1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass munges the code in the input function to better prepare it for
10 // SelectionDAG-based code generation. This works around limitations in it's
11 // basic-block-at-a-time approach. It should eventually be removed.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/PointerIntPair.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/MemoryBuiltins.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/TargetLibraryInfo.h"
31 #include "llvm/Analysis/TargetTransformInfo.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/CodeGen/Analysis.h"
35 #include "llvm/CodeGen/ISDOpcodes.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/TargetLowering.h"
38 #include "llvm/CodeGen/TargetPassConfig.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/CodeGen/ValueTypes.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/IR/Argument.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/CallSite.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DerivedTypes.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GetElementPtrTypeIterator.h"
53 #include "llvm/IR/GlobalValue.h"
54 #include "llvm/IR/GlobalVariable.h"
55 #include "llvm/IR/IRBuilder.h"
56 #include "llvm/IR/InlineAsm.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/MDBuilder.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/Operator.h"
66 #include "llvm/IR/PatternMatch.h"
67 #include "llvm/IR/Statepoint.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/IR/ValueMap.h"
74 #include "llvm/Pass.h"
75 #include "llvm/Support/BlockFrequency.h"
76 #include "llvm/Support/BranchProbability.h"
77 #include "llvm/Support/Casting.h"
78 #include "llvm/Support/CommandLine.h"
79 #include "llvm/Support/Compiler.h"
80 #include "llvm/Support/Debug.h"
81 #include "llvm/Support/ErrorHandling.h"
82 #include "llvm/Support/MachineValueType.h"
83 #include "llvm/Support/MathExtras.h"
84 #include "llvm/Support/raw_ostream.h"
85 #include "llvm/Target/TargetMachine.h"
86 #include "llvm/Target/TargetOptions.h"
87 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
88 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
89 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
90 #include <algorithm>
91 #include <cassert>
92 #include <cstdint>
93 #include <iterator>
94 #include <limits>
95 #include <memory>
96 #include <utility>
97 #include <vector>
98 
99 using namespace llvm;
100 using namespace llvm::PatternMatch;
101 
102 #define DEBUG_TYPE "codegenprepare"
103 
104 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
105 STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
106 STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
107 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
108                       "sunken Cmps");
109 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
110                        "of sunken Casts");
111 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
112                           "computations were sunk");
113 STATISTIC(NumMemoryInstsPhiCreated,
114           "Number of phis created when address "
115           "computations were sunk to memory instructions");
116 STATISTIC(NumMemoryInstsSelectCreated,
117           "Number of select created when address "
118           "computations were sunk to memory instructions");
119 STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
120 STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
121 STATISTIC(NumAndsAdded,
122           "Number of and mask instructions added to form ext loads");
123 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
124 STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
125 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
126 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
127 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
128 
129 static cl::opt<bool> DisableBranchOpts(
130   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
131   cl::desc("Disable branch optimizations in CodeGenPrepare"));
132 
133 static cl::opt<bool>
134     DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
135                   cl::desc("Disable GC optimizations in CodeGenPrepare"));
136 
137 static cl::opt<bool> DisableSelectToBranch(
138   "disable-cgp-select2branch", cl::Hidden, cl::init(false),
139   cl::desc("Disable select to branch conversion."));
140 
141 static cl::opt<bool> AddrSinkUsingGEPs(
142   "addr-sink-using-gep", cl::Hidden, cl::init(true),
143   cl::desc("Address sinking in CGP using GEPs."));
144 
145 static cl::opt<bool> EnableAndCmpSinking(
146    "enable-andcmp-sinking", cl::Hidden, cl::init(true),
147    cl::desc("Enable sinkinig and/cmp into branches."));
148 
149 static cl::opt<bool> DisableStoreExtract(
150     "disable-cgp-store-extract", cl::Hidden, cl::init(false),
151     cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
152 
153 static cl::opt<bool> StressStoreExtract(
154     "stress-cgp-store-extract", cl::Hidden, cl::init(false),
155     cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
156 
157 static cl::opt<bool> DisableExtLdPromotion(
158     "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
159     cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
160              "CodeGenPrepare"));
161 
162 static cl::opt<bool> StressExtLdPromotion(
163     "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
164     cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
165              "optimization in CodeGenPrepare"));
166 
167 static cl::opt<bool> DisablePreheaderProtect(
168     "disable-preheader-prot", cl::Hidden, cl::init(false),
169     cl::desc("Disable protection against removing loop preheaders"));
170 
171 static cl::opt<bool> ProfileGuidedSectionPrefix(
172     "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
173     cl::desc("Use profile info to add section prefix for hot/cold functions"));
174 
175 static cl::opt<unsigned> FreqRatioToSkipMerge(
176     "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
177     cl::desc("Skip merging empty blocks if (frequency of empty block) / "
178              "(frequency of destination block) is greater than this ratio"));
179 
180 static cl::opt<bool> ForceSplitStore(
181     "force-split-store", cl::Hidden, cl::init(false),
182     cl::desc("Force store splitting no matter what the target query says."));
183 
184 static cl::opt<bool>
185 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
186     cl::desc("Enable merging of redundant sexts when one is dominating"
187     " the other."), cl::init(true));
188 
189 static cl::opt<bool> DisableComplexAddrModes(
190     "disable-complex-addr-modes", cl::Hidden, cl::init(false),
191     cl::desc("Disables combining addressing modes with different parts "
192              "in optimizeMemoryInst."));
193 
194 static cl::opt<bool>
195 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
196                 cl::desc("Allow creation of Phis in Address sinking."));
197 
198 static cl::opt<bool>
199 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true),
200                    cl::desc("Allow creation of selects in Address sinking."));
201 
202 static cl::opt<bool> AddrSinkCombineBaseReg(
203     "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
204     cl::desc("Allow combining of BaseReg field in Address sinking."));
205 
206 static cl::opt<bool> AddrSinkCombineBaseGV(
207     "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
208     cl::desc("Allow combining of BaseGV field in Address sinking."));
209 
210 static cl::opt<bool> AddrSinkCombineBaseOffs(
211     "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
212     cl::desc("Allow combining of BaseOffs field in Address sinking."));
213 
214 static cl::opt<bool> AddrSinkCombineScaledReg(
215     "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
216     cl::desc("Allow combining of ScaledReg field in Address sinking."));
217 
218 static cl::opt<bool>
219     EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
220                          cl::init(true),
221                          cl::desc("Enable splitting large offset of GEP."));
222 
223 namespace {
224 
225 enum ExtType {
226   ZeroExtension,   // Zero extension has been seen.
227   SignExtension,   // Sign extension has been seen.
228   BothExtension    // This extension type is used if we saw sext after
229                    // ZeroExtension had been set, or if we saw zext after
230                    // SignExtension had been set. It makes the type
231                    // information of a promoted instruction invalid.
232 };
233 
234 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
235 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>;
236 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
237 using SExts = SmallVector<Instruction *, 16>;
238 using ValueToSExts = DenseMap<Value *, SExts>;
239 
240 class TypePromotionTransaction;
241 
242   class CodeGenPrepare : public FunctionPass {
243     const TargetMachine *TM = nullptr;
244     const TargetSubtargetInfo *SubtargetInfo;
245     const TargetLowering *TLI = nullptr;
246     const TargetRegisterInfo *TRI;
247     const TargetTransformInfo *TTI = nullptr;
248     const TargetLibraryInfo *TLInfo;
249     const LoopInfo *LI;
250     std::unique_ptr<BlockFrequencyInfo> BFI;
251     std::unique_ptr<BranchProbabilityInfo> BPI;
252 
253     /// As we scan instructions optimizing them, this is the next instruction
254     /// to optimize. Transforms that can invalidate this should update it.
255     BasicBlock::iterator CurInstIterator;
256 
257     /// Keeps track of non-local addresses that have been sunk into a block.
258     /// This allows us to avoid inserting duplicate code for blocks with
259     /// multiple load/stores of the same address. The usage of WeakTrackingVH
260     /// enables SunkAddrs to be treated as a cache whose entries can be
261     /// invalidated if a sunken address computation has been erased.
262     ValueMap<Value*, WeakTrackingVH> SunkAddrs;
263 
264     /// Keeps track of all instructions inserted for the current function.
265     SetOfInstrs InsertedInsts;
266 
267     /// Keeps track of the type of the related instruction before their
268     /// promotion for the current function.
269     InstrToOrigTy PromotedInsts;
270 
271     /// Keep track of instructions removed during promotion.
272     SetOfInstrs RemovedInsts;
273 
274     /// Keep track of sext chains based on their initial value.
275     DenseMap<Value *, Instruction *> SeenChainsForSExt;
276 
277     /// Keep track of GEPs accessing the same data structures such as structs or
278     /// arrays that are candidates to be split later because of their large
279     /// size.
280     MapVector<
281         AssertingVH<Value>,
282         SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
283         LargeOffsetGEPMap;
284 
285     /// Keep track of new GEP base after splitting the GEPs having large offset.
286     SmallSet<AssertingVH<Value>, 2> NewGEPBases;
287 
288     /// Map serial numbers to Large offset GEPs.
289     DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;
290 
291     /// Keep track of SExt promoted.
292     ValueToSExts ValToSExtendedUses;
293 
294     /// True if CFG is modified in any way.
295     bool ModifiedDT;
296 
297     /// True if optimizing for size.
298     bool OptSize;
299 
300     /// DataLayout for the Function being processed.
301     const DataLayout *DL = nullptr;
302 
303   public:
304     static char ID; // Pass identification, replacement for typeid
305 
306     CodeGenPrepare() : FunctionPass(ID) {
307       initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
308     }
309 
310     bool runOnFunction(Function &F) override;
311 
312     StringRef getPassName() const override { return "CodeGen Prepare"; }
313 
314     void getAnalysisUsage(AnalysisUsage &AU) const override {
315       // FIXME: When we can selectively preserve passes, preserve the domtree.
316       AU.addRequired<ProfileSummaryInfoWrapperPass>();
317       AU.addRequired<TargetLibraryInfoWrapperPass>();
318       AU.addRequired<TargetTransformInfoWrapperPass>();
319       AU.addRequired<LoopInfoWrapperPass>();
320     }
321 
322   private:
323     template <typename F>
324     void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) {
325       // Substituting can cause recursive simplifications, which can invalidate
326       // our iterator.  Use a WeakTrackingVH to hold onto it in case this
327       // happens.
328       Value *CurValue = &*CurInstIterator;
329       WeakTrackingVH IterHandle(CurValue);
330 
331       f();
332 
333       // If the iterator instruction was recursively deleted, start over at the
334       // start of the block.
335       if (IterHandle != CurValue) {
336         CurInstIterator = BB->begin();
337         SunkAddrs.clear();
338       }
339     }
340 
341     bool eliminateFallThrough(Function &F);
342     bool eliminateMostlyEmptyBlocks(Function &F);
343     BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
344     bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
345     void eliminateMostlyEmptyBlock(BasicBlock *BB);
346     bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
347                                        bool isPreheader);
348     bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT);
349     bool optimizeInst(Instruction *I, bool &ModifiedDT);
350     bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
351                             Type *AccessTy, unsigned AddrSpace);
352     bool optimizeInlineAsmInst(CallInst *CS);
353     bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
354     bool optimizeExt(Instruction *&I);
355     bool optimizeExtUses(Instruction *I);
356     bool optimizeLoadExt(LoadInst *Load);
357     bool optimizeSelectInst(SelectInst *SI);
358     bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI);
359     bool optimizeSwitchInst(SwitchInst *SI);
360     bool optimizeExtractElementInst(Instruction *Inst);
361     bool dupRetToEnableTailCallOpts(BasicBlock *BB);
362     bool placeDbgValues(Function &F);
363     bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
364                       LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
365     bool tryToPromoteExts(TypePromotionTransaction &TPT,
366                           const SmallVectorImpl<Instruction *> &Exts,
367                           SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
368                           unsigned CreatedInstsCost = 0);
369     bool mergeSExts(Function &F);
370     bool splitLargeGEPOffsets();
371     bool performAddressTypePromotion(
372         Instruction *&Inst,
373         bool AllowPromotionWithoutCommonHeader,
374         bool HasPromoted, TypePromotionTransaction &TPT,
375         SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
376     bool splitBranchCondition(Function &F);
377     bool simplifyOffsetableRelocate(Instruction &I);
378   };
379 
380 } // end anonymous namespace
381 
382 char CodeGenPrepare::ID = 0;
383 
384 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
385                       "Optimize for code generation", false, false)
386 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
387 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
388                     "Optimize for code generation", false, false)
389 
390 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
391 
392 bool CodeGenPrepare::runOnFunction(Function &F) {
393   if (skipFunction(F))
394     return false;
395 
396   DL = &F.getParent()->getDataLayout();
397 
398   bool EverMadeChange = false;
399   // Clear per function information.
400   InsertedInsts.clear();
401   PromotedInsts.clear();
402 
403   ModifiedDT = false;
404   if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
405     TM = &TPC->getTM<TargetMachine>();
406     SubtargetInfo = TM->getSubtargetImpl(F);
407     TLI = SubtargetInfo->getTargetLowering();
408     TRI = SubtargetInfo->getRegisterInfo();
409   }
410   TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
411   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
412   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
413   BPI.reset(new BranchProbabilityInfo(F, *LI));
414   BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
415   OptSize = F.optForSize();
416 
417   ProfileSummaryInfo *PSI =
418       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
419   if (ProfileGuidedSectionPrefix) {
420     if (PSI->isFunctionHotInCallGraph(&F, *BFI))
421       F.setSectionPrefix(".hot");
422     else if (PSI->isFunctionColdInCallGraph(&F, *BFI))
423       F.setSectionPrefix(".unlikely");
424   }
425 
426   /// This optimization identifies DIV instructions that can be
427   /// profitably bypassed and carried out with a shorter, faster divide.
428   if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI &&
429       TLI->isSlowDivBypassed()) {
430     const DenseMap<unsigned int, unsigned int> &BypassWidths =
431        TLI->getBypassSlowDivWidths();
432     BasicBlock* BB = &*F.begin();
433     while (BB != nullptr) {
434       // bypassSlowDivision may create new BBs, but we don't want to reapply the
435       // optimization to those blocks.
436       BasicBlock* Next = BB->getNextNode();
437       EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
438       BB = Next;
439     }
440   }
441 
442   // Eliminate blocks that contain only PHI nodes and an
443   // unconditional branch.
444   EverMadeChange |= eliminateMostlyEmptyBlocks(F);
445 
446   if (!DisableBranchOpts)
447     EverMadeChange |= splitBranchCondition(F);
448 
449   // Split some critical edges where one of the sources is an indirect branch,
450   // to help generate sane code for PHIs involving such edges.
451   EverMadeChange |= SplitIndirectBrCriticalEdges(F);
452 
453   bool MadeChange = true;
454   while (MadeChange) {
455     MadeChange = false;
456     for (Function::iterator I = F.begin(); I != F.end(); ) {
457       BasicBlock *BB = &*I++;
458       bool ModifiedDTOnIteration = false;
459       MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
460 
461       // Restart BB iteration if the dominator tree of the Function was changed
462       if (ModifiedDTOnIteration)
463         break;
464     }
465     if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
466       MadeChange |= mergeSExts(F);
467     if (!LargeOffsetGEPMap.empty())
468       MadeChange |= splitLargeGEPOffsets();
469 
470     // Really free removed instructions during promotion.
471     for (Instruction *I : RemovedInsts)
472       I->deleteValue();
473 
474     EverMadeChange |= MadeChange;
475     SeenChainsForSExt.clear();
476     ValToSExtendedUses.clear();
477     RemovedInsts.clear();
478     LargeOffsetGEPMap.clear();
479     LargeOffsetGEPID.clear();
480   }
481 
482   SunkAddrs.clear();
483 
484   if (!DisableBranchOpts) {
485     MadeChange = false;
486     // Use a set vector to get deterministic iteration order. The order the
487     // blocks are removed may affect whether or not PHI nodes in successors
488     // are removed.
489     SmallSetVector<BasicBlock*, 8> WorkList;
490     for (BasicBlock &BB : F) {
491       SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
492       MadeChange |= ConstantFoldTerminator(&BB, true);
493       if (!MadeChange) continue;
494 
495       for (SmallVectorImpl<BasicBlock*>::iterator
496              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
497         if (pred_begin(*II) == pred_end(*II))
498           WorkList.insert(*II);
499     }
500 
501     // Delete the dead blocks and any of their dead successors.
502     MadeChange |= !WorkList.empty();
503     while (!WorkList.empty()) {
504       BasicBlock *BB = WorkList.pop_back_val();
505       SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
506 
507       DeleteDeadBlock(BB);
508 
509       for (SmallVectorImpl<BasicBlock*>::iterator
510              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
511         if (pred_begin(*II) == pred_end(*II))
512           WorkList.insert(*II);
513     }
514 
515     // Merge pairs of basic blocks with unconditional branches, connected by
516     // a single edge.
517     if (EverMadeChange || MadeChange)
518       MadeChange |= eliminateFallThrough(F);
519 
520     EverMadeChange |= MadeChange;
521   }
522 
523   if (!DisableGCOpts) {
524     SmallVector<Instruction *, 2> Statepoints;
525     for (BasicBlock &BB : F)
526       for (Instruction &I : BB)
527         if (isStatepoint(I))
528           Statepoints.push_back(&I);
529     for (auto &I : Statepoints)
530       EverMadeChange |= simplifyOffsetableRelocate(*I);
531   }
532 
533   // Do this last to clean up use-before-def scenarios introduced by other
534   // preparatory transforms.
535   EverMadeChange |= placeDbgValues(F);
536 
537   return EverMadeChange;
538 }
539 
540 /// Merge basic blocks which are connected by a single edge, where one of the
541 /// basic blocks has a single successor pointing to the other basic block,
542 /// which has a single predecessor.
543 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
544   bool Changed = false;
545   // Scan all of the blocks in the function, except for the entry block.
546   // Use a temporary array to avoid iterator being invalidated when
547   // deleting blocks.
548   SmallVector<WeakTrackingVH, 16> Blocks;
549   for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
550     Blocks.push_back(&Block);
551 
552   for (auto &Block : Blocks) {
553     auto *BB = cast_or_null<BasicBlock>(Block);
554     if (!BB)
555       continue;
556     // If the destination block has a single pred, then this is a trivial
557     // edge, just collapse it.
558     BasicBlock *SinglePred = BB->getSinglePredecessor();
559 
560     // Don't merge if BB's address is taken.
561     if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
562 
563     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
564     if (Term && !Term->isConditional()) {
565       Changed = true;
566       LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");
567 
568       // Merge BB into SinglePred and delete it.
569       MergeBlockIntoPredecessor(BB);
570     }
571   }
572   return Changed;
573 }
574 
575 /// Find a destination block from BB if BB is mergeable empty block.
576 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
577   // If this block doesn't end with an uncond branch, ignore it.
578   BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
579   if (!BI || !BI->isUnconditional())
580     return nullptr;
581 
582   // If the instruction before the branch (skipping debug info) isn't a phi
583   // node, then other stuff is happening here.
584   BasicBlock::iterator BBI = BI->getIterator();
585   if (BBI != BB->begin()) {
586     --BBI;
587     while (isa<DbgInfoIntrinsic>(BBI)) {
588       if (BBI == BB->begin())
589         break;
590       --BBI;
591     }
592     if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
593       return nullptr;
594   }
595 
596   // Do not break infinite loops.
597   BasicBlock *DestBB = BI->getSuccessor(0);
598   if (DestBB == BB)
599     return nullptr;
600 
601   if (!canMergeBlocks(BB, DestBB))
602     DestBB = nullptr;
603 
604   return DestBB;
605 }
606 
607 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
608 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
609 /// edges in ways that are non-optimal for isel. Start by eliminating these
610 /// blocks so we can split them the way we want them.
611 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
612   SmallPtrSet<BasicBlock *, 16> Preheaders;
613   SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
614   while (!LoopList.empty()) {
615     Loop *L = LoopList.pop_back_val();
616     LoopList.insert(LoopList.end(), L->begin(), L->end());
617     if (BasicBlock *Preheader = L->getLoopPreheader())
618       Preheaders.insert(Preheader);
619   }
620 
621   bool MadeChange = false;
622   // Copy blocks into a temporary array to avoid iterator invalidation issues
623   // as we remove them.
624   // Note that this intentionally skips the entry block.
625   SmallVector<WeakTrackingVH, 16> Blocks;
626   for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
627     Blocks.push_back(&Block);
628 
629   for (auto &Block : Blocks) {
630     BasicBlock *BB = cast_or_null<BasicBlock>(Block);
631     if (!BB)
632       continue;
633     BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
634     if (!DestBB ||
635         !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
636       continue;
637 
638     eliminateMostlyEmptyBlock(BB);
639     MadeChange = true;
640   }
641   return MadeChange;
642 }
643 
644 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
645                                                    BasicBlock *DestBB,
646                                                    bool isPreheader) {
647   // Do not delete loop preheaders if doing so would create a critical edge.
648   // Loop preheaders can be good locations to spill registers. If the
649   // preheader is deleted and we create a critical edge, registers may be
650   // spilled in the loop body instead.
651   if (!DisablePreheaderProtect && isPreheader &&
652       !(BB->getSinglePredecessor() &&
653         BB->getSinglePredecessor()->getSingleSuccessor()))
654     return false;
655 
656   // Try to skip merging if the unique predecessor of BB is terminated by a
657   // switch or indirect branch instruction, and BB is used as an incoming block
658   // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
659   // add COPY instructions in the predecessor of BB instead of BB (if it is not
660   // merged). Note that the critical edge created by merging such blocks wont be
661   // split in MachineSink because the jump table is not analyzable. By keeping
662   // such empty block (BB), ISel will place COPY instructions in BB, not in the
663   // predecessor of BB.
664   BasicBlock *Pred = BB->getUniquePredecessor();
665   if (!Pred ||
666       !(isa<SwitchInst>(Pred->getTerminator()) ||
667         isa<IndirectBrInst>(Pred->getTerminator())))
668     return true;
669 
670   if (BB->getTerminator() != BB->getFirstNonPHIOrDbg())
671     return true;
672 
673   // We use a simple cost heuristic which determine skipping merging is
674   // profitable if the cost of skipping merging is less than the cost of
675   // merging : Cost(skipping merging) < Cost(merging BB), where the
676   // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
677   // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
678   // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
679   //   Freq(Pred) / Freq(BB) > 2.
680   // Note that if there are multiple empty blocks sharing the same incoming
681   // value for the PHIs in the DestBB, we consider them together. In such
682   // case, Cost(merging BB) will be the sum of their frequencies.
683 
684   if (!isa<PHINode>(DestBB->begin()))
685     return true;
686 
687   SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
688 
689   // Find all other incoming blocks from which incoming values of all PHIs in
690   // DestBB are the same as the ones from BB.
691   for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E;
692        ++PI) {
693     BasicBlock *DestBBPred = *PI;
694     if (DestBBPred == BB)
695       continue;
696 
697     if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
698           return DestPN.getIncomingValueForBlock(BB) ==
699                  DestPN.getIncomingValueForBlock(DestBBPred);
700         }))
701       SameIncomingValueBBs.insert(DestBBPred);
702   }
703 
704   // See if all BB's incoming values are same as the value from Pred. In this
705   // case, no reason to skip merging because COPYs are expected to be place in
706   // Pred already.
707   if (SameIncomingValueBBs.count(Pred))
708     return true;
709 
710   BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
711   BlockFrequency BBFreq = BFI->getBlockFreq(BB);
712 
713   for (auto SameValueBB : SameIncomingValueBBs)
714     if (SameValueBB->getUniquePredecessor() == Pred &&
715         DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
716       BBFreq += BFI->getBlockFreq(SameValueBB);
717 
718   return PredFreq.getFrequency() <=
719          BBFreq.getFrequency() * FreqRatioToSkipMerge;
720 }
721 
722 /// Return true if we can merge BB into DestBB if there is a single
723 /// unconditional branch between them, and BB contains no other non-phi
724 /// instructions.
725 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
726                                     const BasicBlock *DestBB) const {
727   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
728   // the successor.  If there are more complex condition (e.g. preheaders),
729   // don't mess around with them.
730   for (const PHINode &PN : BB->phis()) {
731     for (const User *U : PN.users()) {
732       const Instruction *UI = cast<Instruction>(U);
733       if (UI->getParent() != DestBB || !isa<PHINode>(UI))
734         return false;
735       // If User is inside DestBB block and it is a PHINode then check
736       // incoming value. If incoming value is not from BB then this is
737       // a complex condition (e.g. preheaders) we want to avoid here.
738       if (UI->getParent() == DestBB) {
739         if (const PHINode *UPN = dyn_cast<PHINode>(UI))
740           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
741             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
742             if (Insn && Insn->getParent() == BB &&
743                 Insn->getParent() != UPN->getIncomingBlock(I))
744               return false;
745           }
746       }
747     }
748   }
749 
750   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
751   // and DestBB may have conflicting incoming values for the block.  If so, we
752   // can't merge the block.
753   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
754   if (!DestBBPN) return true;  // no conflict.
755 
756   // Collect the preds of BB.
757   SmallPtrSet<const BasicBlock*, 16> BBPreds;
758   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
759     // It is faster to get preds from a PHI than with pred_iterator.
760     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
761       BBPreds.insert(BBPN->getIncomingBlock(i));
762   } else {
763     BBPreds.insert(pred_begin(BB), pred_end(BB));
764   }
765 
766   // Walk the preds of DestBB.
767   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
768     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
769     if (BBPreds.count(Pred)) {   // Common predecessor?
770       for (const PHINode &PN : DestBB->phis()) {
771         const Value *V1 = PN.getIncomingValueForBlock(Pred);
772         const Value *V2 = PN.getIncomingValueForBlock(BB);
773 
774         // If V2 is a phi node in BB, look up what the mapped value will be.
775         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
776           if (V2PN->getParent() == BB)
777             V2 = V2PN->getIncomingValueForBlock(Pred);
778 
779         // If there is a conflict, bail out.
780         if (V1 != V2) return false;
781       }
782     }
783   }
784 
785   return true;
786 }
787 
788 /// Eliminate a basic block that has only phi's and an unconditional branch in
789 /// it.
790 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
791   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
792   BasicBlock *DestBB = BI->getSuccessor(0);
793 
794   LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
795                     << *BB << *DestBB);
796 
797   // If the destination block has a single pred, then this is a trivial edge,
798   // just collapse it.
799   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
800     if (SinglePred != DestBB) {
801       assert(SinglePred == BB &&
802              "Single predecessor not the same as predecessor");
803       // Merge DestBB into SinglePred/BB and delete it.
804       MergeBlockIntoPredecessor(DestBB);
805       // Note: BB(=SinglePred) will not be deleted on this path.
806       // DestBB(=its single successor) is the one that was deleted.
807       LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
808       return;
809     }
810   }
811 
812   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
813   // to handle the new incoming edges it is about to have.
814   for (PHINode &PN : DestBB->phis()) {
815     // Remove the incoming value for BB, and remember it.
816     Value *InVal = PN.removeIncomingValue(BB, false);
817 
818     // Two options: either the InVal is a phi node defined in BB or it is some
819     // value that dominates BB.
820     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
821     if (InValPhi && InValPhi->getParent() == BB) {
822       // Add all of the input values of the input PHI as inputs of this phi.
823       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
824         PN.addIncoming(InValPhi->getIncomingValue(i),
825                        InValPhi->getIncomingBlock(i));
826     } else {
827       // Otherwise, add one instance of the dominating value for each edge that
828       // we will be adding.
829       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
830         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
831           PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
832       } else {
833         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
834           PN.addIncoming(InVal, *PI);
835       }
836     }
837   }
838 
839   // The PHIs are now updated, change everything that refers to BB to use
840   // DestBB and remove BB.
841   BB->replaceAllUsesWith(DestBB);
842   BB->eraseFromParent();
843   ++NumBlocksElim;
844 
845   LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
846 }
847 
848 // Computes a map of base pointer relocation instructions to corresponding
849 // derived pointer relocation instructions given a vector of all relocate calls
850 static void computeBaseDerivedRelocateMap(
851     const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
852     DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
853         &RelocateInstMap) {
854   // Collect information in two maps: one primarily for locating the base object
855   // while filling the second map; the second map is the final structure holding
856   // a mapping between Base and corresponding Derived relocate calls
857   DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
858   for (auto *ThisRelocate : AllRelocateCalls) {
859     auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
860                             ThisRelocate->getDerivedPtrIndex());
861     RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
862   }
863   for (auto &Item : RelocateIdxMap) {
864     std::pair<unsigned, unsigned> Key = Item.first;
865     if (Key.first == Key.second)
866       // Base relocation: nothing to insert
867       continue;
868 
869     GCRelocateInst *I = Item.second;
870     auto BaseKey = std::make_pair(Key.first, Key.first);
871 
872     // We're iterating over RelocateIdxMap so we cannot modify it.
873     auto MaybeBase = RelocateIdxMap.find(BaseKey);
874     if (MaybeBase == RelocateIdxMap.end())
875       // TODO: We might want to insert a new base object relocate and gep off
876       // that, if there are enough derived object relocates.
877       continue;
878 
879     RelocateInstMap[MaybeBase->second].push_back(I);
880   }
881 }
882 
883 // Accepts a GEP and extracts the operands into a vector provided they're all
884 // small integer constants
885 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
886                                           SmallVectorImpl<Value *> &OffsetV) {
887   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
888     // Only accept small constant integer operands
889     auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
890     if (!Op || Op->getZExtValue() > 20)
891       return false;
892   }
893 
894   for (unsigned i = 1; i < GEP->getNumOperands(); i++)
895     OffsetV.push_back(GEP->getOperand(i));
896   return true;
897 }
898 
899 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
900 // replace, computes a replacement, and affects it.
901 static bool
902 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
903                           const SmallVectorImpl<GCRelocateInst *> &Targets) {
904   bool MadeChange = false;
905   // We must ensure the relocation of derived pointer is defined after
906   // relocation of base pointer. If we find a relocation corresponding to base
907   // defined earlier than relocation of base then we move relocation of base
908   // right before found relocation. We consider only relocation in the same
909   // basic block as relocation of base. Relocations from other basic block will
910   // be skipped by optimization and we do not care about them.
911   for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
912        &*R != RelocatedBase; ++R)
913     if (auto RI = dyn_cast<GCRelocateInst>(R))
914       if (RI->getStatepoint() == RelocatedBase->getStatepoint())
915         if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
916           RelocatedBase->moveBefore(RI);
917           break;
918         }
919 
920   for (GCRelocateInst *ToReplace : Targets) {
921     assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
922            "Not relocating a derived object of the original base object");
923     if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
924       // A duplicate relocate call. TODO: coalesce duplicates.
925       continue;
926     }
927 
928     if (RelocatedBase->getParent() != ToReplace->getParent()) {
929       // Base and derived relocates are in different basic blocks.
930       // In this case transform is only valid when base dominates derived
931       // relocate. However it would be too expensive to check dominance
932       // for each such relocate, so we skip the whole transformation.
933       continue;
934     }
935 
936     Value *Base = ToReplace->getBasePtr();
937     auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
938     if (!Derived || Derived->getPointerOperand() != Base)
939       continue;
940 
941     SmallVector<Value *, 2> OffsetV;
942     if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
943       continue;
944 
945     // Create a Builder and replace the target callsite with a gep
946     assert(RelocatedBase->getNextNode() &&
947            "Should always have one since it's not a terminator");
948 
949     // Insert after RelocatedBase
950     IRBuilder<> Builder(RelocatedBase->getNextNode());
951     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
952 
953     // If gc_relocate does not match the actual type, cast it to the right type.
954     // In theory, there must be a bitcast after gc_relocate if the type does not
955     // match, and we should reuse it to get the derived pointer. But it could be
956     // cases like this:
957     // bb1:
958     //  ...
959     //  %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
960     //  br label %merge
961     //
962     // bb2:
963     //  ...
964     //  %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
965     //  br label %merge
966     //
967     // merge:
968     //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
969     //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
970     //
971     // In this case, we can not find the bitcast any more. So we insert a new bitcast
972     // no matter there is already one or not. In this way, we can handle all cases, and
973     // the extra bitcast should be optimized away in later passes.
974     Value *ActualRelocatedBase = RelocatedBase;
975     if (RelocatedBase->getType() != Base->getType()) {
976       ActualRelocatedBase =
977           Builder.CreateBitCast(RelocatedBase, Base->getType());
978     }
979     Value *Replacement = Builder.CreateGEP(
980         Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
981     Replacement->takeName(ToReplace);
982     // If the newly generated derived pointer's type does not match the original derived
983     // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
984     Value *ActualReplacement = Replacement;
985     if (Replacement->getType() != ToReplace->getType()) {
986       ActualReplacement =
987           Builder.CreateBitCast(Replacement, ToReplace->getType());
988     }
989     ToReplace->replaceAllUsesWith(ActualReplacement);
990     ToReplace->eraseFromParent();
991 
992     MadeChange = true;
993   }
994   return MadeChange;
995 }
996 
997 // Turns this:
998 //
999 // %base = ...
1000 // %ptr = gep %base + 15
1001 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1002 // %base' = relocate(%tok, i32 4, i32 4)
1003 // %ptr' = relocate(%tok, i32 4, i32 5)
1004 // %val = load %ptr'
1005 //
1006 // into this:
1007 //
1008 // %base = ...
1009 // %ptr = gep %base + 15
1010 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1011 // %base' = gc.relocate(%tok, i32 4, i32 4)
1012 // %ptr' = gep %base' + 15
1013 // %val = load %ptr'
1014 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
1015   bool MadeChange = false;
1016   SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1017 
1018   for (auto *U : I.users())
1019     if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1020       // Collect all the relocate calls associated with a statepoint
1021       AllRelocateCalls.push_back(Relocate);
1022 
1023   // We need atleast one base pointer relocation + one derived pointer
1024   // relocation to mangle
1025   if (AllRelocateCalls.size() < 2)
1026     return false;
1027 
1028   // RelocateInstMap is a mapping from the base relocate instruction to the
1029   // corresponding derived relocate instructions
1030   DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
1031   computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1032   if (RelocateInstMap.empty())
1033     return false;
1034 
1035   for (auto &Item : RelocateInstMap)
1036     // Item.first is the RelocatedBase to offset against
1037     // Item.second is the vector of Targets to replace
1038     MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1039   return MadeChange;
1040 }
1041 
1042 /// SinkCast - Sink the specified cast instruction into its user blocks
1043 static bool SinkCast(CastInst *CI) {
1044   BasicBlock *DefBB = CI->getParent();
1045 
1046   /// InsertedCasts - Only insert a cast in each block once.
1047   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
1048 
1049   bool MadeChange = false;
1050   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1051        UI != E; ) {
1052     Use &TheUse = UI.getUse();
1053     Instruction *User = cast<Instruction>(*UI);
1054 
1055     // Figure out which BB this cast is used in.  For PHI's this is the
1056     // appropriate predecessor block.
1057     BasicBlock *UserBB = User->getParent();
1058     if (PHINode *PN = dyn_cast<PHINode>(User)) {
1059       UserBB = PN->getIncomingBlock(TheUse);
1060     }
1061 
1062     // Preincrement use iterator so we don't invalidate it.
1063     ++UI;
1064 
1065     // The first insertion point of a block containing an EH pad is after the
1066     // pad.  If the pad is the user, we cannot sink the cast past the pad.
1067     if (User->isEHPad())
1068       continue;
1069 
1070     // If the block selected to receive the cast is an EH pad that does not
1071     // allow non-PHI instructions before the terminator, we can't sink the
1072     // cast.
1073     if (UserBB->getTerminator()->isEHPad())
1074       continue;
1075 
1076     // If this user is in the same block as the cast, don't change the cast.
1077     if (UserBB == DefBB) continue;
1078 
1079     // If we have already inserted a cast into this block, use it.
1080     CastInst *&InsertedCast = InsertedCasts[UserBB];
1081 
1082     if (!InsertedCast) {
1083       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1084       assert(InsertPt != UserBB->end());
1085       InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1086                                       CI->getType(), "", &*InsertPt);
1087       InsertedCast->setDebugLoc(CI->getDebugLoc());
1088     }
1089 
1090     // Replace a use of the cast with a use of the new cast.
1091     TheUse = InsertedCast;
1092     MadeChange = true;
1093     ++NumCastUses;
1094   }
1095 
1096   // If we removed all uses, nuke the cast.
1097   if (CI->use_empty()) {
1098     salvageDebugInfo(*CI);
1099     CI->eraseFromParent();
1100     MadeChange = true;
1101   }
1102 
1103   return MadeChange;
1104 }
1105 
1106 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1107 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1108 /// reduce the number of virtual registers that must be created and coalesced.
1109 ///
1110 /// Return true if any changes are made.
1111 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1112                                        const DataLayout &DL) {
1113   // Sink only "cheap" (or nop) address-space casts.  This is a weaker condition
1114   // than sinking only nop casts, but is helpful on some platforms.
1115   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1116     if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(),
1117                                   ASC->getDestAddressSpace()))
1118       return false;
1119   }
1120 
1121   // If this is a noop copy,
1122   EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1123   EVT DstVT = TLI.getValueType(DL, CI->getType());
1124 
1125   // This is an fp<->int conversion?
1126   if (SrcVT.isInteger() != DstVT.isInteger())
1127     return false;
1128 
1129   // If this is an extension, it will be a zero or sign extension, which
1130   // isn't a noop.
1131   if (SrcVT.bitsLT(DstVT)) return false;
1132 
1133   // If these values will be promoted, find out what they will be promoted
1134   // to.  This helps us consider truncates on PPC as noop copies when they
1135   // are.
1136   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1137       TargetLowering::TypePromoteInteger)
1138     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1139   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1140       TargetLowering::TypePromoteInteger)
1141     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1142 
1143   // If, after promotion, these are the same types, this is a noop copy.
1144   if (SrcVT != DstVT)
1145     return false;
1146 
1147   return SinkCast(CI);
1148 }
1149 
1150 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if
1151 /// possible.
1152 ///
1153 /// Return true if any changes were made.
1154 static bool CombineUAddWithOverflow(CmpInst *CI) {
1155   Value *A, *B;
1156   Instruction *AddI;
1157   if (!match(CI,
1158              m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI))))
1159     return false;
1160 
1161   Type *Ty = AddI->getType();
1162   if (!isa<IntegerType>(Ty))
1163     return false;
1164 
1165   // We don't want to move around uses of condition values this late, so we we
1166   // check if it is legal to create the call to the intrinsic in the basic
1167   // block containing the icmp:
1168 
1169   if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse())
1170     return false;
1171 
1172 #ifndef NDEBUG
1173   // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption
1174   // for now:
1175   if (AddI->hasOneUse())
1176     assert(*AddI->user_begin() == CI && "expected!");
1177 #endif
1178 
1179   Module *M = CI->getModule();
1180   Function *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
1181 
1182   auto *InsertPt = AddI->hasOneUse() ? CI : AddI;
1183 
1184   DebugLoc Loc = CI->getDebugLoc();
1185   auto *UAddWithOverflow =
1186       CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt);
1187   UAddWithOverflow->setDebugLoc(Loc);
1188   auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt);
1189   UAdd->setDebugLoc(Loc);
1190   auto *Overflow =
1191       ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt);
1192   Overflow->setDebugLoc(Loc);
1193 
1194   CI->replaceAllUsesWith(Overflow);
1195   AddI->replaceAllUsesWith(UAdd);
1196   CI->eraseFromParent();
1197   AddI->eraseFromParent();
1198   return true;
1199 }
1200 
1201 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1202 /// registers that must be created and coalesced. This is a clear win except on
1203 /// targets with multiple condition code registers (PowerPC), where it might
1204 /// lose; some adjustment may be wanted there.
1205 ///
1206 /// Return true if any changes are made.
1207 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) {
1208   BasicBlock *DefBB = CI->getParent();
1209 
1210   // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1211   if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI))
1212     return false;
1213 
1214   // Only insert a cmp in each block once.
1215   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
1216 
1217   bool MadeChange = false;
1218   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1219        UI != E; ) {
1220     Use &TheUse = UI.getUse();
1221     Instruction *User = cast<Instruction>(*UI);
1222 
1223     // Preincrement use iterator so we don't invalidate it.
1224     ++UI;
1225 
1226     // Don't bother for PHI nodes.
1227     if (isa<PHINode>(User))
1228       continue;
1229 
1230     // Figure out which BB this cmp is used in.
1231     BasicBlock *UserBB = User->getParent();
1232 
1233     // If this user is in the same block as the cmp, don't change the cmp.
1234     if (UserBB == DefBB) continue;
1235 
1236     // If we have already inserted a cmp into this block, use it.
1237     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1238 
1239     if (!InsertedCmp) {
1240       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1241       assert(InsertPt != UserBB->end());
1242       InsertedCmp =
1243           CmpInst::Create(CI->getOpcode(), CI->getPredicate(),
1244                           CI->getOperand(0), CI->getOperand(1), "", &*InsertPt);
1245       // Propagate the debug info.
1246       InsertedCmp->setDebugLoc(CI->getDebugLoc());
1247     }
1248 
1249     // Replace a use of the cmp with a use of the new cmp.
1250     TheUse = InsertedCmp;
1251     MadeChange = true;
1252     ++NumCmpUses;
1253   }
1254 
1255   // If we removed all uses, nuke the cmp.
1256   if (CI->use_empty()) {
1257     CI->eraseFromParent();
1258     MadeChange = true;
1259   }
1260 
1261   return MadeChange;
1262 }
1263 
1264 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) {
1265   if (SinkCmpExpression(CI, TLI))
1266     return true;
1267 
1268   if (CombineUAddWithOverflow(CI))
1269     return true;
1270 
1271   return false;
1272 }
1273 
1274 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1275 /// used in a compare to allow isel to generate better code for targets where
1276 /// this operation can be combined.
1277 ///
1278 /// Return true if any changes are made.
1279 static bool sinkAndCmp0Expression(Instruction *AndI,
1280                                   const TargetLowering &TLI,
1281                                   SetOfInstrs &InsertedInsts) {
1282   // Double-check that we're not trying to optimize an instruction that was
1283   // already optimized by some other part of this pass.
1284   assert(!InsertedInsts.count(AndI) &&
1285          "Attempting to optimize already optimized and instruction");
1286   (void) InsertedInsts;
1287 
1288   // Nothing to do for single use in same basic block.
1289   if (AndI->hasOneUse() &&
1290       AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
1291     return false;
1292 
1293   // Try to avoid cases where sinking/duplicating is likely to increase register
1294   // pressure.
1295   if (!isa<ConstantInt>(AndI->getOperand(0)) &&
1296       !isa<ConstantInt>(AndI->getOperand(1)) &&
1297       AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
1298     return false;
1299 
1300   for (auto *U : AndI->users()) {
1301     Instruction *User = cast<Instruction>(U);
1302 
1303     // Only sink for and mask feeding icmp with 0.
1304     if (!isa<ICmpInst>(User))
1305       return false;
1306 
1307     auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
1308     if (!CmpC || !CmpC->isZero())
1309       return false;
1310   }
1311 
1312   if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
1313     return false;
1314 
1315   LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1316   LLVM_DEBUG(AndI->getParent()->dump());
1317 
1318   // Push the 'and' into the same block as the icmp 0.  There should only be
1319   // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1320   // others, so we don't need to keep track of which BBs we insert into.
1321   for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
1322        UI != E; ) {
1323     Use &TheUse = UI.getUse();
1324     Instruction *User = cast<Instruction>(*UI);
1325 
1326     // Preincrement use iterator so we don't invalidate it.
1327     ++UI;
1328 
1329     LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
1330 
1331     // Keep the 'and' in the same place if the use is already in the same block.
1332     Instruction *InsertPt =
1333         User->getParent() == AndI->getParent() ? AndI : User;
1334     Instruction *InsertedAnd =
1335         BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
1336                                AndI->getOperand(1), "", InsertPt);
1337     // Propagate the debug info.
1338     InsertedAnd->setDebugLoc(AndI->getDebugLoc());
1339 
1340     // Replace a use of the 'and' with a use of the new 'and'.
1341     TheUse = InsertedAnd;
1342     ++NumAndUses;
1343     LLVM_DEBUG(User->getParent()->dump());
1344   }
1345 
1346   // We removed all uses, nuke the and.
1347   AndI->eraseFromParent();
1348   return true;
1349 }
1350 
1351 /// Check if the candidates could be combined with a shift instruction, which
1352 /// includes:
1353 /// 1. Truncate instruction
1354 /// 2. And instruction and the imm is a mask of the low bits:
1355 /// imm & (imm+1) == 0
1356 static bool isExtractBitsCandidateUse(Instruction *User) {
1357   if (!isa<TruncInst>(User)) {
1358     if (User->getOpcode() != Instruction::And ||
1359         !isa<ConstantInt>(User->getOperand(1)))
1360       return false;
1361 
1362     const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
1363 
1364     if ((Cimm & (Cimm + 1)).getBoolValue())
1365       return false;
1366   }
1367   return true;
1368 }
1369 
1370 /// Sink both shift and truncate instruction to the use of truncate's BB.
1371 static bool
1372 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
1373                      DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
1374                      const TargetLowering &TLI, const DataLayout &DL) {
1375   BasicBlock *UserBB = User->getParent();
1376   DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
1377   TruncInst *TruncI = dyn_cast<TruncInst>(User);
1378   bool MadeChange = false;
1379 
1380   for (Value::user_iterator TruncUI = TruncI->user_begin(),
1381                             TruncE = TruncI->user_end();
1382        TruncUI != TruncE;) {
1383 
1384     Use &TruncTheUse = TruncUI.getUse();
1385     Instruction *TruncUser = cast<Instruction>(*TruncUI);
1386     // Preincrement use iterator so we don't invalidate it.
1387 
1388     ++TruncUI;
1389 
1390     int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
1391     if (!ISDOpcode)
1392       continue;
1393 
1394     // If the use is actually a legal node, there will not be an
1395     // implicit truncate.
1396     // FIXME: always querying the result type is just an
1397     // approximation; some nodes' legality is determined by the
1398     // operand or other means. There's no good way to find out though.
1399     if (TLI.isOperationLegalOrCustom(
1400             ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
1401       continue;
1402 
1403     // Don't bother for PHI nodes.
1404     if (isa<PHINode>(TruncUser))
1405       continue;
1406 
1407     BasicBlock *TruncUserBB = TruncUser->getParent();
1408 
1409     if (UserBB == TruncUserBB)
1410       continue;
1411 
1412     BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
1413     CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
1414 
1415     if (!InsertedShift && !InsertedTrunc) {
1416       BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
1417       assert(InsertPt != TruncUserBB->end());
1418       // Sink the shift
1419       if (ShiftI->getOpcode() == Instruction::AShr)
1420         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1421                                                    "", &*InsertPt);
1422       else
1423         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1424                                                    "", &*InsertPt);
1425       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1426 
1427       // Sink the trunc
1428       BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
1429       TruncInsertPt++;
1430       assert(TruncInsertPt != TruncUserBB->end());
1431 
1432       InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
1433                                        TruncI->getType(), "", &*TruncInsertPt);
1434       InsertedTrunc->setDebugLoc(TruncI->getDebugLoc());
1435 
1436       MadeChange = true;
1437 
1438       TruncTheUse = InsertedTrunc;
1439     }
1440   }
1441   return MadeChange;
1442 }
1443 
1444 /// Sink the shift *right* instruction into user blocks if the uses could
1445 /// potentially be combined with this shift instruction and generate BitExtract
1446 /// instruction. It will only be applied if the architecture supports BitExtract
1447 /// instruction. Here is an example:
1448 /// BB1:
1449 ///   %x.extract.shift = lshr i64 %arg1, 32
1450 /// BB2:
1451 ///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
1452 /// ==>
1453 ///
1454 /// BB2:
1455 ///   %x.extract.shift.1 = lshr i64 %arg1, 32
1456 ///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1457 ///
1458 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
1459 /// instruction.
1460 /// Return true if any changes are made.
1461 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1462                                 const TargetLowering &TLI,
1463                                 const DataLayout &DL) {
1464   BasicBlock *DefBB = ShiftI->getParent();
1465 
1466   /// Only insert instructions in each block once.
1467   DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1468 
1469   bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1470 
1471   bool MadeChange = false;
1472   for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1473        UI != E;) {
1474     Use &TheUse = UI.getUse();
1475     Instruction *User = cast<Instruction>(*UI);
1476     // Preincrement use iterator so we don't invalidate it.
1477     ++UI;
1478 
1479     // Don't bother for PHI nodes.
1480     if (isa<PHINode>(User))
1481       continue;
1482 
1483     if (!isExtractBitsCandidateUse(User))
1484       continue;
1485 
1486     BasicBlock *UserBB = User->getParent();
1487 
1488     if (UserBB == DefBB) {
1489       // If the shift and truncate instruction are in the same BB. The use of
1490       // the truncate(TruncUse) may still introduce another truncate if not
1491       // legal. In this case, we would like to sink both shift and truncate
1492       // instruction to the BB of TruncUse.
1493       // for example:
1494       // BB1:
1495       // i64 shift.result = lshr i64 opnd, imm
1496       // trunc.result = trunc shift.result to i16
1497       //
1498       // BB2:
1499       //   ----> We will have an implicit truncate here if the architecture does
1500       //   not have i16 compare.
1501       // cmp i16 trunc.result, opnd2
1502       //
1503       if (isa<TruncInst>(User) && shiftIsLegal
1504           // If the type of the truncate is legal, no truncate will be
1505           // introduced in other basic blocks.
1506           &&
1507           (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1508         MadeChange =
1509             SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1510 
1511       continue;
1512     }
1513     // If we have already inserted a shift into this block, use it.
1514     BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1515 
1516     if (!InsertedShift) {
1517       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1518       assert(InsertPt != UserBB->end());
1519 
1520       if (ShiftI->getOpcode() == Instruction::AShr)
1521         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1522                                                    "", &*InsertPt);
1523       else
1524         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1525                                                    "", &*InsertPt);
1526       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1527 
1528       MadeChange = true;
1529     }
1530 
1531     // Replace a use of the shift with a use of the new shift.
1532     TheUse = InsertedShift;
1533   }
1534 
1535   // If we removed all uses, nuke the shift.
1536   if (ShiftI->use_empty()) {
1537     salvageDebugInfo(*ShiftI);
1538     ShiftI->eraseFromParent();
1539   }
1540 
1541   return MadeChange;
1542 }
1543 
1544 /// If counting leading or trailing zeros is an expensive operation and a zero
1545 /// input is defined, add a check for zero to avoid calling the intrinsic.
1546 ///
1547 /// We want to transform:
1548 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
1549 ///
1550 /// into:
1551 ///   entry:
1552 ///     %cmpz = icmp eq i64 %A, 0
1553 ///     br i1 %cmpz, label %cond.end, label %cond.false
1554 ///   cond.false:
1555 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
1556 ///     br label %cond.end
1557 ///   cond.end:
1558 ///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
1559 ///
1560 /// If the transform is performed, return true and set ModifiedDT to true.
1561 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
1562                                   const TargetLowering *TLI,
1563                                   const DataLayout *DL,
1564                                   bool &ModifiedDT) {
1565   if (!TLI || !DL)
1566     return false;
1567 
1568   // If a zero input is undefined, it doesn't make sense to despeculate that.
1569   if (match(CountZeros->getOperand(1), m_One()))
1570     return false;
1571 
1572   // If it's cheap to speculate, there's nothing to do.
1573   auto IntrinsicID = CountZeros->getIntrinsicID();
1574   if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
1575       (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
1576     return false;
1577 
1578   // Only handle legal scalar cases. Anything else requires too much work.
1579   Type *Ty = CountZeros->getType();
1580   unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
1581   if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
1582     return false;
1583 
1584   // The intrinsic will be sunk behind a compare against zero and branch.
1585   BasicBlock *StartBlock = CountZeros->getParent();
1586   BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
1587 
1588   // Create another block after the count zero intrinsic. A PHI will be added
1589   // in this block to select the result of the intrinsic or the bit-width
1590   // constant if the input to the intrinsic is zero.
1591   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
1592   BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
1593 
1594   // Set up a builder to create a compare, conditional branch, and PHI.
1595   IRBuilder<> Builder(CountZeros->getContext());
1596   Builder.SetInsertPoint(StartBlock->getTerminator());
1597   Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
1598 
1599   // Replace the unconditional branch that was created by the first split with
1600   // a compare against zero and a conditional branch.
1601   Value *Zero = Constant::getNullValue(Ty);
1602   Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
1603   Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
1604   StartBlock->getTerminator()->eraseFromParent();
1605 
1606   // Create a PHI in the end block to select either the output of the intrinsic
1607   // or the bit width of the operand.
1608   Builder.SetInsertPoint(&EndBlock->front());
1609   PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
1610   CountZeros->replaceAllUsesWith(PN);
1611   Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
1612   PN->addIncoming(BitWidth, StartBlock);
1613   PN->addIncoming(CountZeros, CallBlock);
1614 
1615   // We are explicitly handling the zero case, so we can set the intrinsic's
1616   // undefined zero argument to 'true'. This will also prevent reprocessing the
1617   // intrinsic; we only despeculate when a zero input is defined.
1618   CountZeros->setArgOperand(1, Builder.getTrue());
1619   ModifiedDT = true;
1620   return true;
1621 }
1622 
1623 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
1624   BasicBlock *BB = CI->getParent();
1625 
1626   // Lower inline assembly if we can.
1627   // If we found an inline asm expession, and if the target knows how to
1628   // lower it to normal LLVM code, do so now.
1629   if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
1630     if (TLI->ExpandInlineAsm(CI)) {
1631       // Avoid invalidating the iterator.
1632       CurInstIterator = BB->begin();
1633       // Avoid processing instructions out of order, which could cause
1634       // reuse before a value is defined.
1635       SunkAddrs.clear();
1636       return true;
1637     }
1638     // Sink address computing for memory operands into the block.
1639     if (optimizeInlineAsmInst(CI))
1640       return true;
1641   }
1642 
1643   // Align the pointer arguments to this call if the target thinks it's a good
1644   // idea
1645   unsigned MinSize, PrefAlign;
1646   if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
1647     for (auto &Arg : CI->arg_operands()) {
1648       // We want to align both objects whose address is used directly and
1649       // objects whose address is used in casts and GEPs, though it only makes
1650       // sense for GEPs if the offset is a multiple of the desired alignment and
1651       // if size - offset meets the size threshold.
1652       if (!Arg->getType()->isPointerTy())
1653         continue;
1654       APInt Offset(DL->getIndexSizeInBits(
1655                        cast<PointerType>(Arg->getType())->getAddressSpace()),
1656                    0);
1657       Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
1658       uint64_t Offset2 = Offset.getLimitedValue();
1659       if ((Offset2 & (PrefAlign-1)) != 0)
1660         continue;
1661       AllocaInst *AI;
1662       if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
1663           DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
1664         AI->setAlignment(PrefAlign);
1665       // Global variables can only be aligned if they are defined in this
1666       // object (i.e. they are uniquely initialized in this object), and
1667       // over-aligning global variables that have an explicit section is
1668       // forbidden.
1669       GlobalVariable *GV;
1670       if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
1671           GV->getPointerAlignment(*DL) < PrefAlign &&
1672           DL->getTypeAllocSize(GV->getValueType()) >=
1673               MinSize + Offset2)
1674         GV->setAlignment(PrefAlign);
1675     }
1676     // If this is a memcpy (or similar) then we may be able to improve the
1677     // alignment
1678     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
1679       unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL);
1680       if (DestAlign > MI->getDestAlignment())
1681         MI->setDestAlignment(DestAlign);
1682       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
1683         unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
1684         if (SrcAlign > MTI->getSourceAlignment())
1685           MTI->setSourceAlignment(SrcAlign);
1686       }
1687     }
1688   }
1689 
1690   // If we have a cold call site, try to sink addressing computation into the
1691   // cold block.  This interacts with our handling for loads and stores to
1692   // ensure that we can fold all uses of a potential addressing computation
1693   // into their uses.  TODO: generalize this to work over profiling data
1694   if (!OptSize && CI->hasFnAttr(Attribute::Cold))
1695     for (auto &Arg : CI->arg_operands()) {
1696       if (!Arg->getType()->isPointerTy())
1697         continue;
1698       unsigned AS = Arg->getType()->getPointerAddressSpace();
1699       return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
1700     }
1701 
1702   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
1703   if (II) {
1704     switch (II->getIntrinsicID()) {
1705     default: break;
1706     case Intrinsic::experimental_widenable_condition: {
1707       // Give up on future widening oppurtunties so that we can fold away dead
1708       // paths and merge blocks before going into block-local instruction
1709       // selection.
1710       if (II->use_empty()) {
1711         II->eraseFromParent();
1712         return true;
1713       }
1714       Constant *RetVal = ConstantInt::getTrue(II->getContext());
1715       resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
1716         replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
1717       });
1718       return true;
1719     }
1720     case Intrinsic::objectsize: {
1721       // Lower all uses of llvm.objectsize.*
1722       Value *RetVal =
1723           lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true);
1724 
1725       resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
1726         replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
1727       });
1728       return true;
1729     }
1730     case Intrinsic::is_constant: {
1731       // If is_constant hasn't folded away yet, lower it to false now.
1732       Constant *RetVal = ConstantInt::get(II->getType(), 0);
1733       resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
1734         replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
1735       });
1736       return true;
1737     }
1738     case Intrinsic::aarch64_stlxr:
1739     case Intrinsic::aarch64_stxr: {
1740       ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
1741       if (!ExtVal || !ExtVal->hasOneUse() ||
1742           ExtVal->getParent() == CI->getParent())
1743         return false;
1744       // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
1745       ExtVal->moveBefore(CI);
1746       // Mark this instruction as "inserted by CGP", so that other
1747       // optimizations don't touch it.
1748       InsertedInsts.insert(ExtVal);
1749       return true;
1750     }
1751     case Intrinsic::launder_invariant_group:
1752     case Intrinsic::strip_invariant_group: {
1753       Value *ArgVal = II->getArgOperand(0);
1754       auto it = LargeOffsetGEPMap.find(II);
1755       if (it != LargeOffsetGEPMap.end()) {
1756           // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
1757           // Make sure not to have to deal with iterator invalidation
1758           // after possibly adding ArgVal to LargeOffsetGEPMap.
1759           auto GEPs = std::move(it->second);
1760           LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end());
1761           LargeOffsetGEPMap.erase(II);
1762       }
1763 
1764       II->replaceAllUsesWith(ArgVal);
1765       II->eraseFromParent();
1766       return true;
1767     }
1768     case Intrinsic::cttz:
1769     case Intrinsic::ctlz:
1770       // If counting zeros is expensive, try to avoid it.
1771       return despeculateCountZeros(II, TLI, DL, ModifiedDT);
1772     }
1773 
1774     if (TLI) {
1775       SmallVector<Value*, 2> PtrOps;
1776       Type *AccessTy;
1777       if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
1778         while (!PtrOps.empty()) {
1779           Value *PtrVal = PtrOps.pop_back_val();
1780           unsigned AS = PtrVal->getType()->getPointerAddressSpace();
1781           if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
1782             return true;
1783         }
1784     }
1785   }
1786 
1787   // From here on out we're working with named functions.
1788   if (!CI->getCalledFunction()) return false;
1789 
1790   // Lower all default uses of _chk calls.  This is very similar
1791   // to what InstCombineCalls does, but here we are only lowering calls
1792   // to fortified library functions (e.g. __memcpy_chk) that have the default
1793   // "don't know" as the objectsize.  Anything else should be left alone.
1794   FortifiedLibCallSimplifier Simplifier(TLInfo, true);
1795   if (Value *V = Simplifier.optimizeCall(CI)) {
1796     CI->replaceAllUsesWith(V);
1797     CI->eraseFromParent();
1798     return true;
1799   }
1800 
1801   return false;
1802 }
1803 
1804 /// Look for opportunities to duplicate return instructions to the predecessor
1805 /// to enable tail call optimizations. The case it is currently looking for is:
1806 /// @code
1807 /// bb0:
1808 ///   %tmp0 = tail call i32 @f0()
1809 ///   br label %return
1810 /// bb1:
1811 ///   %tmp1 = tail call i32 @f1()
1812 ///   br label %return
1813 /// bb2:
1814 ///   %tmp2 = tail call i32 @f2()
1815 ///   br label %return
1816 /// return:
1817 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
1818 ///   ret i32 %retval
1819 /// @endcode
1820 ///
1821 /// =>
1822 ///
1823 /// @code
1824 /// bb0:
1825 ///   %tmp0 = tail call i32 @f0()
1826 ///   ret i32 %tmp0
1827 /// bb1:
1828 ///   %tmp1 = tail call i32 @f1()
1829 ///   ret i32 %tmp1
1830 /// bb2:
1831 ///   %tmp2 = tail call i32 @f2()
1832 ///   ret i32 %tmp2
1833 /// @endcode
1834 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) {
1835   if (!TLI)
1836     return false;
1837 
1838   ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
1839   if (!RetI)
1840     return false;
1841 
1842   PHINode *PN = nullptr;
1843   BitCastInst *BCI = nullptr;
1844   Value *V = RetI->getReturnValue();
1845   if (V) {
1846     BCI = dyn_cast<BitCastInst>(V);
1847     if (BCI)
1848       V = BCI->getOperand(0);
1849 
1850     PN = dyn_cast<PHINode>(V);
1851     if (!PN)
1852       return false;
1853   }
1854 
1855   if (PN && PN->getParent() != BB)
1856     return false;
1857 
1858   // Make sure there are no instructions between the PHI and return, or that the
1859   // return is the first instruction in the block.
1860   if (PN) {
1861     BasicBlock::iterator BI = BB->begin();
1862     // Skip over debug and the bitcast.
1863     do { ++BI; } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI);
1864     if (&*BI != RetI)
1865       return false;
1866   } else {
1867     BasicBlock::iterator BI = BB->begin();
1868     while (isa<DbgInfoIntrinsic>(BI)) ++BI;
1869     if (&*BI != RetI)
1870       return false;
1871   }
1872 
1873   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
1874   /// call.
1875   const Function *F = BB->getParent();
1876   SmallVector<CallInst*, 4> TailCalls;
1877   if (PN) {
1878     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
1879       CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
1880       // Make sure the phi value is indeed produced by the tail call.
1881       if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
1882           TLI->mayBeEmittedAsTailCall(CI) &&
1883           attributesPermitTailCall(F, CI, RetI, *TLI))
1884         TailCalls.push_back(CI);
1885     }
1886   } else {
1887     SmallPtrSet<BasicBlock*, 4> VisitedBBs;
1888     for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
1889       if (!VisitedBBs.insert(*PI).second)
1890         continue;
1891 
1892       BasicBlock::InstListType &InstList = (*PI)->getInstList();
1893       BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
1894       BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
1895       do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
1896       if (RI == RE)
1897         continue;
1898 
1899       CallInst *CI = dyn_cast<CallInst>(&*RI);
1900       if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
1901           attributesPermitTailCall(F, CI, RetI, *TLI))
1902         TailCalls.push_back(CI);
1903     }
1904   }
1905 
1906   bool Changed = false;
1907   for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
1908     CallInst *CI = TailCalls[i];
1909     CallSite CS(CI);
1910 
1911     // Make sure the call instruction is followed by an unconditional branch to
1912     // the return block.
1913     BasicBlock *CallBB = CI->getParent();
1914     BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
1915     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
1916       continue;
1917 
1918     // Duplicate the return into CallBB.
1919     (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB);
1920     ModifiedDT = Changed = true;
1921     ++NumRetsDup;
1922   }
1923 
1924   // If we eliminated all predecessors of the block, delete the block now.
1925   if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
1926     BB->eraseFromParent();
1927 
1928   return Changed;
1929 }
1930 
1931 //===----------------------------------------------------------------------===//
1932 // Memory Optimization
1933 //===----------------------------------------------------------------------===//
1934 
1935 namespace {
1936 
1937 /// This is an extended version of TargetLowering::AddrMode
1938 /// which holds actual Value*'s for register values.
1939 struct ExtAddrMode : public TargetLowering::AddrMode {
1940   Value *BaseReg = nullptr;
1941   Value *ScaledReg = nullptr;
1942   Value *OriginalValue = nullptr;
1943 
1944   enum FieldName {
1945     NoField        = 0x00,
1946     BaseRegField   = 0x01,
1947     BaseGVField    = 0x02,
1948     BaseOffsField  = 0x04,
1949     ScaledRegField = 0x08,
1950     ScaleField     = 0x10,
1951     MultipleFields = 0xff
1952   };
1953 
1954   ExtAddrMode() = default;
1955 
1956   void print(raw_ostream &OS) const;
1957   void dump() const;
1958 
1959   FieldName compare(const ExtAddrMode &other) {
1960     // First check that the types are the same on each field, as differing types
1961     // is something we can't cope with later on.
1962     if (BaseReg && other.BaseReg &&
1963         BaseReg->getType() != other.BaseReg->getType())
1964       return MultipleFields;
1965     if (BaseGV && other.BaseGV &&
1966         BaseGV->getType() != other.BaseGV->getType())
1967       return MultipleFields;
1968     if (ScaledReg && other.ScaledReg &&
1969         ScaledReg->getType() != other.ScaledReg->getType())
1970       return MultipleFields;
1971 
1972     // Check each field to see if it differs.
1973     unsigned Result = NoField;
1974     if (BaseReg != other.BaseReg)
1975       Result |= BaseRegField;
1976     if (BaseGV != other.BaseGV)
1977       Result |= BaseGVField;
1978     if (BaseOffs != other.BaseOffs)
1979       Result |= BaseOffsField;
1980     if (ScaledReg != other.ScaledReg)
1981       Result |= ScaledRegField;
1982     // Don't count 0 as being a different scale, because that actually means
1983     // unscaled (which will already be counted by having no ScaledReg).
1984     if (Scale && other.Scale && Scale != other.Scale)
1985       Result |= ScaleField;
1986 
1987     if (countPopulation(Result) > 1)
1988       return MultipleFields;
1989     else
1990       return static_cast<FieldName>(Result);
1991   }
1992 
1993   // An AddrMode is trivial if it involves no calculation i.e. it is just a base
1994   // with no offset.
1995   bool isTrivial() {
1996     // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
1997     // trivial if at most one of these terms is nonzero, except that BaseGV and
1998     // BaseReg both being zero actually means a null pointer value, which we
1999     // consider to be 'non-zero' here.
2000     return !BaseOffs && !Scale && !(BaseGV && BaseReg);
2001   }
2002 
2003   Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
2004     switch (Field) {
2005     default:
2006       return nullptr;
2007     case BaseRegField:
2008       return BaseReg;
2009     case BaseGVField:
2010       return BaseGV;
2011     case ScaledRegField:
2012       return ScaledReg;
2013     case BaseOffsField:
2014       return ConstantInt::get(IntPtrTy, BaseOffs);
2015     }
2016   }
2017 
2018   void SetCombinedField(FieldName Field, Value *V,
2019                         const SmallVectorImpl<ExtAddrMode> &AddrModes) {
2020     switch (Field) {
2021     default:
2022       llvm_unreachable("Unhandled fields are expected to be rejected earlier");
2023       break;
2024     case ExtAddrMode::BaseRegField:
2025       BaseReg = V;
2026       break;
2027     case ExtAddrMode::BaseGVField:
2028       // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
2029       // in the BaseReg field.
2030       assert(BaseReg == nullptr);
2031       BaseReg = V;
2032       BaseGV = nullptr;
2033       break;
2034     case ExtAddrMode::ScaledRegField:
2035       ScaledReg = V;
2036       // If we have a mix of scaled and unscaled addrmodes then we want scale
2037       // to be the scale and not zero.
2038       if (!Scale)
2039         for (const ExtAddrMode &AM : AddrModes)
2040           if (AM.Scale) {
2041             Scale = AM.Scale;
2042             break;
2043           }
2044       break;
2045     case ExtAddrMode::BaseOffsField:
2046       // The offset is no longer a constant, so it goes in ScaledReg with a
2047       // scale of 1.
2048       assert(ScaledReg == nullptr);
2049       ScaledReg = V;
2050       Scale = 1;
2051       BaseOffs = 0;
2052       break;
2053     }
2054   }
2055 };
2056 
2057 } // end anonymous namespace
2058 
2059 #ifndef NDEBUG
2060 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2061   AM.print(OS);
2062   return OS;
2063 }
2064 #endif
2065 
2066 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2067 void ExtAddrMode::print(raw_ostream &OS) const {
2068   bool NeedPlus = false;
2069   OS << "[";
2070   if (BaseGV) {
2071     OS << (NeedPlus ? " + " : "")
2072        << "GV:";
2073     BaseGV->printAsOperand(OS, /*PrintType=*/false);
2074     NeedPlus = true;
2075   }
2076 
2077   if (BaseOffs) {
2078     OS << (NeedPlus ? " + " : "")
2079        << BaseOffs;
2080     NeedPlus = true;
2081   }
2082 
2083   if (BaseReg) {
2084     OS << (NeedPlus ? " + " : "")
2085        << "Base:";
2086     BaseReg->printAsOperand(OS, /*PrintType=*/false);
2087     NeedPlus = true;
2088   }
2089   if (Scale) {
2090     OS << (NeedPlus ? " + " : "")
2091        << Scale << "*";
2092     ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2093   }
2094 
2095   OS << ']';
2096 }
2097 
2098 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2099   print(dbgs());
2100   dbgs() << '\n';
2101 }
2102 #endif
2103 
2104 namespace {
2105 
2106 /// This class provides transaction based operation on the IR.
2107 /// Every change made through this class is recorded in the internal state and
2108 /// can be undone (rollback) until commit is called.
2109 class TypePromotionTransaction {
2110   /// This represents the common interface of the individual transaction.
2111   /// Each class implements the logic for doing one specific modification on
2112   /// the IR via the TypePromotionTransaction.
2113   class TypePromotionAction {
2114   protected:
2115     /// The Instruction modified.
2116     Instruction *Inst;
2117 
2118   public:
2119     /// Constructor of the action.
2120     /// The constructor performs the related action on the IR.
2121     TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2122 
2123     virtual ~TypePromotionAction() = default;
2124 
2125     /// Undo the modification done by this action.
2126     /// When this method is called, the IR must be in the same state as it was
2127     /// before this action was applied.
2128     /// \pre Undoing the action works if and only if the IR is in the exact same
2129     /// state as it was directly after this action was applied.
2130     virtual void undo() = 0;
2131 
2132     /// Advocate every change made by this action.
2133     /// When the results on the IR of the action are to be kept, it is important
2134     /// to call this function, otherwise hidden information may be kept forever.
2135     virtual void commit() {
2136       // Nothing to be done, this action is not doing anything.
2137     }
2138   };
2139 
2140   /// Utility to remember the position of an instruction.
2141   class InsertionHandler {
2142     /// Position of an instruction.
2143     /// Either an instruction:
2144     /// - Is the first in a basic block: BB is used.
2145     /// - Has a previous instruction: PrevInst is used.
2146     union {
2147       Instruction *PrevInst;
2148       BasicBlock *BB;
2149     } Point;
2150 
2151     /// Remember whether or not the instruction had a previous instruction.
2152     bool HasPrevInstruction;
2153 
2154   public:
2155     /// Record the position of \p Inst.
2156     InsertionHandler(Instruction *Inst) {
2157       BasicBlock::iterator It = Inst->getIterator();
2158       HasPrevInstruction = (It != (Inst->getParent()->begin()));
2159       if (HasPrevInstruction)
2160         Point.PrevInst = &*--It;
2161       else
2162         Point.BB = Inst->getParent();
2163     }
2164 
2165     /// Insert \p Inst at the recorded position.
2166     void insert(Instruction *Inst) {
2167       if (HasPrevInstruction) {
2168         if (Inst->getParent())
2169           Inst->removeFromParent();
2170         Inst->insertAfter(Point.PrevInst);
2171       } else {
2172         Instruction *Position = &*Point.BB->getFirstInsertionPt();
2173         if (Inst->getParent())
2174           Inst->moveBefore(Position);
2175         else
2176           Inst->insertBefore(Position);
2177       }
2178     }
2179   };
2180 
2181   /// Move an instruction before another.
2182   class InstructionMoveBefore : public TypePromotionAction {
2183     /// Original position of the instruction.
2184     InsertionHandler Position;
2185 
2186   public:
2187     /// Move \p Inst before \p Before.
2188     InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2189         : TypePromotionAction(Inst), Position(Inst) {
2190       LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
2191                         << "\n");
2192       Inst->moveBefore(Before);
2193     }
2194 
2195     /// Move the instruction back to its original position.
2196     void undo() override {
2197       LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2198       Position.insert(Inst);
2199     }
2200   };
2201 
2202   /// Set the operand of an instruction with a new value.
2203   class OperandSetter : public TypePromotionAction {
2204     /// Original operand of the instruction.
2205     Value *Origin;
2206 
2207     /// Index of the modified instruction.
2208     unsigned Idx;
2209 
2210   public:
2211     /// Set \p Idx operand of \p Inst with \p NewVal.
2212     OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2213         : TypePromotionAction(Inst), Idx(Idx) {
2214       LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2215                         << "for:" << *Inst << "\n"
2216                         << "with:" << *NewVal << "\n");
2217       Origin = Inst->getOperand(Idx);
2218       Inst->setOperand(Idx, NewVal);
2219     }
2220 
2221     /// Restore the original value of the instruction.
2222     void undo() override {
2223       LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2224                         << "for: " << *Inst << "\n"
2225                         << "with: " << *Origin << "\n");
2226       Inst->setOperand(Idx, Origin);
2227     }
2228   };
2229 
2230   /// Hide the operands of an instruction.
2231   /// Do as if this instruction was not using any of its operands.
2232   class OperandsHider : public TypePromotionAction {
2233     /// The list of original operands.
2234     SmallVector<Value *, 4> OriginalValues;
2235 
2236   public:
2237     /// Remove \p Inst from the uses of the operands of \p Inst.
2238     OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2239       LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2240       unsigned NumOpnds = Inst->getNumOperands();
2241       OriginalValues.reserve(NumOpnds);
2242       for (unsigned It = 0; It < NumOpnds; ++It) {
2243         // Save the current operand.
2244         Value *Val = Inst->getOperand(It);
2245         OriginalValues.push_back(Val);
2246         // Set a dummy one.
2247         // We could use OperandSetter here, but that would imply an overhead
2248         // that we are not willing to pay.
2249         Inst->setOperand(It, UndefValue::get(Val->getType()));
2250       }
2251     }
2252 
2253     /// Restore the original list of uses.
2254     void undo() override {
2255       LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2256       for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2257         Inst->setOperand(It, OriginalValues[It]);
2258     }
2259   };
2260 
2261   /// Build a truncate instruction.
2262   class TruncBuilder : public TypePromotionAction {
2263     Value *Val;
2264 
2265   public:
2266     /// Build a truncate instruction of \p Opnd producing a \p Ty
2267     /// result.
2268     /// trunc Opnd to Ty.
2269     TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2270       IRBuilder<> Builder(Opnd);
2271       Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2272       LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2273     }
2274 
2275     /// Get the built value.
2276     Value *getBuiltValue() { return Val; }
2277 
2278     /// Remove the built instruction.
2279     void undo() override {
2280       LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2281       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2282         IVal->eraseFromParent();
2283     }
2284   };
2285 
2286   /// Build a sign extension instruction.
2287   class SExtBuilder : public TypePromotionAction {
2288     Value *Val;
2289 
2290   public:
2291     /// Build a sign extension instruction of \p Opnd producing a \p Ty
2292     /// result.
2293     /// sext Opnd to Ty.
2294     SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2295         : TypePromotionAction(InsertPt) {
2296       IRBuilder<> Builder(InsertPt);
2297       Val = Builder.CreateSExt(Opnd, Ty, "promoted");
2298       LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
2299     }
2300 
2301     /// Get the built value.
2302     Value *getBuiltValue() { return Val; }
2303 
2304     /// Remove the built instruction.
2305     void undo() override {
2306       LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
2307       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2308         IVal->eraseFromParent();
2309     }
2310   };
2311 
2312   /// Build a zero extension instruction.
2313   class ZExtBuilder : public TypePromotionAction {
2314     Value *Val;
2315 
2316   public:
2317     /// Build a zero extension instruction of \p Opnd producing a \p Ty
2318     /// result.
2319     /// zext Opnd to Ty.
2320     ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2321         : TypePromotionAction(InsertPt) {
2322       IRBuilder<> Builder(InsertPt);
2323       Val = Builder.CreateZExt(Opnd, Ty, "promoted");
2324       LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
2325     }
2326 
2327     /// Get the built value.
2328     Value *getBuiltValue() { return Val; }
2329 
2330     /// Remove the built instruction.
2331     void undo() override {
2332       LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
2333       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2334         IVal->eraseFromParent();
2335     }
2336   };
2337 
2338   /// Mutate an instruction to another type.
2339   class TypeMutator : public TypePromotionAction {
2340     /// Record the original type.
2341     Type *OrigTy;
2342 
2343   public:
2344     /// Mutate the type of \p Inst into \p NewTy.
2345     TypeMutator(Instruction *Inst, Type *NewTy)
2346         : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
2347       LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
2348                         << "\n");
2349       Inst->mutateType(NewTy);
2350     }
2351 
2352     /// Mutate the instruction back to its original type.
2353     void undo() override {
2354       LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
2355                         << "\n");
2356       Inst->mutateType(OrigTy);
2357     }
2358   };
2359 
2360   /// Replace the uses of an instruction by another instruction.
2361   class UsesReplacer : public TypePromotionAction {
2362     /// Helper structure to keep track of the replaced uses.
2363     struct InstructionAndIdx {
2364       /// The instruction using the instruction.
2365       Instruction *Inst;
2366 
2367       /// The index where this instruction is used for Inst.
2368       unsigned Idx;
2369 
2370       InstructionAndIdx(Instruction *Inst, unsigned Idx)
2371           : Inst(Inst), Idx(Idx) {}
2372     };
2373 
2374     /// Keep track of the original uses (pair Instruction, Index).
2375     SmallVector<InstructionAndIdx, 4> OriginalUses;
2376     /// Keep track of the debug users.
2377     SmallVector<DbgValueInst *, 1> DbgValues;
2378 
2379     using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
2380 
2381   public:
2382     /// Replace all the use of \p Inst by \p New.
2383     UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
2384       LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
2385                         << "\n");
2386       // Record the original uses.
2387       for (Use &U : Inst->uses()) {
2388         Instruction *UserI = cast<Instruction>(U.getUser());
2389         OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
2390       }
2391       // Record the debug uses separately. They are not in the instruction's
2392       // use list, but they are replaced by RAUW.
2393       findDbgValues(DbgValues, Inst);
2394 
2395       // Now, we can replace the uses.
2396       Inst->replaceAllUsesWith(New);
2397     }
2398 
2399     /// Reassign the original uses of Inst to Inst.
2400     void undo() override {
2401       LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
2402       for (use_iterator UseIt = OriginalUses.begin(),
2403                         EndIt = OriginalUses.end();
2404            UseIt != EndIt; ++UseIt) {
2405         UseIt->Inst->setOperand(UseIt->Idx, Inst);
2406       }
2407       // RAUW has replaced all original uses with references to the new value,
2408       // including the debug uses. Since we are undoing the replacements,
2409       // the original debug uses must also be reinstated to maintain the
2410       // correctness and utility of debug value instructions.
2411       for (auto *DVI: DbgValues) {
2412         LLVMContext &Ctx = Inst->getType()->getContext();
2413         auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst));
2414         DVI->setOperand(0, MV);
2415       }
2416     }
2417   };
2418 
2419   /// Remove an instruction from the IR.
2420   class InstructionRemover : public TypePromotionAction {
2421     /// Original position of the instruction.
2422     InsertionHandler Inserter;
2423 
2424     /// Helper structure to hide all the link to the instruction. In other
2425     /// words, this helps to do as if the instruction was removed.
2426     OperandsHider Hider;
2427 
2428     /// Keep track of the uses replaced, if any.
2429     UsesReplacer *Replacer = nullptr;
2430 
2431     /// Keep track of instructions removed.
2432     SetOfInstrs &RemovedInsts;
2433 
2434   public:
2435     /// Remove all reference of \p Inst and optionally replace all its
2436     /// uses with New.
2437     /// \p RemovedInsts Keep track of the instructions removed by this Action.
2438     /// \pre If !Inst->use_empty(), then New != nullptr
2439     InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
2440                        Value *New = nullptr)
2441         : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
2442           RemovedInsts(RemovedInsts) {
2443       if (New)
2444         Replacer = new UsesReplacer(Inst, New);
2445       LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
2446       RemovedInsts.insert(Inst);
2447       /// The instructions removed here will be freed after completing
2448       /// optimizeBlock() for all blocks as we need to keep track of the
2449       /// removed instructions during promotion.
2450       Inst->removeFromParent();
2451     }
2452 
2453     ~InstructionRemover() override { delete Replacer; }
2454 
2455     /// Resurrect the instruction and reassign it to the proper uses if
2456     /// new value was provided when build this action.
2457     void undo() override {
2458       LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
2459       Inserter.insert(Inst);
2460       if (Replacer)
2461         Replacer->undo();
2462       Hider.undo();
2463       RemovedInsts.erase(Inst);
2464     }
2465   };
2466 
2467 public:
2468   /// Restoration point.
2469   /// The restoration point is a pointer to an action instead of an iterator
2470   /// because the iterator may be invalidated but not the pointer.
2471   using ConstRestorationPt = const TypePromotionAction *;
2472 
2473   TypePromotionTransaction(SetOfInstrs &RemovedInsts)
2474       : RemovedInsts(RemovedInsts) {}
2475 
2476   /// Advocate every changes made in that transaction.
2477   void commit();
2478 
2479   /// Undo all the changes made after the given point.
2480   void rollback(ConstRestorationPt Point);
2481 
2482   /// Get the current restoration point.
2483   ConstRestorationPt getRestorationPoint() const;
2484 
2485   /// \name API for IR modification with state keeping to support rollback.
2486   /// @{
2487   /// Same as Instruction::setOperand.
2488   void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
2489 
2490   /// Same as Instruction::eraseFromParent.
2491   void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
2492 
2493   /// Same as Value::replaceAllUsesWith.
2494   void replaceAllUsesWith(Instruction *Inst, Value *New);
2495 
2496   /// Same as Value::mutateType.
2497   void mutateType(Instruction *Inst, Type *NewTy);
2498 
2499   /// Same as IRBuilder::createTrunc.
2500   Value *createTrunc(Instruction *Opnd, Type *Ty);
2501 
2502   /// Same as IRBuilder::createSExt.
2503   Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
2504 
2505   /// Same as IRBuilder::createZExt.
2506   Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
2507 
2508   /// Same as Instruction::moveBefore.
2509   void moveBefore(Instruction *Inst, Instruction *Before);
2510   /// @}
2511 
2512 private:
2513   /// The ordered list of actions made so far.
2514   SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
2515 
2516   using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
2517 
2518   SetOfInstrs &RemovedInsts;
2519 };
2520 
2521 } // end anonymous namespace
2522 
2523 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
2524                                           Value *NewVal) {
2525   Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>(
2526       Inst, Idx, NewVal));
2527 }
2528 
2529 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
2530                                                 Value *NewVal) {
2531   Actions.push_back(
2532       llvm::make_unique<TypePromotionTransaction::InstructionRemover>(
2533           Inst, RemovedInsts, NewVal));
2534 }
2535 
2536 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
2537                                                   Value *New) {
2538   Actions.push_back(
2539       llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
2540 }
2541 
2542 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
2543   Actions.push_back(
2544       llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
2545 }
2546 
2547 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
2548                                              Type *Ty) {
2549   std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
2550   Value *Val = Ptr->getBuiltValue();
2551   Actions.push_back(std::move(Ptr));
2552   return Val;
2553 }
2554 
2555 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
2556                                             Value *Opnd, Type *Ty) {
2557   std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
2558   Value *Val = Ptr->getBuiltValue();
2559   Actions.push_back(std::move(Ptr));
2560   return Val;
2561 }
2562 
2563 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
2564                                             Value *Opnd, Type *Ty) {
2565   std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
2566   Value *Val = Ptr->getBuiltValue();
2567   Actions.push_back(std::move(Ptr));
2568   return Val;
2569 }
2570 
2571 void TypePromotionTransaction::moveBefore(Instruction *Inst,
2572                                           Instruction *Before) {
2573   Actions.push_back(
2574       llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
2575           Inst, Before));
2576 }
2577 
2578 TypePromotionTransaction::ConstRestorationPt
2579 TypePromotionTransaction::getRestorationPoint() const {
2580   return !Actions.empty() ? Actions.back().get() : nullptr;
2581 }
2582 
2583 void TypePromotionTransaction::commit() {
2584   for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
2585        ++It)
2586     (*It)->commit();
2587   Actions.clear();
2588 }
2589 
2590 void TypePromotionTransaction::rollback(
2591     TypePromotionTransaction::ConstRestorationPt Point) {
2592   while (!Actions.empty() && Point != Actions.back().get()) {
2593     std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
2594     Curr->undo();
2595   }
2596 }
2597 
2598 namespace {
2599 
2600 /// A helper class for matching addressing modes.
2601 ///
2602 /// This encapsulates the logic for matching the target-legal addressing modes.
2603 class AddressingModeMatcher {
2604   SmallVectorImpl<Instruction*> &AddrModeInsts;
2605   const TargetLowering &TLI;
2606   const TargetRegisterInfo &TRI;
2607   const DataLayout &DL;
2608 
2609   /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
2610   /// the memory instruction that we're computing this address for.
2611   Type *AccessTy;
2612   unsigned AddrSpace;
2613   Instruction *MemoryInst;
2614 
2615   /// This is the addressing mode that we're building up. This is
2616   /// part of the return value of this addressing mode matching stuff.
2617   ExtAddrMode &AddrMode;
2618 
2619   /// The instructions inserted by other CodeGenPrepare optimizations.
2620   const SetOfInstrs &InsertedInsts;
2621 
2622   /// A map from the instructions to their type before promotion.
2623   InstrToOrigTy &PromotedInsts;
2624 
2625   /// The ongoing transaction where every action should be registered.
2626   TypePromotionTransaction &TPT;
2627 
2628   // A GEP which has too large offset to be folded into the addressing mode.
2629   std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;
2630 
2631   /// This is set to true when we should not do profitability checks.
2632   /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
2633   bool IgnoreProfitability;
2634 
2635   AddressingModeMatcher(
2636       SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
2637       const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI,
2638       ExtAddrMode &AM, const SetOfInstrs &InsertedInsts,
2639       InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
2640       std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP)
2641       : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
2642         DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
2643         MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
2644         PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) {
2645     IgnoreProfitability = false;
2646   }
2647 
2648 public:
2649   /// Find the maximal addressing mode that a load/store of V can fold,
2650   /// give an access type of AccessTy.  This returns a list of involved
2651   /// instructions in AddrModeInsts.
2652   /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
2653   /// optimizations.
2654   /// \p PromotedInsts maps the instructions to their type before promotion.
2655   /// \p The ongoing transaction where every action should be registered.
2656   static ExtAddrMode
2657   Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
2658         SmallVectorImpl<Instruction *> &AddrModeInsts,
2659         const TargetLowering &TLI, const TargetRegisterInfo &TRI,
2660         const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
2661         TypePromotionTransaction &TPT,
2662         std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) {
2663     ExtAddrMode Result;
2664 
2665     bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS,
2666                                          MemoryInst, Result, InsertedInsts,
2667                                          PromotedInsts, TPT, LargeOffsetGEP)
2668                        .matchAddr(V, 0);
2669     (void)Success; assert(Success && "Couldn't select *anything*?");
2670     return Result;
2671   }
2672 
2673 private:
2674   bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
2675   bool matchAddr(Value *Addr, unsigned Depth);
2676   bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth,
2677                           bool *MovedAway = nullptr);
2678   bool isProfitableToFoldIntoAddressingMode(Instruction *I,
2679                                             ExtAddrMode &AMBefore,
2680                                             ExtAddrMode &AMAfter);
2681   bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
2682   bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
2683                              Value *PromotedOperand) const;
2684 };
2685 
2686 class PhiNodeSet;
2687 
2688 /// An iterator for PhiNodeSet.
2689 class PhiNodeSetIterator {
2690   PhiNodeSet * const Set;
2691   size_t CurrentIndex = 0;
2692 
2693 public:
2694   /// The constructor. Start should point to either a valid element, or be equal
2695   /// to the size of the underlying SmallVector of the PhiNodeSet.
2696   PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start);
2697   PHINode * operator*() const;
2698   PhiNodeSetIterator& operator++();
2699   bool operator==(const PhiNodeSetIterator &RHS) const;
2700   bool operator!=(const PhiNodeSetIterator &RHS) const;
2701 };
2702 
2703 /// Keeps a set of PHINodes.
2704 ///
2705 /// This is a minimal set implementation for a specific use case:
2706 /// It is very fast when there are very few elements, but also provides good
2707 /// performance when there are many. It is similar to SmallPtrSet, but also
2708 /// provides iteration by insertion order, which is deterministic and stable
2709 /// across runs. It is also similar to SmallSetVector, but provides removing
2710 /// elements in O(1) time. This is achieved by not actually removing the element
2711 /// from the underlying vector, so comes at the cost of using more memory, but
2712 /// that is fine, since PhiNodeSets are used as short lived objects.
2713 class PhiNodeSet {
2714   friend class PhiNodeSetIterator;
2715 
2716   using MapType = SmallDenseMap<PHINode *, size_t, 32>;
2717   using iterator =  PhiNodeSetIterator;
2718 
2719   /// Keeps the elements in the order of their insertion in the underlying
2720   /// vector. To achieve constant time removal, it never deletes any element.
2721   SmallVector<PHINode *, 32> NodeList;
2722 
2723   /// Keeps the elements in the underlying set implementation. This (and not the
2724   /// NodeList defined above) is the source of truth on whether an element
2725   /// is actually in the collection.
2726   MapType NodeMap;
2727 
2728   /// Points to the first valid (not deleted) element when the set is not empty
2729   /// and the value is not zero. Equals to the size of the underlying vector
2730   /// when the set is empty. When the value is 0, as in the beginning, the
2731   /// first element may or may not be valid.
2732   size_t FirstValidElement = 0;
2733 
2734 public:
2735   /// Inserts a new element to the collection.
2736   /// \returns true if the element is actually added, i.e. was not in the
2737   /// collection before the operation.
2738   bool insert(PHINode *Ptr) {
2739     if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) {
2740       NodeList.push_back(Ptr);
2741       return true;
2742     }
2743     return false;
2744   }
2745 
2746   /// Removes the element from the collection.
2747   /// \returns whether the element is actually removed, i.e. was in the
2748   /// collection before the operation.
2749   bool erase(PHINode *Ptr) {
2750     auto it = NodeMap.find(Ptr);
2751     if (it != NodeMap.end()) {
2752       NodeMap.erase(Ptr);
2753       SkipRemovedElements(FirstValidElement);
2754       return true;
2755     }
2756     return false;
2757   }
2758 
2759   /// Removes all elements and clears the collection.
2760   void clear() {
2761     NodeMap.clear();
2762     NodeList.clear();
2763     FirstValidElement = 0;
2764   }
2765 
2766   /// \returns an iterator that will iterate the elements in the order of
2767   /// insertion.
2768   iterator begin() {
2769     if (FirstValidElement == 0)
2770       SkipRemovedElements(FirstValidElement);
2771     return PhiNodeSetIterator(this, FirstValidElement);
2772   }
2773 
2774   /// \returns an iterator that points to the end of the collection.
2775   iterator end() { return PhiNodeSetIterator(this, NodeList.size()); }
2776 
2777   /// Returns the number of elements in the collection.
2778   size_t size() const {
2779     return NodeMap.size();
2780   }
2781 
2782   /// \returns 1 if the given element is in the collection, and 0 if otherwise.
2783   size_t count(PHINode *Ptr) const {
2784     return NodeMap.count(Ptr);
2785   }
2786 
2787 private:
2788   /// Updates the CurrentIndex so that it will point to a valid element.
2789   ///
2790   /// If the element of NodeList at CurrentIndex is valid, it does not
2791   /// change it. If there are no more valid elements, it updates CurrentIndex
2792   /// to point to the end of the NodeList.
2793   void SkipRemovedElements(size_t &CurrentIndex) {
2794     while (CurrentIndex < NodeList.size()) {
2795       auto it = NodeMap.find(NodeList[CurrentIndex]);
2796       // If the element has been deleted and added again later, NodeMap will
2797       // point to a different index, so CurrentIndex will still be invalid.
2798       if (it != NodeMap.end() && it->second == CurrentIndex)
2799         break;
2800       ++CurrentIndex;
2801     }
2802   }
2803 };
2804 
2805 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start)
2806     : Set(Set), CurrentIndex(Start) {}
2807 
2808 PHINode * PhiNodeSetIterator::operator*() const {
2809   assert(CurrentIndex < Set->NodeList.size() &&
2810          "PhiNodeSet access out of range");
2811   return Set->NodeList[CurrentIndex];
2812 }
2813 
2814 PhiNodeSetIterator& PhiNodeSetIterator::operator++() {
2815   assert(CurrentIndex < Set->NodeList.size() &&
2816          "PhiNodeSet access out of range");
2817   ++CurrentIndex;
2818   Set->SkipRemovedElements(CurrentIndex);
2819   return *this;
2820 }
2821 
2822 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const {
2823   return CurrentIndex == RHS.CurrentIndex;
2824 }
2825 
2826 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const {
2827   return !((*this) == RHS);
2828 }
2829 
2830 /// Keep track of simplification of Phi nodes.
2831 /// Accept the set of all phi nodes and erase phi node from this set
2832 /// if it is simplified.
2833 class SimplificationTracker {
2834   DenseMap<Value *, Value *> Storage;
2835   const SimplifyQuery &SQ;
2836   // Tracks newly created Phi nodes. The elements are iterated by insertion
2837   // order.
2838   PhiNodeSet AllPhiNodes;
2839   // Tracks newly created Select nodes.
2840   SmallPtrSet<SelectInst *, 32> AllSelectNodes;
2841 
2842 public:
2843   SimplificationTracker(const SimplifyQuery &sq)
2844       : SQ(sq) {}
2845 
2846   Value *Get(Value *V) {
2847     do {
2848       auto SV = Storage.find(V);
2849       if (SV == Storage.end())
2850         return V;
2851       V = SV->second;
2852     } while (true);
2853   }
2854 
2855   Value *Simplify(Value *Val) {
2856     SmallVector<Value *, 32> WorkList;
2857     SmallPtrSet<Value *, 32> Visited;
2858     WorkList.push_back(Val);
2859     while (!WorkList.empty()) {
2860       auto P = WorkList.pop_back_val();
2861       if (!Visited.insert(P).second)
2862         continue;
2863       if (auto *PI = dyn_cast<Instruction>(P))
2864         if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) {
2865           for (auto *U : PI->users())
2866             WorkList.push_back(cast<Value>(U));
2867           Put(PI, V);
2868           PI->replaceAllUsesWith(V);
2869           if (auto *PHI = dyn_cast<PHINode>(PI))
2870             AllPhiNodes.erase(PHI);
2871           if (auto *Select = dyn_cast<SelectInst>(PI))
2872             AllSelectNodes.erase(Select);
2873           PI->eraseFromParent();
2874         }
2875     }
2876     return Get(Val);
2877   }
2878 
2879   void Put(Value *From, Value *To) {
2880     Storage.insert({ From, To });
2881   }
2882 
2883   void ReplacePhi(PHINode *From, PHINode *To) {
2884     Value* OldReplacement = Get(From);
2885     while (OldReplacement != From) {
2886       From = To;
2887       To = dyn_cast<PHINode>(OldReplacement);
2888       OldReplacement = Get(From);
2889     }
2890     assert(Get(To) == To && "Replacement PHI node is already replaced.");
2891     Put(From, To);
2892     From->replaceAllUsesWith(To);
2893     AllPhiNodes.erase(From);
2894     From->eraseFromParent();
2895   }
2896 
2897   PhiNodeSet& newPhiNodes() { return AllPhiNodes; }
2898 
2899   void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }
2900 
2901   void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }
2902 
2903   unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }
2904 
2905   unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }
2906 
2907   void destroyNewNodes(Type *CommonType) {
2908     // For safe erasing, replace the uses with dummy value first.
2909     auto Dummy = UndefValue::get(CommonType);
2910     for (auto I : AllPhiNodes) {
2911       I->replaceAllUsesWith(Dummy);
2912       I->eraseFromParent();
2913     }
2914     AllPhiNodes.clear();
2915     for (auto I : AllSelectNodes) {
2916       I->replaceAllUsesWith(Dummy);
2917       I->eraseFromParent();
2918     }
2919     AllSelectNodes.clear();
2920   }
2921 };
2922 
2923 /// A helper class for combining addressing modes.
2924 class AddressingModeCombiner {
2925   typedef DenseMap<Value *, Value *> FoldAddrToValueMapping;
2926   typedef std::pair<PHINode *, PHINode *> PHIPair;
2927 
2928 private:
2929   /// The addressing modes we've collected.
2930   SmallVector<ExtAddrMode, 16> AddrModes;
2931 
2932   /// The field in which the AddrModes differ, when we have more than one.
2933   ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
2934 
2935   /// Are the AddrModes that we have all just equal to their original values?
2936   bool AllAddrModesTrivial = true;
2937 
2938   /// Common Type for all different fields in addressing modes.
2939   Type *CommonType;
2940 
2941   /// SimplifyQuery for simplifyInstruction utility.
2942   const SimplifyQuery &SQ;
2943 
2944   /// Original Address.
2945   Value *Original;
2946 
2947 public:
2948   AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue)
2949       : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {}
2950 
2951   /// Get the combined AddrMode
2952   const ExtAddrMode &getAddrMode() const {
2953     return AddrModes[0];
2954   }
2955 
2956   /// Add a new AddrMode if it's compatible with the AddrModes we already
2957   /// have.
2958   /// \return True iff we succeeded in doing so.
2959   bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
2960     // Take note of if we have any non-trivial AddrModes, as we need to detect
2961     // when all AddrModes are trivial as then we would introduce a phi or select
2962     // which just duplicates what's already there.
2963     AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
2964 
2965     // If this is the first addrmode then everything is fine.
2966     if (AddrModes.empty()) {
2967       AddrModes.emplace_back(NewAddrMode);
2968       return true;
2969     }
2970 
2971     // Figure out how different this is from the other address modes, which we
2972     // can do just by comparing against the first one given that we only care
2973     // about the cumulative difference.
2974     ExtAddrMode::FieldName ThisDifferentField =
2975       AddrModes[0].compare(NewAddrMode);
2976     if (DifferentField == ExtAddrMode::NoField)
2977       DifferentField = ThisDifferentField;
2978     else if (DifferentField != ThisDifferentField)
2979       DifferentField = ExtAddrMode::MultipleFields;
2980 
2981     // If NewAddrMode differs in more than one dimension we cannot handle it.
2982     bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
2983 
2984     // If Scale Field is different then we reject.
2985     CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
2986 
2987     // We also must reject the case when base offset is different and
2988     // scale reg is not null, we cannot handle this case due to merge of
2989     // different offsets will be used as ScaleReg.
2990     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
2991                               !NewAddrMode.ScaledReg);
2992 
2993     // We also must reject the case when GV is different and BaseReg installed
2994     // due to we want to use base reg as a merge of GV values.
2995     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
2996                               !NewAddrMode.HasBaseReg);
2997 
2998     // Even if NewAddMode is the same we still need to collect it due to
2999     // original value is different. And later we will need all original values
3000     // as anchors during finding the common Phi node.
3001     if (CanHandle)
3002       AddrModes.emplace_back(NewAddrMode);
3003     else
3004       AddrModes.clear();
3005 
3006     return CanHandle;
3007   }
3008 
3009   /// Combine the addressing modes we've collected into a single
3010   /// addressing mode.
3011   /// \return True iff we successfully combined them or we only had one so
3012   /// didn't need to combine them anyway.
3013   bool combineAddrModes() {
3014     // If we have no AddrModes then they can't be combined.
3015     if (AddrModes.size() == 0)
3016       return false;
3017 
3018     // A single AddrMode can trivially be combined.
3019     if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
3020       return true;
3021 
3022     // If the AddrModes we collected are all just equal to the value they are
3023     // derived from then combining them wouldn't do anything useful.
3024     if (AllAddrModesTrivial)
3025       return false;
3026 
3027     if (!addrModeCombiningAllowed())
3028       return false;
3029 
3030     // Build a map between <original value, basic block where we saw it> to
3031     // value of base register.
3032     // Bail out if there is no common type.
3033     FoldAddrToValueMapping Map;
3034     if (!initializeMap(Map))
3035       return false;
3036 
3037     Value *CommonValue = findCommon(Map);
3038     if (CommonValue)
3039       AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
3040     return CommonValue != nullptr;
3041   }
3042 
3043 private:
3044   /// Initialize Map with anchor values. For address seen
3045   /// we set the value of different field saw in this address.
3046   /// At the same time we find a common type for different field we will
3047   /// use to create new Phi/Select nodes. Keep it in CommonType field.
3048   /// Return false if there is no common type found.
3049   bool initializeMap(FoldAddrToValueMapping &Map) {
3050     // Keep track of keys where the value is null. We will need to replace it
3051     // with constant null when we know the common type.
3052     SmallVector<Value *, 2> NullValue;
3053     Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
3054     for (auto &AM : AddrModes) {
3055       Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
3056       if (DV) {
3057         auto *Type = DV->getType();
3058         if (CommonType && CommonType != Type)
3059           return false;
3060         CommonType = Type;
3061         Map[AM.OriginalValue] = DV;
3062       } else {
3063         NullValue.push_back(AM.OriginalValue);
3064       }
3065     }
3066     assert(CommonType && "At least one non-null value must be!");
3067     for (auto *V : NullValue)
3068       Map[V] = Constant::getNullValue(CommonType);
3069     return true;
3070   }
3071 
3072   /// We have mapping between value A and other value B where B was a field in
3073   /// addressing mode represented by A. Also we have an original value C
3074   /// representing an address we start with. Traversing from C through phi and
3075   /// selects we ended up with A's in a map. This utility function tries to find
3076   /// a value V which is a field in addressing mode C and traversing through phi
3077   /// nodes and selects we will end up in corresponded values B in a map.
3078   /// The utility will create a new Phi/Selects if needed.
3079   // The simple example looks as follows:
3080   // BB1:
3081   //   p1 = b1 + 40
3082   //   br cond BB2, BB3
3083   // BB2:
3084   //   p2 = b2 + 40
3085   //   br BB3
3086   // BB3:
3087   //   p = phi [p1, BB1], [p2, BB2]
3088   //   v = load p
3089   // Map is
3090   //   p1 -> b1
3091   //   p2 -> b2
3092   // Request is
3093   //   p -> ?
3094   // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
3095   Value *findCommon(FoldAddrToValueMapping &Map) {
3096     // Tracks the simplification of newly created phi nodes. The reason we use
3097     // this mapping is because we will add new created Phi nodes in AddrToBase.
3098     // Simplification of Phi nodes is recursive, so some Phi node may
3099     // be simplified after we added it to AddrToBase. In reality this
3100     // simplification is possible only if original phi/selects were not
3101     // simplified yet.
3102     // Using this mapping we can find the current value in AddrToBase.
3103     SimplificationTracker ST(SQ);
3104 
3105     // First step, DFS to create PHI nodes for all intermediate blocks.
3106     // Also fill traverse order for the second step.
3107     SmallVector<Value *, 32> TraverseOrder;
3108     InsertPlaceholders(Map, TraverseOrder, ST);
3109 
3110     // Second Step, fill new nodes by merged values and simplify if possible.
3111     FillPlaceholders(Map, TraverseOrder, ST);
3112 
3113     if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
3114       ST.destroyNewNodes(CommonType);
3115       return nullptr;
3116     }
3117 
3118     // Now we'd like to match New Phi nodes to existed ones.
3119     unsigned PhiNotMatchedCount = 0;
3120     if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
3121       ST.destroyNewNodes(CommonType);
3122       return nullptr;
3123     }
3124 
3125     auto *Result = ST.Get(Map.find(Original)->second);
3126     if (Result) {
3127       NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
3128       NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
3129     }
3130     return Result;
3131   }
3132 
3133   /// Try to match PHI node to Candidate.
3134   /// Matcher tracks the matched Phi nodes.
3135   bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
3136                     SmallSetVector<PHIPair, 8> &Matcher,
3137                     PhiNodeSet &PhiNodesToMatch) {
3138     SmallVector<PHIPair, 8> WorkList;
3139     Matcher.insert({ PHI, Candidate });
3140     WorkList.push_back({ PHI, Candidate });
3141     SmallSet<PHIPair, 8> Visited;
3142     while (!WorkList.empty()) {
3143       auto Item = WorkList.pop_back_val();
3144       if (!Visited.insert(Item).second)
3145         continue;
3146       // We iterate over all incoming values to Phi to compare them.
3147       // If values are different and both of them Phi and the first one is a
3148       // Phi we added (subject to match) and both of them is in the same basic
3149       // block then we can match our pair if values match. So we state that
3150       // these values match and add it to work list to verify that.
3151       for (auto B : Item.first->blocks()) {
3152         Value *FirstValue = Item.first->getIncomingValueForBlock(B);
3153         Value *SecondValue = Item.second->getIncomingValueForBlock(B);
3154         if (FirstValue == SecondValue)
3155           continue;
3156 
3157         PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
3158         PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
3159 
3160         // One of them is not Phi or
3161         // The first one is not Phi node from the set we'd like to match or
3162         // Phi nodes from different basic blocks then
3163         // we will not be able to match.
3164         if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
3165             FirstPhi->getParent() != SecondPhi->getParent())
3166           return false;
3167 
3168         // If we already matched them then continue.
3169         if (Matcher.count({ FirstPhi, SecondPhi }))
3170           continue;
3171         // So the values are different and does not match. So we need them to
3172         // match.
3173         Matcher.insert({ FirstPhi, SecondPhi });
3174         // But me must check it.
3175         WorkList.push_back({ FirstPhi, SecondPhi });
3176       }
3177     }
3178     return true;
3179   }
3180 
3181   /// For the given set of PHI nodes (in the SimplificationTracker) try
3182   /// to find their equivalents.
3183   /// Returns false if this matching fails and creation of new Phi is disabled.
3184   bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
3185                    unsigned &PhiNotMatchedCount) {
3186     // Matched and PhiNodesToMatch iterate their elements in a deterministic
3187     // order, so the replacements (ReplacePhi) are also done in a deterministic
3188     // order.
3189     SmallSetVector<PHIPair, 8> Matched;
3190     SmallPtrSet<PHINode *, 8> WillNotMatch;
3191     PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes();
3192     while (PhiNodesToMatch.size()) {
3193       PHINode *PHI = *PhiNodesToMatch.begin();
3194 
3195       // Add us, if no Phi nodes in the basic block we do not match.
3196       WillNotMatch.clear();
3197       WillNotMatch.insert(PHI);
3198 
3199       // Traverse all Phis until we found equivalent or fail to do that.
3200       bool IsMatched = false;
3201       for (auto &P : PHI->getParent()->phis()) {
3202         if (&P == PHI)
3203           continue;
3204         if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
3205           break;
3206         // If it does not match, collect all Phi nodes from matcher.
3207         // if we end up with no match, them all these Phi nodes will not match
3208         // later.
3209         for (auto M : Matched)
3210           WillNotMatch.insert(M.first);
3211         Matched.clear();
3212       }
3213       if (IsMatched) {
3214         // Replace all matched values and erase them.
3215         for (auto MV : Matched)
3216           ST.ReplacePhi(MV.first, MV.second);
3217         Matched.clear();
3218         continue;
3219       }
3220       // If we are not allowed to create new nodes then bail out.
3221       if (!AllowNewPhiNodes)
3222         return false;
3223       // Just remove all seen values in matcher. They will not match anything.
3224       PhiNotMatchedCount += WillNotMatch.size();
3225       for (auto *P : WillNotMatch)
3226         PhiNodesToMatch.erase(P);
3227     }
3228     return true;
3229   }
3230   /// Fill the placeholders with values from predecessors and simplify them.
3231   void FillPlaceholders(FoldAddrToValueMapping &Map,
3232                         SmallVectorImpl<Value *> &TraverseOrder,
3233                         SimplificationTracker &ST) {
3234     while (!TraverseOrder.empty()) {
3235       Value *Current = TraverseOrder.pop_back_val();
3236       assert(Map.find(Current) != Map.end() && "No node to fill!!!");
3237       Value *V = Map[Current];
3238 
3239       if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
3240         // CurrentValue also must be Select.
3241         auto *CurrentSelect = cast<SelectInst>(Current);
3242         auto *TrueValue = CurrentSelect->getTrueValue();
3243         assert(Map.find(TrueValue) != Map.end() && "No True Value!");
3244         Select->setTrueValue(ST.Get(Map[TrueValue]));
3245         auto *FalseValue = CurrentSelect->getFalseValue();
3246         assert(Map.find(FalseValue) != Map.end() && "No False Value!");
3247         Select->setFalseValue(ST.Get(Map[FalseValue]));
3248       } else {
3249         // Must be a Phi node then.
3250         PHINode *PHI = cast<PHINode>(V);
3251         auto *CurrentPhi = dyn_cast<PHINode>(Current);
3252         // Fill the Phi node with values from predecessors.
3253         for (auto B : predecessors(PHI->getParent())) {
3254           Value *PV = CurrentPhi->getIncomingValueForBlock(B);
3255           assert(Map.find(PV) != Map.end() && "No predecessor Value!");
3256           PHI->addIncoming(ST.Get(Map[PV]), B);
3257         }
3258       }
3259       Map[Current] = ST.Simplify(V);
3260     }
3261   }
3262 
3263   /// Starting from original value recursively iterates over def-use chain up to
3264   /// known ending values represented in a map. For each traversed phi/select
3265   /// inserts a placeholder Phi or Select.
3266   /// Reports all new created Phi/Select nodes by adding them to set.
3267   /// Also reports and order in what values have been traversed.
3268   void InsertPlaceholders(FoldAddrToValueMapping &Map,
3269                           SmallVectorImpl<Value *> &TraverseOrder,
3270                           SimplificationTracker &ST) {
3271     SmallVector<Value *, 32> Worklist;
3272     assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&
3273            "Address must be a Phi or Select node");
3274     auto *Dummy = UndefValue::get(CommonType);
3275     Worklist.push_back(Original);
3276     while (!Worklist.empty()) {
3277       Value *Current = Worklist.pop_back_val();
3278       // if it is already visited or it is an ending value then skip it.
3279       if (Map.find(Current) != Map.end())
3280         continue;
3281       TraverseOrder.push_back(Current);
3282 
3283       // CurrentValue must be a Phi node or select. All others must be covered
3284       // by anchors.
3285       if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) {
3286         // Is it OK to get metadata from OrigSelect?!
3287         // Create a Select placeholder with dummy value.
3288         SelectInst *Select = SelectInst::Create(
3289             CurrentSelect->getCondition(), Dummy, Dummy,
3290             CurrentSelect->getName(), CurrentSelect, CurrentSelect);
3291         Map[Current] = Select;
3292         ST.insertNewSelect(Select);
3293         // We are interested in True and False values.
3294         Worklist.push_back(CurrentSelect->getTrueValue());
3295         Worklist.push_back(CurrentSelect->getFalseValue());
3296       } else {
3297         // It must be a Phi node then.
3298         PHINode *CurrentPhi = cast<PHINode>(Current);
3299         unsigned PredCount = CurrentPhi->getNumIncomingValues();
3300         PHINode *PHI =
3301             PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi);
3302         Map[Current] = PHI;
3303         ST.insertNewPhi(PHI);
3304         for (Value *P : CurrentPhi->incoming_values())
3305           Worklist.push_back(P);
3306       }
3307     }
3308   }
3309 
3310   bool addrModeCombiningAllowed() {
3311     if (DisableComplexAddrModes)
3312       return false;
3313     switch (DifferentField) {
3314     default:
3315       return false;
3316     case ExtAddrMode::BaseRegField:
3317       return AddrSinkCombineBaseReg;
3318     case ExtAddrMode::BaseGVField:
3319       return AddrSinkCombineBaseGV;
3320     case ExtAddrMode::BaseOffsField:
3321       return AddrSinkCombineBaseOffs;
3322     case ExtAddrMode::ScaledRegField:
3323       return AddrSinkCombineScaledReg;
3324     }
3325   }
3326 };
3327 } // end anonymous namespace
3328 
3329 /// Try adding ScaleReg*Scale to the current addressing mode.
3330 /// Return true and update AddrMode if this addr mode is legal for the target,
3331 /// false if not.
3332 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
3333                                              unsigned Depth) {
3334   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3335   // mode.  Just process that directly.
3336   if (Scale == 1)
3337     return matchAddr(ScaleReg, Depth);
3338 
3339   // If the scale is 0, it takes nothing to add this.
3340   if (Scale == 0)
3341     return true;
3342 
3343   // If we already have a scale of this value, we can add to it, otherwise, we
3344   // need an available scale field.
3345   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
3346     return false;
3347 
3348   ExtAddrMode TestAddrMode = AddrMode;
3349 
3350   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
3351   // [A+B + A*7] -> [B+A*8].
3352   TestAddrMode.Scale += Scale;
3353   TestAddrMode.ScaledReg = ScaleReg;
3354 
3355   // If the new address isn't legal, bail out.
3356   if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
3357     return false;
3358 
3359   // It was legal, so commit it.
3360   AddrMode = TestAddrMode;
3361 
3362   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
3363   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
3364   // X*Scale + C*Scale to addr mode.
3365   ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
3366   if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
3367       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
3368     TestAddrMode.ScaledReg = AddLHS;
3369     TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
3370 
3371     // If this addressing mode is legal, commit it and remember that we folded
3372     // this instruction.
3373     if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
3374       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
3375       AddrMode = TestAddrMode;
3376       return true;
3377     }
3378   }
3379 
3380   // Otherwise, not (x+c)*scale, just return what we have.
3381   return true;
3382 }
3383 
3384 /// This is a little filter, which returns true if an addressing computation
3385 /// involving I might be folded into a load/store accessing it.
3386 /// This doesn't need to be perfect, but needs to accept at least
3387 /// the set of instructions that MatchOperationAddr can.
3388 static bool MightBeFoldableInst(Instruction *I) {
3389   switch (I->getOpcode()) {
3390   case Instruction::BitCast:
3391   case Instruction::AddrSpaceCast:
3392     // Don't touch identity bitcasts.
3393     if (I->getType() == I->getOperand(0)->getType())
3394       return false;
3395     return I->getType()->isIntOrPtrTy();
3396   case Instruction::PtrToInt:
3397     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3398     return true;
3399   case Instruction::IntToPtr:
3400     // We know the input is intptr_t, so this is foldable.
3401     return true;
3402   case Instruction::Add:
3403     return true;
3404   case Instruction::Mul:
3405   case Instruction::Shl:
3406     // Can only handle X*C and X << C.
3407     return isa<ConstantInt>(I->getOperand(1));
3408   case Instruction::GetElementPtr:
3409     return true;
3410   default:
3411     return false;
3412   }
3413 }
3414 
3415 /// Check whether or not \p Val is a legal instruction for \p TLI.
3416 /// \note \p Val is assumed to be the product of some type promotion.
3417 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
3418 /// to be legal, as the non-promoted value would have had the same state.
3419 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
3420                                        const DataLayout &DL, Value *Val) {
3421   Instruction *PromotedInst = dyn_cast<Instruction>(Val);
3422   if (!PromotedInst)
3423     return false;
3424   int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
3425   // If the ISDOpcode is undefined, it was undefined before the promotion.
3426   if (!ISDOpcode)
3427     return true;
3428   // Otherwise, check if the promoted instruction is legal or not.
3429   return TLI.isOperationLegalOrCustom(
3430       ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
3431 }
3432 
3433 namespace {
3434 
3435 /// Hepler class to perform type promotion.
3436 class TypePromotionHelper {
3437   /// Utility function to add a promoted instruction \p ExtOpnd to
3438   /// \p PromotedInsts and record the type of extension we have seen.
3439   static void addPromotedInst(InstrToOrigTy &PromotedInsts,
3440                               Instruction *ExtOpnd,
3441                               bool IsSExt) {
3442     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3443     InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd);
3444     if (It != PromotedInsts.end()) {
3445       // If the new extension is same as original, the information in
3446       // PromotedInsts[ExtOpnd] is still correct.
3447       if (It->second.getInt() == ExtTy)
3448         return;
3449 
3450       // Now the new extension is different from old extension, we make
3451       // the type information invalid by setting extension type to
3452       // BothExtension.
3453       ExtTy = BothExtension;
3454     }
3455     PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy);
3456   }
3457 
3458   /// Utility function to query the original type of instruction \p Opnd
3459   /// with a matched extension type. If the extension doesn't match, we
3460   /// cannot use the information we had on the original type.
3461   /// BothExtension doesn't match any extension type.
3462   static const Type *getOrigType(const InstrToOrigTy &PromotedInsts,
3463                                  Instruction *Opnd,
3464                                  bool IsSExt) {
3465     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3466     InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
3467     if (It != PromotedInsts.end() && It->second.getInt() == ExtTy)
3468       return It->second.getPointer();
3469     return nullptr;
3470   }
3471 
3472   /// Utility function to check whether or not a sign or zero extension
3473   /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
3474   /// either using the operands of \p Inst or promoting \p Inst.
3475   /// The type of the extension is defined by \p IsSExt.
3476   /// In other words, check if:
3477   /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
3478   /// #1 Promotion applies:
3479   /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
3480   /// #2 Operand reuses:
3481   /// ext opnd1 to ConsideredExtType.
3482   /// \p PromotedInsts maps the instructions to their type before promotion.
3483   static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
3484                             const InstrToOrigTy &PromotedInsts, bool IsSExt);
3485 
3486   /// Utility function to determine if \p OpIdx should be promoted when
3487   /// promoting \p Inst.
3488   static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
3489     return !(isa<SelectInst>(Inst) && OpIdx == 0);
3490   }
3491 
3492   /// Utility function to promote the operand of \p Ext when this
3493   /// operand is a promotable trunc or sext or zext.
3494   /// \p PromotedInsts maps the instructions to their type before promotion.
3495   /// \p CreatedInstsCost[out] contains the cost of all instructions
3496   /// created to promote the operand of Ext.
3497   /// Newly added extensions are inserted in \p Exts.
3498   /// Newly added truncates are inserted in \p Truncs.
3499   /// Should never be called directly.
3500   /// \return The promoted value which is used instead of Ext.
3501   static Value *promoteOperandForTruncAndAnyExt(
3502       Instruction *Ext, TypePromotionTransaction &TPT,
3503       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3504       SmallVectorImpl<Instruction *> *Exts,
3505       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
3506 
3507   /// Utility function to promote the operand of \p Ext when this
3508   /// operand is promotable and is not a supported trunc or sext.
3509   /// \p PromotedInsts maps the instructions to their type before promotion.
3510   /// \p CreatedInstsCost[out] contains the cost of all the instructions
3511   /// created to promote the operand of Ext.
3512   /// Newly added extensions are inserted in \p Exts.
3513   /// Newly added truncates are inserted in \p Truncs.
3514   /// Should never be called directly.
3515   /// \return The promoted value which is used instead of Ext.
3516   static Value *promoteOperandForOther(Instruction *Ext,
3517                                        TypePromotionTransaction &TPT,
3518                                        InstrToOrigTy &PromotedInsts,
3519                                        unsigned &CreatedInstsCost,
3520                                        SmallVectorImpl<Instruction *> *Exts,
3521                                        SmallVectorImpl<Instruction *> *Truncs,
3522                                        const TargetLowering &TLI, bool IsSExt);
3523 
3524   /// \see promoteOperandForOther.
3525   static Value *signExtendOperandForOther(
3526       Instruction *Ext, TypePromotionTransaction &TPT,
3527       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3528       SmallVectorImpl<Instruction *> *Exts,
3529       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3530     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3531                                   Exts, Truncs, TLI, true);
3532   }
3533 
3534   /// \see promoteOperandForOther.
3535   static Value *zeroExtendOperandForOther(
3536       Instruction *Ext, TypePromotionTransaction &TPT,
3537       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3538       SmallVectorImpl<Instruction *> *Exts,
3539       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3540     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3541                                   Exts, Truncs, TLI, false);
3542   }
3543 
3544 public:
3545   /// Type for the utility function that promotes the operand of Ext.
3546   using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
3547                             InstrToOrigTy &PromotedInsts,
3548                             unsigned &CreatedInstsCost,
3549                             SmallVectorImpl<Instruction *> *Exts,
3550                             SmallVectorImpl<Instruction *> *Truncs,
3551                             const TargetLowering &TLI);
3552 
3553   /// Given a sign/zero extend instruction \p Ext, return the appropriate
3554   /// action to promote the operand of \p Ext instead of using Ext.
3555   /// \return NULL if no promotable action is possible with the current
3556   /// sign extension.
3557   /// \p InsertedInsts keeps track of all the instructions inserted by the
3558   /// other CodeGenPrepare optimizations. This information is important
3559   /// because we do not want to promote these instructions as CodeGenPrepare
3560   /// will reinsert them later. Thus creating an infinite loop: create/remove.
3561   /// \p PromotedInsts maps the instructions to their type before promotion.
3562   static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
3563                           const TargetLowering &TLI,
3564                           const InstrToOrigTy &PromotedInsts);
3565 };
3566 
3567 } // end anonymous namespace
3568 
3569 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
3570                                         Type *ConsideredExtType,
3571                                         const InstrToOrigTy &PromotedInsts,
3572                                         bool IsSExt) {
3573   // The promotion helper does not know how to deal with vector types yet.
3574   // To be able to fix that, we would need to fix the places where we
3575   // statically extend, e.g., constants and such.
3576   if (Inst->getType()->isVectorTy())
3577     return false;
3578 
3579   // We can always get through zext.
3580   if (isa<ZExtInst>(Inst))
3581     return true;
3582 
3583   // sext(sext) is ok too.
3584   if (IsSExt && isa<SExtInst>(Inst))
3585     return true;
3586 
3587   // We can get through binary operator, if it is legal. In other words, the
3588   // binary operator must have a nuw or nsw flag.
3589   const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
3590   if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
3591       ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
3592        (IsSExt && BinOp->hasNoSignedWrap())))
3593     return true;
3594 
3595   // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
3596   if ((Inst->getOpcode() == Instruction::And ||
3597        Inst->getOpcode() == Instruction::Or))
3598     return true;
3599 
3600   // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
3601   if (Inst->getOpcode() == Instruction::Xor) {
3602     const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1));
3603     // Make sure it is not a NOT.
3604     if (Cst && !Cst->getValue().isAllOnesValue())
3605       return true;
3606   }
3607 
3608   // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
3609   // It may change a poisoned value into a regular value, like
3610   //     zext i32 (shrl i8 %val, 12)  -->  shrl i32 (zext i8 %val), 12
3611   //          poisoned value                    regular value
3612   // It should be OK since undef covers valid value.
3613   if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
3614     return true;
3615 
3616   // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
3617   // It may change a poisoned value into a regular value, like
3618   //     zext i32 (shl i8 %val, 12)  -->  shl i32 (zext i8 %val), 12
3619   //          poisoned value                    regular value
3620   // It should be OK since undef covers valid value.
3621   if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
3622     const Instruction *ExtInst =
3623         dyn_cast<const Instruction>(*Inst->user_begin());
3624     if (ExtInst->hasOneUse()) {
3625       const Instruction *AndInst =
3626           dyn_cast<const Instruction>(*ExtInst->user_begin());
3627       if (AndInst && AndInst->getOpcode() == Instruction::And) {
3628         const ConstantInt *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
3629         if (Cst &&
3630             Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
3631           return true;
3632       }
3633     }
3634   }
3635 
3636   // Check if we can do the following simplification.
3637   // ext(trunc(opnd)) --> ext(opnd)
3638   if (!isa<TruncInst>(Inst))
3639     return false;
3640 
3641   Value *OpndVal = Inst->getOperand(0);
3642   // Check if we can use this operand in the extension.
3643   // If the type is larger than the result type of the extension, we cannot.
3644   if (!OpndVal->getType()->isIntegerTy() ||
3645       OpndVal->getType()->getIntegerBitWidth() >
3646           ConsideredExtType->getIntegerBitWidth())
3647     return false;
3648 
3649   // If the operand of the truncate is not an instruction, we will not have
3650   // any information on the dropped bits.
3651   // (Actually we could for constant but it is not worth the extra logic).
3652   Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
3653   if (!Opnd)
3654     return false;
3655 
3656   // Check if the source of the type is narrow enough.
3657   // I.e., check that trunc just drops extended bits of the same kind of
3658   // the extension.
3659   // #1 get the type of the operand and check the kind of the extended bits.
3660   const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt);
3661   if (OpndType)
3662     ;
3663   else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
3664     OpndType = Opnd->getOperand(0)->getType();
3665   else
3666     return false;
3667 
3668   // #2 check that the truncate just drops extended bits.
3669   return Inst->getType()->getIntegerBitWidth() >=
3670          OpndType->getIntegerBitWidth();
3671 }
3672 
3673 TypePromotionHelper::Action TypePromotionHelper::getAction(
3674     Instruction *Ext, const SetOfInstrs &InsertedInsts,
3675     const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
3676   assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3677          "Unexpected instruction type");
3678   Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
3679   Type *ExtTy = Ext->getType();
3680   bool IsSExt = isa<SExtInst>(Ext);
3681   // If the operand of the extension is not an instruction, we cannot
3682   // get through.
3683   // If it, check we can get through.
3684   if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
3685     return nullptr;
3686 
3687   // Do not promote if the operand has been added by codegenprepare.
3688   // Otherwise, it means we are undoing an optimization that is likely to be
3689   // redone, thus causing potential infinite loop.
3690   if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
3691     return nullptr;
3692 
3693   // SExt or Trunc instructions.
3694   // Return the related handler.
3695   if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
3696       isa<ZExtInst>(ExtOpnd))
3697     return promoteOperandForTruncAndAnyExt;
3698 
3699   // Regular instruction.
3700   // Abort early if we will have to insert non-free instructions.
3701   if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
3702     return nullptr;
3703   return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
3704 }
3705 
3706 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
3707     Instruction *SExt, TypePromotionTransaction &TPT,
3708     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3709     SmallVectorImpl<Instruction *> *Exts,
3710     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3711   // By construction, the operand of SExt is an instruction. Otherwise we cannot
3712   // get through it and this method should not be called.
3713   Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
3714   Value *ExtVal = SExt;
3715   bool HasMergedNonFreeExt = false;
3716   if (isa<ZExtInst>(SExtOpnd)) {
3717     // Replace s|zext(zext(opnd))
3718     // => zext(opnd).
3719     HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
3720     Value *ZExt =
3721         TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
3722     TPT.replaceAllUsesWith(SExt, ZExt);
3723     TPT.eraseInstruction(SExt);
3724     ExtVal = ZExt;
3725   } else {
3726     // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
3727     // => z|sext(opnd).
3728     TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
3729   }
3730   CreatedInstsCost = 0;
3731 
3732   // Remove dead code.
3733   if (SExtOpnd->use_empty())
3734     TPT.eraseInstruction(SExtOpnd);
3735 
3736   // Check if the extension is still needed.
3737   Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
3738   if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
3739     if (ExtInst) {
3740       if (Exts)
3741         Exts->push_back(ExtInst);
3742       CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
3743     }
3744     return ExtVal;
3745   }
3746 
3747   // At this point we have: ext ty opnd to ty.
3748   // Reassign the uses of ExtInst to the opnd and remove ExtInst.
3749   Value *NextVal = ExtInst->getOperand(0);
3750   TPT.eraseInstruction(ExtInst, NextVal);
3751   return NextVal;
3752 }
3753 
3754 Value *TypePromotionHelper::promoteOperandForOther(
3755     Instruction *Ext, TypePromotionTransaction &TPT,
3756     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3757     SmallVectorImpl<Instruction *> *Exts,
3758     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
3759     bool IsSExt) {
3760   // By construction, the operand of Ext is an instruction. Otherwise we cannot
3761   // get through it and this method should not be called.
3762   Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
3763   CreatedInstsCost = 0;
3764   if (!ExtOpnd->hasOneUse()) {
3765     // ExtOpnd will be promoted.
3766     // All its uses, but Ext, will need to use a truncated value of the
3767     // promoted version.
3768     // Create the truncate now.
3769     Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
3770     if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
3771       // Insert it just after the definition.
3772       ITrunc->moveAfter(ExtOpnd);
3773       if (Truncs)
3774         Truncs->push_back(ITrunc);
3775     }
3776 
3777     TPT.replaceAllUsesWith(ExtOpnd, Trunc);
3778     // Restore the operand of Ext (which has been replaced by the previous call
3779     // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
3780     TPT.setOperand(Ext, 0, ExtOpnd);
3781   }
3782 
3783   // Get through the Instruction:
3784   // 1. Update its type.
3785   // 2. Replace the uses of Ext by Inst.
3786   // 3. Extend each operand that needs to be extended.
3787 
3788   // Remember the original type of the instruction before promotion.
3789   // This is useful to know that the high bits are sign extended bits.
3790   addPromotedInst(PromotedInsts, ExtOpnd, IsSExt);
3791   // Step #1.
3792   TPT.mutateType(ExtOpnd, Ext->getType());
3793   // Step #2.
3794   TPT.replaceAllUsesWith(Ext, ExtOpnd);
3795   // Step #3.
3796   Instruction *ExtForOpnd = Ext;
3797 
3798   LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
3799   for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
3800        ++OpIdx) {
3801     LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
3802     if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
3803         !shouldExtOperand(ExtOpnd, OpIdx)) {
3804       LLVM_DEBUG(dbgs() << "No need to propagate\n");
3805       continue;
3806     }
3807     // Check if we can statically extend the operand.
3808     Value *Opnd = ExtOpnd->getOperand(OpIdx);
3809     if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
3810       LLVM_DEBUG(dbgs() << "Statically extend\n");
3811       unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
3812       APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
3813                             : Cst->getValue().zext(BitWidth);
3814       TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
3815       continue;
3816     }
3817     // UndefValue are typed, so we have to statically sign extend them.
3818     if (isa<UndefValue>(Opnd)) {
3819       LLVM_DEBUG(dbgs() << "Statically extend\n");
3820       TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
3821       continue;
3822     }
3823 
3824     // Otherwise we have to explicitly sign extend the operand.
3825     // Check if Ext was reused to extend an operand.
3826     if (!ExtForOpnd) {
3827       // If yes, create a new one.
3828       LLVM_DEBUG(dbgs() << "More operands to ext\n");
3829       Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
3830         : TPT.createZExt(Ext, Opnd, Ext->getType());
3831       if (!isa<Instruction>(ValForExtOpnd)) {
3832         TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
3833         continue;
3834       }
3835       ExtForOpnd = cast<Instruction>(ValForExtOpnd);
3836     }
3837     if (Exts)
3838       Exts->push_back(ExtForOpnd);
3839     TPT.setOperand(ExtForOpnd, 0, Opnd);
3840 
3841     // Move the sign extension before the insertion point.
3842     TPT.moveBefore(ExtForOpnd, ExtOpnd);
3843     TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
3844     CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
3845     // If more sext are required, new instructions will have to be created.
3846     ExtForOpnd = nullptr;
3847   }
3848   if (ExtForOpnd == Ext) {
3849     LLVM_DEBUG(dbgs() << "Extension is useless now\n");
3850     TPT.eraseInstruction(Ext);
3851   }
3852   return ExtOpnd;
3853 }
3854 
3855 /// Check whether or not promoting an instruction to a wider type is profitable.
3856 /// \p NewCost gives the cost of extension instructions created by the
3857 /// promotion.
3858 /// \p OldCost gives the cost of extension instructions before the promotion
3859 /// plus the number of instructions that have been
3860 /// matched in the addressing mode the promotion.
3861 /// \p PromotedOperand is the value that has been promoted.
3862 /// \return True if the promotion is profitable, false otherwise.
3863 bool AddressingModeMatcher::isPromotionProfitable(
3864     unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
3865   LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
3866                     << '\n');
3867   // The cost of the new extensions is greater than the cost of the
3868   // old extension plus what we folded.
3869   // This is not profitable.
3870   if (NewCost > OldCost)
3871     return false;
3872   if (NewCost < OldCost)
3873     return true;
3874   // The promotion is neutral but it may help folding the sign extension in
3875   // loads for instance.
3876   // Check that we did not create an illegal instruction.
3877   return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
3878 }
3879 
3880 /// Given an instruction or constant expr, see if we can fold the operation
3881 /// into the addressing mode. If so, update the addressing mode and return
3882 /// true, otherwise return false without modifying AddrMode.
3883 /// If \p MovedAway is not NULL, it contains the information of whether or
3884 /// not AddrInst has to be folded into the addressing mode on success.
3885 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
3886 /// because it has been moved away.
3887 /// Thus AddrInst must not be added in the matched instructions.
3888 /// This state can happen when AddrInst is a sext, since it may be moved away.
3889 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
3890 /// not be referenced anymore.
3891 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
3892                                                unsigned Depth,
3893                                                bool *MovedAway) {
3894   // Avoid exponential behavior on extremely deep expression trees.
3895   if (Depth >= 5) return false;
3896 
3897   // By default, all matched instructions stay in place.
3898   if (MovedAway)
3899     *MovedAway = false;
3900 
3901   switch (Opcode) {
3902   case Instruction::PtrToInt:
3903     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3904     return matchAddr(AddrInst->getOperand(0), Depth);
3905   case Instruction::IntToPtr: {
3906     auto AS = AddrInst->getType()->getPointerAddressSpace();
3907     auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
3908     // This inttoptr is a no-op if the integer type is pointer sized.
3909     if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
3910       return matchAddr(AddrInst->getOperand(0), Depth);
3911     return false;
3912   }
3913   case Instruction::BitCast:
3914     // BitCast is always a noop, and we can handle it as long as it is
3915     // int->int or pointer->pointer (we don't want int<->fp or something).
3916     if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() &&
3917         // Don't touch identity bitcasts.  These were probably put here by LSR,
3918         // and we don't want to mess around with them.  Assume it knows what it
3919         // is doing.
3920         AddrInst->getOperand(0)->getType() != AddrInst->getType())
3921       return matchAddr(AddrInst->getOperand(0), Depth);
3922     return false;
3923   case Instruction::AddrSpaceCast: {
3924     unsigned SrcAS
3925       = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
3926     unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
3927     if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3928       return matchAddr(AddrInst->getOperand(0), Depth);
3929     return false;
3930   }
3931   case Instruction::Add: {
3932     // Check to see if we can merge in the RHS then the LHS.  If so, we win.
3933     ExtAddrMode BackupAddrMode = AddrMode;
3934     unsigned OldSize = AddrModeInsts.size();
3935     // Start a transaction at this point.
3936     // The LHS may match but not the RHS.
3937     // Therefore, we need a higher level restoration point to undo partially
3938     // matched operation.
3939     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3940         TPT.getRestorationPoint();
3941 
3942     if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
3943         matchAddr(AddrInst->getOperand(0), Depth+1))
3944       return true;
3945 
3946     // Restore the old addr mode info.
3947     AddrMode = BackupAddrMode;
3948     AddrModeInsts.resize(OldSize);
3949     TPT.rollback(LastKnownGood);
3950 
3951     // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
3952     if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
3953         matchAddr(AddrInst->getOperand(1), Depth+1))
3954       return true;
3955 
3956     // Otherwise we definitely can't merge the ADD in.
3957     AddrMode = BackupAddrMode;
3958     AddrModeInsts.resize(OldSize);
3959     TPT.rollback(LastKnownGood);
3960     break;
3961   }
3962   //case Instruction::Or:
3963   // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
3964   //break;
3965   case Instruction::Mul:
3966   case Instruction::Shl: {
3967     // Can only handle X*C and X << C.
3968     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
3969     if (!RHS || RHS->getBitWidth() > 64)
3970       return false;
3971     int64_t Scale = RHS->getSExtValue();
3972     if (Opcode == Instruction::Shl)
3973       Scale = 1LL << Scale;
3974 
3975     return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
3976   }
3977   case Instruction::GetElementPtr: {
3978     // Scan the GEP.  We check it if it contains constant offsets and at most
3979     // one variable offset.
3980     int VariableOperand = -1;
3981     unsigned VariableScale = 0;
3982 
3983     int64_t ConstantOffset = 0;
3984     gep_type_iterator GTI = gep_type_begin(AddrInst);
3985     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
3986       if (StructType *STy = GTI.getStructTypeOrNull()) {
3987         const StructLayout *SL = DL.getStructLayout(STy);
3988         unsigned Idx =
3989           cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
3990         ConstantOffset += SL->getElementOffset(Idx);
3991       } else {
3992         uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType());
3993         if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
3994           const APInt &CVal = CI->getValue();
3995           if (CVal.getMinSignedBits() <= 64) {
3996             ConstantOffset += CVal.getSExtValue() * TypeSize;
3997             continue;
3998           }
3999         }
4000         if (TypeSize) {  // Scales of zero don't do anything.
4001           // We only allow one variable index at the moment.
4002           if (VariableOperand != -1)
4003             return false;
4004 
4005           // Remember the variable index.
4006           VariableOperand = i;
4007           VariableScale = TypeSize;
4008         }
4009       }
4010     }
4011 
4012     // A common case is for the GEP to only do a constant offset.  In this case,
4013     // just add it to the disp field and check validity.
4014     if (VariableOperand == -1) {
4015       AddrMode.BaseOffs += ConstantOffset;
4016       if (ConstantOffset == 0 ||
4017           TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
4018         // Check to see if we can fold the base pointer in too.
4019         if (matchAddr(AddrInst->getOperand(0), Depth+1))
4020           return true;
4021       } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
4022                  TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
4023                  ConstantOffset > 0) {
4024         // Record GEPs with non-zero offsets as candidates for splitting in the
4025         // event that the offset cannot fit into the r+i addressing mode.
4026         // Simple and common case that only one GEP is used in calculating the
4027         // address for the memory access.
4028         Value *Base = AddrInst->getOperand(0);
4029         auto *BaseI = dyn_cast<Instruction>(Base);
4030         auto *GEP = cast<GetElementPtrInst>(AddrInst);
4031         if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
4032             (BaseI && !isa<CastInst>(BaseI) &&
4033              !isa<GetElementPtrInst>(BaseI))) {
4034           // If the base is an instruction, make sure the GEP is not in the same
4035           // basic block as the base. If the base is an argument or global
4036           // value, make sure the GEP is not in the entry block.  Otherwise,
4037           // instruction selection can undo the split.  Also make sure the
4038           // parent block allows inserting non-PHI instructions before the
4039           // terminator.
4040           BasicBlock *Parent =
4041               BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock();
4042           if (GEP->getParent() != Parent && !Parent->getTerminator()->isEHPad())
4043             LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
4044         }
4045       }
4046       AddrMode.BaseOffs -= ConstantOffset;
4047       return false;
4048     }
4049 
4050     // Save the valid addressing mode in case we can't match.
4051     ExtAddrMode BackupAddrMode = AddrMode;
4052     unsigned OldSize = AddrModeInsts.size();
4053 
4054     // See if the scale and offset amount is valid for this target.
4055     AddrMode.BaseOffs += ConstantOffset;
4056 
4057     // Match the base operand of the GEP.
4058     if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
4059       // If it couldn't be matched, just stuff the value in a register.
4060       if (AddrMode.HasBaseReg) {
4061         AddrMode = BackupAddrMode;
4062         AddrModeInsts.resize(OldSize);
4063         return false;
4064       }
4065       AddrMode.HasBaseReg = true;
4066       AddrMode.BaseReg = AddrInst->getOperand(0);
4067     }
4068 
4069     // Match the remaining variable portion of the GEP.
4070     if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
4071                           Depth)) {
4072       // If it couldn't be matched, try stuffing the base into a register
4073       // instead of matching it, and retrying the match of the scale.
4074       AddrMode = BackupAddrMode;
4075       AddrModeInsts.resize(OldSize);
4076       if (AddrMode.HasBaseReg)
4077         return false;
4078       AddrMode.HasBaseReg = true;
4079       AddrMode.BaseReg = AddrInst->getOperand(0);
4080       AddrMode.BaseOffs += ConstantOffset;
4081       if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
4082                             VariableScale, Depth)) {
4083         // If even that didn't work, bail.
4084         AddrMode = BackupAddrMode;
4085         AddrModeInsts.resize(OldSize);
4086         return false;
4087       }
4088     }
4089 
4090     return true;
4091   }
4092   case Instruction::SExt:
4093   case Instruction::ZExt: {
4094     Instruction *Ext = dyn_cast<Instruction>(AddrInst);
4095     if (!Ext)
4096       return false;
4097 
4098     // Try to move this ext out of the way of the addressing mode.
4099     // Ask for a method for doing so.
4100     TypePromotionHelper::Action TPH =
4101         TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
4102     if (!TPH)
4103       return false;
4104 
4105     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4106         TPT.getRestorationPoint();
4107     unsigned CreatedInstsCost = 0;
4108     unsigned ExtCost = !TLI.isExtFree(Ext);
4109     Value *PromotedOperand =
4110         TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
4111     // SExt has been moved away.
4112     // Thus either it will be rematched later in the recursive calls or it is
4113     // gone. Anyway, we must not fold it into the addressing mode at this point.
4114     // E.g.,
4115     // op = add opnd, 1
4116     // idx = ext op
4117     // addr = gep base, idx
4118     // is now:
4119     // promotedOpnd = ext opnd            <- no match here
4120     // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
4121     // addr = gep base, op                <- match
4122     if (MovedAway)
4123       *MovedAway = true;
4124 
4125     assert(PromotedOperand &&
4126            "TypePromotionHelper should have filtered out those cases");
4127 
4128     ExtAddrMode BackupAddrMode = AddrMode;
4129     unsigned OldSize = AddrModeInsts.size();
4130 
4131     if (!matchAddr(PromotedOperand, Depth) ||
4132         // The total of the new cost is equal to the cost of the created
4133         // instructions.
4134         // The total of the old cost is equal to the cost of the extension plus
4135         // what we have saved in the addressing mode.
4136         !isPromotionProfitable(CreatedInstsCost,
4137                                ExtCost + (AddrModeInsts.size() - OldSize),
4138                                PromotedOperand)) {
4139       AddrMode = BackupAddrMode;
4140       AddrModeInsts.resize(OldSize);
4141       LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
4142       TPT.rollback(LastKnownGood);
4143       return false;
4144     }
4145     return true;
4146   }
4147   }
4148   return false;
4149 }
4150 
4151 /// If we can, try to add the value of 'Addr' into the current addressing mode.
4152 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4153 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
4154 /// for the target.
4155 ///
4156 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
4157   // Start a transaction at this point that we will rollback if the matching
4158   // fails.
4159   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4160       TPT.getRestorationPoint();
4161   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
4162     // Fold in immediates if legal for the target.
4163     AddrMode.BaseOffs += CI->getSExtValue();
4164     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4165       return true;
4166     AddrMode.BaseOffs -= CI->getSExtValue();
4167   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
4168     // If this is a global variable, try to fold it into the addressing mode.
4169     if (!AddrMode.BaseGV) {
4170       AddrMode.BaseGV = GV;
4171       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4172         return true;
4173       AddrMode.BaseGV = nullptr;
4174     }
4175   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
4176     ExtAddrMode BackupAddrMode = AddrMode;
4177     unsigned OldSize = AddrModeInsts.size();
4178 
4179     // Check to see if it is possible to fold this operation.
4180     bool MovedAway = false;
4181     if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
4182       // This instruction may have been moved away. If so, there is nothing
4183       // to check here.
4184       if (MovedAway)
4185         return true;
4186       // Okay, it's possible to fold this.  Check to see if it is actually
4187       // *profitable* to do so.  We use a simple cost model to avoid increasing
4188       // register pressure too much.
4189       if (I->hasOneUse() ||
4190           isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
4191         AddrModeInsts.push_back(I);
4192         return true;
4193       }
4194 
4195       // It isn't profitable to do this, roll back.
4196       //cerr << "NOT FOLDING: " << *I;
4197       AddrMode = BackupAddrMode;
4198       AddrModeInsts.resize(OldSize);
4199       TPT.rollback(LastKnownGood);
4200     }
4201   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
4202     if (matchOperationAddr(CE, CE->getOpcode(), Depth))
4203       return true;
4204     TPT.rollback(LastKnownGood);
4205   } else if (isa<ConstantPointerNull>(Addr)) {
4206     // Null pointer gets folded without affecting the addressing mode.
4207     return true;
4208   }
4209 
4210   // Worse case, the target should support [reg] addressing modes. :)
4211   if (!AddrMode.HasBaseReg) {
4212     AddrMode.HasBaseReg = true;
4213     AddrMode.BaseReg = Addr;
4214     // Still check for legality in case the target supports [imm] but not [i+r].
4215     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4216       return true;
4217     AddrMode.HasBaseReg = false;
4218     AddrMode.BaseReg = nullptr;
4219   }
4220 
4221   // If the base register is already taken, see if we can do [r+r].
4222   if (AddrMode.Scale == 0) {
4223     AddrMode.Scale = 1;
4224     AddrMode.ScaledReg = Addr;
4225     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4226       return true;
4227     AddrMode.Scale = 0;
4228     AddrMode.ScaledReg = nullptr;
4229   }
4230   // Couldn't match.
4231   TPT.rollback(LastKnownGood);
4232   return false;
4233 }
4234 
4235 /// Check to see if all uses of OpVal by the specified inline asm call are due
4236 /// to memory operands. If so, return true, otherwise return false.
4237 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
4238                                     const TargetLowering &TLI,
4239                                     const TargetRegisterInfo &TRI) {
4240   const Function *F = CI->getFunction();
4241   TargetLowering::AsmOperandInfoVector TargetConstraints =
4242       TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI,
4243                             ImmutableCallSite(CI));
4244 
4245   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4246     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4247 
4248     // Compute the constraint code and ConstraintType to use.
4249     TLI.ComputeConstraintToUse(OpInfo, SDValue());
4250 
4251     // If this asm operand is our Value*, and if it isn't an indirect memory
4252     // operand, we can't fold it!
4253     if (OpInfo.CallOperandVal == OpVal &&
4254         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
4255          !OpInfo.isIndirect))
4256       return false;
4257   }
4258 
4259   return true;
4260 }
4261 
4262 // Max number of memory uses to look at before aborting the search to conserve
4263 // compile time.
4264 static constexpr int MaxMemoryUsesToScan = 20;
4265 
4266 /// Recursively walk all the uses of I until we find a memory use.
4267 /// If we find an obviously non-foldable instruction, return true.
4268 /// Add the ultimately found memory instructions to MemoryUses.
4269 static bool FindAllMemoryUses(
4270     Instruction *I,
4271     SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
4272     SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
4273     const TargetRegisterInfo &TRI, int SeenInsts = 0) {
4274   // If we already considered this instruction, we're done.
4275   if (!ConsideredInsts.insert(I).second)
4276     return false;
4277 
4278   // If this is an obviously unfoldable instruction, bail out.
4279   if (!MightBeFoldableInst(I))
4280     return true;
4281 
4282   const bool OptSize = I->getFunction()->optForSize();
4283 
4284   // Loop over all the uses, recursively processing them.
4285   for (Use &U : I->uses()) {
4286     // Conservatively return true if we're seeing a large number or a deep chain
4287     // of users. This avoids excessive compilation times in pathological cases.
4288     if (SeenInsts++ >= MaxMemoryUsesToScan)
4289       return true;
4290 
4291     Instruction *UserI = cast<Instruction>(U.getUser());
4292     if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
4293       MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
4294       continue;
4295     }
4296 
4297     if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
4298       unsigned opNo = U.getOperandNo();
4299       if (opNo != StoreInst::getPointerOperandIndex())
4300         return true; // Storing addr, not into addr.
4301       MemoryUses.push_back(std::make_pair(SI, opNo));
4302       continue;
4303     }
4304 
4305     if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
4306       unsigned opNo = U.getOperandNo();
4307       if (opNo != AtomicRMWInst::getPointerOperandIndex())
4308         return true; // Storing addr, not into addr.
4309       MemoryUses.push_back(std::make_pair(RMW, opNo));
4310       continue;
4311     }
4312 
4313     if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
4314       unsigned opNo = U.getOperandNo();
4315       if (opNo != AtomicCmpXchgInst::getPointerOperandIndex())
4316         return true; // Storing addr, not into addr.
4317       MemoryUses.push_back(std::make_pair(CmpX, opNo));
4318       continue;
4319     }
4320 
4321     if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
4322       // If this is a cold call, we can sink the addressing calculation into
4323       // the cold path.  See optimizeCallInst
4324       if (!OptSize && CI->hasFnAttr(Attribute::Cold))
4325         continue;
4326 
4327       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
4328       if (!IA) return true;
4329 
4330       // If this is a memory operand, we're cool, otherwise bail out.
4331       if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
4332         return true;
4333       continue;
4334     }
4335 
4336     if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI,
4337                           SeenInsts))
4338       return true;
4339   }
4340 
4341   return false;
4342 }
4343 
4344 /// Return true if Val is already known to be live at the use site that we're
4345 /// folding it into. If so, there is no cost to include it in the addressing
4346 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4347 /// instruction already.
4348 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
4349                                                    Value *KnownLive2) {
4350   // If Val is either of the known-live values, we know it is live!
4351   if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
4352     return true;
4353 
4354   // All values other than instructions and arguments (e.g. constants) are live.
4355   if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
4356 
4357   // If Val is a constant sized alloca in the entry block, it is live, this is
4358   // true because it is just a reference to the stack/frame pointer, which is
4359   // live for the whole function.
4360   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
4361     if (AI->isStaticAlloca())
4362       return true;
4363 
4364   // Check to see if this value is already used in the memory instruction's
4365   // block.  If so, it's already live into the block at the very least, so we
4366   // can reasonably fold it.
4367   return Val->isUsedInBasicBlock(MemoryInst->getParent());
4368 }
4369 
4370 /// It is possible for the addressing mode of the machine to fold the specified
4371 /// instruction into a load or store that ultimately uses it.
4372 /// However, the specified instruction has multiple uses.
4373 /// Given this, it may actually increase register pressure to fold it
4374 /// into the load. For example, consider this code:
4375 ///
4376 ///     X = ...
4377 ///     Y = X+1
4378 ///     use(Y)   -> nonload/store
4379 ///     Z = Y+1
4380 ///     load Z
4381 ///
4382 /// In this case, Y has multiple uses, and can be folded into the load of Z
4383 /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
4384 /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
4385 /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
4386 /// number of computations either.
4387 ///
4388 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
4389 /// X was live across 'load Z' for other reasons, we actually *would* want to
4390 /// fold the addressing mode in the Z case.  This would make Y die earlier.
4391 bool AddressingModeMatcher::
4392 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
4393                                      ExtAddrMode &AMAfter) {
4394   if (IgnoreProfitability) return true;
4395 
4396   // AMBefore is the addressing mode before this instruction was folded into it,
4397   // and AMAfter is the addressing mode after the instruction was folded.  Get
4398   // the set of registers referenced by AMAfter and subtract out those
4399   // referenced by AMBefore: this is the set of values which folding in this
4400   // address extends the lifetime of.
4401   //
4402   // Note that there are only two potential values being referenced here,
4403   // BaseReg and ScaleReg (global addresses are always available, as are any
4404   // folded immediates).
4405   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
4406 
4407   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
4408   // lifetime wasn't extended by adding this instruction.
4409   if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4410     BaseReg = nullptr;
4411   if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4412     ScaledReg = nullptr;
4413 
4414   // If folding this instruction (and it's subexprs) didn't extend any live
4415   // ranges, we're ok with it.
4416   if (!BaseReg && !ScaledReg)
4417     return true;
4418 
4419   // If all uses of this instruction can have the address mode sunk into them,
4420   // we can remove the addressing mode and effectively trade one live register
4421   // for another (at worst.)  In this context, folding an addressing mode into
4422   // the use is just a particularly nice way of sinking it.
4423   SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
4424   SmallPtrSet<Instruction*, 16> ConsideredInsts;
4425   if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI))
4426     return false;  // Has a non-memory, non-foldable use!
4427 
4428   // Now that we know that all uses of this instruction are part of a chain of
4429   // computation involving only operations that could theoretically be folded
4430   // into a memory use, loop over each of these memory operation uses and see
4431   // if they could  *actually* fold the instruction.  The assumption is that
4432   // addressing modes are cheap and that duplicating the computation involved
4433   // many times is worthwhile, even on a fastpath. For sinking candidates
4434   // (i.e. cold call sites), this serves as a way to prevent excessive code
4435   // growth since most architectures have some reasonable small and fast way to
4436   // compute an effective address.  (i.e LEA on x86)
4437   SmallVector<Instruction*, 32> MatchedAddrModeInsts;
4438   for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
4439     Instruction *User = MemoryUses[i].first;
4440     unsigned OpNo = MemoryUses[i].second;
4441 
4442     // Get the access type of this use.  If the use isn't a pointer, we don't
4443     // know what it accesses.
4444     Value *Address = User->getOperand(OpNo);
4445     PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
4446     if (!AddrTy)
4447       return false;
4448     Type *AddressAccessTy = AddrTy->getElementType();
4449     unsigned AS = AddrTy->getAddressSpace();
4450 
4451     // Do a match against the root of this address, ignoring profitability. This
4452     // will tell us if the addressing mode for the memory operation will
4453     // *actually* cover the shared instruction.
4454     ExtAddrMode Result;
4455     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4456                                                                       0);
4457     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4458         TPT.getRestorationPoint();
4459     AddressingModeMatcher Matcher(
4460         MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result,
4461         InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP);
4462     Matcher.IgnoreProfitability = true;
4463     bool Success = Matcher.matchAddr(Address, 0);
4464     (void)Success; assert(Success && "Couldn't select *anything*?");
4465 
4466     // The match was to check the profitability, the changes made are not
4467     // part of the original matcher. Therefore, they should be dropped
4468     // otherwise the original matcher will not present the right state.
4469     TPT.rollback(LastKnownGood);
4470 
4471     // If the match didn't cover I, then it won't be shared by it.
4472     if (!is_contained(MatchedAddrModeInsts, I))
4473       return false;
4474 
4475     MatchedAddrModeInsts.clear();
4476   }
4477 
4478   return true;
4479 }
4480 
4481 /// Return true if the specified values are defined in a
4482 /// different basic block than BB.
4483 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
4484   if (Instruction *I = dyn_cast<Instruction>(V))
4485     return I->getParent() != BB;
4486   return false;
4487 }
4488 
4489 /// Sink addressing mode computation immediate before MemoryInst if doing so
4490 /// can be done without increasing register pressure.  The need for the
4491 /// register pressure constraint means this can end up being an all or nothing
4492 /// decision for all uses of the same addressing computation.
4493 ///
4494 /// Load and Store Instructions often have addressing modes that can do
4495 /// significant amounts of computation. As such, instruction selection will try
4496 /// to get the load or store to do as much computation as possible for the
4497 /// program. The problem is that isel can only see within a single block. As
4498 /// such, we sink as much legal addressing mode work into the block as possible.
4499 ///
4500 /// This method is used to optimize both load/store and inline asms with memory
4501 /// operands.  It's also used to sink addressing computations feeding into cold
4502 /// call sites into their (cold) basic block.
4503 ///
4504 /// The motivation for handling sinking into cold blocks is that doing so can
4505 /// both enable other address mode sinking (by satisfying the register pressure
4506 /// constraint above), and reduce register pressure globally (by removing the
4507 /// addressing mode computation from the fast path entirely.).
4508 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
4509                                         Type *AccessTy, unsigned AddrSpace) {
4510   Value *Repl = Addr;
4511 
4512   // Try to collapse single-value PHI nodes.  This is necessary to undo
4513   // unprofitable PRE transformations.
4514   SmallVector<Value*, 8> worklist;
4515   SmallPtrSet<Value*, 16> Visited;
4516   worklist.push_back(Addr);
4517 
4518   // Use a worklist to iteratively look through PHI and select nodes, and
4519   // ensure that the addressing mode obtained from the non-PHI/select roots of
4520   // the graph are compatible.
4521   bool PhiOrSelectSeen = false;
4522   SmallVector<Instruction*, 16> AddrModeInsts;
4523   const SimplifyQuery SQ(*DL, TLInfo);
4524   AddressingModeCombiner AddrModes(SQ, Addr);
4525   TypePromotionTransaction TPT(RemovedInsts);
4526   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4527       TPT.getRestorationPoint();
4528   while (!worklist.empty()) {
4529     Value *V = worklist.back();
4530     worklist.pop_back();
4531 
4532     // We allow traversing cyclic Phi nodes.
4533     // In case of success after this loop we ensure that traversing through
4534     // Phi nodes ends up with all cases to compute address of the form
4535     //    BaseGV + Base + Scale * Index + Offset
4536     // where Scale and Offset are constans and BaseGV, Base and Index
4537     // are exactly the same Values in all cases.
4538     // It means that BaseGV, Scale and Offset dominate our memory instruction
4539     // and have the same value as they had in address computation represented
4540     // as Phi. So we can safely sink address computation to memory instruction.
4541     if (!Visited.insert(V).second)
4542       continue;
4543 
4544     // For a PHI node, push all of its incoming values.
4545     if (PHINode *P = dyn_cast<PHINode>(V)) {
4546       for (Value *IncValue : P->incoming_values())
4547         worklist.push_back(IncValue);
4548       PhiOrSelectSeen = true;
4549       continue;
4550     }
4551     // Similar for select.
4552     if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
4553       worklist.push_back(SI->getFalseValue());
4554       worklist.push_back(SI->getTrueValue());
4555       PhiOrSelectSeen = true;
4556       continue;
4557     }
4558 
4559     // For non-PHIs, determine the addressing mode being computed.  Note that
4560     // the result may differ depending on what other uses our candidate
4561     // addressing instructions might have.
4562     AddrModeInsts.clear();
4563     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4564                                                                       0);
4565     ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
4566         V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI,
4567         InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP);
4568 
4569     GetElementPtrInst *GEP = LargeOffsetGEP.first;
4570     if (GEP && GEP->getParent() != MemoryInst->getParent() &&
4571         !NewGEPBases.count(GEP)) {
4572       // If splitting the underlying data structure can reduce the offset of a
4573       // GEP, collect the GEP.  Skip the GEPs that are the new bases of
4574       // previously split data structures.
4575       LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
4576       if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end())
4577         LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size();
4578     }
4579 
4580     NewAddrMode.OriginalValue = V;
4581     if (!AddrModes.addNewAddrMode(NewAddrMode))
4582       break;
4583   }
4584 
4585   // Try to combine the AddrModes we've collected. If we couldn't collect any,
4586   // or we have multiple but either couldn't combine them or combining them
4587   // wouldn't do anything useful, bail out now.
4588   if (!AddrModes.combineAddrModes()) {
4589     TPT.rollback(LastKnownGood);
4590     return false;
4591   }
4592   TPT.commit();
4593 
4594   // Get the combined AddrMode (or the only AddrMode, if we only had one).
4595   ExtAddrMode AddrMode = AddrModes.getAddrMode();
4596 
4597   // If all the instructions matched are already in this BB, don't do anything.
4598   // If we saw a Phi node then it is not local definitely, and if we saw a select
4599   // then we want to push the address calculation past it even if it's already
4600   // in this BB.
4601   if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
4602         return IsNonLocalValue(V, MemoryInst->getParent());
4603                   })) {
4604     LLVM_DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode
4605                       << "\n");
4606     return false;
4607   }
4608 
4609   // Insert this computation right after this user.  Since our caller is
4610   // scanning from the top of the BB to the bottom, reuse of the expr are
4611   // guaranteed to happen later.
4612   IRBuilder<> Builder(MemoryInst);
4613 
4614   // Now that we determined the addressing expression we want to use and know
4615   // that we have to sink it into this block.  Check to see if we have already
4616   // done this for some other load/store instr in this block.  If so, reuse
4617   // the computation.  Before attempting reuse, check if the address is valid
4618   // as it may have been erased.
4619 
4620   WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
4621 
4622   Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
4623   if (SunkAddr) {
4624     LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
4625                       << " for " << *MemoryInst << "\n");
4626     if (SunkAddr->getType() != Addr->getType())
4627       SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4628   } else if (AddrSinkUsingGEPs ||
4629              (!AddrSinkUsingGEPs.getNumOccurrences() && TM && TTI->useAA())) {
4630     // By default, we use the GEP-based method when AA is used later. This
4631     // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
4632     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4633                       << " for " << *MemoryInst << "\n");
4634     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4635     Value *ResultPtr = nullptr, *ResultIndex = nullptr;
4636 
4637     // First, find the pointer.
4638     if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
4639       ResultPtr = AddrMode.BaseReg;
4640       AddrMode.BaseReg = nullptr;
4641     }
4642 
4643     if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
4644       // We can't add more than one pointer together, nor can we scale a
4645       // pointer (both of which seem meaningless).
4646       if (ResultPtr || AddrMode.Scale != 1)
4647         return false;
4648 
4649       ResultPtr = AddrMode.ScaledReg;
4650       AddrMode.Scale = 0;
4651     }
4652 
4653     // It is only safe to sign extend the BaseReg if we know that the math
4654     // required to create it did not overflow before we extend it. Since
4655     // the original IR value was tossed in favor of a constant back when
4656     // the AddrMode was created we need to bail out gracefully if widths
4657     // do not match instead of extending it.
4658     //
4659     // (See below for code to add the scale.)
4660     if (AddrMode.Scale) {
4661       Type *ScaledRegTy = AddrMode.ScaledReg->getType();
4662       if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
4663           cast<IntegerType>(ScaledRegTy)->getBitWidth())
4664         return false;
4665     }
4666 
4667     if (AddrMode.BaseGV) {
4668       if (ResultPtr)
4669         return false;
4670 
4671       ResultPtr = AddrMode.BaseGV;
4672     }
4673 
4674     // If the real base value actually came from an inttoptr, then the matcher
4675     // will look through it and provide only the integer value. In that case,
4676     // use it here.
4677     if (!DL->isNonIntegralPointerType(Addr->getType())) {
4678       if (!ResultPtr && AddrMode.BaseReg) {
4679         ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
4680                                            "sunkaddr");
4681         AddrMode.BaseReg = nullptr;
4682       } else if (!ResultPtr && AddrMode.Scale == 1) {
4683         ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
4684                                            "sunkaddr");
4685         AddrMode.Scale = 0;
4686       }
4687     }
4688 
4689     if (!ResultPtr &&
4690         !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
4691       SunkAddr = Constant::getNullValue(Addr->getType());
4692     } else if (!ResultPtr) {
4693       return false;
4694     } else {
4695       Type *I8PtrTy =
4696           Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
4697       Type *I8Ty = Builder.getInt8Ty();
4698 
4699       // Start with the base register. Do this first so that subsequent address
4700       // matching finds it last, which will prevent it from trying to match it
4701       // as the scaled value in case it happens to be a mul. That would be
4702       // problematic if we've sunk a different mul for the scale, because then
4703       // we'd end up sinking both muls.
4704       if (AddrMode.BaseReg) {
4705         Value *V = AddrMode.BaseReg;
4706         if (V->getType() != IntPtrTy)
4707           V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4708 
4709         ResultIndex = V;
4710       }
4711 
4712       // Add the scale value.
4713       if (AddrMode.Scale) {
4714         Value *V = AddrMode.ScaledReg;
4715         if (V->getType() == IntPtrTy) {
4716           // done.
4717         } else {
4718           assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
4719                  cast<IntegerType>(V->getType())->getBitWidth() &&
4720                  "We can't transform if ScaledReg is too narrow");
4721           V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4722         }
4723 
4724         if (AddrMode.Scale != 1)
4725           V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4726                                 "sunkaddr");
4727         if (ResultIndex)
4728           ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
4729         else
4730           ResultIndex = V;
4731       }
4732 
4733       // Add in the Base Offset if present.
4734       if (AddrMode.BaseOffs) {
4735         Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
4736         if (ResultIndex) {
4737           // We need to add this separately from the scale above to help with
4738           // SDAG consecutive load/store merging.
4739           if (ResultPtr->getType() != I8PtrTy)
4740             ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4741           ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4742         }
4743 
4744         ResultIndex = V;
4745       }
4746 
4747       if (!ResultIndex) {
4748         SunkAddr = ResultPtr;
4749       } else {
4750         if (ResultPtr->getType() != I8PtrTy)
4751           ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4752         SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4753       }
4754 
4755       if (SunkAddr->getType() != Addr->getType())
4756         SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4757     }
4758   } else {
4759     // We'd require a ptrtoint/inttoptr down the line, which we can't do for
4760     // non-integral pointers, so in that case bail out now.
4761     Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
4762     Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
4763     PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
4764     PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
4765     if (DL->isNonIntegralPointerType(Addr->getType()) ||
4766         (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
4767         (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
4768         (AddrMode.BaseGV &&
4769          DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
4770       return false;
4771 
4772     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4773                       << " for " << *MemoryInst << "\n");
4774     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4775     Value *Result = nullptr;
4776 
4777     // Start with the base register. Do this first so that subsequent address
4778     // matching finds it last, which will prevent it from trying to match it
4779     // as the scaled value in case it happens to be a mul. That would be
4780     // problematic if we've sunk a different mul for the scale, because then
4781     // we'd end up sinking both muls.
4782     if (AddrMode.BaseReg) {
4783       Value *V = AddrMode.BaseReg;
4784       if (V->getType()->isPointerTy())
4785         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4786       if (V->getType() != IntPtrTy)
4787         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4788       Result = V;
4789     }
4790 
4791     // Add the scale value.
4792     if (AddrMode.Scale) {
4793       Value *V = AddrMode.ScaledReg;
4794       if (V->getType() == IntPtrTy) {
4795         // done.
4796       } else if (V->getType()->isPointerTy()) {
4797         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4798       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
4799                  cast<IntegerType>(V->getType())->getBitWidth()) {
4800         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4801       } else {
4802         // It is only safe to sign extend the BaseReg if we know that the math
4803         // required to create it did not overflow before we extend it. Since
4804         // the original IR value was tossed in favor of a constant back when
4805         // the AddrMode was created we need to bail out gracefully if widths
4806         // do not match instead of extending it.
4807         Instruction *I = dyn_cast_or_null<Instruction>(Result);
4808         if (I && (Result != AddrMode.BaseReg))
4809           I->eraseFromParent();
4810         return false;
4811       }
4812       if (AddrMode.Scale != 1)
4813         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4814                               "sunkaddr");
4815       if (Result)
4816         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4817       else
4818         Result = V;
4819     }
4820 
4821     // Add in the BaseGV if present.
4822     if (AddrMode.BaseGV) {
4823       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
4824       if (Result)
4825         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4826       else
4827         Result = V;
4828     }
4829 
4830     // Add in the Base Offset if present.
4831     if (AddrMode.BaseOffs) {
4832       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
4833       if (Result)
4834         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4835       else
4836         Result = V;
4837     }
4838 
4839     if (!Result)
4840       SunkAddr = Constant::getNullValue(Addr->getType());
4841     else
4842       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
4843   }
4844 
4845   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
4846   // Store the newly computed address into the cache. In the case we reused a
4847   // value, this should be idempotent.
4848   SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
4849 
4850   // If we have no uses, recursively delete the value and all dead instructions
4851   // using it.
4852   if (Repl->use_empty()) {
4853     // This can cause recursive deletion, which can invalidate our iterator.
4854     // Use a WeakTrackingVH to hold onto it in case this happens.
4855     Value *CurValue = &*CurInstIterator;
4856     WeakTrackingVH IterHandle(CurValue);
4857     BasicBlock *BB = CurInstIterator->getParent();
4858 
4859     RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
4860 
4861     if (IterHandle != CurValue) {
4862       // If the iterator instruction was recursively deleted, start over at the
4863       // start of the block.
4864       CurInstIterator = BB->begin();
4865       SunkAddrs.clear();
4866     }
4867   }
4868   ++NumMemoryInsts;
4869   return true;
4870 }
4871 
4872 /// If there are any memory operands, use OptimizeMemoryInst to sink their
4873 /// address computing into the block when possible / profitable.
4874 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
4875   bool MadeChange = false;
4876 
4877   const TargetRegisterInfo *TRI =
4878       TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
4879   TargetLowering::AsmOperandInfoVector TargetConstraints =
4880       TLI->ParseConstraints(*DL, TRI, CS);
4881   unsigned ArgNo = 0;
4882   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4883     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4884 
4885     // Compute the constraint code and ConstraintType to use.
4886     TLI->ComputeConstraintToUse(OpInfo, SDValue());
4887 
4888     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
4889         OpInfo.isIndirect) {
4890       Value *OpVal = CS->getArgOperand(ArgNo++);
4891       MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
4892     } else if (OpInfo.Type == InlineAsm::isInput)
4893       ArgNo++;
4894   }
4895 
4896   return MadeChange;
4897 }
4898 
4899 /// Check if all the uses of \p Val are equivalent (or free) zero or
4900 /// sign extensions.
4901 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
4902   assert(!Val->use_empty() && "Input must have at least one use");
4903   const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
4904   bool IsSExt = isa<SExtInst>(FirstUser);
4905   Type *ExtTy = FirstUser->getType();
4906   for (const User *U : Val->users()) {
4907     const Instruction *UI = cast<Instruction>(U);
4908     if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
4909       return false;
4910     Type *CurTy = UI->getType();
4911     // Same input and output types: Same instruction after CSE.
4912     if (CurTy == ExtTy)
4913       continue;
4914 
4915     // If IsSExt is true, we are in this situation:
4916     // a = Val
4917     // b = sext ty1 a to ty2
4918     // c = sext ty1 a to ty3
4919     // Assuming ty2 is shorter than ty3, this could be turned into:
4920     // a = Val
4921     // b = sext ty1 a to ty2
4922     // c = sext ty2 b to ty3
4923     // However, the last sext is not free.
4924     if (IsSExt)
4925       return false;
4926 
4927     // This is a ZExt, maybe this is free to extend from one type to another.
4928     // In that case, we would not account for a different use.
4929     Type *NarrowTy;
4930     Type *LargeTy;
4931     if (ExtTy->getScalarType()->getIntegerBitWidth() >
4932         CurTy->getScalarType()->getIntegerBitWidth()) {
4933       NarrowTy = CurTy;
4934       LargeTy = ExtTy;
4935     } else {
4936       NarrowTy = ExtTy;
4937       LargeTy = CurTy;
4938     }
4939 
4940     if (!TLI.isZExtFree(NarrowTy, LargeTy))
4941       return false;
4942   }
4943   // All uses are the same or can be derived from one another for free.
4944   return true;
4945 }
4946 
4947 /// Try to speculatively promote extensions in \p Exts and continue
4948 /// promoting through newly promoted operands recursively as far as doing so is
4949 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
4950 /// When some promotion happened, \p TPT contains the proper state to revert
4951 /// them.
4952 ///
4953 /// \return true if some promotion happened, false otherwise.
4954 bool CodeGenPrepare::tryToPromoteExts(
4955     TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
4956     SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
4957     unsigned CreatedInstsCost) {
4958   bool Promoted = false;
4959 
4960   // Iterate over all the extensions to try to promote them.
4961   for (auto I : Exts) {
4962     // Early check if we directly have ext(load).
4963     if (isa<LoadInst>(I->getOperand(0))) {
4964       ProfitablyMovedExts.push_back(I);
4965       continue;
4966     }
4967 
4968     // Check whether or not we want to do any promotion.  The reason we have
4969     // this check inside the for loop is to catch the case where an extension
4970     // is directly fed by a load because in such case the extension can be moved
4971     // up without any promotion on its operands.
4972     if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion)
4973       return false;
4974 
4975     // Get the action to perform the promotion.
4976     TypePromotionHelper::Action TPH =
4977         TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
4978     // Check if we can promote.
4979     if (!TPH) {
4980       // Save the current extension as we cannot move up through its operand.
4981       ProfitablyMovedExts.push_back(I);
4982       continue;
4983     }
4984 
4985     // Save the current state.
4986     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4987         TPT.getRestorationPoint();
4988     SmallVector<Instruction *, 4> NewExts;
4989     unsigned NewCreatedInstsCost = 0;
4990     unsigned ExtCost = !TLI->isExtFree(I);
4991     // Promote.
4992     Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
4993                              &NewExts, nullptr, *TLI);
4994     assert(PromotedVal &&
4995            "TypePromotionHelper should have filtered out those cases");
4996 
4997     // We would be able to merge only one extension in a load.
4998     // Therefore, if we have more than 1 new extension we heuristically
4999     // cut this search path, because it means we degrade the code quality.
5000     // With exactly 2, the transformation is neutral, because we will merge
5001     // one extension but leave one. However, we optimistically keep going,
5002     // because the new extension may be removed too.
5003     long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
5004     // FIXME: It would be possible to propagate a negative value instead of
5005     // conservatively ceiling it to 0.
5006     TotalCreatedInstsCost =
5007         std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
5008     if (!StressExtLdPromotion &&
5009         (TotalCreatedInstsCost > 1 ||
5010          !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
5011       // This promotion is not profitable, rollback to the previous state, and
5012       // save the current extension in ProfitablyMovedExts as the latest
5013       // speculative promotion turned out to be unprofitable.
5014       TPT.rollback(LastKnownGood);
5015       ProfitablyMovedExts.push_back(I);
5016       continue;
5017     }
5018     // Continue promoting NewExts as far as doing so is profitable.
5019     SmallVector<Instruction *, 2> NewlyMovedExts;
5020     (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
5021     bool NewPromoted = false;
5022     for (auto ExtInst : NewlyMovedExts) {
5023       Instruction *MovedExt = cast<Instruction>(ExtInst);
5024       Value *ExtOperand = MovedExt->getOperand(0);
5025       // If we have reached to a load, we need this extra profitability check
5026       // as it could potentially be merged into an ext(load).
5027       if (isa<LoadInst>(ExtOperand) &&
5028           !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
5029             (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
5030         continue;
5031 
5032       ProfitablyMovedExts.push_back(MovedExt);
5033       NewPromoted = true;
5034     }
5035 
5036     // If none of speculative promotions for NewExts is profitable, rollback
5037     // and save the current extension (I) as the last profitable extension.
5038     if (!NewPromoted) {
5039       TPT.rollback(LastKnownGood);
5040       ProfitablyMovedExts.push_back(I);
5041       continue;
5042     }
5043     // The promotion is profitable.
5044     Promoted = true;
5045   }
5046   return Promoted;
5047 }
5048 
5049 /// Merging redundant sexts when one is dominating the other.
5050 bool CodeGenPrepare::mergeSExts(Function &F) {
5051   DominatorTree DT(F);
5052   bool Changed = false;
5053   for (auto &Entry : ValToSExtendedUses) {
5054     SExts &Insts = Entry.second;
5055     SExts CurPts;
5056     for (Instruction *Inst : Insts) {
5057       if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
5058           Inst->getOperand(0) != Entry.first)
5059         continue;
5060       bool inserted = false;
5061       for (auto &Pt : CurPts) {
5062         if (DT.dominates(Inst, Pt)) {
5063           Pt->replaceAllUsesWith(Inst);
5064           RemovedInsts.insert(Pt);
5065           Pt->removeFromParent();
5066           Pt = Inst;
5067           inserted = true;
5068           Changed = true;
5069           break;
5070         }
5071         if (!DT.dominates(Pt, Inst))
5072           // Give up if we need to merge in a common dominator as the
5073           // experiments show it is not profitable.
5074           continue;
5075         Inst->replaceAllUsesWith(Pt);
5076         RemovedInsts.insert(Inst);
5077         Inst->removeFromParent();
5078         inserted = true;
5079         Changed = true;
5080         break;
5081       }
5082       if (!inserted)
5083         CurPts.push_back(Inst);
5084     }
5085   }
5086   return Changed;
5087 }
5088 
5089 // Spliting large data structures so that the GEPs accessing them can have
5090 // smaller offsets so that they can be sunk to the same blocks as their users.
5091 // For example, a large struct starting from %base is splitted into two parts
5092 // where the second part starts from %new_base.
5093 //
5094 // Before:
5095 // BB0:
5096 //   %base     =
5097 //
5098 // BB1:
5099 //   %gep0     = gep %base, off0
5100 //   %gep1     = gep %base, off1
5101 //   %gep2     = gep %base, off2
5102 //
5103 // BB2:
5104 //   %load1    = load %gep0
5105 //   %load2    = load %gep1
5106 //   %load3    = load %gep2
5107 //
5108 // After:
5109 // BB0:
5110 //   %base     =
5111 //   %new_base = gep %base, off0
5112 //
5113 // BB1:
5114 //   %new_gep0 = %new_base
5115 //   %new_gep1 = gep %new_base, off1 - off0
5116 //   %new_gep2 = gep %new_base, off2 - off0
5117 //
5118 // BB2:
5119 //   %load1    = load i32, i32* %new_gep0
5120 //   %load2    = load i32, i32* %new_gep1
5121 //   %load3    = load i32, i32* %new_gep2
5122 //
5123 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
5124 // their offsets are smaller enough to fit into the addressing mode.
5125 bool CodeGenPrepare::splitLargeGEPOffsets() {
5126   bool Changed = false;
5127   for (auto &Entry : LargeOffsetGEPMap) {
5128     Value *OldBase = Entry.first;
5129     SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
5130         &LargeOffsetGEPs = Entry.second;
5131     auto compareGEPOffset =
5132         [&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
5133             const std::pair<GetElementPtrInst *, int64_t> &RHS) {
5134           if (LHS.first == RHS.first)
5135             return false;
5136           if (LHS.second != RHS.second)
5137             return LHS.second < RHS.second;
5138           return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
5139         };
5140     // Sorting all the GEPs of the same data structures based on the offsets.
5141     llvm::sort(LargeOffsetGEPs, compareGEPOffset);
5142     LargeOffsetGEPs.erase(
5143         std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()),
5144         LargeOffsetGEPs.end());
5145     // Skip if all the GEPs have the same offsets.
5146     if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
5147       continue;
5148     GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
5149     int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
5150     Value *NewBaseGEP = nullptr;
5151 
5152     auto LargeOffsetGEP = LargeOffsetGEPs.begin();
5153     while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
5154       GetElementPtrInst *GEP = LargeOffsetGEP->first;
5155       int64_t Offset = LargeOffsetGEP->second;
5156       if (Offset != BaseOffset) {
5157         TargetLowering::AddrMode AddrMode;
5158         AddrMode.BaseOffs = Offset - BaseOffset;
5159         // The result type of the GEP might not be the type of the memory
5160         // access.
5161         if (!TLI->isLegalAddressingMode(*DL, AddrMode,
5162                                         GEP->getResultElementType(),
5163                                         GEP->getAddressSpace())) {
5164           // We need to create a new base if the offset to the current base is
5165           // too large to fit into the addressing mode. So, a very large struct
5166           // may be splitted into several parts.
5167           BaseGEP = GEP;
5168           BaseOffset = Offset;
5169           NewBaseGEP = nullptr;
5170         }
5171       }
5172 
5173       // Generate a new GEP to replace the current one.
5174       LLVMContext &Ctx = GEP->getContext();
5175       Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
5176       Type *I8PtrTy =
5177           Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace());
5178       Type *I8Ty = Type::getInt8Ty(Ctx);
5179 
5180       if (!NewBaseGEP) {
5181         // Create a new base if we don't have one yet.  Find the insertion
5182         // pointer for the new base first.
5183         BasicBlock::iterator NewBaseInsertPt;
5184         BasicBlock *NewBaseInsertBB;
5185         if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
5186           // If the base of the struct is an instruction, the new base will be
5187           // inserted close to it.
5188           NewBaseInsertBB = BaseI->getParent();
5189           if (isa<PHINode>(BaseI))
5190             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5191           else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
5192             NewBaseInsertBB =
5193                 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest());
5194             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5195           } else
5196             NewBaseInsertPt = std::next(BaseI->getIterator());
5197         } else {
5198           // If the current base is an argument or global value, the new base
5199           // will be inserted to the entry block.
5200           NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
5201           NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5202         }
5203         IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
5204         // Create a new base.
5205         Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset);
5206         NewBaseGEP = OldBase;
5207         if (NewBaseGEP->getType() != I8PtrTy)
5208           NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
5209         NewBaseGEP =
5210             NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep");
5211         NewGEPBases.insert(NewBaseGEP);
5212       }
5213 
5214       IRBuilder<> Builder(GEP);
5215       Value *NewGEP = NewBaseGEP;
5216       if (Offset == BaseOffset) {
5217         if (GEP->getType() != I8PtrTy)
5218           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5219       } else {
5220         // Calculate the new offset for the new GEP.
5221         Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset);
5222         NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index);
5223 
5224         if (GEP->getType() != I8PtrTy)
5225           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5226       }
5227       GEP->replaceAllUsesWith(NewGEP);
5228       LargeOffsetGEPID.erase(GEP);
5229       LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
5230       GEP->eraseFromParent();
5231       Changed = true;
5232     }
5233   }
5234   return Changed;
5235 }
5236 
5237 /// Return true, if an ext(load) can be formed from an extension in
5238 /// \p MovedExts.
5239 bool CodeGenPrepare::canFormExtLd(
5240     const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
5241     Instruction *&Inst, bool HasPromoted) {
5242   for (auto *MovedExtInst : MovedExts) {
5243     if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
5244       LI = cast<LoadInst>(MovedExtInst->getOperand(0));
5245       Inst = MovedExtInst;
5246       break;
5247     }
5248   }
5249   if (!LI)
5250     return false;
5251 
5252   // If they're already in the same block, there's nothing to do.
5253   // Make the cheap checks first if we did not promote.
5254   // If we promoted, we need to check if it is indeed profitable.
5255   if (!HasPromoted && LI->getParent() == Inst->getParent())
5256     return false;
5257 
5258   return TLI->isExtLoad(LI, Inst, *DL);
5259 }
5260 
5261 /// Move a zext or sext fed by a load into the same basic block as the load,
5262 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
5263 /// extend into the load.
5264 ///
5265 /// E.g.,
5266 /// \code
5267 /// %ld = load i32* %addr
5268 /// %add = add nuw i32 %ld, 4
5269 /// %zext = zext i32 %add to i64
5270 // \endcode
5271 /// =>
5272 /// \code
5273 /// %ld = load i32* %addr
5274 /// %zext = zext i32 %ld to i64
5275 /// %add = add nuw i64 %zext, 4
5276 /// \encode
5277 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
5278 /// allow us to match zext(load i32*) to i64.
5279 ///
5280 /// Also, try to promote the computations used to obtain a sign extended
5281 /// value used into memory accesses.
5282 /// E.g.,
5283 /// \code
5284 /// a = add nsw i32 b, 3
5285 /// d = sext i32 a to i64
5286 /// e = getelementptr ..., i64 d
5287 /// \endcode
5288 /// =>
5289 /// \code
5290 /// f = sext i32 b to i64
5291 /// a = add nsw i64 f, 3
5292 /// e = getelementptr ..., i64 a
5293 /// \endcode
5294 ///
5295 /// \p Inst[in/out] the extension may be modified during the process if some
5296 /// promotions apply.
5297 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
5298   // ExtLoad formation and address type promotion infrastructure requires TLI to
5299   // be effective.
5300   if (!TLI)
5301     return false;
5302 
5303   bool AllowPromotionWithoutCommonHeader = false;
5304   /// See if it is an interesting sext operations for the address type
5305   /// promotion before trying to promote it, e.g., the ones with the right
5306   /// type and used in memory accesses.
5307   bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
5308       *Inst, AllowPromotionWithoutCommonHeader);
5309   TypePromotionTransaction TPT(RemovedInsts);
5310   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5311       TPT.getRestorationPoint();
5312   SmallVector<Instruction *, 1> Exts;
5313   SmallVector<Instruction *, 2> SpeculativelyMovedExts;
5314   Exts.push_back(Inst);
5315 
5316   bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
5317 
5318   // Look for a load being extended.
5319   LoadInst *LI = nullptr;
5320   Instruction *ExtFedByLoad;
5321 
5322   // Try to promote a chain of computation if it allows to form an extended
5323   // load.
5324   if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
5325     assert(LI && ExtFedByLoad && "Expect a valid load and extension");
5326     TPT.commit();
5327     // Move the extend into the same block as the load
5328     ExtFedByLoad->moveAfter(LI);
5329     // CGP does not check if the zext would be speculatively executed when moved
5330     // to the same basic block as the load. Preserving its original location
5331     // would pessimize the debugging experience, as well as negatively impact
5332     // the quality of sample pgo. We don't want to use "line 0" as that has a
5333     // size cost in the line-table section and logically the zext can be seen as
5334     // part of the load. Therefore we conservatively reuse the same debug
5335     // location for the load and the zext.
5336     ExtFedByLoad->setDebugLoc(LI->getDebugLoc());
5337     ++NumExtsMoved;
5338     Inst = ExtFedByLoad;
5339     return true;
5340   }
5341 
5342   // Continue promoting SExts if known as considerable depending on targets.
5343   if (ATPConsiderable &&
5344       performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
5345                                   HasPromoted, TPT, SpeculativelyMovedExts))
5346     return true;
5347 
5348   TPT.rollback(LastKnownGood);
5349   return false;
5350 }
5351 
5352 // Perform address type promotion if doing so is profitable.
5353 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
5354 // instructions that sign extended the same initial value. However, if
5355 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
5356 // extension is just profitable.
5357 bool CodeGenPrepare::performAddressTypePromotion(
5358     Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
5359     bool HasPromoted, TypePromotionTransaction &TPT,
5360     SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
5361   bool Promoted = false;
5362   SmallPtrSet<Instruction *, 1> UnhandledExts;
5363   bool AllSeenFirst = true;
5364   for (auto I : SpeculativelyMovedExts) {
5365     Value *HeadOfChain = I->getOperand(0);
5366     DenseMap<Value *, Instruction *>::iterator AlreadySeen =
5367         SeenChainsForSExt.find(HeadOfChain);
5368     // If there is an unhandled SExt which has the same header, try to promote
5369     // it as well.
5370     if (AlreadySeen != SeenChainsForSExt.end()) {
5371       if (AlreadySeen->second != nullptr)
5372         UnhandledExts.insert(AlreadySeen->second);
5373       AllSeenFirst = false;
5374     }
5375   }
5376 
5377   if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
5378                         SpeculativelyMovedExts.size() == 1)) {
5379     TPT.commit();
5380     if (HasPromoted)
5381       Promoted = true;
5382     for (auto I : SpeculativelyMovedExts) {
5383       Value *HeadOfChain = I->getOperand(0);
5384       SeenChainsForSExt[HeadOfChain] = nullptr;
5385       ValToSExtendedUses[HeadOfChain].push_back(I);
5386     }
5387     // Update Inst as promotion happen.
5388     Inst = SpeculativelyMovedExts.pop_back_val();
5389   } else {
5390     // This is the first chain visited from the header, keep the current chain
5391     // as unhandled. Defer to promote this until we encounter another SExt
5392     // chain derived from the same header.
5393     for (auto I : SpeculativelyMovedExts) {
5394       Value *HeadOfChain = I->getOperand(0);
5395       SeenChainsForSExt[HeadOfChain] = Inst;
5396     }
5397     return false;
5398   }
5399 
5400   if (!AllSeenFirst && !UnhandledExts.empty())
5401     for (auto VisitedSExt : UnhandledExts) {
5402       if (RemovedInsts.count(VisitedSExt))
5403         continue;
5404       TypePromotionTransaction TPT(RemovedInsts);
5405       SmallVector<Instruction *, 1> Exts;
5406       SmallVector<Instruction *, 2> Chains;
5407       Exts.push_back(VisitedSExt);
5408       bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
5409       TPT.commit();
5410       if (HasPromoted)
5411         Promoted = true;
5412       for (auto I : Chains) {
5413         Value *HeadOfChain = I->getOperand(0);
5414         // Mark this as handled.
5415         SeenChainsForSExt[HeadOfChain] = nullptr;
5416         ValToSExtendedUses[HeadOfChain].push_back(I);
5417       }
5418     }
5419   return Promoted;
5420 }
5421 
5422 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
5423   BasicBlock *DefBB = I->getParent();
5424 
5425   // If the result of a {s|z}ext and its source are both live out, rewrite all
5426   // other uses of the source with result of extension.
5427   Value *Src = I->getOperand(0);
5428   if (Src->hasOneUse())
5429     return false;
5430 
5431   // Only do this xform if truncating is free.
5432   if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
5433     return false;
5434 
5435   // Only safe to perform the optimization if the source is also defined in
5436   // this block.
5437   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
5438     return false;
5439 
5440   bool DefIsLiveOut = false;
5441   for (User *U : I->users()) {
5442     Instruction *UI = cast<Instruction>(U);
5443 
5444     // Figure out which BB this ext is used in.
5445     BasicBlock *UserBB = UI->getParent();
5446     if (UserBB == DefBB) continue;
5447     DefIsLiveOut = true;
5448     break;
5449   }
5450   if (!DefIsLiveOut)
5451     return false;
5452 
5453   // Make sure none of the uses are PHI nodes.
5454   for (User *U : Src->users()) {
5455     Instruction *UI = cast<Instruction>(U);
5456     BasicBlock *UserBB = UI->getParent();
5457     if (UserBB == DefBB) continue;
5458     // Be conservative. We don't want this xform to end up introducing
5459     // reloads just before load / store instructions.
5460     if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
5461       return false;
5462   }
5463 
5464   // InsertedTruncs - Only insert one trunc in each block once.
5465   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
5466 
5467   bool MadeChange = false;
5468   for (Use &U : Src->uses()) {
5469     Instruction *User = cast<Instruction>(U.getUser());
5470 
5471     // Figure out which BB this ext is used in.
5472     BasicBlock *UserBB = User->getParent();
5473     if (UserBB == DefBB) continue;
5474 
5475     // Both src and def are live in this block. Rewrite the use.
5476     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
5477 
5478     if (!InsertedTrunc) {
5479       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5480       assert(InsertPt != UserBB->end());
5481       InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
5482       InsertedInsts.insert(InsertedTrunc);
5483     }
5484 
5485     // Replace a use of the {s|z}ext source with a use of the result.
5486     U = InsertedTrunc;
5487     ++NumExtUses;
5488     MadeChange = true;
5489   }
5490 
5491   return MadeChange;
5492 }
5493 
5494 // Find loads whose uses only use some of the loaded value's bits.  Add an "and"
5495 // just after the load if the target can fold this into one extload instruction,
5496 // with the hope of eliminating some of the other later "and" instructions using
5497 // the loaded value.  "and"s that are made trivially redundant by the insertion
5498 // of the new "and" are removed by this function, while others (e.g. those whose
5499 // path from the load goes through a phi) are left for isel to potentially
5500 // remove.
5501 //
5502 // For example:
5503 //
5504 // b0:
5505 //   x = load i32
5506 //   ...
5507 // b1:
5508 //   y = and x, 0xff
5509 //   z = use y
5510 //
5511 // becomes:
5512 //
5513 // b0:
5514 //   x = load i32
5515 //   x' = and x, 0xff
5516 //   ...
5517 // b1:
5518 //   z = use x'
5519 //
5520 // whereas:
5521 //
5522 // b0:
5523 //   x1 = load i32
5524 //   ...
5525 // b1:
5526 //   x2 = load i32
5527 //   ...
5528 // b2:
5529 //   x = phi x1, x2
5530 //   y = and x, 0xff
5531 //
5532 // becomes (after a call to optimizeLoadExt for each load):
5533 //
5534 // b0:
5535 //   x1 = load i32
5536 //   x1' = and x1, 0xff
5537 //   ...
5538 // b1:
5539 //   x2 = load i32
5540 //   x2' = and x2, 0xff
5541 //   ...
5542 // b2:
5543 //   x = phi x1', x2'
5544 //   y = and x, 0xff
5545 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
5546   if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy())
5547     return false;
5548 
5549   // Skip loads we've already transformed.
5550   if (Load->hasOneUse() &&
5551       InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
5552     return false;
5553 
5554   // Look at all uses of Load, looking through phis, to determine how many bits
5555   // of the loaded value are needed.
5556   SmallVector<Instruction *, 8> WorkList;
5557   SmallPtrSet<Instruction *, 16> Visited;
5558   SmallVector<Instruction *, 8> AndsToMaybeRemove;
5559   for (auto *U : Load->users())
5560     WorkList.push_back(cast<Instruction>(U));
5561 
5562   EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
5563   unsigned BitWidth = LoadResultVT.getSizeInBits();
5564   APInt DemandBits(BitWidth, 0);
5565   APInt WidestAndBits(BitWidth, 0);
5566 
5567   while (!WorkList.empty()) {
5568     Instruction *I = WorkList.back();
5569     WorkList.pop_back();
5570 
5571     // Break use-def graph loops.
5572     if (!Visited.insert(I).second)
5573       continue;
5574 
5575     // For a PHI node, push all of its users.
5576     if (auto *Phi = dyn_cast<PHINode>(I)) {
5577       for (auto *U : Phi->users())
5578         WorkList.push_back(cast<Instruction>(U));
5579       continue;
5580     }
5581 
5582     switch (I->getOpcode()) {
5583     case Instruction::And: {
5584       auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
5585       if (!AndC)
5586         return false;
5587       APInt AndBits = AndC->getValue();
5588       DemandBits |= AndBits;
5589       // Keep track of the widest and mask we see.
5590       if (AndBits.ugt(WidestAndBits))
5591         WidestAndBits = AndBits;
5592       if (AndBits == WidestAndBits && I->getOperand(0) == Load)
5593         AndsToMaybeRemove.push_back(I);
5594       break;
5595     }
5596 
5597     case Instruction::Shl: {
5598       auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
5599       if (!ShlC)
5600         return false;
5601       uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
5602       DemandBits.setLowBits(BitWidth - ShiftAmt);
5603       break;
5604     }
5605 
5606     case Instruction::Trunc: {
5607       EVT TruncVT = TLI->getValueType(*DL, I->getType());
5608       unsigned TruncBitWidth = TruncVT.getSizeInBits();
5609       DemandBits.setLowBits(TruncBitWidth);
5610       break;
5611     }
5612 
5613     default:
5614       return false;
5615     }
5616   }
5617 
5618   uint32_t ActiveBits = DemandBits.getActiveBits();
5619   // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
5620   // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
5621   // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
5622   // (and (load x) 1) is not matched as a single instruction, rather as a LDR
5623   // followed by an AND.
5624   // TODO: Look into removing this restriction by fixing backends to either
5625   // return false for isLoadExtLegal for i1 or have them select this pattern to
5626   // a single instruction.
5627   //
5628   // Also avoid hoisting if we didn't see any ands with the exact DemandBits
5629   // mask, since these are the only ands that will be removed by isel.
5630   if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
5631       WidestAndBits != DemandBits)
5632     return false;
5633 
5634   LLVMContext &Ctx = Load->getType()->getContext();
5635   Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
5636   EVT TruncVT = TLI->getValueType(*DL, TruncTy);
5637 
5638   // Reject cases that won't be matched as extloads.
5639   if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
5640       !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
5641     return false;
5642 
5643   IRBuilder<> Builder(Load->getNextNode());
5644   auto *NewAnd = dyn_cast<Instruction>(
5645       Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
5646   // Mark this instruction as "inserted by CGP", so that other
5647   // optimizations don't touch it.
5648   InsertedInsts.insert(NewAnd);
5649 
5650   // Replace all uses of load with new and (except for the use of load in the
5651   // new and itself).
5652   Load->replaceAllUsesWith(NewAnd);
5653   NewAnd->setOperand(0, Load);
5654 
5655   // Remove any and instructions that are now redundant.
5656   for (auto *And : AndsToMaybeRemove)
5657     // Check that the and mask is the same as the one we decided to put on the
5658     // new and.
5659     if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
5660       And->replaceAllUsesWith(NewAnd);
5661       if (&*CurInstIterator == And)
5662         CurInstIterator = std::next(And->getIterator());
5663       And->eraseFromParent();
5664       ++NumAndUses;
5665     }
5666 
5667   ++NumAndsAdded;
5668   return true;
5669 }
5670 
5671 /// Check if V (an operand of a select instruction) is an expensive instruction
5672 /// that is only used once.
5673 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
5674   auto *I = dyn_cast<Instruction>(V);
5675   // If it's safe to speculatively execute, then it should not have side
5676   // effects; therefore, it's safe to sink and possibly *not* execute.
5677   return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
5678          TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive;
5679 }
5680 
5681 /// Returns true if a SelectInst should be turned into an explicit branch.
5682 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
5683                                                 const TargetLowering *TLI,
5684                                                 SelectInst *SI) {
5685   // If even a predictable select is cheap, then a branch can't be cheaper.
5686   if (!TLI->isPredictableSelectExpensive())
5687     return false;
5688 
5689   // FIXME: This should use the same heuristics as IfConversion to determine
5690   // whether a select is better represented as a branch.
5691 
5692   // If metadata tells us that the select condition is obviously predictable,
5693   // then we want to replace the select with a branch.
5694   uint64_t TrueWeight, FalseWeight;
5695   if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
5696     uint64_t Max = std::max(TrueWeight, FalseWeight);
5697     uint64_t Sum = TrueWeight + FalseWeight;
5698     if (Sum != 0) {
5699       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
5700       if (Probability > TLI->getPredictableBranchThreshold())
5701         return true;
5702     }
5703   }
5704 
5705   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
5706 
5707   // If a branch is predictable, an out-of-order CPU can avoid blocking on its
5708   // comparison condition. If the compare has more than one use, there's
5709   // probably another cmov or setcc around, so it's not worth emitting a branch.
5710   if (!Cmp || !Cmp->hasOneUse())
5711     return false;
5712 
5713   // If either operand of the select is expensive and only needed on one side
5714   // of the select, we should form a branch.
5715   if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
5716       sinkSelectOperand(TTI, SI->getFalseValue()))
5717     return true;
5718 
5719   return false;
5720 }
5721 
5722 /// If \p isTrue is true, return the true value of \p SI, otherwise return
5723 /// false value of \p SI. If the true/false value of \p SI is defined by any
5724 /// select instructions in \p Selects, look through the defining select
5725 /// instruction until the true/false value is not defined in \p Selects.
5726 static Value *getTrueOrFalseValue(
5727     SelectInst *SI, bool isTrue,
5728     const SmallPtrSet<const Instruction *, 2> &Selects) {
5729   Value *V;
5730 
5731   for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
5732        DefSI = dyn_cast<SelectInst>(V)) {
5733     assert(DefSI->getCondition() == SI->getCondition() &&
5734            "The condition of DefSI does not match with SI");
5735     V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
5736   }
5737   return V;
5738 }
5739 
5740 /// If we have a SelectInst that will likely profit from branch prediction,
5741 /// turn it into a branch.
5742 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
5743   // If branch conversion isn't desirable, exit early.
5744   if (DisableSelectToBranch || OptSize || !TLI)
5745     return false;
5746 
5747   // Find all consecutive select instructions that share the same condition.
5748   SmallVector<SelectInst *, 2> ASI;
5749   ASI.push_back(SI);
5750   for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
5751        It != SI->getParent()->end(); ++It) {
5752     SelectInst *I = dyn_cast<SelectInst>(&*It);
5753     if (I && SI->getCondition() == I->getCondition()) {
5754       ASI.push_back(I);
5755     } else {
5756       break;
5757     }
5758   }
5759 
5760   SelectInst *LastSI = ASI.back();
5761   // Increment the current iterator to skip all the rest of select instructions
5762   // because they will be either "not lowered" or "all lowered" to branch.
5763   CurInstIterator = std::next(LastSI->getIterator());
5764 
5765   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
5766 
5767   // Can we convert the 'select' to CF ?
5768   if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable))
5769     return false;
5770 
5771   TargetLowering::SelectSupportKind SelectKind;
5772   if (VectorCond)
5773     SelectKind = TargetLowering::VectorMaskSelect;
5774   else if (SI->getType()->isVectorTy())
5775     SelectKind = TargetLowering::ScalarCondVectorVal;
5776   else
5777     SelectKind = TargetLowering::ScalarValSelect;
5778 
5779   if (TLI->isSelectSupported(SelectKind) &&
5780       !isFormingBranchFromSelectProfitable(TTI, TLI, SI))
5781     return false;
5782 
5783   ModifiedDT = true;
5784 
5785   // Transform a sequence like this:
5786   //    start:
5787   //       %cmp = cmp uge i32 %a, %b
5788   //       %sel = select i1 %cmp, i32 %c, i32 %d
5789   //
5790   // Into:
5791   //    start:
5792   //       %cmp = cmp uge i32 %a, %b
5793   //       br i1 %cmp, label %select.true, label %select.false
5794   //    select.true:
5795   //       br label %select.end
5796   //    select.false:
5797   //       br label %select.end
5798   //    select.end:
5799   //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
5800   //
5801   // In addition, we may sink instructions that produce %c or %d from
5802   // the entry block into the destination(s) of the new branch.
5803   // If the true or false blocks do not contain a sunken instruction, that
5804   // block and its branch may be optimized away. In that case, one side of the
5805   // first branch will point directly to select.end, and the corresponding PHI
5806   // predecessor block will be the start block.
5807 
5808   // First, we split the block containing the select into 2 blocks.
5809   BasicBlock *StartBlock = SI->getParent();
5810   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
5811   BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
5812 
5813   // Delete the unconditional branch that was just created by the split.
5814   StartBlock->getTerminator()->eraseFromParent();
5815 
5816   // These are the new basic blocks for the conditional branch.
5817   // At least one will become an actual new basic block.
5818   BasicBlock *TrueBlock = nullptr;
5819   BasicBlock *FalseBlock = nullptr;
5820   BranchInst *TrueBranch = nullptr;
5821   BranchInst *FalseBranch = nullptr;
5822 
5823   // Sink expensive instructions into the conditional blocks to avoid executing
5824   // them speculatively.
5825   for (SelectInst *SI : ASI) {
5826     if (sinkSelectOperand(TTI, SI->getTrueValue())) {
5827       if (TrueBlock == nullptr) {
5828         TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
5829                                        EndBlock->getParent(), EndBlock);
5830         TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
5831         TrueBranch->setDebugLoc(SI->getDebugLoc());
5832       }
5833       auto *TrueInst = cast<Instruction>(SI->getTrueValue());
5834       TrueInst->moveBefore(TrueBranch);
5835     }
5836     if (sinkSelectOperand(TTI, SI->getFalseValue())) {
5837       if (FalseBlock == nullptr) {
5838         FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
5839                                         EndBlock->getParent(), EndBlock);
5840         FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
5841         FalseBranch->setDebugLoc(SI->getDebugLoc());
5842       }
5843       auto *FalseInst = cast<Instruction>(SI->getFalseValue());
5844       FalseInst->moveBefore(FalseBranch);
5845     }
5846   }
5847 
5848   // If there was nothing to sink, then arbitrarily choose the 'false' side
5849   // for a new input value to the PHI.
5850   if (TrueBlock == FalseBlock) {
5851     assert(TrueBlock == nullptr &&
5852            "Unexpected basic block transform while optimizing select");
5853 
5854     FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
5855                                     EndBlock->getParent(), EndBlock);
5856     auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
5857     FalseBranch->setDebugLoc(SI->getDebugLoc());
5858   }
5859 
5860   // Insert the real conditional branch based on the original condition.
5861   // If we did not create a new block for one of the 'true' or 'false' paths
5862   // of the condition, it means that side of the branch goes to the end block
5863   // directly and the path originates from the start block from the point of
5864   // view of the new PHI.
5865   BasicBlock *TT, *FT;
5866   if (TrueBlock == nullptr) {
5867     TT = EndBlock;
5868     FT = FalseBlock;
5869     TrueBlock = StartBlock;
5870   } else if (FalseBlock == nullptr) {
5871     TT = TrueBlock;
5872     FT = EndBlock;
5873     FalseBlock = StartBlock;
5874   } else {
5875     TT = TrueBlock;
5876     FT = FalseBlock;
5877   }
5878   IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI);
5879 
5880   SmallPtrSet<const Instruction *, 2> INS;
5881   INS.insert(ASI.begin(), ASI.end());
5882   // Use reverse iterator because later select may use the value of the
5883   // earlier select, and we need to propagate value through earlier select
5884   // to get the PHI operand.
5885   for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
5886     SelectInst *SI = *It;
5887     // The select itself is replaced with a PHI Node.
5888     PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
5889     PN->takeName(SI);
5890     PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
5891     PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
5892     PN->setDebugLoc(SI->getDebugLoc());
5893 
5894     SI->replaceAllUsesWith(PN);
5895     SI->eraseFromParent();
5896     INS.erase(SI);
5897     ++NumSelectsExpanded;
5898   }
5899 
5900   // Instruct OptimizeBlock to skip to the next block.
5901   CurInstIterator = StartBlock->end();
5902   return true;
5903 }
5904 
5905 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
5906   SmallVector<int, 16> Mask(SVI->getShuffleMask());
5907   int SplatElem = -1;
5908   for (unsigned i = 0; i < Mask.size(); ++i) {
5909     if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
5910       return false;
5911     SplatElem = Mask[i];
5912   }
5913 
5914   return true;
5915 }
5916 
5917 /// Some targets have expensive vector shifts if the lanes aren't all the same
5918 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
5919 /// it's often worth sinking a shufflevector splat down to its use so that
5920 /// codegen can spot all lanes are identical.
5921 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
5922   BasicBlock *DefBB = SVI->getParent();
5923 
5924   // Only do this xform if variable vector shifts are particularly expensive.
5925   if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
5926     return false;
5927 
5928   // We only expect better codegen by sinking a shuffle if we can recognise a
5929   // constant splat.
5930   if (!isBroadcastShuffle(SVI))
5931     return false;
5932 
5933   // InsertedShuffles - Only insert a shuffle in each block once.
5934   DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
5935 
5936   bool MadeChange = false;
5937   for (User *U : SVI->users()) {
5938     Instruction *UI = cast<Instruction>(U);
5939 
5940     // Figure out which BB this ext is used in.
5941     BasicBlock *UserBB = UI->getParent();
5942     if (UserBB == DefBB) continue;
5943 
5944     // For now only apply this when the splat is used by a shift instruction.
5945     if (!UI->isShift()) continue;
5946 
5947     // Everything checks out, sink the shuffle if the user's block doesn't
5948     // already have a copy.
5949     Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
5950 
5951     if (!InsertedShuffle) {
5952       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5953       assert(InsertPt != UserBB->end());
5954       InsertedShuffle =
5955           new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
5956                                 SVI->getOperand(2), "", &*InsertPt);
5957     }
5958 
5959     UI->replaceUsesOfWith(SVI, InsertedShuffle);
5960     MadeChange = true;
5961   }
5962 
5963   // If we removed all uses, nuke the shuffle.
5964   if (SVI->use_empty()) {
5965     SVI->eraseFromParent();
5966     MadeChange = true;
5967   }
5968 
5969   return MadeChange;
5970 }
5971 
5972 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
5973   if (!TLI || !DL)
5974     return false;
5975 
5976   Value *Cond = SI->getCondition();
5977   Type *OldType = Cond->getType();
5978   LLVMContext &Context = Cond->getContext();
5979   MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
5980   unsigned RegWidth = RegType.getSizeInBits();
5981 
5982   if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
5983     return false;
5984 
5985   // If the register width is greater than the type width, expand the condition
5986   // of the switch instruction and each case constant to the width of the
5987   // register. By widening the type of the switch condition, subsequent
5988   // comparisons (for case comparisons) will not need to be extended to the
5989   // preferred register width, so we will potentially eliminate N-1 extends,
5990   // where N is the number of cases in the switch.
5991   auto *NewType = Type::getIntNTy(Context, RegWidth);
5992 
5993   // Zero-extend the switch condition and case constants unless the switch
5994   // condition is a function argument that is already being sign-extended.
5995   // In that case, we can avoid an unnecessary mask/extension by sign-extending
5996   // everything instead.
5997   Instruction::CastOps ExtType = Instruction::ZExt;
5998   if (auto *Arg = dyn_cast<Argument>(Cond))
5999     if (Arg->hasSExtAttr())
6000       ExtType = Instruction::SExt;
6001 
6002   auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
6003   ExtInst->insertBefore(SI);
6004   ExtInst->setDebugLoc(SI->getDebugLoc());
6005   SI->setCondition(ExtInst);
6006   for (auto Case : SI->cases()) {
6007     APInt NarrowConst = Case.getCaseValue()->getValue();
6008     APInt WideConst = (ExtType == Instruction::ZExt) ?
6009                       NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
6010     Case.setValue(ConstantInt::get(Context, WideConst));
6011   }
6012 
6013   return true;
6014 }
6015 
6016 
6017 namespace {
6018 
6019 /// Helper class to promote a scalar operation to a vector one.
6020 /// This class is used to move downward extractelement transition.
6021 /// E.g.,
6022 /// a = vector_op <2 x i32>
6023 /// b = extractelement <2 x i32> a, i32 0
6024 /// c = scalar_op b
6025 /// store c
6026 ///
6027 /// =>
6028 /// a = vector_op <2 x i32>
6029 /// c = vector_op a (equivalent to scalar_op on the related lane)
6030 /// * d = extractelement <2 x i32> c, i32 0
6031 /// * store d
6032 /// Assuming both extractelement and store can be combine, we get rid of the
6033 /// transition.
6034 class VectorPromoteHelper {
6035   /// DataLayout associated with the current module.
6036   const DataLayout &DL;
6037 
6038   /// Used to perform some checks on the legality of vector operations.
6039   const TargetLowering &TLI;
6040 
6041   /// Used to estimated the cost of the promoted chain.
6042   const TargetTransformInfo &TTI;
6043 
6044   /// The transition being moved downwards.
6045   Instruction *Transition;
6046 
6047   /// The sequence of instructions to be promoted.
6048   SmallVector<Instruction *, 4> InstsToBePromoted;
6049 
6050   /// Cost of combining a store and an extract.
6051   unsigned StoreExtractCombineCost;
6052 
6053   /// Instruction that will be combined with the transition.
6054   Instruction *CombineInst = nullptr;
6055 
6056   /// The instruction that represents the current end of the transition.
6057   /// Since we are faking the promotion until we reach the end of the chain
6058   /// of computation, we need a way to get the current end of the transition.
6059   Instruction *getEndOfTransition() const {
6060     if (InstsToBePromoted.empty())
6061       return Transition;
6062     return InstsToBePromoted.back();
6063   }
6064 
6065   /// Return the index of the original value in the transition.
6066   /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
6067   /// c, is at index 0.
6068   unsigned getTransitionOriginalValueIdx() const {
6069     assert(isa<ExtractElementInst>(Transition) &&
6070            "Other kind of transitions are not supported yet");
6071     return 0;
6072   }
6073 
6074   /// Return the index of the index in the transition.
6075   /// E.g., for "extractelement <2 x i32> c, i32 0" the index
6076   /// is at index 1.
6077   unsigned getTransitionIdx() const {
6078     assert(isa<ExtractElementInst>(Transition) &&
6079            "Other kind of transitions are not supported yet");
6080     return 1;
6081   }
6082 
6083   /// Get the type of the transition.
6084   /// This is the type of the original value.
6085   /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
6086   /// transition is <2 x i32>.
6087   Type *getTransitionType() const {
6088     return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
6089   }
6090 
6091   /// Promote \p ToBePromoted by moving \p Def downward through.
6092   /// I.e., we have the following sequence:
6093   /// Def = Transition <ty1> a to <ty2>
6094   /// b = ToBePromoted <ty2> Def, ...
6095   /// =>
6096   /// b = ToBePromoted <ty1> a, ...
6097   /// Def = Transition <ty1> ToBePromoted to <ty2>
6098   void promoteImpl(Instruction *ToBePromoted);
6099 
6100   /// Check whether or not it is profitable to promote all the
6101   /// instructions enqueued to be promoted.
6102   bool isProfitableToPromote() {
6103     Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
6104     unsigned Index = isa<ConstantInt>(ValIdx)
6105                          ? cast<ConstantInt>(ValIdx)->getZExtValue()
6106                          : -1;
6107     Type *PromotedType = getTransitionType();
6108 
6109     StoreInst *ST = cast<StoreInst>(CombineInst);
6110     unsigned AS = ST->getPointerAddressSpace();
6111     unsigned Align = ST->getAlignment();
6112     // Check if this store is supported.
6113     if (!TLI.allowsMisalignedMemoryAccesses(
6114             TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
6115             Align)) {
6116       // If this is not supported, there is no way we can combine
6117       // the extract with the store.
6118       return false;
6119     }
6120 
6121     // The scalar chain of computation has to pay for the transition
6122     // scalar to vector.
6123     // The vector chain has to account for the combining cost.
6124     uint64_t ScalarCost =
6125         TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
6126     uint64_t VectorCost = StoreExtractCombineCost;
6127     for (const auto &Inst : InstsToBePromoted) {
6128       // Compute the cost.
6129       // By construction, all instructions being promoted are arithmetic ones.
6130       // Moreover, one argument is a constant that can be viewed as a splat
6131       // constant.
6132       Value *Arg0 = Inst->getOperand(0);
6133       bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
6134                             isa<ConstantFP>(Arg0);
6135       TargetTransformInfo::OperandValueKind Arg0OVK =
6136           IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6137                          : TargetTransformInfo::OK_AnyValue;
6138       TargetTransformInfo::OperandValueKind Arg1OVK =
6139           !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6140                           : TargetTransformInfo::OK_AnyValue;
6141       ScalarCost += TTI.getArithmeticInstrCost(
6142           Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
6143       VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
6144                                                Arg0OVK, Arg1OVK);
6145     }
6146     LLVM_DEBUG(
6147         dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
6148                << ScalarCost << "\nVector: " << VectorCost << '\n');
6149     return ScalarCost > VectorCost;
6150   }
6151 
6152   /// Generate a constant vector with \p Val with the same
6153   /// number of elements as the transition.
6154   /// \p UseSplat defines whether or not \p Val should be replicated
6155   /// across the whole vector.
6156   /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
6157   /// otherwise we generate a vector with as many undef as possible:
6158   /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
6159   /// used at the index of the extract.
6160   Value *getConstantVector(Constant *Val, bool UseSplat) const {
6161     unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
6162     if (!UseSplat) {
6163       // If we cannot determine where the constant must be, we have to
6164       // use a splat constant.
6165       Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
6166       if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
6167         ExtractIdx = CstVal->getSExtValue();
6168       else
6169         UseSplat = true;
6170     }
6171 
6172     unsigned End = getTransitionType()->getVectorNumElements();
6173     if (UseSplat)
6174       return ConstantVector::getSplat(End, Val);
6175 
6176     SmallVector<Constant *, 4> ConstVec;
6177     UndefValue *UndefVal = UndefValue::get(Val->getType());
6178     for (unsigned Idx = 0; Idx != End; ++Idx) {
6179       if (Idx == ExtractIdx)
6180         ConstVec.push_back(Val);
6181       else
6182         ConstVec.push_back(UndefVal);
6183     }
6184     return ConstantVector::get(ConstVec);
6185   }
6186 
6187   /// Check if promoting to a vector type an operand at \p OperandIdx
6188   /// in \p Use can trigger undefined behavior.
6189   static bool canCauseUndefinedBehavior(const Instruction *Use,
6190                                         unsigned OperandIdx) {
6191     // This is not safe to introduce undef when the operand is on
6192     // the right hand side of a division-like instruction.
6193     if (OperandIdx != 1)
6194       return false;
6195     switch (Use->getOpcode()) {
6196     default:
6197       return false;
6198     case Instruction::SDiv:
6199     case Instruction::UDiv:
6200     case Instruction::SRem:
6201     case Instruction::URem:
6202       return true;
6203     case Instruction::FDiv:
6204     case Instruction::FRem:
6205       return !Use->hasNoNaNs();
6206     }
6207     llvm_unreachable(nullptr);
6208   }
6209 
6210 public:
6211   VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
6212                       const TargetTransformInfo &TTI, Instruction *Transition,
6213                       unsigned CombineCost)
6214       : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
6215         StoreExtractCombineCost(CombineCost) {
6216     assert(Transition && "Do not know how to promote null");
6217   }
6218 
6219   /// Check if we can promote \p ToBePromoted to \p Type.
6220   bool canPromote(const Instruction *ToBePromoted) const {
6221     // We could support CastInst too.
6222     return isa<BinaryOperator>(ToBePromoted);
6223   }
6224 
6225   /// Check if it is profitable to promote \p ToBePromoted
6226   /// by moving downward the transition through.
6227   bool shouldPromote(const Instruction *ToBePromoted) const {
6228     // Promote only if all the operands can be statically expanded.
6229     // Indeed, we do not want to introduce any new kind of transitions.
6230     for (const Use &U : ToBePromoted->operands()) {
6231       const Value *Val = U.get();
6232       if (Val == getEndOfTransition()) {
6233         // If the use is a division and the transition is on the rhs,
6234         // we cannot promote the operation, otherwise we may create a
6235         // division by zero.
6236         if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
6237           return false;
6238         continue;
6239       }
6240       if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
6241           !isa<ConstantFP>(Val))
6242         return false;
6243     }
6244     // Check that the resulting operation is legal.
6245     int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
6246     if (!ISDOpcode)
6247       return false;
6248     return StressStoreExtract ||
6249            TLI.isOperationLegalOrCustom(
6250                ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
6251   }
6252 
6253   /// Check whether or not \p Use can be combined
6254   /// with the transition.
6255   /// I.e., is it possible to do Use(Transition) => AnotherUse?
6256   bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
6257 
6258   /// Record \p ToBePromoted as part of the chain to be promoted.
6259   void enqueueForPromotion(Instruction *ToBePromoted) {
6260     InstsToBePromoted.push_back(ToBePromoted);
6261   }
6262 
6263   /// Set the instruction that will be combined with the transition.
6264   void recordCombineInstruction(Instruction *ToBeCombined) {
6265     assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
6266     CombineInst = ToBeCombined;
6267   }
6268 
6269   /// Promote all the instructions enqueued for promotion if it is
6270   /// is profitable.
6271   /// \return True if the promotion happened, false otherwise.
6272   bool promote() {
6273     // Check if there is something to promote.
6274     // Right now, if we do not have anything to combine with,
6275     // we assume the promotion is not profitable.
6276     if (InstsToBePromoted.empty() || !CombineInst)
6277       return false;
6278 
6279     // Check cost.
6280     if (!StressStoreExtract && !isProfitableToPromote())
6281       return false;
6282 
6283     // Promote.
6284     for (auto &ToBePromoted : InstsToBePromoted)
6285       promoteImpl(ToBePromoted);
6286     InstsToBePromoted.clear();
6287     return true;
6288   }
6289 };
6290 
6291 } // end anonymous namespace
6292 
6293 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
6294   // At this point, we know that all the operands of ToBePromoted but Def
6295   // can be statically promoted.
6296   // For Def, we need to use its parameter in ToBePromoted:
6297   // b = ToBePromoted ty1 a
6298   // Def = Transition ty1 b to ty2
6299   // Move the transition down.
6300   // 1. Replace all uses of the promoted operation by the transition.
6301   // = ... b => = ... Def.
6302   assert(ToBePromoted->getType() == Transition->getType() &&
6303          "The type of the result of the transition does not match "
6304          "the final type");
6305   ToBePromoted->replaceAllUsesWith(Transition);
6306   // 2. Update the type of the uses.
6307   // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
6308   Type *TransitionTy = getTransitionType();
6309   ToBePromoted->mutateType(TransitionTy);
6310   // 3. Update all the operands of the promoted operation with promoted
6311   // operands.
6312   // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
6313   for (Use &U : ToBePromoted->operands()) {
6314     Value *Val = U.get();
6315     Value *NewVal = nullptr;
6316     if (Val == Transition)
6317       NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
6318     else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
6319              isa<ConstantFP>(Val)) {
6320       // Use a splat constant if it is not safe to use undef.
6321       NewVal = getConstantVector(
6322           cast<Constant>(Val),
6323           isa<UndefValue>(Val) ||
6324               canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
6325     } else
6326       llvm_unreachable("Did you modified shouldPromote and forgot to update "
6327                        "this?");
6328     ToBePromoted->setOperand(U.getOperandNo(), NewVal);
6329   }
6330   Transition->moveAfter(ToBePromoted);
6331   Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
6332 }
6333 
6334 /// Some targets can do store(extractelement) with one instruction.
6335 /// Try to push the extractelement towards the stores when the target
6336 /// has this feature and this is profitable.
6337 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
6338   unsigned CombineCost = std::numeric_limits<unsigned>::max();
6339   if (DisableStoreExtract || !TLI ||
6340       (!StressStoreExtract &&
6341        !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
6342                                        Inst->getOperand(1), CombineCost)))
6343     return false;
6344 
6345   // At this point we know that Inst is a vector to scalar transition.
6346   // Try to move it down the def-use chain, until:
6347   // - We can combine the transition with its single use
6348   //   => we got rid of the transition.
6349   // - We escape the current basic block
6350   //   => we would need to check that we are moving it at a cheaper place and
6351   //      we do not do that for now.
6352   BasicBlock *Parent = Inst->getParent();
6353   LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
6354   VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
6355   // If the transition has more than one use, assume this is not going to be
6356   // beneficial.
6357   while (Inst->hasOneUse()) {
6358     Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
6359     LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
6360 
6361     if (ToBePromoted->getParent() != Parent) {
6362       LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
6363                         << ToBePromoted->getParent()->getName()
6364                         << ") than the transition (" << Parent->getName()
6365                         << ").\n");
6366       return false;
6367     }
6368 
6369     if (VPH.canCombine(ToBePromoted)) {
6370       LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
6371                         << "will be combined with: " << *ToBePromoted << '\n');
6372       VPH.recordCombineInstruction(ToBePromoted);
6373       bool Changed = VPH.promote();
6374       NumStoreExtractExposed += Changed;
6375       return Changed;
6376     }
6377 
6378     LLVM_DEBUG(dbgs() << "Try promoting.\n");
6379     if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
6380       return false;
6381 
6382     LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
6383 
6384     VPH.enqueueForPromotion(ToBePromoted);
6385     Inst = ToBePromoted;
6386   }
6387   return false;
6388 }
6389 
6390 /// For the instruction sequence of store below, F and I values
6391 /// are bundled together as an i64 value before being stored into memory.
6392 /// Sometimes it is more efficient to generate separate stores for F and I,
6393 /// which can remove the bitwise instructions or sink them to colder places.
6394 ///
6395 ///   (store (or (zext (bitcast F to i32) to i64),
6396 ///              (shl (zext I to i64), 32)), addr)  -->
6397 ///   (store F, addr) and (store I, addr+4)
6398 ///
6399 /// Similarly, splitting for other merged store can also be beneficial, like:
6400 /// For pair of {i32, i32}, i64 store --> two i32 stores.
6401 /// For pair of {i32, i16}, i64 store --> two i32 stores.
6402 /// For pair of {i16, i16}, i32 store --> two i16 stores.
6403 /// For pair of {i16, i8},  i32 store --> two i16 stores.
6404 /// For pair of {i8, i8},   i16 store --> two i8 stores.
6405 ///
6406 /// We allow each target to determine specifically which kind of splitting is
6407 /// supported.
6408 ///
6409 /// The store patterns are commonly seen from the simple code snippet below
6410 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
6411 ///   void goo(const std::pair<int, float> &);
6412 ///   hoo() {
6413 ///     ...
6414 ///     goo(std::make_pair(tmp, ftmp));
6415 ///     ...
6416 ///   }
6417 ///
6418 /// Although we already have similar splitting in DAG Combine, we duplicate
6419 /// it in CodeGenPrepare to catch the case in which pattern is across
6420 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
6421 /// during code expansion.
6422 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
6423                                 const TargetLowering &TLI) {
6424   // Handle simple but common cases only.
6425   Type *StoreType = SI.getValueOperand()->getType();
6426   if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) ||
6427       DL.getTypeSizeInBits(StoreType) == 0)
6428     return false;
6429 
6430   unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
6431   Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
6432   if (DL.getTypeStoreSizeInBits(SplitStoreType) !=
6433       DL.getTypeSizeInBits(SplitStoreType))
6434     return false;
6435 
6436   // Match the following patterns:
6437   // (store (or (zext LValue to i64),
6438   //            (shl (zext HValue to i64), 32)), HalfValBitSize)
6439   //  or
6440   // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
6441   //            (zext LValue to i64),
6442   // Expect both operands of OR and the first operand of SHL have only
6443   // one use.
6444   Value *LValue, *HValue;
6445   if (!match(SI.getValueOperand(),
6446              m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
6447                     m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
6448                                    m_SpecificInt(HalfValBitSize))))))
6449     return false;
6450 
6451   // Check LValue and HValue are int with size less or equal than 32.
6452   if (!LValue->getType()->isIntegerTy() ||
6453       DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
6454       !HValue->getType()->isIntegerTy() ||
6455       DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
6456     return false;
6457 
6458   // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
6459   // as the input of target query.
6460   auto *LBC = dyn_cast<BitCastInst>(LValue);
6461   auto *HBC = dyn_cast<BitCastInst>(HValue);
6462   EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
6463                   : EVT::getEVT(LValue->getType());
6464   EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
6465                    : EVT::getEVT(HValue->getType());
6466   if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
6467     return false;
6468 
6469   // Start to split store.
6470   IRBuilder<> Builder(SI.getContext());
6471   Builder.SetInsertPoint(&SI);
6472 
6473   // If LValue/HValue is a bitcast in another BB, create a new one in current
6474   // BB so it may be merged with the splitted stores by dag combiner.
6475   if (LBC && LBC->getParent() != SI.getParent())
6476     LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
6477   if (HBC && HBC->getParent() != SI.getParent())
6478     HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
6479 
6480   bool IsLE = SI.getModule()->getDataLayout().isLittleEndian();
6481   auto CreateSplitStore = [&](Value *V, bool Upper) {
6482     V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
6483     Value *Addr = Builder.CreateBitCast(
6484         SI.getOperand(1),
6485         SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
6486     if ((IsLE && Upper) || (!IsLE && !Upper))
6487       Addr = Builder.CreateGEP(
6488           SplitStoreType, Addr,
6489           ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
6490     Builder.CreateAlignedStore(
6491         V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment());
6492   };
6493 
6494   CreateSplitStore(LValue, false);
6495   CreateSplitStore(HValue, true);
6496 
6497   // Delete the old store.
6498   SI.eraseFromParent();
6499   return true;
6500 }
6501 
6502 // Return true if the GEP has two operands, the first operand is of a sequential
6503 // type, and the second operand is a constant.
6504 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
6505   gep_type_iterator I = gep_type_begin(*GEP);
6506   return GEP->getNumOperands() == 2 &&
6507       I.isSequential() &&
6508       isa<ConstantInt>(GEP->getOperand(1));
6509 }
6510 
6511 // Try unmerging GEPs to reduce liveness interference (register pressure) across
6512 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
6513 // reducing liveness interference across those edges benefits global register
6514 // allocation. Currently handles only certain cases.
6515 //
6516 // For example, unmerge %GEPI and %UGEPI as below.
6517 //
6518 // ---------- BEFORE ----------
6519 // SrcBlock:
6520 //   ...
6521 //   %GEPIOp = ...
6522 //   ...
6523 //   %GEPI = gep %GEPIOp, Idx
6524 //   ...
6525 //   indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
6526 //   (* %GEPI is alive on the indirectbr edges due to other uses ahead)
6527 //   (* %GEPIOp is alive on the indirectbr edges only because of it's used by
6528 //   %UGEPI)
6529 //
6530 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
6531 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
6532 // ...
6533 //
6534 // DstBi:
6535 //   ...
6536 //   %UGEPI = gep %GEPIOp, UIdx
6537 // ...
6538 // ---------------------------
6539 //
6540 // ---------- AFTER ----------
6541 // SrcBlock:
6542 //   ... (same as above)
6543 //    (* %GEPI is still alive on the indirectbr edges)
6544 //    (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
6545 //    unmerging)
6546 // ...
6547 //
6548 // DstBi:
6549 //   ...
6550 //   %UGEPI = gep %GEPI, (UIdx-Idx)
6551 //   ...
6552 // ---------------------------
6553 //
6554 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
6555 // no longer alive on them.
6556 //
6557 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
6558 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
6559 // not to disable further simplications and optimizations as a result of GEP
6560 // merging.
6561 //
6562 // Note this unmerging may increase the length of the data flow critical path
6563 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
6564 // between the register pressure and the length of data-flow critical
6565 // path. Restricting this to the uncommon IndirectBr case would minimize the
6566 // impact of potentially longer critical path, if any, and the impact on compile
6567 // time.
6568 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
6569                                              const TargetTransformInfo *TTI) {
6570   BasicBlock *SrcBlock = GEPI->getParent();
6571   // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
6572   // (non-IndirectBr) cases exit early here.
6573   if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
6574     return false;
6575   // Check that GEPI is a simple gep with a single constant index.
6576   if (!GEPSequentialConstIndexed(GEPI))
6577     return false;
6578   ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
6579   // Check that GEPI is a cheap one.
6580   if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType())
6581       > TargetTransformInfo::TCC_Basic)
6582     return false;
6583   Value *GEPIOp = GEPI->getOperand(0);
6584   // Check that GEPIOp is an instruction that's also defined in SrcBlock.
6585   if (!isa<Instruction>(GEPIOp))
6586     return false;
6587   auto *GEPIOpI = cast<Instruction>(GEPIOp);
6588   if (GEPIOpI->getParent() != SrcBlock)
6589     return false;
6590   // Check that GEP is used outside the block, meaning it's alive on the
6591   // IndirectBr edge(s).
6592   if (find_if(GEPI->users(), [&](User *Usr) {
6593         if (auto *I = dyn_cast<Instruction>(Usr)) {
6594           if (I->getParent() != SrcBlock) {
6595             return true;
6596           }
6597         }
6598         return false;
6599       }) == GEPI->users().end())
6600     return false;
6601   // The second elements of the GEP chains to be unmerged.
6602   std::vector<GetElementPtrInst *> UGEPIs;
6603   // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
6604   // on IndirectBr edges.
6605   for (User *Usr : GEPIOp->users()) {
6606     if (Usr == GEPI) continue;
6607     // Check if Usr is an Instruction. If not, give up.
6608     if (!isa<Instruction>(Usr))
6609       return false;
6610     auto *UI = cast<Instruction>(Usr);
6611     // Check if Usr in the same block as GEPIOp, which is fine, skip.
6612     if (UI->getParent() == SrcBlock)
6613       continue;
6614     // Check if Usr is a GEP. If not, give up.
6615     if (!isa<GetElementPtrInst>(Usr))
6616       return false;
6617     auto *UGEPI = cast<GetElementPtrInst>(Usr);
6618     // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
6619     // the pointer operand to it. If so, record it in the vector. If not, give
6620     // up.
6621     if (!GEPSequentialConstIndexed(UGEPI))
6622       return false;
6623     if (UGEPI->getOperand(0) != GEPIOp)
6624       return false;
6625     if (GEPIIdx->getType() !=
6626         cast<ConstantInt>(UGEPI->getOperand(1))->getType())
6627       return false;
6628     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6629     if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType())
6630         > TargetTransformInfo::TCC_Basic)
6631       return false;
6632     UGEPIs.push_back(UGEPI);
6633   }
6634   if (UGEPIs.size() == 0)
6635     return false;
6636   // Check the materializing cost of (Uidx-Idx).
6637   for (GetElementPtrInst *UGEPI : UGEPIs) {
6638     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6639     APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
6640     unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType());
6641     if (ImmCost > TargetTransformInfo::TCC_Basic)
6642       return false;
6643   }
6644   // Now unmerge between GEPI and UGEPIs.
6645   for (GetElementPtrInst *UGEPI : UGEPIs) {
6646     UGEPI->setOperand(0, GEPI);
6647     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6648     Constant *NewUGEPIIdx =
6649         ConstantInt::get(GEPIIdx->getType(),
6650                          UGEPIIdx->getValue() - GEPIIdx->getValue());
6651     UGEPI->setOperand(1, NewUGEPIIdx);
6652     // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
6653     // inbounds to avoid UB.
6654     if (!GEPI->isInBounds()) {
6655       UGEPI->setIsInBounds(false);
6656     }
6657   }
6658   // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
6659   // alive on IndirectBr edges).
6660   assert(find_if(GEPIOp->users(), [&](User *Usr) {
6661         return cast<Instruction>(Usr)->getParent() != SrcBlock;
6662       }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock");
6663   return true;
6664 }
6665 
6666 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) {
6667   // Bail out if we inserted the instruction to prevent optimizations from
6668   // stepping on each other's toes.
6669   if (InsertedInsts.count(I))
6670     return false;
6671 
6672   if (PHINode *P = dyn_cast<PHINode>(I)) {
6673     // It is possible for very late stage optimizations (such as SimplifyCFG)
6674     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
6675     // trivial PHI, go ahead and zap it here.
6676     if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
6677       P->replaceAllUsesWith(V);
6678       P->eraseFromParent();
6679       ++NumPHIsElim;
6680       return true;
6681     }
6682     return false;
6683   }
6684 
6685   if (CastInst *CI = dyn_cast<CastInst>(I)) {
6686     // If the source of the cast is a constant, then this should have
6687     // already been constant folded.  The only reason NOT to constant fold
6688     // it is if something (e.g. LSR) was careful to place the constant
6689     // evaluation in a block other than then one that uses it (e.g. to hoist
6690     // the address of globals out of a loop).  If this is the case, we don't
6691     // want to forward-subst the cast.
6692     if (isa<Constant>(CI->getOperand(0)))
6693       return false;
6694 
6695     if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL))
6696       return true;
6697 
6698     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
6699       /// Sink a zext or sext into its user blocks if the target type doesn't
6700       /// fit in one register
6701       if (TLI &&
6702           TLI->getTypeAction(CI->getContext(),
6703                              TLI->getValueType(*DL, CI->getType())) ==
6704               TargetLowering::TypeExpandInteger) {
6705         return SinkCast(CI);
6706       } else {
6707         bool MadeChange = optimizeExt(I);
6708         return MadeChange | optimizeExtUses(I);
6709       }
6710     }
6711     return false;
6712   }
6713 
6714   if (CmpInst *CI = dyn_cast<CmpInst>(I))
6715     if (!TLI || !TLI->hasMultipleConditionRegisters())
6716       return OptimizeCmpExpression(CI, TLI);
6717 
6718   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6719     LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6720     if (TLI) {
6721       bool Modified = optimizeLoadExt(LI);
6722       unsigned AS = LI->getPointerAddressSpace();
6723       Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
6724       return Modified;
6725     }
6726     return false;
6727   }
6728 
6729   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
6730     if (TLI && splitMergedValStore(*SI, *DL, *TLI))
6731       return true;
6732     SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6733     if (TLI) {
6734       unsigned AS = SI->getPointerAddressSpace();
6735       return optimizeMemoryInst(I, SI->getOperand(1),
6736                                 SI->getOperand(0)->getType(), AS);
6737     }
6738     return false;
6739   }
6740 
6741   if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
6742       unsigned AS = RMW->getPointerAddressSpace();
6743       return optimizeMemoryInst(I, RMW->getPointerOperand(),
6744                                 RMW->getType(), AS);
6745   }
6746 
6747   if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
6748       unsigned AS = CmpX->getPointerAddressSpace();
6749       return optimizeMemoryInst(I, CmpX->getPointerOperand(),
6750                                 CmpX->getCompareOperand()->getType(), AS);
6751   }
6752 
6753   BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
6754 
6755   if (BinOp && (BinOp->getOpcode() == Instruction::And) &&
6756       EnableAndCmpSinking && TLI)
6757     return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts);
6758 
6759   if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
6760                 BinOp->getOpcode() == Instruction::LShr)) {
6761     ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
6762     if (TLI && CI && TLI->hasExtractBitsInsn())
6763       return OptimizeExtractBits(BinOp, CI, *TLI, *DL);
6764 
6765     return false;
6766   }
6767 
6768   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
6769     if (GEPI->hasAllZeroIndices()) {
6770       /// The GEP operand must be a pointer, so must its result -> BitCast
6771       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
6772                                         GEPI->getName(), GEPI);
6773       NC->setDebugLoc(GEPI->getDebugLoc());
6774       GEPI->replaceAllUsesWith(NC);
6775       GEPI->eraseFromParent();
6776       ++NumGEPsElim;
6777       optimizeInst(NC, ModifiedDT);
6778       return true;
6779     }
6780     if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
6781       return true;
6782     }
6783     return false;
6784   }
6785 
6786   if (CallInst *CI = dyn_cast<CallInst>(I))
6787     return optimizeCallInst(CI, ModifiedDT);
6788 
6789   if (SelectInst *SI = dyn_cast<SelectInst>(I))
6790     return optimizeSelectInst(SI);
6791 
6792   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
6793     return optimizeShuffleVectorInst(SVI);
6794 
6795   if (auto *Switch = dyn_cast<SwitchInst>(I))
6796     return optimizeSwitchInst(Switch);
6797 
6798   if (isa<ExtractElementInst>(I))
6799     return optimizeExtractElementInst(I);
6800 
6801   return false;
6802 }
6803 
6804 /// Given an OR instruction, check to see if this is a bitreverse
6805 /// idiom. If so, insert the new intrinsic and return true.
6806 static bool makeBitReverse(Instruction &I, const DataLayout &DL,
6807                            const TargetLowering &TLI) {
6808   if (!I.getType()->isIntegerTy() ||
6809       !TLI.isOperationLegalOrCustom(ISD::BITREVERSE,
6810                                     TLI.getValueType(DL, I.getType(), true)))
6811     return false;
6812 
6813   SmallVector<Instruction*, 4> Insts;
6814   if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
6815     return false;
6816   Instruction *LastInst = Insts.back();
6817   I.replaceAllUsesWith(LastInst);
6818   RecursivelyDeleteTriviallyDeadInstructions(&I);
6819   return true;
6820 }
6821 
6822 // In this pass we look for GEP and cast instructions that are used
6823 // across basic blocks and rewrite them to improve basic-block-at-a-time
6824 // selection.
6825 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) {
6826   SunkAddrs.clear();
6827   bool MadeChange = false;
6828 
6829   CurInstIterator = BB.begin();
6830   while (CurInstIterator != BB.end()) {
6831     MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
6832     if (ModifiedDT)
6833       return true;
6834   }
6835 
6836   bool MadeBitReverse = true;
6837   while (TLI && MadeBitReverse) {
6838     MadeBitReverse = false;
6839     for (auto &I : reverse(BB)) {
6840       if (makeBitReverse(I, *DL, *TLI)) {
6841         MadeBitReverse = MadeChange = true;
6842         ModifiedDT = true;
6843         break;
6844       }
6845     }
6846   }
6847   MadeChange |= dupRetToEnableTailCallOpts(&BB);
6848 
6849   return MadeChange;
6850 }
6851 
6852 // llvm.dbg.value is far away from the value then iSel may not be able
6853 // handle it properly. iSel will drop llvm.dbg.value if it can not
6854 // find a node corresponding to the value.
6855 bool CodeGenPrepare::placeDbgValues(Function &F) {
6856   bool MadeChange = false;
6857   for (BasicBlock &BB : F) {
6858     Instruction *PrevNonDbgInst = nullptr;
6859     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
6860       Instruction *Insn = &*BI++;
6861       DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
6862       // Leave dbg.values that refer to an alloca alone. These
6863       // intrinsics describe the address of a variable (= the alloca)
6864       // being taken.  They should not be moved next to the alloca
6865       // (and to the beginning of the scope), but rather stay close to
6866       // where said address is used.
6867       if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
6868         PrevNonDbgInst = Insn;
6869         continue;
6870       }
6871 
6872       Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
6873       if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
6874         // If VI is a phi in a block with an EHPad terminator, we can't insert
6875         // after it.
6876         if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
6877           continue;
6878         LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
6879                           << *DVI << ' ' << *VI);
6880         DVI->removeFromParent();
6881         if (isa<PHINode>(VI))
6882           DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
6883         else
6884           DVI->insertAfter(VI);
6885         MadeChange = true;
6886         ++NumDbgValueMoved;
6887       }
6888     }
6889   }
6890   return MadeChange;
6891 }
6892 
6893 /// Scale down both weights to fit into uint32_t.
6894 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
6895   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
6896   uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
6897   NewTrue = NewTrue / Scale;
6898   NewFalse = NewFalse / Scale;
6899 }
6900 
6901 /// Some targets prefer to split a conditional branch like:
6902 /// \code
6903 ///   %0 = icmp ne i32 %a, 0
6904 ///   %1 = icmp ne i32 %b, 0
6905 ///   %or.cond = or i1 %0, %1
6906 ///   br i1 %or.cond, label %TrueBB, label %FalseBB
6907 /// \endcode
6908 /// into multiple branch instructions like:
6909 /// \code
6910 ///   bb1:
6911 ///     %0 = icmp ne i32 %a, 0
6912 ///     br i1 %0, label %TrueBB, label %bb2
6913 ///   bb2:
6914 ///     %1 = icmp ne i32 %b, 0
6915 ///     br i1 %1, label %TrueBB, label %FalseBB
6916 /// \endcode
6917 /// This usually allows instruction selection to do even further optimizations
6918 /// and combine the compare with the branch instruction. Currently this is
6919 /// applied for targets which have "cheap" jump instructions.
6920 ///
6921 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
6922 ///
6923 bool CodeGenPrepare::splitBranchCondition(Function &F) {
6924   if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive())
6925     return false;
6926 
6927   bool MadeChange = false;
6928   for (auto &BB : F) {
6929     // Does this BB end with the following?
6930     //   %cond1 = icmp|fcmp|binary instruction ...
6931     //   %cond2 = icmp|fcmp|binary instruction ...
6932     //   %cond.or = or|and i1 %cond1, cond2
6933     //   br i1 %cond.or label %dest1, label %dest2"
6934     BinaryOperator *LogicOp;
6935     BasicBlock *TBB, *FBB;
6936     if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
6937       continue;
6938 
6939     auto *Br1 = cast<BranchInst>(BB.getTerminator());
6940     if (Br1->getMetadata(LLVMContext::MD_unpredictable))
6941       continue;
6942 
6943     unsigned Opc;
6944     Value *Cond1, *Cond2;
6945     if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
6946                              m_OneUse(m_Value(Cond2)))))
6947       Opc = Instruction::And;
6948     else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
6949                                  m_OneUse(m_Value(Cond2)))))
6950       Opc = Instruction::Or;
6951     else
6952       continue;
6953 
6954     if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
6955         !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp()))   )
6956       continue;
6957 
6958     LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
6959 
6960     // Create a new BB.
6961     auto TmpBB =
6962         BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
6963                            BB.getParent(), BB.getNextNode());
6964 
6965     // Update original basic block by using the first condition directly by the
6966     // branch instruction and removing the no longer needed and/or instruction.
6967     Br1->setCondition(Cond1);
6968     LogicOp->eraseFromParent();
6969 
6970     // Depending on the condition we have to either replace the true or the
6971     // false successor of the original branch instruction.
6972     if (Opc == Instruction::And)
6973       Br1->setSuccessor(0, TmpBB);
6974     else
6975       Br1->setSuccessor(1, TmpBB);
6976 
6977     // Fill in the new basic block.
6978     auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
6979     if (auto *I = dyn_cast<Instruction>(Cond2)) {
6980       I->removeFromParent();
6981       I->insertBefore(Br2);
6982     }
6983 
6984     // Update PHI nodes in both successors. The original BB needs to be
6985     // replaced in one successor's PHI nodes, because the branch comes now from
6986     // the newly generated BB (NewBB). In the other successor we need to add one
6987     // incoming edge to the PHI nodes, because both branch instructions target
6988     // now the same successor. Depending on the original branch condition
6989     // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
6990     // we perform the correct update for the PHI nodes.
6991     // This doesn't change the successor order of the just created branch
6992     // instruction (or any other instruction).
6993     if (Opc == Instruction::Or)
6994       std::swap(TBB, FBB);
6995 
6996     // Replace the old BB with the new BB.
6997     for (PHINode &PN : TBB->phis()) {
6998       int i;
6999       while ((i = PN.getBasicBlockIndex(&BB)) >= 0)
7000         PN.setIncomingBlock(i, TmpBB);
7001     }
7002 
7003     // Add another incoming edge form the new BB.
7004     for (PHINode &PN : FBB->phis()) {
7005       auto *Val = PN.getIncomingValueForBlock(&BB);
7006       PN.addIncoming(Val, TmpBB);
7007     }
7008 
7009     // Update the branch weights (from SelectionDAGBuilder::
7010     // FindMergedConditions).
7011     if (Opc == Instruction::Or) {
7012       // Codegen X | Y as:
7013       // BB1:
7014       //   jmp_if_X TBB
7015       //   jmp TmpBB
7016       // TmpBB:
7017       //   jmp_if_Y TBB
7018       //   jmp FBB
7019       //
7020 
7021       // We have flexibility in setting Prob for BB1 and Prob for NewBB.
7022       // The requirement is that
7023       //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
7024       //     = TrueProb for original BB.
7025       // Assuming the original weights are A and B, one choice is to set BB1's
7026       // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
7027       // assumes that
7028       //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
7029       // Another choice is to assume TrueProb for BB1 equals to TrueProb for
7030       // TmpBB, but the math is more complicated.
7031       uint64_t TrueWeight, FalseWeight;
7032       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7033         uint64_t NewTrueWeight = TrueWeight;
7034         uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
7035         scaleWeights(NewTrueWeight, NewFalseWeight);
7036         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7037                          .createBranchWeights(TrueWeight, FalseWeight));
7038 
7039         NewTrueWeight = TrueWeight;
7040         NewFalseWeight = 2 * FalseWeight;
7041         scaleWeights(NewTrueWeight, NewFalseWeight);
7042         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7043                          .createBranchWeights(TrueWeight, FalseWeight));
7044       }
7045     } else {
7046       // Codegen X & Y as:
7047       // BB1:
7048       //   jmp_if_X TmpBB
7049       //   jmp FBB
7050       // TmpBB:
7051       //   jmp_if_Y TBB
7052       //   jmp FBB
7053       //
7054       //  This requires creation of TmpBB after CurBB.
7055 
7056       // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
7057       // The requirement is that
7058       //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
7059       //     = FalseProb for original BB.
7060       // Assuming the original weights are A and B, one choice is to set BB1's
7061       // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
7062       // assumes that
7063       //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
7064       uint64_t TrueWeight, FalseWeight;
7065       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7066         uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
7067         uint64_t NewFalseWeight = FalseWeight;
7068         scaleWeights(NewTrueWeight, NewFalseWeight);
7069         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7070                          .createBranchWeights(TrueWeight, FalseWeight));
7071 
7072         NewTrueWeight = 2 * TrueWeight;
7073         NewFalseWeight = FalseWeight;
7074         scaleWeights(NewTrueWeight, NewFalseWeight);
7075         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7076                          .createBranchWeights(TrueWeight, FalseWeight));
7077       }
7078     }
7079 
7080     // Note: No point in getting fancy here, since the DT info is never
7081     // available to CodeGenPrepare.
7082     ModifiedDT = true;
7083 
7084     MadeChange = true;
7085 
7086     LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
7087                TmpBB->dump());
7088   }
7089   return MadeChange;
7090 }
7091