1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/InstructionSimplify.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/ProfileSummaryInfo.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/Analysis/VectorUtils.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/BasicBlockSectionsProfileReader.h" 35 #include "llvm/CodeGen/ISDOpcodes.h" 36 #include "llvm/CodeGen/SelectionDAGNodes.h" 37 #include "llvm/CodeGen/TargetLowering.h" 38 #include "llvm/CodeGen/TargetPassConfig.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/CodeGen/ValueTypes.h" 41 #include "llvm/Config/llvm-config.h" 42 #include "llvm/IR/Argument.h" 43 #include "llvm/IR/Attributes.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/Constant.h" 46 #include "llvm/IR/Constants.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/DebugInfo.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InlineAsm.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/IntrinsicsAArch64.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/MDBuilder.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Statepoint.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/ValueMap.h" 75 #include "llvm/InitializePasses.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/BlockFrequency.h" 78 #include "llvm/Support/BranchProbability.h" 79 #include "llvm/Support/Casting.h" 80 #include "llvm/Support/CommandLine.h" 81 #include "llvm/Support/Compiler.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/MachineValueType.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Target/TargetMachine.h" 88 #include "llvm/Target/TargetOptions.h" 89 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 90 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 91 #include "llvm/Transforms/Utils/Local.h" 92 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 93 #include "llvm/Transforms/Utils/SizeOpts.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <limits> 99 #include <memory> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 106 #define DEBUG_TYPE "codegenprepare" 107 108 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 109 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 110 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 111 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 112 "sunken Cmps"); 113 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 114 "of sunken Casts"); 115 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 116 "computations were sunk"); 117 STATISTIC(NumMemoryInstsPhiCreated, 118 "Number of phis created when address " 119 "computations were sunk to memory instructions"); 120 STATISTIC(NumMemoryInstsSelectCreated, 121 "Number of select created when address " 122 "computations were sunk to memory instructions"); 123 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 124 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 125 STATISTIC(NumAndsAdded, 126 "Number of and mask instructions added to form ext loads"); 127 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 128 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 129 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 130 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 131 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 132 133 static cl::opt<bool> DisableBranchOpts( 134 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 135 cl::desc("Disable branch optimizations in CodeGenPrepare")); 136 137 static cl::opt<bool> 138 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 139 cl::desc("Disable GC optimizations in CodeGenPrepare")); 140 141 static cl::opt<bool> DisableSelectToBranch( 142 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 143 cl::desc("Disable select to branch conversion.")); 144 145 static cl::opt<bool> AddrSinkUsingGEPs( 146 "addr-sink-using-gep", cl::Hidden, cl::init(true), 147 cl::desc("Address sinking in CGP using GEPs.")); 148 149 static cl::opt<bool> EnableAndCmpSinking( 150 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 151 cl::desc("Enable sinkinig and/cmp into branches.")); 152 153 static cl::opt<bool> DisableStoreExtract( 154 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 155 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 156 157 static cl::opt<bool> StressStoreExtract( 158 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 159 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 160 161 static cl::opt<bool> DisableExtLdPromotion( 162 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 163 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 164 "CodeGenPrepare")); 165 166 static cl::opt<bool> StressExtLdPromotion( 167 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 168 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 169 "optimization in CodeGenPrepare")); 170 171 static cl::opt<bool> DisablePreheaderProtect( 172 "disable-preheader-prot", cl::Hidden, cl::init(false), 173 cl::desc("Disable protection against removing loop preheaders")); 174 175 static cl::opt<bool> ProfileGuidedSectionPrefix( 176 "profile-guided-section-prefix", cl::Hidden, cl::init(true), 177 cl::desc("Use profile info to add section prefix for hot/cold functions")); 178 179 static cl::opt<bool> ProfileUnknownInSpecialSection( 180 "profile-unknown-in-special-section", cl::Hidden, 181 cl::desc("In profiling mode like sampleFDO, if a function doesn't have " 182 "profile, we cannot tell the function is cold for sure because " 183 "it may be a function newly added without ever being sampled. " 184 "With the flag enabled, compiler can put such profile unknown " 185 "functions into a special section, so runtime system can choose " 186 "to handle it in a different way than .text section, to save " 187 "RAM for example. ")); 188 189 static cl::opt<bool> BBSectionsGuidedSectionPrefix( 190 "bbsections-guided-section-prefix", cl::Hidden, cl::init(true), 191 cl::desc("Use the basic-block-sections profile to determine the text " 192 "section prefix for hot functions. Functions with " 193 "basic-block-sections profile will be placed in `.text.hot` " 194 "regardless of their FDO profile info. Other functions won't be " 195 "impacted, i.e., their prefixes will be decided by FDO/sampleFDO " 196 "profiles.")); 197 198 static cl::opt<unsigned> FreqRatioToSkipMerge( 199 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 200 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 201 "(frequency of destination block) is greater than this ratio")); 202 203 static cl::opt<bool> ForceSplitStore( 204 "force-split-store", cl::Hidden, cl::init(false), 205 cl::desc("Force store splitting no matter what the target query says.")); 206 207 static cl::opt<bool> 208 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 209 cl::desc("Enable merging of redundant sexts when one is dominating" 210 " the other."), cl::init(true)); 211 212 static cl::opt<bool> DisableComplexAddrModes( 213 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 214 cl::desc("Disables combining addressing modes with different parts " 215 "in optimizeMemoryInst.")); 216 217 static cl::opt<bool> 218 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 219 cl::desc("Allow creation of Phis in Address sinking.")); 220 221 static cl::opt<bool> 222 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 223 cl::desc("Allow creation of selects in Address sinking.")); 224 225 static cl::opt<bool> AddrSinkCombineBaseReg( 226 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 227 cl::desc("Allow combining of BaseReg field in Address sinking.")); 228 229 static cl::opt<bool> AddrSinkCombineBaseGV( 230 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 231 cl::desc("Allow combining of BaseGV field in Address sinking.")); 232 233 static cl::opt<bool> AddrSinkCombineBaseOffs( 234 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 235 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 236 237 static cl::opt<bool> AddrSinkCombineScaledReg( 238 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 239 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 240 241 static cl::opt<bool> 242 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 243 cl::init(true), 244 cl::desc("Enable splitting large offset of GEP.")); 245 246 static cl::opt<bool> EnableICMP_EQToICMP_ST( 247 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 248 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 249 250 static cl::opt<bool> 251 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), 252 cl::desc("Enable BFI update verification for " 253 "CodeGenPrepare.")); 254 255 static cl::opt<bool> OptimizePhiTypes( 256 "cgp-optimize-phi-types", cl::Hidden, cl::init(false), 257 cl::desc("Enable converting phi types in CodeGenPrepare")); 258 259 namespace { 260 261 enum ExtType { 262 ZeroExtension, // Zero extension has been seen. 263 SignExtension, // Sign extension has been seen. 264 BothExtension // This extension type is used if we saw sext after 265 // ZeroExtension had been set, or if we saw zext after 266 // SignExtension had been set. It makes the type 267 // information of a promoted instruction invalid. 268 }; 269 270 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 271 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 272 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 273 using SExts = SmallVector<Instruction *, 16>; 274 using ValueToSExts = DenseMap<Value *, SExts>; 275 276 class TypePromotionTransaction; 277 278 class CodeGenPrepare : public FunctionPass { 279 const TargetMachine *TM = nullptr; 280 const TargetSubtargetInfo *SubtargetInfo; 281 const TargetLowering *TLI = nullptr; 282 const TargetRegisterInfo *TRI; 283 const TargetTransformInfo *TTI = nullptr; 284 const BasicBlockSectionsProfileReader *BBSectionsProfileReader = nullptr; 285 const TargetLibraryInfo *TLInfo; 286 const LoopInfo *LI; 287 std::unique_ptr<BlockFrequencyInfo> BFI; 288 std::unique_ptr<BranchProbabilityInfo> BPI; 289 ProfileSummaryInfo *PSI; 290 291 /// As we scan instructions optimizing them, this is the next instruction 292 /// to optimize. Transforms that can invalidate this should update it. 293 BasicBlock::iterator CurInstIterator; 294 295 /// Keeps track of non-local addresses that have been sunk into a block. 296 /// This allows us to avoid inserting duplicate code for blocks with 297 /// multiple load/stores of the same address. The usage of WeakTrackingVH 298 /// enables SunkAddrs to be treated as a cache whose entries can be 299 /// invalidated if a sunken address computation has been erased. 300 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 301 302 /// Keeps track of all instructions inserted for the current function. 303 SetOfInstrs InsertedInsts; 304 305 /// Keeps track of the type of the related instruction before their 306 /// promotion for the current function. 307 InstrToOrigTy PromotedInsts; 308 309 /// Keep track of instructions removed during promotion. 310 SetOfInstrs RemovedInsts; 311 312 /// Keep track of sext chains based on their initial value. 313 DenseMap<Value *, Instruction *> SeenChainsForSExt; 314 315 /// Keep track of GEPs accessing the same data structures such as structs or 316 /// arrays that are candidates to be split later because of their large 317 /// size. 318 MapVector< 319 AssertingVH<Value>, 320 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 321 LargeOffsetGEPMap; 322 323 /// Keep track of new GEP base after splitting the GEPs having large offset. 324 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 325 326 /// Map serial numbers to Large offset GEPs. 327 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 328 329 /// Keep track of SExt promoted. 330 ValueToSExts ValToSExtendedUses; 331 332 /// True if the function has the OptSize attribute. 333 bool OptSize; 334 335 /// DataLayout for the Function being processed. 336 const DataLayout *DL = nullptr; 337 338 /// Building the dominator tree can be expensive, so we only build it 339 /// lazily and update it when required. 340 std::unique_ptr<DominatorTree> DT; 341 342 public: 343 static char ID; // Pass identification, replacement for typeid 344 345 CodeGenPrepare() : FunctionPass(ID) { 346 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 347 } 348 349 bool runOnFunction(Function &F) override; 350 351 StringRef getPassName() const override { return "CodeGen Prepare"; } 352 353 void getAnalysisUsage(AnalysisUsage &AU) const override { 354 // FIXME: When we can selectively preserve passes, preserve the domtree. 355 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 356 AU.addRequired<TargetLibraryInfoWrapperPass>(); 357 AU.addRequired<TargetPassConfig>(); 358 AU.addRequired<TargetTransformInfoWrapperPass>(); 359 AU.addRequired<LoopInfoWrapperPass>(); 360 AU.addUsedIfAvailable<BasicBlockSectionsProfileReader>(); 361 } 362 363 private: 364 template <typename F> 365 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 366 // Substituting can cause recursive simplifications, which can invalidate 367 // our iterator. Use a WeakTrackingVH to hold onto it in case this 368 // happens. 369 Value *CurValue = &*CurInstIterator; 370 WeakTrackingVH IterHandle(CurValue); 371 372 f(); 373 374 // If the iterator instruction was recursively deleted, start over at the 375 // start of the block. 376 if (IterHandle != CurValue) { 377 CurInstIterator = BB->begin(); 378 SunkAddrs.clear(); 379 } 380 } 381 382 // Get the DominatorTree, building if necessary. 383 DominatorTree &getDT(Function &F) { 384 if (!DT) 385 DT = std::make_unique<DominatorTree>(F); 386 return *DT; 387 } 388 389 void removeAllAssertingVHReferences(Value *V); 390 bool eliminateAssumptions(Function &F); 391 bool eliminateFallThrough(Function &F); 392 bool eliminateMostlyEmptyBlocks(Function &F); 393 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 394 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 395 void eliminateMostlyEmptyBlock(BasicBlock *BB); 396 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 397 bool isPreheader); 398 bool makeBitReverse(Instruction &I); 399 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 400 bool optimizeInst(Instruction *I, bool &ModifiedDT); 401 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 402 Type *AccessTy, unsigned AddrSpace); 403 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); 404 bool optimizeInlineAsmInst(CallInst *CS); 405 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 406 bool optimizeExt(Instruction *&I); 407 bool optimizeExtUses(Instruction *I); 408 bool optimizeLoadExt(LoadInst *Load); 409 bool optimizeShiftInst(BinaryOperator *BO); 410 bool optimizeFunnelShift(IntrinsicInst *Fsh); 411 bool optimizeSelectInst(SelectInst *SI); 412 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 413 bool optimizeSwitchType(SwitchInst *SI); 414 bool optimizeSwitchPhiConstants(SwitchInst *SI); 415 bool optimizeSwitchInst(SwitchInst *SI); 416 bool optimizeExtractElementInst(Instruction *Inst); 417 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 418 bool fixupDbgValue(Instruction *I); 419 bool placeDbgValues(Function &F); 420 bool placePseudoProbes(Function &F); 421 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 422 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 423 bool tryToPromoteExts(TypePromotionTransaction &TPT, 424 const SmallVectorImpl<Instruction *> &Exts, 425 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 426 unsigned CreatedInstsCost = 0); 427 bool mergeSExts(Function &F); 428 bool splitLargeGEPOffsets(); 429 bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, 430 SmallPtrSetImpl<Instruction *> &DeletedInstrs); 431 bool optimizePhiTypes(Function &F); 432 bool performAddressTypePromotion( 433 Instruction *&Inst, 434 bool AllowPromotionWithoutCommonHeader, 435 bool HasPromoted, TypePromotionTransaction &TPT, 436 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 437 bool splitBranchCondition(Function &F, bool &ModifiedDT); 438 bool simplifyOffsetableRelocate(GCStatepointInst &I); 439 440 bool tryToSinkFreeOperands(Instruction *I); 441 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, 442 Value *Arg1, CmpInst *Cmp, 443 Intrinsic::ID IID); 444 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 445 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 446 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 447 void verifyBFIUpdates(Function &F); 448 }; 449 450 } // end anonymous namespace 451 452 char CodeGenPrepare::ID = 0; 453 454 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 455 "Optimize for code generation", false, false) 456 INITIALIZE_PASS_DEPENDENCY(BasicBlockSectionsProfileReader) 457 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 458 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 459 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 460 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 461 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 462 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 463 "Optimize for code generation", false, false) 464 465 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 466 467 bool CodeGenPrepare::runOnFunction(Function &F) { 468 if (skipFunction(F)) 469 return false; 470 471 DL = &F.getParent()->getDataLayout(); 472 473 bool EverMadeChange = false; 474 // Clear per function information. 475 InsertedInsts.clear(); 476 PromotedInsts.clear(); 477 478 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 479 SubtargetInfo = TM->getSubtargetImpl(F); 480 TLI = SubtargetInfo->getTargetLowering(); 481 TRI = SubtargetInfo->getRegisterInfo(); 482 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 483 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 484 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 485 BPI.reset(new BranchProbabilityInfo(F, *LI)); 486 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 487 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 488 BBSectionsProfileReader = 489 getAnalysisIfAvailable<BasicBlockSectionsProfileReader>(); 490 OptSize = F.hasOptSize(); 491 // Use the basic-block-sections profile to promote hot functions to .text.hot if requested. 492 if (BBSectionsGuidedSectionPrefix && BBSectionsProfileReader && 493 BBSectionsProfileReader->isFunctionHot(F.getName())) { 494 F.setSectionPrefix("hot"); 495 } else if (ProfileGuidedSectionPrefix) { 496 // The hot attribute overwrites profile count based hotness while profile 497 // counts based hotness overwrite the cold attribute. 498 // This is a conservative behabvior. 499 if (F.hasFnAttribute(Attribute::Hot) || 500 PSI->isFunctionHotInCallGraph(&F, *BFI)) 501 F.setSectionPrefix("hot"); 502 // If PSI shows this function is not hot, we will placed the function 503 // into unlikely section if (1) PSI shows this is a cold function, or 504 // (2) the function has a attribute of cold. 505 else if (PSI->isFunctionColdInCallGraph(&F, *BFI) || 506 F.hasFnAttribute(Attribute::Cold)) 507 F.setSectionPrefix("unlikely"); 508 else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && 509 PSI->isFunctionHotnessUnknown(F)) 510 F.setSectionPrefix("unknown"); 511 } 512 513 /// This optimization identifies DIV instructions that can be 514 /// profitably bypassed and carried out with a shorter, faster divide. 515 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 516 const DenseMap<unsigned int, unsigned int> &BypassWidths = 517 TLI->getBypassSlowDivWidths(); 518 BasicBlock* BB = &*F.begin(); 519 while (BB != nullptr) { 520 // bypassSlowDivision may create new BBs, but we don't want to reapply the 521 // optimization to those blocks. 522 BasicBlock* Next = BB->getNextNode(); 523 // F.hasOptSize is already checked in the outer if statement. 524 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 525 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 526 BB = Next; 527 } 528 } 529 530 // Get rid of @llvm.assume builtins before attempting to eliminate empty 531 // blocks, since there might be blocks that only contain @llvm.assume calls 532 // (plus arguments that we can get rid of). 533 EverMadeChange |= eliminateAssumptions(F); 534 535 // Eliminate blocks that contain only PHI nodes and an 536 // unconditional branch. 537 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 538 539 bool ModifiedDT = false; 540 if (!DisableBranchOpts) 541 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 542 543 // Split some critical edges where one of the sources is an indirect branch, 544 // to help generate sane code for PHIs involving such edges. 545 EverMadeChange |= 546 SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/true); 547 548 bool MadeChange = true; 549 while (MadeChange) { 550 MadeChange = false; 551 DT.reset(); 552 for (BasicBlock &BB : llvm::make_early_inc_range(F)) { 553 bool ModifiedDTOnIteration = false; 554 MadeChange |= optimizeBlock(BB, ModifiedDTOnIteration); 555 556 // Restart BB iteration if the dominator tree of the Function was changed 557 if (ModifiedDTOnIteration) 558 break; 559 } 560 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 561 MadeChange |= mergeSExts(F); 562 if (!LargeOffsetGEPMap.empty()) 563 MadeChange |= splitLargeGEPOffsets(); 564 MadeChange |= optimizePhiTypes(F); 565 566 if (MadeChange) 567 eliminateFallThrough(F); 568 569 // Really free removed instructions during promotion. 570 for (Instruction *I : RemovedInsts) 571 I->deleteValue(); 572 573 EverMadeChange |= MadeChange; 574 SeenChainsForSExt.clear(); 575 ValToSExtendedUses.clear(); 576 RemovedInsts.clear(); 577 LargeOffsetGEPMap.clear(); 578 LargeOffsetGEPID.clear(); 579 } 580 581 NewGEPBases.clear(); 582 SunkAddrs.clear(); 583 584 if (!DisableBranchOpts) { 585 MadeChange = false; 586 // Use a set vector to get deterministic iteration order. The order the 587 // blocks are removed may affect whether or not PHI nodes in successors 588 // are removed. 589 SmallSetVector<BasicBlock*, 8> WorkList; 590 for (BasicBlock &BB : F) { 591 SmallVector<BasicBlock *, 2> Successors(successors(&BB)); 592 MadeChange |= ConstantFoldTerminator(&BB, true); 593 if (!MadeChange) continue; 594 595 for (BasicBlock *Succ : Successors) 596 if (pred_empty(Succ)) 597 WorkList.insert(Succ); 598 } 599 600 // Delete the dead blocks and any of their dead successors. 601 MadeChange |= !WorkList.empty(); 602 while (!WorkList.empty()) { 603 BasicBlock *BB = WorkList.pop_back_val(); 604 SmallVector<BasicBlock*, 2> Successors(successors(BB)); 605 606 DeleteDeadBlock(BB); 607 608 for (BasicBlock *Succ : Successors) 609 if (pred_empty(Succ)) 610 WorkList.insert(Succ); 611 } 612 613 // Merge pairs of basic blocks with unconditional branches, connected by 614 // a single edge. 615 if (EverMadeChange || MadeChange) 616 MadeChange |= eliminateFallThrough(F); 617 618 EverMadeChange |= MadeChange; 619 } 620 621 if (!DisableGCOpts) { 622 SmallVector<GCStatepointInst *, 2> Statepoints; 623 for (BasicBlock &BB : F) 624 for (Instruction &I : BB) 625 if (auto *SP = dyn_cast<GCStatepointInst>(&I)) 626 Statepoints.push_back(SP); 627 for (auto &I : Statepoints) 628 EverMadeChange |= simplifyOffsetableRelocate(*I); 629 } 630 631 // Do this last to clean up use-before-def scenarios introduced by other 632 // preparatory transforms. 633 EverMadeChange |= placeDbgValues(F); 634 EverMadeChange |= placePseudoProbes(F); 635 636 #ifndef NDEBUG 637 if (VerifyBFIUpdates) 638 verifyBFIUpdates(F); 639 #endif 640 641 return EverMadeChange; 642 } 643 644 bool CodeGenPrepare::eliminateAssumptions(Function &F) { 645 bool MadeChange = false; 646 for (BasicBlock &BB : F) { 647 CurInstIterator = BB.begin(); 648 while (CurInstIterator != BB.end()) { 649 Instruction *I = &*(CurInstIterator++); 650 if (auto *Assume = dyn_cast<AssumeInst>(I)) { 651 MadeChange = true; 652 Value *Operand = Assume->getOperand(0); 653 Assume->eraseFromParent(); 654 655 resetIteratorIfInvalidatedWhileCalling(&BB, [&]() { 656 RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr); 657 }); 658 } 659 } 660 } 661 return MadeChange; 662 } 663 664 /// An instruction is about to be deleted, so remove all references to it in our 665 /// GEP-tracking data strcutures. 666 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) { 667 LargeOffsetGEPMap.erase(V); 668 NewGEPBases.erase(V); 669 670 auto GEP = dyn_cast<GetElementPtrInst>(V); 671 if (!GEP) 672 return; 673 674 LargeOffsetGEPID.erase(GEP); 675 676 auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand()); 677 if (VecI == LargeOffsetGEPMap.end()) 678 return; 679 680 auto &GEPVector = VecI->second; 681 llvm::erase_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; }); 682 683 if (GEPVector.empty()) 684 LargeOffsetGEPMap.erase(VecI); 685 } 686 687 // Verify BFI has been updated correctly by recomputing BFI and comparing them. 688 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) { 689 DominatorTree NewDT(F); 690 LoopInfo NewLI(NewDT); 691 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); 692 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); 693 NewBFI.verifyMatch(*BFI); 694 } 695 696 /// Merge basic blocks which are connected by a single edge, where one of the 697 /// basic blocks has a single successor pointing to the other basic block, 698 /// which has a single predecessor. 699 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 700 bool Changed = false; 701 // Scan all of the blocks in the function, except for the entry block. 702 // Use a temporary array to avoid iterator being invalidated when 703 // deleting blocks. 704 SmallVector<WeakTrackingVH, 16> Blocks; 705 for (auto &Block : llvm::drop_begin(F)) 706 Blocks.push_back(&Block); 707 708 SmallSet<WeakTrackingVH, 16> Preds; 709 for (auto &Block : Blocks) { 710 auto *BB = cast_or_null<BasicBlock>(Block); 711 if (!BB) 712 continue; 713 // If the destination block has a single pred, then this is a trivial 714 // edge, just collapse it. 715 BasicBlock *SinglePred = BB->getSinglePredecessor(); 716 717 // Don't merge if BB's address is taken. 718 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 719 720 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 721 if (Term && !Term->isConditional()) { 722 Changed = true; 723 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 724 725 // Merge BB into SinglePred and delete it. 726 MergeBlockIntoPredecessor(BB); 727 Preds.insert(SinglePred); 728 } 729 } 730 731 // (Repeatedly) merging blocks into their predecessors can create redundant 732 // debug intrinsics. 733 for (auto &Pred : Preds) 734 if (auto *BB = cast_or_null<BasicBlock>(Pred)) 735 RemoveRedundantDbgInstrs(BB); 736 737 return Changed; 738 } 739 740 /// Find a destination block from BB if BB is mergeable empty block. 741 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 742 // If this block doesn't end with an uncond branch, ignore it. 743 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 744 if (!BI || !BI->isUnconditional()) 745 return nullptr; 746 747 // If the instruction before the branch (skipping debug info) isn't a phi 748 // node, then other stuff is happening here. 749 BasicBlock::iterator BBI = BI->getIterator(); 750 if (BBI != BB->begin()) { 751 --BBI; 752 while (isa<DbgInfoIntrinsic>(BBI)) { 753 if (BBI == BB->begin()) 754 break; 755 --BBI; 756 } 757 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 758 return nullptr; 759 } 760 761 // Do not break infinite loops. 762 BasicBlock *DestBB = BI->getSuccessor(0); 763 if (DestBB == BB) 764 return nullptr; 765 766 if (!canMergeBlocks(BB, DestBB)) 767 DestBB = nullptr; 768 769 return DestBB; 770 } 771 772 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 773 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 774 /// edges in ways that are non-optimal for isel. Start by eliminating these 775 /// blocks so we can split them the way we want them. 776 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 777 SmallPtrSet<BasicBlock *, 16> Preheaders; 778 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 779 while (!LoopList.empty()) { 780 Loop *L = LoopList.pop_back_val(); 781 llvm::append_range(LoopList, *L); 782 if (BasicBlock *Preheader = L->getLoopPreheader()) 783 Preheaders.insert(Preheader); 784 } 785 786 bool MadeChange = false; 787 // Copy blocks into a temporary array to avoid iterator invalidation issues 788 // as we remove them. 789 // Note that this intentionally skips the entry block. 790 SmallVector<WeakTrackingVH, 16> Blocks; 791 for (auto &Block : llvm::drop_begin(F)) 792 Blocks.push_back(&Block); 793 794 for (auto &Block : Blocks) { 795 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 796 if (!BB) 797 continue; 798 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 799 if (!DestBB || 800 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 801 continue; 802 803 eliminateMostlyEmptyBlock(BB); 804 MadeChange = true; 805 } 806 return MadeChange; 807 } 808 809 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 810 BasicBlock *DestBB, 811 bool isPreheader) { 812 // Do not delete loop preheaders if doing so would create a critical edge. 813 // Loop preheaders can be good locations to spill registers. If the 814 // preheader is deleted and we create a critical edge, registers may be 815 // spilled in the loop body instead. 816 if (!DisablePreheaderProtect && isPreheader && 817 !(BB->getSinglePredecessor() && 818 BB->getSinglePredecessor()->getSingleSuccessor())) 819 return false; 820 821 // Skip merging if the block's successor is also a successor to any callbr 822 // that leads to this block. 823 // FIXME: Is this really needed? Is this a correctness issue? 824 for (BasicBlock *Pred : predecessors(BB)) { 825 if (auto *CBI = dyn_cast<CallBrInst>((Pred)->getTerminator())) 826 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 827 if (DestBB == CBI->getSuccessor(i)) 828 return false; 829 } 830 831 // Try to skip merging if the unique predecessor of BB is terminated by a 832 // switch or indirect branch instruction, and BB is used as an incoming block 833 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 834 // add COPY instructions in the predecessor of BB instead of BB (if it is not 835 // merged). Note that the critical edge created by merging such blocks wont be 836 // split in MachineSink because the jump table is not analyzable. By keeping 837 // such empty block (BB), ISel will place COPY instructions in BB, not in the 838 // predecessor of BB. 839 BasicBlock *Pred = BB->getUniquePredecessor(); 840 if (!Pred || 841 !(isa<SwitchInst>(Pred->getTerminator()) || 842 isa<IndirectBrInst>(Pred->getTerminator()))) 843 return true; 844 845 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 846 return true; 847 848 // We use a simple cost heuristic which determine skipping merging is 849 // profitable if the cost of skipping merging is less than the cost of 850 // merging : Cost(skipping merging) < Cost(merging BB), where the 851 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 852 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 853 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 854 // Freq(Pred) / Freq(BB) > 2. 855 // Note that if there are multiple empty blocks sharing the same incoming 856 // value for the PHIs in the DestBB, we consider them together. In such 857 // case, Cost(merging BB) will be the sum of their frequencies. 858 859 if (!isa<PHINode>(DestBB->begin())) 860 return true; 861 862 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 863 864 // Find all other incoming blocks from which incoming values of all PHIs in 865 // DestBB are the same as the ones from BB. 866 for (BasicBlock *DestBBPred : predecessors(DestBB)) { 867 if (DestBBPred == BB) 868 continue; 869 870 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 871 return DestPN.getIncomingValueForBlock(BB) == 872 DestPN.getIncomingValueForBlock(DestBBPred); 873 })) 874 SameIncomingValueBBs.insert(DestBBPred); 875 } 876 877 // See if all BB's incoming values are same as the value from Pred. In this 878 // case, no reason to skip merging because COPYs are expected to be place in 879 // Pred already. 880 if (SameIncomingValueBBs.count(Pred)) 881 return true; 882 883 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 884 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 885 886 for (auto *SameValueBB : SameIncomingValueBBs) 887 if (SameValueBB->getUniquePredecessor() == Pred && 888 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 889 BBFreq += BFI->getBlockFreq(SameValueBB); 890 891 return PredFreq.getFrequency() <= 892 BBFreq.getFrequency() * FreqRatioToSkipMerge; 893 } 894 895 /// Return true if we can merge BB into DestBB if there is a single 896 /// unconditional branch between them, and BB contains no other non-phi 897 /// instructions. 898 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 899 const BasicBlock *DestBB) const { 900 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 901 // the successor. If there are more complex condition (e.g. preheaders), 902 // don't mess around with them. 903 for (const PHINode &PN : BB->phis()) { 904 for (const User *U : PN.users()) { 905 const Instruction *UI = cast<Instruction>(U); 906 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 907 return false; 908 // If User is inside DestBB block and it is a PHINode then check 909 // incoming value. If incoming value is not from BB then this is 910 // a complex condition (e.g. preheaders) we want to avoid here. 911 if (UI->getParent() == DestBB) { 912 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 913 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 914 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 915 if (Insn && Insn->getParent() == BB && 916 Insn->getParent() != UPN->getIncomingBlock(I)) 917 return false; 918 } 919 } 920 } 921 } 922 923 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 924 // and DestBB may have conflicting incoming values for the block. If so, we 925 // can't merge the block. 926 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 927 if (!DestBBPN) return true; // no conflict. 928 929 // Collect the preds of BB. 930 SmallPtrSet<const BasicBlock*, 16> BBPreds; 931 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 932 // It is faster to get preds from a PHI than with pred_iterator. 933 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 934 BBPreds.insert(BBPN->getIncomingBlock(i)); 935 } else { 936 BBPreds.insert(pred_begin(BB), pred_end(BB)); 937 } 938 939 // Walk the preds of DestBB. 940 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 941 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 942 if (BBPreds.count(Pred)) { // Common predecessor? 943 for (const PHINode &PN : DestBB->phis()) { 944 const Value *V1 = PN.getIncomingValueForBlock(Pred); 945 const Value *V2 = PN.getIncomingValueForBlock(BB); 946 947 // If V2 is a phi node in BB, look up what the mapped value will be. 948 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 949 if (V2PN->getParent() == BB) 950 V2 = V2PN->getIncomingValueForBlock(Pred); 951 952 // If there is a conflict, bail out. 953 if (V1 != V2) return false; 954 } 955 } 956 } 957 958 return true; 959 } 960 961 /// Eliminate a basic block that has only phi's and an unconditional branch in 962 /// it. 963 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 964 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 965 BasicBlock *DestBB = BI->getSuccessor(0); 966 967 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 968 << *BB << *DestBB); 969 970 // If the destination block has a single pred, then this is a trivial edge, 971 // just collapse it. 972 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 973 if (SinglePred != DestBB) { 974 assert(SinglePred == BB && 975 "Single predecessor not the same as predecessor"); 976 // Merge DestBB into SinglePred/BB and delete it. 977 MergeBlockIntoPredecessor(DestBB); 978 // Note: BB(=SinglePred) will not be deleted on this path. 979 // DestBB(=its single successor) is the one that was deleted. 980 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 981 return; 982 } 983 } 984 985 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 986 // to handle the new incoming edges it is about to have. 987 for (PHINode &PN : DestBB->phis()) { 988 // Remove the incoming value for BB, and remember it. 989 Value *InVal = PN.removeIncomingValue(BB, false); 990 991 // Two options: either the InVal is a phi node defined in BB or it is some 992 // value that dominates BB. 993 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 994 if (InValPhi && InValPhi->getParent() == BB) { 995 // Add all of the input values of the input PHI as inputs of this phi. 996 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 997 PN.addIncoming(InValPhi->getIncomingValue(i), 998 InValPhi->getIncomingBlock(i)); 999 } else { 1000 // Otherwise, add one instance of the dominating value for each edge that 1001 // we will be adding. 1002 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 1003 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 1004 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 1005 } else { 1006 for (BasicBlock *Pred : predecessors(BB)) 1007 PN.addIncoming(InVal, Pred); 1008 } 1009 } 1010 } 1011 1012 // The PHIs are now updated, change everything that refers to BB to use 1013 // DestBB and remove BB. 1014 BB->replaceAllUsesWith(DestBB); 1015 BB->eraseFromParent(); 1016 ++NumBlocksElim; 1017 1018 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 1019 } 1020 1021 // Computes a map of base pointer relocation instructions to corresponding 1022 // derived pointer relocation instructions given a vector of all relocate calls 1023 static void computeBaseDerivedRelocateMap( 1024 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 1025 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 1026 &RelocateInstMap) { 1027 // Collect information in two maps: one primarily for locating the base object 1028 // while filling the second map; the second map is the final structure holding 1029 // a mapping between Base and corresponding Derived relocate calls 1030 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 1031 for (auto *ThisRelocate : AllRelocateCalls) { 1032 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 1033 ThisRelocate->getDerivedPtrIndex()); 1034 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 1035 } 1036 for (auto &Item : RelocateIdxMap) { 1037 std::pair<unsigned, unsigned> Key = Item.first; 1038 if (Key.first == Key.second) 1039 // Base relocation: nothing to insert 1040 continue; 1041 1042 GCRelocateInst *I = Item.second; 1043 auto BaseKey = std::make_pair(Key.first, Key.first); 1044 1045 // We're iterating over RelocateIdxMap so we cannot modify it. 1046 auto MaybeBase = RelocateIdxMap.find(BaseKey); 1047 if (MaybeBase == RelocateIdxMap.end()) 1048 // TODO: We might want to insert a new base object relocate and gep off 1049 // that, if there are enough derived object relocates. 1050 continue; 1051 1052 RelocateInstMap[MaybeBase->second].push_back(I); 1053 } 1054 } 1055 1056 // Accepts a GEP and extracts the operands into a vector provided they're all 1057 // small integer constants 1058 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 1059 SmallVectorImpl<Value *> &OffsetV) { 1060 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 1061 // Only accept small constant integer operands 1062 auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 1063 if (!Op || Op->getZExtValue() > 20) 1064 return false; 1065 } 1066 1067 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 1068 OffsetV.push_back(GEP->getOperand(i)); 1069 return true; 1070 } 1071 1072 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 1073 // replace, computes a replacement, and affects it. 1074 static bool 1075 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 1076 const SmallVectorImpl<GCRelocateInst *> &Targets) { 1077 bool MadeChange = false; 1078 // We must ensure the relocation of derived pointer is defined after 1079 // relocation of base pointer. If we find a relocation corresponding to base 1080 // defined earlier than relocation of base then we move relocation of base 1081 // right before found relocation. We consider only relocation in the same 1082 // basic block as relocation of base. Relocations from other basic block will 1083 // be skipped by optimization and we do not care about them. 1084 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 1085 &*R != RelocatedBase; ++R) 1086 if (auto *RI = dyn_cast<GCRelocateInst>(R)) 1087 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 1088 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 1089 RelocatedBase->moveBefore(RI); 1090 break; 1091 } 1092 1093 for (GCRelocateInst *ToReplace : Targets) { 1094 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 1095 "Not relocating a derived object of the original base object"); 1096 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 1097 // A duplicate relocate call. TODO: coalesce duplicates. 1098 continue; 1099 } 1100 1101 if (RelocatedBase->getParent() != ToReplace->getParent()) { 1102 // Base and derived relocates are in different basic blocks. 1103 // In this case transform is only valid when base dominates derived 1104 // relocate. However it would be too expensive to check dominance 1105 // for each such relocate, so we skip the whole transformation. 1106 continue; 1107 } 1108 1109 Value *Base = ToReplace->getBasePtr(); 1110 auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 1111 if (!Derived || Derived->getPointerOperand() != Base) 1112 continue; 1113 1114 SmallVector<Value *, 2> OffsetV; 1115 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 1116 continue; 1117 1118 // Create a Builder and replace the target callsite with a gep 1119 assert(RelocatedBase->getNextNode() && 1120 "Should always have one since it's not a terminator"); 1121 1122 // Insert after RelocatedBase 1123 IRBuilder<> Builder(RelocatedBase->getNextNode()); 1124 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1125 1126 // If gc_relocate does not match the actual type, cast it to the right type. 1127 // In theory, there must be a bitcast after gc_relocate if the type does not 1128 // match, and we should reuse it to get the derived pointer. But it could be 1129 // cases like this: 1130 // bb1: 1131 // ... 1132 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1133 // br label %merge 1134 // 1135 // bb2: 1136 // ... 1137 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1138 // br label %merge 1139 // 1140 // merge: 1141 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1142 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1143 // 1144 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1145 // no matter there is already one or not. In this way, we can handle all cases, and 1146 // the extra bitcast should be optimized away in later passes. 1147 Value *ActualRelocatedBase = RelocatedBase; 1148 if (RelocatedBase->getType() != Base->getType()) { 1149 ActualRelocatedBase = 1150 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1151 } 1152 Value *Replacement = Builder.CreateGEP( 1153 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1154 Replacement->takeName(ToReplace); 1155 // If the newly generated derived pointer's type does not match the original derived 1156 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1157 Value *ActualReplacement = Replacement; 1158 if (Replacement->getType() != ToReplace->getType()) { 1159 ActualReplacement = 1160 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1161 } 1162 ToReplace->replaceAllUsesWith(ActualReplacement); 1163 ToReplace->eraseFromParent(); 1164 1165 MadeChange = true; 1166 } 1167 return MadeChange; 1168 } 1169 1170 // Turns this: 1171 // 1172 // %base = ... 1173 // %ptr = gep %base + 15 1174 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1175 // %base' = relocate(%tok, i32 4, i32 4) 1176 // %ptr' = relocate(%tok, i32 4, i32 5) 1177 // %val = load %ptr' 1178 // 1179 // into this: 1180 // 1181 // %base = ... 1182 // %ptr = gep %base + 15 1183 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1184 // %base' = gc.relocate(%tok, i32 4, i32 4) 1185 // %ptr' = gep %base' + 15 1186 // %val = load %ptr' 1187 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { 1188 bool MadeChange = false; 1189 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1190 for (auto *U : I.users()) 1191 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1192 // Collect all the relocate calls associated with a statepoint 1193 AllRelocateCalls.push_back(Relocate); 1194 1195 // We need at least one base pointer relocation + one derived pointer 1196 // relocation to mangle 1197 if (AllRelocateCalls.size() < 2) 1198 return false; 1199 1200 // RelocateInstMap is a mapping from the base relocate instruction to the 1201 // corresponding derived relocate instructions 1202 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1203 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1204 if (RelocateInstMap.empty()) 1205 return false; 1206 1207 for (auto &Item : RelocateInstMap) 1208 // Item.first is the RelocatedBase to offset against 1209 // Item.second is the vector of Targets to replace 1210 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1211 return MadeChange; 1212 } 1213 1214 /// Sink the specified cast instruction into its user blocks. 1215 static bool SinkCast(CastInst *CI) { 1216 BasicBlock *DefBB = CI->getParent(); 1217 1218 /// InsertedCasts - Only insert a cast in each block once. 1219 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1220 1221 bool MadeChange = false; 1222 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1223 UI != E; ) { 1224 Use &TheUse = UI.getUse(); 1225 Instruction *User = cast<Instruction>(*UI); 1226 1227 // Figure out which BB this cast is used in. For PHI's this is the 1228 // appropriate predecessor block. 1229 BasicBlock *UserBB = User->getParent(); 1230 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1231 UserBB = PN->getIncomingBlock(TheUse); 1232 } 1233 1234 // Preincrement use iterator so we don't invalidate it. 1235 ++UI; 1236 1237 // The first insertion point of a block containing an EH pad is after the 1238 // pad. If the pad is the user, we cannot sink the cast past the pad. 1239 if (User->isEHPad()) 1240 continue; 1241 1242 // If the block selected to receive the cast is an EH pad that does not 1243 // allow non-PHI instructions before the terminator, we can't sink the 1244 // cast. 1245 if (UserBB->getTerminator()->isEHPad()) 1246 continue; 1247 1248 // If this user is in the same block as the cast, don't change the cast. 1249 if (UserBB == DefBB) continue; 1250 1251 // If we have already inserted a cast into this block, use it. 1252 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1253 1254 if (!InsertedCast) { 1255 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1256 assert(InsertPt != UserBB->end()); 1257 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1258 CI->getType(), "", &*InsertPt); 1259 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1260 } 1261 1262 // Replace a use of the cast with a use of the new cast. 1263 TheUse = InsertedCast; 1264 MadeChange = true; 1265 ++NumCastUses; 1266 } 1267 1268 // If we removed all uses, nuke the cast. 1269 if (CI->use_empty()) { 1270 salvageDebugInfo(*CI); 1271 CI->eraseFromParent(); 1272 MadeChange = true; 1273 } 1274 1275 return MadeChange; 1276 } 1277 1278 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1279 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1280 /// reduce the number of virtual registers that must be created and coalesced. 1281 /// 1282 /// Return true if any changes are made. 1283 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1284 const DataLayout &DL) { 1285 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1286 // than sinking only nop casts, but is helpful on some platforms. 1287 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1288 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1289 ASC->getDestAddressSpace())) 1290 return false; 1291 } 1292 1293 // If this is a noop copy, 1294 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1295 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1296 1297 // This is an fp<->int conversion? 1298 if (SrcVT.isInteger() != DstVT.isInteger()) 1299 return false; 1300 1301 // If this is an extension, it will be a zero or sign extension, which 1302 // isn't a noop. 1303 if (SrcVT.bitsLT(DstVT)) return false; 1304 1305 // If these values will be promoted, find out what they will be promoted 1306 // to. This helps us consider truncates on PPC as noop copies when they 1307 // are. 1308 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1309 TargetLowering::TypePromoteInteger) 1310 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1311 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1312 TargetLowering::TypePromoteInteger) 1313 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1314 1315 // If, after promotion, these are the same types, this is a noop copy. 1316 if (SrcVT != DstVT) 1317 return false; 1318 1319 return SinkCast(CI); 1320 } 1321 1322 // Match a simple increment by constant operation. Note that if a sub is 1323 // matched, the step is negated (as if the step had been canonicalized to 1324 // an add, even though we leave the instruction alone.) 1325 bool matchIncrement(const Instruction* IVInc, Instruction *&LHS, 1326 Constant *&Step) { 1327 if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) || 1328 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>( 1329 m_Instruction(LHS), m_Constant(Step))))) 1330 return true; 1331 if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) || 1332 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>( 1333 m_Instruction(LHS), m_Constant(Step))))) { 1334 Step = ConstantExpr::getNeg(Step); 1335 return true; 1336 } 1337 return false; 1338 } 1339 1340 /// If given \p PN is an inductive variable with value IVInc coming from the 1341 /// backedge, and on each iteration it gets increased by Step, return pair 1342 /// <IVInc, Step>. Otherwise, return None. 1343 static Optional<std::pair<Instruction *, Constant *> > 1344 getIVIncrement(const PHINode *PN, const LoopInfo *LI) { 1345 const Loop *L = LI->getLoopFor(PN->getParent()); 1346 if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch()) 1347 return None; 1348 auto *IVInc = 1349 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 1350 if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L) 1351 return None; 1352 Instruction *LHS = nullptr; 1353 Constant *Step = nullptr; 1354 if (matchIncrement(IVInc, LHS, Step) && LHS == PN) 1355 return std::make_pair(IVInc, Step); 1356 return None; 1357 } 1358 1359 static bool isIVIncrement(const Value *V, const LoopInfo *LI) { 1360 auto *I = dyn_cast<Instruction>(V); 1361 if (!I) 1362 return false; 1363 Instruction *LHS = nullptr; 1364 Constant *Step = nullptr; 1365 if (!matchIncrement(I, LHS, Step)) 1366 return false; 1367 if (auto *PN = dyn_cast<PHINode>(LHS)) 1368 if (auto IVInc = getIVIncrement(PN, LI)) 1369 return IVInc->first == I; 1370 return false; 1371 } 1372 1373 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1374 Value *Arg0, Value *Arg1, 1375 CmpInst *Cmp, 1376 Intrinsic::ID IID) { 1377 auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) { 1378 if (!isIVIncrement(BO, LI)) 1379 return false; 1380 const Loop *L = LI->getLoopFor(BO->getParent()); 1381 assert(L && "L should not be null after isIVIncrement()"); 1382 // Do not risk on moving increment into a child loop. 1383 if (LI->getLoopFor(Cmp->getParent()) != L) 1384 return false; 1385 1386 // Finally, we need to ensure that the insert point will dominate all 1387 // existing uses of the increment. 1388 1389 auto &DT = getDT(*BO->getParent()->getParent()); 1390 if (DT.dominates(Cmp->getParent(), BO->getParent())) 1391 // If we're moving up the dom tree, all uses are trivially dominated. 1392 // (This is the common case for code produced by LSR.) 1393 return true; 1394 1395 // Otherwise, special case the single use in the phi recurrence. 1396 return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch()); 1397 }; 1398 if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) { 1399 // We used to use a dominator tree here to allow multi-block optimization. 1400 // But that was problematic because: 1401 // 1. It could cause a perf regression by hoisting the math op into the 1402 // critical path. 1403 // 2. It could cause a perf regression by creating a value that was live 1404 // across multiple blocks and increasing register pressure. 1405 // 3. Use of a dominator tree could cause large compile-time regression. 1406 // This is because we recompute the DT on every change in the main CGP 1407 // run-loop. The recomputing is probably unnecessary in many cases, so if 1408 // that was fixed, using a DT here would be ok. 1409 // 1410 // There is one important particular case we still want to handle: if BO is 1411 // the IV increment. Important properties that make it profitable: 1412 // - We can speculate IV increment anywhere in the loop (as long as the 1413 // indvar Phi is its only user); 1414 // - Upon computing Cmp, we effectively compute something equivalent to the 1415 // IV increment (despite it loops differently in the IR). So moving it up 1416 // to the cmp point does not really increase register pressure. 1417 return false; 1418 } 1419 1420 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1421 if (BO->getOpcode() == Instruction::Add && 1422 IID == Intrinsic::usub_with_overflow) { 1423 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1424 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1425 } 1426 1427 // Insert at the first instruction of the pair. 1428 Instruction *InsertPt = nullptr; 1429 for (Instruction &Iter : *Cmp->getParent()) { 1430 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1431 // the overflow intrinsic are defined. 1432 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1433 InsertPt = &Iter; 1434 break; 1435 } 1436 } 1437 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1438 1439 IRBuilder<> Builder(InsertPt); 1440 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1441 if (BO->getOpcode() != Instruction::Xor) { 1442 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1443 BO->replaceAllUsesWith(Math); 1444 } else 1445 assert(BO->hasOneUse() && 1446 "Patterns with XOr should use the BO only in the compare"); 1447 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1448 Cmp->replaceAllUsesWith(OV); 1449 Cmp->eraseFromParent(); 1450 BO->eraseFromParent(); 1451 return true; 1452 } 1453 1454 /// Match special-case patterns that check for unsigned add overflow. 1455 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1456 BinaryOperator *&Add) { 1457 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1458 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1459 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1460 1461 // We are not expecting non-canonical/degenerate code. Just bail out. 1462 if (isa<Constant>(A)) 1463 return false; 1464 1465 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1466 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1467 B = ConstantInt::get(B->getType(), 1); 1468 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1469 B = ConstantInt::get(B->getType(), -1); 1470 else 1471 return false; 1472 1473 // Check the users of the variable operand of the compare looking for an add 1474 // with the adjusted constant. 1475 for (User *U : A->users()) { 1476 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1477 Add = cast<BinaryOperator>(U); 1478 return true; 1479 } 1480 } 1481 return false; 1482 } 1483 1484 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1485 /// intrinsic. Return true if any changes were made. 1486 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1487 bool &ModifiedDT) { 1488 Value *A, *B; 1489 BinaryOperator *Add; 1490 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1491 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1492 return false; 1493 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1494 A = Add->getOperand(0); 1495 B = Add->getOperand(1); 1496 } 1497 1498 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1499 TLI->getValueType(*DL, Add->getType()), 1500 Add->hasNUsesOrMore(2))) 1501 return false; 1502 1503 // We don't want to move around uses of condition values this late, so we 1504 // check if it is legal to create the call to the intrinsic in the basic 1505 // block containing the icmp. 1506 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1507 return false; 1508 1509 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1510 Intrinsic::uadd_with_overflow)) 1511 return false; 1512 1513 // Reset callers - do not crash by iterating over a dead instruction. 1514 ModifiedDT = true; 1515 return true; 1516 } 1517 1518 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1519 bool &ModifiedDT) { 1520 // We are not expecting non-canonical/degenerate code. Just bail out. 1521 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1522 if (isa<Constant>(A) && isa<Constant>(B)) 1523 return false; 1524 1525 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1526 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1527 if (Pred == ICmpInst::ICMP_UGT) { 1528 std::swap(A, B); 1529 Pred = ICmpInst::ICMP_ULT; 1530 } 1531 // Convert special-case: (A == 0) is the same as (A u< 1). 1532 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1533 B = ConstantInt::get(B->getType(), 1); 1534 Pred = ICmpInst::ICMP_ULT; 1535 } 1536 // Convert special-case: (A != 0) is the same as (0 u< A). 1537 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1538 std::swap(A, B); 1539 Pred = ICmpInst::ICMP_ULT; 1540 } 1541 if (Pred != ICmpInst::ICMP_ULT) 1542 return false; 1543 1544 // Walk the users of a variable operand of a compare looking for a subtract or 1545 // add with that same operand. Also match the 2nd operand of the compare to 1546 // the add/sub, but that may be a negated constant operand of an add. 1547 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1548 BinaryOperator *Sub = nullptr; 1549 for (User *U : CmpVariableOperand->users()) { 1550 // A - B, A u< B --> usubo(A, B) 1551 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1552 Sub = cast<BinaryOperator>(U); 1553 break; 1554 } 1555 1556 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1557 const APInt *CmpC, *AddC; 1558 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1559 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1560 Sub = cast<BinaryOperator>(U); 1561 break; 1562 } 1563 } 1564 if (!Sub) 1565 return false; 1566 1567 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1568 TLI->getValueType(*DL, Sub->getType()), 1569 Sub->hasNUsesOrMore(2))) 1570 return false; 1571 1572 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1573 Cmp, Intrinsic::usub_with_overflow)) 1574 return false; 1575 1576 // Reset callers - do not crash by iterating over a dead instruction. 1577 ModifiedDT = true; 1578 return true; 1579 } 1580 1581 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1582 /// registers that must be created and coalesced. This is a clear win except on 1583 /// targets with multiple condition code registers (PowerPC), where it might 1584 /// lose; some adjustment may be wanted there. 1585 /// 1586 /// Return true if any changes are made. 1587 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1588 if (TLI.hasMultipleConditionRegisters()) 1589 return false; 1590 1591 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1592 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1593 return false; 1594 1595 // Only insert a cmp in each block once. 1596 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1597 1598 bool MadeChange = false; 1599 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1600 UI != E; ) { 1601 Use &TheUse = UI.getUse(); 1602 Instruction *User = cast<Instruction>(*UI); 1603 1604 // Preincrement use iterator so we don't invalidate it. 1605 ++UI; 1606 1607 // Don't bother for PHI nodes. 1608 if (isa<PHINode>(User)) 1609 continue; 1610 1611 // Figure out which BB this cmp is used in. 1612 BasicBlock *UserBB = User->getParent(); 1613 BasicBlock *DefBB = Cmp->getParent(); 1614 1615 // If this user is in the same block as the cmp, don't change the cmp. 1616 if (UserBB == DefBB) continue; 1617 1618 // If we have already inserted a cmp into this block, use it. 1619 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1620 1621 if (!InsertedCmp) { 1622 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1623 assert(InsertPt != UserBB->end()); 1624 InsertedCmp = 1625 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1626 Cmp->getOperand(0), Cmp->getOperand(1), "", 1627 &*InsertPt); 1628 // Propagate the debug info. 1629 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1630 } 1631 1632 // Replace a use of the cmp with a use of the new cmp. 1633 TheUse = InsertedCmp; 1634 MadeChange = true; 1635 ++NumCmpUses; 1636 } 1637 1638 // If we removed all uses, nuke the cmp. 1639 if (Cmp->use_empty()) { 1640 Cmp->eraseFromParent(); 1641 MadeChange = true; 1642 } 1643 1644 return MadeChange; 1645 } 1646 1647 /// For pattern like: 1648 /// 1649 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1650 /// ... 1651 /// DomBB: 1652 /// ... 1653 /// br DomCond, TrueBB, CmpBB 1654 /// CmpBB: (with DomBB being the single predecessor) 1655 /// ... 1656 /// Cmp = icmp eq CmpOp0, CmpOp1 1657 /// ... 1658 /// 1659 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1660 /// different from lowering of icmp eq (PowerPC). This function try to convert 1661 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1662 /// After that, DomCond and Cmp can use the same comparison so reduce one 1663 /// comparison. 1664 /// 1665 /// Return true if any changes are made. 1666 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1667 const TargetLowering &TLI) { 1668 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1669 return false; 1670 1671 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1672 if (Pred != ICmpInst::ICMP_EQ) 1673 return false; 1674 1675 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1676 // icmp slt/sgt would introduce more redundant LLVM IR. 1677 for (User *U : Cmp->users()) { 1678 if (isa<BranchInst>(U)) 1679 continue; 1680 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1681 continue; 1682 return false; 1683 } 1684 1685 // This is a cheap/incomplete check for dominance - just match a single 1686 // predecessor with a conditional branch. 1687 BasicBlock *CmpBB = Cmp->getParent(); 1688 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1689 if (!DomBB) 1690 return false; 1691 1692 // We want to ensure that the only way control gets to the comparison of 1693 // interest is that a less/greater than comparison on the same operands is 1694 // false. 1695 Value *DomCond; 1696 BasicBlock *TrueBB, *FalseBB; 1697 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1698 return false; 1699 if (CmpBB != FalseBB) 1700 return false; 1701 1702 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1703 ICmpInst::Predicate DomPred; 1704 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1705 return false; 1706 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1707 return false; 1708 1709 // Convert the equality comparison to the opposite of the dominating 1710 // comparison and swap the direction for all branch/select users. 1711 // We have conceptually converted: 1712 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1713 // to 1714 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1715 // And similarly for branches. 1716 for (User *U : Cmp->users()) { 1717 if (auto *BI = dyn_cast<BranchInst>(U)) { 1718 assert(BI->isConditional() && "Must be conditional"); 1719 BI->swapSuccessors(); 1720 continue; 1721 } 1722 if (auto *SI = dyn_cast<SelectInst>(U)) { 1723 // Swap operands 1724 SI->swapValues(); 1725 SI->swapProfMetadata(); 1726 continue; 1727 } 1728 llvm_unreachable("Must be a branch or a select"); 1729 } 1730 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1731 return true; 1732 } 1733 1734 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1735 if (sinkCmpExpression(Cmp, *TLI)) 1736 return true; 1737 1738 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1739 return true; 1740 1741 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1742 return true; 1743 1744 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1745 return true; 1746 1747 return false; 1748 } 1749 1750 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1751 /// used in a compare to allow isel to generate better code for targets where 1752 /// this operation can be combined. 1753 /// 1754 /// Return true if any changes are made. 1755 static bool sinkAndCmp0Expression(Instruction *AndI, 1756 const TargetLowering &TLI, 1757 SetOfInstrs &InsertedInsts) { 1758 // Double-check that we're not trying to optimize an instruction that was 1759 // already optimized by some other part of this pass. 1760 assert(!InsertedInsts.count(AndI) && 1761 "Attempting to optimize already optimized and instruction"); 1762 (void) InsertedInsts; 1763 1764 // Nothing to do for single use in same basic block. 1765 if (AndI->hasOneUse() && 1766 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1767 return false; 1768 1769 // Try to avoid cases where sinking/duplicating is likely to increase register 1770 // pressure. 1771 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1772 !isa<ConstantInt>(AndI->getOperand(1)) && 1773 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1774 return false; 1775 1776 for (auto *U : AndI->users()) { 1777 Instruction *User = cast<Instruction>(U); 1778 1779 // Only sink 'and' feeding icmp with 0. 1780 if (!isa<ICmpInst>(User)) 1781 return false; 1782 1783 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1784 if (!CmpC || !CmpC->isZero()) 1785 return false; 1786 } 1787 1788 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1789 return false; 1790 1791 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1792 LLVM_DEBUG(AndI->getParent()->dump()); 1793 1794 // Push the 'and' into the same block as the icmp 0. There should only be 1795 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1796 // others, so we don't need to keep track of which BBs we insert into. 1797 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1798 UI != E; ) { 1799 Use &TheUse = UI.getUse(); 1800 Instruction *User = cast<Instruction>(*UI); 1801 1802 // Preincrement use iterator so we don't invalidate it. 1803 ++UI; 1804 1805 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1806 1807 // Keep the 'and' in the same place if the use is already in the same block. 1808 Instruction *InsertPt = 1809 User->getParent() == AndI->getParent() ? AndI : User; 1810 Instruction *InsertedAnd = 1811 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1812 AndI->getOperand(1), "", InsertPt); 1813 // Propagate the debug info. 1814 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1815 1816 // Replace a use of the 'and' with a use of the new 'and'. 1817 TheUse = InsertedAnd; 1818 ++NumAndUses; 1819 LLVM_DEBUG(User->getParent()->dump()); 1820 } 1821 1822 // We removed all uses, nuke the and. 1823 AndI->eraseFromParent(); 1824 return true; 1825 } 1826 1827 /// Check if the candidates could be combined with a shift instruction, which 1828 /// includes: 1829 /// 1. Truncate instruction 1830 /// 2. And instruction and the imm is a mask of the low bits: 1831 /// imm & (imm+1) == 0 1832 static bool isExtractBitsCandidateUse(Instruction *User) { 1833 if (!isa<TruncInst>(User)) { 1834 if (User->getOpcode() != Instruction::And || 1835 !isa<ConstantInt>(User->getOperand(1))) 1836 return false; 1837 1838 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1839 1840 if ((Cimm & (Cimm + 1)).getBoolValue()) 1841 return false; 1842 } 1843 return true; 1844 } 1845 1846 /// Sink both shift and truncate instruction to the use of truncate's BB. 1847 static bool 1848 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1849 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1850 const TargetLowering &TLI, const DataLayout &DL) { 1851 BasicBlock *UserBB = User->getParent(); 1852 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1853 auto *TruncI = cast<TruncInst>(User); 1854 bool MadeChange = false; 1855 1856 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1857 TruncE = TruncI->user_end(); 1858 TruncUI != TruncE;) { 1859 1860 Use &TruncTheUse = TruncUI.getUse(); 1861 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1862 // Preincrement use iterator so we don't invalidate it. 1863 1864 ++TruncUI; 1865 1866 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1867 if (!ISDOpcode) 1868 continue; 1869 1870 // If the use is actually a legal node, there will not be an 1871 // implicit truncate. 1872 // FIXME: always querying the result type is just an 1873 // approximation; some nodes' legality is determined by the 1874 // operand or other means. There's no good way to find out though. 1875 if (TLI.isOperationLegalOrCustom( 1876 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1877 continue; 1878 1879 // Don't bother for PHI nodes. 1880 if (isa<PHINode>(TruncUser)) 1881 continue; 1882 1883 BasicBlock *TruncUserBB = TruncUser->getParent(); 1884 1885 if (UserBB == TruncUserBB) 1886 continue; 1887 1888 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1889 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1890 1891 if (!InsertedShift && !InsertedTrunc) { 1892 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1893 assert(InsertPt != TruncUserBB->end()); 1894 // Sink the shift 1895 if (ShiftI->getOpcode() == Instruction::AShr) 1896 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1897 "", &*InsertPt); 1898 else 1899 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1900 "", &*InsertPt); 1901 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1902 1903 // Sink the trunc 1904 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1905 TruncInsertPt++; 1906 assert(TruncInsertPt != TruncUserBB->end()); 1907 1908 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1909 TruncI->getType(), "", &*TruncInsertPt); 1910 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1911 1912 MadeChange = true; 1913 1914 TruncTheUse = InsertedTrunc; 1915 } 1916 } 1917 return MadeChange; 1918 } 1919 1920 /// Sink the shift *right* instruction into user blocks if the uses could 1921 /// potentially be combined with this shift instruction and generate BitExtract 1922 /// instruction. It will only be applied if the architecture supports BitExtract 1923 /// instruction. Here is an example: 1924 /// BB1: 1925 /// %x.extract.shift = lshr i64 %arg1, 32 1926 /// BB2: 1927 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1928 /// ==> 1929 /// 1930 /// BB2: 1931 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1932 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1933 /// 1934 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1935 /// instruction. 1936 /// Return true if any changes are made. 1937 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1938 const TargetLowering &TLI, 1939 const DataLayout &DL) { 1940 BasicBlock *DefBB = ShiftI->getParent(); 1941 1942 /// Only insert instructions in each block once. 1943 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1944 1945 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1946 1947 bool MadeChange = false; 1948 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1949 UI != E;) { 1950 Use &TheUse = UI.getUse(); 1951 Instruction *User = cast<Instruction>(*UI); 1952 // Preincrement use iterator so we don't invalidate it. 1953 ++UI; 1954 1955 // Don't bother for PHI nodes. 1956 if (isa<PHINode>(User)) 1957 continue; 1958 1959 if (!isExtractBitsCandidateUse(User)) 1960 continue; 1961 1962 BasicBlock *UserBB = User->getParent(); 1963 1964 if (UserBB == DefBB) { 1965 // If the shift and truncate instruction are in the same BB. The use of 1966 // the truncate(TruncUse) may still introduce another truncate if not 1967 // legal. In this case, we would like to sink both shift and truncate 1968 // instruction to the BB of TruncUse. 1969 // for example: 1970 // BB1: 1971 // i64 shift.result = lshr i64 opnd, imm 1972 // trunc.result = trunc shift.result to i16 1973 // 1974 // BB2: 1975 // ----> We will have an implicit truncate here if the architecture does 1976 // not have i16 compare. 1977 // cmp i16 trunc.result, opnd2 1978 // 1979 if (isa<TruncInst>(User) && shiftIsLegal 1980 // If the type of the truncate is legal, no truncate will be 1981 // introduced in other basic blocks. 1982 && 1983 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1984 MadeChange = 1985 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1986 1987 continue; 1988 } 1989 // If we have already inserted a shift into this block, use it. 1990 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1991 1992 if (!InsertedShift) { 1993 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1994 assert(InsertPt != UserBB->end()); 1995 1996 if (ShiftI->getOpcode() == Instruction::AShr) 1997 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1998 "", &*InsertPt); 1999 else 2000 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 2001 "", &*InsertPt); 2002 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 2003 2004 MadeChange = true; 2005 } 2006 2007 // Replace a use of the shift with a use of the new shift. 2008 TheUse = InsertedShift; 2009 } 2010 2011 // If we removed all uses, or there are none, nuke the shift. 2012 if (ShiftI->use_empty()) { 2013 salvageDebugInfo(*ShiftI); 2014 ShiftI->eraseFromParent(); 2015 MadeChange = true; 2016 } 2017 2018 return MadeChange; 2019 } 2020 2021 /// If counting leading or trailing zeros is an expensive operation and a zero 2022 /// input is defined, add a check for zero to avoid calling the intrinsic. 2023 /// 2024 /// We want to transform: 2025 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 2026 /// 2027 /// into: 2028 /// entry: 2029 /// %cmpz = icmp eq i64 %A, 0 2030 /// br i1 %cmpz, label %cond.end, label %cond.false 2031 /// cond.false: 2032 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 2033 /// br label %cond.end 2034 /// cond.end: 2035 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 2036 /// 2037 /// If the transform is performed, return true and set ModifiedDT to true. 2038 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 2039 const TargetLowering *TLI, 2040 const DataLayout *DL, 2041 bool &ModifiedDT) { 2042 // If a zero input is undefined, it doesn't make sense to despeculate that. 2043 if (match(CountZeros->getOperand(1), m_One())) 2044 return false; 2045 2046 // If it's cheap to speculate, there's nothing to do. 2047 auto IntrinsicID = CountZeros->getIntrinsicID(); 2048 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 2049 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 2050 return false; 2051 2052 // Only handle legal scalar cases. Anything else requires too much work. 2053 Type *Ty = CountZeros->getType(); 2054 unsigned SizeInBits = Ty->getScalarSizeInBits(); 2055 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 2056 return false; 2057 2058 // Bail if the value is never zero. 2059 Value *Op = CountZeros->getOperand(0); 2060 if (isKnownNonZero(Op, *DL)) 2061 return false; 2062 2063 // The intrinsic will be sunk behind a compare against zero and branch. 2064 BasicBlock *StartBlock = CountZeros->getParent(); 2065 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 2066 2067 // Create another block after the count zero intrinsic. A PHI will be added 2068 // in this block to select the result of the intrinsic or the bit-width 2069 // constant if the input to the intrinsic is zero. 2070 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 2071 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 2072 2073 // Set up a builder to create a compare, conditional branch, and PHI. 2074 IRBuilder<> Builder(CountZeros->getContext()); 2075 Builder.SetInsertPoint(StartBlock->getTerminator()); 2076 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 2077 2078 // Replace the unconditional branch that was created by the first split with 2079 // a compare against zero and a conditional branch. 2080 Value *Zero = Constant::getNullValue(Ty); 2081 // Avoid introducing branch on poison. 2082 if (!isGuaranteedNotToBeUndefOrPoison(Op)) 2083 Op = Builder.CreateFreeze(Op, Op->getName() + ".fr"); 2084 Value *Cmp = Builder.CreateICmpEQ(Op, Zero, "cmpz"); 2085 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 2086 StartBlock->getTerminator()->eraseFromParent(); 2087 2088 // Create a PHI in the end block to select either the output of the intrinsic 2089 // or the bit width of the operand. 2090 Builder.SetInsertPoint(&EndBlock->front()); 2091 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 2092 CountZeros->replaceAllUsesWith(PN); 2093 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 2094 PN->addIncoming(BitWidth, StartBlock); 2095 PN->addIncoming(CountZeros, CallBlock); 2096 2097 // We are explicitly handling the zero case, so we can set the intrinsic's 2098 // undefined zero argument to 'true'. This will also prevent reprocessing the 2099 // intrinsic; we only despeculate when a zero input is defined. 2100 CountZeros->setArgOperand(1, Builder.getTrue()); 2101 ModifiedDT = true; 2102 return true; 2103 } 2104 2105 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 2106 BasicBlock *BB = CI->getParent(); 2107 2108 // Lower inline assembly if we can. 2109 // If we found an inline asm expession, and if the target knows how to 2110 // lower it to normal LLVM code, do so now. 2111 if (CI->isInlineAsm()) { 2112 if (TLI->ExpandInlineAsm(CI)) { 2113 // Avoid invalidating the iterator. 2114 CurInstIterator = BB->begin(); 2115 // Avoid processing instructions out of order, which could cause 2116 // reuse before a value is defined. 2117 SunkAddrs.clear(); 2118 return true; 2119 } 2120 // Sink address computing for memory operands into the block. 2121 if (optimizeInlineAsmInst(CI)) 2122 return true; 2123 } 2124 2125 // Align the pointer arguments to this call if the target thinks it's a good 2126 // idea 2127 unsigned MinSize, PrefAlign; 2128 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 2129 for (auto &Arg : CI->args()) { 2130 // We want to align both objects whose address is used directly and 2131 // objects whose address is used in casts and GEPs, though it only makes 2132 // sense for GEPs if the offset is a multiple of the desired alignment and 2133 // if size - offset meets the size threshold. 2134 if (!Arg->getType()->isPointerTy()) 2135 continue; 2136 APInt Offset(DL->getIndexSizeInBits( 2137 cast<PointerType>(Arg->getType())->getAddressSpace()), 2138 0); 2139 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 2140 uint64_t Offset2 = Offset.getLimitedValue(); 2141 if ((Offset2 & (PrefAlign-1)) != 0) 2142 continue; 2143 AllocaInst *AI; 2144 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 2145 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2146 AI->setAlignment(Align(PrefAlign)); 2147 // Global variables can only be aligned if they are defined in this 2148 // object (i.e. they are uniquely initialized in this object), and 2149 // over-aligning global variables that have an explicit section is 2150 // forbidden. 2151 GlobalVariable *GV; 2152 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2153 GV->getPointerAlignment(*DL) < PrefAlign && 2154 DL->getTypeAllocSize(GV->getValueType()) >= 2155 MinSize + Offset2) 2156 GV->setAlignment(MaybeAlign(PrefAlign)); 2157 } 2158 // If this is a memcpy (or similar) then we may be able to improve the 2159 // alignment 2160 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2161 Align DestAlign = getKnownAlignment(MI->getDest(), *DL); 2162 MaybeAlign MIDestAlign = MI->getDestAlign(); 2163 if (!MIDestAlign || DestAlign > *MIDestAlign) 2164 MI->setDestAlignment(DestAlign); 2165 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 2166 MaybeAlign MTISrcAlign = MTI->getSourceAlign(); 2167 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 2168 if (!MTISrcAlign || SrcAlign > *MTISrcAlign) 2169 MTI->setSourceAlignment(SrcAlign); 2170 } 2171 } 2172 } 2173 2174 // If we have a cold call site, try to sink addressing computation into the 2175 // cold block. This interacts with our handling for loads and stores to 2176 // ensure that we can fold all uses of a potential addressing computation 2177 // into their uses. TODO: generalize this to work over profiling data 2178 if (CI->hasFnAttr(Attribute::Cold) && 2179 !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 2180 for (auto &Arg : CI->args()) { 2181 if (!Arg->getType()->isPointerTy()) 2182 continue; 2183 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2184 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 2185 } 2186 2187 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2188 if (II) { 2189 switch (II->getIntrinsicID()) { 2190 default: break; 2191 case Intrinsic::assume: 2192 llvm_unreachable("llvm.assume should have been removed already"); 2193 case Intrinsic::experimental_widenable_condition: { 2194 // Give up on future widening oppurtunties so that we can fold away dead 2195 // paths and merge blocks before going into block-local instruction 2196 // selection. 2197 if (II->use_empty()) { 2198 II->eraseFromParent(); 2199 return true; 2200 } 2201 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 2202 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2203 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2204 }); 2205 return true; 2206 } 2207 case Intrinsic::objectsize: 2208 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2209 case Intrinsic::is_constant: 2210 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2211 case Intrinsic::aarch64_stlxr: 2212 case Intrinsic::aarch64_stxr: { 2213 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2214 if (!ExtVal || !ExtVal->hasOneUse() || 2215 ExtVal->getParent() == CI->getParent()) 2216 return false; 2217 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2218 ExtVal->moveBefore(CI); 2219 // Mark this instruction as "inserted by CGP", so that other 2220 // optimizations don't touch it. 2221 InsertedInsts.insert(ExtVal); 2222 return true; 2223 } 2224 2225 case Intrinsic::launder_invariant_group: 2226 case Intrinsic::strip_invariant_group: { 2227 Value *ArgVal = II->getArgOperand(0); 2228 auto it = LargeOffsetGEPMap.find(II); 2229 if (it != LargeOffsetGEPMap.end()) { 2230 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2231 // Make sure not to have to deal with iterator invalidation 2232 // after possibly adding ArgVal to LargeOffsetGEPMap. 2233 auto GEPs = std::move(it->second); 2234 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2235 LargeOffsetGEPMap.erase(II); 2236 } 2237 2238 II->replaceAllUsesWith(ArgVal); 2239 II->eraseFromParent(); 2240 return true; 2241 } 2242 case Intrinsic::cttz: 2243 case Intrinsic::ctlz: 2244 // If counting zeros is expensive, try to avoid it. 2245 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2246 case Intrinsic::fshl: 2247 case Intrinsic::fshr: 2248 return optimizeFunnelShift(II); 2249 case Intrinsic::dbg_value: 2250 return fixupDbgValue(II); 2251 case Intrinsic::vscale: { 2252 // If datalayout has no special restrictions on vector data layout, 2253 // replace `llvm.vscale` by an equivalent constant expression 2254 // to benefit from cheap constant propagation. 2255 Type *ScalableVectorTy = 2256 VectorType::get(Type::getInt8Ty(II->getContext()), 1, true); 2257 if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) { 2258 auto *Null = Constant::getNullValue(ScalableVectorTy->getPointerTo()); 2259 auto *One = ConstantInt::getSigned(II->getType(), 1); 2260 auto *CGep = 2261 ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One); 2262 II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType())); 2263 II->eraseFromParent(); 2264 return true; 2265 } 2266 break; 2267 } 2268 case Intrinsic::masked_gather: 2269 return optimizeGatherScatterInst(II, II->getArgOperand(0)); 2270 case Intrinsic::masked_scatter: 2271 return optimizeGatherScatterInst(II, II->getArgOperand(1)); 2272 } 2273 2274 SmallVector<Value *, 2> PtrOps; 2275 Type *AccessTy; 2276 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2277 while (!PtrOps.empty()) { 2278 Value *PtrVal = PtrOps.pop_back_val(); 2279 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2280 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2281 return true; 2282 } 2283 } 2284 2285 // From here on out we're working with named functions. 2286 if (!CI->getCalledFunction()) return false; 2287 2288 // Lower all default uses of _chk calls. This is very similar 2289 // to what InstCombineCalls does, but here we are only lowering calls 2290 // to fortified library functions (e.g. __memcpy_chk) that have the default 2291 // "don't know" as the objectsize. Anything else should be left alone. 2292 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2293 IRBuilder<> Builder(CI); 2294 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2295 CI->replaceAllUsesWith(V); 2296 CI->eraseFromParent(); 2297 return true; 2298 } 2299 2300 return false; 2301 } 2302 2303 /// Look for opportunities to duplicate return instructions to the predecessor 2304 /// to enable tail call optimizations. The case it is currently looking for is: 2305 /// @code 2306 /// bb0: 2307 /// %tmp0 = tail call i32 @f0() 2308 /// br label %return 2309 /// bb1: 2310 /// %tmp1 = tail call i32 @f1() 2311 /// br label %return 2312 /// bb2: 2313 /// %tmp2 = tail call i32 @f2() 2314 /// br label %return 2315 /// return: 2316 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2317 /// ret i32 %retval 2318 /// @endcode 2319 /// 2320 /// => 2321 /// 2322 /// @code 2323 /// bb0: 2324 /// %tmp0 = tail call i32 @f0() 2325 /// ret i32 %tmp0 2326 /// bb1: 2327 /// %tmp1 = tail call i32 @f1() 2328 /// ret i32 %tmp1 2329 /// bb2: 2330 /// %tmp2 = tail call i32 @f2() 2331 /// ret i32 %tmp2 2332 /// @endcode 2333 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 2334 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2335 if (!RetI) 2336 return false; 2337 2338 PHINode *PN = nullptr; 2339 ExtractValueInst *EVI = nullptr; 2340 BitCastInst *BCI = nullptr; 2341 Value *V = RetI->getReturnValue(); 2342 if (V) { 2343 BCI = dyn_cast<BitCastInst>(V); 2344 if (BCI) 2345 V = BCI->getOperand(0); 2346 2347 EVI = dyn_cast<ExtractValueInst>(V); 2348 if (EVI) { 2349 V = EVI->getOperand(0); 2350 if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; })) 2351 return false; 2352 } 2353 2354 PN = dyn_cast<PHINode>(V); 2355 if (!PN) 2356 return false; 2357 } 2358 2359 if (PN && PN->getParent() != BB) 2360 return false; 2361 2362 auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) { 2363 const BitCastInst *BC = dyn_cast<BitCastInst>(Inst); 2364 if (BC && BC->hasOneUse()) 2365 Inst = BC->user_back(); 2366 2367 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 2368 return II->getIntrinsicID() == Intrinsic::lifetime_end; 2369 return false; 2370 }; 2371 2372 // Make sure there are no instructions between the first instruction 2373 // and return. 2374 const Instruction *BI = BB->getFirstNonPHI(); 2375 // Skip over debug and the bitcast. 2376 while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI || 2377 isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI)) 2378 BI = BI->getNextNode(); 2379 if (BI != RetI) 2380 return false; 2381 2382 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2383 /// call. 2384 const Function *F = BB->getParent(); 2385 SmallVector<BasicBlock*, 4> TailCallBBs; 2386 if (PN) { 2387 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2388 // Look through bitcasts. 2389 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2390 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2391 BasicBlock *PredBB = PN->getIncomingBlock(I); 2392 // Make sure the phi value is indeed produced by the tail call. 2393 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2394 TLI->mayBeEmittedAsTailCall(CI) && 2395 attributesPermitTailCall(F, CI, RetI, *TLI)) 2396 TailCallBBs.push_back(PredBB); 2397 } 2398 } else { 2399 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2400 for (BasicBlock *Pred : predecessors(BB)) { 2401 if (!VisitedBBs.insert(Pred).second) 2402 continue; 2403 if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) { 2404 CallInst *CI = dyn_cast<CallInst>(I); 2405 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2406 attributesPermitTailCall(F, CI, RetI, *TLI)) 2407 TailCallBBs.push_back(Pred); 2408 } 2409 } 2410 } 2411 2412 bool Changed = false; 2413 for (auto const &TailCallBB : TailCallBBs) { 2414 // Make sure the call instruction is followed by an unconditional branch to 2415 // the return block. 2416 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2417 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2418 continue; 2419 2420 // Duplicate the return into TailCallBB. 2421 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2422 assert(!VerifyBFIUpdates || 2423 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); 2424 BFI->setBlockFreq( 2425 BB, 2426 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency()); 2427 ModifiedDT = Changed = true; 2428 ++NumRetsDup; 2429 } 2430 2431 // If we eliminated all predecessors of the block, delete the block now. 2432 if (Changed && !BB->hasAddressTaken() && pred_empty(BB)) 2433 BB->eraseFromParent(); 2434 2435 return Changed; 2436 } 2437 2438 //===----------------------------------------------------------------------===// 2439 // Memory Optimization 2440 //===----------------------------------------------------------------------===// 2441 2442 namespace { 2443 2444 /// This is an extended version of TargetLowering::AddrMode 2445 /// which holds actual Value*'s for register values. 2446 struct ExtAddrMode : public TargetLowering::AddrMode { 2447 Value *BaseReg = nullptr; 2448 Value *ScaledReg = nullptr; 2449 Value *OriginalValue = nullptr; 2450 bool InBounds = true; 2451 2452 enum FieldName { 2453 NoField = 0x00, 2454 BaseRegField = 0x01, 2455 BaseGVField = 0x02, 2456 BaseOffsField = 0x04, 2457 ScaledRegField = 0x08, 2458 ScaleField = 0x10, 2459 MultipleFields = 0xff 2460 }; 2461 2462 2463 ExtAddrMode() = default; 2464 2465 void print(raw_ostream &OS) const; 2466 void dump() const; 2467 2468 FieldName compare(const ExtAddrMode &other) { 2469 // First check that the types are the same on each field, as differing types 2470 // is something we can't cope with later on. 2471 if (BaseReg && other.BaseReg && 2472 BaseReg->getType() != other.BaseReg->getType()) 2473 return MultipleFields; 2474 if (BaseGV && other.BaseGV && 2475 BaseGV->getType() != other.BaseGV->getType()) 2476 return MultipleFields; 2477 if (ScaledReg && other.ScaledReg && 2478 ScaledReg->getType() != other.ScaledReg->getType()) 2479 return MultipleFields; 2480 2481 // Conservatively reject 'inbounds' mismatches. 2482 if (InBounds != other.InBounds) 2483 return MultipleFields; 2484 2485 // Check each field to see if it differs. 2486 unsigned Result = NoField; 2487 if (BaseReg != other.BaseReg) 2488 Result |= BaseRegField; 2489 if (BaseGV != other.BaseGV) 2490 Result |= BaseGVField; 2491 if (BaseOffs != other.BaseOffs) 2492 Result |= BaseOffsField; 2493 if (ScaledReg != other.ScaledReg) 2494 Result |= ScaledRegField; 2495 // Don't count 0 as being a different scale, because that actually means 2496 // unscaled (which will already be counted by having no ScaledReg). 2497 if (Scale && other.Scale && Scale != other.Scale) 2498 Result |= ScaleField; 2499 2500 if (countPopulation(Result) > 1) 2501 return MultipleFields; 2502 else 2503 return static_cast<FieldName>(Result); 2504 } 2505 2506 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2507 // with no offset. 2508 bool isTrivial() { 2509 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2510 // trivial if at most one of these terms is nonzero, except that BaseGV and 2511 // BaseReg both being zero actually means a null pointer value, which we 2512 // consider to be 'non-zero' here. 2513 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2514 } 2515 2516 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2517 switch (Field) { 2518 default: 2519 return nullptr; 2520 case BaseRegField: 2521 return BaseReg; 2522 case BaseGVField: 2523 return BaseGV; 2524 case ScaledRegField: 2525 return ScaledReg; 2526 case BaseOffsField: 2527 return ConstantInt::get(IntPtrTy, BaseOffs); 2528 } 2529 } 2530 2531 void SetCombinedField(FieldName Field, Value *V, 2532 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2533 switch (Field) { 2534 default: 2535 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2536 break; 2537 case ExtAddrMode::BaseRegField: 2538 BaseReg = V; 2539 break; 2540 case ExtAddrMode::BaseGVField: 2541 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2542 // in the BaseReg field. 2543 assert(BaseReg == nullptr); 2544 BaseReg = V; 2545 BaseGV = nullptr; 2546 break; 2547 case ExtAddrMode::ScaledRegField: 2548 ScaledReg = V; 2549 // If we have a mix of scaled and unscaled addrmodes then we want scale 2550 // to be the scale and not zero. 2551 if (!Scale) 2552 for (const ExtAddrMode &AM : AddrModes) 2553 if (AM.Scale) { 2554 Scale = AM.Scale; 2555 break; 2556 } 2557 break; 2558 case ExtAddrMode::BaseOffsField: 2559 // The offset is no longer a constant, so it goes in ScaledReg with a 2560 // scale of 1. 2561 assert(ScaledReg == nullptr); 2562 ScaledReg = V; 2563 Scale = 1; 2564 BaseOffs = 0; 2565 break; 2566 } 2567 } 2568 }; 2569 2570 } // end anonymous namespace 2571 2572 #ifndef NDEBUG 2573 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2574 AM.print(OS); 2575 return OS; 2576 } 2577 #endif 2578 2579 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2580 void ExtAddrMode::print(raw_ostream &OS) const { 2581 bool NeedPlus = false; 2582 OS << "["; 2583 if (InBounds) 2584 OS << "inbounds "; 2585 if (BaseGV) { 2586 OS << (NeedPlus ? " + " : "") 2587 << "GV:"; 2588 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2589 NeedPlus = true; 2590 } 2591 2592 if (BaseOffs) { 2593 OS << (NeedPlus ? " + " : "") 2594 << BaseOffs; 2595 NeedPlus = true; 2596 } 2597 2598 if (BaseReg) { 2599 OS << (NeedPlus ? " + " : "") 2600 << "Base:"; 2601 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2602 NeedPlus = true; 2603 } 2604 if (Scale) { 2605 OS << (NeedPlus ? " + " : "") 2606 << Scale << "*"; 2607 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2608 } 2609 2610 OS << ']'; 2611 } 2612 2613 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2614 print(dbgs()); 2615 dbgs() << '\n'; 2616 } 2617 #endif 2618 2619 namespace { 2620 2621 /// This class provides transaction based operation on the IR. 2622 /// Every change made through this class is recorded in the internal state and 2623 /// can be undone (rollback) until commit is called. 2624 /// CGP does not check if instructions could be speculatively executed when 2625 /// moved. Preserving the original location would pessimize the debugging 2626 /// experience, as well as negatively impact the quality of sample PGO. 2627 class TypePromotionTransaction { 2628 /// This represents the common interface of the individual transaction. 2629 /// Each class implements the logic for doing one specific modification on 2630 /// the IR via the TypePromotionTransaction. 2631 class TypePromotionAction { 2632 protected: 2633 /// The Instruction modified. 2634 Instruction *Inst; 2635 2636 public: 2637 /// Constructor of the action. 2638 /// The constructor performs the related action on the IR. 2639 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2640 2641 virtual ~TypePromotionAction() = default; 2642 2643 /// Undo the modification done by this action. 2644 /// When this method is called, the IR must be in the same state as it was 2645 /// before this action was applied. 2646 /// \pre Undoing the action works if and only if the IR is in the exact same 2647 /// state as it was directly after this action was applied. 2648 virtual void undo() = 0; 2649 2650 /// Advocate every change made by this action. 2651 /// When the results on the IR of the action are to be kept, it is important 2652 /// to call this function, otherwise hidden information may be kept forever. 2653 virtual void commit() { 2654 // Nothing to be done, this action is not doing anything. 2655 } 2656 }; 2657 2658 /// Utility to remember the position of an instruction. 2659 class InsertionHandler { 2660 /// Position of an instruction. 2661 /// Either an instruction: 2662 /// - Is the first in a basic block: BB is used. 2663 /// - Has a previous instruction: PrevInst is used. 2664 union { 2665 Instruction *PrevInst; 2666 BasicBlock *BB; 2667 } Point; 2668 2669 /// Remember whether or not the instruction had a previous instruction. 2670 bool HasPrevInstruction; 2671 2672 public: 2673 /// Record the position of \p Inst. 2674 InsertionHandler(Instruction *Inst) { 2675 BasicBlock::iterator It = Inst->getIterator(); 2676 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2677 if (HasPrevInstruction) 2678 Point.PrevInst = &*--It; 2679 else 2680 Point.BB = Inst->getParent(); 2681 } 2682 2683 /// Insert \p Inst at the recorded position. 2684 void insert(Instruction *Inst) { 2685 if (HasPrevInstruction) { 2686 if (Inst->getParent()) 2687 Inst->removeFromParent(); 2688 Inst->insertAfter(Point.PrevInst); 2689 } else { 2690 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2691 if (Inst->getParent()) 2692 Inst->moveBefore(Position); 2693 else 2694 Inst->insertBefore(Position); 2695 } 2696 } 2697 }; 2698 2699 /// Move an instruction before another. 2700 class InstructionMoveBefore : public TypePromotionAction { 2701 /// Original position of the instruction. 2702 InsertionHandler Position; 2703 2704 public: 2705 /// Move \p Inst before \p Before. 2706 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2707 : TypePromotionAction(Inst), Position(Inst) { 2708 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2709 << "\n"); 2710 Inst->moveBefore(Before); 2711 } 2712 2713 /// Move the instruction back to its original position. 2714 void undo() override { 2715 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2716 Position.insert(Inst); 2717 } 2718 }; 2719 2720 /// Set the operand of an instruction with a new value. 2721 class OperandSetter : public TypePromotionAction { 2722 /// Original operand of the instruction. 2723 Value *Origin; 2724 2725 /// Index of the modified instruction. 2726 unsigned Idx; 2727 2728 public: 2729 /// Set \p Idx operand of \p Inst with \p NewVal. 2730 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2731 : TypePromotionAction(Inst), Idx(Idx) { 2732 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2733 << "for:" << *Inst << "\n" 2734 << "with:" << *NewVal << "\n"); 2735 Origin = Inst->getOperand(Idx); 2736 Inst->setOperand(Idx, NewVal); 2737 } 2738 2739 /// Restore the original value of the instruction. 2740 void undo() override { 2741 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2742 << "for: " << *Inst << "\n" 2743 << "with: " << *Origin << "\n"); 2744 Inst->setOperand(Idx, Origin); 2745 } 2746 }; 2747 2748 /// Hide the operands of an instruction. 2749 /// Do as if this instruction was not using any of its operands. 2750 class OperandsHider : public TypePromotionAction { 2751 /// The list of original operands. 2752 SmallVector<Value *, 4> OriginalValues; 2753 2754 public: 2755 /// Remove \p Inst from the uses of the operands of \p Inst. 2756 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2757 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2758 unsigned NumOpnds = Inst->getNumOperands(); 2759 OriginalValues.reserve(NumOpnds); 2760 for (unsigned It = 0; It < NumOpnds; ++It) { 2761 // Save the current operand. 2762 Value *Val = Inst->getOperand(It); 2763 OriginalValues.push_back(Val); 2764 // Set a dummy one. 2765 // We could use OperandSetter here, but that would imply an overhead 2766 // that we are not willing to pay. 2767 Inst->setOperand(It, UndefValue::get(Val->getType())); 2768 } 2769 } 2770 2771 /// Restore the original list of uses. 2772 void undo() override { 2773 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2774 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2775 Inst->setOperand(It, OriginalValues[It]); 2776 } 2777 }; 2778 2779 /// Build a truncate instruction. 2780 class TruncBuilder : public TypePromotionAction { 2781 Value *Val; 2782 2783 public: 2784 /// Build a truncate instruction of \p Opnd producing a \p Ty 2785 /// result. 2786 /// trunc Opnd to Ty. 2787 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2788 IRBuilder<> Builder(Opnd); 2789 Builder.SetCurrentDebugLocation(DebugLoc()); 2790 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2791 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2792 } 2793 2794 /// Get the built value. 2795 Value *getBuiltValue() { return Val; } 2796 2797 /// Remove the built instruction. 2798 void undo() override { 2799 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2800 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2801 IVal->eraseFromParent(); 2802 } 2803 }; 2804 2805 /// Build a sign extension instruction. 2806 class SExtBuilder : public TypePromotionAction { 2807 Value *Val; 2808 2809 public: 2810 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2811 /// result. 2812 /// sext Opnd to Ty. 2813 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2814 : TypePromotionAction(InsertPt) { 2815 IRBuilder<> Builder(InsertPt); 2816 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2817 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2818 } 2819 2820 /// Get the built value. 2821 Value *getBuiltValue() { return Val; } 2822 2823 /// Remove the built instruction. 2824 void undo() override { 2825 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2826 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2827 IVal->eraseFromParent(); 2828 } 2829 }; 2830 2831 /// Build a zero extension instruction. 2832 class ZExtBuilder : public TypePromotionAction { 2833 Value *Val; 2834 2835 public: 2836 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2837 /// result. 2838 /// zext Opnd to Ty. 2839 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2840 : TypePromotionAction(InsertPt) { 2841 IRBuilder<> Builder(InsertPt); 2842 Builder.SetCurrentDebugLocation(DebugLoc()); 2843 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2844 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2845 } 2846 2847 /// Get the built value. 2848 Value *getBuiltValue() { return Val; } 2849 2850 /// Remove the built instruction. 2851 void undo() override { 2852 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2853 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2854 IVal->eraseFromParent(); 2855 } 2856 }; 2857 2858 /// Mutate an instruction to another type. 2859 class TypeMutator : public TypePromotionAction { 2860 /// Record the original type. 2861 Type *OrigTy; 2862 2863 public: 2864 /// Mutate the type of \p Inst into \p NewTy. 2865 TypeMutator(Instruction *Inst, Type *NewTy) 2866 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2867 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2868 << "\n"); 2869 Inst->mutateType(NewTy); 2870 } 2871 2872 /// Mutate the instruction back to its original type. 2873 void undo() override { 2874 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2875 << "\n"); 2876 Inst->mutateType(OrigTy); 2877 } 2878 }; 2879 2880 /// Replace the uses of an instruction by another instruction. 2881 class UsesReplacer : public TypePromotionAction { 2882 /// Helper structure to keep track of the replaced uses. 2883 struct InstructionAndIdx { 2884 /// The instruction using the instruction. 2885 Instruction *Inst; 2886 2887 /// The index where this instruction is used for Inst. 2888 unsigned Idx; 2889 2890 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2891 : Inst(Inst), Idx(Idx) {} 2892 }; 2893 2894 /// Keep track of the original uses (pair Instruction, Index). 2895 SmallVector<InstructionAndIdx, 4> OriginalUses; 2896 /// Keep track of the debug users. 2897 SmallVector<DbgValueInst *, 1> DbgValues; 2898 2899 /// Keep track of the new value so that we can undo it by replacing 2900 /// instances of the new value with the original value. 2901 Value *New; 2902 2903 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2904 2905 public: 2906 /// Replace all the use of \p Inst by \p New. 2907 UsesReplacer(Instruction *Inst, Value *New) 2908 : TypePromotionAction(Inst), New(New) { 2909 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2910 << "\n"); 2911 // Record the original uses. 2912 for (Use &U : Inst->uses()) { 2913 Instruction *UserI = cast<Instruction>(U.getUser()); 2914 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2915 } 2916 // Record the debug uses separately. They are not in the instruction's 2917 // use list, but they are replaced by RAUW. 2918 findDbgValues(DbgValues, Inst); 2919 2920 // Now, we can replace the uses. 2921 Inst->replaceAllUsesWith(New); 2922 } 2923 2924 /// Reassign the original uses of Inst to Inst. 2925 void undo() override { 2926 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2927 for (InstructionAndIdx &Use : OriginalUses) 2928 Use.Inst->setOperand(Use.Idx, Inst); 2929 // RAUW has replaced all original uses with references to the new value, 2930 // including the debug uses. Since we are undoing the replacements, 2931 // the original debug uses must also be reinstated to maintain the 2932 // correctness and utility of debug value instructions. 2933 for (auto *DVI : DbgValues) 2934 DVI->replaceVariableLocationOp(New, Inst); 2935 } 2936 }; 2937 2938 /// Remove an instruction from the IR. 2939 class InstructionRemover : public TypePromotionAction { 2940 /// Original position of the instruction. 2941 InsertionHandler Inserter; 2942 2943 /// Helper structure to hide all the link to the instruction. In other 2944 /// words, this helps to do as if the instruction was removed. 2945 OperandsHider Hider; 2946 2947 /// Keep track of the uses replaced, if any. 2948 UsesReplacer *Replacer = nullptr; 2949 2950 /// Keep track of instructions removed. 2951 SetOfInstrs &RemovedInsts; 2952 2953 public: 2954 /// Remove all reference of \p Inst and optionally replace all its 2955 /// uses with New. 2956 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2957 /// \pre If !Inst->use_empty(), then New != nullptr 2958 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2959 Value *New = nullptr) 2960 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2961 RemovedInsts(RemovedInsts) { 2962 if (New) 2963 Replacer = new UsesReplacer(Inst, New); 2964 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2965 RemovedInsts.insert(Inst); 2966 /// The instructions removed here will be freed after completing 2967 /// optimizeBlock() for all blocks as we need to keep track of the 2968 /// removed instructions during promotion. 2969 Inst->removeFromParent(); 2970 } 2971 2972 ~InstructionRemover() override { delete Replacer; } 2973 2974 /// Resurrect the instruction and reassign it to the proper uses if 2975 /// new value was provided when build this action. 2976 void undo() override { 2977 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2978 Inserter.insert(Inst); 2979 if (Replacer) 2980 Replacer->undo(); 2981 Hider.undo(); 2982 RemovedInsts.erase(Inst); 2983 } 2984 }; 2985 2986 public: 2987 /// Restoration point. 2988 /// The restoration point is a pointer to an action instead of an iterator 2989 /// because the iterator may be invalidated but not the pointer. 2990 using ConstRestorationPt = const TypePromotionAction *; 2991 2992 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2993 : RemovedInsts(RemovedInsts) {} 2994 2995 /// Advocate every changes made in that transaction. Return true if any change 2996 /// happen. 2997 bool commit(); 2998 2999 /// Undo all the changes made after the given point. 3000 void rollback(ConstRestorationPt Point); 3001 3002 /// Get the current restoration point. 3003 ConstRestorationPt getRestorationPoint() const; 3004 3005 /// \name API for IR modification with state keeping to support rollback. 3006 /// @{ 3007 /// Same as Instruction::setOperand. 3008 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 3009 3010 /// Same as Instruction::eraseFromParent. 3011 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 3012 3013 /// Same as Value::replaceAllUsesWith. 3014 void replaceAllUsesWith(Instruction *Inst, Value *New); 3015 3016 /// Same as Value::mutateType. 3017 void mutateType(Instruction *Inst, Type *NewTy); 3018 3019 /// Same as IRBuilder::createTrunc. 3020 Value *createTrunc(Instruction *Opnd, Type *Ty); 3021 3022 /// Same as IRBuilder::createSExt. 3023 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 3024 3025 /// Same as IRBuilder::createZExt. 3026 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 3027 3028 /// Same as Instruction::moveBefore. 3029 void moveBefore(Instruction *Inst, Instruction *Before); 3030 /// @} 3031 3032 private: 3033 /// The ordered list of actions made so far. 3034 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 3035 3036 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 3037 3038 SetOfInstrs &RemovedInsts; 3039 }; 3040 3041 } // end anonymous namespace 3042 3043 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 3044 Value *NewVal) { 3045 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 3046 Inst, Idx, NewVal)); 3047 } 3048 3049 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 3050 Value *NewVal) { 3051 Actions.push_back( 3052 std::make_unique<TypePromotionTransaction::InstructionRemover>( 3053 Inst, RemovedInsts, NewVal)); 3054 } 3055 3056 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 3057 Value *New) { 3058 Actions.push_back( 3059 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 3060 } 3061 3062 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 3063 Actions.push_back( 3064 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 3065 } 3066 3067 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 3068 Type *Ty) { 3069 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 3070 Value *Val = Ptr->getBuiltValue(); 3071 Actions.push_back(std::move(Ptr)); 3072 return Val; 3073 } 3074 3075 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 3076 Value *Opnd, Type *Ty) { 3077 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 3078 Value *Val = Ptr->getBuiltValue(); 3079 Actions.push_back(std::move(Ptr)); 3080 return Val; 3081 } 3082 3083 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 3084 Value *Opnd, Type *Ty) { 3085 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 3086 Value *Val = Ptr->getBuiltValue(); 3087 Actions.push_back(std::move(Ptr)); 3088 return Val; 3089 } 3090 3091 void TypePromotionTransaction::moveBefore(Instruction *Inst, 3092 Instruction *Before) { 3093 Actions.push_back( 3094 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 3095 Inst, Before)); 3096 } 3097 3098 TypePromotionTransaction::ConstRestorationPt 3099 TypePromotionTransaction::getRestorationPoint() const { 3100 return !Actions.empty() ? Actions.back().get() : nullptr; 3101 } 3102 3103 bool TypePromotionTransaction::commit() { 3104 for (std::unique_ptr<TypePromotionAction> &Action : Actions) 3105 Action->commit(); 3106 bool Modified = !Actions.empty(); 3107 Actions.clear(); 3108 return Modified; 3109 } 3110 3111 void TypePromotionTransaction::rollback( 3112 TypePromotionTransaction::ConstRestorationPt Point) { 3113 while (!Actions.empty() && Point != Actions.back().get()) { 3114 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 3115 Curr->undo(); 3116 } 3117 } 3118 3119 namespace { 3120 3121 /// A helper class for matching addressing modes. 3122 /// 3123 /// This encapsulates the logic for matching the target-legal addressing modes. 3124 class AddressingModeMatcher { 3125 SmallVectorImpl<Instruction*> &AddrModeInsts; 3126 const TargetLowering &TLI; 3127 const TargetRegisterInfo &TRI; 3128 const DataLayout &DL; 3129 const LoopInfo &LI; 3130 const std::function<const DominatorTree &()> getDTFn; 3131 3132 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 3133 /// the memory instruction that we're computing this address for. 3134 Type *AccessTy; 3135 unsigned AddrSpace; 3136 Instruction *MemoryInst; 3137 3138 /// This is the addressing mode that we're building up. This is 3139 /// part of the return value of this addressing mode matching stuff. 3140 ExtAddrMode &AddrMode; 3141 3142 /// The instructions inserted by other CodeGenPrepare optimizations. 3143 const SetOfInstrs &InsertedInsts; 3144 3145 /// A map from the instructions to their type before promotion. 3146 InstrToOrigTy &PromotedInsts; 3147 3148 /// The ongoing transaction where every action should be registered. 3149 TypePromotionTransaction &TPT; 3150 3151 // A GEP which has too large offset to be folded into the addressing mode. 3152 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 3153 3154 /// This is set to true when we should not do profitability checks. 3155 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 3156 bool IgnoreProfitability; 3157 3158 /// True if we are optimizing for size. 3159 bool OptSize; 3160 3161 ProfileSummaryInfo *PSI; 3162 BlockFrequencyInfo *BFI; 3163 3164 AddressingModeMatcher( 3165 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 3166 const TargetRegisterInfo &TRI, const LoopInfo &LI, 3167 const std::function<const DominatorTree &()> getDTFn, 3168 Type *AT, unsigned AS, Instruction *MI, ExtAddrMode &AM, 3169 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 3170 TypePromotionTransaction &TPT, 3171 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3172 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 3173 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 3174 DL(MI->getModule()->getDataLayout()), LI(LI), getDTFn(getDTFn), 3175 AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM), 3176 InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT), 3177 LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) { 3178 IgnoreProfitability = false; 3179 } 3180 3181 public: 3182 /// Find the maximal addressing mode that a load/store of V can fold, 3183 /// give an access type of AccessTy. This returns a list of involved 3184 /// instructions in AddrModeInsts. 3185 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3186 /// optimizations. 3187 /// \p PromotedInsts maps the instructions to their type before promotion. 3188 /// \p The ongoing transaction where every action should be registered. 3189 static ExtAddrMode 3190 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 3191 SmallVectorImpl<Instruction *> &AddrModeInsts, 3192 const TargetLowering &TLI, const LoopInfo &LI, 3193 const std::function<const DominatorTree &()> getDTFn, 3194 const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts, 3195 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 3196 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3197 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 3198 ExtAddrMode Result; 3199 3200 bool Success = AddressingModeMatcher( 3201 AddrModeInsts, TLI, TRI, LI, getDTFn, AccessTy, AS, MemoryInst, Result, 3202 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 3203 BFI).matchAddr(V, 0); 3204 (void)Success; assert(Success && "Couldn't select *anything*?"); 3205 return Result; 3206 } 3207 3208 private: 3209 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3210 bool matchAddr(Value *Addr, unsigned Depth); 3211 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 3212 bool *MovedAway = nullptr); 3213 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3214 ExtAddrMode &AMBefore, 3215 ExtAddrMode &AMAfter); 3216 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3217 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3218 Value *PromotedOperand) const; 3219 }; 3220 3221 class PhiNodeSet; 3222 3223 /// An iterator for PhiNodeSet. 3224 class PhiNodeSetIterator { 3225 PhiNodeSet * const Set; 3226 size_t CurrentIndex = 0; 3227 3228 public: 3229 /// The constructor. Start should point to either a valid element, or be equal 3230 /// to the size of the underlying SmallVector of the PhiNodeSet. 3231 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 3232 PHINode * operator*() const; 3233 PhiNodeSetIterator& operator++(); 3234 bool operator==(const PhiNodeSetIterator &RHS) const; 3235 bool operator!=(const PhiNodeSetIterator &RHS) const; 3236 }; 3237 3238 /// Keeps a set of PHINodes. 3239 /// 3240 /// This is a minimal set implementation for a specific use case: 3241 /// It is very fast when there are very few elements, but also provides good 3242 /// performance when there are many. It is similar to SmallPtrSet, but also 3243 /// provides iteration by insertion order, which is deterministic and stable 3244 /// across runs. It is also similar to SmallSetVector, but provides removing 3245 /// elements in O(1) time. This is achieved by not actually removing the element 3246 /// from the underlying vector, so comes at the cost of using more memory, but 3247 /// that is fine, since PhiNodeSets are used as short lived objects. 3248 class PhiNodeSet { 3249 friend class PhiNodeSetIterator; 3250 3251 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3252 using iterator = PhiNodeSetIterator; 3253 3254 /// Keeps the elements in the order of their insertion in the underlying 3255 /// vector. To achieve constant time removal, it never deletes any element. 3256 SmallVector<PHINode *, 32> NodeList; 3257 3258 /// Keeps the elements in the underlying set implementation. This (and not the 3259 /// NodeList defined above) is the source of truth on whether an element 3260 /// is actually in the collection. 3261 MapType NodeMap; 3262 3263 /// Points to the first valid (not deleted) element when the set is not empty 3264 /// and the value is not zero. Equals to the size of the underlying vector 3265 /// when the set is empty. When the value is 0, as in the beginning, the 3266 /// first element may or may not be valid. 3267 size_t FirstValidElement = 0; 3268 3269 public: 3270 /// Inserts a new element to the collection. 3271 /// \returns true if the element is actually added, i.e. was not in the 3272 /// collection before the operation. 3273 bool insert(PHINode *Ptr) { 3274 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3275 NodeList.push_back(Ptr); 3276 return true; 3277 } 3278 return false; 3279 } 3280 3281 /// Removes the element from the collection. 3282 /// \returns whether the element is actually removed, i.e. was in the 3283 /// collection before the operation. 3284 bool erase(PHINode *Ptr) { 3285 if (NodeMap.erase(Ptr)) { 3286 SkipRemovedElements(FirstValidElement); 3287 return true; 3288 } 3289 return false; 3290 } 3291 3292 /// Removes all elements and clears the collection. 3293 void clear() { 3294 NodeMap.clear(); 3295 NodeList.clear(); 3296 FirstValidElement = 0; 3297 } 3298 3299 /// \returns an iterator that will iterate the elements in the order of 3300 /// insertion. 3301 iterator begin() { 3302 if (FirstValidElement == 0) 3303 SkipRemovedElements(FirstValidElement); 3304 return PhiNodeSetIterator(this, FirstValidElement); 3305 } 3306 3307 /// \returns an iterator that points to the end of the collection. 3308 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3309 3310 /// Returns the number of elements in the collection. 3311 size_t size() const { 3312 return NodeMap.size(); 3313 } 3314 3315 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3316 size_t count(PHINode *Ptr) const { 3317 return NodeMap.count(Ptr); 3318 } 3319 3320 private: 3321 /// Updates the CurrentIndex so that it will point to a valid element. 3322 /// 3323 /// If the element of NodeList at CurrentIndex is valid, it does not 3324 /// change it. If there are no more valid elements, it updates CurrentIndex 3325 /// to point to the end of the NodeList. 3326 void SkipRemovedElements(size_t &CurrentIndex) { 3327 while (CurrentIndex < NodeList.size()) { 3328 auto it = NodeMap.find(NodeList[CurrentIndex]); 3329 // If the element has been deleted and added again later, NodeMap will 3330 // point to a different index, so CurrentIndex will still be invalid. 3331 if (it != NodeMap.end() && it->second == CurrentIndex) 3332 break; 3333 ++CurrentIndex; 3334 } 3335 } 3336 }; 3337 3338 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3339 : Set(Set), CurrentIndex(Start) {} 3340 3341 PHINode * PhiNodeSetIterator::operator*() const { 3342 assert(CurrentIndex < Set->NodeList.size() && 3343 "PhiNodeSet access out of range"); 3344 return Set->NodeList[CurrentIndex]; 3345 } 3346 3347 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 3348 assert(CurrentIndex < Set->NodeList.size() && 3349 "PhiNodeSet access out of range"); 3350 ++CurrentIndex; 3351 Set->SkipRemovedElements(CurrentIndex); 3352 return *this; 3353 } 3354 3355 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3356 return CurrentIndex == RHS.CurrentIndex; 3357 } 3358 3359 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3360 return !((*this) == RHS); 3361 } 3362 3363 /// Keep track of simplification of Phi nodes. 3364 /// Accept the set of all phi nodes and erase phi node from this set 3365 /// if it is simplified. 3366 class SimplificationTracker { 3367 DenseMap<Value *, Value *> Storage; 3368 const SimplifyQuery &SQ; 3369 // Tracks newly created Phi nodes. The elements are iterated by insertion 3370 // order. 3371 PhiNodeSet AllPhiNodes; 3372 // Tracks newly created Select nodes. 3373 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3374 3375 public: 3376 SimplificationTracker(const SimplifyQuery &sq) 3377 : SQ(sq) {} 3378 3379 Value *Get(Value *V) { 3380 do { 3381 auto SV = Storage.find(V); 3382 if (SV == Storage.end()) 3383 return V; 3384 V = SV->second; 3385 } while (true); 3386 } 3387 3388 Value *Simplify(Value *Val) { 3389 SmallVector<Value *, 32> WorkList; 3390 SmallPtrSet<Value *, 32> Visited; 3391 WorkList.push_back(Val); 3392 while (!WorkList.empty()) { 3393 auto *P = WorkList.pop_back_val(); 3394 if (!Visited.insert(P).second) 3395 continue; 3396 if (auto *PI = dyn_cast<Instruction>(P)) 3397 if (Value *V = simplifyInstruction(cast<Instruction>(PI), SQ)) { 3398 for (auto *U : PI->users()) 3399 WorkList.push_back(cast<Value>(U)); 3400 Put(PI, V); 3401 PI->replaceAllUsesWith(V); 3402 if (auto *PHI = dyn_cast<PHINode>(PI)) 3403 AllPhiNodes.erase(PHI); 3404 if (auto *Select = dyn_cast<SelectInst>(PI)) 3405 AllSelectNodes.erase(Select); 3406 PI->eraseFromParent(); 3407 } 3408 } 3409 return Get(Val); 3410 } 3411 3412 void Put(Value *From, Value *To) { 3413 Storage.insert({ From, To }); 3414 } 3415 3416 void ReplacePhi(PHINode *From, PHINode *To) { 3417 Value* OldReplacement = Get(From); 3418 while (OldReplacement != From) { 3419 From = To; 3420 To = dyn_cast<PHINode>(OldReplacement); 3421 OldReplacement = Get(From); 3422 } 3423 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3424 Put(From, To); 3425 From->replaceAllUsesWith(To); 3426 AllPhiNodes.erase(From); 3427 From->eraseFromParent(); 3428 } 3429 3430 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3431 3432 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3433 3434 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3435 3436 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3437 3438 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3439 3440 void destroyNewNodes(Type *CommonType) { 3441 // For safe erasing, replace the uses with dummy value first. 3442 auto *Dummy = UndefValue::get(CommonType); 3443 for (auto *I : AllPhiNodes) { 3444 I->replaceAllUsesWith(Dummy); 3445 I->eraseFromParent(); 3446 } 3447 AllPhiNodes.clear(); 3448 for (auto *I : AllSelectNodes) { 3449 I->replaceAllUsesWith(Dummy); 3450 I->eraseFromParent(); 3451 } 3452 AllSelectNodes.clear(); 3453 } 3454 }; 3455 3456 /// A helper class for combining addressing modes. 3457 class AddressingModeCombiner { 3458 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3459 typedef std::pair<PHINode *, PHINode *> PHIPair; 3460 3461 private: 3462 /// The addressing modes we've collected. 3463 SmallVector<ExtAddrMode, 16> AddrModes; 3464 3465 /// The field in which the AddrModes differ, when we have more than one. 3466 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3467 3468 /// Are the AddrModes that we have all just equal to their original values? 3469 bool AllAddrModesTrivial = true; 3470 3471 /// Common Type for all different fields in addressing modes. 3472 Type *CommonType = nullptr; 3473 3474 /// SimplifyQuery for simplifyInstruction utility. 3475 const SimplifyQuery &SQ; 3476 3477 /// Original Address. 3478 Value *Original; 3479 3480 public: 3481 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3482 : SQ(_SQ), Original(OriginalValue) {} 3483 3484 /// Get the combined AddrMode 3485 const ExtAddrMode &getAddrMode() const { 3486 return AddrModes[0]; 3487 } 3488 3489 /// Add a new AddrMode if it's compatible with the AddrModes we already 3490 /// have. 3491 /// \return True iff we succeeded in doing so. 3492 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3493 // Take note of if we have any non-trivial AddrModes, as we need to detect 3494 // when all AddrModes are trivial as then we would introduce a phi or select 3495 // which just duplicates what's already there. 3496 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3497 3498 // If this is the first addrmode then everything is fine. 3499 if (AddrModes.empty()) { 3500 AddrModes.emplace_back(NewAddrMode); 3501 return true; 3502 } 3503 3504 // Figure out how different this is from the other address modes, which we 3505 // can do just by comparing against the first one given that we only care 3506 // about the cumulative difference. 3507 ExtAddrMode::FieldName ThisDifferentField = 3508 AddrModes[0].compare(NewAddrMode); 3509 if (DifferentField == ExtAddrMode::NoField) 3510 DifferentField = ThisDifferentField; 3511 else if (DifferentField != ThisDifferentField) 3512 DifferentField = ExtAddrMode::MultipleFields; 3513 3514 // If NewAddrMode differs in more than one dimension we cannot handle it. 3515 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3516 3517 // If Scale Field is different then we reject. 3518 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3519 3520 // We also must reject the case when base offset is different and 3521 // scale reg is not null, we cannot handle this case due to merge of 3522 // different offsets will be used as ScaleReg. 3523 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3524 !NewAddrMode.ScaledReg); 3525 3526 // We also must reject the case when GV is different and BaseReg installed 3527 // due to we want to use base reg as a merge of GV values. 3528 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3529 !NewAddrMode.HasBaseReg); 3530 3531 // Even if NewAddMode is the same we still need to collect it due to 3532 // original value is different. And later we will need all original values 3533 // as anchors during finding the common Phi node. 3534 if (CanHandle) 3535 AddrModes.emplace_back(NewAddrMode); 3536 else 3537 AddrModes.clear(); 3538 3539 return CanHandle; 3540 } 3541 3542 /// Combine the addressing modes we've collected into a single 3543 /// addressing mode. 3544 /// \return True iff we successfully combined them or we only had one so 3545 /// didn't need to combine them anyway. 3546 bool combineAddrModes() { 3547 // If we have no AddrModes then they can't be combined. 3548 if (AddrModes.size() == 0) 3549 return false; 3550 3551 // A single AddrMode can trivially be combined. 3552 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3553 return true; 3554 3555 // If the AddrModes we collected are all just equal to the value they are 3556 // derived from then combining them wouldn't do anything useful. 3557 if (AllAddrModesTrivial) 3558 return false; 3559 3560 if (!addrModeCombiningAllowed()) 3561 return false; 3562 3563 // Build a map between <original value, basic block where we saw it> to 3564 // value of base register. 3565 // Bail out if there is no common type. 3566 FoldAddrToValueMapping Map; 3567 if (!initializeMap(Map)) 3568 return false; 3569 3570 Value *CommonValue = findCommon(Map); 3571 if (CommonValue) 3572 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3573 return CommonValue != nullptr; 3574 } 3575 3576 private: 3577 /// Initialize Map with anchor values. For address seen 3578 /// we set the value of different field saw in this address. 3579 /// At the same time we find a common type for different field we will 3580 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3581 /// Return false if there is no common type found. 3582 bool initializeMap(FoldAddrToValueMapping &Map) { 3583 // Keep track of keys where the value is null. We will need to replace it 3584 // with constant null when we know the common type. 3585 SmallVector<Value *, 2> NullValue; 3586 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3587 for (auto &AM : AddrModes) { 3588 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3589 if (DV) { 3590 auto *Type = DV->getType(); 3591 if (CommonType && CommonType != Type) 3592 return false; 3593 CommonType = Type; 3594 Map[AM.OriginalValue] = DV; 3595 } else { 3596 NullValue.push_back(AM.OriginalValue); 3597 } 3598 } 3599 assert(CommonType && "At least one non-null value must be!"); 3600 for (auto *V : NullValue) 3601 Map[V] = Constant::getNullValue(CommonType); 3602 return true; 3603 } 3604 3605 /// We have mapping between value A and other value B where B was a field in 3606 /// addressing mode represented by A. Also we have an original value C 3607 /// representing an address we start with. Traversing from C through phi and 3608 /// selects we ended up with A's in a map. This utility function tries to find 3609 /// a value V which is a field in addressing mode C and traversing through phi 3610 /// nodes and selects we will end up in corresponded values B in a map. 3611 /// The utility will create a new Phi/Selects if needed. 3612 // The simple example looks as follows: 3613 // BB1: 3614 // p1 = b1 + 40 3615 // br cond BB2, BB3 3616 // BB2: 3617 // p2 = b2 + 40 3618 // br BB3 3619 // BB3: 3620 // p = phi [p1, BB1], [p2, BB2] 3621 // v = load p 3622 // Map is 3623 // p1 -> b1 3624 // p2 -> b2 3625 // Request is 3626 // p -> ? 3627 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3628 Value *findCommon(FoldAddrToValueMapping &Map) { 3629 // Tracks the simplification of newly created phi nodes. The reason we use 3630 // this mapping is because we will add new created Phi nodes in AddrToBase. 3631 // Simplification of Phi nodes is recursive, so some Phi node may 3632 // be simplified after we added it to AddrToBase. In reality this 3633 // simplification is possible only if original phi/selects were not 3634 // simplified yet. 3635 // Using this mapping we can find the current value in AddrToBase. 3636 SimplificationTracker ST(SQ); 3637 3638 // First step, DFS to create PHI nodes for all intermediate blocks. 3639 // Also fill traverse order for the second step. 3640 SmallVector<Value *, 32> TraverseOrder; 3641 InsertPlaceholders(Map, TraverseOrder, ST); 3642 3643 // Second Step, fill new nodes by merged values and simplify if possible. 3644 FillPlaceholders(Map, TraverseOrder, ST); 3645 3646 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3647 ST.destroyNewNodes(CommonType); 3648 return nullptr; 3649 } 3650 3651 // Now we'd like to match New Phi nodes to existed ones. 3652 unsigned PhiNotMatchedCount = 0; 3653 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3654 ST.destroyNewNodes(CommonType); 3655 return nullptr; 3656 } 3657 3658 auto *Result = ST.Get(Map.find(Original)->second); 3659 if (Result) { 3660 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3661 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3662 } 3663 return Result; 3664 } 3665 3666 /// Try to match PHI node to Candidate. 3667 /// Matcher tracks the matched Phi nodes. 3668 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3669 SmallSetVector<PHIPair, 8> &Matcher, 3670 PhiNodeSet &PhiNodesToMatch) { 3671 SmallVector<PHIPair, 8> WorkList; 3672 Matcher.insert({ PHI, Candidate }); 3673 SmallSet<PHINode *, 8> MatchedPHIs; 3674 MatchedPHIs.insert(PHI); 3675 WorkList.push_back({ PHI, Candidate }); 3676 SmallSet<PHIPair, 8> Visited; 3677 while (!WorkList.empty()) { 3678 auto Item = WorkList.pop_back_val(); 3679 if (!Visited.insert(Item).second) 3680 continue; 3681 // We iterate over all incoming values to Phi to compare them. 3682 // If values are different and both of them Phi and the first one is a 3683 // Phi we added (subject to match) and both of them is in the same basic 3684 // block then we can match our pair if values match. So we state that 3685 // these values match and add it to work list to verify that. 3686 for (auto B : Item.first->blocks()) { 3687 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3688 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3689 if (FirstValue == SecondValue) 3690 continue; 3691 3692 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3693 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3694 3695 // One of them is not Phi or 3696 // The first one is not Phi node from the set we'd like to match or 3697 // Phi nodes from different basic blocks then 3698 // we will not be able to match. 3699 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3700 FirstPhi->getParent() != SecondPhi->getParent()) 3701 return false; 3702 3703 // If we already matched them then continue. 3704 if (Matcher.count({ FirstPhi, SecondPhi })) 3705 continue; 3706 // So the values are different and does not match. So we need them to 3707 // match. (But we register no more than one match per PHI node, so that 3708 // we won't later try to replace them twice.) 3709 if (MatchedPHIs.insert(FirstPhi).second) 3710 Matcher.insert({ FirstPhi, SecondPhi }); 3711 // But me must check it. 3712 WorkList.push_back({ FirstPhi, SecondPhi }); 3713 } 3714 } 3715 return true; 3716 } 3717 3718 /// For the given set of PHI nodes (in the SimplificationTracker) try 3719 /// to find their equivalents. 3720 /// Returns false if this matching fails and creation of new Phi is disabled. 3721 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3722 unsigned &PhiNotMatchedCount) { 3723 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3724 // order, so the replacements (ReplacePhi) are also done in a deterministic 3725 // order. 3726 SmallSetVector<PHIPair, 8> Matched; 3727 SmallPtrSet<PHINode *, 8> WillNotMatch; 3728 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3729 while (PhiNodesToMatch.size()) { 3730 PHINode *PHI = *PhiNodesToMatch.begin(); 3731 3732 // Add us, if no Phi nodes in the basic block we do not match. 3733 WillNotMatch.clear(); 3734 WillNotMatch.insert(PHI); 3735 3736 // Traverse all Phis until we found equivalent or fail to do that. 3737 bool IsMatched = false; 3738 for (auto &P : PHI->getParent()->phis()) { 3739 // Skip new Phi nodes. 3740 if (PhiNodesToMatch.count(&P)) 3741 continue; 3742 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3743 break; 3744 // If it does not match, collect all Phi nodes from matcher. 3745 // if we end up with no match, them all these Phi nodes will not match 3746 // later. 3747 for (auto M : Matched) 3748 WillNotMatch.insert(M.first); 3749 Matched.clear(); 3750 } 3751 if (IsMatched) { 3752 // Replace all matched values and erase them. 3753 for (auto MV : Matched) 3754 ST.ReplacePhi(MV.first, MV.second); 3755 Matched.clear(); 3756 continue; 3757 } 3758 // If we are not allowed to create new nodes then bail out. 3759 if (!AllowNewPhiNodes) 3760 return false; 3761 // Just remove all seen values in matcher. They will not match anything. 3762 PhiNotMatchedCount += WillNotMatch.size(); 3763 for (auto *P : WillNotMatch) 3764 PhiNodesToMatch.erase(P); 3765 } 3766 return true; 3767 } 3768 /// Fill the placeholders with values from predecessors and simplify them. 3769 void FillPlaceholders(FoldAddrToValueMapping &Map, 3770 SmallVectorImpl<Value *> &TraverseOrder, 3771 SimplificationTracker &ST) { 3772 while (!TraverseOrder.empty()) { 3773 Value *Current = TraverseOrder.pop_back_val(); 3774 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3775 Value *V = Map[Current]; 3776 3777 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3778 // CurrentValue also must be Select. 3779 auto *CurrentSelect = cast<SelectInst>(Current); 3780 auto *TrueValue = CurrentSelect->getTrueValue(); 3781 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3782 Select->setTrueValue(ST.Get(Map[TrueValue])); 3783 auto *FalseValue = CurrentSelect->getFalseValue(); 3784 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3785 Select->setFalseValue(ST.Get(Map[FalseValue])); 3786 } else { 3787 // Must be a Phi node then. 3788 auto *PHI = cast<PHINode>(V); 3789 // Fill the Phi node with values from predecessors. 3790 for (auto *B : predecessors(PHI->getParent())) { 3791 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3792 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3793 PHI->addIncoming(ST.Get(Map[PV]), B); 3794 } 3795 } 3796 Map[Current] = ST.Simplify(V); 3797 } 3798 } 3799 3800 /// Starting from original value recursively iterates over def-use chain up to 3801 /// known ending values represented in a map. For each traversed phi/select 3802 /// inserts a placeholder Phi or Select. 3803 /// Reports all new created Phi/Select nodes by adding them to set. 3804 /// Also reports and order in what values have been traversed. 3805 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3806 SmallVectorImpl<Value *> &TraverseOrder, 3807 SimplificationTracker &ST) { 3808 SmallVector<Value *, 32> Worklist; 3809 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3810 "Address must be a Phi or Select node"); 3811 auto *Dummy = UndefValue::get(CommonType); 3812 Worklist.push_back(Original); 3813 while (!Worklist.empty()) { 3814 Value *Current = Worklist.pop_back_val(); 3815 // if it is already visited or it is an ending value then skip it. 3816 if (Map.find(Current) != Map.end()) 3817 continue; 3818 TraverseOrder.push_back(Current); 3819 3820 // CurrentValue must be a Phi node or select. All others must be covered 3821 // by anchors. 3822 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3823 // Is it OK to get metadata from OrigSelect?! 3824 // Create a Select placeholder with dummy value. 3825 SelectInst *Select = SelectInst::Create( 3826 CurrentSelect->getCondition(), Dummy, Dummy, 3827 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3828 Map[Current] = Select; 3829 ST.insertNewSelect(Select); 3830 // We are interested in True and False values. 3831 Worklist.push_back(CurrentSelect->getTrueValue()); 3832 Worklist.push_back(CurrentSelect->getFalseValue()); 3833 } else { 3834 // It must be a Phi node then. 3835 PHINode *CurrentPhi = cast<PHINode>(Current); 3836 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3837 PHINode *PHI = 3838 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3839 Map[Current] = PHI; 3840 ST.insertNewPhi(PHI); 3841 append_range(Worklist, CurrentPhi->incoming_values()); 3842 } 3843 } 3844 } 3845 3846 bool addrModeCombiningAllowed() { 3847 if (DisableComplexAddrModes) 3848 return false; 3849 switch (DifferentField) { 3850 default: 3851 return false; 3852 case ExtAddrMode::BaseRegField: 3853 return AddrSinkCombineBaseReg; 3854 case ExtAddrMode::BaseGVField: 3855 return AddrSinkCombineBaseGV; 3856 case ExtAddrMode::BaseOffsField: 3857 return AddrSinkCombineBaseOffs; 3858 case ExtAddrMode::ScaledRegField: 3859 return AddrSinkCombineScaledReg; 3860 } 3861 } 3862 }; 3863 } // end anonymous namespace 3864 3865 /// Try adding ScaleReg*Scale to the current addressing mode. 3866 /// Return true and update AddrMode if this addr mode is legal for the target, 3867 /// false if not. 3868 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3869 unsigned Depth) { 3870 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3871 // mode. Just process that directly. 3872 if (Scale == 1) 3873 return matchAddr(ScaleReg, Depth); 3874 3875 // If the scale is 0, it takes nothing to add this. 3876 if (Scale == 0) 3877 return true; 3878 3879 // If we already have a scale of this value, we can add to it, otherwise, we 3880 // need an available scale field. 3881 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3882 return false; 3883 3884 ExtAddrMode TestAddrMode = AddrMode; 3885 3886 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3887 // [A+B + A*7] -> [B+A*8]. 3888 TestAddrMode.Scale += Scale; 3889 TestAddrMode.ScaledReg = ScaleReg; 3890 3891 // If the new address isn't legal, bail out. 3892 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3893 return false; 3894 3895 // It was legal, so commit it. 3896 AddrMode = TestAddrMode; 3897 3898 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3899 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3900 // X*Scale + C*Scale to addr mode. If we found available IV increment, do not 3901 // go any further: we can reuse it and cannot eliminate it. 3902 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3903 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3904 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) && 3905 !isIVIncrement(ScaleReg, &LI) && CI->getValue().isSignedIntN(64)) { 3906 TestAddrMode.InBounds = false; 3907 TestAddrMode.ScaledReg = AddLHS; 3908 TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; 3909 3910 // If this addressing mode is legal, commit it and remember that we folded 3911 // this instruction. 3912 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3913 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3914 AddrMode = TestAddrMode; 3915 return true; 3916 } 3917 // Restore status quo. 3918 TestAddrMode = AddrMode; 3919 } 3920 3921 // If this is an add recurrence with a constant step, return the increment 3922 // instruction and the canonicalized step. 3923 auto GetConstantStep = [this](const Value * V) 3924 ->Optional<std::pair<Instruction *, APInt> > { 3925 auto *PN = dyn_cast<PHINode>(V); 3926 if (!PN) 3927 return None; 3928 auto IVInc = getIVIncrement(PN, &LI); 3929 if (!IVInc) 3930 return None; 3931 // TODO: The result of the intrinsics above is two-compliment. However when 3932 // IV inc is expressed as add or sub, iv.next is potentially a poison value. 3933 // If it has nuw or nsw flags, we need to make sure that these flags are 3934 // inferrable at the point of memory instruction. Otherwise we are replacing 3935 // well-defined two-compliment computation with poison. Currently, to avoid 3936 // potentially complex analysis needed to prove this, we reject such cases. 3937 if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first)) 3938 if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap()) 3939 return None; 3940 if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second)) 3941 return std::make_pair(IVInc->first, ConstantStep->getValue()); 3942 return None; 3943 }; 3944 3945 // Try to account for the following special case: 3946 // 1. ScaleReg is an inductive variable; 3947 // 2. We use it with non-zero offset; 3948 // 3. IV's increment is available at the point of memory instruction. 3949 // 3950 // In this case, we may reuse the IV increment instead of the IV Phi to 3951 // achieve the following advantages: 3952 // 1. If IV step matches the offset, we will have no need in the offset; 3953 // 2. Even if they don't match, we will reduce the overlap of living IV 3954 // and IV increment, that will potentially lead to better register 3955 // assignment. 3956 if (AddrMode.BaseOffs) { 3957 if (auto IVStep = GetConstantStep(ScaleReg)) { 3958 Instruction *IVInc = IVStep->first; 3959 // The following assert is important to ensure a lack of infinite loops. 3960 // This transforms is (intentionally) the inverse of the one just above. 3961 // If they don't agree on the definition of an increment, we'd alternate 3962 // back and forth indefinitely. 3963 assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep"); 3964 APInt Step = IVStep->second; 3965 APInt Offset = Step * AddrMode.Scale; 3966 if (Offset.isSignedIntN(64)) { 3967 TestAddrMode.InBounds = false; 3968 TestAddrMode.ScaledReg = IVInc; 3969 TestAddrMode.BaseOffs -= Offset.getLimitedValue(); 3970 // If this addressing mode is legal, commit it.. 3971 // (Note that we defer the (expensive) domtree base legality check 3972 // to the very last possible point.) 3973 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) && 3974 getDTFn().dominates(IVInc, MemoryInst)) { 3975 AddrModeInsts.push_back(cast<Instruction>(IVInc)); 3976 AddrMode = TestAddrMode; 3977 return true; 3978 } 3979 // Restore status quo. 3980 TestAddrMode = AddrMode; 3981 } 3982 } 3983 } 3984 3985 // Otherwise, just return what we have. 3986 return true; 3987 } 3988 3989 /// This is a little filter, which returns true if an addressing computation 3990 /// involving I might be folded into a load/store accessing it. 3991 /// This doesn't need to be perfect, but needs to accept at least 3992 /// the set of instructions that MatchOperationAddr can. 3993 static bool MightBeFoldableInst(Instruction *I) { 3994 switch (I->getOpcode()) { 3995 case Instruction::BitCast: 3996 case Instruction::AddrSpaceCast: 3997 // Don't touch identity bitcasts. 3998 if (I->getType() == I->getOperand(0)->getType()) 3999 return false; 4000 return I->getType()->isIntOrPtrTy(); 4001 case Instruction::PtrToInt: 4002 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4003 return true; 4004 case Instruction::IntToPtr: 4005 // We know the input is intptr_t, so this is foldable. 4006 return true; 4007 case Instruction::Add: 4008 return true; 4009 case Instruction::Mul: 4010 case Instruction::Shl: 4011 // Can only handle X*C and X << C. 4012 return isa<ConstantInt>(I->getOperand(1)); 4013 case Instruction::GetElementPtr: 4014 return true; 4015 default: 4016 return false; 4017 } 4018 } 4019 4020 /// Check whether or not \p Val is a legal instruction for \p TLI. 4021 /// \note \p Val is assumed to be the product of some type promotion. 4022 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 4023 /// to be legal, as the non-promoted value would have had the same state. 4024 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 4025 const DataLayout &DL, Value *Val) { 4026 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 4027 if (!PromotedInst) 4028 return false; 4029 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 4030 // If the ISDOpcode is undefined, it was undefined before the promotion. 4031 if (!ISDOpcode) 4032 return true; 4033 // Otherwise, check if the promoted instruction is legal or not. 4034 return TLI.isOperationLegalOrCustom( 4035 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 4036 } 4037 4038 namespace { 4039 4040 /// Hepler class to perform type promotion. 4041 class TypePromotionHelper { 4042 /// Utility function to add a promoted instruction \p ExtOpnd to 4043 /// \p PromotedInsts and record the type of extension we have seen. 4044 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 4045 Instruction *ExtOpnd, 4046 bool IsSExt) { 4047 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4048 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 4049 if (It != PromotedInsts.end()) { 4050 // If the new extension is same as original, the information in 4051 // PromotedInsts[ExtOpnd] is still correct. 4052 if (It->second.getInt() == ExtTy) 4053 return; 4054 4055 // Now the new extension is different from old extension, we make 4056 // the type information invalid by setting extension type to 4057 // BothExtension. 4058 ExtTy = BothExtension; 4059 } 4060 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 4061 } 4062 4063 /// Utility function to query the original type of instruction \p Opnd 4064 /// with a matched extension type. If the extension doesn't match, we 4065 /// cannot use the information we had on the original type. 4066 /// BothExtension doesn't match any extension type. 4067 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 4068 Instruction *Opnd, 4069 bool IsSExt) { 4070 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4071 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 4072 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 4073 return It->second.getPointer(); 4074 return nullptr; 4075 } 4076 4077 /// Utility function to check whether or not a sign or zero extension 4078 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 4079 /// either using the operands of \p Inst or promoting \p Inst. 4080 /// The type of the extension is defined by \p IsSExt. 4081 /// In other words, check if: 4082 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 4083 /// #1 Promotion applies: 4084 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 4085 /// #2 Operand reuses: 4086 /// ext opnd1 to ConsideredExtType. 4087 /// \p PromotedInsts maps the instructions to their type before promotion. 4088 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 4089 const InstrToOrigTy &PromotedInsts, bool IsSExt); 4090 4091 /// Utility function to determine if \p OpIdx should be promoted when 4092 /// promoting \p Inst. 4093 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 4094 return !(isa<SelectInst>(Inst) && OpIdx == 0); 4095 } 4096 4097 /// Utility function to promote the operand of \p Ext when this 4098 /// operand is a promotable trunc or sext or zext. 4099 /// \p PromotedInsts maps the instructions to their type before promotion. 4100 /// \p CreatedInstsCost[out] contains the cost of all instructions 4101 /// created to promote the operand of Ext. 4102 /// Newly added extensions are inserted in \p Exts. 4103 /// Newly added truncates are inserted in \p Truncs. 4104 /// Should never be called directly. 4105 /// \return The promoted value which is used instead of Ext. 4106 static Value *promoteOperandForTruncAndAnyExt( 4107 Instruction *Ext, TypePromotionTransaction &TPT, 4108 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4109 SmallVectorImpl<Instruction *> *Exts, 4110 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 4111 4112 /// Utility function to promote the operand of \p Ext when this 4113 /// operand is promotable and is not a supported trunc or sext. 4114 /// \p PromotedInsts maps the instructions to their type before promotion. 4115 /// \p CreatedInstsCost[out] contains the cost of all the instructions 4116 /// created to promote the operand of Ext. 4117 /// Newly added extensions are inserted in \p Exts. 4118 /// Newly added truncates are inserted in \p Truncs. 4119 /// Should never be called directly. 4120 /// \return The promoted value which is used instead of Ext. 4121 static Value *promoteOperandForOther(Instruction *Ext, 4122 TypePromotionTransaction &TPT, 4123 InstrToOrigTy &PromotedInsts, 4124 unsigned &CreatedInstsCost, 4125 SmallVectorImpl<Instruction *> *Exts, 4126 SmallVectorImpl<Instruction *> *Truncs, 4127 const TargetLowering &TLI, bool IsSExt); 4128 4129 /// \see promoteOperandForOther. 4130 static Value *signExtendOperandForOther( 4131 Instruction *Ext, TypePromotionTransaction &TPT, 4132 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4133 SmallVectorImpl<Instruction *> *Exts, 4134 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4135 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4136 Exts, Truncs, TLI, true); 4137 } 4138 4139 /// \see promoteOperandForOther. 4140 static Value *zeroExtendOperandForOther( 4141 Instruction *Ext, TypePromotionTransaction &TPT, 4142 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4143 SmallVectorImpl<Instruction *> *Exts, 4144 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4145 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4146 Exts, Truncs, TLI, false); 4147 } 4148 4149 public: 4150 /// Type for the utility function that promotes the operand of Ext. 4151 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 4152 InstrToOrigTy &PromotedInsts, 4153 unsigned &CreatedInstsCost, 4154 SmallVectorImpl<Instruction *> *Exts, 4155 SmallVectorImpl<Instruction *> *Truncs, 4156 const TargetLowering &TLI); 4157 4158 /// Given a sign/zero extend instruction \p Ext, return the appropriate 4159 /// action to promote the operand of \p Ext instead of using Ext. 4160 /// \return NULL if no promotable action is possible with the current 4161 /// sign extension. 4162 /// \p InsertedInsts keeps track of all the instructions inserted by the 4163 /// other CodeGenPrepare optimizations. This information is important 4164 /// because we do not want to promote these instructions as CodeGenPrepare 4165 /// will reinsert them later. Thus creating an infinite loop: create/remove. 4166 /// \p PromotedInsts maps the instructions to their type before promotion. 4167 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 4168 const TargetLowering &TLI, 4169 const InstrToOrigTy &PromotedInsts); 4170 }; 4171 4172 } // end anonymous namespace 4173 4174 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 4175 Type *ConsideredExtType, 4176 const InstrToOrigTy &PromotedInsts, 4177 bool IsSExt) { 4178 // The promotion helper does not know how to deal with vector types yet. 4179 // To be able to fix that, we would need to fix the places where we 4180 // statically extend, e.g., constants and such. 4181 if (Inst->getType()->isVectorTy()) 4182 return false; 4183 4184 // We can always get through zext. 4185 if (isa<ZExtInst>(Inst)) 4186 return true; 4187 4188 // sext(sext) is ok too. 4189 if (IsSExt && isa<SExtInst>(Inst)) 4190 return true; 4191 4192 // We can get through binary operator, if it is legal. In other words, the 4193 // binary operator must have a nuw or nsw flag. 4194 if (const auto *BinOp = dyn_cast<BinaryOperator>(Inst)) 4195 if (isa<OverflowingBinaryOperator>(BinOp) && 4196 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 4197 (IsSExt && BinOp->hasNoSignedWrap()))) 4198 return true; 4199 4200 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 4201 if ((Inst->getOpcode() == Instruction::And || 4202 Inst->getOpcode() == Instruction::Or)) 4203 return true; 4204 4205 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 4206 if (Inst->getOpcode() == Instruction::Xor) { 4207 // Make sure it is not a NOT. 4208 if (const auto *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1))) 4209 if (!Cst->getValue().isAllOnes()) 4210 return true; 4211 } 4212 4213 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 4214 // It may change a poisoned value into a regular value, like 4215 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 4216 // poisoned value regular value 4217 // It should be OK since undef covers valid value. 4218 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 4219 return true; 4220 4221 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 4222 // It may change a poisoned value into a regular value, like 4223 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 4224 // poisoned value regular value 4225 // It should be OK since undef covers valid value. 4226 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 4227 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 4228 if (ExtInst->hasOneUse()) { 4229 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 4230 if (AndInst && AndInst->getOpcode() == Instruction::And) { 4231 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 4232 if (Cst && 4233 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 4234 return true; 4235 } 4236 } 4237 } 4238 4239 // Check if we can do the following simplification. 4240 // ext(trunc(opnd)) --> ext(opnd) 4241 if (!isa<TruncInst>(Inst)) 4242 return false; 4243 4244 Value *OpndVal = Inst->getOperand(0); 4245 // Check if we can use this operand in the extension. 4246 // If the type is larger than the result type of the extension, we cannot. 4247 if (!OpndVal->getType()->isIntegerTy() || 4248 OpndVal->getType()->getIntegerBitWidth() > 4249 ConsideredExtType->getIntegerBitWidth()) 4250 return false; 4251 4252 // If the operand of the truncate is not an instruction, we will not have 4253 // any information on the dropped bits. 4254 // (Actually we could for constant but it is not worth the extra logic). 4255 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 4256 if (!Opnd) 4257 return false; 4258 4259 // Check if the source of the type is narrow enough. 4260 // I.e., check that trunc just drops extended bits of the same kind of 4261 // the extension. 4262 // #1 get the type of the operand and check the kind of the extended bits. 4263 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 4264 if (OpndType) 4265 ; 4266 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 4267 OpndType = Opnd->getOperand(0)->getType(); 4268 else 4269 return false; 4270 4271 // #2 check that the truncate just drops extended bits. 4272 return Inst->getType()->getIntegerBitWidth() >= 4273 OpndType->getIntegerBitWidth(); 4274 } 4275 4276 TypePromotionHelper::Action TypePromotionHelper::getAction( 4277 Instruction *Ext, const SetOfInstrs &InsertedInsts, 4278 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 4279 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4280 "Unexpected instruction type"); 4281 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 4282 Type *ExtTy = Ext->getType(); 4283 bool IsSExt = isa<SExtInst>(Ext); 4284 // If the operand of the extension is not an instruction, we cannot 4285 // get through. 4286 // If it, check we can get through. 4287 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 4288 return nullptr; 4289 4290 // Do not promote if the operand has been added by codegenprepare. 4291 // Otherwise, it means we are undoing an optimization that is likely to be 4292 // redone, thus causing potential infinite loop. 4293 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 4294 return nullptr; 4295 4296 // SExt or Trunc instructions. 4297 // Return the related handler. 4298 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 4299 isa<ZExtInst>(ExtOpnd)) 4300 return promoteOperandForTruncAndAnyExt; 4301 4302 // Regular instruction. 4303 // Abort early if we will have to insert non-free instructions. 4304 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 4305 return nullptr; 4306 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 4307 } 4308 4309 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 4310 Instruction *SExt, TypePromotionTransaction &TPT, 4311 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4312 SmallVectorImpl<Instruction *> *Exts, 4313 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4314 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4315 // get through it and this method should not be called. 4316 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4317 Value *ExtVal = SExt; 4318 bool HasMergedNonFreeExt = false; 4319 if (isa<ZExtInst>(SExtOpnd)) { 4320 // Replace s|zext(zext(opnd)) 4321 // => zext(opnd). 4322 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4323 Value *ZExt = 4324 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4325 TPT.replaceAllUsesWith(SExt, ZExt); 4326 TPT.eraseInstruction(SExt); 4327 ExtVal = ZExt; 4328 } else { 4329 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4330 // => z|sext(opnd). 4331 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4332 } 4333 CreatedInstsCost = 0; 4334 4335 // Remove dead code. 4336 if (SExtOpnd->use_empty()) 4337 TPT.eraseInstruction(SExtOpnd); 4338 4339 // Check if the extension is still needed. 4340 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4341 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4342 if (ExtInst) { 4343 if (Exts) 4344 Exts->push_back(ExtInst); 4345 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4346 } 4347 return ExtVal; 4348 } 4349 4350 // At this point we have: ext ty opnd to ty. 4351 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4352 Value *NextVal = ExtInst->getOperand(0); 4353 TPT.eraseInstruction(ExtInst, NextVal); 4354 return NextVal; 4355 } 4356 4357 Value *TypePromotionHelper::promoteOperandForOther( 4358 Instruction *Ext, TypePromotionTransaction &TPT, 4359 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4360 SmallVectorImpl<Instruction *> *Exts, 4361 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4362 bool IsSExt) { 4363 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4364 // get through it and this method should not be called. 4365 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4366 CreatedInstsCost = 0; 4367 if (!ExtOpnd->hasOneUse()) { 4368 // ExtOpnd will be promoted. 4369 // All its uses, but Ext, will need to use a truncated value of the 4370 // promoted version. 4371 // Create the truncate now. 4372 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4373 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4374 // Insert it just after the definition. 4375 ITrunc->moveAfter(ExtOpnd); 4376 if (Truncs) 4377 Truncs->push_back(ITrunc); 4378 } 4379 4380 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4381 // Restore the operand of Ext (which has been replaced by the previous call 4382 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4383 TPT.setOperand(Ext, 0, ExtOpnd); 4384 } 4385 4386 // Get through the Instruction: 4387 // 1. Update its type. 4388 // 2. Replace the uses of Ext by Inst. 4389 // 3. Extend each operand that needs to be extended. 4390 4391 // Remember the original type of the instruction before promotion. 4392 // This is useful to know that the high bits are sign extended bits. 4393 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4394 // Step #1. 4395 TPT.mutateType(ExtOpnd, Ext->getType()); 4396 // Step #2. 4397 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4398 // Step #3. 4399 Instruction *ExtForOpnd = Ext; 4400 4401 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4402 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4403 ++OpIdx) { 4404 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4405 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4406 !shouldExtOperand(ExtOpnd, OpIdx)) { 4407 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4408 continue; 4409 } 4410 // Check if we can statically extend the operand. 4411 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4412 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4413 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4414 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4415 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4416 : Cst->getValue().zext(BitWidth); 4417 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4418 continue; 4419 } 4420 // UndefValue are typed, so we have to statically sign extend them. 4421 if (isa<UndefValue>(Opnd)) { 4422 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4423 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4424 continue; 4425 } 4426 4427 // Otherwise we have to explicitly sign extend the operand. 4428 // Check if Ext was reused to extend an operand. 4429 if (!ExtForOpnd) { 4430 // If yes, create a new one. 4431 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 4432 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 4433 : TPT.createZExt(Ext, Opnd, Ext->getType()); 4434 if (!isa<Instruction>(ValForExtOpnd)) { 4435 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4436 continue; 4437 } 4438 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4439 } 4440 if (Exts) 4441 Exts->push_back(ExtForOpnd); 4442 TPT.setOperand(ExtForOpnd, 0, Opnd); 4443 4444 // Move the sign extension before the insertion point. 4445 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4446 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4447 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4448 // If more sext are required, new instructions will have to be created. 4449 ExtForOpnd = nullptr; 4450 } 4451 if (ExtForOpnd == Ext) { 4452 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4453 TPT.eraseInstruction(Ext); 4454 } 4455 return ExtOpnd; 4456 } 4457 4458 /// Check whether or not promoting an instruction to a wider type is profitable. 4459 /// \p NewCost gives the cost of extension instructions created by the 4460 /// promotion. 4461 /// \p OldCost gives the cost of extension instructions before the promotion 4462 /// plus the number of instructions that have been 4463 /// matched in the addressing mode the promotion. 4464 /// \p PromotedOperand is the value that has been promoted. 4465 /// \return True if the promotion is profitable, false otherwise. 4466 bool AddressingModeMatcher::isPromotionProfitable( 4467 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4468 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4469 << '\n'); 4470 // The cost of the new extensions is greater than the cost of the 4471 // old extension plus what we folded. 4472 // This is not profitable. 4473 if (NewCost > OldCost) 4474 return false; 4475 if (NewCost < OldCost) 4476 return true; 4477 // The promotion is neutral but it may help folding the sign extension in 4478 // loads for instance. 4479 // Check that we did not create an illegal instruction. 4480 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4481 } 4482 4483 /// Given an instruction or constant expr, see if we can fold the operation 4484 /// into the addressing mode. If so, update the addressing mode and return 4485 /// true, otherwise return false without modifying AddrMode. 4486 /// If \p MovedAway is not NULL, it contains the information of whether or 4487 /// not AddrInst has to be folded into the addressing mode on success. 4488 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4489 /// because it has been moved away. 4490 /// Thus AddrInst must not be added in the matched instructions. 4491 /// This state can happen when AddrInst is a sext, since it may be moved away. 4492 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4493 /// not be referenced anymore. 4494 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4495 unsigned Depth, 4496 bool *MovedAway) { 4497 // Avoid exponential behavior on extremely deep expression trees. 4498 if (Depth >= 5) return false; 4499 4500 // By default, all matched instructions stay in place. 4501 if (MovedAway) 4502 *MovedAway = false; 4503 4504 switch (Opcode) { 4505 case Instruction::PtrToInt: 4506 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4507 return matchAddr(AddrInst->getOperand(0), Depth); 4508 case Instruction::IntToPtr: { 4509 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4510 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4511 // This inttoptr is a no-op if the integer type is pointer sized. 4512 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4513 return matchAddr(AddrInst->getOperand(0), Depth); 4514 return false; 4515 } 4516 case Instruction::BitCast: 4517 // BitCast is always a noop, and we can handle it as long as it is 4518 // int->int or pointer->pointer (we don't want int<->fp or something). 4519 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4520 // Don't touch identity bitcasts. These were probably put here by LSR, 4521 // and we don't want to mess around with them. Assume it knows what it 4522 // is doing. 4523 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4524 return matchAddr(AddrInst->getOperand(0), Depth); 4525 return false; 4526 case Instruction::AddrSpaceCast: { 4527 unsigned SrcAS 4528 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4529 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4530 if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS)) 4531 return matchAddr(AddrInst->getOperand(0), Depth); 4532 return false; 4533 } 4534 case Instruction::Add: { 4535 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4536 ExtAddrMode BackupAddrMode = AddrMode; 4537 unsigned OldSize = AddrModeInsts.size(); 4538 // Start a transaction at this point. 4539 // The LHS may match but not the RHS. 4540 // Therefore, we need a higher level restoration point to undo partially 4541 // matched operation. 4542 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4543 TPT.getRestorationPoint(); 4544 4545 AddrMode.InBounds = false; 4546 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4547 matchAddr(AddrInst->getOperand(0), Depth+1)) 4548 return true; 4549 4550 // Restore the old addr mode info. 4551 AddrMode = BackupAddrMode; 4552 AddrModeInsts.resize(OldSize); 4553 TPT.rollback(LastKnownGood); 4554 4555 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4556 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4557 matchAddr(AddrInst->getOperand(1), Depth+1)) 4558 return true; 4559 4560 // Otherwise we definitely can't merge the ADD in. 4561 AddrMode = BackupAddrMode; 4562 AddrModeInsts.resize(OldSize); 4563 TPT.rollback(LastKnownGood); 4564 break; 4565 } 4566 //case Instruction::Or: 4567 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4568 //break; 4569 case Instruction::Mul: 4570 case Instruction::Shl: { 4571 // Can only handle X*C and X << C. 4572 AddrMode.InBounds = false; 4573 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4574 if (!RHS || RHS->getBitWidth() > 64) 4575 return false; 4576 int64_t Scale = Opcode == Instruction::Shl 4577 ? 1LL << RHS->getLimitedValue(RHS->getBitWidth() - 1) 4578 : RHS->getSExtValue(); 4579 4580 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4581 } 4582 case Instruction::GetElementPtr: { 4583 // Scan the GEP. We check it if it contains constant offsets and at most 4584 // one variable offset. 4585 int VariableOperand = -1; 4586 unsigned VariableScale = 0; 4587 4588 int64_t ConstantOffset = 0; 4589 gep_type_iterator GTI = gep_type_begin(AddrInst); 4590 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4591 if (StructType *STy = GTI.getStructTypeOrNull()) { 4592 const StructLayout *SL = DL.getStructLayout(STy); 4593 unsigned Idx = 4594 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4595 ConstantOffset += SL->getElementOffset(Idx); 4596 } else { 4597 TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType()); 4598 if (TS.isNonZero()) { 4599 // The optimisations below currently only work for fixed offsets. 4600 if (TS.isScalable()) 4601 return false; 4602 int64_t TypeSize = TS.getFixedSize(); 4603 if (ConstantInt *CI = 4604 dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4605 const APInt &CVal = CI->getValue(); 4606 if (CVal.getMinSignedBits() <= 64) { 4607 ConstantOffset += CVal.getSExtValue() * TypeSize; 4608 continue; 4609 } 4610 } 4611 // We only allow one variable index at the moment. 4612 if (VariableOperand != -1) 4613 return false; 4614 4615 // Remember the variable index. 4616 VariableOperand = i; 4617 VariableScale = TypeSize; 4618 } 4619 } 4620 } 4621 4622 // A common case is for the GEP to only do a constant offset. In this case, 4623 // just add it to the disp field and check validity. 4624 if (VariableOperand == -1) { 4625 AddrMode.BaseOffs += ConstantOffset; 4626 if (ConstantOffset == 0 || 4627 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4628 // Check to see if we can fold the base pointer in too. 4629 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4630 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4631 AddrMode.InBounds = false; 4632 return true; 4633 } 4634 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4635 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4636 ConstantOffset > 0) { 4637 // Record GEPs with non-zero offsets as candidates for splitting in the 4638 // event that the offset cannot fit into the r+i addressing mode. 4639 // Simple and common case that only one GEP is used in calculating the 4640 // address for the memory access. 4641 Value *Base = AddrInst->getOperand(0); 4642 auto *BaseI = dyn_cast<Instruction>(Base); 4643 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4644 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4645 (BaseI && !isa<CastInst>(BaseI) && 4646 !isa<GetElementPtrInst>(BaseI))) { 4647 // Make sure the parent block allows inserting non-PHI instructions 4648 // before the terminator. 4649 BasicBlock *Parent = 4650 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4651 if (!Parent->getTerminator()->isEHPad()) 4652 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4653 } 4654 } 4655 AddrMode.BaseOffs -= ConstantOffset; 4656 return false; 4657 } 4658 4659 // Save the valid addressing mode in case we can't match. 4660 ExtAddrMode BackupAddrMode = AddrMode; 4661 unsigned OldSize = AddrModeInsts.size(); 4662 4663 // See if the scale and offset amount is valid for this target. 4664 AddrMode.BaseOffs += ConstantOffset; 4665 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4666 AddrMode.InBounds = false; 4667 4668 // Match the base operand of the GEP. 4669 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4670 // If it couldn't be matched, just stuff the value in a register. 4671 if (AddrMode.HasBaseReg) { 4672 AddrMode = BackupAddrMode; 4673 AddrModeInsts.resize(OldSize); 4674 return false; 4675 } 4676 AddrMode.HasBaseReg = true; 4677 AddrMode.BaseReg = AddrInst->getOperand(0); 4678 } 4679 4680 // Match the remaining variable portion of the GEP. 4681 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4682 Depth)) { 4683 // If it couldn't be matched, try stuffing the base into a register 4684 // instead of matching it, and retrying the match of the scale. 4685 AddrMode = BackupAddrMode; 4686 AddrModeInsts.resize(OldSize); 4687 if (AddrMode.HasBaseReg) 4688 return false; 4689 AddrMode.HasBaseReg = true; 4690 AddrMode.BaseReg = AddrInst->getOperand(0); 4691 AddrMode.BaseOffs += ConstantOffset; 4692 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4693 VariableScale, Depth)) { 4694 // If even that didn't work, bail. 4695 AddrMode = BackupAddrMode; 4696 AddrModeInsts.resize(OldSize); 4697 return false; 4698 } 4699 } 4700 4701 return true; 4702 } 4703 case Instruction::SExt: 4704 case Instruction::ZExt: { 4705 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4706 if (!Ext) 4707 return false; 4708 4709 // Try to move this ext out of the way of the addressing mode. 4710 // Ask for a method for doing so. 4711 TypePromotionHelper::Action TPH = 4712 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4713 if (!TPH) 4714 return false; 4715 4716 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4717 TPT.getRestorationPoint(); 4718 unsigned CreatedInstsCost = 0; 4719 unsigned ExtCost = !TLI.isExtFree(Ext); 4720 Value *PromotedOperand = 4721 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4722 // SExt has been moved away. 4723 // Thus either it will be rematched later in the recursive calls or it is 4724 // gone. Anyway, we must not fold it into the addressing mode at this point. 4725 // E.g., 4726 // op = add opnd, 1 4727 // idx = ext op 4728 // addr = gep base, idx 4729 // is now: 4730 // promotedOpnd = ext opnd <- no match here 4731 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4732 // addr = gep base, op <- match 4733 if (MovedAway) 4734 *MovedAway = true; 4735 4736 assert(PromotedOperand && 4737 "TypePromotionHelper should have filtered out those cases"); 4738 4739 ExtAddrMode BackupAddrMode = AddrMode; 4740 unsigned OldSize = AddrModeInsts.size(); 4741 4742 if (!matchAddr(PromotedOperand, Depth) || 4743 // The total of the new cost is equal to the cost of the created 4744 // instructions. 4745 // The total of the old cost is equal to the cost of the extension plus 4746 // what we have saved in the addressing mode. 4747 !isPromotionProfitable(CreatedInstsCost, 4748 ExtCost + (AddrModeInsts.size() - OldSize), 4749 PromotedOperand)) { 4750 AddrMode = BackupAddrMode; 4751 AddrModeInsts.resize(OldSize); 4752 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4753 TPT.rollback(LastKnownGood); 4754 return false; 4755 } 4756 return true; 4757 } 4758 } 4759 return false; 4760 } 4761 4762 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4763 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4764 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4765 /// for the target. 4766 /// 4767 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4768 // Start a transaction at this point that we will rollback if the matching 4769 // fails. 4770 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4771 TPT.getRestorationPoint(); 4772 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4773 if (CI->getValue().isSignedIntN(64)) { 4774 // Fold in immediates if legal for the target. 4775 AddrMode.BaseOffs += CI->getSExtValue(); 4776 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4777 return true; 4778 AddrMode.BaseOffs -= CI->getSExtValue(); 4779 } 4780 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4781 // If this is a global variable, try to fold it into the addressing mode. 4782 if (!AddrMode.BaseGV) { 4783 AddrMode.BaseGV = GV; 4784 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4785 return true; 4786 AddrMode.BaseGV = nullptr; 4787 } 4788 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4789 ExtAddrMode BackupAddrMode = AddrMode; 4790 unsigned OldSize = AddrModeInsts.size(); 4791 4792 // Check to see if it is possible to fold this operation. 4793 bool MovedAway = false; 4794 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4795 // This instruction may have been moved away. If so, there is nothing 4796 // to check here. 4797 if (MovedAway) 4798 return true; 4799 // Okay, it's possible to fold this. Check to see if it is actually 4800 // *profitable* to do so. We use a simple cost model to avoid increasing 4801 // register pressure too much. 4802 if (I->hasOneUse() || 4803 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4804 AddrModeInsts.push_back(I); 4805 return true; 4806 } 4807 4808 // It isn't profitable to do this, roll back. 4809 AddrMode = BackupAddrMode; 4810 AddrModeInsts.resize(OldSize); 4811 TPT.rollback(LastKnownGood); 4812 } 4813 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4814 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4815 return true; 4816 TPT.rollback(LastKnownGood); 4817 } else if (isa<ConstantPointerNull>(Addr)) { 4818 // Null pointer gets folded without affecting the addressing mode. 4819 return true; 4820 } 4821 4822 // Worse case, the target should support [reg] addressing modes. :) 4823 if (!AddrMode.HasBaseReg) { 4824 AddrMode.HasBaseReg = true; 4825 AddrMode.BaseReg = Addr; 4826 // Still check for legality in case the target supports [imm] but not [i+r]. 4827 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4828 return true; 4829 AddrMode.HasBaseReg = false; 4830 AddrMode.BaseReg = nullptr; 4831 } 4832 4833 // If the base register is already taken, see if we can do [r+r]. 4834 if (AddrMode.Scale == 0) { 4835 AddrMode.Scale = 1; 4836 AddrMode.ScaledReg = Addr; 4837 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4838 return true; 4839 AddrMode.Scale = 0; 4840 AddrMode.ScaledReg = nullptr; 4841 } 4842 // Couldn't match. 4843 TPT.rollback(LastKnownGood); 4844 return false; 4845 } 4846 4847 /// Check to see if all uses of OpVal by the specified inline asm call are due 4848 /// to memory operands. If so, return true, otherwise return false. 4849 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4850 const TargetLowering &TLI, 4851 const TargetRegisterInfo &TRI) { 4852 const Function *F = CI->getFunction(); 4853 TargetLowering::AsmOperandInfoVector TargetConstraints = 4854 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI); 4855 4856 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { 4857 // Compute the constraint code and ConstraintType to use. 4858 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4859 4860 // If this asm operand is our Value*, and if it isn't an indirect memory 4861 // operand, we can't fold it! TODO: Also handle C_Address? 4862 if (OpInfo.CallOperandVal == OpVal && 4863 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4864 !OpInfo.isIndirect)) 4865 return false; 4866 } 4867 4868 return true; 4869 } 4870 4871 // Max number of memory uses to look at before aborting the search to conserve 4872 // compile time. 4873 static constexpr int MaxMemoryUsesToScan = 20; 4874 4875 /// Recursively walk all the uses of I until we find a memory use. 4876 /// If we find an obviously non-foldable instruction, return true. 4877 /// Add accessed addresses and types to MemoryUses. 4878 static bool FindAllMemoryUses( 4879 Instruction *I, SmallVectorImpl<std::pair<Value *, Type *>> &MemoryUses, 4880 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4881 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 4882 BlockFrequencyInfo *BFI, int SeenInsts = 0) { 4883 // If we already considered this instruction, we're done. 4884 if (!ConsideredInsts.insert(I).second) 4885 return false; 4886 4887 // If this is an obviously unfoldable instruction, bail out. 4888 if (!MightBeFoldableInst(I)) 4889 return true; 4890 4891 // Loop over all the uses, recursively processing them. 4892 for (Use &U : I->uses()) { 4893 // Conservatively return true if we're seeing a large number or a deep chain 4894 // of users. This avoids excessive compilation times in pathological cases. 4895 if (SeenInsts++ >= MaxMemoryUsesToScan) 4896 return true; 4897 4898 Instruction *UserI = cast<Instruction>(U.getUser()); 4899 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4900 MemoryUses.push_back({U.get(), LI->getType()}); 4901 continue; 4902 } 4903 4904 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4905 if (U.getOperandNo() != StoreInst::getPointerOperandIndex()) 4906 return true; // Storing addr, not into addr. 4907 MemoryUses.push_back({U.get(), SI->getValueOperand()->getType()}); 4908 continue; 4909 } 4910 4911 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4912 if (U.getOperandNo() != AtomicRMWInst::getPointerOperandIndex()) 4913 return true; // Storing addr, not into addr. 4914 MemoryUses.push_back({U.get(), RMW->getValOperand()->getType()}); 4915 continue; 4916 } 4917 4918 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4919 if (U.getOperandNo() != AtomicCmpXchgInst::getPointerOperandIndex()) 4920 return true; // Storing addr, not into addr. 4921 MemoryUses.push_back({U.get(), CmpX->getCompareOperand()->getType()}); 4922 continue; 4923 } 4924 4925 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4926 if (CI->hasFnAttr(Attribute::Cold)) { 4927 // If this is a cold call, we can sink the addressing calculation into 4928 // the cold path. See optimizeCallInst 4929 bool OptForSize = OptSize || 4930 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 4931 if (!OptForSize) 4932 continue; 4933 } 4934 4935 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); 4936 if (!IA) return true; 4937 4938 // If this is a memory operand, we're cool, otherwise bail out. 4939 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4940 return true; 4941 continue; 4942 } 4943 4944 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4945 PSI, BFI, SeenInsts)) 4946 return true; 4947 } 4948 4949 return false; 4950 } 4951 4952 /// Return true if Val is already known to be live at the use site that we're 4953 /// folding it into. If so, there is no cost to include it in the addressing 4954 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4955 /// instruction already. 4956 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4957 Value *KnownLive2) { 4958 // If Val is either of the known-live values, we know it is live! 4959 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4960 return true; 4961 4962 // All values other than instructions and arguments (e.g. constants) are live. 4963 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4964 4965 // If Val is a constant sized alloca in the entry block, it is live, this is 4966 // true because it is just a reference to the stack/frame pointer, which is 4967 // live for the whole function. 4968 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4969 if (AI->isStaticAlloca()) 4970 return true; 4971 4972 // Check to see if this value is already used in the memory instruction's 4973 // block. If so, it's already live into the block at the very least, so we 4974 // can reasonably fold it. 4975 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4976 } 4977 4978 /// It is possible for the addressing mode of the machine to fold the specified 4979 /// instruction into a load or store that ultimately uses it. 4980 /// However, the specified instruction has multiple uses. 4981 /// Given this, it may actually increase register pressure to fold it 4982 /// into the load. For example, consider this code: 4983 /// 4984 /// X = ... 4985 /// Y = X+1 4986 /// use(Y) -> nonload/store 4987 /// Z = Y+1 4988 /// load Z 4989 /// 4990 /// In this case, Y has multiple uses, and can be folded into the load of Z 4991 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4992 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4993 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4994 /// number of computations either. 4995 /// 4996 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4997 /// X was live across 'load Z' for other reasons, we actually *would* want to 4998 /// fold the addressing mode in the Z case. This would make Y die earlier. 4999 bool AddressingModeMatcher:: 5000 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 5001 ExtAddrMode &AMAfter) { 5002 if (IgnoreProfitability) return true; 5003 5004 // AMBefore is the addressing mode before this instruction was folded into it, 5005 // and AMAfter is the addressing mode after the instruction was folded. Get 5006 // the set of registers referenced by AMAfter and subtract out those 5007 // referenced by AMBefore: this is the set of values which folding in this 5008 // address extends the lifetime of. 5009 // 5010 // Note that there are only two potential values being referenced here, 5011 // BaseReg and ScaleReg (global addresses are always available, as are any 5012 // folded immediates). 5013 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 5014 5015 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 5016 // lifetime wasn't extended by adding this instruction. 5017 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 5018 BaseReg = nullptr; 5019 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 5020 ScaledReg = nullptr; 5021 5022 // If folding this instruction (and it's subexprs) didn't extend any live 5023 // ranges, we're ok with it. 5024 if (!BaseReg && !ScaledReg) 5025 return true; 5026 5027 // If all uses of this instruction can have the address mode sunk into them, 5028 // we can remove the addressing mode and effectively trade one live register 5029 // for another (at worst.) In this context, folding an addressing mode into 5030 // the use is just a particularly nice way of sinking it. 5031 SmallVector<std::pair<Value *, Type *>, 16> MemoryUses; 5032 SmallPtrSet<Instruction*, 16> ConsideredInsts; 5033 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 5034 PSI, BFI)) 5035 return false; // Has a non-memory, non-foldable use! 5036 5037 // Now that we know that all uses of this instruction are part of a chain of 5038 // computation involving only operations that could theoretically be folded 5039 // into a memory use, loop over each of these memory operation uses and see 5040 // if they could *actually* fold the instruction. The assumption is that 5041 // addressing modes are cheap and that duplicating the computation involved 5042 // many times is worthwhile, even on a fastpath. For sinking candidates 5043 // (i.e. cold call sites), this serves as a way to prevent excessive code 5044 // growth since most architectures have some reasonable small and fast way to 5045 // compute an effective address. (i.e LEA on x86) 5046 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 5047 for (const std::pair<Value *, Type *> &Pair : MemoryUses) { 5048 Value *Address = Pair.first; 5049 Type *AddressAccessTy = Pair.second; 5050 unsigned AS = Address->getType()->getPointerAddressSpace(); 5051 5052 // Do a match against the root of this address, ignoring profitability. This 5053 // will tell us if the addressing mode for the memory operation will 5054 // *actually* cover the shared instruction. 5055 ExtAddrMode Result; 5056 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5057 0); 5058 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5059 TPT.getRestorationPoint(); 5060 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn, 5061 AddressAccessTy, AS, MemoryInst, Result, 5062 InsertedInsts, PromotedInsts, TPT, 5063 LargeOffsetGEP, OptSize, PSI, BFI); 5064 Matcher.IgnoreProfitability = true; 5065 bool Success = Matcher.matchAddr(Address, 0); 5066 (void)Success; assert(Success && "Couldn't select *anything*?"); 5067 5068 // The match was to check the profitability, the changes made are not 5069 // part of the original matcher. Therefore, they should be dropped 5070 // otherwise the original matcher will not present the right state. 5071 TPT.rollback(LastKnownGood); 5072 5073 // If the match didn't cover I, then it won't be shared by it. 5074 if (!is_contained(MatchedAddrModeInsts, I)) 5075 return false; 5076 5077 MatchedAddrModeInsts.clear(); 5078 } 5079 5080 return true; 5081 } 5082 5083 /// Return true if the specified values are defined in a 5084 /// different basic block than BB. 5085 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 5086 if (Instruction *I = dyn_cast<Instruction>(V)) 5087 return I->getParent() != BB; 5088 return false; 5089 } 5090 5091 /// Sink addressing mode computation immediate before MemoryInst if doing so 5092 /// can be done without increasing register pressure. The need for the 5093 /// register pressure constraint means this can end up being an all or nothing 5094 /// decision for all uses of the same addressing computation. 5095 /// 5096 /// Load and Store Instructions often have addressing modes that can do 5097 /// significant amounts of computation. As such, instruction selection will try 5098 /// to get the load or store to do as much computation as possible for the 5099 /// program. The problem is that isel can only see within a single block. As 5100 /// such, we sink as much legal addressing mode work into the block as possible. 5101 /// 5102 /// This method is used to optimize both load/store and inline asms with memory 5103 /// operands. It's also used to sink addressing computations feeding into cold 5104 /// call sites into their (cold) basic block. 5105 /// 5106 /// The motivation for handling sinking into cold blocks is that doing so can 5107 /// both enable other address mode sinking (by satisfying the register pressure 5108 /// constraint above), and reduce register pressure globally (by removing the 5109 /// addressing mode computation from the fast path entirely.). 5110 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 5111 Type *AccessTy, unsigned AddrSpace) { 5112 Value *Repl = Addr; 5113 5114 // Try to collapse single-value PHI nodes. This is necessary to undo 5115 // unprofitable PRE transformations. 5116 SmallVector<Value*, 8> worklist; 5117 SmallPtrSet<Value*, 16> Visited; 5118 worklist.push_back(Addr); 5119 5120 // Use a worklist to iteratively look through PHI and select nodes, and 5121 // ensure that the addressing mode obtained from the non-PHI/select roots of 5122 // the graph are compatible. 5123 bool PhiOrSelectSeen = false; 5124 SmallVector<Instruction*, 16> AddrModeInsts; 5125 const SimplifyQuery SQ(*DL, TLInfo); 5126 AddressingModeCombiner AddrModes(SQ, Addr); 5127 TypePromotionTransaction TPT(RemovedInsts); 5128 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5129 TPT.getRestorationPoint(); 5130 while (!worklist.empty()) { 5131 Value *V = worklist.pop_back_val(); 5132 5133 // We allow traversing cyclic Phi nodes. 5134 // In case of success after this loop we ensure that traversing through 5135 // Phi nodes ends up with all cases to compute address of the form 5136 // BaseGV + Base + Scale * Index + Offset 5137 // where Scale and Offset are constans and BaseGV, Base and Index 5138 // are exactly the same Values in all cases. 5139 // It means that BaseGV, Scale and Offset dominate our memory instruction 5140 // and have the same value as they had in address computation represented 5141 // as Phi. So we can safely sink address computation to memory instruction. 5142 if (!Visited.insert(V).second) 5143 continue; 5144 5145 // For a PHI node, push all of its incoming values. 5146 if (PHINode *P = dyn_cast<PHINode>(V)) { 5147 append_range(worklist, P->incoming_values()); 5148 PhiOrSelectSeen = true; 5149 continue; 5150 } 5151 // Similar for select. 5152 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 5153 worklist.push_back(SI->getFalseValue()); 5154 worklist.push_back(SI->getTrueValue()); 5155 PhiOrSelectSeen = true; 5156 continue; 5157 } 5158 5159 // For non-PHIs, determine the addressing mode being computed. Note that 5160 // the result may differ depending on what other uses our candidate 5161 // addressing instructions might have. 5162 AddrModeInsts.clear(); 5163 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5164 0); 5165 // Defer the query (and possible computation of) the dom tree to point of 5166 // actual use. It's expected that most address matches don't actually need 5167 // the domtree. 5168 auto getDTFn = [MemoryInst, this]() -> const DominatorTree & { 5169 Function *F = MemoryInst->getParent()->getParent(); 5170 return this->getDT(*F); 5171 }; 5172 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 5173 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn, 5174 *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 5175 BFI.get()); 5176 5177 GetElementPtrInst *GEP = LargeOffsetGEP.first; 5178 if (GEP && !NewGEPBases.count(GEP)) { 5179 // If splitting the underlying data structure can reduce the offset of a 5180 // GEP, collect the GEP. Skip the GEPs that are the new bases of 5181 // previously split data structures. 5182 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 5183 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 5184 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 5185 } 5186 5187 NewAddrMode.OriginalValue = V; 5188 if (!AddrModes.addNewAddrMode(NewAddrMode)) 5189 break; 5190 } 5191 5192 // Try to combine the AddrModes we've collected. If we couldn't collect any, 5193 // or we have multiple but either couldn't combine them or combining them 5194 // wouldn't do anything useful, bail out now. 5195 if (!AddrModes.combineAddrModes()) { 5196 TPT.rollback(LastKnownGood); 5197 return false; 5198 } 5199 bool Modified = TPT.commit(); 5200 5201 // Get the combined AddrMode (or the only AddrMode, if we only had one). 5202 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 5203 5204 // If all the instructions matched are already in this BB, don't do anything. 5205 // If we saw a Phi node then it is not local definitely, and if we saw a select 5206 // then we want to push the address calculation past it even if it's already 5207 // in this BB. 5208 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 5209 return IsNonLocalValue(V, MemoryInst->getParent()); 5210 })) { 5211 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 5212 << "\n"); 5213 return Modified; 5214 } 5215 5216 // Insert this computation right after this user. Since our caller is 5217 // scanning from the top of the BB to the bottom, reuse of the expr are 5218 // guaranteed to happen later. 5219 IRBuilder<> Builder(MemoryInst); 5220 5221 // Now that we determined the addressing expression we want to use and know 5222 // that we have to sink it into this block. Check to see if we have already 5223 // done this for some other load/store instr in this block. If so, reuse 5224 // the computation. Before attempting reuse, check if the address is valid 5225 // as it may have been erased. 5226 5227 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 5228 5229 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 5230 if (SunkAddr) { 5231 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 5232 << " for " << *MemoryInst << "\n"); 5233 if (SunkAddr->getType() != Addr->getType()) 5234 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5235 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 5236 SubtargetInfo->addrSinkUsingGEPs())) { 5237 // By default, we use the GEP-based method when AA is used later. This 5238 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 5239 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5240 << " for " << *MemoryInst << "\n"); 5241 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5242 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 5243 5244 // First, find the pointer. 5245 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 5246 ResultPtr = AddrMode.BaseReg; 5247 AddrMode.BaseReg = nullptr; 5248 } 5249 5250 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 5251 // We can't add more than one pointer together, nor can we scale a 5252 // pointer (both of which seem meaningless). 5253 if (ResultPtr || AddrMode.Scale != 1) 5254 return Modified; 5255 5256 ResultPtr = AddrMode.ScaledReg; 5257 AddrMode.Scale = 0; 5258 } 5259 5260 // It is only safe to sign extend the BaseReg if we know that the math 5261 // required to create it did not overflow before we extend it. Since 5262 // the original IR value was tossed in favor of a constant back when 5263 // the AddrMode was created we need to bail out gracefully if widths 5264 // do not match instead of extending it. 5265 // 5266 // (See below for code to add the scale.) 5267 if (AddrMode.Scale) { 5268 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 5269 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 5270 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 5271 return Modified; 5272 } 5273 5274 if (AddrMode.BaseGV) { 5275 if (ResultPtr) 5276 return Modified; 5277 5278 ResultPtr = AddrMode.BaseGV; 5279 } 5280 5281 // If the real base value actually came from an inttoptr, then the matcher 5282 // will look through it and provide only the integer value. In that case, 5283 // use it here. 5284 if (!DL->isNonIntegralPointerType(Addr->getType())) { 5285 if (!ResultPtr && AddrMode.BaseReg) { 5286 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 5287 "sunkaddr"); 5288 AddrMode.BaseReg = nullptr; 5289 } else if (!ResultPtr && AddrMode.Scale == 1) { 5290 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 5291 "sunkaddr"); 5292 AddrMode.Scale = 0; 5293 } 5294 } 5295 5296 if (!ResultPtr && 5297 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 5298 SunkAddr = Constant::getNullValue(Addr->getType()); 5299 } else if (!ResultPtr) { 5300 return Modified; 5301 } else { 5302 Type *I8PtrTy = 5303 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 5304 Type *I8Ty = Builder.getInt8Ty(); 5305 5306 // Start with the base register. Do this first so that subsequent address 5307 // matching finds it last, which will prevent it from trying to match it 5308 // as the scaled value in case it happens to be a mul. That would be 5309 // problematic if we've sunk a different mul for the scale, because then 5310 // we'd end up sinking both muls. 5311 if (AddrMode.BaseReg) { 5312 Value *V = AddrMode.BaseReg; 5313 if (V->getType() != IntPtrTy) 5314 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5315 5316 ResultIndex = V; 5317 } 5318 5319 // Add the scale value. 5320 if (AddrMode.Scale) { 5321 Value *V = AddrMode.ScaledReg; 5322 if (V->getType() == IntPtrTy) { 5323 // done. 5324 } else { 5325 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5326 cast<IntegerType>(V->getType())->getBitWidth() && 5327 "We can't transform if ScaledReg is too narrow"); 5328 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5329 } 5330 5331 if (AddrMode.Scale != 1) 5332 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5333 "sunkaddr"); 5334 if (ResultIndex) 5335 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5336 else 5337 ResultIndex = V; 5338 } 5339 5340 // Add in the Base Offset if present. 5341 if (AddrMode.BaseOffs) { 5342 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5343 if (ResultIndex) { 5344 // We need to add this separately from the scale above to help with 5345 // SDAG consecutive load/store merging. 5346 if (ResultPtr->getType() != I8PtrTy) 5347 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5348 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, 5349 "sunkaddr", AddrMode.InBounds); 5350 } 5351 5352 ResultIndex = V; 5353 } 5354 5355 if (!ResultIndex) { 5356 SunkAddr = ResultPtr; 5357 } else { 5358 if (ResultPtr->getType() != I8PtrTy) 5359 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5360 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr", 5361 AddrMode.InBounds); 5362 } 5363 5364 if (SunkAddr->getType() != Addr->getType()) 5365 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5366 } 5367 } else { 5368 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5369 // non-integral pointers, so in that case bail out now. 5370 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5371 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5372 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5373 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5374 if (DL->isNonIntegralPointerType(Addr->getType()) || 5375 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5376 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5377 (AddrMode.BaseGV && 5378 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5379 return Modified; 5380 5381 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5382 << " for " << *MemoryInst << "\n"); 5383 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5384 Value *Result = nullptr; 5385 5386 // Start with the base register. Do this first so that subsequent address 5387 // matching finds it last, which will prevent it from trying to match it 5388 // as the scaled value in case it happens to be a mul. That would be 5389 // problematic if we've sunk a different mul for the scale, because then 5390 // we'd end up sinking both muls. 5391 if (AddrMode.BaseReg) { 5392 Value *V = AddrMode.BaseReg; 5393 if (V->getType()->isPointerTy()) 5394 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5395 if (V->getType() != IntPtrTy) 5396 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5397 Result = V; 5398 } 5399 5400 // Add the scale value. 5401 if (AddrMode.Scale) { 5402 Value *V = AddrMode.ScaledReg; 5403 if (V->getType() == IntPtrTy) { 5404 // done. 5405 } else if (V->getType()->isPointerTy()) { 5406 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5407 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5408 cast<IntegerType>(V->getType())->getBitWidth()) { 5409 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5410 } else { 5411 // It is only safe to sign extend the BaseReg if we know that the math 5412 // required to create it did not overflow before we extend it. Since 5413 // the original IR value was tossed in favor of a constant back when 5414 // the AddrMode was created we need to bail out gracefully if widths 5415 // do not match instead of extending it. 5416 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5417 if (I && (Result != AddrMode.BaseReg)) 5418 I->eraseFromParent(); 5419 return Modified; 5420 } 5421 if (AddrMode.Scale != 1) 5422 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5423 "sunkaddr"); 5424 if (Result) 5425 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5426 else 5427 Result = V; 5428 } 5429 5430 // Add in the BaseGV if present. 5431 if (AddrMode.BaseGV) { 5432 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5433 if (Result) 5434 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5435 else 5436 Result = V; 5437 } 5438 5439 // Add in the Base Offset if present. 5440 if (AddrMode.BaseOffs) { 5441 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5442 if (Result) 5443 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5444 else 5445 Result = V; 5446 } 5447 5448 if (!Result) 5449 SunkAddr = Constant::getNullValue(Addr->getType()); 5450 else 5451 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5452 } 5453 5454 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5455 // Store the newly computed address into the cache. In the case we reused a 5456 // value, this should be idempotent. 5457 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5458 5459 // If we have no uses, recursively delete the value and all dead instructions 5460 // using it. 5461 if (Repl->use_empty()) { 5462 resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() { 5463 RecursivelyDeleteTriviallyDeadInstructions( 5464 Repl, TLInfo, nullptr, 5465 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5466 }); 5467 } 5468 ++NumMemoryInsts; 5469 return true; 5470 } 5471 5472 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find 5473 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can 5474 /// only handle a 2 operand GEP in the same basic block or a splat constant 5475 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector 5476 /// index. 5477 /// 5478 /// If the existing GEP has a vector base pointer that is splat, we can look 5479 /// through the splat to find the scalar pointer. If we can't find a scalar 5480 /// pointer there's nothing we can do. 5481 /// 5482 /// If we have a GEP with more than 2 indices where the middle indices are all 5483 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. 5484 /// 5485 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP 5486 /// followed by a GEP with an all zeroes vector index. This will enable 5487 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a 5488 /// zero index. 5489 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, 5490 Value *Ptr) { 5491 Value *NewAddr; 5492 5493 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 5494 // Don't optimize GEPs that don't have indices. 5495 if (!GEP->hasIndices()) 5496 return false; 5497 5498 // If the GEP and the gather/scatter aren't in the same BB, don't optimize. 5499 // FIXME: We should support this by sinking the GEP. 5500 if (MemoryInst->getParent() != GEP->getParent()) 5501 return false; 5502 5503 SmallVector<Value *, 2> Ops(GEP->operands()); 5504 5505 bool RewriteGEP = false; 5506 5507 if (Ops[0]->getType()->isVectorTy()) { 5508 Ops[0] = getSplatValue(Ops[0]); 5509 if (!Ops[0]) 5510 return false; 5511 RewriteGEP = true; 5512 } 5513 5514 unsigned FinalIndex = Ops.size() - 1; 5515 5516 // Ensure all but the last index is 0. 5517 // FIXME: This isn't strictly required. All that's required is that they are 5518 // all scalars or splats. 5519 for (unsigned i = 1; i < FinalIndex; ++i) { 5520 auto *C = dyn_cast<Constant>(Ops[i]); 5521 if (!C) 5522 return false; 5523 if (isa<VectorType>(C->getType())) 5524 C = C->getSplatValue(); 5525 auto *CI = dyn_cast_or_null<ConstantInt>(C); 5526 if (!CI || !CI->isZero()) 5527 return false; 5528 // Scalarize the index if needed. 5529 Ops[i] = CI; 5530 } 5531 5532 // Try to scalarize the final index. 5533 if (Ops[FinalIndex]->getType()->isVectorTy()) { 5534 if (Value *V = getSplatValue(Ops[FinalIndex])) { 5535 auto *C = dyn_cast<ConstantInt>(V); 5536 // Don't scalarize all zeros vector. 5537 if (!C || !C->isZero()) { 5538 Ops[FinalIndex] = V; 5539 RewriteGEP = true; 5540 } 5541 } 5542 } 5543 5544 // If we made any changes or the we have extra operands, we need to generate 5545 // new instructions. 5546 if (!RewriteGEP && Ops.size() == 2) 5547 return false; 5548 5549 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5550 5551 IRBuilder<> Builder(MemoryInst); 5552 5553 Type *SourceTy = GEP->getSourceElementType(); 5554 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); 5555 5556 // If the final index isn't a vector, emit a scalar GEP containing all ops 5557 // and a vector GEP with all zeroes final index. 5558 if (!Ops[FinalIndex]->getType()->isVectorTy()) { 5559 NewAddr = Builder.CreateGEP(SourceTy, Ops[0], 5560 makeArrayRef(Ops).drop_front()); 5561 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5562 auto *SecondTy = GetElementPtrInst::getIndexedType( 5563 SourceTy, makeArrayRef(Ops).drop_front()); 5564 NewAddr = 5565 Builder.CreateGEP(SecondTy, NewAddr, Constant::getNullValue(IndexTy)); 5566 } else { 5567 Value *Base = Ops[0]; 5568 Value *Index = Ops[FinalIndex]; 5569 5570 // Create a scalar GEP if there are more than 2 operands. 5571 if (Ops.size() != 2) { 5572 // Replace the last index with 0. 5573 Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy); 5574 Base = Builder.CreateGEP(SourceTy, Base, 5575 makeArrayRef(Ops).drop_front()); 5576 SourceTy = GetElementPtrInst::getIndexedType( 5577 SourceTy, makeArrayRef(Ops).drop_front()); 5578 } 5579 5580 // Now create the GEP with scalar pointer and vector index. 5581 NewAddr = Builder.CreateGEP(SourceTy, Base, Index); 5582 } 5583 } else if (!isa<Constant>(Ptr)) { 5584 // Not a GEP, maybe its a splat and we can create a GEP to enable 5585 // SelectionDAGBuilder to use it as a uniform base. 5586 Value *V = getSplatValue(Ptr); 5587 if (!V) 5588 return false; 5589 5590 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5591 5592 IRBuilder<> Builder(MemoryInst); 5593 5594 // Emit a vector GEP with a scalar pointer and all 0s vector index. 5595 Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType()); 5596 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5597 Type *ScalarTy; 5598 if (cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == 5599 Intrinsic::masked_gather) { 5600 ScalarTy = MemoryInst->getType()->getScalarType(); 5601 } else { 5602 assert(cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == 5603 Intrinsic::masked_scatter); 5604 ScalarTy = MemoryInst->getOperand(0)->getType()->getScalarType(); 5605 } 5606 NewAddr = Builder.CreateGEP(ScalarTy, V, Constant::getNullValue(IndexTy)); 5607 } else { 5608 // Constant, SelectionDAGBuilder knows to check if its a splat. 5609 return false; 5610 } 5611 5612 MemoryInst->replaceUsesOfWith(Ptr, NewAddr); 5613 5614 // If we have no uses, recursively delete the value and all dead instructions 5615 // using it. 5616 if (Ptr->use_empty()) 5617 RecursivelyDeleteTriviallyDeadInstructions( 5618 Ptr, TLInfo, nullptr, 5619 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5620 5621 return true; 5622 } 5623 5624 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5625 /// address computing into the block when possible / profitable. 5626 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5627 bool MadeChange = false; 5628 5629 const TargetRegisterInfo *TRI = 5630 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5631 TargetLowering::AsmOperandInfoVector TargetConstraints = 5632 TLI->ParseConstraints(*DL, TRI, *CS); 5633 unsigned ArgNo = 0; 5634 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { 5635 // Compute the constraint code and ConstraintType to use. 5636 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5637 5638 // TODO: Also handle C_Address? 5639 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5640 OpInfo.isIndirect) { 5641 Value *OpVal = CS->getArgOperand(ArgNo++); 5642 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5643 } else if (OpInfo.Type == InlineAsm::isInput) 5644 ArgNo++; 5645 } 5646 5647 return MadeChange; 5648 } 5649 5650 /// Check if all the uses of \p Val are equivalent (or free) zero or 5651 /// sign extensions. 5652 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5653 assert(!Val->use_empty() && "Input must have at least one use"); 5654 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5655 bool IsSExt = isa<SExtInst>(FirstUser); 5656 Type *ExtTy = FirstUser->getType(); 5657 for (const User *U : Val->users()) { 5658 const Instruction *UI = cast<Instruction>(U); 5659 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5660 return false; 5661 Type *CurTy = UI->getType(); 5662 // Same input and output types: Same instruction after CSE. 5663 if (CurTy == ExtTy) 5664 continue; 5665 5666 // If IsSExt is true, we are in this situation: 5667 // a = Val 5668 // b = sext ty1 a to ty2 5669 // c = sext ty1 a to ty3 5670 // Assuming ty2 is shorter than ty3, this could be turned into: 5671 // a = Val 5672 // b = sext ty1 a to ty2 5673 // c = sext ty2 b to ty3 5674 // However, the last sext is not free. 5675 if (IsSExt) 5676 return false; 5677 5678 // This is a ZExt, maybe this is free to extend from one type to another. 5679 // In that case, we would not account for a different use. 5680 Type *NarrowTy; 5681 Type *LargeTy; 5682 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5683 CurTy->getScalarType()->getIntegerBitWidth()) { 5684 NarrowTy = CurTy; 5685 LargeTy = ExtTy; 5686 } else { 5687 NarrowTy = ExtTy; 5688 LargeTy = CurTy; 5689 } 5690 5691 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5692 return false; 5693 } 5694 // All uses are the same or can be derived from one another for free. 5695 return true; 5696 } 5697 5698 /// Try to speculatively promote extensions in \p Exts and continue 5699 /// promoting through newly promoted operands recursively as far as doing so is 5700 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5701 /// When some promotion happened, \p TPT contains the proper state to revert 5702 /// them. 5703 /// 5704 /// \return true if some promotion happened, false otherwise. 5705 bool CodeGenPrepare::tryToPromoteExts( 5706 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5707 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5708 unsigned CreatedInstsCost) { 5709 bool Promoted = false; 5710 5711 // Iterate over all the extensions to try to promote them. 5712 for (auto *I : Exts) { 5713 // Early check if we directly have ext(load). 5714 if (isa<LoadInst>(I->getOperand(0))) { 5715 ProfitablyMovedExts.push_back(I); 5716 continue; 5717 } 5718 5719 // Check whether or not we want to do any promotion. The reason we have 5720 // this check inside the for loop is to catch the case where an extension 5721 // is directly fed by a load because in such case the extension can be moved 5722 // up without any promotion on its operands. 5723 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5724 return false; 5725 5726 // Get the action to perform the promotion. 5727 TypePromotionHelper::Action TPH = 5728 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5729 // Check if we can promote. 5730 if (!TPH) { 5731 // Save the current extension as we cannot move up through its operand. 5732 ProfitablyMovedExts.push_back(I); 5733 continue; 5734 } 5735 5736 // Save the current state. 5737 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5738 TPT.getRestorationPoint(); 5739 SmallVector<Instruction *, 4> NewExts; 5740 unsigned NewCreatedInstsCost = 0; 5741 unsigned ExtCost = !TLI->isExtFree(I); 5742 // Promote. 5743 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5744 &NewExts, nullptr, *TLI); 5745 assert(PromotedVal && 5746 "TypePromotionHelper should have filtered out those cases"); 5747 5748 // We would be able to merge only one extension in a load. 5749 // Therefore, if we have more than 1 new extension we heuristically 5750 // cut this search path, because it means we degrade the code quality. 5751 // With exactly 2, the transformation is neutral, because we will merge 5752 // one extension but leave one. However, we optimistically keep going, 5753 // because the new extension may be removed too. 5754 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5755 // FIXME: It would be possible to propagate a negative value instead of 5756 // conservatively ceiling it to 0. 5757 TotalCreatedInstsCost = 5758 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5759 if (!StressExtLdPromotion && 5760 (TotalCreatedInstsCost > 1 || 5761 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5762 // This promotion is not profitable, rollback to the previous state, and 5763 // save the current extension in ProfitablyMovedExts as the latest 5764 // speculative promotion turned out to be unprofitable. 5765 TPT.rollback(LastKnownGood); 5766 ProfitablyMovedExts.push_back(I); 5767 continue; 5768 } 5769 // Continue promoting NewExts as far as doing so is profitable. 5770 SmallVector<Instruction *, 2> NewlyMovedExts; 5771 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5772 bool NewPromoted = false; 5773 for (auto *ExtInst : NewlyMovedExts) { 5774 Instruction *MovedExt = cast<Instruction>(ExtInst); 5775 Value *ExtOperand = MovedExt->getOperand(0); 5776 // If we have reached to a load, we need this extra profitability check 5777 // as it could potentially be merged into an ext(load). 5778 if (isa<LoadInst>(ExtOperand) && 5779 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5780 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5781 continue; 5782 5783 ProfitablyMovedExts.push_back(MovedExt); 5784 NewPromoted = true; 5785 } 5786 5787 // If none of speculative promotions for NewExts is profitable, rollback 5788 // and save the current extension (I) as the last profitable extension. 5789 if (!NewPromoted) { 5790 TPT.rollback(LastKnownGood); 5791 ProfitablyMovedExts.push_back(I); 5792 continue; 5793 } 5794 // The promotion is profitable. 5795 Promoted = true; 5796 } 5797 return Promoted; 5798 } 5799 5800 /// Merging redundant sexts when one is dominating the other. 5801 bool CodeGenPrepare::mergeSExts(Function &F) { 5802 bool Changed = false; 5803 for (auto &Entry : ValToSExtendedUses) { 5804 SExts &Insts = Entry.second; 5805 SExts CurPts; 5806 for (Instruction *Inst : Insts) { 5807 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5808 Inst->getOperand(0) != Entry.first) 5809 continue; 5810 bool inserted = false; 5811 for (auto &Pt : CurPts) { 5812 if (getDT(F).dominates(Inst, Pt)) { 5813 Pt->replaceAllUsesWith(Inst); 5814 RemovedInsts.insert(Pt); 5815 Pt->removeFromParent(); 5816 Pt = Inst; 5817 inserted = true; 5818 Changed = true; 5819 break; 5820 } 5821 if (!getDT(F).dominates(Pt, Inst)) 5822 // Give up if we need to merge in a common dominator as the 5823 // experiments show it is not profitable. 5824 continue; 5825 Inst->replaceAllUsesWith(Pt); 5826 RemovedInsts.insert(Inst); 5827 Inst->removeFromParent(); 5828 inserted = true; 5829 Changed = true; 5830 break; 5831 } 5832 if (!inserted) 5833 CurPts.push_back(Inst); 5834 } 5835 } 5836 return Changed; 5837 } 5838 5839 // Splitting large data structures so that the GEPs accessing them can have 5840 // smaller offsets so that they can be sunk to the same blocks as their users. 5841 // For example, a large struct starting from %base is split into two parts 5842 // where the second part starts from %new_base. 5843 // 5844 // Before: 5845 // BB0: 5846 // %base = 5847 // 5848 // BB1: 5849 // %gep0 = gep %base, off0 5850 // %gep1 = gep %base, off1 5851 // %gep2 = gep %base, off2 5852 // 5853 // BB2: 5854 // %load1 = load %gep0 5855 // %load2 = load %gep1 5856 // %load3 = load %gep2 5857 // 5858 // After: 5859 // BB0: 5860 // %base = 5861 // %new_base = gep %base, off0 5862 // 5863 // BB1: 5864 // %new_gep0 = %new_base 5865 // %new_gep1 = gep %new_base, off1 - off0 5866 // %new_gep2 = gep %new_base, off2 - off0 5867 // 5868 // BB2: 5869 // %load1 = load i32, i32* %new_gep0 5870 // %load2 = load i32, i32* %new_gep1 5871 // %load3 = load i32, i32* %new_gep2 5872 // 5873 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5874 // their offsets are smaller enough to fit into the addressing mode. 5875 bool CodeGenPrepare::splitLargeGEPOffsets() { 5876 bool Changed = false; 5877 for (auto &Entry : LargeOffsetGEPMap) { 5878 Value *OldBase = Entry.first; 5879 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5880 &LargeOffsetGEPs = Entry.second; 5881 auto compareGEPOffset = 5882 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5883 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5884 if (LHS.first == RHS.first) 5885 return false; 5886 if (LHS.second != RHS.second) 5887 return LHS.second < RHS.second; 5888 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5889 }; 5890 // Sorting all the GEPs of the same data structures based on the offsets. 5891 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5892 LargeOffsetGEPs.erase( 5893 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5894 LargeOffsetGEPs.end()); 5895 // Skip if all the GEPs have the same offsets. 5896 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5897 continue; 5898 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5899 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5900 Value *NewBaseGEP = nullptr; 5901 5902 auto *LargeOffsetGEP = LargeOffsetGEPs.begin(); 5903 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5904 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5905 int64_t Offset = LargeOffsetGEP->second; 5906 if (Offset != BaseOffset) { 5907 TargetLowering::AddrMode AddrMode; 5908 AddrMode.BaseOffs = Offset - BaseOffset; 5909 // The result type of the GEP might not be the type of the memory 5910 // access. 5911 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5912 GEP->getResultElementType(), 5913 GEP->getAddressSpace())) { 5914 // We need to create a new base if the offset to the current base is 5915 // too large to fit into the addressing mode. So, a very large struct 5916 // may be split into several parts. 5917 BaseGEP = GEP; 5918 BaseOffset = Offset; 5919 NewBaseGEP = nullptr; 5920 } 5921 } 5922 5923 // Generate a new GEP to replace the current one. 5924 LLVMContext &Ctx = GEP->getContext(); 5925 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5926 Type *I8PtrTy = 5927 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5928 Type *I8Ty = Type::getInt8Ty(Ctx); 5929 5930 if (!NewBaseGEP) { 5931 // Create a new base if we don't have one yet. Find the insertion 5932 // pointer for the new base first. 5933 BasicBlock::iterator NewBaseInsertPt; 5934 BasicBlock *NewBaseInsertBB; 5935 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5936 // If the base of the struct is an instruction, the new base will be 5937 // inserted close to it. 5938 NewBaseInsertBB = BaseI->getParent(); 5939 if (isa<PHINode>(BaseI)) 5940 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5941 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5942 NewBaseInsertBB = 5943 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5944 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5945 } else 5946 NewBaseInsertPt = std::next(BaseI->getIterator()); 5947 } else { 5948 // If the current base is an argument or global value, the new base 5949 // will be inserted to the entry block. 5950 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5951 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5952 } 5953 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5954 // Create a new base. 5955 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5956 NewBaseGEP = OldBase; 5957 if (NewBaseGEP->getType() != I8PtrTy) 5958 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5959 NewBaseGEP = 5960 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5961 NewGEPBases.insert(NewBaseGEP); 5962 } 5963 5964 IRBuilder<> Builder(GEP); 5965 Value *NewGEP = NewBaseGEP; 5966 if (Offset == BaseOffset) { 5967 if (GEP->getType() != I8PtrTy) 5968 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5969 } else { 5970 // Calculate the new offset for the new GEP. 5971 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5972 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5973 5974 if (GEP->getType() != I8PtrTy) 5975 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5976 } 5977 GEP->replaceAllUsesWith(NewGEP); 5978 LargeOffsetGEPID.erase(GEP); 5979 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5980 GEP->eraseFromParent(); 5981 Changed = true; 5982 } 5983 } 5984 return Changed; 5985 } 5986 5987 bool CodeGenPrepare::optimizePhiType( 5988 PHINode *I, SmallPtrSetImpl<PHINode *> &Visited, 5989 SmallPtrSetImpl<Instruction *> &DeletedInstrs) { 5990 // We are looking for a collection on interconnected phi nodes that together 5991 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts 5992 // are of the same type. Convert the whole set of nodes to the type of the 5993 // bitcast. 5994 Type *PhiTy = I->getType(); 5995 Type *ConvertTy = nullptr; 5996 if (Visited.count(I) || 5997 (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy())) 5998 return false; 5999 6000 SmallVector<Instruction *, 4> Worklist; 6001 Worklist.push_back(cast<Instruction>(I)); 6002 SmallPtrSet<PHINode *, 4> PhiNodes; 6003 PhiNodes.insert(I); 6004 Visited.insert(I); 6005 SmallPtrSet<Instruction *, 4> Defs; 6006 SmallPtrSet<Instruction *, 4> Uses; 6007 // This works by adding extra bitcasts between load/stores and removing 6008 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi)) 6009 // we can get in the situation where we remove a bitcast in one iteration 6010 // just to add it again in the next. We need to ensure that at least one 6011 // bitcast we remove are anchored to something that will not change back. 6012 bool AnyAnchored = false; 6013 6014 while (!Worklist.empty()) { 6015 Instruction *II = Worklist.pop_back_val(); 6016 6017 if (auto *Phi = dyn_cast<PHINode>(II)) { 6018 // Handle Defs, which might also be PHI's 6019 for (Value *V : Phi->incoming_values()) { 6020 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6021 if (!PhiNodes.count(OpPhi)) { 6022 if (Visited.count(OpPhi)) 6023 return false; 6024 PhiNodes.insert(OpPhi); 6025 Visited.insert(OpPhi); 6026 Worklist.push_back(OpPhi); 6027 } 6028 } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) { 6029 if (!OpLoad->isSimple()) 6030 return false; 6031 if (!Defs.count(OpLoad)) { 6032 Defs.insert(OpLoad); 6033 Worklist.push_back(OpLoad); 6034 } 6035 } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) { 6036 if (!Defs.count(OpEx)) { 6037 Defs.insert(OpEx); 6038 Worklist.push_back(OpEx); 6039 } 6040 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6041 if (!ConvertTy) 6042 ConvertTy = OpBC->getOperand(0)->getType(); 6043 if (OpBC->getOperand(0)->getType() != ConvertTy) 6044 return false; 6045 if (!Defs.count(OpBC)) { 6046 Defs.insert(OpBC); 6047 Worklist.push_back(OpBC); 6048 AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) && 6049 !isa<ExtractElementInst>(OpBC->getOperand(0)); 6050 } 6051 } else if (!isa<UndefValue>(V)) { 6052 return false; 6053 } 6054 } 6055 } 6056 6057 // Handle uses which might also be phi's 6058 for (User *V : II->users()) { 6059 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6060 if (!PhiNodes.count(OpPhi)) { 6061 if (Visited.count(OpPhi)) 6062 return false; 6063 PhiNodes.insert(OpPhi); 6064 Visited.insert(OpPhi); 6065 Worklist.push_back(OpPhi); 6066 } 6067 } else if (auto *OpStore = dyn_cast<StoreInst>(V)) { 6068 if (!OpStore->isSimple() || OpStore->getOperand(0) != II) 6069 return false; 6070 Uses.insert(OpStore); 6071 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6072 if (!ConvertTy) 6073 ConvertTy = OpBC->getType(); 6074 if (OpBC->getType() != ConvertTy) 6075 return false; 6076 Uses.insert(OpBC); 6077 AnyAnchored |= 6078 any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); }); 6079 } else { 6080 return false; 6081 } 6082 } 6083 } 6084 6085 if (!ConvertTy || !AnyAnchored || !TLI->shouldConvertPhiType(PhiTy, ConvertTy)) 6086 return false; 6087 6088 LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to " 6089 << *ConvertTy << "\n"); 6090 6091 // Create all the new phi nodes of the new type, and bitcast any loads to the 6092 // correct type. 6093 ValueToValueMap ValMap; 6094 ValMap[UndefValue::get(PhiTy)] = UndefValue::get(ConvertTy); 6095 for (Instruction *D : Defs) { 6096 if (isa<BitCastInst>(D)) { 6097 ValMap[D] = D->getOperand(0); 6098 DeletedInstrs.insert(D); 6099 } else { 6100 ValMap[D] = 6101 new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode()); 6102 } 6103 } 6104 for (PHINode *Phi : PhiNodes) 6105 ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(), 6106 Phi->getName() + ".tc", Phi); 6107 // Pipe together all the PhiNodes. 6108 for (PHINode *Phi : PhiNodes) { 6109 PHINode *NewPhi = cast<PHINode>(ValMap[Phi]); 6110 for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++) 6111 NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)], 6112 Phi->getIncomingBlock(i)); 6113 Visited.insert(NewPhi); 6114 } 6115 // And finally pipe up the stores and bitcasts 6116 for (Instruction *U : Uses) { 6117 if (isa<BitCastInst>(U)) { 6118 DeletedInstrs.insert(U); 6119 U->replaceAllUsesWith(ValMap[U->getOperand(0)]); 6120 } else { 6121 U->setOperand(0, 6122 new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U)); 6123 } 6124 } 6125 6126 // Save the removed phis to be deleted later. 6127 for (PHINode *Phi : PhiNodes) 6128 DeletedInstrs.insert(Phi); 6129 return true; 6130 } 6131 6132 bool CodeGenPrepare::optimizePhiTypes(Function &F) { 6133 if (!OptimizePhiTypes) 6134 return false; 6135 6136 bool Changed = false; 6137 SmallPtrSet<PHINode *, 4> Visited; 6138 SmallPtrSet<Instruction *, 4> DeletedInstrs; 6139 6140 // Attempt to optimize all the phis in the functions to the correct type. 6141 for (auto &BB : F) 6142 for (auto &Phi : BB.phis()) 6143 Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs); 6144 6145 // Remove any old phi's that have been converted. 6146 for (auto *I : DeletedInstrs) { 6147 I->replaceAllUsesWith(UndefValue::get(I->getType())); 6148 I->eraseFromParent(); 6149 } 6150 6151 return Changed; 6152 } 6153 6154 /// Return true, if an ext(load) can be formed from an extension in 6155 /// \p MovedExts. 6156 bool CodeGenPrepare::canFormExtLd( 6157 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 6158 Instruction *&Inst, bool HasPromoted) { 6159 for (auto *MovedExtInst : MovedExts) { 6160 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 6161 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 6162 Inst = MovedExtInst; 6163 break; 6164 } 6165 } 6166 if (!LI) 6167 return false; 6168 6169 // If they're already in the same block, there's nothing to do. 6170 // Make the cheap checks first if we did not promote. 6171 // If we promoted, we need to check if it is indeed profitable. 6172 if (!HasPromoted && LI->getParent() == Inst->getParent()) 6173 return false; 6174 6175 return TLI->isExtLoad(LI, Inst, *DL); 6176 } 6177 6178 /// Move a zext or sext fed by a load into the same basic block as the load, 6179 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 6180 /// extend into the load. 6181 /// 6182 /// E.g., 6183 /// \code 6184 /// %ld = load i32* %addr 6185 /// %add = add nuw i32 %ld, 4 6186 /// %zext = zext i32 %add to i64 6187 // \endcode 6188 /// => 6189 /// \code 6190 /// %ld = load i32* %addr 6191 /// %zext = zext i32 %ld to i64 6192 /// %add = add nuw i64 %zext, 4 6193 /// \encode 6194 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 6195 /// allow us to match zext(load i32*) to i64. 6196 /// 6197 /// Also, try to promote the computations used to obtain a sign extended 6198 /// value used into memory accesses. 6199 /// E.g., 6200 /// \code 6201 /// a = add nsw i32 b, 3 6202 /// d = sext i32 a to i64 6203 /// e = getelementptr ..., i64 d 6204 /// \endcode 6205 /// => 6206 /// \code 6207 /// f = sext i32 b to i64 6208 /// a = add nsw i64 f, 3 6209 /// e = getelementptr ..., i64 a 6210 /// \endcode 6211 /// 6212 /// \p Inst[in/out] the extension may be modified during the process if some 6213 /// promotions apply. 6214 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 6215 bool AllowPromotionWithoutCommonHeader = false; 6216 /// See if it is an interesting sext operations for the address type 6217 /// promotion before trying to promote it, e.g., the ones with the right 6218 /// type and used in memory accesses. 6219 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 6220 *Inst, AllowPromotionWithoutCommonHeader); 6221 TypePromotionTransaction TPT(RemovedInsts); 6222 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6223 TPT.getRestorationPoint(); 6224 SmallVector<Instruction *, 1> Exts; 6225 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 6226 Exts.push_back(Inst); 6227 6228 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 6229 6230 // Look for a load being extended. 6231 LoadInst *LI = nullptr; 6232 Instruction *ExtFedByLoad; 6233 6234 // Try to promote a chain of computation if it allows to form an extended 6235 // load. 6236 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 6237 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 6238 TPT.commit(); 6239 // Move the extend into the same block as the load. 6240 ExtFedByLoad->moveAfter(LI); 6241 ++NumExtsMoved; 6242 Inst = ExtFedByLoad; 6243 return true; 6244 } 6245 6246 // Continue promoting SExts if known as considerable depending on targets. 6247 if (ATPConsiderable && 6248 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 6249 HasPromoted, TPT, SpeculativelyMovedExts)) 6250 return true; 6251 6252 TPT.rollback(LastKnownGood); 6253 return false; 6254 } 6255 6256 // Perform address type promotion if doing so is profitable. 6257 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 6258 // instructions that sign extended the same initial value. However, if 6259 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 6260 // extension is just profitable. 6261 bool CodeGenPrepare::performAddressTypePromotion( 6262 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 6263 bool HasPromoted, TypePromotionTransaction &TPT, 6264 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 6265 bool Promoted = false; 6266 SmallPtrSet<Instruction *, 1> UnhandledExts; 6267 bool AllSeenFirst = true; 6268 for (auto *I : SpeculativelyMovedExts) { 6269 Value *HeadOfChain = I->getOperand(0); 6270 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 6271 SeenChainsForSExt.find(HeadOfChain); 6272 // If there is an unhandled SExt which has the same header, try to promote 6273 // it as well. 6274 if (AlreadySeen != SeenChainsForSExt.end()) { 6275 if (AlreadySeen->second != nullptr) 6276 UnhandledExts.insert(AlreadySeen->second); 6277 AllSeenFirst = false; 6278 } 6279 } 6280 6281 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 6282 SpeculativelyMovedExts.size() == 1)) { 6283 TPT.commit(); 6284 if (HasPromoted) 6285 Promoted = true; 6286 for (auto *I : SpeculativelyMovedExts) { 6287 Value *HeadOfChain = I->getOperand(0); 6288 SeenChainsForSExt[HeadOfChain] = nullptr; 6289 ValToSExtendedUses[HeadOfChain].push_back(I); 6290 } 6291 // Update Inst as promotion happen. 6292 Inst = SpeculativelyMovedExts.pop_back_val(); 6293 } else { 6294 // This is the first chain visited from the header, keep the current chain 6295 // as unhandled. Defer to promote this until we encounter another SExt 6296 // chain derived from the same header. 6297 for (auto *I : SpeculativelyMovedExts) { 6298 Value *HeadOfChain = I->getOperand(0); 6299 SeenChainsForSExt[HeadOfChain] = Inst; 6300 } 6301 return false; 6302 } 6303 6304 if (!AllSeenFirst && !UnhandledExts.empty()) 6305 for (auto *VisitedSExt : UnhandledExts) { 6306 if (RemovedInsts.count(VisitedSExt)) 6307 continue; 6308 TypePromotionTransaction TPT(RemovedInsts); 6309 SmallVector<Instruction *, 1> Exts; 6310 SmallVector<Instruction *, 2> Chains; 6311 Exts.push_back(VisitedSExt); 6312 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 6313 TPT.commit(); 6314 if (HasPromoted) 6315 Promoted = true; 6316 for (auto *I : Chains) { 6317 Value *HeadOfChain = I->getOperand(0); 6318 // Mark this as handled. 6319 SeenChainsForSExt[HeadOfChain] = nullptr; 6320 ValToSExtendedUses[HeadOfChain].push_back(I); 6321 } 6322 } 6323 return Promoted; 6324 } 6325 6326 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 6327 BasicBlock *DefBB = I->getParent(); 6328 6329 // If the result of a {s|z}ext and its source are both live out, rewrite all 6330 // other uses of the source with result of extension. 6331 Value *Src = I->getOperand(0); 6332 if (Src->hasOneUse()) 6333 return false; 6334 6335 // Only do this xform if truncating is free. 6336 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 6337 return false; 6338 6339 // Only safe to perform the optimization if the source is also defined in 6340 // this block. 6341 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 6342 return false; 6343 6344 bool DefIsLiveOut = false; 6345 for (User *U : I->users()) { 6346 Instruction *UI = cast<Instruction>(U); 6347 6348 // Figure out which BB this ext is used in. 6349 BasicBlock *UserBB = UI->getParent(); 6350 if (UserBB == DefBB) continue; 6351 DefIsLiveOut = true; 6352 break; 6353 } 6354 if (!DefIsLiveOut) 6355 return false; 6356 6357 // Make sure none of the uses are PHI nodes. 6358 for (User *U : Src->users()) { 6359 Instruction *UI = cast<Instruction>(U); 6360 BasicBlock *UserBB = UI->getParent(); 6361 if (UserBB == DefBB) continue; 6362 // Be conservative. We don't want this xform to end up introducing 6363 // reloads just before load / store instructions. 6364 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 6365 return false; 6366 } 6367 6368 // InsertedTruncs - Only insert one trunc in each block once. 6369 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 6370 6371 bool MadeChange = false; 6372 for (Use &U : Src->uses()) { 6373 Instruction *User = cast<Instruction>(U.getUser()); 6374 6375 // Figure out which BB this ext is used in. 6376 BasicBlock *UserBB = User->getParent(); 6377 if (UserBB == DefBB) continue; 6378 6379 // Both src and def are live in this block. Rewrite the use. 6380 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 6381 6382 if (!InsertedTrunc) { 6383 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6384 assert(InsertPt != UserBB->end()); 6385 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 6386 InsertedInsts.insert(InsertedTrunc); 6387 } 6388 6389 // Replace a use of the {s|z}ext source with a use of the result. 6390 U = InsertedTrunc; 6391 ++NumExtUses; 6392 MadeChange = true; 6393 } 6394 6395 return MadeChange; 6396 } 6397 6398 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 6399 // just after the load if the target can fold this into one extload instruction, 6400 // with the hope of eliminating some of the other later "and" instructions using 6401 // the loaded value. "and"s that are made trivially redundant by the insertion 6402 // of the new "and" are removed by this function, while others (e.g. those whose 6403 // path from the load goes through a phi) are left for isel to potentially 6404 // remove. 6405 // 6406 // For example: 6407 // 6408 // b0: 6409 // x = load i32 6410 // ... 6411 // b1: 6412 // y = and x, 0xff 6413 // z = use y 6414 // 6415 // becomes: 6416 // 6417 // b0: 6418 // x = load i32 6419 // x' = and x, 0xff 6420 // ... 6421 // b1: 6422 // z = use x' 6423 // 6424 // whereas: 6425 // 6426 // b0: 6427 // x1 = load i32 6428 // ... 6429 // b1: 6430 // x2 = load i32 6431 // ... 6432 // b2: 6433 // x = phi x1, x2 6434 // y = and x, 0xff 6435 // 6436 // becomes (after a call to optimizeLoadExt for each load): 6437 // 6438 // b0: 6439 // x1 = load i32 6440 // x1' = and x1, 0xff 6441 // ... 6442 // b1: 6443 // x2 = load i32 6444 // x2' = and x2, 0xff 6445 // ... 6446 // b2: 6447 // x = phi x1', x2' 6448 // y = and x, 0xff 6449 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 6450 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 6451 return false; 6452 6453 // Skip loads we've already transformed. 6454 if (Load->hasOneUse() && 6455 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 6456 return false; 6457 6458 // Look at all uses of Load, looking through phis, to determine how many bits 6459 // of the loaded value are needed. 6460 SmallVector<Instruction *, 8> WorkList; 6461 SmallPtrSet<Instruction *, 16> Visited; 6462 SmallVector<Instruction *, 8> AndsToMaybeRemove; 6463 for (auto *U : Load->users()) 6464 WorkList.push_back(cast<Instruction>(U)); 6465 6466 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 6467 unsigned BitWidth = LoadResultVT.getSizeInBits(); 6468 // If the BitWidth is 0, do not try to optimize the type 6469 if (BitWidth == 0) 6470 return false; 6471 6472 APInt DemandBits(BitWidth, 0); 6473 APInt WidestAndBits(BitWidth, 0); 6474 6475 while (!WorkList.empty()) { 6476 Instruction *I = WorkList.pop_back_val(); 6477 6478 // Break use-def graph loops. 6479 if (!Visited.insert(I).second) 6480 continue; 6481 6482 // For a PHI node, push all of its users. 6483 if (auto *Phi = dyn_cast<PHINode>(I)) { 6484 for (auto *U : Phi->users()) 6485 WorkList.push_back(cast<Instruction>(U)); 6486 continue; 6487 } 6488 6489 switch (I->getOpcode()) { 6490 case Instruction::And: { 6491 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 6492 if (!AndC) 6493 return false; 6494 APInt AndBits = AndC->getValue(); 6495 DemandBits |= AndBits; 6496 // Keep track of the widest and mask we see. 6497 if (AndBits.ugt(WidestAndBits)) 6498 WidestAndBits = AndBits; 6499 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 6500 AndsToMaybeRemove.push_back(I); 6501 break; 6502 } 6503 6504 case Instruction::Shl: { 6505 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 6506 if (!ShlC) 6507 return false; 6508 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 6509 DemandBits.setLowBits(BitWidth - ShiftAmt); 6510 break; 6511 } 6512 6513 case Instruction::Trunc: { 6514 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 6515 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 6516 DemandBits.setLowBits(TruncBitWidth); 6517 break; 6518 } 6519 6520 default: 6521 return false; 6522 } 6523 } 6524 6525 uint32_t ActiveBits = DemandBits.getActiveBits(); 6526 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 6527 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 6528 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 6529 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 6530 // followed by an AND. 6531 // TODO: Look into removing this restriction by fixing backends to either 6532 // return false for isLoadExtLegal for i1 or have them select this pattern to 6533 // a single instruction. 6534 // 6535 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 6536 // mask, since these are the only ands that will be removed by isel. 6537 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 6538 WidestAndBits != DemandBits) 6539 return false; 6540 6541 LLVMContext &Ctx = Load->getType()->getContext(); 6542 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 6543 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 6544 6545 // Reject cases that won't be matched as extloads. 6546 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 6547 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 6548 return false; 6549 6550 IRBuilder<> Builder(Load->getNextNode()); 6551 auto *NewAnd = cast<Instruction>( 6552 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 6553 // Mark this instruction as "inserted by CGP", so that other 6554 // optimizations don't touch it. 6555 InsertedInsts.insert(NewAnd); 6556 6557 // Replace all uses of load with new and (except for the use of load in the 6558 // new and itself). 6559 Load->replaceAllUsesWith(NewAnd); 6560 NewAnd->setOperand(0, Load); 6561 6562 // Remove any and instructions that are now redundant. 6563 for (auto *And : AndsToMaybeRemove) 6564 // Check that the and mask is the same as the one we decided to put on the 6565 // new and. 6566 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 6567 And->replaceAllUsesWith(NewAnd); 6568 if (&*CurInstIterator == And) 6569 CurInstIterator = std::next(And->getIterator()); 6570 And->eraseFromParent(); 6571 ++NumAndUses; 6572 } 6573 6574 ++NumAndsAdded; 6575 return true; 6576 } 6577 6578 /// Check if V (an operand of a select instruction) is an expensive instruction 6579 /// that is only used once. 6580 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 6581 auto *I = dyn_cast<Instruction>(V); 6582 // If it's safe to speculatively execute, then it should not have side 6583 // effects; therefore, it's safe to sink and possibly *not* execute. 6584 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 6585 TTI->getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency) >= 6586 TargetTransformInfo::TCC_Expensive; 6587 } 6588 6589 /// Returns true if a SelectInst should be turned into an explicit branch. 6590 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 6591 const TargetLowering *TLI, 6592 SelectInst *SI) { 6593 // If even a predictable select is cheap, then a branch can't be cheaper. 6594 if (!TLI->isPredictableSelectExpensive()) 6595 return false; 6596 6597 // FIXME: This should use the same heuristics as IfConversion to determine 6598 // whether a select is better represented as a branch. 6599 6600 // If metadata tells us that the select condition is obviously predictable, 6601 // then we want to replace the select with a branch. 6602 uint64_t TrueWeight, FalseWeight; 6603 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 6604 uint64_t Max = std::max(TrueWeight, FalseWeight); 6605 uint64_t Sum = TrueWeight + FalseWeight; 6606 if (Sum != 0) { 6607 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 6608 if (Probability > TTI->getPredictableBranchThreshold()) 6609 return true; 6610 } 6611 } 6612 6613 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 6614 6615 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 6616 // comparison condition. If the compare has more than one use, there's 6617 // probably another cmov or setcc around, so it's not worth emitting a branch. 6618 if (!Cmp || !Cmp->hasOneUse()) 6619 return false; 6620 6621 // If either operand of the select is expensive and only needed on one side 6622 // of the select, we should form a branch. 6623 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 6624 sinkSelectOperand(TTI, SI->getFalseValue())) 6625 return true; 6626 6627 return false; 6628 } 6629 6630 /// If \p isTrue is true, return the true value of \p SI, otherwise return 6631 /// false value of \p SI. If the true/false value of \p SI is defined by any 6632 /// select instructions in \p Selects, look through the defining select 6633 /// instruction until the true/false value is not defined in \p Selects. 6634 static Value *getTrueOrFalseValue( 6635 SelectInst *SI, bool isTrue, 6636 const SmallPtrSet<const Instruction *, 2> &Selects) { 6637 Value *V = nullptr; 6638 6639 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 6640 DefSI = dyn_cast<SelectInst>(V)) { 6641 assert(DefSI->getCondition() == SI->getCondition() && 6642 "The condition of DefSI does not match with SI"); 6643 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 6644 } 6645 6646 assert(V && "Failed to get select true/false value"); 6647 return V; 6648 } 6649 6650 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 6651 assert(Shift->isShift() && "Expected a shift"); 6652 6653 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 6654 // general vector shifts, and (3) the shift amount is a select-of-splatted 6655 // values, hoist the shifts before the select: 6656 // shift Op0, (select Cond, TVal, FVal) --> 6657 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6658 // 6659 // This is inverting a generic IR transform when we know that the cost of a 6660 // general vector shift is more than the cost of 2 shift-by-scalars. 6661 // We can't do this effectively in SDAG because we may not be able to 6662 // determine if the select operands are splats from within a basic block. 6663 Type *Ty = Shift->getType(); 6664 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6665 return false; 6666 Value *Cond, *TVal, *FVal; 6667 if (!match(Shift->getOperand(1), 6668 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6669 return false; 6670 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6671 return false; 6672 6673 IRBuilder<> Builder(Shift); 6674 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6675 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6676 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6677 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6678 Shift->replaceAllUsesWith(NewSel); 6679 Shift->eraseFromParent(); 6680 return true; 6681 } 6682 6683 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) { 6684 Intrinsic::ID Opcode = Fsh->getIntrinsicID(); 6685 assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && 6686 "Expected a funnel shift"); 6687 6688 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper 6689 // than general vector shifts, and (3) the shift amount is select-of-splatted 6690 // values, hoist the funnel shifts before the select: 6691 // fsh Op0, Op1, (select Cond, TVal, FVal) --> 6692 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal) 6693 // 6694 // This is inverting a generic IR transform when we know that the cost of a 6695 // general vector shift is more than the cost of 2 shift-by-scalars. 6696 // We can't do this effectively in SDAG because we may not be able to 6697 // determine if the select operands are splats from within a basic block. 6698 Type *Ty = Fsh->getType(); 6699 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6700 return false; 6701 Value *Cond, *TVal, *FVal; 6702 if (!match(Fsh->getOperand(2), 6703 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6704 return false; 6705 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6706 return false; 6707 6708 IRBuilder<> Builder(Fsh); 6709 Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1); 6710 Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, TVal }); 6711 Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, FVal }); 6712 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6713 Fsh->replaceAllUsesWith(NewSel); 6714 Fsh->eraseFromParent(); 6715 return true; 6716 } 6717 6718 /// If we have a SelectInst that will likely profit from branch prediction, 6719 /// turn it into a branch. 6720 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6721 if (DisableSelectToBranch) 6722 return false; 6723 6724 // Find all consecutive select instructions that share the same condition. 6725 SmallVector<SelectInst *, 2> ASI; 6726 ASI.push_back(SI); 6727 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 6728 It != SI->getParent()->end(); ++It) { 6729 SelectInst *I = dyn_cast<SelectInst>(&*It); 6730 if (I && SI->getCondition() == I->getCondition()) { 6731 ASI.push_back(I); 6732 } else { 6733 break; 6734 } 6735 } 6736 6737 SelectInst *LastSI = ASI.back(); 6738 // Increment the current iterator to skip all the rest of select instructions 6739 // because they will be either "not lowered" or "all lowered" to branch. 6740 CurInstIterator = std::next(LastSI->getIterator()); 6741 6742 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 6743 6744 // Can we convert the 'select' to CF ? 6745 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 6746 return false; 6747 6748 TargetLowering::SelectSupportKind SelectKind; 6749 if (VectorCond) 6750 SelectKind = TargetLowering::VectorMaskSelect; 6751 else if (SI->getType()->isVectorTy()) 6752 SelectKind = TargetLowering::ScalarCondVectorVal; 6753 else 6754 SelectKind = TargetLowering::ScalarValSelect; 6755 6756 if (TLI->isSelectSupported(SelectKind) && 6757 (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize || 6758 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()))) 6759 return false; 6760 6761 // The DominatorTree needs to be rebuilt by any consumers after this 6762 // transformation. We simply reset here rather than setting the ModifiedDT 6763 // flag to avoid restarting the function walk in runOnFunction for each 6764 // select optimized. 6765 DT.reset(); 6766 6767 // Transform a sequence like this: 6768 // start: 6769 // %cmp = cmp uge i32 %a, %b 6770 // %sel = select i1 %cmp, i32 %c, i32 %d 6771 // 6772 // Into: 6773 // start: 6774 // %cmp = cmp uge i32 %a, %b 6775 // %cmp.frozen = freeze %cmp 6776 // br i1 %cmp.frozen, label %select.true, label %select.false 6777 // select.true: 6778 // br label %select.end 6779 // select.false: 6780 // br label %select.end 6781 // select.end: 6782 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6783 // 6784 // %cmp should be frozen, otherwise it may introduce undefined behavior. 6785 // In addition, we may sink instructions that produce %c or %d from 6786 // the entry block into the destination(s) of the new branch. 6787 // If the true or false blocks do not contain a sunken instruction, that 6788 // block and its branch may be optimized away. In that case, one side of the 6789 // first branch will point directly to select.end, and the corresponding PHI 6790 // predecessor block will be the start block. 6791 6792 // First, we split the block containing the select into 2 blocks. 6793 BasicBlock *StartBlock = SI->getParent(); 6794 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6795 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6796 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); 6797 6798 // Delete the unconditional branch that was just created by the split. 6799 StartBlock->getTerminator()->eraseFromParent(); 6800 6801 // These are the new basic blocks for the conditional branch. 6802 // At least one will become an actual new basic block. 6803 BasicBlock *TrueBlock = nullptr; 6804 BasicBlock *FalseBlock = nullptr; 6805 BranchInst *TrueBranch = nullptr; 6806 BranchInst *FalseBranch = nullptr; 6807 6808 // Sink expensive instructions into the conditional blocks to avoid executing 6809 // them speculatively. 6810 for (SelectInst *SI : ASI) { 6811 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6812 if (TrueBlock == nullptr) { 6813 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6814 EndBlock->getParent(), EndBlock); 6815 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6816 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6817 } 6818 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6819 TrueInst->moveBefore(TrueBranch); 6820 } 6821 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6822 if (FalseBlock == nullptr) { 6823 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6824 EndBlock->getParent(), EndBlock); 6825 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6826 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6827 } 6828 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6829 FalseInst->moveBefore(FalseBranch); 6830 } 6831 } 6832 6833 // If there was nothing to sink, then arbitrarily choose the 'false' side 6834 // for a new input value to the PHI. 6835 if (TrueBlock == FalseBlock) { 6836 assert(TrueBlock == nullptr && 6837 "Unexpected basic block transform while optimizing select"); 6838 6839 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6840 EndBlock->getParent(), EndBlock); 6841 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6842 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6843 } 6844 6845 // Insert the real conditional branch based on the original condition. 6846 // If we did not create a new block for one of the 'true' or 'false' paths 6847 // of the condition, it means that side of the branch goes to the end block 6848 // directly and the path originates from the start block from the point of 6849 // view of the new PHI. 6850 BasicBlock *TT, *FT; 6851 if (TrueBlock == nullptr) { 6852 TT = EndBlock; 6853 FT = FalseBlock; 6854 TrueBlock = StartBlock; 6855 } else if (FalseBlock == nullptr) { 6856 TT = TrueBlock; 6857 FT = EndBlock; 6858 FalseBlock = StartBlock; 6859 } else { 6860 TT = TrueBlock; 6861 FT = FalseBlock; 6862 } 6863 IRBuilder<> IB(SI); 6864 auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 6865 IB.CreateCondBr(CondFr, TT, FT, SI); 6866 6867 SmallPtrSet<const Instruction *, 2> INS; 6868 INS.insert(ASI.begin(), ASI.end()); 6869 // Use reverse iterator because later select may use the value of the 6870 // earlier select, and we need to propagate value through earlier select 6871 // to get the PHI operand. 6872 for (SelectInst *SI : llvm::reverse(ASI)) { 6873 // The select itself is replaced with a PHI Node. 6874 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6875 PN->takeName(SI); 6876 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6877 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6878 PN->setDebugLoc(SI->getDebugLoc()); 6879 6880 SI->replaceAllUsesWith(PN); 6881 SI->eraseFromParent(); 6882 INS.erase(SI); 6883 ++NumSelectsExpanded; 6884 } 6885 6886 // Instruct OptimizeBlock to skip to the next block. 6887 CurInstIterator = StartBlock->end(); 6888 return true; 6889 } 6890 6891 /// Some targets only accept certain types for splat inputs. For example a VDUP 6892 /// in MVE takes a GPR (integer) register, and the instruction that incorporate 6893 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register. 6894 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6895 // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only 6896 if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 6897 m_Undef(), m_ZeroMask()))) 6898 return false; 6899 Type *NewType = TLI->shouldConvertSplatType(SVI); 6900 if (!NewType) 6901 return false; 6902 6903 auto *SVIVecType = cast<FixedVectorType>(SVI->getType()); 6904 assert(!NewType->isVectorTy() && "Expected a scalar type!"); 6905 assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && 6906 "Expected a type of the same size!"); 6907 auto *NewVecType = 6908 FixedVectorType::get(NewType, SVIVecType->getNumElements()); 6909 6910 // Create a bitcast (shuffle (insert (bitcast(..)))) 6911 IRBuilder<> Builder(SVI->getContext()); 6912 Builder.SetInsertPoint(SVI); 6913 Value *BC1 = Builder.CreateBitCast( 6914 cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType); 6915 Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1); 6916 Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType); 6917 6918 SVI->replaceAllUsesWith(BC2); 6919 RecursivelyDeleteTriviallyDeadInstructions( 6920 SVI, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); 6921 6922 // Also hoist the bitcast up to its operand if it they are not in the same 6923 // block. 6924 if (auto *BCI = dyn_cast<Instruction>(BC1)) 6925 if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0))) 6926 if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) && 6927 !Op->isTerminator() && !Op->isEHPad()) 6928 BCI->moveAfter(Op); 6929 6930 return true; 6931 } 6932 6933 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6934 // If the operands of I can be folded into a target instruction together with 6935 // I, duplicate and sink them. 6936 SmallVector<Use *, 4> OpsToSink; 6937 if (!TLI->shouldSinkOperands(I, OpsToSink)) 6938 return false; 6939 6940 // OpsToSink can contain multiple uses in a use chain (e.g. 6941 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6942 // uses must come first, so we process the ops in reverse order so as to not 6943 // create invalid IR. 6944 BasicBlock *TargetBB = I->getParent(); 6945 bool Changed = false; 6946 SmallVector<Use *, 4> ToReplace; 6947 Instruction *InsertPoint = I; 6948 DenseMap<const Instruction *, unsigned long> InstOrdering; 6949 unsigned long InstNumber = 0; 6950 for (const auto &I : *TargetBB) 6951 InstOrdering[&I] = InstNumber++; 6952 6953 for (Use *U : reverse(OpsToSink)) { 6954 auto *UI = cast<Instruction>(U->get()); 6955 if (isa<PHINode>(UI)) 6956 continue; 6957 if (UI->getParent() == TargetBB) { 6958 if (InstOrdering[UI] < InstOrdering[InsertPoint]) 6959 InsertPoint = UI; 6960 continue; 6961 } 6962 ToReplace.push_back(U); 6963 } 6964 6965 SetVector<Instruction *> MaybeDead; 6966 DenseMap<Instruction *, Instruction *> NewInstructions; 6967 for (Use *U : ToReplace) { 6968 auto *UI = cast<Instruction>(U->get()); 6969 Instruction *NI = UI->clone(); 6970 NewInstructions[UI] = NI; 6971 MaybeDead.insert(UI); 6972 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6973 NI->insertBefore(InsertPoint); 6974 InsertPoint = NI; 6975 InsertedInsts.insert(NI); 6976 6977 // Update the use for the new instruction, making sure that we update the 6978 // sunk instruction uses, if it is part of a chain that has already been 6979 // sunk. 6980 Instruction *OldI = cast<Instruction>(U->getUser()); 6981 if (NewInstructions.count(OldI)) 6982 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 6983 else 6984 U->set(NI); 6985 Changed = true; 6986 } 6987 6988 // Remove instructions that are dead after sinking. 6989 for (auto *I : MaybeDead) { 6990 if (!I->hasNUsesOrMore(1)) { 6991 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 6992 I->eraseFromParent(); 6993 } 6994 } 6995 6996 return Changed; 6997 } 6998 6999 bool CodeGenPrepare::optimizeSwitchType(SwitchInst *SI) { 7000 Value *Cond = SI->getCondition(); 7001 Type *OldType = Cond->getType(); 7002 LLVMContext &Context = Cond->getContext(); 7003 EVT OldVT = TLI->getValueType(*DL, OldType); 7004 MVT RegType = TLI->getPreferredSwitchConditionType(Context, OldVT); 7005 unsigned RegWidth = RegType.getSizeInBits(); 7006 7007 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 7008 return false; 7009 7010 // If the register width is greater than the type width, expand the condition 7011 // of the switch instruction and each case constant to the width of the 7012 // register. By widening the type of the switch condition, subsequent 7013 // comparisons (for case comparisons) will not need to be extended to the 7014 // preferred register width, so we will potentially eliminate N-1 extends, 7015 // where N is the number of cases in the switch. 7016 auto *NewType = Type::getIntNTy(Context, RegWidth); 7017 7018 // Extend the switch condition and case constants using the target preferred 7019 // extend unless the switch condition is a function argument with an extend 7020 // attribute. In that case, we can avoid an unnecessary mask/extension by 7021 // matching the argument extension instead. 7022 Instruction::CastOps ExtType = Instruction::ZExt; 7023 // Some targets prefer SExt over ZExt. 7024 if (TLI->isSExtCheaperThanZExt(OldVT, RegType)) 7025 ExtType = Instruction::SExt; 7026 7027 if (auto *Arg = dyn_cast<Argument>(Cond)) { 7028 if (Arg->hasSExtAttr()) 7029 ExtType = Instruction::SExt; 7030 if (Arg->hasZExtAttr()) 7031 ExtType = Instruction::ZExt; 7032 } 7033 7034 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 7035 ExtInst->insertBefore(SI); 7036 ExtInst->setDebugLoc(SI->getDebugLoc()); 7037 SI->setCondition(ExtInst); 7038 for (auto Case : SI->cases()) { 7039 const APInt &NarrowConst = Case.getCaseValue()->getValue(); 7040 APInt WideConst = (ExtType == Instruction::ZExt) ? 7041 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 7042 Case.setValue(ConstantInt::get(Context, WideConst)); 7043 } 7044 7045 return true; 7046 } 7047 7048 bool CodeGenPrepare::optimizeSwitchPhiConstants(SwitchInst *SI) { 7049 // The SCCP optimization tends to produce code like this: 7050 // switch(x) { case 42: phi(42, ...) } 7051 // Materializing the constant for the phi-argument needs instructions; So we 7052 // change the code to: 7053 // switch(x) { case 42: phi(x, ...) } 7054 7055 Value *Condition = SI->getCondition(); 7056 // Avoid endless loop in degenerate case. 7057 if (isa<ConstantInt>(*Condition)) 7058 return false; 7059 7060 bool Changed = false; 7061 BasicBlock *SwitchBB = SI->getParent(); 7062 Type *ConditionType = Condition->getType(); 7063 7064 for (const SwitchInst::CaseHandle &Case : SI->cases()) { 7065 ConstantInt *CaseValue = Case.getCaseValue(); 7066 BasicBlock *CaseBB = Case.getCaseSuccessor(); 7067 // Set to true if we previously checked that `CaseBB` is only reached by 7068 // a single case from this switch. 7069 bool CheckedForSinglePred = false; 7070 for (PHINode &PHI : CaseBB->phis()) { 7071 Type *PHIType = PHI.getType(); 7072 // If ZExt is free then we can also catch patterns like this: 7073 // switch((i32)x) { case 42: phi((i64)42, ...); } 7074 // and replace `(i64)42` with `zext i32 %x to i64`. 7075 bool TryZExt = 7076 PHIType->isIntegerTy() && 7077 PHIType->getIntegerBitWidth() > ConditionType->getIntegerBitWidth() && 7078 TLI->isZExtFree(ConditionType, PHIType); 7079 if (PHIType == ConditionType || TryZExt) { 7080 // Set to true to skip this case because of multiple preds. 7081 bool SkipCase = false; 7082 Value *Replacement = nullptr; 7083 for (unsigned I = 0, E = PHI.getNumIncomingValues(); I != E; I++) { 7084 Value *PHIValue = PHI.getIncomingValue(I); 7085 if (PHIValue != CaseValue) { 7086 if (!TryZExt) 7087 continue; 7088 ConstantInt *PHIValueInt = dyn_cast<ConstantInt>(PHIValue); 7089 if (!PHIValueInt || 7090 PHIValueInt->getValue() != 7091 CaseValue->getValue().zext(PHIType->getIntegerBitWidth())) 7092 continue; 7093 } 7094 if (PHI.getIncomingBlock(I) != SwitchBB) 7095 continue; 7096 // We cannot optimize if there are multiple case labels jumping to 7097 // this block. This check may get expensive when there are many 7098 // case labels so we test for it last. 7099 if (!CheckedForSinglePred) { 7100 CheckedForSinglePred = true; 7101 if (SI->findCaseDest(CaseBB) == nullptr) { 7102 SkipCase = true; 7103 break; 7104 } 7105 } 7106 7107 if (Replacement == nullptr) { 7108 if (PHIValue == CaseValue) { 7109 Replacement = Condition; 7110 } else { 7111 IRBuilder<> Builder(SI); 7112 Replacement = Builder.CreateZExt(Condition, PHIType); 7113 } 7114 } 7115 PHI.setIncomingValue(I, Replacement); 7116 Changed = true; 7117 } 7118 if (SkipCase) 7119 break; 7120 } 7121 } 7122 } 7123 return Changed; 7124 } 7125 7126 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 7127 bool Changed = optimizeSwitchType(SI); 7128 Changed |= optimizeSwitchPhiConstants(SI); 7129 return Changed; 7130 } 7131 7132 namespace { 7133 7134 /// Helper class to promote a scalar operation to a vector one. 7135 /// This class is used to move downward extractelement transition. 7136 /// E.g., 7137 /// a = vector_op <2 x i32> 7138 /// b = extractelement <2 x i32> a, i32 0 7139 /// c = scalar_op b 7140 /// store c 7141 /// 7142 /// => 7143 /// a = vector_op <2 x i32> 7144 /// c = vector_op a (equivalent to scalar_op on the related lane) 7145 /// * d = extractelement <2 x i32> c, i32 0 7146 /// * store d 7147 /// Assuming both extractelement and store can be combine, we get rid of the 7148 /// transition. 7149 class VectorPromoteHelper { 7150 /// DataLayout associated with the current module. 7151 const DataLayout &DL; 7152 7153 /// Used to perform some checks on the legality of vector operations. 7154 const TargetLowering &TLI; 7155 7156 /// Used to estimated the cost of the promoted chain. 7157 const TargetTransformInfo &TTI; 7158 7159 /// The transition being moved downwards. 7160 Instruction *Transition; 7161 7162 /// The sequence of instructions to be promoted. 7163 SmallVector<Instruction *, 4> InstsToBePromoted; 7164 7165 /// Cost of combining a store and an extract. 7166 unsigned StoreExtractCombineCost; 7167 7168 /// Instruction that will be combined with the transition. 7169 Instruction *CombineInst = nullptr; 7170 7171 /// The instruction that represents the current end of the transition. 7172 /// Since we are faking the promotion until we reach the end of the chain 7173 /// of computation, we need a way to get the current end of the transition. 7174 Instruction *getEndOfTransition() const { 7175 if (InstsToBePromoted.empty()) 7176 return Transition; 7177 return InstsToBePromoted.back(); 7178 } 7179 7180 /// Return the index of the original value in the transition. 7181 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 7182 /// c, is at index 0. 7183 unsigned getTransitionOriginalValueIdx() const { 7184 assert(isa<ExtractElementInst>(Transition) && 7185 "Other kind of transitions are not supported yet"); 7186 return 0; 7187 } 7188 7189 /// Return the index of the index in the transition. 7190 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 7191 /// is at index 1. 7192 unsigned getTransitionIdx() const { 7193 assert(isa<ExtractElementInst>(Transition) && 7194 "Other kind of transitions are not supported yet"); 7195 return 1; 7196 } 7197 7198 /// Get the type of the transition. 7199 /// This is the type of the original value. 7200 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 7201 /// transition is <2 x i32>. 7202 Type *getTransitionType() const { 7203 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 7204 } 7205 7206 /// Promote \p ToBePromoted by moving \p Def downward through. 7207 /// I.e., we have the following sequence: 7208 /// Def = Transition <ty1> a to <ty2> 7209 /// b = ToBePromoted <ty2> Def, ... 7210 /// => 7211 /// b = ToBePromoted <ty1> a, ... 7212 /// Def = Transition <ty1> ToBePromoted to <ty2> 7213 void promoteImpl(Instruction *ToBePromoted); 7214 7215 /// Check whether or not it is profitable to promote all the 7216 /// instructions enqueued to be promoted. 7217 bool isProfitableToPromote() { 7218 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 7219 unsigned Index = isa<ConstantInt>(ValIdx) 7220 ? cast<ConstantInt>(ValIdx)->getZExtValue() 7221 : -1; 7222 Type *PromotedType = getTransitionType(); 7223 7224 StoreInst *ST = cast<StoreInst>(CombineInst); 7225 unsigned AS = ST->getPointerAddressSpace(); 7226 // Check if this store is supported. 7227 if (!TLI.allowsMisalignedMemoryAccesses( 7228 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 7229 ST->getAlign())) { 7230 // If this is not supported, there is no way we can combine 7231 // the extract with the store. 7232 return false; 7233 } 7234 7235 // The scalar chain of computation has to pay for the transition 7236 // scalar to vector. 7237 // The vector chain has to account for the combining cost. 7238 InstructionCost ScalarCost = 7239 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 7240 InstructionCost VectorCost = StoreExtractCombineCost; 7241 enum TargetTransformInfo::TargetCostKind CostKind = 7242 TargetTransformInfo::TCK_RecipThroughput; 7243 for (const auto &Inst : InstsToBePromoted) { 7244 // Compute the cost. 7245 // By construction, all instructions being promoted are arithmetic ones. 7246 // Moreover, one argument is a constant that can be viewed as a splat 7247 // constant. 7248 Value *Arg0 = Inst->getOperand(0); 7249 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 7250 isa<ConstantFP>(Arg0); 7251 TargetTransformInfo::OperandValueKind Arg0OVK = 7252 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 7253 : TargetTransformInfo::OK_AnyValue; 7254 TargetTransformInfo::OperandValueKind Arg1OVK = 7255 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 7256 : TargetTransformInfo::OK_AnyValue; 7257 ScalarCost += TTI.getArithmeticInstrCost( 7258 Inst->getOpcode(), Inst->getType(), CostKind, Arg0OVK, Arg1OVK); 7259 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 7260 CostKind, 7261 Arg0OVK, Arg1OVK); 7262 } 7263 LLVM_DEBUG( 7264 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 7265 << ScalarCost << "\nVector: " << VectorCost << '\n'); 7266 return ScalarCost > VectorCost; 7267 } 7268 7269 /// Generate a constant vector with \p Val with the same 7270 /// number of elements as the transition. 7271 /// \p UseSplat defines whether or not \p Val should be replicated 7272 /// across the whole vector. 7273 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 7274 /// otherwise we generate a vector with as many undef as possible: 7275 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 7276 /// used at the index of the extract. 7277 Value *getConstantVector(Constant *Val, bool UseSplat) const { 7278 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 7279 if (!UseSplat) { 7280 // If we cannot determine where the constant must be, we have to 7281 // use a splat constant. 7282 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 7283 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 7284 ExtractIdx = CstVal->getSExtValue(); 7285 else 7286 UseSplat = true; 7287 } 7288 7289 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); 7290 if (UseSplat) 7291 return ConstantVector::getSplat(EC, Val); 7292 7293 if (!EC.isScalable()) { 7294 SmallVector<Constant *, 4> ConstVec; 7295 UndefValue *UndefVal = UndefValue::get(Val->getType()); 7296 for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) { 7297 if (Idx == ExtractIdx) 7298 ConstVec.push_back(Val); 7299 else 7300 ConstVec.push_back(UndefVal); 7301 } 7302 return ConstantVector::get(ConstVec); 7303 } else 7304 llvm_unreachable( 7305 "Generate scalable vector for non-splat is unimplemented"); 7306 } 7307 7308 /// Check if promoting to a vector type an operand at \p OperandIdx 7309 /// in \p Use can trigger undefined behavior. 7310 static bool canCauseUndefinedBehavior(const Instruction *Use, 7311 unsigned OperandIdx) { 7312 // This is not safe to introduce undef when the operand is on 7313 // the right hand side of a division-like instruction. 7314 if (OperandIdx != 1) 7315 return false; 7316 switch (Use->getOpcode()) { 7317 default: 7318 return false; 7319 case Instruction::SDiv: 7320 case Instruction::UDiv: 7321 case Instruction::SRem: 7322 case Instruction::URem: 7323 return true; 7324 case Instruction::FDiv: 7325 case Instruction::FRem: 7326 return !Use->hasNoNaNs(); 7327 } 7328 llvm_unreachable(nullptr); 7329 } 7330 7331 public: 7332 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 7333 const TargetTransformInfo &TTI, Instruction *Transition, 7334 unsigned CombineCost) 7335 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 7336 StoreExtractCombineCost(CombineCost) { 7337 assert(Transition && "Do not know how to promote null"); 7338 } 7339 7340 /// Check if we can promote \p ToBePromoted to \p Type. 7341 bool canPromote(const Instruction *ToBePromoted) const { 7342 // We could support CastInst too. 7343 return isa<BinaryOperator>(ToBePromoted); 7344 } 7345 7346 /// Check if it is profitable to promote \p ToBePromoted 7347 /// by moving downward the transition through. 7348 bool shouldPromote(const Instruction *ToBePromoted) const { 7349 // Promote only if all the operands can be statically expanded. 7350 // Indeed, we do not want to introduce any new kind of transitions. 7351 for (const Use &U : ToBePromoted->operands()) { 7352 const Value *Val = U.get(); 7353 if (Val == getEndOfTransition()) { 7354 // If the use is a division and the transition is on the rhs, 7355 // we cannot promote the operation, otherwise we may create a 7356 // division by zero. 7357 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 7358 return false; 7359 continue; 7360 } 7361 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 7362 !isa<ConstantFP>(Val)) 7363 return false; 7364 } 7365 // Check that the resulting operation is legal. 7366 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 7367 if (!ISDOpcode) 7368 return false; 7369 return StressStoreExtract || 7370 TLI.isOperationLegalOrCustom( 7371 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 7372 } 7373 7374 /// Check whether or not \p Use can be combined 7375 /// with the transition. 7376 /// I.e., is it possible to do Use(Transition) => AnotherUse? 7377 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 7378 7379 /// Record \p ToBePromoted as part of the chain to be promoted. 7380 void enqueueForPromotion(Instruction *ToBePromoted) { 7381 InstsToBePromoted.push_back(ToBePromoted); 7382 } 7383 7384 /// Set the instruction that will be combined with the transition. 7385 void recordCombineInstruction(Instruction *ToBeCombined) { 7386 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 7387 CombineInst = ToBeCombined; 7388 } 7389 7390 /// Promote all the instructions enqueued for promotion if it is 7391 /// is profitable. 7392 /// \return True if the promotion happened, false otherwise. 7393 bool promote() { 7394 // Check if there is something to promote. 7395 // Right now, if we do not have anything to combine with, 7396 // we assume the promotion is not profitable. 7397 if (InstsToBePromoted.empty() || !CombineInst) 7398 return false; 7399 7400 // Check cost. 7401 if (!StressStoreExtract && !isProfitableToPromote()) 7402 return false; 7403 7404 // Promote. 7405 for (auto &ToBePromoted : InstsToBePromoted) 7406 promoteImpl(ToBePromoted); 7407 InstsToBePromoted.clear(); 7408 return true; 7409 } 7410 }; 7411 7412 } // end anonymous namespace 7413 7414 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 7415 // At this point, we know that all the operands of ToBePromoted but Def 7416 // can be statically promoted. 7417 // For Def, we need to use its parameter in ToBePromoted: 7418 // b = ToBePromoted ty1 a 7419 // Def = Transition ty1 b to ty2 7420 // Move the transition down. 7421 // 1. Replace all uses of the promoted operation by the transition. 7422 // = ... b => = ... Def. 7423 assert(ToBePromoted->getType() == Transition->getType() && 7424 "The type of the result of the transition does not match " 7425 "the final type"); 7426 ToBePromoted->replaceAllUsesWith(Transition); 7427 // 2. Update the type of the uses. 7428 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 7429 Type *TransitionTy = getTransitionType(); 7430 ToBePromoted->mutateType(TransitionTy); 7431 // 3. Update all the operands of the promoted operation with promoted 7432 // operands. 7433 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 7434 for (Use &U : ToBePromoted->operands()) { 7435 Value *Val = U.get(); 7436 Value *NewVal = nullptr; 7437 if (Val == Transition) 7438 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 7439 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 7440 isa<ConstantFP>(Val)) { 7441 // Use a splat constant if it is not safe to use undef. 7442 NewVal = getConstantVector( 7443 cast<Constant>(Val), 7444 isa<UndefValue>(Val) || 7445 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 7446 } else 7447 llvm_unreachable("Did you modified shouldPromote and forgot to update " 7448 "this?"); 7449 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 7450 } 7451 Transition->moveAfter(ToBePromoted); 7452 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 7453 } 7454 7455 /// Some targets can do store(extractelement) with one instruction. 7456 /// Try to push the extractelement towards the stores when the target 7457 /// has this feature and this is profitable. 7458 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 7459 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 7460 if (DisableStoreExtract || 7461 (!StressStoreExtract && 7462 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 7463 Inst->getOperand(1), CombineCost))) 7464 return false; 7465 7466 // At this point we know that Inst is a vector to scalar transition. 7467 // Try to move it down the def-use chain, until: 7468 // - We can combine the transition with its single use 7469 // => we got rid of the transition. 7470 // - We escape the current basic block 7471 // => we would need to check that we are moving it at a cheaper place and 7472 // we do not do that for now. 7473 BasicBlock *Parent = Inst->getParent(); 7474 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 7475 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 7476 // If the transition has more than one use, assume this is not going to be 7477 // beneficial. 7478 while (Inst->hasOneUse()) { 7479 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 7480 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 7481 7482 if (ToBePromoted->getParent() != Parent) { 7483 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 7484 << ToBePromoted->getParent()->getName() 7485 << ") than the transition (" << Parent->getName() 7486 << ").\n"); 7487 return false; 7488 } 7489 7490 if (VPH.canCombine(ToBePromoted)) { 7491 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 7492 << "will be combined with: " << *ToBePromoted << '\n'); 7493 VPH.recordCombineInstruction(ToBePromoted); 7494 bool Changed = VPH.promote(); 7495 NumStoreExtractExposed += Changed; 7496 return Changed; 7497 } 7498 7499 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 7500 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 7501 return false; 7502 7503 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 7504 7505 VPH.enqueueForPromotion(ToBePromoted); 7506 Inst = ToBePromoted; 7507 } 7508 return false; 7509 } 7510 7511 /// For the instruction sequence of store below, F and I values 7512 /// are bundled together as an i64 value before being stored into memory. 7513 /// Sometimes it is more efficient to generate separate stores for F and I, 7514 /// which can remove the bitwise instructions or sink them to colder places. 7515 /// 7516 /// (store (or (zext (bitcast F to i32) to i64), 7517 /// (shl (zext I to i64), 32)), addr) --> 7518 /// (store F, addr) and (store I, addr+4) 7519 /// 7520 /// Similarly, splitting for other merged store can also be beneficial, like: 7521 /// For pair of {i32, i32}, i64 store --> two i32 stores. 7522 /// For pair of {i32, i16}, i64 store --> two i32 stores. 7523 /// For pair of {i16, i16}, i32 store --> two i16 stores. 7524 /// For pair of {i16, i8}, i32 store --> two i16 stores. 7525 /// For pair of {i8, i8}, i16 store --> two i8 stores. 7526 /// 7527 /// We allow each target to determine specifically which kind of splitting is 7528 /// supported. 7529 /// 7530 /// The store patterns are commonly seen from the simple code snippet below 7531 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 7532 /// void goo(const std::pair<int, float> &); 7533 /// hoo() { 7534 /// ... 7535 /// goo(std::make_pair(tmp, ftmp)); 7536 /// ... 7537 /// } 7538 /// 7539 /// Although we already have similar splitting in DAG Combine, we duplicate 7540 /// it in CodeGenPrepare to catch the case in which pattern is across 7541 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 7542 /// during code expansion. 7543 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 7544 const TargetLowering &TLI) { 7545 // Handle simple but common cases only. 7546 Type *StoreType = SI.getValueOperand()->getType(); 7547 7548 // The code below assumes shifting a value by <number of bits>, 7549 // whereas scalable vectors would have to be shifted by 7550 // <2log(vscale) + number of bits> in order to store the 7551 // low/high parts. Bailing out for now. 7552 if (isa<ScalableVectorType>(StoreType)) 7553 return false; 7554 7555 if (!DL.typeSizeEqualsStoreSize(StoreType) || 7556 DL.getTypeSizeInBits(StoreType) == 0) 7557 return false; 7558 7559 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 7560 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 7561 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 7562 return false; 7563 7564 // Don't split the store if it is volatile. 7565 if (SI.isVolatile()) 7566 return false; 7567 7568 // Match the following patterns: 7569 // (store (or (zext LValue to i64), 7570 // (shl (zext HValue to i64), 32)), HalfValBitSize) 7571 // or 7572 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 7573 // (zext LValue to i64), 7574 // Expect both operands of OR and the first operand of SHL have only 7575 // one use. 7576 Value *LValue, *HValue; 7577 if (!match(SI.getValueOperand(), 7578 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 7579 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 7580 m_SpecificInt(HalfValBitSize)))))) 7581 return false; 7582 7583 // Check LValue and HValue are int with size less or equal than 32. 7584 if (!LValue->getType()->isIntegerTy() || 7585 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 7586 !HValue->getType()->isIntegerTy() || 7587 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 7588 return false; 7589 7590 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 7591 // as the input of target query. 7592 auto *LBC = dyn_cast<BitCastInst>(LValue); 7593 auto *HBC = dyn_cast<BitCastInst>(HValue); 7594 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 7595 : EVT::getEVT(LValue->getType()); 7596 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 7597 : EVT::getEVT(HValue->getType()); 7598 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 7599 return false; 7600 7601 // Start to split store. 7602 IRBuilder<> Builder(SI.getContext()); 7603 Builder.SetInsertPoint(&SI); 7604 7605 // If LValue/HValue is a bitcast in another BB, create a new one in current 7606 // BB so it may be merged with the splitted stores by dag combiner. 7607 if (LBC && LBC->getParent() != SI.getParent()) 7608 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 7609 if (HBC && HBC->getParent() != SI.getParent()) 7610 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 7611 7612 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 7613 auto CreateSplitStore = [&](Value *V, bool Upper) { 7614 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 7615 Value *Addr = Builder.CreateBitCast( 7616 SI.getOperand(1), 7617 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 7618 Align Alignment = SI.getAlign(); 7619 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 7620 if (IsOffsetStore) { 7621 Addr = Builder.CreateGEP( 7622 SplitStoreType, Addr, 7623 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 7624 7625 // When splitting the store in half, naturally one half will retain the 7626 // alignment of the original wider store, regardless of whether it was 7627 // over-aligned or not, while the other will require adjustment. 7628 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 7629 } 7630 Builder.CreateAlignedStore(V, Addr, Alignment); 7631 }; 7632 7633 CreateSplitStore(LValue, false); 7634 CreateSplitStore(HValue, true); 7635 7636 // Delete the old store. 7637 SI.eraseFromParent(); 7638 return true; 7639 } 7640 7641 // Return true if the GEP has two operands, the first operand is of a sequential 7642 // type, and the second operand is a constant. 7643 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 7644 gep_type_iterator I = gep_type_begin(*GEP); 7645 return GEP->getNumOperands() == 2 && 7646 I.isSequential() && 7647 isa<ConstantInt>(GEP->getOperand(1)); 7648 } 7649 7650 // Try unmerging GEPs to reduce liveness interference (register pressure) across 7651 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 7652 // reducing liveness interference across those edges benefits global register 7653 // allocation. Currently handles only certain cases. 7654 // 7655 // For example, unmerge %GEPI and %UGEPI as below. 7656 // 7657 // ---------- BEFORE ---------- 7658 // SrcBlock: 7659 // ... 7660 // %GEPIOp = ... 7661 // ... 7662 // %GEPI = gep %GEPIOp, Idx 7663 // ... 7664 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 7665 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 7666 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 7667 // %UGEPI) 7668 // 7669 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 7670 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 7671 // ... 7672 // 7673 // DstBi: 7674 // ... 7675 // %UGEPI = gep %GEPIOp, UIdx 7676 // ... 7677 // --------------------------- 7678 // 7679 // ---------- AFTER ---------- 7680 // SrcBlock: 7681 // ... (same as above) 7682 // (* %GEPI is still alive on the indirectbr edges) 7683 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 7684 // unmerging) 7685 // ... 7686 // 7687 // DstBi: 7688 // ... 7689 // %UGEPI = gep %GEPI, (UIdx-Idx) 7690 // ... 7691 // --------------------------- 7692 // 7693 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 7694 // no longer alive on them. 7695 // 7696 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 7697 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 7698 // not to disable further simplications and optimizations as a result of GEP 7699 // merging. 7700 // 7701 // Note this unmerging may increase the length of the data flow critical path 7702 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 7703 // between the register pressure and the length of data-flow critical 7704 // path. Restricting this to the uncommon IndirectBr case would minimize the 7705 // impact of potentially longer critical path, if any, and the impact on compile 7706 // time. 7707 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 7708 const TargetTransformInfo *TTI) { 7709 BasicBlock *SrcBlock = GEPI->getParent(); 7710 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 7711 // (non-IndirectBr) cases exit early here. 7712 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 7713 return false; 7714 // Check that GEPI is a simple gep with a single constant index. 7715 if (!GEPSequentialConstIndexed(GEPI)) 7716 return false; 7717 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 7718 // Check that GEPI is a cheap one. 7719 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), 7720 TargetTransformInfo::TCK_SizeAndLatency) 7721 > TargetTransformInfo::TCC_Basic) 7722 return false; 7723 Value *GEPIOp = GEPI->getOperand(0); 7724 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 7725 if (!isa<Instruction>(GEPIOp)) 7726 return false; 7727 auto *GEPIOpI = cast<Instruction>(GEPIOp); 7728 if (GEPIOpI->getParent() != SrcBlock) 7729 return false; 7730 // Check that GEP is used outside the block, meaning it's alive on the 7731 // IndirectBr edge(s). 7732 if (find_if(GEPI->users(), [&](User *Usr) { 7733 if (auto *I = dyn_cast<Instruction>(Usr)) { 7734 if (I->getParent() != SrcBlock) { 7735 return true; 7736 } 7737 } 7738 return false; 7739 }) == GEPI->users().end()) 7740 return false; 7741 // The second elements of the GEP chains to be unmerged. 7742 std::vector<GetElementPtrInst *> UGEPIs; 7743 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 7744 // on IndirectBr edges. 7745 for (User *Usr : GEPIOp->users()) { 7746 if (Usr == GEPI) continue; 7747 // Check if Usr is an Instruction. If not, give up. 7748 if (!isa<Instruction>(Usr)) 7749 return false; 7750 auto *UI = cast<Instruction>(Usr); 7751 // Check if Usr in the same block as GEPIOp, which is fine, skip. 7752 if (UI->getParent() == SrcBlock) 7753 continue; 7754 // Check if Usr is a GEP. If not, give up. 7755 if (!isa<GetElementPtrInst>(Usr)) 7756 return false; 7757 auto *UGEPI = cast<GetElementPtrInst>(Usr); 7758 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 7759 // the pointer operand to it. If so, record it in the vector. If not, give 7760 // up. 7761 if (!GEPSequentialConstIndexed(UGEPI)) 7762 return false; 7763 if (UGEPI->getOperand(0) != GEPIOp) 7764 return false; 7765 if (GEPIIdx->getType() != 7766 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 7767 return false; 7768 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7769 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), 7770 TargetTransformInfo::TCK_SizeAndLatency) 7771 > TargetTransformInfo::TCC_Basic) 7772 return false; 7773 UGEPIs.push_back(UGEPI); 7774 } 7775 if (UGEPIs.size() == 0) 7776 return false; 7777 // Check the materializing cost of (Uidx-Idx). 7778 for (GetElementPtrInst *UGEPI : UGEPIs) { 7779 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7780 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 7781 InstructionCost ImmCost = TTI->getIntImmCost( 7782 NewIdx, GEPIIdx->getType(), TargetTransformInfo::TCK_SizeAndLatency); 7783 if (ImmCost > TargetTransformInfo::TCC_Basic) 7784 return false; 7785 } 7786 // Now unmerge between GEPI and UGEPIs. 7787 for (GetElementPtrInst *UGEPI : UGEPIs) { 7788 UGEPI->setOperand(0, GEPI); 7789 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7790 Constant *NewUGEPIIdx = 7791 ConstantInt::get(GEPIIdx->getType(), 7792 UGEPIIdx->getValue() - GEPIIdx->getValue()); 7793 UGEPI->setOperand(1, NewUGEPIIdx); 7794 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 7795 // inbounds to avoid UB. 7796 if (!GEPI->isInBounds()) { 7797 UGEPI->setIsInBounds(false); 7798 } 7799 } 7800 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 7801 // alive on IndirectBr edges). 7802 assert(find_if(GEPIOp->users(), [&](User *Usr) { 7803 return cast<Instruction>(Usr)->getParent() != SrcBlock; 7804 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 7805 return true; 7806 } 7807 7808 static bool optimizeBranch(BranchInst *Branch, const TargetLowering &TLI) { 7809 // Try and convert 7810 // %c = icmp ult %x, 8 7811 // br %c, bla, blb 7812 // %tc = lshr %x, 3 7813 // to 7814 // %tc = lshr %x, 3 7815 // %c = icmp eq %tc, 0 7816 // br %c, bla, blb 7817 // Creating the cmp to zero can be better for the backend, especially if the 7818 // lshr produces flags that can be used automatically. 7819 if (!TLI.preferZeroCompareBranch() || !Branch->isConditional()) 7820 return false; 7821 7822 ICmpInst *Cmp = dyn_cast<ICmpInst>(Branch->getCondition()); 7823 if (!Cmp || !isa<ConstantInt>(Cmp->getOperand(1)) || !Cmp->hasOneUse()) 7824 return false; 7825 7826 Value *X = Cmp->getOperand(0); 7827 APInt CmpC = cast<ConstantInt>(Cmp->getOperand(1))->getValue(); 7828 7829 for (auto *U : X->users()) { 7830 Instruction *UI = dyn_cast<Instruction>(U); 7831 // A quick dominance check 7832 if (!UI || 7833 (UI->getParent() != Branch->getParent() && 7834 UI->getParent() != Branch->getSuccessor(0) && 7835 UI->getParent() != Branch->getSuccessor(1)) || 7836 (UI->getParent() != Branch->getParent() && 7837 !UI->getParent()->getSinglePredecessor())) 7838 continue; 7839 7840 if (CmpC.isPowerOf2() && Cmp->getPredicate() == ICmpInst::ICMP_ULT && 7841 match(UI, m_Shr(m_Specific(X), m_SpecificInt(CmpC.logBase2())))) { 7842 IRBuilder<> Builder(Branch); 7843 if (UI->getParent() != Branch->getParent()) 7844 UI->moveBefore(Branch); 7845 Value *NewCmp = Builder.CreateCmp(ICmpInst::ICMP_EQ, UI, 7846 ConstantInt::get(UI->getType(), 0)); 7847 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); 7848 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); 7849 Cmp->replaceAllUsesWith(NewCmp); 7850 return true; 7851 } 7852 if (Cmp->isEquality() && 7853 (match(UI, m_Add(m_Specific(X), m_SpecificInt(-CmpC))) || 7854 match(UI, m_Sub(m_Specific(X), m_SpecificInt(CmpC))))) { 7855 IRBuilder<> Builder(Branch); 7856 if (UI->getParent() != Branch->getParent()) 7857 UI->moveBefore(Branch); 7858 Value *NewCmp = Builder.CreateCmp(Cmp->getPredicate(), UI, 7859 ConstantInt::get(UI->getType(), 0)); 7860 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); 7861 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); 7862 Cmp->replaceAllUsesWith(NewCmp); 7863 return true; 7864 } 7865 } 7866 return false; 7867 } 7868 7869 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 7870 // Bail out if we inserted the instruction to prevent optimizations from 7871 // stepping on each other's toes. 7872 if (InsertedInsts.count(I)) 7873 return false; 7874 7875 // TODO: Move into the switch on opcode below here. 7876 if (PHINode *P = dyn_cast<PHINode>(I)) { 7877 // It is possible for very late stage optimizations (such as SimplifyCFG) 7878 // to introduce PHI nodes too late to be cleaned up. If we detect such a 7879 // trivial PHI, go ahead and zap it here. 7880 if (Value *V = simplifyInstruction(P, {*DL, TLInfo})) { 7881 LargeOffsetGEPMap.erase(P); 7882 P->replaceAllUsesWith(V); 7883 P->eraseFromParent(); 7884 ++NumPHIsElim; 7885 return true; 7886 } 7887 return false; 7888 } 7889 7890 if (CastInst *CI = dyn_cast<CastInst>(I)) { 7891 // If the source of the cast is a constant, then this should have 7892 // already been constant folded. The only reason NOT to constant fold 7893 // it is if something (e.g. LSR) was careful to place the constant 7894 // evaluation in a block other than then one that uses it (e.g. to hoist 7895 // the address of globals out of a loop). If this is the case, we don't 7896 // want to forward-subst the cast. 7897 if (isa<Constant>(CI->getOperand(0))) 7898 return false; 7899 7900 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 7901 return true; 7902 7903 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 7904 /// Sink a zext or sext into its user blocks if the target type doesn't 7905 /// fit in one register 7906 if (TLI->getTypeAction(CI->getContext(), 7907 TLI->getValueType(*DL, CI->getType())) == 7908 TargetLowering::TypeExpandInteger) { 7909 return SinkCast(CI); 7910 } else { 7911 bool MadeChange = optimizeExt(I); 7912 return MadeChange | optimizeExtUses(I); 7913 } 7914 } 7915 return false; 7916 } 7917 7918 if (auto *Cmp = dyn_cast<CmpInst>(I)) 7919 if (optimizeCmp(Cmp, ModifiedDT)) 7920 return true; 7921 7922 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7923 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7924 bool Modified = optimizeLoadExt(LI); 7925 unsigned AS = LI->getPointerAddressSpace(); 7926 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 7927 return Modified; 7928 } 7929 7930 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 7931 if (splitMergedValStore(*SI, *DL, *TLI)) 7932 return true; 7933 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7934 unsigned AS = SI->getPointerAddressSpace(); 7935 return optimizeMemoryInst(I, SI->getOperand(1), 7936 SI->getOperand(0)->getType(), AS); 7937 } 7938 7939 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 7940 unsigned AS = RMW->getPointerAddressSpace(); 7941 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7942 RMW->getType(), AS); 7943 } 7944 7945 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7946 unsigned AS = CmpX->getPointerAddressSpace(); 7947 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7948 CmpX->getCompareOperand()->getType(), AS); 7949 } 7950 7951 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7952 7953 if (BinOp && BinOp->getOpcode() == Instruction::And && EnableAndCmpSinking && 7954 sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts)) 7955 return true; 7956 7957 // TODO: Move this into the switch on opcode - it handles shifts already. 7958 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7959 BinOp->getOpcode() == Instruction::LShr)) { 7960 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7961 if (CI && TLI->hasExtractBitsInsn()) 7962 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7963 return true; 7964 } 7965 7966 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7967 if (GEPI->hasAllZeroIndices()) { 7968 /// The GEP operand must be a pointer, so must its result -> BitCast 7969 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7970 GEPI->getName(), GEPI); 7971 NC->setDebugLoc(GEPI->getDebugLoc()); 7972 GEPI->replaceAllUsesWith(NC); 7973 GEPI->eraseFromParent(); 7974 ++NumGEPsElim; 7975 optimizeInst(NC, ModifiedDT); 7976 return true; 7977 } 7978 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7979 return true; 7980 } 7981 return false; 7982 } 7983 7984 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 7985 // freeze(icmp a, const)) -> icmp (freeze a), const 7986 // This helps generate efficient conditional jumps. 7987 Instruction *CmpI = nullptr; 7988 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 7989 CmpI = II; 7990 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 7991 CmpI = F->getFastMathFlags().none() ? F : nullptr; 7992 7993 if (CmpI && CmpI->hasOneUse()) { 7994 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 7995 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 7996 isa<ConstantPointerNull>(Op0); 7997 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 7998 isa<ConstantPointerNull>(Op1); 7999 if (Const0 || Const1) { 8000 if (!Const0 || !Const1) { 8001 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI); 8002 F->takeName(FI); 8003 CmpI->setOperand(Const0 ? 1 : 0, F); 8004 } 8005 FI->replaceAllUsesWith(CmpI); 8006 FI->eraseFromParent(); 8007 return true; 8008 } 8009 } 8010 return false; 8011 } 8012 8013 if (tryToSinkFreeOperands(I)) 8014 return true; 8015 8016 switch (I->getOpcode()) { 8017 case Instruction::Shl: 8018 case Instruction::LShr: 8019 case Instruction::AShr: 8020 return optimizeShiftInst(cast<BinaryOperator>(I)); 8021 case Instruction::Call: 8022 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 8023 case Instruction::Select: 8024 return optimizeSelectInst(cast<SelectInst>(I)); 8025 case Instruction::ShuffleVector: 8026 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 8027 case Instruction::Switch: 8028 return optimizeSwitchInst(cast<SwitchInst>(I)); 8029 case Instruction::ExtractElement: 8030 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 8031 case Instruction::Br: 8032 return optimizeBranch(cast<BranchInst>(I), *TLI); 8033 } 8034 8035 return false; 8036 } 8037 8038 /// Given an OR instruction, check to see if this is a bitreverse 8039 /// idiom. If so, insert the new intrinsic and return true. 8040 bool CodeGenPrepare::makeBitReverse(Instruction &I) { 8041 if (!I.getType()->isIntegerTy() || 8042 !TLI->isOperationLegalOrCustom(ISD::BITREVERSE, 8043 TLI->getValueType(*DL, I.getType(), true))) 8044 return false; 8045 8046 SmallVector<Instruction*, 4> Insts; 8047 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 8048 return false; 8049 Instruction *LastInst = Insts.back(); 8050 I.replaceAllUsesWith(LastInst); 8051 RecursivelyDeleteTriviallyDeadInstructions( 8052 &I, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); 8053 return true; 8054 } 8055 8056 // In this pass we look for GEP and cast instructions that are used 8057 // across basic blocks and rewrite them to improve basic-block-at-a-time 8058 // selection. 8059 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 8060 SunkAddrs.clear(); 8061 bool MadeChange = false; 8062 8063 CurInstIterator = BB.begin(); 8064 while (CurInstIterator != BB.end()) { 8065 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 8066 if (ModifiedDT) 8067 return true; 8068 } 8069 8070 bool MadeBitReverse = true; 8071 while (MadeBitReverse) { 8072 MadeBitReverse = false; 8073 for (auto &I : reverse(BB)) { 8074 if (makeBitReverse(I)) { 8075 MadeBitReverse = MadeChange = true; 8076 break; 8077 } 8078 } 8079 } 8080 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 8081 8082 return MadeChange; 8083 } 8084 8085 // Some CGP optimizations may move or alter what's computed in a block. Check 8086 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 8087 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 8088 assert(isa<DbgValueInst>(I)); 8089 DbgValueInst &DVI = *cast<DbgValueInst>(I); 8090 8091 // Does this dbg.value refer to a sunk address calculation? 8092 bool AnyChange = false; 8093 SmallDenseSet<Value *> LocationOps(DVI.location_ops().begin(), 8094 DVI.location_ops().end()); 8095 for (Value *Location : LocationOps) { 8096 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 8097 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 8098 if (SunkAddr) { 8099 // Point dbg.value at locally computed address, which should give the best 8100 // opportunity to be accurately lowered. This update may change the type 8101 // of pointer being referred to; however this makes no difference to 8102 // debugging information, and we can't generate bitcasts that may affect 8103 // codegen. 8104 DVI.replaceVariableLocationOp(Location, SunkAddr); 8105 AnyChange = true; 8106 } 8107 } 8108 return AnyChange; 8109 } 8110 8111 // A llvm.dbg.value may be using a value before its definition, due to 8112 // optimizations in this pass and others. Scan for such dbg.values, and rescue 8113 // them by moving the dbg.value to immediately after the value definition. 8114 // FIXME: Ideally this should never be necessary, and this has the potential 8115 // to re-order dbg.value intrinsics. 8116 bool CodeGenPrepare::placeDbgValues(Function &F) { 8117 bool MadeChange = false; 8118 DominatorTree DT(F); 8119 8120 for (BasicBlock &BB : F) { 8121 for (Instruction &Insn : llvm::make_early_inc_range(BB)) { 8122 DbgValueInst *DVI = dyn_cast<DbgValueInst>(&Insn); 8123 if (!DVI) 8124 continue; 8125 8126 SmallVector<Instruction *, 4> VIs; 8127 for (Value *V : DVI->getValues()) 8128 if (Instruction *VI = dyn_cast_or_null<Instruction>(V)) 8129 VIs.push_back(VI); 8130 8131 // This DVI may depend on multiple instructions, complicating any 8132 // potential sink. This block takes the defensive approach, opting to 8133 // "undef" the DVI if it has more than one instruction and any of them do 8134 // not dominate DVI. 8135 for (Instruction *VI : VIs) { 8136 if (VI->isTerminator()) 8137 continue; 8138 8139 // If VI is a phi in a block with an EHPad terminator, we can't insert 8140 // after it. 8141 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 8142 continue; 8143 8144 // If the defining instruction dominates the dbg.value, we do not need 8145 // to move the dbg.value. 8146 if (DT.dominates(VI, DVI)) 8147 continue; 8148 8149 // If we depend on multiple instructions and any of them doesn't 8150 // dominate this DVI, we probably can't salvage it: moving it to 8151 // after any of the instructions could cause us to lose the others. 8152 if (VIs.size() > 1) { 8153 LLVM_DEBUG( 8154 dbgs() 8155 << "Unable to find valid location for Debug Value, undefing:\n" 8156 << *DVI); 8157 DVI->setUndef(); 8158 break; 8159 } 8160 8161 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 8162 << *DVI << ' ' << *VI); 8163 DVI->removeFromParent(); 8164 if (isa<PHINode>(VI)) 8165 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 8166 else 8167 DVI->insertAfter(VI); 8168 MadeChange = true; 8169 ++NumDbgValueMoved; 8170 } 8171 } 8172 } 8173 return MadeChange; 8174 } 8175 8176 // Group scattered pseudo probes in a block to favor SelectionDAG. Scattered 8177 // probes can be chained dependencies of other regular DAG nodes and block DAG 8178 // combine optimizations. 8179 bool CodeGenPrepare::placePseudoProbes(Function &F) { 8180 bool MadeChange = false; 8181 for (auto &Block : F) { 8182 // Move the rest probes to the beginning of the block. 8183 auto FirstInst = Block.getFirstInsertionPt(); 8184 while (FirstInst != Block.end() && FirstInst->isDebugOrPseudoInst()) 8185 ++FirstInst; 8186 BasicBlock::iterator I(FirstInst); 8187 I++; 8188 while (I != Block.end()) { 8189 if (auto *II = dyn_cast<PseudoProbeInst>(I++)) { 8190 II->moveBefore(&*FirstInst); 8191 MadeChange = true; 8192 } 8193 } 8194 } 8195 return MadeChange; 8196 } 8197 8198 /// Scale down both weights to fit into uint32_t. 8199 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 8200 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 8201 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 8202 NewTrue = NewTrue / Scale; 8203 NewFalse = NewFalse / Scale; 8204 } 8205 8206 /// Some targets prefer to split a conditional branch like: 8207 /// \code 8208 /// %0 = icmp ne i32 %a, 0 8209 /// %1 = icmp ne i32 %b, 0 8210 /// %or.cond = or i1 %0, %1 8211 /// br i1 %or.cond, label %TrueBB, label %FalseBB 8212 /// \endcode 8213 /// into multiple branch instructions like: 8214 /// \code 8215 /// bb1: 8216 /// %0 = icmp ne i32 %a, 0 8217 /// br i1 %0, label %TrueBB, label %bb2 8218 /// bb2: 8219 /// %1 = icmp ne i32 %b, 0 8220 /// br i1 %1, label %TrueBB, label %FalseBB 8221 /// \endcode 8222 /// This usually allows instruction selection to do even further optimizations 8223 /// and combine the compare with the branch instruction. Currently this is 8224 /// applied for targets which have "cheap" jump instructions. 8225 /// 8226 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 8227 /// 8228 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 8229 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 8230 return false; 8231 8232 bool MadeChange = false; 8233 for (auto &BB : F) { 8234 // Does this BB end with the following? 8235 // %cond1 = icmp|fcmp|binary instruction ... 8236 // %cond2 = icmp|fcmp|binary instruction ... 8237 // %cond.or = or|and i1 %cond1, cond2 8238 // br i1 %cond.or label %dest1, label %dest2" 8239 Instruction *LogicOp; 8240 BasicBlock *TBB, *FBB; 8241 if (!match(BB.getTerminator(), 8242 m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB))) 8243 continue; 8244 8245 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 8246 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 8247 continue; 8248 8249 // The merging of mostly empty BB can cause a degenerate branch. 8250 if (TBB == FBB) 8251 continue; 8252 8253 unsigned Opc; 8254 Value *Cond1, *Cond2; 8255 if (match(LogicOp, 8256 m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2))))) 8257 Opc = Instruction::And; 8258 else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)), 8259 m_OneUse(m_Value(Cond2))))) 8260 Opc = Instruction::Or; 8261 else 8262 continue; 8263 8264 auto IsGoodCond = [](Value *Cond) { 8265 return match( 8266 Cond, 8267 m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()), 8268 m_LogicalOr(m_Value(), m_Value())))); 8269 }; 8270 if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2)) 8271 continue; 8272 8273 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 8274 8275 // Create a new BB. 8276 auto *TmpBB = 8277 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 8278 BB.getParent(), BB.getNextNode()); 8279 8280 // Update original basic block by using the first condition directly by the 8281 // branch instruction and removing the no longer needed and/or instruction. 8282 Br1->setCondition(Cond1); 8283 LogicOp->eraseFromParent(); 8284 8285 // Depending on the condition we have to either replace the true or the 8286 // false successor of the original branch instruction. 8287 if (Opc == Instruction::And) 8288 Br1->setSuccessor(0, TmpBB); 8289 else 8290 Br1->setSuccessor(1, TmpBB); 8291 8292 // Fill in the new basic block. 8293 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 8294 if (auto *I = dyn_cast<Instruction>(Cond2)) { 8295 I->removeFromParent(); 8296 I->insertBefore(Br2); 8297 } 8298 8299 // Update PHI nodes in both successors. The original BB needs to be 8300 // replaced in one successor's PHI nodes, because the branch comes now from 8301 // the newly generated BB (NewBB). In the other successor we need to add one 8302 // incoming edge to the PHI nodes, because both branch instructions target 8303 // now the same successor. Depending on the original branch condition 8304 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 8305 // we perform the correct update for the PHI nodes. 8306 // This doesn't change the successor order of the just created branch 8307 // instruction (or any other instruction). 8308 if (Opc == Instruction::Or) 8309 std::swap(TBB, FBB); 8310 8311 // Replace the old BB with the new BB. 8312 TBB->replacePhiUsesWith(&BB, TmpBB); 8313 8314 // Add another incoming edge form the new BB. 8315 for (PHINode &PN : FBB->phis()) { 8316 auto *Val = PN.getIncomingValueForBlock(&BB); 8317 PN.addIncoming(Val, TmpBB); 8318 } 8319 8320 // Update the branch weights (from SelectionDAGBuilder:: 8321 // FindMergedConditions). 8322 if (Opc == Instruction::Or) { 8323 // Codegen X | Y as: 8324 // BB1: 8325 // jmp_if_X TBB 8326 // jmp TmpBB 8327 // TmpBB: 8328 // jmp_if_Y TBB 8329 // jmp FBB 8330 // 8331 8332 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 8333 // The requirement is that 8334 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 8335 // = TrueProb for original BB. 8336 // Assuming the original weights are A and B, one choice is to set BB1's 8337 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 8338 // assumes that 8339 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 8340 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 8341 // TmpBB, but the math is more complicated. 8342 uint64_t TrueWeight, FalseWeight; 8343 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 8344 uint64_t NewTrueWeight = TrueWeight; 8345 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 8346 scaleWeights(NewTrueWeight, NewFalseWeight); 8347 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 8348 .createBranchWeights(TrueWeight, FalseWeight)); 8349 8350 NewTrueWeight = TrueWeight; 8351 NewFalseWeight = 2 * FalseWeight; 8352 scaleWeights(NewTrueWeight, NewFalseWeight); 8353 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 8354 .createBranchWeights(TrueWeight, FalseWeight)); 8355 } 8356 } else { 8357 // Codegen X & Y as: 8358 // BB1: 8359 // jmp_if_X TmpBB 8360 // jmp FBB 8361 // TmpBB: 8362 // jmp_if_Y TBB 8363 // jmp FBB 8364 // 8365 // This requires creation of TmpBB after CurBB. 8366 8367 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 8368 // The requirement is that 8369 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 8370 // = FalseProb for original BB. 8371 // Assuming the original weights are A and B, one choice is to set BB1's 8372 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 8373 // assumes that 8374 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 8375 uint64_t TrueWeight, FalseWeight; 8376 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 8377 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 8378 uint64_t NewFalseWeight = FalseWeight; 8379 scaleWeights(NewTrueWeight, NewFalseWeight); 8380 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 8381 .createBranchWeights(TrueWeight, FalseWeight)); 8382 8383 NewTrueWeight = 2 * TrueWeight; 8384 NewFalseWeight = FalseWeight; 8385 scaleWeights(NewTrueWeight, NewFalseWeight); 8386 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 8387 .createBranchWeights(TrueWeight, FalseWeight)); 8388 } 8389 } 8390 8391 ModifiedDT = true; 8392 MadeChange = true; 8393 8394 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 8395 TmpBB->dump()); 8396 } 8397 return MadeChange; 8398 } 8399