1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/PointerIntPair.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/InstructionSimplify.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/TargetLibraryInfo.h" 31 #include "llvm/Analysis/TargetTransformInfo.h" 32 #include "llvm/Transforms/Utils/Local.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/CodeGen/Analysis.h" 35 #include "llvm/CodeGen/ISDOpcodes.h" 36 #include "llvm/CodeGen/SelectionDAGNodes.h" 37 #include "llvm/CodeGen/TargetLowering.h" 38 #include "llvm/CodeGen/TargetPassConfig.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/CodeGen/ValueTypes.h" 41 #include "llvm/Config/llvm-config.h" 42 #include "llvm/IR/Argument.h" 43 #include "llvm/IR/Attributes.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/CallSite.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InlineAsm.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/Operator.h" 66 #include "llvm/IR/PatternMatch.h" 67 #include "llvm/IR/Statepoint.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/IR/ValueMap.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/BlockFrequency.h" 76 #include "llvm/Support/BranchProbability.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/MachineValueType.h" 83 #include "llvm/Support/MathExtras.h" 84 #include "llvm/Support/raw_ostream.h" 85 #include "llvm/Target/TargetMachine.h" 86 #include "llvm/Target/TargetOptions.h" 87 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 88 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 89 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 90 #include <algorithm> 91 #include <cassert> 92 #include <cstdint> 93 #include <iterator> 94 #include <limits> 95 #include <memory> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 102 #define DEBUG_TYPE "codegenprepare" 103 104 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 105 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 106 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 107 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 108 "sunken Cmps"); 109 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 110 "of sunken Casts"); 111 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 112 "computations were sunk"); 113 STATISTIC(NumMemoryInstsPhiCreated, 114 "Number of phis created when address " 115 "computations were sunk to memory instructions"); 116 STATISTIC(NumMemoryInstsSelectCreated, 117 "Number of select created when address " 118 "computations were sunk to memory instructions"); 119 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 120 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 121 STATISTIC(NumAndsAdded, 122 "Number of and mask instructions added to form ext loads"); 123 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 124 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 125 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 126 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 127 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 128 129 static cl::opt<bool> DisableBranchOpts( 130 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 131 cl::desc("Disable branch optimizations in CodeGenPrepare")); 132 133 static cl::opt<bool> 134 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 135 cl::desc("Disable GC optimizations in CodeGenPrepare")); 136 137 static cl::opt<bool> DisableSelectToBranch( 138 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 139 cl::desc("Disable select to branch conversion.")); 140 141 static cl::opt<bool> AddrSinkUsingGEPs( 142 "addr-sink-using-gep", cl::Hidden, cl::init(true), 143 cl::desc("Address sinking in CGP using GEPs.")); 144 145 static cl::opt<bool> EnableAndCmpSinking( 146 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 147 cl::desc("Enable sinkinig and/cmp into branches.")); 148 149 static cl::opt<bool> DisableStoreExtract( 150 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 151 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 152 153 static cl::opt<bool> StressStoreExtract( 154 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 155 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 156 157 static cl::opt<bool> DisableExtLdPromotion( 158 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 159 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 160 "CodeGenPrepare")); 161 162 static cl::opt<bool> StressExtLdPromotion( 163 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 164 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 165 "optimization in CodeGenPrepare")); 166 167 static cl::opt<bool> DisablePreheaderProtect( 168 "disable-preheader-prot", cl::Hidden, cl::init(false), 169 cl::desc("Disable protection against removing loop preheaders")); 170 171 static cl::opt<bool> ProfileGuidedSectionPrefix( 172 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 173 cl::desc("Use profile info to add section prefix for hot/cold functions")); 174 175 static cl::opt<unsigned> FreqRatioToSkipMerge( 176 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 177 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 178 "(frequency of destination block) is greater than this ratio")); 179 180 static cl::opt<bool> ForceSplitStore( 181 "force-split-store", cl::Hidden, cl::init(false), 182 cl::desc("Force store splitting no matter what the target query says.")); 183 184 static cl::opt<bool> 185 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 186 cl::desc("Enable merging of redundant sexts when one is dominating" 187 " the other."), cl::init(true)); 188 189 static cl::opt<bool> DisableComplexAddrModes( 190 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 191 cl::desc("Disables combining addressing modes with different parts " 192 "in optimizeMemoryInst.")); 193 194 static cl::opt<bool> 195 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 196 cl::desc("Allow creation of Phis in Address sinking.")); 197 198 static cl::opt<bool> 199 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 200 cl::desc("Allow creation of selects in Address sinking.")); 201 202 static cl::opt<bool> AddrSinkCombineBaseReg( 203 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 204 cl::desc("Allow combining of BaseReg field in Address sinking.")); 205 206 static cl::opt<bool> AddrSinkCombineBaseGV( 207 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 208 cl::desc("Allow combining of BaseGV field in Address sinking.")); 209 210 static cl::opt<bool> AddrSinkCombineBaseOffs( 211 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 212 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 213 214 static cl::opt<bool> AddrSinkCombineScaledReg( 215 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 216 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 217 218 static cl::opt<bool> 219 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 220 cl::init(true), 221 cl::desc("Enable splitting large offset of GEP.")); 222 223 namespace { 224 225 enum ExtType { 226 ZeroExtension, // Zero extension has been seen. 227 SignExtension, // Sign extension has been seen. 228 BothExtension // This extension type is used if we saw sext after 229 // ZeroExtension had been set, or if we saw zext after 230 // SignExtension had been set. It makes the type 231 // information of a promoted instruction invalid. 232 }; 233 234 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 235 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 236 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 237 using SExts = SmallVector<Instruction *, 16>; 238 using ValueToSExts = DenseMap<Value *, SExts>; 239 240 class TypePromotionTransaction; 241 242 class CodeGenPrepare : public FunctionPass { 243 const TargetMachine *TM = nullptr; 244 const TargetSubtargetInfo *SubtargetInfo; 245 const TargetLowering *TLI = nullptr; 246 const TargetRegisterInfo *TRI; 247 const TargetTransformInfo *TTI = nullptr; 248 const TargetLibraryInfo *TLInfo; 249 const LoopInfo *LI; 250 std::unique_ptr<BlockFrequencyInfo> BFI; 251 std::unique_ptr<BranchProbabilityInfo> BPI; 252 253 /// As we scan instructions optimizing them, this is the next instruction 254 /// to optimize. Transforms that can invalidate this should update it. 255 BasicBlock::iterator CurInstIterator; 256 257 /// Keeps track of non-local addresses that have been sunk into a block. 258 /// This allows us to avoid inserting duplicate code for blocks with 259 /// multiple load/stores of the same address. The usage of WeakTrackingVH 260 /// enables SunkAddrs to be treated as a cache whose entries can be 261 /// invalidated if a sunken address computation has been erased. 262 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 263 264 /// Keeps track of all instructions inserted for the current function. 265 SetOfInstrs InsertedInsts; 266 267 /// Keeps track of the type of the related instruction before their 268 /// promotion for the current function. 269 InstrToOrigTy PromotedInsts; 270 271 /// Keep track of instructions removed during promotion. 272 SetOfInstrs RemovedInsts; 273 274 /// Keep track of sext chains based on their initial value. 275 DenseMap<Value *, Instruction *> SeenChainsForSExt; 276 277 /// Keep track of GEPs accessing the same data structures such as structs or 278 /// arrays that are candidates to be split later because of their large 279 /// size. 280 MapVector< 281 AssertingVH<Value>, 282 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 283 LargeOffsetGEPMap; 284 285 /// Keep track of new GEP base after splitting the GEPs having large offset. 286 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 287 288 /// Map serial numbers to Large offset GEPs. 289 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 290 291 /// Keep track of SExt promoted. 292 ValueToSExts ValToSExtendedUses; 293 294 /// True if CFG is modified in any way. 295 bool ModifiedDT; 296 297 /// True if optimizing for size. 298 bool OptSize; 299 300 /// DataLayout for the Function being processed. 301 const DataLayout *DL = nullptr; 302 303 public: 304 static char ID; // Pass identification, replacement for typeid 305 306 CodeGenPrepare() : FunctionPass(ID) { 307 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 308 } 309 310 bool runOnFunction(Function &F) override; 311 312 StringRef getPassName() const override { return "CodeGen Prepare"; } 313 314 void getAnalysisUsage(AnalysisUsage &AU) const override { 315 // FIXME: When we can selectively preserve passes, preserve the domtree. 316 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 317 AU.addRequired<TargetLibraryInfoWrapperPass>(); 318 AU.addRequired<TargetTransformInfoWrapperPass>(); 319 AU.addRequired<LoopInfoWrapperPass>(); 320 } 321 322 private: 323 template <typename F> 324 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 325 // Substituting can cause recursive simplifications, which can invalidate 326 // our iterator. Use a WeakTrackingVH to hold onto it in case this 327 // happens. 328 Value *CurValue = &*CurInstIterator; 329 WeakTrackingVH IterHandle(CurValue); 330 331 f(); 332 333 // If the iterator instruction was recursively deleted, start over at the 334 // start of the block. 335 if (IterHandle != CurValue) { 336 CurInstIterator = BB->begin(); 337 SunkAddrs.clear(); 338 } 339 } 340 341 bool eliminateFallThrough(Function &F); 342 bool eliminateMostlyEmptyBlocks(Function &F); 343 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 344 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 345 void eliminateMostlyEmptyBlock(BasicBlock *BB); 346 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 347 bool isPreheader); 348 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 349 bool optimizeInst(Instruction *I, bool &ModifiedDT); 350 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 351 Type *AccessTy, unsigned AddrSpace); 352 bool optimizeInlineAsmInst(CallInst *CS); 353 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 354 bool optimizeExt(Instruction *&I); 355 bool optimizeExtUses(Instruction *I); 356 bool optimizeLoadExt(LoadInst *Load); 357 bool optimizeSelectInst(SelectInst *SI); 358 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 359 bool optimizeSwitchInst(SwitchInst *SI); 360 bool optimizeExtractElementInst(Instruction *Inst); 361 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 362 bool placeDbgValues(Function &F); 363 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 364 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 365 bool tryToPromoteExts(TypePromotionTransaction &TPT, 366 const SmallVectorImpl<Instruction *> &Exts, 367 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 368 unsigned CreatedInstsCost = 0); 369 bool mergeSExts(Function &F); 370 bool splitLargeGEPOffsets(); 371 bool performAddressTypePromotion( 372 Instruction *&Inst, 373 bool AllowPromotionWithoutCommonHeader, 374 bool HasPromoted, TypePromotionTransaction &TPT, 375 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 376 bool splitBranchCondition(Function &F); 377 bool simplifyOffsetableRelocate(Instruction &I); 378 }; 379 380 } // end anonymous namespace 381 382 char CodeGenPrepare::ID = 0; 383 384 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 385 "Optimize for code generation", false, false) 386 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 387 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 388 "Optimize for code generation", false, false) 389 390 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 391 392 bool CodeGenPrepare::runOnFunction(Function &F) { 393 if (skipFunction(F)) 394 return false; 395 396 DL = &F.getParent()->getDataLayout(); 397 398 bool EverMadeChange = false; 399 // Clear per function information. 400 InsertedInsts.clear(); 401 PromotedInsts.clear(); 402 403 ModifiedDT = false; 404 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 405 TM = &TPC->getTM<TargetMachine>(); 406 SubtargetInfo = TM->getSubtargetImpl(F); 407 TLI = SubtargetInfo->getTargetLowering(); 408 TRI = SubtargetInfo->getRegisterInfo(); 409 } 410 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 411 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 412 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 413 BPI.reset(new BranchProbabilityInfo(F, *LI)); 414 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 415 OptSize = F.optForSize(); 416 417 ProfileSummaryInfo *PSI = 418 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 419 if (ProfileGuidedSectionPrefix) { 420 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 421 F.setSectionPrefix(".hot"); 422 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 423 F.setSectionPrefix(".unlikely"); 424 } 425 426 /// This optimization identifies DIV instructions that can be 427 /// profitably bypassed and carried out with a shorter, faster divide. 428 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI && 429 TLI->isSlowDivBypassed()) { 430 const DenseMap<unsigned int, unsigned int> &BypassWidths = 431 TLI->getBypassSlowDivWidths(); 432 BasicBlock* BB = &*F.begin(); 433 while (BB != nullptr) { 434 // bypassSlowDivision may create new BBs, but we don't want to reapply the 435 // optimization to those blocks. 436 BasicBlock* Next = BB->getNextNode(); 437 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 438 BB = Next; 439 } 440 } 441 442 // Eliminate blocks that contain only PHI nodes and an 443 // unconditional branch. 444 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 445 446 if (!DisableBranchOpts) 447 EverMadeChange |= splitBranchCondition(F); 448 449 // Split some critical edges where one of the sources is an indirect branch, 450 // to help generate sane code for PHIs involving such edges. 451 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 452 453 bool MadeChange = true; 454 while (MadeChange) { 455 MadeChange = false; 456 for (Function::iterator I = F.begin(); I != F.end(); ) { 457 BasicBlock *BB = &*I++; 458 bool ModifiedDTOnIteration = false; 459 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 460 461 // Restart BB iteration if the dominator tree of the Function was changed 462 if (ModifiedDTOnIteration) 463 break; 464 } 465 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 466 MadeChange |= mergeSExts(F); 467 if (!LargeOffsetGEPMap.empty()) 468 MadeChange |= splitLargeGEPOffsets(); 469 470 // Really free removed instructions during promotion. 471 for (Instruction *I : RemovedInsts) 472 I->deleteValue(); 473 474 EverMadeChange |= MadeChange; 475 SeenChainsForSExt.clear(); 476 ValToSExtendedUses.clear(); 477 RemovedInsts.clear(); 478 LargeOffsetGEPMap.clear(); 479 LargeOffsetGEPID.clear(); 480 } 481 482 SunkAddrs.clear(); 483 484 if (!DisableBranchOpts) { 485 MadeChange = false; 486 // Use a set vector to get deterministic iteration order. The order the 487 // blocks are removed may affect whether or not PHI nodes in successors 488 // are removed. 489 SmallSetVector<BasicBlock*, 8> WorkList; 490 for (BasicBlock &BB : F) { 491 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 492 MadeChange |= ConstantFoldTerminator(&BB, true); 493 if (!MadeChange) continue; 494 495 for (SmallVectorImpl<BasicBlock*>::iterator 496 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 497 if (pred_begin(*II) == pred_end(*II)) 498 WorkList.insert(*II); 499 } 500 501 // Delete the dead blocks and any of their dead successors. 502 MadeChange |= !WorkList.empty(); 503 while (!WorkList.empty()) { 504 BasicBlock *BB = WorkList.pop_back_val(); 505 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 506 507 DeleteDeadBlock(BB); 508 509 for (SmallVectorImpl<BasicBlock*>::iterator 510 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 511 if (pred_begin(*II) == pred_end(*II)) 512 WorkList.insert(*II); 513 } 514 515 // Merge pairs of basic blocks with unconditional branches, connected by 516 // a single edge. 517 if (EverMadeChange || MadeChange) 518 MadeChange |= eliminateFallThrough(F); 519 520 EverMadeChange |= MadeChange; 521 } 522 523 if (!DisableGCOpts) { 524 SmallVector<Instruction *, 2> Statepoints; 525 for (BasicBlock &BB : F) 526 for (Instruction &I : BB) 527 if (isStatepoint(I)) 528 Statepoints.push_back(&I); 529 for (auto &I : Statepoints) 530 EverMadeChange |= simplifyOffsetableRelocate(*I); 531 } 532 533 // Do this last to clean up use-before-def scenarios introduced by other 534 // preparatory transforms. 535 EverMadeChange |= placeDbgValues(F); 536 537 return EverMadeChange; 538 } 539 540 /// Merge basic blocks which are connected by a single edge, where one of the 541 /// basic blocks has a single successor pointing to the other basic block, 542 /// which has a single predecessor. 543 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 544 bool Changed = false; 545 // Scan all of the blocks in the function, except for the entry block. 546 // Use a temporary array to avoid iterator being invalidated when 547 // deleting blocks. 548 SmallVector<WeakTrackingVH, 16> Blocks; 549 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 550 Blocks.push_back(&Block); 551 552 for (auto &Block : Blocks) { 553 auto *BB = cast_or_null<BasicBlock>(Block); 554 if (!BB) 555 continue; 556 // If the destination block has a single pred, then this is a trivial 557 // edge, just collapse it. 558 BasicBlock *SinglePred = BB->getSinglePredecessor(); 559 560 // Don't merge if BB's address is taken. 561 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 562 563 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 564 if (Term && !Term->isConditional()) { 565 Changed = true; 566 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 567 568 // Merge BB into SinglePred and delete it. 569 MergeBlockIntoPredecessor(BB); 570 } 571 } 572 return Changed; 573 } 574 575 /// Find a destination block from BB if BB is mergeable empty block. 576 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 577 // If this block doesn't end with an uncond branch, ignore it. 578 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 579 if (!BI || !BI->isUnconditional()) 580 return nullptr; 581 582 // If the instruction before the branch (skipping debug info) isn't a phi 583 // node, then other stuff is happening here. 584 BasicBlock::iterator BBI = BI->getIterator(); 585 if (BBI != BB->begin()) { 586 --BBI; 587 while (isa<DbgInfoIntrinsic>(BBI)) { 588 if (BBI == BB->begin()) 589 break; 590 --BBI; 591 } 592 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 593 return nullptr; 594 } 595 596 // Do not break infinite loops. 597 BasicBlock *DestBB = BI->getSuccessor(0); 598 if (DestBB == BB) 599 return nullptr; 600 601 if (!canMergeBlocks(BB, DestBB)) 602 DestBB = nullptr; 603 604 return DestBB; 605 } 606 607 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 608 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 609 /// edges in ways that are non-optimal for isel. Start by eliminating these 610 /// blocks so we can split them the way we want them. 611 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 612 SmallPtrSet<BasicBlock *, 16> Preheaders; 613 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 614 while (!LoopList.empty()) { 615 Loop *L = LoopList.pop_back_val(); 616 LoopList.insert(LoopList.end(), L->begin(), L->end()); 617 if (BasicBlock *Preheader = L->getLoopPreheader()) 618 Preheaders.insert(Preheader); 619 } 620 621 bool MadeChange = false; 622 // Copy blocks into a temporary array to avoid iterator invalidation issues 623 // as we remove them. 624 // Note that this intentionally skips the entry block. 625 SmallVector<WeakTrackingVH, 16> Blocks; 626 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 627 Blocks.push_back(&Block); 628 629 for (auto &Block : Blocks) { 630 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 631 if (!BB) 632 continue; 633 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 634 if (!DestBB || 635 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 636 continue; 637 638 eliminateMostlyEmptyBlock(BB); 639 MadeChange = true; 640 } 641 return MadeChange; 642 } 643 644 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 645 BasicBlock *DestBB, 646 bool isPreheader) { 647 // Do not delete loop preheaders if doing so would create a critical edge. 648 // Loop preheaders can be good locations to spill registers. If the 649 // preheader is deleted and we create a critical edge, registers may be 650 // spilled in the loop body instead. 651 if (!DisablePreheaderProtect && isPreheader && 652 !(BB->getSinglePredecessor() && 653 BB->getSinglePredecessor()->getSingleSuccessor())) 654 return false; 655 656 // Try to skip merging if the unique predecessor of BB is terminated by a 657 // switch or indirect branch instruction, and BB is used as an incoming block 658 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 659 // add COPY instructions in the predecessor of BB instead of BB (if it is not 660 // merged). Note that the critical edge created by merging such blocks wont be 661 // split in MachineSink because the jump table is not analyzable. By keeping 662 // such empty block (BB), ISel will place COPY instructions in BB, not in the 663 // predecessor of BB. 664 BasicBlock *Pred = BB->getUniquePredecessor(); 665 if (!Pred || 666 !(isa<SwitchInst>(Pred->getTerminator()) || 667 isa<IndirectBrInst>(Pred->getTerminator()))) 668 return true; 669 670 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 671 return true; 672 673 // We use a simple cost heuristic which determine skipping merging is 674 // profitable if the cost of skipping merging is less than the cost of 675 // merging : Cost(skipping merging) < Cost(merging BB), where the 676 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 677 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 678 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 679 // Freq(Pred) / Freq(BB) > 2. 680 // Note that if there are multiple empty blocks sharing the same incoming 681 // value for the PHIs in the DestBB, we consider them together. In such 682 // case, Cost(merging BB) will be the sum of their frequencies. 683 684 if (!isa<PHINode>(DestBB->begin())) 685 return true; 686 687 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 688 689 // Find all other incoming blocks from which incoming values of all PHIs in 690 // DestBB are the same as the ones from BB. 691 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 692 ++PI) { 693 BasicBlock *DestBBPred = *PI; 694 if (DestBBPred == BB) 695 continue; 696 697 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 698 return DestPN.getIncomingValueForBlock(BB) == 699 DestPN.getIncomingValueForBlock(DestBBPred); 700 })) 701 SameIncomingValueBBs.insert(DestBBPred); 702 } 703 704 // See if all BB's incoming values are same as the value from Pred. In this 705 // case, no reason to skip merging because COPYs are expected to be place in 706 // Pred already. 707 if (SameIncomingValueBBs.count(Pred)) 708 return true; 709 710 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 711 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 712 713 for (auto SameValueBB : SameIncomingValueBBs) 714 if (SameValueBB->getUniquePredecessor() == Pred && 715 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 716 BBFreq += BFI->getBlockFreq(SameValueBB); 717 718 return PredFreq.getFrequency() <= 719 BBFreq.getFrequency() * FreqRatioToSkipMerge; 720 } 721 722 /// Return true if we can merge BB into DestBB if there is a single 723 /// unconditional branch between them, and BB contains no other non-phi 724 /// instructions. 725 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 726 const BasicBlock *DestBB) const { 727 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 728 // the successor. If there are more complex condition (e.g. preheaders), 729 // don't mess around with them. 730 for (const PHINode &PN : BB->phis()) { 731 for (const User *U : PN.users()) { 732 const Instruction *UI = cast<Instruction>(U); 733 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 734 return false; 735 // If User is inside DestBB block and it is a PHINode then check 736 // incoming value. If incoming value is not from BB then this is 737 // a complex condition (e.g. preheaders) we want to avoid here. 738 if (UI->getParent() == DestBB) { 739 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 740 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 741 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 742 if (Insn && Insn->getParent() == BB && 743 Insn->getParent() != UPN->getIncomingBlock(I)) 744 return false; 745 } 746 } 747 } 748 } 749 750 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 751 // and DestBB may have conflicting incoming values for the block. If so, we 752 // can't merge the block. 753 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 754 if (!DestBBPN) return true; // no conflict. 755 756 // Collect the preds of BB. 757 SmallPtrSet<const BasicBlock*, 16> BBPreds; 758 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 759 // It is faster to get preds from a PHI than with pred_iterator. 760 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 761 BBPreds.insert(BBPN->getIncomingBlock(i)); 762 } else { 763 BBPreds.insert(pred_begin(BB), pred_end(BB)); 764 } 765 766 // Walk the preds of DestBB. 767 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 768 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 769 if (BBPreds.count(Pred)) { // Common predecessor? 770 for (const PHINode &PN : DestBB->phis()) { 771 const Value *V1 = PN.getIncomingValueForBlock(Pred); 772 const Value *V2 = PN.getIncomingValueForBlock(BB); 773 774 // If V2 is a phi node in BB, look up what the mapped value will be. 775 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 776 if (V2PN->getParent() == BB) 777 V2 = V2PN->getIncomingValueForBlock(Pred); 778 779 // If there is a conflict, bail out. 780 if (V1 != V2) return false; 781 } 782 } 783 } 784 785 return true; 786 } 787 788 /// Eliminate a basic block that has only phi's and an unconditional branch in 789 /// it. 790 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 791 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 792 BasicBlock *DestBB = BI->getSuccessor(0); 793 794 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 795 << *BB << *DestBB); 796 797 // If the destination block has a single pred, then this is a trivial edge, 798 // just collapse it. 799 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 800 if (SinglePred != DestBB) { 801 assert(SinglePred == BB && 802 "Single predecessor not the same as predecessor"); 803 // Merge DestBB into SinglePred/BB and delete it. 804 MergeBlockIntoPredecessor(DestBB); 805 // Note: BB(=SinglePred) will not be deleted on this path. 806 // DestBB(=its single successor) is the one that was deleted. 807 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 808 return; 809 } 810 } 811 812 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 813 // to handle the new incoming edges it is about to have. 814 for (PHINode &PN : DestBB->phis()) { 815 // Remove the incoming value for BB, and remember it. 816 Value *InVal = PN.removeIncomingValue(BB, false); 817 818 // Two options: either the InVal is a phi node defined in BB or it is some 819 // value that dominates BB. 820 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 821 if (InValPhi && InValPhi->getParent() == BB) { 822 // Add all of the input values of the input PHI as inputs of this phi. 823 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 824 PN.addIncoming(InValPhi->getIncomingValue(i), 825 InValPhi->getIncomingBlock(i)); 826 } else { 827 // Otherwise, add one instance of the dominating value for each edge that 828 // we will be adding. 829 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 830 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 831 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 832 } else { 833 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 834 PN.addIncoming(InVal, *PI); 835 } 836 } 837 } 838 839 // The PHIs are now updated, change everything that refers to BB to use 840 // DestBB and remove BB. 841 BB->replaceAllUsesWith(DestBB); 842 BB->eraseFromParent(); 843 ++NumBlocksElim; 844 845 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 846 } 847 848 // Computes a map of base pointer relocation instructions to corresponding 849 // derived pointer relocation instructions given a vector of all relocate calls 850 static void computeBaseDerivedRelocateMap( 851 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 852 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 853 &RelocateInstMap) { 854 // Collect information in two maps: one primarily for locating the base object 855 // while filling the second map; the second map is the final structure holding 856 // a mapping between Base and corresponding Derived relocate calls 857 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 858 for (auto *ThisRelocate : AllRelocateCalls) { 859 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 860 ThisRelocate->getDerivedPtrIndex()); 861 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 862 } 863 for (auto &Item : RelocateIdxMap) { 864 std::pair<unsigned, unsigned> Key = Item.first; 865 if (Key.first == Key.second) 866 // Base relocation: nothing to insert 867 continue; 868 869 GCRelocateInst *I = Item.second; 870 auto BaseKey = std::make_pair(Key.first, Key.first); 871 872 // We're iterating over RelocateIdxMap so we cannot modify it. 873 auto MaybeBase = RelocateIdxMap.find(BaseKey); 874 if (MaybeBase == RelocateIdxMap.end()) 875 // TODO: We might want to insert a new base object relocate and gep off 876 // that, if there are enough derived object relocates. 877 continue; 878 879 RelocateInstMap[MaybeBase->second].push_back(I); 880 } 881 } 882 883 // Accepts a GEP and extracts the operands into a vector provided they're all 884 // small integer constants 885 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 886 SmallVectorImpl<Value *> &OffsetV) { 887 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 888 // Only accept small constant integer operands 889 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 890 if (!Op || Op->getZExtValue() > 20) 891 return false; 892 } 893 894 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 895 OffsetV.push_back(GEP->getOperand(i)); 896 return true; 897 } 898 899 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 900 // replace, computes a replacement, and affects it. 901 static bool 902 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 903 const SmallVectorImpl<GCRelocateInst *> &Targets) { 904 bool MadeChange = false; 905 // We must ensure the relocation of derived pointer is defined after 906 // relocation of base pointer. If we find a relocation corresponding to base 907 // defined earlier than relocation of base then we move relocation of base 908 // right before found relocation. We consider only relocation in the same 909 // basic block as relocation of base. Relocations from other basic block will 910 // be skipped by optimization and we do not care about them. 911 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 912 &*R != RelocatedBase; ++R) 913 if (auto RI = dyn_cast<GCRelocateInst>(R)) 914 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 915 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 916 RelocatedBase->moveBefore(RI); 917 break; 918 } 919 920 for (GCRelocateInst *ToReplace : Targets) { 921 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 922 "Not relocating a derived object of the original base object"); 923 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 924 // A duplicate relocate call. TODO: coalesce duplicates. 925 continue; 926 } 927 928 if (RelocatedBase->getParent() != ToReplace->getParent()) { 929 // Base and derived relocates are in different basic blocks. 930 // In this case transform is only valid when base dominates derived 931 // relocate. However it would be too expensive to check dominance 932 // for each such relocate, so we skip the whole transformation. 933 continue; 934 } 935 936 Value *Base = ToReplace->getBasePtr(); 937 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 938 if (!Derived || Derived->getPointerOperand() != Base) 939 continue; 940 941 SmallVector<Value *, 2> OffsetV; 942 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 943 continue; 944 945 // Create a Builder and replace the target callsite with a gep 946 assert(RelocatedBase->getNextNode() && 947 "Should always have one since it's not a terminator"); 948 949 // Insert after RelocatedBase 950 IRBuilder<> Builder(RelocatedBase->getNextNode()); 951 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 952 953 // If gc_relocate does not match the actual type, cast it to the right type. 954 // In theory, there must be a bitcast after gc_relocate if the type does not 955 // match, and we should reuse it to get the derived pointer. But it could be 956 // cases like this: 957 // bb1: 958 // ... 959 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 960 // br label %merge 961 // 962 // bb2: 963 // ... 964 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 965 // br label %merge 966 // 967 // merge: 968 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 969 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 970 // 971 // In this case, we can not find the bitcast any more. So we insert a new bitcast 972 // no matter there is already one or not. In this way, we can handle all cases, and 973 // the extra bitcast should be optimized away in later passes. 974 Value *ActualRelocatedBase = RelocatedBase; 975 if (RelocatedBase->getType() != Base->getType()) { 976 ActualRelocatedBase = 977 Builder.CreateBitCast(RelocatedBase, Base->getType()); 978 } 979 Value *Replacement = Builder.CreateGEP( 980 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 981 Replacement->takeName(ToReplace); 982 // If the newly generated derived pointer's type does not match the original derived 983 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 984 Value *ActualReplacement = Replacement; 985 if (Replacement->getType() != ToReplace->getType()) { 986 ActualReplacement = 987 Builder.CreateBitCast(Replacement, ToReplace->getType()); 988 } 989 ToReplace->replaceAllUsesWith(ActualReplacement); 990 ToReplace->eraseFromParent(); 991 992 MadeChange = true; 993 } 994 return MadeChange; 995 } 996 997 // Turns this: 998 // 999 // %base = ... 1000 // %ptr = gep %base + 15 1001 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1002 // %base' = relocate(%tok, i32 4, i32 4) 1003 // %ptr' = relocate(%tok, i32 4, i32 5) 1004 // %val = load %ptr' 1005 // 1006 // into this: 1007 // 1008 // %base = ... 1009 // %ptr = gep %base + 15 1010 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1011 // %base' = gc.relocate(%tok, i32 4, i32 4) 1012 // %ptr' = gep %base' + 15 1013 // %val = load %ptr' 1014 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1015 bool MadeChange = false; 1016 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1017 1018 for (auto *U : I.users()) 1019 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1020 // Collect all the relocate calls associated with a statepoint 1021 AllRelocateCalls.push_back(Relocate); 1022 1023 // We need atleast one base pointer relocation + one derived pointer 1024 // relocation to mangle 1025 if (AllRelocateCalls.size() < 2) 1026 return false; 1027 1028 // RelocateInstMap is a mapping from the base relocate instruction to the 1029 // corresponding derived relocate instructions 1030 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1031 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1032 if (RelocateInstMap.empty()) 1033 return false; 1034 1035 for (auto &Item : RelocateInstMap) 1036 // Item.first is the RelocatedBase to offset against 1037 // Item.second is the vector of Targets to replace 1038 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1039 return MadeChange; 1040 } 1041 1042 /// SinkCast - Sink the specified cast instruction into its user blocks 1043 static bool SinkCast(CastInst *CI) { 1044 BasicBlock *DefBB = CI->getParent(); 1045 1046 /// InsertedCasts - Only insert a cast in each block once. 1047 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1048 1049 bool MadeChange = false; 1050 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1051 UI != E; ) { 1052 Use &TheUse = UI.getUse(); 1053 Instruction *User = cast<Instruction>(*UI); 1054 1055 // Figure out which BB this cast is used in. For PHI's this is the 1056 // appropriate predecessor block. 1057 BasicBlock *UserBB = User->getParent(); 1058 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1059 UserBB = PN->getIncomingBlock(TheUse); 1060 } 1061 1062 // Preincrement use iterator so we don't invalidate it. 1063 ++UI; 1064 1065 // The first insertion point of a block containing an EH pad is after the 1066 // pad. If the pad is the user, we cannot sink the cast past the pad. 1067 if (User->isEHPad()) 1068 continue; 1069 1070 // If the block selected to receive the cast is an EH pad that does not 1071 // allow non-PHI instructions before the terminator, we can't sink the 1072 // cast. 1073 if (UserBB->getTerminator()->isEHPad()) 1074 continue; 1075 1076 // If this user is in the same block as the cast, don't change the cast. 1077 if (UserBB == DefBB) continue; 1078 1079 // If we have already inserted a cast into this block, use it. 1080 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1081 1082 if (!InsertedCast) { 1083 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1084 assert(InsertPt != UserBB->end()); 1085 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1086 CI->getType(), "", &*InsertPt); 1087 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1088 } 1089 1090 // Replace a use of the cast with a use of the new cast. 1091 TheUse = InsertedCast; 1092 MadeChange = true; 1093 ++NumCastUses; 1094 } 1095 1096 // If we removed all uses, nuke the cast. 1097 if (CI->use_empty()) { 1098 salvageDebugInfo(*CI); 1099 CI->eraseFromParent(); 1100 MadeChange = true; 1101 } 1102 1103 return MadeChange; 1104 } 1105 1106 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1107 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1108 /// reduce the number of virtual registers that must be created and coalesced. 1109 /// 1110 /// Return true if any changes are made. 1111 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1112 const DataLayout &DL) { 1113 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1114 // than sinking only nop casts, but is helpful on some platforms. 1115 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1116 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), 1117 ASC->getDestAddressSpace())) 1118 return false; 1119 } 1120 1121 // If this is a noop copy, 1122 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1123 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1124 1125 // This is an fp<->int conversion? 1126 if (SrcVT.isInteger() != DstVT.isInteger()) 1127 return false; 1128 1129 // If this is an extension, it will be a zero or sign extension, which 1130 // isn't a noop. 1131 if (SrcVT.bitsLT(DstVT)) return false; 1132 1133 // If these values will be promoted, find out what they will be promoted 1134 // to. This helps us consider truncates on PPC as noop copies when they 1135 // are. 1136 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1137 TargetLowering::TypePromoteInteger) 1138 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1139 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1140 TargetLowering::TypePromoteInteger) 1141 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1142 1143 // If, after promotion, these are the same types, this is a noop copy. 1144 if (SrcVT != DstVT) 1145 return false; 1146 1147 return SinkCast(CI); 1148 } 1149 1150 static void replaceMathCmpWithIntrinsic(BinaryOperator *BO, CmpInst *Cmp, 1151 Instruction *InsertPt, 1152 Intrinsic::ID IID) { 1153 IRBuilder<> Builder(InsertPt); 1154 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, BO->getOperand(0), 1155 BO->getOperand(1)); 1156 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1157 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1158 BO->replaceAllUsesWith(Math); 1159 Cmp->replaceAllUsesWith(OV); 1160 BO->eraseFromParent(); 1161 Cmp->eraseFromParent(); 1162 } 1163 1164 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1165 /// intrinsic. Return true if any changes were made. 1166 static bool combineToUAddWithOverflow(CmpInst *Cmp, const TargetLowering &TLI, 1167 const DataLayout &DL) { 1168 Value *A, *B; 1169 BinaryOperator *Add; 1170 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) 1171 return false; 1172 1173 // Allow the transform as long as we have an integer type that is not 1174 // obviously illegal and unsupported. 1175 Type *Ty = Add->getType(); 1176 if (!isa<IntegerType>(Ty)) 1177 return false; 1178 EVT CodegenVT = TLI.getValueType(DL, Ty); 1179 if (!CodegenVT.isSimple() && TLI.isOperationExpand(ISD::UADDO, CodegenVT)) 1180 return false; 1181 1182 // We don't want to move around uses of condition values this late, so we 1183 // check if it is legal to create the call to the intrinsic in the basic 1184 // block containing the icmp. 1185 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1186 return false; 1187 1188 #ifndef NDEBUG 1189 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 1190 // for now: 1191 if (Add->hasOneUse()) 1192 assert(*Add->user_begin() == Cmp && "expected!"); 1193 #endif 1194 1195 Instruction *InPt = Add->hasOneUse() ? cast<Instruction>(Cmp) 1196 : cast<Instruction>(Add); 1197 replaceMathCmpWithIntrinsic(Add, Cmp, InPt, Intrinsic::uadd_with_overflow); 1198 return true; 1199 } 1200 1201 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1202 /// registers that must be created and coalesced. This is a clear win except on 1203 /// targets with multiple condition code registers (PowerPC), where it might 1204 /// lose; some adjustment may be wanted there. 1205 /// 1206 /// Return true if any changes are made. 1207 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1208 if (TLI.hasMultipleConditionRegisters()) 1209 return false; 1210 1211 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1212 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1213 return false; 1214 1215 // Only insert a cmp in each block once. 1216 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1217 1218 bool MadeChange = false; 1219 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1220 UI != E; ) { 1221 Use &TheUse = UI.getUse(); 1222 Instruction *User = cast<Instruction>(*UI); 1223 1224 // Preincrement use iterator so we don't invalidate it. 1225 ++UI; 1226 1227 // Don't bother for PHI nodes. 1228 if (isa<PHINode>(User)) 1229 continue; 1230 1231 // Figure out which BB this cmp is used in. 1232 BasicBlock *UserBB = User->getParent(); 1233 BasicBlock *DefBB = Cmp->getParent(); 1234 1235 // If this user is in the same block as the cmp, don't change the cmp. 1236 if (UserBB == DefBB) continue; 1237 1238 // If we have already inserted a cmp into this block, use it. 1239 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1240 1241 if (!InsertedCmp) { 1242 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1243 assert(InsertPt != UserBB->end()); 1244 InsertedCmp = 1245 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1246 Cmp->getOperand(0), Cmp->getOperand(1), "", 1247 &*InsertPt); 1248 // Propagate the debug info. 1249 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1250 } 1251 1252 // Replace a use of the cmp with a use of the new cmp. 1253 TheUse = InsertedCmp; 1254 MadeChange = true; 1255 ++NumCmpUses; 1256 } 1257 1258 // If we removed all uses, nuke the cmp. 1259 if (Cmp->use_empty()) { 1260 Cmp->eraseFromParent(); 1261 MadeChange = true; 1262 } 1263 1264 return MadeChange; 1265 } 1266 1267 static bool optimizeCmpExpression(CmpInst *Cmp, const TargetLowering &TLI, 1268 const DataLayout &DL) { 1269 if (sinkCmpExpression(Cmp, TLI)) 1270 return true; 1271 1272 if (combineToUAddWithOverflow(Cmp, TLI, DL)) 1273 return true; 1274 1275 return false; 1276 } 1277 1278 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1279 /// used in a compare to allow isel to generate better code for targets where 1280 /// this operation can be combined. 1281 /// 1282 /// Return true if any changes are made. 1283 static bool sinkAndCmp0Expression(Instruction *AndI, 1284 const TargetLowering &TLI, 1285 SetOfInstrs &InsertedInsts) { 1286 // Double-check that we're not trying to optimize an instruction that was 1287 // already optimized by some other part of this pass. 1288 assert(!InsertedInsts.count(AndI) && 1289 "Attempting to optimize already optimized and instruction"); 1290 (void) InsertedInsts; 1291 1292 // Nothing to do for single use in same basic block. 1293 if (AndI->hasOneUse() && 1294 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1295 return false; 1296 1297 // Try to avoid cases where sinking/duplicating is likely to increase register 1298 // pressure. 1299 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1300 !isa<ConstantInt>(AndI->getOperand(1)) && 1301 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1302 return false; 1303 1304 for (auto *U : AndI->users()) { 1305 Instruction *User = cast<Instruction>(U); 1306 1307 // Only sink for and mask feeding icmp with 0. 1308 if (!isa<ICmpInst>(User)) 1309 return false; 1310 1311 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1312 if (!CmpC || !CmpC->isZero()) 1313 return false; 1314 } 1315 1316 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1317 return false; 1318 1319 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1320 LLVM_DEBUG(AndI->getParent()->dump()); 1321 1322 // Push the 'and' into the same block as the icmp 0. There should only be 1323 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1324 // others, so we don't need to keep track of which BBs we insert into. 1325 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1326 UI != E; ) { 1327 Use &TheUse = UI.getUse(); 1328 Instruction *User = cast<Instruction>(*UI); 1329 1330 // Preincrement use iterator so we don't invalidate it. 1331 ++UI; 1332 1333 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1334 1335 // Keep the 'and' in the same place if the use is already in the same block. 1336 Instruction *InsertPt = 1337 User->getParent() == AndI->getParent() ? AndI : User; 1338 Instruction *InsertedAnd = 1339 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1340 AndI->getOperand(1), "", InsertPt); 1341 // Propagate the debug info. 1342 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1343 1344 // Replace a use of the 'and' with a use of the new 'and'. 1345 TheUse = InsertedAnd; 1346 ++NumAndUses; 1347 LLVM_DEBUG(User->getParent()->dump()); 1348 } 1349 1350 // We removed all uses, nuke the and. 1351 AndI->eraseFromParent(); 1352 return true; 1353 } 1354 1355 /// Check if the candidates could be combined with a shift instruction, which 1356 /// includes: 1357 /// 1. Truncate instruction 1358 /// 2. And instruction and the imm is a mask of the low bits: 1359 /// imm & (imm+1) == 0 1360 static bool isExtractBitsCandidateUse(Instruction *User) { 1361 if (!isa<TruncInst>(User)) { 1362 if (User->getOpcode() != Instruction::And || 1363 !isa<ConstantInt>(User->getOperand(1))) 1364 return false; 1365 1366 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1367 1368 if ((Cimm & (Cimm + 1)).getBoolValue()) 1369 return false; 1370 } 1371 return true; 1372 } 1373 1374 /// Sink both shift and truncate instruction to the use of truncate's BB. 1375 static bool 1376 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1377 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1378 const TargetLowering &TLI, const DataLayout &DL) { 1379 BasicBlock *UserBB = User->getParent(); 1380 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1381 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1382 bool MadeChange = false; 1383 1384 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1385 TruncE = TruncI->user_end(); 1386 TruncUI != TruncE;) { 1387 1388 Use &TruncTheUse = TruncUI.getUse(); 1389 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1390 // Preincrement use iterator so we don't invalidate it. 1391 1392 ++TruncUI; 1393 1394 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1395 if (!ISDOpcode) 1396 continue; 1397 1398 // If the use is actually a legal node, there will not be an 1399 // implicit truncate. 1400 // FIXME: always querying the result type is just an 1401 // approximation; some nodes' legality is determined by the 1402 // operand or other means. There's no good way to find out though. 1403 if (TLI.isOperationLegalOrCustom( 1404 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1405 continue; 1406 1407 // Don't bother for PHI nodes. 1408 if (isa<PHINode>(TruncUser)) 1409 continue; 1410 1411 BasicBlock *TruncUserBB = TruncUser->getParent(); 1412 1413 if (UserBB == TruncUserBB) 1414 continue; 1415 1416 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1417 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1418 1419 if (!InsertedShift && !InsertedTrunc) { 1420 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1421 assert(InsertPt != TruncUserBB->end()); 1422 // Sink the shift 1423 if (ShiftI->getOpcode() == Instruction::AShr) 1424 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1425 "", &*InsertPt); 1426 else 1427 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1428 "", &*InsertPt); 1429 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1430 1431 // Sink the trunc 1432 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1433 TruncInsertPt++; 1434 assert(TruncInsertPt != TruncUserBB->end()); 1435 1436 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1437 TruncI->getType(), "", &*TruncInsertPt); 1438 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1439 1440 MadeChange = true; 1441 1442 TruncTheUse = InsertedTrunc; 1443 } 1444 } 1445 return MadeChange; 1446 } 1447 1448 /// Sink the shift *right* instruction into user blocks if the uses could 1449 /// potentially be combined with this shift instruction and generate BitExtract 1450 /// instruction. It will only be applied if the architecture supports BitExtract 1451 /// instruction. Here is an example: 1452 /// BB1: 1453 /// %x.extract.shift = lshr i64 %arg1, 32 1454 /// BB2: 1455 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1456 /// ==> 1457 /// 1458 /// BB2: 1459 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1460 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1461 /// 1462 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1463 /// instruction. 1464 /// Return true if any changes are made. 1465 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1466 const TargetLowering &TLI, 1467 const DataLayout &DL) { 1468 BasicBlock *DefBB = ShiftI->getParent(); 1469 1470 /// Only insert instructions in each block once. 1471 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1472 1473 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1474 1475 bool MadeChange = false; 1476 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1477 UI != E;) { 1478 Use &TheUse = UI.getUse(); 1479 Instruction *User = cast<Instruction>(*UI); 1480 // Preincrement use iterator so we don't invalidate it. 1481 ++UI; 1482 1483 // Don't bother for PHI nodes. 1484 if (isa<PHINode>(User)) 1485 continue; 1486 1487 if (!isExtractBitsCandidateUse(User)) 1488 continue; 1489 1490 BasicBlock *UserBB = User->getParent(); 1491 1492 if (UserBB == DefBB) { 1493 // If the shift and truncate instruction are in the same BB. The use of 1494 // the truncate(TruncUse) may still introduce another truncate if not 1495 // legal. In this case, we would like to sink both shift and truncate 1496 // instruction to the BB of TruncUse. 1497 // for example: 1498 // BB1: 1499 // i64 shift.result = lshr i64 opnd, imm 1500 // trunc.result = trunc shift.result to i16 1501 // 1502 // BB2: 1503 // ----> We will have an implicit truncate here if the architecture does 1504 // not have i16 compare. 1505 // cmp i16 trunc.result, opnd2 1506 // 1507 if (isa<TruncInst>(User) && shiftIsLegal 1508 // If the type of the truncate is legal, no truncate will be 1509 // introduced in other basic blocks. 1510 && 1511 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1512 MadeChange = 1513 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1514 1515 continue; 1516 } 1517 // If we have already inserted a shift into this block, use it. 1518 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1519 1520 if (!InsertedShift) { 1521 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1522 assert(InsertPt != UserBB->end()); 1523 1524 if (ShiftI->getOpcode() == Instruction::AShr) 1525 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1526 "", &*InsertPt); 1527 else 1528 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1529 "", &*InsertPt); 1530 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1531 1532 MadeChange = true; 1533 } 1534 1535 // Replace a use of the shift with a use of the new shift. 1536 TheUse = InsertedShift; 1537 } 1538 1539 // If we removed all uses, nuke the shift. 1540 if (ShiftI->use_empty()) { 1541 salvageDebugInfo(*ShiftI); 1542 ShiftI->eraseFromParent(); 1543 } 1544 1545 return MadeChange; 1546 } 1547 1548 /// If counting leading or trailing zeros is an expensive operation and a zero 1549 /// input is defined, add a check for zero to avoid calling the intrinsic. 1550 /// 1551 /// We want to transform: 1552 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1553 /// 1554 /// into: 1555 /// entry: 1556 /// %cmpz = icmp eq i64 %A, 0 1557 /// br i1 %cmpz, label %cond.end, label %cond.false 1558 /// cond.false: 1559 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1560 /// br label %cond.end 1561 /// cond.end: 1562 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1563 /// 1564 /// If the transform is performed, return true and set ModifiedDT to true. 1565 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1566 const TargetLowering *TLI, 1567 const DataLayout *DL, 1568 bool &ModifiedDT) { 1569 if (!TLI || !DL) 1570 return false; 1571 1572 // If a zero input is undefined, it doesn't make sense to despeculate that. 1573 if (match(CountZeros->getOperand(1), m_One())) 1574 return false; 1575 1576 // If it's cheap to speculate, there's nothing to do. 1577 auto IntrinsicID = CountZeros->getIntrinsicID(); 1578 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1579 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1580 return false; 1581 1582 // Only handle legal scalar cases. Anything else requires too much work. 1583 Type *Ty = CountZeros->getType(); 1584 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1585 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1586 return false; 1587 1588 // The intrinsic will be sunk behind a compare against zero and branch. 1589 BasicBlock *StartBlock = CountZeros->getParent(); 1590 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1591 1592 // Create another block after the count zero intrinsic. A PHI will be added 1593 // in this block to select the result of the intrinsic or the bit-width 1594 // constant if the input to the intrinsic is zero. 1595 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1596 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1597 1598 // Set up a builder to create a compare, conditional branch, and PHI. 1599 IRBuilder<> Builder(CountZeros->getContext()); 1600 Builder.SetInsertPoint(StartBlock->getTerminator()); 1601 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1602 1603 // Replace the unconditional branch that was created by the first split with 1604 // a compare against zero and a conditional branch. 1605 Value *Zero = Constant::getNullValue(Ty); 1606 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1607 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1608 StartBlock->getTerminator()->eraseFromParent(); 1609 1610 // Create a PHI in the end block to select either the output of the intrinsic 1611 // or the bit width of the operand. 1612 Builder.SetInsertPoint(&EndBlock->front()); 1613 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1614 CountZeros->replaceAllUsesWith(PN); 1615 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1616 PN->addIncoming(BitWidth, StartBlock); 1617 PN->addIncoming(CountZeros, CallBlock); 1618 1619 // We are explicitly handling the zero case, so we can set the intrinsic's 1620 // undefined zero argument to 'true'. This will also prevent reprocessing the 1621 // intrinsic; we only despeculate when a zero input is defined. 1622 CountZeros->setArgOperand(1, Builder.getTrue()); 1623 ModifiedDT = true; 1624 return true; 1625 } 1626 1627 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1628 BasicBlock *BB = CI->getParent(); 1629 1630 // Lower inline assembly if we can. 1631 // If we found an inline asm expession, and if the target knows how to 1632 // lower it to normal LLVM code, do so now. 1633 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1634 if (TLI->ExpandInlineAsm(CI)) { 1635 // Avoid invalidating the iterator. 1636 CurInstIterator = BB->begin(); 1637 // Avoid processing instructions out of order, which could cause 1638 // reuse before a value is defined. 1639 SunkAddrs.clear(); 1640 return true; 1641 } 1642 // Sink address computing for memory operands into the block. 1643 if (optimizeInlineAsmInst(CI)) 1644 return true; 1645 } 1646 1647 // Align the pointer arguments to this call if the target thinks it's a good 1648 // idea 1649 unsigned MinSize, PrefAlign; 1650 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1651 for (auto &Arg : CI->arg_operands()) { 1652 // We want to align both objects whose address is used directly and 1653 // objects whose address is used in casts and GEPs, though it only makes 1654 // sense for GEPs if the offset is a multiple of the desired alignment and 1655 // if size - offset meets the size threshold. 1656 if (!Arg->getType()->isPointerTy()) 1657 continue; 1658 APInt Offset(DL->getIndexSizeInBits( 1659 cast<PointerType>(Arg->getType())->getAddressSpace()), 1660 0); 1661 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1662 uint64_t Offset2 = Offset.getLimitedValue(); 1663 if ((Offset2 & (PrefAlign-1)) != 0) 1664 continue; 1665 AllocaInst *AI; 1666 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1667 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1668 AI->setAlignment(PrefAlign); 1669 // Global variables can only be aligned if they are defined in this 1670 // object (i.e. they are uniquely initialized in this object), and 1671 // over-aligning global variables that have an explicit section is 1672 // forbidden. 1673 GlobalVariable *GV; 1674 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1675 GV->getPointerAlignment(*DL) < PrefAlign && 1676 DL->getTypeAllocSize(GV->getValueType()) >= 1677 MinSize + Offset2) 1678 GV->setAlignment(PrefAlign); 1679 } 1680 // If this is a memcpy (or similar) then we may be able to improve the 1681 // alignment 1682 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1683 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL); 1684 if (DestAlign > MI->getDestAlignment()) 1685 MI->setDestAlignment(DestAlign); 1686 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 1687 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 1688 if (SrcAlign > MTI->getSourceAlignment()) 1689 MTI->setSourceAlignment(SrcAlign); 1690 } 1691 } 1692 } 1693 1694 // If we have a cold call site, try to sink addressing computation into the 1695 // cold block. This interacts with our handling for loads and stores to 1696 // ensure that we can fold all uses of a potential addressing computation 1697 // into their uses. TODO: generalize this to work over profiling data 1698 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1699 for (auto &Arg : CI->arg_operands()) { 1700 if (!Arg->getType()->isPointerTy()) 1701 continue; 1702 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1703 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1704 } 1705 1706 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1707 if (II) { 1708 switch (II->getIntrinsicID()) { 1709 default: break; 1710 case Intrinsic::experimental_widenable_condition: { 1711 // Give up on future widening oppurtunties so that we can fold away dead 1712 // paths and merge blocks before going into block-local instruction 1713 // selection. 1714 if (II->use_empty()) { 1715 II->eraseFromParent(); 1716 return true; 1717 } 1718 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 1719 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1720 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1721 }); 1722 return true; 1723 } 1724 case Intrinsic::objectsize: { 1725 // Lower all uses of llvm.objectsize.* 1726 Value *RetVal = 1727 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 1728 1729 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1730 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1731 }); 1732 return true; 1733 } 1734 case Intrinsic::is_constant: { 1735 // If is_constant hasn't folded away yet, lower it to false now. 1736 Constant *RetVal = ConstantInt::get(II->getType(), 0); 1737 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1738 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1739 }); 1740 return true; 1741 } 1742 case Intrinsic::aarch64_stlxr: 1743 case Intrinsic::aarch64_stxr: { 1744 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1745 if (!ExtVal || !ExtVal->hasOneUse() || 1746 ExtVal->getParent() == CI->getParent()) 1747 return false; 1748 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1749 ExtVal->moveBefore(CI); 1750 // Mark this instruction as "inserted by CGP", so that other 1751 // optimizations don't touch it. 1752 InsertedInsts.insert(ExtVal); 1753 return true; 1754 } 1755 case Intrinsic::launder_invariant_group: 1756 case Intrinsic::strip_invariant_group: { 1757 Value *ArgVal = II->getArgOperand(0); 1758 auto it = LargeOffsetGEPMap.find(II); 1759 if (it != LargeOffsetGEPMap.end()) { 1760 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 1761 // Make sure not to have to deal with iterator invalidation 1762 // after possibly adding ArgVal to LargeOffsetGEPMap. 1763 auto GEPs = std::move(it->second); 1764 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 1765 LargeOffsetGEPMap.erase(II); 1766 } 1767 1768 II->replaceAllUsesWith(ArgVal); 1769 II->eraseFromParent(); 1770 return true; 1771 } 1772 case Intrinsic::cttz: 1773 case Intrinsic::ctlz: 1774 // If counting zeros is expensive, try to avoid it. 1775 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 1776 } 1777 1778 if (TLI) { 1779 SmallVector<Value*, 2> PtrOps; 1780 Type *AccessTy; 1781 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 1782 while (!PtrOps.empty()) { 1783 Value *PtrVal = PtrOps.pop_back_val(); 1784 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 1785 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 1786 return true; 1787 } 1788 } 1789 } 1790 1791 // From here on out we're working with named functions. 1792 if (!CI->getCalledFunction()) return false; 1793 1794 // Lower all default uses of _chk calls. This is very similar 1795 // to what InstCombineCalls does, but here we are only lowering calls 1796 // to fortified library functions (e.g. __memcpy_chk) that have the default 1797 // "don't know" as the objectsize. Anything else should be left alone. 1798 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1799 if (Value *V = Simplifier.optimizeCall(CI)) { 1800 CI->replaceAllUsesWith(V); 1801 CI->eraseFromParent(); 1802 return true; 1803 } 1804 1805 return false; 1806 } 1807 1808 /// Look for opportunities to duplicate return instructions to the predecessor 1809 /// to enable tail call optimizations. The case it is currently looking for is: 1810 /// @code 1811 /// bb0: 1812 /// %tmp0 = tail call i32 @f0() 1813 /// br label %return 1814 /// bb1: 1815 /// %tmp1 = tail call i32 @f1() 1816 /// br label %return 1817 /// bb2: 1818 /// %tmp2 = tail call i32 @f2() 1819 /// br label %return 1820 /// return: 1821 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1822 /// ret i32 %retval 1823 /// @endcode 1824 /// 1825 /// => 1826 /// 1827 /// @code 1828 /// bb0: 1829 /// %tmp0 = tail call i32 @f0() 1830 /// ret i32 %tmp0 1831 /// bb1: 1832 /// %tmp1 = tail call i32 @f1() 1833 /// ret i32 %tmp1 1834 /// bb2: 1835 /// %tmp2 = tail call i32 @f2() 1836 /// ret i32 %tmp2 1837 /// @endcode 1838 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 1839 if (!TLI) 1840 return false; 1841 1842 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 1843 if (!RetI) 1844 return false; 1845 1846 PHINode *PN = nullptr; 1847 BitCastInst *BCI = nullptr; 1848 Value *V = RetI->getReturnValue(); 1849 if (V) { 1850 BCI = dyn_cast<BitCastInst>(V); 1851 if (BCI) 1852 V = BCI->getOperand(0); 1853 1854 PN = dyn_cast<PHINode>(V); 1855 if (!PN) 1856 return false; 1857 } 1858 1859 if (PN && PN->getParent() != BB) 1860 return false; 1861 1862 // Make sure there are no instructions between the PHI and return, or that the 1863 // return is the first instruction in the block. 1864 if (PN) { 1865 BasicBlock::iterator BI = BB->begin(); 1866 // Skip over debug and the bitcast. 1867 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI); 1868 if (&*BI != RetI) 1869 return false; 1870 } else { 1871 BasicBlock::iterator BI = BB->begin(); 1872 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1873 if (&*BI != RetI) 1874 return false; 1875 } 1876 1877 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1878 /// call. 1879 const Function *F = BB->getParent(); 1880 SmallVector<CallInst*, 4> TailCalls; 1881 if (PN) { 1882 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 1883 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 1884 // Make sure the phi value is indeed produced by the tail call. 1885 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 1886 TLI->mayBeEmittedAsTailCall(CI) && 1887 attributesPermitTailCall(F, CI, RetI, *TLI)) 1888 TailCalls.push_back(CI); 1889 } 1890 } else { 1891 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 1892 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 1893 if (!VisitedBBs.insert(*PI).second) 1894 continue; 1895 1896 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 1897 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 1898 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 1899 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 1900 if (RI == RE) 1901 continue; 1902 1903 CallInst *CI = dyn_cast<CallInst>(&*RI); 1904 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 1905 attributesPermitTailCall(F, CI, RetI, *TLI)) 1906 TailCalls.push_back(CI); 1907 } 1908 } 1909 1910 bool Changed = false; 1911 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1912 CallInst *CI = TailCalls[i]; 1913 CallSite CS(CI); 1914 1915 // Make sure the call instruction is followed by an unconditional branch to 1916 // the return block. 1917 BasicBlock *CallBB = CI->getParent(); 1918 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 1919 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 1920 continue; 1921 1922 // Duplicate the return into CallBB. 1923 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 1924 ModifiedDT = Changed = true; 1925 ++NumRetsDup; 1926 } 1927 1928 // If we eliminated all predecessors of the block, delete the block now. 1929 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 1930 BB->eraseFromParent(); 1931 1932 return Changed; 1933 } 1934 1935 //===----------------------------------------------------------------------===// 1936 // Memory Optimization 1937 //===----------------------------------------------------------------------===// 1938 1939 namespace { 1940 1941 /// This is an extended version of TargetLowering::AddrMode 1942 /// which holds actual Value*'s for register values. 1943 struct ExtAddrMode : public TargetLowering::AddrMode { 1944 Value *BaseReg = nullptr; 1945 Value *ScaledReg = nullptr; 1946 Value *OriginalValue = nullptr; 1947 1948 enum FieldName { 1949 NoField = 0x00, 1950 BaseRegField = 0x01, 1951 BaseGVField = 0x02, 1952 BaseOffsField = 0x04, 1953 ScaledRegField = 0x08, 1954 ScaleField = 0x10, 1955 MultipleFields = 0xff 1956 }; 1957 1958 ExtAddrMode() = default; 1959 1960 void print(raw_ostream &OS) const; 1961 void dump() const; 1962 1963 FieldName compare(const ExtAddrMode &other) { 1964 // First check that the types are the same on each field, as differing types 1965 // is something we can't cope with later on. 1966 if (BaseReg && other.BaseReg && 1967 BaseReg->getType() != other.BaseReg->getType()) 1968 return MultipleFields; 1969 if (BaseGV && other.BaseGV && 1970 BaseGV->getType() != other.BaseGV->getType()) 1971 return MultipleFields; 1972 if (ScaledReg && other.ScaledReg && 1973 ScaledReg->getType() != other.ScaledReg->getType()) 1974 return MultipleFields; 1975 1976 // Check each field to see if it differs. 1977 unsigned Result = NoField; 1978 if (BaseReg != other.BaseReg) 1979 Result |= BaseRegField; 1980 if (BaseGV != other.BaseGV) 1981 Result |= BaseGVField; 1982 if (BaseOffs != other.BaseOffs) 1983 Result |= BaseOffsField; 1984 if (ScaledReg != other.ScaledReg) 1985 Result |= ScaledRegField; 1986 // Don't count 0 as being a different scale, because that actually means 1987 // unscaled (which will already be counted by having no ScaledReg). 1988 if (Scale && other.Scale && Scale != other.Scale) 1989 Result |= ScaleField; 1990 1991 if (countPopulation(Result) > 1) 1992 return MultipleFields; 1993 else 1994 return static_cast<FieldName>(Result); 1995 } 1996 1997 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 1998 // with no offset. 1999 bool isTrivial() { 2000 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2001 // trivial if at most one of these terms is nonzero, except that BaseGV and 2002 // BaseReg both being zero actually means a null pointer value, which we 2003 // consider to be 'non-zero' here. 2004 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2005 } 2006 2007 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2008 switch (Field) { 2009 default: 2010 return nullptr; 2011 case BaseRegField: 2012 return BaseReg; 2013 case BaseGVField: 2014 return BaseGV; 2015 case ScaledRegField: 2016 return ScaledReg; 2017 case BaseOffsField: 2018 return ConstantInt::get(IntPtrTy, BaseOffs); 2019 } 2020 } 2021 2022 void SetCombinedField(FieldName Field, Value *V, 2023 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2024 switch (Field) { 2025 default: 2026 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2027 break; 2028 case ExtAddrMode::BaseRegField: 2029 BaseReg = V; 2030 break; 2031 case ExtAddrMode::BaseGVField: 2032 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2033 // in the BaseReg field. 2034 assert(BaseReg == nullptr); 2035 BaseReg = V; 2036 BaseGV = nullptr; 2037 break; 2038 case ExtAddrMode::ScaledRegField: 2039 ScaledReg = V; 2040 // If we have a mix of scaled and unscaled addrmodes then we want scale 2041 // to be the scale and not zero. 2042 if (!Scale) 2043 for (const ExtAddrMode &AM : AddrModes) 2044 if (AM.Scale) { 2045 Scale = AM.Scale; 2046 break; 2047 } 2048 break; 2049 case ExtAddrMode::BaseOffsField: 2050 // The offset is no longer a constant, so it goes in ScaledReg with a 2051 // scale of 1. 2052 assert(ScaledReg == nullptr); 2053 ScaledReg = V; 2054 Scale = 1; 2055 BaseOffs = 0; 2056 break; 2057 } 2058 } 2059 }; 2060 2061 } // end anonymous namespace 2062 2063 #ifndef NDEBUG 2064 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2065 AM.print(OS); 2066 return OS; 2067 } 2068 #endif 2069 2070 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2071 void ExtAddrMode::print(raw_ostream &OS) const { 2072 bool NeedPlus = false; 2073 OS << "["; 2074 if (BaseGV) { 2075 OS << (NeedPlus ? " + " : "") 2076 << "GV:"; 2077 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2078 NeedPlus = true; 2079 } 2080 2081 if (BaseOffs) { 2082 OS << (NeedPlus ? " + " : "") 2083 << BaseOffs; 2084 NeedPlus = true; 2085 } 2086 2087 if (BaseReg) { 2088 OS << (NeedPlus ? " + " : "") 2089 << "Base:"; 2090 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2091 NeedPlus = true; 2092 } 2093 if (Scale) { 2094 OS << (NeedPlus ? " + " : "") 2095 << Scale << "*"; 2096 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2097 } 2098 2099 OS << ']'; 2100 } 2101 2102 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2103 print(dbgs()); 2104 dbgs() << '\n'; 2105 } 2106 #endif 2107 2108 namespace { 2109 2110 /// This class provides transaction based operation on the IR. 2111 /// Every change made through this class is recorded in the internal state and 2112 /// can be undone (rollback) until commit is called. 2113 class TypePromotionTransaction { 2114 /// This represents the common interface of the individual transaction. 2115 /// Each class implements the logic for doing one specific modification on 2116 /// the IR via the TypePromotionTransaction. 2117 class TypePromotionAction { 2118 protected: 2119 /// The Instruction modified. 2120 Instruction *Inst; 2121 2122 public: 2123 /// Constructor of the action. 2124 /// The constructor performs the related action on the IR. 2125 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2126 2127 virtual ~TypePromotionAction() = default; 2128 2129 /// Undo the modification done by this action. 2130 /// When this method is called, the IR must be in the same state as it was 2131 /// before this action was applied. 2132 /// \pre Undoing the action works if and only if the IR is in the exact same 2133 /// state as it was directly after this action was applied. 2134 virtual void undo() = 0; 2135 2136 /// Advocate every change made by this action. 2137 /// When the results on the IR of the action are to be kept, it is important 2138 /// to call this function, otherwise hidden information may be kept forever. 2139 virtual void commit() { 2140 // Nothing to be done, this action is not doing anything. 2141 } 2142 }; 2143 2144 /// Utility to remember the position of an instruction. 2145 class InsertionHandler { 2146 /// Position of an instruction. 2147 /// Either an instruction: 2148 /// - Is the first in a basic block: BB is used. 2149 /// - Has a previous instruction: PrevInst is used. 2150 union { 2151 Instruction *PrevInst; 2152 BasicBlock *BB; 2153 } Point; 2154 2155 /// Remember whether or not the instruction had a previous instruction. 2156 bool HasPrevInstruction; 2157 2158 public: 2159 /// Record the position of \p Inst. 2160 InsertionHandler(Instruction *Inst) { 2161 BasicBlock::iterator It = Inst->getIterator(); 2162 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2163 if (HasPrevInstruction) 2164 Point.PrevInst = &*--It; 2165 else 2166 Point.BB = Inst->getParent(); 2167 } 2168 2169 /// Insert \p Inst at the recorded position. 2170 void insert(Instruction *Inst) { 2171 if (HasPrevInstruction) { 2172 if (Inst->getParent()) 2173 Inst->removeFromParent(); 2174 Inst->insertAfter(Point.PrevInst); 2175 } else { 2176 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2177 if (Inst->getParent()) 2178 Inst->moveBefore(Position); 2179 else 2180 Inst->insertBefore(Position); 2181 } 2182 } 2183 }; 2184 2185 /// Move an instruction before another. 2186 class InstructionMoveBefore : public TypePromotionAction { 2187 /// Original position of the instruction. 2188 InsertionHandler Position; 2189 2190 public: 2191 /// Move \p Inst before \p Before. 2192 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2193 : TypePromotionAction(Inst), Position(Inst) { 2194 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2195 << "\n"); 2196 Inst->moveBefore(Before); 2197 } 2198 2199 /// Move the instruction back to its original position. 2200 void undo() override { 2201 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2202 Position.insert(Inst); 2203 } 2204 }; 2205 2206 /// Set the operand of an instruction with a new value. 2207 class OperandSetter : public TypePromotionAction { 2208 /// Original operand of the instruction. 2209 Value *Origin; 2210 2211 /// Index of the modified instruction. 2212 unsigned Idx; 2213 2214 public: 2215 /// Set \p Idx operand of \p Inst with \p NewVal. 2216 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2217 : TypePromotionAction(Inst), Idx(Idx) { 2218 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2219 << "for:" << *Inst << "\n" 2220 << "with:" << *NewVal << "\n"); 2221 Origin = Inst->getOperand(Idx); 2222 Inst->setOperand(Idx, NewVal); 2223 } 2224 2225 /// Restore the original value of the instruction. 2226 void undo() override { 2227 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2228 << "for: " << *Inst << "\n" 2229 << "with: " << *Origin << "\n"); 2230 Inst->setOperand(Idx, Origin); 2231 } 2232 }; 2233 2234 /// Hide the operands of an instruction. 2235 /// Do as if this instruction was not using any of its operands. 2236 class OperandsHider : public TypePromotionAction { 2237 /// The list of original operands. 2238 SmallVector<Value *, 4> OriginalValues; 2239 2240 public: 2241 /// Remove \p Inst from the uses of the operands of \p Inst. 2242 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2243 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2244 unsigned NumOpnds = Inst->getNumOperands(); 2245 OriginalValues.reserve(NumOpnds); 2246 for (unsigned It = 0; It < NumOpnds; ++It) { 2247 // Save the current operand. 2248 Value *Val = Inst->getOperand(It); 2249 OriginalValues.push_back(Val); 2250 // Set a dummy one. 2251 // We could use OperandSetter here, but that would imply an overhead 2252 // that we are not willing to pay. 2253 Inst->setOperand(It, UndefValue::get(Val->getType())); 2254 } 2255 } 2256 2257 /// Restore the original list of uses. 2258 void undo() override { 2259 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2260 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2261 Inst->setOperand(It, OriginalValues[It]); 2262 } 2263 }; 2264 2265 /// Build a truncate instruction. 2266 class TruncBuilder : public TypePromotionAction { 2267 Value *Val; 2268 2269 public: 2270 /// Build a truncate instruction of \p Opnd producing a \p Ty 2271 /// result. 2272 /// trunc Opnd to Ty. 2273 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2274 IRBuilder<> Builder(Opnd); 2275 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2276 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2277 } 2278 2279 /// Get the built value. 2280 Value *getBuiltValue() { return Val; } 2281 2282 /// Remove the built instruction. 2283 void undo() override { 2284 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2285 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2286 IVal->eraseFromParent(); 2287 } 2288 }; 2289 2290 /// Build a sign extension instruction. 2291 class SExtBuilder : public TypePromotionAction { 2292 Value *Val; 2293 2294 public: 2295 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2296 /// result. 2297 /// sext Opnd to Ty. 2298 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2299 : TypePromotionAction(InsertPt) { 2300 IRBuilder<> Builder(InsertPt); 2301 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2302 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2303 } 2304 2305 /// Get the built value. 2306 Value *getBuiltValue() { return Val; } 2307 2308 /// Remove the built instruction. 2309 void undo() override { 2310 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2311 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2312 IVal->eraseFromParent(); 2313 } 2314 }; 2315 2316 /// Build a zero extension instruction. 2317 class ZExtBuilder : public TypePromotionAction { 2318 Value *Val; 2319 2320 public: 2321 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2322 /// result. 2323 /// zext Opnd to Ty. 2324 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2325 : TypePromotionAction(InsertPt) { 2326 IRBuilder<> Builder(InsertPt); 2327 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2328 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2329 } 2330 2331 /// Get the built value. 2332 Value *getBuiltValue() { return Val; } 2333 2334 /// Remove the built instruction. 2335 void undo() override { 2336 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2337 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2338 IVal->eraseFromParent(); 2339 } 2340 }; 2341 2342 /// Mutate an instruction to another type. 2343 class TypeMutator : public TypePromotionAction { 2344 /// Record the original type. 2345 Type *OrigTy; 2346 2347 public: 2348 /// Mutate the type of \p Inst into \p NewTy. 2349 TypeMutator(Instruction *Inst, Type *NewTy) 2350 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2351 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2352 << "\n"); 2353 Inst->mutateType(NewTy); 2354 } 2355 2356 /// Mutate the instruction back to its original type. 2357 void undo() override { 2358 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2359 << "\n"); 2360 Inst->mutateType(OrigTy); 2361 } 2362 }; 2363 2364 /// Replace the uses of an instruction by another instruction. 2365 class UsesReplacer : public TypePromotionAction { 2366 /// Helper structure to keep track of the replaced uses. 2367 struct InstructionAndIdx { 2368 /// The instruction using the instruction. 2369 Instruction *Inst; 2370 2371 /// The index where this instruction is used for Inst. 2372 unsigned Idx; 2373 2374 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2375 : Inst(Inst), Idx(Idx) {} 2376 }; 2377 2378 /// Keep track of the original uses (pair Instruction, Index). 2379 SmallVector<InstructionAndIdx, 4> OriginalUses; 2380 /// Keep track of the debug users. 2381 SmallVector<DbgValueInst *, 1> DbgValues; 2382 2383 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2384 2385 public: 2386 /// Replace all the use of \p Inst by \p New. 2387 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2388 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2389 << "\n"); 2390 // Record the original uses. 2391 for (Use &U : Inst->uses()) { 2392 Instruction *UserI = cast<Instruction>(U.getUser()); 2393 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2394 } 2395 // Record the debug uses separately. They are not in the instruction's 2396 // use list, but they are replaced by RAUW. 2397 findDbgValues(DbgValues, Inst); 2398 2399 // Now, we can replace the uses. 2400 Inst->replaceAllUsesWith(New); 2401 } 2402 2403 /// Reassign the original uses of Inst to Inst. 2404 void undo() override { 2405 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2406 for (use_iterator UseIt = OriginalUses.begin(), 2407 EndIt = OriginalUses.end(); 2408 UseIt != EndIt; ++UseIt) { 2409 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2410 } 2411 // RAUW has replaced all original uses with references to the new value, 2412 // including the debug uses. Since we are undoing the replacements, 2413 // the original debug uses must also be reinstated to maintain the 2414 // correctness and utility of debug value instructions. 2415 for (auto *DVI: DbgValues) { 2416 LLVMContext &Ctx = Inst->getType()->getContext(); 2417 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); 2418 DVI->setOperand(0, MV); 2419 } 2420 } 2421 }; 2422 2423 /// Remove an instruction from the IR. 2424 class InstructionRemover : public TypePromotionAction { 2425 /// Original position of the instruction. 2426 InsertionHandler Inserter; 2427 2428 /// Helper structure to hide all the link to the instruction. In other 2429 /// words, this helps to do as if the instruction was removed. 2430 OperandsHider Hider; 2431 2432 /// Keep track of the uses replaced, if any. 2433 UsesReplacer *Replacer = nullptr; 2434 2435 /// Keep track of instructions removed. 2436 SetOfInstrs &RemovedInsts; 2437 2438 public: 2439 /// Remove all reference of \p Inst and optionally replace all its 2440 /// uses with New. 2441 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2442 /// \pre If !Inst->use_empty(), then New != nullptr 2443 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2444 Value *New = nullptr) 2445 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2446 RemovedInsts(RemovedInsts) { 2447 if (New) 2448 Replacer = new UsesReplacer(Inst, New); 2449 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2450 RemovedInsts.insert(Inst); 2451 /// The instructions removed here will be freed after completing 2452 /// optimizeBlock() for all blocks as we need to keep track of the 2453 /// removed instructions during promotion. 2454 Inst->removeFromParent(); 2455 } 2456 2457 ~InstructionRemover() override { delete Replacer; } 2458 2459 /// Resurrect the instruction and reassign it to the proper uses if 2460 /// new value was provided when build this action. 2461 void undo() override { 2462 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2463 Inserter.insert(Inst); 2464 if (Replacer) 2465 Replacer->undo(); 2466 Hider.undo(); 2467 RemovedInsts.erase(Inst); 2468 } 2469 }; 2470 2471 public: 2472 /// Restoration point. 2473 /// The restoration point is a pointer to an action instead of an iterator 2474 /// because the iterator may be invalidated but not the pointer. 2475 using ConstRestorationPt = const TypePromotionAction *; 2476 2477 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2478 : RemovedInsts(RemovedInsts) {} 2479 2480 /// Advocate every changes made in that transaction. 2481 void commit(); 2482 2483 /// Undo all the changes made after the given point. 2484 void rollback(ConstRestorationPt Point); 2485 2486 /// Get the current restoration point. 2487 ConstRestorationPt getRestorationPoint() const; 2488 2489 /// \name API for IR modification with state keeping to support rollback. 2490 /// @{ 2491 /// Same as Instruction::setOperand. 2492 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2493 2494 /// Same as Instruction::eraseFromParent. 2495 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2496 2497 /// Same as Value::replaceAllUsesWith. 2498 void replaceAllUsesWith(Instruction *Inst, Value *New); 2499 2500 /// Same as Value::mutateType. 2501 void mutateType(Instruction *Inst, Type *NewTy); 2502 2503 /// Same as IRBuilder::createTrunc. 2504 Value *createTrunc(Instruction *Opnd, Type *Ty); 2505 2506 /// Same as IRBuilder::createSExt. 2507 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2508 2509 /// Same as IRBuilder::createZExt. 2510 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2511 2512 /// Same as Instruction::moveBefore. 2513 void moveBefore(Instruction *Inst, Instruction *Before); 2514 /// @} 2515 2516 private: 2517 /// The ordered list of actions made so far. 2518 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2519 2520 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2521 2522 SetOfInstrs &RemovedInsts; 2523 }; 2524 2525 } // end anonymous namespace 2526 2527 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2528 Value *NewVal) { 2529 Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>( 2530 Inst, Idx, NewVal)); 2531 } 2532 2533 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2534 Value *NewVal) { 2535 Actions.push_back( 2536 llvm::make_unique<TypePromotionTransaction::InstructionRemover>( 2537 Inst, RemovedInsts, NewVal)); 2538 } 2539 2540 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2541 Value *New) { 2542 Actions.push_back( 2543 llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2544 } 2545 2546 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2547 Actions.push_back( 2548 llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2549 } 2550 2551 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2552 Type *Ty) { 2553 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2554 Value *Val = Ptr->getBuiltValue(); 2555 Actions.push_back(std::move(Ptr)); 2556 return Val; 2557 } 2558 2559 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2560 Value *Opnd, Type *Ty) { 2561 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2562 Value *Val = Ptr->getBuiltValue(); 2563 Actions.push_back(std::move(Ptr)); 2564 return Val; 2565 } 2566 2567 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2568 Value *Opnd, Type *Ty) { 2569 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2570 Value *Val = Ptr->getBuiltValue(); 2571 Actions.push_back(std::move(Ptr)); 2572 return Val; 2573 } 2574 2575 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2576 Instruction *Before) { 2577 Actions.push_back( 2578 llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2579 Inst, Before)); 2580 } 2581 2582 TypePromotionTransaction::ConstRestorationPt 2583 TypePromotionTransaction::getRestorationPoint() const { 2584 return !Actions.empty() ? Actions.back().get() : nullptr; 2585 } 2586 2587 void TypePromotionTransaction::commit() { 2588 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2589 ++It) 2590 (*It)->commit(); 2591 Actions.clear(); 2592 } 2593 2594 void TypePromotionTransaction::rollback( 2595 TypePromotionTransaction::ConstRestorationPt Point) { 2596 while (!Actions.empty() && Point != Actions.back().get()) { 2597 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2598 Curr->undo(); 2599 } 2600 } 2601 2602 namespace { 2603 2604 /// A helper class for matching addressing modes. 2605 /// 2606 /// This encapsulates the logic for matching the target-legal addressing modes. 2607 class AddressingModeMatcher { 2608 SmallVectorImpl<Instruction*> &AddrModeInsts; 2609 const TargetLowering &TLI; 2610 const TargetRegisterInfo &TRI; 2611 const DataLayout &DL; 2612 2613 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2614 /// the memory instruction that we're computing this address for. 2615 Type *AccessTy; 2616 unsigned AddrSpace; 2617 Instruction *MemoryInst; 2618 2619 /// This is the addressing mode that we're building up. This is 2620 /// part of the return value of this addressing mode matching stuff. 2621 ExtAddrMode &AddrMode; 2622 2623 /// The instructions inserted by other CodeGenPrepare optimizations. 2624 const SetOfInstrs &InsertedInsts; 2625 2626 /// A map from the instructions to their type before promotion. 2627 InstrToOrigTy &PromotedInsts; 2628 2629 /// The ongoing transaction where every action should be registered. 2630 TypePromotionTransaction &TPT; 2631 2632 // A GEP which has too large offset to be folded into the addressing mode. 2633 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 2634 2635 /// This is set to true when we should not do profitability checks. 2636 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2637 bool IgnoreProfitability; 2638 2639 AddressingModeMatcher( 2640 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 2641 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 2642 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 2643 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 2644 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) 2645 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2646 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2647 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2648 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) { 2649 IgnoreProfitability = false; 2650 } 2651 2652 public: 2653 /// Find the maximal addressing mode that a load/store of V can fold, 2654 /// give an access type of AccessTy. This returns a list of involved 2655 /// instructions in AddrModeInsts. 2656 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2657 /// optimizations. 2658 /// \p PromotedInsts maps the instructions to their type before promotion. 2659 /// \p The ongoing transaction where every action should be registered. 2660 static ExtAddrMode 2661 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 2662 SmallVectorImpl<Instruction *> &AddrModeInsts, 2663 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 2664 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 2665 TypePromotionTransaction &TPT, 2666 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) { 2667 ExtAddrMode Result; 2668 2669 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 2670 MemoryInst, Result, InsertedInsts, 2671 PromotedInsts, TPT, LargeOffsetGEP) 2672 .matchAddr(V, 0); 2673 (void)Success; assert(Success && "Couldn't select *anything*?"); 2674 return Result; 2675 } 2676 2677 private: 2678 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2679 bool matchAddr(Value *Addr, unsigned Depth); 2680 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 2681 bool *MovedAway = nullptr); 2682 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2683 ExtAddrMode &AMBefore, 2684 ExtAddrMode &AMAfter); 2685 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2686 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2687 Value *PromotedOperand) const; 2688 }; 2689 2690 class PhiNodeSet; 2691 2692 /// An iterator for PhiNodeSet. 2693 class PhiNodeSetIterator { 2694 PhiNodeSet * const Set; 2695 size_t CurrentIndex = 0; 2696 2697 public: 2698 /// The constructor. Start should point to either a valid element, or be equal 2699 /// to the size of the underlying SmallVector of the PhiNodeSet. 2700 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 2701 PHINode * operator*() const; 2702 PhiNodeSetIterator& operator++(); 2703 bool operator==(const PhiNodeSetIterator &RHS) const; 2704 bool operator!=(const PhiNodeSetIterator &RHS) const; 2705 }; 2706 2707 /// Keeps a set of PHINodes. 2708 /// 2709 /// This is a minimal set implementation for a specific use case: 2710 /// It is very fast when there are very few elements, but also provides good 2711 /// performance when there are many. It is similar to SmallPtrSet, but also 2712 /// provides iteration by insertion order, which is deterministic and stable 2713 /// across runs. It is also similar to SmallSetVector, but provides removing 2714 /// elements in O(1) time. This is achieved by not actually removing the element 2715 /// from the underlying vector, so comes at the cost of using more memory, but 2716 /// that is fine, since PhiNodeSets are used as short lived objects. 2717 class PhiNodeSet { 2718 friend class PhiNodeSetIterator; 2719 2720 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 2721 using iterator = PhiNodeSetIterator; 2722 2723 /// Keeps the elements in the order of their insertion in the underlying 2724 /// vector. To achieve constant time removal, it never deletes any element. 2725 SmallVector<PHINode *, 32> NodeList; 2726 2727 /// Keeps the elements in the underlying set implementation. This (and not the 2728 /// NodeList defined above) is the source of truth on whether an element 2729 /// is actually in the collection. 2730 MapType NodeMap; 2731 2732 /// Points to the first valid (not deleted) element when the set is not empty 2733 /// and the value is not zero. Equals to the size of the underlying vector 2734 /// when the set is empty. When the value is 0, as in the beginning, the 2735 /// first element may or may not be valid. 2736 size_t FirstValidElement = 0; 2737 2738 public: 2739 /// Inserts a new element to the collection. 2740 /// \returns true if the element is actually added, i.e. was not in the 2741 /// collection before the operation. 2742 bool insert(PHINode *Ptr) { 2743 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 2744 NodeList.push_back(Ptr); 2745 return true; 2746 } 2747 return false; 2748 } 2749 2750 /// Removes the element from the collection. 2751 /// \returns whether the element is actually removed, i.e. was in the 2752 /// collection before the operation. 2753 bool erase(PHINode *Ptr) { 2754 auto it = NodeMap.find(Ptr); 2755 if (it != NodeMap.end()) { 2756 NodeMap.erase(Ptr); 2757 SkipRemovedElements(FirstValidElement); 2758 return true; 2759 } 2760 return false; 2761 } 2762 2763 /// Removes all elements and clears the collection. 2764 void clear() { 2765 NodeMap.clear(); 2766 NodeList.clear(); 2767 FirstValidElement = 0; 2768 } 2769 2770 /// \returns an iterator that will iterate the elements in the order of 2771 /// insertion. 2772 iterator begin() { 2773 if (FirstValidElement == 0) 2774 SkipRemovedElements(FirstValidElement); 2775 return PhiNodeSetIterator(this, FirstValidElement); 2776 } 2777 2778 /// \returns an iterator that points to the end of the collection. 2779 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 2780 2781 /// Returns the number of elements in the collection. 2782 size_t size() const { 2783 return NodeMap.size(); 2784 } 2785 2786 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 2787 size_t count(PHINode *Ptr) const { 2788 return NodeMap.count(Ptr); 2789 } 2790 2791 private: 2792 /// Updates the CurrentIndex so that it will point to a valid element. 2793 /// 2794 /// If the element of NodeList at CurrentIndex is valid, it does not 2795 /// change it. If there are no more valid elements, it updates CurrentIndex 2796 /// to point to the end of the NodeList. 2797 void SkipRemovedElements(size_t &CurrentIndex) { 2798 while (CurrentIndex < NodeList.size()) { 2799 auto it = NodeMap.find(NodeList[CurrentIndex]); 2800 // If the element has been deleted and added again later, NodeMap will 2801 // point to a different index, so CurrentIndex will still be invalid. 2802 if (it != NodeMap.end() && it->second == CurrentIndex) 2803 break; 2804 ++CurrentIndex; 2805 } 2806 } 2807 }; 2808 2809 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 2810 : Set(Set), CurrentIndex(Start) {} 2811 2812 PHINode * PhiNodeSetIterator::operator*() const { 2813 assert(CurrentIndex < Set->NodeList.size() && 2814 "PhiNodeSet access out of range"); 2815 return Set->NodeList[CurrentIndex]; 2816 } 2817 2818 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 2819 assert(CurrentIndex < Set->NodeList.size() && 2820 "PhiNodeSet access out of range"); 2821 ++CurrentIndex; 2822 Set->SkipRemovedElements(CurrentIndex); 2823 return *this; 2824 } 2825 2826 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 2827 return CurrentIndex == RHS.CurrentIndex; 2828 } 2829 2830 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 2831 return !((*this) == RHS); 2832 } 2833 2834 /// Keep track of simplification of Phi nodes. 2835 /// Accept the set of all phi nodes and erase phi node from this set 2836 /// if it is simplified. 2837 class SimplificationTracker { 2838 DenseMap<Value *, Value *> Storage; 2839 const SimplifyQuery &SQ; 2840 // Tracks newly created Phi nodes. The elements are iterated by insertion 2841 // order. 2842 PhiNodeSet AllPhiNodes; 2843 // Tracks newly created Select nodes. 2844 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 2845 2846 public: 2847 SimplificationTracker(const SimplifyQuery &sq) 2848 : SQ(sq) {} 2849 2850 Value *Get(Value *V) { 2851 do { 2852 auto SV = Storage.find(V); 2853 if (SV == Storage.end()) 2854 return V; 2855 V = SV->second; 2856 } while (true); 2857 } 2858 2859 Value *Simplify(Value *Val) { 2860 SmallVector<Value *, 32> WorkList; 2861 SmallPtrSet<Value *, 32> Visited; 2862 WorkList.push_back(Val); 2863 while (!WorkList.empty()) { 2864 auto P = WorkList.pop_back_val(); 2865 if (!Visited.insert(P).second) 2866 continue; 2867 if (auto *PI = dyn_cast<Instruction>(P)) 2868 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 2869 for (auto *U : PI->users()) 2870 WorkList.push_back(cast<Value>(U)); 2871 Put(PI, V); 2872 PI->replaceAllUsesWith(V); 2873 if (auto *PHI = dyn_cast<PHINode>(PI)) 2874 AllPhiNodes.erase(PHI); 2875 if (auto *Select = dyn_cast<SelectInst>(PI)) 2876 AllSelectNodes.erase(Select); 2877 PI->eraseFromParent(); 2878 } 2879 } 2880 return Get(Val); 2881 } 2882 2883 void Put(Value *From, Value *To) { 2884 Storage.insert({ From, To }); 2885 } 2886 2887 void ReplacePhi(PHINode *From, PHINode *To) { 2888 Value* OldReplacement = Get(From); 2889 while (OldReplacement != From) { 2890 From = To; 2891 To = dyn_cast<PHINode>(OldReplacement); 2892 OldReplacement = Get(From); 2893 } 2894 assert(Get(To) == To && "Replacement PHI node is already replaced."); 2895 Put(From, To); 2896 From->replaceAllUsesWith(To); 2897 AllPhiNodes.erase(From); 2898 From->eraseFromParent(); 2899 } 2900 2901 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 2902 2903 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 2904 2905 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 2906 2907 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 2908 2909 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 2910 2911 void destroyNewNodes(Type *CommonType) { 2912 // For safe erasing, replace the uses with dummy value first. 2913 auto Dummy = UndefValue::get(CommonType); 2914 for (auto I : AllPhiNodes) { 2915 I->replaceAllUsesWith(Dummy); 2916 I->eraseFromParent(); 2917 } 2918 AllPhiNodes.clear(); 2919 for (auto I : AllSelectNodes) { 2920 I->replaceAllUsesWith(Dummy); 2921 I->eraseFromParent(); 2922 } 2923 AllSelectNodes.clear(); 2924 } 2925 }; 2926 2927 /// A helper class for combining addressing modes. 2928 class AddressingModeCombiner { 2929 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 2930 typedef std::pair<PHINode *, PHINode *> PHIPair; 2931 2932 private: 2933 /// The addressing modes we've collected. 2934 SmallVector<ExtAddrMode, 16> AddrModes; 2935 2936 /// The field in which the AddrModes differ, when we have more than one. 2937 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 2938 2939 /// Are the AddrModes that we have all just equal to their original values? 2940 bool AllAddrModesTrivial = true; 2941 2942 /// Common Type for all different fields in addressing modes. 2943 Type *CommonType; 2944 2945 /// SimplifyQuery for simplifyInstruction utility. 2946 const SimplifyQuery &SQ; 2947 2948 /// Original Address. 2949 Value *Original; 2950 2951 public: 2952 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 2953 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 2954 2955 /// Get the combined AddrMode 2956 const ExtAddrMode &getAddrMode() const { 2957 return AddrModes[0]; 2958 } 2959 2960 /// Add a new AddrMode if it's compatible with the AddrModes we already 2961 /// have. 2962 /// \return True iff we succeeded in doing so. 2963 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 2964 // Take note of if we have any non-trivial AddrModes, as we need to detect 2965 // when all AddrModes are trivial as then we would introduce a phi or select 2966 // which just duplicates what's already there. 2967 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 2968 2969 // If this is the first addrmode then everything is fine. 2970 if (AddrModes.empty()) { 2971 AddrModes.emplace_back(NewAddrMode); 2972 return true; 2973 } 2974 2975 // Figure out how different this is from the other address modes, which we 2976 // can do just by comparing against the first one given that we only care 2977 // about the cumulative difference. 2978 ExtAddrMode::FieldName ThisDifferentField = 2979 AddrModes[0].compare(NewAddrMode); 2980 if (DifferentField == ExtAddrMode::NoField) 2981 DifferentField = ThisDifferentField; 2982 else if (DifferentField != ThisDifferentField) 2983 DifferentField = ExtAddrMode::MultipleFields; 2984 2985 // If NewAddrMode differs in more than one dimension we cannot handle it. 2986 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 2987 2988 // If Scale Field is different then we reject. 2989 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 2990 2991 // We also must reject the case when base offset is different and 2992 // scale reg is not null, we cannot handle this case due to merge of 2993 // different offsets will be used as ScaleReg. 2994 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 2995 !NewAddrMode.ScaledReg); 2996 2997 // We also must reject the case when GV is different and BaseReg installed 2998 // due to we want to use base reg as a merge of GV values. 2999 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3000 !NewAddrMode.HasBaseReg); 3001 3002 // Even if NewAddMode is the same we still need to collect it due to 3003 // original value is different. And later we will need all original values 3004 // as anchors during finding the common Phi node. 3005 if (CanHandle) 3006 AddrModes.emplace_back(NewAddrMode); 3007 else 3008 AddrModes.clear(); 3009 3010 return CanHandle; 3011 } 3012 3013 /// Combine the addressing modes we've collected into a single 3014 /// addressing mode. 3015 /// \return True iff we successfully combined them or we only had one so 3016 /// didn't need to combine them anyway. 3017 bool combineAddrModes() { 3018 // If we have no AddrModes then they can't be combined. 3019 if (AddrModes.size() == 0) 3020 return false; 3021 3022 // A single AddrMode can trivially be combined. 3023 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3024 return true; 3025 3026 // If the AddrModes we collected are all just equal to the value they are 3027 // derived from then combining them wouldn't do anything useful. 3028 if (AllAddrModesTrivial) 3029 return false; 3030 3031 if (!addrModeCombiningAllowed()) 3032 return false; 3033 3034 // Build a map between <original value, basic block where we saw it> to 3035 // value of base register. 3036 // Bail out if there is no common type. 3037 FoldAddrToValueMapping Map; 3038 if (!initializeMap(Map)) 3039 return false; 3040 3041 Value *CommonValue = findCommon(Map); 3042 if (CommonValue) 3043 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3044 return CommonValue != nullptr; 3045 } 3046 3047 private: 3048 /// Initialize Map with anchor values. For address seen 3049 /// we set the value of different field saw in this address. 3050 /// At the same time we find a common type for different field we will 3051 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3052 /// Return false if there is no common type found. 3053 bool initializeMap(FoldAddrToValueMapping &Map) { 3054 // Keep track of keys where the value is null. We will need to replace it 3055 // with constant null when we know the common type. 3056 SmallVector<Value *, 2> NullValue; 3057 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3058 for (auto &AM : AddrModes) { 3059 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3060 if (DV) { 3061 auto *Type = DV->getType(); 3062 if (CommonType && CommonType != Type) 3063 return false; 3064 CommonType = Type; 3065 Map[AM.OriginalValue] = DV; 3066 } else { 3067 NullValue.push_back(AM.OriginalValue); 3068 } 3069 } 3070 assert(CommonType && "At least one non-null value must be!"); 3071 for (auto *V : NullValue) 3072 Map[V] = Constant::getNullValue(CommonType); 3073 return true; 3074 } 3075 3076 /// We have mapping between value A and other value B where B was a field in 3077 /// addressing mode represented by A. Also we have an original value C 3078 /// representing an address we start with. Traversing from C through phi and 3079 /// selects we ended up with A's in a map. This utility function tries to find 3080 /// a value V which is a field in addressing mode C and traversing through phi 3081 /// nodes and selects we will end up in corresponded values B in a map. 3082 /// The utility will create a new Phi/Selects if needed. 3083 // The simple example looks as follows: 3084 // BB1: 3085 // p1 = b1 + 40 3086 // br cond BB2, BB3 3087 // BB2: 3088 // p2 = b2 + 40 3089 // br BB3 3090 // BB3: 3091 // p = phi [p1, BB1], [p2, BB2] 3092 // v = load p 3093 // Map is 3094 // p1 -> b1 3095 // p2 -> b2 3096 // Request is 3097 // p -> ? 3098 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3099 Value *findCommon(FoldAddrToValueMapping &Map) { 3100 // Tracks the simplification of newly created phi nodes. The reason we use 3101 // this mapping is because we will add new created Phi nodes in AddrToBase. 3102 // Simplification of Phi nodes is recursive, so some Phi node may 3103 // be simplified after we added it to AddrToBase. In reality this 3104 // simplification is possible only if original phi/selects were not 3105 // simplified yet. 3106 // Using this mapping we can find the current value in AddrToBase. 3107 SimplificationTracker ST(SQ); 3108 3109 // First step, DFS to create PHI nodes for all intermediate blocks. 3110 // Also fill traverse order for the second step. 3111 SmallVector<Value *, 32> TraverseOrder; 3112 InsertPlaceholders(Map, TraverseOrder, ST); 3113 3114 // Second Step, fill new nodes by merged values and simplify if possible. 3115 FillPlaceholders(Map, TraverseOrder, ST); 3116 3117 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3118 ST.destroyNewNodes(CommonType); 3119 return nullptr; 3120 } 3121 3122 // Now we'd like to match New Phi nodes to existed ones. 3123 unsigned PhiNotMatchedCount = 0; 3124 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3125 ST.destroyNewNodes(CommonType); 3126 return nullptr; 3127 } 3128 3129 auto *Result = ST.Get(Map.find(Original)->second); 3130 if (Result) { 3131 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3132 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3133 } 3134 return Result; 3135 } 3136 3137 /// Try to match PHI node to Candidate. 3138 /// Matcher tracks the matched Phi nodes. 3139 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3140 SmallSetVector<PHIPair, 8> &Matcher, 3141 PhiNodeSet &PhiNodesToMatch) { 3142 SmallVector<PHIPair, 8> WorkList; 3143 Matcher.insert({ PHI, Candidate }); 3144 WorkList.push_back({ PHI, Candidate }); 3145 SmallSet<PHIPair, 8> Visited; 3146 while (!WorkList.empty()) { 3147 auto Item = WorkList.pop_back_val(); 3148 if (!Visited.insert(Item).second) 3149 continue; 3150 // We iterate over all incoming values to Phi to compare them. 3151 // If values are different and both of them Phi and the first one is a 3152 // Phi we added (subject to match) and both of them is in the same basic 3153 // block then we can match our pair if values match. So we state that 3154 // these values match and add it to work list to verify that. 3155 for (auto B : Item.first->blocks()) { 3156 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3157 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3158 if (FirstValue == SecondValue) 3159 continue; 3160 3161 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3162 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3163 3164 // One of them is not Phi or 3165 // The first one is not Phi node from the set we'd like to match or 3166 // Phi nodes from different basic blocks then 3167 // we will not be able to match. 3168 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3169 FirstPhi->getParent() != SecondPhi->getParent()) 3170 return false; 3171 3172 // If we already matched them then continue. 3173 if (Matcher.count({ FirstPhi, SecondPhi })) 3174 continue; 3175 // So the values are different and does not match. So we need them to 3176 // match. 3177 Matcher.insert({ FirstPhi, SecondPhi }); 3178 // But me must check it. 3179 WorkList.push_back({ FirstPhi, SecondPhi }); 3180 } 3181 } 3182 return true; 3183 } 3184 3185 /// For the given set of PHI nodes (in the SimplificationTracker) try 3186 /// to find their equivalents. 3187 /// Returns false if this matching fails and creation of new Phi is disabled. 3188 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3189 unsigned &PhiNotMatchedCount) { 3190 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3191 // order, so the replacements (ReplacePhi) are also done in a deterministic 3192 // order. 3193 SmallSetVector<PHIPair, 8> Matched; 3194 SmallPtrSet<PHINode *, 8> WillNotMatch; 3195 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3196 while (PhiNodesToMatch.size()) { 3197 PHINode *PHI = *PhiNodesToMatch.begin(); 3198 3199 // Add us, if no Phi nodes in the basic block we do not match. 3200 WillNotMatch.clear(); 3201 WillNotMatch.insert(PHI); 3202 3203 // Traverse all Phis until we found equivalent or fail to do that. 3204 bool IsMatched = false; 3205 for (auto &P : PHI->getParent()->phis()) { 3206 if (&P == PHI) 3207 continue; 3208 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3209 break; 3210 // If it does not match, collect all Phi nodes from matcher. 3211 // if we end up with no match, them all these Phi nodes will not match 3212 // later. 3213 for (auto M : Matched) 3214 WillNotMatch.insert(M.first); 3215 Matched.clear(); 3216 } 3217 if (IsMatched) { 3218 // Replace all matched values and erase them. 3219 for (auto MV : Matched) 3220 ST.ReplacePhi(MV.first, MV.second); 3221 Matched.clear(); 3222 continue; 3223 } 3224 // If we are not allowed to create new nodes then bail out. 3225 if (!AllowNewPhiNodes) 3226 return false; 3227 // Just remove all seen values in matcher. They will not match anything. 3228 PhiNotMatchedCount += WillNotMatch.size(); 3229 for (auto *P : WillNotMatch) 3230 PhiNodesToMatch.erase(P); 3231 } 3232 return true; 3233 } 3234 /// Fill the placeholders with values from predecessors and simplify them. 3235 void FillPlaceholders(FoldAddrToValueMapping &Map, 3236 SmallVectorImpl<Value *> &TraverseOrder, 3237 SimplificationTracker &ST) { 3238 while (!TraverseOrder.empty()) { 3239 Value *Current = TraverseOrder.pop_back_val(); 3240 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3241 Value *V = Map[Current]; 3242 3243 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3244 // CurrentValue also must be Select. 3245 auto *CurrentSelect = cast<SelectInst>(Current); 3246 auto *TrueValue = CurrentSelect->getTrueValue(); 3247 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3248 Select->setTrueValue(ST.Get(Map[TrueValue])); 3249 auto *FalseValue = CurrentSelect->getFalseValue(); 3250 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3251 Select->setFalseValue(ST.Get(Map[FalseValue])); 3252 } else { 3253 // Must be a Phi node then. 3254 PHINode *PHI = cast<PHINode>(V); 3255 auto *CurrentPhi = dyn_cast<PHINode>(Current); 3256 // Fill the Phi node with values from predecessors. 3257 for (auto B : predecessors(PHI->getParent())) { 3258 Value *PV = CurrentPhi->getIncomingValueForBlock(B); 3259 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3260 PHI->addIncoming(ST.Get(Map[PV]), B); 3261 } 3262 } 3263 Map[Current] = ST.Simplify(V); 3264 } 3265 } 3266 3267 /// Starting from original value recursively iterates over def-use chain up to 3268 /// known ending values represented in a map. For each traversed phi/select 3269 /// inserts a placeholder Phi or Select. 3270 /// Reports all new created Phi/Select nodes by adding them to set. 3271 /// Also reports and order in what values have been traversed. 3272 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3273 SmallVectorImpl<Value *> &TraverseOrder, 3274 SimplificationTracker &ST) { 3275 SmallVector<Value *, 32> Worklist; 3276 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3277 "Address must be a Phi or Select node"); 3278 auto *Dummy = UndefValue::get(CommonType); 3279 Worklist.push_back(Original); 3280 while (!Worklist.empty()) { 3281 Value *Current = Worklist.pop_back_val(); 3282 // if it is already visited or it is an ending value then skip it. 3283 if (Map.find(Current) != Map.end()) 3284 continue; 3285 TraverseOrder.push_back(Current); 3286 3287 // CurrentValue must be a Phi node or select. All others must be covered 3288 // by anchors. 3289 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3290 // Is it OK to get metadata from OrigSelect?! 3291 // Create a Select placeholder with dummy value. 3292 SelectInst *Select = SelectInst::Create( 3293 CurrentSelect->getCondition(), Dummy, Dummy, 3294 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3295 Map[Current] = Select; 3296 ST.insertNewSelect(Select); 3297 // We are interested in True and False values. 3298 Worklist.push_back(CurrentSelect->getTrueValue()); 3299 Worklist.push_back(CurrentSelect->getFalseValue()); 3300 } else { 3301 // It must be a Phi node then. 3302 PHINode *CurrentPhi = cast<PHINode>(Current); 3303 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3304 PHINode *PHI = 3305 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3306 Map[Current] = PHI; 3307 ST.insertNewPhi(PHI); 3308 for (Value *P : CurrentPhi->incoming_values()) 3309 Worklist.push_back(P); 3310 } 3311 } 3312 } 3313 3314 bool addrModeCombiningAllowed() { 3315 if (DisableComplexAddrModes) 3316 return false; 3317 switch (DifferentField) { 3318 default: 3319 return false; 3320 case ExtAddrMode::BaseRegField: 3321 return AddrSinkCombineBaseReg; 3322 case ExtAddrMode::BaseGVField: 3323 return AddrSinkCombineBaseGV; 3324 case ExtAddrMode::BaseOffsField: 3325 return AddrSinkCombineBaseOffs; 3326 case ExtAddrMode::ScaledRegField: 3327 return AddrSinkCombineScaledReg; 3328 } 3329 } 3330 }; 3331 } // end anonymous namespace 3332 3333 /// Try adding ScaleReg*Scale to the current addressing mode. 3334 /// Return true and update AddrMode if this addr mode is legal for the target, 3335 /// false if not. 3336 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3337 unsigned Depth) { 3338 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3339 // mode. Just process that directly. 3340 if (Scale == 1) 3341 return matchAddr(ScaleReg, Depth); 3342 3343 // If the scale is 0, it takes nothing to add this. 3344 if (Scale == 0) 3345 return true; 3346 3347 // If we already have a scale of this value, we can add to it, otherwise, we 3348 // need an available scale field. 3349 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3350 return false; 3351 3352 ExtAddrMode TestAddrMode = AddrMode; 3353 3354 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3355 // [A+B + A*7] -> [B+A*8]. 3356 TestAddrMode.Scale += Scale; 3357 TestAddrMode.ScaledReg = ScaleReg; 3358 3359 // If the new address isn't legal, bail out. 3360 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3361 return false; 3362 3363 // It was legal, so commit it. 3364 AddrMode = TestAddrMode; 3365 3366 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3367 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3368 // X*Scale + C*Scale to addr mode. 3369 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3370 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3371 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3372 TestAddrMode.ScaledReg = AddLHS; 3373 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3374 3375 // If this addressing mode is legal, commit it and remember that we folded 3376 // this instruction. 3377 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3378 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3379 AddrMode = TestAddrMode; 3380 return true; 3381 } 3382 } 3383 3384 // Otherwise, not (x+c)*scale, just return what we have. 3385 return true; 3386 } 3387 3388 /// This is a little filter, which returns true if an addressing computation 3389 /// involving I might be folded into a load/store accessing it. 3390 /// This doesn't need to be perfect, but needs to accept at least 3391 /// the set of instructions that MatchOperationAddr can. 3392 static bool MightBeFoldableInst(Instruction *I) { 3393 switch (I->getOpcode()) { 3394 case Instruction::BitCast: 3395 case Instruction::AddrSpaceCast: 3396 // Don't touch identity bitcasts. 3397 if (I->getType() == I->getOperand(0)->getType()) 3398 return false; 3399 return I->getType()->isIntOrPtrTy(); 3400 case Instruction::PtrToInt: 3401 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3402 return true; 3403 case Instruction::IntToPtr: 3404 // We know the input is intptr_t, so this is foldable. 3405 return true; 3406 case Instruction::Add: 3407 return true; 3408 case Instruction::Mul: 3409 case Instruction::Shl: 3410 // Can only handle X*C and X << C. 3411 return isa<ConstantInt>(I->getOperand(1)); 3412 case Instruction::GetElementPtr: 3413 return true; 3414 default: 3415 return false; 3416 } 3417 } 3418 3419 /// Check whether or not \p Val is a legal instruction for \p TLI. 3420 /// \note \p Val is assumed to be the product of some type promotion. 3421 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3422 /// to be legal, as the non-promoted value would have had the same state. 3423 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3424 const DataLayout &DL, Value *Val) { 3425 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3426 if (!PromotedInst) 3427 return false; 3428 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3429 // If the ISDOpcode is undefined, it was undefined before the promotion. 3430 if (!ISDOpcode) 3431 return true; 3432 // Otherwise, check if the promoted instruction is legal or not. 3433 return TLI.isOperationLegalOrCustom( 3434 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3435 } 3436 3437 namespace { 3438 3439 /// Hepler class to perform type promotion. 3440 class TypePromotionHelper { 3441 /// Utility function to add a promoted instruction \p ExtOpnd to 3442 /// \p PromotedInsts and record the type of extension we have seen. 3443 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3444 Instruction *ExtOpnd, 3445 bool IsSExt) { 3446 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3447 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3448 if (It != PromotedInsts.end()) { 3449 // If the new extension is same as original, the information in 3450 // PromotedInsts[ExtOpnd] is still correct. 3451 if (It->second.getInt() == ExtTy) 3452 return; 3453 3454 // Now the new extension is different from old extension, we make 3455 // the type information invalid by setting extension type to 3456 // BothExtension. 3457 ExtTy = BothExtension; 3458 } 3459 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 3460 } 3461 3462 /// Utility function to query the original type of instruction \p Opnd 3463 /// with a matched extension type. If the extension doesn't match, we 3464 /// cannot use the information we had on the original type. 3465 /// BothExtension doesn't match any extension type. 3466 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 3467 Instruction *Opnd, 3468 bool IsSExt) { 3469 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3470 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3471 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 3472 return It->second.getPointer(); 3473 return nullptr; 3474 } 3475 3476 /// Utility function to check whether or not a sign or zero extension 3477 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3478 /// either using the operands of \p Inst or promoting \p Inst. 3479 /// The type of the extension is defined by \p IsSExt. 3480 /// In other words, check if: 3481 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3482 /// #1 Promotion applies: 3483 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3484 /// #2 Operand reuses: 3485 /// ext opnd1 to ConsideredExtType. 3486 /// \p PromotedInsts maps the instructions to their type before promotion. 3487 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3488 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3489 3490 /// Utility function to determine if \p OpIdx should be promoted when 3491 /// promoting \p Inst. 3492 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3493 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3494 } 3495 3496 /// Utility function to promote the operand of \p Ext when this 3497 /// operand is a promotable trunc or sext or zext. 3498 /// \p PromotedInsts maps the instructions to their type before promotion. 3499 /// \p CreatedInstsCost[out] contains the cost of all instructions 3500 /// created to promote the operand of Ext. 3501 /// Newly added extensions are inserted in \p Exts. 3502 /// Newly added truncates are inserted in \p Truncs. 3503 /// Should never be called directly. 3504 /// \return The promoted value which is used instead of Ext. 3505 static Value *promoteOperandForTruncAndAnyExt( 3506 Instruction *Ext, TypePromotionTransaction &TPT, 3507 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3508 SmallVectorImpl<Instruction *> *Exts, 3509 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3510 3511 /// Utility function to promote the operand of \p Ext when this 3512 /// operand is promotable and is not a supported trunc or sext. 3513 /// \p PromotedInsts maps the instructions to their type before promotion. 3514 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3515 /// created to promote the operand of Ext. 3516 /// Newly added extensions are inserted in \p Exts. 3517 /// Newly added truncates are inserted in \p Truncs. 3518 /// Should never be called directly. 3519 /// \return The promoted value which is used instead of Ext. 3520 static Value *promoteOperandForOther(Instruction *Ext, 3521 TypePromotionTransaction &TPT, 3522 InstrToOrigTy &PromotedInsts, 3523 unsigned &CreatedInstsCost, 3524 SmallVectorImpl<Instruction *> *Exts, 3525 SmallVectorImpl<Instruction *> *Truncs, 3526 const TargetLowering &TLI, bool IsSExt); 3527 3528 /// \see promoteOperandForOther. 3529 static Value *signExtendOperandForOther( 3530 Instruction *Ext, TypePromotionTransaction &TPT, 3531 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3532 SmallVectorImpl<Instruction *> *Exts, 3533 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3534 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3535 Exts, Truncs, TLI, true); 3536 } 3537 3538 /// \see promoteOperandForOther. 3539 static Value *zeroExtendOperandForOther( 3540 Instruction *Ext, TypePromotionTransaction &TPT, 3541 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3542 SmallVectorImpl<Instruction *> *Exts, 3543 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3544 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3545 Exts, Truncs, TLI, false); 3546 } 3547 3548 public: 3549 /// Type for the utility function that promotes the operand of Ext. 3550 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3551 InstrToOrigTy &PromotedInsts, 3552 unsigned &CreatedInstsCost, 3553 SmallVectorImpl<Instruction *> *Exts, 3554 SmallVectorImpl<Instruction *> *Truncs, 3555 const TargetLowering &TLI); 3556 3557 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3558 /// action to promote the operand of \p Ext instead of using Ext. 3559 /// \return NULL if no promotable action is possible with the current 3560 /// sign extension. 3561 /// \p InsertedInsts keeps track of all the instructions inserted by the 3562 /// other CodeGenPrepare optimizations. This information is important 3563 /// because we do not want to promote these instructions as CodeGenPrepare 3564 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3565 /// \p PromotedInsts maps the instructions to their type before promotion. 3566 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3567 const TargetLowering &TLI, 3568 const InstrToOrigTy &PromotedInsts); 3569 }; 3570 3571 } // end anonymous namespace 3572 3573 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3574 Type *ConsideredExtType, 3575 const InstrToOrigTy &PromotedInsts, 3576 bool IsSExt) { 3577 // The promotion helper does not know how to deal with vector types yet. 3578 // To be able to fix that, we would need to fix the places where we 3579 // statically extend, e.g., constants and such. 3580 if (Inst->getType()->isVectorTy()) 3581 return false; 3582 3583 // We can always get through zext. 3584 if (isa<ZExtInst>(Inst)) 3585 return true; 3586 3587 // sext(sext) is ok too. 3588 if (IsSExt && isa<SExtInst>(Inst)) 3589 return true; 3590 3591 // We can get through binary operator, if it is legal. In other words, the 3592 // binary operator must have a nuw or nsw flag. 3593 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3594 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3595 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3596 (IsSExt && BinOp->hasNoSignedWrap()))) 3597 return true; 3598 3599 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 3600 if ((Inst->getOpcode() == Instruction::And || 3601 Inst->getOpcode() == Instruction::Or)) 3602 return true; 3603 3604 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 3605 if (Inst->getOpcode() == Instruction::Xor) { 3606 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 3607 // Make sure it is not a NOT. 3608 if (Cst && !Cst->getValue().isAllOnesValue()) 3609 return true; 3610 } 3611 3612 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 3613 // It may change a poisoned value into a regular value, like 3614 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 3615 // poisoned value regular value 3616 // It should be OK since undef covers valid value. 3617 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 3618 return true; 3619 3620 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 3621 // It may change a poisoned value into a regular value, like 3622 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 3623 // poisoned value regular value 3624 // It should be OK since undef covers valid value. 3625 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 3626 const Instruction *ExtInst = 3627 dyn_cast<const Instruction>(*Inst->user_begin()); 3628 if (ExtInst->hasOneUse()) { 3629 const Instruction *AndInst = 3630 dyn_cast<const Instruction>(*ExtInst->user_begin()); 3631 if (AndInst && AndInst->getOpcode() == Instruction::And) { 3632 const ConstantInt *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 3633 if (Cst && 3634 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 3635 return true; 3636 } 3637 } 3638 } 3639 3640 // Check if we can do the following simplification. 3641 // ext(trunc(opnd)) --> ext(opnd) 3642 if (!isa<TruncInst>(Inst)) 3643 return false; 3644 3645 Value *OpndVal = Inst->getOperand(0); 3646 // Check if we can use this operand in the extension. 3647 // If the type is larger than the result type of the extension, we cannot. 3648 if (!OpndVal->getType()->isIntegerTy() || 3649 OpndVal->getType()->getIntegerBitWidth() > 3650 ConsideredExtType->getIntegerBitWidth()) 3651 return false; 3652 3653 // If the operand of the truncate is not an instruction, we will not have 3654 // any information on the dropped bits. 3655 // (Actually we could for constant but it is not worth the extra logic). 3656 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3657 if (!Opnd) 3658 return false; 3659 3660 // Check if the source of the type is narrow enough. 3661 // I.e., check that trunc just drops extended bits of the same kind of 3662 // the extension. 3663 // #1 get the type of the operand and check the kind of the extended bits. 3664 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 3665 if (OpndType) 3666 ; 3667 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3668 OpndType = Opnd->getOperand(0)->getType(); 3669 else 3670 return false; 3671 3672 // #2 check that the truncate just drops extended bits. 3673 return Inst->getType()->getIntegerBitWidth() >= 3674 OpndType->getIntegerBitWidth(); 3675 } 3676 3677 TypePromotionHelper::Action TypePromotionHelper::getAction( 3678 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3679 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3680 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3681 "Unexpected instruction type"); 3682 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3683 Type *ExtTy = Ext->getType(); 3684 bool IsSExt = isa<SExtInst>(Ext); 3685 // If the operand of the extension is not an instruction, we cannot 3686 // get through. 3687 // If it, check we can get through. 3688 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3689 return nullptr; 3690 3691 // Do not promote if the operand has been added by codegenprepare. 3692 // Otherwise, it means we are undoing an optimization that is likely to be 3693 // redone, thus causing potential infinite loop. 3694 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3695 return nullptr; 3696 3697 // SExt or Trunc instructions. 3698 // Return the related handler. 3699 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3700 isa<ZExtInst>(ExtOpnd)) 3701 return promoteOperandForTruncAndAnyExt; 3702 3703 // Regular instruction. 3704 // Abort early if we will have to insert non-free instructions. 3705 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3706 return nullptr; 3707 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3708 } 3709 3710 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3711 Instruction *SExt, TypePromotionTransaction &TPT, 3712 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3713 SmallVectorImpl<Instruction *> *Exts, 3714 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3715 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3716 // get through it and this method should not be called. 3717 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3718 Value *ExtVal = SExt; 3719 bool HasMergedNonFreeExt = false; 3720 if (isa<ZExtInst>(SExtOpnd)) { 3721 // Replace s|zext(zext(opnd)) 3722 // => zext(opnd). 3723 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3724 Value *ZExt = 3725 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3726 TPT.replaceAllUsesWith(SExt, ZExt); 3727 TPT.eraseInstruction(SExt); 3728 ExtVal = ZExt; 3729 } else { 3730 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3731 // => z|sext(opnd). 3732 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3733 } 3734 CreatedInstsCost = 0; 3735 3736 // Remove dead code. 3737 if (SExtOpnd->use_empty()) 3738 TPT.eraseInstruction(SExtOpnd); 3739 3740 // Check if the extension is still needed. 3741 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3742 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3743 if (ExtInst) { 3744 if (Exts) 3745 Exts->push_back(ExtInst); 3746 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3747 } 3748 return ExtVal; 3749 } 3750 3751 // At this point we have: ext ty opnd to ty. 3752 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3753 Value *NextVal = ExtInst->getOperand(0); 3754 TPT.eraseInstruction(ExtInst, NextVal); 3755 return NextVal; 3756 } 3757 3758 Value *TypePromotionHelper::promoteOperandForOther( 3759 Instruction *Ext, TypePromotionTransaction &TPT, 3760 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3761 SmallVectorImpl<Instruction *> *Exts, 3762 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3763 bool IsSExt) { 3764 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3765 // get through it and this method should not be called. 3766 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3767 CreatedInstsCost = 0; 3768 if (!ExtOpnd->hasOneUse()) { 3769 // ExtOpnd will be promoted. 3770 // All its uses, but Ext, will need to use a truncated value of the 3771 // promoted version. 3772 // Create the truncate now. 3773 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3774 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3775 // Insert it just after the definition. 3776 ITrunc->moveAfter(ExtOpnd); 3777 if (Truncs) 3778 Truncs->push_back(ITrunc); 3779 } 3780 3781 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3782 // Restore the operand of Ext (which has been replaced by the previous call 3783 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3784 TPT.setOperand(Ext, 0, ExtOpnd); 3785 } 3786 3787 // Get through the Instruction: 3788 // 1. Update its type. 3789 // 2. Replace the uses of Ext by Inst. 3790 // 3. Extend each operand that needs to be extended. 3791 3792 // Remember the original type of the instruction before promotion. 3793 // This is useful to know that the high bits are sign extended bits. 3794 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 3795 // Step #1. 3796 TPT.mutateType(ExtOpnd, Ext->getType()); 3797 // Step #2. 3798 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3799 // Step #3. 3800 Instruction *ExtForOpnd = Ext; 3801 3802 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 3803 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3804 ++OpIdx) { 3805 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3806 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3807 !shouldExtOperand(ExtOpnd, OpIdx)) { 3808 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 3809 continue; 3810 } 3811 // Check if we can statically extend the operand. 3812 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3813 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3814 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3815 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3816 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3817 : Cst->getValue().zext(BitWidth); 3818 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3819 continue; 3820 } 3821 // UndefValue are typed, so we have to statically sign extend them. 3822 if (isa<UndefValue>(Opnd)) { 3823 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3824 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3825 continue; 3826 } 3827 3828 // Otherwise we have to explicitly sign extend the operand. 3829 // Check if Ext was reused to extend an operand. 3830 if (!ExtForOpnd) { 3831 // If yes, create a new one. 3832 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 3833 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3834 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3835 if (!isa<Instruction>(ValForExtOpnd)) { 3836 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3837 continue; 3838 } 3839 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3840 } 3841 if (Exts) 3842 Exts->push_back(ExtForOpnd); 3843 TPT.setOperand(ExtForOpnd, 0, Opnd); 3844 3845 // Move the sign extension before the insertion point. 3846 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3847 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3848 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3849 // If more sext are required, new instructions will have to be created. 3850 ExtForOpnd = nullptr; 3851 } 3852 if (ExtForOpnd == Ext) { 3853 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 3854 TPT.eraseInstruction(Ext); 3855 } 3856 return ExtOpnd; 3857 } 3858 3859 /// Check whether or not promoting an instruction to a wider type is profitable. 3860 /// \p NewCost gives the cost of extension instructions created by the 3861 /// promotion. 3862 /// \p OldCost gives the cost of extension instructions before the promotion 3863 /// plus the number of instructions that have been 3864 /// matched in the addressing mode the promotion. 3865 /// \p PromotedOperand is the value that has been promoted. 3866 /// \return True if the promotion is profitable, false otherwise. 3867 bool AddressingModeMatcher::isPromotionProfitable( 3868 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3869 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 3870 << '\n'); 3871 // The cost of the new extensions is greater than the cost of the 3872 // old extension plus what we folded. 3873 // This is not profitable. 3874 if (NewCost > OldCost) 3875 return false; 3876 if (NewCost < OldCost) 3877 return true; 3878 // The promotion is neutral but it may help folding the sign extension in 3879 // loads for instance. 3880 // Check that we did not create an illegal instruction. 3881 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3882 } 3883 3884 /// Given an instruction or constant expr, see if we can fold the operation 3885 /// into the addressing mode. If so, update the addressing mode and return 3886 /// true, otherwise return false without modifying AddrMode. 3887 /// If \p MovedAway is not NULL, it contains the information of whether or 3888 /// not AddrInst has to be folded into the addressing mode on success. 3889 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3890 /// because it has been moved away. 3891 /// Thus AddrInst must not be added in the matched instructions. 3892 /// This state can happen when AddrInst is a sext, since it may be moved away. 3893 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3894 /// not be referenced anymore. 3895 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3896 unsigned Depth, 3897 bool *MovedAway) { 3898 // Avoid exponential behavior on extremely deep expression trees. 3899 if (Depth >= 5) return false; 3900 3901 // By default, all matched instructions stay in place. 3902 if (MovedAway) 3903 *MovedAway = false; 3904 3905 switch (Opcode) { 3906 case Instruction::PtrToInt: 3907 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3908 return matchAddr(AddrInst->getOperand(0), Depth); 3909 case Instruction::IntToPtr: { 3910 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3911 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3912 // This inttoptr is a no-op if the integer type is pointer sized. 3913 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3914 return matchAddr(AddrInst->getOperand(0), Depth); 3915 return false; 3916 } 3917 case Instruction::BitCast: 3918 // BitCast is always a noop, and we can handle it as long as it is 3919 // int->int or pointer->pointer (we don't want int<->fp or something). 3920 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 3921 // Don't touch identity bitcasts. These were probably put here by LSR, 3922 // and we don't want to mess around with them. Assume it knows what it 3923 // is doing. 3924 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3925 return matchAddr(AddrInst->getOperand(0), Depth); 3926 return false; 3927 case Instruction::AddrSpaceCast: { 3928 unsigned SrcAS 3929 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3930 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3931 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3932 return matchAddr(AddrInst->getOperand(0), Depth); 3933 return false; 3934 } 3935 case Instruction::Add: { 3936 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3937 ExtAddrMode BackupAddrMode = AddrMode; 3938 unsigned OldSize = AddrModeInsts.size(); 3939 // Start a transaction at this point. 3940 // The LHS may match but not the RHS. 3941 // Therefore, we need a higher level restoration point to undo partially 3942 // matched operation. 3943 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3944 TPT.getRestorationPoint(); 3945 3946 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3947 matchAddr(AddrInst->getOperand(0), Depth+1)) 3948 return true; 3949 3950 // Restore the old addr mode info. 3951 AddrMode = BackupAddrMode; 3952 AddrModeInsts.resize(OldSize); 3953 TPT.rollback(LastKnownGood); 3954 3955 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3956 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3957 matchAddr(AddrInst->getOperand(1), Depth+1)) 3958 return true; 3959 3960 // Otherwise we definitely can't merge the ADD in. 3961 AddrMode = BackupAddrMode; 3962 AddrModeInsts.resize(OldSize); 3963 TPT.rollback(LastKnownGood); 3964 break; 3965 } 3966 //case Instruction::Or: 3967 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3968 //break; 3969 case Instruction::Mul: 3970 case Instruction::Shl: { 3971 // Can only handle X*C and X << C. 3972 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3973 if (!RHS || RHS->getBitWidth() > 64) 3974 return false; 3975 int64_t Scale = RHS->getSExtValue(); 3976 if (Opcode == Instruction::Shl) 3977 Scale = 1LL << Scale; 3978 3979 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3980 } 3981 case Instruction::GetElementPtr: { 3982 // Scan the GEP. We check it if it contains constant offsets and at most 3983 // one variable offset. 3984 int VariableOperand = -1; 3985 unsigned VariableScale = 0; 3986 3987 int64_t ConstantOffset = 0; 3988 gep_type_iterator GTI = gep_type_begin(AddrInst); 3989 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3990 if (StructType *STy = GTI.getStructTypeOrNull()) { 3991 const StructLayout *SL = DL.getStructLayout(STy); 3992 unsigned Idx = 3993 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3994 ConstantOffset += SL->getElementOffset(Idx); 3995 } else { 3996 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3997 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3998 const APInt &CVal = CI->getValue(); 3999 if (CVal.getMinSignedBits() <= 64) { 4000 ConstantOffset += CVal.getSExtValue() * TypeSize; 4001 continue; 4002 } 4003 } 4004 if (TypeSize) { // Scales of zero don't do anything. 4005 // We only allow one variable index at the moment. 4006 if (VariableOperand != -1) 4007 return false; 4008 4009 // Remember the variable index. 4010 VariableOperand = i; 4011 VariableScale = TypeSize; 4012 } 4013 } 4014 } 4015 4016 // A common case is for the GEP to only do a constant offset. In this case, 4017 // just add it to the disp field and check validity. 4018 if (VariableOperand == -1) { 4019 AddrMode.BaseOffs += ConstantOffset; 4020 if (ConstantOffset == 0 || 4021 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4022 // Check to see if we can fold the base pointer in too. 4023 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 4024 return true; 4025 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4026 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4027 ConstantOffset > 0) { 4028 // Record GEPs with non-zero offsets as candidates for splitting in the 4029 // event that the offset cannot fit into the r+i addressing mode. 4030 // Simple and common case that only one GEP is used in calculating the 4031 // address for the memory access. 4032 Value *Base = AddrInst->getOperand(0); 4033 auto *BaseI = dyn_cast<Instruction>(Base); 4034 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4035 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4036 (BaseI && !isa<CastInst>(BaseI) && 4037 !isa<GetElementPtrInst>(BaseI))) { 4038 // If the base is an instruction, make sure the GEP is not in the same 4039 // basic block as the base. If the base is an argument or global 4040 // value, make sure the GEP is not in the entry block. Otherwise, 4041 // instruction selection can undo the split. Also make sure the 4042 // parent block allows inserting non-PHI instructions before the 4043 // terminator. 4044 BasicBlock *Parent = 4045 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4046 if (GEP->getParent() != Parent && !Parent->getTerminator()->isEHPad()) 4047 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4048 } 4049 } 4050 AddrMode.BaseOffs -= ConstantOffset; 4051 return false; 4052 } 4053 4054 // Save the valid addressing mode in case we can't match. 4055 ExtAddrMode BackupAddrMode = AddrMode; 4056 unsigned OldSize = AddrModeInsts.size(); 4057 4058 // See if the scale and offset amount is valid for this target. 4059 AddrMode.BaseOffs += ConstantOffset; 4060 4061 // Match the base operand of the GEP. 4062 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4063 // If it couldn't be matched, just stuff the value in a register. 4064 if (AddrMode.HasBaseReg) { 4065 AddrMode = BackupAddrMode; 4066 AddrModeInsts.resize(OldSize); 4067 return false; 4068 } 4069 AddrMode.HasBaseReg = true; 4070 AddrMode.BaseReg = AddrInst->getOperand(0); 4071 } 4072 4073 // Match the remaining variable portion of the GEP. 4074 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4075 Depth)) { 4076 // If it couldn't be matched, try stuffing the base into a register 4077 // instead of matching it, and retrying the match of the scale. 4078 AddrMode = BackupAddrMode; 4079 AddrModeInsts.resize(OldSize); 4080 if (AddrMode.HasBaseReg) 4081 return false; 4082 AddrMode.HasBaseReg = true; 4083 AddrMode.BaseReg = AddrInst->getOperand(0); 4084 AddrMode.BaseOffs += ConstantOffset; 4085 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4086 VariableScale, Depth)) { 4087 // If even that didn't work, bail. 4088 AddrMode = BackupAddrMode; 4089 AddrModeInsts.resize(OldSize); 4090 return false; 4091 } 4092 } 4093 4094 return true; 4095 } 4096 case Instruction::SExt: 4097 case Instruction::ZExt: { 4098 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4099 if (!Ext) 4100 return false; 4101 4102 // Try to move this ext out of the way of the addressing mode. 4103 // Ask for a method for doing so. 4104 TypePromotionHelper::Action TPH = 4105 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4106 if (!TPH) 4107 return false; 4108 4109 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4110 TPT.getRestorationPoint(); 4111 unsigned CreatedInstsCost = 0; 4112 unsigned ExtCost = !TLI.isExtFree(Ext); 4113 Value *PromotedOperand = 4114 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4115 // SExt has been moved away. 4116 // Thus either it will be rematched later in the recursive calls or it is 4117 // gone. Anyway, we must not fold it into the addressing mode at this point. 4118 // E.g., 4119 // op = add opnd, 1 4120 // idx = ext op 4121 // addr = gep base, idx 4122 // is now: 4123 // promotedOpnd = ext opnd <- no match here 4124 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4125 // addr = gep base, op <- match 4126 if (MovedAway) 4127 *MovedAway = true; 4128 4129 assert(PromotedOperand && 4130 "TypePromotionHelper should have filtered out those cases"); 4131 4132 ExtAddrMode BackupAddrMode = AddrMode; 4133 unsigned OldSize = AddrModeInsts.size(); 4134 4135 if (!matchAddr(PromotedOperand, Depth) || 4136 // The total of the new cost is equal to the cost of the created 4137 // instructions. 4138 // The total of the old cost is equal to the cost of the extension plus 4139 // what we have saved in the addressing mode. 4140 !isPromotionProfitable(CreatedInstsCost, 4141 ExtCost + (AddrModeInsts.size() - OldSize), 4142 PromotedOperand)) { 4143 AddrMode = BackupAddrMode; 4144 AddrModeInsts.resize(OldSize); 4145 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4146 TPT.rollback(LastKnownGood); 4147 return false; 4148 } 4149 return true; 4150 } 4151 } 4152 return false; 4153 } 4154 4155 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4156 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4157 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4158 /// for the target. 4159 /// 4160 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4161 // Start a transaction at this point that we will rollback if the matching 4162 // fails. 4163 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4164 TPT.getRestorationPoint(); 4165 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4166 // Fold in immediates if legal for the target. 4167 AddrMode.BaseOffs += CI->getSExtValue(); 4168 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4169 return true; 4170 AddrMode.BaseOffs -= CI->getSExtValue(); 4171 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4172 // If this is a global variable, try to fold it into the addressing mode. 4173 if (!AddrMode.BaseGV) { 4174 AddrMode.BaseGV = GV; 4175 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4176 return true; 4177 AddrMode.BaseGV = nullptr; 4178 } 4179 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4180 ExtAddrMode BackupAddrMode = AddrMode; 4181 unsigned OldSize = AddrModeInsts.size(); 4182 4183 // Check to see if it is possible to fold this operation. 4184 bool MovedAway = false; 4185 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4186 // This instruction may have been moved away. If so, there is nothing 4187 // to check here. 4188 if (MovedAway) 4189 return true; 4190 // Okay, it's possible to fold this. Check to see if it is actually 4191 // *profitable* to do so. We use a simple cost model to avoid increasing 4192 // register pressure too much. 4193 if (I->hasOneUse() || 4194 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4195 AddrModeInsts.push_back(I); 4196 return true; 4197 } 4198 4199 // It isn't profitable to do this, roll back. 4200 //cerr << "NOT FOLDING: " << *I; 4201 AddrMode = BackupAddrMode; 4202 AddrModeInsts.resize(OldSize); 4203 TPT.rollback(LastKnownGood); 4204 } 4205 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4206 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4207 return true; 4208 TPT.rollback(LastKnownGood); 4209 } else if (isa<ConstantPointerNull>(Addr)) { 4210 // Null pointer gets folded without affecting the addressing mode. 4211 return true; 4212 } 4213 4214 // Worse case, the target should support [reg] addressing modes. :) 4215 if (!AddrMode.HasBaseReg) { 4216 AddrMode.HasBaseReg = true; 4217 AddrMode.BaseReg = Addr; 4218 // Still check for legality in case the target supports [imm] but not [i+r]. 4219 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4220 return true; 4221 AddrMode.HasBaseReg = false; 4222 AddrMode.BaseReg = nullptr; 4223 } 4224 4225 // If the base register is already taken, see if we can do [r+r]. 4226 if (AddrMode.Scale == 0) { 4227 AddrMode.Scale = 1; 4228 AddrMode.ScaledReg = Addr; 4229 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4230 return true; 4231 AddrMode.Scale = 0; 4232 AddrMode.ScaledReg = nullptr; 4233 } 4234 // Couldn't match. 4235 TPT.rollback(LastKnownGood); 4236 return false; 4237 } 4238 4239 /// Check to see if all uses of OpVal by the specified inline asm call are due 4240 /// to memory operands. If so, return true, otherwise return false. 4241 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4242 const TargetLowering &TLI, 4243 const TargetRegisterInfo &TRI) { 4244 const Function *F = CI->getFunction(); 4245 TargetLowering::AsmOperandInfoVector TargetConstraints = 4246 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 4247 ImmutableCallSite(CI)); 4248 4249 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4250 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4251 4252 // Compute the constraint code and ConstraintType to use. 4253 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4254 4255 // If this asm operand is our Value*, and if it isn't an indirect memory 4256 // operand, we can't fold it! 4257 if (OpInfo.CallOperandVal == OpVal && 4258 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4259 !OpInfo.isIndirect)) 4260 return false; 4261 } 4262 4263 return true; 4264 } 4265 4266 // Max number of memory uses to look at before aborting the search to conserve 4267 // compile time. 4268 static constexpr int MaxMemoryUsesToScan = 20; 4269 4270 /// Recursively walk all the uses of I until we find a memory use. 4271 /// If we find an obviously non-foldable instruction, return true. 4272 /// Add the ultimately found memory instructions to MemoryUses. 4273 static bool FindAllMemoryUses( 4274 Instruction *I, 4275 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4276 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4277 const TargetRegisterInfo &TRI, int SeenInsts = 0) { 4278 // If we already considered this instruction, we're done. 4279 if (!ConsideredInsts.insert(I).second) 4280 return false; 4281 4282 // If this is an obviously unfoldable instruction, bail out. 4283 if (!MightBeFoldableInst(I)) 4284 return true; 4285 4286 const bool OptSize = I->getFunction()->optForSize(); 4287 4288 // Loop over all the uses, recursively processing them. 4289 for (Use &U : I->uses()) { 4290 // Conservatively return true if we're seeing a large number or a deep chain 4291 // of users. This avoids excessive compilation times in pathological cases. 4292 if (SeenInsts++ >= MaxMemoryUsesToScan) 4293 return true; 4294 4295 Instruction *UserI = cast<Instruction>(U.getUser()); 4296 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4297 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4298 continue; 4299 } 4300 4301 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4302 unsigned opNo = U.getOperandNo(); 4303 if (opNo != StoreInst::getPointerOperandIndex()) 4304 return true; // Storing addr, not into addr. 4305 MemoryUses.push_back(std::make_pair(SI, opNo)); 4306 continue; 4307 } 4308 4309 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4310 unsigned opNo = U.getOperandNo(); 4311 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4312 return true; // Storing addr, not into addr. 4313 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4314 continue; 4315 } 4316 4317 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4318 unsigned opNo = U.getOperandNo(); 4319 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4320 return true; // Storing addr, not into addr. 4321 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4322 continue; 4323 } 4324 4325 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4326 // If this is a cold call, we can sink the addressing calculation into 4327 // the cold path. See optimizeCallInst 4328 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 4329 continue; 4330 4331 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4332 if (!IA) return true; 4333 4334 // If this is a memory operand, we're cool, otherwise bail out. 4335 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4336 return true; 4337 continue; 4338 } 4339 4340 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, 4341 SeenInsts)) 4342 return true; 4343 } 4344 4345 return false; 4346 } 4347 4348 /// Return true if Val is already known to be live at the use site that we're 4349 /// folding it into. If so, there is no cost to include it in the addressing 4350 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4351 /// instruction already. 4352 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4353 Value *KnownLive2) { 4354 // If Val is either of the known-live values, we know it is live! 4355 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4356 return true; 4357 4358 // All values other than instructions and arguments (e.g. constants) are live. 4359 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4360 4361 // If Val is a constant sized alloca in the entry block, it is live, this is 4362 // true because it is just a reference to the stack/frame pointer, which is 4363 // live for the whole function. 4364 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4365 if (AI->isStaticAlloca()) 4366 return true; 4367 4368 // Check to see if this value is already used in the memory instruction's 4369 // block. If so, it's already live into the block at the very least, so we 4370 // can reasonably fold it. 4371 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4372 } 4373 4374 /// It is possible for the addressing mode of the machine to fold the specified 4375 /// instruction into a load or store that ultimately uses it. 4376 /// However, the specified instruction has multiple uses. 4377 /// Given this, it may actually increase register pressure to fold it 4378 /// into the load. For example, consider this code: 4379 /// 4380 /// X = ... 4381 /// Y = X+1 4382 /// use(Y) -> nonload/store 4383 /// Z = Y+1 4384 /// load Z 4385 /// 4386 /// In this case, Y has multiple uses, and can be folded into the load of Z 4387 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4388 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4389 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4390 /// number of computations either. 4391 /// 4392 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4393 /// X was live across 'load Z' for other reasons, we actually *would* want to 4394 /// fold the addressing mode in the Z case. This would make Y die earlier. 4395 bool AddressingModeMatcher:: 4396 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4397 ExtAddrMode &AMAfter) { 4398 if (IgnoreProfitability) return true; 4399 4400 // AMBefore is the addressing mode before this instruction was folded into it, 4401 // and AMAfter is the addressing mode after the instruction was folded. Get 4402 // the set of registers referenced by AMAfter and subtract out those 4403 // referenced by AMBefore: this is the set of values which folding in this 4404 // address extends the lifetime of. 4405 // 4406 // Note that there are only two potential values being referenced here, 4407 // BaseReg and ScaleReg (global addresses are always available, as are any 4408 // folded immediates). 4409 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4410 4411 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4412 // lifetime wasn't extended by adding this instruction. 4413 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4414 BaseReg = nullptr; 4415 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4416 ScaledReg = nullptr; 4417 4418 // If folding this instruction (and it's subexprs) didn't extend any live 4419 // ranges, we're ok with it. 4420 if (!BaseReg && !ScaledReg) 4421 return true; 4422 4423 // If all uses of this instruction can have the address mode sunk into them, 4424 // we can remove the addressing mode and effectively trade one live register 4425 // for another (at worst.) In this context, folding an addressing mode into 4426 // the use is just a particularly nice way of sinking it. 4427 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4428 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4429 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 4430 return false; // Has a non-memory, non-foldable use! 4431 4432 // Now that we know that all uses of this instruction are part of a chain of 4433 // computation involving only operations that could theoretically be folded 4434 // into a memory use, loop over each of these memory operation uses and see 4435 // if they could *actually* fold the instruction. The assumption is that 4436 // addressing modes are cheap and that duplicating the computation involved 4437 // many times is worthwhile, even on a fastpath. For sinking candidates 4438 // (i.e. cold call sites), this serves as a way to prevent excessive code 4439 // growth since most architectures have some reasonable small and fast way to 4440 // compute an effective address. (i.e LEA on x86) 4441 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4442 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4443 Instruction *User = MemoryUses[i].first; 4444 unsigned OpNo = MemoryUses[i].second; 4445 4446 // Get the access type of this use. If the use isn't a pointer, we don't 4447 // know what it accesses. 4448 Value *Address = User->getOperand(OpNo); 4449 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4450 if (!AddrTy) 4451 return false; 4452 Type *AddressAccessTy = AddrTy->getElementType(); 4453 unsigned AS = AddrTy->getAddressSpace(); 4454 4455 // Do a match against the root of this address, ignoring profitability. This 4456 // will tell us if the addressing mode for the memory operation will 4457 // *actually* cover the shared instruction. 4458 ExtAddrMode Result; 4459 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4460 0); 4461 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4462 TPT.getRestorationPoint(); 4463 AddressingModeMatcher Matcher( 4464 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4465 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4466 Matcher.IgnoreProfitability = true; 4467 bool Success = Matcher.matchAddr(Address, 0); 4468 (void)Success; assert(Success && "Couldn't select *anything*?"); 4469 4470 // The match was to check the profitability, the changes made are not 4471 // part of the original matcher. Therefore, they should be dropped 4472 // otherwise the original matcher will not present the right state. 4473 TPT.rollback(LastKnownGood); 4474 4475 // If the match didn't cover I, then it won't be shared by it. 4476 if (!is_contained(MatchedAddrModeInsts, I)) 4477 return false; 4478 4479 MatchedAddrModeInsts.clear(); 4480 } 4481 4482 return true; 4483 } 4484 4485 /// Return true if the specified values are defined in a 4486 /// different basic block than BB. 4487 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4488 if (Instruction *I = dyn_cast<Instruction>(V)) 4489 return I->getParent() != BB; 4490 return false; 4491 } 4492 4493 /// Sink addressing mode computation immediate before MemoryInst if doing so 4494 /// can be done without increasing register pressure. The need for the 4495 /// register pressure constraint means this can end up being an all or nothing 4496 /// decision for all uses of the same addressing computation. 4497 /// 4498 /// Load and Store Instructions often have addressing modes that can do 4499 /// significant amounts of computation. As such, instruction selection will try 4500 /// to get the load or store to do as much computation as possible for the 4501 /// program. The problem is that isel can only see within a single block. As 4502 /// such, we sink as much legal addressing mode work into the block as possible. 4503 /// 4504 /// This method is used to optimize both load/store and inline asms with memory 4505 /// operands. It's also used to sink addressing computations feeding into cold 4506 /// call sites into their (cold) basic block. 4507 /// 4508 /// The motivation for handling sinking into cold blocks is that doing so can 4509 /// both enable other address mode sinking (by satisfying the register pressure 4510 /// constraint above), and reduce register pressure globally (by removing the 4511 /// addressing mode computation from the fast path entirely.). 4512 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4513 Type *AccessTy, unsigned AddrSpace) { 4514 Value *Repl = Addr; 4515 4516 // Try to collapse single-value PHI nodes. This is necessary to undo 4517 // unprofitable PRE transformations. 4518 SmallVector<Value*, 8> worklist; 4519 SmallPtrSet<Value*, 16> Visited; 4520 worklist.push_back(Addr); 4521 4522 // Use a worklist to iteratively look through PHI and select nodes, and 4523 // ensure that the addressing mode obtained from the non-PHI/select roots of 4524 // the graph are compatible. 4525 bool PhiOrSelectSeen = false; 4526 SmallVector<Instruction*, 16> AddrModeInsts; 4527 const SimplifyQuery SQ(*DL, TLInfo); 4528 AddressingModeCombiner AddrModes(SQ, Addr); 4529 TypePromotionTransaction TPT(RemovedInsts); 4530 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4531 TPT.getRestorationPoint(); 4532 while (!worklist.empty()) { 4533 Value *V = worklist.back(); 4534 worklist.pop_back(); 4535 4536 // We allow traversing cyclic Phi nodes. 4537 // In case of success after this loop we ensure that traversing through 4538 // Phi nodes ends up with all cases to compute address of the form 4539 // BaseGV + Base + Scale * Index + Offset 4540 // where Scale and Offset are constans and BaseGV, Base and Index 4541 // are exactly the same Values in all cases. 4542 // It means that BaseGV, Scale and Offset dominate our memory instruction 4543 // and have the same value as they had in address computation represented 4544 // as Phi. So we can safely sink address computation to memory instruction. 4545 if (!Visited.insert(V).second) 4546 continue; 4547 4548 // For a PHI node, push all of its incoming values. 4549 if (PHINode *P = dyn_cast<PHINode>(V)) { 4550 for (Value *IncValue : P->incoming_values()) 4551 worklist.push_back(IncValue); 4552 PhiOrSelectSeen = true; 4553 continue; 4554 } 4555 // Similar for select. 4556 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4557 worklist.push_back(SI->getFalseValue()); 4558 worklist.push_back(SI->getTrueValue()); 4559 PhiOrSelectSeen = true; 4560 continue; 4561 } 4562 4563 // For non-PHIs, determine the addressing mode being computed. Note that 4564 // the result may differ depending on what other uses our candidate 4565 // addressing instructions might have. 4566 AddrModeInsts.clear(); 4567 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4568 0); 4569 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4570 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4571 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4572 4573 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4574 if (GEP && GEP->getParent() != MemoryInst->getParent() && 4575 !NewGEPBases.count(GEP)) { 4576 // If splitting the underlying data structure can reduce the offset of a 4577 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4578 // previously split data structures. 4579 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4580 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4581 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4582 } 4583 4584 NewAddrMode.OriginalValue = V; 4585 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4586 break; 4587 } 4588 4589 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4590 // or we have multiple but either couldn't combine them or combining them 4591 // wouldn't do anything useful, bail out now. 4592 if (!AddrModes.combineAddrModes()) { 4593 TPT.rollback(LastKnownGood); 4594 return false; 4595 } 4596 TPT.commit(); 4597 4598 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4599 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4600 4601 // If all the instructions matched are already in this BB, don't do anything. 4602 // If we saw a Phi node then it is not local definitely, and if we saw a select 4603 // then we want to push the address calculation past it even if it's already 4604 // in this BB. 4605 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4606 return IsNonLocalValue(V, MemoryInst->getParent()); 4607 })) { 4608 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 4609 << "\n"); 4610 return false; 4611 } 4612 4613 // Insert this computation right after this user. Since our caller is 4614 // scanning from the top of the BB to the bottom, reuse of the expr are 4615 // guaranteed to happen later. 4616 IRBuilder<> Builder(MemoryInst); 4617 4618 // Now that we determined the addressing expression we want to use and know 4619 // that we have to sink it into this block. Check to see if we have already 4620 // done this for some other load/store instr in this block. If so, reuse 4621 // the computation. Before attempting reuse, check if the address is valid 4622 // as it may have been erased. 4623 4624 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4625 4626 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4627 if (SunkAddr) { 4628 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 4629 << " for " << *MemoryInst << "\n"); 4630 if (SunkAddr->getType() != Addr->getType()) 4631 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4632 } else if (AddrSinkUsingGEPs || 4633 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && TTI->useAA())) { 4634 // By default, we use the GEP-based method when AA is used later. This 4635 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4636 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4637 << " for " << *MemoryInst << "\n"); 4638 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4639 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4640 4641 // First, find the pointer. 4642 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4643 ResultPtr = AddrMode.BaseReg; 4644 AddrMode.BaseReg = nullptr; 4645 } 4646 4647 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4648 // We can't add more than one pointer together, nor can we scale a 4649 // pointer (both of which seem meaningless). 4650 if (ResultPtr || AddrMode.Scale != 1) 4651 return false; 4652 4653 ResultPtr = AddrMode.ScaledReg; 4654 AddrMode.Scale = 0; 4655 } 4656 4657 // It is only safe to sign extend the BaseReg if we know that the math 4658 // required to create it did not overflow before we extend it. Since 4659 // the original IR value was tossed in favor of a constant back when 4660 // the AddrMode was created we need to bail out gracefully if widths 4661 // do not match instead of extending it. 4662 // 4663 // (See below for code to add the scale.) 4664 if (AddrMode.Scale) { 4665 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4666 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4667 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4668 return false; 4669 } 4670 4671 if (AddrMode.BaseGV) { 4672 if (ResultPtr) 4673 return false; 4674 4675 ResultPtr = AddrMode.BaseGV; 4676 } 4677 4678 // If the real base value actually came from an inttoptr, then the matcher 4679 // will look through it and provide only the integer value. In that case, 4680 // use it here. 4681 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4682 if (!ResultPtr && AddrMode.BaseReg) { 4683 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4684 "sunkaddr"); 4685 AddrMode.BaseReg = nullptr; 4686 } else if (!ResultPtr && AddrMode.Scale == 1) { 4687 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4688 "sunkaddr"); 4689 AddrMode.Scale = 0; 4690 } 4691 } 4692 4693 if (!ResultPtr && 4694 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4695 SunkAddr = Constant::getNullValue(Addr->getType()); 4696 } else if (!ResultPtr) { 4697 return false; 4698 } else { 4699 Type *I8PtrTy = 4700 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4701 Type *I8Ty = Builder.getInt8Ty(); 4702 4703 // Start with the base register. Do this first so that subsequent address 4704 // matching finds it last, which will prevent it from trying to match it 4705 // as the scaled value in case it happens to be a mul. That would be 4706 // problematic if we've sunk a different mul for the scale, because then 4707 // we'd end up sinking both muls. 4708 if (AddrMode.BaseReg) { 4709 Value *V = AddrMode.BaseReg; 4710 if (V->getType() != IntPtrTy) 4711 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4712 4713 ResultIndex = V; 4714 } 4715 4716 // Add the scale value. 4717 if (AddrMode.Scale) { 4718 Value *V = AddrMode.ScaledReg; 4719 if (V->getType() == IntPtrTy) { 4720 // done. 4721 } else { 4722 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 4723 cast<IntegerType>(V->getType())->getBitWidth() && 4724 "We can't transform if ScaledReg is too narrow"); 4725 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4726 } 4727 4728 if (AddrMode.Scale != 1) 4729 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4730 "sunkaddr"); 4731 if (ResultIndex) 4732 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4733 else 4734 ResultIndex = V; 4735 } 4736 4737 // Add in the Base Offset if present. 4738 if (AddrMode.BaseOffs) { 4739 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4740 if (ResultIndex) { 4741 // We need to add this separately from the scale above to help with 4742 // SDAG consecutive load/store merging. 4743 if (ResultPtr->getType() != I8PtrTy) 4744 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4745 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4746 } 4747 4748 ResultIndex = V; 4749 } 4750 4751 if (!ResultIndex) { 4752 SunkAddr = ResultPtr; 4753 } else { 4754 if (ResultPtr->getType() != I8PtrTy) 4755 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4756 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4757 } 4758 4759 if (SunkAddr->getType() != Addr->getType()) 4760 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4761 } 4762 } else { 4763 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 4764 // non-integral pointers, so in that case bail out now. 4765 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 4766 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 4767 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 4768 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 4769 if (DL->isNonIntegralPointerType(Addr->getType()) || 4770 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 4771 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 4772 (AddrMode.BaseGV && 4773 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 4774 return false; 4775 4776 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4777 << " for " << *MemoryInst << "\n"); 4778 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4779 Value *Result = nullptr; 4780 4781 // Start with the base register. Do this first so that subsequent address 4782 // matching finds it last, which will prevent it from trying to match it 4783 // as the scaled value in case it happens to be a mul. That would be 4784 // problematic if we've sunk a different mul for the scale, because then 4785 // we'd end up sinking both muls. 4786 if (AddrMode.BaseReg) { 4787 Value *V = AddrMode.BaseReg; 4788 if (V->getType()->isPointerTy()) 4789 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4790 if (V->getType() != IntPtrTy) 4791 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4792 Result = V; 4793 } 4794 4795 // Add the scale value. 4796 if (AddrMode.Scale) { 4797 Value *V = AddrMode.ScaledReg; 4798 if (V->getType() == IntPtrTy) { 4799 // done. 4800 } else if (V->getType()->isPointerTy()) { 4801 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4802 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4803 cast<IntegerType>(V->getType())->getBitWidth()) { 4804 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4805 } else { 4806 // It is only safe to sign extend the BaseReg if we know that the math 4807 // required to create it did not overflow before we extend it. Since 4808 // the original IR value was tossed in favor of a constant back when 4809 // the AddrMode was created we need to bail out gracefully if widths 4810 // do not match instead of extending it. 4811 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4812 if (I && (Result != AddrMode.BaseReg)) 4813 I->eraseFromParent(); 4814 return false; 4815 } 4816 if (AddrMode.Scale != 1) 4817 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4818 "sunkaddr"); 4819 if (Result) 4820 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4821 else 4822 Result = V; 4823 } 4824 4825 // Add in the BaseGV if present. 4826 if (AddrMode.BaseGV) { 4827 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 4828 if (Result) 4829 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4830 else 4831 Result = V; 4832 } 4833 4834 // Add in the Base Offset if present. 4835 if (AddrMode.BaseOffs) { 4836 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4837 if (Result) 4838 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4839 else 4840 Result = V; 4841 } 4842 4843 if (!Result) 4844 SunkAddr = Constant::getNullValue(Addr->getType()); 4845 else 4846 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 4847 } 4848 4849 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 4850 // Store the newly computed address into the cache. In the case we reused a 4851 // value, this should be idempotent. 4852 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 4853 4854 // If we have no uses, recursively delete the value and all dead instructions 4855 // using it. 4856 if (Repl->use_empty()) { 4857 // This can cause recursive deletion, which can invalidate our iterator. 4858 // Use a WeakTrackingVH to hold onto it in case this happens. 4859 Value *CurValue = &*CurInstIterator; 4860 WeakTrackingVH IterHandle(CurValue); 4861 BasicBlock *BB = CurInstIterator->getParent(); 4862 4863 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 4864 4865 if (IterHandle != CurValue) { 4866 // If the iterator instruction was recursively deleted, start over at the 4867 // start of the block. 4868 CurInstIterator = BB->begin(); 4869 SunkAddrs.clear(); 4870 } 4871 } 4872 ++NumMemoryInsts; 4873 return true; 4874 } 4875 4876 /// If there are any memory operands, use OptimizeMemoryInst to sink their 4877 /// address computing into the block when possible / profitable. 4878 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 4879 bool MadeChange = false; 4880 4881 const TargetRegisterInfo *TRI = 4882 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 4883 TargetLowering::AsmOperandInfoVector TargetConstraints = 4884 TLI->ParseConstraints(*DL, TRI, CS); 4885 unsigned ArgNo = 0; 4886 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4887 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4888 4889 // Compute the constraint code and ConstraintType to use. 4890 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 4891 4892 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4893 OpInfo.isIndirect) { 4894 Value *OpVal = CS->getArgOperand(ArgNo++); 4895 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 4896 } else if (OpInfo.Type == InlineAsm::isInput) 4897 ArgNo++; 4898 } 4899 4900 return MadeChange; 4901 } 4902 4903 /// Check if all the uses of \p Val are equivalent (or free) zero or 4904 /// sign extensions. 4905 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 4906 assert(!Val->use_empty() && "Input must have at least one use"); 4907 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 4908 bool IsSExt = isa<SExtInst>(FirstUser); 4909 Type *ExtTy = FirstUser->getType(); 4910 for (const User *U : Val->users()) { 4911 const Instruction *UI = cast<Instruction>(U); 4912 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 4913 return false; 4914 Type *CurTy = UI->getType(); 4915 // Same input and output types: Same instruction after CSE. 4916 if (CurTy == ExtTy) 4917 continue; 4918 4919 // If IsSExt is true, we are in this situation: 4920 // a = Val 4921 // b = sext ty1 a to ty2 4922 // c = sext ty1 a to ty3 4923 // Assuming ty2 is shorter than ty3, this could be turned into: 4924 // a = Val 4925 // b = sext ty1 a to ty2 4926 // c = sext ty2 b to ty3 4927 // However, the last sext is not free. 4928 if (IsSExt) 4929 return false; 4930 4931 // This is a ZExt, maybe this is free to extend from one type to another. 4932 // In that case, we would not account for a different use. 4933 Type *NarrowTy; 4934 Type *LargeTy; 4935 if (ExtTy->getScalarType()->getIntegerBitWidth() > 4936 CurTy->getScalarType()->getIntegerBitWidth()) { 4937 NarrowTy = CurTy; 4938 LargeTy = ExtTy; 4939 } else { 4940 NarrowTy = ExtTy; 4941 LargeTy = CurTy; 4942 } 4943 4944 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 4945 return false; 4946 } 4947 // All uses are the same or can be derived from one another for free. 4948 return true; 4949 } 4950 4951 /// Try to speculatively promote extensions in \p Exts and continue 4952 /// promoting through newly promoted operands recursively as far as doing so is 4953 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 4954 /// When some promotion happened, \p TPT contains the proper state to revert 4955 /// them. 4956 /// 4957 /// \return true if some promotion happened, false otherwise. 4958 bool CodeGenPrepare::tryToPromoteExts( 4959 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 4960 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 4961 unsigned CreatedInstsCost) { 4962 bool Promoted = false; 4963 4964 // Iterate over all the extensions to try to promote them. 4965 for (auto I : Exts) { 4966 // Early check if we directly have ext(load). 4967 if (isa<LoadInst>(I->getOperand(0))) { 4968 ProfitablyMovedExts.push_back(I); 4969 continue; 4970 } 4971 4972 // Check whether or not we want to do any promotion. The reason we have 4973 // this check inside the for loop is to catch the case where an extension 4974 // is directly fed by a load because in such case the extension can be moved 4975 // up without any promotion on its operands. 4976 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4977 return false; 4978 4979 // Get the action to perform the promotion. 4980 TypePromotionHelper::Action TPH = 4981 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 4982 // Check if we can promote. 4983 if (!TPH) { 4984 // Save the current extension as we cannot move up through its operand. 4985 ProfitablyMovedExts.push_back(I); 4986 continue; 4987 } 4988 4989 // Save the current state. 4990 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4991 TPT.getRestorationPoint(); 4992 SmallVector<Instruction *, 4> NewExts; 4993 unsigned NewCreatedInstsCost = 0; 4994 unsigned ExtCost = !TLI->isExtFree(I); 4995 // Promote. 4996 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4997 &NewExts, nullptr, *TLI); 4998 assert(PromotedVal && 4999 "TypePromotionHelper should have filtered out those cases"); 5000 5001 // We would be able to merge only one extension in a load. 5002 // Therefore, if we have more than 1 new extension we heuristically 5003 // cut this search path, because it means we degrade the code quality. 5004 // With exactly 2, the transformation is neutral, because we will merge 5005 // one extension but leave one. However, we optimistically keep going, 5006 // because the new extension may be removed too. 5007 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5008 // FIXME: It would be possible to propagate a negative value instead of 5009 // conservatively ceiling it to 0. 5010 TotalCreatedInstsCost = 5011 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5012 if (!StressExtLdPromotion && 5013 (TotalCreatedInstsCost > 1 || 5014 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5015 // This promotion is not profitable, rollback to the previous state, and 5016 // save the current extension in ProfitablyMovedExts as the latest 5017 // speculative promotion turned out to be unprofitable. 5018 TPT.rollback(LastKnownGood); 5019 ProfitablyMovedExts.push_back(I); 5020 continue; 5021 } 5022 // Continue promoting NewExts as far as doing so is profitable. 5023 SmallVector<Instruction *, 2> NewlyMovedExts; 5024 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5025 bool NewPromoted = false; 5026 for (auto ExtInst : NewlyMovedExts) { 5027 Instruction *MovedExt = cast<Instruction>(ExtInst); 5028 Value *ExtOperand = MovedExt->getOperand(0); 5029 // If we have reached to a load, we need this extra profitability check 5030 // as it could potentially be merged into an ext(load). 5031 if (isa<LoadInst>(ExtOperand) && 5032 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5033 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5034 continue; 5035 5036 ProfitablyMovedExts.push_back(MovedExt); 5037 NewPromoted = true; 5038 } 5039 5040 // If none of speculative promotions for NewExts is profitable, rollback 5041 // and save the current extension (I) as the last profitable extension. 5042 if (!NewPromoted) { 5043 TPT.rollback(LastKnownGood); 5044 ProfitablyMovedExts.push_back(I); 5045 continue; 5046 } 5047 // The promotion is profitable. 5048 Promoted = true; 5049 } 5050 return Promoted; 5051 } 5052 5053 /// Merging redundant sexts when one is dominating the other. 5054 bool CodeGenPrepare::mergeSExts(Function &F) { 5055 DominatorTree DT(F); 5056 bool Changed = false; 5057 for (auto &Entry : ValToSExtendedUses) { 5058 SExts &Insts = Entry.second; 5059 SExts CurPts; 5060 for (Instruction *Inst : Insts) { 5061 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5062 Inst->getOperand(0) != Entry.first) 5063 continue; 5064 bool inserted = false; 5065 for (auto &Pt : CurPts) { 5066 if (DT.dominates(Inst, Pt)) { 5067 Pt->replaceAllUsesWith(Inst); 5068 RemovedInsts.insert(Pt); 5069 Pt->removeFromParent(); 5070 Pt = Inst; 5071 inserted = true; 5072 Changed = true; 5073 break; 5074 } 5075 if (!DT.dominates(Pt, Inst)) 5076 // Give up if we need to merge in a common dominator as the 5077 // experiments show it is not profitable. 5078 continue; 5079 Inst->replaceAllUsesWith(Pt); 5080 RemovedInsts.insert(Inst); 5081 Inst->removeFromParent(); 5082 inserted = true; 5083 Changed = true; 5084 break; 5085 } 5086 if (!inserted) 5087 CurPts.push_back(Inst); 5088 } 5089 } 5090 return Changed; 5091 } 5092 5093 // Spliting large data structures so that the GEPs accessing them can have 5094 // smaller offsets so that they can be sunk to the same blocks as their users. 5095 // For example, a large struct starting from %base is splitted into two parts 5096 // where the second part starts from %new_base. 5097 // 5098 // Before: 5099 // BB0: 5100 // %base = 5101 // 5102 // BB1: 5103 // %gep0 = gep %base, off0 5104 // %gep1 = gep %base, off1 5105 // %gep2 = gep %base, off2 5106 // 5107 // BB2: 5108 // %load1 = load %gep0 5109 // %load2 = load %gep1 5110 // %load3 = load %gep2 5111 // 5112 // After: 5113 // BB0: 5114 // %base = 5115 // %new_base = gep %base, off0 5116 // 5117 // BB1: 5118 // %new_gep0 = %new_base 5119 // %new_gep1 = gep %new_base, off1 - off0 5120 // %new_gep2 = gep %new_base, off2 - off0 5121 // 5122 // BB2: 5123 // %load1 = load i32, i32* %new_gep0 5124 // %load2 = load i32, i32* %new_gep1 5125 // %load3 = load i32, i32* %new_gep2 5126 // 5127 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5128 // their offsets are smaller enough to fit into the addressing mode. 5129 bool CodeGenPrepare::splitLargeGEPOffsets() { 5130 bool Changed = false; 5131 for (auto &Entry : LargeOffsetGEPMap) { 5132 Value *OldBase = Entry.first; 5133 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5134 &LargeOffsetGEPs = Entry.second; 5135 auto compareGEPOffset = 5136 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5137 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5138 if (LHS.first == RHS.first) 5139 return false; 5140 if (LHS.second != RHS.second) 5141 return LHS.second < RHS.second; 5142 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5143 }; 5144 // Sorting all the GEPs of the same data structures based on the offsets. 5145 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5146 LargeOffsetGEPs.erase( 5147 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5148 LargeOffsetGEPs.end()); 5149 // Skip if all the GEPs have the same offsets. 5150 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5151 continue; 5152 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5153 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5154 Value *NewBaseGEP = nullptr; 5155 5156 auto LargeOffsetGEP = LargeOffsetGEPs.begin(); 5157 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5158 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5159 int64_t Offset = LargeOffsetGEP->second; 5160 if (Offset != BaseOffset) { 5161 TargetLowering::AddrMode AddrMode; 5162 AddrMode.BaseOffs = Offset - BaseOffset; 5163 // The result type of the GEP might not be the type of the memory 5164 // access. 5165 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5166 GEP->getResultElementType(), 5167 GEP->getAddressSpace())) { 5168 // We need to create a new base if the offset to the current base is 5169 // too large to fit into the addressing mode. So, a very large struct 5170 // may be splitted into several parts. 5171 BaseGEP = GEP; 5172 BaseOffset = Offset; 5173 NewBaseGEP = nullptr; 5174 } 5175 } 5176 5177 // Generate a new GEP to replace the current one. 5178 LLVMContext &Ctx = GEP->getContext(); 5179 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5180 Type *I8PtrTy = 5181 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5182 Type *I8Ty = Type::getInt8Ty(Ctx); 5183 5184 if (!NewBaseGEP) { 5185 // Create a new base if we don't have one yet. Find the insertion 5186 // pointer for the new base first. 5187 BasicBlock::iterator NewBaseInsertPt; 5188 BasicBlock *NewBaseInsertBB; 5189 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5190 // If the base of the struct is an instruction, the new base will be 5191 // inserted close to it. 5192 NewBaseInsertBB = BaseI->getParent(); 5193 if (isa<PHINode>(BaseI)) 5194 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5195 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5196 NewBaseInsertBB = 5197 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5198 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5199 } else 5200 NewBaseInsertPt = std::next(BaseI->getIterator()); 5201 } else { 5202 // If the current base is an argument or global value, the new base 5203 // will be inserted to the entry block. 5204 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5205 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5206 } 5207 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5208 // Create a new base. 5209 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5210 NewBaseGEP = OldBase; 5211 if (NewBaseGEP->getType() != I8PtrTy) 5212 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5213 NewBaseGEP = 5214 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5215 NewGEPBases.insert(NewBaseGEP); 5216 } 5217 5218 IRBuilder<> Builder(GEP); 5219 Value *NewGEP = NewBaseGEP; 5220 if (Offset == BaseOffset) { 5221 if (GEP->getType() != I8PtrTy) 5222 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5223 } else { 5224 // Calculate the new offset for the new GEP. 5225 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5226 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5227 5228 if (GEP->getType() != I8PtrTy) 5229 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5230 } 5231 GEP->replaceAllUsesWith(NewGEP); 5232 LargeOffsetGEPID.erase(GEP); 5233 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5234 GEP->eraseFromParent(); 5235 Changed = true; 5236 } 5237 } 5238 return Changed; 5239 } 5240 5241 /// Return true, if an ext(load) can be formed from an extension in 5242 /// \p MovedExts. 5243 bool CodeGenPrepare::canFormExtLd( 5244 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5245 Instruction *&Inst, bool HasPromoted) { 5246 for (auto *MovedExtInst : MovedExts) { 5247 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5248 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5249 Inst = MovedExtInst; 5250 break; 5251 } 5252 } 5253 if (!LI) 5254 return false; 5255 5256 // If they're already in the same block, there's nothing to do. 5257 // Make the cheap checks first if we did not promote. 5258 // If we promoted, we need to check if it is indeed profitable. 5259 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5260 return false; 5261 5262 return TLI->isExtLoad(LI, Inst, *DL); 5263 } 5264 5265 /// Move a zext or sext fed by a load into the same basic block as the load, 5266 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5267 /// extend into the load. 5268 /// 5269 /// E.g., 5270 /// \code 5271 /// %ld = load i32* %addr 5272 /// %add = add nuw i32 %ld, 4 5273 /// %zext = zext i32 %add to i64 5274 // \endcode 5275 /// => 5276 /// \code 5277 /// %ld = load i32* %addr 5278 /// %zext = zext i32 %ld to i64 5279 /// %add = add nuw i64 %zext, 4 5280 /// \encode 5281 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5282 /// allow us to match zext(load i32*) to i64. 5283 /// 5284 /// Also, try to promote the computations used to obtain a sign extended 5285 /// value used into memory accesses. 5286 /// E.g., 5287 /// \code 5288 /// a = add nsw i32 b, 3 5289 /// d = sext i32 a to i64 5290 /// e = getelementptr ..., i64 d 5291 /// \endcode 5292 /// => 5293 /// \code 5294 /// f = sext i32 b to i64 5295 /// a = add nsw i64 f, 3 5296 /// e = getelementptr ..., i64 a 5297 /// \endcode 5298 /// 5299 /// \p Inst[in/out] the extension may be modified during the process if some 5300 /// promotions apply. 5301 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 5302 // ExtLoad formation and address type promotion infrastructure requires TLI to 5303 // be effective. 5304 if (!TLI) 5305 return false; 5306 5307 bool AllowPromotionWithoutCommonHeader = false; 5308 /// See if it is an interesting sext operations for the address type 5309 /// promotion before trying to promote it, e.g., the ones with the right 5310 /// type and used in memory accesses. 5311 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 5312 *Inst, AllowPromotionWithoutCommonHeader); 5313 TypePromotionTransaction TPT(RemovedInsts); 5314 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5315 TPT.getRestorationPoint(); 5316 SmallVector<Instruction *, 1> Exts; 5317 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 5318 Exts.push_back(Inst); 5319 5320 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 5321 5322 // Look for a load being extended. 5323 LoadInst *LI = nullptr; 5324 Instruction *ExtFedByLoad; 5325 5326 // Try to promote a chain of computation if it allows to form an extended 5327 // load. 5328 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5329 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5330 TPT.commit(); 5331 // Move the extend into the same block as the load 5332 ExtFedByLoad->moveAfter(LI); 5333 // CGP does not check if the zext would be speculatively executed when moved 5334 // to the same basic block as the load. Preserving its original location 5335 // would pessimize the debugging experience, as well as negatively impact 5336 // the quality of sample pgo. We don't want to use "line 0" as that has a 5337 // size cost in the line-table section and logically the zext can be seen as 5338 // part of the load. Therefore we conservatively reuse the same debug 5339 // location for the load and the zext. 5340 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 5341 ++NumExtsMoved; 5342 Inst = ExtFedByLoad; 5343 return true; 5344 } 5345 5346 // Continue promoting SExts if known as considerable depending on targets. 5347 if (ATPConsiderable && 5348 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5349 HasPromoted, TPT, SpeculativelyMovedExts)) 5350 return true; 5351 5352 TPT.rollback(LastKnownGood); 5353 return false; 5354 } 5355 5356 // Perform address type promotion if doing so is profitable. 5357 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5358 // instructions that sign extended the same initial value. However, if 5359 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5360 // extension is just profitable. 5361 bool CodeGenPrepare::performAddressTypePromotion( 5362 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5363 bool HasPromoted, TypePromotionTransaction &TPT, 5364 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5365 bool Promoted = false; 5366 SmallPtrSet<Instruction *, 1> UnhandledExts; 5367 bool AllSeenFirst = true; 5368 for (auto I : SpeculativelyMovedExts) { 5369 Value *HeadOfChain = I->getOperand(0); 5370 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 5371 SeenChainsForSExt.find(HeadOfChain); 5372 // If there is an unhandled SExt which has the same header, try to promote 5373 // it as well. 5374 if (AlreadySeen != SeenChainsForSExt.end()) { 5375 if (AlreadySeen->second != nullptr) 5376 UnhandledExts.insert(AlreadySeen->second); 5377 AllSeenFirst = false; 5378 } 5379 } 5380 5381 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 5382 SpeculativelyMovedExts.size() == 1)) { 5383 TPT.commit(); 5384 if (HasPromoted) 5385 Promoted = true; 5386 for (auto I : SpeculativelyMovedExts) { 5387 Value *HeadOfChain = I->getOperand(0); 5388 SeenChainsForSExt[HeadOfChain] = nullptr; 5389 ValToSExtendedUses[HeadOfChain].push_back(I); 5390 } 5391 // Update Inst as promotion happen. 5392 Inst = SpeculativelyMovedExts.pop_back_val(); 5393 } else { 5394 // This is the first chain visited from the header, keep the current chain 5395 // as unhandled. Defer to promote this until we encounter another SExt 5396 // chain derived from the same header. 5397 for (auto I : SpeculativelyMovedExts) { 5398 Value *HeadOfChain = I->getOperand(0); 5399 SeenChainsForSExt[HeadOfChain] = Inst; 5400 } 5401 return false; 5402 } 5403 5404 if (!AllSeenFirst && !UnhandledExts.empty()) 5405 for (auto VisitedSExt : UnhandledExts) { 5406 if (RemovedInsts.count(VisitedSExt)) 5407 continue; 5408 TypePromotionTransaction TPT(RemovedInsts); 5409 SmallVector<Instruction *, 1> Exts; 5410 SmallVector<Instruction *, 2> Chains; 5411 Exts.push_back(VisitedSExt); 5412 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 5413 TPT.commit(); 5414 if (HasPromoted) 5415 Promoted = true; 5416 for (auto I : Chains) { 5417 Value *HeadOfChain = I->getOperand(0); 5418 // Mark this as handled. 5419 SeenChainsForSExt[HeadOfChain] = nullptr; 5420 ValToSExtendedUses[HeadOfChain].push_back(I); 5421 } 5422 } 5423 return Promoted; 5424 } 5425 5426 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5427 BasicBlock *DefBB = I->getParent(); 5428 5429 // If the result of a {s|z}ext and its source are both live out, rewrite all 5430 // other uses of the source with result of extension. 5431 Value *Src = I->getOperand(0); 5432 if (Src->hasOneUse()) 5433 return false; 5434 5435 // Only do this xform if truncating is free. 5436 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 5437 return false; 5438 5439 // Only safe to perform the optimization if the source is also defined in 5440 // this block. 5441 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5442 return false; 5443 5444 bool DefIsLiveOut = false; 5445 for (User *U : I->users()) { 5446 Instruction *UI = cast<Instruction>(U); 5447 5448 // Figure out which BB this ext is used in. 5449 BasicBlock *UserBB = UI->getParent(); 5450 if (UserBB == DefBB) continue; 5451 DefIsLiveOut = true; 5452 break; 5453 } 5454 if (!DefIsLiveOut) 5455 return false; 5456 5457 // Make sure none of the uses are PHI nodes. 5458 for (User *U : Src->users()) { 5459 Instruction *UI = cast<Instruction>(U); 5460 BasicBlock *UserBB = UI->getParent(); 5461 if (UserBB == DefBB) continue; 5462 // Be conservative. We don't want this xform to end up introducing 5463 // reloads just before load / store instructions. 5464 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5465 return false; 5466 } 5467 5468 // InsertedTruncs - Only insert one trunc in each block once. 5469 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5470 5471 bool MadeChange = false; 5472 for (Use &U : Src->uses()) { 5473 Instruction *User = cast<Instruction>(U.getUser()); 5474 5475 // Figure out which BB this ext is used in. 5476 BasicBlock *UserBB = User->getParent(); 5477 if (UserBB == DefBB) continue; 5478 5479 // Both src and def are live in this block. Rewrite the use. 5480 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5481 5482 if (!InsertedTrunc) { 5483 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5484 assert(InsertPt != UserBB->end()); 5485 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5486 InsertedInsts.insert(InsertedTrunc); 5487 } 5488 5489 // Replace a use of the {s|z}ext source with a use of the result. 5490 U = InsertedTrunc; 5491 ++NumExtUses; 5492 MadeChange = true; 5493 } 5494 5495 return MadeChange; 5496 } 5497 5498 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5499 // just after the load if the target can fold this into one extload instruction, 5500 // with the hope of eliminating some of the other later "and" instructions using 5501 // the loaded value. "and"s that are made trivially redundant by the insertion 5502 // of the new "and" are removed by this function, while others (e.g. those whose 5503 // path from the load goes through a phi) are left for isel to potentially 5504 // remove. 5505 // 5506 // For example: 5507 // 5508 // b0: 5509 // x = load i32 5510 // ... 5511 // b1: 5512 // y = and x, 0xff 5513 // z = use y 5514 // 5515 // becomes: 5516 // 5517 // b0: 5518 // x = load i32 5519 // x' = and x, 0xff 5520 // ... 5521 // b1: 5522 // z = use x' 5523 // 5524 // whereas: 5525 // 5526 // b0: 5527 // x1 = load i32 5528 // ... 5529 // b1: 5530 // x2 = load i32 5531 // ... 5532 // b2: 5533 // x = phi x1, x2 5534 // y = and x, 0xff 5535 // 5536 // becomes (after a call to optimizeLoadExt for each load): 5537 // 5538 // b0: 5539 // x1 = load i32 5540 // x1' = and x1, 0xff 5541 // ... 5542 // b1: 5543 // x2 = load i32 5544 // x2' = and x2, 0xff 5545 // ... 5546 // b2: 5547 // x = phi x1', x2' 5548 // y = and x, 0xff 5549 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5550 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 5551 return false; 5552 5553 // Skip loads we've already transformed. 5554 if (Load->hasOneUse() && 5555 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5556 return false; 5557 5558 // Look at all uses of Load, looking through phis, to determine how many bits 5559 // of the loaded value are needed. 5560 SmallVector<Instruction *, 8> WorkList; 5561 SmallPtrSet<Instruction *, 16> Visited; 5562 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5563 for (auto *U : Load->users()) 5564 WorkList.push_back(cast<Instruction>(U)); 5565 5566 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5567 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5568 APInt DemandBits(BitWidth, 0); 5569 APInt WidestAndBits(BitWidth, 0); 5570 5571 while (!WorkList.empty()) { 5572 Instruction *I = WorkList.back(); 5573 WorkList.pop_back(); 5574 5575 // Break use-def graph loops. 5576 if (!Visited.insert(I).second) 5577 continue; 5578 5579 // For a PHI node, push all of its users. 5580 if (auto *Phi = dyn_cast<PHINode>(I)) { 5581 for (auto *U : Phi->users()) 5582 WorkList.push_back(cast<Instruction>(U)); 5583 continue; 5584 } 5585 5586 switch (I->getOpcode()) { 5587 case Instruction::And: { 5588 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5589 if (!AndC) 5590 return false; 5591 APInt AndBits = AndC->getValue(); 5592 DemandBits |= AndBits; 5593 // Keep track of the widest and mask we see. 5594 if (AndBits.ugt(WidestAndBits)) 5595 WidestAndBits = AndBits; 5596 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5597 AndsToMaybeRemove.push_back(I); 5598 break; 5599 } 5600 5601 case Instruction::Shl: { 5602 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5603 if (!ShlC) 5604 return false; 5605 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5606 DemandBits.setLowBits(BitWidth - ShiftAmt); 5607 break; 5608 } 5609 5610 case Instruction::Trunc: { 5611 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5612 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5613 DemandBits.setLowBits(TruncBitWidth); 5614 break; 5615 } 5616 5617 default: 5618 return false; 5619 } 5620 } 5621 5622 uint32_t ActiveBits = DemandBits.getActiveBits(); 5623 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5624 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5625 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5626 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5627 // followed by an AND. 5628 // TODO: Look into removing this restriction by fixing backends to either 5629 // return false for isLoadExtLegal for i1 or have them select this pattern to 5630 // a single instruction. 5631 // 5632 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5633 // mask, since these are the only ands that will be removed by isel. 5634 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5635 WidestAndBits != DemandBits) 5636 return false; 5637 5638 LLVMContext &Ctx = Load->getType()->getContext(); 5639 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5640 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5641 5642 // Reject cases that won't be matched as extloads. 5643 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5644 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5645 return false; 5646 5647 IRBuilder<> Builder(Load->getNextNode()); 5648 auto *NewAnd = dyn_cast<Instruction>( 5649 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5650 // Mark this instruction as "inserted by CGP", so that other 5651 // optimizations don't touch it. 5652 InsertedInsts.insert(NewAnd); 5653 5654 // Replace all uses of load with new and (except for the use of load in the 5655 // new and itself). 5656 Load->replaceAllUsesWith(NewAnd); 5657 NewAnd->setOperand(0, Load); 5658 5659 // Remove any and instructions that are now redundant. 5660 for (auto *And : AndsToMaybeRemove) 5661 // Check that the and mask is the same as the one we decided to put on the 5662 // new and. 5663 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5664 And->replaceAllUsesWith(NewAnd); 5665 if (&*CurInstIterator == And) 5666 CurInstIterator = std::next(And->getIterator()); 5667 And->eraseFromParent(); 5668 ++NumAndUses; 5669 } 5670 5671 ++NumAndsAdded; 5672 return true; 5673 } 5674 5675 /// Check if V (an operand of a select instruction) is an expensive instruction 5676 /// that is only used once. 5677 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5678 auto *I = dyn_cast<Instruction>(V); 5679 // If it's safe to speculatively execute, then it should not have side 5680 // effects; therefore, it's safe to sink and possibly *not* execute. 5681 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5682 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5683 } 5684 5685 /// Returns true if a SelectInst should be turned into an explicit branch. 5686 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5687 const TargetLowering *TLI, 5688 SelectInst *SI) { 5689 // If even a predictable select is cheap, then a branch can't be cheaper. 5690 if (!TLI->isPredictableSelectExpensive()) 5691 return false; 5692 5693 // FIXME: This should use the same heuristics as IfConversion to determine 5694 // whether a select is better represented as a branch. 5695 5696 // If metadata tells us that the select condition is obviously predictable, 5697 // then we want to replace the select with a branch. 5698 uint64_t TrueWeight, FalseWeight; 5699 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5700 uint64_t Max = std::max(TrueWeight, FalseWeight); 5701 uint64_t Sum = TrueWeight + FalseWeight; 5702 if (Sum != 0) { 5703 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5704 if (Probability > TLI->getPredictableBranchThreshold()) 5705 return true; 5706 } 5707 } 5708 5709 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5710 5711 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5712 // comparison condition. If the compare has more than one use, there's 5713 // probably another cmov or setcc around, so it's not worth emitting a branch. 5714 if (!Cmp || !Cmp->hasOneUse()) 5715 return false; 5716 5717 // If either operand of the select is expensive and only needed on one side 5718 // of the select, we should form a branch. 5719 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5720 sinkSelectOperand(TTI, SI->getFalseValue())) 5721 return true; 5722 5723 return false; 5724 } 5725 5726 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5727 /// false value of \p SI. If the true/false value of \p SI is defined by any 5728 /// select instructions in \p Selects, look through the defining select 5729 /// instruction until the true/false value is not defined in \p Selects. 5730 static Value *getTrueOrFalseValue( 5731 SelectInst *SI, bool isTrue, 5732 const SmallPtrSet<const Instruction *, 2> &Selects) { 5733 Value *V; 5734 5735 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 5736 DefSI = dyn_cast<SelectInst>(V)) { 5737 assert(DefSI->getCondition() == SI->getCondition() && 5738 "The condition of DefSI does not match with SI"); 5739 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 5740 } 5741 return V; 5742 } 5743 5744 /// If we have a SelectInst that will likely profit from branch prediction, 5745 /// turn it into a branch. 5746 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 5747 // If branch conversion isn't desirable, exit early. 5748 if (DisableSelectToBranch || OptSize || !TLI) 5749 return false; 5750 5751 // Find all consecutive select instructions that share the same condition. 5752 SmallVector<SelectInst *, 2> ASI; 5753 ASI.push_back(SI); 5754 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 5755 It != SI->getParent()->end(); ++It) { 5756 SelectInst *I = dyn_cast<SelectInst>(&*It); 5757 if (I && SI->getCondition() == I->getCondition()) { 5758 ASI.push_back(I); 5759 } else { 5760 break; 5761 } 5762 } 5763 5764 SelectInst *LastSI = ASI.back(); 5765 // Increment the current iterator to skip all the rest of select instructions 5766 // because they will be either "not lowered" or "all lowered" to branch. 5767 CurInstIterator = std::next(LastSI->getIterator()); 5768 5769 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 5770 5771 // Can we convert the 'select' to CF ? 5772 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 5773 return false; 5774 5775 TargetLowering::SelectSupportKind SelectKind; 5776 if (VectorCond) 5777 SelectKind = TargetLowering::VectorMaskSelect; 5778 else if (SI->getType()->isVectorTy()) 5779 SelectKind = TargetLowering::ScalarCondVectorVal; 5780 else 5781 SelectKind = TargetLowering::ScalarValSelect; 5782 5783 if (TLI->isSelectSupported(SelectKind) && 5784 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 5785 return false; 5786 5787 ModifiedDT = true; 5788 5789 // Transform a sequence like this: 5790 // start: 5791 // %cmp = cmp uge i32 %a, %b 5792 // %sel = select i1 %cmp, i32 %c, i32 %d 5793 // 5794 // Into: 5795 // start: 5796 // %cmp = cmp uge i32 %a, %b 5797 // br i1 %cmp, label %select.true, label %select.false 5798 // select.true: 5799 // br label %select.end 5800 // select.false: 5801 // br label %select.end 5802 // select.end: 5803 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 5804 // 5805 // In addition, we may sink instructions that produce %c or %d from 5806 // the entry block into the destination(s) of the new branch. 5807 // If the true or false blocks do not contain a sunken instruction, that 5808 // block and its branch may be optimized away. In that case, one side of the 5809 // first branch will point directly to select.end, and the corresponding PHI 5810 // predecessor block will be the start block. 5811 5812 // First, we split the block containing the select into 2 blocks. 5813 BasicBlock *StartBlock = SI->getParent(); 5814 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 5815 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 5816 5817 // Delete the unconditional branch that was just created by the split. 5818 StartBlock->getTerminator()->eraseFromParent(); 5819 5820 // These are the new basic blocks for the conditional branch. 5821 // At least one will become an actual new basic block. 5822 BasicBlock *TrueBlock = nullptr; 5823 BasicBlock *FalseBlock = nullptr; 5824 BranchInst *TrueBranch = nullptr; 5825 BranchInst *FalseBranch = nullptr; 5826 5827 // Sink expensive instructions into the conditional blocks to avoid executing 5828 // them speculatively. 5829 for (SelectInst *SI : ASI) { 5830 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 5831 if (TrueBlock == nullptr) { 5832 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 5833 EndBlock->getParent(), EndBlock); 5834 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 5835 TrueBranch->setDebugLoc(SI->getDebugLoc()); 5836 } 5837 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 5838 TrueInst->moveBefore(TrueBranch); 5839 } 5840 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 5841 if (FalseBlock == nullptr) { 5842 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 5843 EndBlock->getParent(), EndBlock); 5844 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 5845 FalseBranch->setDebugLoc(SI->getDebugLoc()); 5846 } 5847 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 5848 FalseInst->moveBefore(FalseBranch); 5849 } 5850 } 5851 5852 // If there was nothing to sink, then arbitrarily choose the 'false' side 5853 // for a new input value to the PHI. 5854 if (TrueBlock == FalseBlock) { 5855 assert(TrueBlock == nullptr && 5856 "Unexpected basic block transform while optimizing select"); 5857 5858 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 5859 EndBlock->getParent(), EndBlock); 5860 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 5861 FalseBranch->setDebugLoc(SI->getDebugLoc()); 5862 } 5863 5864 // Insert the real conditional branch based on the original condition. 5865 // If we did not create a new block for one of the 'true' or 'false' paths 5866 // of the condition, it means that side of the branch goes to the end block 5867 // directly and the path originates from the start block from the point of 5868 // view of the new PHI. 5869 BasicBlock *TT, *FT; 5870 if (TrueBlock == nullptr) { 5871 TT = EndBlock; 5872 FT = FalseBlock; 5873 TrueBlock = StartBlock; 5874 } else if (FalseBlock == nullptr) { 5875 TT = TrueBlock; 5876 FT = EndBlock; 5877 FalseBlock = StartBlock; 5878 } else { 5879 TT = TrueBlock; 5880 FT = FalseBlock; 5881 } 5882 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 5883 5884 SmallPtrSet<const Instruction *, 2> INS; 5885 INS.insert(ASI.begin(), ASI.end()); 5886 // Use reverse iterator because later select may use the value of the 5887 // earlier select, and we need to propagate value through earlier select 5888 // to get the PHI operand. 5889 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 5890 SelectInst *SI = *It; 5891 // The select itself is replaced with a PHI Node. 5892 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 5893 PN->takeName(SI); 5894 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 5895 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 5896 PN->setDebugLoc(SI->getDebugLoc()); 5897 5898 SI->replaceAllUsesWith(PN); 5899 SI->eraseFromParent(); 5900 INS.erase(SI); 5901 ++NumSelectsExpanded; 5902 } 5903 5904 // Instruct OptimizeBlock to skip to the next block. 5905 CurInstIterator = StartBlock->end(); 5906 return true; 5907 } 5908 5909 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 5910 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 5911 int SplatElem = -1; 5912 for (unsigned i = 0; i < Mask.size(); ++i) { 5913 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 5914 return false; 5915 SplatElem = Mask[i]; 5916 } 5917 5918 return true; 5919 } 5920 5921 /// Some targets have expensive vector shifts if the lanes aren't all the same 5922 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 5923 /// it's often worth sinking a shufflevector splat down to its use so that 5924 /// codegen can spot all lanes are identical. 5925 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 5926 BasicBlock *DefBB = SVI->getParent(); 5927 5928 // Only do this xform if variable vector shifts are particularly expensive. 5929 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 5930 return false; 5931 5932 // We only expect better codegen by sinking a shuffle if we can recognise a 5933 // constant splat. 5934 if (!isBroadcastShuffle(SVI)) 5935 return false; 5936 5937 // InsertedShuffles - Only insert a shuffle in each block once. 5938 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 5939 5940 bool MadeChange = false; 5941 for (User *U : SVI->users()) { 5942 Instruction *UI = cast<Instruction>(U); 5943 5944 // Figure out which BB this ext is used in. 5945 BasicBlock *UserBB = UI->getParent(); 5946 if (UserBB == DefBB) continue; 5947 5948 // For now only apply this when the splat is used by a shift instruction. 5949 if (!UI->isShift()) continue; 5950 5951 // Everything checks out, sink the shuffle if the user's block doesn't 5952 // already have a copy. 5953 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 5954 5955 if (!InsertedShuffle) { 5956 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5957 assert(InsertPt != UserBB->end()); 5958 InsertedShuffle = 5959 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5960 SVI->getOperand(2), "", &*InsertPt); 5961 } 5962 5963 UI->replaceUsesOfWith(SVI, InsertedShuffle); 5964 MadeChange = true; 5965 } 5966 5967 // If we removed all uses, nuke the shuffle. 5968 if (SVI->use_empty()) { 5969 SVI->eraseFromParent(); 5970 MadeChange = true; 5971 } 5972 5973 return MadeChange; 5974 } 5975 5976 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 5977 if (!TLI || !DL) 5978 return false; 5979 5980 Value *Cond = SI->getCondition(); 5981 Type *OldType = Cond->getType(); 5982 LLVMContext &Context = Cond->getContext(); 5983 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 5984 unsigned RegWidth = RegType.getSizeInBits(); 5985 5986 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 5987 return false; 5988 5989 // If the register width is greater than the type width, expand the condition 5990 // of the switch instruction and each case constant to the width of the 5991 // register. By widening the type of the switch condition, subsequent 5992 // comparisons (for case comparisons) will not need to be extended to the 5993 // preferred register width, so we will potentially eliminate N-1 extends, 5994 // where N is the number of cases in the switch. 5995 auto *NewType = Type::getIntNTy(Context, RegWidth); 5996 5997 // Zero-extend the switch condition and case constants unless the switch 5998 // condition is a function argument that is already being sign-extended. 5999 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6000 // everything instead. 6001 Instruction::CastOps ExtType = Instruction::ZExt; 6002 if (auto *Arg = dyn_cast<Argument>(Cond)) 6003 if (Arg->hasSExtAttr()) 6004 ExtType = Instruction::SExt; 6005 6006 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 6007 ExtInst->insertBefore(SI); 6008 ExtInst->setDebugLoc(SI->getDebugLoc()); 6009 SI->setCondition(ExtInst); 6010 for (auto Case : SI->cases()) { 6011 APInt NarrowConst = Case.getCaseValue()->getValue(); 6012 APInt WideConst = (ExtType == Instruction::ZExt) ? 6013 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 6014 Case.setValue(ConstantInt::get(Context, WideConst)); 6015 } 6016 6017 return true; 6018 } 6019 6020 6021 namespace { 6022 6023 /// Helper class to promote a scalar operation to a vector one. 6024 /// This class is used to move downward extractelement transition. 6025 /// E.g., 6026 /// a = vector_op <2 x i32> 6027 /// b = extractelement <2 x i32> a, i32 0 6028 /// c = scalar_op b 6029 /// store c 6030 /// 6031 /// => 6032 /// a = vector_op <2 x i32> 6033 /// c = vector_op a (equivalent to scalar_op on the related lane) 6034 /// * d = extractelement <2 x i32> c, i32 0 6035 /// * store d 6036 /// Assuming both extractelement and store can be combine, we get rid of the 6037 /// transition. 6038 class VectorPromoteHelper { 6039 /// DataLayout associated with the current module. 6040 const DataLayout &DL; 6041 6042 /// Used to perform some checks on the legality of vector operations. 6043 const TargetLowering &TLI; 6044 6045 /// Used to estimated the cost of the promoted chain. 6046 const TargetTransformInfo &TTI; 6047 6048 /// The transition being moved downwards. 6049 Instruction *Transition; 6050 6051 /// The sequence of instructions to be promoted. 6052 SmallVector<Instruction *, 4> InstsToBePromoted; 6053 6054 /// Cost of combining a store and an extract. 6055 unsigned StoreExtractCombineCost; 6056 6057 /// Instruction that will be combined with the transition. 6058 Instruction *CombineInst = nullptr; 6059 6060 /// The instruction that represents the current end of the transition. 6061 /// Since we are faking the promotion until we reach the end of the chain 6062 /// of computation, we need a way to get the current end of the transition. 6063 Instruction *getEndOfTransition() const { 6064 if (InstsToBePromoted.empty()) 6065 return Transition; 6066 return InstsToBePromoted.back(); 6067 } 6068 6069 /// Return the index of the original value in the transition. 6070 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 6071 /// c, is at index 0. 6072 unsigned getTransitionOriginalValueIdx() const { 6073 assert(isa<ExtractElementInst>(Transition) && 6074 "Other kind of transitions are not supported yet"); 6075 return 0; 6076 } 6077 6078 /// Return the index of the index in the transition. 6079 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 6080 /// is at index 1. 6081 unsigned getTransitionIdx() const { 6082 assert(isa<ExtractElementInst>(Transition) && 6083 "Other kind of transitions are not supported yet"); 6084 return 1; 6085 } 6086 6087 /// Get the type of the transition. 6088 /// This is the type of the original value. 6089 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 6090 /// transition is <2 x i32>. 6091 Type *getTransitionType() const { 6092 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 6093 } 6094 6095 /// Promote \p ToBePromoted by moving \p Def downward through. 6096 /// I.e., we have the following sequence: 6097 /// Def = Transition <ty1> a to <ty2> 6098 /// b = ToBePromoted <ty2> Def, ... 6099 /// => 6100 /// b = ToBePromoted <ty1> a, ... 6101 /// Def = Transition <ty1> ToBePromoted to <ty2> 6102 void promoteImpl(Instruction *ToBePromoted); 6103 6104 /// Check whether or not it is profitable to promote all the 6105 /// instructions enqueued to be promoted. 6106 bool isProfitableToPromote() { 6107 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 6108 unsigned Index = isa<ConstantInt>(ValIdx) 6109 ? cast<ConstantInt>(ValIdx)->getZExtValue() 6110 : -1; 6111 Type *PromotedType = getTransitionType(); 6112 6113 StoreInst *ST = cast<StoreInst>(CombineInst); 6114 unsigned AS = ST->getPointerAddressSpace(); 6115 unsigned Align = ST->getAlignment(); 6116 // Check if this store is supported. 6117 if (!TLI.allowsMisalignedMemoryAccesses( 6118 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 6119 Align)) { 6120 // If this is not supported, there is no way we can combine 6121 // the extract with the store. 6122 return false; 6123 } 6124 6125 // The scalar chain of computation has to pay for the transition 6126 // scalar to vector. 6127 // The vector chain has to account for the combining cost. 6128 uint64_t ScalarCost = 6129 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 6130 uint64_t VectorCost = StoreExtractCombineCost; 6131 for (const auto &Inst : InstsToBePromoted) { 6132 // Compute the cost. 6133 // By construction, all instructions being promoted are arithmetic ones. 6134 // Moreover, one argument is a constant that can be viewed as a splat 6135 // constant. 6136 Value *Arg0 = Inst->getOperand(0); 6137 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 6138 isa<ConstantFP>(Arg0); 6139 TargetTransformInfo::OperandValueKind Arg0OVK = 6140 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6141 : TargetTransformInfo::OK_AnyValue; 6142 TargetTransformInfo::OperandValueKind Arg1OVK = 6143 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6144 : TargetTransformInfo::OK_AnyValue; 6145 ScalarCost += TTI.getArithmeticInstrCost( 6146 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 6147 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 6148 Arg0OVK, Arg1OVK); 6149 } 6150 LLVM_DEBUG( 6151 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 6152 << ScalarCost << "\nVector: " << VectorCost << '\n'); 6153 return ScalarCost > VectorCost; 6154 } 6155 6156 /// Generate a constant vector with \p Val with the same 6157 /// number of elements as the transition. 6158 /// \p UseSplat defines whether or not \p Val should be replicated 6159 /// across the whole vector. 6160 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 6161 /// otherwise we generate a vector with as many undef as possible: 6162 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 6163 /// used at the index of the extract. 6164 Value *getConstantVector(Constant *Val, bool UseSplat) const { 6165 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 6166 if (!UseSplat) { 6167 // If we cannot determine where the constant must be, we have to 6168 // use a splat constant. 6169 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 6170 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 6171 ExtractIdx = CstVal->getSExtValue(); 6172 else 6173 UseSplat = true; 6174 } 6175 6176 unsigned End = getTransitionType()->getVectorNumElements(); 6177 if (UseSplat) 6178 return ConstantVector::getSplat(End, Val); 6179 6180 SmallVector<Constant *, 4> ConstVec; 6181 UndefValue *UndefVal = UndefValue::get(Val->getType()); 6182 for (unsigned Idx = 0; Idx != End; ++Idx) { 6183 if (Idx == ExtractIdx) 6184 ConstVec.push_back(Val); 6185 else 6186 ConstVec.push_back(UndefVal); 6187 } 6188 return ConstantVector::get(ConstVec); 6189 } 6190 6191 /// Check if promoting to a vector type an operand at \p OperandIdx 6192 /// in \p Use can trigger undefined behavior. 6193 static bool canCauseUndefinedBehavior(const Instruction *Use, 6194 unsigned OperandIdx) { 6195 // This is not safe to introduce undef when the operand is on 6196 // the right hand side of a division-like instruction. 6197 if (OperandIdx != 1) 6198 return false; 6199 switch (Use->getOpcode()) { 6200 default: 6201 return false; 6202 case Instruction::SDiv: 6203 case Instruction::UDiv: 6204 case Instruction::SRem: 6205 case Instruction::URem: 6206 return true; 6207 case Instruction::FDiv: 6208 case Instruction::FRem: 6209 return !Use->hasNoNaNs(); 6210 } 6211 llvm_unreachable(nullptr); 6212 } 6213 6214 public: 6215 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 6216 const TargetTransformInfo &TTI, Instruction *Transition, 6217 unsigned CombineCost) 6218 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 6219 StoreExtractCombineCost(CombineCost) { 6220 assert(Transition && "Do not know how to promote null"); 6221 } 6222 6223 /// Check if we can promote \p ToBePromoted to \p Type. 6224 bool canPromote(const Instruction *ToBePromoted) const { 6225 // We could support CastInst too. 6226 return isa<BinaryOperator>(ToBePromoted); 6227 } 6228 6229 /// Check if it is profitable to promote \p ToBePromoted 6230 /// by moving downward the transition through. 6231 bool shouldPromote(const Instruction *ToBePromoted) const { 6232 // Promote only if all the operands can be statically expanded. 6233 // Indeed, we do not want to introduce any new kind of transitions. 6234 for (const Use &U : ToBePromoted->operands()) { 6235 const Value *Val = U.get(); 6236 if (Val == getEndOfTransition()) { 6237 // If the use is a division and the transition is on the rhs, 6238 // we cannot promote the operation, otherwise we may create a 6239 // division by zero. 6240 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 6241 return false; 6242 continue; 6243 } 6244 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 6245 !isa<ConstantFP>(Val)) 6246 return false; 6247 } 6248 // Check that the resulting operation is legal. 6249 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 6250 if (!ISDOpcode) 6251 return false; 6252 return StressStoreExtract || 6253 TLI.isOperationLegalOrCustom( 6254 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 6255 } 6256 6257 /// Check whether or not \p Use can be combined 6258 /// with the transition. 6259 /// I.e., is it possible to do Use(Transition) => AnotherUse? 6260 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 6261 6262 /// Record \p ToBePromoted as part of the chain to be promoted. 6263 void enqueueForPromotion(Instruction *ToBePromoted) { 6264 InstsToBePromoted.push_back(ToBePromoted); 6265 } 6266 6267 /// Set the instruction that will be combined with the transition. 6268 void recordCombineInstruction(Instruction *ToBeCombined) { 6269 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 6270 CombineInst = ToBeCombined; 6271 } 6272 6273 /// Promote all the instructions enqueued for promotion if it is 6274 /// is profitable. 6275 /// \return True if the promotion happened, false otherwise. 6276 bool promote() { 6277 // Check if there is something to promote. 6278 // Right now, if we do not have anything to combine with, 6279 // we assume the promotion is not profitable. 6280 if (InstsToBePromoted.empty() || !CombineInst) 6281 return false; 6282 6283 // Check cost. 6284 if (!StressStoreExtract && !isProfitableToPromote()) 6285 return false; 6286 6287 // Promote. 6288 for (auto &ToBePromoted : InstsToBePromoted) 6289 promoteImpl(ToBePromoted); 6290 InstsToBePromoted.clear(); 6291 return true; 6292 } 6293 }; 6294 6295 } // end anonymous namespace 6296 6297 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 6298 // At this point, we know that all the operands of ToBePromoted but Def 6299 // can be statically promoted. 6300 // For Def, we need to use its parameter in ToBePromoted: 6301 // b = ToBePromoted ty1 a 6302 // Def = Transition ty1 b to ty2 6303 // Move the transition down. 6304 // 1. Replace all uses of the promoted operation by the transition. 6305 // = ... b => = ... Def. 6306 assert(ToBePromoted->getType() == Transition->getType() && 6307 "The type of the result of the transition does not match " 6308 "the final type"); 6309 ToBePromoted->replaceAllUsesWith(Transition); 6310 // 2. Update the type of the uses. 6311 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 6312 Type *TransitionTy = getTransitionType(); 6313 ToBePromoted->mutateType(TransitionTy); 6314 // 3. Update all the operands of the promoted operation with promoted 6315 // operands. 6316 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 6317 for (Use &U : ToBePromoted->operands()) { 6318 Value *Val = U.get(); 6319 Value *NewVal = nullptr; 6320 if (Val == Transition) 6321 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 6322 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 6323 isa<ConstantFP>(Val)) { 6324 // Use a splat constant if it is not safe to use undef. 6325 NewVal = getConstantVector( 6326 cast<Constant>(Val), 6327 isa<UndefValue>(Val) || 6328 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 6329 } else 6330 llvm_unreachable("Did you modified shouldPromote and forgot to update " 6331 "this?"); 6332 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 6333 } 6334 Transition->moveAfter(ToBePromoted); 6335 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 6336 } 6337 6338 /// Some targets can do store(extractelement) with one instruction. 6339 /// Try to push the extractelement towards the stores when the target 6340 /// has this feature and this is profitable. 6341 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 6342 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 6343 if (DisableStoreExtract || !TLI || 6344 (!StressStoreExtract && 6345 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 6346 Inst->getOperand(1), CombineCost))) 6347 return false; 6348 6349 // At this point we know that Inst is a vector to scalar transition. 6350 // Try to move it down the def-use chain, until: 6351 // - We can combine the transition with its single use 6352 // => we got rid of the transition. 6353 // - We escape the current basic block 6354 // => we would need to check that we are moving it at a cheaper place and 6355 // we do not do that for now. 6356 BasicBlock *Parent = Inst->getParent(); 6357 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 6358 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 6359 // If the transition has more than one use, assume this is not going to be 6360 // beneficial. 6361 while (Inst->hasOneUse()) { 6362 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 6363 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 6364 6365 if (ToBePromoted->getParent() != Parent) { 6366 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 6367 << ToBePromoted->getParent()->getName() 6368 << ") than the transition (" << Parent->getName() 6369 << ").\n"); 6370 return false; 6371 } 6372 6373 if (VPH.canCombine(ToBePromoted)) { 6374 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 6375 << "will be combined with: " << *ToBePromoted << '\n'); 6376 VPH.recordCombineInstruction(ToBePromoted); 6377 bool Changed = VPH.promote(); 6378 NumStoreExtractExposed += Changed; 6379 return Changed; 6380 } 6381 6382 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 6383 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 6384 return false; 6385 6386 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 6387 6388 VPH.enqueueForPromotion(ToBePromoted); 6389 Inst = ToBePromoted; 6390 } 6391 return false; 6392 } 6393 6394 /// For the instruction sequence of store below, F and I values 6395 /// are bundled together as an i64 value before being stored into memory. 6396 /// Sometimes it is more efficient to generate separate stores for F and I, 6397 /// which can remove the bitwise instructions or sink them to colder places. 6398 /// 6399 /// (store (or (zext (bitcast F to i32) to i64), 6400 /// (shl (zext I to i64), 32)), addr) --> 6401 /// (store F, addr) and (store I, addr+4) 6402 /// 6403 /// Similarly, splitting for other merged store can also be beneficial, like: 6404 /// For pair of {i32, i32}, i64 store --> two i32 stores. 6405 /// For pair of {i32, i16}, i64 store --> two i32 stores. 6406 /// For pair of {i16, i16}, i32 store --> two i16 stores. 6407 /// For pair of {i16, i8}, i32 store --> two i16 stores. 6408 /// For pair of {i8, i8}, i16 store --> two i8 stores. 6409 /// 6410 /// We allow each target to determine specifically which kind of splitting is 6411 /// supported. 6412 /// 6413 /// The store patterns are commonly seen from the simple code snippet below 6414 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 6415 /// void goo(const std::pair<int, float> &); 6416 /// hoo() { 6417 /// ... 6418 /// goo(std::make_pair(tmp, ftmp)); 6419 /// ... 6420 /// } 6421 /// 6422 /// Although we already have similar splitting in DAG Combine, we duplicate 6423 /// it in CodeGenPrepare to catch the case in which pattern is across 6424 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6425 /// during code expansion. 6426 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6427 const TargetLowering &TLI) { 6428 // Handle simple but common cases only. 6429 Type *StoreType = SI.getValueOperand()->getType(); 6430 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || 6431 DL.getTypeSizeInBits(StoreType) == 0) 6432 return false; 6433 6434 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6435 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 6436 if (DL.getTypeStoreSizeInBits(SplitStoreType) != 6437 DL.getTypeSizeInBits(SplitStoreType)) 6438 return false; 6439 6440 // Match the following patterns: 6441 // (store (or (zext LValue to i64), 6442 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6443 // or 6444 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6445 // (zext LValue to i64), 6446 // Expect both operands of OR and the first operand of SHL have only 6447 // one use. 6448 Value *LValue, *HValue; 6449 if (!match(SI.getValueOperand(), 6450 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6451 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6452 m_SpecificInt(HalfValBitSize)))))) 6453 return false; 6454 6455 // Check LValue and HValue are int with size less or equal than 32. 6456 if (!LValue->getType()->isIntegerTy() || 6457 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6458 !HValue->getType()->isIntegerTy() || 6459 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6460 return false; 6461 6462 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6463 // as the input of target query. 6464 auto *LBC = dyn_cast<BitCastInst>(LValue); 6465 auto *HBC = dyn_cast<BitCastInst>(HValue); 6466 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6467 : EVT::getEVT(LValue->getType()); 6468 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6469 : EVT::getEVT(HValue->getType()); 6470 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6471 return false; 6472 6473 // Start to split store. 6474 IRBuilder<> Builder(SI.getContext()); 6475 Builder.SetInsertPoint(&SI); 6476 6477 // If LValue/HValue is a bitcast in another BB, create a new one in current 6478 // BB so it may be merged with the splitted stores by dag combiner. 6479 if (LBC && LBC->getParent() != SI.getParent()) 6480 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6481 if (HBC && HBC->getParent() != SI.getParent()) 6482 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6483 6484 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 6485 auto CreateSplitStore = [&](Value *V, bool Upper) { 6486 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6487 Value *Addr = Builder.CreateBitCast( 6488 SI.getOperand(1), 6489 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6490 if ((IsLE && Upper) || (!IsLE && !Upper)) 6491 Addr = Builder.CreateGEP( 6492 SplitStoreType, Addr, 6493 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6494 Builder.CreateAlignedStore( 6495 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 6496 }; 6497 6498 CreateSplitStore(LValue, false); 6499 CreateSplitStore(HValue, true); 6500 6501 // Delete the old store. 6502 SI.eraseFromParent(); 6503 return true; 6504 } 6505 6506 // Return true if the GEP has two operands, the first operand is of a sequential 6507 // type, and the second operand is a constant. 6508 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6509 gep_type_iterator I = gep_type_begin(*GEP); 6510 return GEP->getNumOperands() == 2 && 6511 I.isSequential() && 6512 isa<ConstantInt>(GEP->getOperand(1)); 6513 } 6514 6515 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6516 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6517 // reducing liveness interference across those edges benefits global register 6518 // allocation. Currently handles only certain cases. 6519 // 6520 // For example, unmerge %GEPI and %UGEPI as below. 6521 // 6522 // ---------- BEFORE ---------- 6523 // SrcBlock: 6524 // ... 6525 // %GEPIOp = ... 6526 // ... 6527 // %GEPI = gep %GEPIOp, Idx 6528 // ... 6529 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6530 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6531 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6532 // %UGEPI) 6533 // 6534 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6535 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6536 // ... 6537 // 6538 // DstBi: 6539 // ... 6540 // %UGEPI = gep %GEPIOp, UIdx 6541 // ... 6542 // --------------------------- 6543 // 6544 // ---------- AFTER ---------- 6545 // SrcBlock: 6546 // ... (same as above) 6547 // (* %GEPI is still alive on the indirectbr edges) 6548 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6549 // unmerging) 6550 // ... 6551 // 6552 // DstBi: 6553 // ... 6554 // %UGEPI = gep %GEPI, (UIdx-Idx) 6555 // ... 6556 // --------------------------- 6557 // 6558 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6559 // no longer alive on them. 6560 // 6561 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6562 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6563 // not to disable further simplications and optimizations as a result of GEP 6564 // merging. 6565 // 6566 // Note this unmerging may increase the length of the data flow critical path 6567 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6568 // between the register pressure and the length of data-flow critical 6569 // path. Restricting this to the uncommon IndirectBr case would minimize the 6570 // impact of potentially longer critical path, if any, and the impact on compile 6571 // time. 6572 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6573 const TargetTransformInfo *TTI) { 6574 BasicBlock *SrcBlock = GEPI->getParent(); 6575 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 6576 // (non-IndirectBr) cases exit early here. 6577 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 6578 return false; 6579 // Check that GEPI is a simple gep with a single constant index. 6580 if (!GEPSequentialConstIndexed(GEPI)) 6581 return false; 6582 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 6583 // Check that GEPI is a cheap one. 6584 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 6585 > TargetTransformInfo::TCC_Basic) 6586 return false; 6587 Value *GEPIOp = GEPI->getOperand(0); 6588 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 6589 if (!isa<Instruction>(GEPIOp)) 6590 return false; 6591 auto *GEPIOpI = cast<Instruction>(GEPIOp); 6592 if (GEPIOpI->getParent() != SrcBlock) 6593 return false; 6594 // Check that GEP is used outside the block, meaning it's alive on the 6595 // IndirectBr edge(s). 6596 if (find_if(GEPI->users(), [&](User *Usr) { 6597 if (auto *I = dyn_cast<Instruction>(Usr)) { 6598 if (I->getParent() != SrcBlock) { 6599 return true; 6600 } 6601 } 6602 return false; 6603 }) == GEPI->users().end()) 6604 return false; 6605 // The second elements of the GEP chains to be unmerged. 6606 std::vector<GetElementPtrInst *> UGEPIs; 6607 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 6608 // on IndirectBr edges. 6609 for (User *Usr : GEPIOp->users()) { 6610 if (Usr == GEPI) continue; 6611 // Check if Usr is an Instruction. If not, give up. 6612 if (!isa<Instruction>(Usr)) 6613 return false; 6614 auto *UI = cast<Instruction>(Usr); 6615 // Check if Usr in the same block as GEPIOp, which is fine, skip. 6616 if (UI->getParent() == SrcBlock) 6617 continue; 6618 // Check if Usr is a GEP. If not, give up. 6619 if (!isa<GetElementPtrInst>(Usr)) 6620 return false; 6621 auto *UGEPI = cast<GetElementPtrInst>(Usr); 6622 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 6623 // the pointer operand to it. If so, record it in the vector. If not, give 6624 // up. 6625 if (!GEPSequentialConstIndexed(UGEPI)) 6626 return false; 6627 if (UGEPI->getOperand(0) != GEPIOp) 6628 return false; 6629 if (GEPIIdx->getType() != 6630 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 6631 return false; 6632 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6633 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 6634 > TargetTransformInfo::TCC_Basic) 6635 return false; 6636 UGEPIs.push_back(UGEPI); 6637 } 6638 if (UGEPIs.size() == 0) 6639 return false; 6640 // Check the materializing cost of (Uidx-Idx). 6641 for (GetElementPtrInst *UGEPI : UGEPIs) { 6642 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6643 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 6644 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 6645 if (ImmCost > TargetTransformInfo::TCC_Basic) 6646 return false; 6647 } 6648 // Now unmerge between GEPI and UGEPIs. 6649 for (GetElementPtrInst *UGEPI : UGEPIs) { 6650 UGEPI->setOperand(0, GEPI); 6651 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6652 Constant *NewUGEPIIdx = 6653 ConstantInt::get(GEPIIdx->getType(), 6654 UGEPIIdx->getValue() - GEPIIdx->getValue()); 6655 UGEPI->setOperand(1, NewUGEPIIdx); 6656 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 6657 // inbounds to avoid UB. 6658 if (!GEPI->isInBounds()) { 6659 UGEPI->setIsInBounds(false); 6660 } 6661 } 6662 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 6663 // alive on IndirectBr edges). 6664 assert(find_if(GEPIOp->users(), [&](User *Usr) { 6665 return cast<Instruction>(Usr)->getParent() != SrcBlock; 6666 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 6667 return true; 6668 } 6669 6670 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 6671 // Bail out if we inserted the instruction to prevent optimizations from 6672 // stepping on each other's toes. 6673 if (InsertedInsts.count(I)) 6674 return false; 6675 6676 if (PHINode *P = dyn_cast<PHINode>(I)) { 6677 // It is possible for very late stage optimizations (such as SimplifyCFG) 6678 // to introduce PHI nodes too late to be cleaned up. If we detect such a 6679 // trivial PHI, go ahead and zap it here. 6680 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 6681 P->replaceAllUsesWith(V); 6682 P->eraseFromParent(); 6683 ++NumPHIsElim; 6684 return true; 6685 } 6686 return false; 6687 } 6688 6689 if (CastInst *CI = dyn_cast<CastInst>(I)) { 6690 // If the source of the cast is a constant, then this should have 6691 // already been constant folded. The only reason NOT to constant fold 6692 // it is if something (e.g. LSR) was careful to place the constant 6693 // evaluation in a block other than then one that uses it (e.g. to hoist 6694 // the address of globals out of a loop). If this is the case, we don't 6695 // want to forward-subst the cast. 6696 if (isa<Constant>(CI->getOperand(0))) 6697 return false; 6698 6699 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 6700 return true; 6701 6702 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 6703 /// Sink a zext or sext into its user blocks if the target type doesn't 6704 /// fit in one register 6705 if (TLI && 6706 TLI->getTypeAction(CI->getContext(), 6707 TLI->getValueType(*DL, CI->getType())) == 6708 TargetLowering::TypeExpandInteger) { 6709 return SinkCast(CI); 6710 } else { 6711 bool MadeChange = optimizeExt(I); 6712 return MadeChange | optimizeExtUses(I); 6713 } 6714 } 6715 return false; 6716 } 6717 6718 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 6719 if (TLI && optimizeCmpExpression(CI, *TLI, *DL)) 6720 return true; 6721 6722 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6723 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6724 if (TLI) { 6725 bool Modified = optimizeLoadExt(LI); 6726 unsigned AS = LI->getPointerAddressSpace(); 6727 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 6728 return Modified; 6729 } 6730 return false; 6731 } 6732 6733 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 6734 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 6735 return true; 6736 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6737 if (TLI) { 6738 unsigned AS = SI->getPointerAddressSpace(); 6739 return optimizeMemoryInst(I, SI->getOperand(1), 6740 SI->getOperand(0)->getType(), AS); 6741 } 6742 return false; 6743 } 6744 6745 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 6746 unsigned AS = RMW->getPointerAddressSpace(); 6747 return optimizeMemoryInst(I, RMW->getPointerOperand(), 6748 RMW->getType(), AS); 6749 } 6750 6751 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 6752 unsigned AS = CmpX->getPointerAddressSpace(); 6753 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 6754 CmpX->getCompareOperand()->getType(), AS); 6755 } 6756 6757 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 6758 6759 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 6760 EnableAndCmpSinking && TLI) 6761 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 6762 6763 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 6764 BinOp->getOpcode() == Instruction::LShr)) { 6765 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 6766 if (TLI && CI && TLI->hasExtractBitsInsn()) 6767 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 6768 6769 return false; 6770 } 6771 6772 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 6773 if (GEPI->hasAllZeroIndices()) { 6774 /// The GEP operand must be a pointer, so must its result -> BitCast 6775 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 6776 GEPI->getName(), GEPI); 6777 NC->setDebugLoc(GEPI->getDebugLoc()); 6778 GEPI->replaceAllUsesWith(NC); 6779 GEPI->eraseFromParent(); 6780 ++NumGEPsElim; 6781 optimizeInst(NC, ModifiedDT); 6782 return true; 6783 } 6784 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 6785 return true; 6786 } 6787 return false; 6788 } 6789 6790 if (CallInst *CI = dyn_cast<CallInst>(I)) 6791 return optimizeCallInst(CI, ModifiedDT); 6792 6793 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 6794 return optimizeSelectInst(SI); 6795 6796 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 6797 return optimizeShuffleVectorInst(SVI); 6798 6799 if (auto *Switch = dyn_cast<SwitchInst>(I)) 6800 return optimizeSwitchInst(Switch); 6801 6802 if (isa<ExtractElementInst>(I)) 6803 return optimizeExtractElementInst(I); 6804 6805 return false; 6806 } 6807 6808 /// Given an OR instruction, check to see if this is a bitreverse 6809 /// idiom. If so, insert the new intrinsic and return true. 6810 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 6811 const TargetLowering &TLI) { 6812 if (!I.getType()->isIntegerTy() || 6813 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 6814 TLI.getValueType(DL, I.getType(), true))) 6815 return false; 6816 6817 SmallVector<Instruction*, 4> Insts; 6818 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 6819 return false; 6820 Instruction *LastInst = Insts.back(); 6821 I.replaceAllUsesWith(LastInst); 6822 RecursivelyDeleteTriviallyDeadInstructions(&I); 6823 return true; 6824 } 6825 6826 // In this pass we look for GEP and cast instructions that are used 6827 // across basic blocks and rewrite them to improve basic-block-at-a-time 6828 // selection. 6829 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 6830 SunkAddrs.clear(); 6831 bool MadeChange = false; 6832 6833 CurInstIterator = BB.begin(); 6834 while (CurInstIterator != BB.end()) { 6835 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 6836 if (ModifiedDT) 6837 return true; 6838 } 6839 6840 bool MadeBitReverse = true; 6841 while (TLI && MadeBitReverse) { 6842 MadeBitReverse = false; 6843 for (auto &I : reverse(BB)) { 6844 if (makeBitReverse(I, *DL, *TLI)) { 6845 MadeBitReverse = MadeChange = true; 6846 ModifiedDT = true; 6847 break; 6848 } 6849 } 6850 } 6851 MadeChange |= dupRetToEnableTailCallOpts(&BB); 6852 6853 return MadeChange; 6854 } 6855 6856 // llvm.dbg.value is far away from the value then iSel may not be able 6857 // handle it properly. iSel will drop llvm.dbg.value if it can not 6858 // find a node corresponding to the value. 6859 bool CodeGenPrepare::placeDbgValues(Function &F) { 6860 bool MadeChange = false; 6861 for (BasicBlock &BB : F) { 6862 Instruction *PrevNonDbgInst = nullptr; 6863 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 6864 Instruction *Insn = &*BI++; 6865 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 6866 // Leave dbg.values that refer to an alloca alone. These 6867 // intrinsics describe the address of a variable (= the alloca) 6868 // being taken. They should not be moved next to the alloca 6869 // (and to the beginning of the scope), but rather stay close to 6870 // where said address is used. 6871 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 6872 PrevNonDbgInst = Insn; 6873 continue; 6874 } 6875 6876 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 6877 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 6878 // If VI is a phi in a block with an EHPad terminator, we can't insert 6879 // after it. 6880 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 6881 continue; 6882 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 6883 << *DVI << ' ' << *VI); 6884 DVI->removeFromParent(); 6885 if (isa<PHINode>(VI)) 6886 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 6887 else 6888 DVI->insertAfter(VI); 6889 MadeChange = true; 6890 ++NumDbgValueMoved; 6891 } 6892 } 6893 } 6894 return MadeChange; 6895 } 6896 6897 /// Scale down both weights to fit into uint32_t. 6898 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 6899 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 6900 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 6901 NewTrue = NewTrue / Scale; 6902 NewFalse = NewFalse / Scale; 6903 } 6904 6905 /// Some targets prefer to split a conditional branch like: 6906 /// \code 6907 /// %0 = icmp ne i32 %a, 0 6908 /// %1 = icmp ne i32 %b, 0 6909 /// %or.cond = or i1 %0, %1 6910 /// br i1 %or.cond, label %TrueBB, label %FalseBB 6911 /// \endcode 6912 /// into multiple branch instructions like: 6913 /// \code 6914 /// bb1: 6915 /// %0 = icmp ne i32 %a, 0 6916 /// br i1 %0, label %TrueBB, label %bb2 6917 /// bb2: 6918 /// %1 = icmp ne i32 %b, 0 6919 /// br i1 %1, label %TrueBB, label %FalseBB 6920 /// \endcode 6921 /// This usually allows instruction selection to do even further optimizations 6922 /// and combine the compare with the branch instruction. Currently this is 6923 /// applied for targets which have "cheap" jump instructions. 6924 /// 6925 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 6926 /// 6927 bool CodeGenPrepare::splitBranchCondition(Function &F) { 6928 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 6929 return false; 6930 6931 bool MadeChange = false; 6932 for (auto &BB : F) { 6933 // Does this BB end with the following? 6934 // %cond1 = icmp|fcmp|binary instruction ... 6935 // %cond2 = icmp|fcmp|binary instruction ... 6936 // %cond.or = or|and i1 %cond1, cond2 6937 // br i1 %cond.or label %dest1, label %dest2" 6938 BinaryOperator *LogicOp; 6939 BasicBlock *TBB, *FBB; 6940 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 6941 continue; 6942 6943 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 6944 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 6945 continue; 6946 6947 unsigned Opc; 6948 Value *Cond1, *Cond2; 6949 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 6950 m_OneUse(m_Value(Cond2))))) 6951 Opc = Instruction::And; 6952 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 6953 m_OneUse(m_Value(Cond2))))) 6954 Opc = Instruction::Or; 6955 else 6956 continue; 6957 6958 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 6959 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 6960 continue; 6961 6962 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 6963 6964 // Create a new BB. 6965 auto TmpBB = 6966 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 6967 BB.getParent(), BB.getNextNode()); 6968 6969 // Update original basic block by using the first condition directly by the 6970 // branch instruction and removing the no longer needed and/or instruction. 6971 Br1->setCondition(Cond1); 6972 LogicOp->eraseFromParent(); 6973 6974 // Depending on the condition we have to either replace the true or the 6975 // false successor of the original branch instruction. 6976 if (Opc == Instruction::And) 6977 Br1->setSuccessor(0, TmpBB); 6978 else 6979 Br1->setSuccessor(1, TmpBB); 6980 6981 // Fill in the new basic block. 6982 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 6983 if (auto *I = dyn_cast<Instruction>(Cond2)) { 6984 I->removeFromParent(); 6985 I->insertBefore(Br2); 6986 } 6987 6988 // Update PHI nodes in both successors. The original BB needs to be 6989 // replaced in one successor's PHI nodes, because the branch comes now from 6990 // the newly generated BB (NewBB). In the other successor we need to add one 6991 // incoming edge to the PHI nodes, because both branch instructions target 6992 // now the same successor. Depending on the original branch condition 6993 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 6994 // we perform the correct update for the PHI nodes. 6995 // This doesn't change the successor order of the just created branch 6996 // instruction (or any other instruction). 6997 if (Opc == Instruction::Or) 6998 std::swap(TBB, FBB); 6999 7000 // Replace the old BB with the new BB. 7001 for (PHINode &PN : TBB->phis()) { 7002 int i; 7003 while ((i = PN.getBasicBlockIndex(&BB)) >= 0) 7004 PN.setIncomingBlock(i, TmpBB); 7005 } 7006 7007 // Add another incoming edge form the new BB. 7008 for (PHINode &PN : FBB->phis()) { 7009 auto *Val = PN.getIncomingValueForBlock(&BB); 7010 PN.addIncoming(Val, TmpBB); 7011 } 7012 7013 // Update the branch weights (from SelectionDAGBuilder:: 7014 // FindMergedConditions). 7015 if (Opc == Instruction::Or) { 7016 // Codegen X | Y as: 7017 // BB1: 7018 // jmp_if_X TBB 7019 // jmp TmpBB 7020 // TmpBB: 7021 // jmp_if_Y TBB 7022 // jmp FBB 7023 // 7024 7025 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 7026 // The requirement is that 7027 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 7028 // = TrueProb for original BB. 7029 // Assuming the original weights are A and B, one choice is to set BB1's 7030 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 7031 // assumes that 7032 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 7033 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 7034 // TmpBB, but the math is more complicated. 7035 uint64_t TrueWeight, FalseWeight; 7036 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7037 uint64_t NewTrueWeight = TrueWeight; 7038 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 7039 scaleWeights(NewTrueWeight, NewFalseWeight); 7040 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7041 .createBranchWeights(TrueWeight, FalseWeight)); 7042 7043 NewTrueWeight = TrueWeight; 7044 NewFalseWeight = 2 * FalseWeight; 7045 scaleWeights(NewTrueWeight, NewFalseWeight); 7046 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7047 .createBranchWeights(TrueWeight, FalseWeight)); 7048 } 7049 } else { 7050 // Codegen X & Y as: 7051 // BB1: 7052 // jmp_if_X TmpBB 7053 // jmp FBB 7054 // TmpBB: 7055 // jmp_if_Y TBB 7056 // jmp FBB 7057 // 7058 // This requires creation of TmpBB after CurBB. 7059 7060 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 7061 // The requirement is that 7062 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 7063 // = FalseProb for original BB. 7064 // Assuming the original weights are A and B, one choice is to set BB1's 7065 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 7066 // assumes that 7067 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 7068 uint64_t TrueWeight, FalseWeight; 7069 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7070 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 7071 uint64_t NewFalseWeight = FalseWeight; 7072 scaleWeights(NewTrueWeight, NewFalseWeight); 7073 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7074 .createBranchWeights(TrueWeight, FalseWeight)); 7075 7076 NewTrueWeight = 2 * TrueWeight; 7077 NewFalseWeight = FalseWeight; 7078 scaleWeights(NewTrueWeight, NewFalseWeight); 7079 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7080 .createBranchWeights(TrueWeight, FalseWeight)); 7081 } 7082 } 7083 7084 // Note: No point in getting fancy here, since the DT info is never 7085 // available to CodeGenPrepare. 7086 ModifiedDT = true; 7087 7088 MadeChange = true; 7089 7090 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 7091 TmpBB->dump()); 7092 } 7093 return MadeChange; 7094 } 7095