1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass munges the code in the input function to better prepare it for
10 // SelectionDAG-based code generation. This works around limitations in it's
11 // basic-block-at-a-time approach. It should eventually be removed.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/PointerIntPair.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/MemoryBuiltins.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/TargetLibraryInfo.h"
31 #include "llvm/Analysis/TargetTransformInfo.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/CodeGen/Analysis.h"
35 #include "llvm/CodeGen/ISDOpcodes.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/TargetLowering.h"
38 #include "llvm/CodeGen/TargetPassConfig.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/CodeGen/ValueTypes.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/IR/Argument.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/CallSite.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DerivedTypes.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GetElementPtrTypeIterator.h"
53 #include "llvm/IR/GlobalValue.h"
54 #include "llvm/IR/GlobalVariable.h"
55 #include "llvm/IR/IRBuilder.h"
56 #include "llvm/IR/InlineAsm.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/MDBuilder.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/Operator.h"
66 #include "llvm/IR/PatternMatch.h"
67 #include "llvm/IR/Statepoint.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/IR/ValueMap.h"
74 #include "llvm/Pass.h"
75 #include "llvm/Support/BlockFrequency.h"
76 #include "llvm/Support/BranchProbability.h"
77 #include "llvm/Support/Casting.h"
78 #include "llvm/Support/CommandLine.h"
79 #include "llvm/Support/Compiler.h"
80 #include "llvm/Support/Debug.h"
81 #include "llvm/Support/ErrorHandling.h"
82 #include "llvm/Support/MachineValueType.h"
83 #include "llvm/Support/MathExtras.h"
84 #include "llvm/Support/raw_ostream.h"
85 #include "llvm/Target/TargetMachine.h"
86 #include "llvm/Target/TargetOptions.h"
87 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
88 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
89 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
90 #include <algorithm>
91 #include <cassert>
92 #include <cstdint>
93 #include <iterator>
94 #include <limits>
95 #include <memory>
96 #include <utility>
97 #include <vector>
98 
99 using namespace llvm;
100 using namespace llvm::PatternMatch;
101 
102 #define DEBUG_TYPE "codegenprepare"
103 
104 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
105 STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
106 STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
107 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
108                       "sunken Cmps");
109 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
110                        "of sunken Casts");
111 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
112                           "computations were sunk");
113 STATISTIC(NumMemoryInstsPhiCreated,
114           "Number of phis created when address "
115           "computations were sunk to memory instructions");
116 STATISTIC(NumMemoryInstsSelectCreated,
117           "Number of select created when address "
118           "computations were sunk to memory instructions");
119 STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
120 STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
121 STATISTIC(NumAndsAdded,
122           "Number of and mask instructions added to form ext loads");
123 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
124 STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
125 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
126 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
127 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
128 
129 static cl::opt<bool> DisableBranchOpts(
130   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
131   cl::desc("Disable branch optimizations in CodeGenPrepare"));
132 
133 static cl::opt<bool>
134     DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
135                   cl::desc("Disable GC optimizations in CodeGenPrepare"));
136 
137 static cl::opt<bool> DisableSelectToBranch(
138   "disable-cgp-select2branch", cl::Hidden, cl::init(false),
139   cl::desc("Disable select to branch conversion."));
140 
141 static cl::opt<bool> AddrSinkUsingGEPs(
142   "addr-sink-using-gep", cl::Hidden, cl::init(true),
143   cl::desc("Address sinking in CGP using GEPs."));
144 
145 static cl::opt<bool> EnableAndCmpSinking(
146    "enable-andcmp-sinking", cl::Hidden, cl::init(true),
147    cl::desc("Enable sinkinig and/cmp into branches."));
148 
149 static cl::opt<bool> DisableStoreExtract(
150     "disable-cgp-store-extract", cl::Hidden, cl::init(false),
151     cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
152 
153 static cl::opt<bool> StressStoreExtract(
154     "stress-cgp-store-extract", cl::Hidden, cl::init(false),
155     cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
156 
157 static cl::opt<bool> DisableExtLdPromotion(
158     "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
159     cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
160              "CodeGenPrepare"));
161 
162 static cl::opt<bool> StressExtLdPromotion(
163     "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
164     cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
165              "optimization in CodeGenPrepare"));
166 
167 static cl::opt<bool> DisablePreheaderProtect(
168     "disable-preheader-prot", cl::Hidden, cl::init(false),
169     cl::desc("Disable protection against removing loop preheaders"));
170 
171 static cl::opt<bool> ProfileGuidedSectionPrefix(
172     "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
173     cl::desc("Use profile info to add section prefix for hot/cold functions"));
174 
175 static cl::opt<unsigned> FreqRatioToSkipMerge(
176     "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
177     cl::desc("Skip merging empty blocks if (frequency of empty block) / "
178              "(frequency of destination block) is greater than this ratio"));
179 
180 static cl::opt<bool> ForceSplitStore(
181     "force-split-store", cl::Hidden, cl::init(false),
182     cl::desc("Force store splitting no matter what the target query says."));
183 
184 static cl::opt<bool>
185 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
186     cl::desc("Enable merging of redundant sexts when one is dominating"
187     " the other."), cl::init(true));
188 
189 static cl::opt<bool> DisableComplexAddrModes(
190     "disable-complex-addr-modes", cl::Hidden, cl::init(false),
191     cl::desc("Disables combining addressing modes with different parts "
192              "in optimizeMemoryInst."));
193 
194 static cl::opt<bool>
195 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
196                 cl::desc("Allow creation of Phis in Address sinking."));
197 
198 static cl::opt<bool>
199 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true),
200                    cl::desc("Allow creation of selects in Address sinking."));
201 
202 static cl::opt<bool> AddrSinkCombineBaseReg(
203     "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
204     cl::desc("Allow combining of BaseReg field in Address sinking."));
205 
206 static cl::opt<bool> AddrSinkCombineBaseGV(
207     "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
208     cl::desc("Allow combining of BaseGV field in Address sinking."));
209 
210 static cl::opt<bool> AddrSinkCombineBaseOffs(
211     "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
212     cl::desc("Allow combining of BaseOffs field in Address sinking."));
213 
214 static cl::opt<bool> AddrSinkCombineScaledReg(
215     "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
216     cl::desc("Allow combining of ScaledReg field in Address sinking."));
217 
218 static cl::opt<bool>
219     EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
220                          cl::init(true),
221                          cl::desc("Enable splitting large offset of GEP."));
222 
223 namespace {
224 
225 enum ExtType {
226   ZeroExtension,   // Zero extension has been seen.
227   SignExtension,   // Sign extension has been seen.
228   BothExtension    // This extension type is used if we saw sext after
229                    // ZeroExtension had been set, or if we saw zext after
230                    // SignExtension had been set. It makes the type
231                    // information of a promoted instruction invalid.
232 };
233 
234 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
235 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>;
236 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
237 using SExts = SmallVector<Instruction *, 16>;
238 using ValueToSExts = DenseMap<Value *, SExts>;
239 
240 class TypePromotionTransaction;
241 
242   class CodeGenPrepare : public FunctionPass {
243     const TargetMachine *TM = nullptr;
244     const TargetSubtargetInfo *SubtargetInfo;
245     const TargetLowering *TLI = nullptr;
246     const TargetRegisterInfo *TRI;
247     const TargetTransformInfo *TTI = nullptr;
248     const TargetLibraryInfo *TLInfo;
249     const LoopInfo *LI;
250     std::unique_ptr<BlockFrequencyInfo> BFI;
251     std::unique_ptr<BranchProbabilityInfo> BPI;
252 
253     /// As we scan instructions optimizing them, this is the next instruction
254     /// to optimize. Transforms that can invalidate this should update it.
255     BasicBlock::iterator CurInstIterator;
256 
257     /// Keeps track of non-local addresses that have been sunk into a block.
258     /// This allows us to avoid inserting duplicate code for blocks with
259     /// multiple load/stores of the same address. The usage of WeakTrackingVH
260     /// enables SunkAddrs to be treated as a cache whose entries can be
261     /// invalidated if a sunken address computation has been erased.
262     ValueMap<Value*, WeakTrackingVH> SunkAddrs;
263 
264     /// Keeps track of all instructions inserted for the current function.
265     SetOfInstrs InsertedInsts;
266 
267     /// Keeps track of the type of the related instruction before their
268     /// promotion for the current function.
269     InstrToOrigTy PromotedInsts;
270 
271     /// Keep track of instructions removed during promotion.
272     SetOfInstrs RemovedInsts;
273 
274     /// Keep track of sext chains based on their initial value.
275     DenseMap<Value *, Instruction *> SeenChainsForSExt;
276 
277     /// Keep track of GEPs accessing the same data structures such as structs or
278     /// arrays that are candidates to be split later because of their large
279     /// size.
280     MapVector<
281         AssertingVH<Value>,
282         SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
283         LargeOffsetGEPMap;
284 
285     /// Keep track of new GEP base after splitting the GEPs having large offset.
286     SmallSet<AssertingVH<Value>, 2> NewGEPBases;
287 
288     /// Map serial numbers to Large offset GEPs.
289     DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;
290 
291     /// Keep track of SExt promoted.
292     ValueToSExts ValToSExtendedUses;
293 
294     /// True if CFG is modified in any way.
295     bool ModifiedDT;
296 
297     /// True if optimizing for size.
298     bool OptSize;
299 
300     /// DataLayout for the Function being processed.
301     const DataLayout *DL = nullptr;
302 
303   public:
304     static char ID; // Pass identification, replacement for typeid
305 
306     CodeGenPrepare() : FunctionPass(ID) {
307       initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
308     }
309 
310     bool runOnFunction(Function &F) override;
311 
312     StringRef getPassName() const override { return "CodeGen Prepare"; }
313 
314     void getAnalysisUsage(AnalysisUsage &AU) const override {
315       // FIXME: When we can selectively preserve passes, preserve the domtree.
316       AU.addRequired<ProfileSummaryInfoWrapperPass>();
317       AU.addRequired<TargetLibraryInfoWrapperPass>();
318       AU.addRequired<TargetTransformInfoWrapperPass>();
319       AU.addRequired<LoopInfoWrapperPass>();
320     }
321 
322   private:
323     template <typename F>
324     void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) {
325       // Substituting can cause recursive simplifications, which can invalidate
326       // our iterator.  Use a WeakTrackingVH to hold onto it in case this
327       // happens.
328       Value *CurValue = &*CurInstIterator;
329       WeakTrackingVH IterHandle(CurValue);
330 
331       f();
332 
333       // If the iterator instruction was recursively deleted, start over at the
334       // start of the block.
335       if (IterHandle != CurValue) {
336         CurInstIterator = BB->begin();
337         SunkAddrs.clear();
338       }
339     }
340 
341     bool eliminateFallThrough(Function &F);
342     bool eliminateMostlyEmptyBlocks(Function &F);
343     BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
344     bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
345     void eliminateMostlyEmptyBlock(BasicBlock *BB);
346     bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
347                                        bool isPreheader);
348     bool optimizeBlock(BasicBlock &BB, DominatorTree &DT, bool &ModifiedDT);
349     bool optimizeInst(Instruction *I, DominatorTree &DT, bool &ModifiedDT);
350     bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
351                             Type *AccessTy, unsigned AddrSpace);
352     bool optimizeInlineAsmInst(CallInst *CS);
353     bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
354     bool optimizeExt(Instruction *&I);
355     bool optimizeExtUses(Instruction *I);
356     bool optimizeLoadExt(LoadInst *Load);
357     bool optimizeSelectInst(SelectInst *SI);
358     bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI);
359     bool optimizeSwitchInst(SwitchInst *SI);
360     bool optimizeExtractElementInst(Instruction *Inst);
361     bool dupRetToEnableTailCallOpts(BasicBlock *BB);
362     bool placeDbgValues(Function &F);
363     bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
364                       LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
365     bool tryToPromoteExts(TypePromotionTransaction &TPT,
366                           const SmallVectorImpl<Instruction *> &Exts,
367                           SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
368                           unsigned CreatedInstsCost = 0);
369     bool mergeSExts(Function &F, DominatorTree &DT);
370     bool splitLargeGEPOffsets();
371     bool performAddressTypePromotion(
372         Instruction *&Inst,
373         bool AllowPromotionWithoutCommonHeader,
374         bool HasPromoted, TypePromotionTransaction &TPT,
375         SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
376     bool splitBranchCondition(Function &F);
377     bool simplifyOffsetableRelocate(Instruction &I);
378 
379     bool tryToSinkFreeOperands(Instruction *I);
380   };
381 
382 } // end anonymous namespace
383 
384 char CodeGenPrepare::ID = 0;
385 
386 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
387                       "Optimize for code generation", false, false)
388 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
389 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
390                     "Optimize for code generation", false, false)
391 
392 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
393 
394 bool CodeGenPrepare::runOnFunction(Function &F) {
395   if (skipFunction(F))
396     return false;
397 
398   DL = &F.getParent()->getDataLayout();
399 
400   bool EverMadeChange = false;
401   // Clear per function information.
402   InsertedInsts.clear();
403   PromotedInsts.clear();
404 
405   ModifiedDT = false;
406   if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
407     TM = &TPC->getTM<TargetMachine>();
408     SubtargetInfo = TM->getSubtargetImpl(F);
409     TLI = SubtargetInfo->getTargetLowering();
410     TRI = SubtargetInfo->getRegisterInfo();
411   }
412   TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
413   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
414   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
415   BPI.reset(new BranchProbabilityInfo(F, *LI));
416   BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
417   OptSize = F.optForSize();
418 
419   ProfileSummaryInfo *PSI =
420       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
421   if (ProfileGuidedSectionPrefix) {
422     if (PSI->isFunctionHotInCallGraph(&F, *BFI))
423       F.setSectionPrefix(".hot");
424     else if (PSI->isFunctionColdInCallGraph(&F, *BFI))
425       F.setSectionPrefix(".unlikely");
426   }
427 
428   /// This optimization identifies DIV instructions that can be
429   /// profitably bypassed and carried out with a shorter, faster divide.
430   if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI &&
431       TLI->isSlowDivBypassed()) {
432     const DenseMap<unsigned int, unsigned int> &BypassWidths =
433        TLI->getBypassSlowDivWidths();
434     BasicBlock* BB = &*F.begin();
435     while (BB != nullptr) {
436       // bypassSlowDivision may create new BBs, but we don't want to reapply the
437       // optimization to those blocks.
438       BasicBlock* Next = BB->getNextNode();
439       EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
440       BB = Next;
441     }
442   }
443 
444   // Eliminate blocks that contain only PHI nodes and an
445   // unconditional branch.
446   EverMadeChange |= eliminateMostlyEmptyBlocks(F);
447 
448   if (!DisableBranchOpts)
449     EverMadeChange |= splitBranchCondition(F);
450 
451   // Split some critical edges where one of the sources is an indirect branch,
452   // to help generate sane code for PHIs involving such edges.
453   EverMadeChange |= SplitIndirectBrCriticalEdges(F);
454 
455   bool MadeChange = true;
456   while (MadeChange) {
457     MadeChange = false;
458     DominatorTree DT(F);
459     for (Function::iterator I = F.begin(); I != F.end(); ) {
460       BasicBlock *BB = &*I++;
461       bool ModifiedDTOnIteration = false;
462       MadeChange |= optimizeBlock(*BB, DT, ModifiedDTOnIteration);
463 
464       // Restart BB iteration if the dominator tree of the Function was changed
465       if (ModifiedDTOnIteration)
466         break;
467     }
468     if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
469       MadeChange |= mergeSExts(F, DT);
470     if (!LargeOffsetGEPMap.empty())
471       MadeChange |= splitLargeGEPOffsets();
472 
473     // Really free removed instructions during promotion.
474     for (Instruction *I : RemovedInsts)
475       I->deleteValue();
476 
477     EverMadeChange |= MadeChange;
478     SeenChainsForSExt.clear();
479     ValToSExtendedUses.clear();
480     RemovedInsts.clear();
481     LargeOffsetGEPMap.clear();
482     LargeOffsetGEPID.clear();
483   }
484 
485   SunkAddrs.clear();
486 
487   if (!DisableBranchOpts) {
488     MadeChange = false;
489     // Use a set vector to get deterministic iteration order. The order the
490     // blocks are removed may affect whether or not PHI nodes in successors
491     // are removed.
492     SmallSetVector<BasicBlock*, 8> WorkList;
493     for (BasicBlock &BB : F) {
494       SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
495       MadeChange |= ConstantFoldTerminator(&BB, true);
496       if (!MadeChange) continue;
497 
498       for (SmallVectorImpl<BasicBlock*>::iterator
499              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
500         if (pred_begin(*II) == pred_end(*II))
501           WorkList.insert(*II);
502     }
503 
504     // Delete the dead blocks and any of their dead successors.
505     MadeChange |= !WorkList.empty();
506     while (!WorkList.empty()) {
507       BasicBlock *BB = WorkList.pop_back_val();
508       SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
509 
510       DeleteDeadBlock(BB);
511 
512       for (SmallVectorImpl<BasicBlock*>::iterator
513              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
514         if (pred_begin(*II) == pred_end(*II))
515           WorkList.insert(*II);
516     }
517 
518     // Merge pairs of basic blocks with unconditional branches, connected by
519     // a single edge.
520     if (EverMadeChange || MadeChange)
521       MadeChange |= eliminateFallThrough(F);
522 
523     EverMadeChange |= MadeChange;
524   }
525 
526   if (!DisableGCOpts) {
527     SmallVector<Instruction *, 2> Statepoints;
528     for (BasicBlock &BB : F)
529       for (Instruction &I : BB)
530         if (isStatepoint(I))
531           Statepoints.push_back(&I);
532     for (auto &I : Statepoints)
533       EverMadeChange |= simplifyOffsetableRelocate(*I);
534   }
535 
536   // Do this last to clean up use-before-def scenarios introduced by other
537   // preparatory transforms.
538   EverMadeChange |= placeDbgValues(F);
539 
540   return EverMadeChange;
541 }
542 
543 /// Merge basic blocks which are connected by a single edge, where one of the
544 /// basic blocks has a single successor pointing to the other basic block,
545 /// which has a single predecessor.
546 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
547   bool Changed = false;
548   // Scan all of the blocks in the function, except for the entry block.
549   // Use a temporary array to avoid iterator being invalidated when
550   // deleting blocks.
551   SmallVector<WeakTrackingVH, 16> Blocks;
552   for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
553     Blocks.push_back(&Block);
554 
555   for (auto &Block : Blocks) {
556     auto *BB = cast_or_null<BasicBlock>(Block);
557     if (!BB)
558       continue;
559     // If the destination block has a single pred, then this is a trivial
560     // edge, just collapse it.
561     BasicBlock *SinglePred = BB->getSinglePredecessor();
562 
563     // Don't merge if BB's address is taken.
564     if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
565 
566     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
567     if (Term && !Term->isConditional()) {
568       Changed = true;
569       LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");
570 
571       // Merge BB into SinglePred and delete it.
572       MergeBlockIntoPredecessor(BB);
573     }
574   }
575   return Changed;
576 }
577 
578 /// Find a destination block from BB if BB is mergeable empty block.
579 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
580   // If this block doesn't end with an uncond branch, ignore it.
581   BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
582   if (!BI || !BI->isUnconditional())
583     return nullptr;
584 
585   // If the instruction before the branch (skipping debug info) isn't a phi
586   // node, then other stuff is happening here.
587   BasicBlock::iterator BBI = BI->getIterator();
588   if (BBI != BB->begin()) {
589     --BBI;
590     while (isa<DbgInfoIntrinsic>(BBI)) {
591       if (BBI == BB->begin())
592         break;
593       --BBI;
594     }
595     if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
596       return nullptr;
597   }
598 
599   // Do not break infinite loops.
600   BasicBlock *DestBB = BI->getSuccessor(0);
601   if (DestBB == BB)
602     return nullptr;
603 
604   if (!canMergeBlocks(BB, DestBB))
605     DestBB = nullptr;
606 
607   return DestBB;
608 }
609 
610 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
611 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
612 /// edges in ways that are non-optimal for isel. Start by eliminating these
613 /// blocks so we can split them the way we want them.
614 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
615   SmallPtrSet<BasicBlock *, 16> Preheaders;
616   SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
617   while (!LoopList.empty()) {
618     Loop *L = LoopList.pop_back_val();
619     LoopList.insert(LoopList.end(), L->begin(), L->end());
620     if (BasicBlock *Preheader = L->getLoopPreheader())
621       Preheaders.insert(Preheader);
622   }
623 
624   bool MadeChange = false;
625   // Copy blocks into a temporary array to avoid iterator invalidation issues
626   // as we remove them.
627   // Note that this intentionally skips the entry block.
628   SmallVector<WeakTrackingVH, 16> Blocks;
629   for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
630     Blocks.push_back(&Block);
631 
632   for (auto &Block : Blocks) {
633     BasicBlock *BB = cast_or_null<BasicBlock>(Block);
634     if (!BB)
635       continue;
636     BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
637     if (!DestBB ||
638         !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
639       continue;
640 
641     eliminateMostlyEmptyBlock(BB);
642     MadeChange = true;
643   }
644   return MadeChange;
645 }
646 
647 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
648                                                    BasicBlock *DestBB,
649                                                    bool isPreheader) {
650   // Do not delete loop preheaders if doing so would create a critical edge.
651   // Loop preheaders can be good locations to spill registers. If the
652   // preheader is deleted and we create a critical edge, registers may be
653   // spilled in the loop body instead.
654   if (!DisablePreheaderProtect && isPreheader &&
655       !(BB->getSinglePredecessor() &&
656         BB->getSinglePredecessor()->getSingleSuccessor()))
657     return false;
658 
659   // Skip merging if the block's successor is also a successor to any callbr
660   // that leads to this block.
661   // FIXME: Is this really needed? Is this a correctness issue?
662   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
663     if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator()))
664       for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i)
665         if (DestBB == CBI->getSuccessor(i))
666           return false;
667   }
668 
669   // Try to skip merging if the unique predecessor of BB is terminated by a
670   // switch or indirect branch instruction, and BB is used as an incoming block
671   // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
672   // add COPY instructions in the predecessor of BB instead of BB (if it is not
673   // merged). Note that the critical edge created by merging such blocks wont be
674   // split in MachineSink because the jump table is not analyzable. By keeping
675   // such empty block (BB), ISel will place COPY instructions in BB, not in the
676   // predecessor of BB.
677   BasicBlock *Pred = BB->getUniquePredecessor();
678   if (!Pred ||
679       !(isa<SwitchInst>(Pred->getTerminator()) ||
680         isa<IndirectBrInst>(Pred->getTerminator())))
681     return true;
682 
683   if (BB->getTerminator() != BB->getFirstNonPHIOrDbg())
684     return true;
685 
686   // We use a simple cost heuristic which determine skipping merging is
687   // profitable if the cost of skipping merging is less than the cost of
688   // merging : Cost(skipping merging) < Cost(merging BB), where the
689   // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
690   // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
691   // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
692   //   Freq(Pred) / Freq(BB) > 2.
693   // Note that if there are multiple empty blocks sharing the same incoming
694   // value for the PHIs in the DestBB, we consider them together. In such
695   // case, Cost(merging BB) will be the sum of their frequencies.
696 
697   if (!isa<PHINode>(DestBB->begin()))
698     return true;
699 
700   SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
701 
702   // Find all other incoming blocks from which incoming values of all PHIs in
703   // DestBB are the same as the ones from BB.
704   for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E;
705        ++PI) {
706     BasicBlock *DestBBPred = *PI;
707     if (DestBBPred == BB)
708       continue;
709 
710     if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
711           return DestPN.getIncomingValueForBlock(BB) ==
712                  DestPN.getIncomingValueForBlock(DestBBPred);
713         }))
714       SameIncomingValueBBs.insert(DestBBPred);
715   }
716 
717   // See if all BB's incoming values are same as the value from Pred. In this
718   // case, no reason to skip merging because COPYs are expected to be place in
719   // Pred already.
720   if (SameIncomingValueBBs.count(Pred))
721     return true;
722 
723   BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
724   BlockFrequency BBFreq = BFI->getBlockFreq(BB);
725 
726   for (auto SameValueBB : SameIncomingValueBBs)
727     if (SameValueBB->getUniquePredecessor() == Pred &&
728         DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
729       BBFreq += BFI->getBlockFreq(SameValueBB);
730 
731   return PredFreq.getFrequency() <=
732          BBFreq.getFrequency() * FreqRatioToSkipMerge;
733 }
734 
735 /// Return true if we can merge BB into DestBB if there is a single
736 /// unconditional branch between them, and BB contains no other non-phi
737 /// instructions.
738 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
739                                     const BasicBlock *DestBB) const {
740   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
741   // the successor.  If there are more complex condition (e.g. preheaders),
742   // don't mess around with them.
743   for (const PHINode &PN : BB->phis()) {
744     for (const User *U : PN.users()) {
745       const Instruction *UI = cast<Instruction>(U);
746       if (UI->getParent() != DestBB || !isa<PHINode>(UI))
747         return false;
748       // If User is inside DestBB block and it is a PHINode then check
749       // incoming value. If incoming value is not from BB then this is
750       // a complex condition (e.g. preheaders) we want to avoid here.
751       if (UI->getParent() == DestBB) {
752         if (const PHINode *UPN = dyn_cast<PHINode>(UI))
753           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
754             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
755             if (Insn && Insn->getParent() == BB &&
756                 Insn->getParent() != UPN->getIncomingBlock(I))
757               return false;
758           }
759       }
760     }
761   }
762 
763   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
764   // and DestBB may have conflicting incoming values for the block.  If so, we
765   // can't merge the block.
766   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
767   if (!DestBBPN) return true;  // no conflict.
768 
769   // Collect the preds of BB.
770   SmallPtrSet<const BasicBlock*, 16> BBPreds;
771   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
772     // It is faster to get preds from a PHI than with pred_iterator.
773     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
774       BBPreds.insert(BBPN->getIncomingBlock(i));
775   } else {
776     BBPreds.insert(pred_begin(BB), pred_end(BB));
777   }
778 
779   // Walk the preds of DestBB.
780   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
781     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
782     if (BBPreds.count(Pred)) {   // Common predecessor?
783       for (const PHINode &PN : DestBB->phis()) {
784         const Value *V1 = PN.getIncomingValueForBlock(Pred);
785         const Value *V2 = PN.getIncomingValueForBlock(BB);
786 
787         // If V2 is a phi node in BB, look up what the mapped value will be.
788         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
789           if (V2PN->getParent() == BB)
790             V2 = V2PN->getIncomingValueForBlock(Pred);
791 
792         // If there is a conflict, bail out.
793         if (V1 != V2) return false;
794       }
795     }
796   }
797 
798   return true;
799 }
800 
801 /// Eliminate a basic block that has only phi's and an unconditional branch in
802 /// it.
803 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
804   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
805   BasicBlock *DestBB = BI->getSuccessor(0);
806 
807   LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
808                     << *BB << *DestBB);
809 
810   // If the destination block has a single pred, then this is a trivial edge,
811   // just collapse it.
812   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
813     if (SinglePred != DestBB) {
814       assert(SinglePred == BB &&
815              "Single predecessor not the same as predecessor");
816       // Merge DestBB into SinglePred/BB and delete it.
817       MergeBlockIntoPredecessor(DestBB);
818       // Note: BB(=SinglePred) will not be deleted on this path.
819       // DestBB(=its single successor) is the one that was deleted.
820       LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
821       return;
822     }
823   }
824 
825   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
826   // to handle the new incoming edges it is about to have.
827   for (PHINode &PN : DestBB->phis()) {
828     // Remove the incoming value for BB, and remember it.
829     Value *InVal = PN.removeIncomingValue(BB, false);
830 
831     // Two options: either the InVal is a phi node defined in BB or it is some
832     // value that dominates BB.
833     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
834     if (InValPhi && InValPhi->getParent() == BB) {
835       // Add all of the input values of the input PHI as inputs of this phi.
836       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
837         PN.addIncoming(InValPhi->getIncomingValue(i),
838                        InValPhi->getIncomingBlock(i));
839     } else {
840       // Otherwise, add one instance of the dominating value for each edge that
841       // we will be adding.
842       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
843         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
844           PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
845       } else {
846         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
847           PN.addIncoming(InVal, *PI);
848       }
849     }
850   }
851 
852   // The PHIs are now updated, change everything that refers to BB to use
853   // DestBB and remove BB.
854   BB->replaceAllUsesWith(DestBB);
855   BB->eraseFromParent();
856   ++NumBlocksElim;
857 
858   LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
859 }
860 
861 // Computes a map of base pointer relocation instructions to corresponding
862 // derived pointer relocation instructions given a vector of all relocate calls
863 static void computeBaseDerivedRelocateMap(
864     const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
865     DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
866         &RelocateInstMap) {
867   // Collect information in two maps: one primarily for locating the base object
868   // while filling the second map; the second map is the final structure holding
869   // a mapping between Base and corresponding Derived relocate calls
870   DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
871   for (auto *ThisRelocate : AllRelocateCalls) {
872     auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
873                             ThisRelocate->getDerivedPtrIndex());
874     RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
875   }
876   for (auto &Item : RelocateIdxMap) {
877     std::pair<unsigned, unsigned> Key = Item.first;
878     if (Key.first == Key.second)
879       // Base relocation: nothing to insert
880       continue;
881 
882     GCRelocateInst *I = Item.second;
883     auto BaseKey = std::make_pair(Key.first, Key.first);
884 
885     // We're iterating over RelocateIdxMap so we cannot modify it.
886     auto MaybeBase = RelocateIdxMap.find(BaseKey);
887     if (MaybeBase == RelocateIdxMap.end())
888       // TODO: We might want to insert a new base object relocate and gep off
889       // that, if there are enough derived object relocates.
890       continue;
891 
892     RelocateInstMap[MaybeBase->second].push_back(I);
893   }
894 }
895 
896 // Accepts a GEP and extracts the operands into a vector provided they're all
897 // small integer constants
898 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
899                                           SmallVectorImpl<Value *> &OffsetV) {
900   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
901     // Only accept small constant integer operands
902     auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
903     if (!Op || Op->getZExtValue() > 20)
904       return false;
905   }
906 
907   for (unsigned i = 1; i < GEP->getNumOperands(); i++)
908     OffsetV.push_back(GEP->getOperand(i));
909   return true;
910 }
911 
912 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
913 // replace, computes a replacement, and affects it.
914 static bool
915 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
916                           const SmallVectorImpl<GCRelocateInst *> &Targets) {
917   bool MadeChange = false;
918   // We must ensure the relocation of derived pointer is defined after
919   // relocation of base pointer. If we find a relocation corresponding to base
920   // defined earlier than relocation of base then we move relocation of base
921   // right before found relocation. We consider only relocation in the same
922   // basic block as relocation of base. Relocations from other basic block will
923   // be skipped by optimization and we do not care about them.
924   for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
925        &*R != RelocatedBase; ++R)
926     if (auto RI = dyn_cast<GCRelocateInst>(R))
927       if (RI->getStatepoint() == RelocatedBase->getStatepoint())
928         if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
929           RelocatedBase->moveBefore(RI);
930           break;
931         }
932 
933   for (GCRelocateInst *ToReplace : Targets) {
934     assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
935            "Not relocating a derived object of the original base object");
936     if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
937       // A duplicate relocate call. TODO: coalesce duplicates.
938       continue;
939     }
940 
941     if (RelocatedBase->getParent() != ToReplace->getParent()) {
942       // Base and derived relocates are in different basic blocks.
943       // In this case transform is only valid when base dominates derived
944       // relocate. However it would be too expensive to check dominance
945       // for each such relocate, so we skip the whole transformation.
946       continue;
947     }
948 
949     Value *Base = ToReplace->getBasePtr();
950     auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
951     if (!Derived || Derived->getPointerOperand() != Base)
952       continue;
953 
954     SmallVector<Value *, 2> OffsetV;
955     if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
956       continue;
957 
958     // Create a Builder and replace the target callsite with a gep
959     assert(RelocatedBase->getNextNode() &&
960            "Should always have one since it's not a terminator");
961 
962     // Insert after RelocatedBase
963     IRBuilder<> Builder(RelocatedBase->getNextNode());
964     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
965 
966     // If gc_relocate does not match the actual type, cast it to the right type.
967     // In theory, there must be a bitcast after gc_relocate if the type does not
968     // match, and we should reuse it to get the derived pointer. But it could be
969     // cases like this:
970     // bb1:
971     //  ...
972     //  %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
973     //  br label %merge
974     //
975     // bb2:
976     //  ...
977     //  %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
978     //  br label %merge
979     //
980     // merge:
981     //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
982     //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
983     //
984     // In this case, we can not find the bitcast any more. So we insert a new bitcast
985     // no matter there is already one or not. In this way, we can handle all cases, and
986     // the extra bitcast should be optimized away in later passes.
987     Value *ActualRelocatedBase = RelocatedBase;
988     if (RelocatedBase->getType() != Base->getType()) {
989       ActualRelocatedBase =
990           Builder.CreateBitCast(RelocatedBase, Base->getType());
991     }
992     Value *Replacement = Builder.CreateGEP(
993         Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
994     Replacement->takeName(ToReplace);
995     // If the newly generated derived pointer's type does not match the original derived
996     // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
997     Value *ActualReplacement = Replacement;
998     if (Replacement->getType() != ToReplace->getType()) {
999       ActualReplacement =
1000           Builder.CreateBitCast(Replacement, ToReplace->getType());
1001     }
1002     ToReplace->replaceAllUsesWith(ActualReplacement);
1003     ToReplace->eraseFromParent();
1004 
1005     MadeChange = true;
1006   }
1007   return MadeChange;
1008 }
1009 
1010 // Turns this:
1011 //
1012 // %base = ...
1013 // %ptr = gep %base + 15
1014 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1015 // %base' = relocate(%tok, i32 4, i32 4)
1016 // %ptr' = relocate(%tok, i32 4, i32 5)
1017 // %val = load %ptr'
1018 //
1019 // into this:
1020 //
1021 // %base = ...
1022 // %ptr = gep %base + 15
1023 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1024 // %base' = gc.relocate(%tok, i32 4, i32 4)
1025 // %ptr' = gep %base' + 15
1026 // %val = load %ptr'
1027 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
1028   bool MadeChange = false;
1029   SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1030 
1031   for (auto *U : I.users())
1032     if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1033       // Collect all the relocate calls associated with a statepoint
1034       AllRelocateCalls.push_back(Relocate);
1035 
1036   // We need atleast one base pointer relocation + one derived pointer
1037   // relocation to mangle
1038   if (AllRelocateCalls.size() < 2)
1039     return false;
1040 
1041   // RelocateInstMap is a mapping from the base relocate instruction to the
1042   // corresponding derived relocate instructions
1043   DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
1044   computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1045   if (RelocateInstMap.empty())
1046     return false;
1047 
1048   for (auto &Item : RelocateInstMap)
1049     // Item.first is the RelocatedBase to offset against
1050     // Item.second is the vector of Targets to replace
1051     MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1052   return MadeChange;
1053 }
1054 
1055 /// SinkCast - Sink the specified cast instruction into its user blocks
1056 static bool SinkCast(CastInst *CI) {
1057   BasicBlock *DefBB = CI->getParent();
1058 
1059   /// InsertedCasts - Only insert a cast in each block once.
1060   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
1061 
1062   bool MadeChange = false;
1063   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1064        UI != E; ) {
1065     Use &TheUse = UI.getUse();
1066     Instruction *User = cast<Instruction>(*UI);
1067 
1068     // Figure out which BB this cast is used in.  For PHI's this is the
1069     // appropriate predecessor block.
1070     BasicBlock *UserBB = User->getParent();
1071     if (PHINode *PN = dyn_cast<PHINode>(User)) {
1072       UserBB = PN->getIncomingBlock(TheUse);
1073     }
1074 
1075     // Preincrement use iterator so we don't invalidate it.
1076     ++UI;
1077 
1078     // The first insertion point of a block containing an EH pad is after the
1079     // pad.  If the pad is the user, we cannot sink the cast past the pad.
1080     if (User->isEHPad())
1081       continue;
1082 
1083     // If the block selected to receive the cast is an EH pad that does not
1084     // allow non-PHI instructions before the terminator, we can't sink the
1085     // cast.
1086     if (UserBB->getTerminator()->isEHPad())
1087       continue;
1088 
1089     // If this user is in the same block as the cast, don't change the cast.
1090     if (UserBB == DefBB) continue;
1091 
1092     // If we have already inserted a cast into this block, use it.
1093     CastInst *&InsertedCast = InsertedCasts[UserBB];
1094 
1095     if (!InsertedCast) {
1096       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1097       assert(InsertPt != UserBB->end());
1098       InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1099                                       CI->getType(), "", &*InsertPt);
1100       InsertedCast->setDebugLoc(CI->getDebugLoc());
1101     }
1102 
1103     // Replace a use of the cast with a use of the new cast.
1104     TheUse = InsertedCast;
1105     MadeChange = true;
1106     ++NumCastUses;
1107   }
1108 
1109   // If we removed all uses, nuke the cast.
1110   if (CI->use_empty()) {
1111     salvageDebugInfo(*CI);
1112     CI->eraseFromParent();
1113     MadeChange = true;
1114   }
1115 
1116   return MadeChange;
1117 }
1118 
1119 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1120 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1121 /// reduce the number of virtual registers that must be created and coalesced.
1122 ///
1123 /// Return true if any changes are made.
1124 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1125                                        const DataLayout &DL) {
1126   // Sink only "cheap" (or nop) address-space casts.  This is a weaker condition
1127   // than sinking only nop casts, but is helpful on some platforms.
1128   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1129     if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(),
1130                                   ASC->getDestAddressSpace()))
1131       return false;
1132   }
1133 
1134   // If this is a noop copy,
1135   EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1136   EVT DstVT = TLI.getValueType(DL, CI->getType());
1137 
1138   // This is an fp<->int conversion?
1139   if (SrcVT.isInteger() != DstVT.isInteger())
1140     return false;
1141 
1142   // If this is an extension, it will be a zero or sign extension, which
1143   // isn't a noop.
1144   if (SrcVT.bitsLT(DstVT)) return false;
1145 
1146   // If these values will be promoted, find out what they will be promoted
1147   // to.  This helps us consider truncates on PPC as noop copies when they
1148   // are.
1149   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1150       TargetLowering::TypePromoteInteger)
1151     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1152   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1153       TargetLowering::TypePromoteInteger)
1154     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1155 
1156   // If, after promotion, these are the same types, this is a noop copy.
1157   if (SrcVT != DstVT)
1158     return false;
1159 
1160   return SinkCast(CI);
1161 }
1162 
1163 static bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, CmpInst *Cmp,
1164                                         Intrinsic::ID IID, DominatorTree &DT) {
1165   // We allow matching the canonical IR (add X, C) back to (usubo X, -C).
1166   Value *Arg0 = BO->getOperand(0);
1167   Value *Arg1 = BO->getOperand(1);
1168   if (BO->getOpcode() == Instruction::Add &&
1169       IID == Intrinsic::usub_with_overflow) {
1170     assert(isa<Constant>(Arg1) && "Unexpected input for usubo");
1171     Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1));
1172   }
1173 
1174   Instruction *InsertPt;
1175   if (BO->hasOneUse() && BO->user_back() == Cmp) {
1176     // If the math is only used by the compare, insert at the compare to keep
1177     // the condition in the same block as its users. (CGP aggressively sinks
1178     // compares to help out SDAG.)
1179     InsertPt = Cmp;
1180   } else {
1181     // The math and compare may be independent instructions. Check dominance to
1182     // determine the insertion point for the intrinsic.
1183     bool MathDominates = DT.dominates(BO, Cmp);
1184     if (!MathDominates && !DT.dominates(Cmp, BO))
1185       return false;
1186     InsertPt = MathDominates ? cast<Instruction>(BO) : cast<Instruction>(Cmp);
1187   }
1188 
1189   IRBuilder<> Builder(InsertPt);
1190   Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1);
1191   Value *Math = Builder.CreateExtractValue(MathOV, 0, "math");
1192   Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov");
1193   BO->replaceAllUsesWith(Math);
1194   Cmp->replaceAllUsesWith(OV);
1195   BO->eraseFromParent();
1196   Cmp->eraseFromParent();
1197   return true;
1198 }
1199 
1200 /// Match special-case patterns that check for unsigned add overflow.
1201 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp,
1202                                                    BinaryOperator *&Add) {
1203   // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val)
1204   // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero)
1205   Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1206 
1207   // We are not expecting non-canonical/degenerate code. Just bail out.
1208   if (isa<Constant>(A))
1209     return false;
1210 
1211   ICmpInst::Predicate Pred = Cmp->getPredicate();
1212   if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes()))
1213     B = ConstantInt::get(B->getType(), 1);
1214   else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt()))
1215     B = ConstantInt::get(B->getType(), -1);
1216   else
1217     return false;
1218 
1219   // Check the users of the variable operand of the compare looking for an add
1220   // with the adjusted constant.
1221   for (User *U : A->users()) {
1222     if (match(U, m_Add(m_Specific(A), m_Specific(B)))) {
1223       Add = cast<BinaryOperator>(U);
1224       return true;
1225     }
1226   }
1227   return false;
1228 }
1229 
1230 /// Try to combine the compare into a call to the llvm.uadd.with.overflow
1231 /// intrinsic. Return true if any changes were made.
1232 static bool combineToUAddWithOverflow(CmpInst *Cmp, const TargetLowering &TLI,
1233                                       const DataLayout &DL, DominatorTree &DT,
1234                                       bool &ModifiedDT) {
1235   Value *A, *B;
1236   BinaryOperator *Add;
1237   if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add))))
1238     if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add))
1239       return false;
1240 
1241   if (!TLI.shouldFormOverflowOp(ISD::UADDO,
1242                                 TLI.getValueType(DL, Add->getType())))
1243     return false;
1244 
1245   // We don't want to move around uses of condition values this late, so we
1246   // check if it is legal to create the call to the intrinsic in the basic
1247   // block containing the icmp.
1248   if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse())
1249     return false;
1250 
1251   if (!replaceMathCmpWithIntrinsic(Add, Cmp, Intrinsic::uadd_with_overflow, DT))
1252     return false;
1253 
1254   // Reset callers - do not crash by iterating over a dead instruction.
1255   ModifiedDT = true;
1256   return true;
1257 }
1258 
1259 static bool combineToUSubWithOverflow(CmpInst *Cmp, const TargetLowering &TLI,
1260                                       const DataLayout &DL, DominatorTree &DT,
1261                                       bool &ModifiedDT) {
1262   // Convert (A u> B) to (A u< B) to simplify pattern matching.
1263   Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1264   ICmpInst::Predicate Pred = Cmp->getPredicate();
1265   if (Pred == ICmpInst::ICMP_UGT) {
1266     std::swap(A, B);
1267     Pred = ICmpInst::ICMP_ULT;
1268   }
1269   // Convert special-case: (A == 0) is the same as (A u< 1).
1270   if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) {
1271     B = ConstantInt::get(B->getType(), 1);
1272     Pred = ICmpInst::ICMP_ULT;
1273   }
1274   // Convert special-case: (A != 0) is the same as (0 u< A).
1275   if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) {
1276     std::swap(A, B);
1277     Pred = ICmpInst::ICMP_ULT;
1278   }
1279   if (Pred != ICmpInst::ICMP_ULT)
1280     return false;
1281 
1282   // Walk the users of a variable operand of a compare looking for a subtract or
1283   // add with that same operand. Also match the 2nd operand of the compare to
1284   // the add/sub, but that may be a negated constant operand of an add.
1285   Value *CmpVariableOperand = isa<Constant>(A) ? B : A;
1286   BinaryOperator *Sub = nullptr;
1287   for (User *U : CmpVariableOperand->users()) {
1288     // A - B, A u< B --> usubo(A, B)
1289     if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) {
1290       Sub = cast<BinaryOperator>(U);
1291       break;
1292     }
1293 
1294     // A + (-C), A u< C (canonicalized form of (sub A, C))
1295     const APInt *CmpC, *AddC;
1296     if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) &&
1297         match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) {
1298       Sub = cast<BinaryOperator>(U);
1299       break;
1300     }
1301   }
1302   if (!Sub)
1303     return false;
1304 
1305   if (!TLI.shouldFormOverflowOp(ISD::USUBO,
1306                                 TLI.getValueType(DL, Sub->getType())))
1307     return false;
1308 
1309   if (!replaceMathCmpWithIntrinsic(Sub, Cmp, Intrinsic::usub_with_overflow, DT))
1310     return false;
1311 
1312   // Reset callers - do not crash by iterating over a dead instruction.
1313   ModifiedDT = true;
1314   return true;
1315 }
1316 
1317 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1318 /// registers that must be created and coalesced. This is a clear win except on
1319 /// targets with multiple condition code registers (PowerPC), where it might
1320 /// lose; some adjustment may be wanted there.
1321 ///
1322 /// Return true if any changes are made.
1323 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) {
1324   if (TLI.hasMultipleConditionRegisters())
1325     return false;
1326 
1327   // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1328   if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp))
1329     return false;
1330 
1331   // Only insert a cmp in each block once.
1332   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
1333 
1334   bool MadeChange = false;
1335   for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end();
1336        UI != E; ) {
1337     Use &TheUse = UI.getUse();
1338     Instruction *User = cast<Instruction>(*UI);
1339 
1340     // Preincrement use iterator so we don't invalidate it.
1341     ++UI;
1342 
1343     // Don't bother for PHI nodes.
1344     if (isa<PHINode>(User))
1345       continue;
1346 
1347     // Figure out which BB this cmp is used in.
1348     BasicBlock *UserBB = User->getParent();
1349     BasicBlock *DefBB = Cmp->getParent();
1350 
1351     // If this user is in the same block as the cmp, don't change the cmp.
1352     if (UserBB == DefBB) continue;
1353 
1354     // If we have already inserted a cmp into this block, use it.
1355     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1356 
1357     if (!InsertedCmp) {
1358       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1359       assert(InsertPt != UserBB->end());
1360       InsertedCmp =
1361           CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(),
1362                           Cmp->getOperand(0), Cmp->getOperand(1), "",
1363                           &*InsertPt);
1364       // Propagate the debug info.
1365       InsertedCmp->setDebugLoc(Cmp->getDebugLoc());
1366     }
1367 
1368     // Replace a use of the cmp with a use of the new cmp.
1369     TheUse = InsertedCmp;
1370     MadeChange = true;
1371     ++NumCmpUses;
1372   }
1373 
1374   // If we removed all uses, nuke the cmp.
1375   if (Cmp->use_empty()) {
1376     Cmp->eraseFromParent();
1377     MadeChange = true;
1378   }
1379 
1380   return MadeChange;
1381 }
1382 
1383 static bool optimizeCmp(CmpInst *Cmp, const TargetLowering &TLI,
1384                         const DataLayout &DL, DominatorTree &DT,
1385                         bool &ModifiedDT) {
1386   if (sinkCmpExpression(Cmp, TLI))
1387     return true;
1388 
1389   if (combineToUAddWithOverflow(Cmp, TLI, DL, DT, ModifiedDT))
1390     return true;
1391 
1392   if (combineToUSubWithOverflow(Cmp, TLI, DL, DT, ModifiedDT))
1393     return true;
1394 
1395   return false;
1396 }
1397 
1398 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1399 /// used in a compare to allow isel to generate better code for targets where
1400 /// this operation can be combined.
1401 ///
1402 /// Return true if any changes are made.
1403 static bool sinkAndCmp0Expression(Instruction *AndI,
1404                                   const TargetLowering &TLI,
1405                                   SetOfInstrs &InsertedInsts) {
1406   // Double-check that we're not trying to optimize an instruction that was
1407   // already optimized by some other part of this pass.
1408   assert(!InsertedInsts.count(AndI) &&
1409          "Attempting to optimize already optimized and instruction");
1410   (void) InsertedInsts;
1411 
1412   // Nothing to do for single use in same basic block.
1413   if (AndI->hasOneUse() &&
1414       AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
1415     return false;
1416 
1417   // Try to avoid cases where sinking/duplicating is likely to increase register
1418   // pressure.
1419   if (!isa<ConstantInt>(AndI->getOperand(0)) &&
1420       !isa<ConstantInt>(AndI->getOperand(1)) &&
1421       AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
1422     return false;
1423 
1424   for (auto *U : AndI->users()) {
1425     Instruction *User = cast<Instruction>(U);
1426 
1427     // Only sink for and mask feeding icmp with 0.
1428     if (!isa<ICmpInst>(User))
1429       return false;
1430 
1431     auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
1432     if (!CmpC || !CmpC->isZero())
1433       return false;
1434   }
1435 
1436   if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
1437     return false;
1438 
1439   LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1440   LLVM_DEBUG(AndI->getParent()->dump());
1441 
1442   // Push the 'and' into the same block as the icmp 0.  There should only be
1443   // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1444   // others, so we don't need to keep track of which BBs we insert into.
1445   for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
1446        UI != E; ) {
1447     Use &TheUse = UI.getUse();
1448     Instruction *User = cast<Instruction>(*UI);
1449 
1450     // Preincrement use iterator so we don't invalidate it.
1451     ++UI;
1452 
1453     LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
1454 
1455     // Keep the 'and' in the same place if the use is already in the same block.
1456     Instruction *InsertPt =
1457         User->getParent() == AndI->getParent() ? AndI : User;
1458     Instruction *InsertedAnd =
1459         BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
1460                                AndI->getOperand(1), "", InsertPt);
1461     // Propagate the debug info.
1462     InsertedAnd->setDebugLoc(AndI->getDebugLoc());
1463 
1464     // Replace a use of the 'and' with a use of the new 'and'.
1465     TheUse = InsertedAnd;
1466     ++NumAndUses;
1467     LLVM_DEBUG(User->getParent()->dump());
1468   }
1469 
1470   // We removed all uses, nuke the and.
1471   AndI->eraseFromParent();
1472   return true;
1473 }
1474 
1475 /// Check if the candidates could be combined with a shift instruction, which
1476 /// includes:
1477 /// 1. Truncate instruction
1478 /// 2. And instruction and the imm is a mask of the low bits:
1479 /// imm & (imm+1) == 0
1480 static bool isExtractBitsCandidateUse(Instruction *User) {
1481   if (!isa<TruncInst>(User)) {
1482     if (User->getOpcode() != Instruction::And ||
1483         !isa<ConstantInt>(User->getOperand(1)))
1484       return false;
1485 
1486     const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
1487 
1488     if ((Cimm & (Cimm + 1)).getBoolValue())
1489       return false;
1490   }
1491   return true;
1492 }
1493 
1494 /// Sink both shift and truncate instruction to the use of truncate's BB.
1495 static bool
1496 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
1497                      DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
1498                      const TargetLowering &TLI, const DataLayout &DL) {
1499   BasicBlock *UserBB = User->getParent();
1500   DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
1501   TruncInst *TruncI = dyn_cast<TruncInst>(User);
1502   bool MadeChange = false;
1503 
1504   for (Value::user_iterator TruncUI = TruncI->user_begin(),
1505                             TruncE = TruncI->user_end();
1506        TruncUI != TruncE;) {
1507 
1508     Use &TruncTheUse = TruncUI.getUse();
1509     Instruction *TruncUser = cast<Instruction>(*TruncUI);
1510     // Preincrement use iterator so we don't invalidate it.
1511 
1512     ++TruncUI;
1513 
1514     int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
1515     if (!ISDOpcode)
1516       continue;
1517 
1518     // If the use is actually a legal node, there will not be an
1519     // implicit truncate.
1520     // FIXME: always querying the result type is just an
1521     // approximation; some nodes' legality is determined by the
1522     // operand or other means. There's no good way to find out though.
1523     if (TLI.isOperationLegalOrCustom(
1524             ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
1525       continue;
1526 
1527     // Don't bother for PHI nodes.
1528     if (isa<PHINode>(TruncUser))
1529       continue;
1530 
1531     BasicBlock *TruncUserBB = TruncUser->getParent();
1532 
1533     if (UserBB == TruncUserBB)
1534       continue;
1535 
1536     BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
1537     CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
1538 
1539     if (!InsertedShift && !InsertedTrunc) {
1540       BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
1541       assert(InsertPt != TruncUserBB->end());
1542       // Sink the shift
1543       if (ShiftI->getOpcode() == Instruction::AShr)
1544         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1545                                                    "", &*InsertPt);
1546       else
1547         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1548                                                    "", &*InsertPt);
1549       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1550 
1551       // Sink the trunc
1552       BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
1553       TruncInsertPt++;
1554       assert(TruncInsertPt != TruncUserBB->end());
1555 
1556       InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
1557                                        TruncI->getType(), "", &*TruncInsertPt);
1558       InsertedTrunc->setDebugLoc(TruncI->getDebugLoc());
1559 
1560       MadeChange = true;
1561 
1562       TruncTheUse = InsertedTrunc;
1563     }
1564   }
1565   return MadeChange;
1566 }
1567 
1568 /// Sink the shift *right* instruction into user blocks if the uses could
1569 /// potentially be combined with this shift instruction and generate BitExtract
1570 /// instruction. It will only be applied if the architecture supports BitExtract
1571 /// instruction. Here is an example:
1572 /// BB1:
1573 ///   %x.extract.shift = lshr i64 %arg1, 32
1574 /// BB2:
1575 ///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
1576 /// ==>
1577 ///
1578 /// BB2:
1579 ///   %x.extract.shift.1 = lshr i64 %arg1, 32
1580 ///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1581 ///
1582 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
1583 /// instruction.
1584 /// Return true if any changes are made.
1585 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1586                                 const TargetLowering &TLI,
1587                                 const DataLayout &DL) {
1588   BasicBlock *DefBB = ShiftI->getParent();
1589 
1590   /// Only insert instructions in each block once.
1591   DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1592 
1593   bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1594 
1595   bool MadeChange = false;
1596   for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1597        UI != E;) {
1598     Use &TheUse = UI.getUse();
1599     Instruction *User = cast<Instruction>(*UI);
1600     // Preincrement use iterator so we don't invalidate it.
1601     ++UI;
1602 
1603     // Don't bother for PHI nodes.
1604     if (isa<PHINode>(User))
1605       continue;
1606 
1607     if (!isExtractBitsCandidateUse(User))
1608       continue;
1609 
1610     BasicBlock *UserBB = User->getParent();
1611 
1612     if (UserBB == DefBB) {
1613       // If the shift and truncate instruction are in the same BB. The use of
1614       // the truncate(TruncUse) may still introduce another truncate if not
1615       // legal. In this case, we would like to sink both shift and truncate
1616       // instruction to the BB of TruncUse.
1617       // for example:
1618       // BB1:
1619       // i64 shift.result = lshr i64 opnd, imm
1620       // trunc.result = trunc shift.result to i16
1621       //
1622       // BB2:
1623       //   ----> We will have an implicit truncate here if the architecture does
1624       //   not have i16 compare.
1625       // cmp i16 trunc.result, opnd2
1626       //
1627       if (isa<TruncInst>(User) && shiftIsLegal
1628           // If the type of the truncate is legal, no truncate will be
1629           // introduced in other basic blocks.
1630           &&
1631           (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1632         MadeChange =
1633             SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1634 
1635       continue;
1636     }
1637     // If we have already inserted a shift into this block, use it.
1638     BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1639 
1640     if (!InsertedShift) {
1641       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1642       assert(InsertPt != UserBB->end());
1643 
1644       if (ShiftI->getOpcode() == Instruction::AShr)
1645         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1646                                                    "", &*InsertPt);
1647       else
1648         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1649                                                    "", &*InsertPt);
1650       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1651 
1652       MadeChange = true;
1653     }
1654 
1655     // Replace a use of the shift with a use of the new shift.
1656     TheUse = InsertedShift;
1657   }
1658 
1659   // If we removed all uses, nuke the shift.
1660   if (ShiftI->use_empty()) {
1661     salvageDebugInfo(*ShiftI);
1662     ShiftI->eraseFromParent();
1663   }
1664 
1665   return MadeChange;
1666 }
1667 
1668 /// If counting leading or trailing zeros is an expensive operation and a zero
1669 /// input is defined, add a check for zero to avoid calling the intrinsic.
1670 ///
1671 /// We want to transform:
1672 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
1673 ///
1674 /// into:
1675 ///   entry:
1676 ///     %cmpz = icmp eq i64 %A, 0
1677 ///     br i1 %cmpz, label %cond.end, label %cond.false
1678 ///   cond.false:
1679 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
1680 ///     br label %cond.end
1681 ///   cond.end:
1682 ///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
1683 ///
1684 /// If the transform is performed, return true and set ModifiedDT to true.
1685 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
1686                                   const TargetLowering *TLI,
1687                                   const DataLayout *DL,
1688                                   bool &ModifiedDT) {
1689   if (!TLI || !DL)
1690     return false;
1691 
1692   // If a zero input is undefined, it doesn't make sense to despeculate that.
1693   if (match(CountZeros->getOperand(1), m_One()))
1694     return false;
1695 
1696   // If it's cheap to speculate, there's nothing to do.
1697   auto IntrinsicID = CountZeros->getIntrinsicID();
1698   if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
1699       (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
1700     return false;
1701 
1702   // Only handle legal scalar cases. Anything else requires too much work.
1703   Type *Ty = CountZeros->getType();
1704   unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
1705   if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
1706     return false;
1707 
1708   // The intrinsic will be sunk behind a compare against zero and branch.
1709   BasicBlock *StartBlock = CountZeros->getParent();
1710   BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
1711 
1712   // Create another block after the count zero intrinsic. A PHI will be added
1713   // in this block to select the result of the intrinsic or the bit-width
1714   // constant if the input to the intrinsic is zero.
1715   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
1716   BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
1717 
1718   // Set up a builder to create a compare, conditional branch, and PHI.
1719   IRBuilder<> Builder(CountZeros->getContext());
1720   Builder.SetInsertPoint(StartBlock->getTerminator());
1721   Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
1722 
1723   // Replace the unconditional branch that was created by the first split with
1724   // a compare against zero and a conditional branch.
1725   Value *Zero = Constant::getNullValue(Ty);
1726   Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
1727   Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
1728   StartBlock->getTerminator()->eraseFromParent();
1729 
1730   // Create a PHI in the end block to select either the output of the intrinsic
1731   // or the bit width of the operand.
1732   Builder.SetInsertPoint(&EndBlock->front());
1733   PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
1734   CountZeros->replaceAllUsesWith(PN);
1735   Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
1736   PN->addIncoming(BitWidth, StartBlock);
1737   PN->addIncoming(CountZeros, CallBlock);
1738 
1739   // We are explicitly handling the zero case, so we can set the intrinsic's
1740   // undefined zero argument to 'true'. This will also prevent reprocessing the
1741   // intrinsic; we only despeculate when a zero input is defined.
1742   CountZeros->setArgOperand(1, Builder.getTrue());
1743   ModifiedDT = true;
1744   return true;
1745 }
1746 
1747 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
1748   BasicBlock *BB = CI->getParent();
1749 
1750   // Lower inline assembly if we can.
1751   // If we found an inline asm expession, and if the target knows how to
1752   // lower it to normal LLVM code, do so now.
1753   if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
1754     if (TLI->ExpandInlineAsm(CI)) {
1755       // Avoid invalidating the iterator.
1756       CurInstIterator = BB->begin();
1757       // Avoid processing instructions out of order, which could cause
1758       // reuse before a value is defined.
1759       SunkAddrs.clear();
1760       return true;
1761     }
1762     // Sink address computing for memory operands into the block.
1763     if (optimizeInlineAsmInst(CI))
1764       return true;
1765   }
1766 
1767   // Align the pointer arguments to this call if the target thinks it's a good
1768   // idea
1769   unsigned MinSize, PrefAlign;
1770   if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
1771     for (auto &Arg : CI->arg_operands()) {
1772       // We want to align both objects whose address is used directly and
1773       // objects whose address is used in casts and GEPs, though it only makes
1774       // sense for GEPs if the offset is a multiple of the desired alignment and
1775       // if size - offset meets the size threshold.
1776       if (!Arg->getType()->isPointerTy())
1777         continue;
1778       APInt Offset(DL->getIndexSizeInBits(
1779                        cast<PointerType>(Arg->getType())->getAddressSpace()),
1780                    0);
1781       Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
1782       uint64_t Offset2 = Offset.getLimitedValue();
1783       if ((Offset2 & (PrefAlign-1)) != 0)
1784         continue;
1785       AllocaInst *AI;
1786       if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
1787           DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
1788         AI->setAlignment(PrefAlign);
1789       // Global variables can only be aligned if they are defined in this
1790       // object (i.e. they are uniquely initialized in this object), and
1791       // over-aligning global variables that have an explicit section is
1792       // forbidden.
1793       GlobalVariable *GV;
1794       if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
1795           GV->getPointerAlignment(*DL) < PrefAlign &&
1796           DL->getTypeAllocSize(GV->getValueType()) >=
1797               MinSize + Offset2)
1798         GV->setAlignment(PrefAlign);
1799     }
1800     // If this is a memcpy (or similar) then we may be able to improve the
1801     // alignment
1802     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
1803       unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL);
1804       if (DestAlign > MI->getDestAlignment())
1805         MI->setDestAlignment(DestAlign);
1806       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
1807         unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
1808         if (SrcAlign > MTI->getSourceAlignment())
1809           MTI->setSourceAlignment(SrcAlign);
1810       }
1811     }
1812   }
1813 
1814   // If we have a cold call site, try to sink addressing computation into the
1815   // cold block.  This interacts with our handling for loads and stores to
1816   // ensure that we can fold all uses of a potential addressing computation
1817   // into their uses.  TODO: generalize this to work over profiling data
1818   if (!OptSize && CI->hasFnAttr(Attribute::Cold))
1819     for (auto &Arg : CI->arg_operands()) {
1820       if (!Arg->getType()->isPointerTy())
1821         continue;
1822       unsigned AS = Arg->getType()->getPointerAddressSpace();
1823       return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
1824     }
1825 
1826   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
1827   if (II) {
1828     switch (II->getIntrinsicID()) {
1829     default: break;
1830     case Intrinsic::experimental_widenable_condition: {
1831       // Give up on future widening oppurtunties so that we can fold away dead
1832       // paths and merge blocks before going into block-local instruction
1833       // selection.
1834       if (II->use_empty()) {
1835         II->eraseFromParent();
1836         return true;
1837       }
1838       Constant *RetVal = ConstantInt::getTrue(II->getContext());
1839       resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
1840         replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
1841       });
1842       return true;
1843     }
1844     case Intrinsic::objectsize: {
1845       // Lower all uses of llvm.objectsize.*
1846       Value *RetVal =
1847           lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true);
1848 
1849       resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
1850         replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
1851       });
1852       return true;
1853     }
1854     case Intrinsic::is_constant: {
1855       // If is_constant hasn't folded away yet, lower it to false now.
1856       Constant *RetVal = ConstantInt::get(II->getType(), 0);
1857       resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
1858         replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
1859       });
1860       return true;
1861     }
1862     case Intrinsic::aarch64_stlxr:
1863     case Intrinsic::aarch64_stxr: {
1864       ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
1865       if (!ExtVal || !ExtVal->hasOneUse() ||
1866           ExtVal->getParent() == CI->getParent())
1867         return false;
1868       // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
1869       ExtVal->moveBefore(CI);
1870       // Mark this instruction as "inserted by CGP", so that other
1871       // optimizations don't touch it.
1872       InsertedInsts.insert(ExtVal);
1873       return true;
1874     }
1875 
1876     case Intrinsic::launder_invariant_group:
1877     case Intrinsic::strip_invariant_group: {
1878       Value *ArgVal = II->getArgOperand(0);
1879       auto it = LargeOffsetGEPMap.find(II);
1880       if (it != LargeOffsetGEPMap.end()) {
1881           // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
1882           // Make sure not to have to deal with iterator invalidation
1883           // after possibly adding ArgVal to LargeOffsetGEPMap.
1884           auto GEPs = std::move(it->second);
1885           LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end());
1886           LargeOffsetGEPMap.erase(II);
1887       }
1888 
1889       II->replaceAllUsesWith(ArgVal);
1890       II->eraseFromParent();
1891       return true;
1892     }
1893     case Intrinsic::cttz:
1894     case Intrinsic::ctlz:
1895       // If counting zeros is expensive, try to avoid it.
1896       return despeculateCountZeros(II, TLI, DL, ModifiedDT);
1897     }
1898 
1899     if (TLI) {
1900       SmallVector<Value*, 2> PtrOps;
1901       Type *AccessTy;
1902       if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
1903         while (!PtrOps.empty()) {
1904           Value *PtrVal = PtrOps.pop_back_val();
1905           unsigned AS = PtrVal->getType()->getPointerAddressSpace();
1906           if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
1907             return true;
1908         }
1909     }
1910   }
1911 
1912   // From here on out we're working with named functions.
1913   if (!CI->getCalledFunction()) return false;
1914 
1915   // Lower all default uses of _chk calls.  This is very similar
1916   // to what InstCombineCalls does, but here we are only lowering calls
1917   // to fortified library functions (e.g. __memcpy_chk) that have the default
1918   // "don't know" as the objectsize.  Anything else should be left alone.
1919   FortifiedLibCallSimplifier Simplifier(TLInfo, true);
1920   if (Value *V = Simplifier.optimizeCall(CI)) {
1921     CI->replaceAllUsesWith(V);
1922     CI->eraseFromParent();
1923     return true;
1924   }
1925 
1926   return false;
1927 }
1928 
1929 /// Look for opportunities to duplicate return instructions to the predecessor
1930 /// to enable tail call optimizations. The case it is currently looking for is:
1931 /// @code
1932 /// bb0:
1933 ///   %tmp0 = tail call i32 @f0()
1934 ///   br label %return
1935 /// bb1:
1936 ///   %tmp1 = tail call i32 @f1()
1937 ///   br label %return
1938 /// bb2:
1939 ///   %tmp2 = tail call i32 @f2()
1940 ///   br label %return
1941 /// return:
1942 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
1943 ///   ret i32 %retval
1944 /// @endcode
1945 ///
1946 /// =>
1947 ///
1948 /// @code
1949 /// bb0:
1950 ///   %tmp0 = tail call i32 @f0()
1951 ///   ret i32 %tmp0
1952 /// bb1:
1953 ///   %tmp1 = tail call i32 @f1()
1954 ///   ret i32 %tmp1
1955 /// bb2:
1956 ///   %tmp2 = tail call i32 @f2()
1957 ///   ret i32 %tmp2
1958 /// @endcode
1959 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) {
1960   if (!TLI)
1961     return false;
1962 
1963   ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
1964   if (!RetI)
1965     return false;
1966 
1967   PHINode *PN = nullptr;
1968   BitCastInst *BCI = nullptr;
1969   Value *V = RetI->getReturnValue();
1970   if (V) {
1971     BCI = dyn_cast<BitCastInst>(V);
1972     if (BCI)
1973       V = BCI->getOperand(0);
1974 
1975     PN = dyn_cast<PHINode>(V);
1976     if (!PN)
1977       return false;
1978   }
1979 
1980   if (PN && PN->getParent() != BB)
1981     return false;
1982 
1983   // Make sure there are no instructions between the PHI and return, or that the
1984   // return is the first instruction in the block.
1985   if (PN) {
1986     BasicBlock::iterator BI = BB->begin();
1987     // Skip over debug and the bitcast.
1988     do { ++BI; } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI);
1989     if (&*BI != RetI)
1990       return false;
1991   } else {
1992     BasicBlock::iterator BI = BB->begin();
1993     while (isa<DbgInfoIntrinsic>(BI)) ++BI;
1994     if (&*BI != RetI)
1995       return false;
1996   }
1997 
1998   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
1999   /// call.
2000   const Function *F = BB->getParent();
2001   SmallVector<CallInst*, 4> TailCalls;
2002   if (PN) {
2003     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
2004       CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
2005       // Make sure the phi value is indeed produced by the tail call.
2006       if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
2007           TLI->mayBeEmittedAsTailCall(CI) &&
2008           attributesPermitTailCall(F, CI, RetI, *TLI))
2009         TailCalls.push_back(CI);
2010     }
2011   } else {
2012     SmallPtrSet<BasicBlock*, 4> VisitedBBs;
2013     for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
2014       if (!VisitedBBs.insert(*PI).second)
2015         continue;
2016 
2017       BasicBlock::InstListType &InstList = (*PI)->getInstList();
2018       BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
2019       BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
2020       do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
2021       if (RI == RE)
2022         continue;
2023 
2024       CallInst *CI = dyn_cast<CallInst>(&*RI);
2025       if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
2026           attributesPermitTailCall(F, CI, RetI, *TLI))
2027         TailCalls.push_back(CI);
2028     }
2029   }
2030 
2031   bool Changed = false;
2032   for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
2033     CallInst *CI = TailCalls[i];
2034     CallSite CS(CI);
2035 
2036     // Make sure the call instruction is followed by an unconditional branch to
2037     // the return block.
2038     BasicBlock *CallBB = CI->getParent();
2039     BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
2040     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
2041       continue;
2042 
2043     // Duplicate the return into CallBB.
2044     (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB);
2045     ModifiedDT = Changed = true;
2046     ++NumRetsDup;
2047   }
2048 
2049   // If we eliminated all predecessors of the block, delete the block now.
2050   if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
2051     BB->eraseFromParent();
2052 
2053   return Changed;
2054 }
2055 
2056 //===----------------------------------------------------------------------===//
2057 // Memory Optimization
2058 //===----------------------------------------------------------------------===//
2059 
2060 namespace {
2061 
2062 /// This is an extended version of TargetLowering::AddrMode
2063 /// which holds actual Value*'s for register values.
2064 struct ExtAddrMode : public TargetLowering::AddrMode {
2065   Value *BaseReg = nullptr;
2066   Value *ScaledReg = nullptr;
2067   Value *OriginalValue = nullptr;
2068 
2069   enum FieldName {
2070     NoField        = 0x00,
2071     BaseRegField   = 0x01,
2072     BaseGVField    = 0x02,
2073     BaseOffsField  = 0x04,
2074     ScaledRegField = 0x08,
2075     ScaleField     = 0x10,
2076     MultipleFields = 0xff
2077   };
2078 
2079   ExtAddrMode() = default;
2080 
2081   void print(raw_ostream &OS) const;
2082   void dump() const;
2083 
2084   FieldName compare(const ExtAddrMode &other) {
2085     // First check that the types are the same on each field, as differing types
2086     // is something we can't cope with later on.
2087     if (BaseReg && other.BaseReg &&
2088         BaseReg->getType() != other.BaseReg->getType())
2089       return MultipleFields;
2090     if (BaseGV && other.BaseGV &&
2091         BaseGV->getType() != other.BaseGV->getType())
2092       return MultipleFields;
2093     if (ScaledReg && other.ScaledReg &&
2094         ScaledReg->getType() != other.ScaledReg->getType())
2095       return MultipleFields;
2096 
2097     // Check each field to see if it differs.
2098     unsigned Result = NoField;
2099     if (BaseReg != other.BaseReg)
2100       Result |= BaseRegField;
2101     if (BaseGV != other.BaseGV)
2102       Result |= BaseGVField;
2103     if (BaseOffs != other.BaseOffs)
2104       Result |= BaseOffsField;
2105     if (ScaledReg != other.ScaledReg)
2106       Result |= ScaledRegField;
2107     // Don't count 0 as being a different scale, because that actually means
2108     // unscaled (which will already be counted by having no ScaledReg).
2109     if (Scale && other.Scale && Scale != other.Scale)
2110       Result |= ScaleField;
2111 
2112     if (countPopulation(Result) > 1)
2113       return MultipleFields;
2114     else
2115       return static_cast<FieldName>(Result);
2116   }
2117 
2118   // An AddrMode is trivial if it involves no calculation i.e. it is just a base
2119   // with no offset.
2120   bool isTrivial() {
2121     // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
2122     // trivial if at most one of these terms is nonzero, except that BaseGV and
2123     // BaseReg both being zero actually means a null pointer value, which we
2124     // consider to be 'non-zero' here.
2125     return !BaseOffs && !Scale && !(BaseGV && BaseReg);
2126   }
2127 
2128   Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
2129     switch (Field) {
2130     default:
2131       return nullptr;
2132     case BaseRegField:
2133       return BaseReg;
2134     case BaseGVField:
2135       return BaseGV;
2136     case ScaledRegField:
2137       return ScaledReg;
2138     case BaseOffsField:
2139       return ConstantInt::get(IntPtrTy, BaseOffs);
2140     }
2141   }
2142 
2143   void SetCombinedField(FieldName Field, Value *V,
2144                         const SmallVectorImpl<ExtAddrMode> &AddrModes) {
2145     switch (Field) {
2146     default:
2147       llvm_unreachable("Unhandled fields are expected to be rejected earlier");
2148       break;
2149     case ExtAddrMode::BaseRegField:
2150       BaseReg = V;
2151       break;
2152     case ExtAddrMode::BaseGVField:
2153       // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
2154       // in the BaseReg field.
2155       assert(BaseReg == nullptr);
2156       BaseReg = V;
2157       BaseGV = nullptr;
2158       break;
2159     case ExtAddrMode::ScaledRegField:
2160       ScaledReg = V;
2161       // If we have a mix of scaled and unscaled addrmodes then we want scale
2162       // to be the scale and not zero.
2163       if (!Scale)
2164         for (const ExtAddrMode &AM : AddrModes)
2165           if (AM.Scale) {
2166             Scale = AM.Scale;
2167             break;
2168           }
2169       break;
2170     case ExtAddrMode::BaseOffsField:
2171       // The offset is no longer a constant, so it goes in ScaledReg with a
2172       // scale of 1.
2173       assert(ScaledReg == nullptr);
2174       ScaledReg = V;
2175       Scale = 1;
2176       BaseOffs = 0;
2177       break;
2178     }
2179   }
2180 };
2181 
2182 } // end anonymous namespace
2183 
2184 #ifndef NDEBUG
2185 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2186   AM.print(OS);
2187   return OS;
2188 }
2189 #endif
2190 
2191 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2192 void ExtAddrMode::print(raw_ostream &OS) const {
2193   bool NeedPlus = false;
2194   OS << "[";
2195   if (BaseGV) {
2196     OS << (NeedPlus ? " + " : "")
2197        << "GV:";
2198     BaseGV->printAsOperand(OS, /*PrintType=*/false);
2199     NeedPlus = true;
2200   }
2201 
2202   if (BaseOffs) {
2203     OS << (NeedPlus ? " + " : "")
2204        << BaseOffs;
2205     NeedPlus = true;
2206   }
2207 
2208   if (BaseReg) {
2209     OS << (NeedPlus ? " + " : "")
2210        << "Base:";
2211     BaseReg->printAsOperand(OS, /*PrintType=*/false);
2212     NeedPlus = true;
2213   }
2214   if (Scale) {
2215     OS << (NeedPlus ? " + " : "")
2216        << Scale << "*";
2217     ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2218   }
2219 
2220   OS << ']';
2221 }
2222 
2223 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2224   print(dbgs());
2225   dbgs() << '\n';
2226 }
2227 #endif
2228 
2229 namespace {
2230 
2231 /// This class provides transaction based operation on the IR.
2232 /// Every change made through this class is recorded in the internal state and
2233 /// can be undone (rollback) until commit is called.
2234 class TypePromotionTransaction {
2235   /// This represents the common interface of the individual transaction.
2236   /// Each class implements the logic for doing one specific modification on
2237   /// the IR via the TypePromotionTransaction.
2238   class TypePromotionAction {
2239   protected:
2240     /// The Instruction modified.
2241     Instruction *Inst;
2242 
2243   public:
2244     /// Constructor of the action.
2245     /// The constructor performs the related action on the IR.
2246     TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2247 
2248     virtual ~TypePromotionAction() = default;
2249 
2250     /// Undo the modification done by this action.
2251     /// When this method is called, the IR must be in the same state as it was
2252     /// before this action was applied.
2253     /// \pre Undoing the action works if and only if the IR is in the exact same
2254     /// state as it was directly after this action was applied.
2255     virtual void undo() = 0;
2256 
2257     /// Advocate every change made by this action.
2258     /// When the results on the IR of the action are to be kept, it is important
2259     /// to call this function, otherwise hidden information may be kept forever.
2260     virtual void commit() {
2261       // Nothing to be done, this action is not doing anything.
2262     }
2263   };
2264 
2265   /// Utility to remember the position of an instruction.
2266   class InsertionHandler {
2267     /// Position of an instruction.
2268     /// Either an instruction:
2269     /// - Is the first in a basic block: BB is used.
2270     /// - Has a previous instruction: PrevInst is used.
2271     union {
2272       Instruction *PrevInst;
2273       BasicBlock *BB;
2274     } Point;
2275 
2276     /// Remember whether or not the instruction had a previous instruction.
2277     bool HasPrevInstruction;
2278 
2279   public:
2280     /// Record the position of \p Inst.
2281     InsertionHandler(Instruction *Inst) {
2282       BasicBlock::iterator It = Inst->getIterator();
2283       HasPrevInstruction = (It != (Inst->getParent()->begin()));
2284       if (HasPrevInstruction)
2285         Point.PrevInst = &*--It;
2286       else
2287         Point.BB = Inst->getParent();
2288     }
2289 
2290     /// Insert \p Inst at the recorded position.
2291     void insert(Instruction *Inst) {
2292       if (HasPrevInstruction) {
2293         if (Inst->getParent())
2294           Inst->removeFromParent();
2295         Inst->insertAfter(Point.PrevInst);
2296       } else {
2297         Instruction *Position = &*Point.BB->getFirstInsertionPt();
2298         if (Inst->getParent())
2299           Inst->moveBefore(Position);
2300         else
2301           Inst->insertBefore(Position);
2302       }
2303     }
2304   };
2305 
2306   /// Move an instruction before another.
2307   class InstructionMoveBefore : public TypePromotionAction {
2308     /// Original position of the instruction.
2309     InsertionHandler Position;
2310 
2311   public:
2312     /// Move \p Inst before \p Before.
2313     InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2314         : TypePromotionAction(Inst), Position(Inst) {
2315       LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
2316                         << "\n");
2317       Inst->moveBefore(Before);
2318     }
2319 
2320     /// Move the instruction back to its original position.
2321     void undo() override {
2322       LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2323       Position.insert(Inst);
2324     }
2325   };
2326 
2327   /// Set the operand of an instruction with a new value.
2328   class OperandSetter : public TypePromotionAction {
2329     /// Original operand of the instruction.
2330     Value *Origin;
2331 
2332     /// Index of the modified instruction.
2333     unsigned Idx;
2334 
2335   public:
2336     /// Set \p Idx operand of \p Inst with \p NewVal.
2337     OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2338         : TypePromotionAction(Inst), Idx(Idx) {
2339       LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2340                         << "for:" << *Inst << "\n"
2341                         << "with:" << *NewVal << "\n");
2342       Origin = Inst->getOperand(Idx);
2343       Inst->setOperand(Idx, NewVal);
2344     }
2345 
2346     /// Restore the original value of the instruction.
2347     void undo() override {
2348       LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2349                         << "for: " << *Inst << "\n"
2350                         << "with: " << *Origin << "\n");
2351       Inst->setOperand(Idx, Origin);
2352     }
2353   };
2354 
2355   /// Hide the operands of an instruction.
2356   /// Do as if this instruction was not using any of its operands.
2357   class OperandsHider : public TypePromotionAction {
2358     /// The list of original operands.
2359     SmallVector<Value *, 4> OriginalValues;
2360 
2361   public:
2362     /// Remove \p Inst from the uses of the operands of \p Inst.
2363     OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2364       LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2365       unsigned NumOpnds = Inst->getNumOperands();
2366       OriginalValues.reserve(NumOpnds);
2367       for (unsigned It = 0; It < NumOpnds; ++It) {
2368         // Save the current operand.
2369         Value *Val = Inst->getOperand(It);
2370         OriginalValues.push_back(Val);
2371         // Set a dummy one.
2372         // We could use OperandSetter here, but that would imply an overhead
2373         // that we are not willing to pay.
2374         Inst->setOperand(It, UndefValue::get(Val->getType()));
2375       }
2376     }
2377 
2378     /// Restore the original list of uses.
2379     void undo() override {
2380       LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2381       for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2382         Inst->setOperand(It, OriginalValues[It]);
2383     }
2384   };
2385 
2386   /// Build a truncate instruction.
2387   class TruncBuilder : public TypePromotionAction {
2388     Value *Val;
2389 
2390   public:
2391     /// Build a truncate instruction of \p Opnd producing a \p Ty
2392     /// result.
2393     /// trunc Opnd to Ty.
2394     TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2395       IRBuilder<> Builder(Opnd);
2396       Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2397       LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2398     }
2399 
2400     /// Get the built value.
2401     Value *getBuiltValue() { return Val; }
2402 
2403     /// Remove the built instruction.
2404     void undo() override {
2405       LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2406       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2407         IVal->eraseFromParent();
2408     }
2409   };
2410 
2411   /// Build a sign extension instruction.
2412   class SExtBuilder : public TypePromotionAction {
2413     Value *Val;
2414 
2415   public:
2416     /// Build a sign extension instruction of \p Opnd producing a \p Ty
2417     /// result.
2418     /// sext Opnd to Ty.
2419     SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2420         : TypePromotionAction(InsertPt) {
2421       IRBuilder<> Builder(InsertPt);
2422       Val = Builder.CreateSExt(Opnd, Ty, "promoted");
2423       LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
2424     }
2425 
2426     /// Get the built value.
2427     Value *getBuiltValue() { return Val; }
2428 
2429     /// Remove the built instruction.
2430     void undo() override {
2431       LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
2432       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2433         IVal->eraseFromParent();
2434     }
2435   };
2436 
2437   /// Build a zero extension instruction.
2438   class ZExtBuilder : public TypePromotionAction {
2439     Value *Val;
2440 
2441   public:
2442     /// Build a zero extension instruction of \p Opnd producing a \p Ty
2443     /// result.
2444     /// zext Opnd to Ty.
2445     ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2446         : TypePromotionAction(InsertPt) {
2447       IRBuilder<> Builder(InsertPt);
2448       Val = Builder.CreateZExt(Opnd, Ty, "promoted");
2449       LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
2450     }
2451 
2452     /// Get the built value.
2453     Value *getBuiltValue() { return Val; }
2454 
2455     /// Remove the built instruction.
2456     void undo() override {
2457       LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
2458       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2459         IVal->eraseFromParent();
2460     }
2461   };
2462 
2463   /// Mutate an instruction to another type.
2464   class TypeMutator : public TypePromotionAction {
2465     /// Record the original type.
2466     Type *OrigTy;
2467 
2468   public:
2469     /// Mutate the type of \p Inst into \p NewTy.
2470     TypeMutator(Instruction *Inst, Type *NewTy)
2471         : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
2472       LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
2473                         << "\n");
2474       Inst->mutateType(NewTy);
2475     }
2476 
2477     /// Mutate the instruction back to its original type.
2478     void undo() override {
2479       LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
2480                         << "\n");
2481       Inst->mutateType(OrigTy);
2482     }
2483   };
2484 
2485   /// Replace the uses of an instruction by another instruction.
2486   class UsesReplacer : public TypePromotionAction {
2487     /// Helper structure to keep track of the replaced uses.
2488     struct InstructionAndIdx {
2489       /// The instruction using the instruction.
2490       Instruction *Inst;
2491 
2492       /// The index where this instruction is used for Inst.
2493       unsigned Idx;
2494 
2495       InstructionAndIdx(Instruction *Inst, unsigned Idx)
2496           : Inst(Inst), Idx(Idx) {}
2497     };
2498 
2499     /// Keep track of the original uses (pair Instruction, Index).
2500     SmallVector<InstructionAndIdx, 4> OriginalUses;
2501     /// Keep track of the debug users.
2502     SmallVector<DbgValueInst *, 1> DbgValues;
2503 
2504     using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
2505 
2506   public:
2507     /// Replace all the use of \p Inst by \p New.
2508     UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
2509       LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
2510                         << "\n");
2511       // Record the original uses.
2512       for (Use &U : Inst->uses()) {
2513         Instruction *UserI = cast<Instruction>(U.getUser());
2514         OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
2515       }
2516       // Record the debug uses separately. They are not in the instruction's
2517       // use list, but they are replaced by RAUW.
2518       findDbgValues(DbgValues, Inst);
2519 
2520       // Now, we can replace the uses.
2521       Inst->replaceAllUsesWith(New);
2522     }
2523 
2524     /// Reassign the original uses of Inst to Inst.
2525     void undo() override {
2526       LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
2527       for (use_iterator UseIt = OriginalUses.begin(),
2528                         EndIt = OriginalUses.end();
2529            UseIt != EndIt; ++UseIt) {
2530         UseIt->Inst->setOperand(UseIt->Idx, Inst);
2531       }
2532       // RAUW has replaced all original uses with references to the new value,
2533       // including the debug uses. Since we are undoing the replacements,
2534       // the original debug uses must also be reinstated to maintain the
2535       // correctness and utility of debug value instructions.
2536       for (auto *DVI: DbgValues) {
2537         LLVMContext &Ctx = Inst->getType()->getContext();
2538         auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst));
2539         DVI->setOperand(0, MV);
2540       }
2541     }
2542   };
2543 
2544   /// Remove an instruction from the IR.
2545   class InstructionRemover : public TypePromotionAction {
2546     /// Original position of the instruction.
2547     InsertionHandler Inserter;
2548 
2549     /// Helper structure to hide all the link to the instruction. In other
2550     /// words, this helps to do as if the instruction was removed.
2551     OperandsHider Hider;
2552 
2553     /// Keep track of the uses replaced, if any.
2554     UsesReplacer *Replacer = nullptr;
2555 
2556     /// Keep track of instructions removed.
2557     SetOfInstrs &RemovedInsts;
2558 
2559   public:
2560     /// Remove all reference of \p Inst and optionally replace all its
2561     /// uses with New.
2562     /// \p RemovedInsts Keep track of the instructions removed by this Action.
2563     /// \pre If !Inst->use_empty(), then New != nullptr
2564     InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
2565                        Value *New = nullptr)
2566         : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
2567           RemovedInsts(RemovedInsts) {
2568       if (New)
2569         Replacer = new UsesReplacer(Inst, New);
2570       LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
2571       RemovedInsts.insert(Inst);
2572       /// The instructions removed here will be freed after completing
2573       /// optimizeBlock() for all blocks as we need to keep track of the
2574       /// removed instructions during promotion.
2575       Inst->removeFromParent();
2576     }
2577 
2578     ~InstructionRemover() override { delete Replacer; }
2579 
2580     /// Resurrect the instruction and reassign it to the proper uses if
2581     /// new value was provided when build this action.
2582     void undo() override {
2583       LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
2584       Inserter.insert(Inst);
2585       if (Replacer)
2586         Replacer->undo();
2587       Hider.undo();
2588       RemovedInsts.erase(Inst);
2589     }
2590   };
2591 
2592 public:
2593   /// Restoration point.
2594   /// The restoration point is a pointer to an action instead of an iterator
2595   /// because the iterator may be invalidated but not the pointer.
2596   using ConstRestorationPt = const TypePromotionAction *;
2597 
2598   TypePromotionTransaction(SetOfInstrs &RemovedInsts)
2599       : RemovedInsts(RemovedInsts) {}
2600 
2601   /// Advocate every changes made in that transaction.
2602   void commit();
2603 
2604   /// Undo all the changes made after the given point.
2605   void rollback(ConstRestorationPt Point);
2606 
2607   /// Get the current restoration point.
2608   ConstRestorationPt getRestorationPoint() const;
2609 
2610   /// \name API for IR modification with state keeping to support rollback.
2611   /// @{
2612   /// Same as Instruction::setOperand.
2613   void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
2614 
2615   /// Same as Instruction::eraseFromParent.
2616   void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
2617 
2618   /// Same as Value::replaceAllUsesWith.
2619   void replaceAllUsesWith(Instruction *Inst, Value *New);
2620 
2621   /// Same as Value::mutateType.
2622   void mutateType(Instruction *Inst, Type *NewTy);
2623 
2624   /// Same as IRBuilder::createTrunc.
2625   Value *createTrunc(Instruction *Opnd, Type *Ty);
2626 
2627   /// Same as IRBuilder::createSExt.
2628   Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
2629 
2630   /// Same as IRBuilder::createZExt.
2631   Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
2632 
2633   /// Same as Instruction::moveBefore.
2634   void moveBefore(Instruction *Inst, Instruction *Before);
2635   /// @}
2636 
2637 private:
2638   /// The ordered list of actions made so far.
2639   SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
2640 
2641   using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
2642 
2643   SetOfInstrs &RemovedInsts;
2644 };
2645 
2646 } // end anonymous namespace
2647 
2648 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
2649                                           Value *NewVal) {
2650   Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>(
2651       Inst, Idx, NewVal));
2652 }
2653 
2654 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
2655                                                 Value *NewVal) {
2656   Actions.push_back(
2657       llvm::make_unique<TypePromotionTransaction::InstructionRemover>(
2658           Inst, RemovedInsts, NewVal));
2659 }
2660 
2661 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
2662                                                   Value *New) {
2663   Actions.push_back(
2664       llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
2665 }
2666 
2667 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
2668   Actions.push_back(
2669       llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
2670 }
2671 
2672 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
2673                                              Type *Ty) {
2674   std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
2675   Value *Val = Ptr->getBuiltValue();
2676   Actions.push_back(std::move(Ptr));
2677   return Val;
2678 }
2679 
2680 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
2681                                             Value *Opnd, Type *Ty) {
2682   std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
2683   Value *Val = Ptr->getBuiltValue();
2684   Actions.push_back(std::move(Ptr));
2685   return Val;
2686 }
2687 
2688 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
2689                                             Value *Opnd, Type *Ty) {
2690   std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
2691   Value *Val = Ptr->getBuiltValue();
2692   Actions.push_back(std::move(Ptr));
2693   return Val;
2694 }
2695 
2696 void TypePromotionTransaction::moveBefore(Instruction *Inst,
2697                                           Instruction *Before) {
2698   Actions.push_back(
2699       llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
2700           Inst, Before));
2701 }
2702 
2703 TypePromotionTransaction::ConstRestorationPt
2704 TypePromotionTransaction::getRestorationPoint() const {
2705   return !Actions.empty() ? Actions.back().get() : nullptr;
2706 }
2707 
2708 void TypePromotionTransaction::commit() {
2709   for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
2710        ++It)
2711     (*It)->commit();
2712   Actions.clear();
2713 }
2714 
2715 void TypePromotionTransaction::rollback(
2716     TypePromotionTransaction::ConstRestorationPt Point) {
2717   while (!Actions.empty() && Point != Actions.back().get()) {
2718     std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
2719     Curr->undo();
2720   }
2721 }
2722 
2723 namespace {
2724 
2725 /// A helper class for matching addressing modes.
2726 ///
2727 /// This encapsulates the logic for matching the target-legal addressing modes.
2728 class AddressingModeMatcher {
2729   SmallVectorImpl<Instruction*> &AddrModeInsts;
2730   const TargetLowering &TLI;
2731   const TargetRegisterInfo &TRI;
2732   const DataLayout &DL;
2733 
2734   /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
2735   /// the memory instruction that we're computing this address for.
2736   Type *AccessTy;
2737   unsigned AddrSpace;
2738   Instruction *MemoryInst;
2739 
2740   /// This is the addressing mode that we're building up. This is
2741   /// part of the return value of this addressing mode matching stuff.
2742   ExtAddrMode &AddrMode;
2743 
2744   /// The instructions inserted by other CodeGenPrepare optimizations.
2745   const SetOfInstrs &InsertedInsts;
2746 
2747   /// A map from the instructions to their type before promotion.
2748   InstrToOrigTy &PromotedInsts;
2749 
2750   /// The ongoing transaction where every action should be registered.
2751   TypePromotionTransaction &TPT;
2752 
2753   // A GEP which has too large offset to be folded into the addressing mode.
2754   std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;
2755 
2756   /// This is set to true when we should not do profitability checks.
2757   /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
2758   bool IgnoreProfitability;
2759 
2760   AddressingModeMatcher(
2761       SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
2762       const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI,
2763       ExtAddrMode &AM, const SetOfInstrs &InsertedInsts,
2764       InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
2765       std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP)
2766       : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
2767         DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
2768         MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
2769         PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) {
2770     IgnoreProfitability = false;
2771   }
2772 
2773 public:
2774   /// Find the maximal addressing mode that a load/store of V can fold,
2775   /// give an access type of AccessTy.  This returns a list of involved
2776   /// instructions in AddrModeInsts.
2777   /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
2778   /// optimizations.
2779   /// \p PromotedInsts maps the instructions to their type before promotion.
2780   /// \p The ongoing transaction where every action should be registered.
2781   static ExtAddrMode
2782   Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
2783         SmallVectorImpl<Instruction *> &AddrModeInsts,
2784         const TargetLowering &TLI, const TargetRegisterInfo &TRI,
2785         const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
2786         TypePromotionTransaction &TPT,
2787         std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) {
2788     ExtAddrMode Result;
2789 
2790     bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS,
2791                                          MemoryInst, Result, InsertedInsts,
2792                                          PromotedInsts, TPT, LargeOffsetGEP)
2793                        .matchAddr(V, 0);
2794     (void)Success; assert(Success && "Couldn't select *anything*?");
2795     return Result;
2796   }
2797 
2798 private:
2799   bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
2800   bool matchAddr(Value *Addr, unsigned Depth);
2801   bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth,
2802                           bool *MovedAway = nullptr);
2803   bool isProfitableToFoldIntoAddressingMode(Instruction *I,
2804                                             ExtAddrMode &AMBefore,
2805                                             ExtAddrMode &AMAfter);
2806   bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
2807   bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
2808                              Value *PromotedOperand) const;
2809 };
2810 
2811 class PhiNodeSet;
2812 
2813 /// An iterator for PhiNodeSet.
2814 class PhiNodeSetIterator {
2815   PhiNodeSet * const Set;
2816   size_t CurrentIndex = 0;
2817 
2818 public:
2819   /// The constructor. Start should point to either a valid element, or be equal
2820   /// to the size of the underlying SmallVector of the PhiNodeSet.
2821   PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start);
2822   PHINode * operator*() const;
2823   PhiNodeSetIterator& operator++();
2824   bool operator==(const PhiNodeSetIterator &RHS) const;
2825   bool operator!=(const PhiNodeSetIterator &RHS) const;
2826 };
2827 
2828 /// Keeps a set of PHINodes.
2829 ///
2830 /// This is a minimal set implementation for a specific use case:
2831 /// It is very fast when there are very few elements, but also provides good
2832 /// performance when there are many. It is similar to SmallPtrSet, but also
2833 /// provides iteration by insertion order, which is deterministic and stable
2834 /// across runs. It is also similar to SmallSetVector, but provides removing
2835 /// elements in O(1) time. This is achieved by not actually removing the element
2836 /// from the underlying vector, so comes at the cost of using more memory, but
2837 /// that is fine, since PhiNodeSets are used as short lived objects.
2838 class PhiNodeSet {
2839   friend class PhiNodeSetIterator;
2840 
2841   using MapType = SmallDenseMap<PHINode *, size_t, 32>;
2842   using iterator =  PhiNodeSetIterator;
2843 
2844   /// Keeps the elements in the order of their insertion in the underlying
2845   /// vector. To achieve constant time removal, it never deletes any element.
2846   SmallVector<PHINode *, 32> NodeList;
2847 
2848   /// Keeps the elements in the underlying set implementation. This (and not the
2849   /// NodeList defined above) is the source of truth on whether an element
2850   /// is actually in the collection.
2851   MapType NodeMap;
2852 
2853   /// Points to the first valid (not deleted) element when the set is not empty
2854   /// and the value is not zero. Equals to the size of the underlying vector
2855   /// when the set is empty. When the value is 0, as in the beginning, the
2856   /// first element may or may not be valid.
2857   size_t FirstValidElement = 0;
2858 
2859 public:
2860   /// Inserts a new element to the collection.
2861   /// \returns true if the element is actually added, i.e. was not in the
2862   /// collection before the operation.
2863   bool insert(PHINode *Ptr) {
2864     if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) {
2865       NodeList.push_back(Ptr);
2866       return true;
2867     }
2868     return false;
2869   }
2870 
2871   /// Removes the element from the collection.
2872   /// \returns whether the element is actually removed, i.e. was in the
2873   /// collection before the operation.
2874   bool erase(PHINode *Ptr) {
2875     auto it = NodeMap.find(Ptr);
2876     if (it != NodeMap.end()) {
2877       NodeMap.erase(Ptr);
2878       SkipRemovedElements(FirstValidElement);
2879       return true;
2880     }
2881     return false;
2882   }
2883 
2884   /// Removes all elements and clears the collection.
2885   void clear() {
2886     NodeMap.clear();
2887     NodeList.clear();
2888     FirstValidElement = 0;
2889   }
2890 
2891   /// \returns an iterator that will iterate the elements in the order of
2892   /// insertion.
2893   iterator begin() {
2894     if (FirstValidElement == 0)
2895       SkipRemovedElements(FirstValidElement);
2896     return PhiNodeSetIterator(this, FirstValidElement);
2897   }
2898 
2899   /// \returns an iterator that points to the end of the collection.
2900   iterator end() { return PhiNodeSetIterator(this, NodeList.size()); }
2901 
2902   /// Returns the number of elements in the collection.
2903   size_t size() const {
2904     return NodeMap.size();
2905   }
2906 
2907   /// \returns 1 if the given element is in the collection, and 0 if otherwise.
2908   size_t count(PHINode *Ptr) const {
2909     return NodeMap.count(Ptr);
2910   }
2911 
2912 private:
2913   /// Updates the CurrentIndex so that it will point to a valid element.
2914   ///
2915   /// If the element of NodeList at CurrentIndex is valid, it does not
2916   /// change it. If there are no more valid elements, it updates CurrentIndex
2917   /// to point to the end of the NodeList.
2918   void SkipRemovedElements(size_t &CurrentIndex) {
2919     while (CurrentIndex < NodeList.size()) {
2920       auto it = NodeMap.find(NodeList[CurrentIndex]);
2921       // If the element has been deleted and added again later, NodeMap will
2922       // point to a different index, so CurrentIndex will still be invalid.
2923       if (it != NodeMap.end() && it->second == CurrentIndex)
2924         break;
2925       ++CurrentIndex;
2926     }
2927   }
2928 };
2929 
2930 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start)
2931     : Set(Set), CurrentIndex(Start) {}
2932 
2933 PHINode * PhiNodeSetIterator::operator*() const {
2934   assert(CurrentIndex < Set->NodeList.size() &&
2935          "PhiNodeSet access out of range");
2936   return Set->NodeList[CurrentIndex];
2937 }
2938 
2939 PhiNodeSetIterator& PhiNodeSetIterator::operator++() {
2940   assert(CurrentIndex < Set->NodeList.size() &&
2941          "PhiNodeSet access out of range");
2942   ++CurrentIndex;
2943   Set->SkipRemovedElements(CurrentIndex);
2944   return *this;
2945 }
2946 
2947 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const {
2948   return CurrentIndex == RHS.CurrentIndex;
2949 }
2950 
2951 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const {
2952   return !((*this) == RHS);
2953 }
2954 
2955 /// Keep track of simplification of Phi nodes.
2956 /// Accept the set of all phi nodes and erase phi node from this set
2957 /// if it is simplified.
2958 class SimplificationTracker {
2959   DenseMap<Value *, Value *> Storage;
2960   const SimplifyQuery &SQ;
2961   // Tracks newly created Phi nodes. The elements are iterated by insertion
2962   // order.
2963   PhiNodeSet AllPhiNodes;
2964   // Tracks newly created Select nodes.
2965   SmallPtrSet<SelectInst *, 32> AllSelectNodes;
2966 
2967 public:
2968   SimplificationTracker(const SimplifyQuery &sq)
2969       : SQ(sq) {}
2970 
2971   Value *Get(Value *V) {
2972     do {
2973       auto SV = Storage.find(V);
2974       if (SV == Storage.end())
2975         return V;
2976       V = SV->second;
2977     } while (true);
2978   }
2979 
2980   Value *Simplify(Value *Val) {
2981     SmallVector<Value *, 32> WorkList;
2982     SmallPtrSet<Value *, 32> Visited;
2983     WorkList.push_back(Val);
2984     while (!WorkList.empty()) {
2985       auto P = WorkList.pop_back_val();
2986       if (!Visited.insert(P).second)
2987         continue;
2988       if (auto *PI = dyn_cast<Instruction>(P))
2989         if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) {
2990           for (auto *U : PI->users())
2991             WorkList.push_back(cast<Value>(U));
2992           Put(PI, V);
2993           PI->replaceAllUsesWith(V);
2994           if (auto *PHI = dyn_cast<PHINode>(PI))
2995             AllPhiNodes.erase(PHI);
2996           if (auto *Select = dyn_cast<SelectInst>(PI))
2997             AllSelectNodes.erase(Select);
2998           PI->eraseFromParent();
2999         }
3000     }
3001     return Get(Val);
3002   }
3003 
3004   void Put(Value *From, Value *To) {
3005     Storage.insert({ From, To });
3006   }
3007 
3008   void ReplacePhi(PHINode *From, PHINode *To) {
3009     Value* OldReplacement = Get(From);
3010     while (OldReplacement != From) {
3011       From = To;
3012       To = dyn_cast<PHINode>(OldReplacement);
3013       OldReplacement = Get(From);
3014     }
3015     assert(Get(To) == To && "Replacement PHI node is already replaced.");
3016     Put(From, To);
3017     From->replaceAllUsesWith(To);
3018     AllPhiNodes.erase(From);
3019     From->eraseFromParent();
3020   }
3021 
3022   PhiNodeSet& newPhiNodes() { return AllPhiNodes; }
3023 
3024   void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }
3025 
3026   void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }
3027 
3028   unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }
3029 
3030   unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }
3031 
3032   void destroyNewNodes(Type *CommonType) {
3033     // For safe erasing, replace the uses with dummy value first.
3034     auto Dummy = UndefValue::get(CommonType);
3035     for (auto I : AllPhiNodes) {
3036       I->replaceAllUsesWith(Dummy);
3037       I->eraseFromParent();
3038     }
3039     AllPhiNodes.clear();
3040     for (auto I : AllSelectNodes) {
3041       I->replaceAllUsesWith(Dummy);
3042       I->eraseFromParent();
3043     }
3044     AllSelectNodes.clear();
3045   }
3046 };
3047 
3048 /// A helper class for combining addressing modes.
3049 class AddressingModeCombiner {
3050   typedef DenseMap<Value *, Value *> FoldAddrToValueMapping;
3051   typedef std::pair<PHINode *, PHINode *> PHIPair;
3052 
3053 private:
3054   /// The addressing modes we've collected.
3055   SmallVector<ExtAddrMode, 16> AddrModes;
3056 
3057   /// The field in which the AddrModes differ, when we have more than one.
3058   ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
3059 
3060   /// Are the AddrModes that we have all just equal to their original values?
3061   bool AllAddrModesTrivial = true;
3062 
3063   /// Common Type for all different fields in addressing modes.
3064   Type *CommonType;
3065 
3066   /// SimplifyQuery for simplifyInstruction utility.
3067   const SimplifyQuery &SQ;
3068 
3069   /// Original Address.
3070   Value *Original;
3071 
3072 public:
3073   AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue)
3074       : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {}
3075 
3076   /// Get the combined AddrMode
3077   const ExtAddrMode &getAddrMode() const {
3078     return AddrModes[0];
3079   }
3080 
3081   /// Add a new AddrMode if it's compatible with the AddrModes we already
3082   /// have.
3083   /// \return True iff we succeeded in doing so.
3084   bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
3085     // Take note of if we have any non-trivial AddrModes, as we need to detect
3086     // when all AddrModes are trivial as then we would introduce a phi or select
3087     // which just duplicates what's already there.
3088     AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
3089 
3090     // If this is the first addrmode then everything is fine.
3091     if (AddrModes.empty()) {
3092       AddrModes.emplace_back(NewAddrMode);
3093       return true;
3094     }
3095 
3096     // Figure out how different this is from the other address modes, which we
3097     // can do just by comparing against the first one given that we only care
3098     // about the cumulative difference.
3099     ExtAddrMode::FieldName ThisDifferentField =
3100       AddrModes[0].compare(NewAddrMode);
3101     if (DifferentField == ExtAddrMode::NoField)
3102       DifferentField = ThisDifferentField;
3103     else if (DifferentField != ThisDifferentField)
3104       DifferentField = ExtAddrMode::MultipleFields;
3105 
3106     // If NewAddrMode differs in more than one dimension we cannot handle it.
3107     bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
3108 
3109     // If Scale Field is different then we reject.
3110     CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
3111 
3112     // We also must reject the case when base offset is different and
3113     // scale reg is not null, we cannot handle this case due to merge of
3114     // different offsets will be used as ScaleReg.
3115     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
3116                               !NewAddrMode.ScaledReg);
3117 
3118     // We also must reject the case when GV is different and BaseReg installed
3119     // due to we want to use base reg as a merge of GV values.
3120     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
3121                               !NewAddrMode.HasBaseReg);
3122 
3123     // Even if NewAddMode is the same we still need to collect it due to
3124     // original value is different. And later we will need all original values
3125     // as anchors during finding the common Phi node.
3126     if (CanHandle)
3127       AddrModes.emplace_back(NewAddrMode);
3128     else
3129       AddrModes.clear();
3130 
3131     return CanHandle;
3132   }
3133 
3134   /// Combine the addressing modes we've collected into a single
3135   /// addressing mode.
3136   /// \return True iff we successfully combined them or we only had one so
3137   /// didn't need to combine them anyway.
3138   bool combineAddrModes() {
3139     // If we have no AddrModes then they can't be combined.
3140     if (AddrModes.size() == 0)
3141       return false;
3142 
3143     // A single AddrMode can trivially be combined.
3144     if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
3145       return true;
3146 
3147     // If the AddrModes we collected are all just equal to the value they are
3148     // derived from then combining them wouldn't do anything useful.
3149     if (AllAddrModesTrivial)
3150       return false;
3151 
3152     if (!addrModeCombiningAllowed())
3153       return false;
3154 
3155     // Build a map between <original value, basic block where we saw it> to
3156     // value of base register.
3157     // Bail out if there is no common type.
3158     FoldAddrToValueMapping Map;
3159     if (!initializeMap(Map))
3160       return false;
3161 
3162     Value *CommonValue = findCommon(Map);
3163     if (CommonValue)
3164       AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
3165     return CommonValue != nullptr;
3166   }
3167 
3168 private:
3169   /// Initialize Map with anchor values. For address seen
3170   /// we set the value of different field saw in this address.
3171   /// At the same time we find a common type for different field we will
3172   /// use to create new Phi/Select nodes. Keep it in CommonType field.
3173   /// Return false if there is no common type found.
3174   bool initializeMap(FoldAddrToValueMapping &Map) {
3175     // Keep track of keys where the value is null. We will need to replace it
3176     // with constant null when we know the common type.
3177     SmallVector<Value *, 2> NullValue;
3178     Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
3179     for (auto &AM : AddrModes) {
3180       Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
3181       if (DV) {
3182         auto *Type = DV->getType();
3183         if (CommonType && CommonType != Type)
3184           return false;
3185         CommonType = Type;
3186         Map[AM.OriginalValue] = DV;
3187       } else {
3188         NullValue.push_back(AM.OriginalValue);
3189       }
3190     }
3191     assert(CommonType && "At least one non-null value must be!");
3192     for (auto *V : NullValue)
3193       Map[V] = Constant::getNullValue(CommonType);
3194     return true;
3195   }
3196 
3197   /// We have mapping between value A and other value B where B was a field in
3198   /// addressing mode represented by A. Also we have an original value C
3199   /// representing an address we start with. Traversing from C through phi and
3200   /// selects we ended up with A's in a map. This utility function tries to find
3201   /// a value V which is a field in addressing mode C and traversing through phi
3202   /// nodes and selects we will end up in corresponded values B in a map.
3203   /// The utility will create a new Phi/Selects if needed.
3204   // The simple example looks as follows:
3205   // BB1:
3206   //   p1 = b1 + 40
3207   //   br cond BB2, BB3
3208   // BB2:
3209   //   p2 = b2 + 40
3210   //   br BB3
3211   // BB3:
3212   //   p = phi [p1, BB1], [p2, BB2]
3213   //   v = load p
3214   // Map is
3215   //   p1 -> b1
3216   //   p2 -> b2
3217   // Request is
3218   //   p -> ?
3219   // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
3220   Value *findCommon(FoldAddrToValueMapping &Map) {
3221     // Tracks the simplification of newly created phi nodes. The reason we use
3222     // this mapping is because we will add new created Phi nodes in AddrToBase.
3223     // Simplification of Phi nodes is recursive, so some Phi node may
3224     // be simplified after we added it to AddrToBase. In reality this
3225     // simplification is possible only if original phi/selects were not
3226     // simplified yet.
3227     // Using this mapping we can find the current value in AddrToBase.
3228     SimplificationTracker ST(SQ);
3229 
3230     // First step, DFS to create PHI nodes for all intermediate blocks.
3231     // Also fill traverse order for the second step.
3232     SmallVector<Value *, 32> TraverseOrder;
3233     InsertPlaceholders(Map, TraverseOrder, ST);
3234 
3235     // Second Step, fill new nodes by merged values and simplify if possible.
3236     FillPlaceholders(Map, TraverseOrder, ST);
3237 
3238     if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
3239       ST.destroyNewNodes(CommonType);
3240       return nullptr;
3241     }
3242 
3243     // Now we'd like to match New Phi nodes to existed ones.
3244     unsigned PhiNotMatchedCount = 0;
3245     if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
3246       ST.destroyNewNodes(CommonType);
3247       return nullptr;
3248     }
3249 
3250     auto *Result = ST.Get(Map.find(Original)->second);
3251     if (Result) {
3252       NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
3253       NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
3254     }
3255     return Result;
3256   }
3257 
3258   /// Try to match PHI node to Candidate.
3259   /// Matcher tracks the matched Phi nodes.
3260   bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
3261                     SmallSetVector<PHIPair, 8> &Matcher,
3262                     PhiNodeSet &PhiNodesToMatch) {
3263     SmallVector<PHIPair, 8> WorkList;
3264     Matcher.insert({ PHI, Candidate });
3265     WorkList.push_back({ PHI, Candidate });
3266     SmallSet<PHIPair, 8> Visited;
3267     while (!WorkList.empty()) {
3268       auto Item = WorkList.pop_back_val();
3269       if (!Visited.insert(Item).second)
3270         continue;
3271       // We iterate over all incoming values to Phi to compare them.
3272       // If values are different and both of them Phi and the first one is a
3273       // Phi we added (subject to match) and both of them is in the same basic
3274       // block then we can match our pair if values match. So we state that
3275       // these values match and add it to work list to verify that.
3276       for (auto B : Item.first->blocks()) {
3277         Value *FirstValue = Item.first->getIncomingValueForBlock(B);
3278         Value *SecondValue = Item.second->getIncomingValueForBlock(B);
3279         if (FirstValue == SecondValue)
3280           continue;
3281 
3282         PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
3283         PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
3284 
3285         // One of them is not Phi or
3286         // The first one is not Phi node from the set we'd like to match or
3287         // Phi nodes from different basic blocks then
3288         // we will not be able to match.
3289         if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
3290             FirstPhi->getParent() != SecondPhi->getParent())
3291           return false;
3292 
3293         // If we already matched them then continue.
3294         if (Matcher.count({ FirstPhi, SecondPhi }))
3295           continue;
3296         // So the values are different and does not match. So we need them to
3297         // match.
3298         Matcher.insert({ FirstPhi, SecondPhi });
3299         // But me must check it.
3300         WorkList.push_back({ FirstPhi, SecondPhi });
3301       }
3302     }
3303     return true;
3304   }
3305 
3306   /// For the given set of PHI nodes (in the SimplificationTracker) try
3307   /// to find their equivalents.
3308   /// Returns false if this matching fails and creation of new Phi is disabled.
3309   bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
3310                    unsigned &PhiNotMatchedCount) {
3311     // Matched and PhiNodesToMatch iterate their elements in a deterministic
3312     // order, so the replacements (ReplacePhi) are also done in a deterministic
3313     // order.
3314     SmallSetVector<PHIPair, 8> Matched;
3315     SmallPtrSet<PHINode *, 8> WillNotMatch;
3316     PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes();
3317     while (PhiNodesToMatch.size()) {
3318       PHINode *PHI = *PhiNodesToMatch.begin();
3319 
3320       // Add us, if no Phi nodes in the basic block we do not match.
3321       WillNotMatch.clear();
3322       WillNotMatch.insert(PHI);
3323 
3324       // Traverse all Phis until we found equivalent or fail to do that.
3325       bool IsMatched = false;
3326       for (auto &P : PHI->getParent()->phis()) {
3327         if (&P == PHI)
3328           continue;
3329         if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
3330           break;
3331         // If it does not match, collect all Phi nodes from matcher.
3332         // if we end up with no match, them all these Phi nodes will not match
3333         // later.
3334         for (auto M : Matched)
3335           WillNotMatch.insert(M.first);
3336         Matched.clear();
3337       }
3338       if (IsMatched) {
3339         // Replace all matched values and erase them.
3340         for (auto MV : Matched)
3341           ST.ReplacePhi(MV.first, MV.second);
3342         Matched.clear();
3343         continue;
3344       }
3345       // If we are not allowed to create new nodes then bail out.
3346       if (!AllowNewPhiNodes)
3347         return false;
3348       // Just remove all seen values in matcher. They will not match anything.
3349       PhiNotMatchedCount += WillNotMatch.size();
3350       for (auto *P : WillNotMatch)
3351         PhiNodesToMatch.erase(P);
3352     }
3353     return true;
3354   }
3355   /// Fill the placeholders with values from predecessors and simplify them.
3356   void FillPlaceholders(FoldAddrToValueMapping &Map,
3357                         SmallVectorImpl<Value *> &TraverseOrder,
3358                         SimplificationTracker &ST) {
3359     while (!TraverseOrder.empty()) {
3360       Value *Current = TraverseOrder.pop_back_val();
3361       assert(Map.find(Current) != Map.end() && "No node to fill!!!");
3362       Value *V = Map[Current];
3363 
3364       if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
3365         // CurrentValue also must be Select.
3366         auto *CurrentSelect = cast<SelectInst>(Current);
3367         auto *TrueValue = CurrentSelect->getTrueValue();
3368         assert(Map.find(TrueValue) != Map.end() && "No True Value!");
3369         Select->setTrueValue(ST.Get(Map[TrueValue]));
3370         auto *FalseValue = CurrentSelect->getFalseValue();
3371         assert(Map.find(FalseValue) != Map.end() && "No False Value!");
3372         Select->setFalseValue(ST.Get(Map[FalseValue]));
3373       } else {
3374         // Must be a Phi node then.
3375         PHINode *PHI = cast<PHINode>(V);
3376         auto *CurrentPhi = dyn_cast<PHINode>(Current);
3377         // Fill the Phi node with values from predecessors.
3378         for (auto B : predecessors(PHI->getParent())) {
3379           Value *PV = CurrentPhi->getIncomingValueForBlock(B);
3380           assert(Map.find(PV) != Map.end() && "No predecessor Value!");
3381           PHI->addIncoming(ST.Get(Map[PV]), B);
3382         }
3383       }
3384       Map[Current] = ST.Simplify(V);
3385     }
3386   }
3387 
3388   /// Starting from original value recursively iterates over def-use chain up to
3389   /// known ending values represented in a map. For each traversed phi/select
3390   /// inserts a placeholder Phi or Select.
3391   /// Reports all new created Phi/Select nodes by adding them to set.
3392   /// Also reports and order in what values have been traversed.
3393   void InsertPlaceholders(FoldAddrToValueMapping &Map,
3394                           SmallVectorImpl<Value *> &TraverseOrder,
3395                           SimplificationTracker &ST) {
3396     SmallVector<Value *, 32> Worklist;
3397     assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&
3398            "Address must be a Phi or Select node");
3399     auto *Dummy = UndefValue::get(CommonType);
3400     Worklist.push_back(Original);
3401     while (!Worklist.empty()) {
3402       Value *Current = Worklist.pop_back_val();
3403       // if it is already visited or it is an ending value then skip it.
3404       if (Map.find(Current) != Map.end())
3405         continue;
3406       TraverseOrder.push_back(Current);
3407 
3408       // CurrentValue must be a Phi node or select. All others must be covered
3409       // by anchors.
3410       if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) {
3411         // Is it OK to get metadata from OrigSelect?!
3412         // Create a Select placeholder with dummy value.
3413         SelectInst *Select = SelectInst::Create(
3414             CurrentSelect->getCondition(), Dummy, Dummy,
3415             CurrentSelect->getName(), CurrentSelect, CurrentSelect);
3416         Map[Current] = Select;
3417         ST.insertNewSelect(Select);
3418         // We are interested in True and False values.
3419         Worklist.push_back(CurrentSelect->getTrueValue());
3420         Worklist.push_back(CurrentSelect->getFalseValue());
3421       } else {
3422         // It must be a Phi node then.
3423         PHINode *CurrentPhi = cast<PHINode>(Current);
3424         unsigned PredCount = CurrentPhi->getNumIncomingValues();
3425         PHINode *PHI =
3426             PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi);
3427         Map[Current] = PHI;
3428         ST.insertNewPhi(PHI);
3429         for (Value *P : CurrentPhi->incoming_values())
3430           Worklist.push_back(P);
3431       }
3432     }
3433   }
3434 
3435   bool addrModeCombiningAllowed() {
3436     if (DisableComplexAddrModes)
3437       return false;
3438     switch (DifferentField) {
3439     default:
3440       return false;
3441     case ExtAddrMode::BaseRegField:
3442       return AddrSinkCombineBaseReg;
3443     case ExtAddrMode::BaseGVField:
3444       return AddrSinkCombineBaseGV;
3445     case ExtAddrMode::BaseOffsField:
3446       return AddrSinkCombineBaseOffs;
3447     case ExtAddrMode::ScaledRegField:
3448       return AddrSinkCombineScaledReg;
3449     }
3450   }
3451 };
3452 } // end anonymous namespace
3453 
3454 /// Try adding ScaleReg*Scale to the current addressing mode.
3455 /// Return true and update AddrMode if this addr mode is legal for the target,
3456 /// false if not.
3457 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
3458                                              unsigned Depth) {
3459   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3460   // mode.  Just process that directly.
3461   if (Scale == 1)
3462     return matchAddr(ScaleReg, Depth);
3463 
3464   // If the scale is 0, it takes nothing to add this.
3465   if (Scale == 0)
3466     return true;
3467 
3468   // If we already have a scale of this value, we can add to it, otherwise, we
3469   // need an available scale field.
3470   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
3471     return false;
3472 
3473   ExtAddrMode TestAddrMode = AddrMode;
3474 
3475   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
3476   // [A+B + A*7] -> [B+A*8].
3477   TestAddrMode.Scale += Scale;
3478   TestAddrMode.ScaledReg = ScaleReg;
3479 
3480   // If the new address isn't legal, bail out.
3481   if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
3482     return false;
3483 
3484   // It was legal, so commit it.
3485   AddrMode = TestAddrMode;
3486 
3487   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
3488   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
3489   // X*Scale + C*Scale to addr mode.
3490   ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
3491   if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
3492       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
3493     TestAddrMode.ScaledReg = AddLHS;
3494     TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
3495 
3496     // If this addressing mode is legal, commit it and remember that we folded
3497     // this instruction.
3498     if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
3499       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
3500       AddrMode = TestAddrMode;
3501       return true;
3502     }
3503   }
3504 
3505   // Otherwise, not (x+c)*scale, just return what we have.
3506   return true;
3507 }
3508 
3509 /// This is a little filter, which returns true if an addressing computation
3510 /// involving I might be folded into a load/store accessing it.
3511 /// This doesn't need to be perfect, but needs to accept at least
3512 /// the set of instructions that MatchOperationAddr can.
3513 static bool MightBeFoldableInst(Instruction *I) {
3514   switch (I->getOpcode()) {
3515   case Instruction::BitCast:
3516   case Instruction::AddrSpaceCast:
3517     // Don't touch identity bitcasts.
3518     if (I->getType() == I->getOperand(0)->getType())
3519       return false;
3520     return I->getType()->isIntOrPtrTy();
3521   case Instruction::PtrToInt:
3522     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3523     return true;
3524   case Instruction::IntToPtr:
3525     // We know the input is intptr_t, so this is foldable.
3526     return true;
3527   case Instruction::Add:
3528     return true;
3529   case Instruction::Mul:
3530   case Instruction::Shl:
3531     // Can only handle X*C and X << C.
3532     return isa<ConstantInt>(I->getOperand(1));
3533   case Instruction::GetElementPtr:
3534     return true;
3535   default:
3536     return false;
3537   }
3538 }
3539 
3540 /// Check whether or not \p Val is a legal instruction for \p TLI.
3541 /// \note \p Val is assumed to be the product of some type promotion.
3542 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
3543 /// to be legal, as the non-promoted value would have had the same state.
3544 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
3545                                        const DataLayout &DL, Value *Val) {
3546   Instruction *PromotedInst = dyn_cast<Instruction>(Val);
3547   if (!PromotedInst)
3548     return false;
3549   int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
3550   // If the ISDOpcode is undefined, it was undefined before the promotion.
3551   if (!ISDOpcode)
3552     return true;
3553   // Otherwise, check if the promoted instruction is legal or not.
3554   return TLI.isOperationLegalOrCustom(
3555       ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
3556 }
3557 
3558 namespace {
3559 
3560 /// Hepler class to perform type promotion.
3561 class TypePromotionHelper {
3562   /// Utility function to add a promoted instruction \p ExtOpnd to
3563   /// \p PromotedInsts and record the type of extension we have seen.
3564   static void addPromotedInst(InstrToOrigTy &PromotedInsts,
3565                               Instruction *ExtOpnd,
3566                               bool IsSExt) {
3567     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3568     InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd);
3569     if (It != PromotedInsts.end()) {
3570       // If the new extension is same as original, the information in
3571       // PromotedInsts[ExtOpnd] is still correct.
3572       if (It->second.getInt() == ExtTy)
3573         return;
3574 
3575       // Now the new extension is different from old extension, we make
3576       // the type information invalid by setting extension type to
3577       // BothExtension.
3578       ExtTy = BothExtension;
3579     }
3580     PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy);
3581   }
3582 
3583   /// Utility function to query the original type of instruction \p Opnd
3584   /// with a matched extension type. If the extension doesn't match, we
3585   /// cannot use the information we had on the original type.
3586   /// BothExtension doesn't match any extension type.
3587   static const Type *getOrigType(const InstrToOrigTy &PromotedInsts,
3588                                  Instruction *Opnd,
3589                                  bool IsSExt) {
3590     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3591     InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
3592     if (It != PromotedInsts.end() && It->second.getInt() == ExtTy)
3593       return It->second.getPointer();
3594     return nullptr;
3595   }
3596 
3597   /// Utility function to check whether or not a sign or zero extension
3598   /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
3599   /// either using the operands of \p Inst or promoting \p Inst.
3600   /// The type of the extension is defined by \p IsSExt.
3601   /// In other words, check if:
3602   /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
3603   /// #1 Promotion applies:
3604   /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
3605   /// #2 Operand reuses:
3606   /// ext opnd1 to ConsideredExtType.
3607   /// \p PromotedInsts maps the instructions to their type before promotion.
3608   static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
3609                             const InstrToOrigTy &PromotedInsts, bool IsSExt);
3610 
3611   /// Utility function to determine if \p OpIdx should be promoted when
3612   /// promoting \p Inst.
3613   static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
3614     return !(isa<SelectInst>(Inst) && OpIdx == 0);
3615   }
3616 
3617   /// Utility function to promote the operand of \p Ext when this
3618   /// operand is a promotable trunc or sext or zext.
3619   /// \p PromotedInsts maps the instructions to their type before promotion.
3620   /// \p CreatedInstsCost[out] contains the cost of all instructions
3621   /// created to promote the operand of Ext.
3622   /// Newly added extensions are inserted in \p Exts.
3623   /// Newly added truncates are inserted in \p Truncs.
3624   /// Should never be called directly.
3625   /// \return The promoted value which is used instead of Ext.
3626   static Value *promoteOperandForTruncAndAnyExt(
3627       Instruction *Ext, TypePromotionTransaction &TPT,
3628       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3629       SmallVectorImpl<Instruction *> *Exts,
3630       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
3631 
3632   /// Utility function to promote the operand of \p Ext when this
3633   /// operand is promotable and is not a supported trunc or sext.
3634   /// \p PromotedInsts maps the instructions to their type before promotion.
3635   /// \p CreatedInstsCost[out] contains the cost of all the instructions
3636   /// created to promote the operand of Ext.
3637   /// Newly added extensions are inserted in \p Exts.
3638   /// Newly added truncates are inserted in \p Truncs.
3639   /// Should never be called directly.
3640   /// \return The promoted value which is used instead of Ext.
3641   static Value *promoteOperandForOther(Instruction *Ext,
3642                                        TypePromotionTransaction &TPT,
3643                                        InstrToOrigTy &PromotedInsts,
3644                                        unsigned &CreatedInstsCost,
3645                                        SmallVectorImpl<Instruction *> *Exts,
3646                                        SmallVectorImpl<Instruction *> *Truncs,
3647                                        const TargetLowering &TLI, bool IsSExt);
3648 
3649   /// \see promoteOperandForOther.
3650   static Value *signExtendOperandForOther(
3651       Instruction *Ext, TypePromotionTransaction &TPT,
3652       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3653       SmallVectorImpl<Instruction *> *Exts,
3654       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3655     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3656                                   Exts, Truncs, TLI, true);
3657   }
3658 
3659   /// \see promoteOperandForOther.
3660   static Value *zeroExtendOperandForOther(
3661       Instruction *Ext, TypePromotionTransaction &TPT,
3662       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3663       SmallVectorImpl<Instruction *> *Exts,
3664       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3665     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3666                                   Exts, Truncs, TLI, false);
3667   }
3668 
3669 public:
3670   /// Type for the utility function that promotes the operand of Ext.
3671   using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
3672                             InstrToOrigTy &PromotedInsts,
3673                             unsigned &CreatedInstsCost,
3674                             SmallVectorImpl<Instruction *> *Exts,
3675                             SmallVectorImpl<Instruction *> *Truncs,
3676                             const TargetLowering &TLI);
3677 
3678   /// Given a sign/zero extend instruction \p Ext, return the appropriate
3679   /// action to promote the operand of \p Ext instead of using Ext.
3680   /// \return NULL if no promotable action is possible with the current
3681   /// sign extension.
3682   /// \p InsertedInsts keeps track of all the instructions inserted by the
3683   /// other CodeGenPrepare optimizations. This information is important
3684   /// because we do not want to promote these instructions as CodeGenPrepare
3685   /// will reinsert them later. Thus creating an infinite loop: create/remove.
3686   /// \p PromotedInsts maps the instructions to their type before promotion.
3687   static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
3688                           const TargetLowering &TLI,
3689                           const InstrToOrigTy &PromotedInsts);
3690 };
3691 
3692 } // end anonymous namespace
3693 
3694 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
3695                                         Type *ConsideredExtType,
3696                                         const InstrToOrigTy &PromotedInsts,
3697                                         bool IsSExt) {
3698   // The promotion helper does not know how to deal with vector types yet.
3699   // To be able to fix that, we would need to fix the places where we
3700   // statically extend, e.g., constants and such.
3701   if (Inst->getType()->isVectorTy())
3702     return false;
3703 
3704   // We can always get through zext.
3705   if (isa<ZExtInst>(Inst))
3706     return true;
3707 
3708   // sext(sext) is ok too.
3709   if (IsSExt && isa<SExtInst>(Inst))
3710     return true;
3711 
3712   // We can get through binary operator, if it is legal. In other words, the
3713   // binary operator must have a nuw or nsw flag.
3714   const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
3715   if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
3716       ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
3717        (IsSExt && BinOp->hasNoSignedWrap())))
3718     return true;
3719 
3720   // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
3721   if ((Inst->getOpcode() == Instruction::And ||
3722        Inst->getOpcode() == Instruction::Or))
3723     return true;
3724 
3725   // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
3726   if (Inst->getOpcode() == Instruction::Xor) {
3727     const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1));
3728     // Make sure it is not a NOT.
3729     if (Cst && !Cst->getValue().isAllOnesValue())
3730       return true;
3731   }
3732 
3733   // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
3734   // It may change a poisoned value into a regular value, like
3735   //     zext i32 (shrl i8 %val, 12)  -->  shrl i32 (zext i8 %val), 12
3736   //          poisoned value                    regular value
3737   // It should be OK since undef covers valid value.
3738   if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
3739     return true;
3740 
3741   // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
3742   // It may change a poisoned value into a regular value, like
3743   //     zext i32 (shl i8 %val, 12)  -->  shl i32 (zext i8 %val), 12
3744   //          poisoned value                    regular value
3745   // It should be OK since undef covers valid value.
3746   if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
3747     const Instruction *ExtInst =
3748         dyn_cast<const Instruction>(*Inst->user_begin());
3749     if (ExtInst->hasOneUse()) {
3750       const Instruction *AndInst =
3751           dyn_cast<const Instruction>(*ExtInst->user_begin());
3752       if (AndInst && AndInst->getOpcode() == Instruction::And) {
3753         const ConstantInt *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
3754         if (Cst &&
3755             Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
3756           return true;
3757       }
3758     }
3759   }
3760 
3761   // Check if we can do the following simplification.
3762   // ext(trunc(opnd)) --> ext(opnd)
3763   if (!isa<TruncInst>(Inst))
3764     return false;
3765 
3766   Value *OpndVal = Inst->getOperand(0);
3767   // Check if we can use this operand in the extension.
3768   // If the type is larger than the result type of the extension, we cannot.
3769   if (!OpndVal->getType()->isIntegerTy() ||
3770       OpndVal->getType()->getIntegerBitWidth() >
3771           ConsideredExtType->getIntegerBitWidth())
3772     return false;
3773 
3774   // If the operand of the truncate is not an instruction, we will not have
3775   // any information on the dropped bits.
3776   // (Actually we could for constant but it is not worth the extra logic).
3777   Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
3778   if (!Opnd)
3779     return false;
3780 
3781   // Check if the source of the type is narrow enough.
3782   // I.e., check that trunc just drops extended bits of the same kind of
3783   // the extension.
3784   // #1 get the type of the operand and check the kind of the extended bits.
3785   const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt);
3786   if (OpndType)
3787     ;
3788   else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
3789     OpndType = Opnd->getOperand(0)->getType();
3790   else
3791     return false;
3792 
3793   // #2 check that the truncate just drops extended bits.
3794   return Inst->getType()->getIntegerBitWidth() >=
3795          OpndType->getIntegerBitWidth();
3796 }
3797 
3798 TypePromotionHelper::Action TypePromotionHelper::getAction(
3799     Instruction *Ext, const SetOfInstrs &InsertedInsts,
3800     const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
3801   assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3802          "Unexpected instruction type");
3803   Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
3804   Type *ExtTy = Ext->getType();
3805   bool IsSExt = isa<SExtInst>(Ext);
3806   // If the operand of the extension is not an instruction, we cannot
3807   // get through.
3808   // If it, check we can get through.
3809   if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
3810     return nullptr;
3811 
3812   // Do not promote if the operand has been added by codegenprepare.
3813   // Otherwise, it means we are undoing an optimization that is likely to be
3814   // redone, thus causing potential infinite loop.
3815   if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
3816     return nullptr;
3817 
3818   // SExt or Trunc instructions.
3819   // Return the related handler.
3820   if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
3821       isa<ZExtInst>(ExtOpnd))
3822     return promoteOperandForTruncAndAnyExt;
3823 
3824   // Regular instruction.
3825   // Abort early if we will have to insert non-free instructions.
3826   if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
3827     return nullptr;
3828   return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
3829 }
3830 
3831 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
3832     Instruction *SExt, TypePromotionTransaction &TPT,
3833     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3834     SmallVectorImpl<Instruction *> *Exts,
3835     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3836   // By construction, the operand of SExt is an instruction. Otherwise we cannot
3837   // get through it and this method should not be called.
3838   Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
3839   Value *ExtVal = SExt;
3840   bool HasMergedNonFreeExt = false;
3841   if (isa<ZExtInst>(SExtOpnd)) {
3842     // Replace s|zext(zext(opnd))
3843     // => zext(opnd).
3844     HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
3845     Value *ZExt =
3846         TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
3847     TPT.replaceAllUsesWith(SExt, ZExt);
3848     TPT.eraseInstruction(SExt);
3849     ExtVal = ZExt;
3850   } else {
3851     // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
3852     // => z|sext(opnd).
3853     TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
3854   }
3855   CreatedInstsCost = 0;
3856 
3857   // Remove dead code.
3858   if (SExtOpnd->use_empty())
3859     TPT.eraseInstruction(SExtOpnd);
3860 
3861   // Check if the extension is still needed.
3862   Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
3863   if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
3864     if (ExtInst) {
3865       if (Exts)
3866         Exts->push_back(ExtInst);
3867       CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
3868     }
3869     return ExtVal;
3870   }
3871 
3872   // At this point we have: ext ty opnd to ty.
3873   // Reassign the uses of ExtInst to the opnd and remove ExtInst.
3874   Value *NextVal = ExtInst->getOperand(0);
3875   TPT.eraseInstruction(ExtInst, NextVal);
3876   return NextVal;
3877 }
3878 
3879 Value *TypePromotionHelper::promoteOperandForOther(
3880     Instruction *Ext, TypePromotionTransaction &TPT,
3881     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3882     SmallVectorImpl<Instruction *> *Exts,
3883     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
3884     bool IsSExt) {
3885   // By construction, the operand of Ext is an instruction. Otherwise we cannot
3886   // get through it and this method should not be called.
3887   Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
3888   CreatedInstsCost = 0;
3889   if (!ExtOpnd->hasOneUse()) {
3890     // ExtOpnd will be promoted.
3891     // All its uses, but Ext, will need to use a truncated value of the
3892     // promoted version.
3893     // Create the truncate now.
3894     Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
3895     if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
3896       // Insert it just after the definition.
3897       ITrunc->moveAfter(ExtOpnd);
3898       if (Truncs)
3899         Truncs->push_back(ITrunc);
3900     }
3901 
3902     TPT.replaceAllUsesWith(ExtOpnd, Trunc);
3903     // Restore the operand of Ext (which has been replaced by the previous call
3904     // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
3905     TPT.setOperand(Ext, 0, ExtOpnd);
3906   }
3907 
3908   // Get through the Instruction:
3909   // 1. Update its type.
3910   // 2. Replace the uses of Ext by Inst.
3911   // 3. Extend each operand that needs to be extended.
3912 
3913   // Remember the original type of the instruction before promotion.
3914   // This is useful to know that the high bits are sign extended bits.
3915   addPromotedInst(PromotedInsts, ExtOpnd, IsSExt);
3916   // Step #1.
3917   TPT.mutateType(ExtOpnd, Ext->getType());
3918   // Step #2.
3919   TPT.replaceAllUsesWith(Ext, ExtOpnd);
3920   // Step #3.
3921   Instruction *ExtForOpnd = Ext;
3922 
3923   LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
3924   for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
3925        ++OpIdx) {
3926     LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
3927     if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
3928         !shouldExtOperand(ExtOpnd, OpIdx)) {
3929       LLVM_DEBUG(dbgs() << "No need to propagate\n");
3930       continue;
3931     }
3932     // Check if we can statically extend the operand.
3933     Value *Opnd = ExtOpnd->getOperand(OpIdx);
3934     if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
3935       LLVM_DEBUG(dbgs() << "Statically extend\n");
3936       unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
3937       APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
3938                             : Cst->getValue().zext(BitWidth);
3939       TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
3940       continue;
3941     }
3942     // UndefValue are typed, so we have to statically sign extend them.
3943     if (isa<UndefValue>(Opnd)) {
3944       LLVM_DEBUG(dbgs() << "Statically extend\n");
3945       TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
3946       continue;
3947     }
3948 
3949     // Otherwise we have to explicitly sign extend the operand.
3950     // Check if Ext was reused to extend an operand.
3951     if (!ExtForOpnd) {
3952       // If yes, create a new one.
3953       LLVM_DEBUG(dbgs() << "More operands to ext\n");
3954       Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
3955         : TPT.createZExt(Ext, Opnd, Ext->getType());
3956       if (!isa<Instruction>(ValForExtOpnd)) {
3957         TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
3958         continue;
3959       }
3960       ExtForOpnd = cast<Instruction>(ValForExtOpnd);
3961     }
3962     if (Exts)
3963       Exts->push_back(ExtForOpnd);
3964     TPT.setOperand(ExtForOpnd, 0, Opnd);
3965 
3966     // Move the sign extension before the insertion point.
3967     TPT.moveBefore(ExtForOpnd, ExtOpnd);
3968     TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
3969     CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
3970     // If more sext are required, new instructions will have to be created.
3971     ExtForOpnd = nullptr;
3972   }
3973   if (ExtForOpnd == Ext) {
3974     LLVM_DEBUG(dbgs() << "Extension is useless now\n");
3975     TPT.eraseInstruction(Ext);
3976   }
3977   return ExtOpnd;
3978 }
3979 
3980 /// Check whether or not promoting an instruction to a wider type is profitable.
3981 /// \p NewCost gives the cost of extension instructions created by the
3982 /// promotion.
3983 /// \p OldCost gives the cost of extension instructions before the promotion
3984 /// plus the number of instructions that have been
3985 /// matched in the addressing mode the promotion.
3986 /// \p PromotedOperand is the value that has been promoted.
3987 /// \return True if the promotion is profitable, false otherwise.
3988 bool AddressingModeMatcher::isPromotionProfitable(
3989     unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
3990   LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
3991                     << '\n');
3992   // The cost of the new extensions is greater than the cost of the
3993   // old extension plus what we folded.
3994   // This is not profitable.
3995   if (NewCost > OldCost)
3996     return false;
3997   if (NewCost < OldCost)
3998     return true;
3999   // The promotion is neutral but it may help folding the sign extension in
4000   // loads for instance.
4001   // Check that we did not create an illegal instruction.
4002   return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
4003 }
4004 
4005 /// Given an instruction or constant expr, see if we can fold the operation
4006 /// into the addressing mode. If so, update the addressing mode and return
4007 /// true, otherwise return false without modifying AddrMode.
4008 /// If \p MovedAway is not NULL, it contains the information of whether or
4009 /// not AddrInst has to be folded into the addressing mode on success.
4010 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
4011 /// because it has been moved away.
4012 /// Thus AddrInst must not be added in the matched instructions.
4013 /// This state can happen when AddrInst is a sext, since it may be moved away.
4014 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
4015 /// not be referenced anymore.
4016 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
4017                                                unsigned Depth,
4018                                                bool *MovedAway) {
4019   // Avoid exponential behavior on extremely deep expression trees.
4020   if (Depth >= 5) return false;
4021 
4022   // By default, all matched instructions stay in place.
4023   if (MovedAway)
4024     *MovedAway = false;
4025 
4026   switch (Opcode) {
4027   case Instruction::PtrToInt:
4028     // PtrToInt is always a noop, as we know that the int type is pointer sized.
4029     return matchAddr(AddrInst->getOperand(0), Depth);
4030   case Instruction::IntToPtr: {
4031     auto AS = AddrInst->getType()->getPointerAddressSpace();
4032     auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
4033     // This inttoptr is a no-op if the integer type is pointer sized.
4034     if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
4035       return matchAddr(AddrInst->getOperand(0), Depth);
4036     return false;
4037   }
4038   case Instruction::BitCast:
4039     // BitCast is always a noop, and we can handle it as long as it is
4040     // int->int or pointer->pointer (we don't want int<->fp or something).
4041     if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() &&
4042         // Don't touch identity bitcasts.  These were probably put here by LSR,
4043         // and we don't want to mess around with them.  Assume it knows what it
4044         // is doing.
4045         AddrInst->getOperand(0)->getType() != AddrInst->getType())
4046       return matchAddr(AddrInst->getOperand(0), Depth);
4047     return false;
4048   case Instruction::AddrSpaceCast: {
4049     unsigned SrcAS
4050       = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
4051     unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
4052     if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
4053       return matchAddr(AddrInst->getOperand(0), Depth);
4054     return false;
4055   }
4056   case Instruction::Add: {
4057     // Check to see if we can merge in the RHS then the LHS.  If so, we win.
4058     ExtAddrMode BackupAddrMode = AddrMode;
4059     unsigned OldSize = AddrModeInsts.size();
4060     // Start a transaction at this point.
4061     // The LHS may match but not the RHS.
4062     // Therefore, we need a higher level restoration point to undo partially
4063     // matched operation.
4064     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4065         TPT.getRestorationPoint();
4066 
4067     if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
4068         matchAddr(AddrInst->getOperand(0), Depth+1))
4069       return true;
4070 
4071     // Restore the old addr mode info.
4072     AddrMode = BackupAddrMode;
4073     AddrModeInsts.resize(OldSize);
4074     TPT.rollback(LastKnownGood);
4075 
4076     // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
4077     if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
4078         matchAddr(AddrInst->getOperand(1), Depth+1))
4079       return true;
4080 
4081     // Otherwise we definitely can't merge the ADD in.
4082     AddrMode = BackupAddrMode;
4083     AddrModeInsts.resize(OldSize);
4084     TPT.rollback(LastKnownGood);
4085     break;
4086   }
4087   //case Instruction::Or:
4088   // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
4089   //break;
4090   case Instruction::Mul:
4091   case Instruction::Shl: {
4092     // Can only handle X*C and X << C.
4093     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
4094     if (!RHS || RHS->getBitWidth() > 64)
4095       return false;
4096     int64_t Scale = RHS->getSExtValue();
4097     if (Opcode == Instruction::Shl)
4098       Scale = 1LL << Scale;
4099 
4100     return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
4101   }
4102   case Instruction::GetElementPtr: {
4103     // Scan the GEP.  We check it if it contains constant offsets and at most
4104     // one variable offset.
4105     int VariableOperand = -1;
4106     unsigned VariableScale = 0;
4107 
4108     int64_t ConstantOffset = 0;
4109     gep_type_iterator GTI = gep_type_begin(AddrInst);
4110     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
4111       if (StructType *STy = GTI.getStructTypeOrNull()) {
4112         const StructLayout *SL = DL.getStructLayout(STy);
4113         unsigned Idx =
4114           cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
4115         ConstantOffset += SL->getElementOffset(Idx);
4116       } else {
4117         uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType());
4118         if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
4119           const APInt &CVal = CI->getValue();
4120           if (CVal.getMinSignedBits() <= 64) {
4121             ConstantOffset += CVal.getSExtValue() * TypeSize;
4122             continue;
4123           }
4124         }
4125         if (TypeSize) {  // Scales of zero don't do anything.
4126           // We only allow one variable index at the moment.
4127           if (VariableOperand != -1)
4128             return false;
4129 
4130           // Remember the variable index.
4131           VariableOperand = i;
4132           VariableScale = TypeSize;
4133         }
4134       }
4135     }
4136 
4137     // A common case is for the GEP to only do a constant offset.  In this case,
4138     // just add it to the disp field and check validity.
4139     if (VariableOperand == -1) {
4140       AddrMode.BaseOffs += ConstantOffset;
4141       if (ConstantOffset == 0 ||
4142           TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
4143         // Check to see if we can fold the base pointer in too.
4144         if (matchAddr(AddrInst->getOperand(0), Depth+1))
4145           return true;
4146       } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
4147                  TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
4148                  ConstantOffset > 0) {
4149         // Record GEPs with non-zero offsets as candidates for splitting in the
4150         // event that the offset cannot fit into the r+i addressing mode.
4151         // Simple and common case that only one GEP is used in calculating the
4152         // address for the memory access.
4153         Value *Base = AddrInst->getOperand(0);
4154         auto *BaseI = dyn_cast<Instruction>(Base);
4155         auto *GEP = cast<GetElementPtrInst>(AddrInst);
4156         if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
4157             (BaseI && !isa<CastInst>(BaseI) &&
4158              !isa<GetElementPtrInst>(BaseI))) {
4159           // If the base is an instruction, make sure the GEP is not in the same
4160           // basic block as the base. If the base is an argument or global
4161           // value, make sure the GEP is not in the entry block.  Otherwise,
4162           // instruction selection can undo the split.  Also make sure the
4163           // parent block allows inserting non-PHI instructions before the
4164           // terminator.
4165           BasicBlock *Parent =
4166               BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock();
4167           if (GEP->getParent() != Parent && !Parent->getTerminator()->isEHPad())
4168             LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
4169         }
4170       }
4171       AddrMode.BaseOffs -= ConstantOffset;
4172       return false;
4173     }
4174 
4175     // Save the valid addressing mode in case we can't match.
4176     ExtAddrMode BackupAddrMode = AddrMode;
4177     unsigned OldSize = AddrModeInsts.size();
4178 
4179     // See if the scale and offset amount is valid for this target.
4180     AddrMode.BaseOffs += ConstantOffset;
4181 
4182     // Match the base operand of the GEP.
4183     if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
4184       // If it couldn't be matched, just stuff the value in a register.
4185       if (AddrMode.HasBaseReg) {
4186         AddrMode = BackupAddrMode;
4187         AddrModeInsts.resize(OldSize);
4188         return false;
4189       }
4190       AddrMode.HasBaseReg = true;
4191       AddrMode.BaseReg = AddrInst->getOperand(0);
4192     }
4193 
4194     // Match the remaining variable portion of the GEP.
4195     if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
4196                           Depth)) {
4197       // If it couldn't be matched, try stuffing the base into a register
4198       // instead of matching it, and retrying the match of the scale.
4199       AddrMode = BackupAddrMode;
4200       AddrModeInsts.resize(OldSize);
4201       if (AddrMode.HasBaseReg)
4202         return false;
4203       AddrMode.HasBaseReg = true;
4204       AddrMode.BaseReg = AddrInst->getOperand(0);
4205       AddrMode.BaseOffs += ConstantOffset;
4206       if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
4207                             VariableScale, Depth)) {
4208         // If even that didn't work, bail.
4209         AddrMode = BackupAddrMode;
4210         AddrModeInsts.resize(OldSize);
4211         return false;
4212       }
4213     }
4214 
4215     return true;
4216   }
4217   case Instruction::SExt:
4218   case Instruction::ZExt: {
4219     Instruction *Ext = dyn_cast<Instruction>(AddrInst);
4220     if (!Ext)
4221       return false;
4222 
4223     // Try to move this ext out of the way of the addressing mode.
4224     // Ask for a method for doing so.
4225     TypePromotionHelper::Action TPH =
4226         TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
4227     if (!TPH)
4228       return false;
4229 
4230     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4231         TPT.getRestorationPoint();
4232     unsigned CreatedInstsCost = 0;
4233     unsigned ExtCost = !TLI.isExtFree(Ext);
4234     Value *PromotedOperand =
4235         TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
4236     // SExt has been moved away.
4237     // Thus either it will be rematched later in the recursive calls or it is
4238     // gone. Anyway, we must not fold it into the addressing mode at this point.
4239     // E.g.,
4240     // op = add opnd, 1
4241     // idx = ext op
4242     // addr = gep base, idx
4243     // is now:
4244     // promotedOpnd = ext opnd            <- no match here
4245     // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
4246     // addr = gep base, op                <- match
4247     if (MovedAway)
4248       *MovedAway = true;
4249 
4250     assert(PromotedOperand &&
4251            "TypePromotionHelper should have filtered out those cases");
4252 
4253     ExtAddrMode BackupAddrMode = AddrMode;
4254     unsigned OldSize = AddrModeInsts.size();
4255 
4256     if (!matchAddr(PromotedOperand, Depth) ||
4257         // The total of the new cost is equal to the cost of the created
4258         // instructions.
4259         // The total of the old cost is equal to the cost of the extension plus
4260         // what we have saved in the addressing mode.
4261         !isPromotionProfitable(CreatedInstsCost,
4262                                ExtCost + (AddrModeInsts.size() - OldSize),
4263                                PromotedOperand)) {
4264       AddrMode = BackupAddrMode;
4265       AddrModeInsts.resize(OldSize);
4266       LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
4267       TPT.rollback(LastKnownGood);
4268       return false;
4269     }
4270     return true;
4271   }
4272   }
4273   return false;
4274 }
4275 
4276 /// If we can, try to add the value of 'Addr' into the current addressing mode.
4277 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4278 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
4279 /// for the target.
4280 ///
4281 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
4282   // Start a transaction at this point that we will rollback if the matching
4283   // fails.
4284   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4285       TPT.getRestorationPoint();
4286   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
4287     // Fold in immediates if legal for the target.
4288     AddrMode.BaseOffs += CI->getSExtValue();
4289     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4290       return true;
4291     AddrMode.BaseOffs -= CI->getSExtValue();
4292   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
4293     // If this is a global variable, try to fold it into the addressing mode.
4294     if (!AddrMode.BaseGV) {
4295       AddrMode.BaseGV = GV;
4296       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4297         return true;
4298       AddrMode.BaseGV = nullptr;
4299     }
4300   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
4301     ExtAddrMode BackupAddrMode = AddrMode;
4302     unsigned OldSize = AddrModeInsts.size();
4303 
4304     // Check to see if it is possible to fold this operation.
4305     bool MovedAway = false;
4306     if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
4307       // This instruction may have been moved away. If so, there is nothing
4308       // to check here.
4309       if (MovedAway)
4310         return true;
4311       // Okay, it's possible to fold this.  Check to see if it is actually
4312       // *profitable* to do so.  We use a simple cost model to avoid increasing
4313       // register pressure too much.
4314       if (I->hasOneUse() ||
4315           isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
4316         AddrModeInsts.push_back(I);
4317         return true;
4318       }
4319 
4320       // It isn't profitable to do this, roll back.
4321       //cerr << "NOT FOLDING: " << *I;
4322       AddrMode = BackupAddrMode;
4323       AddrModeInsts.resize(OldSize);
4324       TPT.rollback(LastKnownGood);
4325     }
4326   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
4327     if (matchOperationAddr(CE, CE->getOpcode(), Depth))
4328       return true;
4329     TPT.rollback(LastKnownGood);
4330   } else if (isa<ConstantPointerNull>(Addr)) {
4331     // Null pointer gets folded without affecting the addressing mode.
4332     return true;
4333   }
4334 
4335   // Worse case, the target should support [reg] addressing modes. :)
4336   if (!AddrMode.HasBaseReg) {
4337     AddrMode.HasBaseReg = true;
4338     AddrMode.BaseReg = Addr;
4339     // Still check for legality in case the target supports [imm] but not [i+r].
4340     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4341       return true;
4342     AddrMode.HasBaseReg = false;
4343     AddrMode.BaseReg = nullptr;
4344   }
4345 
4346   // If the base register is already taken, see if we can do [r+r].
4347   if (AddrMode.Scale == 0) {
4348     AddrMode.Scale = 1;
4349     AddrMode.ScaledReg = Addr;
4350     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4351       return true;
4352     AddrMode.Scale = 0;
4353     AddrMode.ScaledReg = nullptr;
4354   }
4355   // Couldn't match.
4356   TPT.rollback(LastKnownGood);
4357   return false;
4358 }
4359 
4360 /// Check to see if all uses of OpVal by the specified inline asm call are due
4361 /// to memory operands. If so, return true, otherwise return false.
4362 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
4363                                     const TargetLowering &TLI,
4364                                     const TargetRegisterInfo &TRI) {
4365   const Function *F = CI->getFunction();
4366   TargetLowering::AsmOperandInfoVector TargetConstraints =
4367       TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI,
4368                             ImmutableCallSite(CI));
4369 
4370   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4371     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4372 
4373     // Compute the constraint code and ConstraintType to use.
4374     TLI.ComputeConstraintToUse(OpInfo, SDValue());
4375 
4376     // If this asm operand is our Value*, and if it isn't an indirect memory
4377     // operand, we can't fold it!
4378     if (OpInfo.CallOperandVal == OpVal &&
4379         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
4380          !OpInfo.isIndirect))
4381       return false;
4382   }
4383 
4384   return true;
4385 }
4386 
4387 // Max number of memory uses to look at before aborting the search to conserve
4388 // compile time.
4389 static constexpr int MaxMemoryUsesToScan = 20;
4390 
4391 /// Recursively walk all the uses of I until we find a memory use.
4392 /// If we find an obviously non-foldable instruction, return true.
4393 /// Add the ultimately found memory instructions to MemoryUses.
4394 static bool FindAllMemoryUses(
4395     Instruction *I,
4396     SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
4397     SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
4398     const TargetRegisterInfo &TRI, int SeenInsts = 0) {
4399   // If we already considered this instruction, we're done.
4400   if (!ConsideredInsts.insert(I).second)
4401     return false;
4402 
4403   // If this is an obviously unfoldable instruction, bail out.
4404   if (!MightBeFoldableInst(I))
4405     return true;
4406 
4407   const bool OptSize = I->getFunction()->optForSize();
4408 
4409   // Loop over all the uses, recursively processing them.
4410   for (Use &U : I->uses()) {
4411     // Conservatively return true if we're seeing a large number or a deep chain
4412     // of users. This avoids excessive compilation times in pathological cases.
4413     if (SeenInsts++ >= MaxMemoryUsesToScan)
4414       return true;
4415 
4416     Instruction *UserI = cast<Instruction>(U.getUser());
4417     if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
4418       MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
4419       continue;
4420     }
4421 
4422     if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
4423       unsigned opNo = U.getOperandNo();
4424       if (opNo != StoreInst::getPointerOperandIndex())
4425         return true; // Storing addr, not into addr.
4426       MemoryUses.push_back(std::make_pair(SI, opNo));
4427       continue;
4428     }
4429 
4430     if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
4431       unsigned opNo = U.getOperandNo();
4432       if (opNo != AtomicRMWInst::getPointerOperandIndex())
4433         return true; // Storing addr, not into addr.
4434       MemoryUses.push_back(std::make_pair(RMW, opNo));
4435       continue;
4436     }
4437 
4438     if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
4439       unsigned opNo = U.getOperandNo();
4440       if (opNo != AtomicCmpXchgInst::getPointerOperandIndex())
4441         return true; // Storing addr, not into addr.
4442       MemoryUses.push_back(std::make_pair(CmpX, opNo));
4443       continue;
4444     }
4445 
4446     if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
4447       // If this is a cold call, we can sink the addressing calculation into
4448       // the cold path.  See optimizeCallInst
4449       if (!OptSize && CI->hasFnAttr(Attribute::Cold))
4450         continue;
4451 
4452       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
4453       if (!IA) return true;
4454 
4455       // If this is a memory operand, we're cool, otherwise bail out.
4456       if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
4457         return true;
4458       continue;
4459     }
4460 
4461     if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI,
4462                           SeenInsts))
4463       return true;
4464   }
4465 
4466   return false;
4467 }
4468 
4469 /// Return true if Val is already known to be live at the use site that we're
4470 /// folding it into. If so, there is no cost to include it in the addressing
4471 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4472 /// instruction already.
4473 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
4474                                                    Value *KnownLive2) {
4475   // If Val is either of the known-live values, we know it is live!
4476   if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
4477     return true;
4478 
4479   // All values other than instructions and arguments (e.g. constants) are live.
4480   if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
4481 
4482   // If Val is a constant sized alloca in the entry block, it is live, this is
4483   // true because it is just a reference to the stack/frame pointer, which is
4484   // live for the whole function.
4485   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
4486     if (AI->isStaticAlloca())
4487       return true;
4488 
4489   // Check to see if this value is already used in the memory instruction's
4490   // block.  If so, it's already live into the block at the very least, so we
4491   // can reasonably fold it.
4492   return Val->isUsedInBasicBlock(MemoryInst->getParent());
4493 }
4494 
4495 /// It is possible for the addressing mode of the machine to fold the specified
4496 /// instruction into a load or store that ultimately uses it.
4497 /// However, the specified instruction has multiple uses.
4498 /// Given this, it may actually increase register pressure to fold it
4499 /// into the load. For example, consider this code:
4500 ///
4501 ///     X = ...
4502 ///     Y = X+1
4503 ///     use(Y)   -> nonload/store
4504 ///     Z = Y+1
4505 ///     load Z
4506 ///
4507 /// In this case, Y has multiple uses, and can be folded into the load of Z
4508 /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
4509 /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
4510 /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
4511 /// number of computations either.
4512 ///
4513 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
4514 /// X was live across 'load Z' for other reasons, we actually *would* want to
4515 /// fold the addressing mode in the Z case.  This would make Y die earlier.
4516 bool AddressingModeMatcher::
4517 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
4518                                      ExtAddrMode &AMAfter) {
4519   if (IgnoreProfitability) return true;
4520 
4521   // AMBefore is the addressing mode before this instruction was folded into it,
4522   // and AMAfter is the addressing mode after the instruction was folded.  Get
4523   // the set of registers referenced by AMAfter and subtract out those
4524   // referenced by AMBefore: this is the set of values which folding in this
4525   // address extends the lifetime of.
4526   //
4527   // Note that there are only two potential values being referenced here,
4528   // BaseReg and ScaleReg (global addresses are always available, as are any
4529   // folded immediates).
4530   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
4531 
4532   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
4533   // lifetime wasn't extended by adding this instruction.
4534   if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4535     BaseReg = nullptr;
4536   if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4537     ScaledReg = nullptr;
4538 
4539   // If folding this instruction (and it's subexprs) didn't extend any live
4540   // ranges, we're ok with it.
4541   if (!BaseReg && !ScaledReg)
4542     return true;
4543 
4544   // If all uses of this instruction can have the address mode sunk into them,
4545   // we can remove the addressing mode and effectively trade one live register
4546   // for another (at worst.)  In this context, folding an addressing mode into
4547   // the use is just a particularly nice way of sinking it.
4548   SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
4549   SmallPtrSet<Instruction*, 16> ConsideredInsts;
4550   if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI))
4551     return false;  // Has a non-memory, non-foldable use!
4552 
4553   // Now that we know that all uses of this instruction are part of a chain of
4554   // computation involving only operations that could theoretically be folded
4555   // into a memory use, loop over each of these memory operation uses and see
4556   // if they could  *actually* fold the instruction.  The assumption is that
4557   // addressing modes are cheap and that duplicating the computation involved
4558   // many times is worthwhile, even on a fastpath. For sinking candidates
4559   // (i.e. cold call sites), this serves as a way to prevent excessive code
4560   // growth since most architectures have some reasonable small and fast way to
4561   // compute an effective address.  (i.e LEA on x86)
4562   SmallVector<Instruction*, 32> MatchedAddrModeInsts;
4563   for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
4564     Instruction *User = MemoryUses[i].first;
4565     unsigned OpNo = MemoryUses[i].second;
4566 
4567     // Get the access type of this use.  If the use isn't a pointer, we don't
4568     // know what it accesses.
4569     Value *Address = User->getOperand(OpNo);
4570     PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
4571     if (!AddrTy)
4572       return false;
4573     Type *AddressAccessTy = AddrTy->getElementType();
4574     unsigned AS = AddrTy->getAddressSpace();
4575 
4576     // Do a match against the root of this address, ignoring profitability. This
4577     // will tell us if the addressing mode for the memory operation will
4578     // *actually* cover the shared instruction.
4579     ExtAddrMode Result;
4580     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4581                                                                       0);
4582     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4583         TPT.getRestorationPoint();
4584     AddressingModeMatcher Matcher(
4585         MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result,
4586         InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP);
4587     Matcher.IgnoreProfitability = true;
4588     bool Success = Matcher.matchAddr(Address, 0);
4589     (void)Success; assert(Success && "Couldn't select *anything*?");
4590 
4591     // The match was to check the profitability, the changes made are not
4592     // part of the original matcher. Therefore, they should be dropped
4593     // otherwise the original matcher will not present the right state.
4594     TPT.rollback(LastKnownGood);
4595 
4596     // If the match didn't cover I, then it won't be shared by it.
4597     if (!is_contained(MatchedAddrModeInsts, I))
4598       return false;
4599 
4600     MatchedAddrModeInsts.clear();
4601   }
4602 
4603   return true;
4604 }
4605 
4606 /// Return true if the specified values are defined in a
4607 /// different basic block than BB.
4608 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
4609   if (Instruction *I = dyn_cast<Instruction>(V))
4610     return I->getParent() != BB;
4611   return false;
4612 }
4613 
4614 /// Sink addressing mode computation immediate before MemoryInst if doing so
4615 /// can be done without increasing register pressure.  The need for the
4616 /// register pressure constraint means this can end up being an all or nothing
4617 /// decision for all uses of the same addressing computation.
4618 ///
4619 /// Load and Store Instructions often have addressing modes that can do
4620 /// significant amounts of computation. As such, instruction selection will try
4621 /// to get the load or store to do as much computation as possible for the
4622 /// program. The problem is that isel can only see within a single block. As
4623 /// such, we sink as much legal addressing mode work into the block as possible.
4624 ///
4625 /// This method is used to optimize both load/store and inline asms with memory
4626 /// operands.  It's also used to sink addressing computations feeding into cold
4627 /// call sites into their (cold) basic block.
4628 ///
4629 /// The motivation for handling sinking into cold blocks is that doing so can
4630 /// both enable other address mode sinking (by satisfying the register pressure
4631 /// constraint above), and reduce register pressure globally (by removing the
4632 /// addressing mode computation from the fast path entirely.).
4633 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
4634                                         Type *AccessTy, unsigned AddrSpace) {
4635   Value *Repl = Addr;
4636 
4637   // Try to collapse single-value PHI nodes.  This is necessary to undo
4638   // unprofitable PRE transformations.
4639   SmallVector<Value*, 8> worklist;
4640   SmallPtrSet<Value*, 16> Visited;
4641   worklist.push_back(Addr);
4642 
4643   // Use a worklist to iteratively look through PHI and select nodes, and
4644   // ensure that the addressing mode obtained from the non-PHI/select roots of
4645   // the graph are compatible.
4646   bool PhiOrSelectSeen = false;
4647   SmallVector<Instruction*, 16> AddrModeInsts;
4648   const SimplifyQuery SQ(*DL, TLInfo);
4649   AddressingModeCombiner AddrModes(SQ, Addr);
4650   TypePromotionTransaction TPT(RemovedInsts);
4651   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4652       TPT.getRestorationPoint();
4653   while (!worklist.empty()) {
4654     Value *V = worklist.back();
4655     worklist.pop_back();
4656 
4657     // We allow traversing cyclic Phi nodes.
4658     // In case of success after this loop we ensure that traversing through
4659     // Phi nodes ends up with all cases to compute address of the form
4660     //    BaseGV + Base + Scale * Index + Offset
4661     // where Scale and Offset are constans and BaseGV, Base and Index
4662     // are exactly the same Values in all cases.
4663     // It means that BaseGV, Scale and Offset dominate our memory instruction
4664     // and have the same value as they had in address computation represented
4665     // as Phi. So we can safely sink address computation to memory instruction.
4666     if (!Visited.insert(V).second)
4667       continue;
4668 
4669     // For a PHI node, push all of its incoming values.
4670     if (PHINode *P = dyn_cast<PHINode>(V)) {
4671       for (Value *IncValue : P->incoming_values())
4672         worklist.push_back(IncValue);
4673       PhiOrSelectSeen = true;
4674       continue;
4675     }
4676     // Similar for select.
4677     if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
4678       worklist.push_back(SI->getFalseValue());
4679       worklist.push_back(SI->getTrueValue());
4680       PhiOrSelectSeen = true;
4681       continue;
4682     }
4683 
4684     // For non-PHIs, determine the addressing mode being computed.  Note that
4685     // the result may differ depending on what other uses our candidate
4686     // addressing instructions might have.
4687     AddrModeInsts.clear();
4688     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4689                                                                       0);
4690     ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
4691         V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI,
4692         InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP);
4693 
4694     GetElementPtrInst *GEP = LargeOffsetGEP.first;
4695     if (GEP && GEP->getParent() != MemoryInst->getParent() &&
4696         !NewGEPBases.count(GEP)) {
4697       // If splitting the underlying data structure can reduce the offset of a
4698       // GEP, collect the GEP.  Skip the GEPs that are the new bases of
4699       // previously split data structures.
4700       LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
4701       if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end())
4702         LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size();
4703     }
4704 
4705     NewAddrMode.OriginalValue = V;
4706     if (!AddrModes.addNewAddrMode(NewAddrMode))
4707       break;
4708   }
4709 
4710   // Try to combine the AddrModes we've collected. If we couldn't collect any,
4711   // or we have multiple but either couldn't combine them or combining them
4712   // wouldn't do anything useful, bail out now.
4713   if (!AddrModes.combineAddrModes()) {
4714     TPT.rollback(LastKnownGood);
4715     return false;
4716   }
4717   TPT.commit();
4718 
4719   // Get the combined AddrMode (or the only AddrMode, if we only had one).
4720   ExtAddrMode AddrMode = AddrModes.getAddrMode();
4721 
4722   // If all the instructions matched are already in this BB, don't do anything.
4723   // If we saw a Phi node then it is not local definitely, and if we saw a select
4724   // then we want to push the address calculation past it even if it's already
4725   // in this BB.
4726   if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
4727         return IsNonLocalValue(V, MemoryInst->getParent());
4728                   })) {
4729     LLVM_DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode
4730                       << "\n");
4731     return false;
4732   }
4733 
4734   // Insert this computation right after this user.  Since our caller is
4735   // scanning from the top of the BB to the bottom, reuse of the expr are
4736   // guaranteed to happen later.
4737   IRBuilder<> Builder(MemoryInst);
4738 
4739   // Now that we determined the addressing expression we want to use and know
4740   // that we have to sink it into this block.  Check to see if we have already
4741   // done this for some other load/store instr in this block.  If so, reuse
4742   // the computation.  Before attempting reuse, check if the address is valid
4743   // as it may have been erased.
4744 
4745   WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
4746 
4747   Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
4748   if (SunkAddr) {
4749     LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
4750                       << " for " << *MemoryInst << "\n");
4751     if (SunkAddr->getType() != Addr->getType())
4752       SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4753   } else if (AddrSinkUsingGEPs ||
4754              (!AddrSinkUsingGEPs.getNumOccurrences() && TM && TTI->useAA())) {
4755     // By default, we use the GEP-based method when AA is used later. This
4756     // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
4757     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4758                       << " for " << *MemoryInst << "\n");
4759     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4760     Value *ResultPtr = nullptr, *ResultIndex = nullptr;
4761 
4762     // First, find the pointer.
4763     if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
4764       ResultPtr = AddrMode.BaseReg;
4765       AddrMode.BaseReg = nullptr;
4766     }
4767 
4768     if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
4769       // We can't add more than one pointer together, nor can we scale a
4770       // pointer (both of which seem meaningless).
4771       if (ResultPtr || AddrMode.Scale != 1)
4772         return false;
4773 
4774       ResultPtr = AddrMode.ScaledReg;
4775       AddrMode.Scale = 0;
4776     }
4777 
4778     // It is only safe to sign extend the BaseReg if we know that the math
4779     // required to create it did not overflow before we extend it. Since
4780     // the original IR value was tossed in favor of a constant back when
4781     // the AddrMode was created we need to bail out gracefully if widths
4782     // do not match instead of extending it.
4783     //
4784     // (See below for code to add the scale.)
4785     if (AddrMode.Scale) {
4786       Type *ScaledRegTy = AddrMode.ScaledReg->getType();
4787       if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
4788           cast<IntegerType>(ScaledRegTy)->getBitWidth())
4789         return false;
4790     }
4791 
4792     if (AddrMode.BaseGV) {
4793       if (ResultPtr)
4794         return false;
4795 
4796       ResultPtr = AddrMode.BaseGV;
4797     }
4798 
4799     // If the real base value actually came from an inttoptr, then the matcher
4800     // will look through it and provide only the integer value. In that case,
4801     // use it here.
4802     if (!DL->isNonIntegralPointerType(Addr->getType())) {
4803       if (!ResultPtr && AddrMode.BaseReg) {
4804         ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
4805                                            "sunkaddr");
4806         AddrMode.BaseReg = nullptr;
4807       } else if (!ResultPtr && AddrMode.Scale == 1) {
4808         ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
4809                                            "sunkaddr");
4810         AddrMode.Scale = 0;
4811       }
4812     }
4813 
4814     if (!ResultPtr &&
4815         !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
4816       SunkAddr = Constant::getNullValue(Addr->getType());
4817     } else if (!ResultPtr) {
4818       return false;
4819     } else {
4820       Type *I8PtrTy =
4821           Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
4822       Type *I8Ty = Builder.getInt8Ty();
4823 
4824       // Start with the base register. Do this first so that subsequent address
4825       // matching finds it last, which will prevent it from trying to match it
4826       // as the scaled value in case it happens to be a mul. That would be
4827       // problematic if we've sunk a different mul for the scale, because then
4828       // we'd end up sinking both muls.
4829       if (AddrMode.BaseReg) {
4830         Value *V = AddrMode.BaseReg;
4831         if (V->getType() != IntPtrTy)
4832           V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4833 
4834         ResultIndex = V;
4835       }
4836 
4837       // Add the scale value.
4838       if (AddrMode.Scale) {
4839         Value *V = AddrMode.ScaledReg;
4840         if (V->getType() == IntPtrTy) {
4841           // done.
4842         } else {
4843           assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
4844                  cast<IntegerType>(V->getType())->getBitWidth() &&
4845                  "We can't transform if ScaledReg is too narrow");
4846           V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4847         }
4848 
4849         if (AddrMode.Scale != 1)
4850           V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4851                                 "sunkaddr");
4852         if (ResultIndex)
4853           ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
4854         else
4855           ResultIndex = V;
4856       }
4857 
4858       // Add in the Base Offset if present.
4859       if (AddrMode.BaseOffs) {
4860         Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
4861         if (ResultIndex) {
4862           // We need to add this separately from the scale above to help with
4863           // SDAG consecutive load/store merging.
4864           if (ResultPtr->getType() != I8PtrTy)
4865             ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4866           ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4867         }
4868 
4869         ResultIndex = V;
4870       }
4871 
4872       if (!ResultIndex) {
4873         SunkAddr = ResultPtr;
4874       } else {
4875         if (ResultPtr->getType() != I8PtrTy)
4876           ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4877         SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4878       }
4879 
4880       if (SunkAddr->getType() != Addr->getType())
4881         SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4882     }
4883   } else {
4884     // We'd require a ptrtoint/inttoptr down the line, which we can't do for
4885     // non-integral pointers, so in that case bail out now.
4886     Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
4887     Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
4888     PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
4889     PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
4890     if (DL->isNonIntegralPointerType(Addr->getType()) ||
4891         (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
4892         (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
4893         (AddrMode.BaseGV &&
4894          DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
4895       return false;
4896 
4897     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4898                       << " for " << *MemoryInst << "\n");
4899     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4900     Value *Result = nullptr;
4901 
4902     // Start with the base register. Do this first so that subsequent address
4903     // matching finds it last, which will prevent it from trying to match it
4904     // as the scaled value in case it happens to be a mul. That would be
4905     // problematic if we've sunk a different mul for the scale, because then
4906     // we'd end up sinking both muls.
4907     if (AddrMode.BaseReg) {
4908       Value *V = AddrMode.BaseReg;
4909       if (V->getType()->isPointerTy())
4910         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4911       if (V->getType() != IntPtrTy)
4912         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4913       Result = V;
4914     }
4915 
4916     // Add the scale value.
4917     if (AddrMode.Scale) {
4918       Value *V = AddrMode.ScaledReg;
4919       if (V->getType() == IntPtrTy) {
4920         // done.
4921       } else if (V->getType()->isPointerTy()) {
4922         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4923       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
4924                  cast<IntegerType>(V->getType())->getBitWidth()) {
4925         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4926       } else {
4927         // It is only safe to sign extend the BaseReg if we know that the math
4928         // required to create it did not overflow before we extend it. Since
4929         // the original IR value was tossed in favor of a constant back when
4930         // the AddrMode was created we need to bail out gracefully if widths
4931         // do not match instead of extending it.
4932         Instruction *I = dyn_cast_or_null<Instruction>(Result);
4933         if (I && (Result != AddrMode.BaseReg))
4934           I->eraseFromParent();
4935         return false;
4936       }
4937       if (AddrMode.Scale != 1)
4938         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4939                               "sunkaddr");
4940       if (Result)
4941         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4942       else
4943         Result = V;
4944     }
4945 
4946     // Add in the BaseGV if present.
4947     if (AddrMode.BaseGV) {
4948       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
4949       if (Result)
4950         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4951       else
4952         Result = V;
4953     }
4954 
4955     // Add in the Base Offset if present.
4956     if (AddrMode.BaseOffs) {
4957       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
4958       if (Result)
4959         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4960       else
4961         Result = V;
4962     }
4963 
4964     if (!Result)
4965       SunkAddr = Constant::getNullValue(Addr->getType());
4966     else
4967       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
4968   }
4969 
4970   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
4971   // Store the newly computed address into the cache. In the case we reused a
4972   // value, this should be idempotent.
4973   SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
4974 
4975   // If we have no uses, recursively delete the value and all dead instructions
4976   // using it.
4977   if (Repl->use_empty()) {
4978     // This can cause recursive deletion, which can invalidate our iterator.
4979     // Use a WeakTrackingVH to hold onto it in case this happens.
4980     Value *CurValue = &*CurInstIterator;
4981     WeakTrackingVH IterHandle(CurValue);
4982     BasicBlock *BB = CurInstIterator->getParent();
4983 
4984     RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
4985 
4986     if (IterHandle != CurValue) {
4987       // If the iterator instruction was recursively deleted, start over at the
4988       // start of the block.
4989       CurInstIterator = BB->begin();
4990       SunkAddrs.clear();
4991     }
4992   }
4993   ++NumMemoryInsts;
4994   return true;
4995 }
4996 
4997 /// If there are any memory operands, use OptimizeMemoryInst to sink their
4998 /// address computing into the block when possible / profitable.
4999 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
5000   bool MadeChange = false;
5001 
5002   const TargetRegisterInfo *TRI =
5003       TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
5004   TargetLowering::AsmOperandInfoVector TargetConstraints =
5005       TLI->ParseConstraints(*DL, TRI, CS);
5006   unsigned ArgNo = 0;
5007   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5008     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
5009 
5010     // Compute the constraint code and ConstraintType to use.
5011     TLI->ComputeConstraintToUse(OpInfo, SDValue());
5012 
5013     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5014         OpInfo.isIndirect) {
5015       Value *OpVal = CS->getArgOperand(ArgNo++);
5016       MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
5017     } else if (OpInfo.Type == InlineAsm::isInput)
5018       ArgNo++;
5019   }
5020 
5021   return MadeChange;
5022 }
5023 
5024 /// Check if all the uses of \p Val are equivalent (or free) zero or
5025 /// sign extensions.
5026 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
5027   assert(!Val->use_empty() && "Input must have at least one use");
5028   const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
5029   bool IsSExt = isa<SExtInst>(FirstUser);
5030   Type *ExtTy = FirstUser->getType();
5031   for (const User *U : Val->users()) {
5032     const Instruction *UI = cast<Instruction>(U);
5033     if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
5034       return false;
5035     Type *CurTy = UI->getType();
5036     // Same input and output types: Same instruction after CSE.
5037     if (CurTy == ExtTy)
5038       continue;
5039 
5040     // If IsSExt is true, we are in this situation:
5041     // a = Val
5042     // b = sext ty1 a to ty2
5043     // c = sext ty1 a to ty3
5044     // Assuming ty2 is shorter than ty3, this could be turned into:
5045     // a = Val
5046     // b = sext ty1 a to ty2
5047     // c = sext ty2 b to ty3
5048     // However, the last sext is not free.
5049     if (IsSExt)
5050       return false;
5051 
5052     // This is a ZExt, maybe this is free to extend from one type to another.
5053     // In that case, we would not account for a different use.
5054     Type *NarrowTy;
5055     Type *LargeTy;
5056     if (ExtTy->getScalarType()->getIntegerBitWidth() >
5057         CurTy->getScalarType()->getIntegerBitWidth()) {
5058       NarrowTy = CurTy;
5059       LargeTy = ExtTy;
5060     } else {
5061       NarrowTy = ExtTy;
5062       LargeTy = CurTy;
5063     }
5064 
5065     if (!TLI.isZExtFree(NarrowTy, LargeTy))
5066       return false;
5067   }
5068   // All uses are the same or can be derived from one another for free.
5069   return true;
5070 }
5071 
5072 /// Try to speculatively promote extensions in \p Exts and continue
5073 /// promoting through newly promoted operands recursively as far as doing so is
5074 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
5075 /// When some promotion happened, \p TPT contains the proper state to revert
5076 /// them.
5077 ///
5078 /// \return true if some promotion happened, false otherwise.
5079 bool CodeGenPrepare::tryToPromoteExts(
5080     TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
5081     SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
5082     unsigned CreatedInstsCost) {
5083   bool Promoted = false;
5084 
5085   // Iterate over all the extensions to try to promote them.
5086   for (auto I : Exts) {
5087     // Early check if we directly have ext(load).
5088     if (isa<LoadInst>(I->getOperand(0))) {
5089       ProfitablyMovedExts.push_back(I);
5090       continue;
5091     }
5092 
5093     // Check whether or not we want to do any promotion.  The reason we have
5094     // this check inside the for loop is to catch the case where an extension
5095     // is directly fed by a load because in such case the extension can be moved
5096     // up without any promotion on its operands.
5097     if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion)
5098       return false;
5099 
5100     // Get the action to perform the promotion.
5101     TypePromotionHelper::Action TPH =
5102         TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
5103     // Check if we can promote.
5104     if (!TPH) {
5105       // Save the current extension as we cannot move up through its operand.
5106       ProfitablyMovedExts.push_back(I);
5107       continue;
5108     }
5109 
5110     // Save the current state.
5111     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5112         TPT.getRestorationPoint();
5113     SmallVector<Instruction *, 4> NewExts;
5114     unsigned NewCreatedInstsCost = 0;
5115     unsigned ExtCost = !TLI->isExtFree(I);
5116     // Promote.
5117     Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
5118                              &NewExts, nullptr, *TLI);
5119     assert(PromotedVal &&
5120            "TypePromotionHelper should have filtered out those cases");
5121 
5122     // We would be able to merge only one extension in a load.
5123     // Therefore, if we have more than 1 new extension we heuristically
5124     // cut this search path, because it means we degrade the code quality.
5125     // With exactly 2, the transformation is neutral, because we will merge
5126     // one extension but leave one. However, we optimistically keep going,
5127     // because the new extension may be removed too.
5128     long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
5129     // FIXME: It would be possible to propagate a negative value instead of
5130     // conservatively ceiling it to 0.
5131     TotalCreatedInstsCost =
5132         std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
5133     if (!StressExtLdPromotion &&
5134         (TotalCreatedInstsCost > 1 ||
5135          !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
5136       // This promotion is not profitable, rollback to the previous state, and
5137       // save the current extension in ProfitablyMovedExts as the latest
5138       // speculative promotion turned out to be unprofitable.
5139       TPT.rollback(LastKnownGood);
5140       ProfitablyMovedExts.push_back(I);
5141       continue;
5142     }
5143     // Continue promoting NewExts as far as doing so is profitable.
5144     SmallVector<Instruction *, 2> NewlyMovedExts;
5145     (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
5146     bool NewPromoted = false;
5147     for (auto ExtInst : NewlyMovedExts) {
5148       Instruction *MovedExt = cast<Instruction>(ExtInst);
5149       Value *ExtOperand = MovedExt->getOperand(0);
5150       // If we have reached to a load, we need this extra profitability check
5151       // as it could potentially be merged into an ext(load).
5152       if (isa<LoadInst>(ExtOperand) &&
5153           !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
5154             (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
5155         continue;
5156 
5157       ProfitablyMovedExts.push_back(MovedExt);
5158       NewPromoted = true;
5159     }
5160 
5161     // If none of speculative promotions for NewExts is profitable, rollback
5162     // and save the current extension (I) as the last profitable extension.
5163     if (!NewPromoted) {
5164       TPT.rollback(LastKnownGood);
5165       ProfitablyMovedExts.push_back(I);
5166       continue;
5167     }
5168     // The promotion is profitable.
5169     Promoted = true;
5170   }
5171   return Promoted;
5172 }
5173 
5174 /// Merging redundant sexts when one is dominating the other.
5175 bool CodeGenPrepare::mergeSExts(Function &F, DominatorTree &DT) {
5176   bool Changed = false;
5177   for (auto &Entry : ValToSExtendedUses) {
5178     SExts &Insts = Entry.second;
5179     SExts CurPts;
5180     for (Instruction *Inst : Insts) {
5181       if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
5182           Inst->getOperand(0) != Entry.first)
5183         continue;
5184       bool inserted = false;
5185       for (auto &Pt : CurPts) {
5186         if (DT.dominates(Inst, Pt)) {
5187           Pt->replaceAllUsesWith(Inst);
5188           RemovedInsts.insert(Pt);
5189           Pt->removeFromParent();
5190           Pt = Inst;
5191           inserted = true;
5192           Changed = true;
5193           break;
5194         }
5195         if (!DT.dominates(Pt, Inst))
5196           // Give up if we need to merge in a common dominator as the
5197           // experiments show it is not profitable.
5198           continue;
5199         Inst->replaceAllUsesWith(Pt);
5200         RemovedInsts.insert(Inst);
5201         Inst->removeFromParent();
5202         inserted = true;
5203         Changed = true;
5204         break;
5205       }
5206       if (!inserted)
5207         CurPts.push_back(Inst);
5208     }
5209   }
5210   return Changed;
5211 }
5212 
5213 // Spliting large data structures so that the GEPs accessing them can have
5214 // smaller offsets so that they can be sunk to the same blocks as their users.
5215 // For example, a large struct starting from %base is splitted into two parts
5216 // where the second part starts from %new_base.
5217 //
5218 // Before:
5219 // BB0:
5220 //   %base     =
5221 //
5222 // BB1:
5223 //   %gep0     = gep %base, off0
5224 //   %gep1     = gep %base, off1
5225 //   %gep2     = gep %base, off2
5226 //
5227 // BB2:
5228 //   %load1    = load %gep0
5229 //   %load2    = load %gep1
5230 //   %load3    = load %gep2
5231 //
5232 // After:
5233 // BB0:
5234 //   %base     =
5235 //   %new_base = gep %base, off0
5236 //
5237 // BB1:
5238 //   %new_gep0 = %new_base
5239 //   %new_gep1 = gep %new_base, off1 - off0
5240 //   %new_gep2 = gep %new_base, off2 - off0
5241 //
5242 // BB2:
5243 //   %load1    = load i32, i32* %new_gep0
5244 //   %load2    = load i32, i32* %new_gep1
5245 //   %load3    = load i32, i32* %new_gep2
5246 //
5247 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
5248 // their offsets are smaller enough to fit into the addressing mode.
5249 bool CodeGenPrepare::splitLargeGEPOffsets() {
5250   bool Changed = false;
5251   for (auto &Entry : LargeOffsetGEPMap) {
5252     Value *OldBase = Entry.first;
5253     SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
5254         &LargeOffsetGEPs = Entry.second;
5255     auto compareGEPOffset =
5256         [&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
5257             const std::pair<GetElementPtrInst *, int64_t> &RHS) {
5258           if (LHS.first == RHS.first)
5259             return false;
5260           if (LHS.second != RHS.second)
5261             return LHS.second < RHS.second;
5262           return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
5263         };
5264     // Sorting all the GEPs of the same data structures based on the offsets.
5265     llvm::sort(LargeOffsetGEPs, compareGEPOffset);
5266     LargeOffsetGEPs.erase(
5267         std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()),
5268         LargeOffsetGEPs.end());
5269     // Skip if all the GEPs have the same offsets.
5270     if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
5271       continue;
5272     GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
5273     int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
5274     Value *NewBaseGEP = nullptr;
5275 
5276     auto LargeOffsetGEP = LargeOffsetGEPs.begin();
5277     while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
5278       GetElementPtrInst *GEP = LargeOffsetGEP->first;
5279       int64_t Offset = LargeOffsetGEP->second;
5280       if (Offset != BaseOffset) {
5281         TargetLowering::AddrMode AddrMode;
5282         AddrMode.BaseOffs = Offset - BaseOffset;
5283         // The result type of the GEP might not be the type of the memory
5284         // access.
5285         if (!TLI->isLegalAddressingMode(*DL, AddrMode,
5286                                         GEP->getResultElementType(),
5287                                         GEP->getAddressSpace())) {
5288           // We need to create a new base if the offset to the current base is
5289           // too large to fit into the addressing mode. So, a very large struct
5290           // may be splitted into several parts.
5291           BaseGEP = GEP;
5292           BaseOffset = Offset;
5293           NewBaseGEP = nullptr;
5294         }
5295       }
5296 
5297       // Generate a new GEP to replace the current one.
5298       LLVMContext &Ctx = GEP->getContext();
5299       Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
5300       Type *I8PtrTy =
5301           Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace());
5302       Type *I8Ty = Type::getInt8Ty(Ctx);
5303 
5304       if (!NewBaseGEP) {
5305         // Create a new base if we don't have one yet.  Find the insertion
5306         // pointer for the new base first.
5307         BasicBlock::iterator NewBaseInsertPt;
5308         BasicBlock *NewBaseInsertBB;
5309         if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
5310           // If the base of the struct is an instruction, the new base will be
5311           // inserted close to it.
5312           NewBaseInsertBB = BaseI->getParent();
5313           if (isa<PHINode>(BaseI))
5314             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5315           else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
5316             NewBaseInsertBB =
5317                 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest());
5318             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5319           } else
5320             NewBaseInsertPt = std::next(BaseI->getIterator());
5321         } else {
5322           // If the current base is an argument or global value, the new base
5323           // will be inserted to the entry block.
5324           NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
5325           NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5326         }
5327         IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
5328         // Create a new base.
5329         Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset);
5330         NewBaseGEP = OldBase;
5331         if (NewBaseGEP->getType() != I8PtrTy)
5332           NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
5333         NewBaseGEP =
5334             NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep");
5335         NewGEPBases.insert(NewBaseGEP);
5336       }
5337 
5338       IRBuilder<> Builder(GEP);
5339       Value *NewGEP = NewBaseGEP;
5340       if (Offset == BaseOffset) {
5341         if (GEP->getType() != I8PtrTy)
5342           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5343       } else {
5344         // Calculate the new offset for the new GEP.
5345         Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset);
5346         NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index);
5347 
5348         if (GEP->getType() != I8PtrTy)
5349           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5350       }
5351       GEP->replaceAllUsesWith(NewGEP);
5352       LargeOffsetGEPID.erase(GEP);
5353       LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
5354       GEP->eraseFromParent();
5355       Changed = true;
5356     }
5357   }
5358   return Changed;
5359 }
5360 
5361 /// Return true, if an ext(load) can be formed from an extension in
5362 /// \p MovedExts.
5363 bool CodeGenPrepare::canFormExtLd(
5364     const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
5365     Instruction *&Inst, bool HasPromoted) {
5366   for (auto *MovedExtInst : MovedExts) {
5367     if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
5368       LI = cast<LoadInst>(MovedExtInst->getOperand(0));
5369       Inst = MovedExtInst;
5370       break;
5371     }
5372   }
5373   if (!LI)
5374     return false;
5375 
5376   // If they're already in the same block, there's nothing to do.
5377   // Make the cheap checks first if we did not promote.
5378   // If we promoted, we need to check if it is indeed profitable.
5379   if (!HasPromoted && LI->getParent() == Inst->getParent())
5380     return false;
5381 
5382   return TLI->isExtLoad(LI, Inst, *DL);
5383 }
5384 
5385 /// Move a zext or sext fed by a load into the same basic block as the load,
5386 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
5387 /// extend into the load.
5388 ///
5389 /// E.g.,
5390 /// \code
5391 /// %ld = load i32* %addr
5392 /// %add = add nuw i32 %ld, 4
5393 /// %zext = zext i32 %add to i64
5394 // \endcode
5395 /// =>
5396 /// \code
5397 /// %ld = load i32* %addr
5398 /// %zext = zext i32 %ld to i64
5399 /// %add = add nuw i64 %zext, 4
5400 /// \encode
5401 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
5402 /// allow us to match zext(load i32*) to i64.
5403 ///
5404 /// Also, try to promote the computations used to obtain a sign extended
5405 /// value used into memory accesses.
5406 /// E.g.,
5407 /// \code
5408 /// a = add nsw i32 b, 3
5409 /// d = sext i32 a to i64
5410 /// e = getelementptr ..., i64 d
5411 /// \endcode
5412 /// =>
5413 /// \code
5414 /// f = sext i32 b to i64
5415 /// a = add nsw i64 f, 3
5416 /// e = getelementptr ..., i64 a
5417 /// \endcode
5418 ///
5419 /// \p Inst[in/out] the extension may be modified during the process if some
5420 /// promotions apply.
5421 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
5422   // ExtLoad formation and address type promotion infrastructure requires TLI to
5423   // be effective.
5424   if (!TLI)
5425     return false;
5426 
5427   bool AllowPromotionWithoutCommonHeader = false;
5428   /// See if it is an interesting sext operations for the address type
5429   /// promotion before trying to promote it, e.g., the ones with the right
5430   /// type and used in memory accesses.
5431   bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
5432       *Inst, AllowPromotionWithoutCommonHeader);
5433   TypePromotionTransaction TPT(RemovedInsts);
5434   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5435       TPT.getRestorationPoint();
5436   SmallVector<Instruction *, 1> Exts;
5437   SmallVector<Instruction *, 2> SpeculativelyMovedExts;
5438   Exts.push_back(Inst);
5439 
5440   bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
5441 
5442   // Look for a load being extended.
5443   LoadInst *LI = nullptr;
5444   Instruction *ExtFedByLoad;
5445 
5446   // Try to promote a chain of computation if it allows to form an extended
5447   // load.
5448   if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
5449     assert(LI && ExtFedByLoad && "Expect a valid load and extension");
5450     TPT.commit();
5451     // Move the extend into the same block as the load
5452     ExtFedByLoad->moveAfter(LI);
5453     // CGP does not check if the zext would be speculatively executed when moved
5454     // to the same basic block as the load. Preserving its original location
5455     // would pessimize the debugging experience, as well as negatively impact
5456     // the quality of sample pgo. We don't want to use "line 0" as that has a
5457     // size cost in the line-table section and logically the zext can be seen as
5458     // part of the load. Therefore we conservatively reuse the same debug
5459     // location for the load and the zext.
5460     ExtFedByLoad->setDebugLoc(LI->getDebugLoc());
5461     ++NumExtsMoved;
5462     Inst = ExtFedByLoad;
5463     return true;
5464   }
5465 
5466   // Continue promoting SExts if known as considerable depending on targets.
5467   if (ATPConsiderable &&
5468       performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
5469                                   HasPromoted, TPT, SpeculativelyMovedExts))
5470     return true;
5471 
5472   TPT.rollback(LastKnownGood);
5473   return false;
5474 }
5475 
5476 // Perform address type promotion if doing so is profitable.
5477 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
5478 // instructions that sign extended the same initial value. However, if
5479 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
5480 // extension is just profitable.
5481 bool CodeGenPrepare::performAddressTypePromotion(
5482     Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
5483     bool HasPromoted, TypePromotionTransaction &TPT,
5484     SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
5485   bool Promoted = false;
5486   SmallPtrSet<Instruction *, 1> UnhandledExts;
5487   bool AllSeenFirst = true;
5488   for (auto I : SpeculativelyMovedExts) {
5489     Value *HeadOfChain = I->getOperand(0);
5490     DenseMap<Value *, Instruction *>::iterator AlreadySeen =
5491         SeenChainsForSExt.find(HeadOfChain);
5492     // If there is an unhandled SExt which has the same header, try to promote
5493     // it as well.
5494     if (AlreadySeen != SeenChainsForSExt.end()) {
5495       if (AlreadySeen->second != nullptr)
5496         UnhandledExts.insert(AlreadySeen->second);
5497       AllSeenFirst = false;
5498     }
5499   }
5500 
5501   if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
5502                         SpeculativelyMovedExts.size() == 1)) {
5503     TPT.commit();
5504     if (HasPromoted)
5505       Promoted = true;
5506     for (auto I : SpeculativelyMovedExts) {
5507       Value *HeadOfChain = I->getOperand(0);
5508       SeenChainsForSExt[HeadOfChain] = nullptr;
5509       ValToSExtendedUses[HeadOfChain].push_back(I);
5510     }
5511     // Update Inst as promotion happen.
5512     Inst = SpeculativelyMovedExts.pop_back_val();
5513   } else {
5514     // This is the first chain visited from the header, keep the current chain
5515     // as unhandled. Defer to promote this until we encounter another SExt
5516     // chain derived from the same header.
5517     for (auto I : SpeculativelyMovedExts) {
5518       Value *HeadOfChain = I->getOperand(0);
5519       SeenChainsForSExt[HeadOfChain] = Inst;
5520     }
5521     return false;
5522   }
5523 
5524   if (!AllSeenFirst && !UnhandledExts.empty())
5525     for (auto VisitedSExt : UnhandledExts) {
5526       if (RemovedInsts.count(VisitedSExt))
5527         continue;
5528       TypePromotionTransaction TPT(RemovedInsts);
5529       SmallVector<Instruction *, 1> Exts;
5530       SmallVector<Instruction *, 2> Chains;
5531       Exts.push_back(VisitedSExt);
5532       bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
5533       TPT.commit();
5534       if (HasPromoted)
5535         Promoted = true;
5536       for (auto I : Chains) {
5537         Value *HeadOfChain = I->getOperand(0);
5538         // Mark this as handled.
5539         SeenChainsForSExt[HeadOfChain] = nullptr;
5540         ValToSExtendedUses[HeadOfChain].push_back(I);
5541       }
5542     }
5543   return Promoted;
5544 }
5545 
5546 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
5547   BasicBlock *DefBB = I->getParent();
5548 
5549   // If the result of a {s|z}ext and its source are both live out, rewrite all
5550   // other uses of the source with result of extension.
5551   Value *Src = I->getOperand(0);
5552   if (Src->hasOneUse())
5553     return false;
5554 
5555   // Only do this xform if truncating is free.
5556   if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
5557     return false;
5558 
5559   // Only safe to perform the optimization if the source is also defined in
5560   // this block.
5561   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
5562     return false;
5563 
5564   bool DefIsLiveOut = false;
5565   for (User *U : I->users()) {
5566     Instruction *UI = cast<Instruction>(U);
5567 
5568     // Figure out which BB this ext is used in.
5569     BasicBlock *UserBB = UI->getParent();
5570     if (UserBB == DefBB) continue;
5571     DefIsLiveOut = true;
5572     break;
5573   }
5574   if (!DefIsLiveOut)
5575     return false;
5576 
5577   // Make sure none of the uses are PHI nodes.
5578   for (User *U : Src->users()) {
5579     Instruction *UI = cast<Instruction>(U);
5580     BasicBlock *UserBB = UI->getParent();
5581     if (UserBB == DefBB) continue;
5582     // Be conservative. We don't want this xform to end up introducing
5583     // reloads just before load / store instructions.
5584     if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
5585       return false;
5586   }
5587 
5588   // InsertedTruncs - Only insert one trunc in each block once.
5589   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
5590 
5591   bool MadeChange = false;
5592   for (Use &U : Src->uses()) {
5593     Instruction *User = cast<Instruction>(U.getUser());
5594 
5595     // Figure out which BB this ext is used in.
5596     BasicBlock *UserBB = User->getParent();
5597     if (UserBB == DefBB) continue;
5598 
5599     // Both src and def are live in this block. Rewrite the use.
5600     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
5601 
5602     if (!InsertedTrunc) {
5603       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5604       assert(InsertPt != UserBB->end());
5605       InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
5606       InsertedInsts.insert(InsertedTrunc);
5607     }
5608 
5609     // Replace a use of the {s|z}ext source with a use of the result.
5610     U = InsertedTrunc;
5611     ++NumExtUses;
5612     MadeChange = true;
5613   }
5614 
5615   return MadeChange;
5616 }
5617 
5618 // Find loads whose uses only use some of the loaded value's bits.  Add an "and"
5619 // just after the load if the target can fold this into one extload instruction,
5620 // with the hope of eliminating some of the other later "and" instructions using
5621 // the loaded value.  "and"s that are made trivially redundant by the insertion
5622 // of the new "and" are removed by this function, while others (e.g. those whose
5623 // path from the load goes through a phi) are left for isel to potentially
5624 // remove.
5625 //
5626 // For example:
5627 //
5628 // b0:
5629 //   x = load i32
5630 //   ...
5631 // b1:
5632 //   y = and x, 0xff
5633 //   z = use y
5634 //
5635 // becomes:
5636 //
5637 // b0:
5638 //   x = load i32
5639 //   x' = and x, 0xff
5640 //   ...
5641 // b1:
5642 //   z = use x'
5643 //
5644 // whereas:
5645 //
5646 // b0:
5647 //   x1 = load i32
5648 //   ...
5649 // b1:
5650 //   x2 = load i32
5651 //   ...
5652 // b2:
5653 //   x = phi x1, x2
5654 //   y = and x, 0xff
5655 //
5656 // becomes (after a call to optimizeLoadExt for each load):
5657 //
5658 // b0:
5659 //   x1 = load i32
5660 //   x1' = and x1, 0xff
5661 //   ...
5662 // b1:
5663 //   x2 = load i32
5664 //   x2' = and x2, 0xff
5665 //   ...
5666 // b2:
5667 //   x = phi x1', x2'
5668 //   y = and x, 0xff
5669 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
5670   if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy())
5671     return false;
5672 
5673   // Skip loads we've already transformed.
5674   if (Load->hasOneUse() &&
5675       InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
5676     return false;
5677 
5678   // Look at all uses of Load, looking through phis, to determine how many bits
5679   // of the loaded value are needed.
5680   SmallVector<Instruction *, 8> WorkList;
5681   SmallPtrSet<Instruction *, 16> Visited;
5682   SmallVector<Instruction *, 8> AndsToMaybeRemove;
5683   for (auto *U : Load->users())
5684     WorkList.push_back(cast<Instruction>(U));
5685 
5686   EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
5687   unsigned BitWidth = LoadResultVT.getSizeInBits();
5688   APInt DemandBits(BitWidth, 0);
5689   APInt WidestAndBits(BitWidth, 0);
5690 
5691   while (!WorkList.empty()) {
5692     Instruction *I = WorkList.back();
5693     WorkList.pop_back();
5694 
5695     // Break use-def graph loops.
5696     if (!Visited.insert(I).second)
5697       continue;
5698 
5699     // For a PHI node, push all of its users.
5700     if (auto *Phi = dyn_cast<PHINode>(I)) {
5701       for (auto *U : Phi->users())
5702         WorkList.push_back(cast<Instruction>(U));
5703       continue;
5704     }
5705 
5706     switch (I->getOpcode()) {
5707     case Instruction::And: {
5708       auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
5709       if (!AndC)
5710         return false;
5711       APInt AndBits = AndC->getValue();
5712       DemandBits |= AndBits;
5713       // Keep track of the widest and mask we see.
5714       if (AndBits.ugt(WidestAndBits))
5715         WidestAndBits = AndBits;
5716       if (AndBits == WidestAndBits && I->getOperand(0) == Load)
5717         AndsToMaybeRemove.push_back(I);
5718       break;
5719     }
5720 
5721     case Instruction::Shl: {
5722       auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
5723       if (!ShlC)
5724         return false;
5725       uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
5726       DemandBits.setLowBits(BitWidth - ShiftAmt);
5727       break;
5728     }
5729 
5730     case Instruction::Trunc: {
5731       EVT TruncVT = TLI->getValueType(*DL, I->getType());
5732       unsigned TruncBitWidth = TruncVT.getSizeInBits();
5733       DemandBits.setLowBits(TruncBitWidth);
5734       break;
5735     }
5736 
5737     default:
5738       return false;
5739     }
5740   }
5741 
5742   uint32_t ActiveBits = DemandBits.getActiveBits();
5743   // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
5744   // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
5745   // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
5746   // (and (load x) 1) is not matched as a single instruction, rather as a LDR
5747   // followed by an AND.
5748   // TODO: Look into removing this restriction by fixing backends to either
5749   // return false for isLoadExtLegal for i1 or have them select this pattern to
5750   // a single instruction.
5751   //
5752   // Also avoid hoisting if we didn't see any ands with the exact DemandBits
5753   // mask, since these are the only ands that will be removed by isel.
5754   if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
5755       WidestAndBits != DemandBits)
5756     return false;
5757 
5758   LLVMContext &Ctx = Load->getType()->getContext();
5759   Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
5760   EVT TruncVT = TLI->getValueType(*DL, TruncTy);
5761 
5762   // Reject cases that won't be matched as extloads.
5763   if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
5764       !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
5765     return false;
5766 
5767   IRBuilder<> Builder(Load->getNextNode());
5768   auto *NewAnd = dyn_cast<Instruction>(
5769       Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
5770   // Mark this instruction as "inserted by CGP", so that other
5771   // optimizations don't touch it.
5772   InsertedInsts.insert(NewAnd);
5773 
5774   // Replace all uses of load with new and (except for the use of load in the
5775   // new and itself).
5776   Load->replaceAllUsesWith(NewAnd);
5777   NewAnd->setOperand(0, Load);
5778 
5779   // Remove any and instructions that are now redundant.
5780   for (auto *And : AndsToMaybeRemove)
5781     // Check that the and mask is the same as the one we decided to put on the
5782     // new and.
5783     if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
5784       And->replaceAllUsesWith(NewAnd);
5785       if (&*CurInstIterator == And)
5786         CurInstIterator = std::next(And->getIterator());
5787       And->eraseFromParent();
5788       ++NumAndUses;
5789     }
5790 
5791   ++NumAndsAdded;
5792   return true;
5793 }
5794 
5795 /// Check if V (an operand of a select instruction) is an expensive instruction
5796 /// that is only used once.
5797 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
5798   auto *I = dyn_cast<Instruction>(V);
5799   // If it's safe to speculatively execute, then it should not have side
5800   // effects; therefore, it's safe to sink and possibly *not* execute.
5801   return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
5802          TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive;
5803 }
5804 
5805 /// Returns true if a SelectInst should be turned into an explicit branch.
5806 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
5807                                                 const TargetLowering *TLI,
5808                                                 SelectInst *SI) {
5809   // If even a predictable select is cheap, then a branch can't be cheaper.
5810   if (!TLI->isPredictableSelectExpensive())
5811     return false;
5812 
5813   // FIXME: This should use the same heuristics as IfConversion to determine
5814   // whether a select is better represented as a branch.
5815 
5816   // If metadata tells us that the select condition is obviously predictable,
5817   // then we want to replace the select with a branch.
5818   uint64_t TrueWeight, FalseWeight;
5819   if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
5820     uint64_t Max = std::max(TrueWeight, FalseWeight);
5821     uint64_t Sum = TrueWeight + FalseWeight;
5822     if (Sum != 0) {
5823       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
5824       if (Probability > TLI->getPredictableBranchThreshold())
5825         return true;
5826     }
5827   }
5828 
5829   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
5830 
5831   // If a branch is predictable, an out-of-order CPU can avoid blocking on its
5832   // comparison condition. If the compare has more than one use, there's
5833   // probably another cmov or setcc around, so it's not worth emitting a branch.
5834   if (!Cmp || !Cmp->hasOneUse())
5835     return false;
5836 
5837   // If either operand of the select is expensive and only needed on one side
5838   // of the select, we should form a branch.
5839   if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
5840       sinkSelectOperand(TTI, SI->getFalseValue()))
5841     return true;
5842 
5843   return false;
5844 }
5845 
5846 /// If \p isTrue is true, return the true value of \p SI, otherwise return
5847 /// false value of \p SI. If the true/false value of \p SI is defined by any
5848 /// select instructions in \p Selects, look through the defining select
5849 /// instruction until the true/false value is not defined in \p Selects.
5850 static Value *getTrueOrFalseValue(
5851     SelectInst *SI, bool isTrue,
5852     const SmallPtrSet<const Instruction *, 2> &Selects) {
5853   Value *V;
5854 
5855   for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
5856        DefSI = dyn_cast<SelectInst>(V)) {
5857     assert(DefSI->getCondition() == SI->getCondition() &&
5858            "The condition of DefSI does not match with SI");
5859     V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
5860   }
5861   return V;
5862 }
5863 
5864 /// If we have a SelectInst that will likely profit from branch prediction,
5865 /// turn it into a branch.
5866 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
5867   // If branch conversion isn't desirable, exit early.
5868   if (DisableSelectToBranch || OptSize || !TLI)
5869     return false;
5870 
5871   // Find all consecutive select instructions that share the same condition.
5872   SmallVector<SelectInst *, 2> ASI;
5873   ASI.push_back(SI);
5874   for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
5875        It != SI->getParent()->end(); ++It) {
5876     SelectInst *I = dyn_cast<SelectInst>(&*It);
5877     if (I && SI->getCondition() == I->getCondition()) {
5878       ASI.push_back(I);
5879     } else {
5880       break;
5881     }
5882   }
5883 
5884   SelectInst *LastSI = ASI.back();
5885   // Increment the current iterator to skip all the rest of select instructions
5886   // because they will be either "not lowered" or "all lowered" to branch.
5887   CurInstIterator = std::next(LastSI->getIterator());
5888 
5889   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
5890 
5891   // Can we convert the 'select' to CF ?
5892   if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable))
5893     return false;
5894 
5895   TargetLowering::SelectSupportKind SelectKind;
5896   if (VectorCond)
5897     SelectKind = TargetLowering::VectorMaskSelect;
5898   else if (SI->getType()->isVectorTy())
5899     SelectKind = TargetLowering::ScalarCondVectorVal;
5900   else
5901     SelectKind = TargetLowering::ScalarValSelect;
5902 
5903   if (TLI->isSelectSupported(SelectKind) &&
5904       !isFormingBranchFromSelectProfitable(TTI, TLI, SI))
5905     return false;
5906 
5907   ModifiedDT = true;
5908 
5909   // Transform a sequence like this:
5910   //    start:
5911   //       %cmp = cmp uge i32 %a, %b
5912   //       %sel = select i1 %cmp, i32 %c, i32 %d
5913   //
5914   // Into:
5915   //    start:
5916   //       %cmp = cmp uge i32 %a, %b
5917   //       br i1 %cmp, label %select.true, label %select.false
5918   //    select.true:
5919   //       br label %select.end
5920   //    select.false:
5921   //       br label %select.end
5922   //    select.end:
5923   //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
5924   //
5925   // In addition, we may sink instructions that produce %c or %d from
5926   // the entry block into the destination(s) of the new branch.
5927   // If the true or false blocks do not contain a sunken instruction, that
5928   // block and its branch may be optimized away. In that case, one side of the
5929   // first branch will point directly to select.end, and the corresponding PHI
5930   // predecessor block will be the start block.
5931 
5932   // First, we split the block containing the select into 2 blocks.
5933   BasicBlock *StartBlock = SI->getParent();
5934   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
5935   BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
5936 
5937   // Delete the unconditional branch that was just created by the split.
5938   StartBlock->getTerminator()->eraseFromParent();
5939 
5940   // These are the new basic blocks for the conditional branch.
5941   // At least one will become an actual new basic block.
5942   BasicBlock *TrueBlock = nullptr;
5943   BasicBlock *FalseBlock = nullptr;
5944   BranchInst *TrueBranch = nullptr;
5945   BranchInst *FalseBranch = nullptr;
5946 
5947   // Sink expensive instructions into the conditional blocks to avoid executing
5948   // them speculatively.
5949   for (SelectInst *SI : ASI) {
5950     if (sinkSelectOperand(TTI, SI->getTrueValue())) {
5951       if (TrueBlock == nullptr) {
5952         TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
5953                                        EndBlock->getParent(), EndBlock);
5954         TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
5955         TrueBranch->setDebugLoc(SI->getDebugLoc());
5956       }
5957       auto *TrueInst = cast<Instruction>(SI->getTrueValue());
5958       TrueInst->moveBefore(TrueBranch);
5959     }
5960     if (sinkSelectOperand(TTI, SI->getFalseValue())) {
5961       if (FalseBlock == nullptr) {
5962         FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
5963                                         EndBlock->getParent(), EndBlock);
5964         FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
5965         FalseBranch->setDebugLoc(SI->getDebugLoc());
5966       }
5967       auto *FalseInst = cast<Instruction>(SI->getFalseValue());
5968       FalseInst->moveBefore(FalseBranch);
5969     }
5970   }
5971 
5972   // If there was nothing to sink, then arbitrarily choose the 'false' side
5973   // for a new input value to the PHI.
5974   if (TrueBlock == FalseBlock) {
5975     assert(TrueBlock == nullptr &&
5976            "Unexpected basic block transform while optimizing select");
5977 
5978     FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
5979                                     EndBlock->getParent(), EndBlock);
5980     auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
5981     FalseBranch->setDebugLoc(SI->getDebugLoc());
5982   }
5983 
5984   // Insert the real conditional branch based on the original condition.
5985   // If we did not create a new block for one of the 'true' or 'false' paths
5986   // of the condition, it means that side of the branch goes to the end block
5987   // directly and the path originates from the start block from the point of
5988   // view of the new PHI.
5989   BasicBlock *TT, *FT;
5990   if (TrueBlock == nullptr) {
5991     TT = EndBlock;
5992     FT = FalseBlock;
5993     TrueBlock = StartBlock;
5994   } else if (FalseBlock == nullptr) {
5995     TT = TrueBlock;
5996     FT = EndBlock;
5997     FalseBlock = StartBlock;
5998   } else {
5999     TT = TrueBlock;
6000     FT = FalseBlock;
6001   }
6002   IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI);
6003 
6004   SmallPtrSet<const Instruction *, 2> INS;
6005   INS.insert(ASI.begin(), ASI.end());
6006   // Use reverse iterator because later select may use the value of the
6007   // earlier select, and we need to propagate value through earlier select
6008   // to get the PHI operand.
6009   for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
6010     SelectInst *SI = *It;
6011     // The select itself is replaced with a PHI Node.
6012     PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
6013     PN->takeName(SI);
6014     PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
6015     PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
6016     PN->setDebugLoc(SI->getDebugLoc());
6017 
6018     SI->replaceAllUsesWith(PN);
6019     SI->eraseFromParent();
6020     INS.erase(SI);
6021     ++NumSelectsExpanded;
6022   }
6023 
6024   // Instruct OptimizeBlock to skip to the next block.
6025   CurInstIterator = StartBlock->end();
6026   return true;
6027 }
6028 
6029 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
6030   SmallVector<int, 16> Mask(SVI->getShuffleMask());
6031   int SplatElem = -1;
6032   for (unsigned i = 0; i < Mask.size(); ++i) {
6033     if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
6034       return false;
6035     SplatElem = Mask[i];
6036   }
6037 
6038   return true;
6039 }
6040 
6041 /// Some targets have expensive vector shifts if the lanes aren't all the same
6042 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
6043 /// it's often worth sinking a shufflevector splat down to its use so that
6044 /// codegen can spot all lanes are identical.
6045 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
6046   BasicBlock *DefBB = SVI->getParent();
6047 
6048   // Only do this xform if variable vector shifts are particularly expensive.
6049   if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
6050     return false;
6051 
6052   // We only expect better codegen by sinking a shuffle if we can recognise a
6053   // constant splat.
6054   if (!isBroadcastShuffle(SVI))
6055     return false;
6056 
6057   // InsertedShuffles - Only insert a shuffle in each block once.
6058   DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
6059 
6060   bool MadeChange = false;
6061   for (User *U : SVI->users()) {
6062     Instruction *UI = cast<Instruction>(U);
6063 
6064     // Figure out which BB this ext is used in.
6065     BasicBlock *UserBB = UI->getParent();
6066     if (UserBB == DefBB) continue;
6067 
6068     // For now only apply this when the splat is used by a shift instruction.
6069     if (!UI->isShift()) continue;
6070 
6071     // Everything checks out, sink the shuffle if the user's block doesn't
6072     // already have a copy.
6073     Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
6074 
6075     if (!InsertedShuffle) {
6076       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
6077       assert(InsertPt != UserBB->end());
6078       InsertedShuffle =
6079           new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
6080                                 SVI->getOperand(2), "", &*InsertPt);
6081     }
6082 
6083     UI->replaceUsesOfWith(SVI, InsertedShuffle);
6084     MadeChange = true;
6085   }
6086 
6087   // If we removed all uses, nuke the shuffle.
6088   if (SVI->use_empty()) {
6089     SVI->eraseFromParent();
6090     MadeChange = true;
6091   }
6092 
6093   return MadeChange;
6094 }
6095 
6096 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) {
6097   // If the operands of I can be folded into a target instruction together with
6098   // I, duplicate and sink them.
6099   SmallVector<Use *, 4> OpsToSink;
6100   if (!TLI || !TLI->shouldSinkOperands(I, OpsToSink))
6101     return false;
6102 
6103   // OpsToSink can contain multiple uses in a use chain (e.g.
6104   // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
6105   // uses must come first, which means they are sunk first, temporarily creating
6106   // invalid IR. This will be fixed once their dominated users are sunk and
6107   // updated.
6108   BasicBlock *TargetBB = I->getParent();
6109   bool Changed = false;
6110   SmallVector<Use *, 4> ToReplace;
6111   for (Use *U : OpsToSink) {
6112     auto *UI = cast<Instruction>(U->get());
6113     if (UI->getParent() == TargetBB || isa<PHINode>(UI))
6114       continue;
6115     ToReplace.push_back(U);
6116   }
6117 
6118   SmallPtrSet<Instruction *, 4> MaybeDead;
6119   for (Use *U : ToReplace) {
6120     auto *UI = cast<Instruction>(U->get());
6121     Instruction *NI = UI->clone();
6122     MaybeDead.insert(UI);
6123     LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n");
6124     NI->insertBefore(I);
6125     InsertedInsts.insert(NI);
6126     U->set(NI);
6127     Changed = true;
6128   }
6129 
6130   // Remove instructions that are dead after sinking.
6131   for (auto *I : MaybeDead)
6132     if (!I->hasNUsesOrMore(1))
6133       I->eraseFromParent();
6134 
6135   return Changed;
6136 }
6137 
6138 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
6139   if (!TLI || !DL)
6140     return false;
6141 
6142   Value *Cond = SI->getCondition();
6143   Type *OldType = Cond->getType();
6144   LLVMContext &Context = Cond->getContext();
6145   MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
6146   unsigned RegWidth = RegType.getSizeInBits();
6147 
6148   if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
6149     return false;
6150 
6151   // If the register width is greater than the type width, expand the condition
6152   // of the switch instruction and each case constant to the width of the
6153   // register. By widening the type of the switch condition, subsequent
6154   // comparisons (for case comparisons) will not need to be extended to the
6155   // preferred register width, so we will potentially eliminate N-1 extends,
6156   // where N is the number of cases in the switch.
6157   auto *NewType = Type::getIntNTy(Context, RegWidth);
6158 
6159   // Zero-extend the switch condition and case constants unless the switch
6160   // condition is a function argument that is already being sign-extended.
6161   // In that case, we can avoid an unnecessary mask/extension by sign-extending
6162   // everything instead.
6163   Instruction::CastOps ExtType = Instruction::ZExt;
6164   if (auto *Arg = dyn_cast<Argument>(Cond))
6165     if (Arg->hasSExtAttr())
6166       ExtType = Instruction::SExt;
6167 
6168   auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
6169   ExtInst->insertBefore(SI);
6170   ExtInst->setDebugLoc(SI->getDebugLoc());
6171   SI->setCondition(ExtInst);
6172   for (auto Case : SI->cases()) {
6173     APInt NarrowConst = Case.getCaseValue()->getValue();
6174     APInt WideConst = (ExtType == Instruction::ZExt) ?
6175                       NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
6176     Case.setValue(ConstantInt::get(Context, WideConst));
6177   }
6178 
6179   return true;
6180 }
6181 
6182 
6183 namespace {
6184 
6185 /// Helper class to promote a scalar operation to a vector one.
6186 /// This class is used to move downward extractelement transition.
6187 /// E.g.,
6188 /// a = vector_op <2 x i32>
6189 /// b = extractelement <2 x i32> a, i32 0
6190 /// c = scalar_op b
6191 /// store c
6192 ///
6193 /// =>
6194 /// a = vector_op <2 x i32>
6195 /// c = vector_op a (equivalent to scalar_op on the related lane)
6196 /// * d = extractelement <2 x i32> c, i32 0
6197 /// * store d
6198 /// Assuming both extractelement and store can be combine, we get rid of the
6199 /// transition.
6200 class VectorPromoteHelper {
6201   /// DataLayout associated with the current module.
6202   const DataLayout &DL;
6203 
6204   /// Used to perform some checks on the legality of vector operations.
6205   const TargetLowering &TLI;
6206 
6207   /// Used to estimated the cost of the promoted chain.
6208   const TargetTransformInfo &TTI;
6209 
6210   /// The transition being moved downwards.
6211   Instruction *Transition;
6212 
6213   /// The sequence of instructions to be promoted.
6214   SmallVector<Instruction *, 4> InstsToBePromoted;
6215 
6216   /// Cost of combining a store and an extract.
6217   unsigned StoreExtractCombineCost;
6218 
6219   /// Instruction that will be combined with the transition.
6220   Instruction *CombineInst = nullptr;
6221 
6222   /// The instruction that represents the current end of the transition.
6223   /// Since we are faking the promotion until we reach the end of the chain
6224   /// of computation, we need a way to get the current end of the transition.
6225   Instruction *getEndOfTransition() const {
6226     if (InstsToBePromoted.empty())
6227       return Transition;
6228     return InstsToBePromoted.back();
6229   }
6230 
6231   /// Return the index of the original value in the transition.
6232   /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
6233   /// c, is at index 0.
6234   unsigned getTransitionOriginalValueIdx() const {
6235     assert(isa<ExtractElementInst>(Transition) &&
6236            "Other kind of transitions are not supported yet");
6237     return 0;
6238   }
6239 
6240   /// Return the index of the index in the transition.
6241   /// E.g., for "extractelement <2 x i32> c, i32 0" the index
6242   /// is at index 1.
6243   unsigned getTransitionIdx() const {
6244     assert(isa<ExtractElementInst>(Transition) &&
6245            "Other kind of transitions are not supported yet");
6246     return 1;
6247   }
6248 
6249   /// Get the type of the transition.
6250   /// This is the type of the original value.
6251   /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
6252   /// transition is <2 x i32>.
6253   Type *getTransitionType() const {
6254     return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
6255   }
6256 
6257   /// Promote \p ToBePromoted by moving \p Def downward through.
6258   /// I.e., we have the following sequence:
6259   /// Def = Transition <ty1> a to <ty2>
6260   /// b = ToBePromoted <ty2> Def, ...
6261   /// =>
6262   /// b = ToBePromoted <ty1> a, ...
6263   /// Def = Transition <ty1> ToBePromoted to <ty2>
6264   void promoteImpl(Instruction *ToBePromoted);
6265 
6266   /// Check whether or not it is profitable to promote all the
6267   /// instructions enqueued to be promoted.
6268   bool isProfitableToPromote() {
6269     Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
6270     unsigned Index = isa<ConstantInt>(ValIdx)
6271                          ? cast<ConstantInt>(ValIdx)->getZExtValue()
6272                          : -1;
6273     Type *PromotedType = getTransitionType();
6274 
6275     StoreInst *ST = cast<StoreInst>(CombineInst);
6276     unsigned AS = ST->getPointerAddressSpace();
6277     unsigned Align = ST->getAlignment();
6278     // Check if this store is supported.
6279     if (!TLI.allowsMisalignedMemoryAccesses(
6280             TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
6281             Align)) {
6282       // If this is not supported, there is no way we can combine
6283       // the extract with the store.
6284       return false;
6285     }
6286 
6287     // The scalar chain of computation has to pay for the transition
6288     // scalar to vector.
6289     // The vector chain has to account for the combining cost.
6290     uint64_t ScalarCost =
6291         TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
6292     uint64_t VectorCost = StoreExtractCombineCost;
6293     for (const auto &Inst : InstsToBePromoted) {
6294       // Compute the cost.
6295       // By construction, all instructions being promoted are arithmetic ones.
6296       // Moreover, one argument is a constant that can be viewed as a splat
6297       // constant.
6298       Value *Arg0 = Inst->getOperand(0);
6299       bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
6300                             isa<ConstantFP>(Arg0);
6301       TargetTransformInfo::OperandValueKind Arg0OVK =
6302           IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6303                          : TargetTransformInfo::OK_AnyValue;
6304       TargetTransformInfo::OperandValueKind Arg1OVK =
6305           !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6306                           : TargetTransformInfo::OK_AnyValue;
6307       ScalarCost += TTI.getArithmeticInstrCost(
6308           Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
6309       VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
6310                                                Arg0OVK, Arg1OVK);
6311     }
6312     LLVM_DEBUG(
6313         dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
6314                << ScalarCost << "\nVector: " << VectorCost << '\n');
6315     return ScalarCost > VectorCost;
6316   }
6317 
6318   /// Generate a constant vector with \p Val with the same
6319   /// number of elements as the transition.
6320   /// \p UseSplat defines whether or not \p Val should be replicated
6321   /// across the whole vector.
6322   /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
6323   /// otherwise we generate a vector with as many undef as possible:
6324   /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
6325   /// used at the index of the extract.
6326   Value *getConstantVector(Constant *Val, bool UseSplat) const {
6327     unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
6328     if (!UseSplat) {
6329       // If we cannot determine where the constant must be, we have to
6330       // use a splat constant.
6331       Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
6332       if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
6333         ExtractIdx = CstVal->getSExtValue();
6334       else
6335         UseSplat = true;
6336     }
6337 
6338     unsigned End = getTransitionType()->getVectorNumElements();
6339     if (UseSplat)
6340       return ConstantVector::getSplat(End, Val);
6341 
6342     SmallVector<Constant *, 4> ConstVec;
6343     UndefValue *UndefVal = UndefValue::get(Val->getType());
6344     for (unsigned Idx = 0; Idx != End; ++Idx) {
6345       if (Idx == ExtractIdx)
6346         ConstVec.push_back(Val);
6347       else
6348         ConstVec.push_back(UndefVal);
6349     }
6350     return ConstantVector::get(ConstVec);
6351   }
6352 
6353   /// Check if promoting to a vector type an operand at \p OperandIdx
6354   /// in \p Use can trigger undefined behavior.
6355   static bool canCauseUndefinedBehavior(const Instruction *Use,
6356                                         unsigned OperandIdx) {
6357     // This is not safe to introduce undef when the operand is on
6358     // the right hand side of a division-like instruction.
6359     if (OperandIdx != 1)
6360       return false;
6361     switch (Use->getOpcode()) {
6362     default:
6363       return false;
6364     case Instruction::SDiv:
6365     case Instruction::UDiv:
6366     case Instruction::SRem:
6367     case Instruction::URem:
6368       return true;
6369     case Instruction::FDiv:
6370     case Instruction::FRem:
6371       return !Use->hasNoNaNs();
6372     }
6373     llvm_unreachable(nullptr);
6374   }
6375 
6376 public:
6377   VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
6378                       const TargetTransformInfo &TTI, Instruction *Transition,
6379                       unsigned CombineCost)
6380       : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
6381         StoreExtractCombineCost(CombineCost) {
6382     assert(Transition && "Do not know how to promote null");
6383   }
6384 
6385   /// Check if we can promote \p ToBePromoted to \p Type.
6386   bool canPromote(const Instruction *ToBePromoted) const {
6387     // We could support CastInst too.
6388     return isa<BinaryOperator>(ToBePromoted);
6389   }
6390 
6391   /// Check if it is profitable to promote \p ToBePromoted
6392   /// by moving downward the transition through.
6393   bool shouldPromote(const Instruction *ToBePromoted) const {
6394     // Promote only if all the operands can be statically expanded.
6395     // Indeed, we do not want to introduce any new kind of transitions.
6396     for (const Use &U : ToBePromoted->operands()) {
6397       const Value *Val = U.get();
6398       if (Val == getEndOfTransition()) {
6399         // If the use is a division and the transition is on the rhs,
6400         // we cannot promote the operation, otherwise we may create a
6401         // division by zero.
6402         if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
6403           return false;
6404         continue;
6405       }
6406       if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
6407           !isa<ConstantFP>(Val))
6408         return false;
6409     }
6410     // Check that the resulting operation is legal.
6411     int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
6412     if (!ISDOpcode)
6413       return false;
6414     return StressStoreExtract ||
6415            TLI.isOperationLegalOrCustom(
6416                ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
6417   }
6418 
6419   /// Check whether or not \p Use can be combined
6420   /// with the transition.
6421   /// I.e., is it possible to do Use(Transition) => AnotherUse?
6422   bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
6423 
6424   /// Record \p ToBePromoted as part of the chain to be promoted.
6425   void enqueueForPromotion(Instruction *ToBePromoted) {
6426     InstsToBePromoted.push_back(ToBePromoted);
6427   }
6428 
6429   /// Set the instruction that will be combined with the transition.
6430   void recordCombineInstruction(Instruction *ToBeCombined) {
6431     assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
6432     CombineInst = ToBeCombined;
6433   }
6434 
6435   /// Promote all the instructions enqueued for promotion if it is
6436   /// is profitable.
6437   /// \return True if the promotion happened, false otherwise.
6438   bool promote() {
6439     // Check if there is something to promote.
6440     // Right now, if we do not have anything to combine with,
6441     // we assume the promotion is not profitable.
6442     if (InstsToBePromoted.empty() || !CombineInst)
6443       return false;
6444 
6445     // Check cost.
6446     if (!StressStoreExtract && !isProfitableToPromote())
6447       return false;
6448 
6449     // Promote.
6450     for (auto &ToBePromoted : InstsToBePromoted)
6451       promoteImpl(ToBePromoted);
6452     InstsToBePromoted.clear();
6453     return true;
6454   }
6455 };
6456 
6457 } // end anonymous namespace
6458 
6459 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
6460   // At this point, we know that all the operands of ToBePromoted but Def
6461   // can be statically promoted.
6462   // For Def, we need to use its parameter in ToBePromoted:
6463   // b = ToBePromoted ty1 a
6464   // Def = Transition ty1 b to ty2
6465   // Move the transition down.
6466   // 1. Replace all uses of the promoted operation by the transition.
6467   // = ... b => = ... Def.
6468   assert(ToBePromoted->getType() == Transition->getType() &&
6469          "The type of the result of the transition does not match "
6470          "the final type");
6471   ToBePromoted->replaceAllUsesWith(Transition);
6472   // 2. Update the type of the uses.
6473   // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
6474   Type *TransitionTy = getTransitionType();
6475   ToBePromoted->mutateType(TransitionTy);
6476   // 3. Update all the operands of the promoted operation with promoted
6477   // operands.
6478   // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
6479   for (Use &U : ToBePromoted->operands()) {
6480     Value *Val = U.get();
6481     Value *NewVal = nullptr;
6482     if (Val == Transition)
6483       NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
6484     else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
6485              isa<ConstantFP>(Val)) {
6486       // Use a splat constant if it is not safe to use undef.
6487       NewVal = getConstantVector(
6488           cast<Constant>(Val),
6489           isa<UndefValue>(Val) ||
6490               canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
6491     } else
6492       llvm_unreachable("Did you modified shouldPromote and forgot to update "
6493                        "this?");
6494     ToBePromoted->setOperand(U.getOperandNo(), NewVal);
6495   }
6496   Transition->moveAfter(ToBePromoted);
6497   Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
6498 }
6499 
6500 /// Some targets can do store(extractelement) with one instruction.
6501 /// Try to push the extractelement towards the stores when the target
6502 /// has this feature and this is profitable.
6503 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
6504   unsigned CombineCost = std::numeric_limits<unsigned>::max();
6505   if (DisableStoreExtract || !TLI ||
6506       (!StressStoreExtract &&
6507        !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
6508                                        Inst->getOperand(1), CombineCost)))
6509     return false;
6510 
6511   // At this point we know that Inst is a vector to scalar transition.
6512   // Try to move it down the def-use chain, until:
6513   // - We can combine the transition with its single use
6514   //   => we got rid of the transition.
6515   // - We escape the current basic block
6516   //   => we would need to check that we are moving it at a cheaper place and
6517   //      we do not do that for now.
6518   BasicBlock *Parent = Inst->getParent();
6519   LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
6520   VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
6521   // If the transition has more than one use, assume this is not going to be
6522   // beneficial.
6523   while (Inst->hasOneUse()) {
6524     Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
6525     LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
6526 
6527     if (ToBePromoted->getParent() != Parent) {
6528       LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
6529                         << ToBePromoted->getParent()->getName()
6530                         << ") than the transition (" << Parent->getName()
6531                         << ").\n");
6532       return false;
6533     }
6534 
6535     if (VPH.canCombine(ToBePromoted)) {
6536       LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
6537                         << "will be combined with: " << *ToBePromoted << '\n');
6538       VPH.recordCombineInstruction(ToBePromoted);
6539       bool Changed = VPH.promote();
6540       NumStoreExtractExposed += Changed;
6541       return Changed;
6542     }
6543 
6544     LLVM_DEBUG(dbgs() << "Try promoting.\n");
6545     if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
6546       return false;
6547 
6548     LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
6549 
6550     VPH.enqueueForPromotion(ToBePromoted);
6551     Inst = ToBePromoted;
6552   }
6553   return false;
6554 }
6555 
6556 /// For the instruction sequence of store below, F and I values
6557 /// are bundled together as an i64 value before being stored into memory.
6558 /// Sometimes it is more efficient to generate separate stores for F and I,
6559 /// which can remove the bitwise instructions or sink them to colder places.
6560 ///
6561 ///   (store (or (zext (bitcast F to i32) to i64),
6562 ///              (shl (zext I to i64), 32)), addr)  -->
6563 ///   (store F, addr) and (store I, addr+4)
6564 ///
6565 /// Similarly, splitting for other merged store can also be beneficial, like:
6566 /// For pair of {i32, i32}, i64 store --> two i32 stores.
6567 /// For pair of {i32, i16}, i64 store --> two i32 stores.
6568 /// For pair of {i16, i16}, i32 store --> two i16 stores.
6569 /// For pair of {i16, i8},  i32 store --> two i16 stores.
6570 /// For pair of {i8, i8},   i16 store --> two i8 stores.
6571 ///
6572 /// We allow each target to determine specifically which kind of splitting is
6573 /// supported.
6574 ///
6575 /// The store patterns are commonly seen from the simple code snippet below
6576 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
6577 ///   void goo(const std::pair<int, float> &);
6578 ///   hoo() {
6579 ///     ...
6580 ///     goo(std::make_pair(tmp, ftmp));
6581 ///     ...
6582 ///   }
6583 ///
6584 /// Although we already have similar splitting in DAG Combine, we duplicate
6585 /// it in CodeGenPrepare to catch the case in which pattern is across
6586 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
6587 /// during code expansion.
6588 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
6589                                 const TargetLowering &TLI) {
6590   // Handle simple but common cases only.
6591   Type *StoreType = SI.getValueOperand()->getType();
6592   if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) ||
6593       DL.getTypeSizeInBits(StoreType) == 0)
6594     return false;
6595 
6596   unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
6597   Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
6598   if (DL.getTypeStoreSizeInBits(SplitStoreType) !=
6599       DL.getTypeSizeInBits(SplitStoreType))
6600     return false;
6601 
6602   // Match the following patterns:
6603   // (store (or (zext LValue to i64),
6604   //            (shl (zext HValue to i64), 32)), HalfValBitSize)
6605   //  or
6606   // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
6607   //            (zext LValue to i64),
6608   // Expect both operands of OR and the first operand of SHL have only
6609   // one use.
6610   Value *LValue, *HValue;
6611   if (!match(SI.getValueOperand(),
6612              m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
6613                     m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
6614                                    m_SpecificInt(HalfValBitSize))))))
6615     return false;
6616 
6617   // Check LValue and HValue are int with size less or equal than 32.
6618   if (!LValue->getType()->isIntegerTy() ||
6619       DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
6620       !HValue->getType()->isIntegerTy() ||
6621       DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
6622     return false;
6623 
6624   // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
6625   // as the input of target query.
6626   auto *LBC = dyn_cast<BitCastInst>(LValue);
6627   auto *HBC = dyn_cast<BitCastInst>(HValue);
6628   EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
6629                   : EVT::getEVT(LValue->getType());
6630   EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
6631                    : EVT::getEVT(HValue->getType());
6632   if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
6633     return false;
6634 
6635   // Start to split store.
6636   IRBuilder<> Builder(SI.getContext());
6637   Builder.SetInsertPoint(&SI);
6638 
6639   // If LValue/HValue is a bitcast in another BB, create a new one in current
6640   // BB so it may be merged with the splitted stores by dag combiner.
6641   if (LBC && LBC->getParent() != SI.getParent())
6642     LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
6643   if (HBC && HBC->getParent() != SI.getParent())
6644     HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
6645 
6646   bool IsLE = SI.getModule()->getDataLayout().isLittleEndian();
6647   auto CreateSplitStore = [&](Value *V, bool Upper) {
6648     V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
6649     Value *Addr = Builder.CreateBitCast(
6650         SI.getOperand(1),
6651         SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
6652     if ((IsLE && Upper) || (!IsLE && !Upper))
6653       Addr = Builder.CreateGEP(
6654           SplitStoreType, Addr,
6655           ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
6656     Builder.CreateAlignedStore(
6657         V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment());
6658   };
6659 
6660   CreateSplitStore(LValue, false);
6661   CreateSplitStore(HValue, true);
6662 
6663   // Delete the old store.
6664   SI.eraseFromParent();
6665   return true;
6666 }
6667 
6668 // Return true if the GEP has two operands, the first operand is of a sequential
6669 // type, and the second operand is a constant.
6670 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
6671   gep_type_iterator I = gep_type_begin(*GEP);
6672   return GEP->getNumOperands() == 2 &&
6673       I.isSequential() &&
6674       isa<ConstantInt>(GEP->getOperand(1));
6675 }
6676 
6677 // Try unmerging GEPs to reduce liveness interference (register pressure) across
6678 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
6679 // reducing liveness interference across those edges benefits global register
6680 // allocation. Currently handles only certain cases.
6681 //
6682 // For example, unmerge %GEPI and %UGEPI as below.
6683 //
6684 // ---------- BEFORE ----------
6685 // SrcBlock:
6686 //   ...
6687 //   %GEPIOp = ...
6688 //   ...
6689 //   %GEPI = gep %GEPIOp, Idx
6690 //   ...
6691 //   indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
6692 //   (* %GEPI is alive on the indirectbr edges due to other uses ahead)
6693 //   (* %GEPIOp is alive on the indirectbr edges only because of it's used by
6694 //   %UGEPI)
6695 //
6696 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
6697 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
6698 // ...
6699 //
6700 // DstBi:
6701 //   ...
6702 //   %UGEPI = gep %GEPIOp, UIdx
6703 // ...
6704 // ---------------------------
6705 //
6706 // ---------- AFTER ----------
6707 // SrcBlock:
6708 //   ... (same as above)
6709 //    (* %GEPI is still alive on the indirectbr edges)
6710 //    (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
6711 //    unmerging)
6712 // ...
6713 //
6714 // DstBi:
6715 //   ...
6716 //   %UGEPI = gep %GEPI, (UIdx-Idx)
6717 //   ...
6718 // ---------------------------
6719 //
6720 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
6721 // no longer alive on them.
6722 //
6723 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
6724 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
6725 // not to disable further simplications and optimizations as a result of GEP
6726 // merging.
6727 //
6728 // Note this unmerging may increase the length of the data flow critical path
6729 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
6730 // between the register pressure and the length of data-flow critical
6731 // path. Restricting this to the uncommon IndirectBr case would minimize the
6732 // impact of potentially longer critical path, if any, and the impact on compile
6733 // time.
6734 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
6735                                              const TargetTransformInfo *TTI) {
6736   BasicBlock *SrcBlock = GEPI->getParent();
6737   // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
6738   // (non-IndirectBr) cases exit early here.
6739   if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
6740     return false;
6741   // Check that GEPI is a simple gep with a single constant index.
6742   if (!GEPSequentialConstIndexed(GEPI))
6743     return false;
6744   ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
6745   // Check that GEPI is a cheap one.
6746   if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType())
6747       > TargetTransformInfo::TCC_Basic)
6748     return false;
6749   Value *GEPIOp = GEPI->getOperand(0);
6750   // Check that GEPIOp is an instruction that's also defined in SrcBlock.
6751   if (!isa<Instruction>(GEPIOp))
6752     return false;
6753   auto *GEPIOpI = cast<Instruction>(GEPIOp);
6754   if (GEPIOpI->getParent() != SrcBlock)
6755     return false;
6756   // Check that GEP is used outside the block, meaning it's alive on the
6757   // IndirectBr edge(s).
6758   if (find_if(GEPI->users(), [&](User *Usr) {
6759         if (auto *I = dyn_cast<Instruction>(Usr)) {
6760           if (I->getParent() != SrcBlock) {
6761             return true;
6762           }
6763         }
6764         return false;
6765       }) == GEPI->users().end())
6766     return false;
6767   // The second elements of the GEP chains to be unmerged.
6768   std::vector<GetElementPtrInst *> UGEPIs;
6769   // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
6770   // on IndirectBr edges.
6771   for (User *Usr : GEPIOp->users()) {
6772     if (Usr == GEPI) continue;
6773     // Check if Usr is an Instruction. If not, give up.
6774     if (!isa<Instruction>(Usr))
6775       return false;
6776     auto *UI = cast<Instruction>(Usr);
6777     // Check if Usr in the same block as GEPIOp, which is fine, skip.
6778     if (UI->getParent() == SrcBlock)
6779       continue;
6780     // Check if Usr is a GEP. If not, give up.
6781     if (!isa<GetElementPtrInst>(Usr))
6782       return false;
6783     auto *UGEPI = cast<GetElementPtrInst>(Usr);
6784     // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
6785     // the pointer operand to it. If so, record it in the vector. If not, give
6786     // up.
6787     if (!GEPSequentialConstIndexed(UGEPI))
6788       return false;
6789     if (UGEPI->getOperand(0) != GEPIOp)
6790       return false;
6791     if (GEPIIdx->getType() !=
6792         cast<ConstantInt>(UGEPI->getOperand(1))->getType())
6793       return false;
6794     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6795     if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType())
6796         > TargetTransformInfo::TCC_Basic)
6797       return false;
6798     UGEPIs.push_back(UGEPI);
6799   }
6800   if (UGEPIs.size() == 0)
6801     return false;
6802   // Check the materializing cost of (Uidx-Idx).
6803   for (GetElementPtrInst *UGEPI : UGEPIs) {
6804     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6805     APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
6806     unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType());
6807     if (ImmCost > TargetTransformInfo::TCC_Basic)
6808       return false;
6809   }
6810   // Now unmerge between GEPI and UGEPIs.
6811   for (GetElementPtrInst *UGEPI : UGEPIs) {
6812     UGEPI->setOperand(0, GEPI);
6813     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6814     Constant *NewUGEPIIdx =
6815         ConstantInt::get(GEPIIdx->getType(),
6816                          UGEPIIdx->getValue() - GEPIIdx->getValue());
6817     UGEPI->setOperand(1, NewUGEPIIdx);
6818     // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
6819     // inbounds to avoid UB.
6820     if (!GEPI->isInBounds()) {
6821       UGEPI->setIsInBounds(false);
6822     }
6823   }
6824   // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
6825   // alive on IndirectBr edges).
6826   assert(find_if(GEPIOp->users(), [&](User *Usr) {
6827         return cast<Instruction>(Usr)->getParent() != SrcBlock;
6828       }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock");
6829   return true;
6830 }
6831 
6832 bool CodeGenPrepare::optimizeInst(Instruction *I, DominatorTree &DT,
6833                                   bool &ModifiedDT) {
6834   // Bail out if we inserted the instruction to prevent optimizations from
6835   // stepping on each other's toes.
6836   if (InsertedInsts.count(I))
6837     return false;
6838 
6839   if (PHINode *P = dyn_cast<PHINode>(I)) {
6840     // It is possible for very late stage optimizations (such as SimplifyCFG)
6841     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
6842     // trivial PHI, go ahead and zap it here.
6843     if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
6844       P->replaceAllUsesWith(V);
6845       P->eraseFromParent();
6846       ++NumPHIsElim;
6847       return true;
6848     }
6849     return false;
6850   }
6851 
6852   if (CastInst *CI = dyn_cast<CastInst>(I)) {
6853     // If the source of the cast is a constant, then this should have
6854     // already been constant folded.  The only reason NOT to constant fold
6855     // it is if something (e.g. LSR) was careful to place the constant
6856     // evaluation in a block other than then one that uses it (e.g. to hoist
6857     // the address of globals out of a loop).  If this is the case, we don't
6858     // want to forward-subst the cast.
6859     if (isa<Constant>(CI->getOperand(0)))
6860       return false;
6861 
6862     if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL))
6863       return true;
6864 
6865     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
6866       /// Sink a zext or sext into its user blocks if the target type doesn't
6867       /// fit in one register
6868       if (TLI &&
6869           TLI->getTypeAction(CI->getContext(),
6870                              TLI->getValueType(*DL, CI->getType())) ==
6871               TargetLowering::TypeExpandInteger) {
6872         return SinkCast(CI);
6873       } else {
6874         bool MadeChange = optimizeExt(I);
6875         return MadeChange | optimizeExtUses(I);
6876       }
6877     }
6878     return false;
6879   }
6880 
6881   if (auto *Cmp = dyn_cast<CmpInst>(I))
6882     if (TLI && optimizeCmp(Cmp, *TLI, *DL, DT, ModifiedDT))
6883       return true;
6884 
6885   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6886     LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6887     if (TLI) {
6888       bool Modified = optimizeLoadExt(LI);
6889       unsigned AS = LI->getPointerAddressSpace();
6890       Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
6891       return Modified;
6892     }
6893     return false;
6894   }
6895 
6896   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
6897     if (TLI && splitMergedValStore(*SI, *DL, *TLI))
6898       return true;
6899     SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6900     if (TLI) {
6901       unsigned AS = SI->getPointerAddressSpace();
6902       return optimizeMemoryInst(I, SI->getOperand(1),
6903                                 SI->getOperand(0)->getType(), AS);
6904     }
6905     return false;
6906   }
6907 
6908   if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
6909       unsigned AS = RMW->getPointerAddressSpace();
6910       return optimizeMemoryInst(I, RMW->getPointerOperand(),
6911                                 RMW->getType(), AS);
6912   }
6913 
6914   if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
6915       unsigned AS = CmpX->getPointerAddressSpace();
6916       return optimizeMemoryInst(I, CmpX->getPointerOperand(),
6917                                 CmpX->getCompareOperand()->getType(), AS);
6918   }
6919 
6920   BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
6921 
6922   if (BinOp && (BinOp->getOpcode() == Instruction::And) &&
6923       EnableAndCmpSinking && TLI)
6924     return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts);
6925 
6926   if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
6927                 BinOp->getOpcode() == Instruction::LShr)) {
6928     ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
6929     if (TLI && CI && TLI->hasExtractBitsInsn())
6930       return OptimizeExtractBits(BinOp, CI, *TLI, *DL);
6931 
6932     return false;
6933   }
6934 
6935   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
6936     if (GEPI->hasAllZeroIndices()) {
6937       /// The GEP operand must be a pointer, so must its result -> BitCast
6938       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
6939                                         GEPI->getName(), GEPI);
6940       NC->setDebugLoc(GEPI->getDebugLoc());
6941       GEPI->replaceAllUsesWith(NC);
6942       GEPI->eraseFromParent();
6943       ++NumGEPsElim;
6944       optimizeInst(NC, DT, ModifiedDT);
6945       return true;
6946     }
6947     if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
6948       return true;
6949     }
6950     return false;
6951   }
6952 
6953   if (tryToSinkFreeOperands(I))
6954     return true;
6955 
6956   if (CallInst *CI = dyn_cast<CallInst>(I))
6957     return optimizeCallInst(CI, ModifiedDT);
6958 
6959   if (SelectInst *SI = dyn_cast<SelectInst>(I))
6960     return optimizeSelectInst(SI);
6961 
6962   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
6963     return optimizeShuffleVectorInst(SVI);
6964 
6965   if (auto *Switch = dyn_cast<SwitchInst>(I))
6966     return optimizeSwitchInst(Switch);
6967 
6968   if (isa<ExtractElementInst>(I))
6969     return optimizeExtractElementInst(I);
6970 
6971   return false;
6972 }
6973 
6974 /// Given an OR instruction, check to see if this is a bitreverse
6975 /// idiom. If so, insert the new intrinsic and return true.
6976 static bool makeBitReverse(Instruction &I, const DataLayout &DL,
6977                            const TargetLowering &TLI) {
6978   if (!I.getType()->isIntegerTy() ||
6979       !TLI.isOperationLegalOrCustom(ISD::BITREVERSE,
6980                                     TLI.getValueType(DL, I.getType(), true)))
6981     return false;
6982 
6983   SmallVector<Instruction*, 4> Insts;
6984   if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
6985     return false;
6986   Instruction *LastInst = Insts.back();
6987   I.replaceAllUsesWith(LastInst);
6988   RecursivelyDeleteTriviallyDeadInstructions(&I);
6989   return true;
6990 }
6991 
6992 // In this pass we look for GEP and cast instructions that are used
6993 // across basic blocks and rewrite them to improve basic-block-at-a-time
6994 // selection.
6995 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, DominatorTree &DT,
6996                                    bool &ModifiedDT) {
6997   SunkAddrs.clear();
6998   bool MadeChange = false;
6999 
7000   CurInstIterator = BB.begin();
7001   while (CurInstIterator != BB.end()) {
7002     MadeChange |= optimizeInst(&*CurInstIterator++, DT, ModifiedDT);
7003     if (ModifiedDT)
7004       return true;
7005   }
7006 
7007   bool MadeBitReverse = true;
7008   while (TLI && MadeBitReverse) {
7009     MadeBitReverse = false;
7010     for (auto &I : reverse(BB)) {
7011       if (makeBitReverse(I, *DL, *TLI)) {
7012         MadeBitReverse = MadeChange = true;
7013         ModifiedDT = true;
7014         break;
7015       }
7016     }
7017   }
7018   MadeChange |= dupRetToEnableTailCallOpts(&BB);
7019 
7020   return MadeChange;
7021 }
7022 
7023 // llvm.dbg.value is far away from the value then iSel may not be able
7024 // handle it properly. iSel will drop llvm.dbg.value if it can not
7025 // find a node corresponding to the value.
7026 bool CodeGenPrepare::placeDbgValues(Function &F) {
7027   bool MadeChange = false;
7028   for (BasicBlock &BB : F) {
7029     Instruction *PrevNonDbgInst = nullptr;
7030     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
7031       Instruction *Insn = &*BI++;
7032       DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
7033       // Leave dbg.values that refer to an alloca alone. These
7034       // intrinsics describe the address of a variable (= the alloca)
7035       // being taken.  They should not be moved next to the alloca
7036       // (and to the beginning of the scope), but rather stay close to
7037       // where said address is used.
7038       if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
7039         PrevNonDbgInst = Insn;
7040         continue;
7041       }
7042 
7043       Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
7044       if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
7045         // If VI is a phi in a block with an EHPad terminator, we can't insert
7046         // after it.
7047         if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
7048           continue;
7049         LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
7050                           << *DVI << ' ' << *VI);
7051         DVI->removeFromParent();
7052         if (isa<PHINode>(VI))
7053           DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
7054         else
7055           DVI->insertAfter(VI);
7056         MadeChange = true;
7057         ++NumDbgValueMoved;
7058       }
7059     }
7060   }
7061   return MadeChange;
7062 }
7063 
7064 /// Scale down both weights to fit into uint32_t.
7065 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
7066   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
7067   uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
7068   NewTrue = NewTrue / Scale;
7069   NewFalse = NewFalse / Scale;
7070 }
7071 
7072 /// Some targets prefer to split a conditional branch like:
7073 /// \code
7074 ///   %0 = icmp ne i32 %a, 0
7075 ///   %1 = icmp ne i32 %b, 0
7076 ///   %or.cond = or i1 %0, %1
7077 ///   br i1 %or.cond, label %TrueBB, label %FalseBB
7078 /// \endcode
7079 /// into multiple branch instructions like:
7080 /// \code
7081 ///   bb1:
7082 ///     %0 = icmp ne i32 %a, 0
7083 ///     br i1 %0, label %TrueBB, label %bb2
7084 ///   bb2:
7085 ///     %1 = icmp ne i32 %b, 0
7086 ///     br i1 %1, label %TrueBB, label %FalseBB
7087 /// \endcode
7088 /// This usually allows instruction selection to do even further optimizations
7089 /// and combine the compare with the branch instruction. Currently this is
7090 /// applied for targets which have "cheap" jump instructions.
7091 ///
7092 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
7093 ///
7094 bool CodeGenPrepare::splitBranchCondition(Function &F) {
7095   if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive())
7096     return false;
7097 
7098   bool MadeChange = false;
7099   for (auto &BB : F) {
7100     // Does this BB end with the following?
7101     //   %cond1 = icmp|fcmp|binary instruction ...
7102     //   %cond2 = icmp|fcmp|binary instruction ...
7103     //   %cond.or = or|and i1 %cond1, cond2
7104     //   br i1 %cond.or label %dest1, label %dest2"
7105     BinaryOperator *LogicOp;
7106     BasicBlock *TBB, *FBB;
7107     if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
7108       continue;
7109 
7110     auto *Br1 = cast<BranchInst>(BB.getTerminator());
7111     if (Br1->getMetadata(LLVMContext::MD_unpredictable))
7112       continue;
7113 
7114     unsigned Opc;
7115     Value *Cond1, *Cond2;
7116     if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
7117                              m_OneUse(m_Value(Cond2)))))
7118       Opc = Instruction::And;
7119     else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
7120                                  m_OneUse(m_Value(Cond2)))))
7121       Opc = Instruction::Or;
7122     else
7123       continue;
7124 
7125     if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
7126         !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp()))   )
7127       continue;
7128 
7129     LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
7130 
7131     // Create a new BB.
7132     auto TmpBB =
7133         BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
7134                            BB.getParent(), BB.getNextNode());
7135 
7136     // Update original basic block by using the first condition directly by the
7137     // branch instruction and removing the no longer needed and/or instruction.
7138     Br1->setCondition(Cond1);
7139     LogicOp->eraseFromParent();
7140 
7141     // Depending on the condition we have to either replace the true or the
7142     // false successor of the original branch instruction.
7143     if (Opc == Instruction::And)
7144       Br1->setSuccessor(0, TmpBB);
7145     else
7146       Br1->setSuccessor(1, TmpBB);
7147 
7148     // Fill in the new basic block.
7149     auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
7150     if (auto *I = dyn_cast<Instruction>(Cond2)) {
7151       I->removeFromParent();
7152       I->insertBefore(Br2);
7153     }
7154 
7155     // Update PHI nodes in both successors. The original BB needs to be
7156     // replaced in one successor's PHI nodes, because the branch comes now from
7157     // the newly generated BB (NewBB). In the other successor we need to add one
7158     // incoming edge to the PHI nodes, because both branch instructions target
7159     // now the same successor. Depending on the original branch condition
7160     // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
7161     // we perform the correct update for the PHI nodes.
7162     // This doesn't change the successor order of the just created branch
7163     // instruction (or any other instruction).
7164     if (Opc == Instruction::Or)
7165       std::swap(TBB, FBB);
7166 
7167     // Replace the old BB with the new BB.
7168     for (PHINode &PN : TBB->phis()) {
7169       int i;
7170       while ((i = PN.getBasicBlockIndex(&BB)) >= 0)
7171         PN.setIncomingBlock(i, TmpBB);
7172     }
7173 
7174     // Add another incoming edge form the new BB.
7175     for (PHINode &PN : FBB->phis()) {
7176       auto *Val = PN.getIncomingValueForBlock(&BB);
7177       PN.addIncoming(Val, TmpBB);
7178     }
7179 
7180     // Update the branch weights (from SelectionDAGBuilder::
7181     // FindMergedConditions).
7182     if (Opc == Instruction::Or) {
7183       // Codegen X | Y as:
7184       // BB1:
7185       //   jmp_if_X TBB
7186       //   jmp TmpBB
7187       // TmpBB:
7188       //   jmp_if_Y TBB
7189       //   jmp FBB
7190       //
7191 
7192       // We have flexibility in setting Prob for BB1 and Prob for NewBB.
7193       // The requirement is that
7194       //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
7195       //     = TrueProb for original BB.
7196       // Assuming the original weights are A and B, one choice is to set BB1's
7197       // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
7198       // assumes that
7199       //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
7200       // Another choice is to assume TrueProb for BB1 equals to TrueProb for
7201       // TmpBB, but the math is more complicated.
7202       uint64_t TrueWeight, FalseWeight;
7203       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7204         uint64_t NewTrueWeight = TrueWeight;
7205         uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
7206         scaleWeights(NewTrueWeight, NewFalseWeight);
7207         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7208                          .createBranchWeights(TrueWeight, FalseWeight));
7209 
7210         NewTrueWeight = TrueWeight;
7211         NewFalseWeight = 2 * FalseWeight;
7212         scaleWeights(NewTrueWeight, NewFalseWeight);
7213         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7214                          .createBranchWeights(TrueWeight, FalseWeight));
7215       }
7216     } else {
7217       // Codegen X & Y as:
7218       // BB1:
7219       //   jmp_if_X TmpBB
7220       //   jmp FBB
7221       // TmpBB:
7222       //   jmp_if_Y TBB
7223       //   jmp FBB
7224       //
7225       //  This requires creation of TmpBB after CurBB.
7226 
7227       // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
7228       // The requirement is that
7229       //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
7230       //     = FalseProb for original BB.
7231       // Assuming the original weights are A and B, one choice is to set BB1's
7232       // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
7233       // assumes that
7234       //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
7235       uint64_t TrueWeight, FalseWeight;
7236       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7237         uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
7238         uint64_t NewFalseWeight = FalseWeight;
7239         scaleWeights(NewTrueWeight, NewFalseWeight);
7240         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7241                          .createBranchWeights(TrueWeight, FalseWeight));
7242 
7243         NewTrueWeight = 2 * TrueWeight;
7244         NewFalseWeight = FalseWeight;
7245         scaleWeights(NewTrueWeight, NewFalseWeight);
7246         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7247                          .createBranchWeights(TrueWeight, FalseWeight));
7248       }
7249     }
7250 
7251     // Note: No point in getting fancy here, since the DT info is never
7252     // available to CodeGenPrepare.
7253     ModifiedDT = true;
7254 
7255     MadeChange = true;
7256 
7257     LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
7258                TmpBB->dump());
7259   }
7260   return MadeChange;
7261 }
7262