1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/Analysis/VectorUtils.h" 36 #include "llvm/CodeGen/Analysis.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/SelectionDAGNodes.h" 39 #include "llvm/CodeGen/TargetLowering.h" 40 #include "llvm/CodeGen/TargetPassConfig.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/CodeGen/ValueTypes.h" 43 #include "llvm/Config/llvm-config.h" 44 #include "llvm/IR/Argument.h" 45 #include "llvm/IR/Attributes.h" 46 #include "llvm/IR/BasicBlock.h" 47 #include "llvm/IR/CallSite.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/GlobalValue.h" 56 #include "llvm/IR/GlobalVariable.h" 57 #include "llvm/IR/IRBuilder.h" 58 #include "llvm/IR/InlineAsm.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/LLVMContext.h" 65 #include "llvm/IR/MDBuilder.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Statepoint.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/ValueMap.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/BlockFrequency.h" 78 #include "llvm/Support/BranchProbability.h" 79 #include "llvm/Support/Casting.h" 80 #include "llvm/Support/CommandLine.h" 81 #include "llvm/Support/Compiler.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/MachineValueType.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Target/TargetMachine.h" 88 #include "llvm/Target/TargetOptions.h" 89 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 90 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 91 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <limits> 97 #include <memory> 98 #include <utility> 99 #include <vector> 100 101 using namespace llvm; 102 using namespace llvm::PatternMatch; 103 104 #define DEBUG_TYPE "codegenprepare" 105 106 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 107 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 108 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 109 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 110 "sunken Cmps"); 111 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 112 "of sunken Casts"); 113 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 114 "computations were sunk"); 115 STATISTIC(NumMemoryInstsPhiCreated, 116 "Number of phis created when address " 117 "computations were sunk to memory instructions"); 118 STATISTIC(NumMemoryInstsSelectCreated, 119 "Number of select created when address " 120 "computations were sunk to memory instructions"); 121 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 122 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 123 STATISTIC(NumAndsAdded, 124 "Number of and mask instructions added to form ext loads"); 125 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 126 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 127 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 128 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 129 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 130 131 static cl::opt<bool> DisableBranchOpts( 132 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 133 cl::desc("Disable branch optimizations in CodeGenPrepare")); 134 135 static cl::opt<bool> 136 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 137 cl::desc("Disable GC optimizations in CodeGenPrepare")); 138 139 static cl::opt<bool> DisableSelectToBranch( 140 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 141 cl::desc("Disable select to branch conversion.")); 142 143 static cl::opt<bool> AddrSinkUsingGEPs( 144 "addr-sink-using-gep", cl::Hidden, cl::init(true), 145 cl::desc("Address sinking in CGP using GEPs.")); 146 147 static cl::opt<bool> EnableAndCmpSinking( 148 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 149 cl::desc("Enable sinkinig and/cmp into branches.")); 150 151 static cl::opt<bool> DisableStoreExtract( 152 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 153 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 154 155 static cl::opt<bool> StressStoreExtract( 156 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 157 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 158 159 static cl::opt<bool> DisableExtLdPromotion( 160 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 161 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 162 "CodeGenPrepare")); 163 164 static cl::opt<bool> StressExtLdPromotion( 165 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 166 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 167 "optimization in CodeGenPrepare")); 168 169 static cl::opt<bool> DisablePreheaderProtect( 170 "disable-preheader-prot", cl::Hidden, cl::init(false), 171 cl::desc("Disable protection against removing loop preheaders")); 172 173 static cl::opt<bool> ProfileGuidedSectionPrefix( 174 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 175 cl::desc("Use profile info to add section prefix for hot/cold functions")); 176 177 static cl::opt<unsigned> FreqRatioToSkipMerge( 178 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 179 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 180 "(frequency of destination block) is greater than this ratio")); 181 182 static cl::opt<bool> ForceSplitStore( 183 "force-split-store", cl::Hidden, cl::init(false), 184 cl::desc("Force store splitting no matter what the target query says.")); 185 186 static cl::opt<bool> 187 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 188 cl::desc("Enable merging of redundant sexts when one is dominating" 189 " the other."), cl::init(true)); 190 191 static cl::opt<bool> DisableComplexAddrModes( 192 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 193 cl::desc("Disables combining addressing modes with different parts " 194 "in optimizeMemoryInst.")); 195 196 static cl::opt<bool> 197 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 198 cl::desc("Allow creation of Phis in Address sinking.")); 199 200 static cl::opt<bool> 201 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 202 cl::desc("Allow creation of selects in Address sinking.")); 203 204 static cl::opt<bool> AddrSinkCombineBaseReg( 205 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 206 cl::desc("Allow combining of BaseReg field in Address sinking.")); 207 208 static cl::opt<bool> AddrSinkCombineBaseGV( 209 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 210 cl::desc("Allow combining of BaseGV field in Address sinking.")); 211 212 static cl::opt<bool> AddrSinkCombineBaseOffs( 213 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 214 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 215 216 static cl::opt<bool> AddrSinkCombineScaledReg( 217 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 218 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 219 220 static cl::opt<bool> 221 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 222 cl::init(true), 223 cl::desc("Enable splitting large offset of GEP.")); 224 225 namespace { 226 227 enum ExtType { 228 ZeroExtension, // Zero extension has been seen. 229 SignExtension, // Sign extension has been seen. 230 BothExtension // This extension type is used if we saw sext after 231 // ZeroExtension had been set, or if we saw zext after 232 // SignExtension had been set. It makes the type 233 // information of a promoted instruction invalid. 234 }; 235 236 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 237 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 238 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 239 using SExts = SmallVector<Instruction *, 16>; 240 using ValueToSExts = DenseMap<Value *, SExts>; 241 242 class TypePromotionTransaction; 243 244 class CodeGenPrepare : public FunctionPass { 245 const TargetMachine *TM = nullptr; 246 const TargetSubtargetInfo *SubtargetInfo; 247 const TargetLowering *TLI = nullptr; 248 const TargetRegisterInfo *TRI; 249 const TargetTransformInfo *TTI = nullptr; 250 const TargetLibraryInfo *TLInfo; 251 const LoopInfo *LI; 252 std::unique_ptr<BlockFrequencyInfo> BFI; 253 std::unique_ptr<BranchProbabilityInfo> BPI; 254 255 /// As we scan instructions optimizing them, this is the next instruction 256 /// to optimize. Transforms that can invalidate this should update it. 257 BasicBlock::iterator CurInstIterator; 258 259 /// Keeps track of non-local addresses that have been sunk into a block. 260 /// This allows us to avoid inserting duplicate code for blocks with 261 /// multiple load/stores of the same address. The usage of WeakTrackingVH 262 /// enables SunkAddrs to be treated as a cache whose entries can be 263 /// invalidated if a sunken address computation has been erased. 264 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 265 266 /// Keeps track of all instructions inserted for the current function. 267 SetOfInstrs InsertedInsts; 268 269 /// Keeps track of the type of the related instruction before their 270 /// promotion for the current function. 271 InstrToOrigTy PromotedInsts; 272 273 /// Keep track of instructions removed during promotion. 274 SetOfInstrs RemovedInsts; 275 276 /// Keep track of sext chains based on their initial value. 277 DenseMap<Value *, Instruction *> SeenChainsForSExt; 278 279 /// Keep track of GEPs accessing the same data structures such as structs or 280 /// arrays that are candidates to be split later because of their large 281 /// size. 282 MapVector< 283 AssertingVH<Value>, 284 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 285 LargeOffsetGEPMap; 286 287 /// Keep track of new GEP base after splitting the GEPs having large offset. 288 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 289 290 /// Map serial numbers to Large offset GEPs. 291 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 292 293 /// Keep track of SExt promoted. 294 ValueToSExts ValToSExtendedUses; 295 296 /// True if optimizing for size. 297 bool OptSize; 298 299 /// DataLayout for the Function being processed. 300 const DataLayout *DL = nullptr; 301 302 /// Building the dominator tree can be expensive, so we only build it 303 /// lazily and update it when required. 304 std::unique_ptr<DominatorTree> DT; 305 306 public: 307 static char ID; // Pass identification, replacement for typeid 308 309 CodeGenPrepare() : FunctionPass(ID) { 310 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 311 } 312 313 bool runOnFunction(Function &F) override; 314 315 StringRef getPassName() const override { return "CodeGen Prepare"; } 316 317 void getAnalysisUsage(AnalysisUsage &AU) const override { 318 // FIXME: When we can selectively preserve passes, preserve the domtree. 319 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 320 AU.addRequired<TargetLibraryInfoWrapperPass>(); 321 AU.addRequired<TargetTransformInfoWrapperPass>(); 322 AU.addRequired<LoopInfoWrapperPass>(); 323 } 324 325 private: 326 template <typename F> 327 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 328 // Substituting can cause recursive simplifications, which can invalidate 329 // our iterator. Use a WeakTrackingVH to hold onto it in case this 330 // happens. 331 Value *CurValue = &*CurInstIterator; 332 WeakTrackingVH IterHandle(CurValue); 333 334 f(); 335 336 // If the iterator instruction was recursively deleted, start over at the 337 // start of the block. 338 if (IterHandle != CurValue) { 339 CurInstIterator = BB->begin(); 340 SunkAddrs.clear(); 341 } 342 } 343 344 // Get the DominatorTree, building if necessary. 345 DominatorTree &getDT(Function &F) { 346 if (!DT) 347 DT = llvm::make_unique<DominatorTree>(F); 348 return *DT; 349 } 350 351 bool eliminateFallThrough(Function &F); 352 bool eliminateMostlyEmptyBlocks(Function &F); 353 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 354 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 355 void eliminateMostlyEmptyBlock(BasicBlock *BB); 356 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 357 bool isPreheader); 358 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 359 bool optimizeInst(Instruction *I, bool &ModifiedDT); 360 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 361 Type *AccessTy, unsigned AddrSpace); 362 bool optimizeInlineAsmInst(CallInst *CS); 363 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 364 bool optimizeExt(Instruction *&I); 365 bool optimizeExtUses(Instruction *I); 366 bool optimizeLoadExt(LoadInst *Load); 367 bool optimizeShiftInst(BinaryOperator *BO); 368 bool optimizeSelectInst(SelectInst *SI); 369 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 370 bool optimizeSwitchInst(SwitchInst *SI); 371 bool optimizeExtractElementInst(Instruction *Inst); 372 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 373 bool placeDbgValues(Function &F); 374 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 375 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 376 bool tryToPromoteExts(TypePromotionTransaction &TPT, 377 const SmallVectorImpl<Instruction *> &Exts, 378 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 379 unsigned CreatedInstsCost = 0); 380 bool mergeSExts(Function &F); 381 bool splitLargeGEPOffsets(); 382 bool performAddressTypePromotion( 383 Instruction *&Inst, 384 bool AllowPromotionWithoutCommonHeader, 385 bool HasPromoted, TypePromotionTransaction &TPT, 386 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 387 bool splitBranchCondition(Function &F, bool &ModifiedDT); 388 bool simplifyOffsetableRelocate(Instruction &I); 389 390 bool tryToSinkFreeOperands(Instruction *I); 391 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, CmpInst *Cmp, 392 Intrinsic::ID IID); 393 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 394 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 395 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 396 }; 397 398 } // end anonymous namespace 399 400 char CodeGenPrepare::ID = 0; 401 402 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 403 "Optimize for code generation", false, false) 404 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 405 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 406 "Optimize for code generation", false, false) 407 408 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 409 410 bool CodeGenPrepare::runOnFunction(Function &F) { 411 if (skipFunction(F)) 412 return false; 413 414 DL = &F.getParent()->getDataLayout(); 415 416 bool EverMadeChange = false; 417 // Clear per function information. 418 InsertedInsts.clear(); 419 PromotedInsts.clear(); 420 421 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 422 TM = &TPC->getTM<TargetMachine>(); 423 SubtargetInfo = TM->getSubtargetImpl(F); 424 TLI = SubtargetInfo->getTargetLowering(); 425 TRI = SubtargetInfo->getRegisterInfo(); 426 } 427 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 428 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 429 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 430 BPI.reset(new BranchProbabilityInfo(F, *LI)); 431 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 432 OptSize = F.hasOptSize(); 433 434 ProfileSummaryInfo *PSI = 435 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 436 if (ProfileGuidedSectionPrefix) { 437 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 438 F.setSectionPrefix(".hot"); 439 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 440 F.setSectionPrefix(".unlikely"); 441 } 442 443 /// This optimization identifies DIV instructions that can be 444 /// profitably bypassed and carried out with a shorter, faster divide. 445 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI && 446 TLI->isSlowDivBypassed()) { 447 const DenseMap<unsigned int, unsigned int> &BypassWidths = 448 TLI->getBypassSlowDivWidths(); 449 BasicBlock* BB = &*F.begin(); 450 while (BB != nullptr) { 451 // bypassSlowDivision may create new BBs, but we don't want to reapply the 452 // optimization to those blocks. 453 BasicBlock* Next = BB->getNextNode(); 454 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 455 BB = Next; 456 } 457 } 458 459 // Eliminate blocks that contain only PHI nodes and an 460 // unconditional branch. 461 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 462 463 bool ModifiedDT = false; 464 if (!DisableBranchOpts) 465 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 466 467 // Split some critical edges where one of the sources is an indirect branch, 468 // to help generate sane code for PHIs involving such edges. 469 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 470 471 bool MadeChange = true; 472 while (MadeChange) { 473 MadeChange = false; 474 DT.reset(); 475 for (Function::iterator I = F.begin(); I != F.end(); ) { 476 BasicBlock *BB = &*I++; 477 bool ModifiedDTOnIteration = false; 478 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 479 480 // Restart BB iteration if the dominator tree of the Function was changed 481 if (ModifiedDTOnIteration) 482 break; 483 } 484 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 485 MadeChange |= mergeSExts(F); 486 if (!LargeOffsetGEPMap.empty()) 487 MadeChange |= splitLargeGEPOffsets(); 488 489 // Really free removed instructions during promotion. 490 for (Instruction *I : RemovedInsts) 491 I->deleteValue(); 492 493 EverMadeChange |= MadeChange; 494 SeenChainsForSExt.clear(); 495 ValToSExtendedUses.clear(); 496 RemovedInsts.clear(); 497 LargeOffsetGEPMap.clear(); 498 LargeOffsetGEPID.clear(); 499 } 500 501 SunkAddrs.clear(); 502 503 if (!DisableBranchOpts) { 504 MadeChange = false; 505 // Use a set vector to get deterministic iteration order. The order the 506 // blocks are removed may affect whether or not PHI nodes in successors 507 // are removed. 508 SmallSetVector<BasicBlock*, 8> WorkList; 509 for (BasicBlock &BB : F) { 510 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 511 MadeChange |= ConstantFoldTerminator(&BB, true); 512 if (!MadeChange) continue; 513 514 for (SmallVectorImpl<BasicBlock*>::iterator 515 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 516 if (pred_begin(*II) == pred_end(*II)) 517 WorkList.insert(*II); 518 } 519 520 // Delete the dead blocks and any of their dead successors. 521 MadeChange |= !WorkList.empty(); 522 while (!WorkList.empty()) { 523 BasicBlock *BB = WorkList.pop_back_val(); 524 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 525 526 DeleteDeadBlock(BB); 527 528 for (SmallVectorImpl<BasicBlock*>::iterator 529 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 530 if (pred_begin(*II) == pred_end(*II)) 531 WorkList.insert(*II); 532 } 533 534 // Merge pairs of basic blocks with unconditional branches, connected by 535 // a single edge. 536 if (EverMadeChange || MadeChange) 537 MadeChange |= eliminateFallThrough(F); 538 539 EverMadeChange |= MadeChange; 540 } 541 542 if (!DisableGCOpts) { 543 SmallVector<Instruction *, 2> Statepoints; 544 for (BasicBlock &BB : F) 545 for (Instruction &I : BB) 546 if (isStatepoint(I)) 547 Statepoints.push_back(&I); 548 for (auto &I : Statepoints) 549 EverMadeChange |= simplifyOffsetableRelocate(*I); 550 } 551 552 // Do this last to clean up use-before-def scenarios introduced by other 553 // preparatory transforms. 554 EverMadeChange |= placeDbgValues(F); 555 556 return EverMadeChange; 557 } 558 559 /// Merge basic blocks which are connected by a single edge, where one of the 560 /// basic blocks has a single successor pointing to the other basic block, 561 /// which has a single predecessor. 562 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 563 bool Changed = false; 564 // Scan all of the blocks in the function, except for the entry block. 565 // Use a temporary array to avoid iterator being invalidated when 566 // deleting blocks. 567 SmallVector<WeakTrackingVH, 16> Blocks; 568 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 569 Blocks.push_back(&Block); 570 571 for (auto &Block : Blocks) { 572 auto *BB = cast_or_null<BasicBlock>(Block); 573 if (!BB) 574 continue; 575 // If the destination block has a single pred, then this is a trivial 576 // edge, just collapse it. 577 BasicBlock *SinglePred = BB->getSinglePredecessor(); 578 579 // Don't merge if BB's address is taken. 580 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 581 582 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 583 if (Term && !Term->isConditional()) { 584 Changed = true; 585 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 586 587 // Merge BB into SinglePred and delete it. 588 MergeBlockIntoPredecessor(BB); 589 } 590 } 591 return Changed; 592 } 593 594 /// Find a destination block from BB if BB is mergeable empty block. 595 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 596 // If this block doesn't end with an uncond branch, ignore it. 597 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 598 if (!BI || !BI->isUnconditional()) 599 return nullptr; 600 601 // If the instruction before the branch (skipping debug info) isn't a phi 602 // node, then other stuff is happening here. 603 BasicBlock::iterator BBI = BI->getIterator(); 604 if (BBI != BB->begin()) { 605 --BBI; 606 while (isa<DbgInfoIntrinsic>(BBI)) { 607 if (BBI == BB->begin()) 608 break; 609 --BBI; 610 } 611 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 612 return nullptr; 613 } 614 615 // Do not break infinite loops. 616 BasicBlock *DestBB = BI->getSuccessor(0); 617 if (DestBB == BB) 618 return nullptr; 619 620 if (!canMergeBlocks(BB, DestBB)) 621 DestBB = nullptr; 622 623 return DestBB; 624 } 625 626 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 627 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 628 /// edges in ways that are non-optimal for isel. Start by eliminating these 629 /// blocks so we can split them the way we want them. 630 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 631 SmallPtrSet<BasicBlock *, 16> Preheaders; 632 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 633 while (!LoopList.empty()) { 634 Loop *L = LoopList.pop_back_val(); 635 LoopList.insert(LoopList.end(), L->begin(), L->end()); 636 if (BasicBlock *Preheader = L->getLoopPreheader()) 637 Preheaders.insert(Preheader); 638 } 639 640 bool MadeChange = false; 641 // Copy blocks into a temporary array to avoid iterator invalidation issues 642 // as we remove them. 643 // Note that this intentionally skips the entry block. 644 SmallVector<WeakTrackingVH, 16> Blocks; 645 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 646 Blocks.push_back(&Block); 647 648 for (auto &Block : Blocks) { 649 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 650 if (!BB) 651 continue; 652 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 653 if (!DestBB || 654 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 655 continue; 656 657 eliminateMostlyEmptyBlock(BB); 658 MadeChange = true; 659 } 660 return MadeChange; 661 } 662 663 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 664 BasicBlock *DestBB, 665 bool isPreheader) { 666 // Do not delete loop preheaders if doing so would create a critical edge. 667 // Loop preheaders can be good locations to spill registers. If the 668 // preheader is deleted and we create a critical edge, registers may be 669 // spilled in the loop body instead. 670 if (!DisablePreheaderProtect && isPreheader && 671 !(BB->getSinglePredecessor() && 672 BB->getSinglePredecessor()->getSingleSuccessor())) 673 return false; 674 675 // Skip merging if the block's successor is also a successor to any callbr 676 // that leads to this block. 677 // FIXME: Is this really needed? Is this a correctness issue? 678 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 679 if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator())) 680 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 681 if (DestBB == CBI->getSuccessor(i)) 682 return false; 683 } 684 685 // Try to skip merging if the unique predecessor of BB is terminated by a 686 // switch or indirect branch instruction, and BB is used as an incoming block 687 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 688 // add COPY instructions in the predecessor of BB instead of BB (if it is not 689 // merged). Note that the critical edge created by merging such blocks wont be 690 // split in MachineSink because the jump table is not analyzable. By keeping 691 // such empty block (BB), ISel will place COPY instructions in BB, not in the 692 // predecessor of BB. 693 BasicBlock *Pred = BB->getUniquePredecessor(); 694 if (!Pred || 695 !(isa<SwitchInst>(Pred->getTerminator()) || 696 isa<IndirectBrInst>(Pred->getTerminator()))) 697 return true; 698 699 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 700 return true; 701 702 // We use a simple cost heuristic which determine skipping merging is 703 // profitable if the cost of skipping merging is less than the cost of 704 // merging : Cost(skipping merging) < Cost(merging BB), where the 705 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 706 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 707 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 708 // Freq(Pred) / Freq(BB) > 2. 709 // Note that if there are multiple empty blocks sharing the same incoming 710 // value for the PHIs in the DestBB, we consider them together. In such 711 // case, Cost(merging BB) will be the sum of their frequencies. 712 713 if (!isa<PHINode>(DestBB->begin())) 714 return true; 715 716 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 717 718 // Find all other incoming blocks from which incoming values of all PHIs in 719 // DestBB are the same as the ones from BB. 720 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 721 ++PI) { 722 BasicBlock *DestBBPred = *PI; 723 if (DestBBPred == BB) 724 continue; 725 726 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 727 return DestPN.getIncomingValueForBlock(BB) == 728 DestPN.getIncomingValueForBlock(DestBBPred); 729 })) 730 SameIncomingValueBBs.insert(DestBBPred); 731 } 732 733 // See if all BB's incoming values are same as the value from Pred. In this 734 // case, no reason to skip merging because COPYs are expected to be place in 735 // Pred already. 736 if (SameIncomingValueBBs.count(Pred)) 737 return true; 738 739 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 740 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 741 742 for (auto SameValueBB : SameIncomingValueBBs) 743 if (SameValueBB->getUniquePredecessor() == Pred && 744 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 745 BBFreq += BFI->getBlockFreq(SameValueBB); 746 747 return PredFreq.getFrequency() <= 748 BBFreq.getFrequency() * FreqRatioToSkipMerge; 749 } 750 751 /// Return true if we can merge BB into DestBB if there is a single 752 /// unconditional branch between them, and BB contains no other non-phi 753 /// instructions. 754 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 755 const BasicBlock *DestBB) const { 756 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 757 // the successor. If there are more complex condition (e.g. preheaders), 758 // don't mess around with them. 759 for (const PHINode &PN : BB->phis()) { 760 for (const User *U : PN.users()) { 761 const Instruction *UI = cast<Instruction>(U); 762 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 763 return false; 764 // If User is inside DestBB block and it is a PHINode then check 765 // incoming value. If incoming value is not from BB then this is 766 // a complex condition (e.g. preheaders) we want to avoid here. 767 if (UI->getParent() == DestBB) { 768 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 769 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 770 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 771 if (Insn && Insn->getParent() == BB && 772 Insn->getParent() != UPN->getIncomingBlock(I)) 773 return false; 774 } 775 } 776 } 777 } 778 779 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 780 // and DestBB may have conflicting incoming values for the block. If so, we 781 // can't merge the block. 782 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 783 if (!DestBBPN) return true; // no conflict. 784 785 // Collect the preds of BB. 786 SmallPtrSet<const BasicBlock*, 16> BBPreds; 787 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 788 // It is faster to get preds from a PHI than with pred_iterator. 789 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 790 BBPreds.insert(BBPN->getIncomingBlock(i)); 791 } else { 792 BBPreds.insert(pred_begin(BB), pred_end(BB)); 793 } 794 795 // Walk the preds of DestBB. 796 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 797 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 798 if (BBPreds.count(Pred)) { // Common predecessor? 799 for (const PHINode &PN : DestBB->phis()) { 800 const Value *V1 = PN.getIncomingValueForBlock(Pred); 801 const Value *V2 = PN.getIncomingValueForBlock(BB); 802 803 // If V2 is a phi node in BB, look up what the mapped value will be. 804 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 805 if (V2PN->getParent() == BB) 806 V2 = V2PN->getIncomingValueForBlock(Pred); 807 808 // If there is a conflict, bail out. 809 if (V1 != V2) return false; 810 } 811 } 812 } 813 814 return true; 815 } 816 817 /// Eliminate a basic block that has only phi's and an unconditional branch in 818 /// it. 819 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 820 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 821 BasicBlock *DestBB = BI->getSuccessor(0); 822 823 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 824 << *BB << *DestBB); 825 826 // If the destination block has a single pred, then this is a trivial edge, 827 // just collapse it. 828 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 829 if (SinglePred != DestBB) { 830 assert(SinglePred == BB && 831 "Single predecessor not the same as predecessor"); 832 // Merge DestBB into SinglePred/BB and delete it. 833 MergeBlockIntoPredecessor(DestBB); 834 // Note: BB(=SinglePred) will not be deleted on this path. 835 // DestBB(=its single successor) is the one that was deleted. 836 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 837 return; 838 } 839 } 840 841 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 842 // to handle the new incoming edges it is about to have. 843 for (PHINode &PN : DestBB->phis()) { 844 // Remove the incoming value for BB, and remember it. 845 Value *InVal = PN.removeIncomingValue(BB, false); 846 847 // Two options: either the InVal is a phi node defined in BB or it is some 848 // value that dominates BB. 849 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 850 if (InValPhi && InValPhi->getParent() == BB) { 851 // Add all of the input values of the input PHI as inputs of this phi. 852 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 853 PN.addIncoming(InValPhi->getIncomingValue(i), 854 InValPhi->getIncomingBlock(i)); 855 } else { 856 // Otherwise, add one instance of the dominating value for each edge that 857 // we will be adding. 858 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 859 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 860 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 861 } else { 862 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 863 PN.addIncoming(InVal, *PI); 864 } 865 } 866 } 867 868 // The PHIs are now updated, change everything that refers to BB to use 869 // DestBB and remove BB. 870 BB->replaceAllUsesWith(DestBB); 871 BB->eraseFromParent(); 872 ++NumBlocksElim; 873 874 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 875 } 876 877 // Computes a map of base pointer relocation instructions to corresponding 878 // derived pointer relocation instructions given a vector of all relocate calls 879 static void computeBaseDerivedRelocateMap( 880 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 881 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 882 &RelocateInstMap) { 883 // Collect information in two maps: one primarily for locating the base object 884 // while filling the second map; the second map is the final structure holding 885 // a mapping between Base and corresponding Derived relocate calls 886 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 887 for (auto *ThisRelocate : AllRelocateCalls) { 888 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 889 ThisRelocate->getDerivedPtrIndex()); 890 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 891 } 892 for (auto &Item : RelocateIdxMap) { 893 std::pair<unsigned, unsigned> Key = Item.first; 894 if (Key.first == Key.second) 895 // Base relocation: nothing to insert 896 continue; 897 898 GCRelocateInst *I = Item.second; 899 auto BaseKey = std::make_pair(Key.first, Key.first); 900 901 // We're iterating over RelocateIdxMap so we cannot modify it. 902 auto MaybeBase = RelocateIdxMap.find(BaseKey); 903 if (MaybeBase == RelocateIdxMap.end()) 904 // TODO: We might want to insert a new base object relocate and gep off 905 // that, if there are enough derived object relocates. 906 continue; 907 908 RelocateInstMap[MaybeBase->second].push_back(I); 909 } 910 } 911 912 // Accepts a GEP and extracts the operands into a vector provided they're all 913 // small integer constants 914 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 915 SmallVectorImpl<Value *> &OffsetV) { 916 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 917 // Only accept small constant integer operands 918 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 919 if (!Op || Op->getZExtValue() > 20) 920 return false; 921 } 922 923 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 924 OffsetV.push_back(GEP->getOperand(i)); 925 return true; 926 } 927 928 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 929 // replace, computes a replacement, and affects it. 930 static bool 931 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 932 const SmallVectorImpl<GCRelocateInst *> &Targets) { 933 bool MadeChange = false; 934 // We must ensure the relocation of derived pointer is defined after 935 // relocation of base pointer. If we find a relocation corresponding to base 936 // defined earlier than relocation of base then we move relocation of base 937 // right before found relocation. We consider only relocation in the same 938 // basic block as relocation of base. Relocations from other basic block will 939 // be skipped by optimization and we do not care about them. 940 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 941 &*R != RelocatedBase; ++R) 942 if (auto RI = dyn_cast<GCRelocateInst>(R)) 943 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 944 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 945 RelocatedBase->moveBefore(RI); 946 break; 947 } 948 949 for (GCRelocateInst *ToReplace : Targets) { 950 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 951 "Not relocating a derived object of the original base object"); 952 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 953 // A duplicate relocate call. TODO: coalesce duplicates. 954 continue; 955 } 956 957 if (RelocatedBase->getParent() != ToReplace->getParent()) { 958 // Base and derived relocates are in different basic blocks. 959 // In this case transform is only valid when base dominates derived 960 // relocate. However it would be too expensive to check dominance 961 // for each such relocate, so we skip the whole transformation. 962 continue; 963 } 964 965 Value *Base = ToReplace->getBasePtr(); 966 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 967 if (!Derived || Derived->getPointerOperand() != Base) 968 continue; 969 970 SmallVector<Value *, 2> OffsetV; 971 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 972 continue; 973 974 // Create a Builder and replace the target callsite with a gep 975 assert(RelocatedBase->getNextNode() && 976 "Should always have one since it's not a terminator"); 977 978 // Insert after RelocatedBase 979 IRBuilder<> Builder(RelocatedBase->getNextNode()); 980 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 981 982 // If gc_relocate does not match the actual type, cast it to the right type. 983 // In theory, there must be a bitcast after gc_relocate if the type does not 984 // match, and we should reuse it to get the derived pointer. But it could be 985 // cases like this: 986 // bb1: 987 // ... 988 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 989 // br label %merge 990 // 991 // bb2: 992 // ... 993 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 994 // br label %merge 995 // 996 // merge: 997 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 998 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 999 // 1000 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1001 // no matter there is already one or not. In this way, we can handle all cases, and 1002 // the extra bitcast should be optimized away in later passes. 1003 Value *ActualRelocatedBase = RelocatedBase; 1004 if (RelocatedBase->getType() != Base->getType()) { 1005 ActualRelocatedBase = 1006 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1007 } 1008 Value *Replacement = Builder.CreateGEP( 1009 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1010 Replacement->takeName(ToReplace); 1011 // If the newly generated derived pointer's type does not match the original derived 1012 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1013 Value *ActualReplacement = Replacement; 1014 if (Replacement->getType() != ToReplace->getType()) { 1015 ActualReplacement = 1016 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1017 } 1018 ToReplace->replaceAllUsesWith(ActualReplacement); 1019 ToReplace->eraseFromParent(); 1020 1021 MadeChange = true; 1022 } 1023 return MadeChange; 1024 } 1025 1026 // Turns this: 1027 // 1028 // %base = ... 1029 // %ptr = gep %base + 15 1030 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1031 // %base' = relocate(%tok, i32 4, i32 4) 1032 // %ptr' = relocate(%tok, i32 4, i32 5) 1033 // %val = load %ptr' 1034 // 1035 // into this: 1036 // 1037 // %base = ... 1038 // %ptr = gep %base + 15 1039 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1040 // %base' = gc.relocate(%tok, i32 4, i32 4) 1041 // %ptr' = gep %base' + 15 1042 // %val = load %ptr' 1043 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1044 bool MadeChange = false; 1045 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1046 1047 for (auto *U : I.users()) 1048 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1049 // Collect all the relocate calls associated with a statepoint 1050 AllRelocateCalls.push_back(Relocate); 1051 1052 // We need atleast one base pointer relocation + one derived pointer 1053 // relocation to mangle 1054 if (AllRelocateCalls.size() < 2) 1055 return false; 1056 1057 // RelocateInstMap is a mapping from the base relocate instruction to the 1058 // corresponding derived relocate instructions 1059 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1060 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1061 if (RelocateInstMap.empty()) 1062 return false; 1063 1064 for (auto &Item : RelocateInstMap) 1065 // Item.first is the RelocatedBase to offset against 1066 // Item.second is the vector of Targets to replace 1067 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1068 return MadeChange; 1069 } 1070 1071 /// Sink the specified cast instruction into its user blocks. 1072 static bool SinkCast(CastInst *CI) { 1073 BasicBlock *DefBB = CI->getParent(); 1074 1075 /// InsertedCasts - Only insert a cast in each block once. 1076 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1077 1078 bool MadeChange = false; 1079 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1080 UI != E; ) { 1081 Use &TheUse = UI.getUse(); 1082 Instruction *User = cast<Instruction>(*UI); 1083 1084 // Figure out which BB this cast is used in. For PHI's this is the 1085 // appropriate predecessor block. 1086 BasicBlock *UserBB = User->getParent(); 1087 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1088 UserBB = PN->getIncomingBlock(TheUse); 1089 } 1090 1091 // Preincrement use iterator so we don't invalidate it. 1092 ++UI; 1093 1094 // The first insertion point of a block containing an EH pad is after the 1095 // pad. If the pad is the user, we cannot sink the cast past the pad. 1096 if (User->isEHPad()) 1097 continue; 1098 1099 // If the block selected to receive the cast is an EH pad that does not 1100 // allow non-PHI instructions before the terminator, we can't sink the 1101 // cast. 1102 if (UserBB->getTerminator()->isEHPad()) 1103 continue; 1104 1105 // If this user is in the same block as the cast, don't change the cast. 1106 if (UserBB == DefBB) continue; 1107 1108 // If we have already inserted a cast into this block, use it. 1109 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1110 1111 if (!InsertedCast) { 1112 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1113 assert(InsertPt != UserBB->end()); 1114 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1115 CI->getType(), "", &*InsertPt); 1116 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1117 } 1118 1119 // Replace a use of the cast with a use of the new cast. 1120 TheUse = InsertedCast; 1121 MadeChange = true; 1122 ++NumCastUses; 1123 } 1124 1125 // If we removed all uses, nuke the cast. 1126 if (CI->use_empty()) { 1127 salvageDebugInfo(*CI); 1128 CI->eraseFromParent(); 1129 MadeChange = true; 1130 } 1131 1132 return MadeChange; 1133 } 1134 1135 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1136 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1137 /// reduce the number of virtual registers that must be created and coalesced. 1138 /// 1139 /// Return true if any changes are made. 1140 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1141 const DataLayout &DL) { 1142 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1143 // than sinking only nop casts, but is helpful on some platforms. 1144 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1145 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1146 ASC->getDestAddressSpace())) 1147 return false; 1148 } 1149 1150 // If this is a noop copy, 1151 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1152 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1153 1154 // This is an fp<->int conversion? 1155 if (SrcVT.isInteger() != DstVT.isInteger()) 1156 return false; 1157 1158 // If this is an extension, it will be a zero or sign extension, which 1159 // isn't a noop. 1160 if (SrcVT.bitsLT(DstVT)) return false; 1161 1162 // If these values will be promoted, find out what they will be promoted 1163 // to. This helps us consider truncates on PPC as noop copies when they 1164 // are. 1165 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1166 TargetLowering::TypePromoteInteger) 1167 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1168 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1169 TargetLowering::TypePromoteInteger) 1170 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1171 1172 // If, after promotion, these are the same types, this is a noop copy. 1173 if (SrcVT != DstVT) 1174 return false; 1175 1176 return SinkCast(CI); 1177 } 1178 1179 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1180 CmpInst *Cmp, 1181 Intrinsic::ID IID) { 1182 if (BO->getParent() != Cmp->getParent()) { 1183 // We used to use a dominator tree here to allow multi-block optimization. 1184 // But that was problematic because: 1185 // 1. It could cause a perf regression by hoisting the math op into the 1186 // critical path. 1187 // 2. It could cause a perf regression by creating a value that was live 1188 // across multiple blocks and increasing register pressure. 1189 // 3. Use of a dominator tree could cause large compile-time regression. 1190 // This is because we recompute the DT on every change in the main CGP 1191 // run-loop. The recomputing is probably unnecessary in many cases, so if 1192 // that was fixed, using a DT here would be ok. 1193 return false; 1194 } 1195 1196 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1197 Value *Arg0 = BO->getOperand(0); 1198 Value *Arg1 = BO->getOperand(1); 1199 if (BO->getOpcode() == Instruction::Add && 1200 IID == Intrinsic::usub_with_overflow) { 1201 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1202 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1203 } 1204 1205 // Insert at the first instruction of the pair. 1206 Instruction *InsertPt = nullptr; 1207 for (Instruction &Iter : *Cmp->getParent()) { 1208 if (&Iter == BO || &Iter == Cmp) { 1209 InsertPt = &Iter; 1210 break; 1211 } 1212 } 1213 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1214 1215 IRBuilder<> Builder(InsertPt); 1216 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1217 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1218 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1219 BO->replaceAllUsesWith(Math); 1220 Cmp->replaceAllUsesWith(OV); 1221 BO->eraseFromParent(); 1222 Cmp->eraseFromParent(); 1223 return true; 1224 } 1225 1226 /// Match special-case patterns that check for unsigned add overflow. 1227 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1228 BinaryOperator *&Add) { 1229 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1230 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1231 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1232 1233 // We are not expecting non-canonical/degenerate code. Just bail out. 1234 if (isa<Constant>(A)) 1235 return false; 1236 1237 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1238 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1239 B = ConstantInt::get(B->getType(), 1); 1240 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1241 B = ConstantInt::get(B->getType(), -1); 1242 else 1243 return false; 1244 1245 // Check the users of the variable operand of the compare looking for an add 1246 // with the adjusted constant. 1247 for (User *U : A->users()) { 1248 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1249 Add = cast<BinaryOperator>(U); 1250 return true; 1251 } 1252 } 1253 return false; 1254 } 1255 1256 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1257 /// intrinsic. Return true if any changes were made. 1258 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1259 bool &ModifiedDT) { 1260 Value *A, *B; 1261 BinaryOperator *Add; 1262 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) 1263 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1264 return false; 1265 1266 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1267 TLI->getValueType(*DL, Add->getType()))) 1268 return false; 1269 1270 // We don't want to move around uses of condition values this late, so we 1271 // check if it is legal to create the call to the intrinsic in the basic 1272 // block containing the icmp. 1273 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1274 return false; 1275 1276 if (!replaceMathCmpWithIntrinsic(Add, Cmp, Intrinsic::uadd_with_overflow)) 1277 return false; 1278 1279 // Reset callers - do not crash by iterating over a dead instruction. 1280 ModifiedDT = true; 1281 return true; 1282 } 1283 1284 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1285 bool &ModifiedDT) { 1286 // We are not expecting non-canonical/degenerate code. Just bail out. 1287 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1288 if (isa<Constant>(A) && isa<Constant>(B)) 1289 return false; 1290 1291 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1292 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1293 if (Pred == ICmpInst::ICMP_UGT) { 1294 std::swap(A, B); 1295 Pred = ICmpInst::ICMP_ULT; 1296 } 1297 // Convert special-case: (A == 0) is the same as (A u< 1). 1298 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1299 B = ConstantInt::get(B->getType(), 1); 1300 Pred = ICmpInst::ICMP_ULT; 1301 } 1302 // Convert special-case: (A != 0) is the same as (0 u< A). 1303 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1304 std::swap(A, B); 1305 Pred = ICmpInst::ICMP_ULT; 1306 } 1307 if (Pred != ICmpInst::ICMP_ULT) 1308 return false; 1309 1310 // Walk the users of a variable operand of a compare looking for a subtract or 1311 // add with that same operand. Also match the 2nd operand of the compare to 1312 // the add/sub, but that may be a negated constant operand of an add. 1313 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1314 BinaryOperator *Sub = nullptr; 1315 for (User *U : CmpVariableOperand->users()) { 1316 // A - B, A u< B --> usubo(A, B) 1317 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1318 Sub = cast<BinaryOperator>(U); 1319 break; 1320 } 1321 1322 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1323 const APInt *CmpC, *AddC; 1324 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1325 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1326 Sub = cast<BinaryOperator>(U); 1327 break; 1328 } 1329 } 1330 if (!Sub) 1331 return false; 1332 1333 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1334 TLI->getValueType(*DL, Sub->getType()))) 1335 return false; 1336 1337 if (!replaceMathCmpWithIntrinsic(Sub, Cmp, Intrinsic::usub_with_overflow)) 1338 return false; 1339 1340 // Reset callers - do not crash by iterating over a dead instruction. 1341 ModifiedDT = true; 1342 return true; 1343 } 1344 1345 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1346 /// registers that must be created and coalesced. This is a clear win except on 1347 /// targets with multiple condition code registers (PowerPC), where it might 1348 /// lose; some adjustment may be wanted there. 1349 /// 1350 /// Return true if any changes are made. 1351 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1352 if (TLI.hasMultipleConditionRegisters()) 1353 return false; 1354 1355 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1356 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1357 return false; 1358 1359 // Only insert a cmp in each block once. 1360 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1361 1362 bool MadeChange = false; 1363 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1364 UI != E; ) { 1365 Use &TheUse = UI.getUse(); 1366 Instruction *User = cast<Instruction>(*UI); 1367 1368 // Preincrement use iterator so we don't invalidate it. 1369 ++UI; 1370 1371 // Don't bother for PHI nodes. 1372 if (isa<PHINode>(User)) 1373 continue; 1374 1375 // Figure out which BB this cmp is used in. 1376 BasicBlock *UserBB = User->getParent(); 1377 BasicBlock *DefBB = Cmp->getParent(); 1378 1379 // If this user is in the same block as the cmp, don't change the cmp. 1380 if (UserBB == DefBB) continue; 1381 1382 // If we have already inserted a cmp into this block, use it. 1383 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1384 1385 if (!InsertedCmp) { 1386 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1387 assert(InsertPt != UserBB->end()); 1388 InsertedCmp = 1389 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1390 Cmp->getOperand(0), Cmp->getOperand(1), "", 1391 &*InsertPt); 1392 // Propagate the debug info. 1393 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1394 } 1395 1396 // Replace a use of the cmp with a use of the new cmp. 1397 TheUse = InsertedCmp; 1398 MadeChange = true; 1399 ++NumCmpUses; 1400 } 1401 1402 // If we removed all uses, nuke the cmp. 1403 if (Cmp->use_empty()) { 1404 Cmp->eraseFromParent(); 1405 MadeChange = true; 1406 } 1407 1408 return MadeChange; 1409 } 1410 1411 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1412 if (sinkCmpExpression(Cmp, *TLI)) 1413 return true; 1414 1415 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1416 return true; 1417 1418 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1419 return true; 1420 1421 return false; 1422 } 1423 1424 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1425 /// used in a compare to allow isel to generate better code for targets where 1426 /// this operation can be combined. 1427 /// 1428 /// Return true if any changes are made. 1429 static bool sinkAndCmp0Expression(Instruction *AndI, 1430 const TargetLowering &TLI, 1431 SetOfInstrs &InsertedInsts) { 1432 // Double-check that we're not trying to optimize an instruction that was 1433 // already optimized by some other part of this pass. 1434 assert(!InsertedInsts.count(AndI) && 1435 "Attempting to optimize already optimized and instruction"); 1436 (void) InsertedInsts; 1437 1438 // Nothing to do for single use in same basic block. 1439 if (AndI->hasOneUse() && 1440 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1441 return false; 1442 1443 // Try to avoid cases where sinking/duplicating is likely to increase register 1444 // pressure. 1445 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1446 !isa<ConstantInt>(AndI->getOperand(1)) && 1447 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1448 return false; 1449 1450 for (auto *U : AndI->users()) { 1451 Instruction *User = cast<Instruction>(U); 1452 1453 // Only sink 'and' feeding icmp with 0. 1454 if (!isa<ICmpInst>(User)) 1455 return false; 1456 1457 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1458 if (!CmpC || !CmpC->isZero()) 1459 return false; 1460 } 1461 1462 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1463 return false; 1464 1465 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1466 LLVM_DEBUG(AndI->getParent()->dump()); 1467 1468 // Push the 'and' into the same block as the icmp 0. There should only be 1469 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1470 // others, so we don't need to keep track of which BBs we insert into. 1471 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1472 UI != E; ) { 1473 Use &TheUse = UI.getUse(); 1474 Instruction *User = cast<Instruction>(*UI); 1475 1476 // Preincrement use iterator so we don't invalidate it. 1477 ++UI; 1478 1479 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1480 1481 // Keep the 'and' in the same place if the use is already in the same block. 1482 Instruction *InsertPt = 1483 User->getParent() == AndI->getParent() ? AndI : User; 1484 Instruction *InsertedAnd = 1485 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1486 AndI->getOperand(1), "", InsertPt); 1487 // Propagate the debug info. 1488 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1489 1490 // Replace a use of the 'and' with a use of the new 'and'. 1491 TheUse = InsertedAnd; 1492 ++NumAndUses; 1493 LLVM_DEBUG(User->getParent()->dump()); 1494 } 1495 1496 // We removed all uses, nuke the and. 1497 AndI->eraseFromParent(); 1498 return true; 1499 } 1500 1501 /// Check if the candidates could be combined with a shift instruction, which 1502 /// includes: 1503 /// 1. Truncate instruction 1504 /// 2. And instruction and the imm is a mask of the low bits: 1505 /// imm & (imm+1) == 0 1506 static bool isExtractBitsCandidateUse(Instruction *User) { 1507 if (!isa<TruncInst>(User)) { 1508 if (User->getOpcode() != Instruction::And || 1509 !isa<ConstantInt>(User->getOperand(1))) 1510 return false; 1511 1512 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1513 1514 if ((Cimm & (Cimm + 1)).getBoolValue()) 1515 return false; 1516 } 1517 return true; 1518 } 1519 1520 /// Sink both shift and truncate instruction to the use of truncate's BB. 1521 static bool 1522 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1523 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1524 const TargetLowering &TLI, const DataLayout &DL) { 1525 BasicBlock *UserBB = User->getParent(); 1526 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1527 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1528 bool MadeChange = false; 1529 1530 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1531 TruncE = TruncI->user_end(); 1532 TruncUI != TruncE;) { 1533 1534 Use &TruncTheUse = TruncUI.getUse(); 1535 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1536 // Preincrement use iterator so we don't invalidate it. 1537 1538 ++TruncUI; 1539 1540 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1541 if (!ISDOpcode) 1542 continue; 1543 1544 // If the use is actually a legal node, there will not be an 1545 // implicit truncate. 1546 // FIXME: always querying the result type is just an 1547 // approximation; some nodes' legality is determined by the 1548 // operand or other means. There's no good way to find out though. 1549 if (TLI.isOperationLegalOrCustom( 1550 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1551 continue; 1552 1553 // Don't bother for PHI nodes. 1554 if (isa<PHINode>(TruncUser)) 1555 continue; 1556 1557 BasicBlock *TruncUserBB = TruncUser->getParent(); 1558 1559 if (UserBB == TruncUserBB) 1560 continue; 1561 1562 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1563 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1564 1565 if (!InsertedShift && !InsertedTrunc) { 1566 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1567 assert(InsertPt != TruncUserBB->end()); 1568 // Sink the shift 1569 if (ShiftI->getOpcode() == Instruction::AShr) 1570 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1571 "", &*InsertPt); 1572 else 1573 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1574 "", &*InsertPt); 1575 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1576 1577 // Sink the trunc 1578 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1579 TruncInsertPt++; 1580 assert(TruncInsertPt != TruncUserBB->end()); 1581 1582 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1583 TruncI->getType(), "", &*TruncInsertPt); 1584 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1585 1586 MadeChange = true; 1587 1588 TruncTheUse = InsertedTrunc; 1589 } 1590 } 1591 return MadeChange; 1592 } 1593 1594 /// Sink the shift *right* instruction into user blocks if the uses could 1595 /// potentially be combined with this shift instruction and generate BitExtract 1596 /// instruction. It will only be applied if the architecture supports BitExtract 1597 /// instruction. Here is an example: 1598 /// BB1: 1599 /// %x.extract.shift = lshr i64 %arg1, 32 1600 /// BB2: 1601 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1602 /// ==> 1603 /// 1604 /// BB2: 1605 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1606 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1607 /// 1608 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1609 /// instruction. 1610 /// Return true if any changes are made. 1611 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1612 const TargetLowering &TLI, 1613 const DataLayout &DL) { 1614 BasicBlock *DefBB = ShiftI->getParent(); 1615 1616 /// Only insert instructions in each block once. 1617 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1618 1619 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1620 1621 bool MadeChange = false; 1622 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1623 UI != E;) { 1624 Use &TheUse = UI.getUse(); 1625 Instruction *User = cast<Instruction>(*UI); 1626 // Preincrement use iterator so we don't invalidate it. 1627 ++UI; 1628 1629 // Don't bother for PHI nodes. 1630 if (isa<PHINode>(User)) 1631 continue; 1632 1633 if (!isExtractBitsCandidateUse(User)) 1634 continue; 1635 1636 BasicBlock *UserBB = User->getParent(); 1637 1638 if (UserBB == DefBB) { 1639 // If the shift and truncate instruction are in the same BB. The use of 1640 // the truncate(TruncUse) may still introduce another truncate if not 1641 // legal. In this case, we would like to sink both shift and truncate 1642 // instruction to the BB of TruncUse. 1643 // for example: 1644 // BB1: 1645 // i64 shift.result = lshr i64 opnd, imm 1646 // trunc.result = trunc shift.result to i16 1647 // 1648 // BB2: 1649 // ----> We will have an implicit truncate here if the architecture does 1650 // not have i16 compare. 1651 // cmp i16 trunc.result, opnd2 1652 // 1653 if (isa<TruncInst>(User) && shiftIsLegal 1654 // If the type of the truncate is legal, no truncate will be 1655 // introduced in other basic blocks. 1656 && 1657 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1658 MadeChange = 1659 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1660 1661 continue; 1662 } 1663 // If we have already inserted a shift into this block, use it. 1664 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1665 1666 if (!InsertedShift) { 1667 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1668 assert(InsertPt != UserBB->end()); 1669 1670 if (ShiftI->getOpcode() == Instruction::AShr) 1671 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1672 "", &*InsertPt); 1673 else 1674 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1675 "", &*InsertPt); 1676 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1677 1678 MadeChange = true; 1679 } 1680 1681 // Replace a use of the shift with a use of the new shift. 1682 TheUse = InsertedShift; 1683 } 1684 1685 // If we removed all uses, nuke the shift. 1686 if (ShiftI->use_empty()) { 1687 salvageDebugInfo(*ShiftI); 1688 ShiftI->eraseFromParent(); 1689 } 1690 1691 return MadeChange; 1692 } 1693 1694 /// If counting leading or trailing zeros is an expensive operation and a zero 1695 /// input is defined, add a check for zero to avoid calling the intrinsic. 1696 /// 1697 /// We want to transform: 1698 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1699 /// 1700 /// into: 1701 /// entry: 1702 /// %cmpz = icmp eq i64 %A, 0 1703 /// br i1 %cmpz, label %cond.end, label %cond.false 1704 /// cond.false: 1705 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1706 /// br label %cond.end 1707 /// cond.end: 1708 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1709 /// 1710 /// If the transform is performed, return true and set ModifiedDT to true. 1711 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1712 const TargetLowering *TLI, 1713 const DataLayout *DL, 1714 bool &ModifiedDT) { 1715 if (!TLI || !DL) 1716 return false; 1717 1718 // If a zero input is undefined, it doesn't make sense to despeculate that. 1719 if (match(CountZeros->getOperand(1), m_One())) 1720 return false; 1721 1722 // If it's cheap to speculate, there's nothing to do. 1723 auto IntrinsicID = CountZeros->getIntrinsicID(); 1724 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1725 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1726 return false; 1727 1728 // Only handle legal scalar cases. Anything else requires too much work. 1729 Type *Ty = CountZeros->getType(); 1730 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1731 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1732 return false; 1733 1734 // The intrinsic will be sunk behind a compare against zero and branch. 1735 BasicBlock *StartBlock = CountZeros->getParent(); 1736 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1737 1738 // Create another block after the count zero intrinsic. A PHI will be added 1739 // in this block to select the result of the intrinsic or the bit-width 1740 // constant if the input to the intrinsic is zero. 1741 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1742 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1743 1744 // Set up a builder to create a compare, conditional branch, and PHI. 1745 IRBuilder<> Builder(CountZeros->getContext()); 1746 Builder.SetInsertPoint(StartBlock->getTerminator()); 1747 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1748 1749 // Replace the unconditional branch that was created by the first split with 1750 // a compare against zero and a conditional branch. 1751 Value *Zero = Constant::getNullValue(Ty); 1752 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1753 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1754 StartBlock->getTerminator()->eraseFromParent(); 1755 1756 // Create a PHI in the end block to select either the output of the intrinsic 1757 // or the bit width of the operand. 1758 Builder.SetInsertPoint(&EndBlock->front()); 1759 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1760 CountZeros->replaceAllUsesWith(PN); 1761 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1762 PN->addIncoming(BitWidth, StartBlock); 1763 PN->addIncoming(CountZeros, CallBlock); 1764 1765 // We are explicitly handling the zero case, so we can set the intrinsic's 1766 // undefined zero argument to 'true'. This will also prevent reprocessing the 1767 // intrinsic; we only despeculate when a zero input is defined. 1768 CountZeros->setArgOperand(1, Builder.getTrue()); 1769 ModifiedDT = true; 1770 return true; 1771 } 1772 1773 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1774 BasicBlock *BB = CI->getParent(); 1775 1776 // Lower inline assembly if we can. 1777 // If we found an inline asm expession, and if the target knows how to 1778 // lower it to normal LLVM code, do so now. 1779 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1780 if (TLI->ExpandInlineAsm(CI)) { 1781 // Avoid invalidating the iterator. 1782 CurInstIterator = BB->begin(); 1783 // Avoid processing instructions out of order, which could cause 1784 // reuse before a value is defined. 1785 SunkAddrs.clear(); 1786 return true; 1787 } 1788 // Sink address computing for memory operands into the block. 1789 if (optimizeInlineAsmInst(CI)) 1790 return true; 1791 } 1792 1793 // Align the pointer arguments to this call if the target thinks it's a good 1794 // idea 1795 unsigned MinSize, PrefAlign; 1796 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1797 for (auto &Arg : CI->arg_operands()) { 1798 // We want to align both objects whose address is used directly and 1799 // objects whose address is used in casts and GEPs, though it only makes 1800 // sense for GEPs if the offset is a multiple of the desired alignment and 1801 // if size - offset meets the size threshold. 1802 if (!Arg->getType()->isPointerTy()) 1803 continue; 1804 APInt Offset(DL->getIndexSizeInBits( 1805 cast<PointerType>(Arg->getType())->getAddressSpace()), 1806 0); 1807 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1808 uint64_t Offset2 = Offset.getLimitedValue(); 1809 if ((Offset2 & (PrefAlign-1)) != 0) 1810 continue; 1811 AllocaInst *AI; 1812 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1813 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1814 AI->setAlignment(PrefAlign); 1815 // Global variables can only be aligned if they are defined in this 1816 // object (i.e. they are uniquely initialized in this object), and 1817 // over-aligning global variables that have an explicit section is 1818 // forbidden. 1819 GlobalVariable *GV; 1820 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1821 GV->getPointerAlignment(*DL) < PrefAlign && 1822 DL->getTypeAllocSize(GV->getValueType()) >= 1823 MinSize + Offset2) 1824 GV->setAlignment(PrefAlign); 1825 } 1826 // If this is a memcpy (or similar) then we may be able to improve the 1827 // alignment 1828 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1829 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL); 1830 if (DestAlign > MI->getDestAlignment()) 1831 MI->setDestAlignment(DestAlign); 1832 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 1833 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 1834 if (SrcAlign > MTI->getSourceAlignment()) 1835 MTI->setSourceAlignment(SrcAlign); 1836 } 1837 } 1838 } 1839 1840 // If we have a cold call site, try to sink addressing computation into the 1841 // cold block. This interacts with our handling for loads and stores to 1842 // ensure that we can fold all uses of a potential addressing computation 1843 // into their uses. TODO: generalize this to work over profiling data 1844 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1845 for (auto &Arg : CI->arg_operands()) { 1846 if (!Arg->getType()->isPointerTy()) 1847 continue; 1848 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1849 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1850 } 1851 1852 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1853 if (II) { 1854 switch (II->getIntrinsicID()) { 1855 default: break; 1856 case Intrinsic::experimental_widenable_condition: { 1857 // Give up on future widening oppurtunties so that we can fold away dead 1858 // paths and merge blocks before going into block-local instruction 1859 // selection. 1860 if (II->use_empty()) { 1861 II->eraseFromParent(); 1862 return true; 1863 } 1864 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 1865 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1866 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1867 }); 1868 return true; 1869 } 1870 case Intrinsic::objectsize: { 1871 // Lower all uses of llvm.objectsize.* 1872 Value *RetVal = 1873 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 1874 1875 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1876 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1877 }); 1878 return true; 1879 } 1880 case Intrinsic::is_constant: { 1881 // If is_constant hasn't folded away yet, lower it to false now. 1882 Constant *RetVal = ConstantInt::get(II->getType(), 0); 1883 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1884 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1885 }); 1886 return true; 1887 } 1888 case Intrinsic::aarch64_stlxr: 1889 case Intrinsic::aarch64_stxr: { 1890 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1891 if (!ExtVal || !ExtVal->hasOneUse() || 1892 ExtVal->getParent() == CI->getParent()) 1893 return false; 1894 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1895 ExtVal->moveBefore(CI); 1896 // Mark this instruction as "inserted by CGP", so that other 1897 // optimizations don't touch it. 1898 InsertedInsts.insert(ExtVal); 1899 return true; 1900 } 1901 1902 case Intrinsic::launder_invariant_group: 1903 case Intrinsic::strip_invariant_group: { 1904 Value *ArgVal = II->getArgOperand(0); 1905 auto it = LargeOffsetGEPMap.find(II); 1906 if (it != LargeOffsetGEPMap.end()) { 1907 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 1908 // Make sure not to have to deal with iterator invalidation 1909 // after possibly adding ArgVal to LargeOffsetGEPMap. 1910 auto GEPs = std::move(it->second); 1911 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 1912 LargeOffsetGEPMap.erase(II); 1913 } 1914 1915 II->replaceAllUsesWith(ArgVal); 1916 II->eraseFromParent(); 1917 return true; 1918 } 1919 case Intrinsic::cttz: 1920 case Intrinsic::ctlz: 1921 // If counting zeros is expensive, try to avoid it. 1922 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 1923 } 1924 1925 if (TLI) { 1926 SmallVector<Value*, 2> PtrOps; 1927 Type *AccessTy; 1928 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 1929 while (!PtrOps.empty()) { 1930 Value *PtrVal = PtrOps.pop_back_val(); 1931 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 1932 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 1933 return true; 1934 } 1935 } 1936 } 1937 1938 // From here on out we're working with named functions. 1939 if (!CI->getCalledFunction()) return false; 1940 1941 // Lower all default uses of _chk calls. This is very similar 1942 // to what InstCombineCalls does, but here we are only lowering calls 1943 // to fortified library functions (e.g. __memcpy_chk) that have the default 1944 // "don't know" as the objectsize. Anything else should be left alone. 1945 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1946 if (Value *V = Simplifier.optimizeCall(CI)) { 1947 CI->replaceAllUsesWith(V); 1948 CI->eraseFromParent(); 1949 return true; 1950 } 1951 1952 return false; 1953 } 1954 1955 /// Look for opportunities to duplicate return instructions to the predecessor 1956 /// to enable tail call optimizations. The case it is currently looking for is: 1957 /// @code 1958 /// bb0: 1959 /// %tmp0 = tail call i32 @f0() 1960 /// br label %return 1961 /// bb1: 1962 /// %tmp1 = tail call i32 @f1() 1963 /// br label %return 1964 /// bb2: 1965 /// %tmp2 = tail call i32 @f2() 1966 /// br label %return 1967 /// return: 1968 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1969 /// ret i32 %retval 1970 /// @endcode 1971 /// 1972 /// => 1973 /// 1974 /// @code 1975 /// bb0: 1976 /// %tmp0 = tail call i32 @f0() 1977 /// ret i32 %tmp0 1978 /// bb1: 1979 /// %tmp1 = tail call i32 @f1() 1980 /// ret i32 %tmp1 1981 /// bb2: 1982 /// %tmp2 = tail call i32 @f2() 1983 /// ret i32 %tmp2 1984 /// @endcode 1985 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 1986 if (!TLI) 1987 return false; 1988 1989 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 1990 if (!RetI) 1991 return false; 1992 1993 PHINode *PN = nullptr; 1994 BitCastInst *BCI = nullptr; 1995 Value *V = RetI->getReturnValue(); 1996 if (V) { 1997 BCI = dyn_cast<BitCastInst>(V); 1998 if (BCI) 1999 V = BCI->getOperand(0); 2000 2001 PN = dyn_cast<PHINode>(V); 2002 if (!PN) 2003 return false; 2004 } 2005 2006 if (PN && PN->getParent() != BB) 2007 return false; 2008 2009 // Make sure there are no instructions between the PHI and return, or that the 2010 // return is the first instruction in the block. 2011 if (PN) { 2012 BasicBlock::iterator BI = BB->begin(); 2013 // Skip over debug and the bitcast. 2014 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI); 2015 if (&*BI != RetI) 2016 return false; 2017 } else { 2018 BasicBlock::iterator BI = BB->begin(); 2019 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2020 if (&*BI != RetI) 2021 return false; 2022 } 2023 2024 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2025 /// call. 2026 const Function *F = BB->getParent(); 2027 SmallVector<BasicBlock*, 4> TailCallBBs; 2028 if (PN) { 2029 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2030 // Look through bitcasts. 2031 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2032 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2033 BasicBlock *PredBB = PN->getIncomingBlock(I); 2034 // Make sure the phi value is indeed produced by the tail call. 2035 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2036 TLI->mayBeEmittedAsTailCall(CI) && 2037 attributesPermitTailCall(F, CI, RetI, *TLI)) 2038 TailCallBBs.push_back(PredBB); 2039 } 2040 } else { 2041 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2042 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2043 if (!VisitedBBs.insert(*PI).second) 2044 continue; 2045 2046 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2047 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2048 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2049 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2050 if (RI == RE) 2051 continue; 2052 2053 CallInst *CI = dyn_cast<CallInst>(&*RI); 2054 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2055 attributesPermitTailCall(F, CI, RetI, *TLI)) 2056 TailCallBBs.push_back(*PI); 2057 } 2058 } 2059 2060 bool Changed = false; 2061 for (auto const &TailCallBB : TailCallBBs) { 2062 // Make sure the call instruction is followed by an unconditional branch to 2063 // the return block. 2064 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2065 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2066 continue; 2067 2068 // Duplicate the return into TailCallBB. 2069 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2070 ModifiedDT = Changed = true; 2071 ++NumRetsDup; 2072 } 2073 2074 // If we eliminated all predecessors of the block, delete the block now. 2075 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2076 BB->eraseFromParent(); 2077 2078 return Changed; 2079 } 2080 2081 //===----------------------------------------------------------------------===// 2082 // Memory Optimization 2083 //===----------------------------------------------------------------------===// 2084 2085 namespace { 2086 2087 /// This is an extended version of TargetLowering::AddrMode 2088 /// which holds actual Value*'s for register values. 2089 struct ExtAddrMode : public TargetLowering::AddrMode { 2090 Value *BaseReg = nullptr; 2091 Value *ScaledReg = nullptr; 2092 Value *OriginalValue = nullptr; 2093 bool InBounds = true; 2094 2095 enum FieldName { 2096 NoField = 0x00, 2097 BaseRegField = 0x01, 2098 BaseGVField = 0x02, 2099 BaseOffsField = 0x04, 2100 ScaledRegField = 0x08, 2101 ScaleField = 0x10, 2102 MultipleFields = 0xff 2103 }; 2104 2105 2106 ExtAddrMode() = default; 2107 2108 void print(raw_ostream &OS) const; 2109 void dump() const; 2110 2111 FieldName compare(const ExtAddrMode &other) { 2112 // First check that the types are the same on each field, as differing types 2113 // is something we can't cope with later on. 2114 if (BaseReg && other.BaseReg && 2115 BaseReg->getType() != other.BaseReg->getType()) 2116 return MultipleFields; 2117 if (BaseGV && other.BaseGV && 2118 BaseGV->getType() != other.BaseGV->getType()) 2119 return MultipleFields; 2120 if (ScaledReg && other.ScaledReg && 2121 ScaledReg->getType() != other.ScaledReg->getType()) 2122 return MultipleFields; 2123 2124 // Conservatively reject 'inbounds' mismatches. 2125 if (InBounds != other.InBounds) 2126 return MultipleFields; 2127 2128 // Check each field to see if it differs. 2129 unsigned Result = NoField; 2130 if (BaseReg != other.BaseReg) 2131 Result |= BaseRegField; 2132 if (BaseGV != other.BaseGV) 2133 Result |= BaseGVField; 2134 if (BaseOffs != other.BaseOffs) 2135 Result |= BaseOffsField; 2136 if (ScaledReg != other.ScaledReg) 2137 Result |= ScaledRegField; 2138 // Don't count 0 as being a different scale, because that actually means 2139 // unscaled (which will already be counted by having no ScaledReg). 2140 if (Scale && other.Scale && Scale != other.Scale) 2141 Result |= ScaleField; 2142 2143 if (countPopulation(Result) > 1) 2144 return MultipleFields; 2145 else 2146 return static_cast<FieldName>(Result); 2147 } 2148 2149 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2150 // with no offset. 2151 bool isTrivial() { 2152 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2153 // trivial if at most one of these terms is nonzero, except that BaseGV and 2154 // BaseReg both being zero actually means a null pointer value, which we 2155 // consider to be 'non-zero' here. 2156 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2157 } 2158 2159 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2160 switch (Field) { 2161 default: 2162 return nullptr; 2163 case BaseRegField: 2164 return BaseReg; 2165 case BaseGVField: 2166 return BaseGV; 2167 case ScaledRegField: 2168 return ScaledReg; 2169 case BaseOffsField: 2170 return ConstantInt::get(IntPtrTy, BaseOffs); 2171 } 2172 } 2173 2174 void SetCombinedField(FieldName Field, Value *V, 2175 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2176 switch (Field) { 2177 default: 2178 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2179 break; 2180 case ExtAddrMode::BaseRegField: 2181 BaseReg = V; 2182 break; 2183 case ExtAddrMode::BaseGVField: 2184 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2185 // in the BaseReg field. 2186 assert(BaseReg == nullptr); 2187 BaseReg = V; 2188 BaseGV = nullptr; 2189 break; 2190 case ExtAddrMode::ScaledRegField: 2191 ScaledReg = V; 2192 // If we have a mix of scaled and unscaled addrmodes then we want scale 2193 // to be the scale and not zero. 2194 if (!Scale) 2195 for (const ExtAddrMode &AM : AddrModes) 2196 if (AM.Scale) { 2197 Scale = AM.Scale; 2198 break; 2199 } 2200 break; 2201 case ExtAddrMode::BaseOffsField: 2202 // The offset is no longer a constant, so it goes in ScaledReg with a 2203 // scale of 1. 2204 assert(ScaledReg == nullptr); 2205 ScaledReg = V; 2206 Scale = 1; 2207 BaseOffs = 0; 2208 break; 2209 } 2210 } 2211 }; 2212 2213 } // end anonymous namespace 2214 2215 #ifndef NDEBUG 2216 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2217 AM.print(OS); 2218 return OS; 2219 } 2220 #endif 2221 2222 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2223 void ExtAddrMode::print(raw_ostream &OS) const { 2224 bool NeedPlus = false; 2225 OS << "["; 2226 if (InBounds) 2227 OS << "inbounds "; 2228 if (BaseGV) { 2229 OS << (NeedPlus ? " + " : "") 2230 << "GV:"; 2231 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2232 NeedPlus = true; 2233 } 2234 2235 if (BaseOffs) { 2236 OS << (NeedPlus ? " + " : "") 2237 << BaseOffs; 2238 NeedPlus = true; 2239 } 2240 2241 if (BaseReg) { 2242 OS << (NeedPlus ? " + " : "") 2243 << "Base:"; 2244 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2245 NeedPlus = true; 2246 } 2247 if (Scale) { 2248 OS << (NeedPlus ? " + " : "") 2249 << Scale << "*"; 2250 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2251 } 2252 2253 OS << ']'; 2254 } 2255 2256 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2257 print(dbgs()); 2258 dbgs() << '\n'; 2259 } 2260 #endif 2261 2262 namespace { 2263 2264 /// This class provides transaction based operation on the IR. 2265 /// Every change made through this class is recorded in the internal state and 2266 /// can be undone (rollback) until commit is called. 2267 class TypePromotionTransaction { 2268 /// This represents the common interface of the individual transaction. 2269 /// Each class implements the logic for doing one specific modification on 2270 /// the IR via the TypePromotionTransaction. 2271 class TypePromotionAction { 2272 protected: 2273 /// The Instruction modified. 2274 Instruction *Inst; 2275 2276 public: 2277 /// Constructor of the action. 2278 /// The constructor performs the related action on the IR. 2279 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2280 2281 virtual ~TypePromotionAction() = default; 2282 2283 /// Undo the modification done by this action. 2284 /// When this method is called, the IR must be in the same state as it was 2285 /// before this action was applied. 2286 /// \pre Undoing the action works if and only if the IR is in the exact same 2287 /// state as it was directly after this action was applied. 2288 virtual void undo() = 0; 2289 2290 /// Advocate every change made by this action. 2291 /// When the results on the IR of the action are to be kept, it is important 2292 /// to call this function, otherwise hidden information may be kept forever. 2293 virtual void commit() { 2294 // Nothing to be done, this action is not doing anything. 2295 } 2296 }; 2297 2298 /// Utility to remember the position of an instruction. 2299 class InsertionHandler { 2300 /// Position of an instruction. 2301 /// Either an instruction: 2302 /// - Is the first in a basic block: BB is used. 2303 /// - Has a previous instruction: PrevInst is used. 2304 union { 2305 Instruction *PrevInst; 2306 BasicBlock *BB; 2307 } Point; 2308 2309 /// Remember whether or not the instruction had a previous instruction. 2310 bool HasPrevInstruction; 2311 2312 public: 2313 /// Record the position of \p Inst. 2314 InsertionHandler(Instruction *Inst) { 2315 BasicBlock::iterator It = Inst->getIterator(); 2316 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2317 if (HasPrevInstruction) 2318 Point.PrevInst = &*--It; 2319 else 2320 Point.BB = Inst->getParent(); 2321 } 2322 2323 /// Insert \p Inst at the recorded position. 2324 void insert(Instruction *Inst) { 2325 if (HasPrevInstruction) { 2326 if (Inst->getParent()) 2327 Inst->removeFromParent(); 2328 Inst->insertAfter(Point.PrevInst); 2329 } else { 2330 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2331 if (Inst->getParent()) 2332 Inst->moveBefore(Position); 2333 else 2334 Inst->insertBefore(Position); 2335 } 2336 } 2337 }; 2338 2339 /// Move an instruction before another. 2340 class InstructionMoveBefore : public TypePromotionAction { 2341 /// Original position of the instruction. 2342 InsertionHandler Position; 2343 2344 public: 2345 /// Move \p Inst before \p Before. 2346 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2347 : TypePromotionAction(Inst), Position(Inst) { 2348 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2349 << "\n"); 2350 Inst->moveBefore(Before); 2351 } 2352 2353 /// Move the instruction back to its original position. 2354 void undo() override { 2355 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2356 Position.insert(Inst); 2357 } 2358 }; 2359 2360 /// Set the operand of an instruction with a new value. 2361 class OperandSetter : public TypePromotionAction { 2362 /// Original operand of the instruction. 2363 Value *Origin; 2364 2365 /// Index of the modified instruction. 2366 unsigned Idx; 2367 2368 public: 2369 /// Set \p Idx operand of \p Inst with \p NewVal. 2370 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2371 : TypePromotionAction(Inst), Idx(Idx) { 2372 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2373 << "for:" << *Inst << "\n" 2374 << "with:" << *NewVal << "\n"); 2375 Origin = Inst->getOperand(Idx); 2376 Inst->setOperand(Idx, NewVal); 2377 } 2378 2379 /// Restore the original value of the instruction. 2380 void undo() override { 2381 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2382 << "for: " << *Inst << "\n" 2383 << "with: " << *Origin << "\n"); 2384 Inst->setOperand(Idx, Origin); 2385 } 2386 }; 2387 2388 /// Hide the operands of an instruction. 2389 /// Do as if this instruction was not using any of its operands. 2390 class OperandsHider : public TypePromotionAction { 2391 /// The list of original operands. 2392 SmallVector<Value *, 4> OriginalValues; 2393 2394 public: 2395 /// Remove \p Inst from the uses of the operands of \p Inst. 2396 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2397 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2398 unsigned NumOpnds = Inst->getNumOperands(); 2399 OriginalValues.reserve(NumOpnds); 2400 for (unsigned It = 0; It < NumOpnds; ++It) { 2401 // Save the current operand. 2402 Value *Val = Inst->getOperand(It); 2403 OriginalValues.push_back(Val); 2404 // Set a dummy one. 2405 // We could use OperandSetter here, but that would imply an overhead 2406 // that we are not willing to pay. 2407 Inst->setOperand(It, UndefValue::get(Val->getType())); 2408 } 2409 } 2410 2411 /// Restore the original list of uses. 2412 void undo() override { 2413 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2414 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2415 Inst->setOperand(It, OriginalValues[It]); 2416 } 2417 }; 2418 2419 /// Build a truncate instruction. 2420 class TruncBuilder : public TypePromotionAction { 2421 Value *Val; 2422 2423 public: 2424 /// Build a truncate instruction of \p Opnd producing a \p Ty 2425 /// result. 2426 /// trunc Opnd to Ty. 2427 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2428 IRBuilder<> Builder(Opnd); 2429 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2430 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2431 } 2432 2433 /// Get the built value. 2434 Value *getBuiltValue() { return Val; } 2435 2436 /// Remove the built instruction. 2437 void undo() override { 2438 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2439 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2440 IVal->eraseFromParent(); 2441 } 2442 }; 2443 2444 /// Build a sign extension instruction. 2445 class SExtBuilder : public TypePromotionAction { 2446 Value *Val; 2447 2448 public: 2449 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2450 /// result. 2451 /// sext Opnd to Ty. 2452 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2453 : TypePromotionAction(InsertPt) { 2454 IRBuilder<> Builder(InsertPt); 2455 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2456 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2457 } 2458 2459 /// Get the built value. 2460 Value *getBuiltValue() { return Val; } 2461 2462 /// Remove the built instruction. 2463 void undo() override { 2464 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2465 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2466 IVal->eraseFromParent(); 2467 } 2468 }; 2469 2470 /// Build a zero extension instruction. 2471 class ZExtBuilder : public TypePromotionAction { 2472 Value *Val; 2473 2474 public: 2475 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2476 /// result. 2477 /// zext Opnd to Ty. 2478 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2479 : TypePromotionAction(InsertPt) { 2480 IRBuilder<> Builder(InsertPt); 2481 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2482 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2483 } 2484 2485 /// Get the built value. 2486 Value *getBuiltValue() { return Val; } 2487 2488 /// Remove the built instruction. 2489 void undo() override { 2490 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2491 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2492 IVal->eraseFromParent(); 2493 } 2494 }; 2495 2496 /// Mutate an instruction to another type. 2497 class TypeMutator : public TypePromotionAction { 2498 /// Record the original type. 2499 Type *OrigTy; 2500 2501 public: 2502 /// Mutate the type of \p Inst into \p NewTy. 2503 TypeMutator(Instruction *Inst, Type *NewTy) 2504 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2505 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2506 << "\n"); 2507 Inst->mutateType(NewTy); 2508 } 2509 2510 /// Mutate the instruction back to its original type. 2511 void undo() override { 2512 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2513 << "\n"); 2514 Inst->mutateType(OrigTy); 2515 } 2516 }; 2517 2518 /// Replace the uses of an instruction by another instruction. 2519 class UsesReplacer : public TypePromotionAction { 2520 /// Helper structure to keep track of the replaced uses. 2521 struct InstructionAndIdx { 2522 /// The instruction using the instruction. 2523 Instruction *Inst; 2524 2525 /// The index where this instruction is used for Inst. 2526 unsigned Idx; 2527 2528 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2529 : Inst(Inst), Idx(Idx) {} 2530 }; 2531 2532 /// Keep track of the original uses (pair Instruction, Index). 2533 SmallVector<InstructionAndIdx, 4> OriginalUses; 2534 /// Keep track of the debug users. 2535 SmallVector<DbgValueInst *, 1> DbgValues; 2536 2537 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2538 2539 public: 2540 /// Replace all the use of \p Inst by \p New. 2541 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2542 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2543 << "\n"); 2544 // Record the original uses. 2545 for (Use &U : Inst->uses()) { 2546 Instruction *UserI = cast<Instruction>(U.getUser()); 2547 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2548 } 2549 // Record the debug uses separately. They are not in the instruction's 2550 // use list, but they are replaced by RAUW. 2551 findDbgValues(DbgValues, Inst); 2552 2553 // Now, we can replace the uses. 2554 Inst->replaceAllUsesWith(New); 2555 } 2556 2557 /// Reassign the original uses of Inst to Inst. 2558 void undo() override { 2559 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2560 for (use_iterator UseIt = OriginalUses.begin(), 2561 EndIt = OriginalUses.end(); 2562 UseIt != EndIt; ++UseIt) { 2563 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2564 } 2565 // RAUW has replaced all original uses with references to the new value, 2566 // including the debug uses. Since we are undoing the replacements, 2567 // the original debug uses must also be reinstated to maintain the 2568 // correctness and utility of debug value instructions. 2569 for (auto *DVI: DbgValues) { 2570 LLVMContext &Ctx = Inst->getType()->getContext(); 2571 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); 2572 DVI->setOperand(0, MV); 2573 } 2574 } 2575 }; 2576 2577 /// Remove an instruction from the IR. 2578 class InstructionRemover : public TypePromotionAction { 2579 /// Original position of the instruction. 2580 InsertionHandler Inserter; 2581 2582 /// Helper structure to hide all the link to the instruction. In other 2583 /// words, this helps to do as if the instruction was removed. 2584 OperandsHider Hider; 2585 2586 /// Keep track of the uses replaced, if any. 2587 UsesReplacer *Replacer = nullptr; 2588 2589 /// Keep track of instructions removed. 2590 SetOfInstrs &RemovedInsts; 2591 2592 public: 2593 /// Remove all reference of \p Inst and optionally replace all its 2594 /// uses with New. 2595 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2596 /// \pre If !Inst->use_empty(), then New != nullptr 2597 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2598 Value *New = nullptr) 2599 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2600 RemovedInsts(RemovedInsts) { 2601 if (New) 2602 Replacer = new UsesReplacer(Inst, New); 2603 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2604 RemovedInsts.insert(Inst); 2605 /// The instructions removed here will be freed after completing 2606 /// optimizeBlock() for all blocks as we need to keep track of the 2607 /// removed instructions during promotion. 2608 Inst->removeFromParent(); 2609 } 2610 2611 ~InstructionRemover() override { delete Replacer; } 2612 2613 /// Resurrect the instruction and reassign it to the proper uses if 2614 /// new value was provided when build this action. 2615 void undo() override { 2616 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2617 Inserter.insert(Inst); 2618 if (Replacer) 2619 Replacer->undo(); 2620 Hider.undo(); 2621 RemovedInsts.erase(Inst); 2622 } 2623 }; 2624 2625 public: 2626 /// Restoration point. 2627 /// The restoration point is a pointer to an action instead of an iterator 2628 /// because the iterator may be invalidated but not the pointer. 2629 using ConstRestorationPt = const TypePromotionAction *; 2630 2631 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2632 : RemovedInsts(RemovedInsts) {} 2633 2634 /// Advocate every changes made in that transaction. 2635 void commit(); 2636 2637 /// Undo all the changes made after the given point. 2638 void rollback(ConstRestorationPt Point); 2639 2640 /// Get the current restoration point. 2641 ConstRestorationPt getRestorationPoint() const; 2642 2643 /// \name API for IR modification with state keeping to support rollback. 2644 /// @{ 2645 /// Same as Instruction::setOperand. 2646 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2647 2648 /// Same as Instruction::eraseFromParent. 2649 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2650 2651 /// Same as Value::replaceAllUsesWith. 2652 void replaceAllUsesWith(Instruction *Inst, Value *New); 2653 2654 /// Same as Value::mutateType. 2655 void mutateType(Instruction *Inst, Type *NewTy); 2656 2657 /// Same as IRBuilder::createTrunc. 2658 Value *createTrunc(Instruction *Opnd, Type *Ty); 2659 2660 /// Same as IRBuilder::createSExt. 2661 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2662 2663 /// Same as IRBuilder::createZExt. 2664 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2665 2666 /// Same as Instruction::moveBefore. 2667 void moveBefore(Instruction *Inst, Instruction *Before); 2668 /// @} 2669 2670 private: 2671 /// The ordered list of actions made so far. 2672 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2673 2674 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2675 2676 SetOfInstrs &RemovedInsts; 2677 }; 2678 2679 } // end anonymous namespace 2680 2681 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2682 Value *NewVal) { 2683 Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>( 2684 Inst, Idx, NewVal)); 2685 } 2686 2687 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2688 Value *NewVal) { 2689 Actions.push_back( 2690 llvm::make_unique<TypePromotionTransaction::InstructionRemover>( 2691 Inst, RemovedInsts, NewVal)); 2692 } 2693 2694 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2695 Value *New) { 2696 Actions.push_back( 2697 llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2698 } 2699 2700 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2701 Actions.push_back( 2702 llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2703 } 2704 2705 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2706 Type *Ty) { 2707 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2708 Value *Val = Ptr->getBuiltValue(); 2709 Actions.push_back(std::move(Ptr)); 2710 return Val; 2711 } 2712 2713 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2714 Value *Opnd, Type *Ty) { 2715 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2716 Value *Val = Ptr->getBuiltValue(); 2717 Actions.push_back(std::move(Ptr)); 2718 return Val; 2719 } 2720 2721 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2722 Value *Opnd, Type *Ty) { 2723 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2724 Value *Val = Ptr->getBuiltValue(); 2725 Actions.push_back(std::move(Ptr)); 2726 return Val; 2727 } 2728 2729 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2730 Instruction *Before) { 2731 Actions.push_back( 2732 llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2733 Inst, Before)); 2734 } 2735 2736 TypePromotionTransaction::ConstRestorationPt 2737 TypePromotionTransaction::getRestorationPoint() const { 2738 return !Actions.empty() ? Actions.back().get() : nullptr; 2739 } 2740 2741 void TypePromotionTransaction::commit() { 2742 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2743 ++It) 2744 (*It)->commit(); 2745 Actions.clear(); 2746 } 2747 2748 void TypePromotionTransaction::rollback( 2749 TypePromotionTransaction::ConstRestorationPt Point) { 2750 while (!Actions.empty() && Point != Actions.back().get()) { 2751 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2752 Curr->undo(); 2753 } 2754 } 2755 2756 namespace { 2757 2758 /// A helper class for matching addressing modes. 2759 /// 2760 /// This encapsulates the logic for matching the target-legal addressing modes. 2761 class AddressingModeMatcher { 2762 SmallVectorImpl<Instruction*> &AddrModeInsts; 2763 const TargetLowering &TLI; 2764 const TargetRegisterInfo &TRI; 2765 const DataLayout &DL; 2766 2767 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2768 /// the memory instruction that we're computing this address for. 2769 Type *AccessTy; 2770 unsigned AddrSpace; 2771 Instruction *MemoryInst; 2772 2773 /// This is the addressing mode that we're building up. This is 2774 /// part of the return value of this addressing mode matching stuff. 2775 ExtAddrMode &AddrMode; 2776 2777 /// The instructions inserted by other CodeGenPrepare optimizations. 2778 const SetOfInstrs &InsertedInsts; 2779 2780 /// A map from the instructions to their type before promotion. 2781 InstrToOrigTy &PromotedInsts; 2782 2783 /// The ongoing transaction where every action should be registered. 2784 TypePromotionTransaction &TPT; 2785 2786 // A GEP which has too large offset to be folded into the addressing mode. 2787 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 2788 2789 /// This is set to true when we should not do profitability checks. 2790 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2791 bool IgnoreProfitability; 2792 2793 AddressingModeMatcher( 2794 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 2795 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 2796 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 2797 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 2798 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) 2799 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2800 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2801 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2802 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) { 2803 IgnoreProfitability = false; 2804 } 2805 2806 public: 2807 /// Find the maximal addressing mode that a load/store of V can fold, 2808 /// give an access type of AccessTy. This returns a list of involved 2809 /// instructions in AddrModeInsts. 2810 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2811 /// optimizations. 2812 /// \p PromotedInsts maps the instructions to their type before promotion. 2813 /// \p The ongoing transaction where every action should be registered. 2814 static ExtAddrMode 2815 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 2816 SmallVectorImpl<Instruction *> &AddrModeInsts, 2817 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 2818 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 2819 TypePromotionTransaction &TPT, 2820 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) { 2821 ExtAddrMode Result; 2822 2823 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 2824 MemoryInst, Result, InsertedInsts, 2825 PromotedInsts, TPT, LargeOffsetGEP) 2826 .matchAddr(V, 0); 2827 (void)Success; assert(Success && "Couldn't select *anything*?"); 2828 return Result; 2829 } 2830 2831 private: 2832 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2833 bool matchAddr(Value *Addr, unsigned Depth); 2834 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 2835 bool *MovedAway = nullptr); 2836 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2837 ExtAddrMode &AMBefore, 2838 ExtAddrMode &AMAfter); 2839 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2840 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2841 Value *PromotedOperand) const; 2842 }; 2843 2844 class PhiNodeSet; 2845 2846 /// An iterator for PhiNodeSet. 2847 class PhiNodeSetIterator { 2848 PhiNodeSet * const Set; 2849 size_t CurrentIndex = 0; 2850 2851 public: 2852 /// The constructor. Start should point to either a valid element, or be equal 2853 /// to the size of the underlying SmallVector of the PhiNodeSet. 2854 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 2855 PHINode * operator*() const; 2856 PhiNodeSetIterator& operator++(); 2857 bool operator==(const PhiNodeSetIterator &RHS) const; 2858 bool operator!=(const PhiNodeSetIterator &RHS) const; 2859 }; 2860 2861 /// Keeps a set of PHINodes. 2862 /// 2863 /// This is a minimal set implementation for a specific use case: 2864 /// It is very fast when there are very few elements, but also provides good 2865 /// performance when there are many. It is similar to SmallPtrSet, but also 2866 /// provides iteration by insertion order, which is deterministic and stable 2867 /// across runs. It is also similar to SmallSetVector, but provides removing 2868 /// elements in O(1) time. This is achieved by not actually removing the element 2869 /// from the underlying vector, so comes at the cost of using more memory, but 2870 /// that is fine, since PhiNodeSets are used as short lived objects. 2871 class PhiNodeSet { 2872 friend class PhiNodeSetIterator; 2873 2874 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 2875 using iterator = PhiNodeSetIterator; 2876 2877 /// Keeps the elements in the order of their insertion in the underlying 2878 /// vector. To achieve constant time removal, it never deletes any element. 2879 SmallVector<PHINode *, 32> NodeList; 2880 2881 /// Keeps the elements in the underlying set implementation. This (and not the 2882 /// NodeList defined above) is the source of truth on whether an element 2883 /// is actually in the collection. 2884 MapType NodeMap; 2885 2886 /// Points to the first valid (not deleted) element when the set is not empty 2887 /// and the value is not zero. Equals to the size of the underlying vector 2888 /// when the set is empty. When the value is 0, as in the beginning, the 2889 /// first element may or may not be valid. 2890 size_t FirstValidElement = 0; 2891 2892 public: 2893 /// Inserts a new element to the collection. 2894 /// \returns true if the element is actually added, i.e. was not in the 2895 /// collection before the operation. 2896 bool insert(PHINode *Ptr) { 2897 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 2898 NodeList.push_back(Ptr); 2899 return true; 2900 } 2901 return false; 2902 } 2903 2904 /// Removes the element from the collection. 2905 /// \returns whether the element is actually removed, i.e. was in the 2906 /// collection before the operation. 2907 bool erase(PHINode *Ptr) { 2908 auto it = NodeMap.find(Ptr); 2909 if (it != NodeMap.end()) { 2910 NodeMap.erase(Ptr); 2911 SkipRemovedElements(FirstValidElement); 2912 return true; 2913 } 2914 return false; 2915 } 2916 2917 /// Removes all elements and clears the collection. 2918 void clear() { 2919 NodeMap.clear(); 2920 NodeList.clear(); 2921 FirstValidElement = 0; 2922 } 2923 2924 /// \returns an iterator that will iterate the elements in the order of 2925 /// insertion. 2926 iterator begin() { 2927 if (FirstValidElement == 0) 2928 SkipRemovedElements(FirstValidElement); 2929 return PhiNodeSetIterator(this, FirstValidElement); 2930 } 2931 2932 /// \returns an iterator that points to the end of the collection. 2933 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 2934 2935 /// Returns the number of elements in the collection. 2936 size_t size() const { 2937 return NodeMap.size(); 2938 } 2939 2940 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 2941 size_t count(PHINode *Ptr) const { 2942 return NodeMap.count(Ptr); 2943 } 2944 2945 private: 2946 /// Updates the CurrentIndex so that it will point to a valid element. 2947 /// 2948 /// If the element of NodeList at CurrentIndex is valid, it does not 2949 /// change it. If there are no more valid elements, it updates CurrentIndex 2950 /// to point to the end of the NodeList. 2951 void SkipRemovedElements(size_t &CurrentIndex) { 2952 while (CurrentIndex < NodeList.size()) { 2953 auto it = NodeMap.find(NodeList[CurrentIndex]); 2954 // If the element has been deleted and added again later, NodeMap will 2955 // point to a different index, so CurrentIndex will still be invalid. 2956 if (it != NodeMap.end() && it->second == CurrentIndex) 2957 break; 2958 ++CurrentIndex; 2959 } 2960 } 2961 }; 2962 2963 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 2964 : Set(Set), CurrentIndex(Start) {} 2965 2966 PHINode * PhiNodeSetIterator::operator*() const { 2967 assert(CurrentIndex < Set->NodeList.size() && 2968 "PhiNodeSet access out of range"); 2969 return Set->NodeList[CurrentIndex]; 2970 } 2971 2972 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 2973 assert(CurrentIndex < Set->NodeList.size() && 2974 "PhiNodeSet access out of range"); 2975 ++CurrentIndex; 2976 Set->SkipRemovedElements(CurrentIndex); 2977 return *this; 2978 } 2979 2980 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 2981 return CurrentIndex == RHS.CurrentIndex; 2982 } 2983 2984 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 2985 return !((*this) == RHS); 2986 } 2987 2988 /// Keep track of simplification of Phi nodes. 2989 /// Accept the set of all phi nodes and erase phi node from this set 2990 /// if it is simplified. 2991 class SimplificationTracker { 2992 DenseMap<Value *, Value *> Storage; 2993 const SimplifyQuery &SQ; 2994 // Tracks newly created Phi nodes. The elements are iterated by insertion 2995 // order. 2996 PhiNodeSet AllPhiNodes; 2997 // Tracks newly created Select nodes. 2998 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 2999 3000 public: 3001 SimplificationTracker(const SimplifyQuery &sq) 3002 : SQ(sq) {} 3003 3004 Value *Get(Value *V) { 3005 do { 3006 auto SV = Storage.find(V); 3007 if (SV == Storage.end()) 3008 return V; 3009 V = SV->second; 3010 } while (true); 3011 } 3012 3013 Value *Simplify(Value *Val) { 3014 SmallVector<Value *, 32> WorkList; 3015 SmallPtrSet<Value *, 32> Visited; 3016 WorkList.push_back(Val); 3017 while (!WorkList.empty()) { 3018 auto P = WorkList.pop_back_val(); 3019 if (!Visited.insert(P).second) 3020 continue; 3021 if (auto *PI = dyn_cast<Instruction>(P)) 3022 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3023 for (auto *U : PI->users()) 3024 WorkList.push_back(cast<Value>(U)); 3025 Put(PI, V); 3026 PI->replaceAllUsesWith(V); 3027 if (auto *PHI = dyn_cast<PHINode>(PI)) 3028 AllPhiNodes.erase(PHI); 3029 if (auto *Select = dyn_cast<SelectInst>(PI)) 3030 AllSelectNodes.erase(Select); 3031 PI->eraseFromParent(); 3032 } 3033 } 3034 return Get(Val); 3035 } 3036 3037 void Put(Value *From, Value *To) { 3038 Storage.insert({ From, To }); 3039 } 3040 3041 void ReplacePhi(PHINode *From, PHINode *To) { 3042 Value* OldReplacement = Get(From); 3043 while (OldReplacement != From) { 3044 From = To; 3045 To = dyn_cast<PHINode>(OldReplacement); 3046 OldReplacement = Get(From); 3047 } 3048 assert(Get(To) == To && "Replacement PHI node is already replaced."); 3049 Put(From, To); 3050 From->replaceAllUsesWith(To); 3051 AllPhiNodes.erase(From); 3052 From->eraseFromParent(); 3053 } 3054 3055 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3056 3057 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3058 3059 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3060 3061 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3062 3063 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3064 3065 void destroyNewNodes(Type *CommonType) { 3066 // For safe erasing, replace the uses with dummy value first. 3067 auto Dummy = UndefValue::get(CommonType); 3068 for (auto I : AllPhiNodes) { 3069 I->replaceAllUsesWith(Dummy); 3070 I->eraseFromParent(); 3071 } 3072 AllPhiNodes.clear(); 3073 for (auto I : AllSelectNodes) { 3074 I->replaceAllUsesWith(Dummy); 3075 I->eraseFromParent(); 3076 } 3077 AllSelectNodes.clear(); 3078 } 3079 }; 3080 3081 /// A helper class for combining addressing modes. 3082 class AddressingModeCombiner { 3083 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3084 typedef std::pair<PHINode *, PHINode *> PHIPair; 3085 3086 private: 3087 /// The addressing modes we've collected. 3088 SmallVector<ExtAddrMode, 16> AddrModes; 3089 3090 /// The field in which the AddrModes differ, when we have more than one. 3091 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3092 3093 /// Are the AddrModes that we have all just equal to their original values? 3094 bool AllAddrModesTrivial = true; 3095 3096 /// Common Type for all different fields in addressing modes. 3097 Type *CommonType; 3098 3099 /// SimplifyQuery for simplifyInstruction utility. 3100 const SimplifyQuery &SQ; 3101 3102 /// Original Address. 3103 Value *Original; 3104 3105 public: 3106 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3107 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 3108 3109 /// Get the combined AddrMode 3110 const ExtAddrMode &getAddrMode() const { 3111 return AddrModes[0]; 3112 } 3113 3114 /// Add a new AddrMode if it's compatible with the AddrModes we already 3115 /// have. 3116 /// \return True iff we succeeded in doing so. 3117 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3118 // Take note of if we have any non-trivial AddrModes, as we need to detect 3119 // when all AddrModes are trivial as then we would introduce a phi or select 3120 // which just duplicates what's already there. 3121 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3122 3123 // If this is the first addrmode then everything is fine. 3124 if (AddrModes.empty()) { 3125 AddrModes.emplace_back(NewAddrMode); 3126 return true; 3127 } 3128 3129 // Figure out how different this is from the other address modes, which we 3130 // can do just by comparing against the first one given that we only care 3131 // about the cumulative difference. 3132 ExtAddrMode::FieldName ThisDifferentField = 3133 AddrModes[0].compare(NewAddrMode); 3134 if (DifferentField == ExtAddrMode::NoField) 3135 DifferentField = ThisDifferentField; 3136 else if (DifferentField != ThisDifferentField) 3137 DifferentField = ExtAddrMode::MultipleFields; 3138 3139 // If NewAddrMode differs in more than one dimension we cannot handle it. 3140 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3141 3142 // If Scale Field is different then we reject. 3143 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3144 3145 // We also must reject the case when base offset is different and 3146 // scale reg is not null, we cannot handle this case due to merge of 3147 // different offsets will be used as ScaleReg. 3148 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3149 !NewAddrMode.ScaledReg); 3150 3151 // We also must reject the case when GV is different and BaseReg installed 3152 // due to we want to use base reg as a merge of GV values. 3153 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3154 !NewAddrMode.HasBaseReg); 3155 3156 // Even if NewAddMode is the same we still need to collect it due to 3157 // original value is different. And later we will need all original values 3158 // as anchors during finding the common Phi node. 3159 if (CanHandle) 3160 AddrModes.emplace_back(NewAddrMode); 3161 else 3162 AddrModes.clear(); 3163 3164 return CanHandle; 3165 } 3166 3167 /// Combine the addressing modes we've collected into a single 3168 /// addressing mode. 3169 /// \return True iff we successfully combined them or we only had one so 3170 /// didn't need to combine them anyway. 3171 bool combineAddrModes() { 3172 // If we have no AddrModes then they can't be combined. 3173 if (AddrModes.size() == 0) 3174 return false; 3175 3176 // A single AddrMode can trivially be combined. 3177 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3178 return true; 3179 3180 // If the AddrModes we collected are all just equal to the value they are 3181 // derived from then combining them wouldn't do anything useful. 3182 if (AllAddrModesTrivial) 3183 return false; 3184 3185 if (!addrModeCombiningAllowed()) 3186 return false; 3187 3188 // Build a map between <original value, basic block where we saw it> to 3189 // value of base register. 3190 // Bail out if there is no common type. 3191 FoldAddrToValueMapping Map; 3192 if (!initializeMap(Map)) 3193 return false; 3194 3195 Value *CommonValue = findCommon(Map); 3196 if (CommonValue) 3197 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3198 return CommonValue != nullptr; 3199 } 3200 3201 private: 3202 /// Initialize Map with anchor values. For address seen 3203 /// we set the value of different field saw in this address. 3204 /// At the same time we find a common type for different field we will 3205 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3206 /// Return false if there is no common type found. 3207 bool initializeMap(FoldAddrToValueMapping &Map) { 3208 // Keep track of keys where the value is null. We will need to replace it 3209 // with constant null when we know the common type. 3210 SmallVector<Value *, 2> NullValue; 3211 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3212 for (auto &AM : AddrModes) { 3213 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3214 if (DV) { 3215 auto *Type = DV->getType(); 3216 if (CommonType && CommonType != Type) 3217 return false; 3218 CommonType = Type; 3219 Map[AM.OriginalValue] = DV; 3220 } else { 3221 NullValue.push_back(AM.OriginalValue); 3222 } 3223 } 3224 assert(CommonType && "At least one non-null value must be!"); 3225 for (auto *V : NullValue) 3226 Map[V] = Constant::getNullValue(CommonType); 3227 return true; 3228 } 3229 3230 /// We have mapping between value A and other value B where B was a field in 3231 /// addressing mode represented by A. Also we have an original value C 3232 /// representing an address we start with. Traversing from C through phi and 3233 /// selects we ended up with A's in a map. This utility function tries to find 3234 /// a value V which is a field in addressing mode C and traversing through phi 3235 /// nodes and selects we will end up in corresponded values B in a map. 3236 /// The utility will create a new Phi/Selects if needed. 3237 // The simple example looks as follows: 3238 // BB1: 3239 // p1 = b1 + 40 3240 // br cond BB2, BB3 3241 // BB2: 3242 // p2 = b2 + 40 3243 // br BB3 3244 // BB3: 3245 // p = phi [p1, BB1], [p2, BB2] 3246 // v = load p 3247 // Map is 3248 // p1 -> b1 3249 // p2 -> b2 3250 // Request is 3251 // p -> ? 3252 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3253 Value *findCommon(FoldAddrToValueMapping &Map) { 3254 // Tracks the simplification of newly created phi nodes. The reason we use 3255 // this mapping is because we will add new created Phi nodes in AddrToBase. 3256 // Simplification of Phi nodes is recursive, so some Phi node may 3257 // be simplified after we added it to AddrToBase. In reality this 3258 // simplification is possible only if original phi/selects were not 3259 // simplified yet. 3260 // Using this mapping we can find the current value in AddrToBase. 3261 SimplificationTracker ST(SQ); 3262 3263 // First step, DFS to create PHI nodes for all intermediate blocks. 3264 // Also fill traverse order for the second step. 3265 SmallVector<Value *, 32> TraverseOrder; 3266 InsertPlaceholders(Map, TraverseOrder, ST); 3267 3268 // Second Step, fill new nodes by merged values and simplify if possible. 3269 FillPlaceholders(Map, TraverseOrder, ST); 3270 3271 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3272 ST.destroyNewNodes(CommonType); 3273 return nullptr; 3274 } 3275 3276 // Now we'd like to match New Phi nodes to existed ones. 3277 unsigned PhiNotMatchedCount = 0; 3278 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3279 ST.destroyNewNodes(CommonType); 3280 return nullptr; 3281 } 3282 3283 auto *Result = ST.Get(Map.find(Original)->second); 3284 if (Result) { 3285 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3286 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3287 } 3288 return Result; 3289 } 3290 3291 /// Try to match PHI node to Candidate. 3292 /// Matcher tracks the matched Phi nodes. 3293 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3294 SmallSetVector<PHIPair, 8> &Matcher, 3295 PhiNodeSet &PhiNodesToMatch) { 3296 SmallVector<PHIPair, 8> WorkList; 3297 Matcher.insert({ PHI, Candidate }); 3298 SmallSet<PHINode *, 8> MatchedPHIs; 3299 MatchedPHIs.insert(PHI); 3300 WorkList.push_back({ PHI, Candidate }); 3301 SmallSet<PHIPair, 8> Visited; 3302 while (!WorkList.empty()) { 3303 auto Item = WorkList.pop_back_val(); 3304 if (!Visited.insert(Item).second) 3305 continue; 3306 // We iterate over all incoming values to Phi to compare them. 3307 // If values are different and both of them Phi and the first one is a 3308 // Phi we added (subject to match) and both of them is in the same basic 3309 // block then we can match our pair if values match. So we state that 3310 // these values match and add it to work list to verify that. 3311 for (auto B : Item.first->blocks()) { 3312 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3313 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3314 if (FirstValue == SecondValue) 3315 continue; 3316 3317 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3318 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3319 3320 // One of them is not Phi or 3321 // The first one is not Phi node from the set we'd like to match or 3322 // Phi nodes from different basic blocks then 3323 // we will not be able to match. 3324 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3325 FirstPhi->getParent() != SecondPhi->getParent()) 3326 return false; 3327 3328 // If we already matched them then continue. 3329 if (Matcher.count({ FirstPhi, SecondPhi })) 3330 continue; 3331 // So the values are different and does not match. So we need them to 3332 // match. (But we register no more than one match per PHI node, so that 3333 // we won't later try to replace them twice.) 3334 if (!MatchedPHIs.insert(FirstPhi).second) 3335 Matcher.insert({ FirstPhi, SecondPhi }); 3336 // But me must check it. 3337 WorkList.push_back({ FirstPhi, SecondPhi }); 3338 } 3339 } 3340 return true; 3341 } 3342 3343 /// For the given set of PHI nodes (in the SimplificationTracker) try 3344 /// to find their equivalents. 3345 /// Returns false if this matching fails and creation of new Phi is disabled. 3346 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3347 unsigned &PhiNotMatchedCount) { 3348 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3349 // order, so the replacements (ReplacePhi) are also done in a deterministic 3350 // order. 3351 SmallSetVector<PHIPair, 8> Matched; 3352 SmallPtrSet<PHINode *, 8> WillNotMatch; 3353 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3354 while (PhiNodesToMatch.size()) { 3355 PHINode *PHI = *PhiNodesToMatch.begin(); 3356 3357 // Add us, if no Phi nodes in the basic block we do not match. 3358 WillNotMatch.clear(); 3359 WillNotMatch.insert(PHI); 3360 3361 // Traverse all Phis until we found equivalent or fail to do that. 3362 bool IsMatched = false; 3363 for (auto &P : PHI->getParent()->phis()) { 3364 if (&P == PHI) 3365 continue; 3366 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3367 break; 3368 // If it does not match, collect all Phi nodes from matcher. 3369 // if we end up with no match, them all these Phi nodes will not match 3370 // later. 3371 for (auto M : Matched) 3372 WillNotMatch.insert(M.first); 3373 Matched.clear(); 3374 } 3375 if (IsMatched) { 3376 // Replace all matched values and erase them. 3377 for (auto MV : Matched) 3378 ST.ReplacePhi(MV.first, MV.second); 3379 Matched.clear(); 3380 continue; 3381 } 3382 // If we are not allowed to create new nodes then bail out. 3383 if (!AllowNewPhiNodes) 3384 return false; 3385 // Just remove all seen values in matcher. They will not match anything. 3386 PhiNotMatchedCount += WillNotMatch.size(); 3387 for (auto *P : WillNotMatch) 3388 PhiNodesToMatch.erase(P); 3389 } 3390 return true; 3391 } 3392 /// Fill the placeholders with values from predecessors and simplify them. 3393 void FillPlaceholders(FoldAddrToValueMapping &Map, 3394 SmallVectorImpl<Value *> &TraverseOrder, 3395 SimplificationTracker &ST) { 3396 while (!TraverseOrder.empty()) { 3397 Value *Current = TraverseOrder.pop_back_val(); 3398 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3399 Value *V = Map[Current]; 3400 3401 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3402 // CurrentValue also must be Select. 3403 auto *CurrentSelect = cast<SelectInst>(Current); 3404 auto *TrueValue = CurrentSelect->getTrueValue(); 3405 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3406 Select->setTrueValue(ST.Get(Map[TrueValue])); 3407 auto *FalseValue = CurrentSelect->getFalseValue(); 3408 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3409 Select->setFalseValue(ST.Get(Map[FalseValue])); 3410 } else { 3411 // Must be a Phi node then. 3412 PHINode *PHI = cast<PHINode>(V); 3413 auto *CurrentPhi = dyn_cast<PHINode>(Current); 3414 // Fill the Phi node with values from predecessors. 3415 for (auto B : predecessors(PHI->getParent())) { 3416 Value *PV = CurrentPhi->getIncomingValueForBlock(B); 3417 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3418 PHI->addIncoming(ST.Get(Map[PV]), B); 3419 } 3420 } 3421 Map[Current] = ST.Simplify(V); 3422 } 3423 } 3424 3425 /// Starting from original value recursively iterates over def-use chain up to 3426 /// known ending values represented in a map. For each traversed phi/select 3427 /// inserts a placeholder Phi or Select. 3428 /// Reports all new created Phi/Select nodes by adding them to set. 3429 /// Also reports and order in what values have been traversed. 3430 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3431 SmallVectorImpl<Value *> &TraverseOrder, 3432 SimplificationTracker &ST) { 3433 SmallVector<Value *, 32> Worklist; 3434 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3435 "Address must be a Phi or Select node"); 3436 auto *Dummy = UndefValue::get(CommonType); 3437 Worklist.push_back(Original); 3438 while (!Worklist.empty()) { 3439 Value *Current = Worklist.pop_back_val(); 3440 // if it is already visited or it is an ending value then skip it. 3441 if (Map.find(Current) != Map.end()) 3442 continue; 3443 TraverseOrder.push_back(Current); 3444 3445 // CurrentValue must be a Phi node or select. All others must be covered 3446 // by anchors. 3447 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3448 // Is it OK to get metadata from OrigSelect?! 3449 // Create a Select placeholder with dummy value. 3450 SelectInst *Select = SelectInst::Create( 3451 CurrentSelect->getCondition(), Dummy, Dummy, 3452 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3453 Map[Current] = Select; 3454 ST.insertNewSelect(Select); 3455 // We are interested in True and False values. 3456 Worklist.push_back(CurrentSelect->getTrueValue()); 3457 Worklist.push_back(CurrentSelect->getFalseValue()); 3458 } else { 3459 // It must be a Phi node then. 3460 PHINode *CurrentPhi = cast<PHINode>(Current); 3461 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3462 PHINode *PHI = 3463 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3464 Map[Current] = PHI; 3465 ST.insertNewPhi(PHI); 3466 for (Value *P : CurrentPhi->incoming_values()) 3467 Worklist.push_back(P); 3468 } 3469 } 3470 } 3471 3472 bool addrModeCombiningAllowed() { 3473 if (DisableComplexAddrModes) 3474 return false; 3475 switch (DifferentField) { 3476 default: 3477 return false; 3478 case ExtAddrMode::BaseRegField: 3479 return AddrSinkCombineBaseReg; 3480 case ExtAddrMode::BaseGVField: 3481 return AddrSinkCombineBaseGV; 3482 case ExtAddrMode::BaseOffsField: 3483 return AddrSinkCombineBaseOffs; 3484 case ExtAddrMode::ScaledRegField: 3485 return AddrSinkCombineScaledReg; 3486 } 3487 } 3488 }; 3489 } // end anonymous namespace 3490 3491 /// Try adding ScaleReg*Scale to the current addressing mode. 3492 /// Return true and update AddrMode if this addr mode is legal for the target, 3493 /// false if not. 3494 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3495 unsigned Depth) { 3496 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3497 // mode. Just process that directly. 3498 if (Scale == 1) 3499 return matchAddr(ScaleReg, Depth); 3500 3501 // If the scale is 0, it takes nothing to add this. 3502 if (Scale == 0) 3503 return true; 3504 3505 // If we already have a scale of this value, we can add to it, otherwise, we 3506 // need an available scale field. 3507 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3508 return false; 3509 3510 ExtAddrMode TestAddrMode = AddrMode; 3511 3512 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3513 // [A+B + A*7] -> [B+A*8]. 3514 TestAddrMode.Scale += Scale; 3515 TestAddrMode.ScaledReg = ScaleReg; 3516 3517 // If the new address isn't legal, bail out. 3518 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3519 return false; 3520 3521 // It was legal, so commit it. 3522 AddrMode = TestAddrMode; 3523 3524 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3525 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3526 // X*Scale + C*Scale to addr mode. 3527 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3528 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3529 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3530 TestAddrMode.InBounds = false; 3531 TestAddrMode.ScaledReg = AddLHS; 3532 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3533 3534 // If this addressing mode is legal, commit it and remember that we folded 3535 // this instruction. 3536 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3537 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3538 AddrMode = TestAddrMode; 3539 return true; 3540 } 3541 } 3542 3543 // Otherwise, not (x+c)*scale, just return what we have. 3544 return true; 3545 } 3546 3547 /// This is a little filter, which returns true if an addressing computation 3548 /// involving I might be folded into a load/store accessing it. 3549 /// This doesn't need to be perfect, but needs to accept at least 3550 /// the set of instructions that MatchOperationAddr can. 3551 static bool MightBeFoldableInst(Instruction *I) { 3552 switch (I->getOpcode()) { 3553 case Instruction::BitCast: 3554 case Instruction::AddrSpaceCast: 3555 // Don't touch identity bitcasts. 3556 if (I->getType() == I->getOperand(0)->getType()) 3557 return false; 3558 return I->getType()->isIntOrPtrTy(); 3559 case Instruction::PtrToInt: 3560 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3561 return true; 3562 case Instruction::IntToPtr: 3563 // We know the input is intptr_t, so this is foldable. 3564 return true; 3565 case Instruction::Add: 3566 return true; 3567 case Instruction::Mul: 3568 case Instruction::Shl: 3569 // Can only handle X*C and X << C. 3570 return isa<ConstantInt>(I->getOperand(1)); 3571 case Instruction::GetElementPtr: 3572 return true; 3573 default: 3574 return false; 3575 } 3576 } 3577 3578 /// Check whether or not \p Val is a legal instruction for \p TLI. 3579 /// \note \p Val is assumed to be the product of some type promotion. 3580 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3581 /// to be legal, as the non-promoted value would have had the same state. 3582 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3583 const DataLayout &DL, Value *Val) { 3584 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3585 if (!PromotedInst) 3586 return false; 3587 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3588 // If the ISDOpcode is undefined, it was undefined before the promotion. 3589 if (!ISDOpcode) 3590 return true; 3591 // Otherwise, check if the promoted instruction is legal or not. 3592 return TLI.isOperationLegalOrCustom( 3593 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3594 } 3595 3596 namespace { 3597 3598 /// Hepler class to perform type promotion. 3599 class TypePromotionHelper { 3600 /// Utility function to add a promoted instruction \p ExtOpnd to 3601 /// \p PromotedInsts and record the type of extension we have seen. 3602 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3603 Instruction *ExtOpnd, 3604 bool IsSExt) { 3605 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3606 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3607 if (It != PromotedInsts.end()) { 3608 // If the new extension is same as original, the information in 3609 // PromotedInsts[ExtOpnd] is still correct. 3610 if (It->second.getInt() == ExtTy) 3611 return; 3612 3613 // Now the new extension is different from old extension, we make 3614 // the type information invalid by setting extension type to 3615 // BothExtension. 3616 ExtTy = BothExtension; 3617 } 3618 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 3619 } 3620 3621 /// Utility function to query the original type of instruction \p Opnd 3622 /// with a matched extension type. If the extension doesn't match, we 3623 /// cannot use the information we had on the original type. 3624 /// BothExtension doesn't match any extension type. 3625 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 3626 Instruction *Opnd, 3627 bool IsSExt) { 3628 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3629 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3630 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 3631 return It->second.getPointer(); 3632 return nullptr; 3633 } 3634 3635 /// Utility function to check whether or not a sign or zero extension 3636 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3637 /// either using the operands of \p Inst or promoting \p Inst. 3638 /// The type of the extension is defined by \p IsSExt. 3639 /// In other words, check if: 3640 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3641 /// #1 Promotion applies: 3642 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3643 /// #2 Operand reuses: 3644 /// ext opnd1 to ConsideredExtType. 3645 /// \p PromotedInsts maps the instructions to their type before promotion. 3646 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3647 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3648 3649 /// Utility function to determine if \p OpIdx should be promoted when 3650 /// promoting \p Inst. 3651 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3652 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3653 } 3654 3655 /// Utility function to promote the operand of \p Ext when this 3656 /// operand is a promotable trunc or sext or zext. 3657 /// \p PromotedInsts maps the instructions to their type before promotion. 3658 /// \p CreatedInstsCost[out] contains the cost of all instructions 3659 /// created to promote the operand of Ext. 3660 /// Newly added extensions are inserted in \p Exts. 3661 /// Newly added truncates are inserted in \p Truncs. 3662 /// Should never be called directly. 3663 /// \return The promoted value which is used instead of Ext. 3664 static Value *promoteOperandForTruncAndAnyExt( 3665 Instruction *Ext, TypePromotionTransaction &TPT, 3666 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3667 SmallVectorImpl<Instruction *> *Exts, 3668 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3669 3670 /// Utility function to promote the operand of \p Ext when this 3671 /// operand is promotable and is not a supported trunc or sext. 3672 /// \p PromotedInsts maps the instructions to their type before promotion. 3673 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3674 /// created to promote the operand of Ext. 3675 /// Newly added extensions are inserted in \p Exts. 3676 /// Newly added truncates are inserted in \p Truncs. 3677 /// Should never be called directly. 3678 /// \return The promoted value which is used instead of Ext. 3679 static Value *promoteOperandForOther(Instruction *Ext, 3680 TypePromotionTransaction &TPT, 3681 InstrToOrigTy &PromotedInsts, 3682 unsigned &CreatedInstsCost, 3683 SmallVectorImpl<Instruction *> *Exts, 3684 SmallVectorImpl<Instruction *> *Truncs, 3685 const TargetLowering &TLI, bool IsSExt); 3686 3687 /// \see promoteOperandForOther. 3688 static Value *signExtendOperandForOther( 3689 Instruction *Ext, TypePromotionTransaction &TPT, 3690 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3691 SmallVectorImpl<Instruction *> *Exts, 3692 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3693 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3694 Exts, Truncs, TLI, true); 3695 } 3696 3697 /// \see promoteOperandForOther. 3698 static Value *zeroExtendOperandForOther( 3699 Instruction *Ext, TypePromotionTransaction &TPT, 3700 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3701 SmallVectorImpl<Instruction *> *Exts, 3702 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3703 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3704 Exts, Truncs, TLI, false); 3705 } 3706 3707 public: 3708 /// Type for the utility function that promotes the operand of Ext. 3709 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3710 InstrToOrigTy &PromotedInsts, 3711 unsigned &CreatedInstsCost, 3712 SmallVectorImpl<Instruction *> *Exts, 3713 SmallVectorImpl<Instruction *> *Truncs, 3714 const TargetLowering &TLI); 3715 3716 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3717 /// action to promote the operand of \p Ext instead of using Ext. 3718 /// \return NULL if no promotable action is possible with the current 3719 /// sign extension. 3720 /// \p InsertedInsts keeps track of all the instructions inserted by the 3721 /// other CodeGenPrepare optimizations. This information is important 3722 /// because we do not want to promote these instructions as CodeGenPrepare 3723 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3724 /// \p PromotedInsts maps the instructions to their type before promotion. 3725 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3726 const TargetLowering &TLI, 3727 const InstrToOrigTy &PromotedInsts); 3728 }; 3729 3730 } // end anonymous namespace 3731 3732 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3733 Type *ConsideredExtType, 3734 const InstrToOrigTy &PromotedInsts, 3735 bool IsSExt) { 3736 // The promotion helper does not know how to deal with vector types yet. 3737 // To be able to fix that, we would need to fix the places where we 3738 // statically extend, e.g., constants and such. 3739 if (Inst->getType()->isVectorTy()) 3740 return false; 3741 3742 // We can always get through zext. 3743 if (isa<ZExtInst>(Inst)) 3744 return true; 3745 3746 // sext(sext) is ok too. 3747 if (IsSExt && isa<SExtInst>(Inst)) 3748 return true; 3749 3750 // We can get through binary operator, if it is legal. In other words, the 3751 // binary operator must have a nuw or nsw flag. 3752 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3753 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3754 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3755 (IsSExt && BinOp->hasNoSignedWrap()))) 3756 return true; 3757 3758 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 3759 if ((Inst->getOpcode() == Instruction::And || 3760 Inst->getOpcode() == Instruction::Or)) 3761 return true; 3762 3763 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 3764 if (Inst->getOpcode() == Instruction::Xor) { 3765 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 3766 // Make sure it is not a NOT. 3767 if (Cst && !Cst->getValue().isAllOnesValue()) 3768 return true; 3769 } 3770 3771 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 3772 // It may change a poisoned value into a regular value, like 3773 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 3774 // poisoned value regular value 3775 // It should be OK since undef covers valid value. 3776 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 3777 return true; 3778 3779 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 3780 // It may change a poisoned value into a regular value, like 3781 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 3782 // poisoned value regular value 3783 // It should be OK since undef covers valid value. 3784 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 3785 const Instruction *ExtInst = 3786 dyn_cast<const Instruction>(*Inst->user_begin()); 3787 if (ExtInst->hasOneUse()) { 3788 const Instruction *AndInst = 3789 dyn_cast<const Instruction>(*ExtInst->user_begin()); 3790 if (AndInst && AndInst->getOpcode() == Instruction::And) { 3791 const ConstantInt *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 3792 if (Cst && 3793 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 3794 return true; 3795 } 3796 } 3797 } 3798 3799 // Check if we can do the following simplification. 3800 // ext(trunc(opnd)) --> ext(opnd) 3801 if (!isa<TruncInst>(Inst)) 3802 return false; 3803 3804 Value *OpndVal = Inst->getOperand(0); 3805 // Check if we can use this operand in the extension. 3806 // If the type is larger than the result type of the extension, we cannot. 3807 if (!OpndVal->getType()->isIntegerTy() || 3808 OpndVal->getType()->getIntegerBitWidth() > 3809 ConsideredExtType->getIntegerBitWidth()) 3810 return false; 3811 3812 // If the operand of the truncate is not an instruction, we will not have 3813 // any information on the dropped bits. 3814 // (Actually we could for constant but it is not worth the extra logic). 3815 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3816 if (!Opnd) 3817 return false; 3818 3819 // Check if the source of the type is narrow enough. 3820 // I.e., check that trunc just drops extended bits of the same kind of 3821 // the extension. 3822 // #1 get the type of the operand and check the kind of the extended bits. 3823 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 3824 if (OpndType) 3825 ; 3826 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3827 OpndType = Opnd->getOperand(0)->getType(); 3828 else 3829 return false; 3830 3831 // #2 check that the truncate just drops extended bits. 3832 return Inst->getType()->getIntegerBitWidth() >= 3833 OpndType->getIntegerBitWidth(); 3834 } 3835 3836 TypePromotionHelper::Action TypePromotionHelper::getAction( 3837 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3838 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3839 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3840 "Unexpected instruction type"); 3841 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3842 Type *ExtTy = Ext->getType(); 3843 bool IsSExt = isa<SExtInst>(Ext); 3844 // If the operand of the extension is not an instruction, we cannot 3845 // get through. 3846 // If it, check we can get through. 3847 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3848 return nullptr; 3849 3850 // Do not promote if the operand has been added by codegenprepare. 3851 // Otherwise, it means we are undoing an optimization that is likely to be 3852 // redone, thus causing potential infinite loop. 3853 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3854 return nullptr; 3855 3856 // SExt or Trunc instructions. 3857 // Return the related handler. 3858 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3859 isa<ZExtInst>(ExtOpnd)) 3860 return promoteOperandForTruncAndAnyExt; 3861 3862 // Regular instruction. 3863 // Abort early if we will have to insert non-free instructions. 3864 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3865 return nullptr; 3866 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3867 } 3868 3869 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3870 Instruction *SExt, TypePromotionTransaction &TPT, 3871 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3872 SmallVectorImpl<Instruction *> *Exts, 3873 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3874 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3875 // get through it and this method should not be called. 3876 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3877 Value *ExtVal = SExt; 3878 bool HasMergedNonFreeExt = false; 3879 if (isa<ZExtInst>(SExtOpnd)) { 3880 // Replace s|zext(zext(opnd)) 3881 // => zext(opnd). 3882 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3883 Value *ZExt = 3884 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3885 TPT.replaceAllUsesWith(SExt, ZExt); 3886 TPT.eraseInstruction(SExt); 3887 ExtVal = ZExt; 3888 } else { 3889 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3890 // => z|sext(opnd). 3891 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3892 } 3893 CreatedInstsCost = 0; 3894 3895 // Remove dead code. 3896 if (SExtOpnd->use_empty()) 3897 TPT.eraseInstruction(SExtOpnd); 3898 3899 // Check if the extension is still needed. 3900 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3901 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3902 if (ExtInst) { 3903 if (Exts) 3904 Exts->push_back(ExtInst); 3905 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3906 } 3907 return ExtVal; 3908 } 3909 3910 // At this point we have: ext ty opnd to ty. 3911 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3912 Value *NextVal = ExtInst->getOperand(0); 3913 TPT.eraseInstruction(ExtInst, NextVal); 3914 return NextVal; 3915 } 3916 3917 Value *TypePromotionHelper::promoteOperandForOther( 3918 Instruction *Ext, TypePromotionTransaction &TPT, 3919 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3920 SmallVectorImpl<Instruction *> *Exts, 3921 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3922 bool IsSExt) { 3923 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3924 // get through it and this method should not be called. 3925 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3926 CreatedInstsCost = 0; 3927 if (!ExtOpnd->hasOneUse()) { 3928 // ExtOpnd will be promoted. 3929 // All its uses, but Ext, will need to use a truncated value of the 3930 // promoted version. 3931 // Create the truncate now. 3932 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3933 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3934 // Insert it just after the definition. 3935 ITrunc->moveAfter(ExtOpnd); 3936 if (Truncs) 3937 Truncs->push_back(ITrunc); 3938 } 3939 3940 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3941 // Restore the operand of Ext (which has been replaced by the previous call 3942 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3943 TPT.setOperand(Ext, 0, ExtOpnd); 3944 } 3945 3946 // Get through the Instruction: 3947 // 1. Update its type. 3948 // 2. Replace the uses of Ext by Inst. 3949 // 3. Extend each operand that needs to be extended. 3950 3951 // Remember the original type of the instruction before promotion. 3952 // This is useful to know that the high bits are sign extended bits. 3953 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 3954 // Step #1. 3955 TPT.mutateType(ExtOpnd, Ext->getType()); 3956 // Step #2. 3957 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3958 // Step #3. 3959 Instruction *ExtForOpnd = Ext; 3960 3961 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 3962 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3963 ++OpIdx) { 3964 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3965 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3966 !shouldExtOperand(ExtOpnd, OpIdx)) { 3967 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 3968 continue; 3969 } 3970 // Check if we can statically extend the operand. 3971 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3972 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3973 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3974 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3975 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3976 : Cst->getValue().zext(BitWidth); 3977 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3978 continue; 3979 } 3980 // UndefValue are typed, so we have to statically sign extend them. 3981 if (isa<UndefValue>(Opnd)) { 3982 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3983 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3984 continue; 3985 } 3986 3987 // Otherwise we have to explicitly sign extend the operand. 3988 // Check if Ext was reused to extend an operand. 3989 if (!ExtForOpnd) { 3990 // If yes, create a new one. 3991 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 3992 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3993 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3994 if (!isa<Instruction>(ValForExtOpnd)) { 3995 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3996 continue; 3997 } 3998 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3999 } 4000 if (Exts) 4001 Exts->push_back(ExtForOpnd); 4002 TPT.setOperand(ExtForOpnd, 0, Opnd); 4003 4004 // Move the sign extension before the insertion point. 4005 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4006 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4007 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4008 // If more sext are required, new instructions will have to be created. 4009 ExtForOpnd = nullptr; 4010 } 4011 if (ExtForOpnd == Ext) { 4012 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4013 TPT.eraseInstruction(Ext); 4014 } 4015 return ExtOpnd; 4016 } 4017 4018 /// Check whether or not promoting an instruction to a wider type is profitable. 4019 /// \p NewCost gives the cost of extension instructions created by the 4020 /// promotion. 4021 /// \p OldCost gives the cost of extension instructions before the promotion 4022 /// plus the number of instructions that have been 4023 /// matched in the addressing mode the promotion. 4024 /// \p PromotedOperand is the value that has been promoted. 4025 /// \return True if the promotion is profitable, false otherwise. 4026 bool AddressingModeMatcher::isPromotionProfitable( 4027 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4028 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4029 << '\n'); 4030 // The cost of the new extensions is greater than the cost of the 4031 // old extension plus what we folded. 4032 // This is not profitable. 4033 if (NewCost > OldCost) 4034 return false; 4035 if (NewCost < OldCost) 4036 return true; 4037 // The promotion is neutral but it may help folding the sign extension in 4038 // loads for instance. 4039 // Check that we did not create an illegal instruction. 4040 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4041 } 4042 4043 /// Given an instruction or constant expr, see if we can fold the operation 4044 /// into the addressing mode. If so, update the addressing mode and return 4045 /// true, otherwise return false without modifying AddrMode. 4046 /// If \p MovedAway is not NULL, it contains the information of whether or 4047 /// not AddrInst has to be folded into the addressing mode on success. 4048 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4049 /// because it has been moved away. 4050 /// Thus AddrInst must not be added in the matched instructions. 4051 /// This state can happen when AddrInst is a sext, since it may be moved away. 4052 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4053 /// not be referenced anymore. 4054 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4055 unsigned Depth, 4056 bool *MovedAway) { 4057 // Avoid exponential behavior on extremely deep expression trees. 4058 if (Depth >= 5) return false; 4059 4060 // By default, all matched instructions stay in place. 4061 if (MovedAway) 4062 *MovedAway = false; 4063 4064 switch (Opcode) { 4065 case Instruction::PtrToInt: 4066 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4067 return matchAddr(AddrInst->getOperand(0), Depth); 4068 case Instruction::IntToPtr: { 4069 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4070 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4071 // This inttoptr is a no-op if the integer type is pointer sized. 4072 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4073 return matchAddr(AddrInst->getOperand(0), Depth); 4074 return false; 4075 } 4076 case Instruction::BitCast: 4077 // BitCast is always a noop, and we can handle it as long as it is 4078 // int->int or pointer->pointer (we don't want int<->fp or something). 4079 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4080 // Don't touch identity bitcasts. These were probably put here by LSR, 4081 // and we don't want to mess around with them. Assume it knows what it 4082 // is doing. 4083 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4084 return matchAddr(AddrInst->getOperand(0), Depth); 4085 return false; 4086 case Instruction::AddrSpaceCast: { 4087 unsigned SrcAS 4088 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4089 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4090 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 4091 return matchAddr(AddrInst->getOperand(0), Depth); 4092 return false; 4093 } 4094 case Instruction::Add: { 4095 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4096 ExtAddrMode BackupAddrMode = AddrMode; 4097 unsigned OldSize = AddrModeInsts.size(); 4098 // Start a transaction at this point. 4099 // The LHS may match but not the RHS. 4100 // Therefore, we need a higher level restoration point to undo partially 4101 // matched operation. 4102 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4103 TPT.getRestorationPoint(); 4104 4105 AddrMode.InBounds = false; 4106 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4107 matchAddr(AddrInst->getOperand(0), Depth+1)) 4108 return true; 4109 4110 // Restore the old addr mode info. 4111 AddrMode = BackupAddrMode; 4112 AddrModeInsts.resize(OldSize); 4113 TPT.rollback(LastKnownGood); 4114 4115 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4116 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4117 matchAddr(AddrInst->getOperand(1), Depth+1)) 4118 return true; 4119 4120 // Otherwise we definitely can't merge the ADD in. 4121 AddrMode = BackupAddrMode; 4122 AddrModeInsts.resize(OldSize); 4123 TPT.rollback(LastKnownGood); 4124 break; 4125 } 4126 //case Instruction::Or: 4127 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4128 //break; 4129 case Instruction::Mul: 4130 case Instruction::Shl: { 4131 // Can only handle X*C and X << C. 4132 AddrMode.InBounds = false; 4133 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4134 if (!RHS || RHS->getBitWidth() > 64) 4135 return false; 4136 int64_t Scale = RHS->getSExtValue(); 4137 if (Opcode == Instruction::Shl) 4138 Scale = 1LL << Scale; 4139 4140 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4141 } 4142 case Instruction::GetElementPtr: { 4143 // Scan the GEP. We check it if it contains constant offsets and at most 4144 // one variable offset. 4145 int VariableOperand = -1; 4146 unsigned VariableScale = 0; 4147 4148 int64_t ConstantOffset = 0; 4149 gep_type_iterator GTI = gep_type_begin(AddrInst); 4150 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4151 if (StructType *STy = GTI.getStructTypeOrNull()) { 4152 const StructLayout *SL = DL.getStructLayout(STy); 4153 unsigned Idx = 4154 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4155 ConstantOffset += SL->getElementOffset(Idx); 4156 } else { 4157 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 4158 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4159 const APInt &CVal = CI->getValue(); 4160 if (CVal.getMinSignedBits() <= 64) { 4161 ConstantOffset += CVal.getSExtValue() * TypeSize; 4162 continue; 4163 } 4164 } 4165 if (TypeSize) { // Scales of zero don't do anything. 4166 // We only allow one variable index at the moment. 4167 if (VariableOperand != -1) 4168 return false; 4169 4170 // Remember the variable index. 4171 VariableOperand = i; 4172 VariableScale = TypeSize; 4173 } 4174 } 4175 } 4176 4177 // A common case is for the GEP to only do a constant offset. In this case, 4178 // just add it to the disp field and check validity. 4179 if (VariableOperand == -1) { 4180 AddrMode.BaseOffs += ConstantOffset; 4181 if (ConstantOffset == 0 || 4182 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4183 // Check to see if we can fold the base pointer in too. 4184 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4185 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4186 AddrMode.InBounds = false; 4187 return true; 4188 } 4189 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4190 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4191 ConstantOffset > 0) { 4192 // Record GEPs with non-zero offsets as candidates for splitting in the 4193 // event that the offset cannot fit into the r+i addressing mode. 4194 // Simple and common case that only one GEP is used in calculating the 4195 // address for the memory access. 4196 Value *Base = AddrInst->getOperand(0); 4197 auto *BaseI = dyn_cast<Instruction>(Base); 4198 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4199 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4200 (BaseI && !isa<CastInst>(BaseI) && 4201 !isa<GetElementPtrInst>(BaseI))) { 4202 // Make sure the parent block allows inserting non-PHI instructions 4203 // before the terminator. 4204 BasicBlock *Parent = 4205 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4206 if (!Parent->getTerminator()->isEHPad()) 4207 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4208 } 4209 } 4210 AddrMode.BaseOffs -= ConstantOffset; 4211 return false; 4212 } 4213 4214 // Save the valid addressing mode in case we can't match. 4215 ExtAddrMode BackupAddrMode = AddrMode; 4216 unsigned OldSize = AddrModeInsts.size(); 4217 4218 // See if the scale and offset amount is valid for this target. 4219 AddrMode.BaseOffs += ConstantOffset; 4220 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4221 AddrMode.InBounds = false; 4222 4223 // Match the base operand of the GEP. 4224 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4225 // If it couldn't be matched, just stuff the value in a register. 4226 if (AddrMode.HasBaseReg) { 4227 AddrMode = BackupAddrMode; 4228 AddrModeInsts.resize(OldSize); 4229 return false; 4230 } 4231 AddrMode.HasBaseReg = true; 4232 AddrMode.BaseReg = AddrInst->getOperand(0); 4233 } 4234 4235 // Match the remaining variable portion of the GEP. 4236 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4237 Depth)) { 4238 // If it couldn't be matched, try stuffing the base into a register 4239 // instead of matching it, and retrying the match of the scale. 4240 AddrMode = BackupAddrMode; 4241 AddrModeInsts.resize(OldSize); 4242 if (AddrMode.HasBaseReg) 4243 return false; 4244 AddrMode.HasBaseReg = true; 4245 AddrMode.BaseReg = AddrInst->getOperand(0); 4246 AddrMode.BaseOffs += ConstantOffset; 4247 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4248 VariableScale, Depth)) { 4249 // If even that didn't work, bail. 4250 AddrMode = BackupAddrMode; 4251 AddrModeInsts.resize(OldSize); 4252 return false; 4253 } 4254 } 4255 4256 return true; 4257 } 4258 case Instruction::SExt: 4259 case Instruction::ZExt: { 4260 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4261 if (!Ext) 4262 return false; 4263 4264 // Try to move this ext out of the way of the addressing mode. 4265 // Ask for a method for doing so. 4266 TypePromotionHelper::Action TPH = 4267 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4268 if (!TPH) 4269 return false; 4270 4271 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4272 TPT.getRestorationPoint(); 4273 unsigned CreatedInstsCost = 0; 4274 unsigned ExtCost = !TLI.isExtFree(Ext); 4275 Value *PromotedOperand = 4276 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4277 // SExt has been moved away. 4278 // Thus either it will be rematched later in the recursive calls or it is 4279 // gone. Anyway, we must not fold it into the addressing mode at this point. 4280 // E.g., 4281 // op = add opnd, 1 4282 // idx = ext op 4283 // addr = gep base, idx 4284 // is now: 4285 // promotedOpnd = ext opnd <- no match here 4286 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4287 // addr = gep base, op <- match 4288 if (MovedAway) 4289 *MovedAway = true; 4290 4291 assert(PromotedOperand && 4292 "TypePromotionHelper should have filtered out those cases"); 4293 4294 ExtAddrMode BackupAddrMode = AddrMode; 4295 unsigned OldSize = AddrModeInsts.size(); 4296 4297 if (!matchAddr(PromotedOperand, Depth) || 4298 // The total of the new cost is equal to the cost of the created 4299 // instructions. 4300 // The total of the old cost is equal to the cost of the extension plus 4301 // what we have saved in the addressing mode. 4302 !isPromotionProfitable(CreatedInstsCost, 4303 ExtCost + (AddrModeInsts.size() - OldSize), 4304 PromotedOperand)) { 4305 AddrMode = BackupAddrMode; 4306 AddrModeInsts.resize(OldSize); 4307 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4308 TPT.rollback(LastKnownGood); 4309 return false; 4310 } 4311 return true; 4312 } 4313 } 4314 return false; 4315 } 4316 4317 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4318 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4319 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4320 /// for the target. 4321 /// 4322 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4323 // Start a transaction at this point that we will rollback if the matching 4324 // fails. 4325 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4326 TPT.getRestorationPoint(); 4327 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4328 // Fold in immediates if legal for the target. 4329 AddrMode.BaseOffs += CI->getSExtValue(); 4330 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4331 return true; 4332 AddrMode.BaseOffs -= CI->getSExtValue(); 4333 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4334 // If this is a global variable, try to fold it into the addressing mode. 4335 if (!AddrMode.BaseGV) { 4336 AddrMode.BaseGV = GV; 4337 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4338 return true; 4339 AddrMode.BaseGV = nullptr; 4340 } 4341 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4342 ExtAddrMode BackupAddrMode = AddrMode; 4343 unsigned OldSize = AddrModeInsts.size(); 4344 4345 // Check to see if it is possible to fold this operation. 4346 bool MovedAway = false; 4347 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4348 // This instruction may have been moved away. If so, there is nothing 4349 // to check here. 4350 if (MovedAway) 4351 return true; 4352 // Okay, it's possible to fold this. Check to see if it is actually 4353 // *profitable* to do so. We use a simple cost model to avoid increasing 4354 // register pressure too much. 4355 if (I->hasOneUse() || 4356 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4357 AddrModeInsts.push_back(I); 4358 return true; 4359 } 4360 4361 // It isn't profitable to do this, roll back. 4362 //cerr << "NOT FOLDING: " << *I; 4363 AddrMode = BackupAddrMode; 4364 AddrModeInsts.resize(OldSize); 4365 TPT.rollback(LastKnownGood); 4366 } 4367 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4368 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4369 return true; 4370 TPT.rollback(LastKnownGood); 4371 } else if (isa<ConstantPointerNull>(Addr)) { 4372 // Null pointer gets folded without affecting the addressing mode. 4373 return true; 4374 } 4375 4376 // Worse case, the target should support [reg] addressing modes. :) 4377 if (!AddrMode.HasBaseReg) { 4378 AddrMode.HasBaseReg = true; 4379 AddrMode.BaseReg = Addr; 4380 // Still check for legality in case the target supports [imm] but not [i+r]. 4381 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4382 return true; 4383 AddrMode.HasBaseReg = false; 4384 AddrMode.BaseReg = nullptr; 4385 } 4386 4387 // If the base register is already taken, see if we can do [r+r]. 4388 if (AddrMode.Scale == 0) { 4389 AddrMode.Scale = 1; 4390 AddrMode.ScaledReg = Addr; 4391 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4392 return true; 4393 AddrMode.Scale = 0; 4394 AddrMode.ScaledReg = nullptr; 4395 } 4396 // Couldn't match. 4397 TPT.rollback(LastKnownGood); 4398 return false; 4399 } 4400 4401 /// Check to see if all uses of OpVal by the specified inline asm call are due 4402 /// to memory operands. If so, return true, otherwise return false. 4403 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4404 const TargetLowering &TLI, 4405 const TargetRegisterInfo &TRI) { 4406 const Function *F = CI->getFunction(); 4407 TargetLowering::AsmOperandInfoVector TargetConstraints = 4408 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 4409 ImmutableCallSite(CI)); 4410 4411 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4412 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4413 4414 // Compute the constraint code and ConstraintType to use. 4415 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4416 4417 // If this asm operand is our Value*, and if it isn't an indirect memory 4418 // operand, we can't fold it! 4419 if (OpInfo.CallOperandVal == OpVal && 4420 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4421 !OpInfo.isIndirect)) 4422 return false; 4423 } 4424 4425 return true; 4426 } 4427 4428 // Max number of memory uses to look at before aborting the search to conserve 4429 // compile time. 4430 static constexpr int MaxMemoryUsesToScan = 20; 4431 4432 /// Recursively walk all the uses of I until we find a memory use. 4433 /// If we find an obviously non-foldable instruction, return true. 4434 /// Add the ultimately found memory instructions to MemoryUses. 4435 static bool FindAllMemoryUses( 4436 Instruction *I, 4437 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4438 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4439 const TargetRegisterInfo &TRI, int SeenInsts = 0) { 4440 // If we already considered this instruction, we're done. 4441 if (!ConsideredInsts.insert(I).second) 4442 return false; 4443 4444 // If this is an obviously unfoldable instruction, bail out. 4445 if (!MightBeFoldableInst(I)) 4446 return true; 4447 4448 const bool OptSize = I->getFunction()->hasOptSize(); 4449 4450 // Loop over all the uses, recursively processing them. 4451 for (Use &U : I->uses()) { 4452 // Conservatively return true if we're seeing a large number or a deep chain 4453 // of users. This avoids excessive compilation times in pathological cases. 4454 if (SeenInsts++ >= MaxMemoryUsesToScan) 4455 return true; 4456 4457 Instruction *UserI = cast<Instruction>(U.getUser()); 4458 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4459 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4460 continue; 4461 } 4462 4463 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4464 unsigned opNo = U.getOperandNo(); 4465 if (opNo != StoreInst::getPointerOperandIndex()) 4466 return true; // Storing addr, not into addr. 4467 MemoryUses.push_back(std::make_pair(SI, opNo)); 4468 continue; 4469 } 4470 4471 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4472 unsigned opNo = U.getOperandNo(); 4473 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4474 return true; // Storing addr, not into addr. 4475 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4476 continue; 4477 } 4478 4479 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4480 unsigned opNo = U.getOperandNo(); 4481 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4482 return true; // Storing addr, not into addr. 4483 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4484 continue; 4485 } 4486 4487 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4488 // If this is a cold call, we can sink the addressing calculation into 4489 // the cold path. See optimizeCallInst 4490 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 4491 continue; 4492 4493 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4494 if (!IA) return true; 4495 4496 // If this is a memory operand, we're cool, otherwise bail out. 4497 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4498 return true; 4499 continue; 4500 } 4501 4502 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, 4503 SeenInsts)) 4504 return true; 4505 } 4506 4507 return false; 4508 } 4509 4510 /// Return true if Val is already known to be live at the use site that we're 4511 /// folding it into. If so, there is no cost to include it in the addressing 4512 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4513 /// instruction already. 4514 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4515 Value *KnownLive2) { 4516 // If Val is either of the known-live values, we know it is live! 4517 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4518 return true; 4519 4520 // All values other than instructions and arguments (e.g. constants) are live. 4521 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4522 4523 // If Val is a constant sized alloca in the entry block, it is live, this is 4524 // true because it is just a reference to the stack/frame pointer, which is 4525 // live for the whole function. 4526 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4527 if (AI->isStaticAlloca()) 4528 return true; 4529 4530 // Check to see if this value is already used in the memory instruction's 4531 // block. If so, it's already live into the block at the very least, so we 4532 // can reasonably fold it. 4533 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4534 } 4535 4536 /// It is possible for the addressing mode of the machine to fold the specified 4537 /// instruction into a load or store that ultimately uses it. 4538 /// However, the specified instruction has multiple uses. 4539 /// Given this, it may actually increase register pressure to fold it 4540 /// into the load. For example, consider this code: 4541 /// 4542 /// X = ... 4543 /// Y = X+1 4544 /// use(Y) -> nonload/store 4545 /// Z = Y+1 4546 /// load Z 4547 /// 4548 /// In this case, Y has multiple uses, and can be folded into the load of Z 4549 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4550 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4551 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4552 /// number of computations either. 4553 /// 4554 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4555 /// X was live across 'load Z' for other reasons, we actually *would* want to 4556 /// fold the addressing mode in the Z case. This would make Y die earlier. 4557 bool AddressingModeMatcher:: 4558 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4559 ExtAddrMode &AMAfter) { 4560 if (IgnoreProfitability) return true; 4561 4562 // AMBefore is the addressing mode before this instruction was folded into it, 4563 // and AMAfter is the addressing mode after the instruction was folded. Get 4564 // the set of registers referenced by AMAfter and subtract out those 4565 // referenced by AMBefore: this is the set of values which folding in this 4566 // address extends the lifetime of. 4567 // 4568 // Note that there are only two potential values being referenced here, 4569 // BaseReg and ScaleReg (global addresses are always available, as are any 4570 // folded immediates). 4571 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4572 4573 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4574 // lifetime wasn't extended by adding this instruction. 4575 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4576 BaseReg = nullptr; 4577 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4578 ScaledReg = nullptr; 4579 4580 // If folding this instruction (and it's subexprs) didn't extend any live 4581 // ranges, we're ok with it. 4582 if (!BaseReg && !ScaledReg) 4583 return true; 4584 4585 // If all uses of this instruction can have the address mode sunk into them, 4586 // we can remove the addressing mode and effectively trade one live register 4587 // for another (at worst.) In this context, folding an addressing mode into 4588 // the use is just a particularly nice way of sinking it. 4589 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4590 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4591 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 4592 return false; // Has a non-memory, non-foldable use! 4593 4594 // Now that we know that all uses of this instruction are part of a chain of 4595 // computation involving only operations that could theoretically be folded 4596 // into a memory use, loop over each of these memory operation uses and see 4597 // if they could *actually* fold the instruction. The assumption is that 4598 // addressing modes are cheap and that duplicating the computation involved 4599 // many times is worthwhile, even on a fastpath. For sinking candidates 4600 // (i.e. cold call sites), this serves as a way to prevent excessive code 4601 // growth since most architectures have some reasonable small and fast way to 4602 // compute an effective address. (i.e LEA on x86) 4603 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4604 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4605 Instruction *User = MemoryUses[i].first; 4606 unsigned OpNo = MemoryUses[i].second; 4607 4608 // Get the access type of this use. If the use isn't a pointer, we don't 4609 // know what it accesses. 4610 Value *Address = User->getOperand(OpNo); 4611 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4612 if (!AddrTy) 4613 return false; 4614 Type *AddressAccessTy = AddrTy->getElementType(); 4615 unsigned AS = AddrTy->getAddressSpace(); 4616 4617 // Do a match against the root of this address, ignoring profitability. This 4618 // will tell us if the addressing mode for the memory operation will 4619 // *actually* cover the shared instruction. 4620 ExtAddrMode Result; 4621 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4622 0); 4623 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4624 TPT.getRestorationPoint(); 4625 AddressingModeMatcher Matcher( 4626 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4627 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4628 Matcher.IgnoreProfitability = true; 4629 bool Success = Matcher.matchAddr(Address, 0); 4630 (void)Success; assert(Success && "Couldn't select *anything*?"); 4631 4632 // The match was to check the profitability, the changes made are not 4633 // part of the original matcher. Therefore, they should be dropped 4634 // otherwise the original matcher will not present the right state. 4635 TPT.rollback(LastKnownGood); 4636 4637 // If the match didn't cover I, then it won't be shared by it. 4638 if (!is_contained(MatchedAddrModeInsts, I)) 4639 return false; 4640 4641 MatchedAddrModeInsts.clear(); 4642 } 4643 4644 return true; 4645 } 4646 4647 /// Return true if the specified values are defined in a 4648 /// different basic block than BB. 4649 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4650 if (Instruction *I = dyn_cast<Instruction>(V)) 4651 return I->getParent() != BB; 4652 return false; 4653 } 4654 4655 /// Sink addressing mode computation immediate before MemoryInst if doing so 4656 /// can be done without increasing register pressure. The need for the 4657 /// register pressure constraint means this can end up being an all or nothing 4658 /// decision for all uses of the same addressing computation. 4659 /// 4660 /// Load and Store Instructions often have addressing modes that can do 4661 /// significant amounts of computation. As such, instruction selection will try 4662 /// to get the load or store to do as much computation as possible for the 4663 /// program. The problem is that isel can only see within a single block. As 4664 /// such, we sink as much legal addressing mode work into the block as possible. 4665 /// 4666 /// This method is used to optimize both load/store and inline asms with memory 4667 /// operands. It's also used to sink addressing computations feeding into cold 4668 /// call sites into their (cold) basic block. 4669 /// 4670 /// The motivation for handling sinking into cold blocks is that doing so can 4671 /// both enable other address mode sinking (by satisfying the register pressure 4672 /// constraint above), and reduce register pressure globally (by removing the 4673 /// addressing mode computation from the fast path entirely.). 4674 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4675 Type *AccessTy, unsigned AddrSpace) { 4676 Value *Repl = Addr; 4677 4678 // Try to collapse single-value PHI nodes. This is necessary to undo 4679 // unprofitable PRE transformations. 4680 SmallVector<Value*, 8> worklist; 4681 SmallPtrSet<Value*, 16> Visited; 4682 worklist.push_back(Addr); 4683 4684 // Use a worklist to iteratively look through PHI and select nodes, and 4685 // ensure that the addressing mode obtained from the non-PHI/select roots of 4686 // the graph are compatible. 4687 bool PhiOrSelectSeen = false; 4688 SmallVector<Instruction*, 16> AddrModeInsts; 4689 const SimplifyQuery SQ(*DL, TLInfo); 4690 AddressingModeCombiner AddrModes(SQ, Addr); 4691 TypePromotionTransaction TPT(RemovedInsts); 4692 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4693 TPT.getRestorationPoint(); 4694 while (!worklist.empty()) { 4695 Value *V = worklist.back(); 4696 worklist.pop_back(); 4697 4698 // We allow traversing cyclic Phi nodes. 4699 // In case of success after this loop we ensure that traversing through 4700 // Phi nodes ends up with all cases to compute address of the form 4701 // BaseGV + Base + Scale * Index + Offset 4702 // where Scale and Offset are constans and BaseGV, Base and Index 4703 // are exactly the same Values in all cases. 4704 // It means that BaseGV, Scale and Offset dominate our memory instruction 4705 // and have the same value as they had in address computation represented 4706 // as Phi. So we can safely sink address computation to memory instruction. 4707 if (!Visited.insert(V).second) 4708 continue; 4709 4710 // For a PHI node, push all of its incoming values. 4711 if (PHINode *P = dyn_cast<PHINode>(V)) { 4712 for (Value *IncValue : P->incoming_values()) 4713 worklist.push_back(IncValue); 4714 PhiOrSelectSeen = true; 4715 continue; 4716 } 4717 // Similar for select. 4718 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4719 worklist.push_back(SI->getFalseValue()); 4720 worklist.push_back(SI->getTrueValue()); 4721 PhiOrSelectSeen = true; 4722 continue; 4723 } 4724 4725 // For non-PHIs, determine the addressing mode being computed. Note that 4726 // the result may differ depending on what other uses our candidate 4727 // addressing instructions might have. 4728 AddrModeInsts.clear(); 4729 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4730 0); 4731 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4732 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4733 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4734 4735 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4736 if (GEP && !NewGEPBases.count(GEP)) { 4737 // If splitting the underlying data structure can reduce the offset of a 4738 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4739 // previously split data structures. 4740 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4741 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4742 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4743 } 4744 4745 NewAddrMode.OriginalValue = V; 4746 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4747 break; 4748 } 4749 4750 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4751 // or we have multiple but either couldn't combine them or combining them 4752 // wouldn't do anything useful, bail out now. 4753 if (!AddrModes.combineAddrModes()) { 4754 TPT.rollback(LastKnownGood); 4755 return false; 4756 } 4757 TPT.commit(); 4758 4759 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4760 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4761 4762 // If all the instructions matched are already in this BB, don't do anything. 4763 // If we saw a Phi node then it is not local definitely, and if we saw a select 4764 // then we want to push the address calculation past it even if it's already 4765 // in this BB. 4766 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4767 return IsNonLocalValue(V, MemoryInst->getParent()); 4768 })) { 4769 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 4770 << "\n"); 4771 return false; 4772 } 4773 4774 // Insert this computation right after this user. Since our caller is 4775 // scanning from the top of the BB to the bottom, reuse of the expr are 4776 // guaranteed to happen later. 4777 IRBuilder<> Builder(MemoryInst); 4778 4779 // Now that we determined the addressing expression we want to use and know 4780 // that we have to sink it into this block. Check to see if we have already 4781 // done this for some other load/store instr in this block. If so, reuse 4782 // the computation. Before attempting reuse, check if the address is valid 4783 // as it may have been erased. 4784 4785 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4786 4787 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4788 if (SunkAddr) { 4789 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 4790 << " for " << *MemoryInst << "\n"); 4791 if (SunkAddr->getType() != Addr->getType()) 4792 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4793 } else if (AddrSinkUsingGEPs || 4794 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && TTI->useAA())) { 4795 // By default, we use the GEP-based method when AA is used later. This 4796 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4797 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4798 << " for " << *MemoryInst << "\n"); 4799 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4800 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4801 4802 // First, find the pointer. 4803 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4804 ResultPtr = AddrMode.BaseReg; 4805 AddrMode.BaseReg = nullptr; 4806 } 4807 4808 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4809 // We can't add more than one pointer together, nor can we scale a 4810 // pointer (both of which seem meaningless). 4811 if (ResultPtr || AddrMode.Scale != 1) 4812 return false; 4813 4814 ResultPtr = AddrMode.ScaledReg; 4815 AddrMode.Scale = 0; 4816 } 4817 4818 // It is only safe to sign extend the BaseReg if we know that the math 4819 // required to create it did not overflow before we extend it. Since 4820 // the original IR value was tossed in favor of a constant back when 4821 // the AddrMode was created we need to bail out gracefully if widths 4822 // do not match instead of extending it. 4823 // 4824 // (See below for code to add the scale.) 4825 if (AddrMode.Scale) { 4826 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4827 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4828 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4829 return false; 4830 } 4831 4832 if (AddrMode.BaseGV) { 4833 if (ResultPtr) 4834 return false; 4835 4836 ResultPtr = AddrMode.BaseGV; 4837 } 4838 4839 // If the real base value actually came from an inttoptr, then the matcher 4840 // will look through it and provide only the integer value. In that case, 4841 // use it here. 4842 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4843 if (!ResultPtr && AddrMode.BaseReg) { 4844 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4845 "sunkaddr"); 4846 AddrMode.BaseReg = nullptr; 4847 } else if (!ResultPtr && AddrMode.Scale == 1) { 4848 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4849 "sunkaddr"); 4850 AddrMode.Scale = 0; 4851 } 4852 } 4853 4854 if (!ResultPtr && 4855 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4856 SunkAddr = Constant::getNullValue(Addr->getType()); 4857 } else if (!ResultPtr) { 4858 return false; 4859 } else { 4860 Type *I8PtrTy = 4861 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4862 Type *I8Ty = Builder.getInt8Ty(); 4863 4864 // Start with the base register. Do this first so that subsequent address 4865 // matching finds it last, which will prevent it from trying to match it 4866 // as the scaled value in case it happens to be a mul. That would be 4867 // problematic if we've sunk a different mul for the scale, because then 4868 // we'd end up sinking both muls. 4869 if (AddrMode.BaseReg) { 4870 Value *V = AddrMode.BaseReg; 4871 if (V->getType() != IntPtrTy) 4872 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4873 4874 ResultIndex = V; 4875 } 4876 4877 // Add the scale value. 4878 if (AddrMode.Scale) { 4879 Value *V = AddrMode.ScaledReg; 4880 if (V->getType() == IntPtrTy) { 4881 // done. 4882 } else { 4883 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 4884 cast<IntegerType>(V->getType())->getBitWidth() && 4885 "We can't transform if ScaledReg is too narrow"); 4886 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4887 } 4888 4889 if (AddrMode.Scale != 1) 4890 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4891 "sunkaddr"); 4892 if (ResultIndex) 4893 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4894 else 4895 ResultIndex = V; 4896 } 4897 4898 // Add in the Base Offset if present. 4899 if (AddrMode.BaseOffs) { 4900 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4901 if (ResultIndex) { 4902 // We need to add this separately from the scale above to help with 4903 // SDAG consecutive load/store merging. 4904 if (ResultPtr->getType() != I8PtrTy) 4905 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4906 ResultPtr = 4907 AddrMode.InBounds 4908 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 4909 "sunkaddr") 4910 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4911 } 4912 4913 ResultIndex = V; 4914 } 4915 4916 if (!ResultIndex) { 4917 SunkAddr = ResultPtr; 4918 } else { 4919 if (ResultPtr->getType() != I8PtrTy) 4920 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4921 SunkAddr = 4922 AddrMode.InBounds 4923 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 4924 "sunkaddr") 4925 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4926 } 4927 4928 if (SunkAddr->getType() != Addr->getType()) 4929 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4930 } 4931 } else { 4932 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 4933 // non-integral pointers, so in that case bail out now. 4934 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 4935 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 4936 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 4937 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 4938 if (DL->isNonIntegralPointerType(Addr->getType()) || 4939 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 4940 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 4941 (AddrMode.BaseGV && 4942 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 4943 return false; 4944 4945 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4946 << " for " << *MemoryInst << "\n"); 4947 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4948 Value *Result = nullptr; 4949 4950 // Start with the base register. Do this first so that subsequent address 4951 // matching finds it last, which will prevent it from trying to match it 4952 // as the scaled value in case it happens to be a mul. That would be 4953 // problematic if we've sunk a different mul for the scale, because then 4954 // we'd end up sinking both muls. 4955 if (AddrMode.BaseReg) { 4956 Value *V = AddrMode.BaseReg; 4957 if (V->getType()->isPointerTy()) 4958 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4959 if (V->getType() != IntPtrTy) 4960 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4961 Result = V; 4962 } 4963 4964 // Add the scale value. 4965 if (AddrMode.Scale) { 4966 Value *V = AddrMode.ScaledReg; 4967 if (V->getType() == IntPtrTy) { 4968 // done. 4969 } else if (V->getType()->isPointerTy()) { 4970 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4971 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4972 cast<IntegerType>(V->getType())->getBitWidth()) { 4973 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4974 } else { 4975 // It is only safe to sign extend the BaseReg if we know that the math 4976 // required to create it did not overflow before we extend it. Since 4977 // the original IR value was tossed in favor of a constant back when 4978 // the AddrMode was created we need to bail out gracefully if widths 4979 // do not match instead of extending it. 4980 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4981 if (I && (Result != AddrMode.BaseReg)) 4982 I->eraseFromParent(); 4983 return false; 4984 } 4985 if (AddrMode.Scale != 1) 4986 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4987 "sunkaddr"); 4988 if (Result) 4989 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4990 else 4991 Result = V; 4992 } 4993 4994 // Add in the BaseGV if present. 4995 if (AddrMode.BaseGV) { 4996 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 4997 if (Result) 4998 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4999 else 5000 Result = V; 5001 } 5002 5003 // Add in the Base Offset if present. 5004 if (AddrMode.BaseOffs) { 5005 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5006 if (Result) 5007 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5008 else 5009 Result = V; 5010 } 5011 5012 if (!Result) 5013 SunkAddr = Constant::getNullValue(Addr->getType()); 5014 else 5015 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5016 } 5017 5018 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5019 // Store the newly computed address into the cache. In the case we reused a 5020 // value, this should be idempotent. 5021 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5022 5023 // If we have no uses, recursively delete the value and all dead instructions 5024 // using it. 5025 if (Repl->use_empty()) { 5026 // This can cause recursive deletion, which can invalidate our iterator. 5027 // Use a WeakTrackingVH to hold onto it in case this happens. 5028 Value *CurValue = &*CurInstIterator; 5029 WeakTrackingVH IterHandle(CurValue); 5030 BasicBlock *BB = CurInstIterator->getParent(); 5031 5032 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 5033 5034 if (IterHandle != CurValue) { 5035 // If the iterator instruction was recursively deleted, start over at the 5036 // start of the block. 5037 CurInstIterator = BB->begin(); 5038 SunkAddrs.clear(); 5039 } 5040 } 5041 ++NumMemoryInsts; 5042 return true; 5043 } 5044 5045 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5046 /// address computing into the block when possible / profitable. 5047 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5048 bool MadeChange = false; 5049 5050 const TargetRegisterInfo *TRI = 5051 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5052 TargetLowering::AsmOperandInfoVector TargetConstraints = 5053 TLI->ParseConstraints(*DL, TRI, CS); 5054 unsigned ArgNo = 0; 5055 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5056 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5057 5058 // Compute the constraint code and ConstraintType to use. 5059 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5060 5061 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5062 OpInfo.isIndirect) { 5063 Value *OpVal = CS->getArgOperand(ArgNo++); 5064 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5065 } else if (OpInfo.Type == InlineAsm::isInput) 5066 ArgNo++; 5067 } 5068 5069 return MadeChange; 5070 } 5071 5072 /// Check if all the uses of \p Val are equivalent (or free) zero or 5073 /// sign extensions. 5074 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5075 assert(!Val->use_empty() && "Input must have at least one use"); 5076 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5077 bool IsSExt = isa<SExtInst>(FirstUser); 5078 Type *ExtTy = FirstUser->getType(); 5079 for (const User *U : Val->users()) { 5080 const Instruction *UI = cast<Instruction>(U); 5081 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5082 return false; 5083 Type *CurTy = UI->getType(); 5084 // Same input and output types: Same instruction after CSE. 5085 if (CurTy == ExtTy) 5086 continue; 5087 5088 // If IsSExt is true, we are in this situation: 5089 // a = Val 5090 // b = sext ty1 a to ty2 5091 // c = sext ty1 a to ty3 5092 // Assuming ty2 is shorter than ty3, this could be turned into: 5093 // a = Val 5094 // b = sext ty1 a to ty2 5095 // c = sext ty2 b to ty3 5096 // However, the last sext is not free. 5097 if (IsSExt) 5098 return false; 5099 5100 // This is a ZExt, maybe this is free to extend from one type to another. 5101 // In that case, we would not account for a different use. 5102 Type *NarrowTy; 5103 Type *LargeTy; 5104 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5105 CurTy->getScalarType()->getIntegerBitWidth()) { 5106 NarrowTy = CurTy; 5107 LargeTy = ExtTy; 5108 } else { 5109 NarrowTy = ExtTy; 5110 LargeTy = CurTy; 5111 } 5112 5113 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5114 return false; 5115 } 5116 // All uses are the same or can be derived from one another for free. 5117 return true; 5118 } 5119 5120 /// Try to speculatively promote extensions in \p Exts and continue 5121 /// promoting through newly promoted operands recursively as far as doing so is 5122 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5123 /// When some promotion happened, \p TPT contains the proper state to revert 5124 /// them. 5125 /// 5126 /// \return true if some promotion happened, false otherwise. 5127 bool CodeGenPrepare::tryToPromoteExts( 5128 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5129 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5130 unsigned CreatedInstsCost) { 5131 bool Promoted = false; 5132 5133 // Iterate over all the extensions to try to promote them. 5134 for (auto I : Exts) { 5135 // Early check if we directly have ext(load). 5136 if (isa<LoadInst>(I->getOperand(0))) { 5137 ProfitablyMovedExts.push_back(I); 5138 continue; 5139 } 5140 5141 // Check whether or not we want to do any promotion. The reason we have 5142 // this check inside the for loop is to catch the case where an extension 5143 // is directly fed by a load because in such case the extension can be moved 5144 // up without any promotion on its operands. 5145 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5146 return false; 5147 5148 // Get the action to perform the promotion. 5149 TypePromotionHelper::Action TPH = 5150 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5151 // Check if we can promote. 5152 if (!TPH) { 5153 // Save the current extension as we cannot move up through its operand. 5154 ProfitablyMovedExts.push_back(I); 5155 continue; 5156 } 5157 5158 // Save the current state. 5159 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5160 TPT.getRestorationPoint(); 5161 SmallVector<Instruction *, 4> NewExts; 5162 unsigned NewCreatedInstsCost = 0; 5163 unsigned ExtCost = !TLI->isExtFree(I); 5164 // Promote. 5165 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5166 &NewExts, nullptr, *TLI); 5167 assert(PromotedVal && 5168 "TypePromotionHelper should have filtered out those cases"); 5169 5170 // We would be able to merge only one extension in a load. 5171 // Therefore, if we have more than 1 new extension we heuristically 5172 // cut this search path, because it means we degrade the code quality. 5173 // With exactly 2, the transformation is neutral, because we will merge 5174 // one extension but leave one. However, we optimistically keep going, 5175 // because the new extension may be removed too. 5176 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5177 // FIXME: It would be possible to propagate a negative value instead of 5178 // conservatively ceiling it to 0. 5179 TotalCreatedInstsCost = 5180 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5181 if (!StressExtLdPromotion && 5182 (TotalCreatedInstsCost > 1 || 5183 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5184 // This promotion is not profitable, rollback to the previous state, and 5185 // save the current extension in ProfitablyMovedExts as the latest 5186 // speculative promotion turned out to be unprofitable. 5187 TPT.rollback(LastKnownGood); 5188 ProfitablyMovedExts.push_back(I); 5189 continue; 5190 } 5191 // Continue promoting NewExts as far as doing so is profitable. 5192 SmallVector<Instruction *, 2> NewlyMovedExts; 5193 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5194 bool NewPromoted = false; 5195 for (auto ExtInst : NewlyMovedExts) { 5196 Instruction *MovedExt = cast<Instruction>(ExtInst); 5197 Value *ExtOperand = MovedExt->getOperand(0); 5198 // If we have reached to a load, we need this extra profitability check 5199 // as it could potentially be merged into an ext(load). 5200 if (isa<LoadInst>(ExtOperand) && 5201 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5202 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5203 continue; 5204 5205 ProfitablyMovedExts.push_back(MovedExt); 5206 NewPromoted = true; 5207 } 5208 5209 // If none of speculative promotions for NewExts is profitable, rollback 5210 // and save the current extension (I) as the last profitable extension. 5211 if (!NewPromoted) { 5212 TPT.rollback(LastKnownGood); 5213 ProfitablyMovedExts.push_back(I); 5214 continue; 5215 } 5216 // The promotion is profitable. 5217 Promoted = true; 5218 } 5219 return Promoted; 5220 } 5221 5222 /// Merging redundant sexts when one is dominating the other. 5223 bool CodeGenPrepare::mergeSExts(Function &F) { 5224 bool Changed = false; 5225 for (auto &Entry : ValToSExtendedUses) { 5226 SExts &Insts = Entry.second; 5227 SExts CurPts; 5228 for (Instruction *Inst : Insts) { 5229 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5230 Inst->getOperand(0) != Entry.first) 5231 continue; 5232 bool inserted = false; 5233 for (auto &Pt : CurPts) { 5234 if (getDT(F).dominates(Inst, Pt)) { 5235 Pt->replaceAllUsesWith(Inst); 5236 RemovedInsts.insert(Pt); 5237 Pt->removeFromParent(); 5238 Pt = Inst; 5239 inserted = true; 5240 Changed = true; 5241 break; 5242 } 5243 if (!getDT(F).dominates(Pt, Inst)) 5244 // Give up if we need to merge in a common dominator as the 5245 // experiments show it is not profitable. 5246 continue; 5247 Inst->replaceAllUsesWith(Pt); 5248 RemovedInsts.insert(Inst); 5249 Inst->removeFromParent(); 5250 inserted = true; 5251 Changed = true; 5252 break; 5253 } 5254 if (!inserted) 5255 CurPts.push_back(Inst); 5256 } 5257 } 5258 return Changed; 5259 } 5260 5261 // Spliting large data structures so that the GEPs accessing them can have 5262 // smaller offsets so that they can be sunk to the same blocks as their users. 5263 // For example, a large struct starting from %base is splitted into two parts 5264 // where the second part starts from %new_base. 5265 // 5266 // Before: 5267 // BB0: 5268 // %base = 5269 // 5270 // BB1: 5271 // %gep0 = gep %base, off0 5272 // %gep1 = gep %base, off1 5273 // %gep2 = gep %base, off2 5274 // 5275 // BB2: 5276 // %load1 = load %gep0 5277 // %load2 = load %gep1 5278 // %load3 = load %gep2 5279 // 5280 // After: 5281 // BB0: 5282 // %base = 5283 // %new_base = gep %base, off0 5284 // 5285 // BB1: 5286 // %new_gep0 = %new_base 5287 // %new_gep1 = gep %new_base, off1 - off0 5288 // %new_gep2 = gep %new_base, off2 - off0 5289 // 5290 // BB2: 5291 // %load1 = load i32, i32* %new_gep0 5292 // %load2 = load i32, i32* %new_gep1 5293 // %load3 = load i32, i32* %new_gep2 5294 // 5295 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5296 // their offsets are smaller enough to fit into the addressing mode. 5297 bool CodeGenPrepare::splitLargeGEPOffsets() { 5298 bool Changed = false; 5299 for (auto &Entry : LargeOffsetGEPMap) { 5300 Value *OldBase = Entry.first; 5301 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5302 &LargeOffsetGEPs = Entry.second; 5303 auto compareGEPOffset = 5304 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5305 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5306 if (LHS.first == RHS.first) 5307 return false; 5308 if (LHS.second != RHS.second) 5309 return LHS.second < RHS.second; 5310 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5311 }; 5312 // Sorting all the GEPs of the same data structures based on the offsets. 5313 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5314 LargeOffsetGEPs.erase( 5315 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5316 LargeOffsetGEPs.end()); 5317 // Skip if all the GEPs have the same offsets. 5318 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5319 continue; 5320 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5321 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5322 Value *NewBaseGEP = nullptr; 5323 5324 auto LargeOffsetGEP = LargeOffsetGEPs.begin(); 5325 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5326 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5327 int64_t Offset = LargeOffsetGEP->second; 5328 if (Offset != BaseOffset) { 5329 TargetLowering::AddrMode AddrMode; 5330 AddrMode.BaseOffs = Offset - BaseOffset; 5331 // The result type of the GEP might not be the type of the memory 5332 // access. 5333 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5334 GEP->getResultElementType(), 5335 GEP->getAddressSpace())) { 5336 // We need to create a new base if the offset to the current base is 5337 // too large to fit into the addressing mode. So, a very large struct 5338 // may be splitted into several parts. 5339 BaseGEP = GEP; 5340 BaseOffset = Offset; 5341 NewBaseGEP = nullptr; 5342 } 5343 } 5344 5345 // Generate a new GEP to replace the current one. 5346 LLVMContext &Ctx = GEP->getContext(); 5347 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5348 Type *I8PtrTy = 5349 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5350 Type *I8Ty = Type::getInt8Ty(Ctx); 5351 5352 if (!NewBaseGEP) { 5353 // Create a new base if we don't have one yet. Find the insertion 5354 // pointer for the new base first. 5355 BasicBlock::iterator NewBaseInsertPt; 5356 BasicBlock *NewBaseInsertBB; 5357 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5358 // If the base of the struct is an instruction, the new base will be 5359 // inserted close to it. 5360 NewBaseInsertBB = BaseI->getParent(); 5361 if (isa<PHINode>(BaseI)) 5362 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5363 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5364 NewBaseInsertBB = 5365 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5366 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5367 } else 5368 NewBaseInsertPt = std::next(BaseI->getIterator()); 5369 } else { 5370 // If the current base is an argument or global value, the new base 5371 // will be inserted to the entry block. 5372 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5373 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5374 } 5375 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5376 // Create a new base. 5377 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5378 NewBaseGEP = OldBase; 5379 if (NewBaseGEP->getType() != I8PtrTy) 5380 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5381 NewBaseGEP = 5382 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5383 NewGEPBases.insert(NewBaseGEP); 5384 } 5385 5386 IRBuilder<> Builder(GEP); 5387 Value *NewGEP = NewBaseGEP; 5388 if (Offset == BaseOffset) { 5389 if (GEP->getType() != I8PtrTy) 5390 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5391 } else { 5392 // Calculate the new offset for the new GEP. 5393 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5394 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5395 5396 if (GEP->getType() != I8PtrTy) 5397 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5398 } 5399 GEP->replaceAllUsesWith(NewGEP); 5400 LargeOffsetGEPID.erase(GEP); 5401 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5402 GEP->eraseFromParent(); 5403 Changed = true; 5404 } 5405 } 5406 return Changed; 5407 } 5408 5409 /// Return true, if an ext(load) can be formed from an extension in 5410 /// \p MovedExts. 5411 bool CodeGenPrepare::canFormExtLd( 5412 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5413 Instruction *&Inst, bool HasPromoted) { 5414 for (auto *MovedExtInst : MovedExts) { 5415 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5416 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5417 Inst = MovedExtInst; 5418 break; 5419 } 5420 } 5421 if (!LI) 5422 return false; 5423 5424 // If they're already in the same block, there's nothing to do. 5425 // Make the cheap checks first if we did not promote. 5426 // If we promoted, we need to check if it is indeed profitable. 5427 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5428 return false; 5429 5430 return TLI->isExtLoad(LI, Inst, *DL); 5431 } 5432 5433 /// Move a zext or sext fed by a load into the same basic block as the load, 5434 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5435 /// extend into the load. 5436 /// 5437 /// E.g., 5438 /// \code 5439 /// %ld = load i32* %addr 5440 /// %add = add nuw i32 %ld, 4 5441 /// %zext = zext i32 %add to i64 5442 // \endcode 5443 /// => 5444 /// \code 5445 /// %ld = load i32* %addr 5446 /// %zext = zext i32 %ld to i64 5447 /// %add = add nuw i64 %zext, 4 5448 /// \encode 5449 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5450 /// allow us to match zext(load i32*) to i64. 5451 /// 5452 /// Also, try to promote the computations used to obtain a sign extended 5453 /// value used into memory accesses. 5454 /// E.g., 5455 /// \code 5456 /// a = add nsw i32 b, 3 5457 /// d = sext i32 a to i64 5458 /// e = getelementptr ..., i64 d 5459 /// \endcode 5460 /// => 5461 /// \code 5462 /// f = sext i32 b to i64 5463 /// a = add nsw i64 f, 3 5464 /// e = getelementptr ..., i64 a 5465 /// \endcode 5466 /// 5467 /// \p Inst[in/out] the extension may be modified during the process if some 5468 /// promotions apply. 5469 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 5470 // ExtLoad formation and address type promotion infrastructure requires TLI to 5471 // be effective. 5472 if (!TLI) 5473 return false; 5474 5475 bool AllowPromotionWithoutCommonHeader = false; 5476 /// See if it is an interesting sext operations for the address type 5477 /// promotion before trying to promote it, e.g., the ones with the right 5478 /// type and used in memory accesses. 5479 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 5480 *Inst, AllowPromotionWithoutCommonHeader); 5481 TypePromotionTransaction TPT(RemovedInsts); 5482 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5483 TPT.getRestorationPoint(); 5484 SmallVector<Instruction *, 1> Exts; 5485 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 5486 Exts.push_back(Inst); 5487 5488 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 5489 5490 // Look for a load being extended. 5491 LoadInst *LI = nullptr; 5492 Instruction *ExtFedByLoad; 5493 5494 // Try to promote a chain of computation if it allows to form an extended 5495 // load. 5496 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5497 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5498 TPT.commit(); 5499 // Move the extend into the same block as the load 5500 ExtFedByLoad->moveAfter(LI); 5501 // CGP does not check if the zext would be speculatively executed when moved 5502 // to the same basic block as the load. Preserving its original location 5503 // would pessimize the debugging experience, as well as negatively impact 5504 // the quality of sample pgo. We don't want to use "line 0" as that has a 5505 // size cost in the line-table section and logically the zext can be seen as 5506 // part of the load. Therefore we conservatively reuse the same debug 5507 // location for the load and the zext. 5508 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 5509 ++NumExtsMoved; 5510 Inst = ExtFedByLoad; 5511 return true; 5512 } 5513 5514 // Continue promoting SExts if known as considerable depending on targets. 5515 if (ATPConsiderable && 5516 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5517 HasPromoted, TPT, SpeculativelyMovedExts)) 5518 return true; 5519 5520 TPT.rollback(LastKnownGood); 5521 return false; 5522 } 5523 5524 // Perform address type promotion if doing so is profitable. 5525 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5526 // instructions that sign extended the same initial value. However, if 5527 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5528 // extension is just profitable. 5529 bool CodeGenPrepare::performAddressTypePromotion( 5530 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5531 bool HasPromoted, TypePromotionTransaction &TPT, 5532 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5533 bool Promoted = false; 5534 SmallPtrSet<Instruction *, 1> UnhandledExts; 5535 bool AllSeenFirst = true; 5536 for (auto I : SpeculativelyMovedExts) { 5537 Value *HeadOfChain = I->getOperand(0); 5538 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 5539 SeenChainsForSExt.find(HeadOfChain); 5540 // If there is an unhandled SExt which has the same header, try to promote 5541 // it as well. 5542 if (AlreadySeen != SeenChainsForSExt.end()) { 5543 if (AlreadySeen->second != nullptr) 5544 UnhandledExts.insert(AlreadySeen->second); 5545 AllSeenFirst = false; 5546 } 5547 } 5548 5549 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 5550 SpeculativelyMovedExts.size() == 1)) { 5551 TPT.commit(); 5552 if (HasPromoted) 5553 Promoted = true; 5554 for (auto I : SpeculativelyMovedExts) { 5555 Value *HeadOfChain = I->getOperand(0); 5556 SeenChainsForSExt[HeadOfChain] = nullptr; 5557 ValToSExtendedUses[HeadOfChain].push_back(I); 5558 } 5559 // Update Inst as promotion happen. 5560 Inst = SpeculativelyMovedExts.pop_back_val(); 5561 } else { 5562 // This is the first chain visited from the header, keep the current chain 5563 // as unhandled. Defer to promote this until we encounter another SExt 5564 // chain derived from the same header. 5565 for (auto I : SpeculativelyMovedExts) { 5566 Value *HeadOfChain = I->getOperand(0); 5567 SeenChainsForSExt[HeadOfChain] = Inst; 5568 } 5569 return false; 5570 } 5571 5572 if (!AllSeenFirst && !UnhandledExts.empty()) 5573 for (auto VisitedSExt : UnhandledExts) { 5574 if (RemovedInsts.count(VisitedSExt)) 5575 continue; 5576 TypePromotionTransaction TPT(RemovedInsts); 5577 SmallVector<Instruction *, 1> Exts; 5578 SmallVector<Instruction *, 2> Chains; 5579 Exts.push_back(VisitedSExt); 5580 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 5581 TPT.commit(); 5582 if (HasPromoted) 5583 Promoted = true; 5584 for (auto I : Chains) { 5585 Value *HeadOfChain = I->getOperand(0); 5586 // Mark this as handled. 5587 SeenChainsForSExt[HeadOfChain] = nullptr; 5588 ValToSExtendedUses[HeadOfChain].push_back(I); 5589 } 5590 } 5591 return Promoted; 5592 } 5593 5594 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5595 BasicBlock *DefBB = I->getParent(); 5596 5597 // If the result of a {s|z}ext and its source are both live out, rewrite all 5598 // other uses of the source with result of extension. 5599 Value *Src = I->getOperand(0); 5600 if (Src->hasOneUse()) 5601 return false; 5602 5603 // Only do this xform if truncating is free. 5604 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 5605 return false; 5606 5607 // Only safe to perform the optimization if the source is also defined in 5608 // this block. 5609 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5610 return false; 5611 5612 bool DefIsLiveOut = false; 5613 for (User *U : I->users()) { 5614 Instruction *UI = cast<Instruction>(U); 5615 5616 // Figure out which BB this ext is used in. 5617 BasicBlock *UserBB = UI->getParent(); 5618 if (UserBB == DefBB) continue; 5619 DefIsLiveOut = true; 5620 break; 5621 } 5622 if (!DefIsLiveOut) 5623 return false; 5624 5625 // Make sure none of the uses are PHI nodes. 5626 for (User *U : Src->users()) { 5627 Instruction *UI = cast<Instruction>(U); 5628 BasicBlock *UserBB = UI->getParent(); 5629 if (UserBB == DefBB) continue; 5630 // Be conservative. We don't want this xform to end up introducing 5631 // reloads just before load / store instructions. 5632 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5633 return false; 5634 } 5635 5636 // InsertedTruncs - Only insert one trunc in each block once. 5637 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5638 5639 bool MadeChange = false; 5640 for (Use &U : Src->uses()) { 5641 Instruction *User = cast<Instruction>(U.getUser()); 5642 5643 // Figure out which BB this ext is used in. 5644 BasicBlock *UserBB = User->getParent(); 5645 if (UserBB == DefBB) continue; 5646 5647 // Both src and def are live in this block. Rewrite the use. 5648 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5649 5650 if (!InsertedTrunc) { 5651 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5652 assert(InsertPt != UserBB->end()); 5653 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5654 InsertedInsts.insert(InsertedTrunc); 5655 } 5656 5657 // Replace a use of the {s|z}ext source with a use of the result. 5658 U = InsertedTrunc; 5659 ++NumExtUses; 5660 MadeChange = true; 5661 } 5662 5663 return MadeChange; 5664 } 5665 5666 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5667 // just after the load if the target can fold this into one extload instruction, 5668 // with the hope of eliminating some of the other later "and" instructions using 5669 // the loaded value. "and"s that are made trivially redundant by the insertion 5670 // of the new "and" are removed by this function, while others (e.g. those whose 5671 // path from the load goes through a phi) are left for isel to potentially 5672 // remove. 5673 // 5674 // For example: 5675 // 5676 // b0: 5677 // x = load i32 5678 // ... 5679 // b1: 5680 // y = and x, 0xff 5681 // z = use y 5682 // 5683 // becomes: 5684 // 5685 // b0: 5686 // x = load i32 5687 // x' = and x, 0xff 5688 // ... 5689 // b1: 5690 // z = use x' 5691 // 5692 // whereas: 5693 // 5694 // b0: 5695 // x1 = load i32 5696 // ... 5697 // b1: 5698 // x2 = load i32 5699 // ... 5700 // b2: 5701 // x = phi x1, x2 5702 // y = and x, 0xff 5703 // 5704 // becomes (after a call to optimizeLoadExt for each load): 5705 // 5706 // b0: 5707 // x1 = load i32 5708 // x1' = and x1, 0xff 5709 // ... 5710 // b1: 5711 // x2 = load i32 5712 // x2' = and x2, 0xff 5713 // ... 5714 // b2: 5715 // x = phi x1', x2' 5716 // y = and x, 0xff 5717 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5718 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 5719 return false; 5720 5721 // Skip loads we've already transformed. 5722 if (Load->hasOneUse() && 5723 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5724 return false; 5725 5726 // Look at all uses of Load, looking through phis, to determine how many bits 5727 // of the loaded value are needed. 5728 SmallVector<Instruction *, 8> WorkList; 5729 SmallPtrSet<Instruction *, 16> Visited; 5730 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5731 for (auto *U : Load->users()) 5732 WorkList.push_back(cast<Instruction>(U)); 5733 5734 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5735 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5736 APInt DemandBits(BitWidth, 0); 5737 APInt WidestAndBits(BitWidth, 0); 5738 5739 while (!WorkList.empty()) { 5740 Instruction *I = WorkList.back(); 5741 WorkList.pop_back(); 5742 5743 // Break use-def graph loops. 5744 if (!Visited.insert(I).second) 5745 continue; 5746 5747 // For a PHI node, push all of its users. 5748 if (auto *Phi = dyn_cast<PHINode>(I)) { 5749 for (auto *U : Phi->users()) 5750 WorkList.push_back(cast<Instruction>(U)); 5751 continue; 5752 } 5753 5754 switch (I->getOpcode()) { 5755 case Instruction::And: { 5756 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5757 if (!AndC) 5758 return false; 5759 APInt AndBits = AndC->getValue(); 5760 DemandBits |= AndBits; 5761 // Keep track of the widest and mask we see. 5762 if (AndBits.ugt(WidestAndBits)) 5763 WidestAndBits = AndBits; 5764 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5765 AndsToMaybeRemove.push_back(I); 5766 break; 5767 } 5768 5769 case Instruction::Shl: { 5770 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5771 if (!ShlC) 5772 return false; 5773 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5774 DemandBits.setLowBits(BitWidth - ShiftAmt); 5775 break; 5776 } 5777 5778 case Instruction::Trunc: { 5779 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5780 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5781 DemandBits.setLowBits(TruncBitWidth); 5782 break; 5783 } 5784 5785 default: 5786 return false; 5787 } 5788 } 5789 5790 uint32_t ActiveBits = DemandBits.getActiveBits(); 5791 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5792 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5793 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5794 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5795 // followed by an AND. 5796 // TODO: Look into removing this restriction by fixing backends to either 5797 // return false for isLoadExtLegal for i1 or have them select this pattern to 5798 // a single instruction. 5799 // 5800 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5801 // mask, since these are the only ands that will be removed by isel. 5802 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5803 WidestAndBits != DemandBits) 5804 return false; 5805 5806 LLVMContext &Ctx = Load->getType()->getContext(); 5807 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5808 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5809 5810 // Reject cases that won't be matched as extloads. 5811 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5812 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5813 return false; 5814 5815 IRBuilder<> Builder(Load->getNextNode()); 5816 auto *NewAnd = dyn_cast<Instruction>( 5817 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5818 // Mark this instruction as "inserted by CGP", so that other 5819 // optimizations don't touch it. 5820 InsertedInsts.insert(NewAnd); 5821 5822 // Replace all uses of load with new and (except for the use of load in the 5823 // new and itself). 5824 Load->replaceAllUsesWith(NewAnd); 5825 NewAnd->setOperand(0, Load); 5826 5827 // Remove any and instructions that are now redundant. 5828 for (auto *And : AndsToMaybeRemove) 5829 // Check that the and mask is the same as the one we decided to put on the 5830 // new and. 5831 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5832 And->replaceAllUsesWith(NewAnd); 5833 if (&*CurInstIterator == And) 5834 CurInstIterator = std::next(And->getIterator()); 5835 And->eraseFromParent(); 5836 ++NumAndUses; 5837 } 5838 5839 ++NumAndsAdded; 5840 return true; 5841 } 5842 5843 /// Check if V (an operand of a select instruction) is an expensive instruction 5844 /// that is only used once. 5845 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5846 auto *I = dyn_cast<Instruction>(V); 5847 // If it's safe to speculatively execute, then it should not have side 5848 // effects; therefore, it's safe to sink and possibly *not* execute. 5849 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5850 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5851 } 5852 5853 /// Returns true if a SelectInst should be turned into an explicit branch. 5854 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5855 const TargetLowering *TLI, 5856 SelectInst *SI) { 5857 // If even a predictable select is cheap, then a branch can't be cheaper. 5858 if (!TLI->isPredictableSelectExpensive()) 5859 return false; 5860 5861 // FIXME: This should use the same heuristics as IfConversion to determine 5862 // whether a select is better represented as a branch. 5863 5864 // If metadata tells us that the select condition is obviously predictable, 5865 // then we want to replace the select with a branch. 5866 uint64_t TrueWeight, FalseWeight; 5867 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5868 uint64_t Max = std::max(TrueWeight, FalseWeight); 5869 uint64_t Sum = TrueWeight + FalseWeight; 5870 if (Sum != 0) { 5871 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5872 if (Probability > TLI->getPredictableBranchThreshold()) 5873 return true; 5874 } 5875 } 5876 5877 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5878 5879 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5880 // comparison condition. If the compare has more than one use, there's 5881 // probably another cmov or setcc around, so it's not worth emitting a branch. 5882 if (!Cmp || !Cmp->hasOneUse()) 5883 return false; 5884 5885 // If either operand of the select is expensive and only needed on one side 5886 // of the select, we should form a branch. 5887 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5888 sinkSelectOperand(TTI, SI->getFalseValue())) 5889 return true; 5890 5891 return false; 5892 } 5893 5894 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5895 /// false value of \p SI. If the true/false value of \p SI is defined by any 5896 /// select instructions in \p Selects, look through the defining select 5897 /// instruction until the true/false value is not defined in \p Selects. 5898 static Value *getTrueOrFalseValue( 5899 SelectInst *SI, bool isTrue, 5900 const SmallPtrSet<const Instruction *, 2> &Selects) { 5901 Value *V = nullptr; 5902 5903 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 5904 DefSI = dyn_cast<SelectInst>(V)) { 5905 assert(DefSI->getCondition() == SI->getCondition() && 5906 "The condition of DefSI does not match with SI"); 5907 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 5908 } 5909 5910 assert(V && "Failed to get select true/false value"); 5911 return V; 5912 } 5913 5914 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 5915 assert(Shift->isShift() && "Expected a shift"); 5916 5917 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 5918 // general vector shifts, and (3) the shift amount is a select-of-splatted 5919 // values, hoist the shifts before the select: 5920 // shift Op0, (select Cond, TVal, FVal) --> 5921 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 5922 // 5923 // This is inverting a generic IR transform when we know that the cost of a 5924 // general vector shift is more than the cost of 2 shift-by-scalars. 5925 // We can't do this effectively in SDAG because we may not be able to 5926 // determine if the select operands are splats from within a basic block. 5927 Type *Ty = Shift->getType(); 5928 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 5929 return false; 5930 Value *Cond, *TVal, *FVal; 5931 if (!match(Shift->getOperand(1), 5932 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 5933 return false; 5934 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 5935 return false; 5936 5937 IRBuilder<> Builder(Shift); 5938 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 5939 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 5940 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 5941 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 5942 Shift->replaceAllUsesWith(NewSel); 5943 Shift->eraseFromParent(); 5944 return true; 5945 } 5946 5947 /// If we have a SelectInst that will likely profit from branch prediction, 5948 /// turn it into a branch. 5949 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 5950 // If branch conversion isn't desirable, exit early. 5951 if (DisableSelectToBranch || OptSize || !TLI) 5952 return false; 5953 5954 // Find all consecutive select instructions that share the same condition. 5955 SmallVector<SelectInst *, 2> ASI; 5956 ASI.push_back(SI); 5957 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 5958 It != SI->getParent()->end(); ++It) { 5959 SelectInst *I = dyn_cast<SelectInst>(&*It); 5960 if (I && SI->getCondition() == I->getCondition()) { 5961 ASI.push_back(I); 5962 } else { 5963 break; 5964 } 5965 } 5966 5967 SelectInst *LastSI = ASI.back(); 5968 // Increment the current iterator to skip all the rest of select instructions 5969 // because they will be either "not lowered" or "all lowered" to branch. 5970 CurInstIterator = std::next(LastSI->getIterator()); 5971 5972 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 5973 5974 // Can we convert the 'select' to CF ? 5975 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 5976 return false; 5977 5978 TargetLowering::SelectSupportKind SelectKind; 5979 if (VectorCond) 5980 SelectKind = TargetLowering::VectorMaskSelect; 5981 else if (SI->getType()->isVectorTy()) 5982 SelectKind = TargetLowering::ScalarCondVectorVal; 5983 else 5984 SelectKind = TargetLowering::ScalarValSelect; 5985 5986 if (TLI->isSelectSupported(SelectKind) && 5987 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 5988 return false; 5989 5990 // The DominatorTree needs to be rebuilt by any consumers after this 5991 // transformation. We simply reset here rather than setting the ModifiedDT 5992 // flag to avoid restarting the function walk in runOnFunction for each 5993 // select optimized. 5994 DT.reset(); 5995 5996 // Transform a sequence like this: 5997 // start: 5998 // %cmp = cmp uge i32 %a, %b 5999 // %sel = select i1 %cmp, i32 %c, i32 %d 6000 // 6001 // Into: 6002 // start: 6003 // %cmp = cmp uge i32 %a, %b 6004 // br i1 %cmp, label %select.true, label %select.false 6005 // select.true: 6006 // br label %select.end 6007 // select.false: 6008 // br label %select.end 6009 // select.end: 6010 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6011 // 6012 // In addition, we may sink instructions that produce %c or %d from 6013 // the entry block into the destination(s) of the new branch. 6014 // If the true or false blocks do not contain a sunken instruction, that 6015 // block and its branch may be optimized away. In that case, one side of the 6016 // first branch will point directly to select.end, and the corresponding PHI 6017 // predecessor block will be the start block. 6018 6019 // First, we split the block containing the select into 2 blocks. 6020 BasicBlock *StartBlock = SI->getParent(); 6021 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6022 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6023 6024 // Delete the unconditional branch that was just created by the split. 6025 StartBlock->getTerminator()->eraseFromParent(); 6026 6027 // These are the new basic blocks for the conditional branch. 6028 // At least one will become an actual new basic block. 6029 BasicBlock *TrueBlock = nullptr; 6030 BasicBlock *FalseBlock = nullptr; 6031 BranchInst *TrueBranch = nullptr; 6032 BranchInst *FalseBranch = nullptr; 6033 6034 // Sink expensive instructions into the conditional blocks to avoid executing 6035 // them speculatively. 6036 for (SelectInst *SI : ASI) { 6037 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6038 if (TrueBlock == nullptr) { 6039 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6040 EndBlock->getParent(), EndBlock); 6041 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6042 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6043 } 6044 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6045 TrueInst->moveBefore(TrueBranch); 6046 } 6047 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6048 if (FalseBlock == nullptr) { 6049 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6050 EndBlock->getParent(), EndBlock); 6051 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6052 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6053 } 6054 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6055 FalseInst->moveBefore(FalseBranch); 6056 } 6057 } 6058 6059 // If there was nothing to sink, then arbitrarily choose the 'false' side 6060 // for a new input value to the PHI. 6061 if (TrueBlock == FalseBlock) { 6062 assert(TrueBlock == nullptr && 6063 "Unexpected basic block transform while optimizing select"); 6064 6065 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6066 EndBlock->getParent(), EndBlock); 6067 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6068 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6069 } 6070 6071 // Insert the real conditional branch based on the original condition. 6072 // If we did not create a new block for one of the 'true' or 'false' paths 6073 // of the condition, it means that side of the branch goes to the end block 6074 // directly and the path originates from the start block from the point of 6075 // view of the new PHI. 6076 BasicBlock *TT, *FT; 6077 if (TrueBlock == nullptr) { 6078 TT = EndBlock; 6079 FT = FalseBlock; 6080 TrueBlock = StartBlock; 6081 } else if (FalseBlock == nullptr) { 6082 TT = TrueBlock; 6083 FT = EndBlock; 6084 FalseBlock = StartBlock; 6085 } else { 6086 TT = TrueBlock; 6087 FT = FalseBlock; 6088 } 6089 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 6090 6091 SmallPtrSet<const Instruction *, 2> INS; 6092 INS.insert(ASI.begin(), ASI.end()); 6093 // Use reverse iterator because later select may use the value of the 6094 // earlier select, and we need to propagate value through earlier select 6095 // to get the PHI operand. 6096 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 6097 SelectInst *SI = *It; 6098 // The select itself is replaced with a PHI Node. 6099 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6100 PN->takeName(SI); 6101 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6102 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6103 PN->setDebugLoc(SI->getDebugLoc()); 6104 6105 SI->replaceAllUsesWith(PN); 6106 SI->eraseFromParent(); 6107 INS.erase(SI); 6108 ++NumSelectsExpanded; 6109 } 6110 6111 // Instruct OptimizeBlock to skip to the next block. 6112 CurInstIterator = StartBlock->end(); 6113 return true; 6114 } 6115 6116 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 6117 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 6118 int SplatElem = -1; 6119 for (unsigned i = 0; i < Mask.size(); ++i) { 6120 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 6121 return false; 6122 SplatElem = Mask[i]; 6123 } 6124 6125 return true; 6126 } 6127 6128 /// Some targets have expensive vector shifts if the lanes aren't all the same 6129 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 6130 /// it's often worth sinking a shufflevector splat down to its use so that 6131 /// codegen can spot all lanes are identical. 6132 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6133 BasicBlock *DefBB = SVI->getParent(); 6134 6135 // Only do this xform if variable vector shifts are particularly expensive. 6136 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 6137 return false; 6138 6139 // We only expect better codegen by sinking a shuffle if we can recognise a 6140 // constant splat. 6141 if (!isBroadcastShuffle(SVI)) 6142 return false; 6143 6144 // InsertedShuffles - Only insert a shuffle in each block once. 6145 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 6146 6147 bool MadeChange = false; 6148 for (User *U : SVI->users()) { 6149 Instruction *UI = cast<Instruction>(U); 6150 6151 // Figure out which BB this ext is used in. 6152 BasicBlock *UserBB = UI->getParent(); 6153 if (UserBB == DefBB) continue; 6154 6155 // For now only apply this when the splat is used by a shift instruction. 6156 if (!UI->isShift()) continue; 6157 6158 // Everything checks out, sink the shuffle if the user's block doesn't 6159 // already have a copy. 6160 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 6161 6162 if (!InsertedShuffle) { 6163 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6164 assert(InsertPt != UserBB->end()); 6165 InsertedShuffle = 6166 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 6167 SVI->getOperand(2), "", &*InsertPt); 6168 InsertedShuffle->setDebugLoc(SVI->getDebugLoc()); 6169 } 6170 6171 UI->replaceUsesOfWith(SVI, InsertedShuffle); 6172 MadeChange = true; 6173 } 6174 6175 // If we removed all uses, nuke the shuffle. 6176 if (SVI->use_empty()) { 6177 SVI->eraseFromParent(); 6178 MadeChange = true; 6179 } 6180 6181 return MadeChange; 6182 } 6183 6184 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6185 // If the operands of I can be folded into a target instruction together with 6186 // I, duplicate and sink them. 6187 SmallVector<Use *, 4> OpsToSink; 6188 if (!TLI || !TLI->shouldSinkOperands(I, OpsToSink)) 6189 return false; 6190 6191 // OpsToSink can contain multiple uses in a use chain (e.g. 6192 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6193 // uses must come first, which means they are sunk first, temporarily creating 6194 // invalid IR. This will be fixed once their dominated users are sunk and 6195 // updated. 6196 BasicBlock *TargetBB = I->getParent(); 6197 bool Changed = false; 6198 SmallVector<Use *, 4> ToReplace; 6199 for (Use *U : OpsToSink) { 6200 auto *UI = cast<Instruction>(U->get()); 6201 if (UI->getParent() == TargetBB || isa<PHINode>(UI)) 6202 continue; 6203 ToReplace.push_back(U); 6204 } 6205 6206 SmallPtrSet<Instruction *, 4> MaybeDead; 6207 for (Use *U : ToReplace) { 6208 auto *UI = cast<Instruction>(U->get()); 6209 Instruction *NI = UI->clone(); 6210 MaybeDead.insert(UI); 6211 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6212 NI->insertBefore(I); 6213 InsertedInsts.insert(NI); 6214 U->set(NI); 6215 Changed = true; 6216 } 6217 6218 // Remove instructions that are dead after sinking. 6219 for (auto *I : MaybeDead) 6220 if (!I->hasNUsesOrMore(1)) 6221 I->eraseFromParent(); 6222 6223 return Changed; 6224 } 6225 6226 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6227 if (!TLI || !DL) 6228 return false; 6229 6230 Value *Cond = SI->getCondition(); 6231 Type *OldType = Cond->getType(); 6232 LLVMContext &Context = Cond->getContext(); 6233 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 6234 unsigned RegWidth = RegType.getSizeInBits(); 6235 6236 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6237 return false; 6238 6239 // If the register width is greater than the type width, expand the condition 6240 // of the switch instruction and each case constant to the width of the 6241 // register. By widening the type of the switch condition, subsequent 6242 // comparisons (for case comparisons) will not need to be extended to the 6243 // preferred register width, so we will potentially eliminate N-1 extends, 6244 // where N is the number of cases in the switch. 6245 auto *NewType = Type::getIntNTy(Context, RegWidth); 6246 6247 // Zero-extend the switch condition and case constants unless the switch 6248 // condition is a function argument that is already being sign-extended. 6249 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6250 // everything instead. 6251 Instruction::CastOps ExtType = Instruction::ZExt; 6252 if (auto *Arg = dyn_cast<Argument>(Cond)) 6253 if (Arg->hasSExtAttr()) 6254 ExtType = Instruction::SExt; 6255 6256 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 6257 ExtInst->insertBefore(SI); 6258 ExtInst->setDebugLoc(SI->getDebugLoc()); 6259 SI->setCondition(ExtInst); 6260 for (auto Case : SI->cases()) { 6261 APInt NarrowConst = Case.getCaseValue()->getValue(); 6262 APInt WideConst = (ExtType == Instruction::ZExt) ? 6263 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 6264 Case.setValue(ConstantInt::get(Context, WideConst)); 6265 } 6266 6267 return true; 6268 } 6269 6270 6271 namespace { 6272 6273 /// Helper class to promote a scalar operation to a vector one. 6274 /// This class is used to move downward extractelement transition. 6275 /// E.g., 6276 /// a = vector_op <2 x i32> 6277 /// b = extractelement <2 x i32> a, i32 0 6278 /// c = scalar_op b 6279 /// store c 6280 /// 6281 /// => 6282 /// a = vector_op <2 x i32> 6283 /// c = vector_op a (equivalent to scalar_op on the related lane) 6284 /// * d = extractelement <2 x i32> c, i32 0 6285 /// * store d 6286 /// Assuming both extractelement and store can be combine, we get rid of the 6287 /// transition. 6288 class VectorPromoteHelper { 6289 /// DataLayout associated with the current module. 6290 const DataLayout &DL; 6291 6292 /// Used to perform some checks on the legality of vector operations. 6293 const TargetLowering &TLI; 6294 6295 /// Used to estimated the cost of the promoted chain. 6296 const TargetTransformInfo &TTI; 6297 6298 /// The transition being moved downwards. 6299 Instruction *Transition; 6300 6301 /// The sequence of instructions to be promoted. 6302 SmallVector<Instruction *, 4> InstsToBePromoted; 6303 6304 /// Cost of combining a store and an extract. 6305 unsigned StoreExtractCombineCost; 6306 6307 /// Instruction that will be combined with the transition. 6308 Instruction *CombineInst = nullptr; 6309 6310 /// The instruction that represents the current end of the transition. 6311 /// Since we are faking the promotion until we reach the end of the chain 6312 /// of computation, we need a way to get the current end of the transition. 6313 Instruction *getEndOfTransition() const { 6314 if (InstsToBePromoted.empty()) 6315 return Transition; 6316 return InstsToBePromoted.back(); 6317 } 6318 6319 /// Return the index of the original value in the transition. 6320 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 6321 /// c, is at index 0. 6322 unsigned getTransitionOriginalValueIdx() const { 6323 assert(isa<ExtractElementInst>(Transition) && 6324 "Other kind of transitions are not supported yet"); 6325 return 0; 6326 } 6327 6328 /// Return the index of the index in the transition. 6329 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 6330 /// is at index 1. 6331 unsigned getTransitionIdx() const { 6332 assert(isa<ExtractElementInst>(Transition) && 6333 "Other kind of transitions are not supported yet"); 6334 return 1; 6335 } 6336 6337 /// Get the type of the transition. 6338 /// This is the type of the original value. 6339 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 6340 /// transition is <2 x i32>. 6341 Type *getTransitionType() const { 6342 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 6343 } 6344 6345 /// Promote \p ToBePromoted by moving \p Def downward through. 6346 /// I.e., we have the following sequence: 6347 /// Def = Transition <ty1> a to <ty2> 6348 /// b = ToBePromoted <ty2> Def, ... 6349 /// => 6350 /// b = ToBePromoted <ty1> a, ... 6351 /// Def = Transition <ty1> ToBePromoted to <ty2> 6352 void promoteImpl(Instruction *ToBePromoted); 6353 6354 /// Check whether or not it is profitable to promote all the 6355 /// instructions enqueued to be promoted. 6356 bool isProfitableToPromote() { 6357 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 6358 unsigned Index = isa<ConstantInt>(ValIdx) 6359 ? cast<ConstantInt>(ValIdx)->getZExtValue() 6360 : -1; 6361 Type *PromotedType = getTransitionType(); 6362 6363 StoreInst *ST = cast<StoreInst>(CombineInst); 6364 unsigned AS = ST->getPointerAddressSpace(); 6365 unsigned Align = ST->getAlignment(); 6366 // Check if this store is supported. 6367 if (!TLI.allowsMisalignedMemoryAccesses( 6368 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 6369 Align)) { 6370 // If this is not supported, there is no way we can combine 6371 // the extract with the store. 6372 return false; 6373 } 6374 6375 // The scalar chain of computation has to pay for the transition 6376 // scalar to vector. 6377 // The vector chain has to account for the combining cost. 6378 uint64_t ScalarCost = 6379 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 6380 uint64_t VectorCost = StoreExtractCombineCost; 6381 for (const auto &Inst : InstsToBePromoted) { 6382 // Compute the cost. 6383 // By construction, all instructions being promoted are arithmetic ones. 6384 // Moreover, one argument is a constant that can be viewed as a splat 6385 // constant. 6386 Value *Arg0 = Inst->getOperand(0); 6387 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 6388 isa<ConstantFP>(Arg0); 6389 TargetTransformInfo::OperandValueKind Arg0OVK = 6390 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6391 : TargetTransformInfo::OK_AnyValue; 6392 TargetTransformInfo::OperandValueKind Arg1OVK = 6393 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6394 : TargetTransformInfo::OK_AnyValue; 6395 ScalarCost += TTI.getArithmeticInstrCost( 6396 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 6397 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 6398 Arg0OVK, Arg1OVK); 6399 } 6400 LLVM_DEBUG( 6401 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 6402 << ScalarCost << "\nVector: " << VectorCost << '\n'); 6403 return ScalarCost > VectorCost; 6404 } 6405 6406 /// Generate a constant vector with \p Val with the same 6407 /// number of elements as the transition. 6408 /// \p UseSplat defines whether or not \p Val should be replicated 6409 /// across the whole vector. 6410 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 6411 /// otherwise we generate a vector with as many undef as possible: 6412 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 6413 /// used at the index of the extract. 6414 Value *getConstantVector(Constant *Val, bool UseSplat) const { 6415 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 6416 if (!UseSplat) { 6417 // If we cannot determine where the constant must be, we have to 6418 // use a splat constant. 6419 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 6420 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 6421 ExtractIdx = CstVal->getSExtValue(); 6422 else 6423 UseSplat = true; 6424 } 6425 6426 unsigned End = getTransitionType()->getVectorNumElements(); 6427 if (UseSplat) 6428 return ConstantVector::getSplat(End, Val); 6429 6430 SmallVector<Constant *, 4> ConstVec; 6431 UndefValue *UndefVal = UndefValue::get(Val->getType()); 6432 for (unsigned Idx = 0; Idx != End; ++Idx) { 6433 if (Idx == ExtractIdx) 6434 ConstVec.push_back(Val); 6435 else 6436 ConstVec.push_back(UndefVal); 6437 } 6438 return ConstantVector::get(ConstVec); 6439 } 6440 6441 /// Check if promoting to a vector type an operand at \p OperandIdx 6442 /// in \p Use can trigger undefined behavior. 6443 static bool canCauseUndefinedBehavior(const Instruction *Use, 6444 unsigned OperandIdx) { 6445 // This is not safe to introduce undef when the operand is on 6446 // the right hand side of a division-like instruction. 6447 if (OperandIdx != 1) 6448 return false; 6449 switch (Use->getOpcode()) { 6450 default: 6451 return false; 6452 case Instruction::SDiv: 6453 case Instruction::UDiv: 6454 case Instruction::SRem: 6455 case Instruction::URem: 6456 return true; 6457 case Instruction::FDiv: 6458 case Instruction::FRem: 6459 return !Use->hasNoNaNs(); 6460 } 6461 llvm_unreachable(nullptr); 6462 } 6463 6464 public: 6465 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 6466 const TargetTransformInfo &TTI, Instruction *Transition, 6467 unsigned CombineCost) 6468 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 6469 StoreExtractCombineCost(CombineCost) { 6470 assert(Transition && "Do not know how to promote null"); 6471 } 6472 6473 /// Check if we can promote \p ToBePromoted to \p Type. 6474 bool canPromote(const Instruction *ToBePromoted) const { 6475 // We could support CastInst too. 6476 return isa<BinaryOperator>(ToBePromoted); 6477 } 6478 6479 /// Check if it is profitable to promote \p ToBePromoted 6480 /// by moving downward the transition through. 6481 bool shouldPromote(const Instruction *ToBePromoted) const { 6482 // Promote only if all the operands can be statically expanded. 6483 // Indeed, we do not want to introduce any new kind of transitions. 6484 for (const Use &U : ToBePromoted->operands()) { 6485 const Value *Val = U.get(); 6486 if (Val == getEndOfTransition()) { 6487 // If the use is a division and the transition is on the rhs, 6488 // we cannot promote the operation, otherwise we may create a 6489 // division by zero. 6490 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 6491 return false; 6492 continue; 6493 } 6494 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 6495 !isa<ConstantFP>(Val)) 6496 return false; 6497 } 6498 // Check that the resulting operation is legal. 6499 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 6500 if (!ISDOpcode) 6501 return false; 6502 return StressStoreExtract || 6503 TLI.isOperationLegalOrCustom( 6504 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 6505 } 6506 6507 /// Check whether or not \p Use can be combined 6508 /// with the transition. 6509 /// I.e., is it possible to do Use(Transition) => AnotherUse? 6510 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 6511 6512 /// Record \p ToBePromoted as part of the chain to be promoted. 6513 void enqueueForPromotion(Instruction *ToBePromoted) { 6514 InstsToBePromoted.push_back(ToBePromoted); 6515 } 6516 6517 /// Set the instruction that will be combined with the transition. 6518 void recordCombineInstruction(Instruction *ToBeCombined) { 6519 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 6520 CombineInst = ToBeCombined; 6521 } 6522 6523 /// Promote all the instructions enqueued for promotion if it is 6524 /// is profitable. 6525 /// \return True if the promotion happened, false otherwise. 6526 bool promote() { 6527 // Check if there is something to promote. 6528 // Right now, if we do not have anything to combine with, 6529 // we assume the promotion is not profitable. 6530 if (InstsToBePromoted.empty() || !CombineInst) 6531 return false; 6532 6533 // Check cost. 6534 if (!StressStoreExtract && !isProfitableToPromote()) 6535 return false; 6536 6537 // Promote. 6538 for (auto &ToBePromoted : InstsToBePromoted) 6539 promoteImpl(ToBePromoted); 6540 InstsToBePromoted.clear(); 6541 return true; 6542 } 6543 }; 6544 6545 } // end anonymous namespace 6546 6547 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 6548 // At this point, we know that all the operands of ToBePromoted but Def 6549 // can be statically promoted. 6550 // For Def, we need to use its parameter in ToBePromoted: 6551 // b = ToBePromoted ty1 a 6552 // Def = Transition ty1 b to ty2 6553 // Move the transition down. 6554 // 1. Replace all uses of the promoted operation by the transition. 6555 // = ... b => = ... Def. 6556 assert(ToBePromoted->getType() == Transition->getType() && 6557 "The type of the result of the transition does not match " 6558 "the final type"); 6559 ToBePromoted->replaceAllUsesWith(Transition); 6560 // 2. Update the type of the uses. 6561 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 6562 Type *TransitionTy = getTransitionType(); 6563 ToBePromoted->mutateType(TransitionTy); 6564 // 3. Update all the operands of the promoted operation with promoted 6565 // operands. 6566 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 6567 for (Use &U : ToBePromoted->operands()) { 6568 Value *Val = U.get(); 6569 Value *NewVal = nullptr; 6570 if (Val == Transition) 6571 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 6572 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 6573 isa<ConstantFP>(Val)) { 6574 // Use a splat constant if it is not safe to use undef. 6575 NewVal = getConstantVector( 6576 cast<Constant>(Val), 6577 isa<UndefValue>(Val) || 6578 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 6579 } else 6580 llvm_unreachable("Did you modified shouldPromote and forgot to update " 6581 "this?"); 6582 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 6583 } 6584 Transition->moveAfter(ToBePromoted); 6585 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 6586 } 6587 6588 /// Some targets can do store(extractelement) with one instruction. 6589 /// Try to push the extractelement towards the stores when the target 6590 /// has this feature and this is profitable. 6591 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 6592 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 6593 if (DisableStoreExtract || !TLI || 6594 (!StressStoreExtract && 6595 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 6596 Inst->getOperand(1), CombineCost))) 6597 return false; 6598 6599 // At this point we know that Inst is a vector to scalar transition. 6600 // Try to move it down the def-use chain, until: 6601 // - We can combine the transition with its single use 6602 // => we got rid of the transition. 6603 // - We escape the current basic block 6604 // => we would need to check that we are moving it at a cheaper place and 6605 // we do not do that for now. 6606 BasicBlock *Parent = Inst->getParent(); 6607 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 6608 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 6609 // If the transition has more than one use, assume this is not going to be 6610 // beneficial. 6611 while (Inst->hasOneUse()) { 6612 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 6613 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 6614 6615 if (ToBePromoted->getParent() != Parent) { 6616 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 6617 << ToBePromoted->getParent()->getName() 6618 << ") than the transition (" << Parent->getName() 6619 << ").\n"); 6620 return false; 6621 } 6622 6623 if (VPH.canCombine(ToBePromoted)) { 6624 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 6625 << "will be combined with: " << *ToBePromoted << '\n'); 6626 VPH.recordCombineInstruction(ToBePromoted); 6627 bool Changed = VPH.promote(); 6628 NumStoreExtractExposed += Changed; 6629 return Changed; 6630 } 6631 6632 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 6633 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 6634 return false; 6635 6636 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 6637 6638 VPH.enqueueForPromotion(ToBePromoted); 6639 Inst = ToBePromoted; 6640 } 6641 return false; 6642 } 6643 6644 /// For the instruction sequence of store below, F and I values 6645 /// are bundled together as an i64 value before being stored into memory. 6646 /// Sometimes it is more efficient to generate separate stores for F and I, 6647 /// which can remove the bitwise instructions or sink them to colder places. 6648 /// 6649 /// (store (or (zext (bitcast F to i32) to i64), 6650 /// (shl (zext I to i64), 32)), addr) --> 6651 /// (store F, addr) and (store I, addr+4) 6652 /// 6653 /// Similarly, splitting for other merged store can also be beneficial, like: 6654 /// For pair of {i32, i32}, i64 store --> two i32 stores. 6655 /// For pair of {i32, i16}, i64 store --> two i32 stores. 6656 /// For pair of {i16, i16}, i32 store --> two i16 stores. 6657 /// For pair of {i16, i8}, i32 store --> two i16 stores. 6658 /// For pair of {i8, i8}, i16 store --> two i8 stores. 6659 /// 6660 /// We allow each target to determine specifically which kind of splitting is 6661 /// supported. 6662 /// 6663 /// The store patterns are commonly seen from the simple code snippet below 6664 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 6665 /// void goo(const std::pair<int, float> &); 6666 /// hoo() { 6667 /// ... 6668 /// goo(std::make_pair(tmp, ftmp)); 6669 /// ... 6670 /// } 6671 /// 6672 /// Although we already have similar splitting in DAG Combine, we duplicate 6673 /// it in CodeGenPrepare to catch the case in which pattern is across 6674 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6675 /// during code expansion. 6676 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6677 const TargetLowering &TLI) { 6678 // Handle simple but common cases only. 6679 Type *StoreType = SI.getValueOperand()->getType(); 6680 if (!DL.typeSizeEqualsStoreSize(StoreType) || 6681 DL.getTypeSizeInBits(StoreType) == 0) 6682 return false; 6683 6684 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6685 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 6686 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 6687 return false; 6688 6689 // Don't split the store if it is volatile. 6690 if (SI.isVolatile()) 6691 return false; 6692 6693 // Match the following patterns: 6694 // (store (or (zext LValue to i64), 6695 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6696 // or 6697 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6698 // (zext LValue to i64), 6699 // Expect both operands of OR and the first operand of SHL have only 6700 // one use. 6701 Value *LValue, *HValue; 6702 if (!match(SI.getValueOperand(), 6703 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6704 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6705 m_SpecificInt(HalfValBitSize)))))) 6706 return false; 6707 6708 // Check LValue and HValue are int with size less or equal than 32. 6709 if (!LValue->getType()->isIntegerTy() || 6710 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6711 !HValue->getType()->isIntegerTy() || 6712 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6713 return false; 6714 6715 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6716 // as the input of target query. 6717 auto *LBC = dyn_cast<BitCastInst>(LValue); 6718 auto *HBC = dyn_cast<BitCastInst>(HValue); 6719 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6720 : EVT::getEVT(LValue->getType()); 6721 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6722 : EVT::getEVT(HValue->getType()); 6723 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6724 return false; 6725 6726 // Start to split store. 6727 IRBuilder<> Builder(SI.getContext()); 6728 Builder.SetInsertPoint(&SI); 6729 6730 // If LValue/HValue is a bitcast in another BB, create a new one in current 6731 // BB so it may be merged with the splitted stores by dag combiner. 6732 if (LBC && LBC->getParent() != SI.getParent()) 6733 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6734 if (HBC && HBC->getParent() != SI.getParent()) 6735 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6736 6737 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 6738 auto CreateSplitStore = [&](Value *V, bool Upper) { 6739 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6740 Value *Addr = Builder.CreateBitCast( 6741 SI.getOperand(1), 6742 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6743 if ((IsLE && Upper) || (!IsLE && !Upper)) 6744 Addr = Builder.CreateGEP( 6745 SplitStoreType, Addr, 6746 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6747 Builder.CreateAlignedStore( 6748 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 6749 }; 6750 6751 CreateSplitStore(LValue, false); 6752 CreateSplitStore(HValue, true); 6753 6754 // Delete the old store. 6755 SI.eraseFromParent(); 6756 return true; 6757 } 6758 6759 // Return true if the GEP has two operands, the first operand is of a sequential 6760 // type, and the second operand is a constant. 6761 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6762 gep_type_iterator I = gep_type_begin(*GEP); 6763 return GEP->getNumOperands() == 2 && 6764 I.isSequential() && 6765 isa<ConstantInt>(GEP->getOperand(1)); 6766 } 6767 6768 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6769 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6770 // reducing liveness interference across those edges benefits global register 6771 // allocation. Currently handles only certain cases. 6772 // 6773 // For example, unmerge %GEPI and %UGEPI as below. 6774 // 6775 // ---------- BEFORE ---------- 6776 // SrcBlock: 6777 // ... 6778 // %GEPIOp = ... 6779 // ... 6780 // %GEPI = gep %GEPIOp, Idx 6781 // ... 6782 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6783 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6784 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6785 // %UGEPI) 6786 // 6787 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6788 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6789 // ... 6790 // 6791 // DstBi: 6792 // ... 6793 // %UGEPI = gep %GEPIOp, UIdx 6794 // ... 6795 // --------------------------- 6796 // 6797 // ---------- AFTER ---------- 6798 // SrcBlock: 6799 // ... (same as above) 6800 // (* %GEPI is still alive on the indirectbr edges) 6801 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6802 // unmerging) 6803 // ... 6804 // 6805 // DstBi: 6806 // ... 6807 // %UGEPI = gep %GEPI, (UIdx-Idx) 6808 // ... 6809 // --------------------------- 6810 // 6811 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6812 // no longer alive on them. 6813 // 6814 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6815 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6816 // not to disable further simplications and optimizations as a result of GEP 6817 // merging. 6818 // 6819 // Note this unmerging may increase the length of the data flow critical path 6820 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6821 // between the register pressure and the length of data-flow critical 6822 // path. Restricting this to the uncommon IndirectBr case would minimize the 6823 // impact of potentially longer critical path, if any, and the impact on compile 6824 // time. 6825 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6826 const TargetTransformInfo *TTI) { 6827 BasicBlock *SrcBlock = GEPI->getParent(); 6828 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 6829 // (non-IndirectBr) cases exit early here. 6830 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 6831 return false; 6832 // Check that GEPI is a simple gep with a single constant index. 6833 if (!GEPSequentialConstIndexed(GEPI)) 6834 return false; 6835 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 6836 // Check that GEPI is a cheap one. 6837 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 6838 > TargetTransformInfo::TCC_Basic) 6839 return false; 6840 Value *GEPIOp = GEPI->getOperand(0); 6841 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 6842 if (!isa<Instruction>(GEPIOp)) 6843 return false; 6844 auto *GEPIOpI = cast<Instruction>(GEPIOp); 6845 if (GEPIOpI->getParent() != SrcBlock) 6846 return false; 6847 // Check that GEP is used outside the block, meaning it's alive on the 6848 // IndirectBr edge(s). 6849 if (find_if(GEPI->users(), [&](User *Usr) { 6850 if (auto *I = dyn_cast<Instruction>(Usr)) { 6851 if (I->getParent() != SrcBlock) { 6852 return true; 6853 } 6854 } 6855 return false; 6856 }) == GEPI->users().end()) 6857 return false; 6858 // The second elements of the GEP chains to be unmerged. 6859 std::vector<GetElementPtrInst *> UGEPIs; 6860 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 6861 // on IndirectBr edges. 6862 for (User *Usr : GEPIOp->users()) { 6863 if (Usr == GEPI) continue; 6864 // Check if Usr is an Instruction. If not, give up. 6865 if (!isa<Instruction>(Usr)) 6866 return false; 6867 auto *UI = cast<Instruction>(Usr); 6868 // Check if Usr in the same block as GEPIOp, which is fine, skip. 6869 if (UI->getParent() == SrcBlock) 6870 continue; 6871 // Check if Usr is a GEP. If not, give up. 6872 if (!isa<GetElementPtrInst>(Usr)) 6873 return false; 6874 auto *UGEPI = cast<GetElementPtrInst>(Usr); 6875 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 6876 // the pointer operand to it. If so, record it in the vector. If not, give 6877 // up. 6878 if (!GEPSequentialConstIndexed(UGEPI)) 6879 return false; 6880 if (UGEPI->getOperand(0) != GEPIOp) 6881 return false; 6882 if (GEPIIdx->getType() != 6883 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 6884 return false; 6885 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6886 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 6887 > TargetTransformInfo::TCC_Basic) 6888 return false; 6889 UGEPIs.push_back(UGEPI); 6890 } 6891 if (UGEPIs.size() == 0) 6892 return false; 6893 // Check the materializing cost of (Uidx-Idx). 6894 for (GetElementPtrInst *UGEPI : UGEPIs) { 6895 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6896 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 6897 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 6898 if (ImmCost > TargetTransformInfo::TCC_Basic) 6899 return false; 6900 } 6901 // Now unmerge between GEPI and UGEPIs. 6902 for (GetElementPtrInst *UGEPI : UGEPIs) { 6903 UGEPI->setOperand(0, GEPI); 6904 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6905 Constant *NewUGEPIIdx = 6906 ConstantInt::get(GEPIIdx->getType(), 6907 UGEPIIdx->getValue() - GEPIIdx->getValue()); 6908 UGEPI->setOperand(1, NewUGEPIIdx); 6909 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 6910 // inbounds to avoid UB. 6911 if (!GEPI->isInBounds()) { 6912 UGEPI->setIsInBounds(false); 6913 } 6914 } 6915 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 6916 // alive on IndirectBr edges). 6917 assert(find_if(GEPIOp->users(), [&](User *Usr) { 6918 return cast<Instruction>(Usr)->getParent() != SrcBlock; 6919 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 6920 return true; 6921 } 6922 6923 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 6924 // Bail out if we inserted the instruction to prevent optimizations from 6925 // stepping on each other's toes. 6926 if (InsertedInsts.count(I)) 6927 return false; 6928 6929 // TODO: Move into the switch on opcode below here. 6930 if (PHINode *P = dyn_cast<PHINode>(I)) { 6931 // It is possible for very late stage optimizations (such as SimplifyCFG) 6932 // to introduce PHI nodes too late to be cleaned up. If we detect such a 6933 // trivial PHI, go ahead and zap it here. 6934 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 6935 LargeOffsetGEPMap.erase(P); 6936 P->replaceAllUsesWith(V); 6937 P->eraseFromParent(); 6938 ++NumPHIsElim; 6939 return true; 6940 } 6941 return false; 6942 } 6943 6944 if (CastInst *CI = dyn_cast<CastInst>(I)) { 6945 // If the source of the cast is a constant, then this should have 6946 // already been constant folded. The only reason NOT to constant fold 6947 // it is if something (e.g. LSR) was careful to place the constant 6948 // evaluation in a block other than then one that uses it (e.g. to hoist 6949 // the address of globals out of a loop). If this is the case, we don't 6950 // want to forward-subst the cast. 6951 if (isa<Constant>(CI->getOperand(0))) 6952 return false; 6953 6954 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 6955 return true; 6956 6957 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 6958 /// Sink a zext or sext into its user blocks if the target type doesn't 6959 /// fit in one register 6960 if (TLI && 6961 TLI->getTypeAction(CI->getContext(), 6962 TLI->getValueType(*DL, CI->getType())) == 6963 TargetLowering::TypeExpandInteger) { 6964 return SinkCast(CI); 6965 } else { 6966 bool MadeChange = optimizeExt(I); 6967 return MadeChange | optimizeExtUses(I); 6968 } 6969 } 6970 return false; 6971 } 6972 6973 if (auto *Cmp = dyn_cast<CmpInst>(I)) 6974 if (TLI && optimizeCmp(Cmp, ModifiedDT)) 6975 return true; 6976 6977 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6978 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6979 if (TLI) { 6980 bool Modified = optimizeLoadExt(LI); 6981 unsigned AS = LI->getPointerAddressSpace(); 6982 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 6983 return Modified; 6984 } 6985 return false; 6986 } 6987 6988 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 6989 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 6990 return true; 6991 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6992 if (TLI) { 6993 unsigned AS = SI->getPointerAddressSpace(); 6994 return optimizeMemoryInst(I, SI->getOperand(1), 6995 SI->getOperand(0)->getType(), AS); 6996 } 6997 return false; 6998 } 6999 7000 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 7001 unsigned AS = RMW->getPointerAddressSpace(); 7002 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7003 RMW->getType(), AS); 7004 } 7005 7006 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7007 unsigned AS = CmpX->getPointerAddressSpace(); 7008 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7009 CmpX->getCompareOperand()->getType(), AS); 7010 } 7011 7012 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7013 7014 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 7015 EnableAndCmpSinking && TLI) 7016 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 7017 7018 // TODO: Move this into the switch on opcode - it handles shifts already. 7019 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7020 BinOp->getOpcode() == Instruction::LShr)) { 7021 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7022 if (TLI && CI && TLI->hasExtractBitsInsn()) 7023 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7024 return true; 7025 } 7026 7027 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7028 if (GEPI->hasAllZeroIndices()) { 7029 /// The GEP operand must be a pointer, so must its result -> BitCast 7030 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7031 GEPI->getName(), GEPI); 7032 NC->setDebugLoc(GEPI->getDebugLoc()); 7033 GEPI->replaceAllUsesWith(NC); 7034 GEPI->eraseFromParent(); 7035 ++NumGEPsElim; 7036 optimizeInst(NC, ModifiedDT); 7037 return true; 7038 } 7039 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7040 return true; 7041 } 7042 return false; 7043 } 7044 7045 if (tryToSinkFreeOperands(I)) 7046 return true; 7047 7048 switch (I->getOpcode()) { 7049 case Instruction::Shl: 7050 case Instruction::LShr: 7051 case Instruction::AShr: 7052 return optimizeShiftInst(cast<BinaryOperator>(I)); 7053 case Instruction::Call: 7054 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7055 case Instruction::Select: 7056 return optimizeSelectInst(cast<SelectInst>(I)); 7057 case Instruction::ShuffleVector: 7058 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7059 case Instruction::Switch: 7060 return optimizeSwitchInst(cast<SwitchInst>(I)); 7061 case Instruction::ExtractElement: 7062 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7063 } 7064 7065 return false; 7066 } 7067 7068 /// Given an OR instruction, check to see if this is a bitreverse 7069 /// idiom. If so, insert the new intrinsic and return true. 7070 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 7071 const TargetLowering &TLI) { 7072 if (!I.getType()->isIntegerTy() || 7073 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 7074 TLI.getValueType(DL, I.getType(), true))) 7075 return false; 7076 7077 SmallVector<Instruction*, 4> Insts; 7078 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7079 return false; 7080 Instruction *LastInst = Insts.back(); 7081 I.replaceAllUsesWith(LastInst); 7082 RecursivelyDeleteTriviallyDeadInstructions(&I); 7083 return true; 7084 } 7085 7086 // In this pass we look for GEP and cast instructions that are used 7087 // across basic blocks and rewrite them to improve basic-block-at-a-time 7088 // selection. 7089 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 7090 SunkAddrs.clear(); 7091 bool MadeChange = false; 7092 7093 CurInstIterator = BB.begin(); 7094 while (CurInstIterator != BB.end()) { 7095 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 7096 if (ModifiedDT) 7097 return true; 7098 } 7099 7100 bool MadeBitReverse = true; 7101 while (TLI && MadeBitReverse) { 7102 MadeBitReverse = false; 7103 for (auto &I : reverse(BB)) { 7104 if (makeBitReverse(I, *DL, *TLI)) { 7105 MadeBitReverse = MadeChange = true; 7106 ModifiedDT = true; 7107 break; 7108 } 7109 } 7110 } 7111 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7112 7113 return MadeChange; 7114 } 7115 7116 // llvm.dbg.value is far away from the value then iSel may not be able 7117 // handle it properly. iSel will drop llvm.dbg.value if it can not 7118 // find a node corresponding to the value. 7119 bool CodeGenPrepare::placeDbgValues(Function &F) { 7120 bool MadeChange = false; 7121 for (BasicBlock &BB : F) { 7122 Instruction *PrevNonDbgInst = nullptr; 7123 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 7124 Instruction *Insn = &*BI++; 7125 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 7126 // Leave dbg.values that refer to an alloca alone. These 7127 // intrinsics describe the address of a variable (= the alloca) 7128 // being taken. They should not be moved next to the alloca 7129 // (and to the beginning of the scope), but rather stay close to 7130 // where said address is used. 7131 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 7132 PrevNonDbgInst = Insn; 7133 continue; 7134 } 7135 7136 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 7137 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 7138 // If VI is a phi in a block with an EHPad terminator, we can't insert 7139 // after it. 7140 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 7141 continue; 7142 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 7143 << *DVI << ' ' << *VI); 7144 DVI->removeFromParent(); 7145 if (isa<PHINode>(VI)) 7146 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 7147 else 7148 DVI->insertAfter(VI); 7149 MadeChange = true; 7150 ++NumDbgValueMoved; 7151 } 7152 } 7153 } 7154 return MadeChange; 7155 } 7156 7157 /// Scale down both weights to fit into uint32_t. 7158 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 7159 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 7160 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 7161 NewTrue = NewTrue / Scale; 7162 NewFalse = NewFalse / Scale; 7163 } 7164 7165 /// Some targets prefer to split a conditional branch like: 7166 /// \code 7167 /// %0 = icmp ne i32 %a, 0 7168 /// %1 = icmp ne i32 %b, 0 7169 /// %or.cond = or i1 %0, %1 7170 /// br i1 %or.cond, label %TrueBB, label %FalseBB 7171 /// \endcode 7172 /// into multiple branch instructions like: 7173 /// \code 7174 /// bb1: 7175 /// %0 = icmp ne i32 %a, 0 7176 /// br i1 %0, label %TrueBB, label %bb2 7177 /// bb2: 7178 /// %1 = icmp ne i32 %b, 0 7179 /// br i1 %1, label %TrueBB, label %FalseBB 7180 /// \endcode 7181 /// This usually allows instruction selection to do even further optimizations 7182 /// and combine the compare with the branch instruction. Currently this is 7183 /// applied for targets which have "cheap" jump instructions. 7184 /// 7185 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 7186 /// 7187 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 7188 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 7189 return false; 7190 7191 bool MadeChange = false; 7192 for (auto &BB : F) { 7193 // Does this BB end with the following? 7194 // %cond1 = icmp|fcmp|binary instruction ... 7195 // %cond2 = icmp|fcmp|binary instruction ... 7196 // %cond.or = or|and i1 %cond1, cond2 7197 // br i1 %cond.or label %dest1, label %dest2" 7198 BinaryOperator *LogicOp; 7199 BasicBlock *TBB, *FBB; 7200 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 7201 continue; 7202 7203 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 7204 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 7205 continue; 7206 7207 unsigned Opc; 7208 Value *Cond1, *Cond2; 7209 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 7210 m_OneUse(m_Value(Cond2))))) 7211 Opc = Instruction::And; 7212 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 7213 m_OneUse(m_Value(Cond2))))) 7214 Opc = Instruction::Or; 7215 else 7216 continue; 7217 7218 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 7219 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 7220 continue; 7221 7222 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 7223 7224 // Create a new BB. 7225 auto TmpBB = 7226 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 7227 BB.getParent(), BB.getNextNode()); 7228 7229 // Update original basic block by using the first condition directly by the 7230 // branch instruction and removing the no longer needed and/or instruction. 7231 Br1->setCondition(Cond1); 7232 LogicOp->eraseFromParent(); 7233 7234 // Depending on the condition we have to either replace the true or the 7235 // false successor of the original branch instruction. 7236 if (Opc == Instruction::And) 7237 Br1->setSuccessor(0, TmpBB); 7238 else 7239 Br1->setSuccessor(1, TmpBB); 7240 7241 // Fill in the new basic block. 7242 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 7243 if (auto *I = dyn_cast<Instruction>(Cond2)) { 7244 I->removeFromParent(); 7245 I->insertBefore(Br2); 7246 } 7247 7248 // Update PHI nodes in both successors. The original BB needs to be 7249 // replaced in one successor's PHI nodes, because the branch comes now from 7250 // the newly generated BB (NewBB). In the other successor we need to add one 7251 // incoming edge to the PHI nodes, because both branch instructions target 7252 // now the same successor. Depending on the original branch condition 7253 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 7254 // we perform the correct update for the PHI nodes. 7255 // This doesn't change the successor order of the just created branch 7256 // instruction (or any other instruction). 7257 if (Opc == Instruction::Or) 7258 std::swap(TBB, FBB); 7259 7260 // Replace the old BB with the new BB. 7261 TBB->replacePhiUsesWith(&BB, TmpBB); 7262 7263 // Add another incoming edge form the new BB. 7264 for (PHINode &PN : FBB->phis()) { 7265 auto *Val = PN.getIncomingValueForBlock(&BB); 7266 PN.addIncoming(Val, TmpBB); 7267 } 7268 7269 // Update the branch weights (from SelectionDAGBuilder:: 7270 // FindMergedConditions). 7271 if (Opc == Instruction::Or) { 7272 // Codegen X | Y as: 7273 // BB1: 7274 // jmp_if_X TBB 7275 // jmp TmpBB 7276 // TmpBB: 7277 // jmp_if_Y TBB 7278 // jmp FBB 7279 // 7280 7281 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 7282 // The requirement is that 7283 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 7284 // = TrueProb for original BB. 7285 // Assuming the original weights are A and B, one choice is to set BB1's 7286 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 7287 // assumes that 7288 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 7289 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 7290 // TmpBB, but the math is more complicated. 7291 uint64_t TrueWeight, FalseWeight; 7292 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7293 uint64_t NewTrueWeight = TrueWeight; 7294 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 7295 scaleWeights(NewTrueWeight, NewFalseWeight); 7296 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7297 .createBranchWeights(TrueWeight, FalseWeight)); 7298 7299 NewTrueWeight = TrueWeight; 7300 NewFalseWeight = 2 * FalseWeight; 7301 scaleWeights(NewTrueWeight, NewFalseWeight); 7302 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7303 .createBranchWeights(TrueWeight, FalseWeight)); 7304 } 7305 } else { 7306 // Codegen X & Y as: 7307 // BB1: 7308 // jmp_if_X TmpBB 7309 // jmp FBB 7310 // TmpBB: 7311 // jmp_if_Y TBB 7312 // jmp FBB 7313 // 7314 // This requires creation of TmpBB after CurBB. 7315 7316 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 7317 // The requirement is that 7318 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 7319 // = FalseProb for original BB. 7320 // Assuming the original weights are A and B, one choice is to set BB1's 7321 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 7322 // assumes that 7323 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 7324 uint64_t TrueWeight, FalseWeight; 7325 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7326 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 7327 uint64_t NewFalseWeight = FalseWeight; 7328 scaleWeights(NewTrueWeight, NewFalseWeight); 7329 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7330 .createBranchWeights(TrueWeight, FalseWeight)); 7331 7332 NewTrueWeight = 2 * TrueWeight; 7333 NewFalseWeight = FalseWeight; 7334 scaleWeights(NewTrueWeight, NewFalseWeight); 7335 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7336 .createBranchWeights(TrueWeight, FalseWeight)); 7337 } 7338 } 7339 7340 ModifiedDT = true; 7341 MadeChange = true; 7342 7343 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 7344 TmpBB->dump()); 7345 } 7346 return MadeChange; 7347 } 7348