
5982 
5983   SmallVector<Instruction *, 4> Worklist;
5984   Worklist.push_back(cast<Instruction>(I));
5985   SmallPtrSet<PHINode *, 4> PhiNodes;
5986   PhiNodes.insert(I);
5987   Visited.insert(I);
5988   SmallPtrSet<Instruction *, 4> Defs;
5989   SmallPtrSet<Instruction *, 4> Uses;
5990   // This works by adding extra bitcasts between load/stores and removing
5991   // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi))
5992   // we can get in the situation where we remove a bitcast in one iteration
5993   // just to add it again in the next. We need to ensure that at least one
5994   // bitcast we remove are anchored to something that will not change back.
5995   bool AnyAnchored = false;
5996 
5997   while (!Worklist.empty()) {
5998     Instruction *II = Worklist.pop_back_val();
5999 
6000     if (auto *Phi = dyn_cast<PHINode>(II)) {
6001       // Handle Defs, which might also be PHI's
6002       for (Value *V : Phi->incoming_values()) {
6003         if (auto *OpPhi = dyn_cast<PHINode>(V)) {
6004           if (!PhiNodes.count(OpPhi)) {
6005             if (Visited.count(OpPhi))
6006               return false;
6007             PhiNodes.insert(OpPhi);
6008             Visited.insert(OpPhi);
6009             Worklist.push_back(OpPhi);
6010           }
6011         } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) {
6012           if (!OpLoad->isSimple())
6013             return false;
6014           if (!Defs.count(OpLoad)) {
6015             Defs.insert(OpLoad);
6016             Worklist.push_back(OpLoad);
6017           }
6018         } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) {
6019           if (!Defs.count(OpEx)) {
6020             Defs.insert(OpEx);
6021             Worklist.push_back(OpEx);
6022           }
6023         } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) {
6024           if (!ConvertTy)
6025             ConvertTy = OpBC->getOperand(0)->getType();
6026           if (OpBC->getOperand(0)->getType() != ConvertTy)
6027             return false;
6028           if (!Defs.count(OpBC)) {
6029             Defs.insert(OpBC);
6030             Worklist.push_back(OpBC);
6031             AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) &&
6032                            !isa<ExtractElementInst>(OpBC->getOperand(0));
6033           }
6034         } else if (!isa<UndefValue>(V)) {
6035           return false;
6036         }
6037       }
6038     }
6039 
6040     // Handle uses which might also be phi's
6041     for (User *V : II->users()) {
6042       if (auto *OpPhi = dyn_cast<PHINode>(V)) {
6043         if (!PhiNodes.count(OpPhi)) {
6044           if (Visited.count(OpPhi))
6045             return false;
6046           PhiNodes.insert(OpPhi);
6047           Visited.insert(OpPhi);
6048           Worklist.push_back(OpPhi);
6049         }
6050       } else if (auto *OpStore = dyn_cast<StoreInst>(V)) {
6051         if (!OpStore->isSimple() || OpStore->getOperand(0) != II)
6052           return false;
6053         Uses.insert(OpStore);
6054       } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) {
6055         if (!ConvertTy)
6056           ConvertTy = OpBC->getType();
6057         if (OpBC->getType() != ConvertTy)
6058           return false;
6059         Uses.insert(OpBC);
6060         AnyAnchored |=
6061             any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); });
6062       } else {
6063         return false;
6064       }
6065     }
6066   }
6067 
6068   if (!ConvertTy || !AnyAnchored || !TLI->shouldConvertPhiType(PhiTy, ConvertTy))
6069     return false;
6070 
6071   LLVM_DEBUG(dbgs() << "Converting " << *I << "\n  and connected nodes to "
6072                     << *ConvertTy << "\n");
6073 
6074   // Create all the new phi nodes of the new type, and bitcast any loads to the
6075   // correct type.
6076   ValueToValueMap ValMap;
6077   ValMap[UndefValue::get(PhiTy)] = UndefValue::get(ConvertTy);
6078   for (Instruction *D : Defs) {
6079     if (isa<BitCastInst>(D)) {
6080       ValMap[D] = D->getOperand(0);
6081       DeletedInstrs.insert(D);
6082     } else {
6083       ValMap[D] =
6084           new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode());
6085     }
6086   }
6087   for (PHINode *Phi : PhiNodes)
6088     ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(),
6089                                   Phi->getName() + ".tc", Phi);
6090   // Pipe together all the PhiNodes.
6091   for (PHINode *Phi : PhiNodes) {
6092     PHINode *NewPhi = cast<PHINode>(ValMap[Phi]);
6093     for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++)
6094       NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)],
6095                           Phi->getIncomingBlock(i));
6096     Visited.insert(NewPhi);
6097   }
6098   // And finally pipe up the stores and bitcasts
6099   for (Instruction *U : Uses) {
6100     if (isa<BitCastInst>(U)) {
6101       DeletedInstrs.insert(U);
6102       U->replaceAllUsesWith(ValMap[U->getOperand(0)]);
6103     } else {
6104       U->setOperand(0,
6105                     new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U));
6106     }
6107   }
6108 
6109   // Save the removed phis to be deleted later.
6110   for (PHINode *Phi : PhiNodes)
6111     DeletedInstrs.insert(Phi);
6112   return true;
6113 }
6114 
6115 bool CodeGenPrepare::optimizePhiTypes(Function &F) {
6116   if (!OptimizePhiTypes)
6117     return false;
6118 
6119   bool Changed = false;
6120   SmallPtrSet<PHINode *, 4> Visited;
6121   SmallPtrSet<Instruction *, 4> DeletedInstrs;
6122 
6123   // Attempt to optimize all the phis in the functions to the correct type.
6124   for (auto &BB : F)
6125     for (auto &Phi : BB.phis())
6126       Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs);
6127 
6128   // Remove any old phi's that have been converted.
6129   for (auto *I : DeletedInstrs) {
6130     I->replaceAllUsesWith(UndefValue::get(I->getType()));
6131     I->eraseFromParent();
6132   }
6133 
6134   return Changed;
6135 }
6136 
6137 /// Return true, if an ext(load) can be formed from an extension in
6138 /// \p MovedExts.
6139 bool CodeGenPrepare::canFormExtLd(
6140     const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
6141     Instruction *&Inst, bool HasPromoted) {
6142   for (auto *MovedExtInst : MovedExts) {
6143     if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
6144       LI = cast<LoadInst>(MovedExtInst->getOperand(0));
6145       Inst = MovedExtInst;
6146       break;
6147     }
6148   }
6149   if (!LI)
6150     return false;
6151 
6152   // If they're already in the same block, there's nothing to do.
6153   // Make the cheap checks first if we did not promote.
6154   // If we promoted, we need to check if it is indeed profitable.
6155   if (!HasPromoted && LI->getParent() == Inst->getParent())
6156     return false;
6157 
6158   return TLI->isExtLoad(LI, Inst, *DL);
6159 }
6160 
6161 /// Move a zext or sext fed by a load into the same basic block as the load,
6162 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
6163 /// extend into the load.
6164 ///
6165 /// E.g.,
6166 /// \code
6167 /// %ld = load i32* %addr
6168 /// %add = add nuw i32 %ld, 4
6169 /// %zext = zext i32 %add to i64
6170 // \endcode
6171 /// =>
6172 /// \code
6173 /// %ld = load i32* %addr
6174 /// %zext = zext i32 %ld to i64
6175 /// %add = add nuw i64 %zext, 4
6176 /// \encode
6177 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
6178 /// allow us to match zext(load i32*) to i64.
6179 ///
6180 /// Also, try to promote the computations used to obtain a sign extended
6181 /// value used into memory accesses.
6182 /// E.g.,
6183 /// \code
6184 /// a = add nsw i32 b, 3
6185 /// d = sext i32 a to i64
6186 /// e = getelementptr ..., i64 d
6187 /// \endcode
6188 /// =>
6189 /// \code
6190 /// f = sext i32 b to i64
6191 /// a = add nsw i64 f, 3
6192 /// e = getelementptr ..., i64 a
6193 /// \endcode
6194 ///
6195 /// \p Inst[in/out] the extension may be modified during the process if some
6196 /// promotions apply.
6197 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
6198   bool AllowPromotionWithoutCommonHeader = false;
6199   /// See if it is an interesting sext operations for the address type
6200   /// promotion before trying to promote it, e.g., the ones with the right
6201   /// type and used in memory accesses.
6202   bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
6203       *Inst, AllowPromotionWithoutCommonHeader);
6204   TypePromotionTransaction TPT(RemovedInsts);
6205   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
6206       TPT.getRestorationPoint();
6207   SmallVector<Instruction *, 1> Exts;
6208   SmallVector<Instruction *, 2> SpeculativelyMovedExts;
6209   Exts.push_back(Inst);
6210 
6211   bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
6212 
6213   // Look for a load being extended.
6214   LoadInst *LI = nullptr;
6215   Instruction *ExtFedByLoad;
6216 
6217   // Try to promote a chain of computation if it allows to form an extended
6218   // load.
6219   if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
6220     assert(LI && ExtFedByLoad && "Expect a valid load and extension");
6221     TPT.commit();
6222     // Move the extend into the same block as the load.
6223     ExtFedByLoad->moveAfter(LI);
6224     ++NumExtsMoved;
6225     Inst = ExtFedByLoad;
6226     return true;
6227   }
6228 
6229   // Continue promoting SExts if known as considerable depending on targets.
6230   if (ATPConsiderable &&
6231       performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
6232                                   HasPromoted, TPT, SpeculativelyMovedExts))
6233     return true;
6234 
6235   TPT.rollback(LastKnownGood);
6236   return false;
6237 }
6238 
6239 // Perform address type promotion if doing so is profitable.
6240 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
6241 // instructions that sign extended the same initial value. However, if
6242 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
6243 // extension is just profitable.
6244 bool CodeGenPrepare::performAddressTypePromotion(
6245     Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
6246     bool HasPromoted, TypePromotionTransaction &TPT,
6247     SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
6248   bool Promoted = false;
6249   SmallPtrSet<Instruction *, 1> UnhandledExts;
6250   bool AllSeenFirst = true;
6251   for (auto *I : SpeculativelyMovedExts) {
6252     Value *HeadOfChain = I->getOperand(0);
6253     DenseMap<Value *, Instruction *>::iterator AlreadySeen =
6254         SeenChainsForSExt.find(HeadOfChain);
6255     // If there is an unhandled SExt which has the same header, try to promote
6256     // it as well.
6257     if (AlreadySeen != SeenChainsForSExt.end()) {
6258       if (AlreadySeen->second != nullptr)
6259         UnhandledExts.insert(AlreadySeen->second);
6260       AllSeenFirst = false;
6261     }
6262   }
6263 
6264   if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
6265                         SpeculativelyMovedExts.size() == 1)) {
6266     TPT.commit();
6267     if (HasPromoted)
6268       Promoted = true;
6269     for (auto *I : SpeculativelyMovedExts) {
6270       Value *HeadOfChain = I->getOperand(0);
6271       SeenChainsForSExt[HeadOfChain] = nullptr;
6272       ValToSExtendedUses[HeadOfChain].push_back(I);
6273     }
6274     // Update Inst as promotion happen.
6275     Inst = SpeculativelyMovedExts.pop_back_val();
6276   } else {
6277     // This is the first chain visited from the header, keep the current chain
6278     // as unhandled. Defer to promote this until we encounter another SExt
6279     // chain derived from the same header.
6280     for (auto *I : SpeculativelyMovedExts) {
6281       Value *HeadOfChain = I->getOperand(0);
6282       SeenChainsForSExt[HeadOfChain] = Inst;
6283     }
6284     return false;
6285   }
6286 
6287   if (!AllSeenFirst && !UnhandledExts.empty())
6288     for (auto *VisitedSExt : UnhandledExts) {
6289       if (RemovedInsts.count(VisitedSExt))
6290         continue;
6291       TypePromotionTransaction TPT(RemovedInsts);
6292       SmallVector<Instruction *, 1> Exts;
6293       SmallVector<Instruction *, 2> Chains;
6294       Exts.push_back(VisitedSExt);
6295       bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
6296       TPT.commit();
6297       if (HasPromoted)
6298         Promoted = true;
6299       for (auto *I : Chains) {
6300         Value *HeadOfChain = I->getOperand(0);
6301         // Mark this as handled.
6302         SeenChainsForSExt[HeadOfChain] = nullptr;
6303         ValToSExtendedUses[HeadOfChain].push_back(I);
6304       }
6305     }
6306   return Promoted;
6307 }
6308 
6309 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
6310   BasicBlock *DefBB = I->getParent();
6311 
6312   // If the result of a {s|z}ext and its source are both live out, rewrite all
6313   // other uses of the source with result of extension.
6314   Value *Src = I->getOperand(0);
6315   if (Src->hasOneUse())
6316     return false;
6317 
6318   // Only do this xform if truncating is free.
6319   if (!TLI->isTruncateFree(I->getType(), Src->getType()))
6320     return false;
6321 
6322   // Only safe to perform the optimization if the source is also defined in
6323   // this block.
6324   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
6325     return false;
6326 
6327   bool DefIsLiveOut = false;
6328   for (User *U : I->users()) {
6329     Instruction *UI = cast<Instruction>(U);
6330 
6331     // Figure out which BB this ext is used in.
6332     BasicBlock *UserBB = UI->getParent();
6333     if (UserBB == DefBB) continue;
6334     DefIsLiveOut = true;
6335     break;
6336   }
6337   if (!DefIsLiveOut)
6338     return false;
6339 
6340   // Make sure none of the uses are PHI nodes.
6341   for (User *U : Src->users()) {
6342     Instruction *UI = cast<Instruction>(U);
6343     BasicBlock *UserBB = UI->getParent();
6344     if (UserBB == DefBB) continue;
6345     // Be conservative. We don't want this xform to end up introducing
6346     // reloads just before load / store instructions.
6347     if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
6348       return false;
6349   }
6350 
6351   // InsertedTruncs - Only insert one trunc in each block once.
6352   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
6353 
6354   bool MadeChange = false;
6355   for (Use &U : Src->uses()) {
6356     Instruction *User = cast<Instruction>(U.getUser());
6357 
6358     // Figure out which BB this ext is used in.
6359     BasicBlock *UserBB = User->getParent();
6360     if (UserBB == DefBB) continue;
6361 
6362     // Both src and def are live in this block. Rewrite the use.
6363     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
6364 
6365     if (!InsertedTrunc) {
6366       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
6367       assert(InsertPt != UserBB->end());
6368       InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
6369       InsertedInsts.insert(InsertedTrunc);
6370     }
6371 
6372     // Replace a use of the {s|z}ext source with a use of the result.
6373     U = InsertedTrunc;
6374     ++NumExtUses;
6375     MadeChange = true;
6376   }
6377 
6378   return MadeChange;
6379 }
6380 
6381 // Find loads whose uses only use some of the loaded value's bits.  Add an "and"
6382 // just after the load if the target can fold this into one extload instruction,
6383 // with the hope of eliminating some of the other later "and" instructions using
6384 // the loaded value.  "and"s that are made trivially redundant by the insertion
6385 // of the new "and" are removed by this function, while others (e.g. those whose
6386 // path from the load goes through a phi) are left for isel to potentially
6387 // remove.
6388 //
6389 // For example:
6390 //
6391 // b0:
6392 //   x = load i32
6393 //   ...
6394 // b1:
6395 //   y = and x, 0xff
6396 //   z = use y
6397 //
6398 // becomes:
6399 //
6400 // b0:
6401 //   x = load i32
6402 //   x' = and x, 0xff
6403 //   ...
6404 // b1:
6405 //   z = use x'
6406 //
6407 // whereas:
6408 //
6409 // b0:
6410 //   x1 = load i32
6411 //   ...
6412 // b1:
6413 //   x2 = load i32
6414 //   ...
6415 // b2:
6416 //   x = phi x1, x2
6417 //   y = and x, 0xff
6418 //
6419 // becomes (after a call to optimizeLoadExt for each load):
6420 //
6421 // b0:
6422 //   x1 = load i32
6423 //   x1' = and x1, 0xff
6424 //   ...
6425 // b1:
6426 //   x2 = load i32
6427 //   x2' = and x2, 0xff
6428 //   ...
6429 // b2:
6430 //   x = phi x1', x2'
6431 //   y = and x, 0xff
6432 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
6433   if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy())
6434     return false;
6435 
6436   // Skip loads we've already transformed.
6437   if (Load->hasOneUse() &&
6438       InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
6439     return false;
6440 
6441   // Look at all uses of Load, looking through phis, to determine how many bits
6442   // of the loaded value are needed.
6443   SmallVector<Instruction *, 8> WorkList;
6444   SmallPtrSet<Instruction *, 16> Visited;
6445   SmallVector<Instruction *, 8> AndsToMaybeRemove;
6446   for (auto *U : Load->users())
6447     WorkList.push_back(cast<Instruction>(U));
6448 
6449   EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
6450   unsigned BitWidth = LoadResultVT.getSizeInBits();
6451   // If the BitWidth is 0, do not try to optimize the type
6452   if (BitWidth == 0)
6453     return false;
6454 
6455   APInt DemandBits(BitWidth, 0);
6456   APInt WidestAndBits(BitWidth, 0);
6457 
6458   while (!WorkList.empty()) {
6459     Instruction *I = WorkList.pop_back_val();
6460 
6461     // Break use-def graph loops.
6462     if (!Visited.insert(I).second)
6463       continue;
6464 
6465     // For a PHI node, push all of its users.
6466     if (auto *Phi = dyn_cast<PHINode>(I)) {
6467       for (auto *U : Phi->users())
6468         WorkList.push_back(cast<Instruction>(U));
6469       continue;
6470     }
6471 
6472     switch (I->getOpcode()) {
6473     case Instruction::And: {
6474       auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
6475       if (!AndC)
6476         return false;
6477       APInt AndBits = AndC->getValue();
6478       DemandBits |= AndBits;
6479       // Keep track of the widest and mask we see.
6480       if (AndBits.ugt(WidestAndBits))
6481         WidestAndBits = AndBits;
6482       if (AndBits == WidestAndBits && I->getOperand(0) == Load)
6483         AndsToMaybeRemove.push_back(I);
6484       break;
6485     }
6486 
6487     case Instruction::Shl: {
6488       auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
6489       if (!ShlC)
6490         return false;
6491       uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
6492       DemandBits.setLowBits(BitWidth - ShiftAmt);
6493       break;
6494     }
6495 
6496     case Instruction::Trunc: {
6497       EVT TruncVT = TLI->getValueType(*DL, I->getType());
6498       unsigned TruncBitWidth = TruncVT.getSizeInBits();
6499       DemandBits.setLowBits(TruncBitWidth);
6500       break;
6501     }
6502 
6503     default:
6504       return false;
6505     }
6506   }
6507 
6508   uint32_t ActiveBits = DemandBits.getActiveBits();
6509   // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
6510   // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
6511   // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
6512   // (and (load x) 1) is not matched as a single instruction, rather as a LDR
6513   // followed by an AND.
6514   // TODO: Look into removing this restriction by fixing backends to either
6515   // return false for isLoadExtLegal for i1 or have them select this pattern to
6516   // a single instruction.
6517   //
6518   // Also avoid hoisting if we didn't see any ands with the exact DemandBits
6519   // mask, since these are the only ands that will be removed by isel.
6520   if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
6521       WidestAndBits != DemandBits)
6522     return false;
6523 
6524   LLVMContext &Ctx = Load->getType()->getContext();
6525   Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
6526   EVT TruncVT = TLI->getValueType(*DL, TruncTy);
6527 
6528   // Reject cases that won't be matched as extloads.
6529   if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
6530       !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
6531     return false;
6532 
6533   IRBuilder<> Builder(Load->getNextNode());
6534   auto *NewAnd = cast<Instruction>(
6535       Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
6536   // Mark this instruction as "inserted by CGP", so that other
6537   // optimizations don't touch it.
6538   InsertedInsts.insert(NewAnd);
6539 
6540   // Replace all uses of load with new and (except for the use of load in the
6541   // new and itself).
6542   Load->replaceAllUsesWith(NewAnd);
6543   NewAnd->setOperand(0, Load);
6544 
6545   // Remove any and instructions that are now redundant.
6546   for (auto *And : AndsToMaybeRemove)
6547     // Check that the and mask is the same as the one we decided to put on the
6548     // new and.
6549     if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
6550       And->replaceAllUsesWith(NewAnd);
6551       if (&*CurInstIterator == And)
6552         CurInstIterator = std::next(And->getIterator());
6553       And->eraseFromParent();
6554       ++NumAndUses;
6555     }
6556 
6557   ++NumAndsAdded;
6558   return true;
6559 }
6560 
6561 /// Check if V (an operand of a select instruction) is an expensive instruction
6562 /// that is only used once.
6563 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
6564   auto *I = dyn_cast<Instruction>(V);
6565   // If it's safe to speculatively execute, then it should not have side
6566   // effects; therefore, it's safe to sink and possibly *not* execute.
6567   return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
6568          TTI->getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency) >=
6569          TargetTransformInfo::TCC_Expensive;
6570 }
6571 
6572 /// Returns true if a SelectInst should be turned into an explicit branch.
6573 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
6574                                                 const TargetLowering *TLI,
6575                                                 SelectInst *SI) {
6576   // If even a predictable select is cheap, then a branch can't be cheaper.
6577   if (!TLI->isPredictableSelectExpensive())
6578     return false;
6579 
6580   // FIXME: This should use the same heuristics as IfConversion to determine
6581   // whether a select is better represented as a branch.
6582 
6583   // If metadata tells us that the select condition is obviously predictable,
6584   // then we want to replace the select with a branch.
6585   uint64_t TrueWeight, FalseWeight;
6586   if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
6587     uint64_t Max = std::max(TrueWeight, FalseWeight);
6588     uint64_t Sum = TrueWeight + FalseWeight;
6589     if (Sum != 0) {
6590       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
6591       if (Probability > TTI->getPredictableBranchThreshold())
6592         return true;
6593     }
6594   }
6595 
6596   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
6597 
6598   // If a branch is predictable, an out-of-order CPU can avoid blocking on its
6599   // comparison condition. If the compare has more than one use, there's
6600   // probably another cmov or setcc around, so it's not worth emitting a branch.
6601   if (!Cmp || !Cmp->hasOneUse())
6602     return false;
6603 
6604   // If either operand of the select is expensive and only needed on one side
6605   // of the select, we should form a branch.
6606   if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
6607       sinkSelectOperand(TTI, SI->getFalseValue()))
6608     return true;
6609 
6610   return false;
6611 }
6612 
6613 /// If \p isTrue is true, return the true value of \p SI, otherwise return
6614 /// false value of \p SI. If the true/false value of \p SI is defined by any
6615 /// select instructions in \p Selects, look through the defining select
6616 /// instruction until the true/false value is not defined in \p Selects.
6617 static Value *getTrueOrFalseValue(
6618     SelectInst *SI, bool isTrue,
6619     const SmallPtrSet<const Instruction *, 2> &Selects) {
6620   Value *V = nullptr;
6621 
6622   for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
6623        DefSI = dyn_cast<SelectInst>(V)) {
6624     assert(DefSI->getCondition() == SI->getCondition() &&
6625            "The condition of DefSI does not match with SI");
6626     V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
6627   }
6628 
6629   assert(V && "Failed to get select true/false value");
6630   return V;
6631 }
6632 
6633 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) {
6634   assert(Shift->isShift() && "Expected a shift");
6635 
6636   // If this is (1) a vector shift, (2) shifts by scalars are cheaper than
6637   // general vector shifts, and (3) the shift amount is a select-of-splatted
6638   // values, hoist the shifts before the select:
6639   //   shift Op0, (select Cond, TVal, FVal) -->
6640   //   select Cond, (shift Op0, TVal), (shift Op0, FVal)
6641   //
6642   // This is inverting a generic IR transform when we know that the cost of a
6643   // general vector shift is more than the cost of 2 shift-by-scalars.
6644   // We can't do this effectively in SDAG because we may not be able to
6645   // determine if the select operands are splats from within a basic block.
6646   Type *Ty = Shift->getType();
6647   if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
6648     return false;
6649   Value *Cond, *TVal, *FVal;
6650   if (!match(Shift->getOperand(1),
6651              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
6652     return false;
6653   if (!isSplatValue(TVal) || !isSplatValue(FVal))
6654     return false;
6655 
6656   IRBuilder<> Builder(Shift);
6657   BinaryOperator::BinaryOps Opcode = Shift->getOpcode();
6658   Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal);
6659   Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal);
6660   Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
6661   Shift->replaceAllUsesWith(NewSel);
6662   Shift->eraseFromParent();
6663   return true;
6664 }
6665 
6666 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) {
6667   Intrinsic::ID Opcode = Fsh->getIntrinsicID();
6668   assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) &&
6669          "Expected a funnel shift");
6670 
6671   // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper
6672   // than general vector shifts, and (3) the shift amount is select-of-splatted
6673   // values, hoist the funnel shifts before the select:
6674   //   fsh Op0, Op1, (select Cond, TVal, FVal) -->
6675   //   select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal)
6676   //
6677   // This is inverting a generic IR transform when we know that the cost of a
6678   // general vector shift is more than the cost of 2 shift-by-scalars.
6679   // We can't do this effectively in SDAG because we may not be able to
6680   // determine if the select operands are splats from within a basic block.
6681   Type *Ty = Fsh->getType();
6682   if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
6683     return false;
6684   Value *Cond, *TVal, *FVal;
6685   if (!match(Fsh->getOperand(2),
6686              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
6687     return false;
6688   if (!isSplatValue(TVal) || !isSplatValue(FVal))
6689     return false;
6690 
6691   IRBuilder<> Builder(Fsh);
6692   Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1);
6693   Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, TVal });
6694   Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, FVal });
6695   Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
6696   Fsh->replaceAllUsesWith(NewSel);
6697   Fsh->eraseFromParent();
6698   return true;
6699 }
6700 
6701 /// If we have a SelectInst that will likely profit from branch prediction,
6702 /// turn it into a branch.
6703 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
6704   if (DisableSelectToBranch)
6705     return false;
6706 
6707   // Find all consecutive select instructions that share the same condition.
6708   SmallVector<SelectInst *, 2> ASI;
6709   ASI.push_back(SI);
6710   for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
6711        It != SI->getParent()->end(); ++It) {
6712     SelectInst *I = dyn_cast<SelectInst>(&*It);
6713     if (I && SI->getCondition() == I->getCondition()) {
6714       ASI.push_back(I);
6715     } else {
6716       break;
6717     }
6718   }
6719 
6720   SelectInst *LastSI = ASI.back();
6721   // Increment the current iterator to skip all the rest of select instructions
6722   // because they will be either "not lowered" or "all lowered" to branch.
6723   CurInstIterator = std::next(LastSI->getIterator());
6724 
6725   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
6726 
6727   // Can we convert the 'select' to CF ?
6728   if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable))
6729     return false;
6730 
6731   TargetLowering::SelectSupportKind SelectKind;
6732   if (VectorCond)
6733     SelectKind = TargetLowering::VectorMaskSelect;
6734   else if (SI->getType()->isVectorTy())
6735     SelectKind = TargetLowering::ScalarCondVectorVal;
6736   else
6737     SelectKind = TargetLowering::ScalarValSelect;
6738 
6739   if (TLI->isSelectSupported(SelectKind) &&
6740       (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize ||
6741        llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get())))
6742     return false;
6743 
6744   // The DominatorTree needs to be rebuilt by any consumers after this
6745   // transformation. We simply reset here rather than setting the ModifiedDT
6746   // flag to avoid restarting the function walk in runOnFunction for each
6747   // select optimized.
6748   DT.reset();
6749 
6750   // Transform a sequence like this:
6751   //    start:
6752   //       %cmp = cmp uge i32 %a, %b
6753   //       %sel = select i1 %cmp, i32 %c, i32 %d
6754   //
6755   // Into:
6756   //    start:
6757   //       %cmp = cmp uge i32 %a, %b
6758   //       %cmp.frozen = freeze %cmp
6759   //       br i1 %cmp.frozen, label %select.true, label %select.false
6760   //    select.true:
6761   //       br label %select.end
6762   //    select.false:
6763   //       br label %select.end
6764   //    select.end:
6765   //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
6766   //
6767   // %cmp should be frozen, otherwise it may introduce undefined behavior.
6768   // In addition, we may sink instructions that produce %c or %d from
6769   // the entry block into the destination(s) of the new branch.
6770   // If the true or false blocks do not contain a sunken instruction, that
6771   // block and its branch may be optimized away. In that case, one side of the
6772   // first branch will point directly to select.end, and the corresponding PHI
6773   // predecessor block will be the start block.
6774 
6775   // First, we split the block containing the select into 2 blocks.
6776   BasicBlock *StartBlock = SI->getParent();
6777   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
6778   BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
6779   BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency());
6780 
6781   // Delete the unconditional branch that was just created by the split.
6782   StartBlock->getTerminator()->eraseFromParent();
6783 
6784   // These are the new basic blocks for the conditional branch.
6785   // At least one will become an actual new basic block.
6786   BasicBlock *TrueBlock = nullptr;
6787   BasicBlock *FalseBlock = nullptr;
6788   BranchInst *TrueBranch = nullptr;
6789   BranchInst *FalseBranch = nullptr;
6790 
6791   // Sink expensive instructions into the conditional blocks to avoid executing
6792   // them speculatively.
6793   for (SelectInst *SI : ASI) {
6794     if (sinkSelectOperand(TTI, SI->getTrueValue())) {
6795       if (TrueBlock == nullptr) {
6796         TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
6797                                        EndBlock->getParent(), EndBlock);
6798         TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
6799         TrueBranch->setDebugLoc(SI->getDebugLoc());
6800       }
6801       auto *TrueInst = cast<Instruction>(SI->getTrueValue());
6802       TrueInst->moveBefore(TrueBranch);
6803     }
6804     if (sinkSelectOperand(TTI, SI->getFalseValue())) {
6805       if (FalseBlock == nullptr) {
6806         FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
6807                                         EndBlock->getParent(), EndBlock);
6808         FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6809         FalseBranch->setDebugLoc(SI->getDebugLoc());
6810       }
6811       auto *FalseInst = cast<Instruction>(SI->getFalseValue());
6812       FalseInst->moveBefore(FalseBranch);
6813     }
6814   }
6815 
6816   // If there was nothing to sink, then arbitrarily choose the 'false' side
6817   // for a new input value to the PHI.
6818   if (TrueBlock == FalseBlock) {
6819     assert(TrueBlock == nullptr &&
6820            "Unexpected basic block transform while optimizing select");
6821 
6822     FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
6823                                     EndBlock->getParent(), EndBlock);
6824     auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6825     FalseBranch->setDebugLoc(SI->getDebugLoc());
6826   }
6827 
6828   // Insert the real conditional branch based on the original condition.
6829   // If we did not create a new block for one of the 'true' or 'false' paths
6830   // of the condition, it means that side of the branch goes to the end block
6831   // directly and the path originates from the start block from the point of
6832   // view of the new PHI.
6833   BasicBlock *TT, *FT;
6834   if (TrueBlock == nullptr) {
6835     TT = EndBlock;
6836     FT = FalseBlock;
6837     TrueBlock = StartBlock;
6838   } else if (FalseBlock == nullptr) {
6839     TT = TrueBlock;
6840     FT = EndBlock;
6841     FalseBlock = StartBlock;
6842   } else {
6843     TT = TrueBlock;
6844     FT = FalseBlock;
6845   }
6846   IRBuilder<> IB(SI);
6847   auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen");
6848   IB.CreateCondBr(CondFr, TT, FT, SI);
6849 
6850   SmallPtrSet<const Instruction *, 2> INS;
6851   INS.insert(ASI.begin(), ASI.end());
6852   // Use reverse iterator because later select may use the value of the
6853   // earlier select, and we need to propagate value through earlier select
6854   // to get the PHI operand.
6855   for (SelectInst *SI : llvm::reverse(ASI)) {
6856     // The select itself is replaced with a PHI Node.
6857     PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
6858     PN->takeName(SI);
6859     PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
6860     PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
6861     PN->setDebugLoc(SI->getDebugLoc());
6862 
6863     SI->replaceAllUsesWith(PN);
6864     SI->eraseFromParent();
6865     INS.erase(SI);
6866     ++NumSelectsExpanded;
6867   }
6868 
6869   // Instruct OptimizeBlock to skip to the next block.
6870   CurInstIterator = StartBlock->end();
6871   return true;
6872 }
6873 
6874 /// Some targets only accept certain types for splat inputs. For example a VDUP
6875 /// in MVE takes a GPR (integer) register, and the instruction that incorporate
6876 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register.
6877 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
6878   // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only
6879   if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
6880                             m_Undef(), m_ZeroMask())))
6881     return false;
6882   Type *NewType = TLI->shouldConvertSplatType(SVI);
6883   if (!NewType)
6884     return false;
6885 
6886   auto *SVIVecType = cast<FixedVectorType>(SVI->getType());
6887   assert(!NewType->isVectorTy() && "Expected a scalar type!");
6888   assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() &&
6889          "Expected a type of the same size!");
6890   auto *NewVecType =
6891       FixedVectorType::get(NewType, SVIVecType->getNumElements());
6892 
6893   // Create a bitcast (shuffle (insert (bitcast(..))))
6894   IRBuilder<> Builder(SVI->getContext());
6895   Builder.SetInsertPoint(SVI);
6896   Value *BC1 = Builder.CreateBitCast(
6897       cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType);
6898   Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1);
6899   Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType);
6900 
6901   SVI->replaceAllUsesWith(BC2);
6902   RecursivelyDeleteTriviallyDeadInstructions(
6903       SVI, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); });
6904 
6905   // Also hoist the bitcast up to its operand if it they are not in the same
6906   // block.
6907   if (auto *BCI = dyn_cast<Instruction>(BC1))
6908     if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0)))
6909       if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) &&
6910           !Op->isTerminator() && !Op->isEHPad())
6911         BCI->moveAfter(Op);
6912 
6913   return true;
6914 }
6915 
6916 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) {
6917   // If the operands of I can be folded into a target instruction together with
6918   // I, duplicate and sink them.
6919   SmallVector<Use *, 4> OpsToSink;
6920   if (!TLI->shouldSinkOperands(I, OpsToSink))
6921     return false;
6922 
6923   // OpsToSink can contain multiple uses in a use chain (e.g.
6924   // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
6925   // uses must come first, so we process the ops in reverse order so as to not
6926   // create invalid IR.
6927   BasicBlock *TargetBB = I->getParent();
6928   bool Changed = false;
6929   SmallVector<Use *, 4> ToReplace;
6930   Instruction *InsertPoint = I;
6931   DenseMap<const Instruction *, unsigned long> InstOrdering;
6932   unsigned long InstNumber = 0;
6933   for (const auto &I : *TargetBB)
6934     InstOrdering[&I] = InstNumber++;
6935 
6936   for (Use *U : reverse(OpsToSink)) {
6937     auto *UI = cast<Instruction>(U->get());
6938     if (isa<PHINode>(UI))
6939       continue;
6940     if (UI->getParent() == TargetBB) {
6941       if (InstOrdering[UI] < InstOrdering[InsertPoint])
6942         InsertPoint = UI;
6943       continue;
6944     }
6945     ToReplace.push_back(U);
6946   }
6947 
6948   SetVector<Instruction *> MaybeDead;
6949   DenseMap<Instruction *, Instruction *> NewInstructions;
6950   for (Use *U : ToReplace) {
6951     auto *UI = cast<Instruction>(U->get());
6952     Instruction *NI = UI->clone();
6953     NewInstructions[UI] = NI;
6954     MaybeDead.insert(UI);
6955     LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n");
6956     NI->insertBefore(InsertPoint);
6957     InsertPoint = NI;
6958     InsertedInsts.insert(NI);
6959 
6960     // Update the use for the new instruction, making sure that we update the
6961     // sunk instruction uses, if it is part of a chain that has already been
6962     // sunk.
6963     Instruction *OldI = cast<Instruction>(U->getUser());
6964     if (NewInstructions.count(OldI))
6965       NewInstructions[OldI]->setOperand(U->getOperandNo(), NI);
6966     else
6967       U->set(NI);
6968     Changed = true;
6969   }
6970 
6971   // Remove instructions that are dead after sinking.
6972   for (auto *I : MaybeDead) {
6973     if (!I->hasNUsesOrMore(1)) {
6974       LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n");
6975       I->eraseFromParent();
6976     }
6977   }
6978 
6979   return Changed;
6980 }
6981 
6982 bool CodeGenPrepare::optimizeSwitchType(SwitchInst *SI) {
6983   Value *Cond = SI->getCondition();
6984   Type *OldType = Cond->getType();
6985   LLVMContext &Context = Cond->getContext();
6986   EVT OldVT = TLI->getValueType(*DL, OldType);
6987   MVT RegType = TLI->getPreferredSwitchConditionType(Context, OldVT);
6988   unsigned RegWidth = RegType.getSizeInBits();
6989 
6990   if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
6991     return false;
6992 
6993   // If the register width is greater than the type width, expand the condition
6994   // of the switch instruction and each case constant to the width of the
6995   // register. By widening the type of the switch condition, subsequent
6996   // comparisons (for case comparisons) will not need to be extended to the
6997   // preferred register width, so we will potentially eliminate N-1 extends,
6998   // where N is the number of cases in the switch.
6999   auto *NewType = Type::getIntNTy(Context, RegWidth);
7000 
7001   // Extend the switch condition and case constants using the target preferred
7002   // extend unless the switch condition is a function argument with an extend
7003   // attribute. In that case, we can avoid an unnecessary mask/extension by
7004   // matching the argument extension instead.
7005   Instruction::CastOps ExtType = Instruction::ZExt;
7006   // Some targets prefer SExt over ZExt.
7007   if (TLI->isSExtCheaperThanZExt(OldVT, RegType))
7008     ExtType = Instruction::SExt;
7009 
7010   if (auto *Arg = dyn_cast<Argument>(Cond)) {
7011     if (Arg->hasSExtAttr())
7012       ExtType = Instruction::SExt;
7013     if (Arg->hasZExtAttr())
7014       ExtType = Instruction::ZExt;
7015   }
7016 
7017   auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
7018   ExtInst->insertBefore(SI);
7019   ExtInst->setDebugLoc(SI->getDebugLoc());
7020   SI->setCondition(ExtInst);
7021   for (auto Case : SI->cases()) {
7022     const APInt &NarrowConst = Case.getCaseValue()->getValue();
7023     APInt WideConst = (ExtType == Instruction::ZExt) ?
7024                       NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
7025     Case.setValue(ConstantInt::get(Context, WideConst));
7026   }
7027 
7028   return true;
7029 }
7030 
7031 bool CodeGenPrepare::optimizeSwitchPhiConstants(SwitchInst *SI) {
7032   // The SCCP optimization tends to produce code like this:
7033   //   switch(x) { case 42: phi(42, ...) }
7034   // Materializing the constant for the phi-argument needs instructions; So we
7035   // change the code to:
7036   //   switch(x) { case 42: phi(x, ...) }
7037 
7038   Value *Condition = SI->getCondition();
7039   // Avoid endless loop in degenerate case.
7040   if (isa<ConstantInt>(*Condition))
7041     return false;
7042 
7043   bool Changed = false;
7044   BasicBlock *SwitchBB = SI->getParent();
7045   Type *ConditionType = Condition->getType();
7046 
7047   for (const SwitchInst::CaseHandle &Case : SI->cases()) {
7048     ConstantInt *CaseValue = Case.getCaseValue();
7049     BasicBlock *CaseBB = Case.getCaseSuccessor();
7050     // Set to true if we previously checked that `CaseBB` is only reached by
7051     // a single case from this switch.
7052     bool CheckedForSinglePred = false;
7053     for (PHINode &PHI : CaseBB->phis()) {
7054       Type *PHIType = PHI.getType();
7055       // If ZExt is free then we can also catch patterns like this:
7056       //   switch((i32)x) { case 42: phi((i64)42, ...); }
7057       // and replace `(i64)42` with `zext i32 %x to i64`.
7058       bool TryZExt =
7059           PHIType->isIntegerTy() &&
7060           PHIType->getIntegerBitWidth() > ConditionType->getIntegerBitWidth() &&
7061           TLI->isZExtFree(ConditionType, PHIType);
7062       if (PHIType == ConditionType || TryZExt) {
7063         // Set to true to skip this case because of multiple preds.
7064         bool SkipCase = false;
7065         Value *Replacement = nullptr;
7066         for (unsigned I = 0, E = PHI.getNumIncomingValues(); I != E; I++) {
7067           Value *PHIValue = PHI.getIncomingValue(I);
7068           if (PHIValue != CaseValue) {
7069             if (!TryZExt)
7070               continue;
7071             ConstantInt *PHIValueInt = dyn_cast<ConstantInt>(PHIValue);
7072             if (!PHIValueInt ||
7073                 PHIValueInt->getValue() !=
7074                     CaseValue->getValue().zext(PHIType->getIntegerBitWidth()))
7075               continue;
7076           }
7077           if (PHI.getIncomingBlock(I) != SwitchBB)
7078             continue;
7079           // We cannot optimize if there are multiple case labels jumping to
7080           // this block.  This check may get expensive when there are many
7081           // case labels so we test for it last.
7082           if (!CheckedForSinglePred) {
7083             CheckedForSinglePred = true;
7084             if (SI->findCaseDest(CaseBB) == nullptr) {
7085               SkipCase = true;
7086               break;
7087             }
7088           }
7089 
7090           if (Replacement == nullptr) {
7091             if (PHIValue == CaseValue) {
7092               Replacement = Condition;
7093             } else {
7094               IRBuilder<> Builder(SI);
7095               Replacement = Builder.CreateZExt(Condition, PHIType);
7096             }
7097           }
7098           PHI.setIncomingValue(I, Replacement);
7099           Changed = true;
7100         }
7101         if (SkipCase)
7102           break;
7103       }
7104     }
7105   }
7106   return Changed;
7107 }
7108 
7109 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
7110   bool Changed = optimizeSwitchType(SI);
7111   Changed |= optimizeSwitchPhiConstants(SI);
7112   return Changed;
7113 }
7114 
7115 namespace {
7116 
7117 /// Helper class to promote a scalar operation to a vector one.
7118 /// This class is used to move downward extractelement transition.
7119 /// E.g.,
7120 /// a = vector_op <2 x i32>
7121 /// b = extractelement <2 x i32> a, i32 0
7122 /// c = scalar_op b
7123 /// store c
7124 ///
7125 /// =>
7126 /// a = vector_op <2 x i32>
7127 /// c = vector_op a (equivalent to scalar_op on the related lane)
7128 /// * d = extractelement <2 x i32> c, i32 0
7129 /// * store d
7130 /// Assuming both extractelement and store can be combine, we get rid of the
7131 /// transition.
7132 class VectorPromoteHelper {
7133   /// DataLayout associated with the current module.
7134   const DataLayout &DL;
7135 
7136   /// Used to perform some checks on the legality of vector operations.
7137   const TargetLowering &TLI;
7138 
7139   /// Used to estimated the cost of the promoted chain.
7140   const TargetTransformInfo &TTI;
7141 
7142   /// The transition being moved downwards.
7143   Instruction *Transition;
7144 
7145   /// The sequence of instructions to be promoted.
7146   SmallVector<Instruction *, 4> InstsToBePromoted;
7147 
7148   /// Cost of combining a store and an extract.
7149   unsigned StoreExtractCombineCost;
7150 
7151   /// Instruction that will be combined with the transition.
7152   Instruction *CombineInst = nullptr;
7153 
7154   /// The instruction that represents the current end of the transition.
7155   /// Since we are faking the promotion until we reach the end of the chain
7156   /// of computation, we need a way to get the current end of the transition.
7157   Instruction *getEndOfTransition() const {
7158     if (InstsToBePromoted.empty())
7159       return Transition;
7160     return InstsToBePromoted.back();
7161   }
7162 
7163   /// Return the index of the original value in the transition.
7164   /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
7165   /// c, is at index 0.
7166   unsigned getTransitionOriginalValueIdx() const {
7167     assert(isa<ExtractElementInst>(Transition) &&
7168            "Other kind of transitions are not supported yet");
7169     return 0;
7170   }
7171 
7172   /// Return the index of the index in the transition.
7173   /// E.g., for "extractelement <2 x i32> c, i32 0" the index
7174   /// is at index 1.
7175   unsigned getTransitionIdx() const {
7176     assert(isa<ExtractElementInst>(Transition) &&
7177            "Other kind of transitions are not supported yet");
7178     return 1;
7179   }
7180 
7181   /// Get the type of the transition.
7182   /// This is the type of the original value.
7183   /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
7184   /// transition is <2 x i32>.
7185   Type *getTransitionType() const {
7186     return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
7187   }
7188 
7189   /// Promote \p ToBePromoted by moving \p Def downward through.
7190   /// I.e., we have the following sequence:
7191   /// Def = Transition <ty1> a to <ty2>
7192   /// b = ToBePromoted <ty2> Def, ...
7193   /// =>
7194   /// b = ToBePromoted <ty1> a, ...
7195   /// Def = Transition <ty1> ToBePromoted to <ty2>
7196   void promoteImpl(Instruction *ToBePromoted);
7197 
7198   /// Check whether or not it is profitable to promote all the
7199   /// instructions enqueued to be promoted.
7200   bool isProfitableToPromote() {
7201     Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
7202     unsigned Index = isa<ConstantInt>(ValIdx)
7203                          ? cast<ConstantInt>(ValIdx)->getZExtValue()
7204                          : -1;
7205     Type *PromotedType = getTransitionType();
7206 
7207     StoreInst *ST = cast<StoreInst>(CombineInst);
7208     unsigned AS = ST->getPointerAddressSpace();
7209     // Check if this store is supported.
7210     if (!TLI.allowsMisalignedMemoryAccesses(
7211             TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
7212             ST->getAlign())) {
7213       // If this is not supported, there is no way we can combine
7214       // the extract with the store.
7215       return false;
7216     }
7217 
7218     // The scalar chain of computation has to pay for the transition
7219     // scalar to vector.
7220     // The vector chain has to account for the combining cost.
7221     InstructionCost ScalarCost =
7222         TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
7223     InstructionCost VectorCost = StoreExtractCombineCost;
7224     enum TargetTransformInfo::TargetCostKind CostKind =
7225       TargetTransformInfo::TCK_RecipThroughput;
7226     for (const auto &Inst : InstsToBePromoted) {
7227       // Compute the cost.
7228       // By construction, all instructions being promoted are arithmetic ones.
7229       // Moreover, one argument is a constant that can be viewed as a splat
7230       // constant.
7231       Value *Arg0 = Inst->getOperand(0);
7232       bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
7233                             isa<ConstantFP>(Arg0);
7234       TargetTransformInfo::OperandValueKind Arg0OVK =
7235           IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
7236                          : TargetTransformInfo::OK_AnyValue;
7237       TargetTransformInfo::OperandValueKind Arg1OVK =
7238           !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
7239                           : TargetTransformInfo::OK_AnyValue;
7240       ScalarCost += TTI.getArithmeticInstrCost(
7241           Inst->getOpcode(), Inst->getType(), CostKind, Arg0OVK, Arg1OVK);
7242       VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
7243                                                CostKind,
7244                                                Arg0OVK, Arg1OVK);
7245     }
7246     LLVM_DEBUG(
7247         dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
7248                << ScalarCost << "\nVector: " << VectorCost << '\n');
7249     return ScalarCost > VectorCost;
7250   }
7251 
7252   /// Generate a constant vector with \p Val with the same
7253   /// number of elements as the transition.
7254   /// \p UseSplat defines whether or not \p Val should be replicated
7255   /// across the whole vector.
7256   /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
7257   /// otherwise we generate a vector with as many undef as possible:
7258   /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
7259   /// used at the index of the extract.
7260   Value *getConstantVector(Constant *Val, bool UseSplat) const {
7261     unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
7262     if (!UseSplat) {
7263       // If we cannot determine where the constant must be, we have to
7264       // use a splat constant.
7265       Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
7266       if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
7267         ExtractIdx = CstVal->getSExtValue();
7268       else
7269         UseSplat = true;
7270     }
7271 
7272     ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount();
7273     if (UseSplat)
7274       return ConstantVector::getSplat(EC, Val);
7275 
7276     if (!EC.isScalable()) {
7277       SmallVector<Constant *, 4> ConstVec;
7278       UndefValue *UndefVal = UndefValue::get(Val->getType());
7279       for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) {
7280         if (Idx == ExtractIdx)
7281           ConstVec.push_back(Val);
7282         else
7283           ConstVec.push_back(UndefVal);
7284       }
7285       return ConstantVector::get(ConstVec);
7286     } else
7287       llvm_unreachable(
7288           "Generate scalable vector for non-splat is unimplemented");
7289   }
7290 
7291   /// Check if promoting to a vector type an operand at \p OperandIdx
7292   /// in \p Use can trigger undefined behavior.
7293   static bool canCauseUndefinedBehavior(const Instruction *Use,
7294                                         unsigned OperandIdx) {
7295     // This is not safe to introduce undef when the operand is on
7296     // the right hand side of a division-like instruction.
7297     if (OperandIdx != 1)
7298       return false;
7299     switch (Use->getOpcode()) {
7300     default:
7301       return false;
7302     case Instruction::SDiv:
7303     case Instruction::UDiv:
7304     case Instruction::SRem:
7305     case Instruction::URem:
7306       return true;
7307     case Instruction::FDiv:
7308     case Instruction::FRem:
7309       return !Use->hasNoNaNs();
7310     }
7311     llvm_unreachable(nullptr);
7312   }
7313 
7314 public:
7315   VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
7316                       const TargetTransformInfo &TTI, Instruction *Transition,
7317                       unsigned CombineCost)
7318       : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
7319         StoreExtractCombineCost(CombineCost) {
7320     assert(Transition && "Do not know how to promote null");
7321   }
7322 
7323   /// Check if we can promote \p ToBePromoted to \p Type.
7324   bool canPromote(const Instruction *ToBePromoted) const {
7325     // We could support CastInst too.
7326     return isa<BinaryOperator>(ToBePromoted);
7327   }
7328 
7329   /// Check if it is profitable to promote \p ToBePromoted
7330   /// by moving downward the transition through.
7331   bool shouldPromote(const Instruction *ToBePromoted) const {
7332     // Promote only if all the operands can be statically expanded.
7333     // Indeed, we do not want to introduce any new kind of transitions.
7334     for (const Use &U : ToBePromoted->operands()) {
7335       const Value *Val = U.get();
7336       if (Val == getEndOfTransition()) {
7337         // If the use is a division and the transition is on the rhs,
7338         // we cannot promote the operation, otherwise we may create a
7339         // division by zero.
7340         if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
7341           return false;
7342         continue;
7343       }
7344       if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
7345           !isa<ConstantFP>(Val))
7346         return false;
7347     }
7348     // Check that the resulting operation is legal.
7349     int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
7350     if (!ISDOpcode)
7351       return false;
7352     return StressStoreExtract ||
7353            TLI.isOperationLegalOrCustom(
7354                ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
7355   }
7356 
7357   /// Check whether or not \p Use can be combined
7358   /// with the transition.
7359   /// I.e., is it possible to do Use(Transition) => AnotherUse?
7360   bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
7361 
7362   /// Record \p ToBePromoted as part of the chain to be promoted.
7363   void enqueueForPromotion(Instruction *ToBePromoted) {
7364     InstsToBePromoted.push_back(ToBePromoted);
7365   }
7366 
7367   /// Set the instruction that will be combined with the transition.
7368   void recordCombineInstruction(Instruction *ToBeCombined) {
7369     assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
7370     CombineInst = ToBeCombined;
7371   }
7372 
7373   /// Promote all the instructions enqueued for promotion if it is
7374   /// is profitable.
7375   /// \return True if the promotion happened, false otherwise.
7376   bool promote() {
7377     // Check if there is something to promote.
7378     // Right now, if we do not have anything to combine with,
7379     // we assume the promotion is not profitable.
7380     if (InstsToBePromoted.empty() || !CombineInst)
7381       return false;
7382 
7383     // Check cost.
7384     if (!StressStoreExtract && !isProfitableToPromote())
7385       return false;
7386 
7387     // Promote.
7388     for (auto &ToBePromoted : InstsToBePromoted)
7389       promoteImpl(ToBePromoted);
7390     InstsToBePromoted.clear();
7391     return true;
7392   }
7393 };
7394 
7395 } // end anonymous namespace
7396 
7397 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
7398   // At this point, we know that all the operands of ToBePromoted but Def
7399   // can be statically promoted.
7400   // For Def, we need to use its parameter in ToBePromoted:
7401   // b = ToBePromoted ty1 a
7402   // Def = Transition ty1 b to ty2
7403   // Move the transition down.
7404   // 1. Replace all uses of the promoted operation by the transition.
7405   // = ... b => = ... Def.
7406   assert(ToBePromoted->getType() == Transition->getType() &&
7407          "The type of the result of the transition does not match "
7408          "the final type");
7409   ToBePromoted->replaceAllUsesWith(Transition);
7410   // 2. Update the type of the uses.
7411   // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
7412   Type *TransitionTy = getTransitionType();
7413   ToBePromoted->mutateType(TransitionTy);
7414   // 3. Update all the operands of the promoted operation with promoted
7415   // operands.
7416   // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
7417   for (Use &U : ToBePromoted->operands()) {
7418     Value *Val = U.get();
7419     Value *NewVal = nullptr;
7420     if (Val == Transition)
7421       NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
7422     else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
7423              isa<ConstantFP>(Val)) {
7424       // Use a splat constant if it is not safe to use undef.
7425       NewVal = getConstantVector(
7426           cast<Constant>(Val),
7427           isa<UndefValue>(Val) ||
7428               canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
7429     } else
7430       llvm_unreachable("Did you modified shouldPromote and forgot to update "
7431                        "this?");
7432     ToBePromoted->setOperand(U.getOperandNo(), NewVal);
7433   }
7434   Transition->moveAfter(ToBePromoted);
7435   Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
7436 }
7437 
7438 /// Some targets can do store(extractelement) with one instruction.
7439 /// Try to push the extractelement towards the stores when the target
7440 /// has this feature and this is profitable.
7441 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
7442   unsigned CombineCost = std::numeric_limits<unsigned>::max();
7443   if (DisableStoreExtract ||
7444       (!StressStoreExtract &&
7445        !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
7446                                        Inst->getOperand(1), CombineCost)))
7447     return false;
7448 
7449   // At this point we know that Inst is a vector to scalar transition.
7450   // Try to move it down the def-use chain, until:
7451   // - We can combine the transition with its single use
7452   //   => we got rid of the transition.
7453   // - We escape the current basic block
7454   //   => we would need to check that we are moving it at a cheaper place and
7455   //      we do not do that for now.
7456   BasicBlock *Parent = Inst->getParent();
7457   LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
7458   VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
7459   // If the transition has more than one use, assume this is not going to be
7460   // beneficial.
7461   while (Inst->hasOneUse()) {
7462     Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
7463     LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
7464 
7465     if (ToBePromoted->getParent() != Parent) {
7466       LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
7467                         << ToBePromoted->getParent()->getName()
7468                         << ") than the transition (" << Parent->getName()
7469                         << ").\n");
7470       return false;
7471     }
7472 
7473     if (VPH.canCombine(ToBePromoted)) {
7474       LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
7475                         << "will be combined with: " << *ToBePromoted << '\n');
7476       VPH.recordCombineInstruction(ToBePromoted);
7477       bool Changed = VPH.promote();
7478       NumStoreExtractExposed += Changed;
7479       return Changed;
7480     }
7481 
7482     LLVM_DEBUG(dbgs() << "Try promoting.\n");
7483     if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
7484       return false;
7485 
7486     LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
7487 
7488     VPH.enqueueForPromotion(ToBePromoted);
7489     Inst = ToBePromoted;
7490   }
7491   return false;
7492 }
7493 
7494 /// For the instruction sequence of store below, F and I values
7495 /// are bundled together as an i64 value before being stored into memory.
7496 /// Sometimes it is more efficient to generate separate stores for F and I,
7497 /// which can remove the bitwise instructions or sink them to colder places.
7498 ///
7499 ///   (store (or (zext (bitcast F to i32) to i64),
7500 ///              (shl (zext I to i64), 32)), addr)  -->
7501 ///   (store F, addr) and (store I, addr+4)
7502 ///
7503 /// Similarly, splitting for other merged store can also be beneficial, like:
7504 /// For pair of {i32, i32}, i64 store --> two i32 stores.
7505 /// For pair of {i32, i16}, i64 store --> two i32 stores.
7506 /// For pair of {i16, i16}, i32 store --> two i16 stores.
7507 /// For pair of {i16, i8},  i32 store --> two i16 stores.
7508 /// For pair of {i8, i8},   i16 store --> two i8 stores.
7509 ///
7510 /// We allow each target to determine specifically which kind of splitting is
7511 /// supported.
7512 ///
7513 /// The store patterns are commonly seen from the simple code snippet below
7514 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
7515 ///   void goo(const std::pair<int, float> &);
7516 ///   hoo() {
7517 ///     ...
7518 ///     goo(std::make_pair(tmp, ftmp));
7519 ///     ...
7520 ///   }
7521 ///
7522 /// Although we already have similar splitting in DAG Combine, we duplicate
7523 /// it in CodeGenPrepare to catch the case in which pattern is across
7524 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
7525 /// during code expansion.
7526 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
7527                                 const TargetLowering &TLI) {
7528   // Handle simple but common cases only.
7529   Type *StoreType = SI.getValueOperand()->getType();
7530 
7531   // The code below assumes shifting a value by <number of bits>,
7532   // whereas scalable vectors would have to be shifted by
7533   // <2log(vscale) + number of bits> in order to store the
7534   // low/high parts. Bailing out for now.
7535   if (isa<ScalableVectorType>(StoreType))
7536     return false;
7537 
7538   if (!DL.typeSizeEqualsStoreSize(StoreType) ||
7539       DL.getTypeSizeInBits(StoreType) == 0)
7540     return false;
7541 
7542   unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
7543   Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
7544   if (!DL.typeSizeEqualsStoreSize(SplitStoreType))
7545     return false;
7546 
7547   // Don't split the store if it is volatile.
7548   if (SI.isVolatile())
7549     return false;
7550 
7551   // Match the following patterns:
7552   // (store (or (zext LValue to i64),
7553   //            (shl (zext HValue to i64), 32)), HalfValBitSize)
7554   //  or
7555   // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
7556   //            (zext LValue to i64),
7557   // Expect both operands of OR and the first operand of SHL have only
7558   // one use.
7559   Value *LValue, *HValue;
7560   if (!match(SI.getValueOperand(),
7561              m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
7562                     m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
7563                                    m_SpecificInt(HalfValBitSize))))))
7564     return false;
7565 
7566   // Check LValue and HValue are int with size less or equal than 32.
7567   if (!LValue->getType()->isIntegerTy() ||
7568       DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
7569       !HValue->getType()->isIntegerTy() ||
7570       DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
7571     return false;
7572 
7573   // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
7574   // as the input of target query.
7575   auto *LBC = dyn_cast<BitCastInst>(LValue);
7576   auto *HBC = dyn_cast<BitCastInst>(HValue);
7577   EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
7578                   : EVT::getEVT(LValue->getType());
7579   EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
7580                    : EVT::getEVT(HValue->getType());
7581   if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
7582     return false;
7583 
7584   // Start to split store.
7585   IRBuilder<> Builder(SI.getContext());
7586   Builder.SetInsertPoint(&SI);
7587 
7588   // If LValue/HValue is a bitcast in another BB, create a new one in current
7589   // BB so it may be merged with the splitted stores by dag combiner.
7590   if (LBC && LBC->getParent() != SI.getParent())
7591     LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
7592   if (HBC && HBC->getParent() != SI.getParent())
7593     HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
7594 
7595   bool IsLE = SI.getModule()->getDataLayout().isLittleEndian();
7596   auto CreateSplitStore = [&](Value *V, bool Upper) {
7597     V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
7598     Value *Addr = Builder.CreateBitCast(
7599         SI.getOperand(1),
7600         SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
7601     Align Alignment = SI.getAlign();
7602     const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper);
7603     if (IsOffsetStore) {
7604       Addr = Builder.CreateGEP(
7605           SplitStoreType, Addr,
7606           ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
7607 
7608       // When splitting the store in half, naturally one half will retain the
7609       // alignment of the original wider store, regardless of whether it was
7610       // over-aligned or not, while the other will require adjustment.
7611       Alignment = commonAlignment(Alignment, HalfValBitSize / 8);
7612     }
7613     Builder.CreateAlignedStore(V, Addr, Alignment);
7614   };
7615 
7616   CreateSplitStore(LValue, false);
7617   CreateSplitStore(HValue, true);
7618 
7619   // Delete the old store.
7620   SI.eraseFromParent();
7621   return true;
7622 }
7623 
7624 // Return true if the GEP has two operands, the first operand is of a sequential
7625 // type, and the second operand is a constant.
7626 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
7627   gep_type_iterator I = gep_type_begin(*GEP);
7628   return GEP->getNumOperands() == 2 &&
7629       I.isSequential() &&
7630       isa<ConstantInt>(GEP->getOperand(1));
7631 }
7632 
7633 // Try unmerging GEPs to reduce liveness interference (register pressure) across
7634 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
7635 // reducing liveness interference across those edges benefits global register
7636 // allocation. Currently handles only certain cases.
7637 //
7638 // For example, unmerge %GEPI and %UGEPI as below.
7639 //
7640 // ---------- BEFORE ----------
7641 // SrcBlock:
7642 //   ...
7643 //   %GEPIOp = ...
7644 //   ...
7645 //   %GEPI = gep %GEPIOp, Idx
7646 //   ...
7647 //   indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
7648 //   (* %GEPI is alive on the indirectbr edges due to other uses ahead)
7649 //   (* %GEPIOp is alive on the indirectbr edges only because of it's used by
7650 //   %UGEPI)
7651 //
7652 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
7653 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
7654 // ...
7655 //
7656 // DstBi:
7657 //   ...
7658 //   %UGEPI = gep %GEPIOp, UIdx
7659 // ...
7660 // ---------------------------
7661 //
7662 // ---------- AFTER ----------
7663 // SrcBlock:
7664 //   ... (same as above)
7665 //    (* %GEPI is still alive on the indirectbr edges)
7666 //    (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
7667 //    unmerging)
7668 // ...
7669 //
7670 // DstBi:
7671 //   ...
7672 //   %UGEPI = gep %GEPI, (UIdx-Idx)
7673 //   ...
7674 // ---------------------------
7675 //
7676 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
7677 // no longer alive on them.
7678 //
7679 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
7680 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
7681 // not to disable further simplications and optimizations as a result of GEP
7682 // merging.
7683 //
7684 // Note this unmerging may increase the length of the data flow critical path
7685 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
7686 // between the register pressure and the length of data-flow critical
7687 // path. Restricting this to the uncommon IndirectBr case would minimize the
7688 // impact of potentially longer critical path, if any, and the impact on compile
7689 // time.
7690 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
7691                                              const TargetTransformInfo *TTI) {
7692   BasicBlock *SrcBlock = GEPI->getParent();
7693   // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
7694   // (non-IndirectBr) cases exit early here.
7695   if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
7696     return false;
7697   // Check that GEPI is a simple gep with a single constant index.
7698   if (!GEPSequentialConstIndexed(GEPI))
7699     return false;
7700   ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
7701   // Check that GEPI is a cheap one.
7702   if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(),
7703                          TargetTransformInfo::TCK_SizeAndLatency)
7704       > TargetTransformInfo::TCC_Basic)
7705     return false;
7706   Value *GEPIOp = GEPI->getOperand(0);
7707   // Check that GEPIOp is an instruction that's also defined in SrcBlock.
7708   if (!isa<Instruction>(GEPIOp))
7709     return false;
7710   auto *GEPIOpI = cast<Instruction>(GEPIOp);
7711   if (GEPIOpI->getParent() != SrcBlock)
7712     return false;
7713   // Check that GEP is used outside the block, meaning it's alive on the
7714   // IndirectBr edge(s).
7715   if (find_if(GEPI->users(), [&](User *Usr) {
7716         if (auto *I = dyn_cast<Instruction>(Usr)) {
7717           if (I->getParent() != SrcBlock) {
7718             return true;
7719           }
7720         }
7721         return false;
7722       }) == GEPI->users().end())
7723     return false;
7724   // The second elements of the GEP chains to be unmerged.
7725   std::vector<GetElementPtrInst *> UGEPIs;
7726   // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
7727   // on IndirectBr edges.
7728   for (User *Usr : GEPIOp->users()) {
7729     if (Usr == GEPI) continue;
7730     // Check if Usr is an Instruction. If not, give up.
7731     if (!isa<Instruction>(Usr))
7732       return false;
7733     auto *UI = cast<Instruction>(Usr);
7734     // Check if Usr in the same block as GEPIOp, which is fine, skip.
7735     if (UI->getParent() == SrcBlock)
7736       continue;
7737     // Check if Usr is a GEP. If not, give up.
7738     if (!isa<GetElementPtrInst>(Usr))
7739       return false;
7740     auto *UGEPI = cast<GetElementPtrInst>(Usr);
7741     // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
7742     // the pointer operand to it. If so, record it in the vector. If not, give
7743     // up.
7744     if (!GEPSequentialConstIndexed(UGEPI))
7745       return false;
7746     if (UGEPI->getOperand(0) != GEPIOp)
7747       return false;
7748     if (GEPIIdx->getType() !=
7749         cast<ConstantInt>(UGEPI->getOperand(1))->getType())
7750       return false;
7751     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7752     if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(),
7753                            TargetTransformInfo::TCK_SizeAndLatency)
7754         > TargetTransformInfo::TCC_Basic)
7755       return false;
7756     UGEPIs.push_back(UGEPI);
7757   }
7758   if (UGEPIs.size() == 0)
7759     return false;
7760   // Check the materializing cost of (Uidx-Idx).
7761   for (GetElementPtrInst *UGEPI : UGEPIs) {
7762     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7763     APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
7764     InstructionCost ImmCost = TTI->getIntImmCost(
7765         NewIdx, GEPIIdx->getType(), TargetTransformInfo::TCK_SizeAndLatency);
7766     if (ImmCost > TargetTransformInfo::TCC_Basic)
7767       return false;
7768   }
7769   // Now unmerge between GEPI and UGEPIs.
7770   for (GetElementPtrInst *UGEPI : UGEPIs) {
7771     UGEPI->setOperand(0, GEPI);
7772     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7773     Constant *NewUGEPIIdx =
7774         ConstantInt::get(GEPIIdx->getType(),
7775                          UGEPIIdx->getValue() - GEPIIdx->getValue());
7776     UGEPI->setOperand(1, NewUGEPIIdx);
7777     // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
7778     // inbounds to avoid UB.
7779     if (!GEPI->isInBounds()) {
7780       UGEPI->setIsInBounds(false);
7781     }
7782   }
7783   // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
7784   // alive on IndirectBr edges).
7785   assert(find_if(GEPIOp->users(), [&](User *Usr) {
7786         return cast<Instruction>(Usr)->getParent() != SrcBlock;
7787       }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock");
7788   return true;
7789 }
7790 
7791 static bool optimizeBranch(BranchInst *Branch, const TargetLowering &TLI) {
7792   // Try and convert
7793   //  %c = icmp ult %x, 8
7794   //  br %c, bla, blb
7795   //  %tc = lshr %x, 3
7796   // to
7797   //  %tc = lshr %x, 3
7798   //  %c = icmp eq %tc, 0
7799   //  br %c, bla, blb
7800   // Creating the cmp to zero can be better for the backend, especially if the
7801   // lshr produces flags that can be used automatically.
7802   if (!TLI.preferZeroCompareBranch() || !Branch->isConditional())
7803     return false;
7804 
7805   ICmpInst *Cmp = dyn_cast<ICmpInst>(Branch->getCondition());
7806   if (!Cmp || !isa<ConstantInt>(Cmp->getOperand(1)) || !Cmp->hasOneUse())
7807     return false;
7808 
7809   Value *X = Cmp->getOperand(0);
7810   APInt CmpC = cast<ConstantInt>(Cmp->getOperand(1))->getValue();
7811 
7812   for (auto *U : X->users()) {
7813     Instruction *UI = dyn_cast<Instruction>(U);
7814     // A quick dominance check
7815     if (!UI ||
7816         (UI->getParent() != Branch->getParent() &&
7817          UI->getParent() != Branch->getSuccessor(0) &&
7818          UI->getParent() != Branch->getSuccessor(1)) ||
7819         (UI->getParent() != Branch->getParent() &&
7820          !UI->getParent()->getSinglePredecessor()))
7821       continue;
7822 
7823     if (CmpC.isPowerOf2() && Cmp->getPredicate() == ICmpInst::ICMP_ULT &&
7824         match(UI, m_Shr(m_Specific(X), m_SpecificInt(CmpC.logBase2())))) {
7825       IRBuilder<> Builder(Branch);
7826       if (UI->getParent() != Branch->getParent())
7827         UI->moveBefore(Branch);
7828       Value *NewCmp = Builder.CreateCmp(ICmpInst::ICMP_EQ, UI,
7829                                         ConstantInt::get(UI->getType(), 0));
7830       LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n");
7831       LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n");
7832       Cmp->replaceAllUsesWith(NewCmp);
7833       return true;
7834     }
7835     if (Cmp->isEquality() &&
7836         (match(UI, m_Add(m_Specific(X), m_SpecificInt(-CmpC))) ||
7837          match(UI, m_Sub(m_Specific(X), m_SpecificInt(CmpC))))) {
7838       IRBuilder<> Builder(Branch);
7839       if (UI->getParent() != Branch->getParent())
7840         UI->moveBefore(Branch);
7841       Value *NewCmp = Builder.CreateCmp(Cmp->getPredicate(), UI,
7842                                         ConstantInt::get(UI->getType(), 0));
7843       LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n");
7844       LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n");
7845       Cmp->replaceAllUsesWith(NewCmp);
7846       return true;
7847     }
7848   }
7849   return false;
7850 }
7851 
7852 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) {
7853   // Bail out if we inserted the instruction to prevent optimizations from
7854   // stepping on each other's toes.
7855   if (InsertedInsts.count(I))
7856     return false;
7857 
7858   // TODO: Move into the switch on opcode below here.
7859   if (PHINode *P = dyn_cast<PHINode>(I)) {
7860     // It is possible for very late stage optimizations (such as SimplifyCFG)
7861     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
7862     // trivial PHI, go ahead and zap it here.
7863     if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
7864       LargeOffsetGEPMap.erase(P);
7865       P->replaceAllUsesWith(V);
7866       P->eraseFromParent();
7867       ++NumPHIsElim;
7868       return true;
7869     }
7870     return false;
7871   }
7872 
7873   if (CastInst *CI = dyn_cast<CastInst>(I)) {
7874     // If the source of the cast is a constant, then this should have
7875     // already been constant folded.  The only reason NOT to constant fold
7876     // it is if something (e.g. LSR) was careful to place the constant
7877     // evaluation in a block other than then one that uses it (e.g. to hoist
7878     // the address of globals out of a loop).  If this is the case, we don't
7879     // want to forward-subst the cast.
7880     if (isa<Constant>(CI->getOperand(0)))
7881       return false;
7882 
7883     if (OptimizeNoopCopyExpression(CI, *TLI, *DL))
7884       return true;
7885 
7886     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
7887       /// Sink a zext or sext into its user blocks if the target type doesn't
7888       /// fit in one register
7889       if (TLI->getTypeAction(CI->getContext(),
7890                              TLI->getValueType(*DL, CI->getType())) ==
7891           TargetLowering::TypeExpandInteger) {
7892         return SinkCast(CI);
7893       } else {
7894         bool MadeChange = optimizeExt(I);
7895         return MadeChange | optimizeExtUses(I);
7896       }
7897     }
7898     return false;
7899   }
7900 
7901   if (auto *Cmp = dyn_cast<CmpInst>(I))
7902     if (optimizeCmp(Cmp, ModifiedDT))
7903       return true;
7904 
7905   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
7906     LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
7907     bool Modified = optimizeLoadExt(LI);
7908     unsigned AS = LI->getPointerAddressSpace();
7909     Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
7910     return Modified;
7911   }
7912 
7913   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
7914     if (splitMergedValStore(*SI, *DL, *TLI))
7915       return true;
7916     SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
7917     unsigned AS = SI->getPointerAddressSpace();
7918     return optimizeMemoryInst(I, SI->getOperand(1),
7919                               SI->getOperand(0)->getType(), AS);
7920   }
7921 
7922   if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
7923       unsigned AS = RMW->getPointerAddressSpace();
7924       return optimizeMemoryInst(I, RMW->getPointerOperand(),
7925                                 RMW->getType(), AS);
7926   }
7927 
7928   if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
7929       unsigned AS = CmpX->getPointerAddressSpace();
7930       return optimizeMemoryInst(I, CmpX->getPointerOperand(),
7931                                 CmpX->getCompareOperand()->getType(), AS);
7932   }
7933 
7934   BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
7935 
7936   if (BinOp && BinOp->getOpcode() == Instruction::And && EnableAndCmpSinking &&
7937       sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts))
7938     return true;
7939 
7940   // TODO: Move this into the switch on opcode - it handles shifts already.
7941   if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
7942                 BinOp->getOpcode() == Instruction::LShr)) {
7943     ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
7944     if (CI && TLI->hasExtractBitsInsn())
7945       if (OptimizeExtractBits(BinOp, CI, *TLI, *DL))
7946         return true;
7947   }
7948 
7949   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
7950     if (GEPI->hasAllZeroIndices()) {
7951       /// The GEP operand must be a pointer, so must its result -> BitCast
7952       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
7953                                         GEPI->getName(), GEPI);
7954       NC->setDebugLoc(GEPI->getDebugLoc());
7955       GEPI->replaceAllUsesWith(NC);
7956       GEPI->eraseFromParent();
7957       ++NumGEPsElim;
7958       optimizeInst(NC, ModifiedDT);
7959       return true;
7960     }
7961     if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
7962       return true;
7963     }
7964     return false;
7965   }
7966 
7967   if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
7968     // freeze(icmp a, const)) -> icmp (freeze a), const
7969     // This helps generate efficient conditional jumps.
7970     Instruction *CmpI = nullptr;
7971     if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0)))
7972       CmpI = II;
7973     else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0)))
7974       CmpI = F->getFastMathFlags().none() ? F : nullptr;
7975 
7976     if (CmpI && CmpI->hasOneUse()) {
7977       auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1);
7978       bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) ||
7979                     isa<ConstantPointerNull>(Op0);
7980       bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) ||
7981                     isa<ConstantPointerNull>(Op1);
7982       if (Const0 || Const1) {
7983         if (!Const0 || !Const1) {
7984           auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI);
7985           F->takeName(FI);
7986           CmpI->setOperand(Const0 ? 1 : 0, F);
7987         }
7988         FI->replaceAllUsesWith(CmpI);
7989         FI->eraseFromParent();
7990         return true;
7991       }
7992     }
7993     return false;
7994   }
7995 
7996   if (tryToSinkFreeOperands(I))
7997     return true;
7998 
7999   switch (I->getOpcode()) {
8000   case Instruction::Shl:
8001   case Instruction::LShr:
8002   case Instruction::AShr:
8003     return optimizeShiftInst(cast<BinaryOperator>(I));
8004   case Instruction::Call:
8005     return optimizeCallInst(cast<CallInst>(I), ModifiedDT);
8006   case Instruction::Select:
8007     return optimizeSelectInst(cast<SelectInst>(I));
8008   case Instruction::ShuffleVector:
8009     return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I));
8010   case Instruction::Switch:
8011     return optimizeSwitchInst(cast<SwitchInst>(I));
8012   case Instruction::ExtractElement:
8013     return optimizeExtractElementInst(cast<ExtractElementInst>(I));
8014   case Instruction::Br:
8015     return optimizeBranch(cast<BranchInst>(I), *TLI);
8016   }
8017 
8018   return false;
8019 }
8020 
8021 /// Given an OR instruction, check to see if this is a bitreverse
8022 /// idiom. If so, insert the new intrinsic and return true.
8023 bool CodeGenPrepare::makeBitReverse(Instruction &I) {
8024   if (!I.getType()->isIntegerTy() ||
8025       !TLI->isOperationLegalOrCustom(ISD::BITREVERSE,
8026                                      TLI->getValueType(*DL, I.getType(), true)))
8027     return false;
8028 
8029   SmallVector<Instruction*, 4> Insts;
8030   if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
8031     return false;
8032   Instruction *LastInst = Insts.back();
8033   I.replaceAllUsesWith(LastInst);
8034   RecursivelyDeleteTriviallyDeadInstructions(
8035       &I, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); });
8036   return true;
8037 }
8038 
8039 // In this pass we look for GEP and cast instructions that are used
8040 // across basic blocks and rewrite them to improve basic-block-at-a-time
8041 // selection.
8042 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) {
8043   SunkAddrs.clear();
8044   bool MadeChange = false;
8045 
8046   CurInstIterator = BB.begin();
8047   while (CurInstIterator != BB.end()) {
8048     MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
8049     if (ModifiedDT)
8050       return true;
8051   }
8052 
8053   bool MadeBitReverse = true;
8054   while (MadeBitReverse) {
8055     MadeBitReverse = false;
8056     for (auto &I : reverse(BB)) {
8057       if (makeBitReverse(I)) {
8058         MadeBitReverse = MadeChange = true;
8059         break;
8060       }
8061     }
8062   }
8063   MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT);
8064 
8065   return MadeChange;
8066 }
8067 
8068 // Some CGP optimizations may move or alter what's computed in a block. Check
8069 // whether a dbg.value intrinsic could be pointed at a more appropriate operand.
8070 bool CodeGenPrepare::fixupDbgValue(Instruction *I) {
8071   assert(isa<DbgValueInst>(I));
8072   DbgValueInst &DVI = *cast<DbgValueInst>(I);
8073 
8074   // Does this dbg.value refer to a sunk address calculation?
8075   bool AnyChange = false;
8076   SmallDenseSet<Value *> LocationOps(DVI.location_ops().begin(),
8077                                      DVI.location_ops().end());
8078   for (Value *Location : LocationOps) {
8079     WeakTrackingVH SunkAddrVH = SunkAddrs[Location];
8080     Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
8081     if (SunkAddr) {
8082       // Point dbg.value at locally computed address, which should give the best
8083       // opportunity to be accurately lowered. This update may change the type
8084       // of pointer being referred to; however this makes no difference to
8085       // debugging information, and we can't generate bitcasts that may affect
8086       // codegen.
8087       DVI.replaceVariableLocationOp(Location, SunkAddr);
8088       AnyChange = true;
8089     }
8090   }
8091   return AnyChange;
8092 }
8093 
8094 // A llvm.dbg.value may be using a value before its definition, due to
8095 // optimizations in this pass and others. Scan for such dbg.values, and rescue
8096 // them by moving the dbg.value to immediately after the value definition.
8097 // FIXME: Ideally this should never be necessary, and this has the potential
8098 // to re-order dbg.value intrinsics.
8099 bool CodeGenPrepare::placeDbgValues(Function &F) {
8100   bool MadeChange = false;
8101   DominatorTree DT(F);
8102 
8103   for (BasicBlock &BB : F) {
8104     for (Instruction &Insn : llvm::make_early_inc_range(BB)) {
8105       DbgValueInst *DVI = dyn_cast<DbgValueInst>(&Insn);
8106       if (!DVI)
8107         continue;
8108 
8109       SmallVector<Instruction *, 4> VIs;
8110       for (Value *V : DVI->getValues())
8111         if (Instruction *VI = dyn_cast_or_null<Instruction>(V))
8112           VIs.push_back(VI);
8113 
8114       // This DVI may depend on multiple instructions, complicating any
8115       // potential sink. This block takes the defensive approach, opting to
8116       // "undef" the DVI if it has more than one instruction and any of them do
8117       // not dominate DVI.
8118       for (Instruction *VI : VIs) {
8119         if (VI->isTerminator())
8120           continue;
8121 
8122         // If VI is a phi in a block with an EHPad terminator, we can't insert
8123         // after it.
8124         if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
8125           continue;
8126 
8127         // If the defining instruction dominates the dbg.value, we do not need
8128         // to move the dbg.value.
8129         if (DT.dominates(VI, DVI))
8130           continue;
8131 
8132         // If we depend on multiple instructions and any of them doesn't
8133         // dominate this DVI, we probably can't salvage it: moving it to
8134         // after any of the instructions could cause us to lose the others.
8135         if (VIs.size() > 1) {
8136           LLVM_DEBUG(
8137               dbgs()
8138               << "Unable to find valid location for Debug Value, undefing:\n"
8139               << *DVI);
8140           DVI->setUndef();
8141           break;
8142         }
8143 
8144         LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
8145                           << *DVI << ' ' << *VI);
8146         DVI->removeFromParent();
8147         if (isa<PHINode>(VI))
8148           DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
8149         else
8150           DVI->insertAfter(VI);
8151         MadeChange = true;
8152         ++NumDbgValueMoved;
8153       }
8154     }
8155   }
8156   return MadeChange;
8157 }
8158 
8159 // Group scattered pseudo probes in a block to favor SelectionDAG. Scattered
8160 // probes can be chained dependencies of other regular DAG nodes and block DAG
8161 // combine optimizations.
8162 bool CodeGenPrepare::placePseudoProbes(Function &F) {
8163   bool MadeChange = false;
8164   for (auto &Block : F) {
8165     // Move the rest probes to the beginning of the block.
8166     auto FirstInst = Block.getFirstInsertionPt();
8167     while (FirstInst != Block.end() && FirstInst->isDebugOrPseudoInst())
8168       ++FirstInst;
8169     BasicBlock::iterator I(FirstInst);
8170     I++;
8171     while (I != Block.end()) {
8172       if (auto *II = dyn_cast<PseudoProbeInst>(I++)) {
8173         II->moveBefore(&*FirstInst);
8174         MadeChange = true;
8175       }
8176     }
8177   }
8178   return MadeChange;
8179 }
8180 
8181 /// Scale down both weights to fit into uint32_t.
8182 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
8183   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
8184   uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
8185   NewTrue = NewTrue / Scale;
8186   NewFalse = NewFalse / Scale;
8187 }
8188 
8189 /// Some targets prefer to split a conditional branch like:
8190 /// \code
8191 ///   %0 = icmp ne i32 %a, 0
8192 ///   %1 = icmp ne i32 %b, 0
8193 ///   %or.cond = or i1 %0, %1
8194 ///   br i1 %or.cond, label %TrueBB, label %FalseBB
8195 /// \endcode
8196 /// into multiple branch instructions like:
8197 /// \code
8198 ///   bb1:
8199 ///     %0 = icmp ne i32 %a, 0
8200 ///     br i1 %0, label %TrueBB, label %bb2
8201 ///   bb2:
8202 ///     %1 = icmp ne i32 %b, 0
8203 ///     br i1 %1, label %TrueBB, label %FalseBB
8204 /// \endcode
8205 /// This usually allows instruction selection to do even further optimizations
8206 /// and combine the compare with the branch instruction. Currently this is
8207 /// applied for targets which have "cheap" jump instructions.
8208 ///
8209 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
8210 ///
8211 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) {
8212   if (!TM->Options.EnableFastISel || TLI->isJumpExpensive())
8213     return false;
8214 
8215   bool MadeChange = false;
8216   for (auto &BB : F) {
8217     // Does this BB end with the following?
8218     //   %cond1 = icmp|fcmp|binary instruction ...
8219     //   %cond2 = icmp|fcmp|binary instruction ...
8220     //   %cond.or = or|and i1 %cond1, cond2
8221     //   br i1 %cond.or label %dest1, label %dest2"
8222     Instruction *LogicOp;
8223     BasicBlock *TBB, *FBB;
8224     if (!match(BB.getTerminator(),
8225                m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB)))
8226       continue;
8227 
8228     auto *Br1 = cast<BranchInst>(BB.getTerminator());
8229     if (Br1->getMetadata(LLVMContext::MD_unpredictable))
8230       continue;
8231 
8232     // The merging of mostly empty BB can cause a degenerate branch.
8233     if (TBB == FBB)
8234       continue;
8235 
8236     unsigned Opc;
8237     Value *Cond1, *Cond2;
8238     if (match(LogicOp,
8239               m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2)))))
8240       Opc = Instruction::And;
8241     else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)),
8242                                         m_OneUse(m_Value(Cond2)))))
8243       Opc = Instruction::Or;
8244     else
8245       continue;
8246 
8247     auto IsGoodCond = [](Value *Cond) {
8248       return match(
8249           Cond,
8250           m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()),
8251                                            m_LogicalOr(m_Value(), m_Value()))));
8252     };
8253     if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2))
8254       continue;
8255 
8256     LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
8257 
8258     // Create a new BB.
8259     auto *TmpBB =
8260         BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
8261                            BB.getParent(), BB.getNextNode());
8262 
8263     // Update original basic block by using the first condition directly by the
8264     // branch instruction and removing the no longer needed and/or instruction.
8265     Br1->setCondition(Cond1);
8266     LogicOp->eraseFromParent();
8267 
8268     // Depending on the condition we have to either replace the true or the
8269     // false successor of the original branch instruction.
8270     if (Opc == Instruction::And)
8271       Br1->setSuccessor(0, TmpBB);
8272     else
8273       Br1->setSuccessor(1, TmpBB);
8274 
8275     // Fill in the new basic block.
8276     auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
8277     if (auto *I = dyn_cast<Instruction>(Cond2)) {
8278       I->removeFromParent();
8279       I->insertBefore(Br2);
8280     }
8281 
8282     // Update PHI nodes in both successors. The original BB needs to be
8283     // replaced in one successor's PHI nodes, because the branch comes now from
8284     // the newly generated BB (NewBB). In the other successor we need to add one
8285     // incoming edge to the PHI nodes, because both branch instructions target
8286     // now the same successor. Depending on the original branch condition
8287     // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
8288     // we perform the correct update for the PHI nodes.
8289     // This doesn't change the successor order of the just created branch
8290     // instruction (or any other instruction).
8291     if (Opc == Instruction::Or)
8292       std::swap(TBB, FBB);
8293 
8294     // Replace the old BB with the new BB.
8295     TBB->replacePhiUsesWith(&BB, TmpBB);
8296 
8297     // Add another incoming edge form the new BB.
8298     for (PHINode &PN : FBB->phis()) {
8299       auto *Val = PN.getIncomingValueForBlock(&BB);
8300       PN.addIncoming(Val, TmpBB);
8301     }
8302 
8303     // Update the branch weights (from SelectionDAGBuilder::
8304     // FindMergedConditions).
8305     if (Opc == Instruction::Or) {
8306       // Codegen X | Y as:
8307       // BB1:
8308       //   jmp_if_X TBB
8309       //   jmp TmpBB
8310       // TmpBB:
8311       //   jmp_if_Y TBB
8312       //   jmp FBB
8313       //
8314 
8315       // We have flexibility in setting Prob for BB1 and Prob for NewBB.
8316       // The requirement is that
8317       //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
8318       //     = TrueProb for original BB.
8319       // Assuming the original weights are A and B, one choice is to set BB1's
8320       // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
8321       // assumes that
8322       //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
8323       // Another choice is to assume TrueProb for BB1 equals to TrueProb for
8324       // TmpBB, but the math is more complicated.
8325       uint64_t TrueWeight, FalseWeight;
8326       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
8327         uint64_t NewTrueWeight = TrueWeight;
8328         uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
8329         scaleWeights(NewTrueWeight, NewFalseWeight);
8330         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
8331                          .createBranchWeights(TrueWeight, FalseWeight));
8332 
8333         NewTrueWeight = TrueWeight;
8334         NewFalseWeight = 2 * FalseWeight;
8335         scaleWeights(NewTrueWeight, NewFalseWeight);
8336         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
8337                          .createBranchWeights(TrueWeight, FalseWeight));
8338       }
8339     } else {
8340       // Codegen X & Y as:
8341       // BB1:
8342       //   jmp_if_X TmpBB
8343       //   jmp FBB
8344       // TmpBB:
8345       //   jmp_if_Y TBB
8346       //   jmp FBB
8347       //
8348       //  This requires creation of TmpBB after CurBB.
8349 
8350       // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
8351       // The requirement is that
8352       //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
8353       //     = FalseProb for original BB.
8354       // Assuming the original weights are A and B, one choice is to set BB1's
8355       // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
8356       // assumes that
8357       //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
8358       uint64_t TrueWeight, FalseWeight;
8359       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
8360         uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
8361         uint64_t NewFalseWeight = FalseWeight;
8362         scaleWeights(NewTrueWeight, NewFalseWeight);
8363         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
8364                          .createBranchWeights(TrueWeight, FalseWeight));
8365 
8366         NewTrueWeight = 2 * TrueWeight;
8367         NewFalseWeight = FalseWeight;
8368         scaleWeights(NewTrueWeight, NewFalseWeight);
8369         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
8370                          .createBranchWeights(TrueWeight, FalseWeight));
8371       }
8372     }
8373 
8374     ModifiedDT = true;
8375     MadeChange = true;
8376 
8377     LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
8378                TmpBB->dump());
8379   }
8380   return MadeChange;
8381 }
8382