1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InlineAsm.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/IntrinsicsAArch64.h" 63 #include "llvm/IR/IntrinsicsX86.h" 64 #include "llvm/IR/LLVMContext.h" 65 #include "llvm/IR/MDBuilder.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Statepoint.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/ValueMap.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/BlockFrequency.h" 79 #include "llvm/Support/BranchProbability.h" 80 #include "llvm/Support/Casting.h" 81 #include "llvm/Support/CommandLine.h" 82 #include "llvm/Support/Compiler.h" 83 #include "llvm/Support/Debug.h" 84 #include "llvm/Support/ErrorHandling.h" 85 #include "llvm/Support/MachineValueType.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Target/TargetMachine.h" 89 #include "llvm/Target/TargetOptions.h" 90 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 91 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 92 #include "llvm/Transforms/Utils/Local.h" 93 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 94 #include "llvm/Transforms/Utils/SizeOpts.h" 95 #include <algorithm> 96 #include <cassert> 97 #include <cstdint> 98 #include <iterator> 99 #include <limits> 100 #include <memory> 101 #include <utility> 102 #include <vector> 103 104 using namespace llvm; 105 using namespace llvm::PatternMatch; 106 107 #define DEBUG_TYPE "codegenprepare" 108 109 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 110 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 111 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 112 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 113 "sunken Cmps"); 114 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 115 "of sunken Casts"); 116 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 117 "computations were sunk"); 118 STATISTIC(NumMemoryInstsPhiCreated, 119 "Number of phis created when address " 120 "computations were sunk to memory instructions"); 121 STATISTIC(NumMemoryInstsSelectCreated, 122 "Number of select created when address " 123 "computations were sunk to memory instructions"); 124 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 125 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 126 STATISTIC(NumAndsAdded, 127 "Number of and mask instructions added to form ext loads"); 128 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 129 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 130 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 131 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 132 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 133 134 static cl::opt<bool> DisableBranchOpts( 135 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 136 cl::desc("Disable branch optimizations in CodeGenPrepare")); 137 138 static cl::opt<bool> 139 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 140 cl::desc("Disable GC optimizations in CodeGenPrepare")); 141 142 static cl::opt<bool> DisableSelectToBranch( 143 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 144 cl::desc("Disable select to branch conversion.")); 145 146 static cl::opt<bool> AddrSinkUsingGEPs( 147 "addr-sink-using-gep", cl::Hidden, cl::init(true), 148 cl::desc("Address sinking in CGP using GEPs.")); 149 150 static cl::opt<bool> EnableAndCmpSinking( 151 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 152 cl::desc("Enable sinkinig and/cmp into branches.")); 153 154 static cl::opt<bool> DisableStoreExtract( 155 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 156 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 157 158 static cl::opt<bool> StressStoreExtract( 159 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 160 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 161 162 static cl::opt<bool> DisableExtLdPromotion( 163 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 164 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 165 "CodeGenPrepare")); 166 167 static cl::opt<bool> StressExtLdPromotion( 168 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 169 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 170 "optimization in CodeGenPrepare")); 171 172 static cl::opt<bool> DisablePreheaderProtect( 173 "disable-preheader-prot", cl::Hidden, cl::init(false), 174 cl::desc("Disable protection against removing loop preheaders")); 175 176 static cl::opt<bool> ProfileGuidedSectionPrefix( 177 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 178 cl::desc("Use profile info to add section prefix for hot/cold functions")); 179 180 static cl::opt<unsigned> FreqRatioToSkipMerge( 181 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 182 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 183 "(frequency of destination block) is greater than this ratio")); 184 185 static cl::opt<bool> ForceSplitStore( 186 "force-split-store", cl::Hidden, cl::init(false), 187 cl::desc("Force store splitting no matter what the target query says.")); 188 189 static cl::opt<bool> 190 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 191 cl::desc("Enable merging of redundant sexts when one is dominating" 192 " the other."), cl::init(true)); 193 194 static cl::opt<bool> DisableComplexAddrModes( 195 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 196 cl::desc("Disables combining addressing modes with different parts " 197 "in optimizeMemoryInst.")); 198 199 static cl::opt<bool> 200 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 201 cl::desc("Allow creation of Phis in Address sinking.")); 202 203 static cl::opt<bool> 204 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 205 cl::desc("Allow creation of selects in Address sinking.")); 206 207 static cl::opt<bool> AddrSinkCombineBaseReg( 208 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 209 cl::desc("Allow combining of BaseReg field in Address sinking.")); 210 211 static cl::opt<bool> AddrSinkCombineBaseGV( 212 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 213 cl::desc("Allow combining of BaseGV field in Address sinking.")); 214 215 static cl::opt<bool> AddrSinkCombineBaseOffs( 216 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 217 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 218 219 static cl::opt<bool> AddrSinkCombineScaledReg( 220 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 221 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 222 223 static cl::opt<bool> 224 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 225 cl::init(true), 226 cl::desc("Enable splitting large offset of GEP.")); 227 228 static cl::opt<bool> EnableICMP_EQToICMP_ST( 229 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 230 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 231 232 namespace { 233 234 enum ExtType { 235 ZeroExtension, // Zero extension has been seen. 236 SignExtension, // Sign extension has been seen. 237 BothExtension // This extension type is used if we saw sext after 238 // ZeroExtension had been set, or if we saw zext after 239 // SignExtension had been set. It makes the type 240 // information of a promoted instruction invalid. 241 }; 242 243 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 244 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 245 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 246 using SExts = SmallVector<Instruction *, 16>; 247 using ValueToSExts = DenseMap<Value *, SExts>; 248 249 class TypePromotionTransaction; 250 251 class CodeGenPrepare : public FunctionPass { 252 const TargetMachine *TM = nullptr; 253 const TargetSubtargetInfo *SubtargetInfo; 254 const TargetLowering *TLI = nullptr; 255 const TargetRegisterInfo *TRI; 256 const TargetTransformInfo *TTI = nullptr; 257 const TargetLibraryInfo *TLInfo; 258 const LoopInfo *LI; 259 std::unique_ptr<BlockFrequencyInfo> BFI; 260 std::unique_ptr<BranchProbabilityInfo> BPI; 261 ProfileSummaryInfo *PSI; 262 263 /// As we scan instructions optimizing them, this is the next instruction 264 /// to optimize. Transforms that can invalidate this should update it. 265 BasicBlock::iterator CurInstIterator; 266 267 /// Keeps track of non-local addresses that have been sunk into a block. 268 /// This allows us to avoid inserting duplicate code for blocks with 269 /// multiple load/stores of the same address. The usage of WeakTrackingVH 270 /// enables SunkAddrs to be treated as a cache whose entries can be 271 /// invalidated if a sunken address computation has been erased. 272 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 273 274 /// Keeps track of all instructions inserted for the current function. 275 SetOfInstrs InsertedInsts; 276 277 /// Keeps track of the type of the related instruction before their 278 /// promotion for the current function. 279 InstrToOrigTy PromotedInsts; 280 281 /// Keep track of instructions removed during promotion. 282 SetOfInstrs RemovedInsts; 283 284 /// Keep track of sext chains based on their initial value. 285 DenseMap<Value *, Instruction *> SeenChainsForSExt; 286 287 /// Keep track of GEPs accessing the same data structures such as structs or 288 /// arrays that are candidates to be split later because of their large 289 /// size. 290 MapVector< 291 AssertingVH<Value>, 292 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 293 LargeOffsetGEPMap; 294 295 /// Keep track of new GEP base after splitting the GEPs having large offset. 296 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 297 298 /// Map serial numbers to Large offset GEPs. 299 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 300 301 /// Keep track of SExt promoted. 302 ValueToSExts ValToSExtendedUses; 303 304 /// True if the function has the OptSize attribute. 305 bool OptSize; 306 307 /// DataLayout for the Function being processed. 308 const DataLayout *DL = nullptr; 309 310 /// Building the dominator tree can be expensive, so we only build it 311 /// lazily and update it when required. 312 std::unique_ptr<DominatorTree> DT; 313 314 public: 315 static char ID; // Pass identification, replacement for typeid 316 317 CodeGenPrepare() : FunctionPass(ID) { 318 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 319 } 320 321 bool runOnFunction(Function &F) override; 322 323 StringRef getPassName() const override { return "CodeGen Prepare"; } 324 325 void getAnalysisUsage(AnalysisUsage &AU) const override { 326 // FIXME: When we can selectively preserve passes, preserve the domtree. 327 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 328 AU.addRequired<TargetLibraryInfoWrapperPass>(); 329 AU.addRequired<TargetPassConfig>(); 330 AU.addRequired<TargetTransformInfoWrapperPass>(); 331 AU.addRequired<LoopInfoWrapperPass>(); 332 } 333 334 private: 335 template <typename F> 336 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 337 // Substituting can cause recursive simplifications, which can invalidate 338 // our iterator. Use a WeakTrackingVH to hold onto it in case this 339 // happens. 340 Value *CurValue = &*CurInstIterator; 341 WeakTrackingVH IterHandle(CurValue); 342 343 f(); 344 345 // If the iterator instruction was recursively deleted, start over at the 346 // start of the block. 347 if (IterHandle != CurValue) { 348 CurInstIterator = BB->begin(); 349 SunkAddrs.clear(); 350 } 351 } 352 353 // Get the DominatorTree, building if necessary. 354 DominatorTree &getDT(Function &F) { 355 if (!DT) 356 DT = std::make_unique<DominatorTree>(F); 357 return *DT; 358 } 359 360 bool eliminateFallThrough(Function &F); 361 bool eliminateMostlyEmptyBlocks(Function &F); 362 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 363 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 364 void eliminateMostlyEmptyBlock(BasicBlock *BB); 365 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 366 bool isPreheader); 367 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 368 bool optimizeInst(Instruction *I, bool &ModifiedDT); 369 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 370 Type *AccessTy, unsigned AddrSpace); 371 bool optimizeInlineAsmInst(CallInst *CS); 372 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 373 bool optimizeExt(Instruction *&I); 374 bool optimizeExtUses(Instruction *I); 375 bool optimizeLoadExt(LoadInst *Load); 376 bool optimizeShiftInst(BinaryOperator *BO); 377 bool optimizeSelectInst(SelectInst *SI); 378 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 379 bool optimizeSwitchInst(SwitchInst *SI); 380 bool optimizeExtractElementInst(Instruction *Inst); 381 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 382 bool fixupDbgValue(Instruction *I); 383 bool placeDbgValues(Function &F); 384 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 385 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 386 bool tryToPromoteExts(TypePromotionTransaction &TPT, 387 const SmallVectorImpl<Instruction *> &Exts, 388 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 389 unsigned CreatedInstsCost = 0); 390 bool mergeSExts(Function &F); 391 bool splitLargeGEPOffsets(); 392 bool performAddressTypePromotion( 393 Instruction *&Inst, 394 bool AllowPromotionWithoutCommonHeader, 395 bool HasPromoted, TypePromotionTransaction &TPT, 396 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 397 bool splitBranchCondition(Function &F, bool &ModifiedDT); 398 bool simplifyOffsetableRelocate(Instruction &I); 399 400 bool tryToSinkFreeOperands(Instruction *I); 401 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, 402 Value *Arg1, CmpInst *Cmp, 403 Intrinsic::ID IID); 404 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 405 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 406 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 407 }; 408 409 } // end anonymous namespace 410 411 char CodeGenPrepare::ID = 0; 412 413 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 414 "Optimize for code generation", false, false) 415 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 416 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 417 "Optimize for code generation", false, false) 418 419 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 420 421 bool CodeGenPrepare::runOnFunction(Function &F) { 422 if (skipFunction(F)) 423 return false; 424 425 DL = &F.getParent()->getDataLayout(); 426 427 bool EverMadeChange = false; 428 // Clear per function information. 429 InsertedInsts.clear(); 430 PromotedInsts.clear(); 431 432 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 433 SubtargetInfo = TM->getSubtargetImpl(F); 434 TLI = SubtargetInfo->getTargetLowering(); 435 TRI = SubtargetInfo->getRegisterInfo(); 436 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 437 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 438 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 439 BPI.reset(new BranchProbabilityInfo(F, *LI)); 440 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 441 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 442 OptSize = F.hasOptSize(); 443 if (ProfileGuidedSectionPrefix) { 444 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 445 F.setSectionPrefix(".hot"); 446 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 447 F.setSectionPrefix(".unlikely"); 448 } 449 450 /// This optimization identifies DIV instructions that can be 451 /// profitably bypassed and carried out with a shorter, faster divide. 452 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 453 const DenseMap<unsigned int, unsigned int> &BypassWidths = 454 TLI->getBypassSlowDivWidths(); 455 BasicBlock* BB = &*F.begin(); 456 while (BB != nullptr) { 457 // bypassSlowDivision may create new BBs, but we don't want to reapply the 458 // optimization to those blocks. 459 BasicBlock* Next = BB->getNextNode(); 460 // F.hasOptSize is already checked in the outer if statement. 461 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 462 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 463 BB = Next; 464 } 465 } 466 467 // Eliminate blocks that contain only PHI nodes and an 468 // unconditional branch. 469 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 470 471 bool ModifiedDT = false; 472 if (!DisableBranchOpts) 473 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 474 475 // Split some critical edges where one of the sources is an indirect branch, 476 // to help generate sane code for PHIs involving such edges. 477 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 478 479 bool MadeChange = true; 480 while (MadeChange) { 481 MadeChange = false; 482 DT.reset(); 483 for (Function::iterator I = F.begin(); I != F.end(); ) { 484 BasicBlock *BB = &*I++; 485 bool ModifiedDTOnIteration = false; 486 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 487 488 // Restart BB iteration if the dominator tree of the Function was changed 489 if (ModifiedDTOnIteration) 490 break; 491 } 492 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 493 MadeChange |= mergeSExts(F); 494 if (!LargeOffsetGEPMap.empty()) 495 MadeChange |= splitLargeGEPOffsets(); 496 497 if (MadeChange) 498 eliminateFallThrough(F); 499 500 // Really free removed instructions during promotion. 501 for (Instruction *I : RemovedInsts) 502 I->deleteValue(); 503 504 EverMadeChange |= MadeChange; 505 SeenChainsForSExt.clear(); 506 ValToSExtendedUses.clear(); 507 RemovedInsts.clear(); 508 LargeOffsetGEPMap.clear(); 509 LargeOffsetGEPID.clear(); 510 } 511 512 SunkAddrs.clear(); 513 514 if (!DisableBranchOpts) { 515 MadeChange = false; 516 // Use a set vector to get deterministic iteration order. The order the 517 // blocks are removed may affect whether or not PHI nodes in successors 518 // are removed. 519 SmallSetVector<BasicBlock*, 8> WorkList; 520 for (BasicBlock &BB : F) { 521 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 522 MadeChange |= ConstantFoldTerminator(&BB, true); 523 if (!MadeChange) continue; 524 525 for (SmallVectorImpl<BasicBlock*>::iterator 526 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 527 if (pred_begin(*II) == pred_end(*II)) 528 WorkList.insert(*II); 529 } 530 531 // Delete the dead blocks and any of their dead successors. 532 MadeChange |= !WorkList.empty(); 533 while (!WorkList.empty()) { 534 BasicBlock *BB = WorkList.pop_back_val(); 535 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 536 537 DeleteDeadBlock(BB); 538 539 for (SmallVectorImpl<BasicBlock*>::iterator 540 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 541 if (pred_begin(*II) == pred_end(*II)) 542 WorkList.insert(*II); 543 } 544 545 // Merge pairs of basic blocks with unconditional branches, connected by 546 // a single edge. 547 if (EverMadeChange || MadeChange) 548 MadeChange |= eliminateFallThrough(F); 549 550 EverMadeChange |= MadeChange; 551 } 552 553 if (!DisableGCOpts) { 554 SmallVector<Instruction *, 2> Statepoints; 555 for (BasicBlock &BB : F) 556 for (Instruction &I : BB) 557 if (isStatepoint(I)) 558 Statepoints.push_back(&I); 559 for (auto &I : Statepoints) 560 EverMadeChange |= simplifyOffsetableRelocate(*I); 561 } 562 563 // Do this last to clean up use-before-def scenarios introduced by other 564 // preparatory transforms. 565 EverMadeChange |= placeDbgValues(F); 566 567 return EverMadeChange; 568 } 569 570 /// Merge basic blocks which are connected by a single edge, where one of the 571 /// basic blocks has a single successor pointing to the other basic block, 572 /// which has a single predecessor. 573 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 574 bool Changed = false; 575 // Scan all of the blocks in the function, except for the entry block. 576 // Use a temporary array to avoid iterator being invalidated when 577 // deleting blocks. 578 SmallVector<WeakTrackingVH, 16> Blocks; 579 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 580 Blocks.push_back(&Block); 581 582 for (auto &Block : Blocks) { 583 auto *BB = cast_or_null<BasicBlock>(Block); 584 if (!BB) 585 continue; 586 // If the destination block has a single pred, then this is a trivial 587 // edge, just collapse it. 588 BasicBlock *SinglePred = BB->getSinglePredecessor(); 589 590 // Don't merge if BB's address is taken. 591 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 592 593 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 594 if (Term && !Term->isConditional()) { 595 Changed = true; 596 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 597 598 // Merge BB into SinglePred and delete it. 599 MergeBlockIntoPredecessor(BB); 600 } 601 } 602 return Changed; 603 } 604 605 /// Find a destination block from BB if BB is mergeable empty block. 606 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 607 // If this block doesn't end with an uncond branch, ignore it. 608 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 609 if (!BI || !BI->isUnconditional()) 610 return nullptr; 611 612 // If the instruction before the branch (skipping debug info) isn't a phi 613 // node, then other stuff is happening here. 614 BasicBlock::iterator BBI = BI->getIterator(); 615 if (BBI != BB->begin()) { 616 --BBI; 617 while (isa<DbgInfoIntrinsic>(BBI)) { 618 if (BBI == BB->begin()) 619 break; 620 --BBI; 621 } 622 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 623 return nullptr; 624 } 625 626 // Do not break infinite loops. 627 BasicBlock *DestBB = BI->getSuccessor(0); 628 if (DestBB == BB) 629 return nullptr; 630 631 if (!canMergeBlocks(BB, DestBB)) 632 DestBB = nullptr; 633 634 return DestBB; 635 } 636 637 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 638 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 639 /// edges in ways that are non-optimal for isel. Start by eliminating these 640 /// blocks so we can split them the way we want them. 641 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 642 SmallPtrSet<BasicBlock *, 16> Preheaders; 643 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 644 while (!LoopList.empty()) { 645 Loop *L = LoopList.pop_back_val(); 646 LoopList.insert(LoopList.end(), L->begin(), L->end()); 647 if (BasicBlock *Preheader = L->getLoopPreheader()) 648 Preheaders.insert(Preheader); 649 } 650 651 bool MadeChange = false; 652 // Copy blocks into a temporary array to avoid iterator invalidation issues 653 // as we remove them. 654 // Note that this intentionally skips the entry block. 655 SmallVector<WeakTrackingVH, 16> Blocks; 656 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 657 Blocks.push_back(&Block); 658 659 for (auto &Block : Blocks) { 660 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 661 if (!BB) 662 continue; 663 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 664 if (!DestBB || 665 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 666 continue; 667 668 eliminateMostlyEmptyBlock(BB); 669 MadeChange = true; 670 } 671 return MadeChange; 672 } 673 674 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 675 BasicBlock *DestBB, 676 bool isPreheader) { 677 // Do not delete loop preheaders if doing so would create a critical edge. 678 // Loop preheaders can be good locations to spill registers. If the 679 // preheader is deleted and we create a critical edge, registers may be 680 // spilled in the loop body instead. 681 if (!DisablePreheaderProtect && isPreheader && 682 !(BB->getSinglePredecessor() && 683 BB->getSinglePredecessor()->getSingleSuccessor())) 684 return false; 685 686 // Skip merging if the block's successor is also a successor to any callbr 687 // that leads to this block. 688 // FIXME: Is this really needed? Is this a correctness issue? 689 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 690 if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator())) 691 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 692 if (DestBB == CBI->getSuccessor(i)) 693 return false; 694 } 695 696 // Try to skip merging if the unique predecessor of BB is terminated by a 697 // switch or indirect branch instruction, and BB is used as an incoming block 698 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 699 // add COPY instructions in the predecessor of BB instead of BB (if it is not 700 // merged). Note that the critical edge created by merging such blocks wont be 701 // split in MachineSink because the jump table is not analyzable. By keeping 702 // such empty block (BB), ISel will place COPY instructions in BB, not in the 703 // predecessor of BB. 704 BasicBlock *Pred = BB->getUniquePredecessor(); 705 if (!Pred || 706 !(isa<SwitchInst>(Pred->getTerminator()) || 707 isa<IndirectBrInst>(Pred->getTerminator()))) 708 return true; 709 710 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 711 return true; 712 713 // We use a simple cost heuristic which determine skipping merging is 714 // profitable if the cost of skipping merging is less than the cost of 715 // merging : Cost(skipping merging) < Cost(merging BB), where the 716 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 717 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 718 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 719 // Freq(Pred) / Freq(BB) > 2. 720 // Note that if there are multiple empty blocks sharing the same incoming 721 // value for the PHIs in the DestBB, we consider them together. In such 722 // case, Cost(merging BB) will be the sum of their frequencies. 723 724 if (!isa<PHINode>(DestBB->begin())) 725 return true; 726 727 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 728 729 // Find all other incoming blocks from which incoming values of all PHIs in 730 // DestBB are the same as the ones from BB. 731 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 732 ++PI) { 733 BasicBlock *DestBBPred = *PI; 734 if (DestBBPred == BB) 735 continue; 736 737 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 738 return DestPN.getIncomingValueForBlock(BB) == 739 DestPN.getIncomingValueForBlock(DestBBPred); 740 })) 741 SameIncomingValueBBs.insert(DestBBPred); 742 } 743 744 // See if all BB's incoming values are same as the value from Pred. In this 745 // case, no reason to skip merging because COPYs are expected to be place in 746 // Pred already. 747 if (SameIncomingValueBBs.count(Pred)) 748 return true; 749 750 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 751 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 752 753 for (auto SameValueBB : SameIncomingValueBBs) 754 if (SameValueBB->getUniquePredecessor() == Pred && 755 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 756 BBFreq += BFI->getBlockFreq(SameValueBB); 757 758 return PredFreq.getFrequency() <= 759 BBFreq.getFrequency() * FreqRatioToSkipMerge; 760 } 761 762 /// Return true if we can merge BB into DestBB if there is a single 763 /// unconditional branch between them, and BB contains no other non-phi 764 /// instructions. 765 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 766 const BasicBlock *DestBB) const { 767 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 768 // the successor. If there are more complex condition (e.g. preheaders), 769 // don't mess around with them. 770 for (const PHINode &PN : BB->phis()) { 771 for (const User *U : PN.users()) { 772 const Instruction *UI = cast<Instruction>(U); 773 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 774 return false; 775 // If User is inside DestBB block and it is a PHINode then check 776 // incoming value. If incoming value is not from BB then this is 777 // a complex condition (e.g. preheaders) we want to avoid here. 778 if (UI->getParent() == DestBB) { 779 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 780 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 781 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 782 if (Insn && Insn->getParent() == BB && 783 Insn->getParent() != UPN->getIncomingBlock(I)) 784 return false; 785 } 786 } 787 } 788 } 789 790 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 791 // and DestBB may have conflicting incoming values for the block. If so, we 792 // can't merge the block. 793 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 794 if (!DestBBPN) return true; // no conflict. 795 796 // Collect the preds of BB. 797 SmallPtrSet<const BasicBlock*, 16> BBPreds; 798 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 799 // It is faster to get preds from a PHI than with pred_iterator. 800 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 801 BBPreds.insert(BBPN->getIncomingBlock(i)); 802 } else { 803 BBPreds.insert(pred_begin(BB), pred_end(BB)); 804 } 805 806 // Walk the preds of DestBB. 807 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 808 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 809 if (BBPreds.count(Pred)) { // Common predecessor? 810 for (const PHINode &PN : DestBB->phis()) { 811 const Value *V1 = PN.getIncomingValueForBlock(Pred); 812 const Value *V2 = PN.getIncomingValueForBlock(BB); 813 814 // If V2 is a phi node in BB, look up what the mapped value will be. 815 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 816 if (V2PN->getParent() == BB) 817 V2 = V2PN->getIncomingValueForBlock(Pred); 818 819 // If there is a conflict, bail out. 820 if (V1 != V2) return false; 821 } 822 } 823 } 824 825 return true; 826 } 827 828 /// Eliminate a basic block that has only phi's and an unconditional branch in 829 /// it. 830 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 831 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 832 BasicBlock *DestBB = BI->getSuccessor(0); 833 834 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 835 << *BB << *DestBB); 836 837 // If the destination block has a single pred, then this is a trivial edge, 838 // just collapse it. 839 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 840 if (SinglePred != DestBB) { 841 assert(SinglePred == BB && 842 "Single predecessor not the same as predecessor"); 843 // Merge DestBB into SinglePred/BB and delete it. 844 MergeBlockIntoPredecessor(DestBB); 845 // Note: BB(=SinglePred) will not be deleted on this path. 846 // DestBB(=its single successor) is the one that was deleted. 847 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 848 return; 849 } 850 } 851 852 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 853 // to handle the new incoming edges it is about to have. 854 for (PHINode &PN : DestBB->phis()) { 855 // Remove the incoming value for BB, and remember it. 856 Value *InVal = PN.removeIncomingValue(BB, false); 857 858 // Two options: either the InVal is a phi node defined in BB or it is some 859 // value that dominates BB. 860 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 861 if (InValPhi && InValPhi->getParent() == BB) { 862 // Add all of the input values of the input PHI as inputs of this phi. 863 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 864 PN.addIncoming(InValPhi->getIncomingValue(i), 865 InValPhi->getIncomingBlock(i)); 866 } else { 867 // Otherwise, add one instance of the dominating value for each edge that 868 // we will be adding. 869 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 870 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 871 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 872 } else { 873 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 874 PN.addIncoming(InVal, *PI); 875 } 876 } 877 } 878 879 // The PHIs are now updated, change everything that refers to BB to use 880 // DestBB and remove BB. 881 BB->replaceAllUsesWith(DestBB); 882 BB->eraseFromParent(); 883 ++NumBlocksElim; 884 885 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 886 } 887 888 // Computes a map of base pointer relocation instructions to corresponding 889 // derived pointer relocation instructions given a vector of all relocate calls 890 static void computeBaseDerivedRelocateMap( 891 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 892 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 893 &RelocateInstMap) { 894 // Collect information in two maps: one primarily for locating the base object 895 // while filling the second map; the second map is the final structure holding 896 // a mapping between Base and corresponding Derived relocate calls 897 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 898 for (auto *ThisRelocate : AllRelocateCalls) { 899 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 900 ThisRelocate->getDerivedPtrIndex()); 901 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 902 } 903 for (auto &Item : RelocateIdxMap) { 904 std::pair<unsigned, unsigned> Key = Item.first; 905 if (Key.first == Key.second) 906 // Base relocation: nothing to insert 907 continue; 908 909 GCRelocateInst *I = Item.second; 910 auto BaseKey = std::make_pair(Key.first, Key.first); 911 912 // We're iterating over RelocateIdxMap so we cannot modify it. 913 auto MaybeBase = RelocateIdxMap.find(BaseKey); 914 if (MaybeBase == RelocateIdxMap.end()) 915 // TODO: We might want to insert a new base object relocate and gep off 916 // that, if there are enough derived object relocates. 917 continue; 918 919 RelocateInstMap[MaybeBase->second].push_back(I); 920 } 921 } 922 923 // Accepts a GEP and extracts the operands into a vector provided they're all 924 // small integer constants 925 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 926 SmallVectorImpl<Value *> &OffsetV) { 927 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 928 // Only accept small constant integer operands 929 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 930 if (!Op || Op->getZExtValue() > 20) 931 return false; 932 } 933 934 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 935 OffsetV.push_back(GEP->getOperand(i)); 936 return true; 937 } 938 939 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 940 // replace, computes a replacement, and affects it. 941 static bool 942 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 943 const SmallVectorImpl<GCRelocateInst *> &Targets) { 944 bool MadeChange = false; 945 // We must ensure the relocation of derived pointer is defined after 946 // relocation of base pointer. If we find a relocation corresponding to base 947 // defined earlier than relocation of base then we move relocation of base 948 // right before found relocation. We consider only relocation in the same 949 // basic block as relocation of base. Relocations from other basic block will 950 // be skipped by optimization and we do not care about them. 951 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 952 &*R != RelocatedBase; ++R) 953 if (auto RI = dyn_cast<GCRelocateInst>(R)) 954 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 955 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 956 RelocatedBase->moveBefore(RI); 957 break; 958 } 959 960 for (GCRelocateInst *ToReplace : Targets) { 961 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 962 "Not relocating a derived object of the original base object"); 963 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 964 // A duplicate relocate call. TODO: coalesce duplicates. 965 continue; 966 } 967 968 if (RelocatedBase->getParent() != ToReplace->getParent()) { 969 // Base and derived relocates are in different basic blocks. 970 // In this case transform is only valid when base dominates derived 971 // relocate. However it would be too expensive to check dominance 972 // for each such relocate, so we skip the whole transformation. 973 continue; 974 } 975 976 Value *Base = ToReplace->getBasePtr(); 977 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 978 if (!Derived || Derived->getPointerOperand() != Base) 979 continue; 980 981 SmallVector<Value *, 2> OffsetV; 982 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 983 continue; 984 985 // Create a Builder and replace the target callsite with a gep 986 assert(RelocatedBase->getNextNode() && 987 "Should always have one since it's not a terminator"); 988 989 // Insert after RelocatedBase 990 IRBuilder<> Builder(RelocatedBase->getNextNode()); 991 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 992 993 // If gc_relocate does not match the actual type, cast it to the right type. 994 // In theory, there must be a bitcast after gc_relocate if the type does not 995 // match, and we should reuse it to get the derived pointer. But it could be 996 // cases like this: 997 // bb1: 998 // ... 999 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1000 // br label %merge 1001 // 1002 // bb2: 1003 // ... 1004 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1005 // br label %merge 1006 // 1007 // merge: 1008 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1009 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1010 // 1011 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1012 // no matter there is already one or not. In this way, we can handle all cases, and 1013 // the extra bitcast should be optimized away in later passes. 1014 Value *ActualRelocatedBase = RelocatedBase; 1015 if (RelocatedBase->getType() != Base->getType()) { 1016 ActualRelocatedBase = 1017 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1018 } 1019 Value *Replacement = Builder.CreateGEP( 1020 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1021 Replacement->takeName(ToReplace); 1022 // If the newly generated derived pointer's type does not match the original derived 1023 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1024 Value *ActualReplacement = Replacement; 1025 if (Replacement->getType() != ToReplace->getType()) { 1026 ActualReplacement = 1027 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1028 } 1029 ToReplace->replaceAllUsesWith(ActualReplacement); 1030 ToReplace->eraseFromParent(); 1031 1032 MadeChange = true; 1033 } 1034 return MadeChange; 1035 } 1036 1037 // Turns this: 1038 // 1039 // %base = ... 1040 // %ptr = gep %base + 15 1041 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1042 // %base' = relocate(%tok, i32 4, i32 4) 1043 // %ptr' = relocate(%tok, i32 4, i32 5) 1044 // %val = load %ptr' 1045 // 1046 // into this: 1047 // 1048 // %base = ... 1049 // %ptr = gep %base + 15 1050 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1051 // %base' = gc.relocate(%tok, i32 4, i32 4) 1052 // %ptr' = gep %base' + 15 1053 // %val = load %ptr' 1054 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1055 bool MadeChange = false; 1056 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1057 1058 for (auto *U : I.users()) 1059 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1060 // Collect all the relocate calls associated with a statepoint 1061 AllRelocateCalls.push_back(Relocate); 1062 1063 // We need at least one base pointer relocation + one derived pointer 1064 // relocation to mangle 1065 if (AllRelocateCalls.size() < 2) 1066 return false; 1067 1068 // RelocateInstMap is a mapping from the base relocate instruction to the 1069 // corresponding derived relocate instructions 1070 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1071 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1072 if (RelocateInstMap.empty()) 1073 return false; 1074 1075 for (auto &Item : RelocateInstMap) 1076 // Item.first is the RelocatedBase to offset against 1077 // Item.second is the vector of Targets to replace 1078 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1079 return MadeChange; 1080 } 1081 1082 /// Sink the specified cast instruction into its user blocks. 1083 static bool SinkCast(CastInst *CI) { 1084 BasicBlock *DefBB = CI->getParent(); 1085 1086 /// InsertedCasts - Only insert a cast in each block once. 1087 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1088 1089 bool MadeChange = false; 1090 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1091 UI != E; ) { 1092 Use &TheUse = UI.getUse(); 1093 Instruction *User = cast<Instruction>(*UI); 1094 1095 // Figure out which BB this cast is used in. For PHI's this is the 1096 // appropriate predecessor block. 1097 BasicBlock *UserBB = User->getParent(); 1098 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1099 UserBB = PN->getIncomingBlock(TheUse); 1100 } 1101 1102 // Preincrement use iterator so we don't invalidate it. 1103 ++UI; 1104 1105 // The first insertion point of a block containing an EH pad is after the 1106 // pad. If the pad is the user, we cannot sink the cast past the pad. 1107 if (User->isEHPad()) 1108 continue; 1109 1110 // If the block selected to receive the cast is an EH pad that does not 1111 // allow non-PHI instructions before the terminator, we can't sink the 1112 // cast. 1113 if (UserBB->getTerminator()->isEHPad()) 1114 continue; 1115 1116 // If this user is in the same block as the cast, don't change the cast. 1117 if (UserBB == DefBB) continue; 1118 1119 // If we have already inserted a cast into this block, use it. 1120 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1121 1122 if (!InsertedCast) { 1123 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1124 assert(InsertPt != UserBB->end()); 1125 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1126 CI->getType(), "", &*InsertPt); 1127 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1128 } 1129 1130 // Replace a use of the cast with a use of the new cast. 1131 TheUse = InsertedCast; 1132 MadeChange = true; 1133 ++NumCastUses; 1134 } 1135 1136 // If we removed all uses, nuke the cast. 1137 if (CI->use_empty()) { 1138 salvageDebugInfo(*CI); 1139 CI->eraseFromParent(); 1140 MadeChange = true; 1141 } 1142 1143 return MadeChange; 1144 } 1145 1146 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1147 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1148 /// reduce the number of virtual registers that must be created and coalesced. 1149 /// 1150 /// Return true if any changes are made. 1151 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1152 const DataLayout &DL) { 1153 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1154 // than sinking only nop casts, but is helpful on some platforms. 1155 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1156 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1157 ASC->getDestAddressSpace())) 1158 return false; 1159 } 1160 1161 // If this is a noop copy, 1162 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1163 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1164 1165 // This is an fp<->int conversion? 1166 if (SrcVT.isInteger() != DstVT.isInteger()) 1167 return false; 1168 1169 // If this is an extension, it will be a zero or sign extension, which 1170 // isn't a noop. 1171 if (SrcVT.bitsLT(DstVT)) return false; 1172 1173 // If these values will be promoted, find out what they will be promoted 1174 // to. This helps us consider truncates on PPC as noop copies when they 1175 // are. 1176 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1177 TargetLowering::TypePromoteInteger) 1178 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1179 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1180 TargetLowering::TypePromoteInteger) 1181 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1182 1183 // If, after promotion, these are the same types, this is a noop copy. 1184 if (SrcVT != DstVT) 1185 return false; 1186 1187 return SinkCast(CI); 1188 } 1189 1190 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1191 Value *Arg0, Value *Arg1, 1192 CmpInst *Cmp, 1193 Intrinsic::ID IID) { 1194 if (BO->getParent() != Cmp->getParent()) { 1195 // We used to use a dominator tree here to allow multi-block optimization. 1196 // But that was problematic because: 1197 // 1. It could cause a perf regression by hoisting the math op into the 1198 // critical path. 1199 // 2. It could cause a perf regression by creating a value that was live 1200 // across multiple blocks and increasing register pressure. 1201 // 3. Use of a dominator tree could cause large compile-time regression. 1202 // This is because we recompute the DT on every change in the main CGP 1203 // run-loop. The recomputing is probably unnecessary in many cases, so if 1204 // that was fixed, using a DT here would be ok. 1205 return false; 1206 } 1207 1208 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1209 if (BO->getOpcode() == Instruction::Add && 1210 IID == Intrinsic::usub_with_overflow) { 1211 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1212 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1213 } 1214 1215 // Insert at the first instruction of the pair. 1216 Instruction *InsertPt = nullptr; 1217 for (Instruction &Iter : *Cmp->getParent()) { 1218 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1219 // the overflow intrinsic are defined. 1220 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1221 InsertPt = &Iter; 1222 break; 1223 } 1224 } 1225 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1226 1227 IRBuilder<> Builder(InsertPt); 1228 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1229 if (BO->getOpcode() != Instruction::Xor) { 1230 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1231 BO->replaceAllUsesWith(Math); 1232 } else 1233 assert(BO->hasOneUse() && 1234 "Patterns with XOr should use the BO only in the compare"); 1235 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1236 Cmp->replaceAllUsesWith(OV); 1237 Cmp->eraseFromParent(); 1238 BO->eraseFromParent(); 1239 return true; 1240 } 1241 1242 /// Match special-case patterns that check for unsigned add overflow. 1243 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1244 BinaryOperator *&Add) { 1245 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1246 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1247 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1248 1249 // We are not expecting non-canonical/degenerate code. Just bail out. 1250 if (isa<Constant>(A)) 1251 return false; 1252 1253 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1254 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1255 B = ConstantInt::get(B->getType(), 1); 1256 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1257 B = ConstantInt::get(B->getType(), -1); 1258 else 1259 return false; 1260 1261 // Check the users of the variable operand of the compare looking for an add 1262 // with the adjusted constant. 1263 for (User *U : A->users()) { 1264 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1265 Add = cast<BinaryOperator>(U); 1266 return true; 1267 } 1268 } 1269 return false; 1270 } 1271 1272 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1273 /// intrinsic. Return true if any changes were made. 1274 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1275 bool &ModifiedDT) { 1276 Value *A, *B; 1277 BinaryOperator *Add; 1278 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1279 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1280 return false; 1281 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1282 A = Add->getOperand(0); 1283 B = Add->getOperand(1); 1284 } 1285 1286 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1287 TLI->getValueType(*DL, Add->getType()), 1288 Add->hasNUsesOrMore(2))) 1289 return false; 1290 1291 // We don't want to move around uses of condition values this late, so we 1292 // check if it is legal to create the call to the intrinsic in the basic 1293 // block containing the icmp. 1294 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1295 return false; 1296 1297 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1298 Intrinsic::uadd_with_overflow)) 1299 return false; 1300 1301 // Reset callers - do not crash by iterating over a dead instruction. 1302 ModifiedDT = true; 1303 return true; 1304 } 1305 1306 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1307 bool &ModifiedDT) { 1308 // We are not expecting non-canonical/degenerate code. Just bail out. 1309 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1310 if (isa<Constant>(A) && isa<Constant>(B)) 1311 return false; 1312 1313 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1314 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1315 if (Pred == ICmpInst::ICMP_UGT) { 1316 std::swap(A, B); 1317 Pred = ICmpInst::ICMP_ULT; 1318 } 1319 // Convert special-case: (A == 0) is the same as (A u< 1). 1320 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1321 B = ConstantInt::get(B->getType(), 1); 1322 Pred = ICmpInst::ICMP_ULT; 1323 } 1324 // Convert special-case: (A != 0) is the same as (0 u< A). 1325 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1326 std::swap(A, B); 1327 Pred = ICmpInst::ICMP_ULT; 1328 } 1329 if (Pred != ICmpInst::ICMP_ULT) 1330 return false; 1331 1332 // Walk the users of a variable operand of a compare looking for a subtract or 1333 // add with that same operand. Also match the 2nd operand of the compare to 1334 // the add/sub, but that may be a negated constant operand of an add. 1335 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1336 BinaryOperator *Sub = nullptr; 1337 for (User *U : CmpVariableOperand->users()) { 1338 // A - B, A u< B --> usubo(A, B) 1339 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1340 Sub = cast<BinaryOperator>(U); 1341 break; 1342 } 1343 1344 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1345 const APInt *CmpC, *AddC; 1346 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1347 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1348 Sub = cast<BinaryOperator>(U); 1349 break; 1350 } 1351 } 1352 if (!Sub) 1353 return false; 1354 1355 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1356 TLI->getValueType(*DL, Sub->getType()), 1357 Sub->hasNUsesOrMore(2))) 1358 return false; 1359 1360 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1361 Cmp, Intrinsic::usub_with_overflow)) 1362 return false; 1363 1364 // Reset callers - do not crash by iterating over a dead instruction. 1365 ModifiedDT = true; 1366 return true; 1367 } 1368 1369 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1370 /// registers that must be created and coalesced. This is a clear win except on 1371 /// targets with multiple condition code registers (PowerPC), where it might 1372 /// lose; some adjustment may be wanted there. 1373 /// 1374 /// Return true if any changes are made. 1375 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1376 if (TLI.hasMultipleConditionRegisters()) 1377 return false; 1378 1379 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1380 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1381 return false; 1382 1383 // Only insert a cmp in each block once. 1384 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1385 1386 bool MadeChange = false; 1387 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1388 UI != E; ) { 1389 Use &TheUse = UI.getUse(); 1390 Instruction *User = cast<Instruction>(*UI); 1391 1392 // Preincrement use iterator so we don't invalidate it. 1393 ++UI; 1394 1395 // Don't bother for PHI nodes. 1396 if (isa<PHINode>(User)) 1397 continue; 1398 1399 // Figure out which BB this cmp is used in. 1400 BasicBlock *UserBB = User->getParent(); 1401 BasicBlock *DefBB = Cmp->getParent(); 1402 1403 // If this user is in the same block as the cmp, don't change the cmp. 1404 if (UserBB == DefBB) continue; 1405 1406 // If we have already inserted a cmp into this block, use it. 1407 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1408 1409 if (!InsertedCmp) { 1410 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1411 assert(InsertPt != UserBB->end()); 1412 InsertedCmp = 1413 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1414 Cmp->getOperand(0), Cmp->getOperand(1), "", 1415 &*InsertPt); 1416 // Propagate the debug info. 1417 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1418 } 1419 1420 // Replace a use of the cmp with a use of the new cmp. 1421 TheUse = InsertedCmp; 1422 MadeChange = true; 1423 ++NumCmpUses; 1424 } 1425 1426 // If we removed all uses, nuke the cmp. 1427 if (Cmp->use_empty()) { 1428 Cmp->eraseFromParent(); 1429 MadeChange = true; 1430 } 1431 1432 return MadeChange; 1433 } 1434 1435 /// For pattern like: 1436 /// 1437 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1438 /// ... 1439 /// DomBB: 1440 /// ... 1441 /// br DomCond, TrueBB, CmpBB 1442 /// CmpBB: (with DomBB being the single predecessor) 1443 /// ... 1444 /// Cmp = icmp eq CmpOp0, CmpOp1 1445 /// ... 1446 /// 1447 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1448 /// different from lowering of icmp eq (PowerPC). This function try to convert 1449 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1450 /// After that, DomCond and Cmp can use the same comparison so reduce one 1451 /// comparison. 1452 /// 1453 /// Return true if any changes are made. 1454 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1455 const TargetLowering &TLI) { 1456 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1457 return false; 1458 1459 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1460 if (Pred != ICmpInst::ICMP_EQ) 1461 return false; 1462 1463 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1464 // icmp slt/sgt would introduce more redundant LLVM IR. 1465 for (User *U : Cmp->users()) { 1466 if (isa<BranchInst>(U)) 1467 continue; 1468 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1469 continue; 1470 return false; 1471 } 1472 1473 // This is a cheap/incomplete check for dominance - just match a single 1474 // predecessor with a conditional branch. 1475 BasicBlock *CmpBB = Cmp->getParent(); 1476 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1477 if (!DomBB) 1478 return false; 1479 1480 // We want to ensure that the only way control gets to the comparison of 1481 // interest is that a less/greater than comparison on the same operands is 1482 // false. 1483 Value *DomCond; 1484 BasicBlock *TrueBB, *FalseBB; 1485 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1486 return false; 1487 if (CmpBB != FalseBB) 1488 return false; 1489 1490 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1491 ICmpInst::Predicate DomPred; 1492 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1493 return false; 1494 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1495 return false; 1496 1497 // Convert the equality comparison to the opposite of the dominating 1498 // comparison and swap the direction for all branch/select users. 1499 // We have conceptually converted: 1500 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1501 // to 1502 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1503 // And similarly for branches. 1504 for (User *U : Cmp->users()) { 1505 if (auto *BI = dyn_cast<BranchInst>(U)) { 1506 assert(BI->isConditional() && "Must be conditional"); 1507 BI->swapSuccessors(); 1508 continue; 1509 } 1510 if (auto *SI = dyn_cast<SelectInst>(U)) { 1511 // Swap operands 1512 SI->swapValues(); 1513 SI->swapProfMetadata(); 1514 continue; 1515 } 1516 llvm_unreachable("Must be a branch or a select"); 1517 } 1518 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1519 return true; 1520 } 1521 1522 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1523 if (sinkCmpExpression(Cmp, *TLI)) 1524 return true; 1525 1526 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1527 return true; 1528 1529 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1530 return true; 1531 1532 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1533 return true; 1534 1535 return false; 1536 } 1537 1538 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1539 /// used in a compare to allow isel to generate better code for targets where 1540 /// this operation can be combined. 1541 /// 1542 /// Return true if any changes are made. 1543 static bool sinkAndCmp0Expression(Instruction *AndI, 1544 const TargetLowering &TLI, 1545 SetOfInstrs &InsertedInsts) { 1546 // Double-check that we're not trying to optimize an instruction that was 1547 // already optimized by some other part of this pass. 1548 assert(!InsertedInsts.count(AndI) && 1549 "Attempting to optimize already optimized and instruction"); 1550 (void) InsertedInsts; 1551 1552 // Nothing to do for single use in same basic block. 1553 if (AndI->hasOneUse() && 1554 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1555 return false; 1556 1557 // Try to avoid cases where sinking/duplicating is likely to increase register 1558 // pressure. 1559 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1560 !isa<ConstantInt>(AndI->getOperand(1)) && 1561 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1562 return false; 1563 1564 for (auto *U : AndI->users()) { 1565 Instruction *User = cast<Instruction>(U); 1566 1567 // Only sink 'and' feeding icmp with 0. 1568 if (!isa<ICmpInst>(User)) 1569 return false; 1570 1571 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1572 if (!CmpC || !CmpC->isZero()) 1573 return false; 1574 } 1575 1576 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1577 return false; 1578 1579 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1580 LLVM_DEBUG(AndI->getParent()->dump()); 1581 1582 // Push the 'and' into the same block as the icmp 0. There should only be 1583 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1584 // others, so we don't need to keep track of which BBs we insert into. 1585 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1586 UI != E; ) { 1587 Use &TheUse = UI.getUse(); 1588 Instruction *User = cast<Instruction>(*UI); 1589 1590 // Preincrement use iterator so we don't invalidate it. 1591 ++UI; 1592 1593 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1594 1595 // Keep the 'and' in the same place if the use is already in the same block. 1596 Instruction *InsertPt = 1597 User->getParent() == AndI->getParent() ? AndI : User; 1598 Instruction *InsertedAnd = 1599 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1600 AndI->getOperand(1), "", InsertPt); 1601 // Propagate the debug info. 1602 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1603 1604 // Replace a use of the 'and' with a use of the new 'and'. 1605 TheUse = InsertedAnd; 1606 ++NumAndUses; 1607 LLVM_DEBUG(User->getParent()->dump()); 1608 } 1609 1610 // We removed all uses, nuke the and. 1611 AndI->eraseFromParent(); 1612 return true; 1613 } 1614 1615 /// Check if the candidates could be combined with a shift instruction, which 1616 /// includes: 1617 /// 1. Truncate instruction 1618 /// 2. And instruction and the imm is a mask of the low bits: 1619 /// imm & (imm+1) == 0 1620 static bool isExtractBitsCandidateUse(Instruction *User) { 1621 if (!isa<TruncInst>(User)) { 1622 if (User->getOpcode() != Instruction::And || 1623 !isa<ConstantInt>(User->getOperand(1))) 1624 return false; 1625 1626 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1627 1628 if ((Cimm & (Cimm + 1)).getBoolValue()) 1629 return false; 1630 } 1631 return true; 1632 } 1633 1634 /// Sink both shift and truncate instruction to the use of truncate's BB. 1635 static bool 1636 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1637 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1638 const TargetLowering &TLI, const DataLayout &DL) { 1639 BasicBlock *UserBB = User->getParent(); 1640 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1641 auto *TruncI = cast<TruncInst>(User); 1642 bool MadeChange = false; 1643 1644 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1645 TruncE = TruncI->user_end(); 1646 TruncUI != TruncE;) { 1647 1648 Use &TruncTheUse = TruncUI.getUse(); 1649 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1650 // Preincrement use iterator so we don't invalidate it. 1651 1652 ++TruncUI; 1653 1654 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1655 if (!ISDOpcode) 1656 continue; 1657 1658 // If the use is actually a legal node, there will not be an 1659 // implicit truncate. 1660 // FIXME: always querying the result type is just an 1661 // approximation; some nodes' legality is determined by the 1662 // operand or other means. There's no good way to find out though. 1663 if (TLI.isOperationLegalOrCustom( 1664 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1665 continue; 1666 1667 // Don't bother for PHI nodes. 1668 if (isa<PHINode>(TruncUser)) 1669 continue; 1670 1671 BasicBlock *TruncUserBB = TruncUser->getParent(); 1672 1673 if (UserBB == TruncUserBB) 1674 continue; 1675 1676 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1677 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1678 1679 if (!InsertedShift && !InsertedTrunc) { 1680 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1681 assert(InsertPt != TruncUserBB->end()); 1682 // Sink the shift 1683 if (ShiftI->getOpcode() == Instruction::AShr) 1684 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1685 "", &*InsertPt); 1686 else 1687 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1688 "", &*InsertPt); 1689 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1690 1691 // Sink the trunc 1692 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1693 TruncInsertPt++; 1694 assert(TruncInsertPt != TruncUserBB->end()); 1695 1696 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1697 TruncI->getType(), "", &*TruncInsertPt); 1698 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1699 1700 MadeChange = true; 1701 1702 TruncTheUse = InsertedTrunc; 1703 } 1704 } 1705 return MadeChange; 1706 } 1707 1708 /// Sink the shift *right* instruction into user blocks if the uses could 1709 /// potentially be combined with this shift instruction and generate BitExtract 1710 /// instruction. It will only be applied if the architecture supports BitExtract 1711 /// instruction. Here is an example: 1712 /// BB1: 1713 /// %x.extract.shift = lshr i64 %arg1, 32 1714 /// BB2: 1715 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1716 /// ==> 1717 /// 1718 /// BB2: 1719 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1720 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1721 /// 1722 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1723 /// instruction. 1724 /// Return true if any changes are made. 1725 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1726 const TargetLowering &TLI, 1727 const DataLayout &DL) { 1728 BasicBlock *DefBB = ShiftI->getParent(); 1729 1730 /// Only insert instructions in each block once. 1731 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1732 1733 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1734 1735 bool MadeChange = false; 1736 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1737 UI != E;) { 1738 Use &TheUse = UI.getUse(); 1739 Instruction *User = cast<Instruction>(*UI); 1740 // Preincrement use iterator so we don't invalidate it. 1741 ++UI; 1742 1743 // Don't bother for PHI nodes. 1744 if (isa<PHINode>(User)) 1745 continue; 1746 1747 if (!isExtractBitsCandidateUse(User)) 1748 continue; 1749 1750 BasicBlock *UserBB = User->getParent(); 1751 1752 if (UserBB == DefBB) { 1753 // If the shift and truncate instruction are in the same BB. The use of 1754 // the truncate(TruncUse) may still introduce another truncate if not 1755 // legal. In this case, we would like to sink both shift and truncate 1756 // instruction to the BB of TruncUse. 1757 // for example: 1758 // BB1: 1759 // i64 shift.result = lshr i64 opnd, imm 1760 // trunc.result = trunc shift.result to i16 1761 // 1762 // BB2: 1763 // ----> We will have an implicit truncate here if the architecture does 1764 // not have i16 compare. 1765 // cmp i16 trunc.result, opnd2 1766 // 1767 if (isa<TruncInst>(User) && shiftIsLegal 1768 // If the type of the truncate is legal, no truncate will be 1769 // introduced in other basic blocks. 1770 && 1771 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1772 MadeChange = 1773 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1774 1775 continue; 1776 } 1777 // If we have already inserted a shift into this block, use it. 1778 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1779 1780 if (!InsertedShift) { 1781 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1782 assert(InsertPt != UserBB->end()); 1783 1784 if (ShiftI->getOpcode() == Instruction::AShr) 1785 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1786 "", &*InsertPt); 1787 else 1788 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1789 "", &*InsertPt); 1790 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1791 1792 MadeChange = true; 1793 } 1794 1795 // Replace a use of the shift with a use of the new shift. 1796 TheUse = InsertedShift; 1797 } 1798 1799 // If we removed all uses, or there are none, nuke the shift. 1800 if (ShiftI->use_empty()) { 1801 salvageDebugInfo(*ShiftI); 1802 ShiftI->eraseFromParent(); 1803 MadeChange = true; 1804 } 1805 1806 return MadeChange; 1807 } 1808 1809 /// If counting leading or trailing zeros is an expensive operation and a zero 1810 /// input is defined, add a check for zero to avoid calling the intrinsic. 1811 /// 1812 /// We want to transform: 1813 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1814 /// 1815 /// into: 1816 /// entry: 1817 /// %cmpz = icmp eq i64 %A, 0 1818 /// br i1 %cmpz, label %cond.end, label %cond.false 1819 /// cond.false: 1820 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1821 /// br label %cond.end 1822 /// cond.end: 1823 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1824 /// 1825 /// If the transform is performed, return true and set ModifiedDT to true. 1826 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1827 const TargetLowering *TLI, 1828 const DataLayout *DL, 1829 bool &ModifiedDT) { 1830 // If a zero input is undefined, it doesn't make sense to despeculate that. 1831 if (match(CountZeros->getOperand(1), m_One())) 1832 return false; 1833 1834 // If it's cheap to speculate, there's nothing to do. 1835 auto IntrinsicID = CountZeros->getIntrinsicID(); 1836 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1837 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1838 return false; 1839 1840 // Only handle legal scalar cases. Anything else requires too much work. 1841 Type *Ty = CountZeros->getType(); 1842 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1843 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1844 return false; 1845 1846 // The intrinsic will be sunk behind a compare against zero and branch. 1847 BasicBlock *StartBlock = CountZeros->getParent(); 1848 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1849 1850 // Create another block after the count zero intrinsic. A PHI will be added 1851 // in this block to select the result of the intrinsic or the bit-width 1852 // constant if the input to the intrinsic is zero. 1853 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1854 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1855 1856 // Set up a builder to create a compare, conditional branch, and PHI. 1857 IRBuilder<> Builder(CountZeros->getContext()); 1858 Builder.SetInsertPoint(StartBlock->getTerminator()); 1859 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1860 1861 // Replace the unconditional branch that was created by the first split with 1862 // a compare against zero and a conditional branch. 1863 Value *Zero = Constant::getNullValue(Ty); 1864 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1865 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1866 StartBlock->getTerminator()->eraseFromParent(); 1867 1868 // Create a PHI in the end block to select either the output of the intrinsic 1869 // or the bit width of the operand. 1870 Builder.SetInsertPoint(&EndBlock->front()); 1871 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1872 CountZeros->replaceAllUsesWith(PN); 1873 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1874 PN->addIncoming(BitWidth, StartBlock); 1875 PN->addIncoming(CountZeros, CallBlock); 1876 1877 // We are explicitly handling the zero case, so we can set the intrinsic's 1878 // undefined zero argument to 'true'. This will also prevent reprocessing the 1879 // intrinsic; we only despeculate when a zero input is defined. 1880 CountZeros->setArgOperand(1, Builder.getTrue()); 1881 ModifiedDT = true; 1882 return true; 1883 } 1884 1885 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1886 BasicBlock *BB = CI->getParent(); 1887 1888 // Lower inline assembly if we can. 1889 // If we found an inline asm expession, and if the target knows how to 1890 // lower it to normal LLVM code, do so now. 1891 if (isa<InlineAsm>(CI->getCalledValue())) { 1892 if (TLI->ExpandInlineAsm(CI)) { 1893 // Avoid invalidating the iterator. 1894 CurInstIterator = BB->begin(); 1895 // Avoid processing instructions out of order, which could cause 1896 // reuse before a value is defined. 1897 SunkAddrs.clear(); 1898 return true; 1899 } 1900 // Sink address computing for memory operands into the block. 1901 if (optimizeInlineAsmInst(CI)) 1902 return true; 1903 } 1904 1905 // Align the pointer arguments to this call if the target thinks it's a good 1906 // idea 1907 unsigned MinSize, PrefAlign; 1908 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1909 for (auto &Arg : CI->arg_operands()) { 1910 // We want to align both objects whose address is used directly and 1911 // objects whose address is used in casts and GEPs, though it only makes 1912 // sense for GEPs if the offset is a multiple of the desired alignment and 1913 // if size - offset meets the size threshold. 1914 if (!Arg->getType()->isPointerTy()) 1915 continue; 1916 APInt Offset(DL->getIndexSizeInBits( 1917 cast<PointerType>(Arg->getType())->getAddressSpace()), 1918 0); 1919 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1920 uint64_t Offset2 = Offset.getLimitedValue(); 1921 if ((Offset2 & (PrefAlign-1)) != 0) 1922 continue; 1923 AllocaInst *AI; 1924 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1925 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1926 AI->setAlignment(MaybeAlign(PrefAlign)); 1927 // Global variables can only be aligned if they are defined in this 1928 // object (i.e. they are uniquely initialized in this object), and 1929 // over-aligning global variables that have an explicit section is 1930 // forbidden. 1931 GlobalVariable *GV; 1932 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1933 GV->getPointerAlignment(*DL) < PrefAlign && 1934 DL->getTypeAllocSize(GV->getValueType()) >= 1935 MinSize + Offset2) 1936 GV->setAlignment(MaybeAlign(PrefAlign)); 1937 } 1938 // If this is a memcpy (or similar) then we may be able to improve the 1939 // alignment 1940 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1941 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL); 1942 if (DestAlign > MI->getDestAlignment()) 1943 MI->setDestAlignment(DestAlign); 1944 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 1945 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 1946 if (SrcAlign > MTI->getSourceAlignment()) 1947 MTI->setSourceAlignment(SrcAlign); 1948 } 1949 } 1950 } 1951 1952 // If we have a cold call site, try to sink addressing computation into the 1953 // cold block. This interacts with our handling for loads and stores to 1954 // ensure that we can fold all uses of a potential addressing computation 1955 // into their uses. TODO: generalize this to work over profiling data 1956 if (CI->hasFnAttr(Attribute::Cold) && 1957 !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 1958 for (auto &Arg : CI->arg_operands()) { 1959 if (!Arg->getType()->isPointerTy()) 1960 continue; 1961 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1962 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1963 } 1964 1965 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1966 if (II) { 1967 switch (II->getIntrinsicID()) { 1968 default: break; 1969 case Intrinsic::assume: { 1970 II->eraseFromParent(); 1971 return true; 1972 } 1973 1974 case Intrinsic::experimental_widenable_condition: { 1975 // Give up on future widening oppurtunties so that we can fold away dead 1976 // paths and merge blocks before going into block-local instruction 1977 // selection. 1978 if (II->use_empty()) { 1979 II->eraseFromParent(); 1980 return true; 1981 } 1982 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 1983 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1984 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1985 }); 1986 return true; 1987 } 1988 case Intrinsic::objectsize: 1989 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 1990 case Intrinsic::is_constant: 1991 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 1992 case Intrinsic::aarch64_stlxr: 1993 case Intrinsic::aarch64_stxr: { 1994 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1995 if (!ExtVal || !ExtVal->hasOneUse() || 1996 ExtVal->getParent() == CI->getParent()) 1997 return false; 1998 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1999 ExtVal->moveBefore(CI); 2000 // Mark this instruction as "inserted by CGP", so that other 2001 // optimizations don't touch it. 2002 InsertedInsts.insert(ExtVal); 2003 return true; 2004 } 2005 2006 case Intrinsic::launder_invariant_group: 2007 case Intrinsic::strip_invariant_group: { 2008 Value *ArgVal = II->getArgOperand(0); 2009 auto it = LargeOffsetGEPMap.find(II); 2010 if (it != LargeOffsetGEPMap.end()) { 2011 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2012 // Make sure not to have to deal with iterator invalidation 2013 // after possibly adding ArgVal to LargeOffsetGEPMap. 2014 auto GEPs = std::move(it->second); 2015 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2016 LargeOffsetGEPMap.erase(II); 2017 } 2018 2019 II->replaceAllUsesWith(ArgVal); 2020 II->eraseFromParent(); 2021 return true; 2022 } 2023 case Intrinsic::cttz: 2024 case Intrinsic::ctlz: 2025 // If counting zeros is expensive, try to avoid it. 2026 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2027 case Intrinsic::dbg_value: 2028 return fixupDbgValue(II); 2029 case Intrinsic::vscale: { 2030 // If datalayout has no special restrictions on vector data layout, 2031 // replace `llvm.vscale` by an equivalent constant expression 2032 // to benefit from cheap constant propagation. 2033 Type *ScalableVectorTy = 2034 VectorType::get(Type::getInt8Ty(II->getContext()), 1, true); 2035 if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) { 2036 auto Null = Constant::getNullValue(ScalableVectorTy->getPointerTo()); 2037 auto One = ConstantInt::getSigned(II->getType(), 1); 2038 auto *CGep = 2039 ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One); 2040 II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType())); 2041 II->eraseFromParent(); 2042 return true; 2043 } 2044 } 2045 } 2046 2047 SmallVector<Value *, 2> PtrOps; 2048 Type *AccessTy; 2049 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2050 while (!PtrOps.empty()) { 2051 Value *PtrVal = PtrOps.pop_back_val(); 2052 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2053 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2054 return true; 2055 } 2056 } 2057 2058 // From here on out we're working with named functions. 2059 if (!CI->getCalledFunction()) return false; 2060 2061 // Lower all default uses of _chk calls. This is very similar 2062 // to what InstCombineCalls does, but here we are only lowering calls 2063 // to fortified library functions (e.g. __memcpy_chk) that have the default 2064 // "don't know" as the objectsize. Anything else should be left alone. 2065 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2066 IRBuilder<> Builder(CI); 2067 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2068 CI->replaceAllUsesWith(V); 2069 CI->eraseFromParent(); 2070 return true; 2071 } 2072 2073 return false; 2074 } 2075 2076 /// Look for opportunities to duplicate return instructions to the predecessor 2077 /// to enable tail call optimizations. The case it is currently looking for is: 2078 /// @code 2079 /// bb0: 2080 /// %tmp0 = tail call i32 @f0() 2081 /// br label %return 2082 /// bb1: 2083 /// %tmp1 = tail call i32 @f1() 2084 /// br label %return 2085 /// bb2: 2086 /// %tmp2 = tail call i32 @f2() 2087 /// br label %return 2088 /// return: 2089 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2090 /// ret i32 %retval 2091 /// @endcode 2092 /// 2093 /// => 2094 /// 2095 /// @code 2096 /// bb0: 2097 /// %tmp0 = tail call i32 @f0() 2098 /// ret i32 %tmp0 2099 /// bb1: 2100 /// %tmp1 = tail call i32 @f1() 2101 /// ret i32 %tmp1 2102 /// bb2: 2103 /// %tmp2 = tail call i32 @f2() 2104 /// ret i32 %tmp2 2105 /// @endcode 2106 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 2107 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2108 if (!RetI) 2109 return false; 2110 2111 PHINode *PN = nullptr; 2112 ExtractValueInst *EVI = nullptr; 2113 BitCastInst *BCI = nullptr; 2114 Value *V = RetI->getReturnValue(); 2115 if (V) { 2116 BCI = dyn_cast<BitCastInst>(V); 2117 if (BCI) 2118 V = BCI->getOperand(0); 2119 2120 EVI = dyn_cast<ExtractValueInst>(V); 2121 if (EVI) { 2122 V = EVI->getOperand(0); 2123 if (!std::all_of(EVI->idx_begin(), EVI->idx_end(), 2124 [](unsigned idx) { return idx == 0; })) 2125 return false; 2126 } 2127 2128 PN = dyn_cast<PHINode>(V); 2129 if (!PN) 2130 return false; 2131 } 2132 2133 if (PN && PN->getParent() != BB) 2134 return false; 2135 2136 // Make sure there are no instructions between the PHI and return, or that the 2137 // return is the first instruction in the block. 2138 if (PN) { 2139 BasicBlock::iterator BI = BB->begin(); 2140 // Skip over debug and the bitcast. 2141 do { 2142 ++BI; 2143 } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI || &*BI == EVI); 2144 if (&*BI != RetI) 2145 return false; 2146 } else { 2147 BasicBlock::iterator BI = BB->begin(); 2148 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2149 if (&*BI != RetI) 2150 return false; 2151 } 2152 2153 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2154 /// call. 2155 const Function *F = BB->getParent(); 2156 SmallVector<BasicBlock*, 4> TailCallBBs; 2157 if (PN) { 2158 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2159 // Look through bitcasts. 2160 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2161 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2162 BasicBlock *PredBB = PN->getIncomingBlock(I); 2163 // Make sure the phi value is indeed produced by the tail call. 2164 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2165 TLI->mayBeEmittedAsTailCall(CI) && 2166 attributesPermitTailCall(F, CI, RetI, *TLI)) 2167 TailCallBBs.push_back(PredBB); 2168 } 2169 } else { 2170 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2171 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2172 if (!VisitedBBs.insert(*PI).second) 2173 continue; 2174 2175 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2176 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2177 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2178 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2179 if (RI == RE) 2180 continue; 2181 2182 CallInst *CI = dyn_cast<CallInst>(&*RI); 2183 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2184 attributesPermitTailCall(F, CI, RetI, *TLI)) 2185 TailCallBBs.push_back(*PI); 2186 } 2187 } 2188 2189 bool Changed = false; 2190 for (auto const &TailCallBB : TailCallBBs) { 2191 // Make sure the call instruction is followed by an unconditional branch to 2192 // the return block. 2193 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2194 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2195 continue; 2196 2197 // Duplicate the return into TailCallBB. 2198 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2199 ModifiedDT = Changed = true; 2200 ++NumRetsDup; 2201 } 2202 2203 // If we eliminated all predecessors of the block, delete the block now. 2204 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2205 BB->eraseFromParent(); 2206 2207 return Changed; 2208 } 2209 2210 //===----------------------------------------------------------------------===// 2211 // Memory Optimization 2212 //===----------------------------------------------------------------------===// 2213 2214 namespace { 2215 2216 /// This is an extended version of TargetLowering::AddrMode 2217 /// which holds actual Value*'s for register values. 2218 struct ExtAddrMode : public TargetLowering::AddrMode { 2219 Value *BaseReg = nullptr; 2220 Value *ScaledReg = nullptr; 2221 Value *OriginalValue = nullptr; 2222 bool InBounds = true; 2223 2224 enum FieldName { 2225 NoField = 0x00, 2226 BaseRegField = 0x01, 2227 BaseGVField = 0x02, 2228 BaseOffsField = 0x04, 2229 ScaledRegField = 0x08, 2230 ScaleField = 0x10, 2231 MultipleFields = 0xff 2232 }; 2233 2234 2235 ExtAddrMode() = default; 2236 2237 void print(raw_ostream &OS) const; 2238 void dump() const; 2239 2240 FieldName compare(const ExtAddrMode &other) { 2241 // First check that the types are the same on each field, as differing types 2242 // is something we can't cope with later on. 2243 if (BaseReg && other.BaseReg && 2244 BaseReg->getType() != other.BaseReg->getType()) 2245 return MultipleFields; 2246 if (BaseGV && other.BaseGV && 2247 BaseGV->getType() != other.BaseGV->getType()) 2248 return MultipleFields; 2249 if (ScaledReg && other.ScaledReg && 2250 ScaledReg->getType() != other.ScaledReg->getType()) 2251 return MultipleFields; 2252 2253 // Conservatively reject 'inbounds' mismatches. 2254 if (InBounds != other.InBounds) 2255 return MultipleFields; 2256 2257 // Check each field to see if it differs. 2258 unsigned Result = NoField; 2259 if (BaseReg != other.BaseReg) 2260 Result |= BaseRegField; 2261 if (BaseGV != other.BaseGV) 2262 Result |= BaseGVField; 2263 if (BaseOffs != other.BaseOffs) 2264 Result |= BaseOffsField; 2265 if (ScaledReg != other.ScaledReg) 2266 Result |= ScaledRegField; 2267 // Don't count 0 as being a different scale, because that actually means 2268 // unscaled (which will already be counted by having no ScaledReg). 2269 if (Scale && other.Scale && Scale != other.Scale) 2270 Result |= ScaleField; 2271 2272 if (countPopulation(Result) > 1) 2273 return MultipleFields; 2274 else 2275 return static_cast<FieldName>(Result); 2276 } 2277 2278 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2279 // with no offset. 2280 bool isTrivial() { 2281 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2282 // trivial if at most one of these terms is nonzero, except that BaseGV and 2283 // BaseReg both being zero actually means a null pointer value, which we 2284 // consider to be 'non-zero' here. 2285 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2286 } 2287 2288 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2289 switch (Field) { 2290 default: 2291 return nullptr; 2292 case BaseRegField: 2293 return BaseReg; 2294 case BaseGVField: 2295 return BaseGV; 2296 case ScaledRegField: 2297 return ScaledReg; 2298 case BaseOffsField: 2299 return ConstantInt::get(IntPtrTy, BaseOffs); 2300 } 2301 } 2302 2303 void SetCombinedField(FieldName Field, Value *V, 2304 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2305 switch (Field) { 2306 default: 2307 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2308 break; 2309 case ExtAddrMode::BaseRegField: 2310 BaseReg = V; 2311 break; 2312 case ExtAddrMode::BaseGVField: 2313 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2314 // in the BaseReg field. 2315 assert(BaseReg == nullptr); 2316 BaseReg = V; 2317 BaseGV = nullptr; 2318 break; 2319 case ExtAddrMode::ScaledRegField: 2320 ScaledReg = V; 2321 // If we have a mix of scaled and unscaled addrmodes then we want scale 2322 // to be the scale and not zero. 2323 if (!Scale) 2324 for (const ExtAddrMode &AM : AddrModes) 2325 if (AM.Scale) { 2326 Scale = AM.Scale; 2327 break; 2328 } 2329 break; 2330 case ExtAddrMode::BaseOffsField: 2331 // The offset is no longer a constant, so it goes in ScaledReg with a 2332 // scale of 1. 2333 assert(ScaledReg == nullptr); 2334 ScaledReg = V; 2335 Scale = 1; 2336 BaseOffs = 0; 2337 break; 2338 } 2339 } 2340 }; 2341 2342 } // end anonymous namespace 2343 2344 #ifndef NDEBUG 2345 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2346 AM.print(OS); 2347 return OS; 2348 } 2349 #endif 2350 2351 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2352 void ExtAddrMode::print(raw_ostream &OS) const { 2353 bool NeedPlus = false; 2354 OS << "["; 2355 if (InBounds) 2356 OS << "inbounds "; 2357 if (BaseGV) { 2358 OS << (NeedPlus ? " + " : "") 2359 << "GV:"; 2360 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2361 NeedPlus = true; 2362 } 2363 2364 if (BaseOffs) { 2365 OS << (NeedPlus ? " + " : "") 2366 << BaseOffs; 2367 NeedPlus = true; 2368 } 2369 2370 if (BaseReg) { 2371 OS << (NeedPlus ? " + " : "") 2372 << "Base:"; 2373 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2374 NeedPlus = true; 2375 } 2376 if (Scale) { 2377 OS << (NeedPlus ? " + " : "") 2378 << Scale << "*"; 2379 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2380 } 2381 2382 OS << ']'; 2383 } 2384 2385 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2386 print(dbgs()); 2387 dbgs() << '\n'; 2388 } 2389 #endif 2390 2391 namespace { 2392 2393 /// This class provides transaction based operation on the IR. 2394 /// Every change made through this class is recorded in the internal state and 2395 /// can be undone (rollback) until commit is called. 2396 class TypePromotionTransaction { 2397 /// This represents the common interface of the individual transaction. 2398 /// Each class implements the logic for doing one specific modification on 2399 /// the IR via the TypePromotionTransaction. 2400 class TypePromotionAction { 2401 protected: 2402 /// The Instruction modified. 2403 Instruction *Inst; 2404 2405 public: 2406 /// Constructor of the action. 2407 /// The constructor performs the related action on the IR. 2408 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2409 2410 virtual ~TypePromotionAction() = default; 2411 2412 /// Undo the modification done by this action. 2413 /// When this method is called, the IR must be in the same state as it was 2414 /// before this action was applied. 2415 /// \pre Undoing the action works if and only if the IR is in the exact same 2416 /// state as it was directly after this action was applied. 2417 virtual void undo() = 0; 2418 2419 /// Advocate every change made by this action. 2420 /// When the results on the IR of the action are to be kept, it is important 2421 /// to call this function, otherwise hidden information may be kept forever. 2422 virtual void commit() { 2423 // Nothing to be done, this action is not doing anything. 2424 } 2425 }; 2426 2427 /// Utility to remember the position of an instruction. 2428 class InsertionHandler { 2429 /// Position of an instruction. 2430 /// Either an instruction: 2431 /// - Is the first in a basic block: BB is used. 2432 /// - Has a previous instruction: PrevInst is used. 2433 union { 2434 Instruction *PrevInst; 2435 BasicBlock *BB; 2436 } Point; 2437 2438 /// Remember whether or not the instruction had a previous instruction. 2439 bool HasPrevInstruction; 2440 2441 public: 2442 /// Record the position of \p Inst. 2443 InsertionHandler(Instruction *Inst) { 2444 BasicBlock::iterator It = Inst->getIterator(); 2445 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2446 if (HasPrevInstruction) 2447 Point.PrevInst = &*--It; 2448 else 2449 Point.BB = Inst->getParent(); 2450 } 2451 2452 /// Insert \p Inst at the recorded position. 2453 void insert(Instruction *Inst) { 2454 if (HasPrevInstruction) { 2455 if (Inst->getParent()) 2456 Inst->removeFromParent(); 2457 Inst->insertAfter(Point.PrevInst); 2458 } else { 2459 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2460 if (Inst->getParent()) 2461 Inst->moveBefore(Position); 2462 else 2463 Inst->insertBefore(Position); 2464 } 2465 } 2466 }; 2467 2468 /// Move an instruction before another. 2469 class InstructionMoveBefore : public TypePromotionAction { 2470 /// Original position of the instruction. 2471 InsertionHandler Position; 2472 2473 public: 2474 /// Move \p Inst before \p Before. 2475 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2476 : TypePromotionAction(Inst), Position(Inst) { 2477 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2478 << "\n"); 2479 Inst->moveBefore(Before); 2480 } 2481 2482 /// Move the instruction back to its original position. 2483 void undo() override { 2484 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2485 Position.insert(Inst); 2486 } 2487 }; 2488 2489 /// Set the operand of an instruction with a new value. 2490 class OperandSetter : public TypePromotionAction { 2491 /// Original operand of the instruction. 2492 Value *Origin; 2493 2494 /// Index of the modified instruction. 2495 unsigned Idx; 2496 2497 public: 2498 /// Set \p Idx operand of \p Inst with \p NewVal. 2499 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2500 : TypePromotionAction(Inst), Idx(Idx) { 2501 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2502 << "for:" << *Inst << "\n" 2503 << "with:" << *NewVal << "\n"); 2504 Origin = Inst->getOperand(Idx); 2505 Inst->setOperand(Idx, NewVal); 2506 } 2507 2508 /// Restore the original value of the instruction. 2509 void undo() override { 2510 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2511 << "for: " << *Inst << "\n" 2512 << "with: " << *Origin << "\n"); 2513 Inst->setOperand(Idx, Origin); 2514 } 2515 }; 2516 2517 /// Hide the operands of an instruction. 2518 /// Do as if this instruction was not using any of its operands. 2519 class OperandsHider : public TypePromotionAction { 2520 /// The list of original operands. 2521 SmallVector<Value *, 4> OriginalValues; 2522 2523 public: 2524 /// Remove \p Inst from the uses of the operands of \p Inst. 2525 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2526 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2527 unsigned NumOpnds = Inst->getNumOperands(); 2528 OriginalValues.reserve(NumOpnds); 2529 for (unsigned It = 0; It < NumOpnds; ++It) { 2530 // Save the current operand. 2531 Value *Val = Inst->getOperand(It); 2532 OriginalValues.push_back(Val); 2533 // Set a dummy one. 2534 // We could use OperandSetter here, but that would imply an overhead 2535 // that we are not willing to pay. 2536 Inst->setOperand(It, UndefValue::get(Val->getType())); 2537 } 2538 } 2539 2540 /// Restore the original list of uses. 2541 void undo() override { 2542 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2543 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2544 Inst->setOperand(It, OriginalValues[It]); 2545 } 2546 }; 2547 2548 /// Build a truncate instruction. 2549 class TruncBuilder : public TypePromotionAction { 2550 Value *Val; 2551 2552 public: 2553 /// Build a truncate instruction of \p Opnd producing a \p Ty 2554 /// result. 2555 /// trunc Opnd to Ty. 2556 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2557 IRBuilder<> Builder(Opnd); 2558 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2559 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2560 } 2561 2562 /// Get the built value. 2563 Value *getBuiltValue() { return Val; } 2564 2565 /// Remove the built instruction. 2566 void undo() override { 2567 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2568 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2569 IVal->eraseFromParent(); 2570 } 2571 }; 2572 2573 /// Build a sign extension instruction. 2574 class SExtBuilder : public TypePromotionAction { 2575 Value *Val; 2576 2577 public: 2578 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2579 /// result. 2580 /// sext Opnd to Ty. 2581 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2582 : TypePromotionAction(InsertPt) { 2583 IRBuilder<> Builder(InsertPt); 2584 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2585 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2586 } 2587 2588 /// Get the built value. 2589 Value *getBuiltValue() { return Val; } 2590 2591 /// Remove the built instruction. 2592 void undo() override { 2593 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2594 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2595 IVal->eraseFromParent(); 2596 } 2597 }; 2598 2599 /// Build a zero extension instruction. 2600 class ZExtBuilder : public TypePromotionAction { 2601 Value *Val; 2602 2603 public: 2604 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2605 /// result. 2606 /// zext Opnd to Ty. 2607 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2608 : TypePromotionAction(InsertPt) { 2609 IRBuilder<> Builder(InsertPt); 2610 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2611 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2612 } 2613 2614 /// Get the built value. 2615 Value *getBuiltValue() { return Val; } 2616 2617 /// Remove the built instruction. 2618 void undo() override { 2619 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2620 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2621 IVal->eraseFromParent(); 2622 } 2623 }; 2624 2625 /// Mutate an instruction to another type. 2626 class TypeMutator : public TypePromotionAction { 2627 /// Record the original type. 2628 Type *OrigTy; 2629 2630 public: 2631 /// Mutate the type of \p Inst into \p NewTy. 2632 TypeMutator(Instruction *Inst, Type *NewTy) 2633 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2634 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2635 << "\n"); 2636 Inst->mutateType(NewTy); 2637 } 2638 2639 /// Mutate the instruction back to its original type. 2640 void undo() override { 2641 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2642 << "\n"); 2643 Inst->mutateType(OrigTy); 2644 } 2645 }; 2646 2647 /// Replace the uses of an instruction by another instruction. 2648 class UsesReplacer : public TypePromotionAction { 2649 /// Helper structure to keep track of the replaced uses. 2650 struct InstructionAndIdx { 2651 /// The instruction using the instruction. 2652 Instruction *Inst; 2653 2654 /// The index where this instruction is used for Inst. 2655 unsigned Idx; 2656 2657 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2658 : Inst(Inst), Idx(Idx) {} 2659 }; 2660 2661 /// Keep track of the original uses (pair Instruction, Index). 2662 SmallVector<InstructionAndIdx, 4> OriginalUses; 2663 /// Keep track of the debug users. 2664 SmallVector<DbgValueInst *, 1> DbgValues; 2665 2666 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2667 2668 public: 2669 /// Replace all the use of \p Inst by \p New. 2670 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2671 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2672 << "\n"); 2673 // Record the original uses. 2674 for (Use &U : Inst->uses()) { 2675 Instruction *UserI = cast<Instruction>(U.getUser()); 2676 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2677 } 2678 // Record the debug uses separately. They are not in the instruction's 2679 // use list, but they are replaced by RAUW. 2680 findDbgValues(DbgValues, Inst); 2681 2682 // Now, we can replace the uses. 2683 Inst->replaceAllUsesWith(New); 2684 } 2685 2686 /// Reassign the original uses of Inst to Inst. 2687 void undo() override { 2688 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2689 for (use_iterator UseIt = OriginalUses.begin(), 2690 EndIt = OriginalUses.end(); 2691 UseIt != EndIt; ++UseIt) { 2692 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2693 } 2694 // RAUW has replaced all original uses with references to the new value, 2695 // including the debug uses. Since we are undoing the replacements, 2696 // the original debug uses must also be reinstated to maintain the 2697 // correctness and utility of debug value instructions. 2698 for (auto *DVI: DbgValues) { 2699 LLVMContext &Ctx = Inst->getType()->getContext(); 2700 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); 2701 DVI->setOperand(0, MV); 2702 } 2703 } 2704 }; 2705 2706 /// Remove an instruction from the IR. 2707 class InstructionRemover : public TypePromotionAction { 2708 /// Original position of the instruction. 2709 InsertionHandler Inserter; 2710 2711 /// Helper structure to hide all the link to the instruction. In other 2712 /// words, this helps to do as if the instruction was removed. 2713 OperandsHider Hider; 2714 2715 /// Keep track of the uses replaced, if any. 2716 UsesReplacer *Replacer = nullptr; 2717 2718 /// Keep track of instructions removed. 2719 SetOfInstrs &RemovedInsts; 2720 2721 public: 2722 /// Remove all reference of \p Inst and optionally replace all its 2723 /// uses with New. 2724 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2725 /// \pre If !Inst->use_empty(), then New != nullptr 2726 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2727 Value *New = nullptr) 2728 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2729 RemovedInsts(RemovedInsts) { 2730 if (New) 2731 Replacer = new UsesReplacer(Inst, New); 2732 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2733 RemovedInsts.insert(Inst); 2734 /// The instructions removed here will be freed after completing 2735 /// optimizeBlock() for all blocks as we need to keep track of the 2736 /// removed instructions during promotion. 2737 Inst->removeFromParent(); 2738 } 2739 2740 ~InstructionRemover() override { delete Replacer; } 2741 2742 /// Resurrect the instruction and reassign it to the proper uses if 2743 /// new value was provided when build this action. 2744 void undo() override { 2745 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2746 Inserter.insert(Inst); 2747 if (Replacer) 2748 Replacer->undo(); 2749 Hider.undo(); 2750 RemovedInsts.erase(Inst); 2751 } 2752 }; 2753 2754 public: 2755 /// Restoration point. 2756 /// The restoration point is a pointer to an action instead of an iterator 2757 /// because the iterator may be invalidated but not the pointer. 2758 using ConstRestorationPt = const TypePromotionAction *; 2759 2760 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2761 : RemovedInsts(RemovedInsts) {} 2762 2763 /// Advocate every changes made in that transaction. 2764 void commit(); 2765 2766 /// Undo all the changes made after the given point. 2767 void rollback(ConstRestorationPt Point); 2768 2769 /// Get the current restoration point. 2770 ConstRestorationPt getRestorationPoint() const; 2771 2772 /// \name API for IR modification with state keeping to support rollback. 2773 /// @{ 2774 /// Same as Instruction::setOperand. 2775 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2776 2777 /// Same as Instruction::eraseFromParent. 2778 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2779 2780 /// Same as Value::replaceAllUsesWith. 2781 void replaceAllUsesWith(Instruction *Inst, Value *New); 2782 2783 /// Same as Value::mutateType. 2784 void mutateType(Instruction *Inst, Type *NewTy); 2785 2786 /// Same as IRBuilder::createTrunc. 2787 Value *createTrunc(Instruction *Opnd, Type *Ty); 2788 2789 /// Same as IRBuilder::createSExt. 2790 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2791 2792 /// Same as IRBuilder::createZExt. 2793 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2794 2795 /// Same as Instruction::moveBefore. 2796 void moveBefore(Instruction *Inst, Instruction *Before); 2797 /// @} 2798 2799 private: 2800 /// The ordered list of actions made so far. 2801 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2802 2803 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2804 2805 SetOfInstrs &RemovedInsts; 2806 }; 2807 2808 } // end anonymous namespace 2809 2810 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2811 Value *NewVal) { 2812 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 2813 Inst, Idx, NewVal)); 2814 } 2815 2816 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2817 Value *NewVal) { 2818 Actions.push_back( 2819 std::make_unique<TypePromotionTransaction::InstructionRemover>( 2820 Inst, RemovedInsts, NewVal)); 2821 } 2822 2823 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2824 Value *New) { 2825 Actions.push_back( 2826 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2827 } 2828 2829 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2830 Actions.push_back( 2831 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2832 } 2833 2834 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2835 Type *Ty) { 2836 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2837 Value *Val = Ptr->getBuiltValue(); 2838 Actions.push_back(std::move(Ptr)); 2839 return Val; 2840 } 2841 2842 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2843 Value *Opnd, Type *Ty) { 2844 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2845 Value *Val = Ptr->getBuiltValue(); 2846 Actions.push_back(std::move(Ptr)); 2847 return Val; 2848 } 2849 2850 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2851 Value *Opnd, Type *Ty) { 2852 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2853 Value *Val = Ptr->getBuiltValue(); 2854 Actions.push_back(std::move(Ptr)); 2855 return Val; 2856 } 2857 2858 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2859 Instruction *Before) { 2860 Actions.push_back( 2861 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2862 Inst, Before)); 2863 } 2864 2865 TypePromotionTransaction::ConstRestorationPt 2866 TypePromotionTransaction::getRestorationPoint() const { 2867 return !Actions.empty() ? Actions.back().get() : nullptr; 2868 } 2869 2870 void TypePromotionTransaction::commit() { 2871 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2872 ++It) 2873 (*It)->commit(); 2874 Actions.clear(); 2875 } 2876 2877 void TypePromotionTransaction::rollback( 2878 TypePromotionTransaction::ConstRestorationPt Point) { 2879 while (!Actions.empty() && Point != Actions.back().get()) { 2880 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2881 Curr->undo(); 2882 } 2883 } 2884 2885 namespace { 2886 2887 /// A helper class for matching addressing modes. 2888 /// 2889 /// This encapsulates the logic for matching the target-legal addressing modes. 2890 class AddressingModeMatcher { 2891 SmallVectorImpl<Instruction*> &AddrModeInsts; 2892 const TargetLowering &TLI; 2893 const TargetRegisterInfo &TRI; 2894 const DataLayout &DL; 2895 2896 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2897 /// the memory instruction that we're computing this address for. 2898 Type *AccessTy; 2899 unsigned AddrSpace; 2900 Instruction *MemoryInst; 2901 2902 /// This is the addressing mode that we're building up. This is 2903 /// part of the return value of this addressing mode matching stuff. 2904 ExtAddrMode &AddrMode; 2905 2906 /// The instructions inserted by other CodeGenPrepare optimizations. 2907 const SetOfInstrs &InsertedInsts; 2908 2909 /// A map from the instructions to their type before promotion. 2910 InstrToOrigTy &PromotedInsts; 2911 2912 /// The ongoing transaction where every action should be registered. 2913 TypePromotionTransaction &TPT; 2914 2915 // A GEP which has too large offset to be folded into the addressing mode. 2916 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 2917 2918 /// This is set to true when we should not do profitability checks. 2919 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2920 bool IgnoreProfitability; 2921 2922 /// True if we are optimizing for size. 2923 bool OptSize; 2924 2925 ProfileSummaryInfo *PSI; 2926 BlockFrequencyInfo *BFI; 2927 2928 AddressingModeMatcher( 2929 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 2930 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 2931 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 2932 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 2933 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 2934 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 2935 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2936 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2937 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2938 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP), 2939 OptSize(OptSize), PSI(PSI), BFI(BFI) { 2940 IgnoreProfitability = false; 2941 } 2942 2943 public: 2944 /// Find the maximal addressing mode that a load/store of V can fold, 2945 /// give an access type of AccessTy. This returns a list of involved 2946 /// instructions in AddrModeInsts. 2947 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2948 /// optimizations. 2949 /// \p PromotedInsts maps the instructions to their type before promotion. 2950 /// \p The ongoing transaction where every action should be registered. 2951 static ExtAddrMode 2952 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 2953 SmallVectorImpl<Instruction *> &AddrModeInsts, 2954 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 2955 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 2956 TypePromotionTransaction &TPT, 2957 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 2958 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 2959 ExtAddrMode Result; 2960 2961 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 2962 MemoryInst, Result, InsertedInsts, 2963 PromotedInsts, TPT, LargeOffsetGEP, 2964 OptSize, PSI, BFI) 2965 .matchAddr(V, 0); 2966 (void)Success; assert(Success && "Couldn't select *anything*?"); 2967 return Result; 2968 } 2969 2970 private: 2971 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2972 bool matchAddr(Value *Addr, unsigned Depth); 2973 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 2974 bool *MovedAway = nullptr); 2975 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2976 ExtAddrMode &AMBefore, 2977 ExtAddrMode &AMAfter); 2978 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2979 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2980 Value *PromotedOperand) const; 2981 }; 2982 2983 class PhiNodeSet; 2984 2985 /// An iterator for PhiNodeSet. 2986 class PhiNodeSetIterator { 2987 PhiNodeSet * const Set; 2988 size_t CurrentIndex = 0; 2989 2990 public: 2991 /// The constructor. Start should point to either a valid element, or be equal 2992 /// to the size of the underlying SmallVector of the PhiNodeSet. 2993 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 2994 PHINode * operator*() const; 2995 PhiNodeSetIterator& operator++(); 2996 bool operator==(const PhiNodeSetIterator &RHS) const; 2997 bool operator!=(const PhiNodeSetIterator &RHS) const; 2998 }; 2999 3000 /// Keeps a set of PHINodes. 3001 /// 3002 /// This is a minimal set implementation for a specific use case: 3003 /// It is very fast when there are very few elements, but also provides good 3004 /// performance when there are many. It is similar to SmallPtrSet, but also 3005 /// provides iteration by insertion order, which is deterministic and stable 3006 /// across runs. It is also similar to SmallSetVector, but provides removing 3007 /// elements in O(1) time. This is achieved by not actually removing the element 3008 /// from the underlying vector, so comes at the cost of using more memory, but 3009 /// that is fine, since PhiNodeSets are used as short lived objects. 3010 class PhiNodeSet { 3011 friend class PhiNodeSetIterator; 3012 3013 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3014 using iterator = PhiNodeSetIterator; 3015 3016 /// Keeps the elements in the order of their insertion in the underlying 3017 /// vector. To achieve constant time removal, it never deletes any element. 3018 SmallVector<PHINode *, 32> NodeList; 3019 3020 /// Keeps the elements in the underlying set implementation. This (and not the 3021 /// NodeList defined above) is the source of truth on whether an element 3022 /// is actually in the collection. 3023 MapType NodeMap; 3024 3025 /// Points to the first valid (not deleted) element when the set is not empty 3026 /// and the value is not zero. Equals to the size of the underlying vector 3027 /// when the set is empty. When the value is 0, as in the beginning, the 3028 /// first element may or may not be valid. 3029 size_t FirstValidElement = 0; 3030 3031 public: 3032 /// Inserts a new element to the collection. 3033 /// \returns true if the element is actually added, i.e. was not in the 3034 /// collection before the operation. 3035 bool insert(PHINode *Ptr) { 3036 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3037 NodeList.push_back(Ptr); 3038 return true; 3039 } 3040 return false; 3041 } 3042 3043 /// Removes the element from the collection. 3044 /// \returns whether the element is actually removed, i.e. was in the 3045 /// collection before the operation. 3046 bool erase(PHINode *Ptr) { 3047 auto it = NodeMap.find(Ptr); 3048 if (it != NodeMap.end()) { 3049 NodeMap.erase(Ptr); 3050 SkipRemovedElements(FirstValidElement); 3051 return true; 3052 } 3053 return false; 3054 } 3055 3056 /// Removes all elements and clears the collection. 3057 void clear() { 3058 NodeMap.clear(); 3059 NodeList.clear(); 3060 FirstValidElement = 0; 3061 } 3062 3063 /// \returns an iterator that will iterate the elements in the order of 3064 /// insertion. 3065 iterator begin() { 3066 if (FirstValidElement == 0) 3067 SkipRemovedElements(FirstValidElement); 3068 return PhiNodeSetIterator(this, FirstValidElement); 3069 } 3070 3071 /// \returns an iterator that points to the end of the collection. 3072 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3073 3074 /// Returns the number of elements in the collection. 3075 size_t size() const { 3076 return NodeMap.size(); 3077 } 3078 3079 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3080 size_t count(PHINode *Ptr) const { 3081 return NodeMap.count(Ptr); 3082 } 3083 3084 private: 3085 /// Updates the CurrentIndex so that it will point to a valid element. 3086 /// 3087 /// If the element of NodeList at CurrentIndex is valid, it does not 3088 /// change it. If there are no more valid elements, it updates CurrentIndex 3089 /// to point to the end of the NodeList. 3090 void SkipRemovedElements(size_t &CurrentIndex) { 3091 while (CurrentIndex < NodeList.size()) { 3092 auto it = NodeMap.find(NodeList[CurrentIndex]); 3093 // If the element has been deleted and added again later, NodeMap will 3094 // point to a different index, so CurrentIndex will still be invalid. 3095 if (it != NodeMap.end() && it->second == CurrentIndex) 3096 break; 3097 ++CurrentIndex; 3098 } 3099 } 3100 }; 3101 3102 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3103 : Set(Set), CurrentIndex(Start) {} 3104 3105 PHINode * PhiNodeSetIterator::operator*() const { 3106 assert(CurrentIndex < Set->NodeList.size() && 3107 "PhiNodeSet access out of range"); 3108 return Set->NodeList[CurrentIndex]; 3109 } 3110 3111 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 3112 assert(CurrentIndex < Set->NodeList.size() && 3113 "PhiNodeSet access out of range"); 3114 ++CurrentIndex; 3115 Set->SkipRemovedElements(CurrentIndex); 3116 return *this; 3117 } 3118 3119 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3120 return CurrentIndex == RHS.CurrentIndex; 3121 } 3122 3123 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3124 return !((*this) == RHS); 3125 } 3126 3127 /// Keep track of simplification of Phi nodes. 3128 /// Accept the set of all phi nodes and erase phi node from this set 3129 /// if it is simplified. 3130 class SimplificationTracker { 3131 DenseMap<Value *, Value *> Storage; 3132 const SimplifyQuery &SQ; 3133 // Tracks newly created Phi nodes. The elements are iterated by insertion 3134 // order. 3135 PhiNodeSet AllPhiNodes; 3136 // Tracks newly created Select nodes. 3137 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3138 3139 public: 3140 SimplificationTracker(const SimplifyQuery &sq) 3141 : SQ(sq) {} 3142 3143 Value *Get(Value *V) { 3144 do { 3145 auto SV = Storage.find(V); 3146 if (SV == Storage.end()) 3147 return V; 3148 V = SV->second; 3149 } while (true); 3150 } 3151 3152 Value *Simplify(Value *Val) { 3153 SmallVector<Value *, 32> WorkList; 3154 SmallPtrSet<Value *, 32> Visited; 3155 WorkList.push_back(Val); 3156 while (!WorkList.empty()) { 3157 auto P = WorkList.pop_back_val(); 3158 if (!Visited.insert(P).second) 3159 continue; 3160 if (auto *PI = dyn_cast<Instruction>(P)) 3161 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3162 for (auto *U : PI->users()) 3163 WorkList.push_back(cast<Value>(U)); 3164 Put(PI, V); 3165 PI->replaceAllUsesWith(V); 3166 if (auto *PHI = dyn_cast<PHINode>(PI)) 3167 AllPhiNodes.erase(PHI); 3168 if (auto *Select = dyn_cast<SelectInst>(PI)) 3169 AllSelectNodes.erase(Select); 3170 PI->eraseFromParent(); 3171 } 3172 } 3173 return Get(Val); 3174 } 3175 3176 void Put(Value *From, Value *To) { 3177 Storage.insert({ From, To }); 3178 } 3179 3180 void ReplacePhi(PHINode *From, PHINode *To) { 3181 Value* OldReplacement = Get(From); 3182 while (OldReplacement != From) { 3183 From = To; 3184 To = dyn_cast<PHINode>(OldReplacement); 3185 OldReplacement = Get(From); 3186 } 3187 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3188 Put(From, To); 3189 From->replaceAllUsesWith(To); 3190 AllPhiNodes.erase(From); 3191 From->eraseFromParent(); 3192 } 3193 3194 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3195 3196 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3197 3198 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3199 3200 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3201 3202 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3203 3204 void destroyNewNodes(Type *CommonType) { 3205 // For safe erasing, replace the uses with dummy value first. 3206 auto Dummy = UndefValue::get(CommonType); 3207 for (auto I : AllPhiNodes) { 3208 I->replaceAllUsesWith(Dummy); 3209 I->eraseFromParent(); 3210 } 3211 AllPhiNodes.clear(); 3212 for (auto I : AllSelectNodes) { 3213 I->replaceAllUsesWith(Dummy); 3214 I->eraseFromParent(); 3215 } 3216 AllSelectNodes.clear(); 3217 } 3218 }; 3219 3220 /// A helper class for combining addressing modes. 3221 class AddressingModeCombiner { 3222 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3223 typedef std::pair<PHINode *, PHINode *> PHIPair; 3224 3225 private: 3226 /// The addressing modes we've collected. 3227 SmallVector<ExtAddrMode, 16> AddrModes; 3228 3229 /// The field in which the AddrModes differ, when we have more than one. 3230 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3231 3232 /// Are the AddrModes that we have all just equal to their original values? 3233 bool AllAddrModesTrivial = true; 3234 3235 /// Common Type for all different fields in addressing modes. 3236 Type *CommonType; 3237 3238 /// SimplifyQuery for simplifyInstruction utility. 3239 const SimplifyQuery &SQ; 3240 3241 /// Original Address. 3242 Value *Original; 3243 3244 public: 3245 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3246 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 3247 3248 /// Get the combined AddrMode 3249 const ExtAddrMode &getAddrMode() const { 3250 return AddrModes[0]; 3251 } 3252 3253 /// Add a new AddrMode if it's compatible with the AddrModes we already 3254 /// have. 3255 /// \return True iff we succeeded in doing so. 3256 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3257 // Take note of if we have any non-trivial AddrModes, as we need to detect 3258 // when all AddrModes are trivial as then we would introduce a phi or select 3259 // which just duplicates what's already there. 3260 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3261 3262 // If this is the first addrmode then everything is fine. 3263 if (AddrModes.empty()) { 3264 AddrModes.emplace_back(NewAddrMode); 3265 return true; 3266 } 3267 3268 // Figure out how different this is from the other address modes, which we 3269 // can do just by comparing against the first one given that we only care 3270 // about the cumulative difference. 3271 ExtAddrMode::FieldName ThisDifferentField = 3272 AddrModes[0].compare(NewAddrMode); 3273 if (DifferentField == ExtAddrMode::NoField) 3274 DifferentField = ThisDifferentField; 3275 else if (DifferentField != ThisDifferentField) 3276 DifferentField = ExtAddrMode::MultipleFields; 3277 3278 // If NewAddrMode differs in more than one dimension we cannot handle it. 3279 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3280 3281 // If Scale Field is different then we reject. 3282 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3283 3284 // We also must reject the case when base offset is different and 3285 // scale reg is not null, we cannot handle this case due to merge of 3286 // different offsets will be used as ScaleReg. 3287 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3288 !NewAddrMode.ScaledReg); 3289 3290 // We also must reject the case when GV is different and BaseReg installed 3291 // due to we want to use base reg as a merge of GV values. 3292 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3293 !NewAddrMode.HasBaseReg); 3294 3295 // Even if NewAddMode is the same we still need to collect it due to 3296 // original value is different. And later we will need all original values 3297 // as anchors during finding the common Phi node. 3298 if (CanHandle) 3299 AddrModes.emplace_back(NewAddrMode); 3300 else 3301 AddrModes.clear(); 3302 3303 return CanHandle; 3304 } 3305 3306 /// Combine the addressing modes we've collected into a single 3307 /// addressing mode. 3308 /// \return True iff we successfully combined them or we only had one so 3309 /// didn't need to combine them anyway. 3310 bool combineAddrModes() { 3311 // If we have no AddrModes then they can't be combined. 3312 if (AddrModes.size() == 0) 3313 return false; 3314 3315 // A single AddrMode can trivially be combined. 3316 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3317 return true; 3318 3319 // If the AddrModes we collected are all just equal to the value they are 3320 // derived from then combining them wouldn't do anything useful. 3321 if (AllAddrModesTrivial) 3322 return false; 3323 3324 if (!addrModeCombiningAllowed()) 3325 return false; 3326 3327 // Build a map between <original value, basic block where we saw it> to 3328 // value of base register. 3329 // Bail out if there is no common type. 3330 FoldAddrToValueMapping Map; 3331 if (!initializeMap(Map)) 3332 return false; 3333 3334 Value *CommonValue = findCommon(Map); 3335 if (CommonValue) 3336 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3337 return CommonValue != nullptr; 3338 } 3339 3340 private: 3341 /// Initialize Map with anchor values. For address seen 3342 /// we set the value of different field saw in this address. 3343 /// At the same time we find a common type for different field we will 3344 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3345 /// Return false if there is no common type found. 3346 bool initializeMap(FoldAddrToValueMapping &Map) { 3347 // Keep track of keys where the value is null. We will need to replace it 3348 // with constant null when we know the common type. 3349 SmallVector<Value *, 2> NullValue; 3350 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3351 for (auto &AM : AddrModes) { 3352 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3353 if (DV) { 3354 auto *Type = DV->getType(); 3355 if (CommonType && CommonType != Type) 3356 return false; 3357 CommonType = Type; 3358 Map[AM.OriginalValue] = DV; 3359 } else { 3360 NullValue.push_back(AM.OriginalValue); 3361 } 3362 } 3363 assert(CommonType && "At least one non-null value must be!"); 3364 for (auto *V : NullValue) 3365 Map[V] = Constant::getNullValue(CommonType); 3366 return true; 3367 } 3368 3369 /// We have mapping between value A and other value B where B was a field in 3370 /// addressing mode represented by A. Also we have an original value C 3371 /// representing an address we start with. Traversing from C through phi and 3372 /// selects we ended up with A's in a map. This utility function tries to find 3373 /// a value V which is a field in addressing mode C and traversing through phi 3374 /// nodes and selects we will end up in corresponded values B in a map. 3375 /// The utility will create a new Phi/Selects if needed. 3376 // The simple example looks as follows: 3377 // BB1: 3378 // p1 = b1 + 40 3379 // br cond BB2, BB3 3380 // BB2: 3381 // p2 = b2 + 40 3382 // br BB3 3383 // BB3: 3384 // p = phi [p1, BB1], [p2, BB2] 3385 // v = load p 3386 // Map is 3387 // p1 -> b1 3388 // p2 -> b2 3389 // Request is 3390 // p -> ? 3391 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3392 Value *findCommon(FoldAddrToValueMapping &Map) { 3393 // Tracks the simplification of newly created phi nodes. The reason we use 3394 // this mapping is because we will add new created Phi nodes in AddrToBase. 3395 // Simplification of Phi nodes is recursive, so some Phi node may 3396 // be simplified after we added it to AddrToBase. In reality this 3397 // simplification is possible only if original phi/selects were not 3398 // simplified yet. 3399 // Using this mapping we can find the current value in AddrToBase. 3400 SimplificationTracker ST(SQ); 3401 3402 // First step, DFS to create PHI nodes for all intermediate blocks. 3403 // Also fill traverse order for the second step. 3404 SmallVector<Value *, 32> TraverseOrder; 3405 InsertPlaceholders(Map, TraverseOrder, ST); 3406 3407 // Second Step, fill new nodes by merged values and simplify if possible. 3408 FillPlaceholders(Map, TraverseOrder, ST); 3409 3410 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3411 ST.destroyNewNodes(CommonType); 3412 return nullptr; 3413 } 3414 3415 // Now we'd like to match New Phi nodes to existed ones. 3416 unsigned PhiNotMatchedCount = 0; 3417 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3418 ST.destroyNewNodes(CommonType); 3419 return nullptr; 3420 } 3421 3422 auto *Result = ST.Get(Map.find(Original)->second); 3423 if (Result) { 3424 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3425 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3426 } 3427 return Result; 3428 } 3429 3430 /// Try to match PHI node to Candidate. 3431 /// Matcher tracks the matched Phi nodes. 3432 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3433 SmallSetVector<PHIPair, 8> &Matcher, 3434 PhiNodeSet &PhiNodesToMatch) { 3435 SmallVector<PHIPair, 8> WorkList; 3436 Matcher.insert({ PHI, Candidate }); 3437 SmallSet<PHINode *, 8> MatchedPHIs; 3438 MatchedPHIs.insert(PHI); 3439 WorkList.push_back({ PHI, Candidate }); 3440 SmallSet<PHIPair, 8> Visited; 3441 while (!WorkList.empty()) { 3442 auto Item = WorkList.pop_back_val(); 3443 if (!Visited.insert(Item).second) 3444 continue; 3445 // We iterate over all incoming values to Phi to compare them. 3446 // If values are different and both of them Phi and the first one is a 3447 // Phi we added (subject to match) and both of them is in the same basic 3448 // block then we can match our pair if values match. So we state that 3449 // these values match and add it to work list to verify that. 3450 for (auto B : Item.first->blocks()) { 3451 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3452 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3453 if (FirstValue == SecondValue) 3454 continue; 3455 3456 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3457 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3458 3459 // One of them is not Phi or 3460 // The first one is not Phi node from the set we'd like to match or 3461 // Phi nodes from different basic blocks then 3462 // we will not be able to match. 3463 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3464 FirstPhi->getParent() != SecondPhi->getParent()) 3465 return false; 3466 3467 // If we already matched them then continue. 3468 if (Matcher.count({ FirstPhi, SecondPhi })) 3469 continue; 3470 // So the values are different and does not match. So we need them to 3471 // match. (But we register no more than one match per PHI node, so that 3472 // we won't later try to replace them twice.) 3473 if (MatchedPHIs.insert(FirstPhi).second) 3474 Matcher.insert({ FirstPhi, SecondPhi }); 3475 // But me must check it. 3476 WorkList.push_back({ FirstPhi, SecondPhi }); 3477 } 3478 } 3479 return true; 3480 } 3481 3482 /// For the given set of PHI nodes (in the SimplificationTracker) try 3483 /// to find their equivalents. 3484 /// Returns false if this matching fails and creation of new Phi is disabled. 3485 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3486 unsigned &PhiNotMatchedCount) { 3487 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3488 // order, so the replacements (ReplacePhi) are also done in a deterministic 3489 // order. 3490 SmallSetVector<PHIPair, 8> Matched; 3491 SmallPtrSet<PHINode *, 8> WillNotMatch; 3492 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3493 while (PhiNodesToMatch.size()) { 3494 PHINode *PHI = *PhiNodesToMatch.begin(); 3495 3496 // Add us, if no Phi nodes in the basic block we do not match. 3497 WillNotMatch.clear(); 3498 WillNotMatch.insert(PHI); 3499 3500 // Traverse all Phis until we found equivalent or fail to do that. 3501 bool IsMatched = false; 3502 for (auto &P : PHI->getParent()->phis()) { 3503 if (&P == PHI) 3504 continue; 3505 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3506 break; 3507 // If it does not match, collect all Phi nodes from matcher. 3508 // if we end up with no match, them all these Phi nodes will not match 3509 // later. 3510 for (auto M : Matched) 3511 WillNotMatch.insert(M.first); 3512 Matched.clear(); 3513 } 3514 if (IsMatched) { 3515 // Replace all matched values and erase them. 3516 for (auto MV : Matched) 3517 ST.ReplacePhi(MV.first, MV.second); 3518 Matched.clear(); 3519 continue; 3520 } 3521 // If we are not allowed to create new nodes then bail out. 3522 if (!AllowNewPhiNodes) 3523 return false; 3524 // Just remove all seen values in matcher. They will not match anything. 3525 PhiNotMatchedCount += WillNotMatch.size(); 3526 for (auto *P : WillNotMatch) 3527 PhiNodesToMatch.erase(P); 3528 } 3529 return true; 3530 } 3531 /// Fill the placeholders with values from predecessors and simplify them. 3532 void FillPlaceholders(FoldAddrToValueMapping &Map, 3533 SmallVectorImpl<Value *> &TraverseOrder, 3534 SimplificationTracker &ST) { 3535 while (!TraverseOrder.empty()) { 3536 Value *Current = TraverseOrder.pop_back_val(); 3537 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3538 Value *V = Map[Current]; 3539 3540 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3541 // CurrentValue also must be Select. 3542 auto *CurrentSelect = cast<SelectInst>(Current); 3543 auto *TrueValue = CurrentSelect->getTrueValue(); 3544 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3545 Select->setTrueValue(ST.Get(Map[TrueValue])); 3546 auto *FalseValue = CurrentSelect->getFalseValue(); 3547 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3548 Select->setFalseValue(ST.Get(Map[FalseValue])); 3549 } else { 3550 // Must be a Phi node then. 3551 auto *PHI = cast<PHINode>(V); 3552 // Fill the Phi node with values from predecessors. 3553 for (auto B : predecessors(PHI->getParent())) { 3554 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3555 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3556 PHI->addIncoming(ST.Get(Map[PV]), B); 3557 } 3558 } 3559 Map[Current] = ST.Simplify(V); 3560 } 3561 } 3562 3563 /// Starting from original value recursively iterates over def-use chain up to 3564 /// known ending values represented in a map. For each traversed phi/select 3565 /// inserts a placeholder Phi or Select. 3566 /// Reports all new created Phi/Select nodes by adding them to set. 3567 /// Also reports and order in what values have been traversed. 3568 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3569 SmallVectorImpl<Value *> &TraverseOrder, 3570 SimplificationTracker &ST) { 3571 SmallVector<Value *, 32> Worklist; 3572 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3573 "Address must be a Phi or Select node"); 3574 auto *Dummy = UndefValue::get(CommonType); 3575 Worklist.push_back(Original); 3576 while (!Worklist.empty()) { 3577 Value *Current = Worklist.pop_back_val(); 3578 // if it is already visited or it is an ending value then skip it. 3579 if (Map.find(Current) != Map.end()) 3580 continue; 3581 TraverseOrder.push_back(Current); 3582 3583 // CurrentValue must be a Phi node or select. All others must be covered 3584 // by anchors. 3585 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3586 // Is it OK to get metadata from OrigSelect?! 3587 // Create a Select placeholder with dummy value. 3588 SelectInst *Select = SelectInst::Create( 3589 CurrentSelect->getCondition(), Dummy, Dummy, 3590 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3591 Map[Current] = Select; 3592 ST.insertNewSelect(Select); 3593 // We are interested in True and False values. 3594 Worklist.push_back(CurrentSelect->getTrueValue()); 3595 Worklist.push_back(CurrentSelect->getFalseValue()); 3596 } else { 3597 // It must be a Phi node then. 3598 PHINode *CurrentPhi = cast<PHINode>(Current); 3599 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3600 PHINode *PHI = 3601 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3602 Map[Current] = PHI; 3603 ST.insertNewPhi(PHI); 3604 for (Value *P : CurrentPhi->incoming_values()) 3605 Worklist.push_back(P); 3606 } 3607 } 3608 } 3609 3610 bool addrModeCombiningAllowed() { 3611 if (DisableComplexAddrModes) 3612 return false; 3613 switch (DifferentField) { 3614 default: 3615 return false; 3616 case ExtAddrMode::BaseRegField: 3617 return AddrSinkCombineBaseReg; 3618 case ExtAddrMode::BaseGVField: 3619 return AddrSinkCombineBaseGV; 3620 case ExtAddrMode::BaseOffsField: 3621 return AddrSinkCombineBaseOffs; 3622 case ExtAddrMode::ScaledRegField: 3623 return AddrSinkCombineScaledReg; 3624 } 3625 } 3626 }; 3627 } // end anonymous namespace 3628 3629 /// Try adding ScaleReg*Scale to the current addressing mode. 3630 /// Return true and update AddrMode if this addr mode is legal for the target, 3631 /// false if not. 3632 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3633 unsigned Depth) { 3634 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3635 // mode. Just process that directly. 3636 if (Scale == 1) 3637 return matchAddr(ScaleReg, Depth); 3638 3639 // If the scale is 0, it takes nothing to add this. 3640 if (Scale == 0) 3641 return true; 3642 3643 // If we already have a scale of this value, we can add to it, otherwise, we 3644 // need an available scale field. 3645 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3646 return false; 3647 3648 ExtAddrMode TestAddrMode = AddrMode; 3649 3650 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3651 // [A+B + A*7] -> [B+A*8]. 3652 TestAddrMode.Scale += Scale; 3653 TestAddrMode.ScaledReg = ScaleReg; 3654 3655 // If the new address isn't legal, bail out. 3656 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3657 return false; 3658 3659 // It was legal, so commit it. 3660 AddrMode = TestAddrMode; 3661 3662 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3663 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3664 // X*Scale + C*Scale to addr mode. 3665 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3666 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3667 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3668 TestAddrMode.InBounds = false; 3669 TestAddrMode.ScaledReg = AddLHS; 3670 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3671 3672 // If this addressing mode is legal, commit it and remember that we folded 3673 // this instruction. 3674 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3675 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3676 AddrMode = TestAddrMode; 3677 return true; 3678 } 3679 } 3680 3681 // Otherwise, not (x+c)*scale, just return what we have. 3682 return true; 3683 } 3684 3685 /// This is a little filter, which returns true if an addressing computation 3686 /// involving I might be folded into a load/store accessing it. 3687 /// This doesn't need to be perfect, but needs to accept at least 3688 /// the set of instructions that MatchOperationAddr can. 3689 static bool MightBeFoldableInst(Instruction *I) { 3690 switch (I->getOpcode()) { 3691 case Instruction::BitCast: 3692 case Instruction::AddrSpaceCast: 3693 // Don't touch identity bitcasts. 3694 if (I->getType() == I->getOperand(0)->getType()) 3695 return false; 3696 return I->getType()->isIntOrPtrTy(); 3697 case Instruction::PtrToInt: 3698 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3699 return true; 3700 case Instruction::IntToPtr: 3701 // We know the input is intptr_t, so this is foldable. 3702 return true; 3703 case Instruction::Add: 3704 return true; 3705 case Instruction::Mul: 3706 case Instruction::Shl: 3707 // Can only handle X*C and X << C. 3708 return isa<ConstantInt>(I->getOperand(1)); 3709 case Instruction::GetElementPtr: 3710 return true; 3711 default: 3712 return false; 3713 } 3714 } 3715 3716 /// Check whether or not \p Val is a legal instruction for \p TLI. 3717 /// \note \p Val is assumed to be the product of some type promotion. 3718 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3719 /// to be legal, as the non-promoted value would have had the same state. 3720 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3721 const DataLayout &DL, Value *Val) { 3722 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3723 if (!PromotedInst) 3724 return false; 3725 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3726 // If the ISDOpcode is undefined, it was undefined before the promotion. 3727 if (!ISDOpcode) 3728 return true; 3729 // Otherwise, check if the promoted instruction is legal or not. 3730 return TLI.isOperationLegalOrCustom( 3731 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3732 } 3733 3734 namespace { 3735 3736 /// Hepler class to perform type promotion. 3737 class TypePromotionHelper { 3738 /// Utility function to add a promoted instruction \p ExtOpnd to 3739 /// \p PromotedInsts and record the type of extension we have seen. 3740 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3741 Instruction *ExtOpnd, 3742 bool IsSExt) { 3743 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3744 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3745 if (It != PromotedInsts.end()) { 3746 // If the new extension is same as original, the information in 3747 // PromotedInsts[ExtOpnd] is still correct. 3748 if (It->second.getInt() == ExtTy) 3749 return; 3750 3751 // Now the new extension is different from old extension, we make 3752 // the type information invalid by setting extension type to 3753 // BothExtension. 3754 ExtTy = BothExtension; 3755 } 3756 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 3757 } 3758 3759 /// Utility function to query the original type of instruction \p Opnd 3760 /// with a matched extension type. If the extension doesn't match, we 3761 /// cannot use the information we had on the original type. 3762 /// BothExtension doesn't match any extension type. 3763 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 3764 Instruction *Opnd, 3765 bool IsSExt) { 3766 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3767 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3768 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 3769 return It->second.getPointer(); 3770 return nullptr; 3771 } 3772 3773 /// Utility function to check whether or not a sign or zero extension 3774 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3775 /// either using the operands of \p Inst or promoting \p Inst. 3776 /// The type of the extension is defined by \p IsSExt. 3777 /// In other words, check if: 3778 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3779 /// #1 Promotion applies: 3780 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3781 /// #2 Operand reuses: 3782 /// ext opnd1 to ConsideredExtType. 3783 /// \p PromotedInsts maps the instructions to their type before promotion. 3784 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3785 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3786 3787 /// Utility function to determine if \p OpIdx should be promoted when 3788 /// promoting \p Inst. 3789 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3790 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3791 } 3792 3793 /// Utility function to promote the operand of \p Ext when this 3794 /// operand is a promotable trunc or sext or zext. 3795 /// \p PromotedInsts maps the instructions to their type before promotion. 3796 /// \p CreatedInstsCost[out] contains the cost of all instructions 3797 /// created to promote the operand of Ext. 3798 /// Newly added extensions are inserted in \p Exts. 3799 /// Newly added truncates are inserted in \p Truncs. 3800 /// Should never be called directly. 3801 /// \return The promoted value which is used instead of Ext. 3802 static Value *promoteOperandForTruncAndAnyExt( 3803 Instruction *Ext, TypePromotionTransaction &TPT, 3804 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3805 SmallVectorImpl<Instruction *> *Exts, 3806 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3807 3808 /// Utility function to promote the operand of \p Ext when this 3809 /// operand is promotable and is not a supported trunc or sext. 3810 /// \p PromotedInsts maps the instructions to their type before promotion. 3811 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3812 /// created to promote the operand of Ext. 3813 /// Newly added extensions are inserted in \p Exts. 3814 /// Newly added truncates are inserted in \p Truncs. 3815 /// Should never be called directly. 3816 /// \return The promoted value which is used instead of Ext. 3817 static Value *promoteOperandForOther(Instruction *Ext, 3818 TypePromotionTransaction &TPT, 3819 InstrToOrigTy &PromotedInsts, 3820 unsigned &CreatedInstsCost, 3821 SmallVectorImpl<Instruction *> *Exts, 3822 SmallVectorImpl<Instruction *> *Truncs, 3823 const TargetLowering &TLI, bool IsSExt); 3824 3825 /// \see promoteOperandForOther. 3826 static Value *signExtendOperandForOther( 3827 Instruction *Ext, TypePromotionTransaction &TPT, 3828 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3829 SmallVectorImpl<Instruction *> *Exts, 3830 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3831 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3832 Exts, Truncs, TLI, true); 3833 } 3834 3835 /// \see promoteOperandForOther. 3836 static Value *zeroExtendOperandForOther( 3837 Instruction *Ext, TypePromotionTransaction &TPT, 3838 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3839 SmallVectorImpl<Instruction *> *Exts, 3840 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3841 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3842 Exts, Truncs, TLI, false); 3843 } 3844 3845 public: 3846 /// Type for the utility function that promotes the operand of Ext. 3847 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3848 InstrToOrigTy &PromotedInsts, 3849 unsigned &CreatedInstsCost, 3850 SmallVectorImpl<Instruction *> *Exts, 3851 SmallVectorImpl<Instruction *> *Truncs, 3852 const TargetLowering &TLI); 3853 3854 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3855 /// action to promote the operand of \p Ext instead of using Ext. 3856 /// \return NULL if no promotable action is possible with the current 3857 /// sign extension. 3858 /// \p InsertedInsts keeps track of all the instructions inserted by the 3859 /// other CodeGenPrepare optimizations. This information is important 3860 /// because we do not want to promote these instructions as CodeGenPrepare 3861 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3862 /// \p PromotedInsts maps the instructions to their type before promotion. 3863 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3864 const TargetLowering &TLI, 3865 const InstrToOrigTy &PromotedInsts); 3866 }; 3867 3868 } // end anonymous namespace 3869 3870 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3871 Type *ConsideredExtType, 3872 const InstrToOrigTy &PromotedInsts, 3873 bool IsSExt) { 3874 // The promotion helper does not know how to deal with vector types yet. 3875 // To be able to fix that, we would need to fix the places where we 3876 // statically extend, e.g., constants and such. 3877 if (Inst->getType()->isVectorTy()) 3878 return false; 3879 3880 // We can always get through zext. 3881 if (isa<ZExtInst>(Inst)) 3882 return true; 3883 3884 // sext(sext) is ok too. 3885 if (IsSExt && isa<SExtInst>(Inst)) 3886 return true; 3887 3888 // We can get through binary operator, if it is legal. In other words, the 3889 // binary operator must have a nuw or nsw flag. 3890 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3891 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3892 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3893 (IsSExt && BinOp->hasNoSignedWrap()))) 3894 return true; 3895 3896 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 3897 if ((Inst->getOpcode() == Instruction::And || 3898 Inst->getOpcode() == Instruction::Or)) 3899 return true; 3900 3901 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 3902 if (Inst->getOpcode() == Instruction::Xor) { 3903 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 3904 // Make sure it is not a NOT. 3905 if (Cst && !Cst->getValue().isAllOnesValue()) 3906 return true; 3907 } 3908 3909 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 3910 // It may change a poisoned value into a regular value, like 3911 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 3912 // poisoned value regular value 3913 // It should be OK since undef covers valid value. 3914 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 3915 return true; 3916 3917 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 3918 // It may change a poisoned value into a regular value, like 3919 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 3920 // poisoned value regular value 3921 // It should be OK since undef covers valid value. 3922 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 3923 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 3924 if (ExtInst->hasOneUse()) { 3925 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 3926 if (AndInst && AndInst->getOpcode() == Instruction::And) { 3927 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 3928 if (Cst && 3929 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 3930 return true; 3931 } 3932 } 3933 } 3934 3935 // Check if we can do the following simplification. 3936 // ext(trunc(opnd)) --> ext(opnd) 3937 if (!isa<TruncInst>(Inst)) 3938 return false; 3939 3940 Value *OpndVal = Inst->getOperand(0); 3941 // Check if we can use this operand in the extension. 3942 // If the type is larger than the result type of the extension, we cannot. 3943 if (!OpndVal->getType()->isIntegerTy() || 3944 OpndVal->getType()->getIntegerBitWidth() > 3945 ConsideredExtType->getIntegerBitWidth()) 3946 return false; 3947 3948 // If the operand of the truncate is not an instruction, we will not have 3949 // any information on the dropped bits. 3950 // (Actually we could for constant but it is not worth the extra logic). 3951 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3952 if (!Opnd) 3953 return false; 3954 3955 // Check if the source of the type is narrow enough. 3956 // I.e., check that trunc just drops extended bits of the same kind of 3957 // the extension. 3958 // #1 get the type of the operand and check the kind of the extended bits. 3959 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 3960 if (OpndType) 3961 ; 3962 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3963 OpndType = Opnd->getOperand(0)->getType(); 3964 else 3965 return false; 3966 3967 // #2 check that the truncate just drops extended bits. 3968 return Inst->getType()->getIntegerBitWidth() >= 3969 OpndType->getIntegerBitWidth(); 3970 } 3971 3972 TypePromotionHelper::Action TypePromotionHelper::getAction( 3973 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3974 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3975 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3976 "Unexpected instruction type"); 3977 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3978 Type *ExtTy = Ext->getType(); 3979 bool IsSExt = isa<SExtInst>(Ext); 3980 // If the operand of the extension is not an instruction, we cannot 3981 // get through. 3982 // If it, check we can get through. 3983 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3984 return nullptr; 3985 3986 // Do not promote if the operand has been added by codegenprepare. 3987 // Otherwise, it means we are undoing an optimization that is likely to be 3988 // redone, thus causing potential infinite loop. 3989 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3990 return nullptr; 3991 3992 // SExt or Trunc instructions. 3993 // Return the related handler. 3994 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3995 isa<ZExtInst>(ExtOpnd)) 3996 return promoteOperandForTruncAndAnyExt; 3997 3998 // Regular instruction. 3999 // Abort early if we will have to insert non-free instructions. 4000 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 4001 return nullptr; 4002 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 4003 } 4004 4005 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 4006 Instruction *SExt, TypePromotionTransaction &TPT, 4007 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4008 SmallVectorImpl<Instruction *> *Exts, 4009 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4010 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4011 // get through it and this method should not be called. 4012 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4013 Value *ExtVal = SExt; 4014 bool HasMergedNonFreeExt = false; 4015 if (isa<ZExtInst>(SExtOpnd)) { 4016 // Replace s|zext(zext(opnd)) 4017 // => zext(opnd). 4018 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4019 Value *ZExt = 4020 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4021 TPT.replaceAllUsesWith(SExt, ZExt); 4022 TPT.eraseInstruction(SExt); 4023 ExtVal = ZExt; 4024 } else { 4025 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4026 // => z|sext(opnd). 4027 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4028 } 4029 CreatedInstsCost = 0; 4030 4031 // Remove dead code. 4032 if (SExtOpnd->use_empty()) 4033 TPT.eraseInstruction(SExtOpnd); 4034 4035 // Check if the extension is still needed. 4036 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4037 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4038 if (ExtInst) { 4039 if (Exts) 4040 Exts->push_back(ExtInst); 4041 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4042 } 4043 return ExtVal; 4044 } 4045 4046 // At this point we have: ext ty opnd to ty. 4047 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4048 Value *NextVal = ExtInst->getOperand(0); 4049 TPT.eraseInstruction(ExtInst, NextVal); 4050 return NextVal; 4051 } 4052 4053 Value *TypePromotionHelper::promoteOperandForOther( 4054 Instruction *Ext, TypePromotionTransaction &TPT, 4055 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4056 SmallVectorImpl<Instruction *> *Exts, 4057 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4058 bool IsSExt) { 4059 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4060 // get through it and this method should not be called. 4061 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4062 CreatedInstsCost = 0; 4063 if (!ExtOpnd->hasOneUse()) { 4064 // ExtOpnd will be promoted. 4065 // All its uses, but Ext, will need to use a truncated value of the 4066 // promoted version. 4067 // Create the truncate now. 4068 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4069 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4070 // Insert it just after the definition. 4071 ITrunc->moveAfter(ExtOpnd); 4072 if (Truncs) 4073 Truncs->push_back(ITrunc); 4074 } 4075 4076 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4077 // Restore the operand of Ext (which has been replaced by the previous call 4078 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4079 TPT.setOperand(Ext, 0, ExtOpnd); 4080 } 4081 4082 // Get through the Instruction: 4083 // 1. Update its type. 4084 // 2. Replace the uses of Ext by Inst. 4085 // 3. Extend each operand that needs to be extended. 4086 4087 // Remember the original type of the instruction before promotion. 4088 // This is useful to know that the high bits are sign extended bits. 4089 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4090 // Step #1. 4091 TPT.mutateType(ExtOpnd, Ext->getType()); 4092 // Step #2. 4093 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4094 // Step #3. 4095 Instruction *ExtForOpnd = Ext; 4096 4097 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4098 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4099 ++OpIdx) { 4100 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4101 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4102 !shouldExtOperand(ExtOpnd, OpIdx)) { 4103 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4104 continue; 4105 } 4106 // Check if we can statically extend the operand. 4107 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4108 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4109 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4110 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4111 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4112 : Cst->getValue().zext(BitWidth); 4113 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4114 continue; 4115 } 4116 // UndefValue are typed, so we have to statically sign extend them. 4117 if (isa<UndefValue>(Opnd)) { 4118 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4119 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4120 continue; 4121 } 4122 4123 // Otherwise we have to explicitly sign extend the operand. 4124 // Check if Ext was reused to extend an operand. 4125 if (!ExtForOpnd) { 4126 // If yes, create a new one. 4127 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 4128 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 4129 : TPT.createZExt(Ext, Opnd, Ext->getType()); 4130 if (!isa<Instruction>(ValForExtOpnd)) { 4131 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4132 continue; 4133 } 4134 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4135 } 4136 if (Exts) 4137 Exts->push_back(ExtForOpnd); 4138 TPT.setOperand(ExtForOpnd, 0, Opnd); 4139 4140 // Move the sign extension before the insertion point. 4141 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4142 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4143 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4144 // If more sext are required, new instructions will have to be created. 4145 ExtForOpnd = nullptr; 4146 } 4147 if (ExtForOpnd == Ext) { 4148 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4149 TPT.eraseInstruction(Ext); 4150 } 4151 return ExtOpnd; 4152 } 4153 4154 /// Check whether or not promoting an instruction to a wider type is profitable. 4155 /// \p NewCost gives the cost of extension instructions created by the 4156 /// promotion. 4157 /// \p OldCost gives the cost of extension instructions before the promotion 4158 /// plus the number of instructions that have been 4159 /// matched in the addressing mode the promotion. 4160 /// \p PromotedOperand is the value that has been promoted. 4161 /// \return True if the promotion is profitable, false otherwise. 4162 bool AddressingModeMatcher::isPromotionProfitable( 4163 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4164 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4165 << '\n'); 4166 // The cost of the new extensions is greater than the cost of the 4167 // old extension plus what we folded. 4168 // This is not profitable. 4169 if (NewCost > OldCost) 4170 return false; 4171 if (NewCost < OldCost) 4172 return true; 4173 // The promotion is neutral but it may help folding the sign extension in 4174 // loads for instance. 4175 // Check that we did not create an illegal instruction. 4176 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4177 } 4178 4179 /// Given an instruction or constant expr, see if we can fold the operation 4180 /// into the addressing mode. If so, update the addressing mode and return 4181 /// true, otherwise return false without modifying AddrMode. 4182 /// If \p MovedAway is not NULL, it contains the information of whether or 4183 /// not AddrInst has to be folded into the addressing mode on success. 4184 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4185 /// because it has been moved away. 4186 /// Thus AddrInst must not be added in the matched instructions. 4187 /// This state can happen when AddrInst is a sext, since it may be moved away. 4188 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4189 /// not be referenced anymore. 4190 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4191 unsigned Depth, 4192 bool *MovedAway) { 4193 // Avoid exponential behavior on extremely deep expression trees. 4194 if (Depth >= 5) return false; 4195 4196 // By default, all matched instructions stay in place. 4197 if (MovedAway) 4198 *MovedAway = false; 4199 4200 switch (Opcode) { 4201 case Instruction::PtrToInt: 4202 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4203 return matchAddr(AddrInst->getOperand(0), Depth); 4204 case Instruction::IntToPtr: { 4205 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4206 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4207 // This inttoptr is a no-op if the integer type is pointer sized. 4208 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4209 return matchAddr(AddrInst->getOperand(0), Depth); 4210 return false; 4211 } 4212 case Instruction::BitCast: 4213 // BitCast is always a noop, and we can handle it as long as it is 4214 // int->int or pointer->pointer (we don't want int<->fp or something). 4215 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4216 // Don't touch identity bitcasts. These were probably put here by LSR, 4217 // and we don't want to mess around with them. Assume it knows what it 4218 // is doing. 4219 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4220 return matchAddr(AddrInst->getOperand(0), Depth); 4221 return false; 4222 case Instruction::AddrSpaceCast: { 4223 unsigned SrcAS 4224 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4225 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4226 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 4227 return matchAddr(AddrInst->getOperand(0), Depth); 4228 return false; 4229 } 4230 case Instruction::Add: { 4231 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4232 ExtAddrMode BackupAddrMode = AddrMode; 4233 unsigned OldSize = AddrModeInsts.size(); 4234 // Start a transaction at this point. 4235 // The LHS may match but not the RHS. 4236 // Therefore, we need a higher level restoration point to undo partially 4237 // matched operation. 4238 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4239 TPT.getRestorationPoint(); 4240 4241 AddrMode.InBounds = false; 4242 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4243 matchAddr(AddrInst->getOperand(0), Depth+1)) 4244 return true; 4245 4246 // Restore the old addr mode info. 4247 AddrMode = BackupAddrMode; 4248 AddrModeInsts.resize(OldSize); 4249 TPT.rollback(LastKnownGood); 4250 4251 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4252 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4253 matchAddr(AddrInst->getOperand(1), Depth+1)) 4254 return true; 4255 4256 // Otherwise we definitely can't merge the ADD in. 4257 AddrMode = BackupAddrMode; 4258 AddrModeInsts.resize(OldSize); 4259 TPT.rollback(LastKnownGood); 4260 break; 4261 } 4262 //case Instruction::Or: 4263 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4264 //break; 4265 case Instruction::Mul: 4266 case Instruction::Shl: { 4267 // Can only handle X*C and X << C. 4268 AddrMode.InBounds = false; 4269 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4270 if (!RHS || RHS->getBitWidth() > 64) 4271 return false; 4272 int64_t Scale = RHS->getSExtValue(); 4273 if (Opcode == Instruction::Shl) 4274 Scale = 1LL << Scale; 4275 4276 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4277 } 4278 case Instruction::GetElementPtr: { 4279 // Scan the GEP. We check it if it contains constant offsets and at most 4280 // one variable offset. 4281 int VariableOperand = -1; 4282 unsigned VariableScale = 0; 4283 4284 int64_t ConstantOffset = 0; 4285 gep_type_iterator GTI = gep_type_begin(AddrInst); 4286 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4287 if (StructType *STy = GTI.getStructTypeOrNull()) { 4288 const StructLayout *SL = DL.getStructLayout(STy); 4289 unsigned Idx = 4290 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4291 ConstantOffset += SL->getElementOffset(Idx); 4292 } else { 4293 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 4294 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4295 const APInt &CVal = CI->getValue(); 4296 if (CVal.getMinSignedBits() <= 64) { 4297 ConstantOffset += CVal.getSExtValue() * TypeSize; 4298 continue; 4299 } 4300 } 4301 if (TypeSize) { // Scales of zero don't do anything. 4302 // We only allow one variable index at the moment. 4303 if (VariableOperand != -1) 4304 return false; 4305 4306 // Remember the variable index. 4307 VariableOperand = i; 4308 VariableScale = TypeSize; 4309 } 4310 } 4311 } 4312 4313 // A common case is for the GEP to only do a constant offset. In this case, 4314 // just add it to the disp field and check validity. 4315 if (VariableOperand == -1) { 4316 AddrMode.BaseOffs += ConstantOffset; 4317 if (ConstantOffset == 0 || 4318 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4319 // Check to see if we can fold the base pointer in too. 4320 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4321 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4322 AddrMode.InBounds = false; 4323 return true; 4324 } 4325 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4326 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4327 ConstantOffset > 0) { 4328 // Record GEPs with non-zero offsets as candidates for splitting in the 4329 // event that the offset cannot fit into the r+i addressing mode. 4330 // Simple and common case that only one GEP is used in calculating the 4331 // address for the memory access. 4332 Value *Base = AddrInst->getOperand(0); 4333 auto *BaseI = dyn_cast<Instruction>(Base); 4334 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4335 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4336 (BaseI && !isa<CastInst>(BaseI) && 4337 !isa<GetElementPtrInst>(BaseI))) { 4338 // Make sure the parent block allows inserting non-PHI instructions 4339 // before the terminator. 4340 BasicBlock *Parent = 4341 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4342 if (!Parent->getTerminator()->isEHPad()) 4343 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4344 } 4345 } 4346 AddrMode.BaseOffs -= ConstantOffset; 4347 return false; 4348 } 4349 4350 // Save the valid addressing mode in case we can't match. 4351 ExtAddrMode BackupAddrMode = AddrMode; 4352 unsigned OldSize = AddrModeInsts.size(); 4353 4354 // See if the scale and offset amount is valid for this target. 4355 AddrMode.BaseOffs += ConstantOffset; 4356 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4357 AddrMode.InBounds = false; 4358 4359 // Match the base operand of the GEP. 4360 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4361 // If it couldn't be matched, just stuff the value in a register. 4362 if (AddrMode.HasBaseReg) { 4363 AddrMode = BackupAddrMode; 4364 AddrModeInsts.resize(OldSize); 4365 return false; 4366 } 4367 AddrMode.HasBaseReg = true; 4368 AddrMode.BaseReg = AddrInst->getOperand(0); 4369 } 4370 4371 // Match the remaining variable portion of the GEP. 4372 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4373 Depth)) { 4374 // If it couldn't be matched, try stuffing the base into a register 4375 // instead of matching it, and retrying the match of the scale. 4376 AddrMode = BackupAddrMode; 4377 AddrModeInsts.resize(OldSize); 4378 if (AddrMode.HasBaseReg) 4379 return false; 4380 AddrMode.HasBaseReg = true; 4381 AddrMode.BaseReg = AddrInst->getOperand(0); 4382 AddrMode.BaseOffs += ConstantOffset; 4383 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4384 VariableScale, Depth)) { 4385 // If even that didn't work, bail. 4386 AddrMode = BackupAddrMode; 4387 AddrModeInsts.resize(OldSize); 4388 return false; 4389 } 4390 } 4391 4392 return true; 4393 } 4394 case Instruction::SExt: 4395 case Instruction::ZExt: { 4396 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4397 if (!Ext) 4398 return false; 4399 4400 // Try to move this ext out of the way of the addressing mode. 4401 // Ask for a method for doing so. 4402 TypePromotionHelper::Action TPH = 4403 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4404 if (!TPH) 4405 return false; 4406 4407 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4408 TPT.getRestorationPoint(); 4409 unsigned CreatedInstsCost = 0; 4410 unsigned ExtCost = !TLI.isExtFree(Ext); 4411 Value *PromotedOperand = 4412 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4413 // SExt has been moved away. 4414 // Thus either it will be rematched later in the recursive calls or it is 4415 // gone. Anyway, we must not fold it into the addressing mode at this point. 4416 // E.g., 4417 // op = add opnd, 1 4418 // idx = ext op 4419 // addr = gep base, idx 4420 // is now: 4421 // promotedOpnd = ext opnd <- no match here 4422 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4423 // addr = gep base, op <- match 4424 if (MovedAway) 4425 *MovedAway = true; 4426 4427 assert(PromotedOperand && 4428 "TypePromotionHelper should have filtered out those cases"); 4429 4430 ExtAddrMode BackupAddrMode = AddrMode; 4431 unsigned OldSize = AddrModeInsts.size(); 4432 4433 if (!matchAddr(PromotedOperand, Depth) || 4434 // The total of the new cost is equal to the cost of the created 4435 // instructions. 4436 // The total of the old cost is equal to the cost of the extension plus 4437 // what we have saved in the addressing mode. 4438 !isPromotionProfitable(CreatedInstsCost, 4439 ExtCost + (AddrModeInsts.size() - OldSize), 4440 PromotedOperand)) { 4441 AddrMode = BackupAddrMode; 4442 AddrModeInsts.resize(OldSize); 4443 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4444 TPT.rollback(LastKnownGood); 4445 return false; 4446 } 4447 return true; 4448 } 4449 } 4450 return false; 4451 } 4452 4453 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4454 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4455 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4456 /// for the target. 4457 /// 4458 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4459 // Start a transaction at this point that we will rollback if the matching 4460 // fails. 4461 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4462 TPT.getRestorationPoint(); 4463 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4464 // Fold in immediates if legal for the target. 4465 AddrMode.BaseOffs += CI->getSExtValue(); 4466 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4467 return true; 4468 AddrMode.BaseOffs -= CI->getSExtValue(); 4469 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4470 // If this is a global variable, try to fold it into the addressing mode. 4471 if (!AddrMode.BaseGV) { 4472 AddrMode.BaseGV = GV; 4473 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4474 return true; 4475 AddrMode.BaseGV = nullptr; 4476 } 4477 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4478 ExtAddrMode BackupAddrMode = AddrMode; 4479 unsigned OldSize = AddrModeInsts.size(); 4480 4481 // Check to see if it is possible to fold this operation. 4482 bool MovedAway = false; 4483 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4484 // This instruction may have been moved away. If so, there is nothing 4485 // to check here. 4486 if (MovedAway) 4487 return true; 4488 // Okay, it's possible to fold this. Check to see if it is actually 4489 // *profitable* to do so. We use a simple cost model to avoid increasing 4490 // register pressure too much. 4491 if (I->hasOneUse() || 4492 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4493 AddrModeInsts.push_back(I); 4494 return true; 4495 } 4496 4497 // It isn't profitable to do this, roll back. 4498 //cerr << "NOT FOLDING: " << *I; 4499 AddrMode = BackupAddrMode; 4500 AddrModeInsts.resize(OldSize); 4501 TPT.rollback(LastKnownGood); 4502 } 4503 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4504 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4505 return true; 4506 TPT.rollback(LastKnownGood); 4507 } else if (isa<ConstantPointerNull>(Addr)) { 4508 // Null pointer gets folded without affecting the addressing mode. 4509 return true; 4510 } 4511 4512 // Worse case, the target should support [reg] addressing modes. :) 4513 if (!AddrMode.HasBaseReg) { 4514 AddrMode.HasBaseReg = true; 4515 AddrMode.BaseReg = Addr; 4516 // Still check for legality in case the target supports [imm] but not [i+r]. 4517 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4518 return true; 4519 AddrMode.HasBaseReg = false; 4520 AddrMode.BaseReg = nullptr; 4521 } 4522 4523 // If the base register is already taken, see if we can do [r+r]. 4524 if (AddrMode.Scale == 0) { 4525 AddrMode.Scale = 1; 4526 AddrMode.ScaledReg = Addr; 4527 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4528 return true; 4529 AddrMode.Scale = 0; 4530 AddrMode.ScaledReg = nullptr; 4531 } 4532 // Couldn't match. 4533 TPT.rollback(LastKnownGood); 4534 return false; 4535 } 4536 4537 /// Check to see if all uses of OpVal by the specified inline asm call are due 4538 /// to memory operands. If so, return true, otherwise return false. 4539 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4540 const TargetLowering &TLI, 4541 const TargetRegisterInfo &TRI) { 4542 const Function *F = CI->getFunction(); 4543 TargetLowering::AsmOperandInfoVector TargetConstraints = 4544 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI); 4545 4546 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4547 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4548 4549 // Compute the constraint code and ConstraintType to use. 4550 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4551 4552 // If this asm operand is our Value*, and if it isn't an indirect memory 4553 // operand, we can't fold it! 4554 if (OpInfo.CallOperandVal == OpVal && 4555 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4556 !OpInfo.isIndirect)) 4557 return false; 4558 } 4559 4560 return true; 4561 } 4562 4563 // Max number of memory uses to look at before aborting the search to conserve 4564 // compile time. 4565 static constexpr int MaxMemoryUsesToScan = 20; 4566 4567 /// Recursively walk all the uses of I until we find a memory use. 4568 /// If we find an obviously non-foldable instruction, return true. 4569 /// Add the ultimately found memory instructions to MemoryUses. 4570 static bool FindAllMemoryUses( 4571 Instruction *I, 4572 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4573 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4574 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 4575 BlockFrequencyInfo *BFI, int SeenInsts = 0) { 4576 // If we already considered this instruction, we're done. 4577 if (!ConsideredInsts.insert(I).second) 4578 return false; 4579 4580 // If this is an obviously unfoldable instruction, bail out. 4581 if (!MightBeFoldableInst(I)) 4582 return true; 4583 4584 // Loop over all the uses, recursively processing them. 4585 for (Use &U : I->uses()) { 4586 // Conservatively return true if we're seeing a large number or a deep chain 4587 // of users. This avoids excessive compilation times in pathological cases. 4588 if (SeenInsts++ >= MaxMemoryUsesToScan) 4589 return true; 4590 4591 Instruction *UserI = cast<Instruction>(U.getUser()); 4592 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4593 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4594 continue; 4595 } 4596 4597 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4598 unsigned opNo = U.getOperandNo(); 4599 if (opNo != StoreInst::getPointerOperandIndex()) 4600 return true; // Storing addr, not into addr. 4601 MemoryUses.push_back(std::make_pair(SI, opNo)); 4602 continue; 4603 } 4604 4605 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4606 unsigned opNo = U.getOperandNo(); 4607 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4608 return true; // Storing addr, not into addr. 4609 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4610 continue; 4611 } 4612 4613 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4614 unsigned opNo = U.getOperandNo(); 4615 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4616 return true; // Storing addr, not into addr. 4617 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4618 continue; 4619 } 4620 4621 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4622 if (CI->hasFnAttr(Attribute::Cold)) { 4623 // If this is a cold call, we can sink the addressing calculation into 4624 // the cold path. See optimizeCallInst 4625 bool OptForSize = OptSize || 4626 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 4627 if (!OptForSize) 4628 continue; 4629 } 4630 4631 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4632 if (!IA) return true; 4633 4634 // If this is a memory operand, we're cool, otherwise bail out. 4635 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4636 return true; 4637 continue; 4638 } 4639 4640 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4641 PSI, BFI, SeenInsts)) 4642 return true; 4643 } 4644 4645 return false; 4646 } 4647 4648 /// Return true if Val is already known to be live at the use site that we're 4649 /// folding it into. If so, there is no cost to include it in the addressing 4650 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4651 /// instruction already. 4652 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4653 Value *KnownLive2) { 4654 // If Val is either of the known-live values, we know it is live! 4655 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4656 return true; 4657 4658 // All values other than instructions and arguments (e.g. constants) are live. 4659 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4660 4661 // If Val is a constant sized alloca in the entry block, it is live, this is 4662 // true because it is just a reference to the stack/frame pointer, which is 4663 // live for the whole function. 4664 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4665 if (AI->isStaticAlloca()) 4666 return true; 4667 4668 // Check to see if this value is already used in the memory instruction's 4669 // block. If so, it's already live into the block at the very least, so we 4670 // can reasonably fold it. 4671 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4672 } 4673 4674 /// It is possible for the addressing mode of the machine to fold the specified 4675 /// instruction into a load or store that ultimately uses it. 4676 /// However, the specified instruction has multiple uses. 4677 /// Given this, it may actually increase register pressure to fold it 4678 /// into the load. For example, consider this code: 4679 /// 4680 /// X = ... 4681 /// Y = X+1 4682 /// use(Y) -> nonload/store 4683 /// Z = Y+1 4684 /// load Z 4685 /// 4686 /// In this case, Y has multiple uses, and can be folded into the load of Z 4687 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4688 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4689 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4690 /// number of computations either. 4691 /// 4692 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4693 /// X was live across 'load Z' for other reasons, we actually *would* want to 4694 /// fold the addressing mode in the Z case. This would make Y die earlier. 4695 bool AddressingModeMatcher:: 4696 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4697 ExtAddrMode &AMAfter) { 4698 if (IgnoreProfitability) return true; 4699 4700 // AMBefore is the addressing mode before this instruction was folded into it, 4701 // and AMAfter is the addressing mode after the instruction was folded. Get 4702 // the set of registers referenced by AMAfter and subtract out those 4703 // referenced by AMBefore: this is the set of values which folding in this 4704 // address extends the lifetime of. 4705 // 4706 // Note that there are only two potential values being referenced here, 4707 // BaseReg and ScaleReg (global addresses are always available, as are any 4708 // folded immediates). 4709 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4710 4711 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4712 // lifetime wasn't extended by adding this instruction. 4713 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4714 BaseReg = nullptr; 4715 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4716 ScaledReg = nullptr; 4717 4718 // If folding this instruction (and it's subexprs) didn't extend any live 4719 // ranges, we're ok with it. 4720 if (!BaseReg && !ScaledReg) 4721 return true; 4722 4723 // If all uses of this instruction can have the address mode sunk into them, 4724 // we can remove the addressing mode and effectively trade one live register 4725 // for another (at worst.) In this context, folding an addressing mode into 4726 // the use is just a particularly nice way of sinking it. 4727 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4728 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4729 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4730 PSI, BFI)) 4731 return false; // Has a non-memory, non-foldable use! 4732 4733 // Now that we know that all uses of this instruction are part of a chain of 4734 // computation involving only operations that could theoretically be folded 4735 // into a memory use, loop over each of these memory operation uses and see 4736 // if they could *actually* fold the instruction. The assumption is that 4737 // addressing modes are cheap and that duplicating the computation involved 4738 // many times is worthwhile, even on a fastpath. For sinking candidates 4739 // (i.e. cold call sites), this serves as a way to prevent excessive code 4740 // growth since most architectures have some reasonable small and fast way to 4741 // compute an effective address. (i.e LEA on x86) 4742 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4743 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4744 Instruction *User = MemoryUses[i].first; 4745 unsigned OpNo = MemoryUses[i].second; 4746 4747 // Get the access type of this use. If the use isn't a pointer, we don't 4748 // know what it accesses. 4749 Value *Address = User->getOperand(OpNo); 4750 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4751 if (!AddrTy) 4752 return false; 4753 Type *AddressAccessTy = AddrTy->getElementType(); 4754 unsigned AS = AddrTy->getAddressSpace(); 4755 4756 // Do a match against the root of this address, ignoring profitability. This 4757 // will tell us if the addressing mode for the memory operation will 4758 // *actually* cover the shared instruction. 4759 ExtAddrMode Result; 4760 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4761 0); 4762 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4763 TPT.getRestorationPoint(); 4764 AddressingModeMatcher Matcher( 4765 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4766 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, BFI); 4767 Matcher.IgnoreProfitability = true; 4768 bool Success = Matcher.matchAddr(Address, 0); 4769 (void)Success; assert(Success && "Couldn't select *anything*?"); 4770 4771 // The match was to check the profitability, the changes made are not 4772 // part of the original matcher. Therefore, they should be dropped 4773 // otherwise the original matcher will not present the right state. 4774 TPT.rollback(LastKnownGood); 4775 4776 // If the match didn't cover I, then it won't be shared by it. 4777 if (!is_contained(MatchedAddrModeInsts, I)) 4778 return false; 4779 4780 MatchedAddrModeInsts.clear(); 4781 } 4782 4783 return true; 4784 } 4785 4786 /// Return true if the specified values are defined in a 4787 /// different basic block than BB. 4788 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4789 if (Instruction *I = dyn_cast<Instruction>(V)) 4790 return I->getParent() != BB; 4791 return false; 4792 } 4793 4794 /// Sink addressing mode computation immediate before MemoryInst if doing so 4795 /// can be done without increasing register pressure. The need for the 4796 /// register pressure constraint means this can end up being an all or nothing 4797 /// decision for all uses of the same addressing computation. 4798 /// 4799 /// Load and Store Instructions often have addressing modes that can do 4800 /// significant amounts of computation. As such, instruction selection will try 4801 /// to get the load or store to do as much computation as possible for the 4802 /// program. The problem is that isel can only see within a single block. As 4803 /// such, we sink as much legal addressing mode work into the block as possible. 4804 /// 4805 /// This method is used to optimize both load/store and inline asms with memory 4806 /// operands. It's also used to sink addressing computations feeding into cold 4807 /// call sites into their (cold) basic block. 4808 /// 4809 /// The motivation for handling sinking into cold blocks is that doing so can 4810 /// both enable other address mode sinking (by satisfying the register pressure 4811 /// constraint above), and reduce register pressure globally (by removing the 4812 /// addressing mode computation from the fast path entirely.). 4813 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4814 Type *AccessTy, unsigned AddrSpace) { 4815 Value *Repl = Addr; 4816 4817 // Try to collapse single-value PHI nodes. This is necessary to undo 4818 // unprofitable PRE transformations. 4819 SmallVector<Value*, 8> worklist; 4820 SmallPtrSet<Value*, 16> Visited; 4821 worklist.push_back(Addr); 4822 4823 // Use a worklist to iteratively look through PHI and select nodes, and 4824 // ensure that the addressing mode obtained from the non-PHI/select roots of 4825 // the graph are compatible. 4826 bool PhiOrSelectSeen = false; 4827 SmallVector<Instruction*, 16> AddrModeInsts; 4828 const SimplifyQuery SQ(*DL, TLInfo); 4829 AddressingModeCombiner AddrModes(SQ, Addr); 4830 TypePromotionTransaction TPT(RemovedInsts); 4831 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4832 TPT.getRestorationPoint(); 4833 while (!worklist.empty()) { 4834 Value *V = worklist.back(); 4835 worklist.pop_back(); 4836 4837 // We allow traversing cyclic Phi nodes. 4838 // In case of success after this loop we ensure that traversing through 4839 // Phi nodes ends up with all cases to compute address of the form 4840 // BaseGV + Base + Scale * Index + Offset 4841 // where Scale and Offset are constans and BaseGV, Base and Index 4842 // are exactly the same Values in all cases. 4843 // It means that BaseGV, Scale and Offset dominate our memory instruction 4844 // and have the same value as they had in address computation represented 4845 // as Phi. So we can safely sink address computation to memory instruction. 4846 if (!Visited.insert(V).second) 4847 continue; 4848 4849 // For a PHI node, push all of its incoming values. 4850 if (PHINode *P = dyn_cast<PHINode>(V)) { 4851 for (Value *IncValue : P->incoming_values()) 4852 worklist.push_back(IncValue); 4853 PhiOrSelectSeen = true; 4854 continue; 4855 } 4856 // Similar for select. 4857 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4858 worklist.push_back(SI->getFalseValue()); 4859 worklist.push_back(SI->getTrueValue()); 4860 PhiOrSelectSeen = true; 4861 continue; 4862 } 4863 4864 // For non-PHIs, determine the addressing mode being computed. Note that 4865 // the result may differ depending on what other uses our candidate 4866 // addressing instructions might have. 4867 AddrModeInsts.clear(); 4868 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4869 0); 4870 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4871 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4872 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 4873 BFI.get()); 4874 4875 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4876 if (GEP && !NewGEPBases.count(GEP)) { 4877 // If splitting the underlying data structure can reduce the offset of a 4878 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4879 // previously split data structures. 4880 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4881 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4882 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4883 } 4884 4885 NewAddrMode.OriginalValue = V; 4886 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4887 break; 4888 } 4889 4890 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4891 // or we have multiple but either couldn't combine them or combining them 4892 // wouldn't do anything useful, bail out now. 4893 if (!AddrModes.combineAddrModes()) { 4894 TPT.rollback(LastKnownGood); 4895 return false; 4896 } 4897 TPT.commit(); 4898 4899 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4900 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4901 4902 // If all the instructions matched are already in this BB, don't do anything. 4903 // If we saw a Phi node then it is not local definitely, and if we saw a select 4904 // then we want to push the address calculation past it even if it's already 4905 // in this BB. 4906 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4907 return IsNonLocalValue(V, MemoryInst->getParent()); 4908 })) { 4909 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 4910 << "\n"); 4911 return false; 4912 } 4913 4914 // Insert this computation right after this user. Since our caller is 4915 // scanning from the top of the BB to the bottom, reuse of the expr are 4916 // guaranteed to happen later. 4917 IRBuilder<> Builder(MemoryInst); 4918 4919 // Now that we determined the addressing expression we want to use and know 4920 // that we have to sink it into this block. Check to see if we have already 4921 // done this for some other load/store instr in this block. If so, reuse 4922 // the computation. Before attempting reuse, check if the address is valid 4923 // as it may have been erased. 4924 4925 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4926 4927 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4928 if (SunkAddr) { 4929 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 4930 << " for " << *MemoryInst << "\n"); 4931 if (SunkAddr->getType() != Addr->getType()) 4932 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4933 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 4934 SubtargetInfo->addrSinkUsingGEPs())) { 4935 // By default, we use the GEP-based method when AA is used later. This 4936 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4937 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4938 << " for " << *MemoryInst << "\n"); 4939 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4940 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4941 4942 // First, find the pointer. 4943 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4944 ResultPtr = AddrMode.BaseReg; 4945 AddrMode.BaseReg = nullptr; 4946 } 4947 4948 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4949 // We can't add more than one pointer together, nor can we scale a 4950 // pointer (both of which seem meaningless). 4951 if (ResultPtr || AddrMode.Scale != 1) 4952 return false; 4953 4954 ResultPtr = AddrMode.ScaledReg; 4955 AddrMode.Scale = 0; 4956 } 4957 4958 // It is only safe to sign extend the BaseReg if we know that the math 4959 // required to create it did not overflow before we extend it. Since 4960 // the original IR value was tossed in favor of a constant back when 4961 // the AddrMode was created we need to bail out gracefully if widths 4962 // do not match instead of extending it. 4963 // 4964 // (See below for code to add the scale.) 4965 if (AddrMode.Scale) { 4966 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4967 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4968 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4969 return false; 4970 } 4971 4972 if (AddrMode.BaseGV) { 4973 if (ResultPtr) 4974 return false; 4975 4976 ResultPtr = AddrMode.BaseGV; 4977 } 4978 4979 // If the real base value actually came from an inttoptr, then the matcher 4980 // will look through it and provide only the integer value. In that case, 4981 // use it here. 4982 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4983 if (!ResultPtr && AddrMode.BaseReg) { 4984 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4985 "sunkaddr"); 4986 AddrMode.BaseReg = nullptr; 4987 } else if (!ResultPtr && AddrMode.Scale == 1) { 4988 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4989 "sunkaddr"); 4990 AddrMode.Scale = 0; 4991 } 4992 } 4993 4994 if (!ResultPtr && 4995 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4996 SunkAddr = Constant::getNullValue(Addr->getType()); 4997 } else if (!ResultPtr) { 4998 return false; 4999 } else { 5000 Type *I8PtrTy = 5001 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 5002 Type *I8Ty = Builder.getInt8Ty(); 5003 5004 // Start with the base register. Do this first so that subsequent address 5005 // matching finds it last, which will prevent it from trying to match it 5006 // as the scaled value in case it happens to be a mul. That would be 5007 // problematic if we've sunk a different mul for the scale, because then 5008 // we'd end up sinking both muls. 5009 if (AddrMode.BaseReg) { 5010 Value *V = AddrMode.BaseReg; 5011 if (V->getType() != IntPtrTy) 5012 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5013 5014 ResultIndex = V; 5015 } 5016 5017 // Add the scale value. 5018 if (AddrMode.Scale) { 5019 Value *V = AddrMode.ScaledReg; 5020 if (V->getType() == IntPtrTy) { 5021 // done. 5022 } else { 5023 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5024 cast<IntegerType>(V->getType())->getBitWidth() && 5025 "We can't transform if ScaledReg is too narrow"); 5026 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5027 } 5028 5029 if (AddrMode.Scale != 1) 5030 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5031 "sunkaddr"); 5032 if (ResultIndex) 5033 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5034 else 5035 ResultIndex = V; 5036 } 5037 5038 // Add in the Base Offset if present. 5039 if (AddrMode.BaseOffs) { 5040 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5041 if (ResultIndex) { 5042 // We need to add this separately from the scale above to help with 5043 // SDAG consecutive load/store merging. 5044 if (ResultPtr->getType() != I8PtrTy) 5045 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5046 ResultPtr = 5047 AddrMode.InBounds 5048 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5049 "sunkaddr") 5050 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5051 } 5052 5053 ResultIndex = V; 5054 } 5055 5056 if (!ResultIndex) { 5057 SunkAddr = ResultPtr; 5058 } else { 5059 if (ResultPtr->getType() != I8PtrTy) 5060 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5061 SunkAddr = 5062 AddrMode.InBounds 5063 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5064 "sunkaddr") 5065 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5066 } 5067 5068 if (SunkAddr->getType() != Addr->getType()) 5069 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5070 } 5071 } else { 5072 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5073 // non-integral pointers, so in that case bail out now. 5074 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5075 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5076 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5077 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5078 if (DL->isNonIntegralPointerType(Addr->getType()) || 5079 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5080 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5081 (AddrMode.BaseGV && 5082 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5083 return false; 5084 5085 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5086 << " for " << *MemoryInst << "\n"); 5087 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5088 Value *Result = nullptr; 5089 5090 // Start with the base register. Do this first so that subsequent address 5091 // matching finds it last, which will prevent it from trying to match it 5092 // as the scaled value in case it happens to be a mul. That would be 5093 // problematic if we've sunk a different mul for the scale, because then 5094 // we'd end up sinking both muls. 5095 if (AddrMode.BaseReg) { 5096 Value *V = AddrMode.BaseReg; 5097 if (V->getType()->isPointerTy()) 5098 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5099 if (V->getType() != IntPtrTy) 5100 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5101 Result = V; 5102 } 5103 5104 // Add the scale value. 5105 if (AddrMode.Scale) { 5106 Value *V = AddrMode.ScaledReg; 5107 if (V->getType() == IntPtrTy) { 5108 // done. 5109 } else if (V->getType()->isPointerTy()) { 5110 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5111 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5112 cast<IntegerType>(V->getType())->getBitWidth()) { 5113 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5114 } else { 5115 // It is only safe to sign extend the BaseReg if we know that the math 5116 // required to create it did not overflow before we extend it. Since 5117 // the original IR value was tossed in favor of a constant back when 5118 // the AddrMode was created we need to bail out gracefully if widths 5119 // do not match instead of extending it. 5120 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5121 if (I && (Result != AddrMode.BaseReg)) 5122 I->eraseFromParent(); 5123 return false; 5124 } 5125 if (AddrMode.Scale != 1) 5126 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5127 "sunkaddr"); 5128 if (Result) 5129 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5130 else 5131 Result = V; 5132 } 5133 5134 // Add in the BaseGV if present. 5135 if (AddrMode.BaseGV) { 5136 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5137 if (Result) 5138 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5139 else 5140 Result = V; 5141 } 5142 5143 // Add in the Base Offset if present. 5144 if (AddrMode.BaseOffs) { 5145 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5146 if (Result) 5147 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5148 else 5149 Result = V; 5150 } 5151 5152 if (!Result) 5153 SunkAddr = Constant::getNullValue(Addr->getType()); 5154 else 5155 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5156 } 5157 5158 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5159 // Store the newly computed address into the cache. In the case we reused a 5160 // value, this should be idempotent. 5161 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5162 5163 // If we have no uses, recursively delete the value and all dead instructions 5164 // using it. 5165 if (Repl->use_empty()) { 5166 // This can cause recursive deletion, which can invalidate our iterator. 5167 // Use a WeakTrackingVH to hold onto it in case this happens. 5168 Value *CurValue = &*CurInstIterator; 5169 WeakTrackingVH IterHandle(CurValue); 5170 BasicBlock *BB = CurInstIterator->getParent(); 5171 5172 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 5173 5174 if (IterHandle != CurValue) { 5175 // If the iterator instruction was recursively deleted, start over at the 5176 // start of the block. 5177 CurInstIterator = BB->begin(); 5178 SunkAddrs.clear(); 5179 } 5180 } 5181 ++NumMemoryInsts; 5182 return true; 5183 } 5184 5185 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5186 /// address computing into the block when possible / profitable. 5187 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5188 bool MadeChange = false; 5189 5190 const TargetRegisterInfo *TRI = 5191 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5192 TargetLowering::AsmOperandInfoVector TargetConstraints = 5193 TLI->ParseConstraints(*DL, TRI, *CS); 5194 unsigned ArgNo = 0; 5195 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5196 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5197 5198 // Compute the constraint code and ConstraintType to use. 5199 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5200 5201 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5202 OpInfo.isIndirect) { 5203 Value *OpVal = CS->getArgOperand(ArgNo++); 5204 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5205 } else if (OpInfo.Type == InlineAsm::isInput) 5206 ArgNo++; 5207 } 5208 5209 return MadeChange; 5210 } 5211 5212 /// Check if all the uses of \p Val are equivalent (or free) zero or 5213 /// sign extensions. 5214 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5215 assert(!Val->use_empty() && "Input must have at least one use"); 5216 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5217 bool IsSExt = isa<SExtInst>(FirstUser); 5218 Type *ExtTy = FirstUser->getType(); 5219 for (const User *U : Val->users()) { 5220 const Instruction *UI = cast<Instruction>(U); 5221 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5222 return false; 5223 Type *CurTy = UI->getType(); 5224 // Same input and output types: Same instruction after CSE. 5225 if (CurTy == ExtTy) 5226 continue; 5227 5228 // If IsSExt is true, we are in this situation: 5229 // a = Val 5230 // b = sext ty1 a to ty2 5231 // c = sext ty1 a to ty3 5232 // Assuming ty2 is shorter than ty3, this could be turned into: 5233 // a = Val 5234 // b = sext ty1 a to ty2 5235 // c = sext ty2 b to ty3 5236 // However, the last sext is not free. 5237 if (IsSExt) 5238 return false; 5239 5240 // This is a ZExt, maybe this is free to extend from one type to another. 5241 // In that case, we would not account for a different use. 5242 Type *NarrowTy; 5243 Type *LargeTy; 5244 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5245 CurTy->getScalarType()->getIntegerBitWidth()) { 5246 NarrowTy = CurTy; 5247 LargeTy = ExtTy; 5248 } else { 5249 NarrowTy = ExtTy; 5250 LargeTy = CurTy; 5251 } 5252 5253 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5254 return false; 5255 } 5256 // All uses are the same or can be derived from one another for free. 5257 return true; 5258 } 5259 5260 /// Try to speculatively promote extensions in \p Exts and continue 5261 /// promoting through newly promoted operands recursively as far as doing so is 5262 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5263 /// When some promotion happened, \p TPT contains the proper state to revert 5264 /// them. 5265 /// 5266 /// \return true if some promotion happened, false otherwise. 5267 bool CodeGenPrepare::tryToPromoteExts( 5268 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5269 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5270 unsigned CreatedInstsCost) { 5271 bool Promoted = false; 5272 5273 // Iterate over all the extensions to try to promote them. 5274 for (auto I : Exts) { 5275 // Early check if we directly have ext(load). 5276 if (isa<LoadInst>(I->getOperand(0))) { 5277 ProfitablyMovedExts.push_back(I); 5278 continue; 5279 } 5280 5281 // Check whether or not we want to do any promotion. The reason we have 5282 // this check inside the for loop is to catch the case where an extension 5283 // is directly fed by a load because in such case the extension can be moved 5284 // up without any promotion on its operands. 5285 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5286 return false; 5287 5288 // Get the action to perform the promotion. 5289 TypePromotionHelper::Action TPH = 5290 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5291 // Check if we can promote. 5292 if (!TPH) { 5293 // Save the current extension as we cannot move up through its operand. 5294 ProfitablyMovedExts.push_back(I); 5295 continue; 5296 } 5297 5298 // Save the current state. 5299 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5300 TPT.getRestorationPoint(); 5301 SmallVector<Instruction *, 4> NewExts; 5302 unsigned NewCreatedInstsCost = 0; 5303 unsigned ExtCost = !TLI->isExtFree(I); 5304 // Promote. 5305 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5306 &NewExts, nullptr, *TLI); 5307 assert(PromotedVal && 5308 "TypePromotionHelper should have filtered out those cases"); 5309 5310 // We would be able to merge only one extension in a load. 5311 // Therefore, if we have more than 1 new extension we heuristically 5312 // cut this search path, because it means we degrade the code quality. 5313 // With exactly 2, the transformation is neutral, because we will merge 5314 // one extension but leave one. However, we optimistically keep going, 5315 // because the new extension may be removed too. 5316 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5317 // FIXME: It would be possible to propagate a negative value instead of 5318 // conservatively ceiling it to 0. 5319 TotalCreatedInstsCost = 5320 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5321 if (!StressExtLdPromotion && 5322 (TotalCreatedInstsCost > 1 || 5323 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5324 // This promotion is not profitable, rollback to the previous state, and 5325 // save the current extension in ProfitablyMovedExts as the latest 5326 // speculative promotion turned out to be unprofitable. 5327 TPT.rollback(LastKnownGood); 5328 ProfitablyMovedExts.push_back(I); 5329 continue; 5330 } 5331 // Continue promoting NewExts as far as doing so is profitable. 5332 SmallVector<Instruction *, 2> NewlyMovedExts; 5333 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5334 bool NewPromoted = false; 5335 for (auto ExtInst : NewlyMovedExts) { 5336 Instruction *MovedExt = cast<Instruction>(ExtInst); 5337 Value *ExtOperand = MovedExt->getOperand(0); 5338 // If we have reached to a load, we need this extra profitability check 5339 // as it could potentially be merged into an ext(load). 5340 if (isa<LoadInst>(ExtOperand) && 5341 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5342 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5343 continue; 5344 5345 ProfitablyMovedExts.push_back(MovedExt); 5346 NewPromoted = true; 5347 } 5348 5349 // If none of speculative promotions for NewExts is profitable, rollback 5350 // and save the current extension (I) as the last profitable extension. 5351 if (!NewPromoted) { 5352 TPT.rollback(LastKnownGood); 5353 ProfitablyMovedExts.push_back(I); 5354 continue; 5355 } 5356 // The promotion is profitable. 5357 Promoted = true; 5358 } 5359 return Promoted; 5360 } 5361 5362 /// Merging redundant sexts when one is dominating the other. 5363 bool CodeGenPrepare::mergeSExts(Function &F) { 5364 bool Changed = false; 5365 for (auto &Entry : ValToSExtendedUses) { 5366 SExts &Insts = Entry.second; 5367 SExts CurPts; 5368 for (Instruction *Inst : Insts) { 5369 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5370 Inst->getOperand(0) != Entry.first) 5371 continue; 5372 bool inserted = false; 5373 for (auto &Pt : CurPts) { 5374 if (getDT(F).dominates(Inst, Pt)) { 5375 Pt->replaceAllUsesWith(Inst); 5376 RemovedInsts.insert(Pt); 5377 Pt->removeFromParent(); 5378 Pt = Inst; 5379 inserted = true; 5380 Changed = true; 5381 break; 5382 } 5383 if (!getDT(F).dominates(Pt, Inst)) 5384 // Give up if we need to merge in a common dominator as the 5385 // experiments show it is not profitable. 5386 continue; 5387 Inst->replaceAllUsesWith(Pt); 5388 RemovedInsts.insert(Inst); 5389 Inst->removeFromParent(); 5390 inserted = true; 5391 Changed = true; 5392 break; 5393 } 5394 if (!inserted) 5395 CurPts.push_back(Inst); 5396 } 5397 } 5398 return Changed; 5399 } 5400 5401 // Spliting large data structures so that the GEPs accessing them can have 5402 // smaller offsets so that they can be sunk to the same blocks as their users. 5403 // For example, a large struct starting from %base is splitted into two parts 5404 // where the second part starts from %new_base. 5405 // 5406 // Before: 5407 // BB0: 5408 // %base = 5409 // 5410 // BB1: 5411 // %gep0 = gep %base, off0 5412 // %gep1 = gep %base, off1 5413 // %gep2 = gep %base, off2 5414 // 5415 // BB2: 5416 // %load1 = load %gep0 5417 // %load2 = load %gep1 5418 // %load3 = load %gep2 5419 // 5420 // After: 5421 // BB0: 5422 // %base = 5423 // %new_base = gep %base, off0 5424 // 5425 // BB1: 5426 // %new_gep0 = %new_base 5427 // %new_gep1 = gep %new_base, off1 - off0 5428 // %new_gep2 = gep %new_base, off2 - off0 5429 // 5430 // BB2: 5431 // %load1 = load i32, i32* %new_gep0 5432 // %load2 = load i32, i32* %new_gep1 5433 // %load3 = load i32, i32* %new_gep2 5434 // 5435 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5436 // their offsets are smaller enough to fit into the addressing mode. 5437 bool CodeGenPrepare::splitLargeGEPOffsets() { 5438 bool Changed = false; 5439 for (auto &Entry : LargeOffsetGEPMap) { 5440 Value *OldBase = Entry.first; 5441 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5442 &LargeOffsetGEPs = Entry.second; 5443 auto compareGEPOffset = 5444 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5445 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5446 if (LHS.first == RHS.first) 5447 return false; 5448 if (LHS.second != RHS.second) 5449 return LHS.second < RHS.second; 5450 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5451 }; 5452 // Sorting all the GEPs of the same data structures based on the offsets. 5453 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5454 LargeOffsetGEPs.erase( 5455 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5456 LargeOffsetGEPs.end()); 5457 // Skip if all the GEPs have the same offsets. 5458 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5459 continue; 5460 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5461 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5462 Value *NewBaseGEP = nullptr; 5463 5464 auto LargeOffsetGEP = LargeOffsetGEPs.begin(); 5465 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5466 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5467 int64_t Offset = LargeOffsetGEP->second; 5468 if (Offset != BaseOffset) { 5469 TargetLowering::AddrMode AddrMode; 5470 AddrMode.BaseOffs = Offset - BaseOffset; 5471 // The result type of the GEP might not be the type of the memory 5472 // access. 5473 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5474 GEP->getResultElementType(), 5475 GEP->getAddressSpace())) { 5476 // We need to create a new base if the offset to the current base is 5477 // too large to fit into the addressing mode. So, a very large struct 5478 // may be splitted into several parts. 5479 BaseGEP = GEP; 5480 BaseOffset = Offset; 5481 NewBaseGEP = nullptr; 5482 } 5483 } 5484 5485 // Generate a new GEP to replace the current one. 5486 LLVMContext &Ctx = GEP->getContext(); 5487 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5488 Type *I8PtrTy = 5489 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5490 Type *I8Ty = Type::getInt8Ty(Ctx); 5491 5492 if (!NewBaseGEP) { 5493 // Create a new base if we don't have one yet. Find the insertion 5494 // pointer for the new base first. 5495 BasicBlock::iterator NewBaseInsertPt; 5496 BasicBlock *NewBaseInsertBB; 5497 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5498 // If the base of the struct is an instruction, the new base will be 5499 // inserted close to it. 5500 NewBaseInsertBB = BaseI->getParent(); 5501 if (isa<PHINode>(BaseI)) 5502 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5503 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5504 NewBaseInsertBB = 5505 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5506 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5507 } else 5508 NewBaseInsertPt = std::next(BaseI->getIterator()); 5509 } else { 5510 // If the current base is an argument or global value, the new base 5511 // will be inserted to the entry block. 5512 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5513 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5514 } 5515 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5516 // Create a new base. 5517 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5518 NewBaseGEP = OldBase; 5519 if (NewBaseGEP->getType() != I8PtrTy) 5520 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5521 NewBaseGEP = 5522 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5523 NewGEPBases.insert(NewBaseGEP); 5524 } 5525 5526 IRBuilder<> Builder(GEP); 5527 Value *NewGEP = NewBaseGEP; 5528 if (Offset == BaseOffset) { 5529 if (GEP->getType() != I8PtrTy) 5530 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5531 } else { 5532 // Calculate the new offset for the new GEP. 5533 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5534 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5535 5536 if (GEP->getType() != I8PtrTy) 5537 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5538 } 5539 GEP->replaceAllUsesWith(NewGEP); 5540 LargeOffsetGEPID.erase(GEP); 5541 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5542 GEP->eraseFromParent(); 5543 Changed = true; 5544 } 5545 } 5546 return Changed; 5547 } 5548 5549 /// Return true, if an ext(load) can be formed from an extension in 5550 /// \p MovedExts. 5551 bool CodeGenPrepare::canFormExtLd( 5552 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5553 Instruction *&Inst, bool HasPromoted) { 5554 for (auto *MovedExtInst : MovedExts) { 5555 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5556 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5557 Inst = MovedExtInst; 5558 break; 5559 } 5560 } 5561 if (!LI) 5562 return false; 5563 5564 // If they're already in the same block, there's nothing to do. 5565 // Make the cheap checks first if we did not promote. 5566 // If we promoted, we need to check if it is indeed profitable. 5567 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5568 return false; 5569 5570 return TLI->isExtLoad(LI, Inst, *DL); 5571 } 5572 5573 /// Move a zext or sext fed by a load into the same basic block as the load, 5574 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5575 /// extend into the load. 5576 /// 5577 /// E.g., 5578 /// \code 5579 /// %ld = load i32* %addr 5580 /// %add = add nuw i32 %ld, 4 5581 /// %zext = zext i32 %add to i64 5582 // \endcode 5583 /// => 5584 /// \code 5585 /// %ld = load i32* %addr 5586 /// %zext = zext i32 %ld to i64 5587 /// %add = add nuw i64 %zext, 4 5588 /// \encode 5589 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5590 /// allow us to match zext(load i32*) to i64. 5591 /// 5592 /// Also, try to promote the computations used to obtain a sign extended 5593 /// value used into memory accesses. 5594 /// E.g., 5595 /// \code 5596 /// a = add nsw i32 b, 3 5597 /// d = sext i32 a to i64 5598 /// e = getelementptr ..., i64 d 5599 /// \endcode 5600 /// => 5601 /// \code 5602 /// f = sext i32 b to i64 5603 /// a = add nsw i64 f, 3 5604 /// e = getelementptr ..., i64 a 5605 /// \endcode 5606 /// 5607 /// \p Inst[in/out] the extension may be modified during the process if some 5608 /// promotions apply. 5609 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 5610 bool AllowPromotionWithoutCommonHeader = false; 5611 /// See if it is an interesting sext operations for the address type 5612 /// promotion before trying to promote it, e.g., the ones with the right 5613 /// type and used in memory accesses. 5614 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 5615 *Inst, AllowPromotionWithoutCommonHeader); 5616 TypePromotionTransaction TPT(RemovedInsts); 5617 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5618 TPT.getRestorationPoint(); 5619 SmallVector<Instruction *, 1> Exts; 5620 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 5621 Exts.push_back(Inst); 5622 5623 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 5624 5625 // Look for a load being extended. 5626 LoadInst *LI = nullptr; 5627 Instruction *ExtFedByLoad; 5628 5629 // Try to promote a chain of computation if it allows to form an extended 5630 // load. 5631 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5632 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5633 TPT.commit(); 5634 // Move the extend into the same block as the load 5635 ExtFedByLoad->moveAfter(LI); 5636 // CGP does not check if the zext would be speculatively executed when moved 5637 // to the same basic block as the load. Preserving its original location 5638 // would pessimize the debugging experience, as well as negatively impact 5639 // the quality of sample pgo. We don't want to use "line 0" as that has a 5640 // size cost in the line-table section and logically the zext can be seen as 5641 // part of the load. Therefore we conservatively reuse the same debug 5642 // location for the load and the zext. 5643 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 5644 ++NumExtsMoved; 5645 Inst = ExtFedByLoad; 5646 return true; 5647 } 5648 5649 // Continue promoting SExts if known as considerable depending on targets. 5650 if (ATPConsiderable && 5651 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5652 HasPromoted, TPT, SpeculativelyMovedExts)) 5653 return true; 5654 5655 TPT.rollback(LastKnownGood); 5656 return false; 5657 } 5658 5659 // Perform address type promotion if doing so is profitable. 5660 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5661 // instructions that sign extended the same initial value. However, if 5662 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5663 // extension is just profitable. 5664 bool CodeGenPrepare::performAddressTypePromotion( 5665 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5666 bool HasPromoted, TypePromotionTransaction &TPT, 5667 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5668 bool Promoted = false; 5669 SmallPtrSet<Instruction *, 1> UnhandledExts; 5670 bool AllSeenFirst = true; 5671 for (auto I : SpeculativelyMovedExts) { 5672 Value *HeadOfChain = I->getOperand(0); 5673 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 5674 SeenChainsForSExt.find(HeadOfChain); 5675 // If there is an unhandled SExt which has the same header, try to promote 5676 // it as well. 5677 if (AlreadySeen != SeenChainsForSExt.end()) { 5678 if (AlreadySeen->second != nullptr) 5679 UnhandledExts.insert(AlreadySeen->second); 5680 AllSeenFirst = false; 5681 } 5682 } 5683 5684 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 5685 SpeculativelyMovedExts.size() == 1)) { 5686 TPT.commit(); 5687 if (HasPromoted) 5688 Promoted = true; 5689 for (auto I : SpeculativelyMovedExts) { 5690 Value *HeadOfChain = I->getOperand(0); 5691 SeenChainsForSExt[HeadOfChain] = nullptr; 5692 ValToSExtendedUses[HeadOfChain].push_back(I); 5693 } 5694 // Update Inst as promotion happen. 5695 Inst = SpeculativelyMovedExts.pop_back_val(); 5696 } else { 5697 // This is the first chain visited from the header, keep the current chain 5698 // as unhandled. Defer to promote this until we encounter another SExt 5699 // chain derived from the same header. 5700 for (auto I : SpeculativelyMovedExts) { 5701 Value *HeadOfChain = I->getOperand(0); 5702 SeenChainsForSExt[HeadOfChain] = Inst; 5703 } 5704 return false; 5705 } 5706 5707 if (!AllSeenFirst && !UnhandledExts.empty()) 5708 for (auto VisitedSExt : UnhandledExts) { 5709 if (RemovedInsts.count(VisitedSExt)) 5710 continue; 5711 TypePromotionTransaction TPT(RemovedInsts); 5712 SmallVector<Instruction *, 1> Exts; 5713 SmallVector<Instruction *, 2> Chains; 5714 Exts.push_back(VisitedSExt); 5715 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 5716 TPT.commit(); 5717 if (HasPromoted) 5718 Promoted = true; 5719 for (auto I : Chains) { 5720 Value *HeadOfChain = I->getOperand(0); 5721 // Mark this as handled. 5722 SeenChainsForSExt[HeadOfChain] = nullptr; 5723 ValToSExtendedUses[HeadOfChain].push_back(I); 5724 } 5725 } 5726 return Promoted; 5727 } 5728 5729 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5730 BasicBlock *DefBB = I->getParent(); 5731 5732 // If the result of a {s|z}ext and its source are both live out, rewrite all 5733 // other uses of the source with result of extension. 5734 Value *Src = I->getOperand(0); 5735 if (Src->hasOneUse()) 5736 return false; 5737 5738 // Only do this xform if truncating is free. 5739 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 5740 return false; 5741 5742 // Only safe to perform the optimization if the source is also defined in 5743 // this block. 5744 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5745 return false; 5746 5747 bool DefIsLiveOut = false; 5748 for (User *U : I->users()) { 5749 Instruction *UI = cast<Instruction>(U); 5750 5751 // Figure out which BB this ext is used in. 5752 BasicBlock *UserBB = UI->getParent(); 5753 if (UserBB == DefBB) continue; 5754 DefIsLiveOut = true; 5755 break; 5756 } 5757 if (!DefIsLiveOut) 5758 return false; 5759 5760 // Make sure none of the uses are PHI nodes. 5761 for (User *U : Src->users()) { 5762 Instruction *UI = cast<Instruction>(U); 5763 BasicBlock *UserBB = UI->getParent(); 5764 if (UserBB == DefBB) continue; 5765 // Be conservative. We don't want this xform to end up introducing 5766 // reloads just before load / store instructions. 5767 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5768 return false; 5769 } 5770 5771 // InsertedTruncs - Only insert one trunc in each block once. 5772 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5773 5774 bool MadeChange = false; 5775 for (Use &U : Src->uses()) { 5776 Instruction *User = cast<Instruction>(U.getUser()); 5777 5778 // Figure out which BB this ext is used in. 5779 BasicBlock *UserBB = User->getParent(); 5780 if (UserBB == DefBB) continue; 5781 5782 // Both src and def are live in this block. Rewrite the use. 5783 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5784 5785 if (!InsertedTrunc) { 5786 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5787 assert(InsertPt != UserBB->end()); 5788 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5789 InsertedInsts.insert(InsertedTrunc); 5790 } 5791 5792 // Replace a use of the {s|z}ext source with a use of the result. 5793 U = InsertedTrunc; 5794 ++NumExtUses; 5795 MadeChange = true; 5796 } 5797 5798 return MadeChange; 5799 } 5800 5801 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5802 // just after the load if the target can fold this into one extload instruction, 5803 // with the hope of eliminating some of the other later "and" instructions using 5804 // the loaded value. "and"s that are made trivially redundant by the insertion 5805 // of the new "and" are removed by this function, while others (e.g. those whose 5806 // path from the load goes through a phi) are left for isel to potentially 5807 // remove. 5808 // 5809 // For example: 5810 // 5811 // b0: 5812 // x = load i32 5813 // ... 5814 // b1: 5815 // y = and x, 0xff 5816 // z = use y 5817 // 5818 // becomes: 5819 // 5820 // b0: 5821 // x = load i32 5822 // x' = and x, 0xff 5823 // ... 5824 // b1: 5825 // z = use x' 5826 // 5827 // whereas: 5828 // 5829 // b0: 5830 // x1 = load i32 5831 // ... 5832 // b1: 5833 // x2 = load i32 5834 // ... 5835 // b2: 5836 // x = phi x1, x2 5837 // y = and x, 0xff 5838 // 5839 // becomes (after a call to optimizeLoadExt for each load): 5840 // 5841 // b0: 5842 // x1 = load i32 5843 // x1' = and x1, 0xff 5844 // ... 5845 // b1: 5846 // x2 = load i32 5847 // x2' = and x2, 0xff 5848 // ... 5849 // b2: 5850 // x = phi x1', x2' 5851 // y = and x, 0xff 5852 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5853 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 5854 return false; 5855 5856 // Skip loads we've already transformed. 5857 if (Load->hasOneUse() && 5858 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5859 return false; 5860 5861 // Look at all uses of Load, looking through phis, to determine how many bits 5862 // of the loaded value are needed. 5863 SmallVector<Instruction *, 8> WorkList; 5864 SmallPtrSet<Instruction *, 16> Visited; 5865 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5866 for (auto *U : Load->users()) 5867 WorkList.push_back(cast<Instruction>(U)); 5868 5869 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5870 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5871 APInt DemandBits(BitWidth, 0); 5872 APInt WidestAndBits(BitWidth, 0); 5873 5874 while (!WorkList.empty()) { 5875 Instruction *I = WorkList.back(); 5876 WorkList.pop_back(); 5877 5878 // Break use-def graph loops. 5879 if (!Visited.insert(I).second) 5880 continue; 5881 5882 // For a PHI node, push all of its users. 5883 if (auto *Phi = dyn_cast<PHINode>(I)) { 5884 for (auto *U : Phi->users()) 5885 WorkList.push_back(cast<Instruction>(U)); 5886 continue; 5887 } 5888 5889 switch (I->getOpcode()) { 5890 case Instruction::And: { 5891 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5892 if (!AndC) 5893 return false; 5894 APInt AndBits = AndC->getValue(); 5895 DemandBits |= AndBits; 5896 // Keep track of the widest and mask we see. 5897 if (AndBits.ugt(WidestAndBits)) 5898 WidestAndBits = AndBits; 5899 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5900 AndsToMaybeRemove.push_back(I); 5901 break; 5902 } 5903 5904 case Instruction::Shl: { 5905 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5906 if (!ShlC) 5907 return false; 5908 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5909 DemandBits.setLowBits(BitWidth - ShiftAmt); 5910 break; 5911 } 5912 5913 case Instruction::Trunc: { 5914 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5915 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5916 DemandBits.setLowBits(TruncBitWidth); 5917 break; 5918 } 5919 5920 default: 5921 return false; 5922 } 5923 } 5924 5925 uint32_t ActiveBits = DemandBits.getActiveBits(); 5926 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5927 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5928 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5929 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5930 // followed by an AND. 5931 // TODO: Look into removing this restriction by fixing backends to either 5932 // return false for isLoadExtLegal for i1 or have them select this pattern to 5933 // a single instruction. 5934 // 5935 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5936 // mask, since these are the only ands that will be removed by isel. 5937 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5938 WidestAndBits != DemandBits) 5939 return false; 5940 5941 LLVMContext &Ctx = Load->getType()->getContext(); 5942 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5943 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5944 5945 // Reject cases that won't be matched as extloads. 5946 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5947 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5948 return false; 5949 5950 IRBuilder<> Builder(Load->getNextNode()); 5951 auto *NewAnd = cast<Instruction>( 5952 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5953 // Mark this instruction as "inserted by CGP", so that other 5954 // optimizations don't touch it. 5955 InsertedInsts.insert(NewAnd); 5956 5957 // Replace all uses of load with new and (except for the use of load in the 5958 // new and itself). 5959 Load->replaceAllUsesWith(NewAnd); 5960 NewAnd->setOperand(0, Load); 5961 5962 // Remove any and instructions that are now redundant. 5963 for (auto *And : AndsToMaybeRemove) 5964 // Check that the and mask is the same as the one we decided to put on the 5965 // new and. 5966 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5967 And->replaceAllUsesWith(NewAnd); 5968 if (&*CurInstIterator == And) 5969 CurInstIterator = std::next(And->getIterator()); 5970 And->eraseFromParent(); 5971 ++NumAndUses; 5972 } 5973 5974 ++NumAndsAdded; 5975 return true; 5976 } 5977 5978 /// Check if V (an operand of a select instruction) is an expensive instruction 5979 /// that is only used once. 5980 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5981 auto *I = dyn_cast<Instruction>(V); 5982 // If it's safe to speculatively execute, then it should not have side 5983 // effects; therefore, it's safe to sink and possibly *not* execute. 5984 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5985 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5986 } 5987 5988 /// Returns true if a SelectInst should be turned into an explicit branch. 5989 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5990 const TargetLowering *TLI, 5991 SelectInst *SI) { 5992 // If even a predictable select is cheap, then a branch can't be cheaper. 5993 if (!TLI->isPredictableSelectExpensive()) 5994 return false; 5995 5996 // FIXME: This should use the same heuristics as IfConversion to determine 5997 // whether a select is better represented as a branch. 5998 5999 // If metadata tells us that the select condition is obviously predictable, 6000 // then we want to replace the select with a branch. 6001 uint64_t TrueWeight, FalseWeight; 6002 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 6003 uint64_t Max = std::max(TrueWeight, FalseWeight); 6004 uint64_t Sum = TrueWeight + FalseWeight; 6005 if (Sum != 0) { 6006 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 6007 if (Probability > TLI->getPredictableBranchThreshold()) 6008 return true; 6009 } 6010 } 6011 6012 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 6013 6014 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 6015 // comparison condition. If the compare has more than one use, there's 6016 // probably another cmov or setcc around, so it's not worth emitting a branch. 6017 if (!Cmp || !Cmp->hasOneUse()) 6018 return false; 6019 6020 // If either operand of the select is expensive and only needed on one side 6021 // of the select, we should form a branch. 6022 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 6023 sinkSelectOperand(TTI, SI->getFalseValue())) 6024 return true; 6025 6026 return false; 6027 } 6028 6029 /// If \p isTrue is true, return the true value of \p SI, otherwise return 6030 /// false value of \p SI. If the true/false value of \p SI is defined by any 6031 /// select instructions in \p Selects, look through the defining select 6032 /// instruction until the true/false value is not defined in \p Selects. 6033 static Value *getTrueOrFalseValue( 6034 SelectInst *SI, bool isTrue, 6035 const SmallPtrSet<const Instruction *, 2> &Selects) { 6036 Value *V = nullptr; 6037 6038 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 6039 DefSI = dyn_cast<SelectInst>(V)) { 6040 assert(DefSI->getCondition() == SI->getCondition() && 6041 "The condition of DefSI does not match with SI"); 6042 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 6043 } 6044 6045 assert(V && "Failed to get select true/false value"); 6046 return V; 6047 } 6048 6049 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 6050 assert(Shift->isShift() && "Expected a shift"); 6051 6052 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 6053 // general vector shifts, and (3) the shift amount is a select-of-splatted 6054 // values, hoist the shifts before the select: 6055 // shift Op0, (select Cond, TVal, FVal) --> 6056 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6057 // 6058 // This is inverting a generic IR transform when we know that the cost of a 6059 // general vector shift is more than the cost of 2 shift-by-scalars. 6060 // We can't do this effectively in SDAG because we may not be able to 6061 // determine if the select operands are splats from within a basic block. 6062 Type *Ty = Shift->getType(); 6063 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6064 return false; 6065 Value *Cond, *TVal, *FVal; 6066 if (!match(Shift->getOperand(1), 6067 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6068 return false; 6069 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6070 return false; 6071 6072 IRBuilder<> Builder(Shift); 6073 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6074 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6075 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6076 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6077 Shift->replaceAllUsesWith(NewSel); 6078 Shift->eraseFromParent(); 6079 return true; 6080 } 6081 6082 /// If we have a SelectInst that will likely profit from branch prediction, 6083 /// turn it into a branch. 6084 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6085 // If branch conversion isn't desirable, exit early. 6086 if (DisableSelectToBranch || OptSize || 6087 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get())) 6088 return false; 6089 6090 // Find all consecutive select instructions that share the same condition. 6091 SmallVector<SelectInst *, 2> ASI; 6092 ASI.push_back(SI); 6093 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 6094 It != SI->getParent()->end(); ++It) { 6095 SelectInst *I = dyn_cast<SelectInst>(&*It); 6096 if (I && SI->getCondition() == I->getCondition()) { 6097 ASI.push_back(I); 6098 } else { 6099 break; 6100 } 6101 } 6102 6103 SelectInst *LastSI = ASI.back(); 6104 // Increment the current iterator to skip all the rest of select instructions 6105 // because they will be either "not lowered" or "all lowered" to branch. 6106 CurInstIterator = std::next(LastSI->getIterator()); 6107 6108 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 6109 6110 // Can we convert the 'select' to CF ? 6111 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 6112 return false; 6113 6114 TargetLowering::SelectSupportKind SelectKind; 6115 if (VectorCond) 6116 SelectKind = TargetLowering::VectorMaskSelect; 6117 else if (SI->getType()->isVectorTy()) 6118 SelectKind = TargetLowering::ScalarCondVectorVal; 6119 else 6120 SelectKind = TargetLowering::ScalarValSelect; 6121 6122 if (TLI->isSelectSupported(SelectKind) && 6123 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 6124 return false; 6125 6126 // The DominatorTree needs to be rebuilt by any consumers after this 6127 // transformation. We simply reset here rather than setting the ModifiedDT 6128 // flag to avoid restarting the function walk in runOnFunction for each 6129 // select optimized. 6130 DT.reset(); 6131 6132 // Transform a sequence like this: 6133 // start: 6134 // %cmp = cmp uge i32 %a, %b 6135 // %sel = select i1 %cmp, i32 %c, i32 %d 6136 // 6137 // Into: 6138 // start: 6139 // %cmp = cmp uge i32 %a, %b 6140 // %cmp.frozen = freeze %cmp 6141 // br i1 %cmp.frozen, label %select.true, label %select.false 6142 // select.true: 6143 // br label %select.end 6144 // select.false: 6145 // br label %select.end 6146 // select.end: 6147 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6148 // 6149 // %cmp should be frozen, otherwise it may introduce undefined behavior. 6150 // In addition, we may sink instructions that produce %c or %d from 6151 // the entry block into the destination(s) of the new branch. 6152 // If the true or false blocks do not contain a sunken instruction, that 6153 // block and its branch may be optimized away. In that case, one side of the 6154 // first branch will point directly to select.end, and the corresponding PHI 6155 // predecessor block will be the start block. 6156 6157 // First, we split the block containing the select into 2 blocks. 6158 BasicBlock *StartBlock = SI->getParent(); 6159 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6160 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6161 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); 6162 6163 // Delete the unconditional branch that was just created by the split. 6164 StartBlock->getTerminator()->eraseFromParent(); 6165 6166 // These are the new basic blocks for the conditional branch. 6167 // At least one will become an actual new basic block. 6168 BasicBlock *TrueBlock = nullptr; 6169 BasicBlock *FalseBlock = nullptr; 6170 BranchInst *TrueBranch = nullptr; 6171 BranchInst *FalseBranch = nullptr; 6172 6173 // Sink expensive instructions into the conditional blocks to avoid executing 6174 // them speculatively. 6175 for (SelectInst *SI : ASI) { 6176 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6177 if (TrueBlock == nullptr) { 6178 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6179 EndBlock->getParent(), EndBlock); 6180 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6181 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6182 } 6183 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6184 TrueInst->moveBefore(TrueBranch); 6185 } 6186 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6187 if (FalseBlock == nullptr) { 6188 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6189 EndBlock->getParent(), EndBlock); 6190 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6191 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6192 } 6193 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6194 FalseInst->moveBefore(FalseBranch); 6195 } 6196 } 6197 6198 // If there was nothing to sink, then arbitrarily choose the 'false' side 6199 // for a new input value to the PHI. 6200 if (TrueBlock == FalseBlock) { 6201 assert(TrueBlock == nullptr && 6202 "Unexpected basic block transform while optimizing select"); 6203 6204 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6205 EndBlock->getParent(), EndBlock); 6206 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6207 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6208 } 6209 6210 // Insert the real conditional branch based on the original condition. 6211 // If we did not create a new block for one of the 'true' or 'false' paths 6212 // of the condition, it means that side of the branch goes to the end block 6213 // directly and the path originates from the start block from the point of 6214 // view of the new PHI. 6215 BasicBlock *TT, *FT; 6216 if (TrueBlock == nullptr) { 6217 TT = EndBlock; 6218 FT = FalseBlock; 6219 TrueBlock = StartBlock; 6220 } else if (FalseBlock == nullptr) { 6221 TT = TrueBlock; 6222 FT = EndBlock; 6223 FalseBlock = StartBlock; 6224 } else { 6225 TT = TrueBlock; 6226 FT = FalseBlock; 6227 } 6228 IRBuilder<> IB(SI); 6229 auto CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 6230 IB.CreateCondBr(CondFr, TT, FT, SI); 6231 6232 SmallPtrSet<const Instruction *, 2> INS; 6233 INS.insert(ASI.begin(), ASI.end()); 6234 // Use reverse iterator because later select may use the value of the 6235 // earlier select, and we need to propagate value through earlier select 6236 // to get the PHI operand. 6237 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 6238 SelectInst *SI = *It; 6239 // The select itself is replaced with a PHI Node. 6240 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6241 PN->takeName(SI); 6242 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6243 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6244 PN->setDebugLoc(SI->getDebugLoc()); 6245 6246 SI->replaceAllUsesWith(PN); 6247 SI->eraseFromParent(); 6248 INS.erase(SI); 6249 ++NumSelectsExpanded; 6250 } 6251 6252 // Instruct OptimizeBlock to skip to the next block. 6253 CurInstIterator = StartBlock->end(); 6254 return true; 6255 } 6256 6257 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 6258 ArrayRef<int> Mask(SVI->getShuffleMask()); 6259 int SplatElem = -1; 6260 for (unsigned i = 0; i < Mask.size(); ++i) { 6261 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 6262 return false; 6263 SplatElem = Mask[i]; 6264 } 6265 6266 return true; 6267 } 6268 6269 /// Some targets have expensive vector shifts if the lanes aren't all the same 6270 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 6271 /// it's often worth sinking a shufflevector splat down to its use so that 6272 /// codegen can spot all lanes are identical. 6273 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6274 BasicBlock *DefBB = SVI->getParent(); 6275 6276 // Only do this xform if variable vector shifts are particularly expensive. 6277 if (!TLI->isVectorShiftByScalarCheap(SVI->getType())) 6278 return false; 6279 6280 // We only expect better codegen by sinking a shuffle if we can recognise a 6281 // constant splat. 6282 if (!isBroadcastShuffle(SVI)) 6283 return false; 6284 6285 // InsertedShuffles - Only insert a shuffle in each block once. 6286 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 6287 6288 bool MadeChange = false; 6289 for (User *U : SVI->users()) { 6290 Instruction *UI = cast<Instruction>(U); 6291 6292 // Figure out which BB this ext is used in. 6293 BasicBlock *UserBB = UI->getParent(); 6294 if (UserBB == DefBB) continue; 6295 6296 // For now only apply this when the splat is used by a shift instruction. 6297 if (!UI->isShift()) continue; 6298 6299 // Everything checks out, sink the shuffle if the user's block doesn't 6300 // already have a copy. 6301 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 6302 6303 if (!InsertedShuffle) { 6304 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6305 assert(InsertPt != UserBB->end()); 6306 InsertedShuffle = 6307 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 6308 SVI->getShuffleMask(), "", &*InsertPt); 6309 InsertedShuffle->setDebugLoc(SVI->getDebugLoc()); 6310 } 6311 6312 UI->replaceUsesOfWith(SVI, InsertedShuffle); 6313 MadeChange = true; 6314 } 6315 6316 // If we removed all uses, nuke the shuffle. 6317 if (SVI->use_empty()) { 6318 SVI->eraseFromParent(); 6319 MadeChange = true; 6320 } 6321 6322 return MadeChange; 6323 } 6324 6325 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6326 // If the operands of I can be folded into a target instruction together with 6327 // I, duplicate and sink them. 6328 SmallVector<Use *, 4> OpsToSink; 6329 if (!TLI->shouldSinkOperands(I, OpsToSink)) 6330 return false; 6331 6332 // OpsToSink can contain multiple uses in a use chain (e.g. 6333 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6334 // uses must come first, so we process the ops in reverse order so as to not 6335 // create invalid IR. 6336 BasicBlock *TargetBB = I->getParent(); 6337 bool Changed = false; 6338 SmallVector<Use *, 4> ToReplace; 6339 for (Use *U : reverse(OpsToSink)) { 6340 auto *UI = cast<Instruction>(U->get()); 6341 if (UI->getParent() == TargetBB || isa<PHINode>(UI)) 6342 continue; 6343 ToReplace.push_back(U); 6344 } 6345 6346 SetVector<Instruction *> MaybeDead; 6347 DenseMap<Instruction *, Instruction *> NewInstructions; 6348 Instruction *InsertPoint = I; 6349 for (Use *U : ToReplace) { 6350 auto *UI = cast<Instruction>(U->get()); 6351 Instruction *NI = UI->clone(); 6352 NewInstructions[UI] = NI; 6353 MaybeDead.insert(UI); 6354 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6355 NI->insertBefore(InsertPoint); 6356 InsertPoint = NI; 6357 InsertedInsts.insert(NI); 6358 6359 // Update the use for the new instruction, making sure that we update the 6360 // sunk instruction uses, if it is part of a chain that has already been 6361 // sunk. 6362 Instruction *OldI = cast<Instruction>(U->getUser()); 6363 if (NewInstructions.count(OldI)) 6364 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 6365 else 6366 U->set(NI); 6367 Changed = true; 6368 } 6369 6370 // Remove instructions that are dead after sinking. 6371 for (auto *I : MaybeDead) { 6372 if (!I->hasNUsesOrMore(1)) { 6373 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 6374 I->eraseFromParent(); 6375 } 6376 } 6377 6378 return Changed; 6379 } 6380 6381 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6382 Value *Cond = SI->getCondition(); 6383 Type *OldType = Cond->getType(); 6384 LLVMContext &Context = Cond->getContext(); 6385 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 6386 unsigned RegWidth = RegType.getSizeInBits(); 6387 6388 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6389 return false; 6390 6391 // If the register width is greater than the type width, expand the condition 6392 // of the switch instruction and each case constant to the width of the 6393 // register. By widening the type of the switch condition, subsequent 6394 // comparisons (for case comparisons) will not need to be extended to the 6395 // preferred register width, so we will potentially eliminate N-1 extends, 6396 // where N is the number of cases in the switch. 6397 auto *NewType = Type::getIntNTy(Context, RegWidth); 6398 6399 // Zero-extend the switch condition and case constants unless the switch 6400 // condition is a function argument that is already being sign-extended. 6401 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6402 // everything instead. 6403 Instruction::CastOps ExtType = Instruction::ZExt; 6404 if (auto *Arg = dyn_cast<Argument>(Cond)) 6405 if (Arg->hasSExtAttr()) 6406 ExtType = Instruction::SExt; 6407 6408 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 6409 ExtInst->insertBefore(SI); 6410 ExtInst->setDebugLoc(SI->getDebugLoc()); 6411 SI->setCondition(ExtInst); 6412 for (auto Case : SI->cases()) { 6413 APInt NarrowConst = Case.getCaseValue()->getValue(); 6414 APInt WideConst = (ExtType == Instruction::ZExt) ? 6415 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 6416 Case.setValue(ConstantInt::get(Context, WideConst)); 6417 } 6418 6419 return true; 6420 } 6421 6422 6423 namespace { 6424 6425 /// Helper class to promote a scalar operation to a vector one. 6426 /// This class is used to move downward extractelement transition. 6427 /// E.g., 6428 /// a = vector_op <2 x i32> 6429 /// b = extractelement <2 x i32> a, i32 0 6430 /// c = scalar_op b 6431 /// store c 6432 /// 6433 /// => 6434 /// a = vector_op <2 x i32> 6435 /// c = vector_op a (equivalent to scalar_op on the related lane) 6436 /// * d = extractelement <2 x i32> c, i32 0 6437 /// * store d 6438 /// Assuming both extractelement and store can be combine, we get rid of the 6439 /// transition. 6440 class VectorPromoteHelper { 6441 /// DataLayout associated with the current module. 6442 const DataLayout &DL; 6443 6444 /// Used to perform some checks on the legality of vector operations. 6445 const TargetLowering &TLI; 6446 6447 /// Used to estimated the cost of the promoted chain. 6448 const TargetTransformInfo &TTI; 6449 6450 /// The transition being moved downwards. 6451 Instruction *Transition; 6452 6453 /// The sequence of instructions to be promoted. 6454 SmallVector<Instruction *, 4> InstsToBePromoted; 6455 6456 /// Cost of combining a store and an extract. 6457 unsigned StoreExtractCombineCost; 6458 6459 /// Instruction that will be combined with the transition. 6460 Instruction *CombineInst = nullptr; 6461 6462 /// The instruction that represents the current end of the transition. 6463 /// Since we are faking the promotion until we reach the end of the chain 6464 /// of computation, we need a way to get the current end of the transition. 6465 Instruction *getEndOfTransition() const { 6466 if (InstsToBePromoted.empty()) 6467 return Transition; 6468 return InstsToBePromoted.back(); 6469 } 6470 6471 /// Return the index of the original value in the transition. 6472 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 6473 /// c, is at index 0. 6474 unsigned getTransitionOriginalValueIdx() const { 6475 assert(isa<ExtractElementInst>(Transition) && 6476 "Other kind of transitions are not supported yet"); 6477 return 0; 6478 } 6479 6480 /// Return the index of the index in the transition. 6481 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 6482 /// is at index 1. 6483 unsigned getTransitionIdx() const { 6484 assert(isa<ExtractElementInst>(Transition) && 6485 "Other kind of transitions are not supported yet"); 6486 return 1; 6487 } 6488 6489 /// Get the type of the transition. 6490 /// This is the type of the original value. 6491 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 6492 /// transition is <2 x i32>. 6493 Type *getTransitionType() const { 6494 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 6495 } 6496 6497 /// Promote \p ToBePromoted by moving \p Def downward through. 6498 /// I.e., we have the following sequence: 6499 /// Def = Transition <ty1> a to <ty2> 6500 /// b = ToBePromoted <ty2> Def, ... 6501 /// => 6502 /// b = ToBePromoted <ty1> a, ... 6503 /// Def = Transition <ty1> ToBePromoted to <ty2> 6504 void promoteImpl(Instruction *ToBePromoted); 6505 6506 /// Check whether or not it is profitable to promote all the 6507 /// instructions enqueued to be promoted. 6508 bool isProfitableToPromote() { 6509 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 6510 unsigned Index = isa<ConstantInt>(ValIdx) 6511 ? cast<ConstantInt>(ValIdx)->getZExtValue() 6512 : -1; 6513 Type *PromotedType = getTransitionType(); 6514 6515 StoreInst *ST = cast<StoreInst>(CombineInst); 6516 unsigned AS = ST->getPointerAddressSpace(); 6517 unsigned Align = ST->getAlignment(); 6518 // Check if this store is supported. 6519 if (!TLI.allowsMisalignedMemoryAccesses( 6520 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 6521 Align)) { 6522 // If this is not supported, there is no way we can combine 6523 // the extract with the store. 6524 return false; 6525 } 6526 6527 // The scalar chain of computation has to pay for the transition 6528 // scalar to vector. 6529 // The vector chain has to account for the combining cost. 6530 uint64_t ScalarCost = 6531 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 6532 uint64_t VectorCost = StoreExtractCombineCost; 6533 for (const auto &Inst : InstsToBePromoted) { 6534 // Compute the cost. 6535 // By construction, all instructions being promoted are arithmetic ones. 6536 // Moreover, one argument is a constant that can be viewed as a splat 6537 // constant. 6538 Value *Arg0 = Inst->getOperand(0); 6539 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 6540 isa<ConstantFP>(Arg0); 6541 TargetTransformInfo::OperandValueKind Arg0OVK = 6542 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6543 : TargetTransformInfo::OK_AnyValue; 6544 TargetTransformInfo::OperandValueKind Arg1OVK = 6545 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6546 : TargetTransformInfo::OK_AnyValue; 6547 ScalarCost += TTI.getArithmeticInstrCost( 6548 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 6549 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 6550 Arg0OVK, Arg1OVK); 6551 } 6552 LLVM_DEBUG( 6553 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 6554 << ScalarCost << "\nVector: " << VectorCost << '\n'); 6555 return ScalarCost > VectorCost; 6556 } 6557 6558 /// Generate a constant vector with \p Val with the same 6559 /// number of elements as the transition. 6560 /// \p UseSplat defines whether or not \p Val should be replicated 6561 /// across the whole vector. 6562 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 6563 /// otherwise we generate a vector with as many undef as possible: 6564 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 6565 /// used at the index of the extract. 6566 Value *getConstantVector(Constant *Val, bool UseSplat) const { 6567 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 6568 if (!UseSplat) { 6569 // If we cannot determine where the constant must be, we have to 6570 // use a splat constant. 6571 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 6572 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 6573 ExtractIdx = CstVal->getSExtValue(); 6574 else 6575 UseSplat = true; 6576 } 6577 6578 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); 6579 if (UseSplat) 6580 return ConstantVector::getSplat(EC, Val); 6581 6582 if (!EC.Scalable) { 6583 SmallVector<Constant *, 4> ConstVec; 6584 UndefValue *UndefVal = UndefValue::get(Val->getType()); 6585 for (unsigned Idx = 0; Idx != EC.Min; ++Idx) { 6586 if (Idx == ExtractIdx) 6587 ConstVec.push_back(Val); 6588 else 6589 ConstVec.push_back(UndefVal); 6590 } 6591 return ConstantVector::get(ConstVec); 6592 } else 6593 llvm_unreachable( 6594 "Generate scalable vector for non-splat is unimplemented"); 6595 } 6596 6597 /// Check if promoting to a vector type an operand at \p OperandIdx 6598 /// in \p Use can trigger undefined behavior. 6599 static bool canCauseUndefinedBehavior(const Instruction *Use, 6600 unsigned OperandIdx) { 6601 // This is not safe to introduce undef when the operand is on 6602 // the right hand side of a division-like instruction. 6603 if (OperandIdx != 1) 6604 return false; 6605 switch (Use->getOpcode()) { 6606 default: 6607 return false; 6608 case Instruction::SDiv: 6609 case Instruction::UDiv: 6610 case Instruction::SRem: 6611 case Instruction::URem: 6612 return true; 6613 case Instruction::FDiv: 6614 case Instruction::FRem: 6615 return !Use->hasNoNaNs(); 6616 } 6617 llvm_unreachable(nullptr); 6618 } 6619 6620 public: 6621 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 6622 const TargetTransformInfo &TTI, Instruction *Transition, 6623 unsigned CombineCost) 6624 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 6625 StoreExtractCombineCost(CombineCost) { 6626 assert(Transition && "Do not know how to promote null"); 6627 } 6628 6629 /// Check if we can promote \p ToBePromoted to \p Type. 6630 bool canPromote(const Instruction *ToBePromoted) const { 6631 // We could support CastInst too. 6632 return isa<BinaryOperator>(ToBePromoted); 6633 } 6634 6635 /// Check if it is profitable to promote \p ToBePromoted 6636 /// by moving downward the transition through. 6637 bool shouldPromote(const Instruction *ToBePromoted) const { 6638 // Promote only if all the operands can be statically expanded. 6639 // Indeed, we do not want to introduce any new kind of transitions. 6640 for (const Use &U : ToBePromoted->operands()) { 6641 const Value *Val = U.get(); 6642 if (Val == getEndOfTransition()) { 6643 // If the use is a division and the transition is on the rhs, 6644 // we cannot promote the operation, otherwise we may create a 6645 // division by zero. 6646 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 6647 return false; 6648 continue; 6649 } 6650 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 6651 !isa<ConstantFP>(Val)) 6652 return false; 6653 } 6654 // Check that the resulting operation is legal. 6655 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 6656 if (!ISDOpcode) 6657 return false; 6658 return StressStoreExtract || 6659 TLI.isOperationLegalOrCustom( 6660 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 6661 } 6662 6663 /// Check whether or not \p Use can be combined 6664 /// with the transition. 6665 /// I.e., is it possible to do Use(Transition) => AnotherUse? 6666 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 6667 6668 /// Record \p ToBePromoted as part of the chain to be promoted. 6669 void enqueueForPromotion(Instruction *ToBePromoted) { 6670 InstsToBePromoted.push_back(ToBePromoted); 6671 } 6672 6673 /// Set the instruction that will be combined with the transition. 6674 void recordCombineInstruction(Instruction *ToBeCombined) { 6675 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 6676 CombineInst = ToBeCombined; 6677 } 6678 6679 /// Promote all the instructions enqueued for promotion if it is 6680 /// is profitable. 6681 /// \return True if the promotion happened, false otherwise. 6682 bool promote() { 6683 // Check if there is something to promote. 6684 // Right now, if we do not have anything to combine with, 6685 // we assume the promotion is not profitable. 6686 if (InstsToBePromoted.empty() || !CombineInst) 6687 return false; 6688 6689 // Check cost. 6690 if (!StressStoreExtract && !isProfitableToPromote()) 6691 return false; 6692 6693 // Promote. 6694 for (auto &ToBePromoted : InstsToBePromoted) 6695 promoteImpl(ToBePromoted); 6696 InstsToBePromoted.clear(); 6697 return true; 6698 } 6699 }; 6700 6701 } // end anonymous namespace 6702 6703 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 6704 // At this point, we know that all the operands of ToBePromoted but Def 6705 // can be statically promoted. 6706 // For Def, we need to use its parameter in ToBePromoted: 6707 // b = ToBePromoted ty1 a 6708 // Def = Transition ty1 b to ty2 6709 // Move the transition down. 6710 // 1. Replace all uses of the promoted operation by the transition. 6711 // = ... b => = ... Def. 6712 assert(ToBePromoted->getType() == Transition->getType() && 6713 "The type of the result of the transition does not match " 6714 "the final type"); 6715 ToBePromoted->replaceAllUsesWith(Transition); 6716 // 2. Update the type of the uses. 6717 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 6718 Type *TransitionTy = getTransitionType(); 6719 ToBePromoted->mutateType(TransitionTy); 6720 // 3. Update all the operands of the promoted operation with promoted 6721 // operands. 6722 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 6723 for (Use &U : ToBePromoted->operands()) { 6724 Value *Val = U.get(); 6725 Value *NewVal = nullptr; 6726 if (Val == Transition) 6727 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 6728 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 6729 isa<ConstantFP>(Val)) { 6730 // Use a splat constant if it is not safe to use undef. 6731 NewVal = getConstantVector( 6732 cast<Constant>(Val), 6733 isa<UndefValue>(Val) || 6734 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 6735 } else 6736 llvm_unreachable("Did you modified shouldPromote and forgot to update " 6737 "this?"); 6738 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 6739 } 6740 Transition->moveAfter(ToBePromoted); 6741 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 6742 } 6743 6744 /// Some targets can do store(extractelement) with one instruction. 6745 /// Try to push the extractelement towards the stores when the target 6746 /// has this feature and this is profitable. 6747 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 6748 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 6749 if (DisableStoreExtract || 6750 (!StressStoreExtract && 6751 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 6752 Inst->getOperand(1), CombineCost))) 6753 return false; 6754 6755 // At this point we know that Inst is a vector to scalar transition. 6756 // Try to move it down the def-use chain, until: 6757 // - We can combine the transition with its single use 6758 // => we got rid of the transition. 6759 // - We escape the current basic block 6760 // => we would need to check that we are moving it at a cheaper place and 6761 // we do not do that for now. 6762 BasicBlock *Parent = Inst->getParent(); 6763 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 6764 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 6765 // If the transition has more than one use, assume this is not going to be 6766 // beneficial. 6767 while (Inst->hasOneUse()) { 6768 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 6769 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 6770 6771 if (ToBePromoted->getParent() != Parent) { 6772 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 6773 << ToBePromoted->getParent()->getName() 6774 << ") than the transition (" << Parent->getName() 6775 << ").\n"); 6776 return false; 6777 } 6778 6779 if (VPH.canCombine(ToBePromoted)) { 6780 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 6781 << "will be combined with: " << *ToBePromoted << '\n'); 6782 VPH.recordCombineInstruction(ToBePromoted); 6783 bool Changed = VPH.promote(); 6784 NumStoreExtractExposed += Changed; 6785 return Changed; 6786 } 6787 6788 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 6789 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 6790 return false; 6791 6792 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 6793 6794 VPH.enqueueForPromotion(ToBePromoted); 6795 Inst = ToBePromoted; 6796 } 6797 return false; 6798 } 6799 6800 /// For the instruction sequence of store below, F and I values 6801 /// are bundled together as an i64 value before being stored into memory. 6802 /// Sometimes it is more efficient to generate separate stores for F and I, 6803 /// which can remove the bitwise instructions or sink them to colder places. 6804 /// 6805 /// (store (or (zext (bitcast F to i32) to i64), 6806 /// (shl (zext I to i64), 32)), addr) --> 6807 /// (store F, addr) and (store I, addr+4) 6808 /// 6809 /// Similarly, splitting for other merged store can also be beneficial, like: 6810 /// For pair of {i32, i32}, i64 store --> two i32 stores. 6811 /// For pair of {i32, i16}, i64 store --> two i32 stores. 6812 /// For pair of {i16, i16}, i32 store --> two i16 stores. 6813 /// For pair of {i16, i8}, i32 store --> two i16 stores. 6814 /// For pair of {i8, i8}, i16 store --> two i8 stores. 6815 /// 6816 /// We allow each target to determine specifically which kind of splitting is 6817 /// supported. 6818 /// 6819 /// The store patterns are commonly seen from the simple code snippet below 6820 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 6821 /// void goo(const std::pair<int, float> &); 6822 /// hoo() { 6823 /// ... 6824 /// goo(std::make_pair(tmp, ftmp)); 6825 /// ... 6826 /// } 6827 /// 6828 /// Although we already have similar splitting in DAG Combine, we duplicate 6829 /// it in CodeGenPrepare to catch the case in which pattern is across 6830 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6831 /// during code expansion. 6832 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6833 const TargetLowering &TLI) { 6834 // Handle simple but common cases only. 6835 Type *StoreType = SI.getValueOperand()->getType(); 6836 6837 // The code below assumes shifting a value by <number of bits>, 6838 // whereas scalable vectors would have to be shifted by 6839 // <2log(vscale) + number of bits> in order to store the 6840 // low/high parts. Bailing out for now. 6841 if (StoreType->isVectorTy() && cast<VectorType>(StoreType)->isScalable()) 6842 return false; 6843 6844 if (!DL.typeSizeEqualsStoreSize(StoreType) || 6845 DL.getTypeSizeInBits(StoreType) == 0) 6846 return false; 6847 6848 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6849 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 6850 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 6851 return false; 6852 6853 // Don't split the store if it is volatile. 6854 if (SI.isVolatile()) 6855 return false; 6856 6857 // Match the following patterns: 6858 // (store (or (zext LValue to i64), 6859 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6860 // or 6861 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6862 // (zext LValue to i64), 6863 // Expect both operands of OR and the first operand of SHL have only 6864 // one use. 6865 Value *LValue, *HValue; 6866 if (!match(SI.getValueOperand(), 6867 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6868 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6869 m_SpecificInt(HalfValBitSize)))))) 6870 return false; 6871 6872 // Check LValue and HValue are int with size less or equal than 32. 6873 if (!LValue->getType()->isIntegerTy() || 6874 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6875 !HValue->getType()->isIntegerTy() || 6876 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6877 return false; 6878 6879 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6880 // as the input of target query. 6881 auto *LBC = dyn_cast<BitCastInst>(LValue); 6882 auto *HBC = dyn_cast<BitCastInst>(HValue); 6883 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6884 : EVT::getEVT(LValue->getType()); 6885 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6886 : EVT::getEVT(HValue->getType()); 6887 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6888 return false; 6889 6890 // Start to split store. 6891 IRBuilder<> Builder(SI.getContext()); 6892 Builder.SetInsertPoint(&SI); 6893 6894 // If LValue/HValue is a bitcast in another BB, create a new one in current 6895 // BB so it may be merged with the splitted stores by dag combiner. 6896 if (LBC && LBC->getParent() != SI.getParent()) 6897 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6898 if (HBC && HBC->getParent() != SI.getParent()) 6899 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6900 6901 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 6902 auto CreateSplitStore = [&](Value *V, bool Upper) { 6903 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6904 Value *Addr = Builder.CreateBitCast( 6905 SI.getOperand(1), 6906 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6907 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 6908 if (IsOffsetStore) 6909 Addr = Builder.CreateGEP( 6910 SplitStoreType, Addr, 6911 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6912 MaybeAlign Alignment = SI.getAlign(); 6913 if (IsOffsetStore && Alignment) { 6914 // When splitting the store in half, naturally one half will retain the 6915 // alignment of the original wider store, regardless of whether it was 6916 // over-aligned or not, while the other will require adjustment. 6917 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 6918 } 6919 Builder.CreateAlignedStore(V, Addr, Alignment); 6920 }; 6921 6922 CreateSplitStore(LValue, false); 6923 CreateSplitStore(HValue, true); 6924 6925 // Delete the old store. 6926 SI.eraseFromParent(); 6927 return true; 6928 } 6929 6930 // Return true if the GEP has two operands, the first operand is of a sequential 6931 // type, and the second operand is a constant. 6932 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6933 gep_type_iterator I = gep_type_begin(*GEP); 6934 return GEP->getNumOperands() == 2 && 6935 I.isSequential() && 6936 isa<ConstantInt>(GEP->getOperand(1)); 6937 } 6938 6939 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6940 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6941 // reducing liveness interference across those edges benefits global register 6942 // allocation. Currently handles only certain cases. 6943 // 6944 // For example, unmerge %GEPI and %UGEPI as below. 6945 // 6946 // ---------- BEFORE ---------- 6947 // SrcBlock: 6948 // ... 6949 // %GEPIOp = ... 6950 // ... 6951 // %GEPI = gep %GEPIOp, Idx 6952 // ... 6953 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6954 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6955 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6956 // %UGEPI) 6957 // 6958 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6959 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6960 // ... 6961 // 6962 // DstBi: 6963 // ... 6964 // %UGEPI = gep %GEPIOp, UIdx 6965 // ... 6966 // --------------------------- 6967 // 6968 // ---------- AFTER ---------- 6969 // SrcBlock: 6970 // ... (same as above) 6971 // (* %GEPI is still alive on the indirectbr edges) 6972 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6973 // unmerging) 6974 // ... 6975 // 6976 // DstBi: 6977 // ... 6978 // %UGEPI = gep %GEPI, (UIdx-Idx) 6979 // ... 6980 // --------------------------- 6981 // 6982 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6983 // no longer alive on them. 6984 // 6985 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6986 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6987 // not to disable further simplications and optimizations as a result of GEP 6988 // merging. 6989 // 6990 // Note this unmerging may increase the length of the data flow critical path 6991 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6992 // between the register pressure and the length of data-flow critical 6993 // path. Restricting this to the uncommon IndirectBr case would minimize the 6994 // impact of potentially longer critical path, if any, and the impact on compile 6995 // time. 6996 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6997 const TargetTransformInfo *TTI) { 6998 BasicBlock *SrcBlock = GEPI->getParent(); 6999 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 7000 // (non-IndirectBr) cases exit early here. 7001 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 7002 return false; 7003 // Check that GEPI is a simple gep with a single constant index. 7004 if (!GEPSequentialConstIndexed(GEPI)) 7005 return false; 7006 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 7007 // Check that GEPI is a cheap one. 7008 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 7009 > TargetTransformInfo::TCC_Basic) 7010 return false; 7011 Value *GEPIOp = GEPI->getOperand(0); 7012 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 7013 if (!isa<Instruction>(GEPIOp)) 7014 return false; 7015 auto *GEPIOpI = cast<Instruction>(GEPIOp); 7016 if (GEPIOpI->getParent() != SrcBlock) 7017 return false; 7018 // Check that GEP is used outside the block, meaning it's alive on the 7019 // IndirectBr edge(s). 7020 if (find_if(GEPI->users(), [&](User *Usr) { 7021 if (auto *I = dyn_cast<Instruction>(Usr)) { 7022 if (I->getParent() != SrcBlock) { 7023 return true; 7024 } 7025 } 7026 return false; 7027 }) == GEPI->users().end()) 7028 return false; 7029 // The second elements of the GEP chains to be unmerged. 7030 std::vector<GetElementPtrInst *> UGEPIs; 7031 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 7032 // on IndirectBr edges. 7033 for (User *Usr : GEPIOp->users()) { 7034 if (Usr == GEPI) continue; 7035 // Check if Usr is an Instruction. If not, give up. 7036 if (!isa<Instruction>(Usr)) 7037 return false; 7038 auto *UI = cast<Instruction>(Usr); 7039 // Check if Usr in the same block as GEPIOp, which is fine, skip. 7040 if (UI->getParent() == SrcBlock) 7041 continue; 7042 // Check if Usr is a GEP. If not, give up. 7043 if (!isa<GetElementPtrInst>(Usr)) 7044 return false; 7045 auto *UGEPI = cast<GetElementPtrInst>(Usr); 7046 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 7047 // the pointer operand to it. If so, record it in the vector. If not, give 7048 // up. 7049 if (!GEPSequentialConstIndexed(UGEPI)) 7050 return false; 7051 if (UGEPI->getOperand(0) != GEPIOp) 7052 return false; 7053 if (GEPIIdx->getType() != 7054 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 7055 return false; 7056 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7057 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 7058 > TargetTransformInfo::TCC_Basic) 7059 return false; 7060 UGEPIs.push_back(UGEPI); 7061 } 7062 if (UGEPIs.size() == 0) 7063 return false; 7064 // Check the materializing cost of (Uidx-Idx). 7065 for (GetElementPtrInst *UGEPI : UGEPIs) { 7066 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7067 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 7068 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 7069 if (ImmCost > TargetTransformInfo::TCC_Basic) 7070 return false; 7071 } 7072 // Now unmerge between GEPI and UGEPIs. 7073 for (GetElementPtrInst *UGEPI : UGEPIs) { 7074 UGEPI->setOperand(0, GEPI); 7075 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7076 Constant *NewUGEPIIdx = 7077 ConstantInt::get(GEPIIdx->getType(), 7078 UGEPIIdx->getValue() - GEPIIdx->getValue()); 7079 UGEPI->setOperand(1, NewUGEPIIdx); 7080 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 7081 // inbounds to avoid UB. 7082 if (!GEPI->isInBounds()) { 7083 UGEPI->setIsInBounds(false); 7084 } 7085 } 7086 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 7087 // alive on IndirectBr edges). 7088 assert(find_if(GEPIOp->users(), [&](User *Usr) { 7089 return cast<Instruction>(Usr)->getParent() != SrcBlock; 7090 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 7091 return true; 7092 } 7093 7094 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 7095 // Bail out if we inserted the instruction to prevent optimizations from 7096 // stepping on each other's toes. 7097 if (InsertedInsts.count(I)) 7098 return false; 7099 7100 // TODO: Move into the switch on opcode below here. 7101 if (PHINode *P = dyn_cast<PHINode>(I)) { 7102 // It is possible for very late stage optimizations (such as SimplifyCFG) 7103 // to introduce PHI nodes too late to be cleaned up. If we detect such a 7104 // trivial PHI, go ahead and zap it here. 7105 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 7106 LargeOffsetGEPMap.erase(P); 7107 P->replaceAllUsesWith(V); 7108 P->eraseFromParent(); 7109 ++NumPHIsElim; 7110 return true; 7111 } 7112 return false; 7113 } 7114 7115 if (CastInst *CI = dyn_cast<CastInst>(I)) { 7116 // If the source of the cast is a constant, then this should have 7117 // already been constant folded. The only reason NOT to constant fold 7118 // it is if something (e.g. LSR) was careful to place the constant 7119 // evaluation in a block other than then one that uses it (e.g. to hoist 7120 // the address of globals out of a loop). If this is the case, we don't 7121 // want to forward-subst the cast. 7122 if (isa<Constant>(CI->getOperand(0))) 7123 return false; 7124 7125 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 7126 return true; 7127 7128 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 7129 /// Sink a zext or sext into its user blocks if the target type doesn't 7130 /// fit in one register 7131 if (TLI->getTypeAction(CI->getContext(), 7132 TLI->getValueType(*DL, CI->getType())) == 7133 TargetLowering::TypeExpandInteger) { 7134 return SinkCast(CI); 7135 } else { 7136 bool MadeChange = optimizeExt(I); 7137 return MadeChange | optimizeExtUses(I); 7138 } 7139 } 7140 return false; 7141 } 7142 7143 if (auto *Cmp = dyn_cast<CmpInst>(I)) 7144 if (optimizeCmp(Cmp, ModifiedDT)) 7145 return true; 7146 7147 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7148 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7149 bool Modified = optimizeLoadExt(LI); 7150 unsigned AS = LI->getPointerAddressSpace(); 7151 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 7152 return Modified; 7153 } 7154 7155 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 7156 if (splitMergedValStore(*SI, *DL, *TLI)) 7157 return true; 7158 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7159 unsigned AS = SI->getPointerAddressSpace(); 7160 return optimizeMemoryInst(I, SI->getOperand(1), 7161 SI->getOperand(0)->getType(), AS); 7162 } 7163 7164 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 7165 unsigned AS = RMW->getPointerAddressSpace(); 7166 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7167 RMW->getType(), AS); 7168 } 7169 7170 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7171 unsigned AS = CmpX->getPointerAddressSpace(); 7172 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7173 CmpX->getCompareOperand()->getType(), AS); 7174 } 7175 7176 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7177 7178 if (BinOp && (BinOp->getOpcode() == Instruction::And) && EnableAndCmpSinking) 7179 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 7180 7181 // TODO: Move this into the switch on opcode - it handles shifts already. 7182 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7183 BinOp->getOpcode() == Instruction::LShr)) { 7184 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7185 if (CI && TLI->hasExtractBitsInsn()) 7186 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7187 return true; 7188 } 7189 7190 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7191 if (GEPI->hasAllZeroIndices()) { 7192 /// The GEP operand must be a pointer, so must its result -> BitCast 7193 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7194 GEPI->getName(), GEPI); 7195 NC->setDebugLoc(GEPI->getDebugLoc()); 7196 GEPI->replaceAllUsesWith(NC); 7197 GEPI->eraseFromParent(); 7198 ++NumGEPsElim; 7199 optimizeInst(NC, ModifiedDT); 7200 return true; 7201 } 7202 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7203 return true; 7204 } 7205 return false; 7206 } 7207 7208 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 7209 // freeze(icmp a, const)) -> icmp (freeze a), const 7210 // This helps generate efficient conditional jumps. 7211 Instruction *CmpI = nullptr; 7212 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 7213 CmpI = II; 7214 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 7215 CmpI = F->getFastMathFlags().none() ? F : nullptr; 7216 7217 if (CmpI && CmpI->hasOneUse()) { 7218 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 7219 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 7220 isa<ConstantPointerNull>(Op0); 7221 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 7222 isa<ConstantPointerNull>(Op1); 7223 if (Const0 || Const1) { 7224 if (!Const0 || !Const1) { 7225 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI); 7226 F->takeName(FI); 7227 CmpI->setOperand(Const0 ? 1 : 0, F); 7228 } 7229 FI->replaceAllUsesWith(CmpI); 7230 FI->eraseFromParent(); 7231 return true; 7232 } 7233 } 7234 return false; 7235 } 7236 7237 if (tryToSinkFreeOperands(I)) 7238 return true; 7239 7240 switch (I->getOpcode()) { 7241 case Instruction::Shl: 7242 case Instruction::LShr: 7243 case Instruction::AShr: 7244 return optimizeShiftInst(cast<BinaryOperator>(I)); 7245 case Instruction::Call: 7246 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7247 case Instruction::Select: 7248 return optimizeSelectInst(cast<SelectInst>(I)); 7249 case Instruction::ShuffleVector: 7250 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7251 case Instruction::Switch: 7252 return optimizeSwitchInst(cast<SwitchInst>(I)); 7253 case Instruction::ExtractElement: 7254 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7255 } 7256 7257 return false; 7258 } 7259 7260 /// Given an OR instruction, check to see if this is a bitreverse 7261 /// idiom. If so, insert the new intrinsic and return true. 7262 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 7263 const TargetLowering &TLI) { 7264 if (!I.getType()->isIntegerTy() || 7265 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 7266 TLI.getValueType(DL, I.getType(), true))) 7267 return false; 7268 7269 SmallVector<Instruction*, 4> Insts; 7270 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7271 return false; 7272 Instruction *LastInst = Insts.back(); 7273 I.replaceAllUsesWith(LastInst); 7274 RecursivelyDeleteTriviallyDeadInstructions(&I); 7275 return true; 7276 } 7277 7278 // In this pass we look for GEP and cast instructions that are used 7279 // across basic blocks and rewrite them to improve basic-block-at-a-time 7280 // selection. 7281 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 7282 SunkAddrs.clear(); 7283 bool MadeChange = false; 7284 7285 CurInstIterator = BB.begin(); 7286 while (CurInstIterator != BB.end()) { 7287 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 7288 if (ModifiedDT) 7289 return true; 7290 } 7291 7292 bool MadeBitReverse = true; 7293 while (MadeBitReverse) { 7294 MadeBitReverse = false; 7295 for (auto &I : reverse(BB)) { 7296 if (makeBitReverse(I, *DL, *TLI)) { 7297 MadeBitReverse = MadeChange = true; 7298 break; 7299 } 7300 } 7301 } 7302 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7303 7304 return MadeChange; 7305 } 7306 7307 // Some CGP optimizations may move or alter what's computed in a block. Check 7308 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 7309 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 7310 assert(isa<DbgValueInst>(I)); 7311 DbgValueInst &DVI = *cast<DbgValueInst>(I); 7312 7313 // Does this dbg.value refer to a sunk address calculation? 7314 Value *Location = DVI.getVariableLocation(); 7315 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 7316 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 7317 if (SunkAddr) { 7318 // Point dbg.value at locally computed address, which should give the best 7319 // opportunity to be accurately lowered. This update may change the type of 7320 // pointer being referred to; however this makes no difference to debugging 7321 // information, and we can't generate bitcasts that may affect codegen. 7322 DVI.setOperand(0, MetadataAsValue::get(DVI.getContext(), 7323 ValueAsMetadata::get(SunkAddr))); 7324 return true; 7325 } 7326 return false; 7327 } 7328 7329 // A llvm.dbg.value may be using a value before its definition, due to 7330 // optimizations in this pass and others. Scan for such dbg.values, and rescue 7331 // them by moving the dbg.value to immediately after the value definition. 7332 // FIXME: Ideally this should never be necessary, and this has the potential 7333 // to re-order dbg.value intrinsics. 7334 bool CodeGenPrepare::placeDbgValues(Function &F) { 7335 bool MadeChange = false; 7336 DominatorTree DT(F); 7337 7338 for (BasicBlock &BB : F) { 7339 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 7340 Instruction *Insn = &*BI++; 7341 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 7342 if (!DVI) 7343 continue; 7344 7345 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 7346 7347 if (!VI || VI->isTerminator()) 7348 continue; 7349 7350 // If VI is a phi in a block with an EHPad terminator, we can't insert 7351 // after it. 7352 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 7353 continue; 7354 7355 // If the defining instruction dominates the dbg.value, we do not need 7356 // to move the dbg.value. 7357 if (DT.dominates(VI, DVI)) 7358 continue; 7359 7360 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 7361 << *DVI << ' ' << *VI); 7362 DVI->removeFromParent(); 7363 if (isa<PHINode>(VI)) 7364 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 7365 else 7366 DVI->insertAfter(VI); 7367 MadeChange = true; 7368 ++NumDbgValueMoved; 7369 } 7370 } 7371 return MadeChange; 7372 } 7373 7374 /// Scale down both weights to fit into uint32_t. 7375 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 7376 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 7377 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 7378 NewTrue = NewTrue / Scale; 7379 NewFalse = NewFalse / Scale; 7380 } 7381 7382 /// Some targets prefer to split a conditional branch like: 7383 /// \code 7384 /// %0 = icmp ne i32 %a, 0 7385 /// %1 = icmp ne i32 %b, 0 7386 /// %or.cond = or i1 %0, %1 7387 /// br i1 %or.cond, label %TrueBB, label %FalseBB 7388 /// \endcode 7389 /// into multiple branch instructions like: 7390 /// \code 7391 /// bb1: 7392 /// %0 = icmp ne i32 %a, 0 7393 /// br i1 %0, label %TrueBB, label %bb2 7394 /// bb2: 7395 /// %1 = icmp ne i32 %b, 0 7396 /// br i1 %1, label %TrueBB, label %FalseBB 7397 /// \endcode 7398 /// This usually allows instruction selection to do even further optimizations 7399 /// and combine the compare with the branch instruction. Currently this is 7400 /// applied for targets which have "cheap" jump instructions. 7401 /// 7402 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 7403 /// 7404 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 7405 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 7406 return false; 7407 7408 bool MadeChange = false; 7409 for (auto &BB : F) { 7410 // Does this BB end with the following? 7411 // %cond1 = icmp|fcmp|binary instruction ... 7412 // %cond2 = icmp|fcmp|binary instruction ... 7413 // %cond.or = or|and i1 %cond1, cond2 7414 // br i1 %cond.or label %dest1, label %dest2" 7415 BinaryOperator *LogicOp; 7416 BasicBlock *TBB, *FBB; 7417 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 7418 continue; 7419 7420 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 7421 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 7422 continue; 7423 7424 // The merging of mostly empty BB can cause a degenerate branch. 7425 if (TBB == FBB) 7426 continue; 7427 7428 unsigned Opc; 7429 Value *Cond1, *Cond2; 7430 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 7431 m_OneUse(m_Value(Cond2))))) 7432 Opc = Instruction::And; 7433 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 7434 m_OneUse(m_Value(Cond2))))) 7435 Opc = Instruction::Or; 7436 else 7437 continue; 7438 7439 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 7440 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 7441 continue; 7442 7443 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 7444 7445 // Create a new BB. 7446 auto TmpBB = 7447 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 7448 BB.getParent(), BB.getNextNode()); 7449 7450 // Update original basic block by using the first condition directly by the 7451 // branch instruction and removing the no longer needed and/or instruction. 7452 Br1->setCondition(Cond1); 7453 LogicOp->eraseFromParent(); 7454 7455 // Depending on the condition we have to either replace the true or the 7456 // false successor of the original branch instruction. 7457 if (Opc == Instruction::And) 7458 Br1->setSuccessor(0, TmpBB); 7459 else 7460 Br1->setSuccessor(1, TmpBB); 7461 7462 // Fill in the new basic block. 7463 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 7464 if (auto *I = dyn_cast<Instruction>(Cond2)) { 7465 I->removeFromParent(); 7466 I->insertBefore(Br2); 7467 } 7468 7469 // Update PHI nodes in both successors. The original BB needs to be 7470 // replaced in one successor's PHI nodes, because the branch comes now from 7471 // the newly generated BB (NewBB). In the other successor we need to add one 7472 // incoming edge to the PHI nodes, because both branch instructions target 7473 // now the same successor. Depending on the original branch condition 7474 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 7475 // we perform the correct update for the PHI nodes. 7476 // This doesn't change the successor order of the just created branch 7477 // instruction (or any other instruction). 7478 if (Opc == Instruction::Or) 7479 std::swap(TBB, FBB); 7480 7481 // Replace the old BB with the new BB. 7482 TBB->replacePhiUsesWith(&BB, TmpBB); 7483 7484 // Add another incoming edge form the new BB. 7485 for (PHINode &PN : FBB->phis()) { 7486 auto *Val = PN.getIncomingValueForBlock(&BB); 7487 PN.addIncoming(Val, TmpBB); 7488 } 7489 7490 // Update the branch weights (from SelectionDAGBuilder:: 7491 // FindMergedConditions). 7492 if (Opc == Instruction::Or) { 7493 // Codegen X | Y as: 7494 // BB1: 7495 // jmp_if_X TBB 7496 // jmp TmpBB 7497 // TmpBB: 7498 // jmp_if_Y TBB 7499 // jmp FBB 7500 // 7501 7502 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 7503 // The requirement is that 7504 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 7505 // = TrueProb for original BB. 7506 // Assuming the original weights are A and B, one choice is to set BB1's 7507 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 7508 // assumes that 7509 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 7510 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 7511 // TmpBB, but the math is more complicated. 7512 uint64_t TrueWeight, FalseWeight; 7513 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7514 uint64_t NewTrueWeight = TrueWeight; 7515 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 7516 scaleWeights(NewTrueWeight, NewFalseWeight); 7517 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7518 .createBranchWeights(TrueWeight, FalseWeight)); 7519 7520 NewTrueWeight = TrueWeight; 7521 NewFalseWeight = 2 * FalseWeight; 7522 scaleWeights(NewTrueWeight, NewFalseWeight); 7523 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7524 .createBranchWeights(TrueWeight, FalseWeight)); 7525 } 7526 } else { 7527 // Codegen X & Y as: 7528 // BB1: 7529 // jmp_if_X TmpBB 7530 // jmp FBB 7531 // TmpBB: 7532 // jmp_if_Y TBB 7533 // jmp FBB 7534 // 7535 // This requires creation of TmpBB after CurBB. 7536 7537 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 7538 // The requirement is that 7539 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 7540 // = FalseProb for original BB. 7541 // Assuming the original weights are A and B, one choice is to set BB1's 7542 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 7543 // assumes that 7544 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 7545 uint64_t TrueWeight, FalseWeight; 7546 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7547 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 7548 uint64_t NewFalseWeight = FalseWeight; 7549 scaleWeights(NewTrueWeight, NewFalseWeight); 7550 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7551 .createBranchWeights(TrueWeight, FalseWeight)); 7552 7553 NewTrueWeight = 2 * TrueWeight; 7554 NewFalseWeight = FalseWeight; 7555 scaleWeights(NewTrueWeight, NewFalseWeight); 7556 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7557 .createBranchWeights(TrueWeight, FalseWeight)); 7558 } 7559 } 7560 7561 ModifiedDT = true; 7562 MadeChange = true; 7563 7564 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 7565 TmpBB->dump()); 7566 } 7567 return MadeChange; 7568 } 7569