1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/GlobalVariable.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InlineAsm.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/MDBuilder.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Statepoint.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/ValueMap.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/BlockFrequency.h" 77 #include "llvm/Support/BranchProbability.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/MachineValueType.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Target/TargetMachine.h" 87 #include "llvm/Target/TargetOptions.h" 88 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 89 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 90 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 91 #include <algorithm> 92 #include <cassert> 93 #include <cstdint> 94 #include <iterator> 95 #include <limits> 96 #include <memory> 97 #include <utility> 98 #include <vector> 99 100 using namespace llvm; 101 using namespace llvm::PatternMatch; 102 103 #define DEBUG_TYPE "codegenprepare" 104 105 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 106 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 107 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 108 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 109 "sunken Cmps"); 110 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 111 "of sunken Casts"); 112 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 113 "computations were sunk"); 114 STATISTIC(NumMemoryInstsPhiCreated, 115 "Number of phis created when address " 116 "computations were sunk to memory instructions"); 117 STATISTIC(NumMemoryInstsSelectCreated, 118 "Number of select created when address " 119 "computations were sunk to memory instructions"); 120 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 121 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 122 STATISTIC(NumAndsAdded, 123 "Number of and mask instructions added to form ext loads"); 124 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 125 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 126 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 127 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 128 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 129 130 static cl::opt<bool> DisableBranchOpts( 131 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 132 cl::desc("Disable branch optimizations in CodeGenPrepare")); 133 134 static cl::opt<bool> 135 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 136 cl::desc("Disable GC optimizations in CodeGenPrepare")); 137 138 static cl::opt<bool> DisableSelectToBranch( 139 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 140 cl::desc("Disable select to branch conversion.")); 141 142 static cl::opt<bool> AddrSinkUsingGEPs( 143 "addr-sink-using-gep", cl::Hidden, cl::init(true), 144 cl::desc("Address sinking in CGP using GEPs.")); 145 146 static cl::opt<bool> EnableAndCmpSinking( 147 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 148 cl::desc("Enable sinkinig and/cmp into branches.")); 149 150 static cl::opt<bool> DisableStoreExtract( 151 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 152 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 153 154 static cl::opt<bool> StressStoreExtract( 155 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 156 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 157 158 static cl::opt<bool> DisableExtLdPromotion( 159 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 160 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 161 "CodeGenPrepare")); 162 163 static cl::opt<bool> StressExtLdPromotion( 164 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 165 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 166 "optimization in CodeGenPrepare")); 167 168 static cl::opt<bool> DisablePreheaderProtect( 169 "disable-preheader-prot", cl::Hidden, cl::init(false), 170 cl::desc("Disable protection against removing loop preheaders")); 171 172 static cl::opt<bool> ProfileGuidedSectionPrefix( 173 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 174 cl::desc("Use profile info to add section prefix for hot/cold functions")); 175 176 static cl::opt<unsigned> FreqRatioToSkipMerge( 177 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 178 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 179 "(frequency of destination block) is greater than this ratio")); 180 181 static cl::opt<bool> ForceSplitStore( 182 "force-split-store", cl::Hidden, cl::init(false), 183 cl::desc("Force store splitting no matter what the target query says.")); 184 185 static cl::opt<bool> 186 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 187 cl::desc("Enable merging of redundant sexts when one is dominating" 188 " the other."), cl::init(true)); 189 190 static cl::opt<bool> DisableComplexAddrModes( 191 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 192 cl::desc("Disables combining addressing modes with different parts " 193 "in optimizeMemoryInst.")); 194 195 static cl::opt<bool> 196 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 197 cl::desc("Allow creation of Phis in Address sinking.")); 198 199 static cl::opt<bool> 200 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 201 cl::desc("Allow creation of selects in Address sinking.")); 202 203 static cl::opt<bool> AddrSinkCombineBaseReg( 204 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 205 cl::desc("Allow combining of BaseReg field in Address sinking.")); 206 207 static cl::opt<bool> AddrSinkCombineBaseGV( 208 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 209 cl::desc("Allow combining of BaseGV field in Address sinking.")); 210 211 static cl::opt<bool> AddrSinkCombineBaseOffs( 212 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 213 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 214 215 static cl::opt<bool> AddrSinkCombineScaledReg( 216 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 217 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 218 219 static cl::opt<bool> 220 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 221 cl::init(true), 222 cl::desc("Enable splitting large offset of GEP.")); 223 224 namespace { 225 226 enum ExtType { 227 ZeroExtension, // Zero extension has been seen. 228 SignExtension, // Sign extension has been seen. 229 BothExtension // This extension type is used if we saw sext after 230 // ZeroExtension had been set, or if we saw zext after 231 // SignExtension had been set. It makes the type 232 // information of a promoted instruction invalid. 233 }; 234 235 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 236 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 237 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 238 using SExts = SmallVector<Instruction *, 16>; 239 using ValueToSExts = DenseMap<Value *, SExts>; 240 241 class TypePromotionTransaction; 242 243 class CodeGenPrepare : public FunctionPass { 244 const TargetMachine *TM = nullptr; 245 const TargetSubtargetInfo *SubtargetInfo; 246 const TargetLowering *TLI = nullptr; 247 const TargetRegisterInfo *TRI; 248 const TargetTransformInfo *TTI = nullptr; 249 const TargetLibraryInfo *TLInfo; 250 const LoopInfo *LI; 251 std::unique_ptr<BlockFrequencyInfo> BFI; 252 std::unique_ptr<BranchProbabilityInfo> BPI; 253 254 /// As we scan instructions optimizing them, this is the next instruction 255 /// to optimize. Transforms that can invalidate this should update it. 256 BasicBlock::iterator CurInstIterator; 257 258 /// Keeps track of non-local addresses that have been sunk into a block. 259 /// This allows us to avoid inserting duplicate code for blocks with 260 /// multiple load/stores of the same address. The usage of WeakTrackingVH 261 /// enables SunkAddrs to be treated as a cache whose entries can be 262 /// invalidated if a sunken address computation has been erased. 263 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 264 265 /// Keeps track of all instructions inserted for the current function. 266 SetOfInstrs InsertedInsts; 267 268 /// Keeps track of the type of the related instruction before their 269 /// promotion for the current function. 270 InstrToOrigTy PromotedInsts; 271 272 /// Keep track of instructions removed during promotion. 273 SetOfInstrs RemovedInsts; 274 275 /// Keep track of sext chains based on their initial value. 276 DenseMap<Value *, Instruction *> SeenChainsForSExt; 277 278 /// Keep track of GEPs accessing the same data structures such as structs or 279 /// arrays that are candidates to be split later because of their large 280 /// size. 281 DenseMap< 282 AssertingVH<Value>, 283 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 284 LargeOffsetGEPMap; 285 286 /// Keep track of new GEP base after splitting the GEPs having large offset. 287 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 288 289 /// Map serial numbers to Large offset GEPs. 290 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 291 292 /// Keep track of SExt promoted. 293 ValueToSExts ValToSExtendedUses; 294 295 /// True if CFG is modified in any way. 296 bool ModifiedDT; 297 298 /// True if optimizing for size. 299 bool OptSize; 300 301 /// DataLayout for the Function being processed. 302 const DataLayout *DL = nullptr; 303 304 public: 305 static char ID; // Pass identification, replacement for typeid 306 307 CodeGenPrepare() : FunctionPass(ID) { 308 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 309 } 310 311 bool runOnFunction(Function &F) override; 312 313 StringRef getPassName() const override { return "CodeGen Prepare"; } 314 315 void getAnalysisUsage(AnalysisUsage &AU) const override { 316 // FIXME: When we can selectively preserve passes, preserve the domtree. 317 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 318 AU.addRequired<TargetLibraryInfoWrapperPass>(); 319 AU.addRequired<TargetTransformInfoWrapperPass>(); 320 AU.addRequired<LoopInfoWrapperPass>(); 321 } 322 323 private: 324 bool eliminateFallThrough(Function &F); 325 bool eliminateMostlyEmptyBlocks(Function &F); 326 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 327 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 328 void eliminateMostlyEmptyBlock(BasicBlock *BB); 329 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 330 bool isPreheader); 331 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 332 bool optimizeInst(Instruction *I, bool &ModifiedDT); 333 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 334 Type *AccessTy, unsigned AddrSpace); 335 bool optimizeInlineAsmInst(CallInst *CS); 336 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 337 bool optimizeExt(Instruction *&I); 338 bool optimizeExtUses(Instruction *I); 339 bool optimizeLoadExt(LoadInst *Load); 340 bool optimizeSelectInst(SelectInst *SI); 341 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 342 bool optimizeSwitchInst(SwitchInst *SI); 343 bool optimizeExtractElementInst(Instruction *Inst); 344 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 345 bool placeDbgValues(Function &F); 346 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 347 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 348 bool tryToPromoteExts(TypePromotionTransaction &TPT, 349 const SmallVectorImpl<Instruction *> &Exts, 350 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 351 unsigned CreatedInstsCost = 0); 352 bool mergeSExts(Function &F); 353 bool splitLargeGEPOffsets(); 354 bool performAddressTypePromotion( 355 Instruction *&Inst, 356 bool AllowPromotionWithoutCommonHeader, 357 bool HasPromoted, TypePromotionTransaction &TPT, 358 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 359 bool splitBranchCondition(Function &F); 360 bool simplifyOffsetableRelocate(Instruction &I); 361 }; 362 363 } // end anonymous namespace 364 365 char CodeGenPrepare::ID = 0; 366 367 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 368 "Optimize for code generation", false, false) 369 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 370 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 371 "Optimize for code generation", false, false) 372 373 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 374 375 bool CodeGenPrepare::runOnFunction(Function &F) { 376 if (skipFunction(F)) 377 return false; 378 379 DL = &F.getParent()->getDataLayout(); 380 381 bool EverMadeChange = false; 382 // Clear per function information. 383 InsertedInsts.clear(); 384 PromotedInsts.clear(); 385 386 ModifiedDT = false; 387 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 388 TM = &TPC->getTM<TargetMachine>(); 389 SubtargetInfo = TM->getSubtargetImpl(F); 390 TLI = SubtargetInfo->getTargetLowering(); 391 TRI = SubtargetInfo->getRegisterInfo(); 392 } 393 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 394 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 395 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 396 BPI.reset(new BranchProbabilityInfo(F, *LI)); 397 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 398 OptSize = F.optForSize(); 399 400 ProfileSummaryInfo *PSI = 401 getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 402 if (ProfileGuidedSectionPrefix) { 403 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 404 F.setSectionPrefix(".hot"); 405 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 406 F.setSectionPrefix(".unlikely"); 407 } 408 409 /// This optimization identifies DIV instructions that can be 410 /// profitably bypassed and carried out with a shorter, faster divide. 411 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI && 412 TLI->isSlowDivBypassed()) { 413 const DenseMap<unsigned int, unsigned int> &BypassWidths = 414 TLI->getBypassSlowDivWidths(); 415 BasicBlock* BB = &*F.begin(); 416 while (BB != nullptr) { 417 // bypassSlowDivision may create new BBs, but we don't want to reapply the 418 // optimization to those blocks. 419 BasicBlock* Next = BB->getNextNode(); 420 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 421 BB = Next; 422 } 423 } 424 425 // Eliminate blocks that contain only PHI nodes and an 426 // unconditional branch. 427 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 428 429 if (!DisableBranchOpts) 430 EverMadeChange |= splitBranchCondition(F); 431 432 // Split some critical edges where one of the sources is an indirect branch, 433 // to help generate sane code for PHIs involving such edges. 434 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 435 436 bool MadeChange = true; 437 while (MadeChange) { 438 MadeChange = false; 439 SeenChainsForSExt.clear(); 440 ValToSExtendedUses.clear(); 441 RemovedInsts.clear(); 442 LargeOffsetGEPMap.clear(); 443 LargeOffsetGEPID.clear(); 444 for (Function::iterator I = F.begin(); I != F.end(); ) { 445 BasicBlock *BB = &*I++; 446 bool ModifiedDTOnIteration = false; 447 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 448 449 // Restart BB iteration if the dominator tree of the Function was changed 450 if (ModifiedDTOnIteration) 451 break; 452 } 453 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 454 MadeChange |= mergeSExts(F); 455 if (!LargeOffsetGEPMap.empty()) 456 MadeChange |= splitLargeGEPOffsets(); 457 458 // Really free removed instructions during promotion. 459 for (Instruction *I : RemovedInsts) 460 I->deleteValue(); 461 462 EverMadeChange |= MadeChange; 463 } 464 465 SunkAddrs.clear(); 466 467 if (!DisableBranchOpts) { 468 MadeChange = false; 469 // Use a set vector to get deterministic iteration order. The order the 470 // blocks are removed may affect whether or not PHI nodes in successors 471 // are removed. 472 SmallSetVector<BasicBlock*, 8> WorkList; 473 for (BasicBlock &BB : F) { 474 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 475 MadeChange |= ConstantFoldTerminator(&BB, true); 476 if (!MadeChange) continue; 477 478 for (SmallVectorImpl<BasicBlock*>::iterator 479 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 480 if (pred_begin(*II) == pred_end(*II)) 481 WorkList.insert(*II); 482 } 483 484 // Delete the dead blocks and any of their dead successors. 485 MadeChange |= !WorkList.empty(); 486 while (!WorkList.empty()) { 487 BasicBlock *BB = WorkList.pop_back_val(); 488 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 489 490 DeleteDeadBlock(BB); 491 492 for (SmallVectorImpl<BasicBlock*>::iterator 493 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 494 if (pred_begin(*II) == pred_end(*II)) 495 WorkList.insert(*II); 496 } 497 498 // Merge pairs of basic blocks with unconditional branches, connected by 499 // a single edge. 500 if (EverMadeChange || MadeChange) 501 MadeChange |= eliminateFallThrough(F); 502 503 EverMadeChange |= MadeChange; 504 } 505 506 if (!DisableGCOpts) { 507 SmallVector<Instruction *, 2> Statepoints; 508 for (BasicBlock &BB : F) 509 for (Instruction &I : BB) 510 if (isStatepoint(I)) 511 Statepoints.push_back(&I); 512 for (auto &I : Statepoints) 513 EverMadeChange |= simplifyOffsetableRelocate(*I); 514 } 515 516 // Do this last to clean up use-before-def scenarios introduced by other 517 // preparatory transforms. 518 EverMadeChange |= placeDbgValues(F); 519 520 return EverMadeChange; 521 } 522 523 /// Merge basic blocks which are connected by a single edge, where one of the 524 /// basic blocks has a single successor pointing to the other basic block, 525 /// which has a single predecessor. 526 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 527 bool Changed = false; 528 // Scan all of the blocks in the function, except for the entry block. 529 // Use a temporary array to avoid iterator being invalidated when 530 // deleting blocks. 531 SmallVector<WeakTrackingVH, 16> Blocks; 532 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 533 Blocks.push_back(&Block); 534 535 for (auto &Block : Blocks) { 536 auto *BB = cast_or_null<BasicBlock>(Block); 537 if (!BB) 538 continue; 539 // If the destination block has a single pred, then this is a trivial 540 // edge, just collapse it. 541 BasicBlock *SinglePred = BB->getSinglePredecessor(); 542 543 // Don't merge if BB's address is taken. 544 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 545 546 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 547 if (Term && !Term->isConditional()) { 548 Changed = true; 549 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 550 551 // Merge BB into SinglePred and delete it. 552 MergeBlockIntoPredecessor(BB); 553 } 554 } 555 return Changed; 556 } 557 558 /// Find a destination block from BB if BB is mergeable empty block. 559 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 560 // If this block doesn't end with an uncond branch, ignore it. 561 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 562 if (!BI || !BI->isUnconditional()) 563 return nullptr; 564 565 // If the instruction before the branch (skipping debug info) isn't a phi 566 // node, then other stuff is happening here. 567 BasicBlock::iterator BBI = BI->getIterator(); 568 if (BBI != BB->begin()) { 569 --BBI; 570 while (isa<DbgInfoIntrinsic>(BBI)) { 571 if (BBI == BB->begin()) 572 break; 573 --BBI; 574 } 575 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 576 return nullptr; 577 } 578 579 // Do not break infinite loops. 580 BasicBlock *DestBB = BI->getSuccessor(0); 581 if (DestBB == BB) 582 return nullptr; 583 584 if (!canMergeBlocks(BB, DestBB)) 585 DestBB = nullptr; 586 587 return DestBB; 588 } 589 590 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 591 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 592 /// edges in ways that are non-optimal for isel. Start by eliminating these 593 /// blocks so we can split them the way we want them. 594 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 595 SmallPtrSet<BasicBlock *, 16> Preheaders; 596 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 597 while (!LoopList.empty()) { 598 Loop *L = LoopList.pop_back_val(); 599 LoopList.insert(LoopList.end(), L->begin(), L->end()); 600 if (BasicBlock *Preheader = L->getLoopPreheader()) 601 Preheaders.insert(Preheader); 602 } 603 604 bool MadeChange = false; 605 // Copy blocks into a temporary array to avoid iterator invalidation issues 606 // as we remove them. 607 // Note that this intentionally skips the entry block. 608 SmallVector<WeakTrackingVH, 16> Blocks; 609 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 610 Blocks.push_back(&Block); 611 612 for (auto &Block : Blocks) { 613 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 614 if (!BB) 615 continue; 616 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 617 if (!DestBB || 618 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 619 continue; 620 621 eliminateMostlyEmptyBlock(BB); 622 MadeChange = true; 623 } 624 return MadeChange; 625 } 626 627 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 628 BasicBlock *DestBB, 629 bool isPreheader) { 630 // Do not delete loop preheaders if doing so would create a critical edge. 631 // Loop preheaders can be good locations to spill registers. If the 632 // preheader is deleted and we create a critical edge, registers may be 633 // spilled in the loop body instead. 634 if (!DisablePreheaderProtect && isPreheader && 635 !(BB->getSinglePredecessor() && 636 BB->getSinglePredecessor()->getSingleSuccessor())) 637 return false; 638 639 // Try to skip merging if the unique predecessor of BB is terminated by a 640 // switch or indirect branch instruction, and BB is used as an incoming block 641 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 642 // add COPY instructions in the predecessor of BB instead of BB (if it is not 643 // merged). Note that the critical edge created by merging such blocks wont be 644 // split in MachineSink because the jump table is not analyzable. By keeping 645 // such empty block (BB), ISel will place COPY instructions in BB, not in the 646 // predecessor of BB. 647 BasicBlock *Pred = BB->getUniquePredecessor(); 648 if (!Pred || 649 !(isa<SwitchInst>(Pred->getTerminator()) || 650 isa<IndirectBrInst>(Pred->getTerminator()))) 651 return true; 652 653 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 654 return true; 655 656 // We use a simple cost heuristic which determine skipping merging is 657 // profitable if the cost of skipping merging is less than the cost of 658 // merging : Cost(skipping merging) < Cost(merging BB), where the 659 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 660 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 661 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 662 // Freq(Pred) / Freq(BB) > 2. 663 // Note that if there are multiple empty blocks sharing the same incoming 664 // value for the PHIs in the DestBB, we consider them together. In such 665 // case, Cost(merging BB) will be the sum of their frequencies. 666 667 if (!isa<PHINode>(DestBB->begin())) 668 return true; 669 670 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 671 672 // Find all other incoming blocks from which incoming values of all PHIs in 673 // DestBB are the same as the ones from BB. 674 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 675 ++PI) { 676 BasicBlock *DestBBPred = *PI; 677 if (DestBBPred == BB) 678 continue; 679 680 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 681 return DestPN.getIncomingValueForBlock(BB) == 682 DestPN.getIncomingValueForBlock(DestBBPred); 683 })) 684 SameIncomingValueBBs.insert(DestBBPred); 685 } 686 687 // See if all BB's incoming values are same as the value from Pred. In this 688 // case, no reason to skip merging because COPYs are expected to be place in 689 // Pred already. 690 if (SameIncomingValueBBs.count(Pred)) 691 return true; 692 693 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 694 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 695 696 for (auto SameValueBB : SameIncomingValueBBs) 697 if (SameValueBB->getUniquePredecessor() == Pred && 698 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 699 BBFreq += BFI->getBlockFreq(SameValueBB); 700 701 return PredFreq.getFrequency() <= 702 BBFreq.getFrequency() * FreqRatioToSkipMerge; 703 } 704 705 /// Return true if we can merge BB into DestBB if there is a single 706 /// unconditional branch between them, and BB contains no other non-phi 707 /// instructions. 708 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 709 const BasicBlock *DestBB) const { 710 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 711 // the successor. If there are more complex condition (e.g. preheaders), 712 // don't mess around with them. 713 for (const PHINode &PN : BB->phis()) { 714 for (const User *U : PN.users()) { 715 const Instruction *UI = cast<Instruction>(U); 716 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 717 return false; 718 // If User is inside DestBB block and it is a PHINode then check 719 // incoming value. If incoming value is not from BB then this is 720 // a complex condition (e.g. preheaders) we want to avoid here. 721 if (UI->getParent() == DestBB) { 722 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 723 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 724 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 725 if (Insn && Insn->getParent() == BB && 726 Insn->getParent() != UPN->getIncomingBlock(I)) 727 return false; 728 } 729 } 730 } 731 } 732 733 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 734 // and DestBB may have conflicting incoming values for the block. If so, we 735 // can't merge the block. 736 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 737 if (!DestBBPN) return true; // no conflict. 738 739 // Collect the preds of BB. 740 SmallPtrSet<const BasicBlock*, 16> BBPreds; 741 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 742 // It is faster to get preds from a PHI than with pred_iterator. 743 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 744 BBPreds.insert(BBPN->getIncomingBlock(i)); 745 } else { 746 BBPreds.insert(pred_begin(BB), pred_end(BB)); 747 } 748 749 // Walk the preds of DestBB. 750 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 751 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 752 if (BBPreds.count(Pred)) { // Common predecessor? 753 for (const PHINode &PN : DestBB->phis()) { 754 const Value *V1 = PN.getIncomingValueForBlock(Pred); 755 const Value *V2 = PN.getIncomingValueForBlock(BB); 756 757 // If V2 is a phi node in BB, look up what the mapped value will be. 758 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 759 if (V2PN->getParent() == BB) 760 V2 = V2PN->getIncomingValueForBlock(Pred); 761 762 // If there is a conflict, bail out. 763 if (V1 != V2) return false; 764 } 765 } 766 } 767 768 return true; 769 } 770 771 /// Eliminate a basic block that has only phi's and an unconditional branch in 772 /// it. 773 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 774 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 775 BasicBlock *DestBB = BI->getSuccessor(0); 776 777 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 778 << *BB << *DestBB); 779 780 // If the destination block has a single pred, then this is a trivial edge, 781 // just collapse it. 782 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 783 if (SinglePred != DestBB) { 784 assert(SinglePred == BB && 785 "Single predecessor not the same as predecessor"); 786 // Merge DestBB into SinglePred/BB and delete it. 787 MergeBlockIntoPredecessor(DestBB); 788 // Note: BB(=SinglePred) will not be deleted on this path. 789 // DestBB(=its single successor) is the one that was deleted. 790 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 791 return; 792 } 793 } 794 795 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 796 // to handle the new incoming edges it is about to have. 797 for (PHINode &PN : DestBB->phis()) { 798 // Remove the incoming value for BB, and remember it. 799 Value *InVal = PN.removeIncomingValue(BB, false); 800 801 // Two options: either the InVal is a phi node defined in BB or it is some 802 // value that dominates BB. 803 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 804 if (InValPhi && InValPhi->getParent() == BB) { 805 // Add all of the input values of the input PHI as inputs of this phi. 806 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 807 PN.addIncoming(InValPhi->getIncomingValue(i), 808 InValPhi->getIncomingBlock(i)); 809 } else { 810 // Otherwise, add one instance of the dominating value for each edge that 811 // we will be adding. 812 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 813 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 814 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 815 } else { 816 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 817 PN.addIncoming(InVal, *PI); 818 } 819 } 820 } 821 822 // The PHIs are now updated, change everything that refers to BB to use 823 // DestBB and remove BB. 824 BB->replaceAllUsesWith(DestBB); 825 BB->eraseFromParent(); 826 ++NumBlocksElim; 827 828 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 829 } 830 831 // Computes a map of base pointer relocation instructions to corresponding 832 // derived pointer relocation instructions given a vector of all relocate calls 833 static void computeBaseDerivedRelocateMap( 834 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 835 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 836 &RelocateInstMap) { 837 // Collect information in two maps: one primarily for locating the base object 838 // while filling the second map; the second map is the final structure holding 839 // a mapping between Base and corresponding Derived relocate calls 840 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 841 for (auto *ThisRelocate : AllRelocateCalls) { 842 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 843 ThisRelocate->getDerivedPtrIndex()); 844 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 845 } 846 for (auto &Item : RelocateIdxMap) { 847 std::pair<unsigned, unsigned> Key = Item.first; 848 if (Key.first == Key.second) 849 // Base relocation: nothing to insert 850 continue; 851 852 GCRelocateInst *I = Item.second; 853 auto BaseKey = std::make_pair(Key.first, Key.first); 854 855 // We're iterating over RelocateIdxMap so we cannot modify it. 856 auto MaybeBase = RelocateIdxMap.find(BaseKey); 857 if (MaybeBase == RelocateIdxMap.end()) 858 // TODO: We might want to insert a new base object relocate and gep off 859 // that, if there are enough derived object relocates. 860 continue; 861 862 RelocateInstMap[MaybeBase->second].push_back(I); 863 } 864 } 865 866 // Accepts a GEP and extracts the operands into a vector provided they're all 867 // small integer constants 868 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 869 SmallVectorImpl<Value *> &OffsetV) { 870 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 871 // Only accept small constant integer operands 872 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 873 if (!Op || Op->getZExtValue() > 20) 874 return false; 875 } 876 877 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 878 OffsetV.push_back(GEP->getOperand(i)); 879 return true; 880 } 881 882 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 883 // replace, computes a replacement, and affects it. 884 static bool 885 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 886 const SmallVectorImpl<GCRelocateInst *> &Targets) { 887 bool MadeChange = false; 888 // We must ensure the relocation of derived pointer is defined after 889 // relocation of base pointer. If we find a relocation corresponding to base 890 // defined earlier than relocation of base then we move relocation of base 891 // right before found relocation. We consider only relocation in the same 892 // basic block as relocation of base. Relocations from other basic block will 893 // be skipped by optimization and we do not care about them. 894 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 895 &*R != RelocatedBase; ++R) 896 if (auto RI = dyn_cast<GCRelocateInst>(R)) 897 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 898 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 899 RelocatedBase->moveBefore(RI); 900 break; 901 } 902 903 for (GCRelocateInst *ToReplace : Targets) { 904 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 905 "Not relocating a derived object of the original base object"); 906 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 907 // A duplicate relocate call. TODO: coalesce duplicates. 908 continue; 909 } 910 911 if (RelocatedBase->getParent() != ToReplace->getParent()) { 912 // Base and derived relocates are in different basic blocks. 913 // In this case transform is only valid when base dominates derived 914 // relocate. However it would be too expensive to check dominance 915 // for each such relocate, so we skip the whole transformation. 916 continue; 917 } 918 919 Value *Base = ToReplace->getBasePtr(); 920 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 921 if (!Derived || Derived->getPointerOperand() != Base) 922 continue; 923 924 SmallVector<Value *, 2> OffsetV; 925 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 926 continue; 927 928 // Create a Builder and replace the target callsite with a gep 929 assert(RelocatedBase->getNextNode() && 930 "Should always have one since it's not a terminator"); 931 932 // Insert after RelocatedBase 933 IRBuilder<> Builder(RelocatedBase->getNextNode()); 934 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 935 936 // If gc_relocate does not match the actual type, cast it to the right type. 937 // In theory, there must be a bitcast after gc_relocate if the type does not 938 // match, and we should reuse it to get the derived pointer. But it could be 939 // cases like this: 940 // bb1: 941 // ... 942 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 943 // br label %merge 944 // 945 // bb2: 946 // ... 947 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 948 // br label %merge 949 // 950 // merge: 951 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 952 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 953 // 954 // In this case, we can not find the bitcast any more. So we insert a new bitcast 955 // no matter there is already one or not. In this way, we can handle all cases, and 956 // the extra bitcast should be optimized away in later passes. 957 Value *ActualRelocatedBase = RelocatedBase; 958 if (RelocatedBase->getType() != Base->getType()) { 959 ActualRelocatedBase = 960 Builder.CreateBitCast(RelocatedBase, Base->getType()); 961 } 962 Value *Replacement = Builder.CreateGEP( 963 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 964 Replacement->takeName(ToReplace); 965 // If the newly generated derived pointer's type does not match the original derived 966 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 967 Value *ActualReplacement = Replacement; 968 if (Replacement->getType() != ToReplace->getType()) { 969 ActualReplacement = 970 Builder.CreateBitCast(Replacement, ToReplace->getType()); 971 } 972 ToReplace->replaceAllUsesWith(ActualReplacement); 973 ToReplace->eraseFromParent(); 974 975 MadeChange = true; 976 } 977 return MadeChange; 978 } 979 980 // Turns this: 981 // 982 // %base = ... 983 // %ptr = gep %base + 15 984 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 985 // %base' = relocate(%tok, i32 4, i32 4) 986 // %ptr' = relocate(%tok, i32 4, i32 5) 987 // %val = load %ptr' 988 // 989 // into this: 990 // 991 // %base = ... 992 // %ptr = gep %base + 15 993 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 994 // %base' = gc.relocate(%tok, i32 4, i32 4) 995 // %ptr' = gep %base' + 15 996 // %val = load %ptr' 997 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 998 bool MadeChange = false; 999 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1000 1001 for (auto *U : I.users()) 1002 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1003 // Collect all the relocate calls associated with a statepoint 1004 AllRelocateCalls.push_back(Relocate); 1005 1006 // We need atleast one base pointer relocation + one derived pointer 1007 // relocation to mangle 1008 if (AllRelocateCalls.size() < 2) 1009 return false; 1010 1011 // RelocateInstMap is a mapping from the base relocate instruction to the 1012 // corresponding derived relocate instructions 1013 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1014 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1015 if (RelocateInstMap.empty()) 1016 return false; 1017 1018 for (auto &Item : RelocateInstMap) 1019 // Item.first is the RelocatedBase to offset against 1020 // Item.second is the vector of Targets to replace 1021 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1022 return MadeChange; 1023 } 1024 1025 /// SinkCast - Sink the specified cast instruction into its user blocks 1026 static bool SinkCast(CastInst *CI) { 1027 BasicBlock *DefBB = CI->getParent(); 1028 1029 /// InsertedCasts - Only insert a cast in each block once. 1030 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1031 1032 bool MadeChange = false; 1033 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1034 UI != E; ) { 1035 Use &TheUse = UI.getUse(); 1036 Instruction *User = cast<Instruction>(*UI); 1037 1038 // Figure out which BB this cast is used in. For PHI's this is the 1039 // appropriate predecessor block. 1040 BasicBlock *UserBB = User->getParent(); 1041 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1042 UserBB = PN->getIncomingBlock(TheUse); 1043 } 1044 1045 // Preincrement use iterator so we don't invalidate it. 1046 ++UI; 1047 1048 // The first insertion point of a block containing an EH pad is after the 1049 // pad. If the pad is the user, we cannot sink the cast past the pad. 1050 if (User->isEHPad()) 1051 continue; 1052 1053 // If the block selected to receive the cast is an EH pad that does not 1054 // allow non-PHI instructions before the terminator, we can't sink the 1055 // cast. 1056 if (UserBB->getTerminator()->isEHPad()) 1057 continue; 1058 1059 // If this user is in the same block as the cast, don't change the cast. 1060 if (UserBB == DefBB) continue; 1061 1062 // If we have already inserted a cast into this block, use it. 1063 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1064 1065 if (!InsertedCast) { 1066 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1067 assert(InsertPt != UserBB->end()); 1068 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1069 CI->getType(), "", &*InsertPt); 1070 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1071 } 1072 1073 // Replace a use of the cast with a use of the new cast. 1074 TheUse = InsertedCast; 1075 MadeChange = true; 1076 ++NumCastUses; 1077 } 1078 1079 // If we removed all uses, nuke the cast. 1080 if (CI->use_empty()) { 1081 salvageDebugInfo(*CI); 1082 CI->eraseFromParent(); 1083 MadeChange = true; 1084 } 1085 1086 return MadeChange; 1087 } 1088 1089 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1090 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1091 /// reduce the number of virtual registers that must be created and coalesced. 1092 /// 1093 /// Return true if any changes are made. 1094 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1095 const DataLayout &DL) { 1096 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1097 // than sinking only nop casts, but is helpful on some platforms. 1098 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1099 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), 1100 ASC->getDestAddressSpace())) 1101 return false; 1102 } 1103 1104 // If this is a noop copy, 1105 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1106 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1107 1108 // This is an fp<->int conversion? 1109 if (SrcVT.isInteger() != DstVT.isInteger()) 1110 return false; 1111 1112 // If this is an extension, it will be a zero or sign extension, which 1113 // isn't a noop. 1114 if (SrcVT.bitsLT(DstVT)) return false; 1115 1116 // If these values will be promoted, find out what they will be promoted 1117 // to. This helps us consider truncates on PPC as noop copies when they 1118 // are. 1119 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1120 TargetLowering::TypePromoteInteger) 1121 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1122 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1123 TargetLowering::TypePromoteInteger) 1124 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1125 1126 // If, after promotion, these are the same types, this is a noop copy. 1127 if (SrcVT != DstVT) 1128 return false; 1129 1130 return SinkCast(CI); 1131 } 1132 1133 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 1134 /// possible. 1135 /// 1136 /// Return true if any changes were made. 1137 static bool CombineUAddWithOverflow(CmpInst *CI) { 1138 Value *A, *B; 1139 Instruction *AddI; 1140 if (!match(CI, 1141 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 1142 return false; 1143 1144 Type *Ty = AddI->getType(); 1145 if (!isa<IntegerType>(Ty)) 1146 return false; 1147 1148 // We don't want to move around uses of condition values this late, so we we 1149 // check if it is legal to create the call to the intrinsic in the basic 1150 // block containing the icmp: 1151 1152 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 1153 return false; 1154 1155 #ifndef NDEBUG 1156 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 1157 // for now: 1158 if (AddI->hasOneUse()) 1159 assert(*AddI->user_begin() == CI && "expected!"); 1160 #endif 1161 1162 Module *M = CI->getModule(); 1163 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 1164 1165 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 1166 1167 DebugLoc Loc = CI->getDebugLoc(); 1168 auto *UAddWithOverflow = 1169 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 1170 UAddWithOverflow->setDebugLoc(Loc); 1171 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 1172 UAdd->setDebugLoc(Loc); 1173 auto *Overflow = 1174 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 1175 Overflow->setDebugLoc(Loc); 1176 1177 CI->replaceAllUsesWith(Overflow); 1178 AddI->replaceAllUsesWith(UAdd); 1179 CI->eraseFromParent(); 1180 AddI->eraseFromParent(); 1181 return true; 1182 } 1183 1184 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1185 /// registers that must be created and coalesced. This is a clear win except on 1186 /// targets with multiple condition code registers (PowerPC), where it might 1187 /// lose; some adjustment may be wanted there. 1188 /// 1189 /// Return true if any changes are made. 1190 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1191 BasicBlock *DefBB = CI->getParent(); 1192 1193 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1194 if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI)) 1195 return false; 1196 1197 // Only insert a cmp in each block once. 1198 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1199 1200 bool MadeChange = false; 1201 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1202 UI != E; ) { 1203 Use &TheUse = UI.getUse(); 1204 Instruction *User = cast<Instruction>(*UI); 1205 1206 // Preincrement use iterator so we don't invalidate it. 1207 ++UI; 1208 1209 // Don't bother for PHI nodes. 1210 if (isa<PHINode>(User)) 1211 continue; 1212 1213 // Figure out which BB this cmp is used in. 1214 BasicBlock *UserBB = User->getParent(); 1215 1216 // If this user is in the same block as the cmp, don't change the cmp. 1217 if (UserBB == DefBB) continue; 1218 1219 // If we have already inserted a cmp into this block, use it. 1220 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1221 1222 if (!InsertedCmp) { 1223 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1224 assert(InsertPt != UserBB->end()); 1225 InsertedCmp = 1226 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 1227 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 1228 // Propagate the debug info. 1229 InsertedCmp->setDebugLoc(CI->getDebugLoc()); 1230 } 1231 1232 // Replace a use of the cmp with a use of the new cmp. 1233 TheUse = InsertedCmp; 1234 MadeChange = true; 1235 ++NumCmpUses; 1236 } 1237 1238 // If we removed all uses, nuke the cmp. 1239 if (CI->use_empty()) { 1240 CI->eraseFromParent(); 1241 MadeChange = true; 1242 } 1243 1244 return MadeChange; 1245 } 1246 1247 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1248 if (SinkCmpExpression(CI, TLI)) 1249 return true; 1250 1251 if (CombineUAddWithOverflow(CI)) 1252 return true; 1253 1254 return false; 1255 } 1256 1257 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1258 /// used in a compare to allow isel to generate better code for targets where 1259 /// this operation can be combined. 1260 /// 1261 /// Return true if any changes are made. 1262 static bool sinkAndCmp0Expression(Instruction *AndI, 1263 const TargetLowering &TLI, 1264 SetOfInstrs &InsertedInsts) { 1265 // Double-check that we're not trying to optimize an instruction that was 1266 // already optimized by some other part of this pass. 1267 assert(!InsertedInsts.count(AndI) && 1268 "Attempting to optimize already optimized and instruction"); 1269 (void) InsertedInsts; 1270 1271 // Nothing to do for single use in same basic block. 1272 if (AndI->hasOneUse() && 1273 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1274 return false; 1275 1276 // Try to avoid cases where sinking/duplicating is likely to increase register 1277 // pressure. 1278 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1279 !isa<ConstantInt>(AndI->getOperand(1)) && 1280 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1281 return false; 1282 1283 for (auto *U : AndI->users()) { 1284 Instruction *User = cast<Instruction>(U); 1285 1286 // Only sink for and mask feeding icmp with 0. 1287 if (!isa<ICmpInst>(User)) 1288 return false; 1289 1290 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1291 if (!CmpC || !CmpC->isZero()) 1292 return false; 1293 } 1294 1295 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1296 return false; 1297 1298 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1299 LLVM_DEBUG(AndI->getParent()->dump()); 1300 1301 // Push the 'and' into the same block as the icmp 0. There should only be 1302 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1303 // others, so we don't need to keep track of which BBs we insert into. 1304 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1305 UI != E; ) { 1306 Use &TheUse = UI.getUse(); 1307 Instruction *User = cast<Instruction>(*UI); 1308 1309 // Preincrement use iterator so we don't invalidate it. 1310 ++UI; 1311 1312 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1313 1314 // Keep the 'and' in the same place if the use is already in the same block. 1315 Instruction *InsertPt = 1316 User->getParent() == AndI->getParent() ? AndI : User; 1317 Instruction *InsertedAnd = 1318 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1319 AndI->getOperand(1), "", InsertPt); 1320 // Propagate the debug info. 1321 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1322 1323 // Replace a use of the 'and' with a use of the new 'and'. 1324 TheUse = InsertedAnd; 1325 ++NumAndUses; 1326 LLVM_DEBUG(User->getParent()->dump()); 1327 } 1328 1329 // We removed all uses, nuke the and. 1330 AndI->eraseFromParent(); 1331 return true; 1332 } 1333 1334 /// Check if the candidates could be combined with a shift instruction, which 1335 /// includes: 1336 /// 1. Truncate instruction 1337 /// 2. And instruction and the imm is a mask of the low bits: 1338 /// imm & (imm+1) == 0 1339 static bool isExtractBitsCandidateUse(Instruction *User) { 1340 if (!isa<TruncInst>(User)) { 1341 if (User->getOpcode() != Instruction::And || 1342 !isa<ConstantInt>(User->getOperand(1))) 1343 return false; 1344 1345 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1346 1347 if ((Cimm & (Cimm + 1)).getBoolValue()) 1348 return false; 1349 } 1350 return true; 1351 } 1352 1353 /// Sink both shift and truncate instruction to the use of truncate's BB. 1354 static bool 1355 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1356 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1357 const TargetLowering &TLI, const DataLayout &DL) { 1358 BasicBlock *UserBB = User->getParent(); 1359 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1360 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1361 bool MadeChange = false; 1362 1363 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1364 TruncE = TruncI->user_end(); 1365 TruncUI != TruncE;) { 1366 1367 Use &TruncTheUse = TruncUI.getUse(); 1368 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1369 // Preincrement use iterator so we don't invalidate it. 1370 1371 ++TruncUI; 1372 1373 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1374 if (!ISDOpcode) 1375 continue; 1376 1377 // If the use is actually a legal node, there will not be an 1378 // implicit truncate. 1379 // FIXME: always querying the result type is just an 1380 // approximation; some nodes' legality is determined by the 1381 // operand or other means. There's no good way to find out though. 1382 if (TLI.isOperationLegalOrCustom( 1383 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1384 continue; 1385 1386 // Don't bother for PHI nodes. 1387 if (isa<PHINode>(TruncUser)) 1388 continue; 1389 1390 BasicBlock *TruncUserBB = TruncUser->getParent(); 1391 1392 if (UserBB == TruncUserBB) 1393 continue; 1394 1395 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1396 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1397 1398 if (!InsertedShift && !InsertedTrunc) { 1399 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1400 assert(InsertPt != TruncUserBB->end()); 1401 // Sink the shift 1402 if (ShiftI->getOpcode() == Instruction::AShr) 1403 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1404 "", &*InsertPt); 1405 else 1406 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1407 "", &*InsertPt); 1408 1409 // Sink the trunc 1410 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1411 TruncInsertPt++; 1412 assert(TruncInsertPt != TruncUserBB->end()); 1413 1414 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1415 TruncI->getType(), "", &*TruncInsertPt); 1416 1417 MadeChange = true; 1418 1419 TruncTheUse = InsertedTrunc; 1420 } 1421 } 1422 return MadeChange; 1423 } 1424 1425 /// Sink the shift *right* instruction into user blocks if the uses could 1426 /// potentially be combined with this shift instruction and generate BitExtract 1427 /// instruction. It will only be applied if the architecture supports BitExtract 1428 /// instruction. Here is an example: 1429 /// BB1: 1430 /// %x.extract.shift = lshr i64 %arg1, 32 1431 /// BB2: 1432 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1433 /// ==> 1434 /// 1435 /// BB2: 1436 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1437 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1438 /// 1439 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1440 /// instruction. 1441 /// Return true if any changes are made. 1442 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1443 const TargetLowering &TLI, 1444 const DataLayout &DL) { 1445 BasicBlock *DefBB = ShiftI->getParent(); 1446 1447 /// Only insert instructions in each block once. 1448 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1449 1450 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1451 1452 bool MadeChange = false; 1453 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1454 UI != E;) { 1455 Use &TheUse = UI.getUse(); 1456 Instruction *User = cast<Instruction>(*UI); 1457 // Preincrement use iterator so we don't invalidate it. 1458 ++UI; 1459 1460 // Don't bother for PHI nodes. 1461 if (isa<PHINode>(User)) 1462 continue; 1463 1464 if (!isExtractBitsCandidateUse(User)) 1465 continue; 1466 1467 BasicBlock *UserBB = User->getParent(); 1468 1469 if (UserBB == DefBB) { 1470 // If the shift and truncate instruction are in the same BB. The use of 1471 // the truncate(TruncUse) may still introduce another truncate if not 1472 // legal. In this case, we would like to sink both shift and truncate 1473 // instruction to the BB of TruncUse. 1474 // for example: 1475 // BB1: 1476 // i64 shift.result = lshr i64 opnd, imm 1477 // trunc.result = trunc shift.result to i16 1478 // 1479 // BB2: 1480 // ----> We will have an implicit truncate here if the architecture does 1481 // not have i16 compare. 1482 // cmp i16 trunc.result, opnd2 1483 // 1484 if (isa<TruncInst>(User) && shiftIsLegal 1485 // If the type of the truncate is legal, no truncate will be 1486 // introduced in other basic blocks. 1487 && 1488 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1489 MadeChange = 1490 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1491 1492 continue; 1493 } 1494 // If we have already inserted a shift into this block, use it. 1495 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1496 1497 if (!InsertedShift) { 1498 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1499 assert(InsertPt != UserBB->end()); 1500 1501 if (ShiftI->getOpcode() == Instruction::AShr) 1502 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1503 "", &*InsertPt); 1504 else 1505 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1506 "", &*InsertPt); 1507 1508 MadeChange = true; 1509 } 1510 1511 // Replace a use of the shift with a use of the new shift. 1512 TheUse = InsertedShift; 1513 } 1514 1515 // If we removed all uses, nuke the shift. 1516 if (ShiftI->use_empty()) 1517 ShiftI->eraseFromParent(); 1518 1519 return MadeChange; 1520 } 1521 1522 /// If counting leading or trailing zeros is an expensive operation and a zero 1523 /// input is defined, add a check for zero to avoid calling the intrinsic. 1524 /// 1525 /// We want to transform: 1526 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1527 /// 1528 /// into: 1529 /// entry: 1530 /// %cmpz = icmp eq i64 %A, 0 1531 /// br i1 %cmpz, label %cond.end, label %cond.false 1532 /// cond.false: 1533 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1534 /// br label %cond.end 1535 /// cond.end: 1536 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1537 /// 1538 /// If the transform is performed, return true and set ModifiedDT to true. 1539 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1540 const TargetLowering *TLI, 1541 const DataLayout *DL, 1542 bool &ModifiedDT) { 1543 if (!TLI || !DL) 1544 return false; 1545 1546 // If a zero input is undefined, it doesn't make sense to despeculate that. 1547 if (match(CountZeros->getOperand(1), m_One())) 1548 return false; 1549 1550 // If it's cheap to speculate, there's nothing to do. 1551 auto IntrinsicID = CountZeros->getIntrinsicID(); 1552 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1553 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1554 return false; 1555 1556 // Only handle legal scalar cases. Anything else requires too much work. 1557 Type *Ty = CountZeros->getType(); 1558 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1559 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1560 return false; 1561 1562 // The intrinsic will be sunk behind a compare against zero and branch. 1563 BasicBlock *StartBlock = CountZeros->getParent(); 1564 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1565 1566 // Create another block after the count zero intrinsic. A PHI will be added 1567 // in this block to select the result of the intrinsic or the bit-width 1568 // constant if the input to the intrinsic is zero. 1569 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1570 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1571 1572 // Set up a builder to create a compare, conditional branch, and PHI. 1573 IRBuilder<> Builder(CountZeros->getContext()); 1574 Builder.SetInsertPoint(StartBlock->getTerminator()); 1575 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1576 1577 // Replace the unconditional branch that was created by the first split with 1578 // a compare against zero and a conditional branch. 1579 Value *Zero = Constant::getNullValue(Ty); 1580 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1581 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1582 StartBlock->getTerminator()->eraseFromParent(); 1583 1584 // Create a PHI in the end block to select either the output of the intrinsic 1585 // or the bit width of the operand. 1586 Builder.SetInsertPoint(&EndBlock->front()); 1587 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1588 CountZeros->replaceAllUsesWith(PN); 1589 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1590 PN->addIncoming(BitWidth, StartBlock); 1591 PN->addIncoming(CountZeros, CallBlock); 1592 1593 // We are explicitly handling the zero case, so we can set the intrinsic's 1594 // undefined zero argument to 'true'. This will also prevent reprocessing the 1595 // intrinsic; we only despeculate when a zero input is defined. 1596 CountZeros->setArgOperand(1, Builder.getTrue()); 1597 ModifiedDT = true; 1598 return true; 1599 } 1600 1601 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1602 BasicBlock *BB = CI->getParent(); 1603 1604 // Lower inline assembly if we can. 1605 // If we found an inline asm expession, and if the target knows how to 1606 // lower it to normal LLVM code, do so now. 1607 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1608 if (TLI->ExpandInlineAsm(CI)) { 1609 // Avoid invalidating the iterator. 1610 CurInstIterator = BB->begin(); 1611 // Avoid processing instructions out of order, which could cause 1612 // reuse before a value is defined. 1613 SunkAddrs.clear(); 1614 return true; 1615 } 1616 // Sink address computing for memory operands into the block. 1617 if (optimizeInlineAsmInst(CI)) 1618 return true; 1619 } 1620 1621 // Align the pointer arguments to this call if the target thinks it's a good 1622 // idea 1623 unsigned MinSize, PrefAlign; 1624 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1625 for (auto &Arg : CI->arg_operands()) { 1626 // We want to align both objects whose address is used directly and 1627 // objects whose address is used in casts and GEPs, though it only makes 1628 // sense for GEPs if the offset is a multiple of the desired alignment and 1629 // if size - offset meets the size threshold. 1630 if (!Arg->getType()->isPointerTy()) 1631 continue; 1632 APInt Offset(DL->getIndexSizeInBits( 1633 cast<PointerType>(Arg->getType())->getAddressSpace()), 1634 0); 1635 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1636 uint64_t Offset2 = Offset.getLimitedValue(); 1637 if ((Offset2 & (PrefAlign-1)) != 0) 1638 continue; 1639 AllocaInst *AI; 1640 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1641 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1642 AI->setAlignment(PrefAlign); 1643 // Global variables can only be aligned if they are defined in this 1644 // object (i.e. they are uniquely initialized in this object), and 1645 // over-aligning global variables that have an explicit section is 1646 // forbidden. 1647 GlobalVariable *GV; 1648 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1649 GV->getPointerAlignment(*DL) < PrefAlign && 1650 DL->getTypeAllocSize(GV->getValueType()) >= 1651 MinSize + Offset2) 1652 GV->setAlignment(PrefAlign); 1653 } 1654 // If this is a memcpy (or similar) then we may be able to improve the 1655 // alignment 1656 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1657 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL); 1658 if (DestAlign > MI->getDestAlignment()) 1659 MI->setDestAlignment(DestAlign); 1660 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 1661 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 1662 if (SrcAlign > MTI->getSourceAlignment()) 1663 MTI->setSourceAlignment(SrcAlign); 1664 } 1665 } 1666 } 1667 1668 // If we have a cold call site, try to sink addressing computation into the 1669 // cold block. This interacts with our handling for loads and stores to 1670 // ensure that we can fold all uses of a potential addressing computation 1671 // into their uses. TODO: generalize this to work over profiling data 1672 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1673 for (auto &Arg : CI->arg_operands()) { 1674 if (!Arg->getType()->isPointerTy()) 1675 continue; 1676 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1677 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1678 } 1679 1680 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1681 if (II) { 1682 switch (II->getIntrinsicID()) { 1683 default: break; 1684 case Intrinsic::objectsize: { 1685 // Lower all uses of llvm.objectsize.* 1686 ConstantInt *RetVal = 1687 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 1688 // Substituting this can cause recursive simplifications, which can 1689 // invalidate our iterator. Use a WeakTrackingVH to hold onto it in case 1690 // this 1691 // happens. 1692 Value *CurValue = &*CurInstIterator; 1693 WeakTrackingVH IterHandle(CurValue); 1694 1695 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1696 1697 // If the iterator instruction was recursively deleted, start over at the 1698 // start of the block. 1699 if (IterHandle != CurValue) { 1700 CurInstIterator = BB->begin(); 1701 SunkAddrs.clear(); 1702 } 1703 return true; 1704 } 1705 case Intrinsic::aarch64_stlxr: 1706 case Intrinsic::aarch64_stxr: { 1707 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1708 if (!ExtVal || !ExtVal->hasOneUse() || 1709 ExtVal->getParent() == CI->getParent()) 1710 return false; 1711 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1712 ExtVal->moveBefore(CI); 1713 // Mark this instruction as "inserted by CGP", so that other 1714 // optimizations don't touch it. 1715 InsertedInsts.insert(ExtVal); 1716 return true; 1717 } 1718 case Intrinsic::launder_invariant_group: 1719 case Intrinsic::strip_invariant_group: 1720 II->replaceAllUsesWith(II->getArgOperand(0)); 1721 II->eraseFromParent(); 1722 return true; 1723 1724 case Intrinsic::cttz: 1725 case Intrinsic::ctlz: 1726 // If counting zeros is expensive, try to avoid it. 1727 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 1728 } 1729 1730 if (TLI) { 1731 SmallVector<Value*, 2> PtrOps; 1732 Type *AccessTy; 1733 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 1734 while (!PtrOps.empty()) { 1735 Value *PtrVal = PtrOps.pop_back_val(); 1736 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 1737 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 1738 return true; 1739 } 1740 } 1741 } 1742 1743 // From here on out we're working with named functions. 1744 if (!CI->getCalledFunction()) return false; 1745 1746 // Lower all default uses of _chk calls. This is very similar 1747 // to what InstCombineCalls does, but here we are only lowering calls 1748 // to fortified library functions (e.g. __memcpy_chk) that have the default 1749 // "don't know" as the objectsize. Anything else should be left alone. 1750 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1751 if (Value *V = Simplifier.optimizeCall(CI)) { 1752 CI->replaceAllUsesWith(V); 1753 CI->eraseFromParent(); 1754 return true; 1755 } 1756 1757 return false; 1758 } 1759 1760 /// Look for opportunities to duplicate return instructions to the predecessor 1761 /// to enable tail call optimizations. The case it is currently looking for is: 1762 /// @code 1763 /// bb0: 1764 /// %tmp0 = tail call i32 @f0() 1765 /// br label %return 1766 /// bb1: 1767 /// %tmp1 = tail call i32 @f1() 1768 /// br label %return 1769 /// bb2: 1770 /// %tmp2 = tail call i32 @f2() 1771 /// br label %return 1772 /// return: 1773 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1774 /// ret i32 %retval 1775 /// @endcode 1776 /// 1777 /// => 1778 /// 1779 /// @code 1780 /// bb0: 1781 /// %tmp0 = tail call i32 @f0() 1782 /// ret i32 %tmp0 1783 /// bb1: 1784 /// %tmp1 = tail call i32 @f1() 1785 /// ret i32 %tmp1 1786 /// bb2: 1787 /// %tmp2 = tail call i32 @f2() 1788 /// ret i32 %tmp2 1789 /// @endcode 1790 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 1791 if (!TLI) 1792 return false; 1793 1794 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 1795 if (!RetI) 1796 return false; 1797 1798 PHINode *PN = nullptr; 1799 BitCastInst *BCI = nullptr; 1800 Value *V = RetI->getReturnValue(); 1801 if (V) { 1802 BCI = dyn_cast<BitCastInst>(V); 1803 if (BCI) 1804 V = BCI->getOperand(0); 1805 1806 PN = dyn_cast<PHINode>(V); 1807 if (!PN) 1808 return false; 1809 } 1810 1811 if (PN && PN->getParent() != BB) 1812 return false; 1813 1814 // Make sure there are no instructions between the PHI and return, or that the 1815 // return is the first instruction in the block. 1816 if (PN) { 1817 BasicBlock::iterator BI = BB->begin(); 1818 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1819 if (&*BI == BCI) 1820 // Also skip over the bitcast. 1821 ++BI; 1822 if (&*BI != RetI) 1823 return false; 1824 } else { 1825 BasicBlock::iterator BI = BB->begin(); 1826 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1827 if (&*BI != RetI) 1828 return false; 1829 } 1830 1831 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1832 /// call. 1833 const Function *F = BB->getParent(); 1834 SmallVector<CallInst*, 4> TailCalls; 1835 if (PN) { 1836 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 1837 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 1838 // Make sure the phi value is indeed produced by the tail call. 1839 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 1840 TLI->mayBeEmittedAsTailCall(CI) && 1841 attributesPermitTailCall(F, CI, RetI, *TLI)) 1842 TailCalls.push_back(CI); 1843 } 1844 } else { 1845 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 1846 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 1847 if (!VisitedBBs.insert(*PI).second) 1848 continue; 1849 1850 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 1851 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 1852 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 1853 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 1854 if (RI == RE) 1855 continue; 1856 1857 CallInst *CI = dyn_cast<CallInst>(&*RI); 1858 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 1859 attributesPermitTailCall(F, CI, RetI, *TLI)) 1860 TailCalls.push_back(CI); 1861 } 1862 } 1863 1864 bool Changed = false; 1865 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1866 CallInst *CI = TailCalls[i]; 1867 CallSite CS(CI); 1868 1869 // Conservatively require the attributes of the call to match those of the 1870 // return. Ignore noalias because it doesn't affect the call sequence. 1871 AttributeList CalleeAttrs = CS.getAttributes(); 1872 if (AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 1873 .removeAttribute(Attribute::NoAlias) != 1874 AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 1875 .removeAttribute(Attribute::NoAlias)) 1876 continue; 1877 1878 // Make sure the call instruction is followed by an unconditional branch to 1879 // the return block. 1880 BasicBlock *CallBB = CI->getParent(); 1881 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 1882 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 1883 continue; 1884 1885 // Duplicate the return into CallBB. 1886 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 1887 ModifiedDT = Changed = true; 1888 ++NumRetsDup; 1889 } 1890 1891 // If we eliminated all predecessors of the block, delete the block now. 1892 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 1893 BB->eraseFromParent(); 1894 1895 return Changed; 1896 } 1897 1898 //===----------------------------------------------------------------------===// 1899 // Memory Optimization 1900 //===----------------------------------------------------------------------===// 1901 1902 namespace { 1903 1904 /// This is an extended version of TargetLowering::AddrMode 1905 /// which holds actual Value*'s for register values. 1906 struct ExtAddrMode : public TargetLowering::AddrMode { 1907 Value *BaseReg = nullptr; 1908 Value *ScaledReg = nullptr; 1909 Value *OriginalValue = nullptr; 1910 1911 enum FieldName { 1912 NoField = 0x00, 1913 BaseRegField = 0x01, 1914 BaseGVField = 0x02, 1915 BaseOffsField = 0x04, 1916 ScaledRegField = 0x08, 1917 ScaleField = 0x10, 1918 MultipleFields = 0xff 1919 }; 1920 1921 ExtAddrMode() = default; 1922 1923 void print(raw_ostream &OS) const; 1924 void dump() const; 1925 1926 FieldName compare(const ExtAddrMode &other) { 1927 // First check that the types are the same on each field, as differing types 1928 // is something we can't cope with later on. 1929 if (BaseReg && other.BaseReg && 1930 BaseReg->getType() != other.BaseReg->getType()) 1931 return MultipleFields; 1932 if (BaseGV && other.BaseGV && 1933 BaseGV->getType() != other.BaseGV->getType()) 1934 return MultipleFields; 1935 if (ScaledReg && other.ScaledReg && 1936 ScaledReg->getType() != other.ScaledReg->getType()) 1937 return MultipleFields; 1938 1939 // Check each field to see if it differs. 1940 unsigned Result = NoField; 1941 if (BaseReg != other.BaseReg) 1942 Result |= BaseRegField; 1943 if (BaseGV != other.BaseGV) 1944 Result |= BaseGVField; 1945 if (BaseOffs != other.BaseOffs) 1946 Result |= BaseOffsField; 1947 if (ScaledReg != other.ScaledReg) 1948 Result |= ScaledRegField; 1949 // Don't count 0 as being a different scale, because that actually means 1950 // unscaled (which will already be counted by having no ScaledReg). 1951 if (Scale && other.Scale && Scale != other.Scale) 1952 Result |= ScaleField; 1953 1954 if (countPopulation(Result) > 1) 1955 return MultipleFields; 1956 else 1957 return static_cast<FieldName>(Result); 1958 } 1959 1960 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 1961 // with no offset. 1962 bool isTrivial() { 1963 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 1964 // trivial if at most one of these terms is nonzero, except that BaseGV and 1965 // BaseReg both being zero actually means a null pointer value, which we 1966 // consider to be 'non-zero' here. 1967 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 1968 } 1969 1970 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 1971 switch (Field) { 1972 default: 1973 return nullptr; 1974 case BaseRegField: 1975 return BaseReg; 1976 case BaseGVField: 1977 return BaseGV; 1978 case ScaledRegField: 1979 return ScaledReg; 1980 case BaseOffsField: 1981 return ConstantInt::get(IntPtrTy, BaseOffs); 1982 } 1983 } 1984 1985 void SetCombinedField(FieldName Field, Value *V, 1986 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 1987 switch (Field) { 1988 default: 1989 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 1990 break; 1991 case ExtAddrMode::BaseRegField: 1992 BaseReg = V; 1993 break; 1994 case ExtAddrMode::BaseGVField: 1995 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 1996 // in the BaseReg field. 1997 assert(BaseReg == nullptr); 1998 BaseReg = V; 1999 BaseGV = nullptr; 2000 break; 2001 case ExtAddrMode::ScaledRegField: 2002 ScaledReg = V; 2003 // If we have a mix of scaled and unscaled addrmodes then we want scale 2004 // to be the scale and not zero. 2005 if (!Scale) 2006 for (const ExtAddrMode &AM : AddrModes) 2007 if (AM.Scale) { 2008 Scale = AM.Scale; 2009 break; 2010 } 2011 break; 2012 case ExtAddrMode::BaseOffsField: 2013 // The offset is no longer a constant, so it goes in ScaledReg with a 2014 // scale of 1. 2015 assert(ScaledReg == nullptr); 2016 ScaledReg = V; 2017 Scale = 1; 2018 BaseOffs = 0; 2019 break; 2020 } 2021 } 2022 }; 2023 2024 } // end anonymous namespace 2025 2026 #ifndef NDEBUG 2027 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2028 AM.print(OS); 2029 return OS; 2030 } 2031 #endif 2032 2033 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2034 void ExtAddrMode::print(raw_ostream &OS) const { 2035 bool NeedPlus = false; 2036 OS << "["; 2037 if (BaseGV) { 2038 OS << (NeedPlus ? " + " : "") 2039 << "GV:"; 2040 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2041 NeedPlus = true; 2042 } 2043 2044 if (BaseOffs) { 2045 OS << (NeedPlus ? " + " : "") 2046 << BaseOffs; 2047 NeedPlus = true; 2048 } 2049 2050 if (BaseReg) { 2051 OS << (NeedPlus ? " + " : "") 2052 << "Base:"; 2053 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2054 NeedPlus = true; 2055 } 2056 if (Scale) { 2057 OS << (NeedPlus ? " + " : "") 2058 << Scale << "*"; 2059 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2060 } 2061 2062 OS << ']'; 2063 } 2064 2065 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2066 print(dbgs()); 2067 dbgs() << '\n'; 2068 } 2069 #endif 2070 2071 namespace { 2072 2073 /// This class provides transaction based operation on the IR. 2074 /// Every change made through this class is recorded in the internal state and 2075 /// can be undone (rollback) until commit is called. 2076 class TypePromotionTransaction { 2077 /// This represents the common interface of the individual transaction. 2078 /// Each class implements the logic for doing one specific modification on 2079 /// the IR via the TypePromotionTransaction. 2080 class TypePromotionAction { 2081 protected: 2082 /// The Instruction modified. 2083 Instruction *Inst; 2084 2085 public: 2086 /// Constructor of the action. 2087 /// The constructor performs the related action on the IR. 2088 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2089 2090 virtual ~TypePromotionAction() = default; 2091 2092 /// Undo the modification done by this action. 2093 /// When this method is called, the IR must be in the same state as it was 2094 /// before this action was applied. 2095 /// \pre Undoing the action works if and only if the IR is in the exact same 2096 /// state as it was directly after this action was applied. 2097 virtual void undo() = 0; 2098 2099 /// Advocate every change made by this action. 2100 /// When the results on the IR of the action are to be kept, it is important 2101 /// to call this function, otherwise hidden information may be kept forever. 2102 virtual void commit() { 2103 // Nothing to be done, this action is not doing anything. 2104 } 2105 }; 2106 2107 /// Utility to remember the position of an instruction. 2108 class InsertionHandler { 2109 /// Position of an instruction. 2110 /// Either an instruction: 2111 /// - Is the first in a basic block: BB is used. 2112 /// - Has a previous instruction: PrevInst is used. 2113 union { 2114 Instruction *PrevInst; 2115 BasicBlock *BB; 2116 } Point; 2117 2118 /// Remember whether or not the instruction had a previous instruction. 2119 bool HasPrevInstruction; 2120 2121 public: 2122 /// Record the position of \p Inst. 2123 InsertionHandler(Instruction *Inst) { 2124 BasicBlock::iterator It = Inst->getIterator(); 2125 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2126 if (HasPrevInstruction) 2127 Point.PrevInst = &*--It; 2128 else 2129 Point.BB = Inst->getParent(); 2130 } 2131 2132 /// Insert \p Inst at the recorded position. 2133 void insert(Instruction *Inst) { 2134 if (HasPrevInstruction) { 2135 if (Inst->getParent()) 2136 Inst->removeFromParent(); 2137 Inst->insertAfter(Point.PrevInst); 2138 } else { 2139 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2140 if (Inst->getParent()) 2141 Inst->moveBefore(Position); 2142 else 2143 Inst->insertBefore(Position); 2144 } 2145 } 2146 }; 2147 2148 /// Move an instruction before another. 2149 class InstructionMoveBefore : public TypePromotionAction { 2150 /// Original position of the instruction. 2151 InsertionHandler Position; 2152 2153 public: 2154 /// Move \p Inst before \p Before. 2155 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2156 : TypePromotionAction(Inst), Position(Inst) { 2157 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2158 << "\n"); 2159 Inst->moveBefore(Before); 2160 } 2161 2162 /// Move the instruction back to its original position. 2163 void undo() override { 2164 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2165 Position.insert(Inst); 2166 } 2167 }; 2168 2169 /// Set the operand of an instruction with a new value. 2170 class OperandSetter : public TypePromotionAction { 2171 /// Original operand of the instruction. 2172 Value *Origin; 2173 2174 /// Index of the modified instruction. 2175 unsigned Idx; 2176 2177 public: 2178 /// Set \p Idx operand of \p Inst with \p NewVal. 2179 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2180 : TypePromotionAction(Inst), Idx(Idx) { 2181 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2182 << "for:" << *Inst << "\n" 2183 << "with:" << *NewVal << "\n"); 2184 Origin = Inst->getOperand(Idx); 2185 Inst->setOperand(Idx, NewVal); 2186 } 2187 2188 /// Restore the original value of the instruction. 2189 void undo() override { 2190 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2191 << "for: " << *Inst << "\n" 2192 << "with: " << *Origin << "\n"); 2193 Inst->setOperand(Idx, Origin); 2194 } 2195 }; 2196 2197 /// Hide the operands of an instruction. 2198 /// Do as if this instruction was not using any of its operands. 2199 class OperandsHider : public TypePromotionAction { 2200 /// The list of original operands. 2201 SmallVector<Value *, 4> OriginalValues; 2202 2203 public: 2204 /// Remove \p Inst from the uses of the operands of \p Inst. 2205 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2206 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2207 unsigned NumOpnds = Inst->getNumOperands(); 2208 OriginalValues.reserve(NumOpnds); 2209 for (unsigned It = 0; It < NumOpnds; ++It) { 2210 // Save the current operand. 2211 Value *Val = Inst->getOperand(It); 2212 OriginalValues.push_back(Val); 2213 // Set a dummy one. 2214 // We could use OperandSetter here, but that would imply an overhead 2215 // that we are not willing to pay. 2216 Inst->setOperand(It, UndefValue::get(Val->getType())); 2217 } 2218 } 2219 2220 /// Restore the original list of uses. 2221 void undo() override { 2222 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2223 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2224 Inst->setOperand(It, OriginalValues[It]); 2225 } 2226 }; 2227 2228 /// Build a truncate instruction. 2229 class TruncBuilder : public TypePromotionAction { 2230 Value *Val; 2231 2232 public: 2233 /// Build a truncate instruction of \p Opnd producing a \p Ty 2234 /// result. 2235 /// trunc Opnd to Ty. 2236 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2237 IRBuilder<> Builder(Opnd); 2238 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2239 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2240 } 2241 2242 /// Get the built value. 2243 Value *getBuiltValue() { return Val; } 2244 2245 /// Remove the built instruction. 2246 void undo() override { 2247 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2248 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2249 IVal->eraseFromParent(); 2250 } 2251 }; 2252 2253 /// Build a sign extension instruction. 2254 class SExtBuilder : public TypePromotionAction { 2255 Value *Val; 2256 2257 public: 2258 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2259 /// result. 2260 /// sext Opnd to Ty. 2261 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2262 : TypePromotionAction(InsertPt) { 2263 IRBuilder<> Builder(InsertPt); 2264 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2265 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2266 } 2267 2268 /// Get the built value. 2269 Value *getBuiltValue() { return Val; } 2270 2271 /// Remove the built instruction. 2272 void undo() override { 2273 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2274 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2275 IVal->eraseFromParent(); 2276 } 2277 }; 2278 2279 /// Build a zero extension instruction. 2280 class ZExtBuilder : public TypePromotionAction { 2281 Value *Val; 2282 2283 public: 2284 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2285 /// result. 2286 /// zext Opnd to Ty. 2287 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2288 : TypePromotionAction(InsertPt) { 2289 IRBuilder<> Builder(InsertPt); 2290 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2291 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2292 } 2293 2294 /// Get the built value. 2295 Value *getBuiltValue() { return Val; } 2296 2297 /// Remove the built instruction. 2298 void undo() override { 2299 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2300 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2301 IVal->eraseFromParent(); 2302 } 2303 }; 2304 2305 /// Mutate an instruction to another type. 2306 class TypeMutator : public TypePromotionAction { 2307 /// Record the original type. 2308 Type *OrigTy; 2309 2310 public: 2311 /// Mutate the type of \p Inst into \p NewTy. 2312 TypeMutator(Instruction *Inst, Type *NewTy) 2313 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2314 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2315 << "\n"); 2316 Inst->mutateType(NewTy); 2317 } 2318 2319 /// Mutate the instruction back to its original type. 2320 void undo() override { 2321 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2322 << "\n"); 2323 Inst->mutateType(OrigTy); 2324 } 2325 }; 2326 2327 /// Replace the uses of an instruction by another instruction. 2328 class UsesReplacer : public TypePromotionAction { 2329 /// Helper structure to keep track of the replaced uses. 2330 struct InstructionAndIdx { 2331 /// The instruction using the instruction. 2332 Instruction *Inst; 2333 2334 /// The index where this instruction is used for Inst. 2335 unsigned Idx; 2336 2337 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2338 : Inst(Inst), Idx(Idx) {} 2339 }; 2340 2341 /// Keep track of the original uses (pair Instruction, Index). 2342 SmallVector<InstructionAndIdx, 4> OriginalUses; 2343 2344 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2345 2346 public: 2347 /// Replace all the use of \p Inst by \p New. 2348 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2349 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2350 << "\n"); 2351 // Record the original uses. 2352 for (Use &U : Inst->uses()) { 2353 Instruction *UserI = cast<Instruction>(U.getUser()); 2354 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2355 } 2356 // Now, we can replace the uses. 2357 Inst->replaceAllUsesWith(New); 2358 } 2359 2360 /// Reassign the original uses of Inst to Inst. 2361 void undo() override { 2362 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2363 for (use_iterator UseIt = OriginalUses.begin(), 2364 EndIt = OriginalUses.end(); 2365 UseIt != EndIt; ++UseIt) { 2366 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2367 } 2368 } 2369 }; 2370 2371 /// Remove an instruction from the IR. 2372 class InstructionRemover : public TypePromotionAction { 2373 /// Original position of the instruction. 2374 InsertionHandler Inserter; 2375 2376 /// Helper structure to hide all the link to the instruction. In other 2377 /// words, this helps to do as if the instruction was removed. 2378 OperandsHider Hider; 2379 2380 /// Keep track of the uses replaced, if any. 2381 UsesReplacer *Replacer = nullptr; 2382 2383 /// Keep track of instructions removed. 2384 SetOfInstrs &RemovedInsts; 2385 2386 public: 2387 /// Remove all reference of \p Inst and optionally replace all its 2388 /// uses with New. 2389 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2390 /// \pre If !Inst->use_empty(), then New != nullptr 2391 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2392 Value *New = nullptr) 2393 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2394 RemovedInsts(RemovedInsts) { 2395 if (New) 2396 Replacer = new UsesReplacer(Inst, New); 2397 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2398 RemovedInsts.insert(Inst); 2399 /// The instructions removed here will be freed after completing 2400 /// optimizeBlock() for all blocks as we need to keep track of the 2401 /// removed instructions during promotion. 2402 Inst->removeFromParent(); 2403 } 2404 2405 ~InstructionRemover() override { delete Replacer; } 2406 2407 /// Resurrect the instruction and reassign it to the proper uses if 2408 /// new value was provided when build this action. 2409 void undo() override { 2410 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2411 Inserter.insert(Inst); 2412 if (Replacer) 2413 Replacer->undo(); 2414 Hider.undo(); 2415 RemovedInsts.erase(Inst); 2416 } 2417 }; 2418 2419 public: 2420 /// Restoration point. 2421 /// The restoration point is a pointer to an action instead of an iterator 2422 /// because the iterator may be invalidated but not the pointer. 2423 using ConstRestorationPt = const TypePromotionAction *; 2424 2425 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2426 : RemovedInsts(RemovedInsts) {} 2427 2428 /// Advocate every changes made in that transaction. 2429 void commit(); 2430 2431 /// Undo all the changes made after the given point. 2432 void rollback(ConstRestorationPt Point); 2433 2434 /// Get the current restoration point. 2435 ConstRestorationPt getRestorationPoint() const; 2436 2437 /// \name API for IR modification with state keeping to support rollback. 2438 /// @{ 2439 /// Same as Instruction::setOperand. 2440 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2441 2442 /// Same as Instruction::eraseFromParent. 2443 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2444 2445 /// Same as Value::replaceAllUsesWith. 2446 void replaceAllUsesWith(Instruction *Inst, Value *New); 2447 2448 /// Same as Value::mutateType. 2449 void mutateType(Instruction *Inst, Type *NewTy); 2450 2451 /// Same as IRBuilder::createTrunc. 2452 Value *createTrunc(Instruction *Opnd, Type *Ty); 2453 2454 /// Same as IRBuilder::createSExt. 2455 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2456 2457 /// Same as IRBuilder::createZExt. 2458 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2459 2460 /// Same as Instruction::moveBefore. 2461 void moveBefore(Instruction *Inst, Instruction *Before); 2462 /// @} 2463 2464 private: 2465 /// The ordered list of actions made so far. 2466 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2467 2468 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2469 2470 SetOfInstrs &RemovedInsts; 2471 }; 2472 2473 } // end anonymous namespace 2474 2475 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2476 Value *NewVal) { 2477 Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>( 2478 Inst, Idx, NewVal)); 2479 } 2480 2481 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2482 Value *NewVal) { 2483 Actions.push_back( 2484 llvm::make_unique<TypePromotionTransaction::InstructionRemover>( 2485 Inst, RemovedInsts, NewVal)); 2486 } 2487 2488 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2489 Value *New) { 2490 Actions.push_back( 2491 llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2492 } 2493 2494 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2495 Actions.push_back( 2496 llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2497 } 2498 2499 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2500 Type *Ty) { 2501 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2502 Value *Val = Ptr->getBuiltValue(); 2503 Actions.push_back(std::move(Ptr)); 2504 return Val; 2505 } 2506 2507 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2508 Value *Opnd, Type *Ty) { 2509 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2510 Value *Val = Ptr->getBuiltValue(); 2511 Actions.push_back(std::move(Ptr)); 2512 return Val; 2513 } 2514 2515 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2516 Value *Opnd, Type *Ty) { 2517 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2518 Value *Val = Ptr->getBuiltValue(); 2519 Actions.push_back(std::move(Ptr)); 2520 return Val; 2521 } 2522 2523 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2524 Instruction *Before) { 2525 Actions.push_back( 2526 llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2527 Inst, Before)); 2528 } 2529 2530 TypePromotionTransaction::ConstRestorationPt 2531 TypePromotionTransaction::getRestorationPoint() const { 2532 return !Actions.empty() ? Actions.back().get() : nullptr; 2533 } 2534 2535 void TypePromotionTransaction::commit() { 2536 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2537 ++It) 2538 (*It)->commit(); 2539 Actions.clear(); 2540 } 2541 2542 void TypePromotionTransaction::rollback( 2543 TypePromotionTransaction::ConstRestorationPt Point) { 2544 while (!Actions.empty() && Point != Actions.back().get()) { 2545 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2546 Curr->undo(); 2547 } 2548 } 2549 2550 namespace { 2551 2552 /// A helper class for matching addressing modes. 2553 /// 2554 /// This encapsulates the logic for matching the target-legal addressing modes. 2555 class AddressingModeMatcher { 2556 SmallVectorImpl<Instruction*> &AddrModeInsts; 2557 const TargetLowering &TLI; 2558 const TargetRegisterInfo &TRI; 2559 const DataLayout &DL; 2560 2561 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2562 /// the memory instruction that we're computing this address for. 2563 Type *AccessTy; 2564 unsigned AddrSpace; 2565 Instruction *MemoryInst; 2566 2567 /// This is the addressing mode that we're building up. This is 2568 /// part of the return value of this addressing mode matching stuff. 2569 ExtAddrMode &AddrMode; 2570 2571 /// The instructions inserted by other CodeGenPrepare optimizations. 2572 const SetOfInstrs &InsertedInsts; 2573 2574 /// A map from the instructions to their type before promotion. 2575 InstrToOrigTy &PromotedInsts; 2576 2577 /// The ongoing transaction where every action should be registered. 2578 TypePromotionTransaction &TPT; 2579 2580 // A GEP which has too large offset to be folded into the addressing mode. 2581 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 2582 2583 /// This is set to true when we should not do profitability checks. 2584 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2585 bool IgnoreProfitability; 2586 2587 AddressingModeMatcher( 2588 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 2589 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 2590 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 2591 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 2592 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) 2593 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2594 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2595 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2596 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) { 2597 IgnoreProfitability = false; 2598 } 2599 2600 public: 2601 /// Find the maximal addressing mode that a load/store of V can fold, 2602 /// give an access type of AccessTy. This returns a list of involved 2603 /// instructions in AddrModeInsts. 2604 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2605 /// optimizations. 2606 /// \p PromotedInsts maps the instructions to their type before promotion. 2607 /// \p The ongoing transaction where every action should be registered. 2608 static ExtAddrMode 2609 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 2610 SmallVectorImpl<Instruction *> &AddrModeInsts, 2611 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 2612 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 2613 TypePromotionTransaction &TPT, 2614 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) { 2615 ExtAddrMode Result; 2616 2617 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 2618 MemoryInst, Result, InsertedInsts, 2619 PromotedInsts, TPT, LargeOffsetGEP) 2620 .matchAddr(V, 0); 2621 (void)Success; assert(Success && "Couldn't select *anything*?"); 2622 return Result; 2623 } 2624 2625 private: 2626 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2627 bool matchAddr(Value *Addr, unsigned Depth); 2628 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 2629 bool *MovedAway = nullptr); 2630 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2631 ExtAddrMode &AMBefore, 2632 ExtAddrMode &AMAfter); 2633 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2634 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2635 Value *PromotedOperand) const; 2636 }; 2637 2638 /// Keep track of simplification of Phi nodes. 2639 /// Accept the set of all phi nodes and erase phi node from this set 2640 /// if it is simplified. 2641 class SimplificationTracker { 2642 DenseMap<Value *, Value *> Storage; 2643 const SimplifyQuery &SQ; 2644 // Tracks newly created Phi nodes. We use a SetVector to get deterministic 2645 // order when iterating over the set in MatchPhiSet. 2646 SmallSetVector<PHINode *, 32> AllPhiNodes; 2647 // Tracks newly created Select nodes. 2648 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 2649 2650 public: 2651 SimplificationTracker(const SimplifyQuery &sq) 2652 : SQ(sq) {} 2653 2654 Value *Get(Value *V) { 2655 do { 2656 auto SV = Storage.find(V); 2657 if (SV == Storage.end()) 2658 return V; 2659 V = SV->second; 2660 } while (true); 2661 } 2662 2663 Value *Simplify(Value *Val) { 2664 SmallVector<Value *, 32> WorkList; 2665 SmallPtrSet<Value *, 32> Visited; 2666 WorkList.push_back(Val); 2667 while (!WorkList.empty()) { 2668 auto P = WorkList.pop_back_val(); 2669 if (!Visited.insert(P).second) 2670 continue; 2671 if (auto *PI = dyn_cast<Instruction>(P)) 2672 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 2673 for (auto *U : PI->users()) 2674 WorkList.push_back(cast<Value>(U)); 2675 Put(PI, V); 2676 PI->replaceAllUsesWith(V); 2677 if (auto *PHI = dyn_cast<PHINode>(PI)) 2678 AllPhiNodes.remove(PHI); 2679 if (auto *Select = dyn_cast<SelectInst>(PI)) 2680 AllSelectNodes.erase(Select); 2681 PI->eraseFromParent(); 2682 } 2683 } 2684 return Get(Val); 2685 } 2686 2687 void Put(Value *From, Value *To) { 2688 Storage.insert({ From, To }); 2689 } 2690 2691 void ReplacePhi(PHINode *From, PHINode *To) { 2692 Value* OldReplacement = Get(From); 2693 while (OldReplacement != From) { 2694 From = To; 2695 To = dyn_cast<PHINode>(OldReplacement); 2696 OldReplacement = Get(From); 2697 } 2698 assert(Get(To) == To && "Replacement PHI node is already replaced."); 2699 Put(From, To); 2700 From->replaceAllUsesWith(To); 2701 AllPhiNodes.remove(From); 2702 From->eraseFromParent(); 2703 } 2704 2705 SmallSetVector<PHINode *, 32>& newPhiNodes() { return AllPhiNodes; } 2706 2707 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 2708 2709 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 2710 2711 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 2712 2713 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 2714 2715 void destroyNewNodes(Type *CommonType) { 2716 // For safe erasing, replace the uses with dummy value first. 2717 auto Dummy = UndefValue::get(CommonType); 2718 for (auto I : AllPhiNodes) { 2719 I->replaceAllUsesWith(Dummy); 2720 I->eraseFromParent(); 2721 } 2722 AllPhiNodes.clear(); 2723 for (auto I : AllSelectNodes) { 2724 I->replaceAllUsesWith(Dummy); 2725 I->eraseFromParent(); 2726 } 2727 AllSelectNodes.clear(); 2728 } 2729 }; 2730 2731 /// A helper class for combining addressing modes. 2732 class AddressingModeCombiner { 2733 typedef std::pair<Value *, BasicBlock *> ValueInBB; 2734 typedef DenseMap<ValueInBB, Value *> FoldAddrToValueMapping; 2735 typedef std::pair<PHINode *, PHINode *> PHIPair; 2736 2737 private: 2738 /// The addressing modes we've collected. 2739 SmallVector<ExtAddrMode, 16> AddrModes; 2740 2741 /// The field in which the AddrModes differ, when we have more than one. 2742 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 2743 2744 /// Are the AddrModes that we have all just equal to their original values? 2745 bool AllAddrModesTrivial = true; 2746 2747 /// Common Type for all different fields in addressing modes. 2748 Type *CommonType; 2749 2750 /// SimplifyQuery for simplifyInstruction utility. 2751 const SimplifyQuery &SQ; 2752 2753 /// Original Address. 2754 ValueInBB Original; 2755 2756 public: 2757 AddressingModeCombiner(const SimplifyQuery &_SQ, ValueInBB OriginalValue) 2758 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 2759 2760 /// Get the combined AddrMode 2761 const ExtAddrMode &getAddrMode() const { 2762 return AddrModes[0]; 2763 } 2764 2765 /// Add a new AddrMode if it's compatible with the AddrModes we already 2766 /// have. 2767 /// \return True iff we succeeded in doing so. 2768 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 2769 // Take note of if we have any non-trivial AddrModes, as we need to detect 2770 // when all AddrModes are trivial as then we would introduce a phi or select 2771 // which just duplicates what's already there. 2772 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 2773 2774 // If this is the first addrmode then everything is fine. 2775 if (AddrModes.empty()) { 2776 AddrModes.emplace_back(NewAddrMode); 2777 return true; 2778 } 2779 2780 // Figure out how different this is from the other address modes, which we 2781 // can do just by comparing against the first one given that we only care 2782 // about the cumulative difference. 2783 ExtAddrMode::FieldName ThisDifferentField = 2784 AddrModes[0].compare(NewAddrMode); 2785 if (DifferentField == ExtAddrMode::NoField) 2786 DifferentField = ThisDifferentField; 2787 else if (DifferentField != ThisDifferentField) 2788 DifferentField = ExtAddrMode::MultipleFields; 2789 2790 // If NewAddrMode differs in more than one dimension we cannot handle it. 2791 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 2792 2793 // If Scale Field is different then we reject. 2794 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 2795 2796 // We also must reject the case when base offset is different and 2797 // scale reg is not null, we cannot handle this case due to merge of 2798 // different offsets will be used as ScaleReg. 2799 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 2800 !NewAddrMode.ScaledReg); 2801 2802 // We also must reject the case when GV is different and BaseReg installed 2803 // due to we want to use base reg as a merge of GV values. 2804 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 2805 !NewAddrMode.HasBaseReg); 2806 2807 // Even if NewAddMode is the same we still need to collect it due to 2808 // original value is different. And later we will need all original values 2809 // as anchors during finding the common Phi node. 2810 if (CanHandle) 2811 AddrModes.emplace_back(NewAddrMode); 2812 else 2813 AddrModes.clear(); 2814 2815 return CanHandle; 2816 } 2817 2818 /// Combine the addressing modes we've collected into a single 2819 /// addressing mode. 2820 /// \return True iff we successfully combined them or we only had one so 2821 /// didn't need to combine them anyway. 2822 bool combineAddrModes() { 2823 // If we have no AddrModes then they can't be combined. 2824 if (AddrModes.size() == 0) 2825 return false; 2826 2827 // A single AddrMode can trivially be combined. 2828 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 2829 return true; 2830 2831 // If the AddrModes we collected are all just equal to the value they are 2832 // derived from then combining them wouldn't do anything useful. 2833 if (AllAddrModesTrivial) 2834 return false; 2835 2836 if (!addrModeCombiningAllowed()) 2837 return false; 2838 2839 // Build a map between <original value, basic block where we saw it> to 2840 // value of base register. 2841 // Bail out if there is no common type. 2842 FoldAddrToValueMapping Map; 2843 if (!initializeMap(Map)) 2844 return false; 2845 2846 Value *CommonValue = findCommon(Map); 2847 if (CommonValue) 2848 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 2849 return CommonValue != nullptr; 2850 } 2851 2852 private: 2853 /// Initialize Map with anchor values. For address seen in some BB 2854 /// we set the value of different field saw in this address. 2855 /// If address is not an instruction than basic block is set to null. 2856 /// At the same time we find a common type for different field we will 2857 /// use to create new Phi/Select nodes. Keep it in CommonType field. 2858 /// Return false if there is no common type found. 2859 bool initializeMap(FoldAddrToValueMapping &Map) { 2860 // Keep track of keys where the value is null. We will need to replace it 2861 // with constant null when we know the common type. 2862 SmallVector<ValueInBB, 2> NullValue; 2863 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 2864 for (auto &AM : AddrModes) { 2865 BasicBlock *BB = nullptr; 2866 if (Instruction *I = dyn_cast<Instruction>(AM.OriginalValue)) 2867 BB = I->getParent(); 2868 2869 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 2870 if (DV) { 2871 auto *Type = DV->getType(); 2872 if (CommonType && CommonType != Type) 2873 return false; 2874 CommonType = Type; 2875 Map[{ AM.OriginalValue, BB }] = DV; 2876 } else { 2877 NullValue.push_back({ AM.OriginalValue, BB }); 2878 } 2879 } 2880 assert(CommonType && "At least one non-null value must be!"); 2881 for (auto VIBB : NullValue) 2882 Map[VIBB] = Constant::getNullValue(CommonType); 2883 return true; 2884 } 2885 2886 /// We have mapping between value A and basic block where value A 2887 /// seen to other value B where B was a field in addressing mode represented 2888 /// by A. Also we have an original value C representing an address in some 2889 /// basic block. Traversing from C through phi and selects we ended up with 2890 /// A's in a map. This utility function tries to find a value V which is a 2891 /// field in addressing mode C and traversing through phi nodes and selects 2892 /// we will end up in corresponded values B in a map. 2893 /// The utility will create a new Phi/Selects if needed. 2894 // The simple example looks as follows: 2895 // BB1: 2896 // p1 = b1 + 40 2897 // br cond BB2, BB3 2898 // BB2: 2899 // p2 = b2 + 40 2900 // br BB3 2901 // BB3: 2902 // p = phi [p1, BB1], [p2, BB2] 2903 // v = load p 2904 // Map is 2905 // <p1, BB1> -> b1 2906 // <p2, BB2> -> b2 2907 // Request is 2908 // <p, BB3> -> ? 2909 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3 2910 Value *findCommon(FoldAddrToValueMapping &Map) { 2911 // Tracks the simplification of newly created phi nodes. The reason we use 2912 // this mapping is because we will add new created Phi nodes in AddrToBase. 2913 // Simplification of Phi nodes is recursive, so some Phi node may 2914 // be simplified after we added it to AddrToBase. 2915 // Using this mapping we can find the current value in AddrToBase. 2916 SimplificationTracker ST(SQ); 2917 2918 // First step, DFS to create PHI nodes for all intermediate blocks. 2919 // Also fill traverse order for the second step. 2920 SmallVector<ValueInBB, 32> TraverseOrder; 2921 InsertPlaceholders(Map, TraverseOrder, ST); 2922 2923 // Second Step, fill new nodes by merged values and simplify if possible. 2924 FillPlaceholders(Map, TraverseOrder, ST); 2925 2926 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 2927 ST.destroyNewNodes(CommonType); 2928 return nullptr; 2929 } 2930 2931 // Now we'd like to match New Phi nodes to existed ones. 2932 unsigned PhiNotMatchedCount = 0; 2933 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 2934 ST.destroyNewNodes(CommonType); 2935 return nullptr; 2936 } 2937 2938 auto *Result = ST.Get(Map.find(Original)->second); 2939 if (Result) { 2940 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 2941 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 2942 } 2943 return Result; 2944 } 2945 2946 /// Try to match PHI node to Candidate. 2947 /// Matcher tracks the matched Phi nodes. 2948 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 2949 SmallSetVector<PHIPair, 8> &Matcher, 2950 SmallSetVector<PHINode *, 32> &PhiNodesToMatch) { 2951 SmallVector<PHIPair, 8> WorkList; 2952 Matcher.insert({ PHI, Candidate }); 2953 WorkList.push_back({ PHI, Candidate }); 2954 SmallSet<PHIPair, 8> Visited; 2955 while (!WorkList.empty()) { 2956 auto Item = WorkList.pop_back_val(); 2957 if (!Visited.insert(Item).second) 2958 continue; 2959 // We iterate over all incoming values to Phi to compare them. 2960 // If values are different and both of them Phi and the first one is a 2961 // Phi we added (subject to match) and both of them is in the same basic 2962 // block then we can match our pair if values match. So we state that 2963 // these values match and add it to work list to verify that. 2964 for (auto B : Item.first->blocks()) { 2965 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 2966 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 2967 if (FirstValue == SecondValue) 2968 continue; 2969 2970 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 2971 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 2972 2973 // One of them is not Phi or 2974 // The first one is not Phi node from the set we'd like to match or 2975 // Phi nodes from different basic blocks then 2976 // we will not be able to match. 2977 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 2978 FirstPhi->getParent() != SecondPhi->getParent()) 2979 return false; 2980 2981 // If we already matched them then continue. 2982 if (Matcher.count({ FirstPhi, SecondPhi })) 2983 continue; 2984 // So the values are different and does not match. So we need them to 2985 // match. 2986 Matcher.insert({ FirstPhi, SecondPhi }); 2987 // But me must check it. 2988 WorkList.push_back({ FirstPhi, SecondPhi }); 2989 } 2990 } 2991 return true; 2992 } 2993 2994 /// For the given set of PHI nodes (in the SimplificationTracker) try 2995 /// to find their equivalents. 2996 /// Returns false if this matching fails and creation of new Phi is disabled. 2997 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 2998 unsigned &PhiNotMatchedCount) { 2999 // Use a SetVector for Matched to make sure we do replacements (ReplacePhi) 3000 // in a deterministic order below. 3001 SmallSetVector<PHIPair, 8> Matched; 3002 SmallPtrSet<PHINode *, 8> WillNotMatch; 3003 SmallSetVector<PHINode *, 32> &PhiNodesToMatch = ST.newPhiNodes(); 3004 while (PhiNodesToMatch.size()) { 3005 PHINode *PHI = *PhiNodesToMatch.begin(); 3006 3007 // Add us, if no Phi nodes in the basic block we do not match. 3008 WillNotMatch.clear(); 3009 WillNotMatch.insert(PHI); 3010 3011 // Traverse all Phis until we found equivalent or fail to do that. 3012 bool IsMatched = false; 3013 for (auto &P : PHI->getParent()->phis()) { 3014 if (&P == PHI) 3015 continue; 3016 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3017 break; 3018 // If it does not match, collect all Phi nodes from matcher. 3019 // if we end up with no match, them all these Phi nodes will not match 3020 // later. 3021 for (auto M : Matched) 3022 WillNotMatch.insert(M.first); 3023 Matched.clear(); 3024 } 3025 if (IsMatched) { 3026 // Replace all matched values and erase them. 3027 for (auto MV : Matched) 3028 ST.ReplacePhi(MV.first, MV.second); 3029 Matched.clear(); 3030 continue; 3031 } 3032 // If we are not allowed to create new nodes then bail out. 3033 if (!AllowNewPhiNodes) 3034 return false; 3035 // Just remove all seen values in matcher. They will not match anything. 3036 PhiNotMatchedCount += WillNotMatch.size(); 3037 for (auto *P : WillNotMatch) 3038 PhiNodesToMatch.remove(P); 3039 } 3040 return true; 3041 } 3042 /// Fill the placeholder with values from predecessors and simplify it. 3043 void FillPlaceholders(FoldAddrToValueMapping &Map, 3044 SmallVectorImpl<ValueInBB> &TraverseOrder, 3045 SimplificationTracker &ST) { 3046 while (!TraverseOrder.empty()) { 3047 auto Current = TraverseOrder.pop_back_val(); 3048 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3049 Value *CurrentValue = Current.first; 3050 BasicBlock *CurrentBlock = Current.second; 3051 Value *V = Map[Current]; 3052 3053 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3054 // CurrentValue also must be Select. 3055 auto *CurrentSelect = cast<SelectInst>(CurrentValue); 3056 auto *TrueValue = CurrentSelect->getTrueValue(); 3057 ValueInBB TrueItem = { TrueValue, isa<Instruction>(TrueValue) 3058 ? CurrentBlock 3059 : nullptr }; 3060 assert(Map.find(TrueItem) != Map.end() && "No True Value!"); 3061 Select->setTrueValue(ST.Get(Map[TrueItem])); 3062 auto *FalseValue = CurrentSelect->getFalseValue(); 3063 ValueInBB FalseItem = { FalseValue, isa<Instruction>(FalseValue) 3064 ? CurrentBlock 3065 : nullptr }; 3066 assert(Map.find(FalseItem) != Map.end() && "No False Value!"); 3067 Select->setFalseValue(ST.Get(Map[FalseItem])); 3068 } else { 3069 // Must be a Phi node then. 3070 PHINode *PHI = cast<PHINode>(V); 3071 // Fill the Phi node with values from predecessors. 3072 bool IsDefinedInThisBB = 3073 cast<Instruction>(CurrentValue)->getParent() == CurrentBlock; 3074 auto *CurrentPhi = dyn_cast<PHINode>(CurrentValue); 3075 for (auto B : predecessors(CurrentBlock)) { 3076 Value *PV = IsDefinedInThisBB 3077 ? CurrentPhi->getIncomingValueForBlock(B) 3078 : CurrentValue; 3079 ValueInBB item = { PV, isa<Instruction>(PV) ? B : nullptr }; 3080 assert(Map.find(item) != Map.end() && "No predecessor Value!"); 3081 PHI->addIncoming(ST.Get(Map[item]), B); 3082 } 3083 } 3084 // Simplify if possible. 3085 Map[Current] = ST.Simplify(V); 3086 } 3087 } 3088 3089 /// Starting from value recursively iterates over predecessors up to known 3090 /// ending values represented in a map. For each traversed block inserts 3091 /// a placeholder Phi or Select. 3092 /// Reports all new created Phi/Select nodes by adding them to set. 3093 /// Also reports and order in what basic blocks have been traversed. 3094 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3095 SmallVectorImpl<ValueInBB> &TraverseOrder, 3096 SimplificationTracker &ST) { 3097 SmallVector<ValueInBB, 32> Worklist; 3098 assert((isa<PHINode>(Original.first) || isa<SelectInst>(Original.first)) && 3099 "Address must be a Phi or Select node"); 3100 auto *Dummy = UndefValue::get(CommonType); 3101 Worklist.push_back(Original); 3102 while (!Worklist.empty()) { 3103 auto Current = Worklist.pop_back_val(); 3104 // If value is not an instruction it is something global, constant, 3105 // parameter and we can say that this value is observable in any block. 3106 // Set block to null to denote it. 3107 // Also please take into account that it is how we build anchors. 3108 if (!isa<Instruction>(Current.first)) 3109 Current.second = nullptr; 3110 // if it is already visited or it is an ending value then skip it. 3111 if (Map.find(Current) != Map.end()) 3112 continue; 3113 TraverseOrder.push_back(Current); 3114 3115 Value *CurrentValue = Current.first; 3116 BasicBlock *CurrentBlock = Current.second; 3117 // CurrentValue must be a Phi node or select. All others must be covered 3118 // by anchors. 3119 Instruction *CurrentI = cast<Instruction>(CurrentValue); 3120 bool IsDefinedInThisBB = CurrentI->getParent() == CurrentBlock; 3121 3122 unsigned PredCount = pred_size(CurrentBlock); 3123 // if Current Value is not defined in this basic block we are interested 3124 // in values in predecessors. 3125 if (!IsDefinedInThisBB) { 3126 assert(PredCount && "Unreachable block?!"); 3127 PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi", 3128 &CurrentBlock->front()); 3129 Map[Current] = PHI; 3130 ST.insertNewPhi(PHI); 3131 // Add all predecessors in work list. 3132 for (auto B : predecessors(CurrentBlock)) 3133 Worklist.push_back({ CurrentValue, B }); 3134 continue; 3135 } 3136 // Value is defined in this basic block. 3137 if (SelectInst *OrigSelect = dyn_cast<SelectInst>(CurrentI)) { 3138 // Is it OK to get metadata from OrigSelect?! 3139 // Create a Select placeholder with dummy value. 3140 SelectInst *Select = 3141 SelectInst::Create(OrigSelect->getCondition(), Dummy, Dummy, 3142 OrigSelect->getName(), OrigSelect, OrigSelect); 3143 Map[Current] = Select; 3144 ST.insertNewSelect(Select); 3145 // We are interested in True and False value in this basic block. 3146 Worklist.push_back({ OrigSelect->getTrueValue(), CurrentBlock }); 3147 Worklist.push_back({ OrigSelect->getFalseValue(), CurrentBlock }); 3148 } else { 3149 // It must be a Phi node then. 3150 auto *CurrentPhi = cast<PHINode>(CurrentI); 3151 // Create new Phi node for merge of bases. 3152 assert(PredCount && "Unreachable block?!"); 3153 PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi", 3154 &CurrentBlock->front()); 3155 Map[Current] = PHI; 3156 ST.insertNewPhi(PHI); 3157 3158 // Add all predecessors in work list. 3159 for (auto B : predecessors(CurrentBlock)) 3160 Worklist.push_back({ CurrentPhi->getIncomingValueForBlock(B), B }); 3161 } 3162 } 3163 } 3164 3165 bool addrModeCombiningAllowed() { 3166 if (DisableComplexAddrModes) 3167 return false; 3168 switch (DifferentField) { 3169 default: 3170 return false; 3171 case ExtAddrMode::BaseRegField: 3172 return AddrSinkCombineBaseReg; 3173 case ExtAddrMode::BaseGVField: 3174 return AddrSinkCombineBaseGV; 3175 case ExtAddrMode::BaseOffsField: 3176 return AddrSinkCombineBaseOffs; 3177 case ExtAddrMode::ScaledRegField: 3178 return AddrSinkCombineScaledReg; 3179 } 3180 } 3181 }; 3182 } // end anonymous namespace 3183 3184 /// Try adding ScaleReg*Scale to the current addressing mode. 3185 /// Return true and update AddrMode if this addr mode is legal for the target, 3186 /// false if not. 3187 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3188 unsigned Depth) { 3189 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3190 // mode. Just process that directly. 3191 if (Scale == 1) 3192 return matchAddr(ScaleReg, Depth); 3193 3194 // If the scale is 0, it takes nothing to add this. 3195 if (Scale == 0) 3196 return true; 3197 3198 // If we already have a scale of this value, we can add to it, otherwise, we 3199 // need an available scale field. 3200 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3201 return false; 3202 3203 ExtAddrMode TestAddrMode = AddrMode; 3204 3205 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3206 // [A+B + A*7] -> [B+A*8]. 3207 TestAddrMode.Scale += Scale; 3208 TestAddrMode.ScaledReg = ScaleReg; 3209 3210 // If the new address isn't legal, bail out. 3211 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3212 return false; 3213 3214 // It was legal, so commit it. 3215 AddrMode = TestAddrMode; 3216 3217 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3218 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3219 // X*Scale + C*Scale to addr mode. 3220 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3221 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3222 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3223 TestAddrMode.ScaledReg = AddLHS; 3224 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3225 3226 // If this addressing mode is legal, commit it and remember that we folded 3227 // this instruction. 3228 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3229 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3230 AddrMode = TestAddrMode; 3231 return true; 3232 } 3233 } 3234 3235 // Otherwise, not (x+c)*scale, just return what we have. 3236 return true; 3237 } 3238 3239 /// This is a little filter, which returns true if an addressing computation 3240 /// involving I might be folded into a load/store accessing it. 3241 /// This doesn't need to be perfect, but needs to accept at least 3242 /// the set of instructions that MatchOperationAddr can. 3243 static bool MightBeFoldableInst(Instruction *I) { 3244 switch (I->getOpcode()) { 3245 case Instruction::BitCast: 3246 case Instruction::AddrSpaceCast: 3247 // Don't touch identity bitcasts. 3248 if (I->getType() == I->getOperand(0)->getType()) 3249 return false; 3250 return I->getType()->isIntOrPtrTy(); 3251 case Instruction::PtrToInt: 3252 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3253 return true; 3254 case Instruction::IntToPtr: 3255 // We know the input is intptr_t, so this is foldable. 3256 return true; 3257 case Instruction::Add: 3258 return true; 3259 case Instruction::Mul: 3260 case Instruction::Shl: 3261 // Can only handle X*C and X << C. 3262 return isa<ConstantInt>(I->getOperand(1)); 3263 case Instruction::GetElementPtr: 3264 return true; 3265 default: 3266 return false; 3267 } 3268 } 3269 3270 /// Check whether or not \p Val is a legal instruction for \p TLI. 3271 /// \note \p Val is assumed to be the product of some type promotion. 3272 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3273 /// to be legal, as the non-promoted value would have had the same state. 3274 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3275 const DataLayout &DL, Value *Val) { 3276 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3277 if (!PromotedInst) 3278 return false; 3279 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3280 // If the ISDOpcode is undefined, it was undefined before the promotion. 3281 if (!ISDOpcode) 3282 return true; 3283 // Otherwise, check if the promoted instruction is legal or not. 3284 return TLI.isOperationLegalOrCustom( 3285 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3286 } 3287 3288 namespace { 3289 3290 /// Hepler class to perform type promotion. 3291 class TypePromotionHelper { 3292 /// Utility function to add a promoted instruction \p ExtOpnd to 3293 /// \p PromotedInsts and record the type of extension we have seen. 3294 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3295 Instruction *ExtOpnd, 3296 bool IsSExt) { 3297 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3298 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3299 if (It != PromotedInsts.end()) { 3300 // If the new extension is same as original, the information in 3301 // PromotedInsts[ExtOpnd] is still correct. 3302 if (It->second.getInt() == ExtTy) 3303 return; 3304 3305 // Now the new extension is different from old extension, we make 3306 // the type information invalid by setting extension type to 3307 // BothExtension. 3308 ExtTy = BothExtension; 3309 } 3310 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 3311 } 3312 3313 /// Utility function to query the original type of instruction \p Opnd 3314 /// with a matched extension type. If the extension doesn't match, we 3315 /// cannot use the information we had on the original type. 3316 /// BothExtension doesn't match any extension type. 3317 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 3318 Instruction *Opnd, 3319 bool IsSExt) { 3320 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3321 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3322 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 3323 return It->second.getPointer(); 3324 return nullptr; 3325 } 3326 3327 /// Utility function to check whether or not a sign or zero extension 3328 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3329 /// either using the operands of \p Inst or promoting \p Inst. 3330 /// The type of the extension is defined by \p IsSExt. 3331 /// In other words, check if: 3332 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3333 /// #1 Promotion applies: 3334 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3335 /// #2 Operand reuses: 3336 /// ext opnd1 to ConsideredExtType. 3337 /// \p PromotedInsts maps the instructions to their type before promotion. 3338 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3339 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3340 3341 /// Utility function to determine if \p OpIdx should be promoted when 3342 /// promoting \p Inst. 3343 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3344 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3345 } 3346 3347 /// Utility function to promote the operand of \p Ext when this 3348 /// operand is a promotable trunc or sext or zext. 3349 /// \p PromotedInsts maps the instructions to their type before promotion. 3350 /// \p CreatedInstsCost[out] contains the cost of all instructions 3351 /// created to promote the operand of Ext. 3352 /// Newly added extensions are inserted in \p Exts. 3353 /// Newly added truncates are inserted in \p Truncs. 3354 /// Should never be called directly. 3355 /// \return The promoted value which is used instead of Ext. 3356 static Value *promoteOperandForTruncAndAnyExt( 3357 Instruction *Ext, TypePromotionTransaction &TPT, 3358 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3359 SmallVectorImpl<Instruction *> *Exts, 3360 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3361 3362 /// Utility function to promote the operand of \p Ext when this 3363 /// operand is promotable and is not a supported trunc or sext. 3364 /// \p PromotedInsts maps the instructions to their type before promotion. 3365 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3366 /// created to promote the operand of Ext. 3367 /// Newly added extensions are inserted in \p Exts. 3368 /// Newly added truncates are inserted in \p Truncs. 3369 /// Should never be called directly. 3370 /// \return The promoted value which is used instead of Ext. 3371 static Value *promoteOperandForOther(Instruction *Ext, 3372 TypePromotionTransaction &TPT, 3373 InstrToOrigTy &PromotedInsts, 3374 unsigned &CreatedInstsCost, 3375 SmallVectorImpl<Instruction *> *Exts, 3376 SmallVectorImpl<Instruction *> *Truncs, 3377 const TargetLowering &TLI, bool IsSExt); 3378 3379 /// \see promoteOperandForOther. 3380 static Value *signExtendOperandForOther( 3381 Instruction *Ext, TypePromotionTransaction &TPT, 3382 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3383 SmallVectorImpl<Instruction *> *Exts, 3384 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3385 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3386 Exts, Truncs, TLI, true); 3387 } 3388 3389 /// \see promoteOperandForOther. 3390 static Value *zeroExtendOperandForOther( 3391 Instruction *Ext, TypePromotionTransaction &TPT, 3392 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3393 SmallVectorImpl<Instruction *> *Exts, 3394 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3395 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3396 Exts, Truncs, TLI, false); 3397 } 3398 3399 public: 3400 /// Type for the utility function that promotes the operand of Ext. 3401 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3402 InstrToOrigTy &PromotedInsts, 3403 unsigned &CreatedInstsCost, 3404 SmallVectorImpl<Instruction *> *Exts, 3405 SmallVectorImpl<Instruction *> *Truncs, 3406 const TargetLowering &TLI); 3407 3408 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3409 /// action to promote the operand of \p Ext instead of using Ext. 3410 /// \return NULL if no promotable action is possible with the current 3411 /// sign extension. 3412 /// \p InsertedInsts keeps track of all the instructions inserted by the 3413 /// other CodeGenPrepare optimizations. This information is important 3414 /// because we do not want to promote these instructions as CodeGenPrepare 3415 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3416 /// \p PromotedInsts maps the instructions to their type before promotion. 3417 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3418 const TargetLowering &TLI, 3419 const InstrToOrigTy &PromotedInsts); 3420 }; 3421 3422 } // end anonymous namespace 3423 3424 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3425 Type *ConsideredExtType, 3426 const InstrToOrigTy &PromotedInsts, 3427 bool IsSExt) { 3428 // The promotion helper does not know how to deal with vector types yet. 3429 // To be able to fix that, we would need to fix the places where we 3430 // statically extend, e.g., constants and such. 3431 if (Inst->getType()->isVectorTy()) 3432 return false; 3433 3434 // We can always get through zext. 3435 if (isa<ZExtInst>(Inst)) 3436 return true; 3437 3438 // sext(sext) is ok too. 3439 if (IsSExt && isa<SExtInst>(Inst)) 3440 return true; 3441 3442 // We can get through binary operator, if it is legal. In other words, the 3443 // binary operator must have a nuw or nsw flag. 3444 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3445 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3446 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3447 (IsSExt && BinOp->hasNoSignedWrap()))) 3448 return true; 3449 3450 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 3451 if ((Inst->getOpcode() == Instruction::And || 3452 Inst->getOpcode() == Instruction::Or)) 3453 return true; 3454 3455 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 3456 if (Inst->getOpcode() == Instruction::Xor) { 3457 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 3458 // Make sure it is not a NOT. 3459 if (Cst && !Cst->getValue().isAllOnesValue()) 3460 return true; 3461 } 3462 3463 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 3464 // It may change a poisoned value into a regular value, like 3465 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 3466 // poisoned value regular value 3467 // It should be OK since undef covers valid value. 3468 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 3469 return true; 3470 3471 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 3472 // It may change a poisoned value into a regular value, like 3473 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 3474 // poisoned value regular value 3475 // It should be OK since undef covers valid value. 3476 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 3477 const Instruction *ExtInst = 3478 dyn_cast<const Instruction>(*Inst->user_begin()); 3479 if (ExtInst->hasOneUse()) { 3480 const Instruction *AndInst = 3481 dyn_cast<const Instruction>(*ExtInst->user_begin()); 3482 if (AndInst && AndInst->getOpcode() == Instruction::And) { 3483 const ConstantInt *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 3484 if (Cst && 3485 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 3486 return true; 3487 } 3488 } 3489 } 3490 3491 // Check if we can do the following simplification. 3492 // ext(trunc(opnd)) --> ext(opnd) 3493 if (!isa<TruncInst>(Inst)) 3494 return false; 3495 3496 Value *OpndVal = Inst->getOperand(0); 3497 // Check if we can use this operand in the extension. 3498 // If the type is larger than the result type of the extension, we cannot. 3499 if (!OpndVal->getType()->isIntegerTy() || 3500 OpndVal->getType()->getIntegerBitWidth() > 3501 ConsideredExtType->getIntegerBitWidth()) 3502 return false; 3503 3504 // If the operand of the truncate is not an instruction, we will not have 3505 // any information on the dropped bits. 3506 // (Actually we could for constant but it is not worth the extra logic). 3507 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3508 if (!Opnd) 3509 return false; 3510 3511 // Check if the source of the type is narrow enough. 3512 // I.e., check that trunc just drops extended bits of the same kind of 3513 // the extension. 3514 // #1 get the type of the operand and check the kind of the extended bits. 3515 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 3516 if (OpndType) 3517 ; 3518 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3519 OpndType = Opnd->getOperand(0)->getType(); 3520 else 3521 return false; 3522 3523 // #2 check that the truncate just drops extended bits. 3524 return Inst->getType()->getIntegerBitWidth() >= 3525 OpndType->getIntegerBitWidth(); 3526 } 3527 3528 TypePromotionHelper::Action TypePromotionHelper::getAction( 3529 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3530 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3531 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3532 "Unexpected instruction type"); 3533 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3534 Type *ExtTy = Ext->getType(); 3535 bool IsSExt = isa<SExtInst>(Ext); 3536 // If the operand of the extension is not an instruction, we cannot 3537 // get through. 3538 // If it, check we can get through. 3539 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3540 return nullptr; 3541 3542 // Do not promote if the operand has been added by codegenprepare. 3543 // Otherwise, it means we are undoing an optimization that is likely to be 3544 // redone, thus causing potential infinite loop. 3545 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3546 return nullptr; 3547 3548 // SExt or Trunc instructions. 3549 // Return the related handler. 3550 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3551 isa<ZExtInst>(ExtOpnd)) 3552 return promoteOperandForTruncAndAnyExt; 3553 3554 // Regular instruction. 3555 // Abort early if we will have to insert non-free instructions. 3556 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3557 return nullptr; 3558 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3559 } 3560 3561 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3562 Instruction *SExt, TypePromotionTransaction &TPT, 3563 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3564 SmallVectorImpl<Instruction *> *Exts, 3565 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3566 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3567 // get through it and this method should not be called. 3568 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3569 Value *ExtVal = SExt; 3570 bool HasMergedNonFreeExt = false; 3571 if (isa<ZExtInst>(SExtOpnd)) { 3572 // Replace s|zext(zext(opnd)) 3573 // => zext(opnd). 3574 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3575 Value *ZExt = 3576 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3577 TPT.replaceAllUsesWith(SExt, ZExt); 3578 TPT.eraseInstruction(SExt); 3579 ExtVal = ZExt; 3580 } else { 3581 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3582 // => z|sext(opnd). 3583 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3584 } 3585 CreatedInstsCost = 0; 3586 3587 // Remove dead code. 3588 if (SExtOpnd->use_empty()) 3589 TPT.eraseInstruction(SExtOpnd); 3590 3591 // Check if the extension is still needed. 3592 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3593 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3594 if (ExtInst) { 3595 if (Exts) 3596 Exts->push_back(ExtInst); 3597 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3598 } 3599 return ExtVal; 3600 } 3601 3602 // At this point we have: ext ty opnd to ty. 3603 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3604 Value *NextVal = ExtInst->getOperand(0); 3605 TPT.eraseInstruction(ExtInst, NextVal); 3606 return NextVal; 3607 } 3608 3609 Value *TypePromotionHelper::promoteOperandForOther( 3610 Instruction *Ext, TypePromotionTransaction &TPT, 3611 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3612 SmallVectorImpl<Instruction *> *Exts, 3613 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3614 bool IsSExt) { 3615 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3616 // get through it and this method should not be called. 3617 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3618 CreatedInstsCost = 0; 3619 if (!ExtOpnd->hasOneUse()) { 3620 // ExtOpnd will be promoted. 3621 // All its uses, but Ext, will need to use a truncated value of the 3622 // promoted version. 3623 // Create the truncate now. 3624 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3625 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3626 // Insert it just after the definition. 3627 ITrunc->moveAfter(ExtOpnd); 3628 if (Truncs) 3629 Truncs->push_back(ITrunc); 3630 } 3631 3632 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3633 // Restore the operand of Ext (which has been replaced by the previous call 3634 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3635 TPT.setOperand(Ext, 0, ExtOpnd); 3636 } 3637 3638 // Get through the Instruction: 3639 // 1. Update its type. 3640 // 2. Replace the uses of Ext by Inst. 3641 // 3. Extend each operand that needs to be extended. 3642 3643 // Remember the original type of the instruction before promotion. 3644 // This is useful to know that the high bits are sign extended bits. 3645 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 3646 // Step #1. 3647 TPT.mutateType(ExtOpnd, Ext->getType()); 3648 // Step #2. 3649 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3650 // Step #3. 3651 Instruction *ExtForOpnd = Ext; 3652 3653 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 3654 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3655 ++OpIdx) { 3656 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3657 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3658 !shouldExtOperand(ExtOpnd, OpIdx)) { 3659 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 3660 continue; 3661 } 3662 // Check if we can statically extend the operand. 3663 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3664 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3665 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3666 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3667 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3668 : Cst->getValue().zext(BitWidth); 3669 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3670 continue; 3671 } 3672 // UndefValue are typed, so we have to statically sign extend them. 3673 if (isa<UndefValue>(Opnd)) { 3674 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3675 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3676 continue; 3677 } 3678 3679 // Otherwise we have to explicitly sign extend the operand. 3680 // Check if Ext was reused to extend an operand. 3681 if (!ExtForOpnd) { 3682 // If yes, create a new one. 3683 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 3684 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3685 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3686 if (!isa<Instruction>(ValForExtOpnd)) { 3687 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3688 continue; 3689 } 3690 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3691 } 3692 if (Exts) 3693 Exts->push_back(ExtForOpnd); 3694 TPT.setOperand(ExtForOpnd, 0, Opnd); 3695 3696 // Move the sign extension before the insertion point. 3697 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3698 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3699 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3700 // If more sext are required, new instructions will have to be created. 3701 ExtForOpnd = nullptr; 3702 } 3703 if (ExtForOpnd == Ext) { 3704 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 3705 TPT.eraseInstruction(Ext); 3706 } 3707 return ExtOpnd; 3708 } 3709 3710 /// Check whether or not promoting an instruction to a wider type is profitable. 3711 /// \p NewCost gives the cost of extension instructions created by the 3712 /// promotion. 3713 /// \p OldCost gives the cost of extension instructions before the promotion 3714 /// plus the number of instructions that have been 3715 /// matched in the addressing mode the promotion. 3716 /// \p PromotedOperand is the value that has been promoted. 3717 /// \return True if the promotion is profitable, false otherwise. 3718 bool AddressingModeMatcher::isPromotionProfitable( 3719 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3720 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 3721 << '\n'); 3722 // The cost of the new extensions is greater than the cost of the 3723 // old extension plus what we folded. 3724 // This is not profitable. 3725 if (NewCost > OldCost) 3726 return false; 3727 if (NewCost < OldCost) 3728 return true; 3729 // The promotion is neutral but it may help folding the sign extension in 3730 // loads for instance. 3731 // Check that we did not create an illegal instruction. 3732 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3733 } 3734 3735 /// Given an instruction or constant expr, see if we can fold the operation 3736 /// into the addressing mode. If so, update the addressing mode and return 3737 /// true, otherwise return false without modifying AddrMode. 3738 /// If \p MovedAway is not NULL, it contains the information of whether or 3739 /// not AddrInst has to be folded into the addressing mode on success. 3740 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3741 /// because it has been moved away. 3742 /// Thus AddrInst must not be added in the matched instructions. 3743 /// This state can happen when AddrInst is a sext, since it may be moved away. 3744 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3745 /// not be referenced anymore. 3746 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3747 unsigned Depth, 3748 bool *MovedAway) { 3749 // Avoid exponential behavior on extremely deep expression trees. 3750 if (Depth >= 5) return false; 3751 3752 // By default, all matched instructions stay in place. 3753 if (MovedAway) 3754 *MovedAway = false; 3755 3756 switch (Opcode) { 3757 case Instruction::PtrToInt: 3758 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3759 return matchAddr(AddrInst->getOperand(0), Depth); 3760 case Instruction::IntToPtr: { 3761 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3762 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3763 // This inttoptr is a no-op if the integer type is pointer sized. 3764 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3765 return matchAddr(AddrInst->getOperand(0), Depth); 3766 return false; 3767 } 3768 case Instruction::BitCast: 3769 // BitCast is always a noop, and we can handle it as long as it is 3770 // int->int or pointer->pointer (we don't want int<->fp or something). 3771 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 3772 // Don't touch identity bitcasts. These were probably put here by LSR, 3773 // and we don't want to mess around with them. Assume it knows what it 3774 // is doing. 3775 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3776 return matchAddr(AddrInst->getOperand(0), Depth); 3777 return false; 3778 case Instruction::AddrSpaceCast: { 3779 unsigned SrcAS 3780 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3781 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3782 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3783 return matchAddr(AddrInst->getOperand(0), Depth); 3784 return false; 3785 } 3786 case Instruction::Add: { 3787 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3788 ExtAddrMode BackupAddrMode = AddrMode; 3789 unsigned OldSize = AddrModeInsts.size(); 3790 // Start a transaction at this point. 3791 // The LHS may match but not the RHS. 3792 // Therefore, we need a higher level restoration point to undo partially 3793 // matched operation. 3794 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3795 TPT.getRestorationPoint(); 3796 3797 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3798 matchAddr(AddrInst->getOperand(0), Depth+1)) 3799 return true; 3800 3801 // Restore the old addr mode info. 3802 AddrMode = BackupAddrMode; 3803 AddrModeInsts.resize(OldSize); 3804 TPT.rollback(LastKnownGood); 3805 3806 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3807 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3808 matchAddr(AddrInst->getOperand(1), Depth+1)) 3809 return true; 3810 3811 // Otherwise we definitely can't merge the ADD in. 3812 AddrMode = BackupAddrMode; 3813 AddrModeInsts.resize(OldSize); 3814 TPT.rollback(LastKnownGood); 3815 break; 3816 } 3817 //case Instruction::Or: 3818 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3819 //break; 3820 case Instruction::Mul: 3821 case Instruction::Shl: { 3822 // Can only handle X*C and X << C. 3823 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3824 if (!RHS || RHS->getBitWidth() > 64) 3825 return false; 3826 int64_t Scale = RHS->getSExtValue(); 3827 if (Opcode == Instruction::Shl) 3828 Scale = 1LL << Scale; 3829 3830 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3831 } 3832 case Instruction::GetElementPtr: { 3833 // Scan the GEP. We check it if it contains constant offsets and at most 3834 // one variable offset. 3835 int VariableOperand = -1; 3836 unsigned VariableScale = 0; 3837 3838 int64_t ConstantOffset = 0; 3839 gep_type_iterator GTI = gep_type_begin(AddrInst); 3840 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3841 if (StructType *STy = GTI.getStructTypeOrNull()) { 3842 const StructLayout *SL = DL.getStructLayout(STy); 3843 unsigned Idx = 3844 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3845 ConstantOffset += SL->getElementOffset(Idx); 3846 } else { 3847 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3848 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3849 const APInt &CVal = CI->getValue(); 3850 if (CVal.getMinSignedBits() <= 64) { 3851 ConstantOffset += CVal.getSExtValue() * TypeSize; 3852 continue; 3853 } 3854 } 3855 if (TypeSize) { // Scales of zero don't do anything. 3856 // We only allow one variable index at the moment. 3857 if (VariableOperand != -1) 3858 return false; 3859 3860 // Remember the variable index. 3861 VariableOperand = i; 3862 VariableScale = TypeSize; 3863 } 3864 } 3865 } 3866 3867 // A common case is for the GEP to only do a constant offset. In this case, 3868 // just add it to the disp field and check validity. 3869 if (VariableOperand == -1) { 3870 AddrMode.BaseOffs += ConstantOffset; 3871 if (ConstantOffset == 0 || 3872 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 3873 // Check to see if we can fold the base pointer in too. 3874 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 3875 return true; 3876 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 3877 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 3878 ConstantOffset > 0) { 3879 // Record GEPs with non-zero offsets as candidates for splitting in the 3880 // event that the offset cannot fit into the r+i addressing mode. 3881 // Simple and common case that only one GEP is used in calculating the 3882 // address for the memory access. 3883 Value *Base = AddrInst->getOperand(0); 3884 auto *BaseI = dyn_cast<Instruction>(Base); 3885 auto *GEP = cast<GetElementPtrInst>(AddrInst); 3886 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 3887 (BaseI && !isa<CastInst>(BaseI) && 3888 !isa<GetElementPtrInst>(BaseI))) { 3889 // If the base is an instruction, make sure the GEP is not in the same 3890 // basic block as the base. If the base is an argument or global 3891 // value, make sure the GEP is not in the entry block. Otherwise, 3892 // instruction selection can undo the split. Also make sure the 3893 // parent block allows inserting non-PHI instructions before the 3894 // terminator. 3895 BasicBlock *Parent = 3896 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 3897 if (GEP->getParent() != Parent && !Parent->getTerminator()->isEHPad()) 3898 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 3899 } 3900 } 3901 AddrMode.BaseOffs -= ConstantOffset; 3902 return false; 3903 } 3904 3905 // Save the valid addressing mode in case we can't match. 3906 ExtAddrMode BackupAddrMode = AddrMode; 3907 unsigned OldSize = AddrModeInsts.size(); 3908 3909 // See if the scale and offset amount is valid for this target. 3910 AddrMode.BaseOffs += ConstantOffset; 3911 3912 // Match the base operand of the GEP. 3913 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 3914 // If it couldn't be matched, just stuff the value in a register. 3915 if (AddrMode.HasBaseReg) { 3916 AddrMode = BackupAddrMode; 3917 AddrModeInsts.resize(OldSize); 3918 return false; 3919 } 3920 AddrMode.HasBaseReg = true; 3921 AddrMode.BaseReg = AddrInst->getOperand(0); 3922 } 3923 3924 // Match the remaining variable portion of the GEP. 3925 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 3926 Depth)) { 3927 // If it couldn't be matched, try stuffing the base into a register 3928 // instead of matching it, and retrying the match of the scale. 3929 AddrMode = BackupAddrMode; 3930 AddrModeInsts.resize(OldSize); 3931 if (AddrMode.HasBaseReg) 3932 return false; 3933 AddrMode.HasBaseReg = true; 3934 AddrMode.BaseReg = AddrInst->getOperand(0); 3935 AddrMode.BaseOffs += ConstantOffset; 3936 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 3937 VariableScale, Depth)) { 3938 // If even that didn't work, bail. 3939 AddrMode = BackupAddrMode; 3940 AddrModeInsts.resize(OldSize); 3941 return false; 3942 } 3943 } 3944 3945 return true; 3946 } 3947 case Instruction::SExt: 3948 case Instruction::ZExt: { 3949 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 3950 if (!Ext) 3951 return false; 3952 3953 // Try to move this ext out of the way of the addressing mode. 3954 // Ask for a method for doing so. 3955 TypePromotionHelper::Action TPH = 3956 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 3957 if (!TPH) 3958 return false; 3959 3960 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3961 TPT.getRestorationPoint(); 3962 unsigned CreatedInstsCost = 0; 3963 unsigned ExtCost = !TLI.isExtFree(Ext); 3964 Value *PromotedOperand = 3965 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 3966 // SExt has been moved away. 3967 // Thus either it will be rematched later in the recursive calls or it is 3968 // gone. Anyway, we must not fold it into the addressing mode at this point. 3969 // E.g., 3970 // op = add opnd, 1 3971 // idx = ext op 3972 // addr = gep base, idx 3973 // is now: 3974 // promotedOpnd = ext opnd <- no match here 3975 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 3976 // addr = gep base, op <- match 3977 if (MovedAway) 3978 *MovedAway = true; 3979 3980 assert(PromotedOperand && 3981 "TypePromotionHelper should have filtered out those cases"); 3982 3983 ExtAddrMode BackupAddrMode = AddrMode; 3984 unsigned OldSize = AddrModeInsts.size(); 3985 3986 if (!matchAddr(PromotedOperand, Depth) || 3987 // The total of the new cost is equal to the cost of the created 3988 // instructions. 3989 // The total of the old cost is equal to the cost of the extension plus 3990 // what we have saved in the addressing mode. 3991 !isPromotionProfitable(CreatedInstsCost, 3992 ExtCost + (AddrModeInsts.size() - OldSize), 3993 PromotedOperand)) { 3994 AddrMode = BackupAddrMode; 3995 AddrModeInsts.resize(OldSize); 3996 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 3997 TPT.rollback(LastKnownGood); 3998 return false; 3999 } 4000 return true; 4001 } 4002 } 4003 return false; 4004 } 4005 4006 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4007 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4008 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4009 /// for the target. 4010 /// 4011 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4012 // Start a transaction at this point that we will rollback if the matching 4013 // fails. 4014 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4015 TPT.getRestorationPoint(); 4016 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4017 // Fold in immediates if legal for the target. 4018 AddrMode.BaseOffs += CI->getSExtValue(); 4019 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4020 return true; 4021 AddrMode.BaseOffs -= CI->getSExtValue(); 4022 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4023 // If this is a global variable, try to fold it into the addressing mode. 4024 if (!AddrMode.BaseGV) { 4025 AddrMode.BaseGV = GV; 4026 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4027 return true; 4028 AddrMode.BaseGV = nullptr; 4029 } 4030 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4031 ExtAddrMode BackupAddrMode = AddrMode; 4032 unsigned OldSize = AddrModeInsts.size(); 4033 4034 // Check to see if it is possible to fold this operation. 4035 bool MovedAway = false; 4036 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4037 // This instruction may have been moved away. If so, there is nothing 4038 // to check here. 4039 if (MovedAway) 4040 return true; 4041 // Okay, it's possible to fold this. Check to see if it is actually 4042 // *profitable* to do so. We use a simple cost model to avoid increasing 4043 // register pressure too much. 4044 if (I->hasOneUse() || 4045 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4046 AddrModeInsts.push_back(I); 4047 return true; 4048 } 4049 4050 // It isn't profitable to do this, roll back. 4051 //cerr << "NOT FOLDING: " << *I; 4052 AddrMode = BackupAddrMode; 4053 AddrModeInsts.resize(OldSize); 4054 TPT.rollback(LastKnownGood); 4055 } 4056 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4057 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4058 return true; 4059 TPT.rollback(LastKnownGood); 4060 } else if (isa<ConstantPointerNull>(Addr)) { 4061 // Null pointer gets folded without affecting the addressing mode. 4062 return true; 4063 } 4064 4065 // Worse case, the target should support [reg] addressing modes. :) 4066 if (!AddrMode.HasBaseReg) { 4067 AddrMode.HasBaseReg = true; 4068 AddrMode.BaseReg = Addr; 4069 // Still check for legality in case the target supports [imm] but not [i+r]. 4070 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4071 return true; 4072 AddrMode.HasBaseReg = false; 4073 AddrMode.BaseReg = nullptr; 4074 } 4075 4076 // If the base register is already taken, see if we can do [r+r]. 4077 if (AddrMode.Scale == 0) { 4078 AddrMode.Scale = 1; 4079 AddrMode.ScaledReg = Addr; 4080 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4081 return true; 4082 AddrMode.Scale = 0; 4083 AddrMode.ScaledReg = nullptr; 4084 } 4085 // Couldn't match. 4086 TPT.rollback(LastKnownGood); 4087 return false; 4088 } 4089 4090 /// Check to see if all uses of OpVal by the specified inline asm call are due 4091 /// to memory operands. If so, return true, otherwise return false. 4092 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4093 const TargetLowering &TLI, 4094 const TargetRegisterInfo &TRI) { 4095 const Function *F = CI->getFunction(); 4096 TargetLowering::AsmOperandInfoVector TargetConstraints = 4097 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 4098 ImmutableCallSite(CI)); 4099 4100 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4101 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4102 4103 // Compute the constraint code and ConstraintType to use. 4104 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4105 4106 // If this asm operand is our Value*, and if it isn't an indirect memory 4107 // operand, we can't fold it! 4108 if (OpInfo.CallOperandVal == OpVal && 4109 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4110 !OpInfo.isIndirect)) 4111 return false; 4112 } 4113 4114 return true; 4115 } 4116 4117 // Max number of memory uses to look at before aborting the search to conserve 4118 // compile time. 4119 static constexpr int MaxMemoryUsesToScan = 20; 4120 4121 /// Recursively walk all the uses of I until we find a memory use. 4122 /// If we find an obviously non-foldable instruction, return true. 4123 /// Add the ultimately found memory instructions to MemoryUses. 4124 static bool FindAllMemoryUses( 4125 Instruction *I, 4126 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4127 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4128 const TargetRegisterInfo &TRI, int SeenInsts = 0) { 4129 // If we already considered this instruction, we're done. 4130 if (!ConsideredInsts.insert(I).second) 4131 return false; 4132 4133 // If this is an obviously unfoldable instruction, bail out. 4134 if (!MightBeFoldableInst(I)) 4135 return true; 4136 4137 const bool OptSize = I->getFunction()->optForSize(); 4138 4139 // Loop over all the uses, recursively processing them. 4140 for (Use &U : I->uses()) { 4141 // Conservatively return true if we're seeing a large number or a deep chain 4142 // of users. This avoids excessive compilation times in pathological cases. 4143 if (SeenInsts++ >= MaxMemoryUsesToScan) 4144 return true; 4145 4146 Instruction *UserI = cast<Instruction>(U.getUser()); 4147 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4148 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4149 continue; 4150 } 4151 4152 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4153 unsigned opNo = U.getOperandNo(); 4154 if (opNo != StoreInst::getPointerOperandIndex()) 4155 return true; // Storing addr, not into addr. 4156 MemoryUses.push_back(std::make_pair(SI, opNo)); 4157 continue; 4158 } 4159 4160 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4161 unsigned opNo = U.getOperandNo(); 4162 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4163 return true; // Storing addr, not into addr. 4164 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4165 continue; 4166 } 4167 4168 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4169 unsigned opNo = U.getOperandNo(); 4170 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4171 return true; // Storing addr, not into addr. 4172 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4173 continue; 4174 } 4175 4176 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4177 // If this is a cold call, we can sink the addressing calculation into 4178 // the cold path. See optimizeCallInst 4179 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 4180 continue; 4181 4182 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4183 if (!IA) return true; 4184 4185 // If this is a memory operand, we're cool, otherwise bail out. 4186 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4187 return true; 4188 continue; 4189 } 4190 4191 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, 4192 SeenInsts)) 4193 return true; 4194 } 4195 4196 return false; 4197 } 4198 4199 /// Return true if Val is already known to be live at the use site that we're 4200 /// folding it into. If so, there is no cost to include it in the addressing 4201 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4202 /// instruction already. 4203 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4204 Value *KnownLive2) { 4205 // If Val is either of the known-live values, we know it is live! 4206 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4207 return true; 4208 4209 // All values other than instructions and arguments (e.g. constants) are live. 4210 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4211 4212 // If Val is a constant sized alloca in the entry block, it is live, this is 4213 // true because it is just a reference to the stack/frame pointer, which is 4214 // live for the whole function. 4215 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4216 if (AI->isStaticAlloca()) 4217 return true; 4218 4219 // Check to see if this value is already used in the memory instruction's 4220 // block. If so, it's already live into the block at the very least, so we 4221 // can reasonably fold it. 4222 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4223 } 4224 4225 /// It is possible for the addressing mode of the machine to fold the specified 4226 /// instruction into a load or store that ultimately uses it. 4227 /// However, the specified instruction has multiple uses. 4228 /// Given this, it may actually increase register pressure to fold it 4229 /// into the load. For example, consider this code: 4230 /// 4231 /// X = ... 4232 /// Y = X+1 4233 /// use(Y) -> nonload/store 4234 /// Z = Y+1 4235 /// load Z 4236 /// 4237 /// In this case, Y has multiple uses, and can be folded into the load of Z 4238 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4239 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4240 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4241 /// number of computations either. 4242 /// 4243 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4244 /// X was live across 'load Z' for other reasons, we actually *would* want to 4245 /// fold the addressing mode in the Z case. This would make Y die earlier. 4246 bool AddressingModeMatcher:: 4247 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4248 ExtAddrMode &AMAfter) { 4249 if (IgnoreProfitability) return true; 4250 4251 // AMBefore is the addressing mode before this instruction was folded into it, 4252 // and AMAfter is the addressing mode after the instruction was folded. Get 4253 // the set of registers referenced by AMAfter and subtract out those 4254 // referenced by AMBefore: this is the set of values which folding in this 4255 // address extends the lifetime of. 4256 // 4257 // Note that there are only two potential values being referenced here, 4258 // BaseReg and ScaleReg (global addresses are always available, as are any 4259 // folded immediates). 4260 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4261 4262 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4263 // lifetime wasn't extended by adding this instruction. 4264 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4265 BaseReg = nullptr; 4266 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4267 ScaledReg = nullptr; 4268 4269 // If folding this instruction (and it's subexprs) didn't extend any live 4270 // ranges, we're ok with it. 4271 if (!BaseReg && !ScaledReg) 4272 return true; 4273 4274 // If all uses of this instruction can have the address mode sunk into them, 4275 // we can remove the addressing mode and effectively trade one live register 4276 // for another (at worst.) In this context, folding an addressing mode into 4277 // the use is just a particularly nice way of sinking it. 4278 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4279 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4280 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 4281 return false; // Has a non-memory, non-foldable use! 4282 4283 // Now that we know that all uses of this instruction are part of a chain of 4284 // computation involving only operations that could theoretically be folded 4285 // into a memory use, loop over each of these memory operation uses and see 4286 // if they could *actually* fold the instruction. The assumption is that 4287 // addressing modes are cheap and that duplicating the computation involved 4288 // many times is worthwhile, even on a fastpath. For sinking candidates 4289 // (i.e. cold call sites), this serves as a way to prevent excessive code 4290 // growth since most architectures have some reasonable small and fast way to 4291 // compute an effective address. (i.e LEA on x86) 4292 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4293 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4294 Instruction *User = MemoryUses[i].first; 4295 unsigned OpNo = MemoryUses[i].second; 4296 4297 // Get the access type of this use. If the use isn't a pointer, we don't 4298 // know what it accesses. 4299 Value *Address = User->getOperand(OpNo); 4300 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4301 if (!AddrTy) 4302 return false; 4303 Type *AddressAccessTy = AddrTy->getElementType(); 4304 unsigned AS = AddrTy->getAddressSpace(); 4305 4306 // Do a match against the root of this address, ignoring profitability. This 4307 // will tell us if the addressing mode for the memory operation will 4308 // *actually* cover the shared instruction. 4309 ExtAddrMode Result; 4310 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4311 0); 4312 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4313 TPT.getRestorationPoint(); 4314 AddressingModeMatcher Matcher( 4315 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4316 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4317 Matcher.IgnoreProfitability = true; 4318 bool Success = Matcher.matchAddr(Address, 0); 4319 (void)Success; assert(Success && "Couldn't select *anything*?"); 4320 4321 // The match was to check the profitability, the changes made are not 4322 // part of the original matcher. Therefore, they should be dropped 4323 // otherwise the original matcher will not present the right state. 4324 TPT.rollback(LastKnownGood); 4325 4326 // If the match didn't cover I, then it won't be shared by it. 4327 if (!is_contained(MatchedAddrModeInsts, I)) 4328 return false; 4329 4330 MatchedAddrModeInsts.clear(); 4331 } 4332 4333 return true; 4334 } 4335 4336 /// Return true if the specified values are defined in a 4337 /// different basic block than BB. 4338 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4339 if (Instruction *I = dyn_cast<Instruction>(V)) 4340 return I->getParent() != BB; 4341 return false; 4342 } 4343 4344 /// Sink addressing mode computation immediate before MemoryInst if doing so 4345 /// can be done without increasing register pressure. The need for the 4346 /// register pressure constraint means this can end up being an all or nothing 4347 /// decision for all uses of the same addressing computation. 4348 /// 4349 /// Load and Store Instructions often have addressing modes that can do 4350 /// significant amounts of computation. As such, instruction selection will try 4351 /// to get the load or store to do as much computation as possible for the 4352 /// program. The problem is that isel can only see within a single block. As 4353 /// such, we sink as much legal addressing mode work into the block as possible. 4354 /// 4355 /// This method is used to optimize both load/store and inline asms with memory 4356 /// operands. It's also used to sink addressing computations feeding into cold 4357 /// call sites into their (cold) basic block. 4358 /// 4359 /// The motivation for handling sinking into cold blocks is that doing so can 4360 /// both enable other address mode sinking (by satisfying the register pressure 4361 /// constraint above), and reduce register pressure globally (by removing the 4362 /// addressing mode computation from the fast path entirely.). 4363 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4364 Type *AccessTy, unsigned AddrSpace) { 4365 Value *Repl = Addr; 4366 4367 // Try to collapse single-value PHI nodes. This is necessary to undo 4368 // unprofitable PRE transformations. 4369 SmallVector<Value*, 8> worklist; 4370 SmallPtrSet<Value*, 16> Visited; 4371 worklist.push_back(Addr); 4372 4373 // Use a worklist to iteratively look through PHI and select nodes, and 4374 // ensure that the addressing mode obtained from the non-PHI/select roots of 4375 // the graph are compatible. 4376 bool PhiOrSelectSeen = false; 4377 SmallVector<Instruction*, 16> AddrModeInsts; 4378 const SimplifyQuery SQ(*DL, TLInfo); 4379 AddressingModeCombiner AddrModes(SQ, { Addr, MemoryInst->getParent() }); 4380 TypePromotionTransaction TPT(RemovedInsts); 4381 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4382 TPT.getRestorationPoint(); 4383 while (!worklist.empty()) { 4384 Value *V = worklist.back(); 4385 worklist.pop_back(); 4386 4387 // We allow traversing cyclic Phi nodes. 4388 // In case of success after this loop we ensure that traversing through 4389 // Phi nodes ends up with all cases to compute address of the form 4390 // BaseGV + Base + Scale * Index + Offset 4391 // where Scale and Offset are constans and BaseGV, Base and Index 4392 // are exactly the same Values in all cases. 4393 // It means that BaseGV, Scale and Offset dominate our memory instruction 4394 // and have the same value as they had in address computation represented 4395 // as Phi. So we can safely sink address computation to memory instruction. 4396 if (!Visited.insert(V).second) 4397 continue; 4398 4399 // For a PHI node, push all of its incoming values. 4400 if (PHINode *P = dyn_cast<PHINode>(V)) { 4401 for (Value *IncValue : P->incoming_values()) 4402 worklist.push_back(IncValue); 4403 PhiOrSelectSeen = true; 4404 continue; 4405 } 4406 // Similar for select. 4407 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4408 worklist.push_back(SI->getFalseValue()); 4409 worklist.push_back(SI->getTrueValue()); 4410 PhiOrSelectSeen = true; 4411 continue; 4412 } 4413 4414 // For non-PHIs, determine the addressing mode being computed. Note that 4415 // the result may differ depending on what other uses our candidate 4416 // addressing instructions might have. 4417 AddrModeInsts.clear(); 4418 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4419 0); 4420 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4421 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4422 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4423 4424 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4425 if (GEP && GEP->getParent() != MemoryInst->getParent() && 4426 !NewGEPBases.count(GEP)) { 4427 // If splitting the underlying data structure can reduce the offset of a 4428 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4429 // previously split data structures. 4430 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4431 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4432 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4433 } 4434 4435 NewAddrMode.OriginalValue = V; 4436 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4437 break; 4438 } 4439 4440 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4441 // or we have multiple but either couldn't combine them or combining them 4442 // wouldn't do anything useful, bail out now. 4443 if (!AddrModes.combineAddrModes()) { 4444 TPT.rollback(LastKnownGood); 4445 return false; 4446 } 4447 TPT.commit(); 4448 4449 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4450 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4451 4452 // If all the instructions matched are already in this BB, don't do anything. 4453 // If we saw a Phi node then it is not local definitely, and if we saw a select 4454 // then we want to push the address calculation past it even if it's already 4455 // in this BB. 4456 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4457 return IsNonLocalValue(V, MemoryInst->getParent()); 4458 })) { 4459 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 4460 << "\n"); 4461 return false; 4462 } 4463 4464 // Insert this computation right after this user. Since our caller is 4465 // scanning from the top of the BB to the bottom, reuse of the expr are 4466 // guaranteed to happen later. 4467 IRBuilder<> Builder(MemoryInst); 4468 4469 // Now that we determined the addressing expression we want to use and know 4470 // that we have to sink it into this block. Check to see if we have already 4471 // done this for some other load/store instr in this block. If so, reuse 4472 // the computation. Before attempting reuse, check if the address is valid 4473 // as it may have been erased. 4474 4475 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4476 4477 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4478 if (SunkAddr) { 4479 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 4480 << " for " << *MemoryInst << "\n"); 4481 if (SunkAddr->getType() != Addr->getType()) 4482 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4483 } else if (AddrSinkUsingGEPs || 4484 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && TTI->useAA())) { 4485 // By default, we use the GEP-based method when AA is used later. This 4486 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4487 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4488 << " for " << *MemoryInst << "\n"); 4489 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4490 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4491 4492 // First, find the pointer. 4493 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4494 ResultPtr = AddrMode.BaseReg; 4495 AddrMode.BaseReg = nullptr; 4496 } 4497 4498 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4499 // We can't add more than one pointer together, nor can we scale a 4500 // pointer (both of which seem meaningless). 4501 if (ResultPtr || AddrMode.Scale != 1) 4502 return false; 4503 4504 ResultPtr = AddrMode.ScaledReg; 4505 AddrMode.Scale = 0; 4506 } 4507 4508 // It is only safe to sign extend the BaseReg if we know that the math 4509 // required to create it did not overflow before we extend it. Since 4510 // the original IR value was tossed in favor of a constant back when 4511 // the AddrMode was created we need to bail out gracefully if widths 4512 // do not match instead of extending it. 4513 // 4514 // (See below for code to add the scale.) 4515 if (AddrMode.Scale) { 4516 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4517 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4518 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4519 return false; 4520 } 4521 4522 if (AddrMode.BaseGV) { 4523 if (ResultPtr) 4524 return false; 4525 4526 ResultPtr = AddrMode.BaseGV; 4527 } 4528 4529 // If the real base value actually came from an inttoptr, then the matcher 4530 // will look through it and provide only the integer value. In that case, 4531 // use it here. 4532 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4533 if (!ResultPtr && AddrMode.BaseReg) { 4534 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4535 "sunkaddr"); 4536 AddrMode.BaseReg = nullptr; 4537 } else if (!ResultPtr && AddrMode.Scale == 1) { 4538 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4539 "sunkaddr"); 4540 AddrMode.Scale = 0; 4541 } 4542 } 4543 4544 if (!ResultPtr && 4545 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4546 SunkAddr = Constant::getNullValue(Addr->getType()); 4547 } else if (!ResultPtr) { 4548 return false; 4549 } else { 4550 Type *I8PtrTy = 4551 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4552 Type *I8Ty = Builder.getInt8Ty(); 4553 4554 // Start with the base register. Do this first so that subsequent address 4555 // matching finds it last, which will prevent it from trying to match it 4556 // as the scaled value in case it happens to be a mul. That would be 4557 // problematic if we've sunk a different mul for the scale, because then 4558 // we'd end up sinking both muls. 4559 if (AddrMode.BaseReg) { 4560 Value *V = AddrMode.BaseReg; 4561 if (V->getType() != IntPtrTy) 4562 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4563 4564 ResultIndex = V; 4565 } 4566 4567 // Add the scale value. 4568 if (AddrMode.Scale) { 4569 Value *V = AddrMode.ScaledReg; 4570 if (V->getType() == IntPtrTy) { 4571 // done. 4572 } else { 4573 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 4574 cast<IntegerType>(V->getType())->getBitWidth() && 4575 "We can't transform if ScaledReg is too narrow"); 4576 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4577 } 4578 4579 if (AddrMode.Scale != 1) 4580 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4581 "sunkaddr"); 4582 if (ResultIndex) 4583 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4584 else 4585 ResultIndex = V; 4586 } 4587 4588 // Add in the Base Offset if present. 4589 if (AddrMode.BaseOffs) { 4590 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4591 if (ResultIndex) { 4592 // We need to add this separately from the scale above to help with 4593 // SDAG consecutive load/store merging. 4594 if (ResultPtr->getType() != I8PtrTy) 4595 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4596 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4597 } 4598 4599 ResultIndex = V; 4600 } 4601 4602 if (!ResultIndex) { 4603 SunkAddr = ResultPtr; 4604 } else { 4605 if (ResultPtr->getType() != I8PtrTy) 4606 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4607 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4608 } 4609 4610 if (SunkAddr->getType() != Addr->getType()) 4611 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4612 } 4613 } else { 4614 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 4615 // non-integral pointers, so in that case bail out now. 4616 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 4617 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 4618 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 4619 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 4620 if (DL->isNonIntegralPointerType(Addr->getType()) || 4621 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 4622 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 4623 (AddrMode.BaseGV && 4624 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 4625 return false; 4626 4627 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4628 << " for " << *MemoryInst << "\n"); 4629 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4630 Value *Result = nullptr; 4631 4632 // Start with the base register. Do this first so that subsequent address 4633 // matching finds it last, which will prevent it from trying to match it 4634 // as the scaled value in case it happens to be a mul. That would be 4635 // problematic if we've sunk a different mul for the scale, because then 4636 // we'd end up sinking both muls. 4637 if (AddrMode.BaseReg) { 4638 Value *V = AddrMode.BaseReg; 4639 if (V->getType()->isPointerTy()) 4640 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4641 if (V->getType() != IntPtrTy) 4642 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4643 Result = V; 4644 } 4645 4646 // Add the scale value. 4647 if (AddrMode.Scale) { 4648 Value *V = AddrMode.ScaledReg; 4649 if (V->getType() == IntPtrTy) { 4650 // done. 4651 } else if (V->getType()->isPointerTy()) { 4652 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4653 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4654 cast<IntegerType>(V->getType())->getBitWidth()) { 4655 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4656 } else { 4657 // It is only safe to sign extend the BaseReg if we know that the math 4658 // required to create it did not overflow before we extend it. Since 4659 // the original IR value was tossed in favor of a constant back when 4660 // the AddrMode was created we need to bail out gracefully if widths 4661 // do not match instead of extending it. 4662 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4663 if (I && (Result != AddrMode.BaseReg)) 4664 I->eraseFromParent(); 4665 return false; 4666 } 4667 if (AddrMode.Scale != 1) 4668 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4669 "sunkaddr"); 4670 if (Result) 4671 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4672 else 4673 Result = V; 4674 } 4675 4676 // Add in the BaseGV if present. 4677 if (AddrMode.BaseGV) { 4678 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 4679 if (Result) 4680 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4681 else 4682 Result = V; 4683 } 4684 4685 // Add in the Base Offset if present. 4686 if (AddrMode.BaseOffs) { 4687 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4688 if (Result) 4689 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4690 else 4691 Result = V; 4692 } 4693 4694 if (!Result) 4695 SunkAddr = Constant::getNullValue(Addr->getType()); 4696 else 4697 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 4698 } 4699 4700 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 4701 // Store the newly computed address into the cache. In the case we reused a 4702 // value, this should be idempotent. 4703 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 4704 4705 // If we have no uses, recursively delete the value and all dead instructions 4706 // using it. 4707 if (Repl->use_empty()) { 4708 // This can cause recursive deletion, which can invalidate our iterator. 4709 // Use a WeakTrackingVH to hold onto it in case this happens. 4710 Value *CurValue = &*CurInstIterator; 4711 WeakTrackingVH IterHandle(CurValue); 4712 BasicBlock *BB = CurInstIterator->getParent(); 4713 4714 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 4715 4716 if (IterHandle != CurValue) { 4717 // If the iterator instruction was recursively deleted, start over at the 4718 // start of the block. 4719 CurInstIterator = BB->begin(); 4720 SunkAddrs.clear(); 4721 } 4722 } 4723 ++NumMemoryInsts; 4724 return true; 4725 } 4726 4727 /// If there are any memory operands, use OptimizeMemoryInst to sink their 4728 /// address computing into the block when possible / profitable. 4729 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 4730 bool MadeChange = false; 4731 4732 const TargetRegisterInfo *TRI = 4733 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 4734 TargetLowering::AsmOperandInfoVector TargetConstraints = 4735 TLI->ParseConstraints(*DL, TRI, CS); 4736 unsigned ArgNo = 0; 4737 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4738 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4739 4740 // Compute the constraint code and ConstraintType to use. 4741 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 4742 4743 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4744 OpInfo.isIndirect) { 4745 Value *OpVal = CS->getArgOperand(ArgNo++); 4746 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 4747 } else if (OpInfo.Type == InlineAsm::isInput) 4748 ArgNo++; 4749 } 4750 4751 return MadeChange; 4752 } 4753 4754 /// Check if all the uses of \p Val are equivalent (or free) zero or 4755 /// sign extensions. 4756 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 4757 assert(!Val->use_empty() && "Input must have at least one use"); 4758 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 4759 bool IsSExt = isa<SExtInst>(FirstUser); 4760 Type *ExtTy = FirstUser->getType(); 4761 for (const User *U : Val->users()) { 4762 const Instruction *UI = cast<Instruction>(U); 4763 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 4764 return false; 4765 Type *CurTy = UI->getType(); 4766 // Same input and output types: Same instruction after CSE. 4767 if (CurTy == ExtTy) 4768 continue; 4769 4770 // If IsSExt is true, we are in this situation: 4771 // a = Val 4772 // b = sext ty1 a to ty2 4773 // c = sext ty1 a to ty3 4774 // Assuming ty2 is shorter than ty3, this could be turned into: 4775 // a = Val 4776 // b = sext ty1 a to ty2 4777 // c = sext ty2 b to ty3 4778 // However, the last sext is not free. 4779 if (IsSExt) 4780 return false; 4781 4782 // This is a ZExt, maybe this is free to extend from one type to another. 4783 // In that case, we would not account for a different use. 4784 Type *NarrowTy; 4785 Type *LargeTy; 4786 if (ExtTy->getScalarType()->getIntegerBitWidth() > 4787 CurTy->getScalarType()->getIntegerBitWidth()) { 4788 NarrowTy = CurTy; 4789 LargeTy = ExtTy; 4790 } else { 4791 NarrowTy = ExtTy; 4792 LargeTy = CurTy; 4793 } 4794 4795 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 4796 return false; 4797 } 4798 // All uses are the same or can be derived from one another for free. 4799 return true; 4800 } 4801 4802 /// Try to speculatively promote extensions in \p Exts and continue 4803 /// promoting through newly promoted operands recursively as far as doing so is 4804 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 4805 /// When some promotion happened, \p TPT contains the proper state to revert 4806 /// them. 4807 /// 4808 /// \return true if some promotion happened, false otherwise. 4809 bool CodeGenPrepare::tryToPromoteExts( 4810 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 4811 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 4812 unsigned CreatedInstsCost) { 4813 bool Promoted = false; 4814 4815 // Iterate over all the extensions to try to promote them. 4816 for (auto I : Exts) { 4817 // Early check if we directly have ext(load). 4818 if (isa<LoadInst>(I->getOperand(0))) { 4819 ProfitablyMovedExts.push_back(I); 4820 continue; 4821 } 4822 4823 // Check whether or not we want to do any promotion. The reason we have 4824 // this check inside the for loop is to catch the case where an extension 4825 // is directly fed by a load because in such case the extension can be moved 4826 // up without any promotion on its operands. 4827 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4828 return false; 4829 4830 // Get the action to perform the promotion. 4831 TypePromotionHelper::Action TPH = 4832 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 4833 // Check if we can promote. 4834 if (!TPH) { 4835 // Save the current extension as we cannot move up through its operand. 4836 ProfitablyMovedExts.push_back(I); 4837 continue; 4838 } 4839 4840 // Save the current state. 4841 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4842 TPT.getRestorationPoint(); 4843 SmallVector<Instruction *, 4> NewExts; 4844 unsigned NewCreatedInstsCost = 0; 4845 unsigned ExtCost = !TLI->isExtFree(I); 4846 // Promote. 4847 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4848 &NewExts, nullptr, *TLI); 4849 assert(PromotedVal && 4850 "TypePromotionHelper should have filtered out those cases"); 4851 4852 // We would be able to merge only one extension in a load. 4853 // Therefore, if we have more than 1 new extension we heuristically 4854 // cut this search path, because it means we degrade the code quality. 4855 // With exactly 2, the transformation is neutral, because we will merge 4856 // one extension but leave one. However, we optimistically keep going, 4857 // because the new extension may be removed too. 4858 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4859 // FIXME: It would be possible to propagate a negative value instead of 4860 // conservatively ceiling it to 0. 4861 TotalCreatedInstsCost = 4862 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 4863 if (!StressExtLdPromotion && 4864 (TotalCreatedInstsCost > 1 || 4865 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 4866 // This promotion is not profitable, rollback to the previous state, and 4867 // save the current extension in ProfitablyMovedExts as the latest 4868 // speculative promotion turned out to be unprofitable. 4869 TPT.rollback(LastKnownGood); 4870 ProfitablyMovedExts.push_back(I); 4871 continue; 4872 } 4873 // Continue promoting NewExts as far as doing so is profitable. 4874 SmallVector<Instruction *, 2> NewlyMovedExts; 4875 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 4876 bool NewPromoted = false; 4877 for (auto ExtInst : NewlyMovedExts) { 4878 Instruction *MovedExt = cast<Instruction>(ExtInst); 4879 Value *ExtOperand = MovedExt->getOperand(0); 4880 // If we have reached to a load, we need this extra profitability check 4881 // as it could potentially be merged into an ext(load). 4882 if (isa<LoadInst>(ExtOperand) && 4883 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 4884 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 4885 continue; 4886 4887 ProfitablyMovedExts.push_back(MovedExt); 4888 NewPromoted = true; 4889 } 4890 4891 // If none of speculative promotions for NewExts is profitable, rollback 4892 // and save the current extension (I) as the last profitable extension. 4893 if (!NewPromoted) { 4894 TPT.rollback(LastKnownGood); 4895 ProfitablyMovedExts.push_back(I); 4896 continue; 4897 } 4898 // The promotion is profitable. 4899 Promoted = true; 4900 } 4901 return Promoted; 4902 } 4903 4904 /// Merging redundant sexts when one is dominating the other. 4905 bool CodeGenPrepare::mergeSExts(Function &F) { 4906 DominatorTree DT(F); 4907 bool Changed = false; 4908 for (auto &Entry : ValToSExtendedUses) { 4909 SExts &Insts = Entry.second; 4910 SExts CurPts; 4911 for (Instruction *Inst : Insts) { 4912 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 4913 Inst->getOperand(0) != Entry.first) 4914 continue; 4915 bool inserted = false; 4916 for (auto &Pt : CurPts) { 4917 if (DT.dominates(Inst, Pt)) { 4918 Pt->replaceAllUsesWith(Inst); 4919 RemovedInsts.insert(Pt); 4920 Pt->removeFromParent(); 4921 Pt = Inst; 4922 inserted = true; 4923 Changed = true; 4924 break; 4925 } 4926 if (!DT.dominates(Pt, Inst)) 4927 // Give up if we need to merge in a common dominator as the 4928 // experiments show it is not profitable. 4929 continue; 4930 Inst->replaceAllUsesWith(Pt); 4931 RemovedInsts.insert(Inst); 4932 Inst->removeFromParent(); 4933 inserted = true; 4934 Changed = true; 4935 break; 4936 } 4937 if (!inserted) 4938 CurPts.push_back(Inst); 4939 } 4940 } 4941 return Changed; 4942 } 4943 4944 // Spliting large data structures so that the GEPs accessing them can have 4945 // smaller offsets so that they can be sunk to the same blocks as their users. 4946 // For example, a large struct starting from %base is splitted into two parts 4947 // where the second part starts from %new_base. 4948 // 4949 // Before: 4950 // BB0: 4951 // %base = 4952 // 4953 // BB1: 4954 // %gep0 = gep %base, off0 4955 // %gep1 = gep %base, off1 4956 // %gep2 = gep %base, off2 4957 // 4958 // BB2: 4959 // %load1 = load %gep0 4960 // %load2 = load %gep1 4961 // %load3 = load %gep2 4962 // 4963 // After: 4964 // BB0: 4965 // %base = 4966 // %new_base = gep %base, off0 4967 // 4968 // BB1: 4969 // %new_gep0 = %new_base 4970 // %new_gep1 = gep %new_base, off1 - off0 4971 // %new_gep2 = gep %new_base, off2 - off0 4972 // 4973 // BB2: 4974 // %load1 = load i32, i32* %new_gep0 4975 // %load2 = load i32, i32* %new_gep1 4976 // %load3 = load i32, i32* %new_gep2 4977 // 4978 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 4979 // their offsets are smaller enough to fit into the addressing mode. 4980 bool CodeGenPrepare::splitLargeGEPOffsets() { 4981 bool Changed = false; 4982 for (auto &Entry : LargeOffsetGEPMap) { 4983 Value *OldBase = Entry.first; 4984 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 4985 &LargeOffsetGEPs = Entry.second; 4986 auto compareGEPOffset = 4987 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 4988 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 4989 if (LHS.first == RHS.first) 4990 return false; 4991 if (LHS.second != RHS.second) 4992 return LHS.second < RHS.second; 4993 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 4994 }; 4995 // Sorting all the GEPs of the same data structures based on the offsets. 4996 llvm::sort(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end(), 4997 compareGEPOffset); 4998 LargeOffsetGEPs.erase( 4999 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5000 LargeOffsetGEPs.end()); 5001 // Skip if all the GEPs have the same offsets. 5002 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5003 continue; 5004 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5005 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5006 Value *NewBaseGEP = nullptr; 5007 5008 auto LargeOffsetGEP = LargeOffsetGEPs.begin(); 5009 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5010 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5011 int64_t Offset = LargeOffsetGEP->second; 5012 if (Offset != BaseOffset) { 5013 TargetLowering::AddrMode AddrMode; 5014 AddrMode.BaseOffs = Offset - BaseOffset; 5015 // The result type of the GEP might not be the type of the memory 5016 // access. 5017 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5018 GEP->getResultElementType(), 5019 GEP->getAddressSpace())) { 5020 // We need to create a new base if the offset to the current base is 5021 // too large to fit into the addressing mode. So, a very large struct 5022 // may be splitted into several parts. 5023 BaseGEP = GEP; 5024 BaseOffset = Offset; 5025 NewBaseGEP = nullptr; 5026 } 5027 } 5028 5029 // Generate a new GEP to replace the current one. 5030 IRBuilder<> Builder(GEP); 5031 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5032 Type *I8PtrTy = 5033 Builder.getInt8PtrTy(GEP->getType()->getPointerAddressSpace()); 5034 Type *I8Ty = Builder.getInt8Ty(); 5035 5036 if (!NewBaseGEP) { 5037 // Create a new base if we don't have one yet. Find the insertion 5038 // pointer for the new base first. 5039 BasicBlock::iterator NewBaseInsertPt; 5040 BasicBlock *NewBaseInsertBB; 5041 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5042 // If the base of the struct is an instruction, the new base will be 5043 // inserted close to it. 5044 NewBaseInsertBB = BaseI->getParent(); 5045 if (isa<PHINode>(BaseI)) 5046 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5047 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5048 NewBaseInsertBB = 5049 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5050 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5051 } else 5052 NewBaseInsertPt = std::next(BaseI->getIterator()); 5053 } else { 5054 // If the current base is an argument or global value, the new base 5055 // will be inserted to the entry block. 5056 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5057 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5058 } 5059 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5060 // Create a new base. 5061 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5062 NewBaseGEP = OldBase; 5063 if (NewBaseGEP->getType() != I8PtrTy) 5064 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5065 NewBaseGEP = 5066 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5067 NewGEPBases.insert(NewBaseGEP); 5068 } 5069 5070 Value *NewGEP = NewBaseGEP; 5071 if (Offset == BaseOffset) { 5072 if (GEP->getType() != I8PtrTy) 5073 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5074 } else { 5075 // Calculate the new offset for the new GEP. 5076 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5077 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5078 5079 if (GEP->getType() != I8PtrTy) 5080 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5081 } 5082 GEP->replaceAllUsesWith(NewGEP); 5083 LargeOffsetGEPID.erase(GEP); 5084 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5085 GEP->eraseFromParent(); 5086 Changed = true; 5087 } 5088 } 5089 return Changed; 5090 } 5091 5092 /// Return true, if an ext(load) can be formed from an extension in 5093 /// \p MovedExts. 5094 bool CodeGenPrepare::canFormExtLd( 5095 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5096 Instruction *&Inst, bool HasPromoted) { 5097 for (auto *MovedExtInst : MovedExts) { 5098 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5099 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5100 Inst = MovedExtInst; 5101 break; 5102 } 5103 } 5104 if (!LI) 5105 return false; 5106 5107 // If they're already in the same block, there's nothing to do. 5108 // Make the cheap checks first if we did not promote. 5109 // If we promoted, we need to check if it is indeed profitable. 5110 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5111 return false; 5112 5113 return TLI->isExtLoad(LI, Inst, *DL); 5114 } 5115 5116 /// Move a zext or sext fed by a load into the same basic block as the load, 5117 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5118 /// extend into the load. 5119 /// 5120 /// E.g., 5121 /// \code 5122 /// %ld = load i32* %addr 5123 /// %add = add nuw i32 %ld, 4 5124 /// %zext = zext i32 %add to i64 5125 // \endcode 5126 /// => 5127 /// \code 5128 /// %ld = load i32* %addr 5129 /// %zext = zext i32 %ld to i64 5130 /// %add = add nuw i64 %zext, 4 5131 /// \encode 5132 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5133 /// allow us to match zext(load i32*) to i64. 5134 /// 5135 /// Also, try to promote the computations used to obtain a sign extended 5136 /// value used into memory accesses. 5137 /// E.g., 5138 /// \code 5139 /// a = add nsw i32 b, 3 5140 /// d = sext i32 a to i64 5141 /// e = getelementptr ..., i64 d 5142 /// \endcode 5143 /// => 5144 /// \code 5145 /// f = sext i32 b to i64 5146 /// a = add nsw i64 f, 3 5147 /// e = getelementptr ..., i64 a 5148 /// \endcode 5149 /// 5150 /// \p Inst[in/out] the extension may be modified during the process if some 5151 /// promotions apply. 5152 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 5153 // ExtLoad formation and address type promotion infrastructure requires TLI to 5154 // be effective. 5155 if (!TLI) 5156 return false; 5157 5158 bool AllowPromotionWithoutCommonHeader = false; 5159 /// See if it is an interesting sext operations for the address type 5160 /// promotion before trying to promote it, e.g., the ones with the right 5161 /// type and used in memory accesses. 5162 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 5163 *Inst, AllowPromotionWithoutCommonHeader); 5164 TypePromotionTransaction TPT(RemovedInsts); 5165 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5166 TPT.getRestorationPoint(); 5167 SmallVector<Instruction *, 1> Exts; 5168 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 5169 Exts.push_back(Inst); 5170 5171 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 5172 5173 // Look for a load being extended. 5174 LoadInst *LI = nullptr; 5175 Instruction *ExtFedByLoad; 5176 5177 // Try to promote a chain of computation if it allows to form an extended 5178 // load. 5179 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5180 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5181 TPT.commit(); 5182 // Move the extend into the same block as the load 5183 ExtFedByLoad->moveAfter(LI); 5184 // CGP does not check if the zext would be speculatively executed when moved 5185 // to the same basic block as the load. Preserving its original location 5186 // would pessimize the debugging experience, as well as negatively impact 5187 // the quality of sample pgo. We don't want to use "line 0" as that has a 5188 // size cost in the line-table section and logically the zext can be seen as 5189 // part of the load. Therefore we conservatively reuse the same debug 5190 // location for the load and the zext. 5191 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 5192 ++NumExtsMoved; 5193 Inst = ExtFedByLoad; 5194 return true; 5195 } 5196 5197 // Continue promoting SExts if known as considerable depending on targets. 5198 if (ATPConsiderable && 5199 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5200 HasPromoted, TPT, SpeculativelyMovedExts)) 5201 return true; 5202 5203 TPT.rollback(LastKnownGood); 5204 return false; 5205 } 5206 5207 // Perform address type promotion if doing so is profitable. 5208 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5209 // instructions that sign extended the same initial value. However, if 5210 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5211 // extension is just profitable. 5212 bool CodeGenPrepare::performAddressTypePromotion( 5213 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5214 bool HasPromoted, TypePromotionTransaction &TPT, 5215 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5216 bool Promoted = false; 5217 SmallPtrSet<Instruction *, 1> UnhandledExts; 5218 bool AllSeenFirst = true; 5219 for (auto I : SpeculativelyMovedExts) { 5220 Value *HeadOfChain = I->getOperand(0); 5221 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 5222 SeenChainsForSExt.find(HeadOfChain); 5223 // If there is an unhandled SExt which has the same header, try to promote 5224 // it as well. 5225 if (AlreadySeen != SeenChainsForSExt.end()) { 5226 if (AlreadySeen->second != nullptr) 5227 UnhandledExts.insert(AlreadySeen->second); 5228 AllSeenFirst = false; 5229 } 5230 } 5231 5232 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 5233 SpeculativelyMovedExts.size() == 1)) { 5234 TPT.commit(); 5235 if (HasPromoted) 5236 Promoted = true; 5237 for (auto I : SpeculativelyMovedExts) { 5238 Value *HeadOfChain = I->getOperand(0); 5239 SeenChainsForSExt[HeadOfChain] = nullptr; 5240 ValToSExtendedUses[HeadOfChain].push_back(I); 5241 } 5242 // Update Inst as promotion happen. 5243 Inst = SpeculativelyMovedExts.pop_back_val(); 5244 } else { 5245 // This is the first chain visited from the header, keep the current chain 5246 // as unhandled. Defer to promote this until we encounter another SExt 5247 // chain derived from the same header. 5248 for (auto I : SpeculativelyMovedExts) { 5249 Value *HeadOfChain = I->getOperand(0); 5250 SeenChainsForSExt[HeadOfChain] = Inst; 5251 } 5252 return false; 5253 } 5254 5255 if (!AllSeenFirst && !UnhandledExts.empty()) 5256 for (auto VisitedSExt : UnhandledExts) { 5257 if (RemovedInsts.count(VisitedSExt)) 5258 continue; 5259 TypePromotionTransaction TPT(RemovedInsts); 5260 SmallVector<Instruction *, 1> Exts; 5261 SmallVector<Instruction *, 2> Chains; 5262 Exts.push_back(VisitedSExt); 5263 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 5264 TPT.commit(); 5265 if (HasPromoted) 5266 Promoted = true; 5267 for (auto I : Chains) { 5268 Value *HeadOfChain = I->getOperand(0); 5269 // Mark this as handled. 5270 SeenChainsForSExt[HeadOfChain] = nullptr; 5271 ValToSExtendedUses[HeadOfChain].push_back(I); 5272 } 5273 } 5274 return Promoted; 5275 } 5276 5277 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5278 BasicBlock *DefBB = I->getParent(); 5279 5280 // If the result of a {s|z}ext and its source are both live out, rewrite all 5281 // other uses of the source with result of extension. 5282 Value *Src = I->getOperand(0); 5283 if (Src->hasOneUse()) 5284 return false; 5285 5286 // Only do this xform if truncating is free. 5287 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 5288 return false; 5289 5290 // Only safe to perform the optimization if the source is also defined in 5291 // this block. 5292 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5293 return false; 5294 5295 bool DefIsLiveOut = false; 5296 for (User *U : I->users()) { 5297 Instruction *UI = cast<Instruction>(U); 5298 5299 // Figure out which BB this ext is used in. 5300 BasicBlock *UserBB = UI->getParent(); 5301 if (UserBB == DefBB) continue; 5302 DefIsLiveOut = true; 5303 break; 5304 } 5305 if (!DefIsLiveOut) 5306 return false; 5307 5308 // Make sure none of the uses are PHI nodes. 5309 for (User *U : Src->users()) { 5310 Instruction *UI = cast<Instruction>(U); 5311 BasicBlock *UserBB = UI->getParent(); 5312 if (UserBB == DefBB) continue; 5313 // Be conservative. We don't want this xform to end up introducing 5314 // reloads just before load / store instructions. 5315 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5316 return false; 5317 } 5318 5319 // InsertedTruncs - Only insert one trunc in each block once. 5320 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5321 5322 bool MadeChange = false; 5323 for (Use &U : Src->uses()) { 5324 Instruction *User = cast<Instruction>(U.getUser()); 5325 5326 // Figure out which BB this ext is used in. 5327 BasicBlock *UserBB = User->getParent(); 5328 if (UserBB == DefBB) continue; 5329 5330 // Both src and def are live in this block. Rewrite the use. 5331 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5332 5333 if (!InsertedTrunc) { 5334 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5335 assert(InsertPt != UserBB->end()); 5336 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5337 InsertedInsts.insert(InsertedTrunc); 5338 } 5339 5340 // Replace a use of the {s|z}ext source with a use of the result. 5341 U = InsertedTrunc; 5342 ++NumExtUses; 5343 MadeChange = true; 5344 } 5345 5346 return MadeChange; 5347 } 5348 5349 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5350 // just after the load if the target can fold this into one extload instruction, 5351 // with the hope of eliminating some of the other later "and" instructions using 5352 // the loaded value. "and"s that are made trivially redundant by the insertion 5353 // of the new "and" are removed by this function, while others (e.g. those whose 5354 // path from the load goes through a phi) are left for isel to potentially 5355 // remove. 5356 // 5357 // For example: 5358 // 5359 // b0: 5360 // x = load i32 5361 // ... 5362 // b1: 5363 // y = and x, 0xff 5364 // z = use y 5365 // 5366 // becomes: 5367 // 5368 // b0: 5369 // x = load i32 5370 // x' = and x, 0xff 5371 // ... 5372 // b1: 5373 // z = use x' 5374 // 5375 // whereas: 5376 // 5377 // b0: 5378 // x1 = load i32 5379 // ... 5380 // b1: 5381 // x2 = load i32 5382 // ... 5383 // b2: 5384 // x = phi x1, x2 5385 // y = and x, 0xff 5386 // 5387 // becomes (after a call to optimizeLoadExt for each load): 5388 // 5389 // b0: 5390 // x1 = load i32 5391 // x1' = and x1, 0xff 5392 // ... 5393 // b1: 5394 // x2 = load i32 5395 // x2' = and x2, 0xff 5396 // ... 5397 // b2: 5398 // x = phi x1', x2' 5399 // y = and x, 0xff 5400 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5401 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 5402 return false; 5403 5404 // Skip loads we've already transformed. 5405 if (Load->hasOneUse() && 5406 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5407 return false; 5408 5409 // Look at all uses of Load, looking through phis, to determine how many bits 5410 // of the loaded value are needed. 5411 SmallVector<Instruction *, 8> WorkList; 5412 SmallPtrSet<Instruction *, 16> Visited; 5413 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5414 for (auto *U : Load->users()) 5415 WorkList.push_back(cast<Instruction>(U)); 5416 5417 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5418 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5419 APInt DemandBits(BitWidth, 0); 5420 APInt WidestAndBits(BitWidth, 0); 5421 5422 while (!WorkList.empty()) { 5423 Instruction *I = WorkList.back(); 5424 WorkList.pop_back(); 5425 5426 // Break use-def graph loops. 5427 if (!Visited.insert(I).second) 5428 continue; 5429 5430 // For a PHI node, push all of its users. 5431 if (auto *Phi = dyn_cast<PHINode>(I)) { 5432 for (auto *U : Phi->users()) 5433 WorkList.push_back(cast<Instruction>(U)); 5434 continue; 5435 } 5436 5437 switch (I->getOpcode()) { 5438 case Instruction::And: { 5439 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5440 if (!AndC) 5441 return false; 5442 APInt AndBits = AndC->getValue(); 5443 DemandBits |= AndBits; 5444 // Keep track of the widest and mask we see. 5445 if (AndBits.ugt(WidestAndBits)) 5446 WidestAndBits = AndBits; 5447 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5448 AndsToMaybeRemove.push_back(I); 5449 break; 5450 } 5451 5452 case Instruction::Shl: { 5453 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5454 if (!ShlC) 5455 return false; 5456 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5457 DemandBits.setLowBits(BitWidth - ShiftAmt); 5458 break; 5459 } 5460 5461 case Instruction::Trunc: { 5462 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5463 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5464 DemandBits.setLowBits(TruncBitWidth); 5465 break; 5466 } 5467 5468 default: 5469 return false; 5470 } 5471 } 5472 5473 uint32_t ActiveBits = DemandBits.getActiveBits(); 5474 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5475 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5476 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5477 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5478 // followed by an AND. 5479 // TODO: Look into removing this restriction by fixing backends to either 5480 // return false for isLoadExtLegal for i1 or have them select this pattern to 5481 // a single instruction. 5482 // 5483 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5484 // mask, since these are the only ands that will be removed by isel. 5485 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5486 WidestAndBits != DemandBits) 5487 return false; 5488 5489 LLVMContext &Ctx = Load->getType()->getContext(); 5490 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5491 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5492 5493 // Reject cases that won't be matched as extloads. 5494 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5495 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5496 return false; 5497 5498 IRBuilder<> Builder(Load->getNextNode()); 5499 auto *NewAnd = dyn_cast<Instruction>( 5500 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5501 // Mark this instruction as "inserted by CGP", so that other 5502 // optimizations don't touch it. 5503 InsertedInsts.insert(NewAnd); 5504 5505 // Replace all uses of load with new and (except for the use of load in the 5506 // new and itself). 5507 Load->replaceAllUsesWith(NewAnd); 5508 NewAnd->setOperand(0, Load); 5509 5510 // Remove any and instructions that are now redundant. 5511 for (auto *And : AndsToMaybeRemove) 5512 // Check that the and mask is the same as the one we decided to put on the 5513 // new and. 5514 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5515 And->replaceAllUsesWith(NewAnd); 5516 if (&*CurInstIterator == And) 5517 CurInstIterator = std::next(And->getIterator()); 5518 And->eraseFromParent(); 5519 ++NumAndUses; 5520 } 5521 5522 ++NumAndsAdded; 5523 return true; 5524 } 5525 5526 /// Check if V (an operand of a select instruction) is an expensive instruction 5527 /// that is only used once. 5528 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5529 auto *I = dyn_cast<Instruction>(V); 5530 // If it's safe to speculatively execute, then it should not have side 5531 // effects; therefore, it's safe to sink and possibly *not* execute. 5532 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5533 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5534 } 5535 5536 /// Returns true if a SelectInst should be turned into an explicit branch. 5537 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5538 const TargetLowering *TLI, 5539 SelectInst *SI) { 5540 // If even a predictable select is cheap, then a branch can't be cheaper. 5541 if (!TLI->isPredictableSelectExpensive()) 5542 return false; 5543 5544 // FIXME: This should use the same heuristics as IfConversion to determine 5545 // whether a select is better represented as a branch. 5546 5547 // If metadata tells us that the select condition is obviously predictable, 5548 // then we want to replace the select with a branch. 5549 uint64_t TrueWeight, FalseWeight; 5550 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5551 uint64_t Max = std::max(TrueWeight, FalseWeight); 5552 uint64_t Sum = TrueWeight + FalseWeight; 5553 if (Sum != 0) { 5554 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5555 if (Probability > TLI->getPredictableBranchThreshold()) 5556 return true; 5557 } 5558 } 5559 5560 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5561 5562 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5563 // comparison condition. If the compare has more than one use, there's 5564 // probably another cmov or setcc around, so it's not worth emitting a branch. 5565 if (!Cmp || !Cmp->hasOneUse()) 5566 return false; 5567 5568 // If either operand of the select is expensive and only needed on one side 5569 // of the select, we should form a branch. 5570 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5571 sinkSelectOperand(TTI, SI->getFalseValue())) 5572 return true; 5573 5574 return false; 5575 } 5576 5577 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5578 /// false value of \p SI. If the true/false value of \p SI is defined by any 5579 /// select instructions in \p Selects, look through the defining select 5580 /// instruction until the true/false value is not defined in \p Selects. 5581 static Value *getTrueOrFalseValue( 5582 SelectInst *SI, bool isTrue, 5583 const SmallPtrSet<const Instruction *, 2> &Selects) { 5584 Value *V; 5585 5586 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 5587 DefSI = dyn_cast<SelectInst>(V)) { 5588 assert(DefSI->getCondition() == SI->getCondition() && 5589 "The condition of DefSI does not match with SI"); 5590 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 5591 } 5592 return V; 5593 } 5594 5595 /// If we have a SelectInst that will likely profit from branch prediction, 5596 /// turn it into a branch. 5597 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 5598 // If branch conversion isn't desirable, exit early. 5599 if (DisableSelectToBranch || OptSize || !TLI) 5600 return false; 5601 5602 // Find all consecutive select instructions that share the same condition. 5603 SmallVector<SelectInst *, 2> ASI; 5604 ASI.push_back(SI); 5605 for (Instruction *NextInst = SI->getNextNonDebugInstruction(); 5606 NextInst != SI->getParent()->getTerminator(); 5607 NextInst = NextInst->getNextNonDebugInstruction()) { 5608 SelectInst *I = dyn_cast<SelectInst>(NextInst); 5609 if (I && SI->getCondition() == I->getCondition()) { 5610 ASI.push_back(I); 5611 } else { 5612 break; 5613 } 5614 } 5615 5616 SelectInst *LastSI = ASI.back(); 5617 // Increment the current iterator to skip all the rest of select instructions 5618 // because they will be either "not lowered" or "all lowered" to branch. 5619 CurInstIterator = std::next(LastSI->getIterator()); 5620 5621 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 5622 5623 // Can we convert the 'select' to CF ? 5624 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 5625 return false; 5626 5627 TargetLowering::SelectSupportKind SelectKind; 5628 if (VectorCond) 5629 SelectKind = TargetLowering::VectorMaskSelect; 5630 else if (SI->getType()->isVectorTy()) 5631 SelectKind = TargetLowering::ScalarCondVectorVal; 5632 else 5633 SelectKind = TargetLowering::ScalarValSelect; 5634 5635 if (TLI->isSelectSupported(SelectKind) && 5636 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 5637 return false; 5638 5639 ModifiedDT = true; 5640 5641 // Transform a sequence like this: 5642 // start: 5643 // %cmp = cmp uge i32 %a, %b 5644 // %sel = select i1 %cmp, i32 %c, i32 %d 5645 // 5646 // Into: 5647 // start: 5648 // %cmp = cmp uge i32 %a, %b 5649 // br i1 %cmp, label %select.true, label %select.false 5650 // select.true: 5651 // br label %select.end 5652 // select.false: 5653 // br label %select.end 5654 // select.end: 5655 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 5656 // 5657 // In addition, we may sink instructions that produce %c or %d from 5658 // the entry block into the destination(s) of the new branch. 5659 // If the true or false blocks do not contain a sunken instruction, that 5660 // block and its branch may be optimized away. In that case, one side of the 5661 // first branch will point directly to select.end, and the corresponding PHI 5662 // predecessor block will be the start block. 5663 5664 // First, we split the block containing the select into 2 blocks. 5665 BasicBlock *StartBlock = SI->getParent(); 5666 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 5667 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 5668 5669 // Delete the unconditional branch that was just created by the split. 5670 StartBlock->getTerminator()->eraseFromParent(); 5671 5672 // These are the new basic blocks for the conditional branch. 5673 // At least one will become an actual new basic block. 5674 BasicBlock *TrueBlock = nullptr; 5675 BasicBlock *FalseBlock = nullptr; 5676 BranchInst *TrueBranch = nullptr; 5677 BranchInst *FalseBranch = nullptr; 5678 5679 // Sink expensive instructions into the conditional blocks to avoid executing 5680 // them speculatively. 5681 for (SelectInst *SI : ASI) { 5682 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 5683 if (TrueBlock == nullptr) { 5684 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 5685 EndBlock->getParent(), EndBlock); 5686 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 5687 TrueBranch->setDebugLoc(SI->getDebugLoc()); 5688 } 5689 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 5690 TrueInst->moveBefore(TrueBranch); 5691 } 5692 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 5693 if (FalseBlock == nullptr) { 5694 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 5695 EndBlock->getParent(), EndBlock); 5696 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 5697 FalseBranch->setDebugLoc(SI->getDebugLoc()); 5698 } 5699 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 5700 FalseInst->moveBefore(FalseBranch); 5701 } 5702 } 5703 5704 // If there was nothing to sink, then arbitrarily choose the 'false' side 5705 // for a new input value to the PHI. 5706 if (TrueBlock == FalseBlock) { 5707 assert(TrueBlock == nullptr && 5708 "Unexpected basic block transform while optimizing select"); 5709 5710 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 5711 EndBlock->getParent(), EndBlock); 5712 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 5713 FalseBranch->setDebugLoc(SI->getDebugLoc()); 5714 } 5715 5716 // Insert the real conditional branch based on the original condition. 5717 // If we did not create a new block for one of the 'true' or 'false' paths 5718 // of the condition, it means that side of the branch goes to the end block 5719 // directly and the path originates from the start block from the point of 5720 // view of the new PHI. 5721 BasicBlock *TT, *FT; 5722 if (TrueBlock == nullptr) { 5723 TT = EndBlock; 5724 FT = FalseBlock; 5725 TrueBlock = StartBlock; 5726 } else if (FalseBlock == nullptr) { 5727 TT = TrueBlock; 5728 FT = EndBlock; 5729 FalseBlock = StartBlock; 5730 } else { 5731 TT = TrueBlock; 5732 FT = FalseBlock; 5733 } 5734 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 5735 5736 SmallPtrSet<const Instruction *, 2> INS; 5737 INS.insert(ASI.begin(), ASI.end()); 5738 // Use reverse iterator because later select may use the value of the 5739 // earlier select, and we need to propagate value through earlier select 5740 // to get the PHI operand. 5741 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 5742 SelectInst *SI = *It; 5743 // The select itself is replaced with a PHI Node. 5744 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 5745 PN->takeName(SI); 5746 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 5747 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 5748 PN->setDebugLoc(SI->getDebugLoc()); 5749 5750 SI->replaceAllUsesWith(PN); 5751 SI->eraseFromParent(); 5752 INS.erase(SI); 5753 ++NumSelectsExpanded; 5754 } 5755 5756 // Instruct OptimizeBlock to skip to the next block. 5757 CurInstIterator = StartBlock->end(); 5758 return true; 5759 } 5760 5761 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 5762 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 5763 int SplatElem = -1; 5764 for (unsigned i = 0; i < Mask.size(); ++i) { 5765 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 5766 return false; 5767 SplatElem = Mask[i]; 5768 } 5769 5770 return true; 5771 } 5772 5773 /// Some targets have expensive vector shifts if the lanes aren't all the same 5774 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 5775 /// it's often worth sinking a shufflevector splat down to its use so that 5776 /// codegen can spot all lanes are identical. 5777 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 5778 BasicBlock *DefBB = SVI->getParent(); 5779 5780 // Only do this xform if variable vector shifts are particularly expensive. 5781 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 5782 return false; 5783 5784 // We only expect better codegen by sinking a shuffle if we can recognise a 5785 // constant splat. 5786 if (!isBroadcastShuffle(SVI)) 5787 return false; 5788 5789 // InsertedShuffles - Only insert a shuffle in each block once. 5790 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 5791 5792 bool MadeChange = false; 5793 for (User *U : SVI->users()) { 5794 Instruction *UI = cast<Instruction>(U); 5795 5796 // Figure out which BB this ext is used in. 5797 BasicBlock *UserBB = UI->getParent(); 5798 if (UserBB == DefBB) continue; 5799 5800 // For now only apply this when the splat is used by a shift instruction. 5801 if (!UI->isShift()) continue; 5802 5803 // Everything checks out, sink the shuffle if the user's block doesn't 5804 // already have a copy. 5805 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 5806 5807 if (!InsertedShuffle) { 5808 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5809 assert(InsertPt != UserBB->end()); 5810 InsertedShuffle = 5811 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5812 SVI->getOperand(2), "", &*InsertPt); 5813 } 5814 5815 UI->replaceUsesOfWith(SVI, InsertedShuffle); 5816 MadeChange = true; 5817 } 5818 5819 // If we removed all uses, nuke the shuffle. 5820 if (SVI->use_empty()) { 5821 SVI->eraseFromParent(); 5822 MadeChange = true; 5823 } 5824 5825 return MadeChange; 5826 } 5827 5828 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 5829 if (!TLI || !DL) 5830 return false; 5831 5832 Value *Cond = SI->getCondition(); 5833 Type *OldType = Cond->getType(); 5834 LLVMContext &Context = Cond->getContext(); 5835 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 5836 unsigned RegWidth = RegType.getSizeInBits(); 5837 5838 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 5839 return false; 5840 5841 // If the register width is greater than the type width, expand the condition 5842 // of the switch instruction and each case constant to the width of the 5843 // register. By widening the type of the switch condition, subsequent 5844 // comparisons (for case comparisons) will not need to be extended to the 5845 // preferred register width, so we will potentially eliminate N-1 extends, 5846 // where N is the number of cases in the switch. 5847 auto *NewType = Type::getIntNTy(Context, RegWidth); 5848 5849 // Zero-extend the switch condition and case constants unless the switch 5850 // condition is a function argument that is already being sign-extended. 5851 // In that case, we can avoid an unnecessary mask/extension by sign-extending 5852 // everything instead. 5853 Instruction::CastOps ExtType = Instruction::ZExt; 5854 if (auto *Arg = dyn_cast<Argument>(Cond)) 5855 if (Arg->hasSExtAttr()) 5856 ExtType = Instruction::SExt; 5857 5858 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 5859 ExtInst->insertBefore(SI); 5860 ExtInst->setDebugLoc(SI->getDebugLoc()); 5861 SI->setCondition(ExtInst); 5862 for (auto Case : SI->cases()) { 5863 APInt NarrowConst = Case.getCaseValue()->getValue(); 5864 APInt WideConst = (ExtType == Instruction::ZExt) ? 5865 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 5866 Case.setValue(ConstantInt::get(Context, WideConst)); 5867 } 5868 5869 return true; 5870 } 5871 5872 5873 namespace { 5874 5875 /// Helper class to promote a scalar operation to a vector one. 5876 /// This class is used to move downward extractelement transition. 5877 /// E.g., 5878 /// a = vector_op <2 x i32> 5879 /// b = extractelement <2 x i32> a, i32 0 5880 /// c = scalar_op b 5881 /// store c 5882 /// 5883 /// => 5884 /// a = vector_op <2 x i32> 5885 /// c = vector_op a (equivalent to scalar_op on the related lane) 5886 /// * d = extractelement <2 x i32> c, i32 0 5887 /// * store d 5888 /// Assuming both extractelement and store can be combine, we get rid of the 5889 /// transition. 5890 class VectorPromoteHelper { 5891 /// DataLayout associated with the current module. 5892 const DataLayout &DL; 5893 5894 /// Used to perform some checks on the legality of vector operations. 5895 const TargetLowering &TLI; 5896 5897 /// Used to estimated the cost of the promoted chain. 5898 const TargetTransformInfo &TTI; 5899 5900 /// The transition being moved downwards. 5901 Instruction *Transition; 5902 5903 /// The sequence of instructions to be promoted. 5904 SmallVector<Instruction *, 4> InstsToBePromoted; 5905 5906 /// Cost of combining a store and an extract. 5907 unsigned StoreExtractCombineCost; 5908 5909 /// Instruction that will be combined with the transition. 5910 Instruction *CombineInst = nullptr; 5911 5912 /// The instruction that represents the current end of the transition. 5913 /// Since we are faking the promotion until we reach the end of the chain 5914 /// of computation, we need a way to get the current end of the transition. 5915 Instruction *getEndOfTransition() const { 5916 if (InstsToBePromoted.empty()) 5917 return Transition; 5918 return InstsToBePromoted.back(); 5919 } 5920 5921 /// Return the index of the original value in the transition. 5922 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 5923 /// c, is at index 0. 5924 unsigned getTransitionOriginalValueIdx() const { 5925 assert(isa<ExtractElementInst>(Transition) && 5926 "Other kind of transitions are not supported yet"); 5927 return 0; 5928 } 5929 5930 /// Return the index of the index in the transition. 5931 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 5932 /// is at index 1. 5933 unsigned getTransitionIdx() const { 5934 assert(isa<ExtractElementInst>(Transition) && 5935 "Other kind of transitions are not supported yet"); 5936 return 1; 5937 } 5938 5939 /// Get the type of the transition. 5940 /// This is the type of the original value. 5941 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 5942 /// transition is <2 x i32>. 5943 Type *getTransitionType() const { 5944 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 5945 } 5946 5947 /// Promote \p ToBePromoted by moving \p Def downward through. 5948 /// I.e., we have the following sequence: 5949 /// Def = Transition <ty1> a to <ty2> 5950 /// b = ToBePromoted <ty2> Def, ... 5951 /// => 5952 /// b = ToBePromoted <ty1> a, ... 5953 /// Def = Transition <ty1> ToBePromoted to <ty2> 5954 void promoteImpl(Instruction *ToBePromoted); 5955 5956 /// Check whether or not it is profitable to promote all the 5957 /// instructions enqueued to be promoted. 5958 bool isProfitableToPromote() { 5959 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 5960 unsigned Index = isa<ConstantInt>(ValIdx) 5961 ? cast<ConstantInt>(ValIdx)->getZExtValue() 5962 : -1; 5963 Type *PromotedType = getTransitionType(); 5964 5965 StoreInst *ST = cast<StoreInst>(CombineInst); 5966 unsigned AS = ST->getPointerAddressSpace(); 5967 unsigned Align = ST->getAlignment(); 5968 // Check if this store is supported. 5969 if (!TLI.allowsMisalignedMemoryAccesses( 5970 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 5971 Align)) { 5972 // If this is not supported, there is no way we can combine 5973 // the extract with the store. 5974 return false; 5975 } 5976 5977 // The scalar chain of computation has to pay for the transition 5978 // scalar to vector. 5979 // The vector chain has to account for the combining cost. 5980 uint64_t ScalarCost = 5981 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 5982 uint64_t VectorCost = StoreExtractCombineCost; 5983 for (const auto &Inst : InstsToBePromoted) { 5984 // Compute the cost. 5985 // By construction, all instructions being promoted are arithmetic ones. 5986 // Moreover, one argument is a constant that can be viewed as a splat 5987 // constant. 5988 Value *Arg0 = Inst->getOperand(0); 5989 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 5990 isa<ConstantFP>(Arg0); 5991 TargetTransformInfo::OperandValueKind Arg0OVK = 5992 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5993 : TargetTransformInfo::OK_AnyValue; 5994 TargetTransformInfo::OperandValueKind Arg1OVK = 5995 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5996 : TargetTransformInfo::OK_AnyValue; 5997 ScalarCost += TTI.getArithmeticInstrCost( 5998 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 5999 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 6000 Arg0OVK, Arg1OVK); 6001 } 6002 LLVM_DEBUG( 6003 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 6004 << ScalarCost << "\nVector: " << VectorCost << '\n'); 6005 return ScalarCost > VectorCost; 6006 } 6007 6008 /// Generate a constant vector with \p Val with the same 6009 /// number of elements as the transition. 6010 /// \p UseSplat defines whether or not \p Val should be replicated 6011 /// across the whole vector. 6012 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 6013 /// otherwise we generate a vector with as many undef as possible: 6014 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 6015 /// used at the index of the extract. 6016 Value *getConstantVector(Constant *Val, bool UseSplat) const { 6017 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 6018 if (!UseSplat) { 6019 // If we cannot determine where the constant must be, we have to 6020 // use a splat constant. 6021 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 6022 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 6023 ExtractIdx = CstVal->getSExtValue(); 6024 else 6025 UseSplat = true; 6026 } 6027 6028 unsigned End = getTransitionType()->getVectorNumElements(); 6029 if (UseSplat) 6030 return ConstantVector::getSplat(End, Val); 6031 6032 SmallVector<Constant *, 4> ConstVec; 6033 UndefValue *UndefVal = UndefValue::get(Val->getType()); 6034 for (unsigned Idx = 0; Idx != End; ++Idx) { 6035 if (Idx == ExtractIdx) 6036 ConstVec.push_back(Val); 6037 else 6038 ConstVec.push_back(UndefVal); 6039 } 6040 return ConstantVector::get(ConstVec); 6041 } 6042 6043 /// Check if promoting to a vector type an operand at \p OperandIdx 6044 /// in \p Use can trigger undefined behavior. 6045 static bool canCauseUndefinedBehavior(const Instruction *Use, 6046 unsigned OperandIdx) { 6047 // This is not safe to introduce undef when the operand is on 6048 // the right hand side of a division-like instruction. 6049 if (OperandIdx != 1) 6050 return false; 6051 switch (Use->getOpcode()) { 6052 default: 6053 return false; 6054 case Instruction::SDiv: 6055 case Instruction::UDiv: 6056 case Instruction::SRem: 6057 case Instruction::URem: 6058 return true; 6059 case Instruction::FDiv: 6060 case Instruction::FRem: 6061 return !Use->hasNoNaNs(); 6062 } 6063 llvm_unreachable(nullptr); 6064 } 6065 6066 public: 6067 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 6068 const TargetTransformInfo &TTI, Instruction *Transition, 6069 unsigned CombineCost) 6070 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 6071 StoreExtractCombineCost(CombineCost) { 6072 assert(Transition && "Do not know how to promote null"); 6073 } 6074 6075 /// Check if we can promote \p ToBePromoted to \p Type. 6076 bool canPromote(const Instruction *ToBePromoted) const { 6077 // We could support CastInst too. 6078 return isa<BinaryOperator>(ToBePromoted); 6079 } 6080 6081 /// Check if it is profitable to promote \p ToBePromoted 6082 /// by moving downward the transition through. 6083 bool shouldPromote(const Instruction *ToBePromoted) const { 6084 // Promote only if all the operands can be statically expanded. 6085 // Indeed, we do not want to introduce any new kind of transitions. 6086 for (const Use &U : ToBePromoted->operands()) { 6087 const Value *Val = U.get(); 6088 if (Val == getEndOfTransition()) { 6089 // If the use is a division and the transition is on the rhs, 6090 // we cannot promote the operation, otherwise we may create a 6091 // division by zero. 6092 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 6093 return false; 6094 continue; 6095 } 6096 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 6097 !isa<ConstantFP>(Val)) 6098 return false; 6099 } 6100 // Check that the resulting operation is legal. 6101 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 6102 if (!ISDOpcode) 6103 return false; 6104 return StressStoreExtract || 6105 TLI.isOperationLegalOrCustom( 6106 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 6107 } 6108 6109 /// Check whether or not \p Use can be combined 6110 /// with the transition. 6111 /// I.e., is it possible to do Use(Transition) => AnotherUse? 6112 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 6113 6114 /// Record \p ToBePromoted as part of the chain to be promoted. 6115 void enqueueForPromotion(Instruction *ToBePromoted) { 6116 InstsToBePromoted.push_back(ToBePromoted); 6117 } 6118 6119 /// Set the instruction that will be combined with the transition. 6120 void recordCombineInstruction(Instruction *ToBeCombined) { 6121 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 6122 CombineInst = ToBeCombined; 6123 } 6124 6125 /// Promote all the instructions enqueued for promotion if it is 6126 /// is profitable. 6127 /// \return True if the promotion happened, false otherwise. 6128 bool promote() { 6129 // Check if there is something to promote. 6130 // Right now, if we do not have anything to combine with, 6131 // we assume the promotion is not profitable. 6132 if (InstsToBePromoted.empty() || !CombineInst) 6133 return false; 6134 6135 // Check cost. 6136 if (!StressStoreExtract && !isProfitableToPromote()) 6137 return false; 6138 6139 // Promote. 6140 for (auto &ToBePromoted : InstsToBePromoted) 6141 promoteImpl(ToBePromoted); 6142 InstsToBePromoted.clear(); 6143 return true; 6144 } 6145 }; 6146 6147 } // end anonymous namespace 6148 6149 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 6150 // At this point, we know that all the operands of ToBePromoted but Def 6151 // can be statically promoted. 6152 // For Def, we need to use its parameter in ToBePromoted: 6153 // b = ToBePromoted ty1 a 6154 // Def = Transition ty1 b to ty2 6155 // Move the transition down. 6156 // 1. Replace all uses of the promoted operation by the transition. 6157 // = ... b => = ... Def. 6158 assert(ToBePromoted->getType() == Transition->getType() && 6159 "The type of the result of the transition does not match " 6160 "the final type"); 6161 ToBePromoted->replaceAllUsesWith(Transition); 6162 // 2. Update the type of the uses. 6163 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 6164 Type *TransitionTy = getTransitionType(); 6165 ToBePromoted->mutateType(TransitionTy); 6166 // 3. Update all the operands of the promoted operation with promoted 6167 // operands. 6168 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 6169 for (Use &U : ToBePromoted->operands()) { 6170 Value *Val = U.get(); 6171 Value *NewVal = nullptr; 6172 if (Val == Transition) 6173 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 6174 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 6175 isa<ConstantFP>(Val)) { 6176 // Use a splat constant if it is not safe to use undef. 6177 NewVal = getConstantVector( 6178 cast<Constant>(Val), 6179 isa<UndefValue>(Val) || 6180 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 6181 } else 6182 llvm_unreachable("Did you modified shouldPromote and forgot to update " 6183 "this?"); 6184 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 6185 } 6186 Transition->moveAfter(ToBePromoted); 6187 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 6188 } 6189 6190 /// Some targets can do store(extractelement) with one instruction. 6191 /// Try to push the extractelement towards the stores when the target 6192 /// has this feature and this is profitable. 6193 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 6194 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 6195 if (DisableStoreExtract || !TLI || 6196 (!StressStoreExtract && 6197 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 6198 Inst->getOperand(1), CombineCost))) 6199 return false; 6200 6201 // At this point we know that Inst is a vector to scalar transition. 6202 // Try to move it down the def-use chain, until: 6203 // - We can combine the transition with its single use 6204 // => we got rid of the transition. 6205 // - We escape the current basic block 6206 // => we would need to check that we are moving it at a cheaper place and 6207 // we do not do that for now. 6208 BasicBlock *Parent = Inst->getParent(); 6209 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 6210 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 6211 // If the transition has more than one use, assume this is not going to be 6212 // beneficial. 6213 while (Inst->hasOneUse()) { 6214 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 6215 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 6216 6217 if (ToBePromoted->getParent() != Parent) { 6218 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 6219 << ToBePromoted->getParent()->getName() 6220 << ") than the transition (" << Parent->getName() 6221 << ").\n"); 6222 return false; 6223 } 6224 6225 if (VPH.canCombine(ToBePromoted)) { 6226 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 6227 << "will be combined with: " << *ToBePromoted << '\n'); 6228 VPH.recordCombineInstruction(ToBePromoted); 6229 bool Changed = VPH.promote(); 6230 NumStoreExtractExposed += Changed; 6231 return Changed; 6232 } 6233 6234 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 6235 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 6236 return false; 6237 6238 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 6239 6240 VPH.enqueueForPromotion(ToBePromoted); 6241 Inst = ToBePromoted; 6242 } 6243 return false; 6244 } 6245 6246 /// For the instruction sequence of store below, F and I values 6247 /// are bundled together as an i64 value before being stored into memory. 6248 /// Sometimes it is more efficient to generate separate stores for F and I, 6249 /// which can remove the bitwise instructions or sink them to colder places. 6250 /// 6251 /// (store (or (zext (bitcast F to i32) to i64), 6252 /// (shl (zext I to i64), 32)), addr) --> 6253 /// (store F, addr) and (store I, addr+4) 6254 /// 6255 /// Similarly, splitting for other merged store can also be beneficial, like: 6256 /// For pair of {i32, i32}, i64 store --> two i32 stores. 6257 /// For pair of {i32, i16}, i64 store --> two i32 stores. 6258 /// For pair of {i16, i16}, i32 store --> two i16 stores. 6259 /// For pair of {i16, i8}, i32 store --> two i16 stores. 6260 /// For pair of {i8, i8}, i16 store --> two i8 stores. 6261 /// 6262 /// We allow each target to determine specifically which kind of splitting is 6263 /// supported. 6264 /// 6265 /// The store patterns are commonly seen from the simple code snippet below 6266 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 6267 /// void goo(const std::pair<int, float> &); 6268 /// hoo() { 6269 /// ... 6270 /// goo(std::make_pair(tmp, ftmp)); 6271 /// ... 6272 /// } 6273 /// 6274 /// Although we already have similar splitting in DAG Combine, we duplicate 6275 /// it in CodeGenPrepare to catch the case in which pattern is across 6276 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6277 /// during code expansion. 6278 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6279 const TargetLowering &TLI) { 6280 // Handle simple but common cases only. 6281 Type *StoreType = SI.getValueOperand()->getType(); 6282 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || 6283 DL.getTypeSizeInBits(StoreType) == 0) 6284 return false; 6285 6286 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6287 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 6288 if (DL.getTypeStoreSizeInBits(SplitStoreType) != 6289 DL.getTypeSizeInBits(SplitStoreType)) 6290 return false; 6291 6292 // Match the following patterns: 6293 // (store (or (zext LValue to i64), 6294 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6295 // or 6296 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6297 // (zext LValue to i64), 6298 // Expect both operands of OR and the first operand of SHL have only 6299 // one use. 6300 Value *LValue, *HValue; 6301 if (!match(SI.getValueOperand(), 6302 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6303 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6304 m_SpecificInt(HalfValBitSize)))))) 6305 return false; 6306 6307 // Check LValue and HValue are int with size less or equal than 32. 6308 if (!LValue->getType()->isIntegerTy() || 6309 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6310 !HValue->getType()->isIntegerTy() || 6311 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6312 return false; 6313 6314 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6315 // as the input of target query. 6316 auto *LBC = dyn_cast<BitCastInst>(LValue); 6317 auto *HBC = dyn_cast<BitCastInst>(HValue); 6318 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6319 : EVT::getEVT(LValue->getType()); 6320 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6321 : EVT::getEVT(HValue->getType()); 6322 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6323 return false; 6324 6325 // Start to split store. 6326 IRBuilder<> Builder(SI.getContext()); 6327 Builder.SetInsertPoint(&SI); 6328 6329 // If LValue/HValue is a bitcast in another BB, create a new one in current 6330 // BB so it may be merged with the splitted stores by dag combiner. 6331 if (LBC && LBC->getParent() != SI.getParent()) 6332 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6333 if (HBC && HBC->getParent() != SI.getParent()) 6334 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6335 6336 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 6337 auto CreateSplitStore = [&](Value *V, bool Upper) { 6338 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6339 Value *Addr = Builder.CreateBitCast( 6340 SI.getOperand(1), 6341 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6342 if ((IsLE && Upper) || (!IsLE && !Upper)) 6343 Addr = Builder.CreateGEP( 6344 SplitStoreType, Addr, 6345 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6346 Builder.CreateAlignedStore( 6347 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 6348 }; 6349 6350 CreateSplitStore(LValue, false); 6351 CreateSplitStore(HValue, true); 6352 6353 // Delete the old store. 6354 SI.eraseFromParent(); 6355 return true; 6356 } 6357 6358 // Return true if the GEP has two operands, the first operand is of a sequential 6359 // type, and the second operand is a constant. 6360 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6361 gep_type_iterator I = gep_type_begin(*GEP); 6362 return GEP->getNumOperands() == 2 && 6363 I.isSequential() && 6364 isa<ConstantInt>(GEP->getOperand(1)); 6365 } 6366 6367 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6368 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6369 // reducing liveness interference across those edges benefits global register 6370 // allocation. Currently handles only certain cases. 6371 // 6372 // For example, unmerge %GEPI and %UGEPI as below. 6373 // 6374 // ---------- BEFORE ---------- 6375 // SrcBlock: 6376 // ... 6377 // %GEPIOp = ... 6378 // ... 6379 // %GEPI = gep %GEPIOp, Idx 6380 // ... 6381 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6382 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6383 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6384 // %UGEPI) 6385 // 6386 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6387 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6388 // ... 6389 // 6390 // DstBi: 6391 // ... 6392 // %UGEPI = gep %GEPIOp, UIdx 6393 // ... 6394 // --------------------------- 6395 // 6396 // ---------- AFTER ---------- 6397 // SrcBlock: 6398 // ... (same as above) 6399 // (* %GEPI is still alive on the indirectbr edges) 6400 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6401 // unmerging) 6402 // ... 6403 // 6404 // DstBi: 6405 // ... 6406 // %UGEPI = gep %GEPI, (UIdx-Idx) 6407 // ... 6408 // --------------------------- 6409 // 6410 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6411 // no longer alive on them. 6412 // 6413 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6414 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6415 // not to disable further simplications and optimizations as a result of GEP 6416 // merging. 6417 // 6418 // Note this unmerging may increase the length of the data flow critical path 6419 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6420 // between the register pressure and the length of data-flow critical 6421 // path. Restricting this to the uncommon IndirectBr case would minimize the 6422 // impact of potentially longer critical path, if any, and the impact on compile 6423 // time. 6424 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6425 const TargetTransformInfo *TTI) { 6426 BasicBlock *SrcBlock = GEPI->getParent(); 6427 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 6428 // (non-IndirectBr) cases exit early here. 6429 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 6430 return false; 6431 // Check that GEPI is a simple gep with a single constant index. 6432 if (!GEPSequentialConstIndexed(GEPI)) 6433 return false; 6434 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 6435 // Check that GEPI is a cheap one. 6436 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 6437 > TargetTransformInfo::TCC_Basic) 6438 return false; 6439 Value *GEPIOp = GEPI->getOperand(0); 6440 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 6441 if (!isa<Instruction>(GEPIOp)) 6442 return false; 6443 auto *GEPIOpI = cast<Instruction>(GEPIOp); 6444 if (GEPIOpI->getParent() != SrcBlock) 6445 return false; 6446 // Check that GEP is used outside the block, meaning it's alive on the 6447 // IndirectBr edge(s). 6448 if (find_if(GEPI->users(), [&](User *Usr) { 6449 if (auto *I = dyn_cast<Instruction>(Usr)) { 6450 if (I->getParent() != SrcBlock) { 6451 return true; 6452 } 6453 } 6454 return false; 6455 }) == GEPI->users().end()) 6456 return false; 6457 // The second elements of the GEP chains to be unmerged. 6458 std::vector<GetElementPtrInst *> UGEPIs; 6459 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 6460 // on IndirectBr edges. 6461 for (User *Usr : GEPIOp->users()) { 6462 if (Usr == GEPI) continue; 6463 // Check if Usr is an Instruction. If not, give up. 6464 if (!isa<Instruction>(Usr)) 6465 return false; 6466 auto *UI = cast<Instruction>(Usr); 6467 // Check if Usr in the same block as GEPIOp, which is fine, skip. 6468 if (UI->getParent() == SrcBlock) 6469 continue; 6470 // Check if Usr is a GEP. If not, give up. 6471 if (!isa<GetElementPtrInst>(Usr)) 6472 return false; 6473 auto *UGEPI = cast<GetElementPtrInst>(Usr); 6474 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 6475 // the pointer operand to it. If so, record it in the vector. If not, give 6476 // up. 6477 if (!GEPSequentialConstIndexed(UGEPI)) 6478 return false; 6479 if (UGEPI->getOperand(0) != GEPIOp) 6480 return false; 6481 if (GEPIIdx->getType() != 6482 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 6483 return false; 6484 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6485 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 6486 > TargetTransformInfo::TCC_Basic) 6487 return false; 6488 UGEPIs.push_back(UGEPI); 6489 } 6490 if (UGEPIs.size() == 0) 6491 return false; 6492 // Check the materializing cost of (Uidx-Idx). 6493 for (GetElementPtrInst *UGEPI : UGEPIs) { 6494 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6495 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 6496 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 6497 if (ImmCost > TargetTransformInfo::TCC_Basic) 6498 return false; 6499 } 6500 // Now unmerge between GEPI and UGEPIs. 6501 for (GetElementPtrInst *UGEPI : UGEPIs) { 6502 UGEPI->setOperand(0, GEPI); 6503 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6504 Constant *NewUGEPIIdx = 6505 ConstantInt::get(GEPIIdx->getType(), 6506 UGEPIIdx->getValue() - GEPIIdx->getValue()); 6507 UGEPI->setOperand(1, NewUGEPIIdx); 6508 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 6509 // inbounds to avoid UB. 6510 if (!GEPI->isInBounds()) { 6511 UGEPI->setIsInBounds(false); 6512 } 6513 } 6514 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 6515 // alive on IndirectBr edges). 6516 assert(find_if(GEPIOp->users(), [&](User *Usr) { 6517 return cast<Instruction>(Usr)->getParent() != SrcBlock; 6518 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 6519 return true; 6520 } 6521 6522 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 6523 // Bail out if we inserted the instruction to prevent optimizations from 6524 // stepping on each other's toes. 6525 if (InsertedInsts.count(I)) 6526 return false; 6527 6528 if (PHINode *P = dyn_cast<PHINode>(I)) { 6529 // It is possible for very late stage optimizations (such as SimplifyCFG) 6530 // to introduce PHI nodes too late to be cleaned up. If we detect such a 6531 // trivial PHI, go ahead and zap it here. 6532 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 6533 P->replaceAllUsesWith(V); 6534 P->eraseFromParent(); 6535 ++NumPHIsElim; 6536 return true; 6537 } 6538 return false; 6539 } 6540 6541 if (CastInst *CI = dyn_cast<CastInst>(I)) { 6542 // If the source of the cast is a constant, then this should have 6543 // already been constant folded. The only reason NOT to constant fold 6544 // it is if something (e.g. LSR) was careful to place the constant 6545 // evaluation in a block other than then one that uses it (e.g. to hoist 6546 // the address of globals out of a loop). If this is the case, we don't 6547 // want to forward-subst the cast. 6548 if (isa<Constant>(CI->getOperand(0))) 6549 return false; 6550 6551 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 6552 return true; 6553 6554 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 6555 /// Sink a zext or sext into its user blocks if the target type doesn't 6556 /// fit in one register 6557 if (TLI && 6558 TLI->getTypeAction(CI->getContext(), 6559 TLI->getValueType(*DL, CI->getType())) == 6560 TargetLowering::TypeExpandInteger) { 6561 return SinkCast(CI); 6562 } else { 6563 bool MadeChange = optimizeExt(I); 6564 return MadeChange | optimizeExtUses(I); 6565 } 6566 } 6567 return false; 6568 } 6569 6570 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 6571 if (!TLI || !TLI->hasMultipleConditionRegisters()) 6572 return OptimizeCmpExpression(CI, TLI); 6573 6574 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6575 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6576 if (TLI) { 6577 bool Modified = optimizeLoadExt(LI); 6578 unsigned AS = LI->getPointerAddressSpace(); 6579 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 6580 return Modified; 6581 } 6582 return false; 6583 } 6584 6585 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 6586 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 6587 return true; 6588 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6589 if (TLI) { 6590 unsigned AS = SI->getPointerAddressSpace(); 6591 return optimizeMemoryInst(I, SI->getOperand(1), 6592 SI->getOperand(0)->getType(), AS); 6593 } 6594 return false; 6595 } 6596 6597 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 6598 unsigned AS = RMW->getPointerAddressSpace(); 6599 return optimizeMemoryInst(I, RMW->getPointerOperand(), 6600 RMW->getType(), AS); 6601 } 6602 6603 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 6604 unsigned AS = CmpX->getPointerAddressSpace(); 6605 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 6606 CmpX->getCompareOperand()->getType(), AS); 6607 } 6608 6609 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 6610 6611 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 6612 EnableAndCmpSinking && TLI) 6613 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 6614 6615 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 6616 BinOp->getOpcode() == Instruction::LShr)) { 6617 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 6618 if (TLI && CI && TLI->hasExtractBitsInsn()) 6619 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 6620 6621 return false; 6622 } 6623 6624 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 6625 if (GEPI->hasAllZeroIndices()) { 6626 /// The GEP operand must be a pointer, so must its result -> BitCast 6627 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 6628 GEPI->getName(), GEPI); 6629 NC->setDebugLoc(GEPI->getDebugLoc()); 6630 GEPI->replaceAllUsesWith(NC); 6631 GEPI->eraseFromParent(); 6632 ++NumGEPsElim; 6633 optimizeInst(NC, ModifiedDT); 6634 return true; 6635 } 6636 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 6637 return true; 6638 } 6639 return false; 6640 } 6641 6642 if (CallInst *CI = dyn_cast<CallInst>(I)) 6643 return optimizeCallInst(CI, ModifiedDT); 6644 6645 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 6646 return optimizeSelectInst(SI); 6647 6648 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 6649 return optimizeShuffleVectorInst(SVI); 6650 6651 if (auto *Switch = dyn_cast<SwitchInst>(I)) 6652 return optimizeSwitchInst(Switch); 6653 6654 if (isa<ExtractElementInst>(I)) 6655 return optimizeExtractElementInst(I); 6656 6657 return false; 6658 } 6659 6660 /// Given an OR instruction, check to see if this is a bitreverse 6661 /// idiom. If so, insert the new intrinsic and return true. 6662 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 6663 const TargetLowering &TLI) { 6664 if (!I.getType()->isIntegerTy() || 6665 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 6666 TLI.getValueType(DL, I.getType(), true))) 6667 return false; 6668 6669 SmallVector<Instruction*, 4> Insts; 6670 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 6671 return false; 6672 Instruction *LastInst = Insts.back(); 6673 I.replaceAllUsesWith(LastInst); 6674 RecursivelyDeleteTriviallyDeadInstructions(&I); 6675 return true; 6676 } 6677 6678 // In this pass we look for GEP and cast instructions that are used 6679 // across basic blocks and rewrite them to improve basic-block-at-a-time 6680 // selection. 6681 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 6682 SunkAddrs.clear(); 6683 bool MadeChange = false; 6684 6685 CurInstIterator = BB.begin(); 6686 while (CurInstIterator != BB.end()) { 6687 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 6688 if (ModifiedDT) 6689 return true; 6690 } 6691 6692 bool MadeBitReverse = true; 6693 while (TLI && MadeBitReverse) { 6694 MadeBitReverse = false; 6695 for (auto &I : reverse(BB)) { 6696 if (makeBitReverse(I, *DL, *TLI)) { 6697 MadeBitReverse = MadeChange = true; 6698 ModifiedDT = true; 6699 break; 6700 } 6701 } 6702 } 6703 MadeChange |= dupRetToEnableTailCallOpts(&BB); 6704 6705 return MadeChange; 6706 } 6707 6708 // llvm.dbg.value is far away from the value then iSel may not be able 6709 // handle it properly. iSel will drop llvm.dbg.value if it can not 6710 // find a node corresponding to the value. 6711 bool CodeGenPrepare::placeDbgValues(Function &F) { 6712 bool MadeChange = false; 6713 for (BasicBlock &BB : F) { 6714 Instruction *PrevNonDbgInst = nullptr; 6715 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 6716 Instruction *Insn = &*BI++; 6717 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 6718 // Leave dbg.values that refer to an alloca alone. These 6719 // intrinsics describe the address of a variable (= the alloca) 6720 // being taken. They should not be moved next to the alloca 6721 // (and to the beginning of the scope), but rather stay close to 6722 // where said address is used. 6723 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 6724 PrevNonDbgInst = Insn; 6725 continue; 6726 } 6727 6728 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 6729 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 6730 // If VI is a phi in a block with an EHPad terminator, we can't insert 6731 // after it. 6732 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 6733 continue; 6734 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 6735 << *DVI << ' ' << *VI); 6736 DVI->removeFromParent(); 6737 if (isa<PHINode>(VI)) 6738 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 6739 else 6740 DVI->insertAfter(VI); 6741 MadeChange = true; 6742 ++NumDbgValueMoved; 6743 } 6744 } 6745 } 6746 return MadeChange; 6747 } 6748 6749 /// Scale down both weights to fit into uint32_t. 6750 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 6751 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 6752 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 6753 NewTrue = NewTrue / Scale; 6754 NewFalse = NewFalse / Scale; 6755 } 6756 6757 /// Some targets prefer to split a conditional branch like: 6758 /// \code 6759 /// %0 = icmp ne i32 %a, 0 6760 /// %1 = icmp ne i32 %b, 0 6761 /// %or.cond = or i1 %0, %1 6762 /// br i1 %or.cond, label %TrueBB, label %FalseBB 6763 /// \endcode 6764 /// into multiple branch instructions like: 6765 /// \code 6766 /// bb1: 6767 /// %0 = icmp ne i32 %a, 0 6768 /// br i1 %0, label %TrueBB, label %bb2 6769 /// bb2: 6770 /// %1 = icmp ne i32 %b, 0 6771 /// br i1 %1, label %TrueBB, label %FalseBB 6772 /// \endcode 6773 /// This usually allows instruction selection to do even further optimizations 6774 /// and combine the compare with the branch instruction. Currently this is 6775 /// applied for targets which have "cheap" jump instructions. 6776 /// 6777 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 6778 /// 6779 bool CodeGenPrepare::splitBranchCondition(Function &F) { 6780 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 6781 return false; 6782 6783 bool MadeChange = false; 6784 for (auto &BB : F) { 6785 // Does this BB end with the following? 6786 // %cond1 = icmp|fcmp|binary instruction ... 6787 // %cond2 = icmp|fcmp|binary instruction ... 6788 // %cond.or = or|and i1 %cond1, cond2 6789 // br i1 %cond.or label %dest1, label %dest2" 6790 BinaryOperator *LogicOp; 6791 BasicBlock *TBB, *FBB; 6792 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 6793 continue; 6794 6795 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 6796 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 6797 continue; 6798 6799 unsigned Opc; 6800 Value *Cond1, *Cond2; 6801 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 6802 m_OneUse(m_Value(Cond2))))) 6803 Opc = Instruction::And; 6804 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 6805 m_OneUse(m_Value(Cond2))))) 6806 Opc = Instruction::Or; 6807 else 6808 continue; 6809 6810 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 6811 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 6812 continue; 6813 6814 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 6815 6816 // Create a new BB. 6817 auto TmpBB = 6818 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 6819 BB.getParent(), BB.getNextNode()); 6820 6821 // Update original basic block by using the first condition directly by the 6822 // branch instruction and removing the no longer needed and/or instruction. 6823 Br1->setCondition(Cond1); 6824 LogicOp->eraseFromParent(); 6825 6826 // Depending on the condition we have to either replace the true or the 6827 // false successor of the original branch instruction. 6828 if (Opc == Instruction::And) 6829 Br1->setSuccessor(0, TmpBB); 6830 else 6831 Br1->setSuccessor(1, TmpBB); 6832 6833 // Fill in the new basic block. 6834 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 6835 if (auto *I = dyn_cast<Instruction>(Cond2)) { 6836 I->removeFromParent(); 6837 I->insertBefore(Br2); 6838 } 6839 6840 // Update PHI nodes in both successors. The original BB needs to be 6841 // replaced in one successor's PHI nodes, because the branch comes now from 6842 // the newly generated BB (NewBB). In the other successor we need to add one 6843 // incoming edge to the PHI nodes, because both branch instructions target 6844 // now the same successor. Depending on the original branch condition 6845 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 6846 // we perform the correct update for the PHI nodes. 6847 // This doesn't change the successor order of the just created branch 6848 // instruction (or any other instruction). 6849 if (Opc == Instruction::Or) 6850 std::swap(TBB, FBB); 6851 6852 // Replace the old BB with the new BB. 6853 for (PHINode &PN : TBB->phis()) { 6854 int i; 6855 while ((i = PN.getBasicBlockIndex(&BB)) >= 0) 6856 PN.setIncomingBlock(i, TmpBB); 6857 } 6858 6859 // Add another incoming edge form the new BB. 6860 for (PHINode &PN : FBB->phis()) { 6861 auto *Val = PN.getIncomingValueForBlock(&BB); 6862 PN.addIncoming(Val, TmpBB); 6863 } 6864 6865 // Update the branch weights (from SelectionDAGBuilder:: 6866 // FindMergedConditions). 6867 if (Opc == Instruction::Or) { 6868 // Codegen X | Y as: 6869 // BB1: 6870 // jmp_if_X TBB 6871 // jmp TmpBB 6872 // TmpBB: 6873 // jmp_if_Y TBB 6874 // jmp FBB 6875 // 6876 6877 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 6878 // The requirement is that 6879 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 6880 // = TrueProb for original BB. 6881 // Assuming the original weights are A and B, one choice is to set BB1's 6882 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 6883 // assumes that 6884 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 6885 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 6886 // TmpBB, but the math is more complicated. 6887 uint64_t TrueWeight, FalseWeight; 6888 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6889 uint64_t NewTrueWeight = TrueWeight; 6890 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 6891 scaleWeights(NewTrueWeight, NewFalseWeight); 6892 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6893 .createBranchWeights(TrueWeight, FalseWeight)); 6894 6895 NewTrueWeight = TrueWeight; 6896 NewFalseWeight = 2 * FalseWeight; 6897 scaleWeights(NewTrueWeight, NewFalseWeight); 6898 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6899 .createBranchWeights(TrueWeight, FalseWeight)); 6900 } 6901 } else { 6902 // Codegen X & Y as: 6903 // BB1: 6904 // jmp_if_X TmpBB 6905 // jmp FBB 6906 // TmpBB: 6907 // jmp_if_Y TBB 6908 // jmp FBB 6909 // 6910 // This requires creation of TmpBB after CurBB. 6911 6912 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 6913 // The requirement is that 6914 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 6915 // = FalseProb for original BB. 6916 // Assuming the original weights are A and B, one choice is to set BB1's 6917 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 6918 // assumes that 6919 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 6920 uint64_t TrueWeight, FalseWeight; 6921 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6922 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 6923 uint64_t NewFalseWeight = FalseWeight; 6924 scaleWeights(NewTrueWeight, NewFalseWeight); 6925 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6926 .createBranchWeights(TrueWeight, FalseWeight)); 6927 6928 NewTrueWeight = 2 * TrueWeight; 6929 NewFalseWeight = FalseWeight; 6930 scaleWeights(NewTrueWeight, NewFalseWeight); 6931 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6932 .createBranchWeights(TrueWeight, FalseWeight)); 6933 } 6934 } 6935 6936 // Note: No point in getting fancy here, since the DT info is never 6937 // available to CodeGenPrepare. 6938 ModifiedDT = true; 6939 6940 MadeChange = true; 6941 6942 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 6943 TmpBB->dump()); 6944 } 6945 return MadeChange; 6946 } 6947