1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/CodeGen/Analysis.h" 35 #include "llvm/CodeGen/ISDOpcodes.h" 36 #include "llvm/CodeGen/MachineValueType.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/IR/Argument.h" 43 #include "llvm/IR/Attributes.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/CallSite.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InlineAsm.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/Operator.h" 66 #include "llvm/IR/PatternMatch.h" 67 #include "llvm/IR/Statepoint.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/IR/ValueMap.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/BlockFrequency.h" 76 #include "llvm/Support/BranchProbability.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/MathExtras.h" 83 #include "llvm/Support/raw_ostream.h" 84 #include "llvm/Target/TargetMachine.h" 85 #include "llvm/Target/TargetOptions.h" 86 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 87 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 88 #include "llvm/Transforms/Utils/Local.h" 89 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 90 #include <algorithm> 91 #include <cassert> 92 #include <cstdint> 93 #include <iterator> 94 #include <limits> 95 #include <memory> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 102 #define DEBUG_TYPE "codegenprepare" 103 104 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 105 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 106 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 107 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 108 "sunken Cmps"); 109 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 110 "of sunken Casts"); 111 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 112 "computations were sunk"); 113 STATISTIC(NumMemoryInstsPhiCreated, 114 "Number of phis created when address " 115 "computations were sunk to memory instructions"); 116 STATISTIC(NumMemoryInstsSelectCreated, 117 "Number of select created when address " 118 "computations were sunk to memory instructions"); 119 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 120 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 121 STATISTIC(NumAndsAdded, 122 "Number of and mask instructions added to form ext loads"); 123 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 124 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 125 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 126 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 127 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 128 129 static cl::opt<bool> DisableBranchOpts( 130 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 131 cl::desc("Disable branch optimizations in CodeGenPrepare")); 132 133 static cl::opt<bool> 134 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 135 cl::desc("Disable GC optimizations in CodeGenPrepare")); 136 137 static cl::opt<bool> DisableSelectToBranch( 138 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 139 cl::desc("Disable select to branch conversion.")); 140 141 static cl::opt<bool> AddrSinkUsingGEPs( 142 "addr-sink-using-gep", cl::Hidden, cl::init(true), 143 cl::desc("Address sinking in CGP using GEPs.")); 144 145 static cl::opt<bool> EnableAndCmpSinking( 146 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 147 cl::desc("Enable sinkinig and/cmp into branches.")); 148 149 static cl::opt<bool> DisableStoreExtract( 150 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 151 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 152 153 static cl::opt<bool> StressStoreExtract( 154 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 155 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 156 157 static cl::opt<bool> DisableExtLdPromotion( 158 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 159 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 160 "CodeGenPrepare")); 161 162 static cl::opt<bool> StressExtLdPromotion( 163 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 164 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 165 "optimization in CodeGenPrepare")); 166 167 static cl::opt<bool> DisablePreheaderProtect( 168 "disable-preheader-prot", cl::Hidden, cl::init(false), 169 cl::desc("Disable protection against removing loop preheaders")); 170 171 static cl::opt<bool> ProfileGuidedSectionPrefix( 172 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 173 cl::desc("Use profile info to add section prefix for hot/cold functions")); 174 175 static cl::opt<unsigned> FreqRatioToSkipMerge( 176 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 177 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 178 "(frequency of destination block) is greater than this ratio")); 179 180 static cl::opt<bool> ForceSplitStore( 181 "force-split-store", cl::Hidden, cl::init(false), 182 cl::desc("Force store splitting no matter what the target query says.")); 183 184 static cl::opt<bool> 185 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 186 cl::desc("Enable merging of redundant sexts when one is dominating" 187 " the other."), cl::init(true)); 188 189 static cl::opt<bool> DisableComplexAddrModes( 190 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 191 cl::desc("Disables combining addressing modes with different parts " 192 "in optimizeMemoryInst.")); 193 194 static cl::opt<bool> 195 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 196 cl::desc("Allow creation of Phis in Address sinking.")); 197 198 static cl::opt<bool> 199 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(false), 200 cl::desc("Allow creation of selects in Address sinking.")); 201 202 static cl::opt<bool> AddrSinkCombineBaseReg( 203 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 204 cl::desc("Allow combining of BaseReg field in Address sinking.")); 205 206 static cl::opt<bool> AddrSinkCombineBaseGV( 207 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 208 cl::desc("Allow combining of BaseGV field in Address sinking.")); 209 210 static cl::opt<bool> AddrSinkCombineBaseOffs( 211 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 212 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 213 214 static cl::opt<bool> AddrSinkCombineScaledReg( 215 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 216 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 217 218 namespace { 219 220 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 221 using TypeIsSExt = PointerIntPair<Type *, 1, bool>; 222 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 223 using SExts = SmallVector<Instruction *, 16>; 224 using ValueToSExts = DenseMap<Value *, SExts>; 225 226 class TypePromotionTransaction; 227 228 class CodeGenPrepare : public FunctionPass { 229 const TargetMachine *TM = nullptr; 230 const TargetSubtargetInfo *SubtargetInfo; 231 const TargetLowering *TLI = nullptr; 232 const TargetRegisterInfo *TRI; 233 const TargetTransformInfo *TTI = nullptr; 234 const TargetLibraryInfo *TLInfo; 235 const LoopInfo *LI; 236 std::unique_ptr<BlockFrequencyInfo> BFI; 237 std::unique_ptr<BranchProbabilityInfo> BPI; 238 239 /// As we scan instructions optimizing them, this is the next instruction 240 /// to optimize. Transforms that can invalidate this should update it. 241 BasicBlock::iterator CurInstIterator; 242 243 /// Keeps track of non-local addresses that have been sunk into a block. 244 /// This allows us to avoid inserting duplicate code for blocks with 245 /// multiple load/stores of the same address. The usage of WeakTrackingVH 246 /// enables SunkAddrs to be treated as a cache whose entries can be 247 /// invalidated if a sunken address computation has been erased. 248 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 249 250 /// Keeps track of all instructions inserted for the current function. 251 SetOfInstrs InsertedInsts; 252 253 /// Keeps track of the type of the related instruction before their 254 /// promotion for the current function. 255 InstrToOrigTy PromotedInsts; 256 257 /// Keep track of instructions removed during promotion. 258 SetOfInstrs RemovedInsts; 259 260 /// Keep track of sext chains based on their initial value. 261 DenseMap<Value *, Instruction *> SeenChainsForSExt; 262 263 /// Keep track of SExt promoted. 264 ValueToSExts ValToSExtendedUses; 265 266 /// True if CFG is modified in any way. 267 bool ModifiedDT; 268 269 /// True if optimizing for size. 270 bool OptSize; 271 272 /// DataLayout for the Function being processed. 273 const DataLayout *DL = nullptr; 274 275 public: 276 static char ID; // Pass identification, replacement for typeid 277 278 CodeGenPrepare() : FunctionPass(ID) { 279 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 280 } 281 282 bool runOnFunction(Function &F) override; 283 284 StringRef getPassName() const override { return "CodeGen Prepare"; } 285 286 void getAnalysisUsage(AnalysisUsage &AU) const override { 287 // FIXME: When we can selectively preserve passes, preserve the domtree. 288 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 289 AU.addRequired<TargetLibraryInfoWrapperPass>(); 290 AU.addRequired<TargetTransformInfoWrapperPass>(); 291 AU.addRequired<LoopInfoWrapperPass>(); 292 } 293 294 private: 295 bool eliminateFallThrough(Function &F); 296 bool eliminateMostlyEmptyBlocks(Function &F); 297 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 298 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 299 void eliminateMostlyEmptyBlock(BasicBlock *BB); 300 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 301 bool isPreheader); 302 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 303 bool optimizeInst(Instruction *I, bool &ModifiedDT); 304 bool optimizeMemoryInst(Instruction *I, Value *Addr, 305 Type *AccessTy, unsigned AS); 306 bool optimizeInlineAsmInst(CallInst *CS); 307 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 308 bool optimizeExt(Instruction *&I); 309 bool optimizeExtUses(Instruction *I); 310 bool optimizeLoadExt(LoadInst *I); 311 bool optimizeSelectInst(SelectInst *SI); 312 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); 313 bool optimizeSwitchInst(SwitchInst *CI); 314 bool optimizeExtractElementInst(Instruction *Inst); 315 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 316 bool placeDbgValues(Function &F); 317 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 318 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 319 bool tryToPromoteExts(TypePromotionTransaction &TPT, 320 const SmallVectorImpl<Instruction *> &Exts, 321 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 322 unsigned CreatedInstsCost = 0); 323 bool mergeSExts(Function &F); 324 bool performAddressTypePromotion( 325 Instruction *&Inst, 326 bool AllowPromotionWithoutCommonHeader, 327 bool HasPromoted, TypePromotionTransaction &TPT, 328 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 329 bool splitBranchCondition(Function &F); 330 bool simplifyOffsetableRelocate(Instruction &I); 331 }; 332 333 } // end anonymous namespace 334 335 char CodeGenPrepare::ID = 0; 336 337 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 338 "Optimize for code generation", false, false) 339 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 340 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 341 "Optimize for code generation", false, false) 342 343 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 344 345 bool CodeGenPrepare::runOnFunction(Function &F) { 346 if (skipFunction(F)) 347 return false; 348 349 DL = &F.getParent()->getDataLayout(); 350 351 bool EverMadeChange = false; 352 // Clear per function information. 353 InsertedInsts.clear(); 354 PromotedInsts.clear(); 355 BFI.reset(); 356 BPI.reset(); 357 358 ModifiedDT = false; 359 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 360 TM = &TPC->getTM<TargetMachine>(); 361 SubtargetInfo = TM->getSubtargetImpl(F); 362 TLI = SubtargetInfo->getTargetLowering(); 363 TRI = SubtargetInfo->getRegisterInfo(); 364 } 365 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 366 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 367 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 368 OptSize = F.optForSize(); 369 370 ProfileSummaryInfo *PSI = 371 getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 372 if (ProfileGuidedSectionPrefix) { 373 if (PSI->isFunctionHotInCallGraph(&F)) 374 F.setSectionPrefix(".hot"); 375 else if (PSI->isFunctionColdInCallGraph(&F)) 376 F.setSectionPrefix(".unlikely"); 377 } 378 379 /// This optimization identifies DIV instructions that can be 380 /// profitably bypassed and carried out with a shorter, faster divide. 381 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI && 382 TLI->isSlowDivBypassed()) { 383 const DenseMap<unsigned int, unsigned int> &BypassWidths = 384 TLI->getBypassSlowDivWidths(); 385 BasicBlock* BB = &*F.begin(); 386 while (BB != nullptr) { 387 // bypassSlowDivision may create new BBs, but we don't want to reapply the 388 // optimization to those blocks. 389 BasicBlock* Next = BB->getNextNode(); 390 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 391 BB = Next; 392 } 393 } 394 395 // Eliminate blocks that contain only PHI nodes and an 396 // unconditional branch. 397 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 398 399 // llvm.dbg.value is far away from the value then iSel may not be able 400 // handle it properly. iSel will drop llvm.dbg.value if it can not 401 // find a node corresponding to the value. 402 EverMadeChange |= placeDbgValues(F); 403 404 if (!DisableBranchOpts) 405 EverMadeChange |= splitBranchCondition(F); 406 407 // Split some critical edges where one of the sources is an indirect branch, 408 // to help generate sane code for PHIs involving such edges. 409 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 410 411 bool MadeChange = true; 412 while (MadeChange) { 413 MadeChange = false; 414 SeenChainsForSExt.clear(); 415 ValToSExtendedUses.clear(); 416 RemovedInsts.clear(); 417 for (Function::iterator I = F.begin(); I != F.end(); ) { 418 BasicBlock *BB = &*I++; 419 bool ModifiedDTOnIteration = false; 420 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 421 422 // Restart BB iteration if the dominator tree of the Function was changed 423 if (ModifiedDTOnIteration) 424 break; 425 } 426 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 427 MadeChange |= mergeSExts(F); 428 429 // Really free removed instructions during promotion. 430 for (Instruction *I : RemovedInsts) 431 I->deleteValue(); 432 433 EverMadeChange |= MadeChange; 434 } 435 436 SunkAddrs.clear(); 437 438 if (!DisableBranchOpts) { 439 MadeChange = false; 440 SmallPtrSet<BasicBlock*, 8> WorkList; 441 for (BasicBlock &BB : F) { 442 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 443 MadeChange |= ConstantFoldTerminator(&BB, true); 444 if (!MadeChange) continue; 445 446 for (SmallVectorImpl<BasicBlock*>::iterator 447 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 448 if (pred_begin(*II) == pred_end(*II)) 449 WorkList.insert(*II); 450 } 451 452 // Delete the dead blocks and any of their dead successors. 453 MadeChange |= !WorkList.empty(); 454 while (!WorkList.empty()) { 455 BasicBlock *BB = *WorkList.begin(); 456 WorkList.erase(BB); 457 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 458 459 DeleteDeadBlock(BB); 460 461 for (SmallVectorImpl<BasicBlock*>::iterator 462 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 463 if (pred_begin(*II) == pred_end(*II)) 464 WorkList.insert(*II); 465 } 466 467 // Merge pairs of basic blocks with unconditional branches, connected by 468 // a single edge. 469 if (EverMadeChange || MadeChange) 470 MadeChange |= eliminateFallThrough(F); 471 472 EverMadeChange |= MadeChange; 473 } 474 475 if (!DisableGCOpts) { 476 SmallVector<Instruction *, 2> Statepoints; 477 for (BasicBlock &BB : F) 478 for (Instruction &I : BB) 479 if (isStatepoint(I)) 480 Statepoints.push_back(&I); 481 for (auto &I : Statepoints) 482 EverMadeChange |= simplifyOffsetableRelocate(*I); 483 } 484 485 return EverMadeChange; 486 } 487 488 /// Merge basic blocks which are connected by a single edge, where one of the 489 /// basic blocks has a single successor pointing to the other basic block, 490 /// which has a single predecessor. 491 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 492 bool Changed = false; 493 // Scan all of the blocks in the function, except for the entry block. 494 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 495 BasicBlock *BB = &*I++; 496 // If the destination block has a single pred, then this is a trivial 497 // edge, just collapse it. 498 BasicBlock *SinglePred = BB->getSinglePredecessor(); 499 500 // Don't merge if BB's address is taken. 501 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 502 503 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 504 if (Term && !Term->isConditional()) { 505 Changed = true; 506 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 507 // Remember if SinglePred was the entry block of the function. 508 // If so, we will need to move BB back to the entry position. 509 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 510 MergeBasicBlockIntoOnlyPred(BB, nullptr); 511 512 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 513 BB->moveBefore(&BB->getParent()->getEntryBlock()); 514 515 // We have erased a block. Update the iterator. 516 I = BB->getIterator(); 517 } 518 } 519 return Changed; 520 } 521 522 /// Find a destination block from BB if BB is mergeable empty block. 523 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 524 // If this block doesn't end with an uncond branch, ignore it. 525 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 526 if (!BI || !BI->isUnconditional()) 527 return nullptr; 528 529 // If the instruction before the branch (skipping debug info) isn't a phi 530 // node, then other stuff is happening here. 531 BasicBlock::iterator BBI = BI->getIterator(); 532 if (BBI != BB->begin()) { 533 --BBI; 534 while (isa<DbgInfoIntrinsic>(BBI)) { 535 if (BBI == BB->begin()) 536 break; 537 --BBI; 538 } 539 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 540 return nullptr; 541 } 542 543 // Do not break infinite loops. 544 BasicBlock *DestBB = BI->getSuccessor(0); 545 if (DestBB == BB) 546 return nullptr; 547 548 if (!canMergeBlocks(BB, DestBB)) 549 DestBB = nullptr; 550 551 return DestBB; 552 } 553 554 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 555 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 556 /// edges in ways that are non-optimal for isel. Start by eliminating these 557 /// blocks so we can split them the way we want them. 558 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 559 SmallPtrSet<BasicBlock *, 16> Preheaders; 560 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 561 while (!LoopList.empty()) { 562 Loop *L = LoopList.pop_back_val(); 563 LoopList.insert(LoopList.end(), L->begin(), L->end()); 564 if (BasicBlock *Preheader = L->getLoopPreheader()) 565 Preheaders.insert(Preheader); 566 } 567 568 bool MadeChange = false; 569 // Note that this intentionally skips the entry block. 570 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 571 BasicBlock *BB = &*I++; 572 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 573 if (!DestBB || 574 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 575 continue; 576 577 eliminateMostlyEmptyBlock(BB); 578 MadeChange = true; 579 } 580 return MadeChange; 581 } 582 583 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 584 BasicBlock *DestBB, 585 bool isPreheader) { 586 // Do not delete loop preheaders if doing so would create a critical edge. 587 // Loop preheaders can be good locations to spill registers. If the 588 // preheader is deleted and we create a critical edge, registers may be 589 // spilled in the loop body instead. 590 if (!DisablePreheaderProtect && isPreheader && 591 !(BB->getSinglePredecessor() && 592 BB->getSinglePredecessor()->getSingleSuccessor())) 593 return false; 594 595 // Try to skip merging if the unique predecessor of BB is terminated by a 596 // switch or indirect branch instruction, and BB is used as an incoming block 597 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 598 // add COPY instructions in the predecessor of BB instead of BB (if it is not 599 // merged). Note that the critical edge created by merging such blocks wont be 600 // split in MachineSink because the jump table is not analyzable. By keeping 601 // such empty block (BB), ISel will place COPY instructions in BB, not in the 602 // predecessor of BB. 603 BasicBlock *Pred = BB->getUniquePredecessor(); 604 if (!Pred || 605 !(isa<SwitchInst>(Pred->getTerminator()) || 606 isa<IndirectBrInst>(Pred->getTerminator()))) 607 return true; 608 609 if (BB->getTerminator() != BB->getFirstNonPHI()) 610 return true; 611 612 // We use a simple cost heuristic which determine skipping merging is 613 // profitable if the cost of skipping merging is less than the cost of 614 // merging : Cost(skipping merging) < Cost(merging BB), where the 615 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 616 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 617 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 618 // Freq(Pred) / Freq(BB) > 2. 619 // Note that if there are multiple empty blocks sharing the same incoming 620 // value for the PHIs in the DestBB, we consider them together. In such 621 // case, Cost(merging BB) will be the sum of their frequencies. 622 623 if (!isa<PHINode>(DestBB->begin())) 624 return true; 625 626 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 627 628 // Find all other incoming blocks from which incoming values of all PHIs in 629 // DestBB are the same as the ones from BB. 630 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 631 ++PI) { 632 BasicBlock *DestBBPred = *PI; 633 if (DestBBPred == BB) 634 continue; 635 636 bool HasAllSameValue = true; 637 BasicBlock::const_iterator DestBBI = DestBB->begin(); 638 while (const PHINode *DestPN = dyn_cast<PHINode>(DestBBI++)) { 639 if (DestPN->getIncomingValueForBlock(BB) != 640 DestPN->getIncomingValueForBlock(DestBBPred)) { 641 HasAllSameValue = false; 642 break; 643 } 644 } 645 if (HasAllSameValue) 646 SameIncomingValueBBs.insert(DestBBPred); 647 } 648 649 // See if all BB's incoming values are same as the value from Pred. In this 650 // case, no reason to skip merging because COPYs are expected to be place in 651 // Pred already. 652 if (SameIncomingValueBBs.count(Pred)) 653 return true; 654 655 if (!BFI) { 656 Function &F = *BB->getParent(); 657 LoopInfo LI{DominatorTree(F)}; 658 BPI.reset(new BranchProbabilityInfo(F, LI)); 659 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 660 } 661 662 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 663 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 664 665 for (auto SameValueBB : SameIncomingValueBBs) 666 if (SameValueBB->getUniquePredecessor() == Pred && 667 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 668 BBFreq += BFI->getBlockFreq(SameValueBB); 669 670 return PredFreq.getFrequency() <= 671 BBFreq.getFrequency() * FreqRatioToSkipMerge; 672 } 673 674 /// Return true if we can merge BB into DestBB if there is a single 675 /// unconditional branch between them, and BB contains no other non-phi 676 /// instructions. 677 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 678 const BasicBlock *DestBB) const { 679 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 680 // the successor. If there are more complex condition (e.g. preheaders), 681 // don't mess around with them. 682 BasicBlock::const_iterator BBI = BB->begin(); 683 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 684 for (const User *U : PN->users()) { 685 const Instruction *UI = cast<Instruction>(U); 686 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 687 return false; 688 // If User is inside DestBB block and it is a PHINode then check 689 // incoming value. If incoming value is not from BB then this is 690 // a complex condition (e.g. preheaders) we want to avoid here. 691 if (UI->getParent() == DestBB) { 692 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 693 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 694 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 695 if (Insn && Insn->getParent() == BB && 696 Insn->getParent() != UPN->getIncomingBlock(I)) 697 return false; 698 } 699 } 700 } 701 } 702 703 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 704 // and DestBB may have conflicting incoming values for the block. If so, we 705 // can't merge the block. 706 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 707 if (!DestBBPN) return true; // no conflict. 708 709 // Collect the preds of BB. 710 SmallPtrSet<const BasicBlock*, 16> BBPreds; 711 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 712 // It is faster to get preds from a PHI than with pred_iterator. 713 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 714 BBPreds.insert(BBPN->getIncomingBlock(i)); 715 } else { 716 BBPreds.insert(pred_begin(BB), pred_end(BB)); 717 } 718 719 // Walk the preds of DestBB. 720 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 721 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 722 if (BBPreds.count(Pred)) { // Common predecessor? 723 BBI = DestBB->begin(); 724 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 725 const Value *V1 = PN->getIncomingValueForBlock(Pred); 726 const Value *V2 = PN->getIncomingValueForBlock(BB); 727 728 // If V2 is a phi node in BB, look up what the mapped value will be. 729 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 730 if (V2PN->getParent() == BB) 731 V2 = V2PN->getIncomingValueForBlock(Pred); 732 733 // If there is a conflict, bail out. 734 if (V1 != V2) return false; 735 } 736 } 737 } 738 739 return true; 740 } 741 742 /// Eliminate a basic block that has only phi's and an unconditional branch in 743 /// it. 744 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 745 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 746 BasicBlock *DestBB = BI->getSuccessor(0); 747 748 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 749 750 // If the destination block has a single pred, then this is a trivial edge, 751 // just collapse it. 752 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 753 if (SinglePred != DestBB) { 754 // Remember if SinglePred was the entry block of the function. If so, we 755 // will need to move BB back to the entry position. 756 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 757 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 758 759 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 760 BB->moveBefore(&BB->getParent()->getEntryBlock()); 761 762 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 763 return; 764 } 765 } 766 767 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 768 // to handle the new incoming edges it is about to have. 769 PHINode *PN; 770 for (BasicBlock::iterator BBI = DestBB->begin(); 771 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 772 // Remove the incoming value for BB, and remember it. 773 Value *InVal = PN->removeIncomingValue(BB, false); 774 775 // Two options: either the InVal is a phi node defined in BB or it is some 776 // value that dominates BB. 777 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 778 if (InValPhi && InValPhi->getParent() == BB) { 779 // Add all of the input values of the input PHI as inputs of this phi. 780 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 781 PN->addIncoming(InValPhi->getIncomingValue(i), 782 InValPhi->getIncomingBlock(i)); 783 } else { 784 // Otherwise, add one instance of the dominating value for each edge that 785 // we will be adding. 786 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 787 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 788 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 789 } else { 790 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 791 PN->addIncoming(InVal, *PI); 792 } 793 } 794 } 795 796 // The PHIs are now updated, change everything that refers to BB to use 797 // DestBB and remove BB. 798 BB->replaceAllUsesWith(DestBB); 799 BB->eraseFromParent(); 800 ++NumBlocksElim; 801 802 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 803 } 804 805 // Computes a map of base pointer relocation instructions to corresponding 806 // derived pointer relocation instructions given a vector of all relocate calls 807 static void computeBaseDerivedRelocateMap( 808 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 809 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 810 &RelocateInstMap) { 811 // Collect information in two maps: one primarily for locating the base object 812 // while filling the second map; the second map is the final structure holding 813 // a mapping between Base and corresponding Derived relocate calls 814 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 815 for (auto *ThisRelocate : AllRelocateCalls) { 816 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 817 ThisRelocate->getDerivedPtrIndex()); 818 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 819 } 820 for (auto &Item : RelocateIdxMap) { 821 std::pair<unsigned, unsigned> Key = Item.first; 822 if (Key.first == Key.second) 823 // Base relocation: nothing to insert 824 continue; 825 826 GCRelocateInst *I = Item.second; 827 auto BaseKey = std::make_pair(Key.first, Key.first); 828 829 // We're iterating over RelocateIdxMap so we cannot modify it. 830 auto MaybeBase = RelocateIdxMap.find(BaseKey); 831 if (MaybeBase == RelocateIdxMap.end()) 832 // TODO: We might want to insert a new base object relocate and gep off 833 // that, if there are enough derived object relocates. 834 continue; 835 836 RelocateInstMap[MaybeBase->second].push_back(I); 837 } 838 } 839 840 // Accepts a GEP and extracts the operands into a vector provided they're all 841 // small integer constants 842 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 843 SmallVectorImpl<Value *> &OffsetV) { 844 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 845 // Only accept small constant integer operands 846 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 847 if (!Op || Op->getZExtValue() > 20) 848 return false; 849 } 850 851 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 852 OffsetV.push_back(GEP->getOperand(i)); 853 return true; 854 } 855 856 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 857 // replace, computes a replacement, and affects it. 858 static bool 859 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 860 const SmallVectorImpl<GCRelocateInst *> &Targets) { 861 bool MadeChange = false; 862 // We must ensure the relocation of derived pointer is defined after 863 // relocation of base pointer. If we find a relocation corresponding to base 864 // defined earlier than relocation of base then we move relocation of base 865 // right before found relocation. We consider only relocation in the same 866 // basic block as relocation of base. Relocations from other basic block will 867 // be skipped by optimization and we do not care about them. 868 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 869 &*R != RelocatedBase; ++R) 870 if (auto RI = dyn_cast<GCRelocateInst>(R)) 871 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 872 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 873 RelocatedBase->moveBefore(RI); 874 break; 875 } 876 877 for (GCRelocateInst *ToReplace : Targets) { 878 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 879 "Not relocating a derived object of the original base object"); 880 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 881 // A duplicate relocate call. TODO: coalesce duplicates. 882 continue; 883 } 884 885 if (RelocatedBase->getParent() != ToReplace->getParent()) { 886 // Base and derived relocates are in different basic blocks. 887 // In this case transform is only valid when base dominates derived 888 // relocate. However it would be too expensive to check dominance 889 // for each such relocate, so we skip the whole transformation. 890 continue; 891 } 892 893 Value *Base = ToReplace->getBasePtr(); 894 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 895 if (!Derived || Derived->getPointerOperand() != Base) 896 continue; 897 898 SmallVector<Value *, 2> OffsetV; 899 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 900 continue; 901 902 // Create a Builder and replace the target callsite with a gep 903 assert(RelocatedBase->getNextNode() && 904 "Should always have one since it's not a terminator"); 905 906 // Insert after RelocatedBase 907 IRBuilder<> Builder(RelocatedBase->getNextNode()); 908 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 909 910 // If gc_relocate does not match the actual type, cast it to the right type. 911 // In theory, there must be a bitcast after gc_relocate if the type does not 912 // match, and we should reuse it to get the derived pointer. But it could be 913 // cases like this: 914 // bb1: 915 // ... 916 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 917 // br label %merge 918 // 919 // bb2: 920 // ... 921 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 922 // br label %merge 923 // 924 // merge: 925 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 926 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 927 // 928 // In this case, we can not find the bitcast any more. So we insert a new bitcast 929 // no matter there is already one or not. In this way, we can handle all cases, and 930 // the extra bitcast should be optimized away in later passes. 931 Value *ActualRelocatedBase = RelocatedBase; 932 if (RelocatedBase->getType() != Base->getType()) { 933 ActualRelocatedBase = 934 Builder.CreateBitCast(RelocatedBase, Base->getType()); 935 } 936 Value *Replacement = Builder.CreateGEP( 937 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 938 Replacement->takeName(ToReplace); 939 // If the newly generated derived pointer's type does not match the original derived 940 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 941 Value *ActualReplacement = Replacement; 942 if (Replacement->getType() != ToReplace->getType()) { 943 ActualReplacement = 944 Builder.CreateBitCast(Replacement, ToReplace->getType()); 945 } 946 ToReplace->replaceAllUsesWith(ActualReplacement); 947 ToReplace->eraseFromParent(); 948 949 MadeChange = true; 950 } 951 return MadeChange; 952 } 953 954 // Turns this: 955 // 956 // %base = ... 957 // %ptr = gep %base + 15 958 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 959 // %base' = relocate(%tok, i32 4, i32 4) 960 // %ptr' = relocate(%tok, i32 4, i32 5) 961 // %val = load %ptr' 962 // 963 // into this: 964 // 965 // %base = ... 966 // %ptr = gep %base + 15 967 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 968 // %base' = gc.relocate(%tok, i32 4, i32 4) 969 // %ptr' = gep %base' + 15 970 // %val = load %ptr' 971 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 972 bool MadeChange = false; 973 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 974 975 for (auto *U : I.users()) 976 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 977 // Collect all the relocate calls associated with a statepoint 978 AllRelocateCalls.push_back(Relocate); 979 980 // We need atleast one base pointer relocation + one derived pointer 981 // relocation to mangle 982 if (AllRelocateCalls.size() < 2) 983 return false; 984 985 // RelocateInstMap is a mapping from the base relocate instruction to the 986 // corresponding derived relocate instructions 987 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 988 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 989 if (RelocateInstMap.empty()) 990 return false; 991 992 for (auto &Item : RelocateInstMap) 993 // Item.first is the RelocatedBase to offset against 994 // Item.second is the vector of Targets to replace 995 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 996 return MadeChange; 997 } 998 999 /// SinkCast - Sink the specified cast instruction into its user blocks 1000 static bool SinkCast(CastInst *CI) { 1001 BasicBlock *DefBB = CI->getParent(); 1002 1003 /// InsertedCasts - Only insert a cast in each block once. 1004 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1005 1006 bool MadeChange = false; 1007 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1008 UI != E; ) { 1009 Use &TheUse = UI.getUse(); 1010 Instruction *User = cast<Instruction>(*UI); 1011 1012 // Figure out which BB this cast is used in. For PHI's this is the 1013 // appropriate predecessor block. 1014 BasicBlock *UserBB = User->getParent(); 1015 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1016 UserBB = PN->getIncomingBlock(TheUse); 1017 } 1018 1019 // Preincrement use iterator so we don't invalidate it. 1020 ++UI; 1021 1022 // The first insertion point of a block containing an EH pad is after the 1023 // pad. If the pad is the user, we cannot sink the cast past the pad. 1024 if (User->isEHPad()) 1025 continue; 1026 1027 // If the block selected to receive the cast is an EH pad that does not 1028 // allow non-PHI instructions before the terminator, we can't sink the 1029 // cast. 1030 if (UserBB->getTerminator()->isEHPad()) 1031 continue; 1032 1033 // If this user is in the same block as the cast, don't change the cast. 1034 if (UserBB == DefBB) continue; 1035 1036 // If we have already inserted a cast into this block, use it. 1037 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1038 1039 if (!InsertedCast) { 1040 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1041 assert(InsertPt != UserBB->end()); 1042 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1043 CI->getType(), "", &*InsertPt); 1044 } 1045 1046 // Replace a use of the cast with a use of the new cast. 1047 TheUse = InsertedCast; 1048 MadeChange = true; 1049 ++NumCastUses; 1050 } 1051 1052 // If we removed all uses, nuke the cast. 1053 if (CI->use_empty()) { 1054 salvageDebugInfo(*CI); 1055 CI->eraseFromParent(); 1056 MadeChange = true; 1057 } 1058 1059 return MadeChange; 1060 } 1061 1062 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1063 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1064 /// reduce the number of virtual registers that must be created and coalesced. 1065 /// 1066 /// Return true if any changes are made. 1067 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1068 const DataLayout &DL) { 1069 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1070 // than sinking only nop casts, but is helpful on some platforms. 1071 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1072 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), 1073 ASC->getDestAddressSpace())) 1074 return false; 1075 } 1076 1077 // If this is a noop copy, 1078 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1079 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1080 1081 // This is an fp<->int conversion? 1082 if (SrcVT.isInteger() != DstVT.isInteger()) 1083 return false; 1084 1085 // If this is an extension, it will be a zero or sign extension, which 1086 // isn't a noop. 1087 if (SrcVT.bitsLT(DstVT)) return false; 1088 1089 // If these values will be promoted, find out what they will be promoted 1090 // to. This helps us consider truncates on PPC as noop copies when they 1091 // are. 1092 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1093 TargetLowering::TypePromoteInteger) 1094 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1095 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1096 TargetLowering::TypePromoteInteger) 1097 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1098 1099 // If, after promotion, these are the same types, this is a noop copy. 1100 if (SrcVT != DstVT) 1101 return false; 1102 1103 return SinkCast(CI); 1104 } 1105 1106 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 1107 /// possible. 1108 /// 1109 /// Return true if any changes were made. 1110 static bool CombineUAddWithOverflow(CmpInst *CI) { 1111 Value *A, *B; 1112 Instruction *AddI; 1113 if (!match(CI, 1114 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 1115 return false; 1116 1117 Type *Ty = AddI->getType(); 1118 if (!isa<IntegerType>(Ty)) 1119 return false; 1120 1121 // We don't want to move around uses of condition values this late, so we we 1122 // check if it is legal to create the call to the intrinsic in the basic 1123 // block containing the icmp: 1124 1125 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 1126 return false; 1127 1128 #ifndef NDEBUG 1129 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 1130 // for now: 1131 if (AddI->hasOneUse()) 1132 assert(*AddI->user_begin() == CI && "expected!"); 1133 #endif 1134 1135 Module *M = CI->getModule(); 1136 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 1137 1138 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 1139 1140 auto *UAddWithOverflow = 1141 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 1142 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 1143 auto *Overflow = 1144 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 1145 1146 CI->replaceAllUsesWith(Overflow); 1147 AddI->replaceAllUsesWith(UAdd); 1148 CI->eraseFromParent(); 1149 AddI->eraseFromParent(); 1150 return true; 1151 } 1152 1153 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1154 /// registers that must be created and coalesced. This is a clear win except on 1155 /// targets with multiple condition code registers (PowerPC), where it might 1156 /// lose; some adjustment may be wanted there. 1157 /// 1158 /// Return true if any changes are made. 1159 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1160 BasicBlock *DefBB = CI->getParent(); 1161 1162 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1163 if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI)) 1164 return false; 1165 1166 // Only insert a cmp in each block once. 1167 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1168 1169 bool MadeChange = false; 1170 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1171 UI != E; ) { 1172 Use &TheUse = UI.getUse(); 1173 Instruction *User = cast<Instruction>(*UI); 1174 1175 // Preincrement use iterator so we don't invalidate it. 1176 ++UI; 1177 1178 // Don't bother for PHI nodes. 1179 if (isa<PHINode>(User)) 1180 continue; 1181 1182 // Figure out which BB this cmp is used in. 1183 BasicBlock *UserBB = User->getParent(); 1184 1185 // If this user is in the same block as the cmp, don't change the cmp. 1186 if (UserBB == DefBB) continue; 1187 1188 // If we have already inserted a cmp into this block, use it. 1189 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1190 1191 if (!InsertedCmp) { 1192 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1193 assert(InsertPt != UserBB->end()); 1194 InsertedCmp = 1195 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 1196 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 1197 // Propagate the debug info. 1198 InsertedCmp->setDebugLoc(CI->getDebugLoc()); 1199 } 1200 1201 // Replace a use of the cmp with a use of the new cmp. 1202 TheUse = InsertedCmp; 1203 MadeChange = true; 1204 ++NumCmpUses; 1205 } 1206 1207 // If we removed all uses, nuke the cmp. 1208 if (CI->use_empty()) { 1209 CI->eraseFromParent(); 1210 MadeChange = true; 1211 } 1212 1213 return MadeChange; 1214 } 1215 1216 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1217 if (SinkCmpExpression(CI, TLI)) 1218 return true; 1219 1220 if (CombineUAddWithOverflow(CI)) 1221 return true; 1222 1223 return false; 1224 } 1225 1226 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1227 /// used in a compare to allow isel to generate better code for targets where 1228 /// this operation can be combined. 1229 /// 1230 /// Return true if any changes are made. 1231 static bool sinkAndCmp0Expression(Instruction *AndI, 1232 const TargetLowering &TLI, 1233 SetOfInstrs &InsertedInsts) { 1234 // Double-check that we're not trying to optimize an instruction that was 1235 // already optimized by some other part of this pass. 1236 assert(!InsertedInsts.count(AndI) && 1237 "Attempting to optimize already optimized and instruction"); 1238 (void) InsertedInsts; 1239 1240 // Nothing to do for single use in same basic block. 1241 if (AndI->hasOneUse() && 1242 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1243 return false; 1244 1245 // Try to avoid cases where sinking/duplicating is likely to increase register 1246 // pressure. 1247 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1248 !isa<ConstantInt>(AndI->getOperand(1)) && 1249 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1250 return false; 1251 1252 for (auto *U : AndI->users()) { 1253 Instruction *User = cast<Instruction>(U); 1254 1255 // Only sink for and mask feeding icmp with 0. 1256 if (!isa<ICmpInst>(User)) 1257 return false; 1258 1259 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1260 if (!CmpC || !CmpC->isZero()) 1261 return false; 1262 } 1263 1264 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1265 return false; 1266 1267 DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1268 DEBUG(AndI->getParent()->dump()); 1269 1270 // Push the 'and' into the same block as the icmp 0. There should only be 1271 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1272 // others, so we don't need to keep track of which BBs we insert into. 1273 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1274 UI != E; ) { 1275 Use &TheUse = UI.getUse(); 1276 Instruction *User = cast<Instruction>(*UI); 1277 1278 // Preincrement use iterator so we don't invalidate it. 1279 ++UI; 1280 1281 DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1282 1283 // Keep the 'and' in the same place if the use is already in the same block. 1284 Instruction *InsertPt = 1285 User->getParent() == AndI->getParent() ? AndI : User; 1286 Instruction *InsertedAnd = 1287 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1288 AndI->getOperand(1), "", InsertPt); 1289 // Propagate the debug info. 1290 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1291 1292 // Replace a use of the 'and' with a use of the new 'and'. 1293 TheUse = InsertedAnd; 1294 ++NumAndUses; 1295 DEBUG(User->getParent()->dump()); 1296 } 1297 1298 // We removed all uses, nuke the and. 1299 AndI->eraseFromParent(); 1300 return true; 1301 } 1302 1303 /// Check if the candidates could be combined with a shift instruction, which 1304 /// includes: 1305 /// 1. Truncate instruction 1306 /// 2. And instruction and the imm is a mask of the low bits: 1307 /// imm & (imm+1) == 0 1308 static bool isExtractBitsCandidateUse(Instruction *User) { 1309 if (!isa<TruncInst>(User)) { 1310 if (User->getOpcode() != Instruction::And || 1311 !isa<ConstantInt>(User->getOperand(1))) 1312 return false; 1313 1314 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1315 1316 if ((Cimm & (Cimm + 1)).getBoolValue()) 1317 return false; 1318 } 1319 return true; 1320 } 1321 1322 /// Sink both shift and truncate instruction to the use of truncate's BB. 1323 static bool 1324 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1325 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1326 const TargetLowering &TLI, const DataLayout &DL) { 1327 BasicBlock *UserBB = User->getParent(); 1328 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1329 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1330 bool MadeChange = false; 1331 1332 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1333 TruncE = TruncI->user_end(); 1334 TruncUI != TruncE;) { 1335 1336 Use &TruncTheUse = TruncUI.getUse(); 1337 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1338 // Preincrement use iterator so we don't invalidate it. 1339 1340 ++TruncUI; 1341 1342 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1343 if (!ISDOpcode) 1344 continue; 1345 1346 // If the use is actually a legal node, there will not be an 1347 // implicit truncate. 1348 // FIXME: always querying the result type is just an 1349 // approximation; some nodes' legality is determined by the 1350 // operand or other means. There's no good way to find out though. 1351 if (TLI.isOperationLegalOrCustom( 1352 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1353 continue; 1354 1355 // Don't bother for PHI nodes. 1356 if (isa<PHINode>(TruncUser)) 1357 continue; 1358 1359 BasicBlock *TruncUserBB = TruncUser->getParent(); 1360 1361 if (UserBB == TruncUserBB) 1362 continue; 1363 1364 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1365 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1366 1367 if (!InsertedShift && !InsertedTrunc) { 1368 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1369 assert(InsertPt != TruncUserBB->end()); 1370 // Sink the shift 1371 if (ShiftI->getOpcode() == Instruction::AShr) 1372 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1373 "", &*InsertPt); 1374 else 1375 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1376 "", &*InsertPt); 1377 1378 // Sink the trunc 1379 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1380 TruncInsertPt++; 1381 assert(TruncInsertPt != TruncUserBB->end()); 1382 1383 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1384 TruncI->getType(), "", &*TruncInsertPt); 1385 1386 MadeChange = true; 1387 1388 TruncTheUse = InsertedTrunc; 1389 } 1390 } 1391 return MadeChange; 1392 } 1393 1394 /// Sink the shift *right* instruction into user blocks if the uses could 1395 /// potentially be combined with this shift instruction and generate BitExtract 1396 /// instruction. It will only be applied if the architecture supports BitExtract 1397 /// instruction. Here is an example: 1398 /// BB1: 1399 /// %x.extract.shift = lshr i64 %arg1, 32 1400 /// BB2: 1401 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1402 /// ==> 1403 /// 1404 /// BB2: 1405 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1406 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1407 /// 1408 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1409 /// instruction. 1410 /// Return true if any changes are made. 1411 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1412 const TargetLowering &TLI, 1413 const DataLayout &DL) { 1414 BasicBlock *DefBB = ShiftI->getParent(); 1415 1416 /// Only insert instructions in each block once. 1417 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1418 1419 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1420 1421 bool MadeChange = false; 1422 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1423 UI != E;) { 1424 Use &TheUse = UI.getUse(); 1425 Instruction *User = cast<Instruction>(*UI); 1426 // Preincrement use iterator so we don't invalidate it. 1427 ++UI; 1428 1429 // Don't bother for PHI nodes. 1430 if (isa<PHINode>(User)) 1431 continue; 1432 1433 if (!isExtractBitsCandidateUse(User)) 1434 continue; 1435 1436 BasicBlock *UserBB = User->getParent(); 1437 1438 if (UserBB == DefBB) { 1439 // If the shift and truncate instruction are in the same BB. The use of 1440 // the truncate(TruncUse) may still introduce another truncate if not 1441 // legal. In this case, we would like to sink both shift and truncate 1442 // instruction to the BB of TruncUse. 1443 // for example: 1444 // BB1: 1445 // i64 shift.result = lshr i64 opnd, imm 1446 // trunc.result = trunc shift.result to i16 1447 // 1448 // BB2: 1449 // ----> We will have an implicit truncate here if the architecture does 1450 // not have i16 compare. 1451 // cmp i16 trunc.result, opnd2 1452 // 1453 if (isa<TruncInst>(User) && shiftIsLegal 1454 // If the type of the truncate is legal, no trucate will be 1455 // introduced in other basic blocks. 1456 && 1457 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1458 MadeChange = 1459 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1460 1461 continue; 1462 } 1463 // If we have already inserted a shift into this block, use it. 1464 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1465 1466 if (!InsertedShift) { 1467 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1468 assert(InsertPt != UserBB->end()); 1469 1470 if (ShiftI->getOpcode() == Instruction::AShr) 1471 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1472 "", &*InsertPt); 1473 else 1474 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1475 "", &*InsertPt); 1476 1477 MadeChange = true; 1478 } 1479 1480 // Replace a use of the shift with a use of the new shift. 1481 TheUse = InsertedShift; 1482 } 1483 1484 // If we removed all uses, nuke the shift. 1485 if (ShiftI->use_empty()) 1486 ShiftI->eraseFromParent(); 1487 1488 return MadeChange; 1489 } 1490 1491 /// If counting leading or trailing zeros is an expensive operation and a zero 1492 /// input is defined, add a check for zero to avoid calling the intrinsic. 1493 /// 1494 /// We want to transform: 1495 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1496 /// 1497 /// into: 1498 /// entry: 1499 /// %cmpz = icmp eq i64 %A, 0 1500 /// br i1 %cmpz, label %cond.end, label %cond.false 1501 /// cond.false: 1502 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1503 /// br label %cond.end 1504 /// cond.end: 1505 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1506 /// 1507 /// If the transform is performed, return true and set ModifiedDT to true. 1508 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1509 const TargetLowering *TLI, 1510 const DataLayout *DL, 1511 bool &ModifiedDT) { 1512 if (!TLI || !DL) 1513 return false; 1514 1515 // If a zero input is undefined, it doesn't make sense to despeculate that. 1516 if (match(CountZeros->getOperand(1), m_One())) 1517 return false; 1518 1519 // If it's cheap to speculate, there's nothing to do. 1520 auto IntrinsicID = CountZeros->getIntrinsicID(); 1521 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1522 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1523 return false; 1524 1525 // Only handle legal scalar cases. Anything else requires too much work. 1526 Type *Ty = CountZeros->getType(); 1527 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1528 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1529 return false; 1530 1531 // The intrinsic will be sunk behind a compare against zero and branch. 1532 BasicBlock *StartBlock = CountZeros->getParent(); 1533 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1534 1535 // Create another block after the count zero intrinsic. A PHI will be added 1536 // in this block to select the result of the intrinsic or the bit-width 1537 // constant if the input to the intrinsic is zero. 1538 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1539 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1540 1541 // Set up a builder to create a compare, conditional branch, and PHI. 1542 IRBuilder<> Builder(CountZeros->getContext()); 1543 Builder.SetInsertPoint(StartBlock->getTerminator()); 1544 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1545 1546 // Replace the unconditional branch that was created by the first split with 1547 // a compare against zero and a conditional branch. 1548 Value *Zero = Constant::getNullValue(Ty); 1549 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1550 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1551 StartBlock->getTerminator()->eraseFromParent(); 1552 1553 // Create a PHI in the end block to select either the output of the intrinsic 1554 // or the bit width of the operand. 1555 Builder.SetInsertPoint(&EndBlock->front()); 1556 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1557 CountZeros->replaceAllUsesWith(PN); 1558 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1559 PN->addIncoming(BitWidth, StartBlock); 1560 PN->addIncoming(CountZeros, CallBlock); 1561 1562 // We are explicitly handling the zero case, so we can set the intrinsic's 1563 // undefined zero argument to 'true'. This will also prevent reprocessing the 1564 // intrinsic; we only despeculate when a zero input is defined. 1565 CountZeros->setArgOperand(1, Builder.getTrue()); 1566 ModifiedDT = true; 1567 return true; 1568 } 1569 1570 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1571 BasicBlock *BB = CI->getParent(); 1572 1573 // Lower inline assembly if we can. 1574 // If we found an inline asm expession, and if the target knows how to 1575 // lower it to normal LLVM code, do so now. 1576 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1577 if (TLI->ExpandInlineAsm(CI)) { 1578 // Avoid invalidating the iterator. 1579 CurInstIterator = BB->begin(); 1580 // Avoid processing instructions out of order, which could cause 1581 // reuse before a value is defined. 1582 SunkAddrs.clear(); 1583 return true; 1584 } 1585 // Sink address computing for memory operands into the block. 1586 if (optimizeInlineAsmInst(CI)) 1587 return true; 1588 } 1589 1590 // Align the pointer arguments to this call if the target thinks it's a good 1591 // idea 1592 unsigned MinSize, PrefAlign; 1593 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1594 for (auto &Arg : CI->arg_operands()) { 1595 // We want to align both objects whose address is used directly and 1596 // objects whose address is used in casts and GEPs, though it only makes 1597 // sense for GEPs if the offset is a multiple of the desired alignment and 1598 // if size - offset meets the size threshold. 1599 if (!Arg->getType()->isPointerTy()) 1600 continue; 1601 APInt Offset(DL->getPointerSizeInBits( 1602 cast<PointerType>(Arg->getType())->getAddressSpace()), 1603 0); 1604 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1605 uint64_t Offset2 = Offset.getLimitedValue(); 1606 if ((Offset2 & (PrefAlign-1)) != 0) 1607 continue; 1608 AllocaInst *AI; 1609 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1610 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1611 AI->setAlignment(PrefAlign); 1612 // Global variables can only be aligned if they are defined in this 1613 // object (i.e. they are uniquely initialized in this object), and 1614 // over-aligning global variables that have an explicit section is 1615 // forbidden. 1616 GlobalVariable *GV; 1617 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1618 GV->getPointerAlignment(*DL) < PrefAlign && 1619 DL->getTypeAllocSize(GV->getValueType()) >= 1620 MinSize + Offset2) 1621 GV->setAlignment(PrefAlign); 1622 } 1623 // If this is a memcpy (or similar) then we may be able to improve the 1624 // alignment 1625 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1626 unsigned Align = getKnownAlignment(MI->getDest(), *DL); 1627 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 1628 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL)); 1629 if (Align > MI->getAlignment()) 1630 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align)); 1631 } 1632 } 1633 1634 // If we have a cold call site, try to sink addressing computation into the 1635 // cold block. This interacts with our handling for loads and stores to 1636 // ensure that we can fold all uses of a potential addressing computation 1637 // into their uses. TODO: generalize this to work over profiling data 1638 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1639 for (auto &Arg : CI->arg_operands()) { 1640 if (!Arg->getType()->isPointerTy()) 1641 continue; 1642 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1643 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1644 } 1645 1646 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1647 if (II) { 1648 switch (II->getIntrinsicID()) { 1649 default: break; 1650 case Intrinsic::objectsize: { 1651 // Lower all uses of llvm.objectsize.* 1652 ConstantInt *RetVal = 1653 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 1654 // Substituting this can cause recursive simplifications, which can 1655 // invalidate our iterator. Use a WeakTrackingVH to hold onto it in case 1656 // this 1657 // happens. 1658 Value *CurValue = &*CurInstIterator; 1659 WeakTrackingVH IterHandle(CurValue); 1660 1661 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1662 1663 // If the iterator instruction was recursively deleted, start over at the 1664 // start of the block. 1665 if (IterHandle != CurValue) { 1666 CurInstIterator = BB->begin(); 1667 SunkAddrs.clear(); 1668 } 1669 return true; 1670 } 1671 case Intrinsic::aarch64_stlxr: 1672 case Intrinsic::aarch64_stxr: { 1673 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1674 if (!ExtVal || !ExtVal->hasOneUse() || 1675 ExtVal->getParent() == CI->getParent()) 1676 return false; 1677 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1678 ExtVal->moveBefore(CI); 1679 // Mark this instruction as "inserted by CGP", so that other 1680 // optimizations don't touch it. 1681 InsertedInsts.insert(ExtVal); 1682 return true; 1683 } 1684 case Intrinsic::invariant_group_barrier: 1685 II->replaceAllUsesWith(II->getArgOperand(0)); 1686 II->eraseFromParent(); 1687 return true; 1688 1689 case Intrinsic::cttz: 1690 case Intrinsic::ctlz: 1691 // If counting zeros is expensive, try to avoid it. 1692 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 1693 } 1694 1695 if (TLI) { 1696 SmallVector<Value*, 2> PtrOps; 1697 Type *AccessTy; 1698 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 1699 while (!PtrOps.empty()) { 1700 Value *PtrVal = PtrOps.pop_back_val(); 1701 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 1702 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 1703 return true; 1704 } 1705 } 1706 } 1707 1708 // From here on out we're working with named functions. 1709 if (!CI->getCalledFunction()) return false; 1710 1711 // Lower all default uses of _chk calls. This is very similar 1712 // to what InstCombineCalls does, but here we are only lowering calls 1713 // to fortified library functions (e.g. __memcpy_chk) that have the default 1714 // "don't know" as the objectsize. Anything else should be left alone. 1715 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1716 if (Value *V = Simplifier.optimizeCall(CI)) { 1717 CI->replaceAllUsesWith(V); 1718 CI->eraseFromParent(); 1719 return true; 1720 } 1721 1722 return false; 1723 } 1724 1725 /// Look for opportunities to duplicate return instructions to the predecessor 1726 /// to enable tail call optimizations. The case it is currently looking for is: 1727 /// @code 1728 /// bb0: 1729 /// %tmp0 = tail call i32 @f0() 1730 /// br label %return 1731 /// bb1: 1732 /// %tmp1 = tail call i32 @f1() 1733 /// br label %return 1734 /// bb2: 1735 /// %tmp2 = tail call i32 @f2() 1736 /// br label %return 1737 /// return: 1738 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1739 /// ret i32 %retval 1740 /// @endcode 1741 /// 1742 /// => 1743 /// 1744 /// @code 1745 /// bb0: 1746 /// %tmp0 = tail call i32 @f0() 1747 /// ret i32 %tmp0 1748 /// bb1: 1749 /// %tmp1 = tail call i32 @f1() 1750 /// ret i32 %tmp1 1751 /// bb2: 1752 /// %tmp2 = tail call i32 @f2() 1753 /// ret i32 %tmp2 1754 /// @endcode 1755 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 1756 if (!TLI) 1757 return false; 1758 1759 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 1760 if (!RetI) 1761 return false; 1762 1763 PHINode *PN = nullptr; 1764 BitCastInst *BCI = nullptr; 1765 Value *V = RetI->getReturnValue(); 1766 if (V) { 1767 BCI = dyn_cast<BitCastInst>(V); 1768 if (BCI) 1769 V = BCI->getOperand(0); 1770 1771 PN = dyn_cast<PHINode>(V); 1772 if (!PN) 1773 return false; 1774 } 1775 1776 if (PN && PN->getParent() != BB) 1777 return false; 1778 1779 // Make sure there are no instructions between the PHI and return, or that the 1780 // return is the first instruction in the block. 1781 if (PN) { 1782 BasicBlock::iterator BI = BB->begin(); 1783 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1784 if (&*BI == BCI) 1785 // Also skip over the bitcast. 1786 ++BI; 1787 if (&*BI != RetI) 1788 return false; 1789 } else { 1790 BasicBlock::iterator BI = BB->begin(); 1791 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1792 if (&*BI != RetI) 1793 return false; 1794 } 1795 1796 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1797 /// call. 1798 const Function *F = BB->getParent(); 1799 SmallVector<CallInst*, 4> TailCalls; 1800 if (PN) { 1801 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 1802 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 1803 // Make sure the phi value is indeed produced by the tail call. 1804 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 1805 TLI->mayBeEmittedAsTailCall(CI) && 1806 attributesPermitTailCall(F, CI, RetI, *TLI)) 1807 TailCalls.push_back(CI); 1808 } 1809 } else { 1810 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 1811 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 1812 if (!VisitedBBs.insert(*PI).second) 1813 continue; 1814 1815 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 1816 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 1817 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 1818 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 1819 if (RI == RE) 1820 continue; 1821 1822 CallInst *CI = dyn_cast<CallInst>(&*RI); 1823 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 1824 attributesPermitTailCall(F, CI, RetI, *TLI)) 1825 TailCalls.push_back(CI); 1826 } 1827 } 1828 1829 bool Changed = false; 1830 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1831 CallInst *CI = TailCalls[i]; 1832 CallSite CS(CI); 1833 1834 // Conservatively require the attributes of the call to match those of the 1835 // return. Ignore noalias because it doesn't affect the call sequence. 1836 AttributeList CalleeAttrs = CS.getAttributes(); 1837 if (AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 1838 .removeAttribute(Attribute::NoAlias) != 1839 AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 1840 .removeAttribute(Attribute::NoAlias)) 1841 continue; 1842 1843 // Make sure the call instruction is followed by an unconditional branch to 1844 // the return block. 1845 BasicBlock *CallBB = CI->getParent(); 1846 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 1847 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 1848 continue; 1849 1850 // Duplicate the return into CallBB. 1851 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 1852 ModifiedDT = Changed = true; 1853 ++NumRetsDup; 1854 } 1855 1856 // If we eliminated all predecessors of the block, delete the block now. 1857 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 1858 BB->eraseFromParent(); 1859 1860 return Changed; 1861 } 1862 1863 //===----------------------------------------------------------------------===// 1864 // Memory Optimization 1865 //===----------------------------------------------------------------------===// 1866 1867 namespace { 1868 1869 /// This is an extended version of TargetLowering::AddrMode 1870 /// which holds actual Value*'s for register values. 1871 struct ExtAddrMode : public TargetLowering::AddrMode { 1872 Value *BaseReg = nullptr; 1873 Value *ScaledReg = nullptr; 1874 Value *OriginalValue = nullptr; 1875 1876 enum FieldName { 1877 NoField = 0x00, 1878 BaseRegField = 0x01, 1879 BaseGVField = 0x02, 1880 BaseOffsField = 0x04, 1881 ScaledRegField = 0x08, 1882 ScaleField = 0x10, 1883 MultipleFields = 0xff 1884 }; 1885 1886 ExtAddrMode() = default; 1887 1888 void print(raw_ostream &OS) const; 1889 void dump() const; 1890 1891 FieldName compare(const ExtAddrMode &other) { 1892 // First check that the types are the same on each field, as differing types 1893 // is something we can't cope with later on. 1894 if (BaseReg && other.BaseReg && 1895 BaseReg->getType() != other.BaseReg->getType()) 1896 return MultipleFields; 1897 if (BaseGV && other.BaseGV && 1898 BaseGV->getType() != other.BaseGV->getType()) 1899 return MultipleFields; 1900 if (ScaledReg && other.ScaledReg && 1901 ScaledReg->getType() != other.ScaledReg->getType()) 1902 return MultipleFields; 1903 1904 // Check each field to see if it differs. 1905 unsigned Result = NoField; 1906 if (BaseReg != other.BaseReg) 1907 Result |= BaseRegField; 1908 if (BaseGV != other.BaseGV) 1909 Result |= BaseGVField; 1910 if (BaseOffs != other.BaseOffs) 1911 Result |= BaseOffsField; 1912 if (ScaledReg != other.ScaledReg) 1913 Result |= ScaledRegField; 1914 // Don't count 0 as being a different scale, because that actually means 1915 // unscaled (which will already be counted by having no ScaledReg). 1916 if (Scale && other.Scale && Scale != other.Scale) 1917 Result |= ScaleField; 1918 1919 if (countPopulation(Result) > 1) 1920 return MultipleFields; 1921 else 1922 return static_cast<FieldName>(Result); 1923 } 1924 1925 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 1926 // with no offset. 1927 bool isTrivial() { 1928 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 1929 // trivial if at most one of these terms is nonzero, except that BaseGV and 1930 // BaseReg both being zero actually means a null pointer value, which we 1931 // consider to be 'non-zero' here. 1932 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 1933 } 1934 1935 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 1936 switch (Field) { 1937 default: 1938 return nullptr; 1939 case BaseRegField: 1940 return BaseReg; 1941 case BaseGVField: 1942 return BaseGV; 1943 case ScaledRegField: 1944 return ScaledReg; 1945 case BaseOffsField: 1946 return ConstantInt::get(IntPtrTy, BaseOffs); 1947 } 1948 } 1949 1950 void SetCombinedField(FieldName Field, Value *V, 1951 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 1952 switch (Field) { 1953 default: 1954 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 1955 break; 1956 case ExtAddrMode::BaseRegField: 1957 BaseReg = V; 1958 break; 1959 case ExtAddrMode::BaseGVField: 1960 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 1961 // in the BaseReg field. 1962 assert(BaseReg == nullptr); 1963 BaseReg = V; 1964 BaseGV = nullptr; 1965 break; 1966 case ExtAddrMode::ScaledRegField: 1967 ScaledReg = V; 1968 // If we have a mix of scaled and unscaled addrmodes then we want scale 1969 // to be the scale and not zero. 1970 if (!Scale) 1971 for (const ExtAddrMode &AM : AddrModes) 1972 if (AM.Scale) { 1973 Scale = AM.Scale; 1974 break; 1975 } 1976 break; 1977 case ExtAddrMode::BaseOffsField: 1978 // The offset is no longer a constant, so it goes in ScaledReg with a 1979 // scale of 1. 1980 assert(ScaledReg == nullptr); 1981 ScaledReg = V; 1982 Scale = 1; 1983 BaseOffs = 0; 1984 break; 1985 } 1986 } 1987 }; 1988 1989 } // end anonymous namespace 1990 1991 #ifndef NDEBUG 1992 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 1993 AM.print(OS); 1994 return OS; 1995 } 1996 #endif 1997 1998 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1999 void ExtAddrMode::print(raw_ostream &OS) const { 2000 bool NeedPlus = false; 2001 OS << "["; 2002 if (BaseGV) { 2003 OS << (NeedPlus ? " + " : "") 2004 << "GV:"; 2005 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2006 NeedPlus = true; 2007 } 2008 2009 if (BaseOffs) { 2010 OS << (NeedPlus ? " + " : "") 2011 << BaseOffs; 2012 NeedPlus = true; 2013 } 2014 2015 if (BaseReg) { 2016 OS << (NeedPlus ? " + " : "") 2017 << "Base:"; 2018 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2019 NeedPlus = true; 2020 } 2021 if (Scale) { 2022 OS << (NeedPlus ? " + " : "") 2023 << Scale << "*"; 2024 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2025 } 2026 2027 OS << ']'; 2028 } 2029 2030 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2031 print(dbgs()); 2032 dbgs() << '\n'; 2033 } 2034 #endif 2035 2036 namespace { 2037 2038 /// \brief This class provides transaction based operation on the IR. 2039 /// Every change made through this class is recorded in the internal state and 2040 /// can be undone (rollback) until commit is called. 2041 class TypePromotionTransaction { 2042 /// \brief This represents the common interface of the individual transaction. 2043 /// Each class implements the logic for doing one specific modification on 2044 /// the IR via the TypePromotionTransaction. 2045 class TypePromotionAction { 2046 protected: 2047 /// The Instruction modified. 2048 Instruction *Inst; 2049 2050 public: 2051 /// \brief Constructor of the action. 2052 /// The constructor performs the related action on the IR. 2053 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2054 2055 virtual ~TypePromotionAction() = default; 2056 2057 /// \brief Undo the modification done by this action. 2058 /// When this method is called, the IR must be in the same state as it was 2059 /// before this action was applied. 2060 /// \pre Undoing the action works if and only if the IR is in the exact same 2061 /// state as it was directly after this action was applied. 2062 virtual void undo() = 0; 2063 2064 /// \brief Advocate every change made by this action. 2065 /// When the results on the IR of the action are to be kept, it is important 2066 /// to call this function, otherwise hidden information may be kept forever. 2067 virtual void commit() { 2068 // Nothing to be done, this action is not doing anything. 2069 } 2070 }; 2071 2072 /// \brief Utility to remember the position of an instruction. 2073 class InsertionHandler { 2074 /// Position of an instruction. 2075 /// Either an instruction: 2076 /// - Is the first in a basic block: BB is used. 2077 /// - Has a previous instructon: PrevInst is used. 2078 union { 2079 Instruction *PrevInst; 2080 BasicBlock *BB; 2081 } Point; 2082 2083 /// Remember whether or not the instruction had a previous instruction. 2084 bool HasPrevInstruction; 2085 2086 public: 2087 /// \brief Record the position of \p Inst. 2088 InsertionHandler(Instruction *Inst) { 2089 BasicBlock::iterator It = Inst->getIterator(); 2090 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2091 if (HasPrevInstruction) 2092 Point.PrevInst = &*--It; 2093 else 2094 Point.BB = Inst->getParent(); 2095 } 2096 2097 /// \brief Insert \p Inst at the recorded position. 2098 void insert(Instruction *Inst) { 2099 if (HasPrevInstruction) { 2100 if (Inst->getParent()) 2101 Inst->removeFromParent(); 2102 Inst->insertAfter(Point.PrevInst); 2103 } else { 2104 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2105 if (Inst->getParent()) 2106 Inst->moveBefore(Position); 2107 else 2108 Inst->insertBefore(Position); 2109 } 2110 } 2111 }; 2112 2113 /// \brief Move an instruction before another. 2114 class InstructionMoveBefore : public TypePromotionAction { 2115 /// Original position of the instruction. 2116 InsertionHandler Position; 2117 2118 public: 2119 /// \brief Move \p Inst before \p Before. 2120 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2121 : TypePromotionAction(Inst), Position(Inst) { 2122 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 2123 Inst->moveBefore(Before); 2124 } 2125 2126 /// \brief Move the instruction back to its original position. 2127 void undo() override { 2128 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2129 Position.insert(Inst); 2130 } 2131 }; 2132 2133 /// \brief Set the operand of an instruction with a new value. 2134 class OperandSetter : public TypePromotionAction { 2135 /// Original operand of the instruction. 2136 Value *Origin; 2137 2138 /// Index of the modified instruction. 2139 unsigned Idx; 2140 2141 public: 2142 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 2143 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2144 : TypePromotionAction(Inst), Idx(Idx) { 2145 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2146 << "for:" << *Inst << "\n" 2147 << "with:" << *NewVal << "\n"); 2148 Origin = Inst->getOperand(Idx); 2149 Inst->setOperand(Idx, NewVal); 2150 } 2151 2152 /// \brief Restore the original value of the instruction. 2153 void undo() override { 2154 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2155 << "for: " << *Inst << "\n" 2156 << "with: " << *Origin << "\n"); 2157 Inst->setOperand(Idx, Origin); 2158 } 2159 }; 2160 2161 /// \brief Hide the operands of an instruction. 2162 /// Do as if this instruction was not using any of its operands. 2163 class OperandsHider : public TypePromotionAction { 2164 /// The list of original operands. 2165 SmallVector<Value *, 4> OriginalValues; 2166 2167 public: 2168 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 2169 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2170 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2171 unsigned NumOpnds = Inst->getNumOperands(); 2172 OriginalValues.reserve(NumOpnds); 2173 for (unsigned It = 0; It < NumOpnds; ++It) { 2174 // Save the current operand. 2175 Value *Val = Inst->getOperand(It); 2176 OriginalValues.push_back(Val); 2177 // Set a dummy one. 2178 // We could use OperandSetter here, but that would imply an overhead 2179 // that we are not willing to pay. 2180 Inst->setOperand(It, UndefValue::get(Val->getType())); 2181 } 2182 } 2183 2184 /// \brief Restore the original list of uses. 2185 void undo() override { 2186 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2187 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2188 Inst->setOperand(It, OriginalValues[It]); 2189 } 2190 }; 2191 2192 /// \brief Build a truncate instruction. 2193 class TruncBuilder : public TypePromotionAction { 2194 Value *Val; 2195 2196 public: 2197 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 2198 /// result. 2199 /// trunc Opnd to Ty. 2200 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2201 IRBuilder<> Builder(Opnd); 2202 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2203 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2204 } 2205 2206 /// \brief Get the built value. 2207 Value *getBuiltValue() { return Val; } 2208 2209 /// \brief Remove the built instruction. 2210 void undo() override { 2211 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2212 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2213 IVal->eraseFromParent(); 2214 } 2215 }; 2216 2217 /// \brief Build a sign extension instruction. 2218 class SExtBuilder : public TypePromotionAction { 2219 Value *Val; 2220 2221 public: 2222 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 2223 /// result. 2224 /// sext Opnd to Ty. 2225 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2226 : TypePromotionAction(InsertPt) { 2227 IRBuilder<> Builder(InsertPt); 2228 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2229 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2230 } 2231 2232 /// \brief Get the built value. 2233 Value *getBuiltValue() { return Val; } 2234 2235 /// \brief Remove the built instruction. 2236 void undo() override { 2237 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2238 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2239 IVal->eraseFromParent(); 2240 } 2241 }; 2242 2243 /// \brief Build a zero extension instruction. 2244 class ZExtBuilder : public TypePromotionAction { 2245 Value *Val; 2246 2247 public: 2248 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 2249 /// result. 2250 /// zext Opnd to Ty. 2251 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2252 : TypePromotionAction(InsertPt) { 2253 IRBuilder<> Builder(InsertPt); 2254 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2255 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2256 } 2257 2258 /// \brief Get the built value. 2259 Value *getBuiltValue() { return Val; } 2260 2261 /// \brief Remove the built instruction. 2262 void undo() override { 2263 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2264 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2265 IVal->eraseFromParent(); 2266 } 2267 }; 2268 2269 /// \brief Mutate an instruction to another type. 2270 class TypeMutator : public TypePromotionAction { 2271 /// Record the original type. 2272 Type *OrigTy; 2273 2274 public: 2275 /// \brief Mutate the type of \p Inst into \p NewTy. 2276 TypeMutator(Instruction *Inst, Type *NewTy) 2277 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2278 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2279 << "\n"); 2280 Inst->mutateType(NewTy); 2281 } 2282 2283 /// \brief Mutate the instruction back to its original type. 2284 void undo() override { 2285 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2286 << "\n"); 2287 Inst->mutateType(OrigTy); 2288 } 2289 }; 2290 2291 /// \brief Replace the uses of an instruction by another instruction. 2292 class UsesReplacer : public TypePromotionAction { 2293 /// Helper structure to keep track of the replaced uses. 2294 struct InstructionAndIdx { 2295 /// The instruction using the instruction. 2296 Instruction *Inst; 2297 2298 /// The index where this instruction is used for Inst. 2299 unsigned Idx; 2300 2301 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2302 : Inst(Inst), Idx(Idx) {} 2303 }; 2304 2305 /// Keep track of the original uses (pair Instruction, Index). 2306 SmallVector<InstructionAndIdx, 4> OriginalUses; 2307 2308 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2309 2310 public: 2311 /// \brief Replace all the use of \p Inst by \p New. 2312 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2313 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2314 << "\n"); 2315 // Record the original uses. 2316 for (Use &U : Inst->uses()) { 2317 Instruction *UserI = cast<Instruction>(U.getUser()); 2318 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2319 } 2320 // Now, we can replace the uses. 2321 Inst->replaceAllUsesWith(New); 2322 } 2323 2324 /// \brief Reassign the original uses of Inst to Inst. 2325 void undo() override { 2326 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2327 for (use_iterator UseIt = OriginalUses.begin(), 2328 EndIt = OriginalUses.end(); 2329 UseIt != EndIt; ++UseIt) { 2330 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2331 } 2332 } 2333 }; 2334 2335 /// \brief Remove an instruction from the IR. 2336 class InstructionRemover : public TypePromotionAction { 2337 /// Original position of the instruction. 2338 InsertionHandler Inserter; 2339 2340 /// Helper structure to hide all the link to the instruction. In other 2341 /// words, this helps to do as if the instruction was removed. 2342 OperandsHider Hider; 2343 2344 /// Keep track of the uses replaced, if any. 2345 UsesReplacer *Replacer = nullptr; 2346 2347 /// Keep track of instructions removed. 2348 SetOfInstrs &RemovedInsts; 2349 2350 public: 2351 /// \brief Remove all reference of \p Inst and optinally replace all its 2352 /// uses with New. 2353 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2354 /// \pre If !Inst->use_empty(), then New != nullptr 2355 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2356 Value *New = nullptr) 2357 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2358 RemovedInsts(RemovedInsts) { 2359 if (New) 2360 Replacer = new UsesReplacer(Inst, New); 2361 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2362 RemovedInsts.insert(Inst); 2363 /// The instructions removed here will be freed after completing 2364 /// optimizeBlock() for all blocks as we need to keep track of the 2365 /// removed instructions during promotion. 2366 Inst->removeFromParent(); 2367 } 2368 2369 ~InstructionRemover() override { delete Replacer; } 2370 2371 /// \brief Resurrect the instruction and reassign it to the proper uses if 2372 /// new value was provided when build this action. 2373 void undo() override { 2374 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2375 Inserter.insert(Inst); 2376 if (Replacer) 2377 Replacer->undo(); 2378 Hider.undo(); 2379 RemovedInsts.erase(Inst); 2380 } 2381 }; 2382 2383 public: 2384 /// Restoration point. 2385 /// The restoration point is a pointer to an action instead of an iterator 2386 /// because the iterator may be invalidated but not the pointer. 2387 using ConstRestorationPt = const TypePromotionAction *; 2388 2389 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2390 : RemovedInsts(RemovedInsts) {} 2391 2392 /// Advocate every changes made in that transaction. 2393 void commit(); 2394 2395 /// Undo all the changes made after the given point. 2396 void rollback(ConstRestorationPt Point); 2397 2398 /// Get the current restoration point. 2399 ConstRestorationPt getRestorationPoint() const; 2400 2401 /// \name API for IR modification with state keeping to support rollback. 2402 /// @{ 2403 /// Same as Instruction::setOperand. 2404 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2405 2406 /// Same as Instruction::eraseFromParent. 2407 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2408 2409 /// Same as Value::replaceAllUsesWith. 2410 void replaceAllUsesWith(Instruction *Inst, Value *New); 2411 2412 /// Same as Value::mutateType. 2413 void mutateType(Instruction *Inst, Type *NewTy); 2414 2415 /// Same as IRBuilder::createTrunc. 2416 Value *createTrunc(Instruction *Opnd, Type *Ty); 2417 2418 /// Same as IRBuilder::createSExt. 2419 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2420 2421 /// Same as IRBuilder::createZExt. 2422 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2423 2424 /// Same as Instruction::moveBefore. 2425 void moveBefore(Instruction *Inst, Instruction *Before); 2426 /// @} 2427 2428 private: 2429 /// The ordered list of actions made so far. 2430 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2431 2432 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2433 2434 SetOfInstrs &RemovedInsts; 2435 }; 2436 2437 } // end anonymous namespace 2438 2439 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2440 Value *NewVal) { 2441 Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>( 2442 Inst, Idx, NewVal)); 2443 } 2444 2445 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2446 Value *NewVal) { 2447 Actions.push_back( 2448 llvm::make_unique<TypePromotionTransaction::InstructionRemover>( 2449 Inst, RemovedInsts, NewVal)); 2450 } 2451 2452 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2453 Value *New) { 2454 Actions.push_back( 2455 llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2456 } 2457 2458 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2459 Actions.push_back( 2460 llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2461 } 2462 2463 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2464 Type *Ty) { 2465 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2466 Value *Val = Ptr->getBuiltValue(); 2467 Actions.push_back(std::move(Ptr)); 2468 return Val; 2469 } 2470 2471 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2472 Value *Opnd, Type *Ty) { 2473 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2474 Value *Val = Ptr->getBuiltValue(); 2475 Actions.push_back(std::move(Ptr)); 2476 return Val; 2477 } 2478 2479 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2480 Value *Opnd, Type *Ty) { 2481 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2482 Value *Val = Ptr->getBuiltValue(); 2483 Actions.push_back(std::move(Ptr)); 2484 return Val; 2485 } 2486 2487 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2488 Instruction *Before) { 2489 Actions.push_back( 2490 llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2491 Inst, Before)); 2492 } 2493 2494 TypePromotionTransaction::ConstRestorationPt 2495 TypePromotionTransaction::getRestorationPoint() const { 2496 return !Actions.empty() ? Actions.back().get() : nullptr; 2497 } 2498 2499 void TypePromotionTransaction::commit() { 2500 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2501 ++It) 2502 (*It)->commit(); 2503 Actions.clear(); 2504 } 2505 2506 void TypePromotionTransaction::rollback( 2507 TypePromotionTransaction::ConstRestorationPt Point) { 2508 while (!Actions.empty() && Point != Actions.back().get()) { 2509 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2510 Curr->undo(); 2511 } 2512 } 2513 2514 namespace { 2515 2516 /// \brief A helper class for matching addressing modes. 2517 /// 2518 /// This encapsulates the logic for matching the target-legal addressing modes. 2519 class AddressingModeMatcher { 2520 SmallVectorImpl<Instruction*> &AddrModeInsts; 2521 const TargetLowering &TLI; 2522 const TargetRegisterInfo &TRI; 2523 const DataLayout &DL; 2524 2525 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2526 /// the memory instruction that we're computing this address for. 2527 Type *AccessTy; 2528 unsigned AddrSpace; 2529 Instruction *MemoryInst; 2530 2531 /// This is the addressing mode that we're building up. This is 2532 /// part of the return value of this addressing mode matching stuff. 2533 ExtAddrMode &AddrMode; 2534 2535 /// The instructions inserted by other CodeGenPrepare optimizations. 2536 const SetOfInstrs &InsertedInsts; 2537 2538 /// A map from the instructions to their type before promotion. 2539 InstrToOrigTy &PromotedInsts; 2540 2541 /// The ongoing transaction where every action should be registered. 2542 TypePromotionTransaction &TPT; 2543 2544 /// This is set to true when we should not do profitability checks. 2545 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2546 bool IgnoreProfitability; 2547 2548 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, 2549 const TargetLowering &TLI, 2550 const TargetRegisterInfo &TRI, 2551 Type *AT, unsigned AS, 2552 Instruction *MI, ExtAddrMode &AM, 2553 const SetOfInstrs &InsertedInsts, 2554 InstrToOrigTy &PromotedInsts, 2555 TypePromotionTransaction &TPT) 2556 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2557 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2558 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2559 PromotedInsts(PromotedInsts), TPT(TPT) { 2560 IgnoreProfitability = false; 2561 } 2562 2563 public: 2564 /// Find the maximal addressing mode that a load/store of V can fold, 2565 /// give an access type of AccessTy. This returns a list of involved 2566 /// instructions in AddrModeInsts. 2567 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2568 /// optimizations. 2569 /// \p PromotedInsts maps the instructions to their type before promotion. 2570 /// \p The ongoing transaction where every action should be registered. 2571 static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, 2572 Instruction *MemoryInst, 2573 SmallVectorImpl<Instruction*> &AddrModeInsts, 2574 const TargetLowering &TLI, 2575 const TargetRegisterInfo &TRI, 2576 const SetOfInstrs &InsertedInsts, 2577 InstrToOrigTy &PromotedInsts, 2578 TypePromotionTransaction &TPT) { 2579 ExtAddrMode Result; 2580 2581 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, 2582 AccessTy, AS, 2583 MemoryInst, Result, InsertedInsts, 2584 PromotedInsts, TPT).matchAddr(V, 0); 2585 (void)Success; assert(Success && "Couldn't select *anything*?"); 2586 return Result; 2587 } 2588 2589 private: 2590 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2591 bool matchAddr(Value *V, unsigned Depth); 2592 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 2593 bool *MovedAway = nullptr); 2594 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2595 ExtAddrMode &AMBefore, 2596 ExtAddrMode &AMAfter); 2597 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2598 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2599 Value *PromotedOperand) const; 2600 }; 2601 2602 /// \brief Keep track of simplification of Phi nodes. 2603 /// Accept the set of all phi nodes and erase phi node from this set 2604 /// if it is simplified. 2605 class SimplificationTracker { 2606 DenseMap<Value *, Value *> Storage; 2607 const SimplifyQuery &SQ; 2608 SmallPtrSetImpl<PHINode *> &AllPhiNodes; 2609 SmallPtrSetImpl<SelectInst *> &AllSelectNodes; 2610 2611 public: 2612 SimplificationTracker(const SimplifyQuery &sq, 2613 SmallPtrSetImpl<PHINode *> &APN, 2614 SmallPtrSetImpl<SelectInst *> &ASN) 2615 : SQ(sq), AllPhiNodes(APN), AllSelectNodes(ASN) {} 2616 2617 Value *Get(Value *V) { 2618 do { 2619 auto SV = Storage.find(V); 2620 if (SV == Storage.end()) 2621 return V; 2622 V = SV->second; 2623 } while (true); 2624 } 2625 2626 Value *Simplify(Value *Val) { 2627 SmallVector<Value *, 32> WorkList; 2628 SmallPtrSet<Value *, 32> Visited; 2629 WorkList.push_back(Val); 2630 while (!WorkList.empty()) { 2631 auto P = WorkList.pop_back_val(); 2632 if (!Visited.insert(P).second) 2633 continue; 2634 if (auto *PI = dyn_cast<Instruction>(P)) 2635 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 2636 for (auto *U : PI->users()) 2637 WorkList.push_back(cast<Value>(U)); 2638 Put(PI, V); 2639 PI->replaceAllUsesWith(V); 2640 if (auto *PHI = dyn_cast<PHINode>(PI)) 2641 AllPhiNodes.erase(PHI); 2642 if (auto *Select = dyn_cast<SelectInst>(PI)) 2643 AllSelectNodes.erase(Select); 2644 PI->eraseFromParent(); 2645 } 2646 } 2647 return Get(Val); 2648 } 2649 2650 void Put(Value *From, Value *To) { 2651 Storage.insert({ From, To }); 2652 } 2653 }; 2654 2655 /// \brief A helper class for combining addressing modes. 2656 class AddressingModeCombiner { 2657 typedef std::pair<Value *, BasicBlock *> ValueInBB; 2658 typedef DenseMap<ValueInBB, Value *> FoldAddrToValueMapping; 2659 typedef std::pair<PHINode *, PHINode *> PHIPair; 2660 2661 private: 2662 /// The addressing modes we've collected. 2663 SmallVector<ExtAddrMode, 16> AddrModes; 2664 2665 /// The field in which the AddrModes differ, when we have more than one. 2666 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 2667 2668 /// Are the AddrModes that we have all just equal to their original values? 2669 bool AllAddrModesTrivial = true; 2670 2671 /// Common Type for all different fields in addressing modes. 2672 Type *CommonType; 2673 2674 /// SimplifyQuery for simplifyInstruction utility. 2675 const SimplifyQuery &SQ; 2676 2677 /// Original Address. 2678 ValueInBB Original; 2679 2680 public: 2681 AddressingModeCombiner(const SimplifyQuery &_SQ, ValueInBB OriginalValue) 2682 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 2683 2684 /// \brief Get the combined AddrMode 2685 const ExtAddrMode &getAddrMode() const { 2686 return AddrModes[0]; 2687 } 2688 2689 /// \brief Add a new AddrMode if it's compatible with the AddrModes we already 2690 /// have. 2691 /// \return True iff we succeeded in doing so. 2692 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 2693 // Take note of if we have any non-trivial AddrModes, as we need to detect 2694 // when all AddrModes are trivial as then we would introduce a phi or select 2695 // which just duplicates what's already there. 2696 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 2697 2698 // If this is the first addrmode then everything is fine. 2699 if (AddrModes.empty()) { 2700 AddrModes.emplace_back(NewAddrMode); 2701 return true; 2702 } 2703 2704 // Figure out how different this is from the other address modes, which we 2705 // can do just by comparing against the first one given that we only care 2706 // about the cumulative difference. 2707 ExtAddrMode::FieldName ThisDifferentField = 2708 AddrModes[0].compare(NewAddrMode); 2709 if (DifferentField == ExtAddrMode::NoField) 2710 DifferentField = ThisDifferentField; 2711 else if (DifferentField != ThisDifferentField) 2712 DifferentField = ExtAddrMode::MultipleFields; 2713 2714 // If NewAddrMode differs in only one dimension, and that dimension isn't 2715 // the amount that ScaledReg is scaled by, then we can handle it by 2716 // inserting a phi/select later on. Even if NewAddMode is the same 2717 // we still need to collect it due to original value is different. 2718 // And later we will need all original values as anchors during 2719 // finding the common Phi node. 2720 if (DifferentField != ExtAddrMode::MultipleFields && 2721 DifferentField != ExtAddrMode::ScaleField) { 2722 AddrModes.emplace_back(NewAddrMode); 2723 return true; 2724 } 2725 2726 // We couldn't combine NewAddrMode with the rest, so return failure. 2727 AddrModes.clear(); 2728 return false; 2729 } 2730 2731 /// \brief Combine the addressing modes we've collected into a single 2732 /// addressing mode. 2733 /// \return True iff we successfully combined them or we only had one so 2734 /// didn't need to combine them anyway. 2735 bool combineAddrModes() { 2736 // If we have no AddrModes then they can't be combined. 2737 if (AddrModes.size() == 0) 2738 return false; 2739 2740 // A single AddrMode can trivially be combined. 2741 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 2742 return true; 2743 2744 // If the AddrModes we collected are all just equal to the value they are 2745 // derived from then combining them wouldn't do anything useful. 2746 if (AllAddrModesTrivial) 2747 return false; 2748 2749 if (!addrModeCombiningAllowed()) 2750 return false; 2751 2752 // Build a map between <original value, basic block where we saw it> to 2753 // value of base register. 2754 // Bail out if there is no common type. 2755 FoldAddrToValueMapping Map; 2756 if (!initializeMap(Map)) 2757 return false; 2758 2759 Value *CommonValue = findCommon(Map); 2760 if (CommonValue) 2761 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 2762 return CommonValue != nullptr; 2763 } 2764 2765 private: 2766 /// \brief Initialize Map with anchor values. For address seen in some BB 2767 /// we set the value of different field saw in this address. 2768 /// If address is not an instruction than basic block is set to null. 2769 /// At the same time we find a common type for different field we will 2770 /// use to create new Phi/Select nodes. Keep it in CommonType field. 2771 /// Return false if there is no common type found. 2772 bool initializeMap(FoldAddrToValueMapping &Map) { 2773 // Keep track of keys where the value is null. We will need to replace it 2774 // with constant null when we know the common type. 2775 SmallVector<ValueInBB, 2> NullValue; 2776 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 2777 for (auto &AM : AddrModes) { 2778 BasicBlock *BB = nullptr; 2779 if (Instruction *I = dyn_cast<Instruction>(AM.OriginalValue)) 2780 BB = I->getParent(); 2781 2782 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 2783 if (DV) { 2784 auto *Type = DV->getType(); 2785 if (CommonType && CommonType != Type) 2786 return false; 2787 CommonType = Type; 2788 Map[{ AM.OriginalValue, BB }] = DV; 2789 } else { 2790 NullValue.push_back({ AM.OriginalValue, BB }); 2791 } 2792 } 2793 assert(CommonType && "At least one non-null value must be!"); 2794 for (auto VIBB : NullValue) 2795 Map[VIBB] = Constant::getNullValue(CommonType); 2796 return true; 2797 } 2798 2799 /// \brief We have mapping between value A and basic block where value A 2800 /// seen to other value B where B was a field in addressing mode represented 2801 /// by A. Also we have an original value C representin an address in some 2802 /// basic block. Traversing from C through phi and selects we ended up with 2803 /// A's in a map. This utility function tries to find a value V which is a 2804 /// field in addressing mode C and traversing through phi nodes and selects 2805 /// we will end up in corresponded values B in a map. 2806 /// The utility will create a new Phi/Selects if needed. 2807 // The simple example looks as follows: 2808 // BB1: 2809 // p1 = b1 + 40 2810 // br cond BB2, BB3 2811 // BB2: 2812 // p2 = b2 + 40 2813 // br BB3 2814 // BB3: 2815 // p = phi [p1, BB1], [p2, BB2] 2816 // v = load p 2817 // Map is 2818 // <p1, BB1> -> b1 2819 // <p2, BB2> -> b2 2820 // Request is 2821 // <p, BB3> -> ? 2822 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3 2823 Value *findCommon(FoldAddrToValueMapping &Map) { 2824 // Tracks of new created Phi nodes. 2825 SmallPtrSet<PHINode *, 32> NewPhiNodes; 2826 // Tracks of new created Select nodes. 2827 SmallPtrSet<SelectInst *, 32> NewSelectNodes; 2828 // Tracks the simplification of new created phi nodes. The reason we use 2829 // this mapping is because we will add new created Phi nodes in AddrToBase. 2830 // Simplification of Phi nodes is recursive, so some Phi node may 2831 // be simplified after we added it to AddrToBase. 2832 // Using this mapping we can find the current value in AddrToBase. 2833 SimplificationTracker ST(SQ, NewPhiNodes, NewSelectNodes); 2834 2835 // First step, DFS to create PHI nodes for all intermediate blocks. 2836 // Also fill traverse order for the second step. 2837 SmallVector<ValueInBB, 32> TraverseOrder; 2838 InsertPlaceholders(Map, TraverseOrder, NewPhiNodes, NewSelectNodes); 2839 2840 // Second Step, fill new nodes by merged values and simplify if possible. 2841 FillPlaceholders(Map, TraverseOrder, ST); 2842 2843 if (!AddrSinkNewSelects && NewSelectNodes.size() > 0) { 2844 DestroyNodes(NewPhiNodes); 2845 DestroyNodes(NewSelectNodes); 2846 return nullptr; 2847 } 2848 2849 // Now we'd like to match New Phi nodes to existed ones. 2850 unsigned PhiNotMatchedCount = 0; 2851 if (!MatchPhiSet(NewPhiNodes, ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 2852 DestroyNodes(NewPhiNodes); 2853 DestroyNodes(NewSelectNodes); 2854 return nullptr; 2855 } 2856 2857 auto *Result = ST.Get(Map.find(Original)->second); 2858 if (Result) { 2859 NumMemoryInstsPhiCreated += NewPhiNodes.size() + PhiNotMatchedCount; 2860 NumMemoryInstsSelectCreated += NewSelectNodes.size(); 2861 } 2862 return Result; 2863 } 2864 2865 /// \brief Destroy nodes from a set. 2866 template <typename T> void DestroyNodes(SmallPtrSetImpl<T *> &Instructions) { 2867 // For safe erasing, replace the Phi with dummy value first. 2868 auto Dummy = UndefValue::get(CommonType); 2869 for (auto I : Instructions) { 2870 I->replaceAllUsesWith(Dummy); 2871 I->eraseFromParent(); 2872 } 2873 } 2874 2875 /// \brief Try to match PHI node to Candidate. 2876 /// Matcher tracks the matched Phi nodes. 2877 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 2878 DenseSet<PHIPair> &Matcher, 2879 SmallPtrSetImpl<PHINode *> &PhiNodesToMatch) { 2880 SmallVector<PHIPair, 8> WorkList; 2881 Matcher.insert({ PHI, Candidate }); 2882 WorkList.push_back({ PHI, Candidate }); 2883 SmallSet<PHIPair, 8> Visited; 2884 while (!WorkList.empty()) { 2885 auto Item = WorkList.pop_back_val(); 2886 if (!Visited.insert(Item).second) 2887 continue; 2888 // We iterate over all incoming values to Phi to compare them. 2889 // If values are different and both of them Phi and the first one is a 2890 // Phi we added (subject to match) and both of them is in the same basic 2891 // block then we can match our pair if values match. So we state that 2892 // these values match and add it to work list to verify that. 2893 for (auto B : Item.first->blocks()) { 2894 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 2895 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 2896 if (FirstValue == SecondValue) 2897 continue; 2898 2899 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 2900 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 2901 2902 // One of them is not Phi or 2903 // The first one is not Phi node from the set we'd like to match or 2904 // Phi nodes from different basic blocks then 2905 // we will not be able to match. 2906 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 2907 FirstPhi->getParent() != SecondPhi->getParent()) 2908 return false; 2909 2910 // If we already matched them then continue. 2911 if (Matcher.count({ FirstPhi, SecondPhi })) 2912 continue; 2913 // So the values are different and does not match. So we need them to 2914 // match. 2915 Matcher.insert({ FirstPhi, SecondPhi }); 2916 // But me must check it. 2917 WorkList.push_back({ FirstPhi, SecondPhi }); 2918 } 2919 } 2920 return true; 2921 } 2922 2923 /// \brief For the given set of PHI nodes try to find their equivalents. 2924 /// Returns false if this matching fails and creation of new Phi is disabled. 2925 bool MatchPhiSet(SmallPtrSetImpl<PHINode *> &PhiNodesToMatch, 2926 SimplificationTracker &ST, bool AllowNewPhiNodes, 2927 unsigned &PhiNotMatchedCount) { 2928 DenseSet<PHIPair> Matched; 2929 SmallPtrSet<PHINode *, 8> WillNotMatch; 2930 while (PhiNodesToMatch.size()) { 2931 PHINode *PHI = *PhiNodesToMatch.begin(); 2932 2933 // Add us, if no Phi nodes in the basic block we do not match. 2934 WillNotMatch.clear(); 2935 WillNotMatch.insert(PHI); 2936 2937 // Traverse all Phis until we found equivalent or fail to do that. 2938 bool IsMatched = false; 2939 for (auto &P : PHI->getParent()->phis()) { 2940 if (&P == PHI) 2941 continue; 2942 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 2943 break; 2944 // If it does not match, collect all Phi nodes from matcher. 2945 // if we end up with no match, them all these Phi nodes will not match 2946 // later. 2947 for (auto M : Matched) 2948 WillNotMatch.insert(M.first); 2949 Matched.clear(); 2950 } 2951 if (IsMatched) { 2952 // Replace all matched values and erase them. 2953 for (auto MV : Matched) { 2954 MV.first->replaceAllUsesWith(MV.second); 2955 PhiNodesToMatch.erase(MV.first); 2956 ST.Put(MV.first, MV.second); 2957 MV.first->eraseFromParent(); 2958 } 2959 Matched.clear(); 2960 continue; 2961 } 2962 // If we are not allowed to create new nodes then bail out. 2963 if (!AllowNewPhiNodes) 2964 return false; 2965 // Just remove all seen values in matcher. They will not match anything. 2966 PhiNotMatchedCount += WillNotMatch.size(); 2967 for (auto *P : WillNotMatch) 2968 PhiNodesToMatch.erase(P); 2969 } 2970 return true; 2971 } 2972 /// \brief Fill the placeholder with values from predecessors and simplify it. 2973 void FillPlaceholders(FoldAddrToValueMapping &Map, 2974 SmallVectorImpl<ValueInBB> &TraverseOrder, 2975 SimplificationTracker &ST) { 2976 while (!TraverseOrder.empty()) { 2977 auto Current = TraverseOrder.pop_back_val(); 2978 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 2979 Value *CurrentValue = Current.first; 2980 BasicBlock *CurrentBlock = Current.second; 2981 Value *V = Map[Current]; 2982 2983 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 2984 // CurrentValue also must be Select. 2985 auto *CurrentSelect = cast<SelectInst>(CurrentValue); 2986 auto *TrueValue = CurrentSelect->getTrueValue(); 2987 ValueInBB TrueItem = { TrueValue, isa<Instruction>(TrueValue) 2988 ? CurrentBlock 2989 : nullptr }; 2990 assert(Map.find(TrueItem) != Map.end() && "No True Value!"); 2991 Select->setTrueValue(Map[TrueItem]); 2992 auto *FalseValue = CurrentSelect->getFalseValue(); 2993 ValueInBB FalseItem = { FalseValue, isa<Instruction>(FalseValue) 2994 ? CurrentBlock 2995 : nullptr }; 2996 assert(Map.find(FalseItem) != Map.end() && "No False Value!"); 2997 Select->setFalseValue(Map[FalseItem]); 2998 } else { 2999 // Must be a Phi node then. 3000 PHINode *PHI = cast<PHINode>(V); 3001 // Fill the Phi node with values from predecessors. 3002 bool IsDefinedInThisBB = 3003 cast<Instruction>(CurrentValue)->getParent() == CurrentBlock; 3004 auto *CurrentPhi = dyn_cast<PHINode>(CurrentValue); 3005 for (auto B : predecessors(CurrentBlock)) { 3006 Value *PV = IsDefinedInThisBB 3007 ? CurrentPhi->getIncomingValueForBlock(B) 3008 : CurrentValue; 3009 ValueInBB item = { PV, isa<Instruction>(PV) ? B : nullptr }; 3010 assert(Map.find(item) != Map.end() && "No predecessor Value!"); 3011 PHI->addIncoming(ST.Get(Map[item]), B); 3012 } 3013 } 3014 // Simplify if possible. 3015 Map[Current] = ST.Simplify(V); 3016 } 3017 } 3018 3019 /// Starting from value recursively iterates over predecessors up to known 3020 /// ending values represented in a map. For each traversed block inserts 3021 /// a placeholder Phi or Select. 3022 /// Reports all new created Phi/Select nodes by adding them to set. 3023 /// Also reports and order in what basic blocks have been traversed. 3024 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3025 SmallVectorImpl<ValueInBB> &TraverseOrder, 3026 SmallPtrSetImpl<PHINode *> &NewPhiNodes, 3027 SmallPtrSetImpl<SelectInst *> &NewSelectNodes) { 3028 SmallVector<ValueInBB, 32> Worklist; 3029 assert((isa<PHINode>(Original.first) || isa<SelectInst>(Original.first)) && 3030 "Address must be a Phi or Select node"); 3031 auto *Dummy = UndefValue::get(CommonType); 3032 Worklist.push_back(Original); 3033 while (!Worklist.empty()) { 3034 auto Current = Worklist.pop_back_val(); 3035 // If value is not an instruction it is something global, constant, 3036 // parameter and we can say that this value is observable in any block. 3037 // Set block to null to denote it. 3038 // Also please take into account that it is how we build anchors. 3039 if (!isa<Instruction>(Current.first)) 3040 Current.second = nullptr; 3041 // if it is already visited or it is an ending value then skip it. 3042 if (Map.find(Current) != Map.end()) 3043 continue; 3044 TraverseOrder.push_back(Current); 3045 3046 Value *CurrentValue = Current.first; 3047 BasicBlock *CurrentBlock = Current.second; 3048 // CurrentValue must be a Phi node or select. All others must be covered 3049 // by anchors. 3050 Instruction *CurrentI = cast<Instruction>(CurrentValue); 3051 bool IsDefinedInThisBB = CurrentI->getParent() == CurrentBlock; 3052 3053 unsigned PredCount = 3054 std::distance(pred_begin(CurrentBlock), pred_end(CurrentBlock)); 3055 // if Current Value is not defined in this basic block we are interested 3056 // in values in predecessors. 3057 if (!IsDefinedInThisBB) { 3058 assert(PredCount && "Unreachable block?!"); 3059 PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi", 3060 &CurrentBlock->front()); 3061 Map[Current] = PHI; 3062 NewPhiNodes.insert(PHI); 3063 // Add all predecessors in work list. 3064 for (auto B : predecessors(CurrentBlock)) 3065 Worklist.push_back({ CurrentValue, B }); 3066 continue; 3067 } 3068 // Value is defined in this basic block. 3069 if (SelectInst *OrigSelect = dyn_cast<SelectInst>(CurrentI)) { 3070 // Is it OK to get metadata from OrigSelect?! 3071 // Create a Select placeholder with dummy value. 3072 SelectInst *Select = 3073 SelectInst::Create(OrigSelect->getCondition(), Dummy, Dummy, 3074 OrigSelect->getName(), OrigSelect, OrigSelect); 3075 Map[Current] = Select; 3076 NewSelectNodes.insert(Select); 3077 // We are interested in True and False value in this basic block. 3078 Worklist.push_back({ OrigSelect->getTrueValue(), CurrentBlock }); 3079 Worklist.push_back({ OrigSelect->getFalseValue(), CurrentBlock }); 3080 } else { 3081 // It must be a Phi node then. 3082 auto *CurrentPhi = cast<PHINode>(CurrentI); 3083 // Create new Phi node for merge of bases. 3084 assert(PredCount && "Unreachable block?!"); 3085 PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi", 3086 &CurrentBlock->front()); 3087 Map[Current] = PHI; 3088 NewPhiNodes.insert(PHI); 3089 3090 // Add all predecessors in work list. 3091 for (auto B : predecessors(CurrentBlock)) 3092 Worklist.push_back({ CurrentPhi->getIncomingValueForBlock(B), B }); 3093 } 3094 } 3095 } 3096 3097 bool addrModeCombiningAllowed() { 3098 if (DisableComplexAddrModes) 3099 return false; 3100 switch (DifferentField) { 3101 default: 3102 return false; 3103 case ExtAddrMode::BaseRegField: 3104 return AddrSinkCombineBaseReg; 3105 case ExtAddrMode::BaseGVField: 3106 return AddrSinkCombineBaseGV; 3107 case ExtAddrMode::BaseOffsField: 3108 return AddrSinkCombineBaseOffs; 3109 case ExtAddrMode::ScaledRegField: 3110 return AddrSinkCombineScaledReg; 3111 } 3112 } 3113 }; 3114 } // end anonymous namespace 3115 3116 /// Try adding ScaleReg*Scale to the current addressing mode. 3117 /// Return true and update AddrMode if this addr mode is legal for the target, 3118 /// false if not. 3119 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3120 unsigned Depth) { 3121 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3122 // mode. Just process that directly. 3123 if (Scale == 1) 3124 return matchAddr(ScaleReg, Depth); 3125 3126 // If the scale is 0, it takes nothing to add this. 3127 if (Scale == 0) 3128 return true; 3129 3130 // If we already have a scale of this value, we can add to it, otherwise, we 3131 // need an available scale field. 3132 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3133 return false; 3134 3135 ExtAddrMode TestAddrMode = AddrMode; 3136 3137 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3138 // [A+B + A*7] -> [B+A*8]. 3139 TestAddrMode.Scale += Scale; 3140 TestAddrMode.ScaledReg = ScaleReg; 3141 3142 // If the new address isn't legal, bail out. 3143 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3144 return false; 3145 3146 // It was legal, so commit it. 3147 AddrMode = TestAddrMode; 3148 3149 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3150 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3151 // X*Scale + C*Scale to addr mode. 3152 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3153 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3154 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3155 TestAddrMode.ScaledReg = AddLHS; 3156 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3157 3158 // If this addressing mode is legal, commit it and remember that we folded 3159 // this instruction. 3160 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3161 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3162 AddrMode = TestAddrMode; 3163 return true; 3164 } 3165 } 3166 3167 // Otherwise, not (x+c)*scale, just return what we have. 3168 return true; 3169 } 3170 3171 /// This is a little filter, which returns true if an addressing computation 3172 /// involving I might be folded into a load/store accessing it. 3173 /// This doesn't need to be perfect, but needs to accept at least 3174 /// the set of instructions that MatchOperationAddr can. 3175 static bool MightBeFoldableInst(Instruction *I) { 3176 switch (I->getOpcode()) { 3177 case Instruction::BitCast: 3178 case Instruction::AddrSpaceCast: 3179 // Don't touch identity bitcasts. 3180 if (I->getType() == I->getOperand(0)->getType()) 3181 return false; 3182 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 3183 case Instruction::PtrToInt: 3184 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3185 return true; 3186 case Instruction::IntToPtr: 3187 // We know the input is intptr_t, so this is foldable. 3188 return true; 3189 case Instruction::Add: 3190 return true; 3191 case Instruction::Mul: 3192 case Instruction::Shl: 3193 // Can only handle X*C and X << C. 3194 return isa<ConstantInt>(I->getOperand(1)); 3195 case Instruction::GetElementPtr: 3196 return true; 3197 default: 3198 return false; 3199 } 3200 } 3201 3202 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 3203 /// \note \p Val is assumed to be the product of some type promotion. 3204 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3205 /// to be legal, as the non-promoted value would have had the same state. 3206 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3207 const DataLayout &DL, Value *Val) { 3208 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3209 if (!PromotedInst) 3210 return false; 3211 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3212 // If the ISDOpcode is undefined, it was undefined before the promotion. 3213 if (!ISDOpcode) 3214 return true; 3215 // Otherwise, check if the promoted instruction is legal or not. 3216 return TLI.isOperationLegalOrCustom( 3217 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3218 } 3219 3220 namespace { 3221 3222 /// \brief Hepler class to perform type promotion. 3223 class TypePromotionHelper { 3224 /// \brief Utility function to check whether or not a sign or zero extension 3225 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3226 /// either using the operands of \p Inst or promoting \p Inst. 3227 /// The type of the extension is defined by \p IsSExt. 3228 /// In other words, check if: 3229 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3230 /// #1 Promotion applies: 3231 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3232 /// #2 Operand reuses: 3233 /// ext opnd1 to ConsideredExtType. 3234 /// \p PromotedInsts maps the instructions to their type before promotion. 3235 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3236 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3237 3238 /// \brief Utility function to determine if \p OpIdx should be promoted when 3239 /// promoting \p Inst. 3240 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3241 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3242 } 3243 3244 /// \brief Utility function to promote the operand of \p Ext when this 3245 /// operand is a promotable trunc or sext or zext. 3246 /// \p PromotedInsts maps the instructions to their type before promotion. 3247 /// \p CreatedInstsCost[out] contains the cost of all instructions 3248 /// created to promote the operand of Ext. 3249 /// Newly added extensions are inserted in \p Exts. 3250 /// Newly added truncates are inserted in \p Truncs. 3251 /// Should never be called directly. 3252 /// \return The promoted value which is used instead of Ext. 3253 static Value *promoteOperandForTruncAndAnyExt( 3254 Instruction *Ext, TypePromotionTransaction &TPT, 3255 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3256 SmallVectorImpl<Instruction *> *Exts, 3257 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3258 3259 /// \brief Utility function to promote the operand of \p Ext when this 3260 /// operand is promotable and is not a supported trunc or sext. 3261 /// \p PromotedInsts maps the instructions to their type before promotion. 3262 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3263 /// created to promote the operand of Ext. 3264 /// Newly added extensions are inserted in \p Exts. 3265 /// Newly added truncates are inserted in \p Truncs. 3266 /// Should never be called directly. 3267 /// \return The promoted value which is used instead of Ext. 3268 static Value *promoteOperandForOther(Instruction *Ext, 3269 TypePromotionTransaction &TPT, 3270 InstrToOrigTy &PromotedInsts, 3271 unsigned &CreatedInstsCost, 3272 SmallVectorImpl<Instruction *> *Exts, 3273 SmallVectorImpl<Instruction *> *Truncs, 3274 const TargetLowering &TLI, bool IsSExt); 3275 3276 /// \see promoteOperandForOther. 3277 static Value *signExtendOperandForOther( 3278 Instruction *Ext, TypePromotionTransaction &TPT, 3279 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3280 SmallVectorImpl<Instruction *> *Exts, 3281 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3282 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3283 Exts, Truncs, TLI, true); 3284 } 3285 3286 /// \see promoteOperandForOther. 3287 static Value *zeroExtendOperandForOther( 3288 Instruction *Ext, TypePromotionTransaction &TPT, 3289 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3290 SmallVectorImpl<Instruction *> *Exts, 3291 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3292 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3293 Exts, Truncs, TLI, false); 3294 } 3295 3296 public: 3297 /// Type for the utility function that promotes the operand of Ext. 3298 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3299 InstrToOrigTy &PromotedInsts, 3300 unsigned &CreatedInstsCost, 3301 SmallVectorImpl<Instruction *> *Exts, 3302 SmallVectorImpl<Instruction *> *Truncs, 3303 const TargetLowering &TLI); 3304 3305 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 3306 /// action to promote the operand of \p Ext instead of using Ext. 3307 /// \return NULL if no promotable action is possible with the current 3308 /// sign extension. 3309 /// \p InsertedInsts keeps track of all the instructions inserted by the 3310 /// other CodeGenPrepare optimizations. This information is important 3311 /// because we do not want to promote these instructions as CodeGenPrepare 3312 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3313 /// \p PromotedInsts maps the instructions to their type before promotion. 3314 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3315 const TargetLowering &TLI, 3316 const InstrToOrigTy &PromotedInsts); 3317 }; 3318 3319 } // end anonymous namespace 3320 3321 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3322 Type *ConsideredExtType, 3323 const InstrToOrigTy &PromotedInsts, 3324 bool IsSExt) { 3325 // The promotion helper does not know how to deal with vector types yet. 3326 // To be able to fix that, we would need to fix the places where we 3327 // statically extend, e.g., constants and such. 3328 if (Inst->getType()->isVectorTy()) 3329 return false; 3330 3331 // We can always get through zext. 3332 if (isa<ZExtInst>(Inst)) 3333 return true; 3334 3335 // sext(sext) is ok too. 3336 if (IsSExt && isa<SExtInst>(Inst)) 3337 return true; 3338 3339 // We can get through binary operator, if it is legal. In other words, the 3340 // binary operator must have a nuw or nsw flag. 3341 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3342 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3343 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3344 (IsSExt && BinOp->hasNoSignedWrap()))) 3345 return true; 3346 3347 // Check if we can do the following simplification. 3348 // ext(trunc(opnd)) --> ext(opnd) 3349 if (!isa<TruncInst>(Inst)) 3350 return false; 3351 3352 Value *OpndVal = Inst->getOperand(0); 3353 // Check if we can use this operand in the extension. 3354 // If the type is larger than the result type of the extension, we cannot. 3355 if (!OpndVal->getType()->isIntegerTy() || 3356 OpndVal->getType()->getIntegerBitWidth() > 3357 ConsideredExtType->getIntegerBitWidth()) 3358 return false; 3359 3360 // If the operand of the truncate is not an instruction, we will not have 3361 // any information on the dropped bits. 3362 // (Actually we could for constant but it is not worth the extra logic). 3363 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3364 if (!Opnd) 3365 return false; 3366 3367 // Check if the source of the type is narrow enough. 3368 // I.e., check that trunc just drops extended bits of the same kind of 3369 // the extension. 3370 // #1 get the type of the operand and check the kind of the extended bits. 3371 const Type *OpndType; 3372 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3373 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 3374 OpndType = It->second.getPointer(); 3375 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3376 OpndType = Opnd->getOperand(0)->getType(); 3377 else 3378 return false; 3379 3380 // #2 check that the truncate just drops extended bits. 3381 return Inst->getType()->getIntegerBitWidth() >= 3382 OpndType->getIntegerBitWidth(); 3383 } 3384 3385 TypePromotionHelper::Action TypePromotionHelper::getAction( 3386 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3387 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3388 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3389 "Unexpected instruction type"); 3390 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3391 Type *ExtTy = Ext->getType(); 3392 bool IsSExt = isa<SExtInst>(Ext); 3393 // If the operand of the extension is not an instruction, we cannot 3394 // get through. 3395 // If it, check we can get through. 3396 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3397 return nullptr; 3398 3399 // Do not promote if the operand has been added by codegenprepare. 3400 // Otherwise, it means we are undoing an optimization that is likely to be 3401 // redone, thus causing potential infinite loop. 3402 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3403 return nullptr; 3404 3405 // SExt or Trunc instructions. 3406 // Return the related handler. 3407 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3408 isa<ZExtInst>(ExtOpnd)) 3409 return promoteOperandForTruncAndAnyExt; 3410 3411 // Regular instruction. 3412 // Abort early if we will have to insert non-free instructions. 3413 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3414 return nullptr; 3415 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3416 } 3417 3418 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3419 Instruction *SExt, TypePromotionTransaction &TPT, 3420 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3421 SmallVectorImpl<Instruction *> *Exts, 3422 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3423 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3424 // get through it and this method should not be called. 3425 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3426 Value *ExtVal = SExt; 3427 bool HasMergedNonFreeExt = false; 3428 if (isa<ZExtInst>(SExtOpnd)) { 3429 // Replace s|zext(zext(opnd)) 3430 // => zext(opnd). 3431 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3432 Value *ZExt = 3433 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3434 TPT.replaceAllUsesWith(SExt, ZExt); 3435 TPT.eraseInstruction(SExt); 3436 ExtVal = ZExt; 3437 } else { 3438 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3439 // => z|sext(opnd). 3440 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3441 } 3442 CreatedInstsCost = 0; 3443 3444 // Remove dead code. 3445 if (SExtOpnd->use_empty()) 3446 TPT.eraseInstruction(SExtOpnd); 3447 3448 // Check if the extension is still needed. 3449 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3450 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3451 if (ExtInst) { 3452 if (Exts) 3453 Exts->push_back(ExtInst); 3454 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3455 } 3456 return ExtVal; 3457 } 3458 3459 // At this point we have: ext ty opnd to ty. 3460 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3461 Value *NextVal = ExtInst->getOperand(0); 3462 TPT.eraseInstruction(ExtInst, NextVal); 3463 return NextVal; 3464 } 3465 3466 Value *TypePromotionHelper::promoteOperandForOther( 3467 Instruction *Ext, TypePromotionTransaction &TPT, 3468 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3469 SmallVectorImpl<Instruction *> *Exts, 3470 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3471 bool IsSExt) { 3472 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3473 // get through it and this method should not be called. 3474 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3475 CreatedInstsCost = 0; 3476 if (!ExtOpnd->hasOneUse()) { 3477 // ExtOpnd will be promoted. 3478 // All its uses, but Ext, will need to use a truncated value of the 3479 // promoted version. 3480 // Create the truncate now. 3481 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3482 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3483 // Insert it just after the definition. 3484 ITrunc->moveAfter(ExtOpnd); 3485 if (Truncs) 3486 Truncs->push_back(ITrunc); 3487 } 3488 3489 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3490 // Restore the operand of Ext (which has been replaced by the previous call 3491 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3492 TPT.setOperand(Ext, 0, ExtOpnd); 3493 } 3494 3495 // Get through the Instruction: 3496 // 1. Update its type. 3497 // 2. Replace the uses of Ext by Inst. 3498 // 3. Extend each operand that needs to be extended. 3499 3500 // Remember the original type of the instruction before promotion. 3501 // This is useful to know that the high bits are sign extended bits. 3502 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 3503 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 3504 // Step #1. 3505 TPT.mutateType(ExtOpnd, Ext->getType()); 3506 // Step #2. 3507 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3508 // Step #3. 3509 Instruction *ExtForOpnd = Ext; 3510 3511 DEBUG(dbgs() << "Propagate Ext to operands\n"); 3512 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3513 ++OpIdx) { 3514 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3515 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3516 !shouldExtOperand(ExtOpnd, OpIdx)) { 3517 DEBUG(dbgs() << "No need to propagate\n"); 3518 continue; 3519 } 3520 // Check if we can statically extend the operand. 3521 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3522 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3523 DEBUG(dbgs() << "Statically extend\n"); 3524 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3525 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3526 : Cst->getValue().zext(BitWidth); 3527 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3528 continue; 3529 } 3530 // UndefValue are typed, so we have to statically sign extend them. 3531 if (isa<UndefValue>(Opnd)) { 3532 DEBUG(dbgs() << "Statically extend\n"); 3533 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3534 continue; 3535 } 3536 3537 // Otherwise we have to explicity sign extend the operand. 3538 // Check if Ext was reused to extend an operand. 3539 if (!ExtForOpnd) { 3540 // If yes, create a new one. 3541 DEBUG(dbgs() << "More operands to ext\n"); 3542 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3543 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3544 if (!isa<Instruction>(ValForExtOpnd)) { 3545 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3546 continue; 3547 } 3548 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3549 } 3550 if (Exts) 3551 Exts->push_back(ExtForOpnd); 3552 TPT.setOperand(ExtForOpnd, 0, Opnd); 3553 3554 // Move the sign extension before the insertion point. 3555 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3556 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3557 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3558 // If more sext are required, new instructions will have to be created. 3559 ExtForOpnd = nullptr; 3560 } 3561 if (ExtForOpnd == Ext) { 3562 DEBUG(dbgs() << "Extension is useless now\n"); 3563 TPT.eraseInstruction(Ext); 3564 } 3565 return ExtOpnd; 3566 } 3567 3568 /// Check whether or not promoting an instruction to a wider type is profitable. 3569 /// \p NewCost gives the cost of extension instructions created by the 3570 /// promotion. 3571 /// \p OldCost gives the cost of extension instructions before the promotion 3572 /// plus the number of instructions that have been 3573 /// matched in the addressing mode the promotion. 3574 /// \p PromotedOperand is the value that has been promoted. 3575 /// \return True if the promotion is profitable, false otherwise. 3576 bool AddressingModeMatcher::isPromotionProfitable( 3577 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3578 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); 3579 // The cost of the new extensions is greater than the cost of the 3580 // old extension plus what we folded. 3581 // This is not profitable. 3582 if (NewCost > OldCost) 3583 return false; 3584 if (NewCost < OldCost) 3585 return true; 3586 // The promotion is neutral but it may help folding the sign extension in 3587 // loads for instance. 3588 // Check that we did not create an illegal instruction. 3589 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3590 } 3591 3592 /// Given an instruction or constant expr, see if we can fold the operation 3593 /// into the addressing mode. If so, update the addressing mode and return 3594 /// true, otherwise return false without modifying AddrMode. 3595 /// If \p MovedAway is not NULL, it contains the information of whether or 3596 /// not AddrInst has to be folded into the addressing mode on success. 3597 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3598 /// because it has been moved away. 3599 /// Thus AddrInst must not be added in the matched instructions. 3600 /// This state can happen when AddrInst is a sext, since it may be moved away. 3601 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3602 /// not be referenced anymore. 3603 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3604 unsigned Depth, 3605 bool *MovedAway) { 3606 // Avoid exponential behavior on extremely deep expression trees. 3607 if (Depth >= 5) return false; 3608 3609 // By default, all matched instructions stay in place. 3610 if (MovedAway) 3611 *MovedAway = false; 3612 3613 switch (Opcode) { 3614 case Instruction::PtrToInt: 3615 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3616 return matchAddr(AddrInst->getOperand(0), Depth); 3617 case Instruction::IntToPtr: { 3618 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3619 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3620 // This inttoptr is a no-op if the integer type is pointer sized. 3621 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3622 return matchAddr(AddrInst->getOperand(0), Depth); 3623 return false; 3624 } 3625 case Instruction::BitCast: 3626 // BitCast is always a noop, and we can handle it as long as it is 3627 // int->int or pointer->pointer (we don't want int<->fp or something). 3628 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 3629 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 3630 // Don't touch identity bitcasts. These were probably put here by LSR, 3631 // and we don't want to mess around with them. Assume it knows what it 3632 // is doing. 3633 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3634 return matchAddr(AddrInst->getOperand(0), Depth); 3635 return false; 3636 case Instruction::AddrSpaceCast: { 3637 unsigned SrcAS 3638 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3639 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3640 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3641 return matchAddr(AddrInst->getOperand(0), Depth); 3642 return false; 3643 } 3644 case Instruction::Add: { 3645 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3646 ExtAddrMode BackupAddrMode = AddrMode; 3647 unsigned OldSize = AddrModeInsts.size(); 3648 // Start a transaction at this point. 3649 // The LHS may match but not the RHS. 3650 // Therefore, we need a higher level restoration point to undo partially 3651 // matched operation. 3652 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3653 TPT.getRestorationPoint(); 3654 3655 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3656 matchAddr(AddrInst->getOperand(0), Depth+1)) 3657 return true; 3658 3659 // Restore the old addr mode info. 3660 AddrMode = BackupAddrMode; 3661 AddrModeInsts.resize(OldSize); 3662 TPT.rollback(LastKnownGood); 3663 3664 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3665 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3666 matchAddr(AddrInst->getOperand(1), Depth+1)) 3667 return true; 3668 3669 // Otherwise we definitely can't merge the ADD in. 3670 AddrMode = BackupAddrMode; 3671 AddrModeInsts.resize(OldSize); 3672 TPT.rollback(LastKnownGood); 3673 break; 3674 } 3675 //case Instruction::Or: 3676 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3677 //break; 3678 case Instruction::Mul: 3679 case Instruction::Shl: { 3680 // Can only handle X*C and X << C. 3681 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3682 if (!RHS || RHS->getBitWidth() > 64) 3683 return false; 3684 int64_t Scale = RHS->getSExtValue(); 3685 if (Opcode == Instruction::Shl) 3686 Scale = 1LL << Scale; 3687 3688 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3689 } 3690 case Instruction::GetElementPtr: { 3691 // Scan the GEP. We check it if it contains constant offsets and at most 3692 // one variable offset. 3693 int VariableOperand = -1; 3694 unsigned VariableScale = 0; 3695 3696 int64_t ConstantOffset = 0; 3697 gep_type_iterator GTI = gep_type_begin(AddrInst); 3698 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3699 if (StructType *STy = GTI.getStructTypeOrNull()) { 3700 const StructLayout *SL = DL.getStructLayout(STy); 3701 unsigned Idx = 3702 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3703 ConstantOffset += SL->getElementOffset(Idx); 3704 } else { 3705 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3706 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3707 ConstantOffset += CI->getSExtValue()*TypeSize; 3708 } else if (TypeSize) { // Scales of zero don't do anything. 3709 // We only allow one variable index at the moment. 3710 if (VariableOperand != -1) 3711 return false; 3712 3713 // Remember the variable index. 3714 VariableOperand = i; 3715 VariableScale = TypeSize; 3716 } 3717 } 3718 } 3719 3720 // A common case is for the GEP to only do a constant offset. In this case, 3721 // just add it to the disp field and check validity. 3722 if (VariableOperand == -1) { 3723 AddrMode.BaseOffs += ConstantOffset; 3724 if (ConstantOffset == 0 || 3725 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 3726 // Check to see if we can fold the base pointer in too. 3727 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 3728 return true; 3729 } 3730 AddrMode.BaseOffs -= ConstantOffset; 3731 return false; 3732 } 3733 3734 // Save the valid addressing mode in case we can't match. 3735 ExtAddrMode BackupAddrMode = AddrMode; 3736 unsigned OldSize = AddrModeInsts.size(); 3737 3738 // See if the scale and offset amount is valid for this target. 3739 AddrMode.BaseOffs += ConstantOffset; 3740 3741 // Match the base operand of the GEP. 3742 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 3743 // If it couldn't be matched, just stuff the value in a register. 3744 if (AddrMode.HasBaseReg) { 3745 AddrMode = BackupAddrMode; 3746 AddrModeInsts.resize(OldSize); 3747 return false; 3748 } 3749 AddrMode.HasBaseReg = true; 3750 AddrMode.BaseReg = AddrInst->getOperand(0); 3751 } 3752 3753 // Match the remaining variable portion of the GEP. 3754 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 3755 Depth)) { 3756 // If it couldn't be matched, try stuffing the base into a register 3757 // instead of matching it, and retrying the match of the scale. 3758 AddrMode = BackupAddrMode; 3759 AddrModeInsts.resize(OldSize); 3760 if (AddrMode.HasBaseReg) 3761 return false; 3762 AddrMode.HasBaseReg = true; 3763 AddrMode.BaseReg = AddrInst->getOperand(0); 3764 AddrMode.BaseOffs += ConstantOffset; 3765 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 3766 VariableScale, Depth)) { 3767 // If even that didn't work, bail. 3768 AddrMode = BackupAddrMode; 3769 AddrModeInsts.resize(OldSize); 3770 return false; 3771 } 3772 } 3773 3774 return true; 3775 } 3776 case Instruction::SExt: 3777 case Instruction::ZExt: { 3778 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 3779 if (!Ext) 3780 return false; 3781 3782 // Try to move this ext out of the way of the addressing mode. 3783 // Ask for a method for doing so. 3784 TypePromotionHelper::Action TPH = 3785 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 3786 if (!TPH) 3787 return false; 3788 3789 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3790 TPT.getRestorationPoint(); 3791 unsigned CreatedInstsCost = 0; 3792 unsigned ExtCost = !TLI.isExtFree(Ext); 3793 Value *PromotedOperand = 3794 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 3795 // SExt has been moved away. 3796 // Thus either it will be rematched later in the recursive calls or it is 3797 // gone. Anyway, we must not fold it into the addressing mode at this point. 3798 // E.g., 3799 // op = add opnd, 1 3800 // idx = ext op 3801 // addr = gep base, idx 3802 // is now: 3803 // promotedOpnd = ext opnd <- no match here 3804 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 3805 // addr = gep base, op <- match 3806 if (MovedAway) 3807 *MovedAway = true; 3808 3809 assert(PromotedOperand && 3810 "TypePromotionHelper should have filtered out those cases"); 3811 3812 ExtAddrMode BackupAddrMode = AddrMode; 3813 unsigned OldSize = AddrModeInsts.size(); 3814 3815 if (!matchAddr(PromotedOperand, Depth) || 3816 // The total of the new cost is equal to the cost of the created 3817 // instructions. 3818 // The total of the old cost is equal to the cost of the extension plus 3819 // what we have saved in the addressing mode. 3820 !isPromotionProfitable(CreatedInstsCost, 3821 ExtCost + (AddrModeInsts.size() - OldSize), 3822 PromotedOperand)) { 3823 AddrMode = BackupAddrMode; 3824 AddrModeInsts.resize(OldSize); 3825 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 3826 TPT.rollback(LastKnownGood); 3827 return false; 3828 } 3829 return true; 3830 } 3831 } 3832 return false; 3833 } 3834 3835 /// If we can, try to add the value of 'Addr' into the current addressing mode. 3836 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 3837 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 3838 /// for the target. 3839 /// 3840 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 3841 // Start a transaction at this point that we will rollback if the matching 3842 // fails. 3843 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3844 TPT.getRestorationPoint(); 3845 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 3846 // Fold in immediates if legal for the target. 3847 AddrMode.BaseOffs += CI->getSExtValue(); 3848 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3849 return true; 3850 AddrMode.BaseOffs -= CI->getSExtValue(); 3851 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 3852 // If this is a global variable, try to fold it into the addressing mode. 3853 if (!AddrMode.BaseGV) { 3854 AddrMode.BaseGV = GV; 3855 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3856 return true; 3857 AddrMode.BaseGV = nullptr; 3858 } 3859 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 3860 ExtAddrMode BackupAddrMode = AddrMode; 3861 unsigned OldSize = AddrModeInsts.size(); 3862 3863 // Check to see if it is possible to fold this operation. 3864 bool MovedAway = false; 3865 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 3866 // This instruction may have been moved away. If so, there is nothing 3867 // to check here. 3868 if (MovedAway) 3869 return true; 3870 // Okay, it's possible to fold this. Check to see if it is actually 3871 // *profitable* to do so. We use a simple cost model to avoid increasing 3872 // register pressure too much. 3873 if (I->hasOneUse() || 3874 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 3875 AddrModeInsts.push_back(I); 3876 return true; 3877 } 3878 3879 // It isn't profitable to do this, roll back. 3880 //cerr << "NOT FOLDING: " << *I; 3881 AddrMode = BackupAddrMode; 3882 AddrModeInsts.resize(OldSize); 3883 TPT.rollback(LastKnownGood); 3884 } 3885 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 3886 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 3887 return true; 3888 TPT.rollback(LastKnownGood); 3889 } else if (isa<ConstantPointerNull>(Addr)) { 3890 // Null pointer gets folded without affecting the addressing mode. 3891 return true; 3892 } 3893 3894 // Worse case, the target should support [reg] addressing modes. :) 3895 if (!AddrMode.HasBaseReg) { 3896 AddrMode.HasBaseReg = true; 3897 AddrMode.BaseReg = Addr; 3898 // Still check for legality in case the target supports [imm] but not [i+r]. 3899 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3900 return true; 3901 AddrMode.HasBaseReg = false; 3902 AddrMode.BaseReg = nullptr; 3903 } 3904 3905 // If the base register is already taken, see if we can do [r+r]. 3906 if (AddrMode.Scale == 0) { 3907 AddrMode.Scale = 1; 3908 AddrMode.ScaledReg = Addr; 3909 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3910 return true; 3911 AddrMode.Scale = 0; 3912 AddrMode.ScaledReg = nullptr; 3913 } 3914 // Couldn't match. 3915 TPT.rollback(LastKnownGood); 3916 return false; 3917 } 3918 3919 /// Check to see if all uses of OpVal by the specified inline asm call are due 3920 /// to memory operands. If so, return true, otherwise return false. 3921 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 3922 const TargetLowering &TLI, 3923 const TargetRegisterInfo &TRI) { 3924 const Function *F = CI->getFunction(); 3925 TargetLowering::AsmOperandInfoVector TargetConstraints = 3926 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 3927 ImmutableCallSite(CI)); 3928 3929 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3930 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3931 3932 // Compute the constraint code and ConstraintType to use. 3933 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 3934 3935 // If this asm operand is our Value*, and if it isn't an indirect memory 3936 // operand, we can't fold it! 3937 if (OpInfo.CallOperandVal == OpVal && 3938 (OpInfo.ConstraintType != TargetLowering::C_Memory || 3939 !OpInfo.isIndirect)) 3940 return false; 3941 } 3942 3943 return true; 3944 } 3945 3946 // Max number of memory uses to look at before aborting the search to conserve 3947 // compile time. 3948 static constexpr int MaxMemoryUsesToScan = 20; 3949 3950 /// Recursively walk all the uses of I until we find a memory use. 3951 /// If we find an obviously non-foldable instruction, return true. 3952 /// Add the ultimately found memory instructions to MemoryUses. 3953 static bool FindAllMemoryUses( 3954 Instruction *I, 3955 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 3956 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 3957 const TargetRegisterInfo &TRI, int SeenInsts = 0) { 3958 // If we already considered this instruction, we're done. 3959 if (!ConsideredInsts.insert(I).second) 3960 return false; 3961 3962 // If this is an obviously unfoldable instruction, bail out. 3963 if (!MightBeFoldableInst(I)) 3964 return true; 3965 3966 const bool OptSize = I->getFunction()->optForSize(); 3967 3968 // Loop over all the uses, recursively processing them. 3969 for (Use &U : I->uses()) { 3970 // Conservatively return true if we're seeing a large number or a deep chain 3971 // of users. This avoids excessive compilation times in pathological cases. 3972 if (SeenInsts++ >= MaxMemoryUsesToScan) 3973 return true; 3974 3975 Instruction *UserI = cast<Instruction>(U.getUser()); 3976 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 3977 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 3978 continue; 3979 } 3980 3981 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 3982 unsigned opNo = U.getOperandNo(); 3983 if (opNo != StoreInst::getPointerOperandIndex()) 3984 return true; // Storing addr, not into addr. 3985 MemoryUses.push_back(std::make_pair(SI, opNo)); 3986 continue; 3987 } 3988 3989 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 3990 unsigned opNo = U.getOperandNo(); 3991 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 3992 return true; // Storing addr, not into addr. 3993 MemoryUses.push_back(std::make_pair(RMW, opNo)); 3994 continue; 3995 } 3996 3997 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 3998 unsigned opNo = U.getOperandNo(); 3999 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4000 return true; // Storing addr, not into addr. 4001 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4002 continue; 4003 } 4004 4005 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4006 // If this is a cold call, we can sink the addressing calculation into 4007 // the cold path. See optimizeCallInst 4008 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 4009 continue; 4010 4011 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4012 if (!IA) return true; 4013 4014 // If this is a memory operand, we're cool, otherwise bail out. 4015 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4016 return true; 4017 continue; 4018 } 4019 4020 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, 4021 SeenInsts)) 4022 return true; 4023 } 4024 4025 return false; 4026 } 4027 4028 /// Return true if Val is already known to be live at the use site that we're 4029 /// folding it into. If so, there is no cost to include it in the addressing 4030 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4031 /// instruction already. 4032 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4033 Value *KnownLive2) { 4034 // If Val is either of the known-live values, we know it is live! 4035 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4036 return true; 4037 4038 // All values other than instructions and arguments (e.g. constants) are live. 4039 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4040 4041 // If Val is a constant sized alloca in the entry block, it is live, this is 4042 // true because it is just a reference to the stack/frame pointer, which is 4043 // live for the whole function. 4044 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4045 if (AI->isStaticAlloca()) 4046 return true; 4047 4048 // Check to see if this value is already used in the memory instruction's 4049 // block. If so, it's already live into the block at the very least, so we 4050 // can reasonably fold it. 4051 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4052 } 4053 4054 /// It is possible for the addressing mode of the machine to fold the specified 4055 /// instruction into a load or store that ultimately uses it. 4056 /// However, the specified instruction has multiple uses. 4057 /// Given this, it may actually increase register pressure to fold it 4058 /// into the load. For example, consider this code: 4059 /// 4060 /// X = ... 4061 /// Y = X+1 4062 /// use(Y) -> nonload/store 4063 /// Z = Y+1 4064 /// load Z 4065 /// 4066 /// In this case, Y has multiple uses, and can be folded into the load of Z 4067 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4068 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4069 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4070 /// number of computations either. 4071 /// 4072 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4073 /// X was live across 'load Z' for other reasons, we actually *would* want to 4074 /// fold the addressing mode in the Z case. This would make Y die earlier. 4075 bool AddressingModeMatcher:: 4076 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4077 ExtAddrMode &AMAfter) { 4078 if (IgnoreProfitability) return true; 4079 4080 // AMBefore is the addressing mode before this instruction was folded into it, 4081 // and AMAfter is the addressing mode after the instruction was folded. Get 4082 // the set of registers referenced by AMAfter and subtract out those 4083 // referenced by AMBefore: this is the set of values which folding in this 4084 // address extends the lifetime of. 4085 // 4086 // Note that there are only two potential values being referenced here, 4087 // BaseReg and ScaleReg (global addresses are always available, as are any 4088 // folded immediates). 4089 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4090 4091 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4092 // lifetime wasn't extended by adding this instruction. 4093 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4094 BaseReg = nullptr; 4095 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4096 ScaledReg = nullptr; 4097 4098 // If folding this instruction (and it's subexprs) didn't extend any live 4099 // ranges, we're ok with it. 4100 if (!BaseReg && !ScaledReg) 4101 return true; 4102 4103 // If all uses of this instruction can have the address mode sunk into them, 4104 // we can remove the addressing mode and effectively trade one live register 4105 // for another (at worst.) In this context, folding an addressing mode into 4106 // the use is just a particularly nice way of sinking it. 4107 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4108 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4109 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 4110 return false; // Has a non-memory, non-foldable use! 4111 4112 // Now that we know that all uses of this instruction are part of a chain of 4113 // computation involving only operations that could theoretically be folded 4114 // into a memory use, loop over each of these memory operation uses and see 4115 // if they could *actually* fold the instruction. The assumption is that 4116 // addressing modes are cheap and that duplicating the computation involved 4117 // many times is worthwhile, even on a fastpath. For sinking candidates 4118 // (i.e. cold call sites), this serves as a way to prevent excessive code 4119 // growth since most architectures have some reasonable small and fast way to 4120 // compute an effective address. (i.e LEA on x86) 4121 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4122 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4123 Instruction *User = MemoryUses[i].first; 4124 unsigned OpNo = MemoryUses[i].second; 4125 4126 // Get the access type of this use. If the use isn't a pointer, we don't 4127 // know what it accesses. 4128 Value *Address = User->getOperand(OpNo); 4129 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4130 if (!AddrTy) 4131 return false; 4132 Type *AddressAccessTy = AddrTy->getElementType(); 4133 unsigned AS = AddrTy->getAddressSpace(); 4134 4135 // Do a match against the root of this address, ignoring profitability. This 4136 // will tell us if the addressing mode for the memory operation will 4137 // *actually* cover the shared instruction. 4138 ExtAddrMode Result; 4139 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4140 TPT.getRestorationPoint(); 4141 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, 4142 AddressAccessTy, AS, 4143 MemoryInst, Result, InsertedInsts, 4144 PromotedInsts, TPT); 4145 Matcher.IgnoreProfitability = true; 4146 bool Success = Matcher.matchAddr(Address, 0); 4147 (void)Success; assert(Success && "Couldn't select *anything*?"); 4148 4149 // The match was to check the profitability, the changes made are not 4150 // part of the original matcher. Therefore, they should be dropped 4151 // otherwise the original matcher will not present the right state. 4152 TPT.rollback(LastKnownGood); 4153 4154 // If the match didn't cover I, then it won't be shared by it. 4155 if (!is_contained(MatchedAddrModeInsts, I)) 4156 return false; 4157 4158 MatchedAddrModeInsts.clear(); 4159 } 4160 4161 return true; 4162 } 4163 4164 /// Return true if the specified values are defined in a 4165 /// different basic block than BB. 4166 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4167 if (Instruction *I = dyn_cast<Instruction>(V)) 4168 return I->getParent() != BB; 4169 return false; 4170 } 4171 4172 /// Sink addressing mode computation immediate before MemoryInst if doing so 4173 /// can be done without increasing register pressure. The need for the 4174 /// register pressure constraint means this can end up being an all or nothing 4175 /// decision for all uses of the same addressing computation. 4176 /// 4177 /// Load and Store Instructions often have addressing modes that can do 4178 /// significant amounts of computation. As such, instruction selection will try 4179 /// to get the load or store to do as much computation as possible for the 4180 /// program. The problem is that isel can only see within a single block. As 4181 /// such, we sink as much legal addressing mode work into the block as possible. 4182 /// 4183 /// This method is used to optimize both load/store and inline asms with memory 4184 /// operands. It's also used to sink addressing computations feeding into cold 4185 /// call sites into their (cold) basic block. 4186 /// 4187 /// The motivation for handling sinking into cold blocks is that doing so can 4188 /// both enable other address mode sinking (by satisfying the register pressure 4189 /// constraint above), and reduce register pressure globally (by removing the 4190 /// addressing mode computation from the fast path entirely.). 4191 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4192 Type *AccessTy, unsigned AddrSpace) { 4193 Value *Repl = Addr; 4194 4195 // Try to collapse single-value PHI nodes. This is necessary to undo 4196 // unprofitable PRE transformations. 4197 SmallVector<Value*, 8> worklist; 4198 SmallPtrSet<Value*, 16> Visited; 4199 worklist.push_back(Addr); 4200 4201 // Use a worklist to iteratively look through PHI and select nodes, and 4202 // ensure that the addressing mode obtained from the non-PHI/select roots of 4203 // the graph are compatible. 4204 bool PhiOrSelectSeen = false; 4205 SmallVector<Instruction*, 16> AddrModeInsts; 4206 const SimplifyQuery SQ(*DL, TLInfo); 4207 AddressingModeCombiner AddrModes(SQ, { Addr, MemoryInst->getParent() }); 4208 TypePromotionTransaction TPT(RemovedInsts); 4209 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4210 TPT.getRestorationPoint(); 4211 while (!worklist.empty()) { 4212 Value *V = worklist.back(); 4213 worklist.pop_back(); 4214 4215 // We allow traversing cyclic Phi nodes. 4216 // In case of success after this loop we ensure that traversing through 4217 // Phi nodes ends up with all cases to compute address of the form 4218 // BaseGV + Base + Scale * Index + Offset 4219 // where Scale and Offset are constans and BaseGV, Base and Index 4220 // are exactly the same Values in all cases. 4221 // It means that BaseGV, Scale and Offset dominate our memory instruction 4222 // and have the same value as they had in address computation represented 4223 // as Phi. So we can safely sink address computation to memory instruction. 4224 if (!Visited.insert(V).second) 4225 continue; 4226 4227 // For a PHI node, push all of its incoming values. 4228 if (PHINode *P = dyn_cast<PHINode>(V)) { 4229 for (Value *IncValue : P->incoming_values()) 4230 worklist.push_back(IncValue); 4231 PhiOrSelectSeen = true; 4232 continue; 4233 } 4234 // Similar for select. 4235 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4236 worklist.push_back(SI->getFalseValue()); 4237 worklist.push_back(SI->getTrueValue()); 4238 PhiOrSelectSeen = true; 4239 continue; 4240 } 4241 4242 // For non-PHIs, determine the addressing mode being computed. Note that 4243 // the result may differ depending on what other uses our candidate 4244 // addressing instructions might have. 4245 AddrModeInsts.clear(); 4246 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4247 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4248 InsertedInsts, PromotedInsts, TPT); 4249 NewAddrMode.OriginalValue = V; 4250 4251 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4252 break; 4253 } 4254 4255 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4256 // or we have multiple but either couldn't combine them or combining them 4257 // wouldn't do anything useful, bail out now. 4258 if (!AddrModes.combineAddrModes()) { 4259 TPT.rollback(LastKnownGood); 4260 return false; 4261 } 4262 TPT.commit(); 4263 4264 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4265 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4266 4267 // If all the instructions matched are already in this BB, don't do anything. 4268 // If we saw a Phi node then it is not local definitely, and if we saw a select 4269 // then we want to push the address calculation past it even if it's already 4270 // in this BB. 4271 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4272 return IsNonLocalValue(V, MemoryInst->getParent()); 4273 })) { 4274 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 4275 return false; 4276 } 4277 4278 // Insert this computation right after this user. Since our caller is 4279 // scanning from the top of the BB to the bottom, reuse of the expr are 4280 // guaranteed to happen later. 4281 IRBuilder<> Builder(MemoryInst); 4282 4283 // Now that we determined the addressing expression we want to use and know 4284 // that we have to sink it into this block. Check to see if we have already 4285 // done this for some other load/store instr in this block. If so, reuse 4286 // the computation. Before attempting reuse, check if the address is valid 4287 // as it may have been erased. 4288 4289 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4290 4291 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4292 if (SunkAddr) { 4293 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 4294 << *MemoryInst << "\n"); 4295 if (SunkAddr->getType() != Addr->getType()) 4296 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4297 } else if (AddrSinkUsingGEPs || 4298 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 4299 SubtargetInfo->useAA())) { 4300 // By default, we use the GEP-based method when AA is used later. This 4301 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4302 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 4303 << *MemoryInst << "\n"); 4304 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4305 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4306 4307 // First, find the pointer. 4308 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4309 ResultPtr = AddrMode.BaseReg; 4310 AddrMode.BaseReg = nullptr; 4311 } 4312 4313 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4314 // We can't add more than one pointer together, nor can we scale a 4315 // pointer (both of which seem meaningless). 4316 if (ResultPtr || AddrMode.Scale != 1) 4317 return false; 4318 4319 ResultPtr = AddrMode.ScaledReg; 4320 AddrMode.Scale = 0; 4321 } 4322 4323 // It is only safe to sign extend the BaseReg if we know that the math 4324 // required to create it did not overflow before we extend it. Since 4325 // the original IR value was tossed in favor of a constant back when 4326 // the AddrMode was created we need to bail out gracefully if widths 4327 // do not match instead of extending it. 4328 // 4329 // (See below for code to add the scale.) 4330 if (AddrMode.Scale) { 4331 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4332 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4333 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4334 return false; 4335 } 4336 4337 if (AddrMode.BaseGV) { 4338 if (ResultPtr) 4339 return false; 4340 4341 ResultPtr = AddrMode.BaseGV; 4342 } 4343 4344 // If the real base value actually came from an inttoptr, then the matcher 4345 // will look through it and provide only the integer value. In that case, 4346 // use it here. 4347 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4348 if (!ResultPtr && AddrMode.BaseReg) { 4349 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4350 "sunkaddr"); 4351 AddrMode.BaseReg = nullptr; 4352 } else if (!ResultPtr && AddrMode.Scale == 1) { 4353 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4354 "sunkaddr"); 4355 AddrMode.Scale = 0; 4356 } 4357 } 4358 4359 if (!ResultPtr && 4360 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4361 SunkAddr = Constant::getNullValue(Addr->getType()); 4362 } else if (!ResultPtr) { 4363 return false; 4364 } else { 4365 Type *I8PtrTy = 4366 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4367 Type *I8Ty = Builder.getInt8Ty(); 4368 4369 // Start with the base register. Do this first so that subsequent address 4370 // matching finds it last, which will prevent it from trying to match it 4371 // as the scaled value in case it happens to be a mul. That would be 4372 // problematic if we've sunk a different mul for the scale, because then 4373 // we'd end up sinking both muls. 4374 if (AddrMode.BaseReg) { 4375 Value *V = AddrMode.BaseReg; 4376 if (V->getType() != IntPtrTy) 4377 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4378 4379 ResultIndex = V; 4380 } 4381 4382 // Add the scale value. 4383 if (AddrMode.Scale) { 4384 Value *V = AddrMode.ScaledReg; 4385 if (V->getType() == IntPtrTy) { 4386 // done. 4387 } else { 4388 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 4389 cast<IntegerType>(V->getType())->getBitWidth() && 4390 "We can't transform if ScaledReg is too narrow"); 4391 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4392 } 4393 4394 if (AddrMode.Scale != 1) 4395 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4396 "sunkaddr"); 4397 if (ResultIndex) 4398 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4399 else 4400 ResultIndex = V; 4401 } 4402 4403 // Add in the Base Offset if present. 4404 if (AddrMode.BaseOffs) { 4405 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4406 if (ResultIndex) { 4407 // We need to add this separately from the scale above to help with 4408 // SDAG consecutive load/store merging. 4409 if (ResultPtr->getType() != I8PtrTy) 4410 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4411 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4412 } 4413 4414 ResultIndex = V; 4415 } 4416 4417 if (!ResultIndex) { 4418 SunkAddr = ResultPtr; 4419 } else { 4420 if (ResultPtr->getType() != I8PtrTy) 4421 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4422 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4423 } 4424 4425 if (SunkAddr->getType() != Addr->getType()) 4426 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4427 } 4428 } else { 4429 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 4430 // non-integral pointers, so in that case bail out now. 4431 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 4432 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 4433 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 4434 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 4435 if (DL->isNonIntegralPointerType(Addr->getType()) || 4436 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 4437 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 4438 (AddrMode.BaseGV && 4439 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 4440 return false; 4441 4442 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 4443 << *MemoryInst << "\n"); 4444 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4445 Value *Result = nullptr; 4446 4447 // Start with the base register. Do this first so that subsequent address 4448 // matching finds it last, which will prevent it from trying to match it 4449 // as the scaled value in case it happens to be a mul. That would be 4450 // problematic if we've sunk a different mul for the scale, because then 4451 // we'd end up sinking both muls. 4452 if (AddrMode.BaseReg) { 4453 Value *V = AddrMode.BaseReg; 4454 if (V->getType()->isPointerTy()) 4455 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4456 if (V->getType() != IntPtrTy) 4457 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4458 Result = V; 4459 } 4460 4461 // Add the scale value. 4462 if (AddrMode.Scale) { 4463 Value *V = AddrMode.ScaledReg; 4464 if (V->getType() == IntPtrTy) { 4465 // done. 4466 } else if (V->getType()->isPointerTy()) { 4467 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4468 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4469 cast<IntegerType>(V->getType())->getBitWidth()) { 4470 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4471 } else { 4472 // It is only safe to sign extend the BaseReg if we know that the math 4473 // required to create it did not overflow before we extend it. Since 4474 // the original IR value was tossed in favor of a constant back when 4475 // the AddrMode was created we need to bail out gracefully if widths 4476 // do not match instead of extending it. 4477 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4478 if (I && (Result != AddrMode.BaseReg)) 4479 I->eraseFromParent(); 4480 return false; 4481 } 4482 if (AddrMode.Scale != 1) 4483 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4484 "sunkaddr"); 4485 if (Result) 4486 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4487 else 4488 Result = V; 4489 } 4490 4491 // Add in the BaseGV if present. 4492 if (AddrMode.BaseGV) { 4493 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 4494 if (Result) 4495 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4496 else 4497 Result = V; 4498 } 4499 4500 // Add in the Base Offset if present. 4501 if (AddrMode.BaseOffs) { 4502 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4503 if (Result) 4504 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4505 else 4506 Result = V; 4507 } 4508 4509 if (!Result) 4510 SunkAddr = Constant::getNullValue(Addr->getType()); 4511 else 4512 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 4513 } 4514 4515 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 4516 // Store the newly computed address into the cache. In the case we reused a 4517 // value, this should be idempotent. 4518 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 4519 4520 // If we have no uses, recursively delete the value and all dead instructions 4521 // using it. 4522 if (Repl->use_empty()) { 4523 // This can cause recursive deletion, which can invalidate our iterator. 4524 // Use a WeakTrackingVH to hold onto it in case this happens. 4525 Value *CurValue = &*CurInstIterator; 4526 WeakTrackingVH IterHandle(CurValue); 4527 BasicBlock *BB = CurInstIterator->getParent(); 4528 4529 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 4530 4531 if (IterHandle != CurValue) { 4532 // If the iterator instruction was recursively deleted, start over at the 4533 // start of the block. 4534 CurInstIterator = BB->begin(); 4535 SunkAddrs.clear(); 4536 } 4537 } 4538 ++NumMemoryInsts; 4539 return true; 4540 } 4541 4542 /// If there are any memory operands, use OptimizeMemoryInst to sink their 4543 /// address computing into the block when possible / profitable. 4544 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 4545 bool MadeChange = false; 4546 4547 const TargetRegisterInfo *TRI = 4548 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 4549 TargetLowering::AsmOperandInfoVector TargetConstraints = 4550 TLI->ParseConstraints(*DL, TRI, CS); 4551 unsigned ArgNo = 0; 4552 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4553 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4554 4555 // Compute the constraint code and ConstraintType to use. 4556 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 4557 4558 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4559 OpInfo.isIndirect) { 4560 Value *OpVal = CS->getArgOperand(ArgNo++); 4561 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 4562 } else if (OpInfo.Type == InlineAsm::isInput) 4563 ArgNo++; 4564 } 4565 4566 return MadeChange; 4567 } 4568 4569 /// \brief Check if all the uses of \p Val are equivalent (or free) zero or 4570 /// sign extensions. 4571 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 4572 assert(!Val->use_empty() && "Input must have at least one use"); 4573 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 4574 bool IsSExt = isa<SExtInst>(FirstUser); 4575 Type *ExtTy = FirstUser->getType(); 4576 for (const User *U : Val->users()) { 4577 const Instruction *UI = cast<Instruction>(U); 4578 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 4579 return false; 4580 Type *CurTy = UI->getType(); 4581 // Same input and output types: Same instruction after CSE. 4582 if (CurTy == ExtTy) 4583 continue; 4584 4585 // If IsSExt is true, we are in this situation: 4586 // a = Val 4587 // b = sext ty1 a to ty2 4588 // c = sext ty1 a to ty3 4589 // Assuming ty2 is shorter than ty3, this could be turned into: 4590 // a = Val 4591 // b = sext ty1 a to ty2 4592 // c = sext ty2 b to ty3 4593 // However, the last sext is not free. 4594 if (IsSExt) 4595 return false; 4596 4597 // This is a ZExt, maybe this is free to extend from one type to another. 4598 // In that case, we would not account for a different use. 4599 Type *NarrowTy; 4600 Type *LargeTy; 4601 if (ExtTy->getScalarType()->getIntegerBitWidth() > 4602 CurTy->getScalarType()->getIntegerBitWidth()) { 4603 NarrowTy = CurTy; 4604 LargeTy = ExtTy; 4605 } else { 4606 NarrowTy = ExtTy; 4607 LargeTy = CurTy; 4608 } 4609 4610 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 4611 return false; 4612 } 4613 // All uses are the same or can be derived from one another for free. 4614 return true; 4615 } 4616 4617 /// \brief Try to speculatively promote extensions in \p Exts and continue 4618 /// promoting through newly promoted operands recursively as far as doing so is 4619 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 4620 /// When some promotion happened, \p TPT contains the proper state to revert 4621 /// them. 4622 /// 4623 /// \return true if some promotion happened, false otherwise. 4624 bool CodeGenPrepare::tryToPromoteExts( 4625 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 4626 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 4627 unsigned CreatedInstsCost) { 4628 bool Promoted = false; 4629 4630 // Iterate over all the extensions to try to promote them. 4631 for (auto I : Exts) { 4632 // Early check if we directly have ext(load). 4633 if (isa<LoadInst>(I->getOperand(0))) { 4634 ProfitablyMovedExts.push_back(I); 4635 continue; 4636 } 4637 4638 // Check whether or not we want to do any promotion. The reason we have 4639 // this check inside the for loop is to catch the case where an extension 4640 // is directly fed by a load because in such case the extension can be moved 4641 // up without any promotion on its operands. 4642 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4643 return false; 4644 4645 // Get the action to perform the promotion. 4646 TypePromotionHelper::Action TPH = 4647 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 4648 // Check if we can promote. 4649 if (!TPH) { 4650 // Save the current extension as we cannot move up through its operand. 4651 ProfitablyMovedExts.push_back(I); 4652 continue; 4653 } 4654 4655 // Save the current state. 4656 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4657 TPT.getRestorationPoint(); 4658 SmallVector<Instruction *, 4> NewExts; 4659 unsigned NewCreatedInstsCost = 0; 4660 unsigned ExtCost = !TLI->isExtFree(I); 4661 // Promote. 4662 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4663 &NewExts, nullptr, *TLI); 4664 assert(PromotedVal && 4665 "TypePromotionHelper should have filtered out those cases"); 4666 4667 // We would be able to merge only one extension in a load. 4668 // Therefore, if we have more than 1 new extension we heuristically 4669 // cut this search path, because it means we degrade the code quality. 4670 // With exactly 2, the transformation is neutral, because we will merge 4671 // one extension but leave one. However, we optimistically keep going, 4672 // because the new extension may be removed too. 4673 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4674 // FIXME: It would be possible to propagate a negative value instead of 4675 // conservatively ceiling it to 0. 4676 TotalCreatedInstsCost = 4677 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 4678 if (!StressExtLdPromotion && 4679 (TotalCreatedInstsCost > 1 || 4680 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 4681 // This promotion is not profitable, rollback to the previous state, and 4682 // save the current extension in ProfitablyMovedExts as the latest 4683 // speculative promotion turned out to be unprofitable. 4684 TPT.rollback(LastKnownGood); 4685 ProfitablyMovedExts.push_back(I); 4686 continue; 4687 } 4688 // Continue promoting NewExts as far as doing so is profitable. 4689 SmallVector<Instruction *, 2> NewlyMovedExts; 4690 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 4691 bool NewPromoted = false; 4692 for (auto ExtInst : NewlyMovedExts) { 4693 Instruction *MovedExt = cast<Instruction>(ExtInst); 4694 Value *ExtOperand = MovedExt->getOperand(0); 4695 // If we have reached to a load, we need this extra profitability check 4696 // as it could potentially be merged into an ext(load). 4697 if (isa<LoadInst>(ExtOperand) && 4698 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 4699 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 4700 continue; 4701 4702 ProfitablyMovedExts.push_back(MovedExt); 4703 NewPromoted = true; 4704 } 4705 4706 // If none of speculative promotions for NewExts is profitable, rollback 4707 // and save the current extension (I) as the last profitable extension. 4708 if (!NewPromoted) { 4709 TPT.rollback(LastKnownGood); 4710 ProfitablyMovedExts.push_back(I); 4711 continue; 4712 } 4713 // The promotion is profitable. 4714 Promoted = true; 4715 } 4716 return Promoted; 4717 } 4718 4719 /// Merging redundant sexts when one is dominating the other. 4720 bool CodeGenPrepare::mergeSExts(Function &F) { 4721 DominatorTree DT(F); 4722 bool Changed = false; 4723 for (auto &Entry : ValToSExtendedUses) { 4724 SExts &Insts = Entry.second; 4725 SExts CurPts; 4726 for (Instruction *Inst : Insts) { 4727 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 4728 Inst->getOperand(0) != Entry.first) 4729 continue; 4730 bool inserted = false; 4731 for (auto &Pt : CurPts) { 4732 if (DT.dominates(Inst, Pt)) { 4733 Pt->replaceAllUsesWith(Inst); 4734 RemovedInsts.insert(Pt); 4735 Pt->removeFromParent(); 4736 Pt = Inst; 4737 inserted = true; 4738 Changed = true; 4739 break; 4740 } 4741 if (!DT.dominates(Pt, Inst)) 4742 // Give up if we need to merge in a common dominator as the 4743 // expermients show it is not profitable. 4744 continue; 4745 Inst->replaceAllUsesWith(Pt); 4746 RemovedInsts.insert(Inst); 4747 Inst->removeFromParent(); 4748 inserted = true; 4749 Changed = true; 4750 break; 4751 } 4752 if (!inserted) 4753 CurPts.push_back(Inst); 4754 } 4755 } 4756 return Changed; 4757 } 4758 4759 /// Return true, if an ext(load) can be formed from an extension in 4760 /// \p MovedExts. 4761 bool CodeGenPrepare::canFormExtLd( 4762 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 4763 Instruction *&Inst, bool HasPromoted) { 4764 for (auto *MovedExtInst : MovedExts) { 4765 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 4766 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 4767 Inst = MovedExtInst; 4768 break; 4769 } 4770 } 4771 if (!LI) 4772 return false; 4773 4774 // If they're already in the same block, there's nothing to do. 4775 // Make the cheap checks first if we did not promote. 4776 // If we promoted, we need to check if it is indeed profitable. 4777 if (!HasPromoted && LI->getParent() == Inst->getParent()) 4778 return false; 4779 4780 return TLI->isExtLoad(LI, Inst, *DL); 4781 } 4782 4783 /// Move a zext or sext fed by a load into the same basic block as the load, 4784 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 4785 /// extend into the load. 4786 /// 4787 /// E.g., 4788 /// \code 4789 /// %ld = load i32* %addr 4790 /// %add = add nuw i32 %ld, 4 4791 /// %zext = zext i32 %add to i64 4792 // \endcode 4793 /// => 4794 /// \code 4795 /// %ld = load i32* %addr 4796 /// %zext = zext i32 %ld to i64 4797 /// %add = add nuw i64 %zext, 4 4798 /// \encode 4799 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 4800 /// allow us to match zext(load i32*) to i64. 4801 /// 4802 /// Also, try to promote the computations used to obtain a sign extended 4803 /// value used into memory accesses. 4804 /// E.g., 4805 /// \code 4806 /// a = add nsw i32 b, 3 4807 /// d = sext i32 a to i64 4808 /// e = getelementptr ..., i64 d 4809 /// \endcode 4810 /// => 4811 /// \code 4812 /// f = sext i32 b to i64 4813 /// a = add nsw i64 f, 3 4814 /// e = getelementptr ..., i64 a 4815 /// \endcode 4816 /// 4817 /// \p Inst[in/out] the extension may be modified during the process if some 4818 /// promotions apply. 4819 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 4820 // ExtLoad formation and address type promotion infrastructure requires TLI to 4821 // be effective. 4822 if (!TLI) 4823 return false; 4824 4825 bool AllowPromotionWithoutCommonHeader = false; 4826 /// See if it is an interesting sext operations for the address type 4827 /// promotion before trying to promote it, e.g., the ones with the right 4828 /// type and used in memory accesses. 4829 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 4830 *Inst, AllowPromotionWithoutCommonHeader); 4831 TypePromotionTransaction TPT(RemovedInsts); 4832 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4833 TPT.getRestorationPoint(); 4834 SmallVector<Instruction *, 1> Exts; 4835 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 4836 Exts.push_back(Inst); 4837 4838 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 4839 4840 // Look for a load being extended. 4841 LoadInst *LI = nullptr; 4842 Instruction *ExtFedByLoad; 4843 4844 // Try to promote a chain of computation if it allows to form an extended 4845 // load. 4846 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 4847 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 4848 TPT.commit(); 4849 // Move the extend into the same block as the load 4850 ExtFedByLoad->moveAfter(LI); 4851 // CGP does not check if the zext would be speculatively executed when moved 4852 // to the same basic block as the load. Preserving its original location 4853 // would pessimize the debugging experience, as well as negatively impact 4854 // the quality of sample pgo. We don't want to use "line 0" as that has a 4855 // size cost in the line-table section and logically the zext can be seen as 4856 // part of the load. Therefore we conservatively reuse the same debug 4857 // location for the load and the zext. 4858 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 4859 ++NumExtsMoved; 4860 Inst = ExtFedByLoad; 4861 return true; 4862 } 4863 4864 // Continue promoting SExts if known as considerable depending on targets. 4865 if (ATPConsiderable && 4866 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 4867 HasPromoted, TPT, SpeculativelyMovedExts)) 4868 return true; 4869 4870 TPT.rollback(LastKnownGood); 4871 return false; 4872 } 4873 4874 // Perform address type promotion if doing so is profitable. 4875 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 4876 // instructions that sign extended the same initial value. However, if 4877 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 4878 // extension is just profitable. 4879 bool CodeGenPrepare::performAddressTypePromotion( 4880 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 4881 bool HasPromoted, TypePromotionTransaction &TPT, 4882 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 4883 bool Promoted = false; 4884 SmallPtrSet<Instruction *, 1> UnhandledExts; 4885 bool AllSeenFirst = true; 4886 for (auto I : SpeculativelyMovedExts) { 4887 Value *HeadOfChain = I->getOperand(0); 4888 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 4889 SeenChainsForSExt.find(HeadOfChain); 4890 // If there is an unhandled SExt which has the same header, try to promote 4891 // it as well. 4892 if (AlreadySeen != SeenChainsForSExt.end()) { 4893 if (AlreadySeen->second != nullptr) 4894 UnhandledExts.insert(AlreadySeen->second); 4895 AllSeenFirst = false; 4896 } 4897 } 4898 4899 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 4900 SpeculativelyMovedExts.size() == 1)) { 4901 TPT.commit(); 4902 if (HasPromoted) 4903 Promoted = true; 4904 for (auto I : SpeculativelyMovedExts) { 4905 Value *HeadOfChain = I->getOperand(0); 4906 SeenChainsForSExt[HeadOfChain] = nullptr; 4907 ValToSExtendedUses[HeadOfChain].push_back(I); 4908 } 4909 // Update Inst as promotion happen. 4910 Inst = SpeculativelyMovedExts.pop_back_val(); 4911 } else { 4912 // This is the first chain visited from the header, keep the current chain 4913 // as unhandled. Defer to promote this until we encounter another SExt 4914 // chain derived from the same header. 4915 for (auto I : SpeculativelyMovedExts) { 4916 Value *HeadOfChain = I->getOperand(0); 4917 SeenChainsForSExt[HeadOfChain] = Inst; 4918 } 4919 return false; 4920 } 4921 4922 if (!AllSeenFirst && !UnhandledExts.empty()) 4923 for (auto VisitedSExt : UnhandledExts) { 4924 if (RemovedInsts.count(VisitedSExt)) 4925 continue; 4926 TypePromotionTransaction TPT(RemovedInsts); 4927 SmallVector<Instruction *, 1> Exts; 4928 SmallVector<Instruction *, 2> Chains; 4929 Exts.push_back(VisitedSExt); 4930 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 4931 TPT.commit(); 4932 if (HasPromoted) 4933 Promoted = true; 4934 for (auto I : Chains) { 4935 Value *HeadOfChain = I->getOperand(0); 4936 // Mark this as handled. 4937 SeenChainsForSExt[HeadOfChain] = nullptr; 4938 ValToSExtendedUses[HeadOfChain].push_back(I); 4939 } 4940 } 4941 return Promoted; 4942 } 4943 4944 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 4945 BasicBlock *DefBB = I->getParent(); 4946 4947 // If the result of a {s|z}ext and its source are both live out, rewrite all 4948 // other uses of the source with result of extension. 4949 Value *Src = I->getOperand(0); 4950 if (Src->hasOneUse()) 4951 return false; 4952 4953 // Only do this xform if truncating is free. 4954 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 4955 return false; 4956 4957 // Only safe to perform the optimization if the source is also defined in 4958 // this block. 4959 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 4960 return false; 4961 4962 bool DefIsLiveOut = false; 4963 for (User *U : I->users()) { 4964 Instruction *UI = cast<Instruction>(U); 4965 4966 // Figure out which BB this ext is used in. 4967 BasicBlock *UserBB = UI->getParent(); 4968 if (UserBB == DefBB) continue; 4969 DefIsLiveOut = true; 4970 break; 4971 } 4972 if (!DefIsLiveOut) 4973 return false; 4974 4975 // Make sure none of the uses are PHI nodes. 4976 for (User *U : Src->users()) { 4977 Instruction *UI = cast<Instruction>(U); 4978 BasicBlock *UserBB = UI->getParent(); 4979 if (UserBB == DefBB) continue; 4980 // Be conservative. We don't want this xform to end up introducing 4981 // reloads just before load / store instructions. 4982 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 4983 return false; 4984 } 4985 4986 // InsertedTruncs - Only insert one trunc in each block once. 4987 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 4988 4989 bool MadeChange = false; 4990 for (Use &U : Src->uses()) { 4991 Instruction *User = cast<Instruction>(U.getUser()); 4992 4993 // Figure out which BB this ext is used in. 4994 BasicBlock *UserBB = User->getParent(); 4995 if (UserBB == DefBB) continue; 4996 4997 // Both src and def are live in this block. Rewrite the use. 4998 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 4999 5000 if (!InsertedTrunc) { 5001 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5002 assert(InsertPt != UserBB->end()); 5003 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5004 InsertedInsts.insert(InsertedTrunc); 5005 } 5006 5007 // Replace a use of the {s|z}ext source with a use of the result. 5008 U = InsertedTrunc; 5009 ++NumExtUses; 5010 MadeChange = true; 5011 } 5012 5013 return MadeChange; 5014 } 5015 5016 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5017 // just after the load if the target can fold this into one extload instruction, 5018 // with the hope of eliminating some of the other later "and" instructions using 5019 // the loaded value. "and"s that are made trivially redundant by the insertion 5020 // of the new "and" are removed by this function, while others (e.g. those whose 5021 // path from the load goes through a phi) are left for isel to potentially 5022 // remove. 5023 // 5024 // For example: 5025 // 5026 // b0: 5027 // x = load i32 5028 // ... 5029 // b1: 5030 // y = and x, 0xff 5031 // z = use y 5032 // 5033 // becomes: 5034 // 5035 // b0: 5036 // x = load i32 5037 // x' = and x, 0xff 5038 // ... 5039 // b1: 5040 // z = use x' 5041 // 5042 // whereas: 5043 // 5044 // b0: 5045 // x1 = load i32 5046 // ... 5047 // b1: 5048 // x2 = load i32 5049 // ... 5050 // b2: 5051 // x = phi x1, x2 5052 // y = and x, 0xff 5053 // 5054 // becomes (after a call to optimizeLoadExt for each load): 5055 // 5056 // b0: 5057 // x1 = load i32 5058 // x1' = and x1, 0xff 5059 // ... 5060 // b1: 5061 // x2 = load i32 5062 // x2' = and x2, 0xff 5063 // ... 5064 // b2: 5065 // x = phi x1', x2' 5066 // y = and x, 0xff 5067 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5068 if (!Load->isSimple() || 5069 !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy())) 5070 return false; 5071 5072 // Skip loads we've already transformed. 5073 if (Load->hasOneUse() && 5074 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5075 return false; 5076 5077 // Look at all uses of Load, looking through phis, to determine how many bits 5078 // of the loaded value are needed. 5079 SmallVector<Instruction *, 8> WorkList; 5080 SmallPtrSet<Instruction *, 16> Visited; 5081 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5082 for (auto *U : Load->users()) 5083 WorkList.push_back(cast<Instruction>(U)); 5084 5085 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5086 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5087 APInt DemandBits(BitWidth, 0); 5088 APInt WidestAndBits(BitWidth, 0); 5089 5090 while (!WorkList.empty()) { 5091 Instruction *I = WorkList.back(); 5092 WorkList.pop_back(); 5093 5094 // Break use-def graph loops. 5095 if (!Visited.insert(I).second) 5096 continue; 5097 5098 // For a PHI node, push all of its users. 5099 if (auto *Phi = dyn_cast<PHINode>(I)) { 5100 for (auto *U : Phi->users()) 5101 WorkList.push_back(cast<Instruction>(U)); 5102 continue; 5103 } 5104 5105 switch (I->getOpcode()) { 5106 case Instruction::And: { 5107 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5108 if (!AndC) 5109 return false; 5110 APInt AndBits = AndC->getValue(); 5111 DemandBits |= AndBits; 5112 // Keep track of the widest and mask we see. 5113 if (AndBits.ugt(WidestAndBits)) 5114 WidestAndBits = AndBits; 5115 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5116 AndsToMaybeRemove.push_back(I); 5117 break; 5118 } 5119 5120 case Instruction::Shl: { 5121 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5122 if (!ShlC) 5123 return false; 5124 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5125 DemandBits.setLowBits(BitWidth - ShiftAmt); 5126 break; 5127 } 5128 5129 case Instruction::Trunc: { 5130 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5131 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5132 DemandBits.setLowBits(TruncBitWidth); 5133 break; 5134 } 5135 5136 default: 5137 return false; 5138 } 5139 } 5140 5141 uint32_t ActiveBits = DemandBits.getActiveBits(); 5142 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5143 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5144 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5145 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5146 // followed by an AND. 5147 // TODO: Look into removing this restriction by fixing backends to either 5148 // return false for isLoadExtLegal for i1 or have them select this pattern to 5149 // a single instruction. 5150 // 5151 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5152 // mask, since these are the only ands that will be removed by isel. 5153 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5154 WidestAndBits != DemandBits) 5155 return false; 5156 5157 LLVMContext &Ctx = Load->getType()->getContext(); 5158 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5159 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5160 5161 // Reject cases that won't be matched as extloads. 5162 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5163 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5164 return false; 5165 5166 IRBuilder<> Builder(Load->getNextNode()); 5167 auto *NewAnd = dyn_cast<Instruction>( 5168 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5169 // Mark this instruction as "inserted by CGP", so that other 5170 // optimizations don't touch it. 5171 InsertedInsts.insert(NewAnd); 5172 5173 // Replace all uses of load with new and (except for the use of load in the 5174 // new and itself). 5175 Load->replaceAllUsesWith(NewAnd); 5176 NewAnd->setOperand(0, Load); 5177 5178 // Remove any and instructions that are now redundant. 5179 for (auto *And : AndsToMaybeRemove) 5180 // Check that the and mask is the same as the one we decided to put on the 5181 // new and. 5182 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5183 And->replaceAllUsesWith(NewAnd); 5184 if (&*CurInstIterator == And) 5185 CurInstIterator = std::next(And->getIterator()); 5186 And->eraseFromParent(); 5187 ++NumAndUses; 5188 } 5189 5190 ++NumAndsAdded; 5191 return true; 5192 } 5193 5194 /// Check if V (an operand of a select instruction) is an expensive instruction 5195 /// that is only used once. 5196 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5197 auto *I = dyn_cast<Instruction>(V); 5198 // If it's safe to speculatively execute, then it should not have side 5199 // effects; therefore, it's safe to sink and possibly *not* execute. 5200 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5201 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5202 } 5203 5204 /// Returns true if a SelectInst should be turned into an explicit branch. 5205 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5206 const TargetLowering *TLI, 5207 SelectInst *SI) { 5208 // If even a predictable select is cheap, then a branch can't be cheaper. 5209 if (!TLI->isPredictableSelectExpensive()) 5210 return false; 5211 5212 // FIXME: This should use the same heuristics as IfConversion to determine 5213 // whether a select is better represented as a branch. 5214 5215 // If metadata tells us that the select condition is obviously predictable, 5216 // then we want to replace the select with a branch. 5217 uint64_t TrueWeight, FalseWeight; 5218 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5219 uint64_t Max = std::max(TrueWeight, FalseWeight); 5220 uint64_t Sum = TrueWeight + FalseWeight; 5221 if (Sum != 0) { 5222 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5223 if (Probability > TLI->getPredictableBranchThreshold()) 5224 return true; 5225 } 5226 } 5227 5228 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5229 5230 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5231 // comparison condition. If the compare has more than one use, there's 5232 // probably another cmov or setcc around, so it's not worth emitting a branch. 5233 if (!Cmp || !Cmp->hasOneUse()) 5234 return false; 5235 5236 // If either operand of the select is expensive and only needed on one side 5237 // of the select, we should form a branch. 5238 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5239 sinkSelectOperand(TTI, SI->getFalseValue())) 5240 return true; 5241 5242 return false; 5243 } 5244 5245 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5246 /// false value of \p SI. If the true/false value of \p SI is defined by any 5247 /// select instructions in \p Selects, look through the defining select 5248 /// instruction until the true/false value is not defined in \p Selects. 5249 static Value *getTrueOrFalseValue( 5250 SelectInst *SI, bool isTrue, 5251 const SmallPtrSet<const Instruction *, 2> &Selects) { 5252 Value *V; 5253 5254 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 5255 DefSI = dyn_cast<SelectInst>(V)) { 5256 assert(DefSI->getCondition() == SI->getCondition() && 5257 "The condition of DefSI does not match with SI"); 5258 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 5259 } 5260 return V; 5261 } 5262 5263 /// If we have a SelectInst that will likely profit from branch prediction, 5264 /// turn it into a branch. 5265 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 5266 // Find all consecutive select instructions that share the same condition. 5267 SmallVector<SelectInst *, 2> ASI; 5268 ASI.push_back(SI); 5269 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 5270 It != SI->getParent()->end(); ++It) { 5271 SelectInst *I = dyn_cast<SelectInst>(&*It); 5272 if (I && SI->getCondition() == I->getCondition()) { 5273 ASI.push_back(I); 5274 } else { 5275 break; 5276 } 5277 } 5278 5279 SelectInst *LastSI = ASI.back(); 5280 // Increment the current iterator to skip all the rest of select instructions 5281 // because they will be either "not lowered" or "all lowered" to branch. 5282 CurInstIterator = std::next(LastSI->getIterator()); 5283 5284 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 5285 5286 // Can we convert the 'select' to CF ? 5287 if (DisableSelectToBranch || OptSize || !TLI || VectorCond || 5288 SI->getMetadata(LLVMContext::MD_unpredictable)) 5289 return false; 5290 5291 TargetLowering::SelectSupportKind SelectKind; 5292 if (VectorCond) 5293 SelectKind = TargetLowering::VectorMaskSelect; 5294 else if (SI->getType()->isVectorTy()) 5295 SelectKind = TargetLowering::ScalarCondVectorVal; 5296 else 5297 SelectKind = TargetLowering::ScalarValSelect; 5298 5299 if (TLI->isSelectSupported(SelectKind) && 5300 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 5301 return false; 5302 5303 ModifiedDT = true; 5304 5305 // Transform a sequence like this: 5306 // start: 5307 // %cmp = cmp uge i32 %a, %b 5308 // %sel = select i1 %cmp, i32 %c, i32 %d 5309 // 5310 // Into: 5311 // start: 5312 // %cmp = cmp uge i32 %a, %b 5313 // br i1 %cmp, label %select.true, label %select.false 5314 // select.true: 5315 // br label %select.end 5316 // select.false: 5317 // br label %select.end 5318 // select.end: 5319 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 5320 // 5321 // In addition, we may sink instructions that produce %c or %d from 5322 // the entry block into the destination(s) of the new branch. 5323 // If the true or false blocks do not contain a sunken instruction, that 5324 // block and its branch may be optimized away. In that case, one side of the 5325 // first branch will point directly to select.end, and the corresponding PHI 5326 // predecessor block will be the start block. 5327 5328 // First, we split the block containing the select into 2 blocks. 5329 BasicBlock *StartBlock = SI->getParent(); 5330 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 5331 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 5332 5333 // Delete the unconditional branch that was just created by the split. 5334 StartBlock->getTerminator()->eraseFromParent(); 5335 5336 // These are the new basic blocks for the conditional branch. 5337 // At least one will become an actual new basic block. 5338 BasicBlock *TrueBlock = nullptr; 5339 BasicBlock *FalseBlock = nullptr; 5340 BranchInst *TrueBranch = nullptr; 5341 BranchInst *FalseBranch = nullptr; 5342 5343 // Sink expensive instructions into the conditional blocks to avoid executing 5344 // them speculatively. 5345 for (SelectInst *SI : ASI) { 5346 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 5347 if (TrueBlock == nullptr) { 5348 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 5349 EndBlock->getParent(), EndBlock); 5350 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 5351 } 5352 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 5353 TrueInst->moveBefore(TrueBranch); 5354 } 5355 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 5356 if (FalseBlock == nullptr) { 5357 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 5358 EndBlock->getParent(), EndBlock); 5359 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 5360 } 5361 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 5362 FalseInst->moveBefore(FalseBranch); 5363 } 5364 } 5365 5366 // If there was nothing to sink, then arbitrarily choose the 'false' side 5367 // for a new input value to the PHI. 5368 if (TrueBlock == FalseBlock) { 5369 assert(TrueBlock == nullptr && 5370 "Unexpected basic block transform while optimizing select"); 5371 5372 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 5373 EndBlock->getParent(), EndBlock); 5374 BranchInst::Create(EndBlock, FalseBlock); 5375 } 5376 5377 // Insert the real conditional branch based on the original condition. 5378 // If we did not create a new block for one of the 'true' or 'false' paths 5379 // of the condition, it means that side of the branch goes to the end block 5380 // directly and the path originates from the start block from the point of 5381 // view of the new PHI. 5382 BasicBlock *TT, *FT; 5383 if (TrueBlock == nullptr) { 5384 TT = EndBlock; 5385 FT = FalseBlock; 5386 TrueBlock = StartBlock; 5387 } else if (FalseBlock == nullptr) { 5388 TT = TrueBlock; 5389 FT = EndBlock; 5390 FalseBlock = StartBlock; 5391 } else { 5392 TT = TrueBlock; 5393 FT = FalseBlock; 5394 } 5395 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 5396 5397 SmallPtrSet<const Instruction *, 2> INS; 5398 INS.insert(ASI.begin(), ASI.end()); 5399 // Use reverse iterator because later select may use the value of the 5400 // earlier select, and we need to propagate value through earlier select 5401 // to get the PHI operand. 5402 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 5403 SelectInst *SI = *It; 5404 // The select itself is replaced with a PHI Node. 5405 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 5406 PN->takeName(SI); 5407 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 5408 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 5409 5410 SI->replaceAllUsesWith(PN); 5411 SI->eraseFromParent(); 5412 INS.erase(SI); 5413 ++NumSelectsExpanded; 5414 } 5415 5416 // Instruct OptimizeBlock to skip to the next block. 5417 CurInstIterator = StartBlock->end(); 5418 return true; 5419 } 5420 5421 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 5422 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 5423 int SplatElem = -1; 5424 for (unsigned i = 0; i < Mask.size(); ++i) { 5425 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 5426 return false; 5427 SplatElem = Mask[i]; 5428 } 5429 5430 return true; 5431 } 5432 5433 /// Some targets have expensive vector shifts if the lanes aren't all the same 5434 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 5435 /// it's often worth sinking a shufflevector splat down to its use so that 5436 /// codegen can spot all lanes are identical. 5437 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 5438 BasicBlock *DefBB = SVI->getParent(); 5439 5440 // Only do this xform if variable vector shifts are particularly expensive. 5441 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 5442 return false; 5443 5444 // We only expect better codegen by sinking a shuffle if we can recognise a 5445 // constant splat. 5446 if (!isBroadcastShuffle(SVI)) 5447 return false; 5448 5449 // InsertedShuffles - Only insert a shuffle in each block once. 5450 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 5451 5452 bool MadeChange = false; 5453 for (User *U : SVI->users()) { 5454 Instruction *UI = cast<Instruction>(U); 5455 5456 // Figure out which BB this ext is used in. 5457 BasicBlock *UserBB = UI->getParent(); 5458 if (UserBB == DefBB) continue; 5459 5460 // For now only apply this when the splat is used by a shift instruction. 5461 if (!UI->isShift()) continue; 5462 5463 // Everything checks out, sink the shuffle if the user's block doesn't 5464 // already have a copy. 5465 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 5466 5467 if (!InsertedShuffle) { 5468 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5469 assert(InsertPt != UserBB->end()); 5470 InsertedShuffle = 5471 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5472 SVI->getOperand(2), "", &*InsertPt); 5473 } 5474 5475 UI->replaceUsesOfWith(SVI, InsertedShuffle); 5476 MadeChange = true; 5477 } 5478 5479 // If we removed all uses, nuke the shuffle. 5480 if (SVI->use_empty()) { 5481 SVI->eraseFromParent(); 5482 MadeChange = true; 5483 } 5484 5485 return MadeChange; 5486 } 5487 5488 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 5489 if (!TLI || !DL) 5490 return false; 5491 5492 Value *Cond = SI->getCondition(); 5493 Type *OldType = Cond->getType(); 5494 LLVMContext &Context = Cond->getContext(); 5495 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 5496 unsigned RegWidth = RegType.getSizeInBits(); 5497 5498 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 5499 return false; 5500 5501 // If the register width is greater than the type width, expand the condition 5502 // of the switch instruction and each case constant to the width of the 5503 // register. By widening the type of the switch condition, subsequent 5504 // comparisons (for case comparisons) will not need to be extended to the 5505 // preferred register width, so we will potentially eliminate N-1 extends, 5506 // where N is the number of cases in the switch. 5507 auto *NewType = Type::getIntNTy(Context, RegWidth); 5508 5509 // Zero-extend the switch condition and case constants unless the switch 5510 // condition is a function argument that is already being sign-extended. 5511 // In that case, we can avoid an unnecessary mask/extension by sign-extending 5512 // everything instead. 5513 Instruction::CastOps ExtType = Instruction::ZExt; 5514 if (auto *Arg = dyn_cast<Argument>(Cond)) 5515 if (Arg->hasSExtAttr()) 5516 ExtType = Instruction::SExt; 5517 5518 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 5519 ExtInst->insertBefore(SI); 5520 SI->setCondition(ExtInst); 5521 for (auto Case : SI->cases()) { 5522 APInt NarrowConst = Case.getCaseValue()->getValue(); 5523 APInt WideConst = (ExtType == Instruction::ZExt) ? 5524 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 5525 Case.setValue(ConstantInt::get(Context, WideConst)); 5526 } 5527 5528 return true; 5529 } 5530 5531 5532 namespace { 5533 5534 /// \brief Helper class to promote a scalar operation to a vector one. 5535 /// This class is used to move downward extractelement transition. 5536 /// E.g., 5537 /// a = vector_op <2 x i32> 5538 /// b = extractelement <2 x i32> a, i32 0 5539 /// c = scalar_op b 5540 /// store c 5541 /// 5542 /// => 5543 /// a = vector_op <2 x i32> 5544 /// c = vector_op a (equivalent to scalar_op on the related lane) 5545 /// * d = extractelement <2 x i32> c, i32 0 5546 /// * store d 5547 /// Assuming both extractelement and store can be combine, we get rid of the 5548 /// transition. 5549 class VectorPromoteHelper { 5550 /// DataLayout associated with the current module. 5551 const DataLayout &DL; 5552 5553 /// Used to perform some checks on the legality of vector operations. 5554 const TargetLowering &TLI; 5555 5556 /// Used to estimated the cost of the promoted chain. 5557 const TargetTransformInfo &TTI; 5558 5559 /// The transition being moved downwards. 5560 Instruction *Transition; 5561 5562 /// The sequence of instructions to be promoted. 5563 SmallVector<Instruction *, 4> InstsToBePromoted; 5564 5565 /// Cost of combining a store and an extract. 5566 unsigned StoreExtractCombineCost; 5567 5568 /// Instruction that will be combined with the transition. 5569 Instruction *CombineInst = nullptr; 5570 5571 /// \brief The instruction that represents the current end of the transition. 5572 /// Since we are faking the promotion until we reach the end of the chain 5573 /// of computation, we need a way to get the current end of the transition. 5574 Instruction *getEndOfTransition() const { 5575 if (InstsToBePromoted.empty()) 5576 return Transition; 5577 return InstsToBePromoted.back(); 5578 } 5579 5580 /// \brief Return the index of the original value in the transition. 5581 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 5582 /// c, is at index 0. 5583 unsigned getTransitionOriginalValueIdx() const { 5584 assert(isa<ExtractElementInst>(Transition) && 5585 "Other kind of transitions are not supported yet"); 5586 return 0; 5587 } 5588 5589 /// \brief Return the index of the index in the transition. 5590 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 5591 /// is at index 1. 5592 unsigned getTransitionIdx() const { 5593 assert(isa<ExtractElementInst>(Transition) && 5594 "Other kind of transitions are not supported yet"); 5595 return 1; 5596 } 5597 5598 /// \brief Get the type of the transition. 5599 /// This is the type of the original value. 5600 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 5601 /// transition is <2 x i32>. 5602 Type *getTransitionType() const { 5603 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 5604 } 5605 5606 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 5607 /// I.e., we have the following sequence: 5608 /// Def = Transition <ty1> a to <ty2> 5609 /// b = ToBePromoted <ty2> Def, ... 5610 /// => 5611 /// b = ToBePromoted <ty1> a, ... 5612 /// Def = Transition <ty1> ToBePromoted to <ty2> 5613 void promoteImpl(Instruction *ToBePromoted); 5614 5615 /// \brief Check whether or not it is profitable to promote all the 5616 /// instructions enqueued to be promoted. 5617 bool isProfitableToPromote() { 5618 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 5619 unsigned Index = isa<ConstantInt>(ValIdx) 5620 ? cast<ConstantInt>(ValIdx)->getZExtValue() 5621 : -1; 5622 Type *PromotedType = getTransitionType(); 5623 5624 StoreInst *ST = cast<StoreInst>(CombineInst); 5625 unsigned AS = ST->getPointerAddressSpace(); 5626 unsigned Align = ST->getAlignment(); 5627 // Check if this store is supported. 5628 if (!TLI.allowsMisalignedMemoryAccesses( 5629 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 5630 Align)) { 5631 // If this is not supported, there is no way we can combine 5632 // the extract with the store. 5633 return false; 5634 } 5635 5636 // The scalar chain of computation has to pay for the transition 5637 // scalar to vector. 5638 // The vector chain has to account for the combining cost. 5639 uint64_t ScalarCost = 5640 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 5641 uint64_t VectorCost = StoreExtractCombineCost; 5642 for (const auto &Inst : InstsToBePromoted) { 5643 // Compute the cost. 5644 // By construction, all instructions being promoted are arithmetic ones. 5645 // Moreover, one argument is a constant that can be viewed as a splat 5646 // constant. 5647 Value *Arg0 = Inst->getOperand(0); 5648 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 5649 isa<ConstantFP>(Arg0); 5650 TargetTransformInfo::OperandValueKind Arg0OVK = 5651 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5652 : TargetTransformInfo::OK_AnyValue; 5653 TargetTransformInfo::OperandValueKind Arg1OVK = 5654 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5655 : TargetTransformInfo::OK_AnyValue; 5656 ScalarCost += TTI.getArithmeticInstrCost( 5657 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 5658 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 5659 Arg0OVK, Arg1OVK); 5660 } 5661 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 5662 << ScalarCost << "\nVector: " << VectorCost << '\n'); 5663 return ScalarCost > VectorCost; 5664 } 5665 5666 /// \brief Generate a constant vector with \p Val with the same 5667 /// number of elements as the transition. 5668 /// \p UseSplat defines whether or not \p Val should be replicated 5669 /// across the whole vector. 5670 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 5671 /// otherwise we generate a vector with as many undef as possible: 5672 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 5673 /// used at the index of the extract. 5674 Value *getConstantVector(Constant *Val, bool UseSplat) const { 5675 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 5676 if (!UseSplat) { 5677 // If we cannot determine where the constant must be, we have to 5678 // use a splat constant. 5679 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 5680 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 5681 ExtractIdx = CstVal->getSExtValue(); 5682 else 5683 UseSplat = true; 5684 } 5685 5686 unsigned End = getTransitionType()->getVectorNumElements(); 5687 if (UseSplat) 5688 return ConstantVector::getSplat(End, Val); 5689 5690 SmallVector<Constant *, 4> ConstVec; 5691 UndefValue *UndefVal = UndefValue::get(Val->getType()); 5692 for (unsigned Idx = 0; Idx != End; ++Idx) { 5693 if (Idx == ExtractIdx) 5694 ConstVec.push_back(Val); 5695 else 5696 ConstVec.push_back(UndefVal); 5697 } 5698 return ConstantVector::get(ConstVec); 5699 } 5700 5701 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 5702 /// in \p Use can trigger undefined behavior. 5703 static bool canCauseUndefinedBehavior(const Instruction *Use, 5704 unsigned OperandIdx) { 5705 // This is not safe to introduce undef when the operand is on 5706 // the right hand side of a division-like instruction. 5707 if (OperandIdx != 1) 5708 return false; 5709 switch (Use->getOpcode()) { 5710 default: 5711 return false; 5712 case Instruction::SDiv: 5713 case Instruction::UDiv: 5714 case Instruction::SRem: 5715 case Instruction::URem: 5716 return true; 5717 case Instruction::FDiv: 5718 case Instruction::FRem: 5719 return !Use->hasNoNaNs(); 5720 } 5721 llvm_unreachable(nullptr); 5722 } 5723 5724 public: 5725 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 5726 const TargetTransformInfo &TTI, Instruction *Transition, 5727 unsigned CombineCost) 5728 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 5729 StoreExtractCombineCost(CombineCost) { 5730 assert(Transition && "Do not know how to promote null"); 5731 } 5732 5733 /// \brief Check if we can promote \p ToBePromoted to \p Type. 5734 bool canPromote(const Instruction *ToBePromoted) const { 5735 // We could support CastInst too. 5736 return isa<BinaryOperator>(ToBePromoted); 5737 } 5738 5739 /// \brief Check if it is profitable to promote \p ToBePromoted 5740 /// by moving downward the transition through. 5741 bool shouldPromote(const Instruction *ToBePromoted) const { 5742 // Promote only if all the operands can be statically expanded. 5743 // Indeed, we do not want to introduce any new kind of transitions. 5744 for (const Use &U : ToBePromoted->operands()) { 5745 const Value *Val = U.get(); 5746 if (Val == getEndOfTransition()) { 5747 // If the use is a division and the transition is on the rhs, 5748 // we cannot promote the operation, otherwise we may create a 5749 // division by zero. 5750 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 5751 return false; 5752 continue; 5753 } 5754 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 5755 !isa<ConstantFP>(Val)) 5756 return false; 5757 } 5758 // Check that the resulting operation is legal. 5759 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 5760 if (!ISDOpcode) 5761 return false; 5762 return StressStoreExtract || 5763 TLI.isOperationLegalOrCustom( 5764 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 5765 } 5766 5767 /// \brief Check whether or not \p Use can be combined 5768 /// with the transition. 5769 /// I.e., is it possible to do Use(Transition) => AnotherUse? 5770 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 5771 5772 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 5773 void enqueueForPromotion(Instruction *ToBePromoted) { 5774 InstsToBePromoted.push_back(ToBePromoted); 5775 } 5776 5777 /// \brief Set the instruction that will be combined with the transition. 5778 void recordCombineInstruction(Instruction *ToBeCombined) { 5779 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 5780 CombineInst = ToBeCombined; 5781 } 5782 5783 /// \brief Promote all the instructions enqueued for promotion if it is 5784 /// is profitable. 5785 /// \return True if the promotion happened, false otherwise. 5786 bool promote() { 5787 // Check if there is something to promote. 5788 // Right now, if we do not have anything to combine with, 5789 // we assume the promotion is not profitable. 5790 if (InstsToBePromoted.empty() || !CombineInst) 5791 return false; 5792 5793 // Check cost. 5794 if (!StressStoreExtract && !isProfitableToPromote()) 5795 return false; 5796 5797 // Promote. 5798 for (auto &ToBePromoted : InstsToBePromoted) 5799 promoteImpl(ToBePromoted); 5800 InstsToBePromoted.clear(); 5801 return true; 5802 } 5803 }; 5804 5805 } // end anonymous namespace 5806 5807 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 5808 // At this point, we know that all the operands of ToBePromoted but Def 5809 // can be statically promoted. 5810 // For Def, we need to use its parameter in ToBePromoted: 5811 // b = ToBePromoted ty1 a 5812 // Def = Transition ty1 b to ty2 5813 // Move the transition down. 5814 // 1. Replace all uses of the promoted operation by the transition. 5815 // = ... b => = ... Def. 5816 assert(ToBePromoted->getType() == Transition->getType() && 5817 "The type of the result of the transition does not match " 5818 "the final type"); 5819 ToBePromoted->replaceAllUsesWith(Transition); 5820 // 2. Update the type of the uses. 5821 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 5822 Type *TransitionTy = getTransitionType(); 5823 ToBePromoted->mutateType(TransitionTy); 5824 // 3. Update all the operands of the promoted operation with promoted 5825 // operands. 5826 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 5827 for (Use &U : ToBePromoted->operands()) { 5828 Value *Val = U.get(); 5829 Value *NewVal = nullptr; 5830 if (Val == Transition) 5831 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 5832 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 5833 isa<ConstantFP>(Val)) { 5834 // Use a splat constant if it is not safe to use undef. 5835 NewVal = getConstantVector( 5836 cast<Constant>(Val), 5837 isa<UndefValue>(Val) || 5838 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 5839 } else 5840 llvm_unreachable("Did you modified shouldPromote and forgot to update " 5841 "this?"); 5842 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 5843 } 5844 Transition->moveAfter(ToBePromoted); 5845 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 5846 } 5847 5848 /// Some targets can do store(extractelement) with one instruction. 5849 /// Try to push the extractelement towards the stores when the target 5850 /// has this feature and this is profitable. 5851 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 5852 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 5853 if (DisableStoreExtract || !TLI || 5854 (!StressStoreExtract && 5855 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 5856 Inst->getOperand(1), CombineCost))) 5857 return false; 5858 5859 // At this point we know that Inst is a vector to scalar transition. 5860 // Try to move it down the def-use chain, until: 5861 // - We can combine the transition with its single use 5862 // => we got rid of the transition. 5863 // - We escape the current basic block 5864 // => we would need to check that we are moving it at a cheaper place and 5865 // we do not do that for now. 5866 BasicBlock *Parent = Inst->getParent(); 5867 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 5868 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 5869 // If the transition has more than one use, assume this is not going to be 5870 // beneficial. 5871 while (Inst->hasOneUse()) { 5872 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 5873 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 5874 5875 if (ToBePromoted->getParent() != Parent) { 5876 DEBUG(dbgs() << "Instruction to promote is in a different block (" 5877 << ToBePromoted->getParent()->getName() 5878 << ") than the transition (" << Parent->getName() << ").\n"); 5879 return false; 5880 } 5881 5882 if (VPH.canCombine(ToBePromoted)) { 5883 DEBUG(dbgs() << "Assume " << *Inst << '\n' 5884 << "will be combined with: " << *ToBePromoted << '\n'); 5885 VPH.recordCombineInstruction(ToBePromoted); 5886 bool Changed = VPH.promote(); 5887 NumStoreExtractExposed += Changed; 5888 return Changed; 5889 } 5890 5891 DEBUG(dbgs() << "Try promoting.\n"); 5892 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 5893 return false; 5894 5895 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 5896 5897 VPH.enqueueForPromotion(ToBePromoted); 5898 Inst = ToBePromoted; 5899 } 5900 return false; 5901 } 5902 5903 /// For the instruction sequence of store below, F and I values 5904 /// are bundled together as an i64 value before being stored into memory. 5905 /// Sometimes it is more efficent to generate separate stores for F and I, 5906 /// which can remove the bitwise instructions or sink them to colder places. 5907 /// 5908 /// (store (or (zext (bitcast F to i32) to i64), 5909 /// (shl (zext I to i64), 32)), addr) --> 5910 /// (store F, addr) and (store I, addr+4) 5911 /// 5912 /// Similarly, splitting for other merged store can also be beneficial, like: 5913 /// For pair of {i32, i32}, i64 store --> two i32 stores. 5914 /// For pair of {i32, i16}, i64 store --> two i32 stores. 5915 /// For pair of {i16, i16}, i32 store --> two i16 stores. 5916 /// For pair of {i16, i8}, i32 store --> two i16 stores. 5917 /// For pair of {i8, i8}, i16 store --> two i8 stores. 5918 /// 5919 /// We allow each target to determine specifically which kind of splitting is 5920 /// supported. 5921 /// 5922 /// The store patterns are commonly seen from the simple code snippet below 5923 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 5924 /// void goo(const std::pair<int, float> &); 5925 /// hoo() { 5926 /// ... 5927 /// goo(std::make_pair(tmp, ftmp)); 5928 /// ... 5929 /// } 5930 /// 5931 /// Although we already have similar splitting in DAG Combine, we duplicate 5932 /// it in CodeGenPrepare to catch the case in which pattern is across 5933 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 5934 /// during code expansion. 5935 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 5936 const TargetLowering &TLI) { 5937 // Handle simple but common cases only. 5938 Type *StoreType = SI.getValueOperand()->getType(); 5939 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || 5940 DL.getTypeSizeInBits(StoreType) == 0) 5941 return false; 5942 5943 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 5944 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 5945 if (DL.getTypeStoreSizeInBits(SplitStoreType) != 5946 DL.getTypeSizeInBits(SplitStoreType)) 5947 return false; 5948 5949 // Match the following patterns: 5950 // (store (or (zext LValue to i64), 5951 // (shl (zext HValue to i64), 32)), HalfValBitSize) 5952 // or 5953 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 5954 // (zext LValue to i64), 5955 // Expect both operands of OR and the first operand of SHL have only 5956 // one use. 5957 Value *LValue, *HValue; 5958 if (!match(SI.getValueOperand(), 5959 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 5960 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 5961 m_SpecificInt(HalfValBitSize)))))) 5962 return false; 5963 5964 // Check LValue and HValue are int with size less or equal than 32. 5965 if (!LValue->getType()->isIntegerTy() || 5966 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 5967 !HValue->getType()->isIntegerTy() || 5968 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 5969 return false; 5970 5971 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 5972 // as the input of target query. 5973 auto *LBC = dyn_cast<BitCastInst>(LValue); 5974 auto *HBC = dyn_cast<BitCastInst>(HValue); 5975 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 5976 : EVT::getEVT(LValue->getType()); 5977 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 5978 : EVT::getEVT(HValue->getType()); 5979 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 5980 return false; 5981 5982 // Start to split store. 5983 IRBuilder<> Builder(SI.getContext()); 5984 Builder.SetInsertPoint(&SI); 5985 5986 // If LValue/HValue is a bitcast in another BB, create a new one in current 5987 // BB so it may be merged with the splitted stores by dag combiner. 5988 if (LBC && LBC->getParent() != SI.getParent()) 5989 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 5990 if (HBC && HBC->getParent() != SI.getParent()) 5991 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 5992 5993 auto CreateSplitStore = [&](Value *V, bool Upper) { 5994 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 5995 Value *Addr = Builder.CreateBitCast( 5996 SI.getOperand(1), 5997 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 5998 if (Upper) 5999 Addr = Builder.CreateGEP( 6000 SplitStoreType, Addr, 6001 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6002 Builder.CreateAlignedStore( 6003 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 6004 }; 6005 6006 CreateSplitStore(LValue, false); 6007 CreateSplitStore(HValue, true); 6008 6009 // Delete the old store. 6010 SI.eraseFromParent(); 6011 return true; 6012 } 6013 6014 // Return true if the GEP has two operands, the first operand is of a sequential 6015 // type, and the second operand is a constant. 6016 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6017 gep_type_iterator I = gep_type_begin(*GEP); 6018 return GEP->getNumOperands() == 2 && 6019 I.isSequential() && 6020 isa<ConstantInt>(GEP->getOperand(1)); 6021 } 6022 6023 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6024 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6025 // reducing liveness interference across those edges benefits global register 6026 // allocation. Currently handles only certain cases. 6027 // 6028 // For example, unmerge %GEPI and %UGEPI as below. 6029 // 6030 // ---------- BEFORE ---------- 6031 // SrcBlock: 6032 // ... 6033 // %GEPIOp = ... 6034 // ... 6035 // %GEPI = gep %GEPIOp, Idx 6036 // ... 6037 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6038 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6039 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6040 // %UGEPI) 6041 // 6042 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6043 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6044 // ... 6045 // 6046 // DstBi: 6047 // ... 6048 // %UGEPI = gep %GEPIOp, UIdx 6049 // ... 6050 // --------------------------- 6051 // 6052 // ---------- AFTER ---------- 6053 // SrcBlock: 6054 // ... (same as above) 6055 // (* %GEPI is still alive on the indirectbr edges) 6056 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6057 // unmerging) 6058 // ... 6059 // 6060 // DstBi: 6061 // ... 6062 // %UGEPI = gep %GEPI, (UIdx-Idx) 6063 // ... 6064 // --------------------------- 6065 // 6066 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6067 // no longer alive on them. 6068 // 6069 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6070 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6071 // not to disable further simplications and optimizations as a result of GEP 6072 // merging. 6073 // 6074 // Note this unmerging may increase the length of the data flow critical path 6075 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6076 // between the register pressure and the length of data-flow critical 6077 // path. Restricting this to the uncommon IndirectBr case would minimize the 6078 // impact of potentially longer critical path, if any, and the impact on compile 6079 // time. 6080 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6081 const TargetTransformInfo *TTI) { 6082 BasicBlock *SrcBlock = GEPI->getParent(); 6083 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 6084 // (non-IndirectBr) cases exit early here. 6085 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 6086 return false; 6087 // Check that GEPI is a simple gep with a single constant index. 6088 if (!GEPSequentialConstIndexed(GEPI)) 6089 return false; 6090 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 6091 // Check that GEPI is a cheap one. 6092 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 6093 > TargetTransformInfo::TCC_Basic) 6094 return false; 6095 Value *GEPIOp = GEPI->getOperand(0); 6096 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 6097 if (!isa<Instruction>(GEPIOp)) 6098 return false; 6099 auto *GEPIOpI = cast<Instruction>(GEPIOp); 6100 if (GEPIOpI->getParent() != SrcBlock) 6101 return false; 6102 // Check that GEP is used outside the block, meaning it's alive on the 6103 // IndirectBr edge(s). 6104 if (find_if(GEPI->users(), [&](User *Usr) { 6105 if (auto *I = dyn_cast<Instruction>(Usr)) { 6106 if (I->getParent() != SrcBlock) { 6107 return true; 6108 } 6109 } 6110 return false; 6111 }) == GEPI->users().end()) 6112 return false; 6113 // The second elements of the GEP chains to be unmerged. 6114 std::vector<GetElementPtrInst *> UGEPIs; 6115 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 6116 // on IndirectBr edges. 6117 for (User *Usr : GEPIOp->users()) { 6118 if (Usr == GEPI) continue; 6119 // Check if Usr is an Instruction. If not, give up. 6120 if (!isa<Instruction>(Usr)) 6121 return false; 6122 auto *UI = cast<Instruction>(Usr); 6123 // Check if Usr in the same block as GEPIOp, which is fine, skip. 6124 if (UI->getParent() == SrcBlock) 6125 continue; 6126 // Check if Usr is a GEP. If not, give up. 6127 if (!isa<GetElementPtrInst>(Usr)) 6128 return false; 6129 auto *UGEPI = cast<GetElementPtrInst>(Usr); 6130 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 6131 // the pointer operand to it. If so, record it in the vector. If not, give 6132 // up. 6133 if (!GEPSequentialConstIndexed(UGEPI)) 6134 return false; 6135 if (UGEPI->getOperand(0) != GEPIOp) 6136 return false; 6137 if (GEPIIdx->getType() != 6138 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 6139 return false; 6140 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6141 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 6142 > TargetTransformInfo::TCC_Basic) 6143 return false; 6144 UGEPIs.push_back(UGEPI); 6145 } 6146 if (UGEPIs.size() == 0) 6147 return false; 6148 // Check the materializing cost of (Uidx-Idx). 6149 for (GetElementPtrInst *UGEPI : UGEPIs) { 6150 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6151 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 6152 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 6153 if (ImmCost > TargetTransformInfo::TCC_Basic) 6154 return false; 6155 } 6156 // Now unmerge between GEPI and UGEPIs. 6157 for (GetElementPtrInst *UGEPI : UGEPIs) { 6158 UGEPI->setOperand(0, GEPI); 6159 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6160 Constant *NewUGEPIIdx = 6161 ConstantInt::get(GEPIIdx->getType(), 6162 UGEPIIdx->getValue() - GEPIIdx->getValue()); 6163 UGEPI->setOperand(1, NewUGEPIIdx); 6164 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 6165 // inbounds to avoid UB. 6166 if (!GEPI->isInBounds()) { 6167 UGEPI->setIsInBounds(false); 6168 } 6169 } 6170 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 6171 // alive on IndirectBr edges). 6172 assert(find_if(GEPIOp->users(), [&](User *Usr) { 6173 return cast<Instruction>(Usr)->getParent() != SrcBlock; 6174 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 6175 return true; 6176 } 6177 6178 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 6179 // Bail out if we inserted the instruction to prevent optimizations from 6180 // stepping on each other's toes. 6181 if (InsertedInsts.count(I)) 6182 return false; 6183 6184 if (PHINode *P = dyn_cast<PHINode>(I)) { 6185 // It is possible for very late stage optimizations (such as SimplifyCFG) 6186 // to introduce PHI nodes too late to be cleaned up. If we detect such a 6187 // trivial PHI, go ahead and zap it here. 6188 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 6189 P->replaceAllUsesWith(V); 6190 P->eraseFromParent(); 6191 ++NumPHIsElim; 6192 return true; 6193 } 6194 return false; 6195 } 6196 6197 if (CastInst *CI = dyn_cast<CastInst>(I)) { 6198 // If the source of the cast is a constant, then this should have 6199 // already been constant folded. The only reason NOT to constant fold 6200 // it is if something (e.g. LSR) was careful to place the constant 6201 // evaluation in a block other than then one that uses it (e.g. to hoist 6202 // the address of globals out of a loop). If this is the case, we don't 6203 // want to forward-subst the cast. 6204 if (isa<Constant>(CI->getOperand(0))) 6205 return false; 6206 6207 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 6208 return true; 6209 6210 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 6211 /// Sink a zext or sext into its user blocks if the target type doesn't 6212 /// fit in one register 6213 if (TLI && 6214 TLI->getTypeAction(CI->getContext(), 6215 TLI->getValueType(*DL, CI->getType())) == 6216 TargetLowering::TypeExpandInteger) { 6217 return SinkCast(CI); 6218 } else { 6219 bool MadeChange = optimizeExt(I); 6220 return MadeChange | optimizeExtUses(I); 6221 } 6222 } 6223 return false; 6224 } 6225 6226 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 6227 if (!TLI || !TLI->hasMultipleConditionRegisters()) 6228 return OptimizeCmpExpression(CI, TLI); 6229 6230 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6231 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6232 if (TLI) { 6233 bool Modified = optimizeLoadExt(LI); 6234 unsigned AS = LI->getPointerAddressSpace(); 6235 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 6236 return Modified; 6237 } 6238 return false; 6239 } 6240 6241 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 6242 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 6243 return true; 6244 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6245 if (TLI) { 6246 unsigned AS = SI->getPointerAddressSpace(); 6247 return optimizeMemoryInst(I, SI->getOperand(1), 6248 SI->getOperand(0)->getType(), AS); 6249 } 6250 return false; 6251 } 6252 6253 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 6254 unsigned AS = RMW->getPointerAddressSpace(); 6255 return optimizeMemoryInst(I, RMW->getPointerOperand(), 6256 RMW->getType(), AS); 6257 } 6258 6259 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 6260 unsigned AS = CmpX->getPointerAddressSpace(); 6261 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 6262 CmpX->getCompareOperand()->getType(), AS); 6263 } 6264 6265 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 6266 6267 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 6268 EnableAndCmpSinking && TLI) 6269 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 6270 6271 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 6272 BinOp->getOpcode() == Instruction::LShr)) { 6273 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 6274 if (TLI && CI && TLI->hasExtractBitsInsn()) 6275 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 6276 6277 return false; 6278 } 6279 6280 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 6281 if (GEPI->hasAllZeroIndices()) { 6282 /// The GEP operand must be a pointer, so must its result -> BitCast 6283 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 6284 GEPI->getName(), GEPI); 6285 GEPI->replaceAllUsesWith(NC); 6286 GEPI->eraseFromParent(); 6287 ++NumGEPsElim; 6288 optimizeInst(NC, ModifiedDT); 6289 return true; 6290 } 6291 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 6292 return true; 6293 } 6294 return false; 6295 } 6296 6297 if (CallInst *CI = dyn_cast<CallInst>(I)) 6298 return optimizeCallInst(CI, ModifiedDT); 6299 6300 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 6301 return optimizeSelectInst(SI); 6302 6303 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 6304 return optimizeShuffleVectorInst(SVI); 6305 6306 if (auto *Switch = dyn_cast<SwitchInst>(I)) 6307 return optimizeSwitchInst(Switch); 6308 6309 if (isa<ExtractElementInst>(I)) 6310 return optimizeExtractElementInst(I); 6311 6312 return false; 6313 } 6314 6315 /// Given an OR instruction, check to see if this is a bitreverse 6316 /// idiom. If so, insert the new intrinsic and return true. 6317 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 6318 const TargetLowering &TLI) { 6319 if (!I.getType()->isIntegerTy() || 6320 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 6321 TLI.getValueType(DL, I.getType(), true))) 6322 return false; 6323 6324 SmallVector<Instruction*, 4> Insts; 6325 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 6326 return false; 6327 Instruction *LastInst = Insts.back(); 6328 I.replaceAllUsesWith(LastInst); 6329 RecursivelyDeleteTriviallyDeadInstructions(&I); 6330 return true; 6331 } 6332 6333 // In this pass we look for GEP and cast instructions that are used 6334 // across basic blocks and rewrite them to improve basic-block-at-a-time 6335 // selection. 6336 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 6337 SunkAddrs.clear(); 6338 bool MadeChange = false; 6339 6340 CurInstIterator = BB.begin(); 6341 while (CurInstIterator != BB.end()) { 6342 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 6343 if (ModifiedDT) 6344 return true; 6345 } 6346 6347 bool MadeBitReverse = true; 6348 while (TLI && MadeBitReverse) { 6349 MadeBitReverse = false; 6350 for (auto &I : reverse(BB)) { 6351 if (makeBitReverse(I, *DL, *TLI)) { 6352 MadeBitReverse = MadeChange = true; 6353 ModifiedDT = true; 6354 break; 6355 } 6356 } 6357 } 6358 MadeChange |= dupRetToEnableTailCallOpts(&BB); 6359 6360 return MadeChange; 6361 } 6362 6363 // llvm.dbg.value is far away from the value then iSel may not be able 6364 // handle it properly. iSel will drop llvm.dbg.value if it can not 6365 // find a node corresponding to the value. 6366 bool CodeGenPrepare::placeDbgValues(Function &F) { 6367 bool MadeChange = false; 6368 for (BasicBlock &BB : F) { 6369 Instruction *PrevNonDbgInst = nullptr; 6370 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 6371 Instruction *Insn = &*BI++; 6372 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 6373 // Leave dbg.values that refer to an alloca alone. These 6374 // intrinsics describe the address of a variable (= the alloca) 6375 // being taken. They should not be moved next to the alloca 6376 // (and to the beginning of the scope), but rather stay close to 6377 // where said address is used. 6378 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 6379 PrevNonDbgInst = Insn; 6380 continue; 6381 } 6382 6383 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 6384 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 6385 // If VI is a phi in a block with an EHPad terminator, we can't insert 6386 // after it. 6387 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 6388 continue; 6389 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 6390 DVI->removeFromParent(); 6391 if (isa<PHINode>(VI)) 6392 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 6393 else 6394 DVI->insertAfter(VI); 6395 MadeChange = true; 6396 ++NumDbgValueMoved; 6397 } 6398 } 6399 } 6400 return MadeChange; 6401 } 6402 6403 /// \brief Scale down both weights to fit into uint32_t. 6404 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 6405 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 6406 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 6407 NewTrue = NewTrue / Scale; 6408 NewFalse = NewFalse / Scale; 6409 } 6410 6411 /// \brief Some targets prefer to split a conditional branch like: 6412 /// \code 6413 /// %0 = icmp ne i32 %a, 0 6414 /// %1 = icmp ne i32 %b, 0 6415 /// %or.cond = or i1 %0, %1 6416 /// br i1 %or.cond, label %TrueBB, label %FalseBB 6417 /// \endcode 6418 /// into multiple branch instructions like: 6419 /// \code 6420 /// bb1: 6421 /// %0 = icmp ne i32 %a, 0 6422 /// br i1 %0, label %TrueBB, label %bb2 6423 /// bb2: 6424 /// %1 = icmp ne i32 %b, 0 6425 /// br i1 %1, label %TrueBB, label %FalseBB 6426 /// \endcode 6427 /// This usually allows instruction selection to do even further optimizations 6428 /// and combine the compare with the branch instruction. Currently this is 6429 /// applied for targets which have "cheap" jump instructions. 6430 /// 6431 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 6432 /// 6433 bool CodeGenPrepare::splitBranchCondition(Function &F) { 6434 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 6435 return false; 6436 6437 bool MadeChange = false; 6438 for (auto &BB : F) { 6439 // Does this BB end with the following? 6440 // %cond1 = icmp|fcmp|binary instruction ... 6441 // %cond2 = icmp|fcmp|binary instruction ... 6442 // %cond.or = or|and i1 %cond1, cond2 6443 // br i1 %cond.or label %dest1, label %dest2" 6444 BinaryOperator *LogicOp; 6445 BasicBlock *TBB, *FBB; 6446 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 6447 continue; 6448 6449 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 6450 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 6451 continue; 6452 6453 unsigned Opc; 6454 Value *Cond1, *Cond2; 6455 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 6456 m_OneUse(m_Value(Cond2))))) 6457 Opc = Instruction::And; 6458 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 6459 m_OneUse(m_Value(Cond2))))) 6460 Opc = Instruction::Or; 6461 else 6462 continue; 6463 6464 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 6465 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 6466 continue; 6467 6468 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 6469 6470 // Create a new BB. 6471 auto TmpBB = 6472 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 6473 BB.getParent(), BB.getNextNode()); 6474 6475 // Update original basic block by using the first condition directly by the 6476 // branch instruction and removing the no longer needed and/or instruction. 6477 Br1->setCondition(Cond1); 6478 LogicOp->eraseFromParent(); 6479 6480 // Depending on the conditon we have to either replace the true or the false 6481 // successor of the original branch instruction. 6482 if (Opc == Instruction::And) 6483 Br1->setSuccessor(0, TmpBB); 6484 else 6485 Br1->setSuccessor(1, TmpBB); 6486 6487 // Fill in the new basic block. 6488 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 6489 if (auto *I = dyn_cast<Instruction>(Cond2)) { 6490 I->removeFromParent(); 6491 I->insertBefore(Br2); 6492 } 6493 6494 // Update PHI nodes in both successors. The original BB needs to be 6495 // replaced in one successor's PHI nodes, because the branch comes now from 6496 // the newly generated BB (NewBB). In the other successor we need to add one 6497 // incoming edge to the PHI nodes, because both branch instructions target 6498 // now the same successor. Depending on the original branch condition 6499 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 6500 // we perform the correct update for the PHI nodes. 6501 // This doesn't change the successor order of the just created branch 6502 // instruction (or any other instruction). 6503 if (Opc == Instruction::Or) 6504 std::swap(TBB, FBB); 6505 6506 // Replace the old BB with the new BB. 6507 for (auto &I : *TBB) { 6508 PHINode *PN = dyn_cast<PHINode>(&I); 6509 if (!PN) 6510 break; 6511 int i; 6512 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 6513 PN->setIncomingBlock(i, TmpBB); 6514 } 6515 6516 // Add another incoming edge form the new BB. 6517 for (auto &I : *FBB) { 6518 PHINode *PN = dyn_cast<PHINode>(&I); 6519 if (!PN) 6520 break; 6521 auto *Val = PN->getIncomingValueForBlock(&BB); 6522 PN->addIncoming(Val, TmpBB); 6523 } 6524 6525 // Update the branch weights (from SelectionDAGBuilder:: 6526 // FindMergedConditions). 6527 if (Opc == Instruction::Or) { 6528 // Codegen X | Y as: 6529 // BB1: 6530 // jmp_if_X TBB 6531 // jmp TmpBB 6532 // TmpBB: 6533 // jmp_if_Y TBB 6534 // jmp FBB 6535 // 6536 6537 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 6538 // The requirement is that 6539 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 6540 // = TrueProb for orignal BB. 6541 // Assuming the orignal weights are A and B, one choice is to set BB1's 6542 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 6543 // assumes that 6544 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 6545 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 6546 // TmpBB, but the math is more complicated. 6547 uint64_t TrueWeight, FalseWeight; 6548 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6549 uint64_t NewTrueWeight = TrueWeight; 6550 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 6551 scaleWeights(NewTrueWeight, NewFalseWeight); 6552 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6553 .createBranchWeights(TrueWeight, FalseWeight)); 6554 6555 NewTrueWeight = TrueWeight; 6556 NewFalseWeight = 2 * FalseWeight; 6557 scaleWeights(NewTrueWeight, NewFalseWeight); 6558 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6559 .createBranchWeights(TrueWeight, FalseWeight)); 6560 } 6561 } else { 6562 // Codegen X & Y as: 6563 // BB1: 6564 // jmp_if_X TmpBB 6565 // jmp FBB 6566 // TmpBB: 6567 // jmp_if_Y TBB 6568 // jmp FBB 6569 // 6570 // This requires creation of TmpBB after CurBB. 6571 6572 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 6573 // The requirement is that 6574 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 6575 // = FalseProb for orignal BB. 6576 // Assuming the orignal weights are A and B, one choice is to set BB1's 6577 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 6578 // assumes that 6579 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 6580 uint64_t TrueWeight, FalseWeight; 6581 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6582 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 6583 uint64_t NewFalseWeight = FalseWeight; 6584 scaleWeights(NewTrueWeight, NewFalseWeight); 6585 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6586 .createBranchWeights(TrueWeight, FalseWeight)); 6587 6588 NewTrueWeight = 2 * TrueWeight; 6589 NewFalseWeight = FalseWeight; 6590 scaleWeights(NewTrueWeight, NewFalseWeight); 6591 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6592 .createBranchWeights(TrueWeight, FalseWeight)); 6593 } 6594 } 6595 6596 // Note: No point in getting fancy here, since the DT info is never 6597 // available to CodeGenPrepare. 6598 ModifiedDT = true; 6599 6600 MadeChange = true; 6601 6602 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 6603 TmpBB->dump()); 6604 } 6605 return MadeChange; 6606 } 6607