1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass munges the code in the input function to better prepare it for
10 // SelectionDAG-based code generation. This works around limitations in it's
11 // basic-block-at-a-time approach. It should eventually be removed.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/ProfileSummaryInfo.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/Analysis/VectorUtils.h"
36 #include "llvm/CodeGen/Analysis.h"
37 #include "llvm/CodeGen/ISDOpcodes.h"
38 #include "llvm/CodeGen/SelectionDAGNodes.h"
39 #include "llvm/CodeGen/TargetLowering.h"
40 #include "llvm/CodeGen/TargetPassConfig.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/CodeGen/ValueTypes.h"
43 #include "llvm/Config/llvm-config.h"
44 #include "llvm/IR/Argument.h"
45 #include "llvm/IR/Attributes.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/CallSite.h"
48 #include "llvm/IR/Constant.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalValue.h"
56 #include "llvm/IR/GlobalVariable.h"
57 #include "llvm/IR/IRBuilder.h"
58 #include "llvm/IR/InlineAsm.h"
59 #include "llvm/IR/InstrTypes.h"
60 #include "llvm/IR/Instruction.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/IR/Intrinsics.h"
64 #include "llvm/IR/LLVMContext.h"
65 #include "llvm/IR/MDBuilder.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/Operator.h"
68 #include "llvm/IR/PatternMatch.h"
69 #include "llvm/IR/Statepoint.h"
70 #include "llvm/IR/Type.h"
71 #include "llvm/IR/Use.h"
72 #include "llvm/IR/User.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/IR/ValueHandle.h"
75 #include "llvm/IR/ValueMap.h"
76 #include "llvm/Pass.h"
77 #include "llvm/Support/BlockFrequency.h"
78 #include "llvm/Support/BranchProbability.h"
79 #include "llvm/Support/Casting.h"
80 #include "llvm/Support/CommandLine.h"
81 #include "llvm/Support/Compiler.h"
82 #include "llvm/Support/Debug.h"
83 #include "llvm/Support/ErrorHandling.h"
84 #include "llvm/Support/MachineValueType.h"
85 #include "llvm/Support/MathExtras.h"
86 #include "llvm/Support/raw_ostream.h"
87 #include "llvm/Target/TargetMachine.h"
88 #include "llvm/Target/TargetOptions.h"
89 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
90 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
91 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
92 #include <algorithm>
93 #include <cassert>
94 #include <cstdint>
95 #include <iterator>
96 #include <limits>
97 #include <memory>
98 #include <utility>
99 #include <vector>
100 
101 using namespace llvm;
102 using namespace llvm::PatternMatch;
103 
104 #define DEBUG_TYPE "codegenprepare"
105 
106 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
107 STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
108 STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
109 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
110                       "sunken Cmps");
111 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
112                        "of sunken Casts");
113 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
114                           "computations were sunk");
115 STATISTIC(NumMemoryInstsPhiCreated,
116           "Number of phis created when address "
117           "computations were sunk to memory instructions");
118 STATISTIC(NumMemoryInstsSelectCreated,
119           "Number of select created when address "
120           "computations were sunk to memory instructions");
121 STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
122 STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
123 STATISTIC(NumAndsAdded,
124           "Number of and mask instructions added to form ext loads");
125 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
126 STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
127 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
128 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
129 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
130 
131 static cl::opt<bool> DisableBranchOpts(
132   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
133   cl::desc("Disable branch optimizations in CodeGenPrepare"));
134 
135 static cl::opt<bool>
136     DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
137                   cl::desc("Disable GC optimizations in CodeGenPrepare"));
138 
139 static cl::opt<bool> DisableSelectToBranch(
140   "disable-cgp-select2branch", cl::Hidden, cl::init(false),
141   cl::desc("Disable select to branch conversion."));
142 
143 static cl::opt<bool> AddrSinkUsingGEPs(
144   "addr-sink-using-gep", cl::Hidden, cl::init(true),
145   cl::desc("Address sinking in CGP using GEPs."));
146 
147 static cl::opt<bool> EnableAndCmpSinking(
148    "enable-andcmp-sinking", cl::Hidden, cl::init(true),
149    cl::desc("Enable sinkinig and/cmp into branches."));
150 
151 static cl::opt<bool> DisableStoreExtract(
152     "disable-cgp-store-extract", cl::Hidden, cl::init(false),
153     cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
154 
155 static cl::opt<bool> StressStoreExtract(
156     "stress-cgp-store-extract", cl::Hidden, cl::init(false),
157     cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
158 
159 static cl::opt<bool> DisableExtLdPromotion(
160     "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
161     cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
162              "CodeGenPrepare"));
163 
164 static cl::opt<bool> StressExtLdPromotion(
165     "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
166     cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
167              "optimization in CodeGenPrepare"));
168 
169 static cl::opt<bool> DisablePreheaderProtect(
170     "disable-preheader-prot", cl::Hidden, cl::init(false),
171     cl::desc("Disable protection against removing loop preheaders"));
172 
173 static cl::opt<bool> ProfileGuidedSectionPrefix(
174     "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
175     cl::desc("Use profile info to add section prefix for hot/cold functions"));
176 
177 static cl::opt<unsigned> FreqRatioToSkipMerge(
178     "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
179     cl::desc("Skip merging empty blocks if (frequency of empty block) / "
180              "(frequency of destination block) is greater than this ratio"));
181 
182 static cl::opt<bool> ForceSplitStore(
183     "force-split-store", cl::Hidden, cl::init(false),
184     cl::desc("Force store splitting no matter what the target query says."));
185 
186 static cl::opt<bool>
187 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
188     cl::desc("Enable merging of redundant sexts when one is dominating"
189     " the other."), cl::init(true));
190 
191 static cl::opt<bool> DisableComplexAddrModes(
192     "disable-complex-addr-modes", cl::Hidden, cl::init(false),
193     cl::desc("Disables combining addressing modes with different parts "
194              "in optimizeMemoryInst."));
195 
196 static cl::opt<bool>
197 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
198                 cl::desc("Allow creation of Phis in Address sinking."));
199 
200 static cl::opt<bool>
201 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true),
202                    cl::desc("Allow creation of selects in Address sinking."));
203 
204 static cl::opt<bool> AddrSinkCombineBaseReg(
205     "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
206     cl::desc("Allow combining of BaseReg field in Address sinking."));
207 
208 static cl::opt<bool> AddrSinkCombineBaseGV(
209     "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
210     cl::desc("Allow combining of BaseGV field in Address sinking."));
211 
212 static cl::opt<bool> AddrSinkCombineBaseOffs(
213     "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
214     cl::desc("Allow combining of BaseOffs field in Address sinking."));
215 
216 static cl::opt<bool> AddrSinkCombineScaledReg(
217     "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
218     cl::desc("Allow combining of ScaledReg field in Address sinking."));
219 
220 static cl::opt<bool>
221     EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
222                          cl::init(true),
223                          cl::desc("Enable splitting large offset of GEP."));
224 
225 namespace {
226 
227 enum ExtType {
228   ZeroExtension,   // Zero extension has been seen.
229   SignExtension,   // Sign extension has been seen.
230   BothExtension    // This extension type is used if we saw sext after
231                    // ZeroExtension had been set, or if we saw zext after
232                    // SignExtension had been set. It makes the type
233                    // information of a promoted instruction invalid.
234 };
235 
236 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
237 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>;
238 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
239 using SExts = SmallVector<Instruction *, 16>;
240 using ValueToSExts = DenseMap<Value *, SExts>;
241 
242 class TypePromotionTransaction;
243 
244   class CodeGenPrepare : public FunctionPass {
245     const TargetMachine *TM = nullptr;
246     const TargetSubtargetInfo *SubtargetInfo;
247     const TargetLowering *TLI = nullptr;
248     const TargetRegisterInfo *TRI;
249     const TargetTransformInfo *TTI = nullptr;
250     const TargetLibraryInfo *TLInfo;
251     const LoopInfo *LI;
252     std::unique_ptr<BlockFrequencyInfo> BFI;
253     std::unique_ptr<BranchProbabilityInfo> BPI;
254 
255     /// As we scan instructions optimizing them, this is the next instruction
256     /// to optimize. Transforms that can invalidate this should update it.
257     BasicBlock::iterator CurInstIterator;
258 
259     /// Keeps track of non-local addresses that have been sunk into a block.
260     /// This allows us to avoid inserting duplicate code for blocks with
261     /// multiple load/stores of the same address. The usage of WeakTrackingVH
262     /// enables SunkAddrs to be treated as a cache whose entries can be
263     /// invalidated if a sunken address computation has been erased.
264     ValueMap<Value*, WeakTrackingVH> SunkAddrs;
265 
266     /// Keeps track of all instructions inserted for the current function.
267     SetOfInstrs InsertedInsts;
268 
269     /// Keeps track of the type of the related instruction before their
270     /// promotion for the current function.
271     InstrToOrigTy PromotedInsts;
272 
273     /// Keep track of instructions removed during promotion.
274     SetOfInstrs RemovedInsts;
275 
276     /// Keep track of sext chains based on their initial value.
277     DenseMap<Value *, Instruction *> SeenChainsForSExt;
278 
279     /// Keep track of GEPs accessing the same data structures such as structs or
280     /// arrays that are candidates to be split later because of their large
281     /// size.
282     MapVector<
283         AssertingVH<Value>,
284         SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
285         LargeOffsetGEPMap;
286 
287     /// Keep track of new GEP base after splitting the GEPs having large offset.
288     SmallSet<AssertingVH<Value>, 2> NewGEPBases;
289 
290     /// Map serial numbers to Large offset GEPs.
291     DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;
292 
293     /// Keep track of SExt promoted.
294     ValueToSExts ValToSExtendedUses;
295 
296     /// True if optimizing for size.
297     bool OptSize;
298 
299     /// DataLayout for the Function being processed.
300     const DataLayout *DL = nullptr;
301 
302     /// Building the dominator tree can be expensive, so we only build it
303     /// lazily and update it when required.
304     std::unique_ptr<DominatorTree> DT;
305 
306   public:
307     static char ID; // Pass identification, replacement for typeid
308 
309     CodeGenPrepare() : FunctionPass(ID) {
310       initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
311     }
312 
313     bool runOnFunction(Function &F) override;
314 
315     StringRef getPassName() const override { return "CodeGen Prepare"; }
316 
317     void getAnalysisUsage(AnalysisUsage &AU) const override {
318       // FIXME: When we can selectively preserve passes, preserve the domtree.
319       AU.addRequired<ProfileSummaryInfoWrapperPass>();
320       AU.addRequired<TargetLibraryInfoWrapperPass>();
321       AU.addRequired<TargetTransformInfoWrapperPass>();
322       AU.addRequired<LoopInfoWrapperPass>();
323     }
324 
325   private:
326     template <typename F>
327     void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) {
328       // Substituting can cause recursive simplifications, which can invalidate
329       // our iterator.  Use a WeakTrackingVH to hold onto it in case this
330       // happens.
331       Value *CurValue = &*CurInstIterator;
332       WeakTrackingVH IterHandle(CurValue);
333 
334       f();
335 
336       // If the iterator instruction was recursively deleted, start over at the
337       // start of the block.
338       if (IterHandle != CurValue) {
339         CurInstIterator = BB->begin();
340         SunkAddrs.clear();
341       }
342     }
343 
344     // Get the DominatorTree, building if necessary.
345     DominatorTree &getDT(Function &F) {
346       if (!DT)
347         DT = llvm::make_unique<DominatorTree>(F);
348       return *DT;
349     }
350 
351     bool eliminateFallThrough(Function &F);
352     bool eliminateMostlyEmptyBlocks(Function &F);
353     BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
354     bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
355     void eliminateMostlyEmptyBlock(BasicBlock *BB);
356     bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
357                                        bool isPreheader);
358     bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT);
359     bool optimizeInst(Instruction *I, bool &ModifiedDT);
360     bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
361                             Type *AccessTy, unsigned AddrSpace);
362     bool optimizeInlineAsmInst(CallInst *CS);
363     bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
364     bool optimizeExt(Instruction *&I);
365     bool optimizeExtUses(Instruction *I);
366     bool optimizeLoadExt(LoadInst *Load);
367     bool optimizeShiftInst(BinaryOperator *BO);
368     bool optimizeSelectInst(SelectInst *SI);
369     bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI);
370     bool optimizeSwitchInst(SwitchInst *SI);
371     bool optimizeExtractElementInst(Instruction *Inst);
372     bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT);
373     bool placeDbgValues(Function &F);
374     bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
375                       LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
376     bool tryToPromoteExts(TypePromotionTransaction &TPT,
377                           const SmallVectorImpl<Instruction *> &Exts,
378                           SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
379                           unsigned CreatedInstsCost = 0);
380     bool mergeSExts(Function &F);
381     bool splitLargeGEPOffsets();
382     bool performAddressTypePromotion(
383         Instruction *&Inst,
384         bool AllowPromotionWithoutCommonHeader,
385         bool HasPromoted, TypePromotionTransaction &TPT,
386         SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
387     bool splitBranchCondition(Function &F, bool &ModifiedDT);
388     bool simplifyOffsetableRelocate(Instruction &I);
389 
390     bool tryToSinkFreeOperands(Instruction *I);
391     bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, CmpInst *Cmp,
392                                      Intrinsic::ID IID);
393     bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT);
394     bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
395     bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
396   };
397 
398 } // end anonymous namespace
399 
400 char CodeGenPrepare::ID = 0;
401 
402 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
403                       "Optimize for code generation", false, false)
404 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
405 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
406                     "Optimize for code generation", false, false)
407 
408 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
409 
410 bool CodeGenPrepare::runOnFunction(Function &F) {
411   if (skipFunction(F))
412     return false;
413 
414   DL = &F.getParent()->getDataLayout();
415 
416   bool EverMadeChange = false;
417   // Clear per function information.
418   InsertedInsts.clear();
419   PromotedInsts.clear();
420 
421   if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
422     TM = &TPC->getTM<TargetMachine>();
423     SubtargetInfo = TM->getSubtargetImpl(F);
424     TLI = SubtargetInfo->getTargetLowering();
425     TRI = SubtargetInfo->getRegisterInfo();
426   }
427   TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
428   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
429   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
430   BPI.reset(new BranchProbabilityInfo(F, *LI));
431   BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
432   OptSize = F.hasOptSize();
433 
434   ProfileSummaryInfo *PSI =
435       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
436   if (ProfileGuidedSectionPrefix) {
437     if (PSI->isFunctionHotInCallGraph(&F, *BFI))
438       F.setSectionPrefix(".hot");
439     else if (PSI->isFunctionColdInCallGraph(&F, *BFI))
440       F.setSectionPrefix(".unlikely");
441   }
442 
443   /// This optimization identifies DIV instructions that can be
444   /// profitably bypassed and carried out with a shorter, faster divide.
445   if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI &&
446       TLI->isSlowDivBypassed()) {
447     const DenseMap<unsigned int, unsigned int> &BypassWidths =
448        TLI->getBypassSlowDivWidths();
449     BasicBlock* BB = &*F.begin();
450     while (BB != nullptr) {
451       // bypassSlowDivision may create new BBs, but we don't want to reapply the
452       // optimization to those blocks.
453       BasicBlock* Next = BB->getNextNode();
454       EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
455       BB = Next;
456     }
457   }
458 
459   // Eliminate blocks that contain only PHI nodes and an
460   // unconditional branch.
461   EverMadeChange |= eliminateMostlyEmptyBlocks(F);
462 
463   bool ModifiedDT = false;
464   if (!DisableBranchOpts)
465     EverMadeChange |= splitBranchCondition(F, ModifiedDT);
466 
467   // Split some critical edges where one of the sources is an indirect branch,
468   // to help generate sane code for PHIs involving such edges.
469   EverMadeChange |= SplitIndirectBrCriticalEdges(F);
470 
471   bool MadeChange = true;
472   while (MadeChange) {
473     MadeChange = false;
474     DT.reset();
475     for (Function::iterator I = F.begin(); I != F.end(); ) {
476       BasicBlock *BB = &*I++;
477       bool ModifiedDTOnIteration = false;
478       MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
479 
480       // Restart BB iteration if the dominator tree of the Function was changed
481       if (ModifiedDTOnIteration)
482         break;
483     }
484     if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
485       MadeChange |= mergeSExts(F);
486     if (!LargeOffsetGEPMap.empty())
487       MadeChange |= splitLargeGEPOffsets();
488 
489     // Really free removed instructions during promotion.
490     for (Instruction *I : RemovedInsts)
491       I->deleteValue();
492 
493     EverMadeChange |= MadeChange;
494     SeenChainsForSExt.clear();
495     ValToSExtendedUses.clear();
496     RemovedInsts.clear();
497     LargeOffsetGEPMap.clear();
498     LargeOffsetGEPID.clear();
499   }
500 
501   SunkAddrs.clear();
502 
503   if (!DisableBranchOpts) {
504     MadeChange = false;
505     // Use a set vector to get deterministic iteration order. The order the
506     // blocks are removed may affect whether or not PHI nodes in successors
507     // are removed.
508     SmallSetVector<BasicBlock*, 8> WorkList;
509     for (BasicBlock &BB : F) {
510       SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
511       MadeChange |= ConstantFoldTerminator(&BB, true);
512       if (!MadeChange) continue;
513 
514       for (SmallVectorImpl<BasicBlock*>::iterator
515              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
516         if (pred_begin(*II) == pred_end(*II))
517           WorkList.insert(*II);
518     }
519 
520     // Delete the dead blocks and any of their dead successors.
521     MadeChange |= !WorkList.empty();
522     while (!WorkList.empty()) {
523       BasicBlock *BB = WorkList.pop_back_val();
524       SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
525 
526       DeleteDeadBlock(BB);
527 
528       for (SmallVectorImpl<BasicBlock*>::iterator
529              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
530         if (pred_begin(*II) == pred_end(*II))
531           WorkList.insert(*II);
532     }
533 
534     // Merge pairs of basic blocks with unconditional branches, connected by
535     // a single edge.
536     if (EverMadeChange || MadeChange)
537       MadeChange |= eliminateFallThrough(F);
538 
539     EverMadeChange |= MadeChange;
540   }
541 
542   if (!DisableGCOpts) {
543     SmallVector<Instruction *, 2> Statepoints;
544     for (BasicBlock &BB : F)
545       for (Instruction &I : BB)
546         if (isStatepoint(I))
547           Statepoints.push_back(&I);
548     for (auto &I : Statepoints)
549       EverMadeChange |= simplifyOffsetableRelocate(*I);
550   }
551 
552   // Do this last to clean up use-before-def scenarios introduced by other
553   // preparatory transforms.
554   EverMadeChange |= placeDbgValues(F);
555 
556   return EverMadeChange;
557 }
558 
559 /// Merge basic blocks which are connected by a single edge, where one of the
560 /// basic blocks has a single successor pointing to the other basic block,
561 /// which has a single predecessor.
562 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
563   bool Changed = false;
564   // Scan all of the blocks in the function, except for the entry block.
565   // Use a temporary array to avoid iterator being invalidated when
566   // deleting blocks.
567   SmallVector<WeakTrackingVH, 16> Blocks;
568   for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
569     Blocks.push_back(&Block);
570 
571   for (auto &Block : Blocks) {
572     auto *BB = cast_or_null<BasicBlock>(Block);
573     if (!BB)
574       continue;
575     // If the destination block has a single pred, then this is a trivial
576     // edge, just collapse it.
577     BasicBlock *SinglePred = BB->getSinglePredecessor();
578 
579     // Don't merge if BB's address is taken.
580     if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
581 
582     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
583     if (Term && !Term->isConditional()) {
584       Changed = true;
585       LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");
586 
587       // Merge BB into SinglePred and delete it.
588       MergeBlockIntoPredecessor(BB);
589     }
590   }
591   return Changed;
592 }
593 
594 /// Find a destination block from BB if BB is mergeable empty block.
595 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
596   // If this block doesn't end with an uncond branch, ignore it.
597   BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
598   if (!BI || !BI->isUnconditional())
599     return nullptr;
600 
601   // If the instruction before the branch (skipping debug info) isn't a phi
602   // node, then other stuff is happening here.
603   BasicBlock::iterator BBI = BI->getIterator();
604   if (BBI != BB->begin()) {
605     --BBI;
606     while (isa<DbgInfoIntrinsic>(BBI)) {
607       if (BBI == BB->begin())
608         break;
609       --BBI;
610     }
611     if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
612       return nullptr;
613   }
614 
615   // Do not break infinite loops.
616   BasicBlock *DestBB = BI->getSuccessor(0);
617   if (DestBB == BB)
618     return nullptr;
619 
620   if (!canMergeBlocks(BB, DestBB))
621     DestBB = nullptr;
622 
623   return DestBB;
624 }
625 
626 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
627 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
628 /// edges in ways that are non-optimal for isel. Start by eliminating these
629 /// blocks so we can split them the way we want them.
630 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
631   SmallPtrSet<BasicBlock *, 16> Preheaders;
632   SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
633   while (!LoopList.empty()) {
634     Loop *L = LoopList.pop_back_val();
635     LoopList.insert(LoopList.end(), L->begin(), L->end());
636     if (BasicBlock *Preheader = L->getLoopPreheader())
637       Preheaders.insert(Preheader);
638   }
639 
640   bool MadeChange = false;
641   // Copy blocks into a temporary array to avoid iterator invalidation issues
642   // as we remove them.
643   // Note that this intentionally skips the entry block.
644   SmallVector<WeakTrackingVH, 16> Blocks;
645   for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
646     Blocks.push_back(&Block);
647 
648   for (auto &Block : Blocks) {
649     BasicBlock *BB = cast_or_null<BasicBlock>(Block);
650     if (!BB)
651       continue;
652     BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
653     if (!DestBB ||
654         !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
655       continue;
656 
657     eliminateMostlyEmptyBlock(BB);
658     MadeChange = true;
659   }
660   return MadeChange;
661 }
662 
663 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
664                                                    BasicBlock *DestBB,
665                                                    bool isPreheader) {
666   // Do not delete loop preheaders if doing so would create a critical edge.
667   // Loop preheaders can be good locations to spill registers. If the
668   // preheader is deleted and we create a critical edge, registers may be
669   // spilled in the loop body instead.
670   if (!DisablePreheaderProtect && isPreheader &&
671       !(BB->getSinglePredecessor() &&
672         BB->getSinglePredecessor()->getSingleSuccessor()))
673     return false;
674 
675   // Skip merging if the block's successor is also a successor to any callbr
676   // that leads to this block.
677   // FIXME: Is this really needed? Is this a correctness issue?
678   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
679     if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator()))
680       for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i)
681         if (DestBB == CBI->getSuccessor(i))
682           return false;
683   }
684 
685   // Try to skip merging if the unique predecessor of BB is terminated by a
686   // switch or indirect branch instruction, and BB is used as an incoming block
687   // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
688   // add COPY instructions in the predecessor of BB instead of BB (if it is not
689   // merged). Note that the critical edge created by merging such blocks wont be
690   // split in MachineSink because the jump table is not analyzable. By keeping
691   // such empty block (BB), ISel will place COPY instructions in BB, not in the
692   // predecessor of BB.
693   BasicBlock *Pred = BB->getUniquePredecessor();
694   if (!Pred ||
695       !(isa<SwitchInst>(Pred->getTerminator()) ||
696         isa<IndirectBrInst>(Pred->getTerminator())))
697     return true;
698 
699   if (BB->getTerminator() != BB->getFirstNonPHIOrDbg())
700     return true;
701 
702   // We use a simple cost heuristic which determine skipping merging is
703   // profitable if the cost of skipping merging is less than the cost of
704   // merging : Cost(skipping merging) < Cost(merging BB), where the
705   // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
706   // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
707   // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
708   //   Freq(Pred) / Freq(BB) > 2.
709   // Note that if there are multiple empty blocks sharing the same incoming
710   // value for the PHIs in the DestBB, we consider them together. In such
711   // case, Cost(merging BB) will be the sum of their frequencies.
712 
713   if (!isa<PHINode>(DestBB->begin()))
714     return true;
715 
716   SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
717 
718   // Find all other incoming blocks from which incoming values of all PHIs in
719   // DestBB are the same as the ones from BB.
720   for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E;
721        ++PI) {
722     BasicBlock *DestBBPred = *PI;
723     if (DestBBPred == BB)
724       continue;
725 
726     if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
727           return DestPN.getIncomingValueForBlock(BB) ==
728                  DestPN.getIncomingValueForBlock(DestBBPred);
729         }))
730       SameIncomingValueBBs.insert(DestBBPred);
731   }
732 
733   // See if all BB's incoming values are same as the value from Pred. In this
734   // case, no reason to skip merging because COPYs are expected to be place in
735   // Pred already.
736   if (SameIncomingValueBBs.count(Pred))
737     return true;
738 
739   BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
740   BlockFrequency BBFreq = BFI->getBlockFreq(BB);
741 
742   for (auto SameValueBB : SameIncomingValueBBs)
743     if (SameValueBB->getUniquePredecessor() == Pred &&
744         DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
745       BBFreq += BFI->getBlockFreq(SameValueBB);
746 
747   return PredFreq.getFrequency() <=
748          BBFreq.getFrequency() * FreqRatioToSkipMerge;
749 }
750 
751 /// Return true if we can merge BB into DestBB if there is a single
752 /// unconditional branch between them, and BB contains no other non-phi
753 /// instructions.
754 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
755                                     const BasicBlock *DestBB) const {
756   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
757   // the successor.  If there are more complex condition (e.g. preheaders),
758   // don't mess around with them.
759   for (const PHINode &PN : BB->phis()) {
760     for (const User *U : PN.users()) {
761       const Instruction *UI = cast<Instruction>(U);
762       if (UI->getParent() != DestBB || !isa<PHINode>(UI))
763         return false;
764       // If User is inside DestBB block and it is a PHINode then check
765       // incoming value. If incoming value is not from BB then this is
766       // a complex condition (e.g. preheaders) we want to avoid here.
767       if (UI->getParent() == DestBB) {
768         if (const PHINode *UPN = dyn_cast<PHINode>(UI))
769           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
770             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
771             if (Insn && Insn->getParent() == BB &&
772                 Insn->getParent() != UPN->getIncomingBlock(I))
773               return false;
774           }
775       }
776     }
777   }
778 
779   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
780   // and DestBB may have conflicting incoming values for the block.  If so, we
781   // can't merge the block.
782   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
783   if (!DestBBPN) return true;  // no conflict.
784 
785   // Collect the preds of BB.
786   SmallPtrSet<const BasicBlock*, 16> BBPreds;
787   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
788     // It is faster to get preds from a PHI than with pred_iterator.
789     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
790       BBPreds.insert(BBPN->getIncomingBlock(i));
791   } else {
792     BBPreds.insert(pred_begin(BB), pred_end(BB));
793   }
794 
795   // Walk the preds of DestBB.
796   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
797     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
798     if (BBPreds.count(Pred)) {   // Common predecessor?
799       for (const PHINode &PN : DestBB->phis()) {
800         const Value *V1 = PN.getIncomingValueForBlock(Pred);
801         const Value *V2 = PN.getIncomingValueForBlock(BB);
802 
803         // If V2 is a phi node in BB, look up what the mapped value will be.
804         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
805           if (V2PN->getParent() == BB)
806             V2 = V2PN->getIncomingValueForBlock(Pred);
807 
808         // If there is a conflict, bail out.
809         if (V1 != V2) return false;
810       }
811     }
812   }
813 
814   return true;
815 }
816 
817 /// Eliminate a basic block that has only phi's and an unconditional branch in
818 /// it.
819 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
820   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
821   BasicBlock *DestBB = BI->getSuccessor(0);
822 
823   LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
824                     << *BB << *DestBB);
825 
826   // If the destination block has a single pred, then this is a trivial edge,
827   // just collapse it.
828   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
829     if (SinglePred != DestBB) {
830       assert(SinglePred == BB &&
831              "Single predecessor not the same as predecessor");
832       // Merge DestBB into SinglePred/BB and delete it.
833       MergeBlockIntoPredecessor(DestBB);
834       // Note: BB(=SinglePred) will not be deleted on this path.
835       // DestBB(=its single successor) is the one that was deleted.
836       LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
837       return;
838     }
839   }
840 
841   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
842   // to handle the new incoming edges it is about to have.
843   for (PHINode &PN : DestBB->phis()) {
844     // Remove the incoming value for BB, and remember it.
845     Value *InVal = PN.removeIncomingValue(BB, false);
846 
847     // Two options: either the InVal is a phi node defined in BB or it is some
848     // value that dominates BB.
849     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
850     if (InValPhi && InValPhi->getParent() == BB) {
851       // Add all of the input values of the input PHI as inputs of this phi.
852       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
853         PN.addIncoming(InValPhi->getIncomingValue(i),
854                        InValPhi->getIncomingBlock(i));
855     } else {
856       // Otherwise, add one instance of the dominating value for each edge that
857       // we will be adding.
858       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
859         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
860           PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
861       } else {
862         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
863           PN.addIncoming(InVal, *PI);
864       }
865     }
866   }
867 
868   // The PHIs are now updated, change everything that refers to BB to use
869   // DestBB and remove BB.
870   BB->replaceAllUsesWith(DestBB);
871   BB->eraseFromParent();
872   ++NumBlocksElim;
873 
874   LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
875 }
876 
877 // Computes a map of base pointer relocation instructions to corresponding
878 // derived pointer relocation instructions given a vector of all relocate calls
879 static void computeBaseDerivedRelocateMap(
880     const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
881     DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
882         &RelocateInstMap) {
883   // Collect information in two maps: one primarily for locating the base object
884   // while filling the second map; the second map is the final structure holding
885   // a mapping between Base and corresponding Derived relocate calls
886   DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
887   for (auto *ThisRelocate : AllRelocateCalls) {
888     auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
889                             ThisRelocate->getDerivedPtrIndex());
890     RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
891   }
892   for (auto &Item : RelocateIdxMap) {
893     std::pair<unsigned, unsigned> Key = Item.first;
894     if (Key.first == Key.second)
895       // Base relocation: nothing to insert
896       continue;
897 
898     GCRelocateInst *I = Item.second;
899     auto BaseKey = std::make_pair(Key.first, Key.first);
900 
901     // We're iterating over RelocateIdxMap so we cannot modify it.
902     auto MaybeBase = RelocateIdxMap.find(BaseKey);
903     if (MaybeBase == RelocateIdxMap.end())
904       // TODO: We might want to insert a new base object relocate and gep off
905       // that, if there are enough derived object relocates.
906       continue;
907 
908     RelocateInstMap[MaybeBase->second].push_back(I);
909   }
910 }
911 
912 // Accepts a GEP and extracts the operands into a vector provided they're all
913 // small integer constants
914 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
915                                           SmallVectorImpl<Value *> &OffsetV) {
916   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
917     // Only accept small constant integer operands
918     auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
919     if (!Op || Op->getZExtValue() > 20)
920       return false;
921   }
922 
923   for (unsigned i = 1; i < GEP->getNumOperands(); i++)
924     OffsetV.push_back(GEP->getOperand(i));
925   return true;
926 }
927 
928 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
929 // replace, computes a replacement, and affects it.
930 static bool
931 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
932                           const SmallVectorImpl<GCRelocateInst *> &Targets) {
933   bool MadeChange = false;
934   // We must ensure the relocation of derived pointer is defined after
935   // relocation of base pointer. If we find a relocation corresponding to base
936   // defined earlier than relocation of base then we move relocation of base
937   // right before found relocation. We consider only relocation in the same
938   // basic block as relocation of base. Relocations from other basic block will
939   // be skipped by optimization and we do not care about them.
940   for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
941        &*R != RelocatedBase; ++R)
942     if (auto RI = dyn_cast<GCRelocateInst>(R))
943       if (RI->getStatepoint() == RelocatedBase->getStatepoint())
944         if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
945           RelocatedBase->moveBefore(RI);
946           break;
947         }
948 
949   for (GCRelocateInst *ToReplace : Targets) {
950     assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
951            "Not relocating a derived object of the original base object");
952     if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
953       // A duplicate relocate call. TODO: coalesce duplicates.
954       continue;
955     }
956 
957     if (RelocatedBase->getParent() != ToReplace->getParent()) {
958       // Base and derived relocates are in different basic blocks.
959       // In this case transform is only valid when base dominates derived
960       // relocate. However it would be too expensive to check dominance
961       // for each such relocate, so we skip the whole transformation.
962       continue;
963     }
964 
965     Value *Base = ToReplace->getBasePtr();
966     auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
967     if (!Derived || Derived->getPointerOperand() != Base)
968       continue;
969 
970     SmallVector<Value *, 2> OffsetV;
971     if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
972       continue;
973 
974     // Create a Builder and replace the target callsite with a gep
975     assert(RelocatedBase->getNextNode() &&
976            "Should always have one since it's not a terminator");
977 
978     // Insert after RelocatedBase
979     IRBuilder<> Builder(RelocatedBase->getNextNode());
980     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
981 
982     // If gc_relocate does not match the actual type, cast it to the right type.
983     // In theory, there must be a bitcast after gc_relocate if the type does not
984     // match, and we should reuse it to get the derived pointer. But it could be
985     // cases like this:
986     // bb1:
987     //  ...
988     //  %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
989     //  br label %merge
990     //
991     // bb2:
992     //  ...
993     //  %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
994     //  br label %merge
995     //
996     // merge:
997     //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
998     //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
999     //
1000     // In this case, we can not find the bitcast any more. So we insert a new bitcast
1001     // no matter there is already one or not. In this way, we can handle all cases, and
1002     // the extra bitcast should be optimized away in later passes.
1003     Value *ActualRelocatedBase = RelocatedBase;
1004     if (RelocatedBase->getType() != Base->getType()) {
1005       ActualRelocatedBase =
1006           Builder.CreateBitCast(RelocatedBase, Base->getType());
1007     }
1008     Value *Replacement = Builder.CreateGEP(
1009         Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
1010     Replacement->takeName(ToReplace);
1011     // If the newly generated derived pointer's type does not match the original derived
1012     // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
1013     Value *ActualReplacement = Replacement;
1014     if (Replacement->getType() != ToReplace->getType()) {
1015       ActualReplacement =
1016           Builder.CreateBitCast(Replacement, ToReplace->getType());
1017     }
1018     ToReplace->replaceAllUsesWith(ActualReplacement);
1019     ToReplace->eraseFromParent();
1020 
1021     MadeChange = true;
1022   }
1023   return MadeChange;
1024 }
1025 
1026 // Turns this:
1027 //
1028 // %base = ...
1029 // %ptr = gep %base + 15
1030 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1031 // %base' = relocate(%tok, i32 4, i32 4)
1032 // %ptr' = relocate(%tok, i32 4, i32 5)
1033 // %val = load %ptr'
1034 //
1035 // into this:
1036 //
1037 // %base = ...
1038 // %ptr = gep %base + 15
1039 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1040 // %base' = gc.relocate(%tok, i32 4, i32 4)
1041 // %ptr' = gep %base' + 15
1042 // %val = load %ptr'
1043 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
1044   bool MadeChange = false;
1045   SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1046 
1047   for (auto *U : I.users())
1048     if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1049       // Collect all the relocate calls associated with a statepoint
1050       AllRelocateCalls.push_back(Relocate);
1051 
1052   // We need atleast one base pointer relocation + one derived pointer
1053   // relocation to mangle
1054   if (AllRelocateCalls.size() < 2)
1055     return false;
1056 
1057   // RelocateInstMap is a mapping from the base relocate instruction to the
1058   // corresponding derived relocate instructions
1059   DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
1060   computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1061   if (RelocateInstMap.empty())
1062     return false;
1063 
1064   for (auto &Item : RelocateInstMap)
1065     // Item.first is the RelocatedBase to offset against
1066     // Item.second is the vector of Targets to replace
1067     MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1068   return MadeChange;
1069 }
1070 
1071 /// Sink the specified cast instruction into its user blocks.
1072 static bool SinkCast(CastInst *CI) {
1073   BasicBlock *DefBB = CI->getParent();
1074 
1075   /// InsertedCasts - Only insert a cast in each block once.
1076   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
1077 
1078   bool MadeChange = false;
1079   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1080        UI != E; ) {
1081     Use &TheUse = UI.getUse();
1082     Instruction *User = cast<Instruction>(*UI);
1083 
1084     // Figure out which BB this cast is used in.  For PHI's this is the
1085     // appropriate predecessor block.
1086     BasicBlock *UserBB = User->getParent();
1087     if (PHINode *PN = dyn_cast<PHINode>(User)) {
1088       UserBB = PN->getIncomingBlock(TheUse);
1089     }
1090 
1091     // Preincrement use iterator so we don't invalidate it.
1092     ++UI;
1093 
1094     // The first insertion point of a block containing an EH pad is after the
1095     // pad.  If the pad is the user, we cannot sink the cast past the pad.
1096     if (User->isEHPad())
1097       continue;
1098 
1099     // If the block selected to receive the cast is an EH pad that does not
1100     // allow non-PHI instructions before the terminator, we can't sink the
1101     // cast.
1102     if (UserBB->getTerminator()->isEHPad())
1103       continue;
1104 
1105     // If this user is in the same block as the cast, don't change the cast.
1106     if (UserBB == DefBB) continue;
1107 
1108     // If we have already inserted a cast into this block, use it.
1109     CastInst *&InsertedCast = InsertedCasts[UserBB];
1110 
1111     if (!InsertedCast) {
1112       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1113       assert(InsertPt != UserBB->end());
1114       InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1115                                       CI->getType(), "", &*InsertPt);
1116       InsertedCast->setDebugLoc(CI->getDebugLoc());
1117     }
1118 
1119     // Replace a use of the cast with a use of the new cast.
1120     TheUse = InsertedCast;
1121     MadeChange = true;
1122     ++NumCastUses;
1123   }
1124 
1125   // If we removed all uses, nuke the cast.
1126   if (CI->use_empty()) {
1127     salvageDebugInfo(*CI);
1128     CI->eraseFromParent();
1129     MadeChange = true;
1130   }
1131 
1132   return MadeChange;
1133 }
1134 
1135 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1136 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1137 /// reduce the number of virtual registers that must be created and coalesced.
1138 ///
1139 /// Return true if any changes are made.
1140 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1141                                        const DataLayout &DL) {
1142   // Sink only "cheap" (or nop) address-space casts.  This is a weaker condition
1143   // than sinking only nop casts, but is helpful on some platforms.
1144   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1145     if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(),
1146                                  ASC->getDestAddressSpace()))
1147       return false;
1148   }
1149 
1150   // If this is a noop copy,
1151   EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1152   EVT DstVT = TLI.getValueType(DL, CI->getType());
1153 
1154   // This is an fp<->int conversion?
1155   if (SrcVT.isInteger() != DstVT.isInteger())
1156     return false;
1157 
1158   // If this is an extension, it will be a zero or sign extension, which
1159   // isn't a noop.
1160   if (SrcVT.bitsLT(DstVT)) return false;
1161 
1162   // If these values will be promoted, find out what they will be promoted
1163   // to.  This helps us consider truncates on PPC as noop copies when they
1164   // are.
1165   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1166       TargetLowering::TypePromoteInteger)
1167     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1168   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1169       TargetLowering::TypePromoteInteger)
1170     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1171 
1172   // If, after promotion, these are the same types, this is a noop copy.
1173   if (SrcVT != DstVT)
1174     return false;
1175 
1176   return SinkCast(CI);
1177 }
1178 
1179 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO,
1180                                                  CmpInst *Cmp,
1181                                                  Intrinsic::ID IID) {
1182   if (BO->getParent() != Cmp->getParent()) {
1183     // We used to use a dominator tree here to allow multi-block optimization.
1184     // But that was problematic because:
1185     // 1. It could cause a perf regression by hoisting the math op into the
1186     //    critical path.
1187     // 2. It could cause a perf regression by creating a value that was live
1188     //    across multiple blocks and increasing register pressure.
1189     // 3. Use of a dominator tree could cause large compile-time regression.
1190     //    This is because we recompute the DT on every change in the main CGP
1191     //    run-loop. The recomputing is probably unnecessary in many cases, so if
1192     //    that was fixed, using a DT here would be ok.
1193     return false;
1194   }
1195 
1196   // We allow matching the canonical IR (add X, C) back to (usubo X, -C).
1197   Value *Arg0 = BO->getOperand(0);
1198   Value *Arg1 = BO->getOperand(1);
1199   if (BO->getOpcode() == Instruction::Add &&
1200       IID == Intrinsic::usub_with_overflow) {
1201     assert(isa<Constant>(Arg1) && "Unexpected input for usubo");
1202     Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1));
1203   }
1204 
1205   // Insert at the first instruction of the pair.
1206   Instruction *InsertPt = nullptr;
1207   for (Instruction &Iter : *Cmp->getParent()) {
1208     if (&Iter == BO || &Iter == Cmp) {
1209       InsertPt = &Iter;
1210       break;
1211     }
1212   }
1213   assert(InsertPt != nullptr && "Parent block did not contain cmp or binop");
1214 
1215   IRBuilder<> Builder(InsertPt);
1216   Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1);
1217   Value *Math = Builder.CreateExtractValue(MathOV, 0, "math");
1218   Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov");
1219   BO->replaceAllUsesWith(Math);
1220   Cmp->replaceAllUsesWith(OV);
1221   BO->eraseFromParent();
1222   Cmp->eraseFromParent();
1223   return true;
1224 }
1225 
1226 /// Match special-case patterns that check for unsigned add overflow.
1227 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp,
1228                                                    BinaryOperator *&Add) {
1229   // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val)
1230   // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero)
1231   Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1232 
1233   // We are not expecting non-canonical/degenerate code. Just bail out.
1234   if (isa<Constant>(A))
1235     return false;
1236 
1237   ICmpInst::Predicate Pred = Cmp->getPredicate();
1238   if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes()))
1239     B = ConstantInt::get(B->getType(), 1);
1240   else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt()))
1241     B = ConstantInt::get(B->getType(), -1);
1242   else
1243     return false;
1244 
1245   // Check the users of the variable operand of the compare looking for an add
1246   // with the adjusted constant.
1247   for (User *U : A->users()) {
1248     if (match(U, m_Add(m_Specific(A), m_Specific(B)))) {
1249       Add = cast<BinaryOperator>(U);
1250       return true;
1251     }
1252   }
1253   return false;
1254 }
1255 
1256 /// Try to combine the compare into a call to the llvm.uadd.with.overflow
1257 /// intrinsic. Return true if any changes were made.
1258 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp,
1259                                                bool &ModifiedDT) {
1260   Value *A, *B;
1261   BinaryOperator *Add;
1262   if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add))))
1263     if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add))
1264       return false;
1265 
1266   if (!TLI->shouldFormOverflowOp(ISD::UADDO,
1267                                  TLI->getValueType(*DL, Add->getType())))
1268     return false;
1269 
1270   // We don't want to move around uses of condition values this late, so we
1271   // check if it is legal to create the call to the intrinsic in the basic
1272   // block containing the icmp.
1273   if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse())
1274     return false;
1275 
1276   if (!replaceMathCmpWithIntrinsic(Add, Cmp, Intrinsic::uadd_with_overflow))
1277     return false;
1278 
1279   // Reset callers - do not crash by iterating over a dead instruction.
1280   ModifiedDT = true;
1281   return true;
1282 }
1283 
1284 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp,
1285                                                bool &ModifiedDT) {
1286   // We are not expecting non-canonical/degenerate code. Just bail out.
1287   Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1288   if (isa<Constant>(A) && isa<Constant>(B))
1289     return false;
1290 
1291   // Convert (A u> B) to (A u< B) to simplify pattern matching.
1292   ICmpInst::Predicate Pred = Cmp->getPredicate();
1293   if (Pred == ICmpInst::ICMP_UGT) {
1294     std::swap(A, B);
1295     Pred = ICmpInst::ICMP_ULT;
1296   }
1297   // Convert special-case: (A == 0) is the same as (A u< 1).
1298   if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) {
1299     B = ConstantInt::get(B->getType(), 1);
1300     Pred = ICmpInst::ICMP_ULT;
1301   }
1302   // Convert special-case: (A != 0) is the same as (0 u< A).
1303   if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) {
1304     std::swap(A, B);
1305     Pred = ICmpInst::ICMP_ULT;
1306   }
1307   if (Pred != ICmpInst::ICMP_ULT)
1308     return false;
1309 
1310   // Walk the users of a variable operand of a compare looking for a subtract or
1311   // add with that same operand. Also match the 2nd operand of the compare to
1312   // the add/sub, but that may be a negated constant operand of an add.
1313   Value *CmpVariableOperand = isa<Constant>(A) ? B : A;
1314   BinaryOperator *Sub = nullptr;
1315   for (User *U : CmpVariableOperand->users()) {
1316     // A - B, A u< B --> usubo(A, B)
1317     if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) {
1318       Sub = cast<BinaryOperator>(U);
1319       break;
1320     }
1321 
1322     // A + (-C), A u< C (canonicalized form of (sub A, C))
1323     const APInt *CmpC, *AddC;
1324     if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) &&
1325         match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) {
1326       Sub = cast<BinaryOperator>(U);
1327       break;
1328     }
1329   }
1330   if (!Sub)
1331     return false;
1332 
1333   if (!TLI->shouldFormOverflowOp(ISD::USUBO,
1334                                  TLI->getValueType(*DL, Sub->getType())))
1335     return false;
1336 
1337   if (!replaceMathCmpWithIntrinsic(Sub, Cmp, Intrinsic::usub_with_overflow))
1338     return false;
1339 
1340   // Reset callers - do not crash by iterating over a dead instruction.
1341   ModifiedDT = true;
1342   return true;
1343 }
1344 
1345 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1346 /// registers that must be created and coalesced. This is a clear win except on
1347 /// targets with multiple condition code registers (PowerPC), where it might
1348 /// lose; some adjustment may be wanted there.
1349 ///
1350 /// Return true if any changes are made.
1351 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) {
1352   if (TLI.hasMultipleConditionRegisters())
1353     return false;
1354 
1355   // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1356   if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp))
1357     return false;
1358 
1359   // Only insert a cmp in each block once.
1360   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
1361 
1362   bool MadeChange = false;
1363   for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end();
1364        UI != E; ) {
1365     Use &TheUse = UI.getUse();
1366     Instruction *User = cast<Instruction>(*UI);
1367 
1368     // Preincrement use iterator so we don't invalidate it.
1369     ++UI;
1370 
1371     // Don't bother for PHI nodes.
1372     if (isa<PHINode>(User))
1373       continue;
1374 
1375     // Figure out which BB this cmp is used in.
1376     BasicBlock *UserBB = User->getParent();
1377     BasicBlock *DefBB = Cmp->getParent();
1378 
1379     // If this user is in the same block as the cmp, don't change the cmp.
1380     if (UserBB == DefBB) continue;
1381 
1382     // If we have already inserted a cmp into this block, use it.
1383     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1384 
1385     if (!InsertedCmp) {
1386       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1387       assert(InsertPt != UserBB->end());
1388       InsertedCmp =
1389           CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(),
1390                           Cmp->getOperand(0), Cmp->getOperand(1), "",
1391                           &*InsertPt);
1392       // Propagate the debug info.
1393       InsertedCmp->setDebugLoc(Cmp->getDebugLoc());
1394     }
1395 
1396     // Replace a use of the cmp with a use of the new cmp.
1397     TheUse = InsertedCmp;
1398     MadeChange = true;
1399     ++NumCmpUses;
1400   }
1401 
1402   // If we removed all uses, nuke the cmp.
1403   if (Cmp->use_empty()) {
1404     Cmp->eraseFromParent();
1405     MadeChange = true;
1406   }
1407 
1408   return MadeChange;
1409 }
1410 
1411 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) {
1412   if (sinkCmpExpression(Cmp, *TLI))
1413     return true;
1414 
1415   if (combineToUAddWithOverflow(Cmp, ModifiedDT))
1416     return true;
1417 
1418   if (combineToUSubWithOverflow(Cmp, ModifiedDT))
1419     return true;
1420 
1421   return false;
1422 }
1423 
1424 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1425 /// used in a compare to allow isel to generate better code for targets where
1426 /// this operation can be combined.
1427 ///
1428 /// Return true if any changes are made.
1429 static bool sinkAndCmp0Expression(Instruction *AndI,
1430                                   const TargetLowering &TLI,
1431                                   SetOfInstrs &InsertedInsts) {
1432   // Double-check that we're not trying to optimize an instruction that was
1433   // already optimized by some other part of this pass.
1434   assert(!InsertedInsts.count(AndI) &&
1435          "Attempting to optimize already optimized and instruction");
1436   (void) InsertedInsts;
1437 
1438   // Nothing to do for single use in same basic block.
1439   if (AndI->hasOneUse() &&
1440       AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
1441     return false;
1442 
1443   // Try to avoid cases where sinking/duplicating is likely to increase register
1444   // pressure.
1445   if (!isa<ConstantInt>(AndI->getOperand(0)) &&
1446       !isa<ConstantInt>(AndI->getOperand(1)) &&
1447       AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
1448     return false;
1449 
1450   for (auto *U : AndI->users()) {
1451     Instruction *User = cast<Instruction>(U);
1452 
1453     // Only sink 'and' feeding icmp with 0.
1454     if (!isa<ICmpInst>(User))
1455       return false;
1456 
1457     auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
1458     if (!CmpC || !CmpC->isZero())
1459       return false;
1460   }
1461 
1462   if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
1463     return false;
1464 
1465   LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1466   LLVM_DEBUG(AndI->getParent()->dump());
1467 
1468   // Push the 'and' into the same block as the icmp 0.  There should only be
1469   // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1470   // others, so we don't need to keep track of which BBs we insert into.
1471   for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
1472        UI != E; ) {
1473     Use &TheUse = UI.getUse();
1474     Instruction *User = cast<Instruction>(*UI);
1475 
1476     // Preincrement use iterator so we don't invalidate it.
1477     ++UI;
1478 
1479     LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
1480 
1481     // Keep the 'and' in the same place if the use is already in the same block.
1482     Instruction *InsertPt =
1483         User->getParent() == AndI->getParent() ? AndI : User;
1484     Instruction *InsertedAnd =
1485         BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
1486                                AndI->getOperand(1), "", InsertPt);
1487     // Propagate the debug info.
1488     InsertedAnd->setDebugLoc(AndI->getDebugLoc());
1489 
1490     // Replace a use of the 'and' with a use of the new 'and'.
1491     TheUse = InsertedAnd;
1492     ++NumAndUses;
1493     LLVM_DEBUG(User->getParent()->dump());
1494   }
1495 
1496   // We removed all uses, nuke the and.
1497   AndI->eraseFromParent();
1498   return true;
1499 }
1500 
1501 /// Check if the candidates could be combined with a shift instruction, which
1502 /// includes:
1503 /// 1. Truncate instruction
1504 /// 2. And instruction and the imm is a mask of the low bits:
1505 /// imm & (imm+1) == 0
1506 static bool isExtractBitsCandidateUse(Instruction *User) {
1507   if (!isa<TruncInst>(User)) {
1508     if (User->getOpcode() != Instruction::And ||
1509         !isa<ConstantInt>(User->getOperand(1)))
1510       return false;
1511 
1512     const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
1513 
1514     if ((Cimm & (Cimm + 1)).getBoolValue())
1515       return false;
1516   }
1517   return true;
1518 }
1519 
1520 /// Sink both shift and truncate instruction to the use of truncate's BB.
1521 static bool
1522 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
1523                      DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
1524                      const TargetLowering &TLI, const DataLayout &DL) {
1525   BasicBlock *UserBB = User->getParent();
1526   DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
1527   TruncInst *TruncI = dyn_cast<TruncInst>(User);
1528   bool MadeChange = false;
1529 
1530   for (Value::user_iterator TruncUI = TruncI->user_begin(),
1531                             TruncE = TruncI->user_end();
1532        TruncUI != TruncE;) {
1533 
1534     Use &TruncTheUse = TruncUI.getUse();
1535     Instruction *TruncUser = cast<Instruction>(*TruncUI);
1536     // Preincrement use iterator so we don't invalidate it.
1537 
1538     ++TruncUI;
1539 
1540     int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
1541     if (!ISDOpcode)
1542       continue;
1543 
1544     // If the use is actually a legal node, there will not be an
1545     // implicit truncate.
1546     // FIXME: always querying the result type is just an
1547     // approximation; some nodes' legality is determined by the
1548     // operand or other means. There's no good way to find out though.
1549     if (TLI.isOperationLegalOrCustom(
1550             ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
1551       continue;
1552 
1553     // Don't bother for PHI nodes.
1554     if (isa<PHINode>(TruncUser))
1555       continue;
1556 
1557     BasicBlock *TruncUserBB = TruncUser->getParent();
1558 
1559     if (UserBB == TruncUserBB)
1560       continue;
1561 
1562     BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
1563     CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
1564 
1565     if (!InsertedShift && !InsertedTrunc) {
1566       BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
1567       assert(InsertPt != TruncUserBB->end());
1568       // Sink the shift
1569       if (ShiftI->getOpcode() == Instruction::AShr)
1570         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1571                                                    "", &*InsertPt);
1572       else
1573         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1574                                                    "", &*InsertPt);
1575       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1576 
1577       // Sink the trunc
1578       BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
1579       TruncInsertPt++;
1580       assert(TruncInsertPt != TruncUserBB->end());
1581 
1582       InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
1583                                        TruncI->getType(), "", &*TruncInsertPt);
1584       InsertedTrunc->setDebugLoc(TruncI->getDebugLoc());
1585 
1586       MadeChange = true;
1587 
1588       TruncTheUse = InsertedTrunc;
1589     }
1590   }
1591   return MadeChange;
1592 }
1593 
1594 /// Sink the shift *right* instruction into user blocks if the uses could
1595 /// potentially be combined with this shift instruction and generate BitExtract
1596 /// instruction. It will only be applied if the architecture supports BitExtract
1597 /// instruction. Here is an example:
1598 /// BB1:
1599 ///   %x.extract.shift = lshr i64 %arg1, 32
1600 /// BB2:
1601 ///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
1602 /// ==>
1603 ///
1604 /// BB2:
1605 ///   %x.extract.shift.1 = lshr i64 %arg1, 32
1606 ///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1607 ///
1608 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
1609 /// instruction.
1610 /// Return true if any changes are made.
1611 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1612                                 const TargetLowering &TLI,
1613                                 const DataLayout &DL) {
1614   BasicBlock *DefBB = ShiftI->getParent();
1615 
1616   /// Only insert instructions in each block once.
1617   DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1618 
1619   bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1620 
1621   bool MadeChange = false;
1622   for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1623        UI != E;) {
1624     Use &TheUse = UI.getUse();
1625     Instruction *User = cast<Instruction>(*UI);
1626     // Preincrement use iterator so we don't invalidate it.
1627     ++UI;
1628 
1629     // Don't bother for PHI nodes.
1630     if (isa<PHINode>(User))
1631       continue;
1632 
1633     if (!isExtractBitsCandidateUse(User))
1634       continue;
1635 
1636     BasicBlock *UserBB = User->getParent();
1637 
1638     if (UserBB == DefBB) {
1639       // If the shift and truncate instruction are in the same BB. The use of
1640       // the truncate(TruncUse) may still introduce another truncate if not
1641       // legal. In this case, we would like to sink both shift and truncate
1642       // instruction to the BB of TruncUse.
1643       // for example:
1644       // BB1:
1645       // i64 shift.result = lshr i64 opnd, imm
1646       // trunc.result = trunc shift.result to i16
1647       //
1648       // BB2:
1649       //   ----> We will have an implicit truncate here if the architecture does
1650       //   not have i16 compare.
1651       // cmp i16 trunc.result, opnd2
1652       //
1653       if (isa<TruncInst>(User) && shiftIsLegal
1654           // If the type of the truncate is legal, no truncate will be
1655           // introduced in other basic blocks.
1656           &&
1657           (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1658         MadeChange =
1659             SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1660 
1661       continue;
1662     }
1663     // If we have already inserted a shift into this block, use it.
1664     BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1665 
1666     if (!InsertedShift) {
1667       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1668       assert(InsertPt != UserBB->end());
1669 
1670       if (ShiftI->getOpcode() == Instruction::AShr)
1671         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1672                                                    "", &*InsertPt);
1673       else
1674         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1675                                                    "", &*InsertPt);
1676       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1677 
1678       MadeChange = true;
1679     }
1680 
1681     // Replace a use of the shift with a use of the new shift.
1682     TheUse = InsertedShift;
1683   }
1684 
1685   // If we removed all uses, nuke the shift.
1686   if (ShiftI->use_empty()) {
1687     salvageDebugInfo(*ShiftI);
1688     ShiftI->eraseFromParent();
1689   }
1690 
1691   return MadeChange;
1692 }
1693 
1694 /// If counting leading or trailing zeros is an expensive operation and a zero
1695 /// input is defined, add a check for zero to avoid calling the intrinsic.
1696 ///
1697 /// We want to transform:
1698 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
1699 ///
1700 /// into:
1701 ///   entry:
1702 ///     %cmpz = icmp eq i64 %A, 0
1703 ///     br i1 %cmpz, label %cond.end, label %cond.false
1704 ///   cond.false:
1705 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
1706 ///     br label %cond.end
1707 ///   cond.end:
1708 ///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
1709 ///
1710 /// If the transform is performed, return true and set ModifiedDT to true.
1711 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
1712                                   const TargetLowering *TLI,
1713                                   const DataLayout *DL,
1714                                   bool &ModifiedDT) {
1715   if (!TLI || !DL)
1716     return false;
1717 
1718   // If a zero input is undefined, it doesn't make sense to despeculate that.
1719   if (match(CountZeros->getOperand(1), m_One()))
1720     return false;
1721 
1722   // If it's cheap to speculate, there's nothing to do.
1723   auto IntrinsicID = CountZeros->getIntrinsicID();
1724   if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
1725       (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
1726     return false;
1727 
1728   // Only handle legal scalar cases. Anything else requires too much work.
1729   Type *Ty = CountZeros->getType();
1730   unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
1731   if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
1732     return false;
1733 
1734   // The intrinsic will be sunk behind a compare against zero and branch.
1735   BasicBlock *StartBlock = CountZeros->getParent();
1736   BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
1737 
1738   // Create another block after the count zero intrinsic. A PHI will be added
1739   // in this block to select the result of the intrinsic or the bit-width
1740   // constant if the input to the intrinsic is zero.
1741   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
1742   BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
1743 
1744   // Set up a builder to create a compare, conditional branch, and PHI.
1745   IRBuilder<> Builder(CountZeros->getContext());
1746   Builder.SetInsertPoint(StartBlock->getTerminator());
1747   Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
1748 
1749   // Replace the unconditional branch that was created by the first split with
1750   // a compare against zero and a conditional branch.
1751   Value *Zero = Constant::getNullValue(Ty);
1752   Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
1753   Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
1754   StartBlock->getTerminator()->eraseFromParent();
1755 
1756   // Create a PHI in the end block to select either the output of the intrinsic
1757   // or the bit width of the operand.
1758   Builder.SetInsertPoint(&EndBlock->front());
1759   PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
1760   CountZeros->replaceAllUsesWith(PN);
1761   Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
1762   PN->addIncoming(BitWidth, StartBlock);
1763   PN->addIncoming(CountZeros, CallBlock);
1764 
1765   // We are explicitly handling the zero case, so we can set the intrinsic's
1766   // undefined zero argument to 'true'. This will also prevent reprocessing the
1767   // intrinsic; we only despeculate when a zero input is defined.
1768   CountZeros->setArgOperand(1, Builder.getTrue());
1769   ModifiedDT = true;
1770   return true;
1771 }
1772 
1773 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
1774   BasicBlock *BB = CI->getParent();
1775 
1776   // Lower inline assembly if we can.
1777   // If we found an inline asm expession, and if the target knows how to
1778   // lower it to normal LLVM code, do so now.
1779   if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
1780     if (TLI->ExpandInlineAsm(CI)) {
1781       // Avoid invalidating the iterator.
1782       CurInstIterator = BB->begin();
1783       // Avoid processing instructions out of order, which could cause
1784       // reuse before a value is defined.
1785       SunkAddrs.clear();
1786       return true;
1787     }
1788     // Sink address computing for memory operands into the block.
1789     if (optimizeInlineAsmInst(CI))
1790       return true;
1791   }
1792 
1793   // Align the pointer arguments to this call if the target thinks it's a good
1794   // idea
1795   unsigned MinSize, PrefAlign;
1796   if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
1797     for (auto &Arg : CI->arg_operands()) {
1798       // We want to align both objects whose address is used directly and
1799       // objects whose address is used in casts and GEPs, though it only makes
1800       // sense for GEPs if the offset is a multiple of the desired alignment and
1801       // if size - offset meets the size threshold.
1802       if (!Arg->getType()->isPointerTy())
1803         continue;
1804       APInt Offset(DL->getIndexSizeInBits(
1805                        cast<PointerType>(Arg->getType())->getAddressSpace()),
1806                    0);
1807       Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
1808       uint64_t Offset2 = Offset.getLimitedValue();
1809       if ((Offset2 & (PrefAlign-1)) != 0)
1810         continue;
1811       AllocaInst *AI;
1812       if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
1813           DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
1814         AI->setAlignment(PrefAlign);
1815       // Global variables can only be aligned if they are defined in this
1816       // object (i.e. they are uniquely initialized in this object), and
1817       // over-aligning global variables that have an explicit section is
1818       // forbidden.
1819       GlobalVariable *GV;
1820       if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
1821           GV->getPointerAlignment(*DL) < PrefAlign &&
1822           DL->getTypeAllocSize(GV->getValueType()) >=
1823               MinSize + Offset2)
1824         GV->setAlignment(PrefAlign);
1825     }
1826     // If this is a memcpy (or similar) then we may be able to improve the
1827     // alignment
1828     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
1829       unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL);
1830       if (DestAlign > MI->getDestAlignment())
1831         MI->setDestAlignment(DestAlign);
1832       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
1833         unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
1834         if (SrcAlign > MTI->getSourceAlignment())
1835           MTI->setSourceAlignment(SrcAlign);
1836       }
1837     }
1838   }
1839 
1840   // If we have a cold call site, try to sink addressing computation into the
1841   // cold block.  This interacts with our handling for loads and stores to
1842   // ensure that we can fold all uses of a potential addressing computation
1843   // into their uses.  TODO: generalize this to work over profiling data
1844   if (!OptSize && CI->hasFnAttr(Attribute::Cold))
1845     for (auto &Arg : CI->arg_operands()) {
1846       if (!Arg->getType()->isPointerTy())
1847         continue;
1848       unsigned AS = Arg->getType()->getPointerAddressSpace();
1849       return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
1850     }
1851 
1852   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
1853   if (II) {
1854     switch (II->getIntrinsicID()) {
1855     default: break;
1856     case Intrinsic::experimental_widenable_condition: {
1857       // Give up on future widening oppurtunties so that we can fold away dead
1858       // paths and merge blocks before going into block-local instruction
1859       // selection.
1860       if (II->use_empty()) {
1861         II->eraseFromParent();
1862         return true;
1863       }
1864       Constant *RetVal = ConstantInt::getTrue(II->getContext());
1865       resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
1866         replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
1867       });
1868       return true;
1869     }
1870     case Intrinsic::objectsize: {
1871       // Lower all uses of llvm.objectsize.*
1872       Value *RetVal =
1873           lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true);
1874 
1875       resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
1876         replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
1877       });
1878       return true;
1879     }
1880     case Intrinsic::is_constant: {
1881       // If is_constant hasn't folded away yet, lower it to false now.
1882       Constant *RetVal = ConstantInt::get(II->getType(), 0);
1883       resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
1884         replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
1885       });
1886       return true;
1887     }
1888     case Intrinsic::aarch64_stlxr:
1889     case Intrinsic::aarch64_stxr: {
1890       ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
1891       if (!ExtVal || !ExtVal->hasOneUse() ||
1892           ExtVal->getParent() == CI->getParent())
1893         return false;
1894       // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
1895       ExtVal->moveBefore(CI);
1896       // Mark this instruction as "inserted by CGP", so that other
1897       // optimizations don't touch it.
1898       InsertedInsts.insert(ExtVal);
1899       return true;
1900     }
1901 
1902     case Intrinsic::launder_invariant_group:
1903     case Intrinsic::strip_invariant_group: {
1904       Value *ArgVal = II->getArgOperand(0);
1905       auto it = LargeOffsetGEPMap.find(II);
1906       if (it != LargeOffsetGEPMap.end()) {
1907           // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
1908           // Make sure not to have to deal with iterator invalidation
1909           // after possibly adding ArgVal to LargeOffsetGEPMap.
1910           auto GEPs = std::move(it->second);
1911           LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end());
1912           LargeOffsetGEPMap.erase(II);
1913       }
1914 
1915       II->replaceAllUsesWith(ArgVal);
1916       II->eraseFromParent();
1917       return true;
1918     }
1919     case Intrinsic::cttz:
1920     case Intrinsic::ctlz:
1921       // If counting zeros is expensive, try to avoid it.
1922       return despeculateCountZeros(II, TLI, DL, ModifiedDT);
1923     }
1924 
1925     if (TLI) {
1926       SmallVector<Value*, 2> PtrOps;
1927       Type *AccessTy;
1928       if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
1929         while (!PtrOps.empty()) {
1930           Value *PtrVal = PtrOps.pop_back_val();
1931           unsigned AS = PtrVal->getType()->getPointerAddressSpace();
1932           if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
1933             return true;
1934         }
1935     }
1936   }
1937 
1938   // From here on out we're working with named functions.
1939   if (!CI->getCalledFunction()) return false;
1940 
1941   // Lower all default uses of _chk calls.  This is very similar
1942   // to what InstCombineCalls does, but here we are only lowering calls
1943   // to fortified library functions (e.g. __memcpy_chk) that have the default
1944   // "don't know" as the objectsize.  Anything else should be left alone.
1945   FortifiedLibCallSimplifier Simplifier(TLInfo, true);
1946   if (Value *V = Simplifier.optimizeCall(CI)) {
1947     CI->replaceAllUsesWith(V);
1948     CI->eraseFromParent();
1949     return true;
1950   }
1951 
1952   return false;
1953 }
1954 
1955 /// Look for opportunities to duplicate return instructions to the predecessor
1956 /// to enable tail call optimizations. The case it is currently looking for is:
1957 /// @code
1958 /// bb0:
1959 ///   %tmp0 = tail call i32 @f0()
1960 ///   br label %return
1961 /// bb1:
1962 ///   %tmp1 = tail call i32 @f1()
1963 ///   br label %return
1964 /// bb2:
1965 ///   %tmp2 = tail call i32 @f2()
1966 ///   br label %return
1967 /// return:
1968 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
1969 ///   ret i32 %retval
1970 /// @endcode
1971 ///
1972 /// =>
1973 ///
1974 /// @code
1975 /// bb0:
1976 ///   %tmp0 = tail call i32 @f0()
1977 ///   ret i32 %tmp0
1978 /// bb1:
1979 ///   %tmp1 = tail call i32 @f1()
1980 ///   ret i32 %tmp1
1981 /// bb2:
1982 ///   %tmp2 = tail call i32 @f2()
1983 ///   ret i32 %tmp2
1984 /// @endcode
1985 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) {
1986   if (!TLI)
1987     return false;
1988 
1989   ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
1990   if (!RetI)
1991     return false;
1992 
1993   PHINode *PN = nullptr;
1994   BitCastInst *BCI = nullptr;
1995   Value *V = RetI->getReturnValue();
1996   if (V) {
1997     BCI = dyn_cast<BitCastInst>(V);
1998     if (BCI)
1999       V = BCI->getOperand(0);
2000 
2001     PN = dyn_cast<PHINode>(V);
2002     if (!PN)
2003       return false;
2004   }
2005 
2006   if (PN && PN->getParent() != BB)
2007     return false;
2008 
2009   // Make sure there are no instructions between the PHI and return, or that the
2010   // return is the first instruction in the block.
2011   if (PN) {
2012     BasicBlock::iterator BI = BB->begin();
2013     // Skip over debug and the bitcast.
2014     do { ++BI; } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI);
2015     if (&*BI != RetI)
2016       return false;
2017   } else {
2018     BasicBlock::iterator BI = BB->begin();
2019     while (isa<DbgInfoIntrinsic>(BI)) ++BI;
2020     if (&*BI != RetI)
2021       return false;
2022   }
2023 
2024   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
2025   /// call.
2026   const Function *F = BB->getParent();
2027   SmallVector<BasicBlock*, 4> TailCallBBs;
2028   if (PN) {
2029     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
2030       // Look through bitcasts.
2031       Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts();
2032       CallInst *CI = dyn_cast<CallInst>(IncomingVal);
2033       BasicBlock *PredBB = PN->getIncomingBlock(I);
2034       // Make sure the phi value is indeed produced by the tail call.
2035       if (CI && CI->hasOneUse() && CI->getParent() == PredBB &&
2036           TLI->mayBeEmittedAsTailCall(CI) &&
2037           attributesPermitTailCall(F, CI, RetI, *TLI))
2038         TailCallBBs.push_back(PredBB);
2039     }
2040   } else {
2041     SmallPtrSet<BasicBlock*, 4> VisitedBBs;
2042     for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
2043       if (!VisitedBBs.insert(*PI).second)
2044         continue;
2045 
2046       BasicBlock::InstListType &InstList = (*PI)->getInstList();
2047       BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
2048       BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
2049       do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
2050       if (RI == RE)
2051         continue;
2052 
2053       CallInst *CI = dyn_cast<CallInst>(&*RI);
2054       if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
2055           attributesPermitTailCall(F, CI, RetI, *TLI))
2056         TailCallBBs.push_back(*PI);
2057     }
2058   }
2059 
2060   bool Changed = false;
2061   for (auto const &TailCallBB : TailCallBBs) {
2062     // Make sure the call instruction is followed by an unconditional branch to
2063     // the return block.
2064     BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator());
2065     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
2066       continue;
2067 
2068     // Duplicate the return into TailCallBB.
2069     (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB);
2070     ModifiedDT = Changed = true;
2071     ++NumRetsDup;
2072   }
2073 
2074   // If we eliminated all predecessors of the block, delete the block now.
2075   if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
2076     BB->eraseFromParent();
2077 
2078   return Changed;
2079 }
2080 
2081 //===----------------------------------------------------------------------===//
2082 // Memory Optimization
2083 //===----------------------------------------------------------------------===//
2084 
2085 namespace {
2086 
2087 /// This is an extended version of TargetLowering::AddrMode
2088 /// which holds actual Value*'s for register values.
2089 struct ExtAddrMode : public TargetLowering::AddrMode {
2090   Value *BaseReg = nullptr;
2091   Value *ScaledReg = nullptr;
2092   Value *OriginalValue = nullptr;
2093   bool InBounds = true;
2094 
2095   enum FieldName {
2096     NoField        = 0x00,
2097     BaseRegField   = 0x01,
2098     BaseGVField    = 0x02,
2099     BaseOffsField  = 0x04,
2100     ScaledRegField = 0x08,
2101     ScaleField     = 0x10,
2102     MultipleFields = 0xff
2103   };
2104 
2105 
2106   ExtAddrMode() = default;
2107 
2108   void print(raw_ostream &OS) const;
2109   void dump() const;
2110 
2111   FieldName compare(const ExtAddrMode &other) {
2112     // First check that the types are the same on each field, as differing types
2113     // is something we can't cope with later on.
2114     if (BaseReg && other.BaseReg &&
2115         BaseReg->getType() != other.BaseReg->getType())
2116       return MultipleFields;
2117     if (BaseGV && other.BaseGV &&
2118         BaseGV->getType() != other.BaseGV->getType())
2119       return MultipleFields;
2120     if (ScaledReg && other.ScaledReg &&
2121         ScaledReg->getType() != other.ScaledReg->getType())
2122       return MultipleFields;
2123 
2124     // Conservatively reject 'inbounds' mismatches.
2125     if (InBounds != other.InBounds)
2126       return MultipleFields;
2127 
2128     // Check each field to see if it differs.
2129     unsigned Result = NoField;
2130     if (BaseReg != other.BaseReg)
2131       Result |= BaseRegField;
2132     if (BaseGV != other.BaseGV)
2133       Result |= BaseGVField;
2134     if (BaseOffs != other.BaseOffs)
2135       Result |= BaseOffsField;
2136     if (ScaledReg != other.ScaledReg)
2137       Result |= ScaledRegField;
2138     // Don't count 0 as being a different scale, because that actually means
2139     // unscaled (which will already be counted by having no ScaledReg).
2140     if (Scale && other.Scale && Scale != other.Scale)
2141       Result |= ScaleField;
2142 
2143     if (countPopulation(Result) > 1)
2144       return MultipleFields;
2145     else
2146       return static_cast<FieldName>(Result);
2147   }
2148 
2149   // An AddrMode is trivial if it involves no calculation i.e. it is just a base
2150   // with no offset.
2151   bool isTrivial() {
2152     // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
2153     // trivial if at most one of these terms is nonzero, except that BaseGV and
2154     // BaseReg both being zero actually means a null pointer value, which we
2155     // consider to be 'non-zero' here.
2156     return !BaseOffs && !Scale && !(BaseGV && BaseReg);
2157   }
2158 
2159   Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
2160     switch (Field) {
2161     default:
2162       return nullptr;
2163     case BaseRegField:
2164       return BaseReg;
2165     case BaseGVField:
2166       return BaseGV;
2167     case ScaledRegField:
2168       return ScaledReg;
2169     case BaseOffsField:
2170       return ConstantInt::get(IntPtrTy, BaseOffs);
2171     }
2172   }
2173 
2174   void SetCombinedField(FieldName Field, Value *V,
2175                         const SmallVectorImpl<ExtAddrMode> &AddrModes) {
2176     switch (Field) {
2177     default:
2178       llvm_unreachable("Unhandled fields are expected to be rejected earlier");
2179       break;
2180     case ExtAddrMode::BaseRegField:
2181       BaseReg = V;
2182       break;
2183     case ExtAddrMode::BaseGVField:
2184       // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
2185       // in the BaseReg field.
2186       assert(BaseReg == nullptr);
2187       BaseReg = V;
2188       BaseGV = nullptr;
2189       break;
2190     case ExtAddrMode::ScaledRegField:
2191       ScaledReg = V;
2192       // If we have a mix of scaled and unscaled addrmodes then we want scale
2193       // to be the scale and not zero.
2194       if (!Scale)
2195         for (const ExtAddrMode &AM : AddrModes)
2196           if (AM.Scale) {
2197             Scale = AM.Scale;
2198             break;
2199           }
2200       break;
2201     case ExtAddrMode::BaseOffsField:
2202       // The offset is no longer a constant, so it goes in ScaledReg with a
2203       // scale of 1.
2204       assert(ScaledReg == nullptr);
2205       ScaledReg = V;
2206       Scale = 1;
2207       BaseOffs = 0;
2208       break;
2209     }
2210   }
2211 };
2212 
2213 } // end anonymous namespace
2214 
2215 #ifndef NDEBUG
2216 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2217   AM.print(OS);
2218   return OS;
2219 }
2220 #endif
2221 
2222 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2223 void ExtAddrMode::print(raw_ostream &OS) const {
2224   bool NeedPlus = false;
2225   OS << "[";
2226   if (InBounds)
2227     OS << "inbounds ";
2228   if (BaseGV) {
2229     OS << (NeedPlus ? " + " : "")
2230        << "GV:";
2231     BaseGV->printAsOperand(OS, /*PrintType=*/false);
2232     NeedPlus = true;
2233   }
2234 
2235   if (BaseOffs) {
2236     OS << (NeedPlus ? " + " : "")
2237        << BaseOffs;
2238     NeedPlus = true;
2239   }
2240 
2241   if (BaseReg) {
2242     OS << (NeedPlus ? " + " : "")
2243        << "Base:";
2244     BaseReg->printAsOperand(OS, /*PrintType=*/false);
2245     NeedPlus = true;
2246   }
2247   if (Scale) {
2248     OS << (NeedPlus ? " + " : "")
2249        << Scale << "*";
2250     ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2251   }
2252 
2253   OS << ']';
2254 }
2255 
2256 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2257   print(dbgs());
2258   dbgs() << '\n';
2259 }
2260 #endif
2261 
2262 namespace {
2263 
2264 /// This class provides transaction based operation on the IR.
2265 /// Every change made through this class is recorded in the internal state and
2266 /// can be undone (rollback) until commit is called.
2267 class TypePromotionTransaction {
2268   /// This represents the common interface of the individual transaction.
2269   /// Each class implements the logic for doing one specific modification on
2270   /// the IR via the TypePromotionTransaction.
2271   class TypePromotionAction {
2272   protected:
2273     /// The Instruction modified.
2274     Instruction *Inst;
2275 
2276   public:
2277     /// Constructor of the action.
2278     /// The constructor performs the related action on the IR.
2279     TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2280 
2281     virtual ~TypePromotionAction() = default;
2282 
2283     /// Undo the modification done by this action.
2284     /// When this method is called, the IR must be in the same state as it was
2285     /// before this action was applied.
2286     /// \pre Undoing the action works if and only if the IR is in the exact same
2287     /// state as it was directly after this action was applied.
2288     virtual void undo() = 0;
2289 
2290     /// Advocate every change made by this action.
2291     /// When the results on the IR of the action are to be kept, it is important
2292     /// to call this function, otherwise hidden information may be kept forever.
2293     virtual void commit() {
2294       // Nothing to be done, this action is not doing anything.
2295     }
2296   };
2297 
2298   /// Utility to remember the position of an instruction.
2299   class InsertionHandler {
2300     /// Position of an instruction.
2301     /// Either an instruction:
2302     /// - Is the first in a basic block: BB is used.
2303     /// - Has a previous instruction: PrevInst is used.
2304     union {
2305       Instruction *PrevInst;
2306       BasicBlock *BB;
2307     } Point;
2308 
2309     /// Remember whether or not the instruction had a previous instruction.
2310     bool HasPrevInstruction;
2311 
2312   public:
2313     /// Record the position of \p Inst.
2314     InsertionHandler(Instruction *Inst) {
2315       BasicBlock::iterator It = Inst->getIterator();
2316       HasPrevInstruction = (It != (Inst->getParent()->begin()));
2317       if (HasPrevInstruction)
2318         Point.PrevInst = &*--It;
2319       else
2320         Point.BB = Inst->getParent();
2321     }
2322 
2323     /// Insert \p Inst at the recorded position.
2324     void insert(Instruction *Inst) {
2325       if (HasPrevInstruction) {
2326         if (Inst->getParent())
2327           Inst->removeFromParent();
2328         Inst->insertAfter(Point.PrevInst);
2329       } else {
2330         Instruction *Position = &*Point.BB->getFirstInsertionPt();
2331         if (Inst->getParent())
2332           Inst->moveBefore(Position);
2333         else
2334           Inst->insertBefore(Position);
2335       }
2336     }
2337   };
2338 
2339   /// Move an instruction before another.
2340   class InstructionMoveBefore : public TypePromotionAction {
2341     /// Original position of the instruction.
2342     InsertionHandler Position;
2343 
2344   public:
2345     /// Move \p Inst before \p Before.
2346     InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2347         : TypePromotionAction(Inst), Position(Inst) {
2348       LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
2349                         << "\n");
2350       Inst->moveBefore(Before);
2351     }
2352 
2353     /// Move the instruction back to its original position.
2354     void undo() override {
2355       LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2356       Position.insert(Inst);
2357     }
2358   };
2359 
2360   /// Set the operand of an instruction with a new value.
2361   class OperandSetter : public TypePromotionAction {
2362     /// Original operand of the instruction.
2363     Value *Origin;
2364 
2365     /// Index of the modified instruction.
2366     unsigned Idx;
2367 
2368   public:
2369     /// Set \p Idx operand of \p Inst with \p NewVal.
2370     OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2371         : TypePromotionAction(Inst), Idx(Idx) {
2372       LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2373                         << "for:" << *Inst << "\n"
2374                         << "with:" << *NewVal << "\n");
2375       Origin = Inst->getOperand(Idx);
2376       Inst->setOperand(Idx, NewVal);
2377     }
2378 
2379     /// Restore the original value of the instruction.
2380     void undo() override {
2381       LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2382                         << "for: " << *Inst << "\n"
2383                         << "with: " << *Origin << "\n");
2384       Inst->setOperand(Idx, Origin);
2385     }
2386   };
2387 
2388   /// Hide the operands of an instruction.
2389   /// Do as if this instruction was not using any of its operands.
2390   class OperandsHider : public TypePromotionAction {
2391     /// The list of original operands.
2392     SmallVector<Value *, 4> OriginalValues;
2393 
2394   public:
2395     /// Remove \p Inst from the uses of the operands of \p Inst.
2396     OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2397       LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2398       unsigned NumOpnds = Inst->getNumOperands();
2399       OriginalValues.reserve(NumOpnds);
2400       for (unsigned It = 0; It < NumOpnds; ++It) {
2401         // Save the current operand.
2402         Value *Val = Inst->getOperand(It);
2403         OriginalValues.push_back(Val);
2404         // Set a dummy one.
2405         // We could use OperandSetter here, but that would imply an overhead
2406         // that we are not willing to pay.
2407         Inst->setOperand(It, UndefValue::get(Val->getType()));
2408       }
2409     }
2410 
2411     /// Restore the original list of uses.
2412     void undo() override {
2413       LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2414       for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2415         Inst->setOperand(It, OriginalValues[It]);
2416     }
2417   };
2418 
2419   /// Build a truncate instruction.
2420   class TruncBuilder : public TypePromotionAction {
2421     Value *Val;
2422 
2423   public:
2424     /// Build a truncate instruction of \p Opnd producing a \p Ty
2425     /// result.
2426     /// trunc Opnd to Ty.
2427     TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2428       IRBuilder<> Builder(Opnd);
2429       Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2430       LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2431     }
2432 
2433     /// Get the built value.
2434     Value *getBuiltValue() { return Val; }
2435 
2436     /// Remove the built instruction.
2437     void undo() override {
2438       LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2439       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2440         IVal->eraseFromParent();
2441     }
2442   };
2443 
2444   /// Build a sign extension instruction.
2445   class SExtBuilder : public TypePromotionAction {
2446     Value *Val;
2447 
2448   public:
2449     /// Build a sign extension instruction of \p Opnd producing a \p Ty
2450     /// result.
2451     /// sext Opnd to Ty.
2452     SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2453         : TypePromotionAction(InsertPt) {
2454       IRBuilder<> Builder(InsertPt);
2455       Val = Builder.CreateSExt(Opnd, Ty, "promoted");
2456       LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
2457     }
2458 
2459     /// Get the built value.
2460     Value *getBuiltValue() { return Val; }
2461 
2462     /// Remove the built instruction.
2463     void undo() override {
2464       LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
2465       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2466         IVal->eraseFromParent();
2467     }
2468   };
2469 
2470   /// Build a zero extension instruction.
2471   class ZExtBuilder : public TypePromotionAction {
2472     Value *Val;
2473 
2474   public:
2475     /// Build a zero extension instruction of \p Opnd producing a \p Ty
2476     /// result.
2477     /// zext Opnd to Ty.
2478     ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2479         : TypePromotionAction(InsertPt) {
2480       IRBuilder<> Builder(InsertPt);
2481       Val = Builder.CreateZExt(Opnd, Ty, "promoted");
2482       LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
2483     }
2484 
2485     /// Get the built value.
2486     Value *getBuiltValue() { return Val; }
2487 
2488     /// Remove the built instruction.
2489     void undo() override {
2490       LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
2491       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2492         IVal->eraseFromParent();
2493     }
2494   };
2495 
2496   /// Mutate an instruction to another type.
2497   class TypeMutator : public TypePromotionAction {
2498     /// Record the original type.
2499     Type *OrigTy;
2500 
2501   public:
2502     /// Mutate the type of \p Inst into \p NewTy.
2503     TypeMutator(Instruction *Inst, Type *NewTy)
2504         : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
2505       LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
2506                         << "\n");
2507       Inst->mutateType(NewTy);
2508     }
2509 
2510     /// Mutate the instruction back to its original type.
2511     void undo() override {
2512       LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
2513                         << "\n");
2514       Inst->mutateType(OrigTy);
2515     }
2516   };
2517 
2518   /// Replace the uses of an instruction by another instruction.
2519   class UsesReplacer : public TypePromotionAction {
2520     /// Helper structure to keep track of the replaced uses.
2521     struct InstructionAndIdx {
2522       /// The instruction using the instruction.
2523       Instruction *Inst;
2524 
2525       /// The index where this instruction is used for Inst.
2526       unsigned Idx;
2527 
2528       InstructionAndIdx(Instruction *Inst, unsigned Idx)
2529           : Inst(Inst), Idx(Idx) {}
2530     };
2531 
2532     /// Keep track of the original uses (pair Instruction, Index).
2533     SmallVector<InstructionAndIdx, 4> OriginalUses;
2534     /// Keep track of the debug users.
2535     SmallVector<DbgValueInst *, 1> DbgValues;
2536 
2537     using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
2538 
2539   public:
2540     /// Replace all the use of \p Inst by \p New.
2541     UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
2542       LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
2543                         << "\n");
2544       // Record the original uses.
2545       for (Use &U : Inst->uses()) {
2546         Instruction *UserI = cast<Instruction>(U.getUser());
2547         OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
2548       }
2549       // Record the debug uses separately. They are not in the instruction's
2550       // use list, but they are replaced by RAUW.
2551       findDbgValues(DbgValues, Inst);
2552 
2553       // Now, we can replace the uses.
2554       Inst->replaceAllUsesWith(New);
2555     }
2556 
2557     /// Reassign the original uses of Inst to Inst.
2558     void undo() override {
2559       LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
2560       for (use_iterator UseIt = OriginalUses.begin(),
2561                         EndIt = OriginalUses.end();
2562            UseIt != EndIt; ++UseIt) {
2563         UseIt->Inst->setOperand(UseIt->Idx, Inst);
2564       }
2565       // RAUW has replaced all original uses with references to the new value,
2566       // including the debug uses. Since we are undoing the replacements,
2567       // the original debug uses must also be reinstated to maintain the
2568       // correctness and utility of debug value instructions.
2569       for (auto *DVI: DbgValues) {
2570         LLVMContext &Ctx = Inst->getType()->getContext();
2571         auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst));
2572         DVI->setOperand(0, MV);
2573       }
2574     }
2575   };
2576 
2577   /// Remove an instruction from the IR.
2578   class InstructionRemover : public TypePromotionAction {
2579     /// Original position of the instruction.
2580     InsertionHandler Inserter;
2581 
2582     /// Helper structure to hide all the link to the instruction. In other
2583     /// words, this helps to do as if the instruction was removed.
2584     OperandsHider Hider;
2585 
2586     /// Keep track of the uses replaced, if any.
2587     UsesReplacer *Replacer = nullptr;
2588 
2589     /// Keep track of instructions removed.
2590     SetOfInstrs &RemovedInsts;
2591 
2592   public:
2593     /// Remove all reference of \p Inst and optionally replace all its
2594     /// uses with New.
2595     /// \p RemovedInsts Keep track of the instructions removed by this Action.
2596     /// \pre If !Inst->use_empty(), then New != nullptr
2597     InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
2598                        Value *New = nullptr)
2599         : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
2600           RemovedInsts(RemovedInsts) {
2601       if (New)
2602         Replacer = new UsesReplacer(Inst, New);
2603       LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
2604       RemovedInsts.insert(Inst);
2605       /// The instructions removed here will be freed after completing
2606       /// optimizeBlock() for all blocks as we need to keep track of the
2607       /// removed instructions during promotion.
2608       Inst->removeFromParent();
2609     }
2610 
2611     ~InstructionRemover() override { delete Replacer; }
2612 
2613     /// Resurrect the instruction and reassign it to the proper uses if
2614     /// new value was provided when build this action.
2615     void undo() override {
2616       LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
2617       Inserter.insert(Inst);
2618       if (Replacer)
2619         Replacer->undo();
2620       Hider.undo();
2621       RemovedInsts.erase(Inst);
2622     }
2623   };
2624 
2625 public:
2626   /// Restoration point.
2627   /// The restoration point is a pointer to an action instead of an iterator
2628   /// because the iterator may be invalidated but not the pointer.
2629   using ConstRestorationPt = const TypePromotionAction *;
2630 
2631   TypePromotionTransaction(SetOfInstrs &RemovedInsts)
2632       : RemovedInsts(RemovedInsts) {}
2633 
2634   /// Advocate every changes made in that transaction.
2635   void commit();
2636 
2637   /// Undo all the changes made after the given point.
2638   void rollback(ConstRestorationPt Point);
2639 
2640   /// Get the current restoration point.
2641   ConstRestorationPt getRestorationPoint() const;
2642 
2643   /// \name API for IR modification with state keeping to support rollback.
2644   /// @{
2645   /// Same as Instruction::setOperand.
2646   void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
2647 
2648   /// Same as Instruction::eraseFromParent.
2649   void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
2650 
2651   /// Same as Value::replaceAllUsesWith.
2652   void replaceAllUsesWith(Instruction *Inst, Value *New);
2653 
2654   /// Same as Value::mutateType.
2655   void mutateType(Instruction *Inst, Type *NewTy);
2656 
2657   /// Same as IRBuilder::createTrunc.
2658   Value *createTrunc(Instruction *Opnd, Type *Ty);
2659 
2660   /// Same as IRBuilder::createSExt.
2661   Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
2662 
2663   /// Same as IRBuilder::createZExt.
2664   Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
2665 
2666   /// Same as Instruction::moveBefore.
2667   void moveBefore(Instruction *Inst, Instruction *Before);
2668   /// @}
2669 
2670 private:
2671   /// The ordered list of actions made so far.
2672   SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
2673 
2674   using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
2675 
2676   SetOfInstrs &RemovedInsts;
2677 };
2678 
2679 } // end anonymous namespace
2680 
2681 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
2682                                           Value *NewVal) {
2683   Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>(
2684       Inst, Idx, NewVal));
2685 }
2686 
2687 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
2688                                                 Value *NewVal) {
2689   Actions.push_back(
2690       llvm::make_unique<TypePromotionTransaction::InstructionRemover>(
2691           Inst, RemovedInsts, NewVal));
2692 }
2693 
2694 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
2695                                                   Value *New) {
2696   Actions.push_back(
2697       llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
2698 }
2699 
2700 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
2701   Actions.push_back(
2702       llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
2703 }
2704 
2705 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
2706                                              Type *Ty) {
2707   std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
2708   Value *Val = Ptr->getBuiltValue();
2709   Actions.push_back(std::move(Ptr));
2710   return Val;
2711 }
2712 
2713 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
2714                                             Value *Opnd, Type *Ty) {
2715   std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
2716   Value *Val = Ptr->getBuiltValue();
2717   Actions.push_back(std::move(Ptr));
2718   return Val;
2719 }
2720 
2721 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
2722                                             Value *Opnd, Type *Ty) {
2723   std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
2724   Value *Val = Ptr->getBuiltValue();
2725   Actions.push_back(std::move(Ptr));
2726   return Val;
2727 }
2728 
2729 void TypePromotionTransaction::moveBefore(Instruction *Inst,
2730                                           Instruction *Before) {
2731   Actions.push_back(
2732       llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
2733           Inst, Before));
2734 }
2735 
2736 TypePromotionTransaction::ConstRestorationPt
2737 TypePromotionTransaction::getRestorationPoint() const {
2738   return !Actions.empty() ? Actions.back().get() : nullptr;
2739 }
2740 
2741 void TypePromotionTransaction::commit() {
2742   for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
2743        ++It)
2744     (*It)->commit();
2745   Actions.clear();
2746 }
2747 
2748 void TypePromotionTransaction::rollback(
2749     TypePromotionTransaction::ConstRestorationPt Point) {
2750   while (!Actions.empty() && Point != Actions.back().get()) {
2751     std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
2752     Curr->undo();
2753   }
2754 }
2755 
2756 namespace {
2757 
2758 /// A helper class for matching addressing modes.
2759 ///
2760 /// This encapsulates the logic for matching the target-legal addressing modes.
2761 class AddressingModeMatcher {
2762   SmallVectorImpl<Instruction*> &AddrModeInsts;
2763   const TargetLowering &TLI;
2764   const TargetRegisterInfo &TRI;
2765   const DataLayout &DL;
2766 
2767   /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
2768   /// the memory instruction that we're computing this address for.
2769   Type *AccessTy;
2770   unsigned AddrSpace;
2771   Instruction *MemoryInst;
2772 
2773   /// This is the addressing mode that we're building up. This is
2774   /// part of the return value of this addressing mode matching stuff.
2775   ExtAddrMode &AddrMode;
2776 
2777   /// The instructions inserted by other CodeGenPrepare optimizations.
2778   const SetOfInstrs &InsertedInsts;
2779 
2780   /// A map from the instructions to their type before promotion.
2781   InstrToOrigTy &PromotedInsts;
2782 
2783   /// The ongoing transaction where every action should be registered.
2784   TypePromotionTransaction &TPT;
2785 
2786   // A GEP which has too large offset to be folded into the addressing mode.
2787   std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;
2788 
2789   /// This is set to true when we should not do profitability checks.
2790   /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
2791   bool IgnoreProfitability;
2792 
2793   AddressingModeMatcher(
2794       SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
2795       const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI,
2796       ExtAddrMode &AM, const SetOfInstrs &InsertedInsts,
2797       InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
2798       std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP)
2799       : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
2800         DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
2801         MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
2802         PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) {
2803     IgnoreProfitability = false;
2804   }
2805 
2806 public:
2807   /// Find the maximal addressing mode that a load/store of V can fold,
2808   /// give an access type of AccessTy.  This returns a list of involved
2809   /// instructions in AddrModeInsts.
2810   /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
2811   /// optimizations.
2812   /// \p PromotedInsts maps the instructions to their type before promotion.
2813   /// \p The ongoing transaction where every action should be registered.
2814   static ExtAddrMode
2815   Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
2816         SmallVectorImpl<Instruction *> &AddrModeInsts,
2817         const TargetLowering &TLI, const TargetRegisterInfo &TRI,
2818         const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
2819         TypePromotionTransaction &TPT,
2820         std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) {
2821     ExtAddrMode Result;
2822 
2823     bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS,
2824                                          MemoryInst, Result, InsertedInsts,
2825                                          PromotedInsts, TPT, LargeOffsetGEP)
2826                        .matchAddr(V, 0);
2827     (void)Success; assert(Success && "Couldn't select *anything*?");
2828     return Result;
2829   }
2830 
2831 private:
2832   bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
2833   bool matchAddr(Value *Addr, unsigned Depth);
2834   bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth,
2835                           bool *MovedAway = nullptr);
2836   bool isProfitableToFoldIntoAddressingMode(Instruction *I,
2837                                             ExtAddrMode &AMBefore,
2838                                             ExtAddrMode &AMAfter);
2839   bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
2840   bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
2841                              Value *PromotedOperand) const;
2842 };
2843 
2844 class PhiNodeSet;
2845 
2846 /// An iterator for PhiNodeSet.
2847 class PhiNodeSetIterator {
2848   PhiNodeSet * const Set;
2849   size_t CurrentIndex = 0;
2850 
2851 public:
2852   /// The constructor. Start should point to either a valid element, or be equal
2853   /// to the size of the underlying SmallVector of the PhiNodeSet.
2854   PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start);
2855   PHINode * operator*() const;
2856   PhiNodeSetIterator& operator++();
2857   bool operator==(const PhiNodeSetIterator &RHS) const;
2858   bool operator!=(const PhiNodeSetIterator &RHS) const;
2859 };
2860 
2861 /// Keeps a set of PHINodes.
2862 ///
2863 /// This is a minimal set implementation for a specific use case:
2864 /// It is very fast when there are very few elements, but also provides good
2865 /// performance when there are many. It is similar to SmallPtrSet, but also
2866 /// provides iteration by insertion order, which is deterministic and stable
2867 /// across runs. It is also similar to SmallSetVector, but provides removing
2868 /// elements in O(1) time. This is achieved by not actually removing the element
2869 /// from the underlying vector, so comes at the cost of using more memory, but
2870 /// that is fine, since PhiNodeSets are used as short lived objects.
2871 class PhiNodeSet {
2872   friend class PhiNodeSetIterator;
2873 
2874   using MapType = SmallDenseMap<PHINode *, size_t, 32>;
2875   using iterator =  PhiNodeSetIterator;
2876 
2877   /// Keeps the elements in the order of their insertion in the underlying
2878   /// vector. To achieve constant time removal, it never deletes any element.
2879   SmallVector<PHINode *, 32> NodeList;
2880 
2881   /// Keeps the elements in the underlying set implementation. This (and not the
2882   /// NodeList defined above) is the source of truth on whether an element
2883   /// is actually in the collection.
2884   MapType NodeMap;
2885 
2886   /// Points to the first valid (not deleted) element when the set is not empty
2887   /// and the value is not zero. Equals to the size of the underlying vector
2888   /// when the set is empty. When the value is 0, as in the beginning, the
2889   /// first element may or may not be valid.
2890   size_t FirstValidElement = 0;
2891 
2892 public:
2893   /// Inserts a new element to the collection.
2894   /// \returns true if the element is actually added, i.e. was not in the
2895   /// collection before the operation.
2896   bool insert(PHINode *Ptr) {
2897     if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) {
2898       NodeList.push_back(Ptr);
2899       return true;
2900     }
2901     return false;
2902   }
2903 
2904   /// Removes the element from the collection.
2905   /// \returns whether the element is actually removed, i.e. was in the
2906   /// collection before the operation.
2907   bool erase(PHINode *Ptr) {
2908     auto it = NodeMap.find(Ptr);
2909     if (it != NodeMap.end()) {
2910       NodeMap.erase(Ptr);
2911       SkipRemovedElements(FirstValidElement);
2912       return true;
2913     }
2914     return false;
2915   }
2916 
2917   /// Removes all elements and clears the collection.
2918   void clear() {
2919     NodeMap.clear();
2920     NodeList.clear();
2921     FirstValidElement = 0;
2922   }
2923 
2924   /// \returns an iterator that will iterate the elements in the order of
2925   /// insertion.
2926   iterator begin() {
2927     if (FirstValidElement == 0)
2928       SkipRemovedElements(FirstValidElement);
2929     return PhiNodeSetIterator(this, FirstValidElement);
2930   }
2931 
2932   /// \returns an iterator that points to the end of the collection.
2933   iterator end() { return PhiNodeSetIterator(this, NodeList.size()); }
2934 
2935   /// Returns the number of elements in the collection.
2936   size_t size() const {
2937     return NodeMap.size();
2938   }
2939 
2940   /// \returns 1 if the given element is in the collection, and 0 if otherwise.
2941   size_t count(PHINode *Ptr) const {
2942     return NodeMap.count(Ptr);
2943   }
2944 
2945 private:
2946   /// Updates the CurrentIndex so that it will point to a valid element.
2947   ///
2948   /// If the element of NodeList at CurrentIndex is valid, it does not
2949   /// change it. If there are no more valid elements, it updates CurrentIndex
2950   /// to point to the end of the NodeList.
2951   void SkipRemovedElements(size_t &CurrentIndex) {
2952     while (CurrentIndex < NodeList.size()) {
2953       auto it = NodeMap.find(NodeList[CurrentIndex]);
2954       // If the element has been deleted and added again later, NodeMap will
2955       // point to a different index, so CurrentIndex will still be invalid.
2956       if (it != NodeMap.end() && it->second == CurrentIndex)
2957         break;
2958       ++CurrentIndex;
2959     }
2960   }
2961 };
2962 
2963 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start)
2964     : Set(Set), CurrentIndex(Start) {}
2965 
2966 PHINode * PhiNodeSetIterator::operator*() const {
2967   assert(CurrentIndex < Set->NodeList.size() &&
2968          "PhiNodeSet access out of range");
2969   return Set->NodeList[CurrentIndex];
2970 }
2971 
2972 PhiNodeSetIterator& PhiNodeSetIterator::operator++() {
2973   assert(CurrentIndex < Set->NodeList.size() &&
2974          "PhiNodeSet access out of range");
2975   ++CurrentIndex;
2976   Set->SkipRemovedElements(CurrentIndex);
2977   return *this;
2978 }
2979 
2980 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const {
2981   return CurrentIndex == RHS.CurrentIndex;
2982 }
2983 
2984 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const {
2985   return !((*this) == RHS);
2986 }
2987 
2988 /// Keep track of simplification of Phi nodes.
2989 /// Accept the set of all phi nodes and erase phi node from this set
2990 /// if it is simplified.
2991 class SimplificationTracker {
2992   DenseMap<Value *, Value *> Storage;
2993   const SimplifyQuery &SQ;
2994   // Tracks newly created Phi nodes. The elements are iterated by insertion
2995   // order.
2996   PhiNodeSet AllPhiNodes;
2997   // Tracks newly created Select nodes.
2998   SmallPtrSet<SelectInst *, 32> AllSelectNodes;
2999 
3000 public:
3001   SimplificationTracker(const SimplifyQuery &sq)
3002       : SQ(sq) {}
3003 
3004   Value *Get(Value *V) {
3005     do {
3006       auto SV = Storage.find(V);
3007       if (SV == Storage.end())
3008         return V;
3009       V = SV->second;
3010     } while (true);
3011   }
3012 
3013   Value *Simplify(Value *Val) {
3014     SmallVector<Value *, 32> WorkList;
3015     SmallPtrSet<Value *, 32> Visited;
3016     WorkList.push_back(Val);
3017     while (!WorkList.empty()) {
3018       auto P = WorkList.pop_back_val();
3019       if (!Visited.insert(P).second)
3020         continue;
3021       if (auto *PI = dyn_cast<Instruction>(P))
3022         if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) {
3023           for (auto *U : PI->users())
3024             WorkList.push_back(cast<Value>(U));
3025           Put(PI, V);
3026           PI->replaceAllUsesWith(V);
3027           if (auto *PHI = dyn_cast<PHINode>(PI))
3028             AllPhiNodes.erase(PHI);
3029           if (auto *Select = dyn_cast<SelectInst>(PI))
3030             AllSelectNodes.erase(Select);
3031           PI->eraseFromParent();
3032         }
3033     }
3034     return Get(Val);
3035   }
3036 
3037   void Put(Value *From, Value *To) {
3038     Storage.insert({ From, To });
3039   }
3040 
3041   void ReplacePhi(PHINode *From, PHINode *To) {
3042     Value* OldReplacement = Get(From);
3043     while (OldReplacement != From) {
3044       From = To;
3045       To = dyn_cast<PHINode>(OldReplacement);
3046       OldReplacement = Get(From);
3047     }
3048     assert(Get(To) == To && "Replacement PHI node is already replaced.");
3049     Put(From, To);
3050     From->replaceAllUsesWith(To);
3051     AllPhiNodes.erase(From);
3052     From->eraseFromParent();
3053   }
3054 
3055   PhiNodeSet& newPhiNodes() { return AllPhiNodes; }
3056 
3057   void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }
3058 
3059   void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }
3060 
3061   unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }
3062 
3063   unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }
3064 
3065   void destroyNewNodes(Type *CommonType) {
3066     // For safe erasing, replace the uses with dummy value first.
3067     auto Dummy = UndefValue::get(CommonType);
3068     for (auto I : AllPhiNodes) {
3069       I->replaceAllUsesWith(Dummy);
3070       I->eraseFromParent();
3071     }
3072     AllPhiNodes.clear();
3073     for (auto I : AllSelectNodes) {
3074       I->replaceAllUsesWith(Dummy);
3075       I->eraseFromParent();
3076     }
3077     AllSelectNodes.clear();
3078   }
3079 };
3080 
3081 /// A helper class for combining addressing modes.
3082 class AddressingModeCombiner {
3083   typedef DenseMap<Value *, Value *> FoldAddrToValueMapping;
3084   typedef std::pair<PHINode *, PHINode *> PHIPair;
3085 
3086 private:
3087   /// The addressing modes we've collected.
3088   SmallVector<ExtAddrMode, 16> AddrModes;
3089 
3090   /// The field in which the AddrModes differ, when we have more than one.
3091   ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
3092 
3093   /// Are the AddrModes that we have all just equal to their original values?
3094   bool AllAddrModesTrivial = true;
3095 
3096   /// Common Type for all different fields in addressing modes.
3097   Type *CommonType;
3098 
3099   /// SimplifyQuery for simplifyInstruction utility.
3100   const SimplifyQuery &SQ;
3101 
3102   /// Original Address.
3103   Value *Original;
3104 
3105 public:
3106   AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue)
3107       : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {}
3108 
3109   /// Get the combined AddrMode
3110   const ExtAddrMode &getAddrMode() const {
3111     return AddrModes[0];
3112   }
3113 
3114   /// Add a new AddrMode if it's compatible with the AddrModes we already
3115   /// have.
3116   /// \return True iff we succeeded in doing so.
3117   bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
3118     // Take note of if we have any non-trivial AddrModes, as we need to detect
3119     // when all AddrModes are trivial as then we would introduce a phi or select
3120     // which just duplicates what's already there.
3121     AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
3122 
3123     // If this is the first addrmode then everything is fine.
3124     if (AddrModes.empty()) {
3125       AddrModes.emplace_back(NewAddrMode);
3126       return true;
3127     }
3128 
3129     // Figure out how different this is from the other address modes, which we
3130     // can do just by comparing against the first one given that we only care
3131     // about the cumulative difference.
3132     ExtAddrMode::FieldName ThisDifferentField =
3133       AddrModes[0].compare(NewAddrMode);
3134     if (DifferentField == ExtAddrMode::NoField)
3135       DifferentField = ThisDifferentField;
3136     else if (DifferentField != ThisDifferentField)
3137       DifferentField = ExtAddrMode::MultipleFields;
3138 
3139     // If NewAddrMode differs in more than one dimension we cannot handle it.
3140     bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
3141 
3142     // If Scale Field is different then we reject.
3143     CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
3144 
3145     // We also must reject the case when base offset is different and
3146     // scale reg is not null, we cannot handle this case due to merge of
3147     // different offsets will be used as ScaleReg.
3148     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
3149                               !NewAddrMode.ScaledReg);
3150 
3151     // We also must reject the case when GV is different and BaseReg installed
3152     // due to we want to use base reg as a merge of GV values.
3153     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
3154                               !NewAddrMode.HasBaseReg);
3155 
3156     // Even if NewAddMode is the same we still need to collect it due to
3157     // original value is different. And later we will need all original values
3158     // as anchors during finding the common Phi node.
3159     if (CanHandle)
3160       AddrModes.emplace_back(NewAddrMode);
3161     else
3162       AddrModes.clear();
3163 
3164     return CanHandle;
3165   }
3166 
3167   /// Combine the addressing modes we've collected into a single
3168   /// addressing mode.
3169   /// \return True iff we successfully combined them or we only had one so
3170   /// didn't need to combine them anyway.
3171   bool combineAddrModes() {
3172     // If we have no AddrModes then they can't be combined.
3173     if (AddrModes.size() == 0)
3174       return false;
3175 
3176     // A single AddrMode can trivially be combined.
3177     if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
3178       return true;
3179 
3180     // If the AddrModes we collected are all just equal to the value they are
3181     // derived from then combining them wouldn't do anything useful.
3182     if (AllAddrModesTrivial)
3183       return false;
3184 
3185     if (!addrModeCombiningAllowed())
3186       return false;
3187 
3188     // Build a map between <original value, basic block where we saw it> to
3189     // value of base register.
3190     // Bail out if there is no common type.
3191     FoldAddrToValueMapping Map;
3192     if (!initializeMap(Map))
3193       return false;
3194 
3195     Value *CommonValue = findCommon(Map);
3196     if (CommonValue)
3197       AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
3198     return CommonValue != nullptr;
3199   }
3200 
3201 private:
3202   /// Initialize Map with anchor values. For address seen
3203   /// we set the value of different field saw in this address.
3204   /// At the same time we find a common type for different field we will
3205   /// use to create new Phi/Select nodes. Keep it in CommonType field.
3206   /// Return false if there is no common type found.
3207   bool initializeMap(FoldAddrToValueMapping &Map) {
3208     // Keep track of keys where the value is null. We will need to replace it
3209     // with constant null when we know the common type.
3210     SmallVector<Value *, 2> NullValue;
3211     Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
3212     for (auto &AM : AddrModes) {
3213       Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
3214       if (DV) {
3215         auto *Type = DV->getType();
3216         if (CommonType && CommonType != Type)
3217           return false;
3218         CommonType = Type;
3219         Map[AM.OriginalValue] = DV;
3220       } else {
3221         NullValue.push_back(AM.OriginalValue);
3222       }
3223     }
3224     assert(CommonType && "At least one non-null value must be!");
3225     for (auto *V : NullValue)
3226       Map[V] = Constant::getNullValue(CommonType);
3227     return true;
3228   }
3229 
3230   /// We have mapping between value A and other value B where B was a field in
3231   /// addressing mode represented by A. Also we have an original value C
3232   /// representing an address we start with. Traversing from C through phi and
3233   /// selects we ended up with A's in a map. This utility function tries to find
3234   /// a value V which is a field in addressing mode C and traversing through phi
3235   /// nodes and selects we will end up in corresponded values B in a map.
3236   /// The utility will create a new Phi/Selects if needed.
3237   // The simple example looks as follows:
3238   // BB1:
3239   //   p1 = b1 + 40
3240   //   br cond BB2, BB3
3241   // BB2:
3242   //   p2 = b2 + 40
3243   //   br BB3
3244   // BB3:
3245   //   p = phi [p1, BB1], [p2, BB2]
3246   //   v = load p
3247   // Map is
3248   //   p1 -> b1
3249   //   p2 -> b2
3250   // Request is
3251   //   p -> ?
3252   // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
3253   Value *findCommon(FoldAddrToValueMapping &Map) {
3254     // Tracks the simplification of newly created phi nodes. The reason we use
3255     // this mapping is because we will add new created Phi nodes in AddrToBase.
3256     // Simplification of Phi nodes is recursive, so some Phi node may
3257     // be simplified after we added it to AddrToBase. In reality this
3258     // simplification is possible only if original phi/selects were not
3259     // simplified yet.
3260     // Using this mapping we can find the current value in AddrToBase.
3261     SimplificationTracker ST(SQ);
3262 
3263     // First step, DFS to create PHI nodes for all intermediate blocks.
3264     // Also fill traverse order for the second step.
3265     SmallVector<Value *, 32> TraverseOrder;
3266     InsertPlaceholders(Map, TraverseOrder, ST);
3267 
3268     // Second Step, fill new nodes by merged values and simplify if possible.
3269     FillPlaceholders(Map, TraverseOrder, ST);
3270 
3271     if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
3272       ST.destroyNewNodes(CommonType);
3273       return nullptr;
3274     }
3275 
3276     // Now we'd like to match New Phi nodes to existed ones.
3277     unsigned PhiNotMatchedCount = 0;
3278     if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
3279       ST.destroyNewNodes(CommonType);
3280       return nullptr;
3281     }
3282 
3283     auto *Result = ST.Get(Map.find(Original)->second);
3284     if (Result) {
3285       NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
3286       NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
3287     }
3288     return Result;
3289   }
3290 
3291   /// Try to match PHI node to Candidate.
3292   /// Matcher tracks the matched Phi nodes.
3293   bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
3294                     SmallSetVector<PHIPair, 8> &Matcher,
3295                     PhiNodeSet &PhiNodesToMatch) {
3296     SmallVector<PHIPair, 8> WorkList;
3297     Matcher.insert({ PHI, Candidate });
3298     SmallSet<PHINode *, 8> MatchedPHIs;
3299     MatchedPHIs.insert(PHI);
3300     WorkList.push_back({ PHI, Candidate });
3301     SmallSet<PHIPair, 8> Visited;
3302     while (!WorkList.empty()) {
3303       auto Item = WorkList.pop_back_val();
3304       if (!Visited.insert(Item).second)
3305         continue;
3306       // We iterate over all incoming values to Phi to compare them.
3307       // If values are different and both of them Phi and the first one is a
3308       // Phi we added (subject to match) and both of them is in the same basic
3309       // block then we can match our pair if values match. So we state that
3310       // these values match and add it to work list to verify that.
3311       for (auto B : Item.first->blocks()) {
3312         Value *FirstValue = Item.first->getIncomingValueForBlock(B);
3313         Value *SecondValue = Item.second->getIncomingValueForBlock(B);
3314         if (FirstValue == SecondValue)
3315           continue;
3316 
3317         PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
3318         PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
3319 
3320         // One of them is not Phi or
3321         // The first one is not Phi node from the set we'd like to match or
3322         // Phi nodes from different basic blocks then
3323         // we will not be able to match.
3324         if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
3325             FirstPhi->getParent() != SecondPhi->getParent())
3326           return false;
3327 
3328         // If we already matched them then continue.
3329         if (Matcher.count({ FirstPhi, SecondPhi }))
3330           continue;
3331         // So the values are different and does not match. So we need them to
3332         // match. (But we register no more than one match per PHI node, so that
3333         // we won't later try to replace them twice.)
3334         if (!MatchedPHIs.insert(FirstPhi).second)
3335           Matcher.insert({ FirstPhi, SecondPhi });
3336         // But me must check it.
3337         WorkList.push_back({ FirstPhi, SecondPhi });
3338       }
3339     }
3340     return true;
3341   }
3342 
3343   /// For the given set of PHI nodes (in the SimplificationTracker) try
3344   /// to find their equivalents.
3345   /// Returns false if this matching fails and creation of new Phi is disabled.
3346   bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
3347                    unsigned &PhiNotMatchedCount) {
3348     // Matched and PhiNodesToMatch iterate their elements in a deterministic
3349     // order, so the replacements (ReplacePhi) are also done in a deterministic
3350     // order.
3351     SmallSetVector<PHIPair, 8> Matched;
3352     SmallPtrSet<PHINode *, 8> WillNotMatch;
3353     PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes();
3354     while (PhiNodesToMatch.size()) {
3355       PHINode *PHI = *PhiNodesToMatch.begin();
3356 
3357       // Add us, if no Phi nodes in the basic block we do not match.
3358       WillNotMatch.clear();
3359       WillNotMatch.insert(PHI);
3360 
3361       // Traverse all Phis until we found equivalent or fail to do that.
3362       bool IsMatched = false;
3363       for (auto &P : PHI->getParent()->phis()) {
3364         if (&P == PHI)
3365           continue;
3366         if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
3367           break;
3368         // If it does not match, collect all Phi nodes from matcher.
3369         // if we end up with no match, them all these Phi nodes will not match
3370         // later.
3371         for (auto M : Matched)
3372           WillNotMatch.insert(M.first);
3373         Matched.clear();
3374       }
3375       if (IsMatched) {
3376         // Replace all matched values and erase them.
3377         for (auto MV : Matched)
3378           ST.ReplacePhi(MV.first, MV.second);
3379         Matched.clear();
3380         continue;
3381       }
3382       // If we are not allowed to create new nodes then bail out.
3383       if (!AllowNewPhiNodes)
3384         return false;
3385       // Just remove all seen values in matcher. They will not match anything.
3386       PhiNotMatchedCount += WillNotMatch.size();
3387       for (auto *P : WillNotMatch)
3388         PhiNodesToMatch.erase(P);
3389     }
3390     return true;
3391   }
3392   /// Fill the placeholders with values from predecessors and simplify them.
3393   void FillPlaceholders(FoldAddrToValueMapping &Map,
3394                         SmallVectorImpl<Value *> &TraverseOrder,
3395                         SimplificationTracker &ST) {
3396     while (!TraverseOrder.empty()) {
3397       Value *Current = TraverseOrder.pop_back_val();
3398       assert(Map.find(Current) != Map.end() && "No node to fill!!!");
3399       Value *V = Map[Current];
3400 
3401       if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
3402         // CurrentValue also must be Select.
3403         auto *CurrentSelect = cast<SelectInst>(Current);
3404         auto *TrueValue = CurrentSelect->getTrueValue();
3405         assert(Map.find(TrueValue) != Map.end() && "No True Value!");
3406         Select->setTrueValue(ST.Get(Map[TrueValue]));
3407         auto *FalseValue = CurrentSelect->getFalseValue();
3408         assert(Map.find(FalseValue) != Map.end() && "No False Value!");
3409         Select->setFalseValue(ST.Get(Map[FalseValue]));
3410       } else {
3411         // Must be a Phi node then.
3412         PHINode *PHI = cast<PHINode>(V);
3413         auto *CurrentPhi = dyn_cast<PHINode>(Current);
3414         // Fill the Phi node with values from predecessors.
3415         for (auto B : predecessors(PHI->getParent())) {
3416           Value *PV = CurrentPhi->getIncomingValueForBlock(B);
3417           assert(Map.find(PV) != Map.end() && "No predecessor Value!");
3418           PHI->addIncoming(ST.Get(Map[PV]), B);
3419         }
3420       }
3421       Map[Current] = ST.Simplify(V);
3422     }
3423   }
3424 
3425   /// Starting from original value recursively iterates over def-use chain up to
3426   /// known ending values represented in a map. For each traversed phi/select
3427   /// inserts a placeholder Phi or Select.
3428   /// Reports all new created Phi/Select nodes by adding them to set.
3429   /// Also reports and order in what values have been traversed.
3430   void InsertPlaceholders(FoldAddrToValueMapping &Map,
3431                           SmallVectorImpl<Value *> &TraverseOrder,
3432                           SimplificationTracker &ST) {
3433     SmallVector<Value *, 32> Worklist;
3434     assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&
3435            "Address must be a Phi or Select node");
3436     auto *Dummy = UndefValue::get(CommonType);
3437     Worklist.push_back(Original);
3438     while (!Worklist.empty()) {
3439       Value *Current = Worklist.pop_back_val();
3440       // if it is already visited or it is an ending value then skip it.
3441       if (Map.find(Current) != Map.end())
3442         continue;
3443       TraverseOrder.push_back(Current);
3444 
3445       // CurrentValue must be a Phi node or select. All others must be covered
3446       // by anchors.
3447       if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) {
3448         // Is it OK to get metadata from OrigSelect?!
3449         // Create a Select placeholder with dummy value.
3450         SelectInst *Select = SelectInst::Create(
3451             CurrentSelect->getCondition(), Dummy, Dummy,
3452             CurrentSelect->getName(), CurrentSelect, CurrentSelect);
3453         Map[Current] = Select;
3454         ST.insertNewSelect(Select);
3455         // We are interested in True and False values.
3456         Worklist.push_back(CurrentSelect->getTrueValue());
3457         Worklist.push_back(CurrentSelect->getFalseValue());
3458       } else {
3459         // It must be a Phi node then.
3460         PHINode *CurrentPhi = cast<PHINode>(Current);
3461         unsigned PredCount = CurrentPhi->getNumIncomingValues();
3462         PHINode *PHI =
3463             PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi);
3464         Map[Current] = PHI;
3465         ST.insertNewPhi(PHI);
3466         for (Value *P : CurrentPhi->incoming_values())
3467           Worklist.push_back(P);
3468       }
3469     }
3470   }
3471 
3472   bool addrModeCombiningAllowed() {
3473     if (DisableComplexAddrModes)
3474       return false;
3475     switch (DifferentField) {
3476     default:
3477       return false;
3478     case ExtAddrMode::BaseRegField:
3479       return AddrSinkCombineBaseReg;
3480     case ExtAddrMode::BaseGVField:
3481       return AddrSinkCombineBaseGV;
3482     case ExtAddrMode::BaseOffsField:
3483       return AddrSinkCombineBaseOffs;
3484     case ExtAddrMode::ScaledRegField:
3485       return AddrSinkCombineScaledReg;
3486     }
3487   }
3488 };
3489 } // end anonymous namespace
3490 
3491 /// Try adding ScaleReg*Scale to the current addressing mode.
3492 /// Return true and update AddrMode if this addr mode is legal for the target,
3493 /// false if not.
3494 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
3495                                              unsigned Depth) {
3496   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3497   // mode.  Just process that directly.
3498   if (Scale == 1)
3499     return matchAddr(ScaleReg, Depth);
3500 
3501   // If the scale is 0, it takes nothing to add this.
3502   if (Scale == 0)
3503     return true;
3504 
3505   // If we already have a scale of this value, we can add to it, otherwise, we
3506   // need an available scale field.
3507   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
3508     return false;
3509 
3510   ExtAddrMode TestAddrMode = AddrMode;
3511 
3512   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
3513   // [A+B + A*7] -> [B+A*8].
3514   TestAddrMode.Scale += Scale;
3515   TestAddrMode.ScaledReg = ScaleReg;
3516 
3517   // If the new address isn't legal, bail out.
3518   if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
3519     return false;
3520 
3521   // It was legal, so commit it.
3522   AddrMode = TestAddrMode;
3523 
3524   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
3525   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
3526   // X*Scale + C*Scale to addr mode.
3527   ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
3528   if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
3529       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
3530     TestAddrMode.InBounds = false;
3531     TestAddrMode.ScaledReg = AddLHS;
3532     TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
3533 
3534     // If this addressing mode is legal, commit it and remember that we folded
3535     // this instruction.
3536     if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
3537       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
3538       AddrMode = TestAddrMode;
3539       return true;
3540     }
3541   }
3542 
3543   // Otherwise, not (x+c)*scale, just return what we have.
3544   return true;
3545 }
3546 
3547 /// This is a little filter, which returns true if an addressing computation
3548 /// involving I might be folded into a load/store accessing it.
3549 /// This doesn't need to be perfect, but needs to accept at least
3550 /// the set of instructions that MatchOperationAddr can.
3551 static bool MightBeFoldableInst(Instruction *I) {
3552   switch (I->getOpcode()) {
3553   case Instruction::BitCast:
3554   case Instruction::AddrSpaceCast:
3555     // Don't touch identity bitcasts.
3556     if (I->getType() == I->getOperand(0)->getType())
3557       return false;
3558     return I->getType()->isIntOrPtrTy();
3559   case Instruction::PtrToInt:
3560     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3561     return true;
3562   case Instruction::IntToPtr:
3563     // We know the input is intptr_t, so this is foldable.
3564     return true;
3565   case Instruction::Add:
3566     return true;
3567   case Instruction::Mul:
3568   case Instruction::Shl:
3569     // Can only handle X*C and X << C.
3570     return isa<ConstantInt>(I->getOperand(1));
3571   case Instruction::GetElementPtr:
3572     return true;
3573   default:
3574     return false;
3575   }
3576 }
3577 
3578 /// Check whether or not \p Val is a legal instruction for \p TLI.
3579 /// \note \p Val is assumed to be the product of some type promotion.
3580 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
3581 /// to be legal, as the non-promoted value would have had the same state.
3582 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
3583                                        const DataLayout &DL, Value *Val) {
3584   Instruction *PromotedInst = dyn_cast<Instruction>(Val);
3585   if (!PromotedInst)
3586     return false;
3587   int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
3588   // If the ISDOpcode is undefined, it was undefined before the promotion.
3589   if (!ISDOpcode)
3590     return true;
3591   // Otherwise, check if the promoted instruction is legal or not.
3592   return TLI.isOperationLegalOrCustom(
3593       ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
3594 }
3595 
3596 namespace {
3597 
3598 /// Hepler class to perform type promotion.
3599 class TypePromotionHelper {
3600   /// Utility function to add a promoted instruction \p ExtOpnd to
3601   /// \p PromotedInsts and record the type of extension we have seen.
3602   static void addPromotedInst(InstrToOrigTy &PromotedInsts,
3603                               Instruction *ExtOpnd,
3604                               bool IsSExt) {
3605     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3606     InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd);
3607     if (It != PromotedInsts.end()) {
3608       // If the new extension is same as original, the information in
3609       // PromotedInsts[ExtOpnd] is still correct.
3610       if (It->second.getInt() == ExtTy)
3611         return;
3612 
3613       // Now the new extension is different from old extension, we make
3614       // the type information invalid by setting extension type to
3615       // BothExtension.
3616       ExtTy = BothExtension;
3617     }
3618     PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy);
3619   }
3620 
3621   /// Utility function to query the original type of instruction \p Opnd
3622   /// with a matched extension type. If the extension doesn't match, we
3623   /// cannot use the information we had on the original type.
3624   /// BothExtension doesn't match any extension type.
3625   static const Type *getOrigType(const InstrToOrigTy &PromotedInsts,
3626                                  Instruction *Opnd,
3627                                  bool IsSExt) {
3628     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3629     InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
3630     if (It != PromotedInsts.end() && It->second.getInt() == ExtTy)
3631       return It->second.getPointer();
3632     return nullptr;
3633   }
3634 
3635   /// Utility function to check whether or not a sign or zero extension
3636   /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
3637   /// either using the operands of \p Inst or promoting \p Inst.
3638   /// The type of the extension is defined by \p IsSExt.
3639   /// In other words, check if:
3640   /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
3641   /// #1 Promotion applies:
3642   /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
3643   /// #2 Operand reuses:
3644   /// ext opnd1 to ConsideredExtType.
3645   /// \p PromotedInsts maps the instructions to their type before promotion.
3646   static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
3647                             const InstrToOrigTy &PromotedInsts, bool IsSExt);
3648 
3649   /// Utility function to determine if \p OpIdx should be promoted when
3650   /// promoting \p Inst.
3651   static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
3652     return !(isa<SelectInst>(Inst) && OpIdx == 0);
3653   }
3654 
3655   /// Utility function to promote the operand of \p Ext when this
3656   /// operand is a promotable trunc or sext or zext.
3657   /// \p PromotedInsts maps the instructions to their type before promotion.
3658   /// \p CreatedInstsCost[out] contains the cost of all instructions
3659   /// created to promote the operand of Ext.
3660   /// Newly added extensions are inserted in \p Exts.
3661   /// Newly added truncates are inserted in \p Truncs.
3662   /// Should never be called directly.
3663   /// \return The promoted value which is used instead of Ext.
3664   static Value *promoteOperandForTruncAndAnyExt(
3665       Instruction *Ext, TypePromotionTransaction &TPT,
3666       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3667       SmallVectorImpl<Instruction *> *Exts,
3668       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
3669 
3670   /// Utility function to promote the operand of \p Ext when this
3671   /// operand is promotable and is not a supported trunc or sext.
3672   /// \p PromotedInsts maps the instructions to their type before promotion.
3673   /// \p CreatedInstsCost[out] contains the cost of all the instructions
3674   /// created to promote the operand of Ext.
3675   /// Newly added extensions are inserted in \p Exts.
3676   /// Newly added truncates are inserted in \p Truncs.
3677   /// Should never be called directly.
3678   /// \return The promoted value which is used instead of Ext.
3679   static Value *promoteOperandForOther(Instruction *Ext,
3680                                        TypePromotionTransaction &TPT,
3681                                        InstrToOrigTy &PromotedInsts,
3682                                        unsigned &CreatedInstsCost,
3683                                        SmallVectorImpl<Instruction *> *Exts,
3684                                        SmallVectorImpl<Instruction *> *Truncs,
3685                                        const TargetLowering &TLI, bool IsSExt);
3686 
3687   /// \see promoteOperandForOther.
3688   static Value *signExtendOperandForOther(
3689       Instruction *Ext, TypePromotionTransaction &TPT,
3690       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3691       SmallVectorImpl<Instruction *> *Exts,
3692       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3693     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3694                                   Exts, Truncs, TLI, true);
3695   }
3696 
3697   /// \see promoteOperandForOther.
3698   static Value *zeroExtendOperandForOther(
3699       Instruction *Ext, TypePromotionTransaction &TPT,
3700       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3701       SmallVectorImpl<Instruction *> *Exts,
3702       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3703     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3704                                   Exts, Truncs, TLI, false);
3705   }
3706 
3707 public:
3708   /// Type for the utility function that promotes the operand of Ext.
3709   using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
3710                             InstrToOrigTy &PromotedInsts,
3711                             unsigned &CreatedInstsCost,
3712                             SmallVectorImpl<Instruction *> *Exts,
3713                             SmallVectorImpl<Instruction *> *Truncs,
3714                             const TargetLowering &TLI);
3715 
3716   /// Given a sign/zero extend instruction \p Ext, return the appropriate
3717   /// action to promote the operand of \p Ext instead of using Ext.
3718   /// \return NULL if no promotable action is possible with the current
3719   /// sign extension.
3720   /// \p InsertedInsts keeps track of all the instructions inserted by the
3721   /// other CodeGenPrepare optimizations. This information is important
3722   /// because we do not want to promote these instructions as CodeGenPrepare
3723   /// will reinsert them later. Thus creating an infinite loop: create/remove.
3724   /// \p PromotedInsts maps the instructions to their type before promotion.
3725   static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
3726                           const TargetLowering &TLI,
3727                           const InstrToOrigTy &PromotedInsts);
3728 };
3729 
3730 } // end anonymous namespace
3731 
3732 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
3733                                         Type *ConsideredExtType,
3734                                         const InstrToOrigTy &PromotedInsts,
3735                                         bool IsSExt) {
3736   // The promotion helper does not know how to deal with vector types yet.
3737   // To be able to fix that, we would need to fix the places where we
3738   // statically extend, e.g., constants and such.
3739   if (Inst->getType()->isVectorTy())
3740     return false;
3741 
3742   // We can always get through zext.
3743   if (isa<ZExtInst>(Inst))
3744     return true;
3745 
3746   // sext(sext) is ok too.
3747   if (IsSExt && isa<SExtInst>(Inst))
3748     return true;
3749 
3750   // We can get through binary operator, if it is legal. In other words, the
3751   // binary operator must have a nuw or nsw flag.
3752   const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
3753   if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
3754       ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
3755        (IsSExt && BinOp->hasNoSignedWrap())))
3756     return true;
3757 
3758   // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
3759   if ((Inst->getOpcode() == Instruction::And ||
3760        Inst->getOpcode() == Instruction::Or))
3761     return true;
3762 
3763   // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
3764   if (Inst->getOpcode() == Instruction::Xor) {
3765     const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1));
3766     // Make sure it is not a NOT.
3767     if (Cst && !Cst->getValue().isAllOnesValue())
3768       return true;
3769   }
3770 
3771   // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
3772   // It may change a poisoned value into a regular value, like
3773   //     zext i32 (shrl i8 %val, 12)  -->  shrl i32 (zext i8 %val), 12
3774   //          poisoned value                    regular value
3775   // It should be OK since undef covers valid value.
3776   if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
3777     return true;
3778 
3779   // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
3780   // It may change a poisoned value into a regular value, like
3781   //     zext i32 (shl i8 %val, 12)  -->  shl i32 (zext i8 %val), 12
3782   //          poisoned value                    regular value
3783   // It should be OK since undef covers valid value.
3784   if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
3785     const Instruction *ExtInst =
3786         dyn_cast<const Instruction>(*Inst->user_begin());
3787     if (ExtInst->hasOneUse()) {
3788       const Instruction *AndInst =
3789           dyn_cast<const Instruction>(*ExtInst->user_begin());
3790       if (AndInst && AndInst->getOpcode() == Instruction::And) {
3791         const ConstantInt *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
3792         if (Cst &&
3793             Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
3794           return true;
3795       }
3796     }
3797   }
3798 
3799   // Check if we can do the following simplification.
3800   // ext(trunc(opnd)) --> ext(opnd)
3801   if (!isa<TruncInst>(Inst))
3802     return false;
3803 
3804   Value *OpndVal = Inst->getOperand(0);
3805   // Check if we can use this operand in the extension.
3806   // If the type is larger than the result type of the extension, we cannot.
3807   if (!OpndVal->getType()->isIntegerTy() ||
3808       OpndVal->getType()->getIntegerBitWidth() >
3809           ConsideredExtType->getIntegerBitWidth())
3810     return false;
3811 
3812   // If the operand of the truncate is not an instruction, we will not have
3813   // any information on the dropped bits.
3814   // (Actually we could for constant but it is not worth the extra logic).
3815   Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
3816   if (!Opnd)
3817     return false;
3818 
3819   // Check if the source of the type is narrow enough.
3820   // I.e., check that trunc just drops extended bits of the same kind of
3821   // the extension.
3822   // #1 get the type of the operand and check the kind of the extended bits.
3823   const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt);
3824   if (OpndType)
3825     ;
3826   else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
3827     OpndType = Opnd->getOperand(0)->getType();
3828   else
3829     return false;
3830 
3831   // #2 check that the truncate just drops extended bits.
3832   return Inst->getType()->getIntegerBitWidth() >=
3833          OpndType->getIntegerBitWidth();
3834 }
3835 
3836 TypePromotionHelper::Action TypePromotionHelper::getAction(
3837     Instruction *Ext, const SetOfInstrs &InsertedInsts,
3838     const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
3839   assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3840          "Unexpected instruction type");
3841   Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
3842   Type *ExtTy = Ext->getType();
3843   bool IsSExt = isa<SExtInst>(Ext);
3844   // If the operand of the extension is not an instruction, we cannot
3845   // get through.
3846   // If it, check we can get through.
3847   if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
3848     return nullptr;
3849 
3850   // Do not promote if the operand has been added by codegenprepare.
3851   // Otherwise, it means we are undoing an optimization that is likely to be
3852   // redone, thus causing potential infinite loop.
3853   if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
3854     return nullptr;
3855 
3856   // SExt or Trunc instructions.
3857   // Return the related handler.
3858   if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
3859       isa<ZExtInst>(ExtOpnd))
3860     return promoteOperandForTruncAndAnyExt;
3861 
3862   // Regular instruction.
3863   // Abort early if we will have to insert non-free instructions.
3864   if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
3865     return nullptr;
3866   return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
3867 }
3868 
3869 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
3870     Instruction *SExt, TypePromotionTransaction &TPT,
3871     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3872     SmallVectorImpl<Instruction *> *Exts,
3873     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3874   // By construction, the operand of SExt is an instruction. Otherwise we cannot
3875   // get through it and this method should not be called.
3876   Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
3877   Value *ExtVal = SExt;
3878   bool HasMergedNonFreeExt = false;
3879   if (isa<ZExtInst>(SExtOpnd)) {
3880     // Replace s|zext(zext(opnd))
3881     // => zext(opnd).
3882     HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
3883     Value *ZExt =
3884         TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
3885     TPT.replaceAllUsesWith(SExt, ZExt);
3886     TPT.eraseInstruction(SExt);
3887     ExtVal = ZExt;
3888   } else {
3889     // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
3890     // => z|sext(opnd).
3891     TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
3892   }
3893   CreatedInstsCost = 0;
3894 
3895   // Remove dead code.
3896   if (SExtOpnd->use_empty())
3897     TPT.eraseInstruction(SExtOpnd);
3898 
3899   // Check if the extension is still needed.
3900   Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
3901   if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
3902     if (ExtInst) {
3903       if (Exts)
3904         Exts->push_back(ExtInst);
3905       CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
3906     }
3907     return ExtVal;
3908   }
3909 
3910   // At this point we have: ext ty opnd to ty.
3911   // Reassign the uses of ExtInst to the opnd and remove ExtInst.
3912   Value *NextVal = ExtInst->getOperand(0);
3913   TPT.eraseInstruction(ExtInst, NextVal);
3914   return NextVal;
3915 }
3916 
3917 Value *TypePromotionHelper::promoteOperandForOther(
3918     Instruction *Ext, TypePromotionTransaction &TPT,
3919     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3920     SmallVectorImpl<Instruction *> *Exts,
3921     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
3922     bool IsSExt) {
3923   // By construction, the operand of Ext is an instruction. Otherwise we cannot
3924   // get through it and this method should not be called.
3925   Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
3926   CreatedInstsCost = 0;
3927   if (!ExtOpnd->hasOneUse()) {
3928     // ExtOpnd will be promoted.
3929     // All its uses, but Ext, will need to use a truncated value of the
3930     // promoted version.
3931     // Create the truncate now.
3932     Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
3933     if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
3934       // Insert it just after the definition.
3935       ITrunc->moveAfter(ExtOpnd);
3936       if (Truncs)
3937         Truncs->push_back(ITrunc);
3938     }
3939 
3940     TPT.replaceAllUsesWith(ExtOpnd, Trunc);
3941     // Restore the operand of Ext (which has been replaced by the previous call
3942     // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
3943     TPT.setOperand(Ext, 0, ExtOpnd);
3944   }
3945 
3946   // Get through the Instruction:
3947   // 1. Update its type.
3948   // 2. Replace the uses of Ext by Inst.
3949   // 3. Extend each operand that needs to be extended.
3950 
3951   // Remember the original type of the instruction before promotion.
3952   // This is useful to know that the high bits are sign extended bits.
3953   addPromotedInst(PromotedInsts, ExtOpnd, IsSExt);
3954   // Step #1.
3955   TPT.mutateType(ExtOpnd, Ext->getType());
3956   // Step #2.
3957   TPT.replaceAllUsesWith(Ext, ExtOpnd);
3958   // Step #3.
3959   Instruction *ExtForOpnd = Ext;
3960 
3961   LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
3962   for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
3963        ++OpIdx) {
3964     LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
3965     if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
3966         !shouldExtOperand(ExtOpnd, OpIdx)) {
3967       LLVM_DEBUG(dbgs() << "No need to propagate\n");
3968       continue;
3969     }
3970     // Check if we can statically extend the operand.
3971     Value *Opnd = ExtOpnd->getOperand(OpIdx);
3972     if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
3973       LLVM_DEBUG(dbgs() << "Statically extend\n");
3974       unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
3975       APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
3976                             : Cst->getValue().zext(BitWidth);
3977       TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
3978       continue;
3979     }
3980     // UndefValue are typed, so we have to statically sign extend them.
3981     if (isa<UndefValue>(Opnd)) {
3982       LLVM_DEBUG(dbgs() << "Statically extend\n");
3983       TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
3984       continue;
3985     }
3986 
3987     // Otherwise we have to explicitly sign extend the operand.
3988     // Check if Ext was reused to extend an operand.
3989     if (!ExtForOpnd) {
3990       // If yes, create a new one.
3991       LLVM_DEBUG(dbgs() << "More operands to ext\n");
3992       Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
3993         : TPT.createZExt(Ext, Opnd, Ext->getType());
3994       if (!isa<Instruction>(ValForExtOpnd)) {
3995         TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
3996         continue;
3997       }
3998       ExtForOpnd = cast<Instruction>(ValForExtOpnd);
3999     }
4000     if (Exts)
4001       Exts->push_back(ExtForOpnd);
4002     TPT.setOperand(ExtForOpnd, 0, Opnd);
4003 
4004     // Move the sign extension before the insertion point.
4005     TPT.moveBefore(ExtForOpnd, ExtOpnd);
4006     TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
4007     CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
4008     // If more sext are required, new instructions will have to be created.
4009     ExtForOpnd = nullptr;
4010   }
4011   if (ExtForOpnd == Ext) {
4012     LLVM_DEBUG(dbgs() << "Extension is useless now\n");
4013     TPT.eraseInstruction(Ext);
4014   }
4015   return ExtOpnd;
4016 }
4017 
4018 /// Check whether or not promoting an instruction to a wider type is profitable.
4019 /// \p NewCost gives the cost of extension instructions created by the
4020 /// promotion.
4021 /// \p OldCost gives the cost of extension instructions before the promotion
4022 /// plus the number of instructions that have been
4023 /// matched in the addressing mode the promotion.
4024 /// \p PromotedOperand is the value that has been promoted.
4025 /// \return True if the promotion is profitable, false otherwise.
4026 bool AddressingModeMatcher::isPromotionProfitable(
4027     unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
4028   LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
4029                     << '\n');
4030   // The cost of the new extensions is greater than the cost of the
4031   // old extension plus what we folded.
4032   // This is not profitable.
4033   if (NewCost > OldCost)
4034     return false;
4035   if (NewCost < OldCost)
4036     return true;
4037   // The promotion is neutral but it may help folding the sign extension in
4038   // loads for instance.
4039   // Check that we did not create an illegal instruction.
4040   return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
4041 }
4042 
4043 /// Given an instruction or constant expr, see if we can fold the operation
4044 /// into the addressing mode. If so, update the addressing mode and return
4045 /// true, otherwise return false without modifying AddrMode.
4046 /// If \p MovedAway is not NULL, it contains the information of whether or
4047 /// not AddrInst has to be folded into the addressing mode on success.
4048 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
4049 /// because it has been moved away.
4050 /// Thus AddrInst must not be added in the matched instructions.
4051 /// This state can happen when AddrInst is a sext, since it may be moved away.
4052 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
4053 /// not be referenced anymore.
4054 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
4055                                                unsigned Depth,
4056                                                bool *MovedAway) {
4057   // Avoid exponential behavior on extremely deep expression trees.
4058   if (Depth >= 5) return false;
4059 
4060   // By default, all matched instructions stay in place.
4061   if (MovedAway)
4062     *MovedAway = false;
4063 
4064   switch (Opcode) {
4065   case Instruction::PtrToInt:
4066     // PtrToInt is always a noop, as we know that the int type is pointer sized.
4067     return matchAddr(AddrInst->getOperand(0), Depth);
4068   case Instruction::IntToPtr: {
4069     auto AS = AddrInst->getType()->getPointerAddressSpace();
4070     auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
4071     // This inttoptr is a no-op if the integer type is pointer sized.
4072     if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
4073       return matchAddr(AddrInst->getOperand(0), Depth);
4074     return false;
4075   }
4076   case Instruction::BitCast:
4077     // BitCast is always a noop, and we can handle it as long as it is
4078     // int->int or pointer->pointer (we don't want int<->fp or something).
4079     if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() &&
4080         // Don't touch identity bitcasts.  These were probably put here by LSR,
4081         // and we don't want to mess around with them.  Assume it knows what it
4082         // is doing.
4083         AddrInst->getOperand(0)->getType() != AddrInst->getType())
4084       return matchAddr(AddrInst->getOperand(0), Depth);
4085     return false;
4086   case Instruction::AddrSpaceCast: {
4087     unsigned SrcAS
4088       = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
4089     unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
4090     if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
4091       return matchAddr(AddrInst->getOperand(0), Depth);
4092     return false;
4093   }
4094   case Instruction::Add: {
4095     // Check to see if we can merge in the RHS then the LHS.  If so, we win.
4096     ExtAddrMode BackupAddrMode = AddrMode;
4097     unsigned OldSize = AddrModeInsts.size();
4098     // Start a transaction at this point.
4099     // The LHS may match but not the RHS.
4100     // Therefore, we need a higher level restoration point to undo partially
4101     // matched operation.
4102     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4103         TPT.getRestorationPoint();
4104 
4105     AddrMode.InBounds = false;
4106     if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
4107         matchAddr(AddrInst->getOperand(0), Depth+1))
4108       return true;
4109 
4110     // Restore the old addr mode info.
4111     AddrMode = BackupAddrMode;
4112     AddrModeInsts.resize(OldSize);
4113     TPT.rollback(LastKnownGood);
4114 
4115     // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
4116     if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
4117         matchAddr(AddrInst->getOperand(1), Depth+1))
4118       return true;
4119 
4120     // Otherwise we definitely can't merge the ADD in.
4121     AddrMode = BackupAddrMode;
4122     AddrModeInsts.resize(OldSize);
4123     TPT.rollback(LastKnownGood);
4124     break;
4125   }
4126   //case Instruction::Or:
4127   // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
4128   //break;
4129   case Instruction::Mul:
4130   case Instruction::Shl: {
4131     // Can only handle X*C and X << C.
4132     AddrMode.InBounds = false;
4133     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
4134     if (!RHS || RHS->getBitWidth() > 64)
4135       return false;
4136     int64_t Scale = RHS->getSExtValue();
4137     if (Opcode == Instruction::Shl)
4138       Scale = 1LL << Scale;
4139 
4140     return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
4141   }
4142   case Instruction::GetElementPtr: {
4143     // Scan the GEP.  We check it if it contains constant offsets and at most
4144     // one variable offset.
4145     int VariableOperand = -1;
4146     unsigned VariableScale = 0;
4147 
4148     int64_t ConstantOffset = 0;
4149     gep_type_iterator GTI = gep_type_begin(AddrInst);
4150     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
4151       if (StructType *STy = GTI.getStructTypeOrNull()) {
4152         const StructLayout *SL = DL.getStructLayout(STy);
4153         unsigned Idx =
4154           cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
4155         ConstantOffset += SL->getElementOffset(Idx);
4156       } else {
4157         uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType());
4158         if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
4159           const APInt &CVal = CI->getValue();
4160           if (CVal.getMinSignedBits() <= 64) {
4161             ConstantOffset += CVal.getSExtValue() * TypeSize;
4162             continue;
4163           }
4164         }
4165         if (TypeSize) {  // Scales of zero don't do anything.
4166           // We only allow one variable index at the moment.
4167           if (VariableOperand != -1)
4168             return false;
4169 
4170           // Remember the variable index.
4171           VariableOperand = i;
4172           VariableScale = TypeSize;
4173         }
4174       }
4175     }
4176 
4177     // A common case is for the GEP to only do a constant offset.  In this case,
4178     // just add it to the disp field and check validity.
4179     if (VariableOperand == -1) {
4180       AddrMode.BaseOffs += ConstantOffset;
4181       if (ConstantOffset == 0 ||
4182           TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
4183         // Check to see if we can fold the base pointer in too.
4184         if (matchAddr(AddrInst->getOperand(0), Depth+1)) {
4185           if (!cast<GEPOperator>(AddrInst)->isInBounds())
4186             AddrMode.InBounds = false;
4187           return true;
4188         }
4189       } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
4190                  TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
4191                  ConstantOffset > 0) {
4192         // Record GEPs with non-zero offsets as candidates for splitting in the
4193         // event that the offset cannot fit into the r+i addressing mode.
4194         // Simple and common case that only one GEP is used in calculating the
4195         // address for the memory access.
4196         Value *Base = AddrInst->getOperand(0);
4197         auto *BaseI = dyn_cast<Instruction>(Base);
4198         auto *GEP = cast<GetElementPtrInst>(AddrInst);
4199         if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
4200             (BaseI && !isa<CastInst>(BaseI) &&
4201              !isa<GetElementPtrInst>(BaseI))) {
4202           // Make sure the parent block allows inserting non-PHI instructions
4203           // before the terminator.
4204           BasicBlock *Parent =
4205               BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock();
4206           if (!Parent->getTerminator()->isEHPad())
4207             LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
4208         }
4209       }
4210       AddrMode.BaseOffs -= ConstantOffset;
4211       return false;
4212     }
4213 
4214     // Save the valid addressing mode in case we can't match.
4215     ExtAddrMode BackupAddrMode = AddrMode;
4216     unsigned OldSize = AddrModeInsts.size();
4217 
4218     // See if the scale and offset amount is valid for this target.
4219     AddrMode.BaseOffs += ConstantOffset;
4220     if (!cast<GEPOperator>(AddrInst)->isInBounds())
4221       AddrMode.InBounds = false;
4222 
4223     // Match the base operand of the GEP.
4224     if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
4225       // If it couldn't be matched, just stuff the value in a register.
4226       if (AddrMode.HasBaseReg) {
4227         AddrMode = BackupAddrMode;
4228         AddrModeInsts.resize(OldSize);
4229         return false;
4230       }
4231       AddrMode.HasBaseReg = true;
4232       AddrMode.BaseReg = AddrInst->getOperand(0);
4233     }
4234 
4235     // Match the remaining variable portion of the GEP.
4236     if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
4237                           Depth)) {
4238       // If it couldn't be matched, try stuffing the base into a register
4239       // instead of matching it, and retrying the match of the scale.
4240       AddrMode = BackupAddrMode;
4241       AddrModeInsts.resize(OldSize);
4242       if (AddrMode.HasBaseReg)
4243         return false;
4244       AddrMode.HasBaseReg = true;
4245       AddrMode.BaseReg = AddrInst->getOperand(0);
4246       AddrMode.BaseOffs += ConstantOffset;
4247       if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
4248                             VariableScale, Depth)) {
4249         // If even that didn't work, bail.
4250         AddrMode = BackupAddrMode;
4251         AddrModeInsts.resize(OldSize);
4252         return false;
4253       }
4254     }
4255 
4256     return true;
4257   }
4258   case Instruction::SExt:
4259   case Instruction::ZExt: {
4260     Instruction *Ext = dyn_cast<Instruction>(AddrInst);
4261     if (!Ext)
4262       return false;
4263 
4264     // Try to move this ext out of the way of the addressing mode.
4265     // Ask for a method for doing so.
4266     TypePromotionHelper::Action TPH =
4267         TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
4268     if (!TPH)
4269       return false;
4270 
4271     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4272         TPT.getRestorationPoint();
4273     unsigned CreatedInstsCost = 0;
4274     unsigned ExtCost = !TLI.isExtFree(Ext);
4275     Value *PromotedOperand =
4276         TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
4277     // SExt has been moved away.
4278     // Thus either it will be rematched later in the recursive calls or it is
4279     // gone. Anyway, we must not fold it into the addressing mode at this point.
4280     // E.g.,
4281     // op = add opnd, 1
4282     // idx = ext op
4283     // addr = gep base, idx
4284     // is now:
4285     // promotedOpnd = ext opnd            <- no match here
4286     // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
4287     // addr = gep base, op                <- match
4288     if (MovedAway)
4289       *MovedAway = true;
4290 
4291     assert(PromotedOperand &&
4292            "TypePromotionHelper should have filtered out those cases");
4293 
4294     ExtAddrMode BackupAddrMode = AddrMode;
4295     unsigned OldSize = AddrModeInsts.size();
4296 
4297     if (!matchAddr(PromotedOperand, Depth) ||
4298         // The total of the new cost is equal to the cost of the created
4299         // instructions.
4300         // The total of the old cost is equal to the cost of the extension plus
4301         // what we have saved in the addressing mode.
4302         !isPromotionProfitable(CreatedInstsCost,
4303                                ExtCost + (AddrModeInsts.size() - OldSize),
4304                                PromotedOperand)) {
4305       AddrMode = BackupAddrMode;
4306       AddrModeInsts.resize(OldSize);
4307       LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
4308       TPT.rollback(LastKnownGood);
4309       return false;
4310     }
4311     return true;
4312   }
4313   }
4314   return false;
4315 }
4316 
4317 /// If we can, try to add the value of 'Addr' into the current addressing mode.
4318 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4319 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
4320 /// for the target.
4321 ///
4322 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
4323   // Start a transaction at this point that we will rollback if the matching
4324   // fails.
4325   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4326       TPT.getRestorationPoint();
4327   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
4328     // Fold in immediates if legal for the target.
4329     AddrMode.BaseOffs += CI->getSExtValue();
4330     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4331       return true;
4332     AddrMode.BaseOffs -= CI->getSExtValue();
4333   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
4334     // If this is a global variable, try to fold it into the addressing mode.
4335     if (!AddrMode.BaseGV) {
4336       AddrMode.BaseGV = GV;
4337       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4338         return true;
4339       AddrMode.BaseGV = nullptr;
4340     }
4341   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
4342     ExtAddrMode BackupAddrMode = AddrMode;
4343     unsigned OldSize = AddrModeInsts.size();
4344 
4345     // Check to see if it is possible to fold this operation.
4346     bool MovedAway = false;
4347     if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
4348       // This instruction may have been moved away. If so, there is nothing
4349       // to check here.
4350       if (MovedAway)
4351         return true;
4352       // Okay, it's possible to fold this.  Check to see if it is actually
4353       // *profitable* to do so.  We use a simple cost model to avoid increasing
4354       // register pressure too much.
4355       if (I->hasOneUse() ||
4356           isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
4357         AddrModeInsts.push_back(I);
4358         return true;
4359       }
4360 
4361       // It isn't profitable to do this, roll back.
4362       //cerr << "NOT FOLDING: " << *I;
4363       AddrMode = BackupAddrMode;
4364       AddrModeInsts.resize(OldSize);
4365       TPT.rollback(LastKnownGood);
4366     }
4367   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
4368     if (matchOperationAddr(CE, CE->getOpcode(), Depth))
4369       return true;
4370     TPT.rollback(LastKnownGood);
4371   } else if (isa<ConstantPointerNull>(Addr)) {
4372     // Null pointer gets folded without affecting the addressing mode.
4373     return true;
4374   }
4375 
4376   // Worse case, the target should support [reg] addressing modes. :)
4377   if (!AddrMode.HasBaseReg) {
4378     AddrMode.HasBaseReg = true;
4379     AddrMode.BaseReg = Addr;
4380     // Still check for legality in case the target supports [imm] but not [i+r].
4381     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4382       return true;
4383     AddrMode.HasBaseReg = false;
4384     AddrMode.BaseReg = nullptr;
4385   }
4386 
4387   // If the base register is already taken, see if we can do [r+r].
4388   if (AddrMode.Scale == 0) {
4389     AddrMode.Scale = 1;
4390     AddrMode.ScaledReg = Addr;
4391     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4392       return true;
4393     AddrMode.Scale = 0;
4394     AddrMode.ScaledReg = nullptr;
4395   }
4396   // Couldn't match.
4397   TPT.rollback(LastKnownGood);
4398   return false;
4399 }
4400 
4401 /// Check to see if all uses of OpVal by the specified inline asm call are due
4402 /// to memory operands. If so, return true, otherwise return false.
4403 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
4404                                     const TargetLowering &TLI,
4405                                     const TargetRegisterInfo &TRI) {
4406   const Function *F = CI->getFunction();
4407   TargetLowering::AsmOperandInfoVector TargetConstraints =
4408       TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI,
4409                             ImmutableCallSite(CI));
4410 
4411   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4412     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4413 
4414     // Compute the constraint code and ConstraintType to use.
4415     TLI.ComputeConstraintToUse(OpInfo, SDValue());
4416 
4417     // If this asm operand is our Value*, and if it isn't an indirect memory
4418     // operand, we can't fold it!
4419     if (OpInfo.CallOperandVal == OpVal &&
4420         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
4421          !OpInfo.isIndirect))
4422       return false;
4423   }
4424 
4425   return true;
4426 }
4427 
4428 // Max number of memory uses to look at before aborting the search to conserve
4429 // compile time.
4430 static constexpr int MaxMemoryUsesToScan = 20;
4431 
4432 /// Recursively walk all the uses of I until we find a memory use.
4433 /// If we find an obviously non-foldable instruction, return true.
4434 /// Add the ultimately found memory instructions to MemoryUses.
4435 static bool FindAllMemoryUses(
4436     Instruction *I,
4437     SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
4438     SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
4439     const TargetRegisterInfo &TRI, int SeenInsts = 0) {
4440   // If we already considered this instruction, we're done.
4441   if (!ConsideredInsts.insert(I).second)
4442     return false;
4443 
4444   // If this is an obviously unfoldable instruction, bail out.
4445   if (!MightBeFoldableInst(I))
4446     return true;
4447 
4448   const bool OptSize = I->getFunction()->hasOptSize();
4449 
4450   // Loop over all the uses, recursively processing them.
4451   for (Use &U : I->uses()) {
4452     // Conservatively return true if we're seeing a large number or a deep chain
4453     // of users. This avoids excessive compilation times in pathological cases.
4454     if (SeenInsts++ >= MaxMemoryUsesToScan)
4455       return true;
4456 
4457     Instruction *UserI = cast<Instruction>(U.getUser());
4458     if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
4459       MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
4460       continue;
4461     }
4462 
4463     if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
4464       unsigned opNo = U.getOperandNo();
4465       if (opNo != StoreInst::getPointerOperandIndex())
4466         return true; // Storing addr, not into addr.
4467       MemoryUses.push_back(std::make_pair(SI, opNo));
4468       continue;
4469     }
4470 
4471     if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
4472       unsigned opNo = U.getOperandNo();
4473       if (opNo != AtomicRMWInst::getPointerOperandIndex())
4474         return true; // Storing addr, not into addr.
4475       MemoryUses.push_back(std::make_pair(RMW, opNo));
4476       continue;
4477     }
4478 
4479     if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
4480       unsigned opNo = U.getOperandNo();
4481       if (opNo != AtomicCmpXchgInst::getPointerOperandIndex())
4482         return true; // Storing addr, not into addr.
4483       MemoryUses.push_back(std::make_pair(CmpX, opNo));
4484       continue;
4485     }
4486 
4487     if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
4488       // If this is a cold call, we can sink the addressing calculation into
4489       // the cold path.  See optimizeCallInst
4490       if (!OptSize && CI->hasFnAttr(Attribute::Cold))
4491         continue;
4492 
4493       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
4494       if (!IA) return true;
4495 
4496       // If this is a memory operand, we're cool, otherwise bail out.
4497       if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
4498         return true;
4499       continue;
4500     }
4501 
4502     if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI,
4503                           SeenInsts))
4504       return true;
4505   }
4506 
4507   return false;
4508 }
4509 
4510 /// Return true if Val is already known to be live at the use site that we're
4511 /// folding it into. If so, there is no cost to include it in the addressing
4512 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4513 /// instruction already.
4514 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
4515                                                    Value *KnownLive2) {
4516   // If Val is either of the known-live values, we know it is live!
4517   if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
4518     return true;
4519 
4520   // All values other than instructions and arguments (e.g. constants) are live.
4521   if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
4522 
4523   // If Val is a constant sized alloca in the entry block, it is live, this is
4524   // true because it is just a reference to the stack/frame pointer, which is
4525   // live for the whole function.
4526   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
4527     if (AI->isStaticAlloca())
4528       return true;
4529 
4530   // Check to see if this value is already used in the memory instruction's
4531   // block.  If so, it's already live into the block at the very least, so we
4532   // can reasonably fold it.
4533   return Val->isUsedInBasicBlock(MemoryInst->getParent());
4534 }
4535 
4536 /// It is possible for the addressing mode of the machine to fold the specified
4537 /// instruction into a load or store that ultimately uses it.
4538 /// However, the specified instruction has multiple uses.
4539 /// Given this, it may actually increase register pressure to fold it
4540 /// into the load. For example, consider this code:
4541 ///
4542 ///     X = ...
4543 ///     Y = X+1
4544 ///     use(Y)   -> nonload/store
4545 ///     Z = Y+1
4546 ///     load Z
4547 ///
4548 /// In this case, Y has multiple uses, and can be folded into the load of Z
4549 /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
4550 /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
4551 /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
4552 /// number of computations either.
4553 ///
4554 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
4555 /// X was live across 'load Z' for other reasons, we actually *would* want to
4556 /// fold the addressing mode in the Z case.  This would make Y die earlier.
4557 bool AddressingModeMatcher::
4558 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
4559                                      ExtAddrMode &AMAfter) {
4560   if (IgnoreProfitability) return true;
4561 
4562   // AMBefore is the addressing mode before this instruction was folded into it,
4563   // and AMAfter is the addressing mode after the instruction was folded.  Get
4564   // the set of registers referenced by AMAfter and subtract out those
4565   // referenced by AMBefore: this is the set of values which folding in this
4566   // address extends the lifetime of.
4567   //
4568   // Note that there are only two potential values being referenced here,
4569   // BaseReg and ScaleReg (global addresses are always available, as are any
4570   // folded immediates).
4571   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
4572 
4573   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
4574   // lifetime wasn't extended by adding this instruction.
4575   if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4576     BaseReg = nullptr;
4577   if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4578     ScaledReg = nullptr;
4579 
4580   // If folding this instruction (and it's subexprs) didn't extend any live
4581   // ranges, we're ok with it.
4582   if (!BaseReg && !ScaledReg)
4583     return true;
4584 
4585   // If all uses of this instruction can have the address mode sunk into them,
4586   // we can remove the addressing mode and effectively trade one live register
4587   // for another (at worst.)  In this context, folding an addressing mode into
4588   // the use is just a particularly nice way of sinking it.
4589   SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
4590   SmallPtrSet<Instruction*, 16> ConsideredInsts;
4591   if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI))
4592     return false;  // Has a non-memory, non-foldable use!
4593 
4594   // Now that we know that all uses of this instruction are part of a chain of
4595   // computation involving only operations that could theoretically be folded
4596   // into a memory use, loop over each of these memory operation uses and see
4597   // if they could  *actually* fold the instruction.  The assumption is that
4598   // addressing modes are cheap and that duplicating the computation involved
4599   // many times is worthwhile, even on a fastpath. For sinking candidates
4600   // (i.e. cold call sites), this serves as a way to prevent excessive code
4601   // growth since most architectures have some reasonable small and fast way to
4602   // compute an effective address.  (i.e LEA on x86)
4603   SmallVector<Instruction*, 32> MatchedAddrModeInsts;
4604   for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
4605     Instruction *User = MemoryUses[i].first;
4606     unsigned OpNo = MemoryUses[i].second;
4607 
4608     // Get the access type of this use.  If the use isn't a pointer, we don't
4609     // know what it accesses.
4610     Value *Address = User->getOperand(OpNo);
4611     PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
4612     if (!AddrTy)
4613       return false;
4614     Type *AddressAccessTy = AddrTy->getElementType();
4615     unsigned AS = AddrTy->getAddressSpace();
4616 
4617     // Do a match against the root of this address, ignoring profitability. This
4618     // will tell us if the addressing mode for the memory operation will
4619     // *actually* cover the shared instruction.
4620     ExtAddrMode Result;
4621     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4622                                                                       0);
4623     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4624         TPT.getRestorationPoint();
4625     AddressingModeMatcher Matcher(
4626         MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result,
4627         InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP);
4628     Matcher.IgnoreProfitability = true;
4629     bool Success = Matcher.matchAddr(Address, 0);
4630     (void)Success; assert(Success && "Couldn't select *anything*?");
4631 
4632     // The match was to check the profitability, the changes made are not
4633     // part of the original matcher. Therefore, they should be dropped
4634     // otherwise the original matcher will not present the right state.
4635     TPT.rollback(LastKnownGood);
4636 
4637     // If the match didn't cover I, then it won't be shared by it.
4638     if (!is_contained(MatchedAddrModeInsts, I))
4639       return false;
4640 
4641     MatchedAddrModeInsts.clear();
4642   }
4643 
4644   return true;
4645 }
4646 
4647 /// Return true if the specified values are defined in a
4648 /// different basic block than BB.
4649 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
4650   if (Instruction *I = dyn_cast<Instruction>(V))
4651     return I->getParent() != BB;
4652   return false;
4653 }
4654 
4655 /// Sink addressing mode computation immediate before MemoryInst if doing so
4656 /// can be done without increasing register pressure.  The need for the
4657 /// register pressure constraint means this can end up being an all or nothing
4658 /// decision for all uses of the same addressing computation.
4659 ///
4660 /// Load and Store Instructions often have addressing modes that can do
4661 /// significant amounts of computation. As such, instruction selection will try
4662 /// to get the load or store to do as much computation as possible for the
4663 /// program. The problem is that isel can only see within a single block. As
4664 /// such, we sink as much legal addressing mode work into the block as possible.
4665 ///
4666 /// This method is used to optimize both load/store and inline asms with memory
4667 /// operands.  It's also used to sink addressing computations feeding into cold
4668 /// call sites into their (cold) basic block.
4669 ///
4670 /// The motivation for handling sinking into cold blocks is that doing so can
4671 /// both enable other address mode sinking (by satisfying the register pressure
4672 /// constraint above), and reduce register pressure globally (by removing the
4673 /// addressing mode computation from the fast path entirely.).
4674 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
4675                                         Type *AccessTy, unsigned AddrSpace) {
4676   Value *Repl = Addr;
4677 
4678   // Try to collapse single-value PHI nodes.  This is necessary to undo
4679   // unprofitable PRE transformations.
4680   SmallVector<Value*, 8> worklist;
4681   SmallPtrSet<Value*, 16> Visited;
4682   worklist.push_back(Addr);
4683 
4684   // Use a worklist to iteratively look through PHI and select nodes, and
4685   // ensure that the addressing mode obtained from the non-PHI/select roots of
4686   // the graph are compatible.
4687   bool PhiOrSelectSeen = false;
4688   SmallVector<Instruction*, 16> AddrModeInsts;
4689   const SimplifyQuery SQ(*DL, TLInfo);
4690   AddressingModeCombiner AddrModes(SQ, Addr);
4691   TypePromotionTransaction TPT(RemovedInsts);
4692   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4693       TPT.getRestorationPoint();
4694   while (!worklist.empty()) {
4695     Value *V = worklist.back();
4696     worklist.pop_back();
4697 
4698     // We allow traversing cyclic Phi nodes.
4699     // In case of success after this loop we ensure that traversing through
4700     // Phi nodes ends up with all cases to compute address of the form
4701     //    BaseGV + Base + Scale * Index + Offset
4702     // where Scale and Offset are constans and BaseGV, Base and Index
4703     // are exactly the same Values in all cases.
4704     // It means that BaseGV, Scale and Offset dominate our memory instruction
4705     // and have the same value as they had in address computation represented
4706     // as Phi. So we can safely sink address computation to memory instruction.
4707     if (!Visited.insert(V).second)
4708       continue;
4709 
4710     // For a PHI node, push all of its incoming values.
4711     if (PHINode *P = dyn_cast<PHINode>(V)) {
4712       for (Value *IncValue : P->incoming_values())
4713         worklist.push_back(IncValue);
4714       PhiOrSelectSeen = true;
4715       continue;
4716     }
4717     // Similar for select.
4718     if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
4719       worklist.push_back(SI->getFalseValue());
4720       worklist.push_back(SI->getTrueValue());
4721       PhiOrSelectSeen = true;
4722       continue;
4723     }
4724 
4725     // For non-PHIs, determine the addressing mode being computed.  Note that
4726     // the result may differ depending on what other uses our candidate
4727     // addressing instructions might have.
4728     AddrModeInsts.clear();
4729     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4730                                                                       0);
4731     ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
4732         V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI,
4733         InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP);
4734 
4735     GetElementPtrInst *GEP = LargeOffsetGEP.first;
4736     if (GEP && !NewGEPBases.count(GEP)) {
4737       // If splitting the underlying data structure can reduce the offset of a
4738       // GEP, collect the GEP.  Skip the GEPs that are the new bases of
4739       // previously split data structures.
4740       LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
4741       if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end())
4742         LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size();
4743     }
4744 
4745     NewAddrMode.OriginalValue = V;
4746     if (!AddrModes.addNewAddrMode(NewAddrMode))
4747       break;
4748   }
4749 
4750   // Try to combine the AddrModes we've collected. If we couldn't collect any,
4751   // or we have multiple but either couldn't combine them or combining them
4752   // wouldn't do anything useful, bail out now.
4753   if (!AddrModes.combineAddrModes()) {
4754     TPT.rollback(LastKnownGood);
4755     return false;
4756   }
4757   TPT.commit();
4758 
4759   // Get the combined AddrMode (or the only AddrMode, if we only had one).
4760   ExtAddrMode AddrMode = AddrModes.getAddrMode();
4761 
4762   // If all the instructions matched are already in this BB, don't do anything.
4763   // If we saw a Phi node then it is not local definitely, and if we saw a select
4764   // then we want to push the address calculation past it even if it's already
4765   // in this BB.
4766   if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
4767         return IsNonLocalValue(V, MemoryInst->getParent());
4768                   })) {
4769     LLVM_DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode
4770                       << "\n");
4771     return false;
4772   }
4773 
4774   // Insert this computation right after this user.  Since our caller is
4775   // scanning from the top of the BB to the bottom, reuse of the expr are
4776   // guaranteed to happen later.
4777   IRBuilder<> Builder(MemoryInst);
4778 
4779   // Now that we determined the addressing expression we want to use and know
4780   // that we have to sink it into this block.  Check to see if we have already
4781   // done this for some other load/store instr in this block.  If so, reuse
4782   // the computation.  Before attempting reuse, check if the address is valid
4783   // as it may have been erased.
4784 
4785   WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
4786 
4787   Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
4788   if (SunkAddr) {
4789     LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
4790                       << " for " << *MemoryInst << "\n");
4791     if (SunkAddr->getType() != Addr->getType())
4792       SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4793   } else if (AddrSinkUsingGEPs ||
4794              (!AddrSinkUsingGEPs.getNumOccurrences() && TM && TTI->useAA())) {
4795     // By default, we use the GEP-based method when AA is used later. This
4796     // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
4797     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4798                       << " for " << *MemoryInst << "\n");
4799     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4800     Value *ResultPtr = nullptr, *ResultIndex = nullptr;
4801 
4802     // First, find the pointer.
4803     if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
4804       ResultPtr = AddrMode.BaseReg;
4805       AddrMode.BaseReg = nullptr;
4806     }
4807 
4808     if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
4809       // We can't add more than one pointer together, nor can we scale a
4810       // pointer (both of which seem meaningless).
4811       if (ResultPtr || AddrMode.Scale != 1)
4812         return false;
4813 
4814       ResultPtr = AddrMode.ScaledReg;
4815       AddrMode.Scale = 0;
4816     }
4817 
4818     // It is only safe to sign extend the BaseReg if we know that the math
4819     // required to create it did not overflow before we extend it. Since
4820     // the original IR value was tossed in favor of a constant back when
4821     // the AddrMode was created we need to bail out gracefully if widths
4822     // do not match instead of extending it.
4823     //
4824     // (See below for code to add the scale.)
4825     if (AddrMode.Scale) {
4826       Type *ScaledRegTy = AddrMode.ScaledReg->getType();
4827       if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
4828           cast<IntegerType>(ScaledRegTy)->getBitWidth())
4829         return false;
4830     }
4831 
4832     if (AddrMode.BaseGV) {
4833       if (ResultPtr)
4834         return false;
4835 
4836       ResultPtr = AddrMode.BaseGV;
4837     }
4838 
4839     // If the real base value actually came from an inttoptr, then the matcher
4840     // will look through it and provide only the integer value. In that case,
4841     // use it here.
4842     if (!DL->isNonIntegralPointerType(Addr->getType())) {
4843       if (!ResultPtr && AddrMode.BaseReg) {
4844         ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
4845                                            "sunkaddr");
4846         AddrMode.BaseReg = nullptr;
4847       } else if (!ResultPtr && AddrMode.Scale == 1) {
4848         ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
4849                                            "sunkaddr");
4850         AddrMode.Scale = 0;
4851       }
4852     }
4853 
4854     if (!ResultPtr &&
4855         !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
4856       SunkAddr = Constant::getNullValue(Addr->getType());
4857     } else if (!ResultPtr) {
4858       return false;
4859     } else {
4860       Type *I8PtrTy =
4861           Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
4862       Type *I8Ty = Builder.getInt8Ty();
4863 
4864       // Start with the base register. Do this first so that subsequent address
4865       // matching finds it last, which will prevent it from trying to match it
4866       // as the scaled value in case it happens to be a mul. That would be
4867       // problematic if we've sunk a different mul for the scale, because then
4868       // we'd end up sinking both muls.
4869       if (AddrMode.BaseReg) {
4870         Value *V = AddrMode.BaseReg;
4871         if (V->getType() != IntPtrTy)
4872           V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4873 
4874         ResultIndex = V;
4875       }
4876 
4877       // Add the scale value.
4878       if (AddrMode.Scale) {
4879         Value *V = AddrMode.ScaledReg;
4880         if (V->getType() == IntPtrTy) {
4881           // done.
4882         } else {
4883           assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
4884                  cast<IntegerType>(V->getType())->getBitWidth() &&
4885                  "We can't transform if ScaledReg is too narrow");
4886           V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4887         }
4888 
4889         if (AddrMode.Scale != 1)
4890           V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4891                                 "sunkaddr");
4892         if (ResultIndex)
4893           ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
4894         else
4895           ResultIndex = V;
4896       }
4897 
4898       // Add in the Base Offset if present.
4899       if (AddrMode.BaseOffs) {
4900         Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
4901         if (ResultIndex) {
4902           // We need to add this separately from the scale above to help with
4903           // SDAG consecutive load/store merging.
4904           if (ResultPtr->getType() != I8PtrTy)
4905             ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4906           ResultPtr =
4907               AddrMode.InBounds
4908                   ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
4909                                               "sunkaddr")
4910                   : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4911         }
4912 
4913         ResultIndex = V;
4914       }
4915 
4916       if (!ResultIndex) {
4917         SunkAddr = ResultPtr;
4918       } else {
4919         if (ResultPtr->getType() != I8PtrTy)
4920           ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4921         SunkAddr =
4922             AddrMode.InBounds
4923                 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
4924                                             "sunkaddr")
4925                 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4926       }
4927 
4928       if (SunkAddr->getType() != Addr->getType())
4929         SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4930     }
4931   } else {
4932     // We'd require a ptrtoint/inttoptr down the line, which we can't do for
4933     // non-integral pointers, so in that case bail out now.
4934     Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
4935     Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
4936     PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
4937     PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
4938     if (DL->isNonIntegralPointerType(Addr->getType()) ||
4939         (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
4940         (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
4941         (AddrMode.BaseGV &&
4942          DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
4943       return false;
4944 
4945     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4946                       << " for " << *MemoryInst << "\n");
4947     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4948     Value *Result = nullptr;
4949 
4950     // Start with the base register. Do this first so that subsequent address
4951     // matching finds it last, which will prevent it from trying to match it
4952     // as the scaled value in case it happens to be a mul. That would be
4953     // problematic if we've sunk a different mul for the scale, because then
4954     // we'd end up sinking both muls.
4955     if (AddrMode.BaseReg) {
4956       Value *V = AddrMode.BaseReg;
4957       if (V->getType()->isPointerTy())
4958         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4959       if (V->getType() != IntPtrTy)
4960         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4961       Result = V;
4962     }
4963 
4964     // Add the scale value.
4965     if (AddrMode.Scale) {
4966       Value *V = AddrMode.ScaledReg;
4967       if (V->getType() == IntPtrTy) {
4968         // done.
4969       } else if (V->getType()->isPointerTy()) {
4970         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4971       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
4972                  cast<IntegerType>(V->getType())->getBitWidth()) {
4973         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4974       } else {
4975         // It is only safe to sign extend the BaseReg if we know that the math
4976         // required to create it did not overflow before we extend it. Since
4977         // the original IR value was tossed in favor of a constant back when
4978         // the AddrMode was created we need to bail out gracefully if widths
4979         // do not match instead of extending it.
4980         Instruction *I = dyn_cast_or_null<Instruction>(Result);
4981         if (I && (Result != AddrMode.BaseReg))
4982           I->eraseFromParent();
4983         return false;
4984       }
4985       if (AddrMode.Scale != 1)
4986         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4987                               "sunkaddr");
4988       if (Result)
4989         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4990       else
4991         Result = V;
4992     }
4993 
4994     // Add in the BaseGV if present.
4995     if (AddrMode.BaseGV) {
4996       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
4997       if (Result)
4998         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4999       else
5000         Result = V;
5001     }
5002 
5003     // Add in the Base Offset if present.
5004     if (AddrMode.BaseOffs) {
5005       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5006       if (Result)
5007         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5008       else
5009         Result = V;
5010     }
5011 
5012     if (!Result)
5013       SunkAddr = Constant::getNullValue(Addr->getType());
5014     else
5015       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
5016   }
5017 
5018   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
5019   // Store the newly computed address into the cache. In the case we reused a
5020   // value, this should be idempotent.
5021   SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
5022 
5023   // If we have no uses, recursively delete the value and all dead instructions
5024   // using it.
5025   if (Repl->use_empty()) {
5026     // This can cause recursive deletion, which can invalidate our iterator.
5027     // Use a WeakTrackingVH to hold onto it in case this happens.
5028     Value *CurValue = &*CurInstIterator;
5029     WeakTrackingVH IterHandle(CurValue);
5030     BasicBlock *BB = CurInstIterator->getParent();
5031 
5032     RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
5033 
5034     if (IterHandle != CurValue) {
5035       // If the iterator instruction was recursively deleted, start over at the
5036       // start of the block.
5037       CurInstIterator = BB->begin();
5038       SunkAddrs.clear();
5039     }
5040   }
5041   ++NumMemoryInsts;
5042   return true;
5043 }
5044 
5045 /// If there are any memory operands, use OptimizeMemoryInst to sink their
5046 /// address computing into the block when possible / profitable.
5047 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
5048   bool MadeChange = false;
5049 
5050   const TargetRegisterInfo *TRI =
5051       TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
5052   TargetLowering::AsmOperandInfoVector TargetConstraints =
5053       TLI->ParseConstraints(*DL, TRI, CS);
5054   unsigned ArgNo = 0;
5055   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5056     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
5057 
5058     // Compute the constraint code and ConstraintType to use.
5059     TLI->ComputeConstraintToUse(OpInfo, SDValue());
5060 
5061     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5062         OpInfo.isIndirect) {
5063       Value *OpVal = CS->getArgOperand(ArgNo++);
5064       MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
5065     } else if (OpInfo.Type == InlineAsm::isInput)
5066       ArgNo++;
5067   }
5068 
5069   return MadeChange;
5070 }
5071 
5072 /// Check if all the uses of \p Val are equivalent (or free) zero or
5073 /// sign extensions.
5074 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
5075   assert(!Val->use_empty() && "Input must have at least one use");
5076   const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
5077   bool IsSExt = isa<SExtInst>(FirstUser);
5078   Type *ExtTy = FirstUser->getType();
5079   for (const User *U : Val->users()) {
5080     const Instruction *UI = cast<Instruction>(U);
5081     if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
5082       return false;
5083     Type *CurTy = UI->getType();
5084     // Same input and output types: Same instruction after CSE.
5085     if (CurTy == ExtTy)
5086       continue;
5087 
5088     // If IsSExt is true, we are in this situation:
5089     // a = Val
5090     // b = sext ty1 a to ty2
5091     // c = sext ty1 a to ty3
5092     // Assuming ty2 is shorter than ty3, this could be turned into:
5093     // a = Val
5094     // b = sext ty1 a to ty2
5095     // c = sext ty2 b to ty3
5096     // However, the last sext is not free.
5097     if (IsSExt)
5098       return false;
5099 
5100     // This is a ZExt, maybe this is free to extend from one type to another.
5101     // In that case, we would not account for a different use.
5102     Type *NarrowTy;
5103     Type *LargeTy;
5104     if (ExtTy->getScalarType()->getIntegerBitWidth() >
5105         CurTy->getScalarType()->getIntegerBitWidth()) {
5106       NarrowTy = CurTy;
5107       LargeTy = ExtTy;
5108     } else {
5109       NarrowTy = ExtTy;
5110       LargeTy = CurTy;
5111     }
5112 
5113     if (!TLI.isZExtFree(NarrowTy, LargeTy))
5114       return false;
5115   }
5116   // All uses are the same or can be derived from one another for free.
5117   return true;
5118 }
5119 
5120 /// Try to speculatively promote extensions in \p Exts and continue
5121 /// promoting through newly promoted operands recursively as far as doing so is
5122 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
5123 /// When some promotion happened, \p TPT contains the proper state to revert
5124 /// them.
5125 ///
5126 /// \return true if some promotion happened, false otherwise.
5127 bool CodeGenPrepare::tryToPromoteExts(
5128     TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
5129     SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
5130     unsigned CreatedInstsCost) {
5131   bool Promoted = false;
5132 
5133   // Iterate over all the extensions to try to promote them.
5134   for (auto I : Exts) {
5135     // Early check if we directly have ext(load).
5136     if (isa<LoadInst>(I->getOperand(0))) {
5137       ProfitablyMovedExts.push_back(I);
5138       continue;
5139     }
5140 
5141     // Check whether or not we want to do any promotion.  The reason we have
5142     // this check inside the for loop is to catch the case where an extension
5143     // is directly fed by a load because in such case the extension can be moved
5144     // up without any promotion on its operands.
5145     if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion)
5146       return false;
5147 
5148     // Get the action to perform the promotion.
5149     TypePromotionHelper::Action TPH =
5150         TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
5151     // Check if we can promote.
5152     if (!TPH) {
5153       // Save the current extension as we cannot move up through its operand.
5154       ProfitablyMovedExts.push_back(I);
5155       continue;
5156     }
5157 
5158     // Save the current state.
5159     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5160         TPT.getRestorationPoint();
5161     SmallVector<Instruction *, 4> NewExts;
5162     unsigned NewCreatedInstsCost = 0;
5163     unsigned ExtCost = !TLI->isExtFree(I);
5164     // Promote.
5165     Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
5166                              &NewExts, nullptr, *TLI);
5167     assert(PromotedVal &&
5168            "TypePromotionHelper should have filtered out those cases");
5169 
5170     // We would be able to merge only one extension in a load.
5171     // Therefore, if we have more than 1 new extension we heuristically
5172     // cut this search path, because it means we degrade the code quality.
5173     // With exactly 2, the transformation is neutral, because we will merge
5174     // one extension but leave one. However, we optimistically keep going,
5175     // because the new extension may be removed too.
5176     long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
5177     // FIXME: It would be possible to propagate a negative value instead of
5178     // conservatively ceiling it to 0.
5179     TotalCreatedInstsCost =
5180         std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
5181     if (!StressExtLdPromotion &&
5182         (TotalCreatedInstsCost > 1 ||
5183          !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
5184       // This promotion is not profitable, rollback to the previous state, and
5185       // save the current extension in ProfitablyMovedExts as the latest
5186       // speculative promotion turned out to be unprofitable.
5187       TPT.rollback(LastKnownGood);
5188       ProfitablyMovedExts.push_back(I);
5189       continue;
5190     }
5191     // Continue promoting NewExts as far as doing so is profitable.
5192     SmallVector<Instruction *, 2> NewlyMovedExts;
5193     (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
5194     bool NewPromoted = false;
5195     for (auto ExtInst : NewlyMovedExts) {
5196       Instruction *MovedExt = cast<Instruction>(ExtInst);
5197       Value *ExtOperand = MovedExt->getOperand(0);
5198       // If we have reached to a load, we need this extra profitability check
5199       // as it could potentially be merged into an ext(load).
5200       if (isa<LoadInst>(ExtOperand) &&
5201           !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
5202             (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
5203         continue;
5204 
5205       ProfitablyMovedExts.push_back(MovedExt);
5206       NewPromoted = true;
5207     }
5208 
5209     // If none of speculative promotions for NewExts is profitable, rollback
5210     // and save the current extension (I) as the last profitable extension.
5211     if (!NewPromoted) {
5212       TPT.rollback(LastKnownGood);
5213       ProfitablyMovedExts.push_back(I);
5214       continue;
5215     }
5216     // The promotion is profitable.
5217     Promoted = true;
5218   }
5219   return Promoted;
5220 }
5221 
5222 /// Merging redundant sexts when one is dominating the other.
5223 bool CodeGenPrepare::mergeSExts(Function &F) {
5224   bool Changed = false;
5225   for (auto &Entry : ValToSExtendedUses) {
5226     SExts &Insts = Entry.second;
5227     SExts CurPts;
5228     for (Instruction *Inst : Insts) {
5229       if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
5230           Inst->getOperand(0) != Entry.first)
5231         continue;
5232       bool inserted = false;
5233       for (auto &Pt : CurPts) {
5234         if (getDT(F).dominates(Inst, Pt)) {
5235           Pt->replaceAllUsesWith(Inst);
5236           RemovedInsts.insert(Pt);
5237           Pt->removeFromParent();
5238           Pt = Inst;
5239           inserted = true;
5240           Changed = true;
5241           break;
5242         }
5243         if (!getDT(F).dominates(Pt, Inst))
5244           // Give up if we need to merge in a common dominator as the
5245           // experiments show it is not profitable.
5246           continue;
5247         Inst->replaceAllUsesWith(Pt);
5248         RemovedInsts.insert(Inst);
5249         Inst->removeFromParent();
5250         inserted = true;
5251         Changed = true;
5252         break;
5253       }
5254       if (!inserted)
5255         CurPts.push_back(Inst);
5256     }
5257   }
5258   return Changed;
5259 }
5260 
5261 // Spliting large data structures so that the GEPs accessing them can have
5262 // smaller offsets so that they can be sunk to the same blocks as their users.
5263 // For example, a large struct starting from %base is splitted into two parts
5264 // where the second part starts from %new_base.
5265 //
5266 // Before:
5267 // BB0:
5268 //   %base     =
5269 //
5270 // BB1:
5271 //   %gep0     = gep %base, off0
5272 //   %gep1     = gep %base, off1
5273 //   %gep2     = gep %base, off2
5274 //
5275 // BB2:
5276 //   %load1    = load %gep0
5277 //   %load2    = load %gep1
5278 //   %load3    = load %gep2
5279 //
5280 // After:
5281 // BB0:
5282 //   %base     =
5283 //   %new_base = gep %base, off0
5284 //
5285 // BB1:
5286 //   %new_gep0 = %new_base
5287 //   %new_gep1 = gep %new_base, off1 - off0
5288 //   %new_gep2 = gep %new_base, off2 - off0
5289 //
5290 // BB2:
5291 //   %load1    = load i32, i32* %new_gep0
5292 //   %load2    = load i32, i32* %new_gep1
5293 //   %load3    = load i32, i32* %new_gep2
5294 //
5295 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
5296 // their offsets are smaller enough to fit into the addressing mode.
5297 bool CodeGenPrepare::splitLargeGEPOffsets() {
5298   bool Changed = false;
5299   for (auto &Entry : LargeOffsetGEPMap) {
5300     Value *OldBase = Entry.first;
5301     SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
5302         &LargeOffsetGEPs = Entry.second;
5303     auto compareGEPOffset =
5304         [&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
5305             const std::pair<GetElementPtrInst *, int64_t> &RHS) {
5306           if (LHS.first == RHS.first)
5307             return false;
5308           if (LHS.second != RHS.second)
5309             return LHS.second < RHS.second;
5310           return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
5311         };
5312     // Sorting all the GEPs of the same data structures based on the offsets.
5313     llvm::sort(LargeOffsetGEPs, compareGEPOffset);
5314     LargeOffsetGEPs.erase(
5315         std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()),
5316         LargeOffsetGEPs.end());
5317     // Skip if all the GEPs have the same offsets.
5318     if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
5319       continue;
5320     GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
5321     int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
5322     Value *NewBaseGEP = nullptr;
5323 
5324     auto LargeOffsetGEP = LargeOffsetGEPs.begin();
5325     while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
5326       GetElementPtrInst *GEP = LargeOffsetGEP->first;
5327       int64_t Offset = LargeOffsetGEP->second;
5328       if (Offset != BaseOffset) {
5329         TargetLowering::AddrMode AddrMode;
5330         AddrMode.BaseOffs = Offset - BaseOffset;
5331         // The result type of the GEP might not be the type of the memory
5332         // access.
5333         if (!TLI->isLegalAddressingMode(*DL, AddrMode,
5334                                         GEP->getResultElementType(),
5335                                         GEP->getAddressSpace())) {
5336           // We need to create a new base if the offset to the current base is
5337           // too large to fit into the addressing mode. So, a very large struct
5338           // may be splitted into several parts.
5339           BaseGEP = GEP;
5340           BaseOffset = Offset;
5341           NewBaseGEP = nullptr;
5342         }
5343       }
5344 
5345       // Generate a new GEP to replace the current one.
5346       LLVMContext &Ctx = GEP->getContext();
5347       Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
5348       Type *I8PtrTy =
5349           Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace());
5350       Type *I8Ty = Type::getInt8Ty(Ctx);
5351 
5352       if (!NewBaseGEP) {
5353         // Create a new base if we don't have one yet.  Find the insertion
5354         // pointer for the new base first.
5355         BasicBlock::iterator NewBaseInsertPt;
5356         BasicBlock *NewBaseInsertBB;
5357         if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
5358           // If the base of the struct is an instruction, the new base will be
5359           // inserted close to it.
5360           NewBaseInsertBB = BaseI->getParent();
5361           if (isa<PHINode>(BaseI))
5362             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5363           else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
5364             NewBaseInsertBB =
5365                 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest());
5366             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5367           } else
5368             NewBaseInsertPt = std::next(BaseI->getIterator());
5369         } else {
5370           // If the current base is an argument or global value, the new base
5371           // will be inserted to the entry block.
5372           NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
5373           NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5374         }
5375         IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
5376         // Create a new base.
5377         Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset);
5378         NewBaseGEP = OldBase;
5379         if (NewBaseGEP->getType() != I8PtrTy)
5380           NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
5381         NewBaseGEP =
5382             NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep");
5383         NewGEPBases.insert(NewBaseGEP);
5384       }
5385 
5386       IRBuilder<> Builder(GEP);
5387       Value *NewGEP = NewBaseGEP;
5388       if (Offset == BaseOffset) {
5389         if (GEP->getType() != I8PtrTy)
5390           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5391       } else {
5392         // Calculate the new offset for the new GEP.
5393         Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset);
5394         NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index);
5395 
5396         if (GEP->getType() != I8PtrTy)
5397           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5398       }
5399       GEP->replaceAllUsesWith(NewGEP);
5400       LargeOffsetGEPID.erase(GEP);
5401       LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
5402       GEP->eraseFromParent();
5403       Changed = true;
5404     }
5405   }
5406   return Changed;
5407 }
5408 
5409 /// Return true, if an ext(load) can be formed from an extension in
5410 /// \p MovedExts.
5411 bool CodeGenPrepare::canFormExtLd(
5412     const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
5413     Instruction *&Inst, bool HasPromoted) {
5414   for (auto *MovedExtInst : MovedExts) {
5415     if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
5416       LI = cast<LoadInst>(MovedExtInst->getOperand(0));
5417       Inst = MovedExtInst;
5418       break;
5419     }
5420   }
5421   if (!LI)
5422     return false;
5423 
5424   // If they're already in the same block, there's nothing to do.
5425   // Make the cheap checks first if we did not promote.
5426   // If we promoted, we need to check if it is indeed profitable.
5427   if (!HasPromoted && LI->getParent() == Inst->getParent())
5428     return false;
5429 
5430   return TLI->isExtLoad(LI, Inst, *DL);
5431 }
5432 
5433 /// Move a zext or sext fed by a load into the same basic block as the load,
5434 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
5435 /// extend into the load.
5436 ///
5437 /// E.g.,
5438 /// \code
5439 /// %ld = load i32* %addr
5440 /// %add = add nuw i32 %ld, 4
5441 /// %zext = zext i32 %add to i64
5442 // \endcode
5443 /// =>
5444 /// \code
5445 /// %ld = load i32* %addr
5446 /// %zext = zext i32 %ld to i64
5447 /// %add = add nuw i64 %zext, 4
5448 /// \encode
5449 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
5450 /// allow us to match zext(load i32*) to i64.
5451 ///
5452 /// Also, try to promote the computations used to obtain a sign extended
5453 /// value used into memory accesses.
5454 /// E.g.,
5455 /// \code
5456 /// a = add nsw i32 b, 3
5457 /// d = sext i32 a to i64
5458 /// e = getelementptr ..., i64 d
5459 /// \endcode
5460 /// =>
5461 /// \code
5462 /// f = sext i32 b to i64
5463 /// a = add nsw i64 f, 3
5464 /// e = getelementptr ..., i64 a
5465 /// \endcode
5466 ///
5467 /// \p Inst[in/out] the extension may be modified during the process if some
5468 /// promotions apply.
5469 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
5470   // ExtLoad formation and address type promotion infrastructure requires TLI to
5471   // be effective.
5472   if (!TLI)
5473     return false;
5474 
5475   bool AllowPromotionWithoutCommonHeader = false;
5476   /// See if it is an interesting sext operations for the address type
5477   /// promotion before trying to promote it, e.g., the ones with the right
5478   /// type and used in memory accesses.
5479   bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
5480       *Inst, AllowPromotionWithoutCommonHeader);
5481   TypePromotionTransaction TPT(RemovedInsts);
5482   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5483       TPT.getRestorationPoint();
5484   SmallVector<Instruction *, 1> Exts;
5485   SmallVector<Instruction *, 2> SpeculativelyMovedExts;
5486   Exts.push_back(Inst);
5487 
5488   bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
5489 
5490   // Look for a load being extended.
5491   LoadInst *LI = nullptr;
5492   Instruction *ExtFedByLoad;
5493 
5494   // Try to promote a chain of computation if it allows to form an extended
5495   // load.
5496   if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
5497     assert(LI && ExtFedByLoad && "Expect a valid load and extension");
5498     TPT.commit();
5499     // Move the extend into the same block as the load
5500     ExtFedByLoad->moveAfter(LI);
5501     // CGP does not check if the zext would be speculatively executed when moved
5502     // to the same basic block as the load. Preserving its original location
5503     // would pessimize the debugging experience, as well as negatively impact
5504     // the quality of sample pgo. We don't want to use "line 0" as that has a
5505     // size cost in the line-table section and logically the zext can be seen as
5506     // part of the load. Therefore we conservatively reuse the same debug
5507     // location for the load and the zext.
5508     ExtFedByLoad->setDebugLoc(LI->getDebugLoc());
5509     ++NumExtsMoved;
5510     Inst = ExtFedByLoad;
5511     return true;
5512   }
5513 
5514   // Continue promoting SExts if known as considerable depending on targets.
5515   if (ATPConsiderable &&
5516       performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
5517                                   HasPromoted, TPT, SpeculativelyMovedExts))
5518     return true;
5519 
5520   TPT.rollback(LastKnownGood);
5521   return false;
5522 }
5523 
5524 // Perform address type promotion if doing so is profitable.
5525 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
5526 // instructions that sign extended the same initial value. However, if
5527 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
5528 // extension is just profitable.
5529 bool CodeGenPrepare::performAddressTypePromotion(
5530     Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
5531     bool HasPromoted, TypePromotionTransaction &TPT,
5532     SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
5533   bool Promoted = false;
5534   SmallPtrSet<Instruction *, 1> UnhandledExts;
5535   bool AllSeenFirst = true;
5536   for (auto I : SpeculativelyMovedExts) {
5537     Value *HeadOfChain = I->getOperand(0);
5538     DenseMap<Value *, Instruction *>::iterator AlreadySeen =
5539         SeenChainsForSExt.find(HeadOfChain);
5540     // If there is an unhandled SExt which has the same header, try to promote
5541     // it as well.
5542     if (AlreadySeen != SeenChainsForSExt.end()) {
5543       if (AlreadySeen->second != nullptr)
5544         UnhandledExts.insert(AlreadySeen->second);
5545       AllSeenFirst = false;
5546     }
5547   }
5548 
5549   if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
5550                         SpeculativelyMovedExts.size() == 1)) {
5551     TPT.commit();
5552     if (HasPromoted)
5553       Promoted = true;
5554     for (auto I : SpeculativelyMovedExts) {
5555       Value *HeadOfChain = I->getOperand(0);
5556       SeenChainsForSExt[HeadOfChain] = nullptr;
5557       ValToSExtendedUses[HeadOfChain].push_back(I);
5558     }
5559     // Update Inst as promotion happen.
5560     Inst = SpeculativelyMovedExts.pop_back_val();
5561   } else {
5562     // This is the first chain visited from the header, keep the current chain
5563     // as unhandled. Defer to promote this until we encounter another SExt
5564     // chain derived from the same header.
5565     for (auto I : SpeculativelyMovedExts) {
5566       Value *HeadOfChain = I->getOperand(0);
5567       SeenChainsForSExt[HeadOfChain] = Inst;
5568     }
5569     return false;
5570   }
5571 
5572   if (!AllSeenFirst && !UnhandledExts.empty())
5573     for (auto VisitedSExt : UnhandledExts) {
5574       if (RemovedInsts.count(VisitedSExt))
5575         continue;
5576       TypePromotionTransaction TPT(RemovedInsts);
5577       SmallVector<Instruction *, 1> Exts;
5578       SmallVector<Instruction *, 2> Chains;
5579       Exts.push_back(VisitedSExt);
5580       bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
5581       TPT.commit();
5582       if (HasPromoted)
5583         Promoted = true;
5584       for (auto I : Chains) {
5585         Value *HeadOfChain = I->getOperand(0);
5586         // Mark this as handled.
5587         SeenChainsForSExt[HeadOfChain] = nullptr;
5588         ValToSExtendedUses[HeadOfChain].push_back(I);
5589       }
5590     }
5591   return Promoted;
5592 }
5593 
5594 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
5595   BasicBlock *DefBB = I->getParent();
5596 
5597   // If the result of a {s|z}ext and its source are both live out, rewrite all
5598   // other uses of the source with result of extension.
5599   Value *Src = I->getOperand(0);
5600   if (Src->hasOneUse())
5601     return false;
5602 
5603   // Only do this xform if truncating is free.
5604   if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
5605     return false;
5606 
5607   // Only safe to perform the optimization if the source is also defined in
5608   // this block.
5609   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
5610     return false;
5611 
5612   bool DefIsLiveOut = false;
5613   for (User *U : I->users()) {
5614     Instruction *UI = cast<Instruction>(U);
5615 
5616     // Figure out which BB this ext is used in.
5617     BasicBlock *UserBB = UI->getParent();
5618     if (UserBB == DefBB) continue;
5619     DefIsLiveOut = true;
5620     break;
5621   }
5622   if (!DefIsLiveOut)
5623     return false;
5624 
5625   // Make sure none of the uses are PHI nodes.
5626   for (User *U : Src->users()) {
5627     Instruction *UI = cast<Instruction>(U);
5628     BasicBlock *UserBB = UI->getParent();
5629     if (UserBB == DefBB) continue;
5630     // Be conservative. We don't want this xform to end up introducing
5631     // reloads just before load / store instructions.
5632     if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
5633       return false;
5634   }
5635 
5636   // InsertedTruncs - Only insert one trunc in each block once.
5637   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
5638 
5639   bool MadeChange = false;
5640   for (Use &U : Src->uses()) {
5641     Instruction *User = cast<Instruction>(U.getUser());
5642 
5643     // Figure out which BB this ext is used in.
5644     BasicBlock *UserBB = User->getParent();
5645     if (UserBB == DefBB) continue;
5646 
5647     // Both src and def are live in this block. Rewrite the use.
5648     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
5649 
5650     if (!InsertedTrunc) {
5651       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5652       assert(InsertPt != UserBB->end());
5653       InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
5654       InsertedInsts.insert(InsertedTrunc);
5655     }
5656 
5657     // Replace a use of the {s|z}ext source with a use of the result.
5658     U = InsertedTrunc;
5659     ++NumExtUses;
5660     MadeChange = true;
5661   }
5662 
5663   return MadeChange;
5664 }
5665 
5666 // Find loads whose uses only use some of the loaded value's bits.  Add an "and"
5667 // just after the load if the target can fold this into one extload instruction,
5668 // with the hope of eliminating some of the other later "and" instructions using
5669 // the loaded value.  "and"s that are made trivially redundant by the insertion
5670 // of the new "and" are removed by this function, while others (e.g. those whose
5671 // path from the load goes through a phi) are left for isel to potentially
5672 // remove.
5673 //
5674 // For example:
5675 //
5676 // b0:
5677 //   x = load i32
5678 //   ...
5679 // b1:
5680 //   y = and x, 0xff
5681 //   z = use y
5682 //
5683 // becomes:
5684 //
5685 // b0:
5686 //   x = load i32
5687 //   x' = and x, 0xff
5688 //   ...
5689 // b1:
5690 //   z = use x'
5691 //
5692 // whereas:
5693 //
5694 // b0:
5695 //   x1 = load i32
5696 //   ...
5697 // b1:
5698 //   x2 = load i32
5699 //   ...
5700 // b2:
5701 //   x = phi x1, x2
5702 //   y = and x, 0xff
5703 //
5704 // becomes (after a call to optimizeLoadExt for each load):
5705 //
5706 // b0:
5707 //   x1 = load i32
5708 //   x1' = and x1, 0xff
5709 //   ...
5710 // b1:
5711 //   x2 = load i32
5712 //   x2' = and x2, 0xff
5713 //   ...
5714 // b2:
5715 //   x = phi x1', x2'
5716 //   y = and x, 0xff
5717 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
5718   if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy())
5719     return false;
5720 
5721   // Skip loads we've already transformed.
5722   if (Load->hasOneUse() &&
5723       InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
5724     return false;
5725 
5726   // Look at all uses of Load, looking through phis, to determine how many bits
5727   // of the loaded value are needed.
5728   SmallVector<Instruction *, 8> WorkList;
5729   SmallPtrSet<Instruction *, 16> Visited;
5730   SmallVector<Instruction *, 8> AndsToMaybeRemove;
5731   for (auto *U : Load->users())
5732     WorkList.push_back(cast<Instruction>(U));
5733 
5734   EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
5735   unsigned BitWidth = LoadResultVT.getSizeInBits();
5736   APInt DemandBits(BitWidth, 0);
5737   APInt WidestAndBits(BitWidth, 0);
5738 
5739   while (!WorkList.empty()) {
5740     Instruction *I = WorkList.back();
5741     WorkList.pop_back();
5742 
5743     // Break use-def graph loops.
5744     if (!Visited.insert(I).second)
5745       continue;
5746 
5747     // For a PHI node, push all of its users.
5748     if (auto *Phi = dyn_cast<PHINode>(I)) {
5749       for (auto *U : Phi->users())
5750         WorkList.push_back(cast<Instruction>(U));
5751       continue;
5752     }
5753 
5754     switch (I->getOpcode()) {
5755     case Instruction::And: {
5756       auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
5757       if (!AndC)
5758         return false;
5759       APInt AndBits = AndC->getValue();
5760       DemandBits |= AndBits;
5761       // Keep track of the widest and mask we see.
5762       if (AndBits.ugt(WidestAndBits))
5763         WidestAndBits = AndBits;
5764       if (AndBits == WidestAndBits && I->getOperand(0) == Load)
5765         AndsToMaybeRemove.push_back(I);
5766       break;
5767     }
5768 
5769     case Instruction::Shl: {
5770       auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
5771       if (!ShlC)
5772         return false;
5773       uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
5774       DemandBits.setLowBits(BitWidth - ShiftAmt);
5775       break;
5776     }
5777 
5778     case Instruction::Trunc: {
5779       EVT TruncVT = TLI->getValueType(*DL, I->getType());
5780       unsigned TruncBitWidth = TruncVT.getSizeInBits();
5781       DemandBits.setLowBits(TruncBitWidth);
5782       break;
5783     }
5784 
5785     default:
5786       return false;
5787     }
5788   }
5789 
5790   uint32_t ActiveBits = DemandBits.getActiveBits();
5791   // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
5792   // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
5793   // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
5794   // (and (load x) 1) is not matched as a single instruction, rather as a LDR
5795   // followed by an AND.
5796   // TODO: Look into removing this restriction by fixing backends to either
5797   // return false for isLoadExtLegal for i1 or have them select this pattern to
5798   // a single instruction.
5799   //
5800   // Also avoid hoisting if we didn't see any ands with the exact DemandBits
5801   // mask, since these are the only ands that will be removed by isel.
5802   if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
5803       WidestAndBits != DemandBits)
5804     return false;
5805 
5806   LLVMContext &Ctx = Load->getType()->getContext();
5807   Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
5808   EVT TruncVT = TLI->getValueType(*DL, TruncTy);
5809 
5810   // Reject cases that won't be matched as extloads.
5811   if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
5812       !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
5813     return false;
5814 
5815   IRBuilder<> Builder(Load->getNextNode());
5816   auto *NewAnd = dyn_cast<Instruction>(
5817       Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
5818   // Mark this instruction as "inserted by CGP", so that other
5819   // optimizations don't touch it.
5820   InsertedInsts.insert(NewAnd);
5821 
5822   // Replace all uses of load with new and (except for the use of load in the
5823   // new and itself).
5824   Load->replaceAllUsesWith(NewAnd);
5825   NewAnd->setOperand(0, Load);
5826 
5827   // Remove any and instructions that are now redundant.
5828   for (auto *And : AndsToMaybeRemove)
5829     // Check that the and mask is the same as the one we decided to put on the
5830     // new and.
5831     if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
5832       And->replaceAllUsesWith(NewAnd);
5833       if (&*CurInstIterator == And)
5834         CurInstIterator = std::next(And->getIterator());
5835       And->eraseFromParent();
5836       ++NumAndUses;
5837     }
5838 
5839   ++NumAndsAdded;
5840   return true;
5841 }
5842 
5843 /// Check if V (an operand of a select instruction) is an expensive instruction
5844 /// that is only used once.
5845 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
5846   auto *I = dyn_cast<Instruction>(V);
5847   // If it's safe to speculatively execute, then it should not have side
5848   // effects; therefore, it's safe to sink and possibly *not* execute.
5849   return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
5850          TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive;
5851 }
5852 
5853 /// Returns true if a SelectInst should be turned into an explicit branch.
5854 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
5855                                                 const TargetLowering *TLI,
5856                                                 SelectInst *SI) {
5857   // If even a predictable select is cheap, then a branch can't be cheaper.
5858   if (!TLI->isPredictableSelectExpensive())
5859     return false;
5860 
5861   // FIXME: This should use the same heuristics as IfConversion to determine
5862   // whether a select is better represented as a branch.
5863 
5864   // If metadata tells us that the select condition is obviously predictable,
5865   // then we want to replace the select with a branch.
5866   uint64_t TrueWeight, FalseWeight;
5867   if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
5868     uint64_t Max = std::max(TrueWeight, FalseWeight);
5869     uint64_t Sum = TrueWeight + FalseWeight;
5870     if (Sum != 0) {
5871       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
5872       if (Probability > TLI->getPredictableBranchThreshold())
5873         return true;
5874     }
5875   }
5876 
5877   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
5878 
5879   // If a branch is predictable, an out-of-order CPU can avoid blocking on its
5880   // comparison condition. If the compare has more than one use, there's
5881   // probably another cmov or setcc around, so it's not worth emitting a branch.
5882   if (!Cmp || !Cmp->hasOneUse())
5883     return false;
5884 
5885   // If either operand of the select is expensive and only needed on one side
5886   // of the select, we should form a branch.
5887   if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
5888       sinkSelectOperand(TTI, SI->getFalseValue()))
5889     return true;
5890 
5891   return false;
5892 }
5893 
5894 /// If \p isTrue is true, return the true value of \p SI, otherwise return
5895 /// false value of \p SI. If the true/false value of \p SI is defined by any
5896 /// select instructions in \p Selects, look through the defining select
5897 /// instruction until the true/false value is not defined in \p Selects.
5898 static Value *getTrueOrFalseValue(
5899     SelectInst *SI, bool isTrue,
5900     const SmallPtrSet<const Instruction *, 2> &Selects) {
5901   Value *V = nullptr;
5902 
5903   for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
5904        DefSI = dyn_cast<SelectInst>(V)) {
5905     assert(DefSI->getCondition() == SI->getCondition() &&
5906            "The condition of DefSI does not match with SI");
5907     V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
5908   }
5909 
5910   assert(V && "Failed to get select true/false value");
5911   return V;
5912 }
5913 
5914 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) {
5915   assert(Shift->isShift() && "Expected a shift");
5916 
5917   // If this is (1) a vector shift, (2) shifts by scalars are cheaper than
5918   // general vector shifts, and (3) the shift amount is a select-of-splatted
5919   // values, hoist the shifts before the select:
5920   //   shift Op0, (select Cond, TVal, FVal) -->
5921   //   select Cond, (shift Op0, TVal), (shift Op0, FVal)
5922   //
5923   // This is inverting a generic IR transform when we know that the cost of a
5924   // general vector shift is more than the cost of 2 shift-by-scalars.
5925   // We can't do this effectively in SDAG because we may not be able to
5926   // determine if the select operands are splats from within a basic block.
5927   Type *Ty = Shift->getType();
5928   if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
5929     return false;
5930   Value *Cond, *TVal, *FVal;
5931   if (!match(Shift->getOperand(1),
5932              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
5933     return false;
5934   if (!isSplatValue(TVal) || !isSplatValue(FVal))
5935     return false;
5936 
5937   IRBuilder<> Builder(Shift);
5938   BinaryOperator::BinaryOps Opcode = Shift->getOpcode();
5939   Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal);
5940   Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal);
5941   Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
5942   Shift->replaceAllUsesWith(NewSel);
5943   Shift->eraseFromParent();
5944   return true;
5945 }
5946 
5947 /// If we have a SelectInst that will likely profit from branch prediction,
5948 /// turn it into a branch.
5949 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
5950   // If branch conversion isn't desirable, exit early.
5951   if (DisableSelectToBranch || OptSize || !TLI)
5952     return false;
5953 
5954   // Find all consecutive select instructions that share the same condition.
5955   SmallVector<SelectInst *, 2> ASI;
5956   ASI.push_back(SI);
5957   for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
5958        It != SI->getParent()->end(); ++It) {
5959     SelectInst *I = dyn_cast<SelectInst>(&*It);
5960     if (I && SI->getCondition() == I->getCondition()) {
5961       ASI.push_back(I);
5962     } else {
5963       break;
5964     }
5965   }
5966 
5967   SelectInst *LastSI = ASI.back();
5968   // Increment the current iterator to skip all the rest of select instructions
5969   // because they will be either "not lowered" or "all lowered" to branch.
5970   CurInstIterator = std::next(LastSI->getIterator());
5971 
5972   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
5973 
5974   // Can we convert the 'select' to CF ?
5975   if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable))
5976     return false;
5977 
5978   TargetLowering::SelectSupportKind SelectKind;
5979   if (VectorCond)
5980     SelectKind = TargetLowering::VectorMaskSelect;
5981   else if (SI->getType()->isVectorTy())
5982     SelectKind = TargetLowering::ScalarCondVectorVal;
5983   else
5984     SelectKind = TargetLowering::ScalarValSelect;
5985 
5986   if (TLI->isSelectSupported(SelectKind) &&
5987       !isFormingBranchFromSelectProfitable(TTI, TLI, SI))
5988     return false;
5989 
5990   // The DominatorTree needs to be rebuilt by any consumers after this
5991   // transformation. We simply reset here rather than setting the ModifiedDT
5992   // flag to avoid restarting the function walk in runOnFunction for each
5993   // select optimized.
5994   DT.reset();
5995 
5996   // Transform a sequence like this:
5997   //    start:
5998   //       %cmp = cmp uge i32 %a, %b
5999   //       %sel = select i1 %cmp, i32 %c, i32 %d
6000   //
6001   // Into:
6002   //    start:
6003   //       %cmp = cmp uge i32 %a, %b
6004   //       br i1 %cmp, label %select.true, label %select.false
6005   //    select.true:
6006   //       br label %select.end
6007   //    select.false:
6008   //       br label %select.end
6009   //    select.end:
6010   //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
6011   //
6012   // In addition, we may sink instructions that produce %c or %d from
6013   // the entry block into the destination(s) of the new branch.
6014   // If the true or false blocks do not contain a sunken instruction, that
6015   // block and its branch may be optimized away. In that case, one side of the
6016   // first branch will point directly to select.end, and the corresponding PHI
6017   // predecessor block will be the start block.
6018 
6019   // First, we split the block containing the select into 2 blocks.
6020   BasicBlock *StartBlock = SI->getParent();
6021   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
6022   BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
6023 
6024   // Delete the unconditional branch that was just created by the split.
6025   StartBlock->getTerminator()->eraseFromParent();
6026 
6027   // These are the new basic blocks for the conditional branch.
6028   // At least one will become an actual new basic block.
6029   BasicBlock *TrueBlock = nullptr;
6030   BasicBlock *FalseBlock = nullptr;
6031   BranchInst *TrueBranch = nullptr;
6032   BranchInst *FalseBranch = nullptr;
6033 
6034   // Sink expensive instructions into the conditional blocks to avoid executing
6035   // them speculatively.
6036   for (SelectInst *SI : ASI) {
6037     if (sinkSelectOperand(TTI, SI->getTrueValue())) {
6038       if (TrueBlock == nullptr) {
6039         TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
6040                                        EndBlock->getParent(), EndBlock);
6041         TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
6042         TrueBranch->setDebugLoc(SI->getDebugLoc());
6043       }
6044       auto *TrueInst = cast<Instruction>(SI->getTrueValue());
6045       TrueInst->moveBefore(TrueBranch);
6046     }
6047     if (sinkSelectOperand(TTI, SI->getFalseValue())) {
6048       if (FalseBlock == nullptr) {
6049         FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
6050                                         EndBlock->getParent(), EndBlock);
6051         FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6052         FalseBranch->setDebugLoc(SI->getDebugLoc());
6053       }
6054       auto *FalseInst = cast<Instruction>(SI->getFalseValue());
6055       FalseInst->moveBefore(FalseBranch);
6056     }
6057   }
6058 
6059   // If there was nothing to sink, then arbitrarily choose the 'false' side
6060   // for a new input value to the PHI.
6061   if (TrueBlock == FalseBlock) {
6062     assert(TrueBlock == nullptr &&
6063            "Unexpected basic block transform while optimizing select");
6064 
6065     FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
6066                                     EndBlock->getParent(), EndBlock);
6067     auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6068     FalseBranch->setDebugLoc(SI->getDebugLoc());
6069   }
6070 
6071   // Insert the real conditional branch based on the original condition.
6072   // If we did not create a new block for one of the 'true' or 'false' paths
6073   // of the condition, it means that side of the branch goes to the end block
6074   // directly and the path originates from the start block from the point of
6075   // view of the new PHI.
6076   BasicBlock *TT, *FT;
6077   if (TrueBlock == nullptr) {
6078     TT = EndBlock;
6079     FT = FalseBlock;
6080     TrueBlock = StartBlock;
6081   } else if (FalseBlock == nullptr) {
6082     TT = TrueBlock;
6083     FT = EndBlock;
6084     FalseBlock = StartBlock;
6085   } else {
6086     TT = TrueBlock;
6087     FT = FalseBlock;
6088   }
6089   IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI);
6090 
6091   SmallPtrSet<const Instruction *, 2> INS;
6092   INS.insert(ASI.begin(), ASI.end());
6093   // Use reverse iterator because later select may use the value of the
6094   // earlier select, and we need to propagate value through earlier select
6095   // to get the PHI operand.
6096   for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
6097     SelectInst *SI = *It;
6098     // The select itself is replaced with a PHI Node.
6099     PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
6100     PN->takeName(SI);
6101     PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
6102     PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
6103     PN->setDebugLoc(SI->getDebugLoc());
6104 
6105     SI->replaceAllUsesWith(PN);
6106     SI->eraseFromParent();
6107     INS.erase(SI);
6108     ++NumSelectsExpanded;
6109   }
6110 
6111   // Instruct OptimizeBlock to skip to the next block.
6112   CurInstIterator = StartBlock->end();
6113   return true;
6114 }
6115 
6116 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
6117   SmallVector<int, 16> Mask(SVI->getShuffleMask());
6118   int SplatElem = -1;
6119   for (unsigned i = 0; i < Mask.size(); ++i) {
6120     if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
6121       return false;
6122     SplatElem = Mask[i];
6123   }
6124 
6125   return true;
6126 }
6127 
6128 /// Some targets have expensive vector shifts if the lanes aren't all the same
6129 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
6130 /// it's often worth sinking a shufflevector splat down to its use so that
6131 /// codegen can spot all lanes are identical.
6132 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
6133   BasicBlock *DefBB = SVI->getParent();
6134 
6135   // Only do this xform if variable vector shifts are particularly expensive.
6136   if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
6137     return false;
6138 
6139   // We only expect better codegen by sinking a shuffle if we can recognise a
6140   // constant splat.
6141   if (!isBroadcastShuffle(SVI))
6142     return false;
6143 
6144   // InsertedShuffles - Only insert a shuffle in each block once.
6145   DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
6146 
6147   bool MadeChange = false;
6148   for (User *U : SVI->users()) {
6149     Instruction *UI = cast<Instruction>(U);
6150 
6151     // Figure out which BB this ext is used in.
6152     BasicBlock *UserBB = UI->getParent();
6153     if (UserBB == DefBB) continue;
6154 
6155     // For now only apply this when the splat is used by a shift instruction.
6156     if (!UI->isShift()) continue;
6157 
6158     // Everything checks out, sink the shuffle if the user's block doesn't
6159     // already have a copy.
6160     Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
6161 
6162     if (!InsertedShuffle) {
6163       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
6164       assert(InsertPt != UserBB->end());
6165       InsertedShuffle =
6166           new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
6167                                 SVI->getOperand(2), "", &*InsertPt);
6168       InsertedShuffle->setDebugLoc(SVI->getDebugLoc());
6169     }
6170 
6171     UI->replaceUsesOfWith(SVI, InsertedShuffle);
6172     MadeChange = true;
6173   }
6174 
6175   // If we removed all uses, nuke the shuffle.
6176   if (SVI->use_empty()) {
6177     SVI->eraseFromParent();
6178     MadeChange = true;
6179   }
6180 
6181   return MadeChange;
6182 }
6183 
6184 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) {
6185   // If the operands of I can be folded into a target instruction together with
6186   // I, duplicate and sink them.
6187   SmallVector<Use *, 4> OpsToSink;
6188   if (!TLI || !TLI->shouldSinkOperands(I, OpsToSink))
6189     return false;
6190 
6191   // OpsToSink can contain multiple uses in a use chain (e.g.
6192   // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
6193   // uses must come first, which means they are sunk first, temporarily creating
6194   // invalid IR. This will be fixed once their dominated users are sunk and
6195   // updated.
6196   BasicBlock *TargetBB = I->getParent();
6197   bool Changed = false;
6198   SmallVector<Use *, 4> ToReplace;
6199   for (Use *U : OpsToSink) {
6200     auto *UI = cast<Instruction>(U->get());
6201     if (UI->getParent() == TargetBB || isa<PHINode>(UI))
6202       continue;
6203     ToReplace.push_back(U);
6204   }
6205 
6206   SmallPtrSet<Instruction *, 4> MaybeDead;
6207   for (Use *U : ToReplace) {
6208     auto *UI = cast<Instruction>(U->get());
6209     Instruction *NI = UI->clone();
6210     MaybeDead.insert(UI);
6211     LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n");
6212     NI->insertBefore(I);
6213     InsertedInsts.insert(NI);
6214     U->set(NI);
6215     Changed = true;
6216   }
6217 
6218   // Remove instructions that are dead after sinking.
6219   for (auto *I : MaybeDead)
6220     if (!I->hasNUsesOrMore(1))
6221       I->eraseFromParent();
6222 
6223   return Changed;
6224 }
6225 
6226 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
6227   if (!TLI || !DL)
6228     return false;
6229 
6230   Value *Cond = SI->getCondition();
6231   Type *OldType = Cond->getType();
6232   LLVMContext &Context = Cond->getContext();
6233   MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
6234   unsigned RegWidth = RegType.getSizeInBits();
6235 
6236   if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
6237     return false;
6238 
6239   // If the register width is greater than the type width, expand the condition
6240   // of the switch instruction and each case constant to the width of the
6241   // register. By widening the type of the switch condition, subsequent
6242   // comparisons (for case comparisons) will not need to be extended to the
6243   // preferred register width, so we will potentially eliminate N-1 extends,
6244   // where N is the number of cases in the switch.
6245   auto *NewType = Type::getIntNTy(Context, RegWidth);
6246 
6247   // Zero-extend the switch condition and case constants unless the switch
6248   // condition is a function argument that is already being sign-extended.
6249   // In that case, we can avoid an unnecessary mask/extension by sign-extending
6250   // everything instead.
6251   Instruction::CastOps ExtType = Instruction::ZExt;
6252   if (auto *Arg = dyn_cast<Argument>(Cond))
6253     if (Arg->hasSExtAttr())
6254       ExtType = Instruction::SExt;
6255 
6256   auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
6257   ExtInst->insertBefore(SI);
6258   ExtInst->setDebugLoc(SI->getDebugLoc());
6259   SI->setCondition(ExtInst);
6260   for (auto Case : SI->cases()) {
6261     APInt NarrowConst = Case.getCaseValue()->getValue();
6262     APInt WideConst = (ExtType == Instruction::ZExt) ?
6263                       NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
6264     Case.setValue(ConstantInt::get(Context, WideConst));
6265   }
6266 
6267   return true;
6268 }
6269 
6270 
6271 namespace {
6272 
6273 /// Helper class to promote a scalar operation to a vector one.
6274 /// This class is used to move downward extractelement transition.
6275 /// E.g.,
6276 /// a = vector_op <2 x i32>
6277 /// b = extractelement <2 x i32> a, i32 0
6278 /// c = scalar_op b
6279 /// store c
6280 ///
6281 /// =>
6282 /// a = vector_op <2 x i32>
6283 /// c = vector_op a (equivalent to scalar_op on the related lane)
6284 /// * d = extractelement <2 x i32> c, i32 0
6285 /// * store d
6286 /// Assuming both extractelement and store can be combine, we get rid of the
6287 /// transition.
6288 class VectorPromoteHelper {
6289   /// DataLayout associated with the current module.
6290   const DataLayout &DL;
6291 
6292   /// Used to perform some checks on the legality of vector operations.
6293   const TargetLowering &TLI;
6294 
6295   /// Used to estimated the cost of the promoted chain.
6296   const TargetTransformInfo &TTI;
6297 
6298   /// The transition being moved downwards.
6299   Instruction *Transition;
6300 
6301   /// The sequence of instructions to be promoted.
6302   SmallVector<Instruction *, 4> InstsToBePromoted;
6303 
6304   /// Cost of combining a store and an extract.
6305   unsigned StoreExtractCombineCost;
6306 
6307   /// Instruction that will be combined with the transition.
6308   Instruction *CombineInst = nullptr;
6309 
6310   /// The instruction that represents the current end of the transition.
6311   /// Since we are faking the promotion until we reach the end of the chain
6312   /// of computation, we need a way to get the current end of the transition.
6313   Instruction *getEndOfTransition() const {
6314     if (InstsToBePromoted.empty())
6315       return Transition;
6316     return InstsToBePromoted.back();
6317   }
6318 
6319   /// Return the index of the original value in the transition.
6320   /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
6321   /// c, is at index 0.
6322   unsigned getTransitionOriginalValueIdx() const {
6323     assert(isa<ExtractElementInst>(Transition) &&
6324            "Other kind of transitions are not supported yet");
6325     return 0;
6326   }
6327 
6328   /// Return the index of the index in the transition.
6329   /// E.g., for "extractelement <2 x i32> c, i32 0" the index
6330   /// is at index 1.
6331   unsigned getTransitionIdx() const {
6332     assert(isa<ExtractElementInst>(Transition) &&
6333            "Other kind of transitions are not supported yet");
6334     return 1;
6335   }
6336 
6337   /// Get the type of the transition.
6338   /// This is the type of the original value.
6339   /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
6340   /// transition is <2 x i32>.
6341   Type *getTransitionType() const {
6342     return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
6343   }
6344 
6345   /// Promote \p ToBePromoted by moving \p Def downward through.
6346   /// I.e., we have the following sequence:
6347   /// Def = Transition <ty1> a to <ty2>
6348   /// b = ToBePromoted <ty2> Def, ...
6349   /// =>
6350   /// b = ToBePromoted <ty1> a, ...
6351   /// Def = Transition <ty1> ToBePromoted to <ty2>
6352   void promoteImpl(Instruction *ToBePromoted);
6353 
6354   /// Check whether or not it is profitable to promote all the
6355   /// instructions enqueued to be promoted.
6356   bool isProfitableToPromote() {
6357     Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
6358     unsigned Index = isa<ConstantInt>(ValIdx)
6359                          ? cast<ConstantInt>(ValIdx)->getZExtValue()
6360                          : -1;
6361     Type *PromotedType = getTransitionType();
6362 
6363     StoreInst *ST = cast<StoreInst>(CombineInst);
6364     unsigned AS = ST->getPointerAddressSpace();
6365     unsigned Align = ST->getAlignment();
6366     // Check if this store is supported.
6367     if (!TLI.allowsMisalignedMemoryAccesses(
6368             TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
6369             Align)) {
6370       // If this is not supported, there is no way we can combine
6371       // the extract with the store.
6372       return false;
6373     }
6374 
6375     // The scalar chain of computation has to pay for the transition
6376     // scalar to vector.
6377     // The vector chain has to account for the combining cost.
6378     uint64_t ScalarCost =
6379         TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
6380     uint64_t VectorCost = StoreExtractCombineCost;
6381     for (const auto &Inst : InstsToBePromoted) {
6382       // Compute the cost.
6383       // By construction, all instructions being promoted are arithmetic ones.
6384       // Moreover, one argument is a constant that can be viewed as a splat
6385       // constant.
6386       Value *Arg0 = Inst->getOperand(0);
6387       bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
6388                             isa<ConstantFP>(Arg0);
6389       TargetTransformInfo::OperandValueKind Arg0OVK =
6390           IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6391                          : TargetTransformInfo::OK_AnyValue;
6392       TargetTransformInfo::OperandValueKind Arg1OVK =
6393           !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6394                           : TargetTransformInfo::OK_AnyValue;
6395       ScalarCost += TTI.getArithmeticInstrCost(
6396           Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
6397       VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
6398                                                Arg0OVK, Arg1OVK);
6399     }
6400     LLVM_DEBUG(
6401         dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
6402                << ScalarCost << "\nVector: " << VectorCost << '\n');
6403     return ScalarCost > VectorCost;
6404   }
6405 
6406   /// Generate a constant vector with \p Val with the same
6407   /// number of elements as the transition.
6408   /// \p UseSplat defines whether or not \p Val should be replicated
6409   /// across the whole vector.
6410   /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
6411   /// otherwise we generate a vector with as many undef as possible:
6412   /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
6413   /// used at the index of the extract.
6414   Value *getConstantVector(Constant *Val, bool UseSplat) const {
6415     unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
6416     if (!UseSplat) {
6417       // If we cannot determine where the constant must be, we have to
6418       // use a splat constant.
6419       Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
6420       if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
6421         ExtractIdx = CstVal->getSExtValue();
6422       else
6423         UseSplat = true;
6424     }
6425 
6426     unsigned End = getTransitionType()->getVectorNumElements();
6427     if (UseSplat)
6428       return ConstantVector::getSplat(End, Val);
6429 
6430     SmallVector<Constant *, 4> ConstVec;
6431     UndefValue *UndefVal = UndefValue::get(Val->getType());
6432     for (unsigned Idx = 0; Idx != End; ++Idx) {
6433       if (Idx == ExtractIdx)
6434         ConstVec.push_back(Val);
6435       else
6436         ConstVec.push_back(UndefVal);
6437     }
6438     return ConstantVector::get(ConstVec);
6439   }
6440 
6441   /// Check if promoting to a vector type an operand at \p OperandIdx
6442   /// in \p Use can trigger undefined behavior.
6443   static bool canCauseUndefinedBehavior(const Instruction *Use,
6444                                         unsigned OperandIdx) {
6445     // This is not safe to introduce undef when the operand is on
6446     // the right hand side of a division-like instruction.
6447     if (OperandIdx != 1)
6448       return false;
6449     switch (Use->getOpcode()) {
6450     default:
6451       return false;
6452     case Instruction::SDiv:
6453     case Instruction::UDiv:
6454     case Instruction::SRem:
6455     case Instruction::URem:
6456       return true;
6457     case Instruction::FDiv:
6458     case Instruction::FRem:
6459       return !Use->hasNoNaNs();
6460     }
6461     llvm_unreachable(nullptr);
6462   }
6463 
6464 public:
6465   VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
6466                       const TargetTransformInfo &TTI, Instruction *Transition,
6467                       unsigned CombineCost)
6468       : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
6469         StoreExtractCombineCost(CombineCost) {
6470     assert(Transition && "Do not know how to promote null");
6471   }
6472 
6473   /// Check if we can promote \p ToBePromoted to \p Type.
6474   bool canPromote(const Instruction *ToBePromoted) const {
6475     // We could support CastInst too.
6476     return isa<BinaryOperator>(ToBePromoted);
6477   }
6478 
6479   /// Check if it is profitable to promote \p ToBePromoted
6480   /// by moving downward the transition through.
6481   bool shouldPromote(const Instruction *ToBePromoted) const {
6482     // Promote only if all the operands can be statically expanded.
6483     // Indeed, we do not want to introduce any new kind of transitions.
6484     for (const Use &U : ToBePromoted->operands()) {
6485       const Value *Val = U.get();
6486       if (Val == getEndOfTransition()) {
6487         // If the use is a division and the transition is on the rhs,
6488         // we cannot promote the operation, otherwise we may create a
6489         // division by zero.
6490         if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
6491           return false;
6492         continue;
6493       }
6494       if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
6495           !isa<ConstantFP>(Val))
6496         return false;
6497     }
6498     // Check that the resulting operation is legal.
6499     int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
6500     if (!ISDOpcode)
6501       return false;
6502     return StressStoreExtract ||
6503            TLI.isOperationLegalOrCustom(
6504                ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
6505   }
6506 
6507   /// Check whether or not \p Use can be combined
6508   /// with the transition.
6509   /// I.e., is it possible to do Use(Transition) => AnotherUse?
6510   bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
6511 
6512   /// Record \p ToBePromoted as part of the chain to be promoted.
6513   void enqueueForPromotion(Instruction *ToBePromoted) {
6514     InstsToBePromoted.push_back(ToBePromoted);
6515   }
6516 
6517   /// Set the instruction that will be combined with the transition.
6518   void recordCombineInstruction(Instruction *ToBeCombined) {
6519     assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
6520     CombineInst = ToBeCombined;
6521   }
6522 
6523   /// Promote all the instructions enqueued for promotion if it is
6524   /// is profitable.
6525   /// \return True if the promotion happened, false otherwise.
6526   bool promote() {
6527     // Check if there is something to promote.
6528     // Right now, if we do not have anything to combine with,
6529     // we assume the promotion is not profitable.
6530     if (InstsToBePromoted.empty() || !CombineInst)
6531       return false;
6532 
6533     // Check cost.
6534     if (!StressStoreExtract && !isProfitableToPromote())
6535       return false;
6536 
6537     // Promote.
6538     for (auto &ToBePromoted : InstsToBePromoted)
6539       promoteImpl(ToBePromoted);
6540     InstsToBePromoted.clear();
6541     return true;
6542   }
6543 };
6544 
6545 } // end anonymous namespace
6546 
6547 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
6548   // At this point, we know that all the operands of ToBePromoted but Def
6549   // can be statically promoted.
6550   // For Def, we need to use its parameter in ToBePromoted:
6551   // b = ToBePromoted ty1 a
6552   // Def = Transition ty1 b to ty2
6553   // Move the transition down.
6554   // 1. Replace all uses of the promoted operation by the transition.
6555   // = ... b => = ... Def.
6556   assert(ToBePromoted->getType() == Transition->getType() &&
6557          "The type of the result of the transition does not match "
6558          "the final type");
6559   ToBePromoted->replaceAllUsesWith(Transition);
6560   // 2. Update the type of the uses.
6561   // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
6562   Type *TransitionTy = getTransitionType();
6563   ToBePromoted->mutateType(TransitionTy);
6564   // 3. Update all the operands of the promoted operation with promoted
6565   // operands.
6566   // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
6567   for (Use &U : ToBePromoted->operands()) {
6568     Value *Val = U.get();
6569     Value *NewVal = nullptr;
6570     if (Val == Transition)
6571       NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
6572     else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
6573              isa<ConstantFP>(Val)) {
6574       // Use a splat constant if it is not safe to use undef.
6575       NewVal = getConstantVector(
6576           cast<Constant>(Val),
6577           isa<UndefValue>(Val) ||
6578               canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
6579     } else
6580       llvm_unreachable("Did you modified shouldPromote and forgot to update "
6581                        "this?");
6582     ToBePromoted->setOperand(U.getOperandNo(), NewVal);
6583   }
6584   Transition->moveAfter(ToBePromoted);
6585   Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
6586 }
6587 
6588 /// Some targets can do store(extractelement) with one instruction.
6589 /// Try to push the extractelement towards the stores when the target
6590 /// has this feature and this is profitable.
6591 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
6592   unsigned CombineCost = std::numeric_limits<unsigned>::max();
6593   if (DisableStoreExtract || !TLI ||
6594       (!StressStoreExtract &&
6595        !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
6596                                        Inst->getOperand(1), CombineCost)))
6597     return false;
6598 
6599   // At this point we know that Inst is a vector to scalar transition.
6600   // Try to move it down the def-use chain, until:
6601   // - We can combine the transition with its single use
6602   //   => we got rid of the transition.
6603   // - We escape the current basic block
6604   //   => we would need to check that we are moving it at a cheaper place and
6605   //      we do not do that for now.
6606   BasicBlock *Parent = Inst->getParent();
6607   LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
6608   VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
6609   // If the transition has more than one use, assume this is not going to be
6610   // beneficial.
6611   while (Inst->hasOneUse()) {
6612     Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
6613     LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
6614 
6615     if (ToBePromoted->getParent() != Parent) {
6616       LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
6617                         << ToBePromoted->getParent()->getName()
6618                         << ") than the transition (" << Parent->getName()
6619                         << ").\n");
6620       return false;
6621     }
6622 
6623     if (VPH.canCombine(ToBePromoted)) {
6624       LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
6625                         << "will be combined with: " << *ToBePromoted << '\n');
6626       VPH.recordCombineInstruction(ToBePromoted);
6627       bool Changed = VPH.promote();
6628       NumStoreExtractExposed += Changed;
6629       return Changed;
6630     }
6631 
6632     LLVM_DEBUG(dbgs() << "Try promoting.\n");
6633     if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
6634       return false;
6635 
6636     LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
6637 
6638     VPH.enqueueForPromotion(ToBePromoted);
6639     Inst = ToBePromoted;
6640   }
6641   return false;
6642 }
6643 
6644 /// For the instruction sequence of store below, F and I values
6645 /// are bundled together as an i64 value before being stored into memory.
6646 /// Sometimes it is more efficient to generate separate stores for F and I,
6647 /// which can remove the bitwise instructions or sink them to colder places.
6648 ///
6649 ///   (store (or (zext (bitcast F to i32) to i64),
6650 ///              (shl (zext I to i64), 32)), addr)  -->
6651 ///   (store F, addr) and (store I, addr+4)
6652 ///
6653 /// Similarly, splitting for other merged store can also be beneficial, like:
6654 /// For pair of {i32, i32}, i64 store --> two i32 stores.
6655 /// For pair of {i32, i16}, i64 store --> two i32 stores.
6656 /// For pair of {i16, i16}, i32 store --> two i16 stores.
6657 /// For pair of {i16, i8},  i32 store --> two i16 stores.
6658 /// For pair of {i8, i8},   i16 store --> two i8 stores.
6659 ///
6660 /// We allow each target to determine specifically which kind of splitting is
6661 /// supported.
6662 ///
6663 /// The store patterns are commonly seen from the simple code snippet below
6664 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
6665 ///   void goo(const std::pair<int, float> &);
6666 ///   hoo() {
6667 ///     ...
6668 ///     goo(std::make_pair(tmp, ftmp));
6669 ///     ...
6670 ///   }
6671 ///
6672 /// Although we already have similar splitting in DAG Combine, we duplicate
6673 /// it in CodeGenPrepare to catch the case in which pattern is across
6674 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
6675 /// during code expansion.
6676 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
6677                                 const TargetLowering &TLI) {
6678   // Handle simple but common cases only.
6679   Type *StoreType = SI.getValueOperand()->getType();
6680   if (!DL.typeSizeEqualsStoreSize(StoreType) ||
6681       DL.getTypeSizeInBits(StoreType) == 0)
6682     return false;
6683 
6684   unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
6685   Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
6686   if (!DL.typeSizeEqualsStoreSize(SplitStoreType))
6687     return false;
6688 
6689   // Don't split the store if it is volatile.
6690   if (SI.isVolatile())
6691     return false;
6692 
6693   // Match the following patterns:
6694   // (store (or (zext LValue to i64),
6695   //            (shl (zext HValue to i64), 32)), HalfValBitSize)
6696   //  or
6697   // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
6698   //            (zext LValue to i64),
6699   // Expect both operands of OR and the first operand of SHL have only
6700   // one use.
6701   Value *LValue, *HValue;
6702   if (!match(SI.getValueOperand(),
6703              m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
6704                     m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
6705                                    m_SpecificInt(HalfValBitSize))))))
6706     return false;
6707 
6708   // Check LValue and HValue are int with size less or equal than 32.
6709   if (!LValue->getType()->isIntegerTy() ||
6710       DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
6711       !HValue->getType()->isIntegerTy() ||
6712       DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
6713     return false;
6714 
6715   // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
6716   // as the input of target query.
6717   auto *LBC = dyn_cast<BitCastInst>(LValue);
6718   auto *HBC = dyn_cast<BitCastInst>(HValue);
6719   EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
6720                   : EVT::getEVT(LValue->getType());
6721   EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
6722                    : EVT::getEVT(HValue->getType());
6723   if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
6724     return false;
6725 
6726   // Start to split store.
6727   IRBuilder<> Builder(SI.getContext());
6728   Builder.SetInsertPoint(&SI);
6729 
6730   // If LValue/HValue is a bitcast in another BB, create a new one in current
6731   // BB so it may be merged with the splitted stores by dag combiner.
6732   if (LBC && LBC->getParent() != SI.getParent())
6733     LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
6734   if (HBC && HBC->getParent() != SI.getParent())
6735     HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
6736 
6737   bool IsLE = SI.getModule()->getDataLayout().isLittleEndian();
6738   auto CreateSplitStore = [&](Value *V, bool Upper) {
6739     V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
6740     Value *Addr = Builder.CreateBitCast(
6741         SI.getOperand(1),
6742         SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
6743     if ((IsLE && Upper) || (!IsLE && !Upper))
6744       Addr = Builder.CreateGEP(
6745           SplitStoreType, Addr,
6746           ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
6747     Builder.CreateAlignedStore(
6748         V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment());
6749   };
6750 
6751   CreateSplitStore(LValue, false);
6752   CreateSplitStore(HValue, true);
6753 
6754   // Delete the old store.
6755   SI.eraseFromParent();
6756   return true;
6757 }
6758 
6759 // Return true if the GEP has two operands, the first operand is of a sequential
6760 // type, and the second operand is a constant.
6761 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
6762   gep_type_iterator I = gep_type_begin(*GEP);
6763   return GEP->getNumOperands() == 2 &&
6764       I.isSequential() &&
6765       isa<ConstantInt>(GEP->getOperand(1));
6766 }
6767 
6768 // Try unmerging GEPs to reduce liveness interference (register pressure) across
6769 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
6770 // reducing liveness interference across those edges benefits global register
6771 // allocation. Currently handles only certain cases.
6772 //
6773 // For example, unmerge %GEPI and %UGEPI as below.
6774 //
6775 // ---------- BEFORE ----------
6776 // SrcBlock:
6777 //   ...
6778 //   %GEPIOp = ...
6779 //   ...
6780 //   %GEPI = gep %GEPIOp, Idx
6781 //   ...
6782 //   indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
6783 //   (* %GEPI is alive on the indirectbr edges due to other uses ahead)
6784 //   (* %GEPIOp is alive on the indirectbr edges only because of it's used by
6785 //   %UGEPI)
6786 //
6787 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
6788 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
6789 // ...
6790 //
6791 // DstBi:
6792 //   ...
6793 //   %UGEPI = gep %GEPIOp, UIdx
6794 // ...
6795 // ---------------------------
6796 //
6797 // ---------- AFTER ----------
6798 // SrcBlock:
6799 //   ... (same as above)
6800 //    (* %GEPI is still alive on the indirectbr edges)
6801 //    (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
6802 //    unmerging)
6803 // ...
6804 //
6805 // DstBi:
6806 //   ...
6807 //   %UGEPI = gep %GEPI, (UIdx-Idx)
6808 //   ...
6809 // ---------------------------
6810 //
6811 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
6812 // no longer alive on them.
6813 //
6814 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
6815 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
6816 // not to disable further simplications and optimizations as a result of GEP
6817 // merging.
6818 //
6819 // Note this unmerging may increase the length of the data flow critical path
6820 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
6821 // between the register pressure and the length of data-flow critical
6822 // path. Restricting this to the uncommon IndirectBr case would minimize the
6823 // impact of potentially longer critical path, if any, and the impact on compile
6824 // time.
6825 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
6826                                              const TargetTransformInfo *TTI) {
6827   BasicBlock *SrcBlock = GEPI->getParent();
6828   // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
6829   // (non-IndirectBr) cases exit early here.
6830   if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
6831     return false;
6832   // Check that GEPI is a simple gep with a single constant index.
6833   if (!GEPSequentialConstIndexed(GEPI))
6834     return false;
6835   ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
6836   // Check that GEPI is a cheap one.
6837   if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType())
6838       > TargetTransformInfo::TCC_Basic)
6839     return false;
6840   Value *GEPIOp = GEPI->getOperand(0);
6841   // Check that GEPIOp is an instruction that's also defined in SrcBlock.
6842   if (!isa<Instruction>(GEPIOp))
6843     return false;
6844   auto *GEPIOpI = cast<Instruction>(GEPIOp);
6845   if (GEPIOpI->getParent() != SrcBlock)
6846     return false;
6847   // Check that GEP is used outside the block, meaning it's alive on the
6848   // IndirectBr edge(s).
6849   if (find_if(GEPI->users(), [&](User *Usr) {
6850         if (auto *I = dyn_cast<Instruction>(Usr)) {
6851           if (I->getParent() != SrcBlock) {
6852             return true;
6853           }
6854         }
6855         return false;
6856       }) == GEPI->users().end())
6857     return false;
6858   // The second elements of the GEP chains to be unmerged.
6859   std::vector<GetElementPtrInst *> UGEPIs;
6860   // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
6861   // on IndirectBr edges.
6862   for (User *Usr : GEPIOp->users()) {
6863     if (Usr == GEPI) continue;
6864     // Check if Usr is an Instruction. If not, give up.
6865     if (!isa<Instruction>(Usr))
6866       return false;
6867     auto *UI = cast<Instruction>(Usr);
6868     // Check if Usr in the same block as GEPIOp, which is fine, skip.
6869     if (UI->getParent() == SrcBlock)
6870       continue;
6871     // Check if Usr is a GEP. If not, give up.
6872     if (!isa<GetElementPtrInst>(Usr))
6873       return false;
6874     auto *UGEPI = cast<GetElementPtrInst>(Usr);
6875     // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
6876     // the pointer operand to it. If so, record it in the vector. If not, give
6877     // up.
6878     if (!GEPSequentialConstIndexed(UGEPI))
6879       return false;
6880     if (UGEPI->getOperand(0) != GEPIOp)
6881       return false;
6882     if (GEPIIdx->getType() !=
6883         cast<ConstantInt>(UGEPI->getOperand(1))->getType())
6884       return false;
6885     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6886     if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType())
6887         > TargetTransformInfo::TCC_Basic)
6888       return false;
6889     UGEPIs.push_back(UGEPI);
6890   }
6891   if (UGEPIs.size() == 0)
6892     return false;
6893   // Check the materializing cost of (Uidx-Idx).
6894   for (GetElementPtrInst *UGEPI : UGEPIs) {
6895     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6896     APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
6897     unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType());
6898     if (ImmCost > TargetTransformInfo::TCC_Basic)
6899       return false;
6900   }
6901   // Now unmerge between GEPI and UGEPIs.
6902   for (GetElementPtrInst *UGEPI : UGEPIs) {
6903     UGEPI->setOperand(0, GEPI);
6904     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6905     Constant *NewUGEPIIdx =
6906         ConstantInt::get(GEPIIdx->getType(),
6907                          UGEPIIdx->getValue() - GEPIIdx->getValue());
6908     UGEPI->setOperand(1, NewUGEPIIdx);
6909     // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
6910     // inbounds to avoid UB.
6911     if (!GEPI->isInBounds()) {
6912       UGEPI->setIsInBounds(false);
6913     }
6914   }
6915   // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
6916   // alive on IndirectBr edges).
6917   assert(find_if(GEPIOp->users(), [&](User *Usr) {
6918         return cast<Instruction>(Usr)->getParent() != SrcBlock;
6919       }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock");
6920   return true;
6921 }
6922 
6923 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) {
6924   // Bail out if we inserted the instruction to prevent optimizations from
6925   // stepping on each other's toes.
6926   if (InsertedInsts.count(I))
6927     return false;
6928 
6929   // TODO: Move into the switch on opcode below here.
6930   if (PHINode *P = dyn_cast<PHINode>(I)) {
6931     // It is possible for very late stage optimizations (such as SimplifyCFG)
6932     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
6933     // trivial PHI, go ahead and zap it here.
6934     if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
6935       LargeOffsetGEPMap.erase(P);
6936       P->replaceAllUsesWith(V);
6937       P->eraseFromParent();
6938       ++NumPHIsElim;
6939       return true;
6940     }
6941     return false;
6942   }
6943 
6944   if (CastInst *CI = dyn_cast<CastInst>(I)) {
6945     // If the source of the cast is a constant, then this should have
6946     // already been constant folded.  The only reason NOT to constant fold
6947     // it is if something (e.g. LSR) was careful to place the constant
6948     // evaluation in a block other than then one that uses it (e.g. to hoist
6949     // the address of globals out of a loop).  If this is the case, we don't
6950     // want to forward-subst the cast.
6951     if (isa<Constant>(CI->getOperand(0)))
6952       return false;
6953 
6954     if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL))
6955       return true;
6956 
6957     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
6958       /// Sink a zext or sext into its user blocks if the target type doesn't
6959       /// fit in one register
6960       if (TLI &&
6961           TLI->getTypeAction(CI->getContext(),
6962                              TLI->getValueType(*DL, CI->getType())) ==
6963               TargetLowering::TypeExpandInteger) {
6964         return SinkCast(CI);
6965       } else {
6966         bool MadeChange = optimizeExt(I);
6967         return MadeChange | optimizeExtUses(I);
6968       }
6969     }
6970     return false;
6971   }
6972 
6973   if (auto *Cmp = dyn_cast<CmpInst>(I))
6974     if (TLI && optimizeCmp(Cmp, ModifiedDT))
6975       return true;
6976 
6977   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6978     LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6979     if (TLI) {
6980       bool Modified = optimizeLoadExt(LI);
6981       unsigned AS = LI->getPointerAddressSpace();
6982       Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
6983       return Modified;
6984     }
6985     return false;
6986   }
6987 
6988   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
6989     if (TLI && splitMergedValStore(*SI, *DL, *TLI))
6990       return true;
6991     SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6992     if (TLI) {
6993       unsigned AS = SI->getPointerAddressSpace();
6994       return optimizeMemoryInst(I, SI->getOperand(1),
6995                                 SI->getOperand(0)->getType(), AS);
6996     }
6997     return false;
6998   }
6999 
7000   if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
7001       unsigned AS = RMW->getPointerAddressSpace();
7002       return optimizeMemoryInst(I, RMW->getPointerOperand(),
7003                                 RMW->getType(), AS);
7004   }
7005 
7006   if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
7007       unsigned AS = CmpX->getPointerAddressSpace();
7008       return optimizeMemoryInst(I, CmpX->getPointerOperand(),
7009                                 CmpX->getCompareOperand()->getType(), AS);
7010   }
7011 
7012   BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
7013 
7014   if (BinOp && (BinOp->getOpcode() == Instruction::And) &&
7015       EnableAndCmpSinking && TLI)
7016     return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts);
7017 
7018   // TODO: Move this into the switch on opcode - it handles shifts already.
7019   if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
7020                 BinOp->getOpcode() == Instruction::LShr)) {
7021     ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
7022     if (TLI && CI && TLI->hasExtractBitsInsn())
7023       if (OptimizeExtractBits(BinOp, CI, *TLI, *DL))
7024         return true;
7025   }
7026 
7027   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
7028     if (GEPI->hasAllZeroIndices()) {
7029       /// The GEP operand must be a pointer, so must its result -> BitCast
7030       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
7031                                         GEPI->getName(), GEPI);
7032       NC->setDebugLoc(GEPI->getDebugLoc());
7033       GEPI->replaceAllUsesWith(NC);
7034       GEPI->eraseFromParent();
7035       ++NumGEPsElim;
7036       optimizeInst(NC, ModifiedDT);
7037       return true;
7038     }
7039     if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
7040       return true;
7041     }
7042     return false;
7043   }
7044 
7045   if (tryToSinkFreeOperands(I))
7046     return true;
7047 
7048   switch (I->getOpcode()) {
7049   case Instruction::Shl:
7050   case Instruction::LShr:
7051   case Instruction::AShr:
7052     return optimizeShiftInst(cast<BinaryOperator>(I));
7053   case Instruction::Call:
7054     return optimizeCallInst(cast<CallInst>(I), ModifiedDT);
7055   case Instruction::Select:
7056     return optimizeSelectInst(cast<SelectInst>(I));
7057   case Instruction::ShuffleVector:
7058     return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I));
7059   case Instruction::Switch:
7060     return optimizeSwitchInst(cast<SwitchInst>(I));
7061   case Instruction::ExtractElement:
7062     return optimizeExtractElementInst(cast<ExtractElementInst>(I));
7063   }
7064 
7065   return false;
7066 }
7067 
7068 /// Given an OR instruction, check to see if this is a bitreverse
7069 /// idiom. If so, insert the new intrinsic and return true.
7070 static bool makeBitReverse(Instruction &I, const DataLayout &DL,
7071                            const TargetLowering &TLI) {
7072   if (!I.getType()->isIntegerTy() ||
7073       !TLI.isOperationLegalOrCustom(ISD::BITREVERSE,
7074                                     TLI.getValueType(DL, I.getType(), true)))
7075     return false;
7076 
7077   SmallVector<Instruction*, 4> Insts;
7078   if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
7079     return false;
7080   Instruction *LastInst = Insts.back();
7081   I.replaceAllUsesWith(LastInst);
7082   RecursivelyDeleteTriviallyDeadInstructions(&I);
7083   return true;
7084 }
7085 
7086 // In this pass we look for GEP and cast instructions that are used
7087 // across basic blocks and rewrite them to improve basic-block-at-a-time
7088 // selection.
7089 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) {
7090   SunkAddrs.clear();
7091   bool MadeChange = false;
7092 
7093   CurInstIterator = BB.begin();
7094   while (CurInstIterator != BB.end()) {
7095     MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
7096     if (ModifiedDT)
7097       return true;
7098   }
7099 
7100   bool MadeBitReverse = true;
7101   while (TLI && MadeBitReverse) {
7102     MadeBitReverse = false;
7103     for (auto &I : reverse(BB)) {
7104       if (makeBitReverse(I, *DL, *TLI)) {
7105         MadeBitReverse = MadeChange = true;
7106         ModifiedDT = true;
7107         break;
7108       }
7109     }
7110   }
7111   MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT);
7112 
7113   return MadeChange;
7114 }
7115 
7116 // llvm.dbg.value is far away from the value then iSel may not be able
7117 // handle it properly. iSel will drop llvm.dbg.value if it can not
7118 // find a node corresponding to the value.
7119 bool CodeGenPrepare::placeDbgValues(Function &F) {
7120   bool MadeChange = false;
7121   for (BasicBlock &BB : F) {
7122     Instruction *PrevNonDbgInst = nullptr;
7123     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
7124       Instruction *Insn = &*BI++;
7125       DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
7126       // Leave dbg.values that refer to an alloca alone. These
7127       // intrinsics describe the address of a variable (= the alloca)
7128       // being taken.  They should not be moved next to the alloca
7129       // (and to the beginning of the scope), but rather stay close to
7130       // where said address is used.
7131       if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
7132         PrevNonDbgInst = Insn;
7133         continue;
7134       }
7135 
7136       Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
7137       if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
7138         // If VI is a phi in a block with an EHPad terminator, we can't insert
7139         // after it.
7140         if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
7141           continue;
7142         LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
7143                           << *DVI << ' ' << *VI);
7144         DVI->removeFromParent();
7145         if (isa<PHINode>(VI))
7146           DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
7147         else
7148           DVI->insertAfter(VI);
7149         MadeChange = true;
7150         ++NumDbgValueMoved;
7151       }
7152     }
7153   }
7154   return MadeChange;
7155 }
7156 
7157 /// Scale down both weights to fit into uint32_t.
7158 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
7159   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
7160   uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
7161   NewTrue = NewTrue / Scale;
7162   NewFalse = NewFalse / Scale;
7163 }
7164 
7165 /// Some targets prefer to split a conditional branch like:
7166 /// \code
7167 ///   %0 = icmp ne i32 %a, 0
7168 ///   %1 = icmp ne i32 %b, 0
7169 ///   %or.cond = or i1 %0, %1
7170 ///   br i1 %or.cond, label %TrueBB, label %FalseBB
7171 /// \endcode
7172 /// into multiple branch instructions like:
7173 /// \code
7174 ///   bb1:
7175 ///     %0 = icmp ne i32 %a, 0
7176 ///     br i1 %0, label %TrueBB, label %bb2
7177 ///   bb2:
7178 ///     %1 = icmp ne i32 %b, 0
7179 ///     br i1 %1, label %TrueBB, label %FalseBB
7180 /// \endcode
7181 /// This usually allows instruction selection to do even further optimizations
7182 /// and combine the compare with the branch instruction. Currently this is
7183 /// applied for targets which have "cheap" jump instructions.
7184 ///
7185 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
7186 ///
7187 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) {
7188   if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive())
7189     return false;
7190 
7191   bool MadeChange = false;
7192   for (auto &BB : F) {
7193     // Does this BB end with the following?
7194     //   %cond1 = icmp|fcmp|binary instruction ...
7195     //   %cond2 = icmp|fcmp|binary instruction ...
7196     //   %cond.or = or|and i1 %cond1, cond2
7197     //   br i1 %cond.or label %dest1, label %dest2"
7198     BinaryOperator *LogicOp;
7199     BasicBlock *TBB, *FBB;
7200     if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
7201       continue;
7202 
7203     auto *Br1 = cast<BranchInst>(BB.getTerminator());
7204     if (Br1->getMetadata(LLVMContext::MD_unpredictable))
7205       continue;
7206 
7207     unsigned Opc;
7208     Value *Cond1, *Cond2;
7209     if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
7210                              m_OneUse(m_Value(Cond2)))))
7211       Opc = Instruction::And;
7212     else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
7213                                  m_OneUse(m_Value(Cond2)))))
7214       Opc = Instruction::Or;
7215     else
7216       continue;
7217 
7218     if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
7219         !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp()))   )
7220       continue;
7221 
7222     LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
7223 
7224     // Create a new BB.
7225     auto TmpBB =
7226         BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
7227                            BB.getParent(), BB.getNextNode());
7228 
7229     // Update original basic block by using the first condition directly by the
7230     // branch instruction and removing the no longer needed and/or instruction.
7231     Br1->setCondition(Cond1);
7232     LogicOp->eraseFromParent();
7233 
7234     // Depending on the condition we have to either replace the true or the
7235     // false successor of the original branch instruction.
7236     if (Opc == Instruction::And)
7237       Br1->setSuccessor(0, TmpBB);
7238     else
7239       Br1->setSuccessor(1, TmpBB);
7240 
7241     // Fill in the new basic block.
7242     auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
7243     if (auto *I = dyn_cast<Instruction>(Cond2)) {
7244       I->removeFromParent();
7245       I->insertBefore(Br2);
7246     }
7247 
7248     // Update PHI nodes in both successors. The original BB needs to be
7249     // replaced in one successor's PHI nodes, because the branch comes now from
7250     // the newly generated BB (NewBB). In the other successor we need to add one
7251     // incoming edge to the PHI nodes, because both branch instructions target
7252     // now the same successor. Depending on the original branch condition
7253     // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
7254     // we perform the correct update for the PHI nodes.
7255     // This doesn't change the successor order of the just created branch
7256     // instruction (or any other instruction).
7257     if (Opc == Instruction::Or)
7258       std::swap(TBB, FBB);
7259 
7260     // Replace the old BB with the new BB.
7261     TBB->replacePhiUsesWith(&BB, TmpBB);
7262 
7263     // Add another incoming edge form the new BB.
7264     for (PHINode &PN : FBB->phis()) {
7265       auto *Val = PN.getIncomingValueForBlock(&BB);
7266       PN.addIncoming(Val, TmpBB);
7267     }
7268 
7269     // Update the branch weights (from SelectionDAGBuilder::
7270     // FindMergedConditions).
7271     if (Opc == Instruction::Or) {
7272       // Codegen X | Y as:
7273       // BB1:
7274       //   jmp_if_X TBB
7275       //   jmp TmpBB
7276       // TmpBB:
7277       //   jmp_if_Y TBB
7278       //   jmp FBB
7279       //
7280 
7281       // We have flexibility in setting Prob for BB1 and Prob for NewBB.
7282       // The requirement is that
7283       //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
7284       //     = TrueProb for original BB.
7285       // Assuming the original weights are A and B, one choice is to set BB1's
7286       // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
7287       // assumes that
7288       //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
7289       // Another choice is to assume TrueProb for BB1 equals to TrueProb for
7290       // TmpBB, but the math is more complicated.
7291       uint64_t TrueWeight, FalseWeight;
7292       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7293         uint64_t NewTrueWeight = TrueWeight;
7294         uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
7295         scaleWeights(NewTrueWeight, NewFalseWeight);
7296         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7297                          .createBranchWeights(TrueWeight, FalseWeight));
7298 
7299         NewTrueWeight = TrueWeight;
7300         NewFalseWeight = 2 * FalseWeight;
7301         scaleWeights(NewTrueWeight, NewFalseWeight);
7302         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7303                          .createBranchWeights(TrueWeight, FalseWeight));
7304       }
7305     } else {
7306       // Codegen X & Y as:
7307       // BB1:
7308       //   jmp_if_X TmpBB
7309       //   jmp FBB
7310       // TmpBB:
7311       //   jmp_if_Y TBB
7312       //   jmp FBB
7313       //
7314       //  This requires creation of TmpBB after CurBB.
7315 
7316       // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
7317       // The requirement is that
7318       //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
7319       //     = FalseProb for original BB.
7320       // Assuming the original weights are A and B, one choice is to set BB1's
7321       // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
7322       // assumes that
7323       //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
7324       uint64_t TrueWeight, FalseWeight;
7325       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7326         uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
7327         uint64_t NewFalseWeight = FalseWeight;
7328         scaleWeights(NewTrueWeight, NewFalseWeight);
7329         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7330                          .createBranchWeights(TrueWeight, FalseWeight));
7331 
7332         NewTrueWeight = 2 * TrueWeight;
7333         NewFalseWeight = FalseWeight;
7334         scaleWeights(NewTrueWeight, NewFalseWeight);
7335         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7336                          .createBranchWeights(TrueWeight, FalseWeight));
7337       }
7338     }
7339 
7340     ModifiedDT = true;
7341     MadeChange = true;
7342 
7343     LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
7344                TmpBB->dump());
7345   }
7346   return MadeChange;
7347 }
7348