1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InlineAsm.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/IntrinsicsAArch64.h" 63 #include "llvm/IR/IntrinsicsX86.h" 64 #include "llvm/IR/LLVMContext.h" 65 #include "llvm/IR/MDBuilder.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Statepoint.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/ValueMap.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/BlockFrequency.h" 79 #include "llvm/Support/BranchProbability.h" 80 #include "llvm/Support/Casting.h" 81 #include "llvm/Support/CommandLine.h" 82 #include "llvm/Support/Compiler.h" 83 #include "llvm/Support/Debug.h" 84 #include "llvm/Support/ErrorHandling.h" 85 #include "llvm/Support/MachineValueType.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Target/TargetMachine.h" 89 #include "llvm/Target/TargetOptions.h" 90 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 91 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 92 #include "llvm/Transforms/Utils/Local.h" 93 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 94 #include "llvm/Transforms/Utils/SizeOpts.h" 95 #include <algorithm> 96 #include <cassert> 97 #include <cstdint> 98 #include <iterator> 99 #include <limits> 100 #include <memory> 101 #include <utility> 102 #include <vector> 103 104 using namespace llvm; 105 using namespace llvm::PatternMatch; 106 107 #define DEBUG_TYPE "codegenprepare" 108 109 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 110 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 111 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 112 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 113 "sunken Cmps"); 114 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 115 "of sunken Casts"); 116 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 117 "computations were sunk"); 118 STATISTIC(NumMemoryInstsPhiCreated, 119 "Number of phis created when address " 120 "computations were sunk to memory instructions"); 121 STATISTIC(NumMemoryInstsSelectCreated, 122 "Number of select created when address " 123 "computations were sunk to memory instructions"); 124 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 125 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 126 STATISTIC(NumAndsAdded, 127 "Number of and mask instructions added to form ext loads"); 128 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 129 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 130 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 131 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 132 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 133 134 static cl::opt<bool> DisableBranchOpts( 135 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 136 cl::desc("Disable branch optimizations in CodeGenPrepare")); 137 138 static cl::opt<bool> 139 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 140 cl::desc("Disable GC optimizations in CodeGenPrepare")); 141 142 static cl::opt<bool> DisableSelectToBranch( 143 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 144 cl::desc("Disable select to branch conversion.")); 145 146 static cl::opt<bool> AddrSinkUsingGEPs( 147 "addr-sink-using-gep", cl::Hidden, cl::init(true), 148 cl::desc("Address sinking in CGP using GEPs.")); 149 150 static cl::opt<bool> EnableAndCmpSinking( 151 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 152 cl::desc("Enable sinkinig and/cmp into branches.")); 153 154 static cl::opt<bool> DisableStoreExtract( 155 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 156 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 157 158 static cl::opt<bool> StressStoreExtract( 159 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 160 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 161 162 static cl::opt<bool> DisableExtLdPromotion( 163 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 164 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 165 "CodeGenPrepare")); 166 167 static cl::opt<bool> StressExtLdPromotion( 168 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 169 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 170 "optimization in CodeGenPrepare")); 171 172 static cl::opt<bool> DisablePreheaderProtect( 173 "disable-preheader-prot", cl::Hidden, cl::init(false), 174 cl::desc("Disable protection against removing loop preheaders")); 175 176 static cl::opt<bool> ProfileGuidedSectionPrefix( 177 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 178 cl::desc("Use profile info to add section prefix for hot/cold functions")); 179 180 static cl::opt<unsigned> FreqRatioToSkipMerge( 181 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 182 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 183 "(frequency of destination block) is greater than this ratio")); 184 185 static cl::opt<bool> ForceSplitStore( 186 "force-split-store", cl::Hidden, cl::init(false), 187 cl::desc("Force store splitting no matter what the target query says.")); 188 189 static cl::opt<bool> 190 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 191 cl::desc("Enable merging of redundant sexts when one is dominating" 192 " the other."), cl::init(true)); 193 194 static cl::opt<bool> DisableComplexAddrModes( 195 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 196 cl::desc("Disables combining addressing modes with different parts " 197 "in optimizeMemoryInst.")); 198 199 static cl::opt<bool> 200 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 201 cl::desc("Allow creation of Phis in Address sinking.")); 202 203 static cl::opt<bool> 204 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 205 cl::desc("Allow creation of selects in Address sinking.")); 206 207 static cl::opt<bool> AddrSinkCombineBaseReg( 208 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 209 cl::desc("Allow combining of BaseReg field in Address sinking.")); 210 211 static cl::opt<bool> AddrSinkCombineBaseGV( 212 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 213 cl::desc("Allow combining of BaseGV field in Address sinking.")); 214 215 static cl::opt<bool> AddrSinkCombineBaseOffs( 216 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 217 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 218 219 static cl::opt<bool> AddrSinkCombineScaledReg( 220 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 221 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 222 223 static cl::opt<bool> 224 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 225 cl::init(true), 226 cl::desc("Enable splitting large offset of GEP.")); 227 228 static cl::opt<bool> EnableICMP_EQToICMP_ST( 229 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 230 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 231 232 namespace { 233 234 enum ExtType { 235 ZeroExtension, // Zero extension has been seen. 236 SignExtension, // Sign extension has been seen. 237 BothExtension // This extension type is used if we saw sext after 238 // ZeroExtension had been set, or if we saw zext after 239 // SignExtension had been set. It makes the type 240 // information of a promoted instruction invalid. 241 }; 242 243 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 244 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 245 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 246 using SExts = SmallVector<Instruction *, 16>; 247 using ValueToSExts = DenseMap<Value *, SExts>; 248 249 class TypePromotionTransaction; 250 251 class CodeGenPrepare : public FunctionPass { 252 const TargetMachine *TM = nullptr; 253 const TargetSubtargetInfo *SubtargetInfo; 254 const TargetLowering *TLI = nullptr; 255 const TargetRegisterInfo *TRI; 256 const TargetTransformInfo *TTI = nullptr; 257 const TargetLibraryInfo *TLInfo; 258 const LoopInfo *LI; 259 std::unique_ptr<BlockFrequencyInfo> BFI; 260 std::unique_ptr<BranchProbabilityInfo> BPI; 261 ProfileSummaryInfo *PSI; 262 263 /// As we scan instructions optimizing them, this is the next instruction 264 /// to optimize. Transforms that can invalidate this should update it. 265 BasicBlock::iterator CurInstIterator; 266 267 /// Keeps track of non-local addresses that have been sunk into a block. 268 /// This allows us to avoid inserting duplicate code for blocks with 269 /// multiple load/stores of the same address. The usage of WeakTrackingVH 270 /// enables SunkAddrs to be treated as a cache whose entries can be 271 /// invalidated if a sunken address computation has been erased. 272 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 273 274 /// Keeps track of all instructions inserted for the current function. 275 SetOfInstrs InsertedInsts; 276 277 /// Keeps track of the type of the related instruction before their 278 /// promotion for the current function. 279 InstrToOrigTy PromotedInsts; 280 281 /// Keep track of instructions removed during promotion. 282 SetOfInstrs RemovedInsts; 283 284 /// Keep track of sext chains based on their initial value. 285 DenseMap<Value *, Instruction *> SeenChainsForSExt; 286 287 /// Keep track of GEPs accessing the same data structures such as structs or 288 /// arrays that are candidates to be split later because of their large 289 /// size. 290 MapVector< 291 AssertingVH<Value>, 292 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 293 LargeOffsetGEPMap; 294 295 /// Keep track of new GEP base after splitting the GEPs having large offset. 296 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 297 298 /// Map serial numbers to Large offset GEPs. 299 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 300 301 /// Keep track of SExt promoted. 302 ValueToSExts ValToSExtendedUses; 303 304 /// True if the function has the OptSize attribute. 305 bool OptSize; 306 307 /// DataLayout for the Function being processed. 308 const DataLayout *DL = nullptr; 309 310 /// Building the dominator tree can be expensive, so we only build it 311 /// lazily and update it when required. 312 std::unique_ptr<DominatorTree> DT; 313 314 public: 315 static char ID; // Pass identification, replacement for typeid 316 317 CodeGenPrepare() : FunctionPass(ID) { 318 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 319 } 320 321 bool runOnFunction(Function &F) override; 322 323 StringRef getPassName() const override { return "CodeGen Prepare"; } 324 325 void getAnalysisUsage(AnalysisUsage &AU) const override { 326 // FIXME: When we can selectively preserve passes, preserve the domtree. 327 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 328 AU.addRequired<TargetLibraryInfoWrapperPass>(); 329 AU.addRequired<TargetPassConfig>(); 330 AU.addRequired<TargetTransformInfoWrapperPass>(); 331 AU.addRequired<LoopInfoWrapperPass>(); 332 } 333 334 private: 335 template <typename F> 336 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 337 // Substituting can cause recursive simplifications, which can invalidate 338 // our iterator. Use a WeakTrackingVH to hold onto it in case this 339 // happens. 340 Value *CurValue = &*CurInstIterator; 341 WeakTrackingVH IterHandle(CurValue); 342 343 f(); 344 345 // If the iterator instruction was recursively deleted, start over at the 346 // start of the block. 347 if (IterHandle != CurValue) { 348 CurInstIterator = BB->begin(); 349 SunkAddrs.clear(); 350 } 351 } 352 353 // Get the DominatorTree, building if necessary. 354 DominatorTree &getDT(Function &F) { 355 if (!DT) 356 DT = std::make_unique<DominatorTree>(F); 357 return *DT; 358 } 359 360 bool eliminateFallThrough(Function &F); 361 bool eliminateMostlyEmptyBlocks(Function &F); 362 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 363 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 364 void eliminateMostlyEmptyBlock(BasicBlock *BB); 365 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 366 bool isPreheader); 367 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 368 bool optimizeInst(Instruction *I, bool &ModifiedDT); 369 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 370 Type *AccessTy, unsigned AddrSpace); 371 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); 372 bool optimizeInlineAsmInst(CallInst *CS); 373 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 374 bool optimizeExt(Instruction *&I); 375 bool optimizeExtUses(Instruction *I); 376 bool optimizeLoadExt(LoadInst *Load); 377 bool optimizeShiftInst(BinaryOperator *BO); 378 bool optimizeSelectInst(SelectInst *SI); 379 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 380 bool optimizeSwitchInst(SwitchInst *SI); 381 bool optimizeExtractElementInst(Instruction *Inst); 382 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 383 bool fixupDbgValue(Instruction *I); 384 bool placeDbgValues(Function &F); 385 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 386 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 387 bool tryToPromoteExts(TypePromotionTransaction &TPT, 388 const SmallVectorImpl<Instruction *> &Exts, 389 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 390 unsigned CreatedInstsCost = 0); 391 bool mergeSExts(Function &F); 392 bool splitLargeGEPOffsets(); 393 bool performAddressTypePromotion( 394 Instruction *&Inst, 395 bool AllowPromotionWithoutCommonHeader, 396 bool HasPromoted, TypePromotionTransaction &TPT, 397 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 398 bool splitBranchCondition(Function &F, bool &ModifiedDT); 399 bool simplifyOffsetableRelocate(Instruction &I); 400 401 bool tryToSinkFreeOperands(Instruction *I); 402 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, 403 Value *Arg1, CmpInst *Cmp, 404 Intrinsic::ID IID); 405 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 406 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 407 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 408 }; 409 410 } // end anonymous namespace 411 412 char CodeGenPrepare::ID = 0; 413 414 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 415 "Optimize for code generation", false, false) 416 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 417 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 418 "Optimize for code generation", false, false) 419 420 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 421 422 bool CodeGenPrepare::runOnFunction(Function &F) { 423 if (skipFunction(F)) 424 return false; 425 426 DL = &F.getParent()->getDataLayout(); 427 428 bool EverMadeChange = false; 429 // Clear per function information. 430 InsertedInsts.clear(); 431 PromotedInsts.clear(); 432 433 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 434 SubtargetInfo = TM->getSubtargetImpl(F); 435 TLI = SubtargetInfo->getTargetLowering(); 436 TRI = SubtargetInfo->getRegisterInfo(); 437 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 438 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 439 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 440 BPI.reset(new BranchProbabilityInfo(F, *LI)); 441 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 442 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 443 OptSize = F.hasOptSize(); 444 if (ProfileGuidedSectionPrefix) { 445 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 446 F.setSectionPrefix(".hot"); 447 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 448 F.setSectionPrefix(".unlikely"); 449 } 450 451 /// This optimization identifies DIV instructions that can be 452 /// profitably bypassed and carried out with a shorter, faster divide. 453 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 454 const DenseMap<unsigned int, unsigned int> &BypassWidths = 455 TLI->getBypassSlowDivWidths(); 456 BasicBlock* BB = &*F.begin(); 457 while (BB != nullptr) { 458 // bypassSlowDivision may create new BBs, but we don't want to reapply the 459 // optimization to those blocks. 460 BasicBlock* Next = BB->getNextNode(); 461 // F.hasOptSize is already checked in the outer if statement. 462 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 463 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 464 BB = Next; 465 } 466 } 467 468 // Eliminate blocks that contain only PHI nodes and an 469 // unconditional branch. 470 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 471 472 bool ModifiedDT = false; 473 if (!DisableBranchOpts) 474 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 475 476 // Split some critical edges where one of the sources is an indirect branch, 477 // to help generate sane code for PHIs involving such edges. 478 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 479 480 bool MadeChange = true; 481 while (MadeChange) { 482 MadeChange = false; 483 DT.reset(); 484 for (Function::iterator I = F.begin(); I != F.end(); ) { 485 BasicBlock *BB = &*I++; 486 bool ModifiedDTOnIteration = false; 487 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 488 489 // Restart BB iteration if the dominator tree of the Function was changed 490 if (ModifiedDTOnIteration) 491 break; 492 } 493 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 494 MadeChange |= mergeSExts(F); 495 if (!LargeOffsetGEPMap.empty()) 496 MadeChange |= splitLargeGEPOffsets(); 497 498 if (MadeChange) 499 eliminateFallThrough(F); 500 501 // Really free removed instructions during promotion. 502 for (Instruction *I : RemovedInsts) 503 I->deleteValue(); 504 505 EverMadeChange |= MadeChange; 506 SeenChainsForSExt.clear(); 507 ValToSExtendedUses.clear(); 508 RemovedInsts.clear(); 509 LargeOffsetGEPMap.clear(); 510 LargeOffsetGEPID.clear(); 511 } 512 513 SunkAddrs.clear(); 514 515 if (!DisableBranchOpts) { 516 MadeChange = false; 517 // Use a set vector to get deterministic iteration order. The order the 518 // blocks are removed may affect whether or not PHI nodes in successors 519 // are removed. 520 SmallSetVector<BasicBlock*, 8> WorkList; 521 for (BasicBlock &BB : F) { 522 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 523 MadeChange |= ConstantFoldTerminator(&BB, true); 524 if (!MadeChange) continue; 525 526 for (SmallVectorImpl<BasicBlock*>::iterator 527 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 528 if (pred_begin(*II) == pred_end(*II)) 529 WorkList.insert(*II); 530 } 531 532 // Delete the dead blocks and any of their dead successors. 533 MadeChange |= !WorkList.empty(); 534 while (!WorkList.empty()) { 535 BasicBlock *BB = WorkList.pop_back_val(); 536 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 537 538 DeleteDeadBlock(BB); 539 540 for (SmallVectorImpl<BasicBlock*>::iterator 541 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 542 if (pred_begin(*II) == pred_end(*II)) 543 WorkList.insert(*II); 544 } 545 546 // Merge pairs of basic blocks with unconditional branches, connected by 547 // a single edge. 548 if (EverMadeChange || MadeChange) 549 MadeChange |= eliminateFallThrough(F); 550 551 EverMadeChange |= MadeChange; 552 } 553 554 if (!DisableGCOpts) { 555 SmallVector<Instruction *, 2> Statepoints; 556 for (BasicBlock &BB : F) 557 for (Instruction &I : BB) 558 if (isStatepoint(I)) 559 Statepoints.push_back(&I); 560 for (auto &I : Statepoints) 561 EverMadeChange |= simplifyOffsetableRelocate(*I); 562 } 563 564 // Do this last to clean up use-before-def scenarios introduced by other 565 // preparatory transforms. 566 EverMadeChange |= placeDbgValues(F); 567 568 return EverMadeChange; 569 } 570 571 /// Merge basic blocks which are connected by a single edge, where one of the 572 /// basic blocks has a single successor pointing to the other basic block, 573 /// which has a single predecessor. 574 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 575 bool Changed = false; 576 // Scan all of the blocks in the function, except for the entry block. 577 // Use a temporary array to avoid iterator being invalidated when 578 // deleting blocks. 579 SmallVector<WeakTrackingVH, 16> Blocks; 580 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 581 Blocks.push_back(&Block); 582 583 for (auto &Block : Blocks) { 584 auto *BB = cast_or_null<BasicBlock>(Block); 585 if (!BB) 586 continue; 587 // If the destination block has a single pred, then this is a trivial 588 // edge, just collapse it. 589 BasicBlock *SinglePred = BB->getSinglePredecessor(); 590 591 // Don't merge if BB's address is taken. 592 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 593 594 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 595 if (Term && !Term->isConditional()) { 596 Changed = true; 597 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 598 599 // Merge BB into SinglePred and delete it. 600 MergeBlockIntoPredecessor(BB); 601 } 602 } 603 return Changed; 604 } 605 606 /// Find a destination block from BB if BB is mergeable empty block. 607 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 608 // If this block doesn't end with an uncond branch, ignore it. 609 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 610 if (!BI || !BI->isUnconditional()) 611 return nullptr; 612 613 // If the instruction before the branch (skipping debug info) isn't a phi 614 // node, then other stuff is happening here. 615 BasicBlock::iterator BBI = BI->getIterator(); 616 if (BBI != BB->begin()) { 617 --BBI; 618 while (isa<DbgInfoIntrinsic>(BBI)) { 619 if (BBI == BB->begin()) 620 break; 621 --BBI; 622 } 623 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 624 return nullptr; 625 } 626 627 // Do not break infinite loops. 628 BasicBlock *DestBB = BI->getSuccessor(0); 629 if (DestBB == BB) 630 return nullptr; 631 632 if (!canMergeBlocks(BB, DestBB)) 633 DestBB = nullptr; 634 635 return DestBB; 636 } 637 638 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 639 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 640 /// edges in ways that are non-optimal for isel. Start by eliminating these 641 /// blocks so we can split them the way we want them. 642 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 643 SmallPtrSet<BasicBlock *, 16> Preheaders; 644 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 645 while (!LoopList.empty()) { 646 Loop *L = LoopList.pop_back_val(); 647 LoopList.insert(LoopList.end(), L->begin(), L->end()); 648 if (BasicBlock *Preheader = L->getLoopPreheader()) 649 Preheaders.insert(Preheader); 650 } 651 652 bool MadeChange = false; 653 // Copy blocks into a temporary array to avoid iterator invalidation issues 654 // as we remove them. 655 // Note that this intentionally skips the entry block. 656 SmallVector<WeakTrackingVH, 16> Blocks; 657 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 658 Blocks.push_back(&Block); 659 660 for (auto &Block : Blocks) { 661 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 662 if (!BB) 663 continue; 664 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 665 if (!DestBB || 666 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 667 continue; 668 669 eliminateMostlyEmptyBlock(BB); 670 MadeChange = true; 671 } 672 return MadeChange; 673 } 674 675 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 676 BasicBlock *DestBB, 677 bool isPreheader) { 678 // Do not delete loop preheaders if doing so would create a critical edge. 679 // Loop preheaders can be good locations to spill registers. If the 680 // preheader is deleted and we create a critical edge, registers may be 681 // spilled in the loop body instead. 682 if (!DisablePreheaderProtect && isPreheader && 683 !(BB->getSinglePredecessor() && 684 BB->getSinglePredecessor()->getSingleSuccessor())) 685 return false; 686 687 // Skip merging if the block's successor is also a successor to any callbr 688 // that leads to this block. 689 // FIXME: Is this really needed? Is this a correctness issue? 690 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 691 if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator())) 692 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 693 if (DestBB == CBI->getSuccessor(i)) 694 return false; 695 } 696 697 // Try to skip merging if the unique predecessor of BB is terminated by a 698 // switch or indirect branch instruction, and BB is used as an incoming block 699 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 700 // add COPY instructions in the predecessor of BB instead of BB (if it is not 701 // merged). Note that the critical edge created by merging such blocks wont be 702 // split in MachineSink because the jump table is not analyzable. By keeping 703 // such empty block (BB), ISel will place COPY instructions in BB, not in the 704 // predecessor of BB. 705 BasicBlock *Pred = BB->getUniquePredecessor(); 706 if (!Pred || 707 !(isa<SwitchInst>(Pred->getTerminator()) || 708 isa<IndirectBrInst>(Pred->getTerminator()))) 709 return true; 710 711 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 712 return true; 713 714 // We use a simple cost heuristic which determine skipping merging is 715 // profitable if the cost of skipping merging is less than the cost of 716 // merging : Cost(skipping merging) < Cost(merging BB), where the 717 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 718 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 719 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 720 // Freq(Pred) / Freq(BB) > 2. 721 // Note that if there are multiple empty blocks sharing the same incoming 722 // value for the PHIs in the DestBB, we consider them together. In such 723 // case, Cost(merging BB) will be the sum of their frequencies. 724 725 if (!isa<PHINode>(DestBB->begin())) 726 return true; 727 728 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 729 730 // Find all other incoming blocks from which incoming values of all PHIs in 731 // DestBB are the same as the ones from BB. 732 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 733 ++PI) { 734 BasicBlock *DestBBPred = *PI; 735 if (DestBBPred == BB) 736 continue; 737 738 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 739 return DestPN.getIncomingValueForBlock(BB) == 740 DestPN.getIncomingValueForBlock(DestBBPred); 741 })) 742 SameIncomingValueBBs.insert(DestBBPred); 743 } 744 745 // See if all BB's incoming values are same as the value from Pred. In this 746 // case, no reason to skip merging because COPYs are expected to be place in 747 // Pred already. 748 if (SameIncomingValueBBs.count(Pred)) 749 return true; 750 751 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 752 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 753 754 for (auto SameValueBB : SameIncomingValueBBs) 755 if (SameValueBB->getUniquePredecessor() == Pred && 756 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 757 BBFreq += BFI->getBlockFreq(SameValueBB); 758 759 return PredFreq.getFrequency() <= 760 BBFreq.getFrequency() * FreqRatioToSkipMerge; 761 } 762 763 /// Return true if we can merge BB into DestBB if there is a single 764 /// unconditional branch between them, and BB contains no other non-phi 765 /// instructions. 766 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 767 const BasicBlock *DestBB) const { 768 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 769 // the successor. If there are more complex condition (e.g. preheaders), 770 // don't mess around with them. 771 for (const PHINode &PN : BB->phis()) { 772 for (const User *U : PN.users()) { 773 const Instruction *UI = cast<Instruction>(U); 774 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 775 return false; 776 // If User is inside DestBB block and it is a PHINode then check 777 // incoming value. If incoming value is not from BB then this is 778 // a complex condition (e.g. preheaders) we want to avoid here. 779 if (UI->getParent() == DestBB) { 780 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 781 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 782 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 783 if (Insn && Insn->getParent() == BB && 784 Insn->getParent() != UPN->getIncomingBlock(I)) 785 return false; 786 } 787 } 788 } 789 } 790 791 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 792 // and DestBB may have conflicting incoming values for the block. If so, we 793 // can't merge the block. 794 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 795 if (!DestBBPN) return true; // no conflict. 796 797 // Collect the preds of BB. 798 SmallPtrSet<const BasicBlock*, 16> BBPreds; 799 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 800 // It is faster to get preds from a PHI than with pred_iterator. 801 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 802 BBPreds.insert(BBPN->getIncomingBlock(i)); 803 } else { 804 BBPreds.insert(pred_begin(BB), pred_end(BB)); 805 } 806 807 // Walk the preds of DestBB. 808 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 809 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 810 if (BBPreds.count(Pred)) { // Common predecessor? 811 for (const PHINode &PN : DestBB->phis()) { 812 const Value *V1 = PN.getIncomingValueForBlock(Pred); 813 const Value *V2 = PN.getIncomingValueForBlock(BB); 814 815 // If V2 is a phi node in BB, look up what the mapped value will be. 816 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 817 if (V2PN->getParent() == BB) 818 V2 = V2PN->getIncomingValueForBlock(Pred); 819 820 // If there is a conflict, bail out. 821 if (V1 != V2) return false; 822 } 823 } 824 } 825 826 return true; 827 } 828 829 /// Eliminate a basic block that has only phi's and an unconditional branch in 830 /// it. 831 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 832 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 833 BasicBlock *DestBB = BI->getSuccessor(0); 834 835 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 836 << *BB << *DestBB); 837 838 // If the destination block has a single pred, then this is a trivial edge, 839 // just collapse it. 840 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 841 if (SinglePred != DestBB) { 842 assert(SinglePred == BB && 843 "Single predecessor not the same as predecessor"); 844 // Merge DestBB into SinglePred/BB and delete it. 845 MergeBlockIntoPredecessor(DestBB); 846 // Note: BB(=SinglePred) will not be deleted on this path. 847 // DestBB(=its single successor) is the one that was deleted. 848 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 849 return; 850 } 851 } 852 853 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 854 // to handle the new incoming edges it is about to have. 855 for (PHINode &PN : DestBB->phis()) { 856 // Remove the incoming value for BB, and remember it. 857 Value *InVal = PN.removeIncomingValue(BB, false); 858 859 // Two options: either the InVal is a phi node defined in BB or it is some 860 // value that dominates BB. 861 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 862 if (InValPhi && InValPhi->getParent() == BB) { 863 // Add all of the input values of the input PHI as inputs of this phi. 864 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 865 PN.addIncoming(InValPhi->getIncomingValue(i), 866 InValPhi->getIncomingBlock(i)); 867 } else { 868 // Otherwise, add one instance of the dominating value for each edge that 869 // we will be adding. 870 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 871 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 872 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 873 } else { 874 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 875 PN.addIncoming(InVal, *PI); 876 } 877 } 878 } 879 880 // The PHIs are now updated, change everything that refers to BB to use 881 // DestBB and remove BB. 882 BB->replaceAllUsesWith(DestBB); 883 BB->eraseFromParent(); 884 ++NumBlocksElim; 885 886 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 887 } 888 889 // Computes a map of base pointer relocation instructions to corresponding 890 // derived pointer relocation instructions given a vector of all relocate calls 891 static void computeBaseDerivedRelocateMap( 892 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 893 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 894 &RelocateInstMap) { 895 // Collect information in two maps: one primarily for locating the base object 896 // while filling the second map; the second map is the final structure holding 897 // a mapping between Base and corresponding Derived relocate calls 898 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 899 for (auto *ThisRelocate : AllRelocateCalls) { 900 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 901 ThisRelocate->getDerivedPtrIndex()); 902 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 903 } 904 for (auto &Item : RelocateIdxMap) { 905 std::pair<unsigned, unsigned> Key = Item.first; 906 if (Key.first == Key.second) 907 // Base relocation: nothing to insert 908 continue; 909 910 GCRelocateInst *I = Item.second; 911 auto BaseKey = std::make_pair(Key.first, Key.first); 912 913 // We're iterating over RelocateIdxMap so we cannot modify it. 914 auto MaybeBase = RelocateIdxMap.find(BaseKey); 915 if (MaybeBase == RelocateIdxMap.end()) 916 // TODO: We might want to insert a new base object relocate and gep off 917 // that, if there are enough derived object relocates. 918 continue; 919 920 RelocateInstMap[MaybeBase->second].push_back(I); 921 } 922 } 923 924 // Accepts a GEP and extracts the operands into a vector provided they're all 925 // small integer constants 926 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 927 SmallVectorImpl<Value *> &OffsetV) { 928 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 929 // Only accept small constant integer operands 930 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 931 if (!Op || Op->getZExtValue() > 20) 932 return false; 933 } 934 935 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 936 OffsetV.push_back(GEP->getOperand(i)); 937 return true; 938 } 939 940 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 941 // replace, computes a replacement, and affects it. 942 static bool 943 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 944 const SmallVectorImpl<GCRelocateInst *> &Targets) { 945 bool MadeChange = false; 946 // We must ensure the relocation of derived pointer is defined after 947 // relocation of base pointer. If we find a relocation corresponding to base 948 // defined earlier than relocation of base then we move relocation of base 949 // right before found relocation. We consider only relocation in the same 950 // basic block as relocation of base. Relocations from other basic block will 951 // be skipped by optimization and we do not care about them. 952 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 953 &*R != RelocatedBase; ++R) 954 if (auto RI = dyn_cast<GCRelocateInst>(R)) 955 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 956 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 957 RelocatedBase->moveBefore(RI); 958 break; 959 } 960 961 for (GCRelocateInst *ToReplace : Targets) { 962 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 963 "Not relocating a derived object of the original base object"); 964 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 965 // A duplicate relocate call. TODO: coalesce duplicates. 966 continue; 967 } 968 969 if (RelocatedBase->getParent() != ToReplace->getParent()) { 970 // Base and derived relocates are in different basic blocks. 971 // In this case transform is only valid when base dominates derived 972 // relocate. However it would be too expensive to check dominance 973 // for each such relocate, so we skip the whole transformation. 974 continue; 975 } 976 977 Value *Base = ToReplace->getBasePtr(); 978 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 979 if (!Derived || Derived->getPointerOperand() != Base) 980 continue; 981 982 SmallVector<Value *, 2> OffsetV; 983 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 984 continue; 985 986 // Create a Builder and replace the target callsite with a gep 987 assert(RelocatedBase->getNextNode() && 988 "Should always have one since it's not a terminator"); 989 990 // Insert after RelocatedBase 991 IRBuilder<> Builder(RelocatedBase->getNextNode()); 992 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 993 994 // If gc_relocate does not match the actual type, cast it to the right type. 995 // In theory, there must be a bitcast after gc_relocate if the type does not 996 // match, and we should reuse it to get the derived pointer. But it could be 997 // cases like this: 998 // bb1: 999 // ... 1000 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1001 // br label %merge 1002 // 1003 // bb2: 1004 // ... 1005 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1006 // br label %merge 1007 // 1008 // merge: 1009 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1010 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1011 // 1012 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1013 // no matter there is already one or not. In this way, we can handle all cases, and 1014 // the extra bitcast should be optimized away in later passes. 1015 Value *ActualRelocatedBase = RelocatedBase; 1016 if (RelocatedBase->getType() != Base->getType()) { 1017 ActualRelocatedBase = 1018 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1019 } 1020 Value *Replacement = Builder.CreateGEP( 1021 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1022 Replacement->takeName(ToReplace); 1023 // If the newly generated derived pointer's type does not match the original derived 1024 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1025 Value *ActualReplacement = Replacement; 1026 if (Replacement->getType() != ToReplace->getType()) { 1027 ActualReplacement = 1028 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1029 } 1030 ToReplace->replaceAllUsesWith(ActualReplacement); 1031 ToReplace->eraseFromParent(); 1032 1033 MadeChange = true; 1034 } 1035 return MadeChange; 1036 } 1037 1038 // Turns this: 1039 // 1040 // %base = ... 1041 // %ptr = gep %base + 15 1042 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1043 // %base' = relocate(%tok, i32 4, i32 4) 1044 // %ptr' = relocate(%tok, i32 4, i32 5) 1045 // %val = load %ptr' 1046 // 1047 // into this: 1048 // 1049 // %base = ... 1050 // %ptr = gep %base + 15 1051 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1052 // %base' = gc.relocate(%tok, i32 4, i32 4) 1053 // %ptr' = gep %base' + 15 1054 // %val = load %ptr' 1055 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1056 bool MadeChange = false; 1057 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1058 1059 for (auto *U : I.users()) 1060 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1061 // Collect all the relocate calls associated with a statepoint 1062 AllRelocateCalls.push_back(Relocate); 1063 1064 // We need at least one base pointer relocation + one derived pointer 1065 // relocation to mangle 1066 if (AllRelocateCalls.size() < 2) 1067 return false; 1068 1069 // RelocateInstMap is a mapping from the base relocate instruction to the 1070 // corresponding derived relocate instructions 1071 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1072 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1073 if (RelocateInstMap.empty()) 1074 return false; 1075 1076 for (auto &Item : RelocateInstMap) 1077 // Item.first is the RelocatedBase to offset against 1078 // Item.second is the vector of Targets to replace 1079 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1080 return MadeChange; 1081 } 1082 1083 /// Sink the specified cast instruction into its user blocks. 1084 static bool SinkCast(CastInst *CI) { 1085 BasicBlock *DefBB = CI->getParent(); 1086 1087 /// InsertedCasts - Only insert a cast in each block once. 1088 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1089 1090 bool MadeChange = false; 1091 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1092 UI != E; ) { 1093 Use &TheUse = UI.getUse(); 1094 Instruction *User = cast<Instruction>(*UI); 1095 1096 // Figure out which BB this cast is used in. For PHI's this is the 1097 // appropriate predecessor block. 1098 BasicBlock *UserBB = User->getParent(); 1099 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1100 UserBB = PN->getIncomingBlock(TheUse); 1101 } 1102 1103 // Preincrement use iterator so we don't invalidate it. 1104 ++UI; 1105 1106 // The first insertion point of a block containing an EH pad is after the 1107 // pad. If the pad is the user, we cannot sink the cast past the pad. 1108 if (User->isEHPad()) 1109 continue; 1110 1111 // If the block selected to receive the cast is an EH pad that does not 1112 // allow non-PHI instructions before the terminator, we can't sink the 1113 // cast. 1114 if (UserBB->getTerminator()->isEHPad()) 1115 continue; 1116 1117 // If this user is in the same block as the cast, don't change the cast. 1118 if (UserBB == DefBB) continue; 1119 1120 // If we have already inserted a cast into this block, use it. 1121 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1122 1123 if (!InsertedCast) { 1124 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1125 assert(InsertPt != UserBB->end()); 1126 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1127 CI->getType(), "", &*InsertPt); 1128 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1129 } 1130 1131 // Replace a use of the cast with a use of the new cast. 1132 TheUse = InsertedCast; 1133 MadeChange = true; 1134 ++NumCastUses; 1135 } 1136 1137 // If we removed all uses, nuke the cast. 1138 if (CI->use_empty()) { 1139 salvageDebugInfo(*CI); 1140 CI->eraseFromParent(); 1141 MadeChange = true; 1142 } 1143 1144 return MadeChange; 1145 } 1146 1147 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1148 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1149 /// reduce the number of virtual registers that must be created and coalesced. 1150 /// 1151 /// Return true if any changes are made. 1152 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1153 const DataLayout &DL) { 1154 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1155 // than sinking only nop casts, but is helpful on some platforms. 1156 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1157 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1158 ASC->getDestAddressSpace())) 1159 return false; 1160 } 1161 1162 // If this is a noop copy, 1163 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1164 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1165 1166 // This is an fp<->int conversion? 1167 if (SrcVT.isInteger() != DstVT.isInteger()) 1168 return false; 1169 1170 // If this is an extension, it will be a zero or sign extension, which 1171 // isn't a noop. 1172 if (SrcVT.bitsLT(DstVT)) return false; 1173 1174 // If these values will be promoted, find out what they will be promoted 1175 // to. This helps us consider truncates on PPC as noop copies when they 1176 // are. 1177 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1178 TargetLowering::TypePromoteInteger) 1179 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1180 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1181 TargetLowering::TypePromoteInteger) 1182 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1183 1184 // If, after promotion, these are the same types, this is a noop copy. 1185 if (SrcVT != DstVT) 1186 return false; 1187 1188 return SinkCast(CI); 1189 } 1190 1191 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1192 Value *Arg0, Value *Arg1, 1193 CmpInst *Cmp, 1194 Intrinsic::ID IID) { 1195 if (BO->getParent() != Cmp->getParent()) { 1196 // We used to use a dominator tree here to allow multi-block optimization. 1197 // But that was problematic because: 1198 // 1. It could cause a perf regression by hoisting the math op into the 1199 // critical path. 1200 // 2. It could cause a perf regression by creating a value that was live 1201 // across multiple blocks and increasing register pressure. 1202 // 3. Use of a dominator tree could cause large compile-time regression. 1203 // This is because we recompute the DT on every change in the main CGP 1204 // run-loop. The recomputing is probably unnecessary in many cases, so if 1205 // that was fixed, using a DT here would be ok. 1206 return false; 1207 } 1208 1209 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1210 if (BO->getOpcode() == Instruction::Add && 1211 IID == Intrinsic::usub_with_overflow) { 1212 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1213 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1214 } 1215 1216 // Insert at the first instruction of the pair. 1217 Instruction *InsertPt = nullptr; 1218 for (Instruction &Iter : *Cmp->getParent()) { 1219 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1220 // the overflow intrinsic are defined. 1221 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1222 InsertPt = &Iter; 1223 break; 1224 } 1225 } 1226 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1227 1228 IRBuilder<> Builder(InsertPt); 1229 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1230 if (BO->getOpcode() != Instruction::Xor) { 1231 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1232 BO->replaceAllUsesWith(Math); 1233 } else 1234 assert(BO->hasOneUse() && 1235 "Patterns with XOr should use the BO only in the compare"); 1236 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1237 Cmp->replaceAllUsesWith(OV); 1238 Cmp->eraseFromParent(); 1239 BO->eraseFromParent(); 1240 return true; 1241 } 1242 1243 /// Match special-case patterns that check for unsigned add overflow. 1244 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1245 BinaryOperator *&Add) { 1246 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1247 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1248 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1249 1250 // We are not expecting non-canonical/degenerate code. Just bail out. 1251 if (isa<Constant>(A)) 1252 return false; 1253 1254 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1255 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1256 B = ConstantInt::get(B->getType(), 1); 1257 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1258 B = ConstantInt::get(B->getType(), -1); 1259 else 1260 return false; 1261 1262 // Check the users of the variable operand of the compare looking for an add 1263 // with the adjusted constant. 1264 for (User *U : A->users()) { 1265 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1266 Add = cast<BinaryOperator>(U); 1267 return true; 1268 } 1269 } 1270 return false; 1271 } 1272 1273 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1274 /// intrinsic. Return true if any changes were made. 1275 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1276 bool &ModifiedDT) { 1277 Value *A, *B; 1278 BinaryOperator *Add; 1279 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1280 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1281 return false; 1282 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1283 A = Add->getOperand(0); 1284 B = Add->getOperand(1); 1285 } 1286 1287 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1288 TLI->getValueType(*DL, Add->getType()), 1289 Add->hasNUsesOrMore(2))) 1290 return false; 1291 1292 // We don't want to move around uses of condition values this late, so we 1293 // check if it is legal to create the call to the intrinsic in the basic 1294 // block containing the icmp. 1295 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1296 return false; 1297 1298 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1299 Intrinsic::uadd_with_overflow)) 1300 return false; 1301 1302 // Reset callers - do not crash by iterating over a dead instruction. 1303 ModifiedDT = true; 1304 return true; 1305 } 1306 1307 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1308 bool &ModifiedDT) { 1309 // We are not expecting non-canonical/degenerate code. Just bail out. 1310 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1311 if (isa<Constant>(A) && isa<Constant>(B)) 1312 return false; 1313 1314 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1315 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1316 if (Pred == ICmpInst::ICMP_UGT) { 1317 std::swap(A, B); 1318 Pred = ICmpInst::ICMP_ULT; 1319 } 1320 // Convert special-case: (A == 0) is the same as (A u< 1). 1321 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1322 B = ConstantInt::get(B->getType(), 1); 1323 Pred = ICmpInst::ICMP_ULT; 1324 } 1325 // Convert special-case: (A != 0) is the same as (0 u< A). 1326 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1327 std::swap(A, B); 1328 Pred = ICmpInst::ICMP_ULT; 1329 } 1330 if (Pred != ICmpInst::ICMP_ULT) 1331 return false; 1332 1333 // Walk the users of a variable operand of a compare looking for a subtract or 1334 // add with that same operand. Also match the 2nd operand of the compare to 1335 // the add/sub, but that may be a negated constant operand of an add. 1336 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1337 BinaryOperator *Sub = nullptr; 1338 for (User *U : CmpVariableOperand->users()) { 1339 // A - B, A u< B --> usubo(A, B) 1340 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1341 Sub = cast<BinaryOperator>(U); 1342 break; 1343 } 1344 1345 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1346 const APInt *CmpC, *AddC; 1347 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1348 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1349 Sub = cast<BinaryOperator>(U); 1350 break; 1351 } 1352 } 1353 if (!Sub) 1354 return false; 1355 1356 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1357 TLI->getValueType(*DL, Sub->getType()), 1358 Sub->hasNUsesOrMore(2))) 1359 return false; 1360 1361 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1362 Cmp, Intrinsic::usub_with_overflow)) 1363 return false; 1364 1365 // Reset callers - do not crash by iterating over a dead instruction. 1366 ModifiedDT = true; 1367 return true; 1368 } 1369 1370 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1371 /// registers that must be created and coalesced. This is a clear win except on 1372 /// targets with multiple condition code registers (PowerPC), where it might 1373 /// lose; some adjustment may be wanted there. 1374 /// 1375 /// Return true if any changes are made. 1376 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1377 if (TLI.hasMultipleConditionRegisters()) 1378 return false; 1379 1380 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1381 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1382 return false; 1383 1384 // Only insert a cmp in each block once. 1385 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1386 1387 bool MadeChange = false; 1388 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1389 UI != E; ) { 1390 Use &TheUse = UI.getUse(); 1391 Instruction *User = cast<Instruction>(*UI); 1392 1393 // Preincrement use iterator so we don't invalidate it. 1394 ++UI; 1395 1396 // Don't bother for PHI nodes. 1397 if (isa<PHINode>(User)) 1398 continue; 1399 1400 // Figure out which BB this cmp is used in. 1401 BasicBlock *UserBB = User->getParent(); 1402 BasicBlock *DefBB = Cmp->getParent(); 1403 1404 // If this user is in the same block as the cmp, don't change the cmp. 1405 if (UserBB == DefBB) continue; 1406 1407 // If we have already inserted a cmp into this block, use it. 1408 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1409 1410 if (!InsertedCmp) { 1411 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1412 assert(InsertPt != UserBB->end()); 1413 InsertedCmp = 1414 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1415 Cmp->getOperand(0), Cmp->getOperand(1), "", 1416 &*InsertPt); 1417 // Propagate the debug info. 1418 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1419 } 1420 1421 // Replace a use of the cmp with a use of the new cmp. 1422 TheUse = InsertedCmp; 1423 MadeChange = true; 1424 ++NumCmpUses; 1425 } 1426 1427 // If we removed all uses, nuke the cmp. 1428 if (Cmp->use_empty()) { 1429 Cmp->eraseFromParent(); 1430 MadeChange = true; 1431 } 1432 1433 return MadeChange; 1434 } 1435 1436 /// For pattern like: 1437 /// 1438 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1439 /// ... 1440 /// DomBB: 1441 /// ... 1442 /// br DomCond, TrueBB, CmpBB 1443 /// CmpBB: (with DomBB being the single predecessor) 1444 /// ... 1445 /// Cmp = icmp eq CmpOp0, CmpOp1 1446 /// ... 1447 /// 1448 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1449 /// different from lowering of icmp eq (PowerPC). This function try to convert 1450 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1451 /// After that, DomCond and Cmp can use the same comparison so reduce one 1452 /// comparison. 1453 /// 1454 /// Return true if any changes are made. 1455 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1456 const TargetLowering &TLI) { 1457 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1458 return false; 1459 1460 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1461 if (Pred != ICmpInst::ICMP_EQ) 1462 return false; 1463 1464 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1465 // icmp slt/sgt would introduce more redundant LLVM IR. 1466 for (User *U : Cmp->users()) { 1467 if (isa<BranchInst>(U)) 1468 continue; 1469 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1470 continue; 1471 return false; 1472 } 1473 1474 // This is a cheap/incomplete check for dominance - just match a single 1475 // predecessor with a conditional branch. 1476 BasicBlock *CmpBB = Cmp->getParent(); 1477 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1478 if (!DomBB) 1479 return false; 1480 1481 // We want to ensure that the only way control gets to the comparison of 1482 // interest is that a less/greater than comparison on the same operands is 1483 // false. 1484 Value *DomCond; 1485 BasicBlock *TrueBB, *FalseBB; 1486 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1487 return false; 1488 if (CmpBB != FalseBB) 1489 return false; 1490 1491 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1492 ICmpInst::Predicate DomPred; 1493 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1494 return false; 1495 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1496 return false; 1497 1498 // Convert the equality comparison to the opposite of the dominating 1499 // comparison and swap the direction for all branch/select users. 1500 // We have conceptually converted: 1501 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1502 // to 1503 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1504 // And similarly for branches. 1505 for (User *U : Cmp->users()) { 1506 if (auto *BI = dyn_cast<BranchInst>(U)) { 1507 assert(BI->isConditional() && "Must be conditional"); 1508 BI->swapSuccessors(); 1509 continue; 1510 } 1511 if (auto *SI = dyn_cast<SelectInst>(U)) { 1512 // Swap operands 1513 SI->swapValues(); 1514 SI->swapProfMetadata(); 1515 continue; 1516 } 1517 llvm_unreachable("Must be a branch or a select"); 1518 } 1519 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1520 return true; 1521 } 1522 1523 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1524 if (sinkCmpExpression(Cmp, *TLI)) 1525 return true; 1526 1527 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1528 return true; 1529 1530 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1531 return true; 1532 1533 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1534 return true; 1535 1536 return false; 1537 } 1538 1539 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1540 /// used in a compare to allow isel to generate better code for targets where 1541 /// this operation can be combined. 1542 /// 1543 /// Return true if any changes are made. 1544 static bool sinkAndCmp0Expression(Instruction *AndI, 1545 const TargetLowering &TLI, 1546 SetOfInstrs &InsertedInsts) { 1547 // Double-check that we're not trying to optimize an instruction that was 1548 // already optimized by some other part of this pass. 1549 assert(!InsertedInsts.count(AndI) && 1550 "Attempting to optimize already optimized and instruction"); 1551 (void) InsertedInsts; 1552 1553 // Nothing to do for single use in same basic block. 1554 if (AndI->hasOneUse() && 1555 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1556 return false; 1557 1558 // Try to avoid cases where sinking/duplicating is likely to increase register 1559 // pressure. 1560 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1561 !isa<ConstantInt>(AndI->getOperand(1)) && 1562 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1563 return false; 1564 1565 for (auto *U : AndI->users()) { 1566 Instruction *User = cast<Instruction>(U); 1567 1568 // Only sink 'and' feeding icmp with 0. 1569 if (!isa<ICmpInst>(User)) 1570 return false; 1571 1572 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1573 if (!CmpC || !CmpC->isZero()) 1574 return false; 1575 } 1576 1577 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1578 return false; 1579 1580 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1581 LLVM_DEBUG(AndI->getParent()->dump()); 1582 1583 // Push the 'and' into the same block as the icmp 0. There should only be 1584 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1585 // others, so we don't need to keep track of which BBs we insert into. 1586 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1587 UI != E; ) { 1588 Use &TheUse = UI.getUse(); 1589 Instruction *User = cast<Instruction>(*UI); 1590 1591 // Preincrement use iterator so we don't invalidate it. 1592 ++UI; 1593 1594 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1595 1596 // Keep the 'and' in the same place if the use is already in the same block. 1597 Instruction *InsertPt = 1598 User->getParent() == AndI->getParent() ? AndI : User; 1599 Instruction *InsertedAnd = 1600 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1601 AndI->getOperand(1), "", InsertPt); 1602 // Propagate the debug info. 1603 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1604 1605 // Replace a use of the 'and' with a use of the new 'and'. 1606 TheUse = InsertedAnd; 1607 ++NumAndUses; 1608 LLVM_DEBUG(User->getParent()->dump()); 1609 } 1610 1611 // We removed all uses, nuke the and. 1612 AndI->eraseFromParent(); 1613 return true; 1614 } 1615 1616 /// Check if the candidates could be combined with a shift instruction, which 1617 /// includes: 1618 /// 1. Truncate instruction 1619 /// 2. And instruction and the imm is a mask of the low bits: 1620 /// imm & (imm+1) == 0 1621 static bool isExtractBitsCandidateUse(Instruction *User) { 1622 if (!isa<TruncInst>(User)) { 1623 if (User->getOpcode() != Instruction::And || 1624 !isa<ConstantInt>(User->getOperand(1))) 1625 return false; 1626 1627 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1628 1629 if ((Cimm & (Cimm + 1)).getBoolValue()) 1630 return false; 1631 } 1632 return true; 1633 } 1634 1635 /// Sink both shift and truncate instruction to the use of truncate's BB. 1636 static bool 1637 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1638 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1639 const TargetLowering &TLI, const DataLayout &DL) { 1640 BasicBlock *UserBB = User->getParent(); 1641 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1642 auto *TruncI = cast<TruncInst>(User); 1643 bool MadeChange = false; 1644 1645 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1646 TruncE = TruncI->user_end(); 1647 TruncUI != TruncE;) { 1648 1649 Use &TruncTheUse = TruncUI.getUse(); 1650 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1651 // Preincrement use iterator so we don't invalidate it. 1652 1653 ++TruncUI; 1654 1655 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1656 if (!ISDOpcode) 1657 continue; 1658 1659 // If the use is actually a legal node, there will not be an 1660 // implicit truncate. 1661 // FIXME: always querying the result type is just an 1662 // approximation; some nodes' legality is determined by the 1663 // operand or other means. There's no good way to find out though. 1664 if (TLI.isOperationLegalOrCustom( 1665 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1666 continue; 1667 1668 // Don't bother for PHI nodes. 1669 if (isa<PHINode>(TruncUser)) 1670 continue; 1671 1672 BasicBlock *TruncUserBB = TruncUser->getParent(); 1673 1674 if (UserBB == TruncUserBB) 1675 continue; 1676 1677 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1678 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1679 1680 if (!InsertedShift && !InsertedTrunc) { 1681 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1682 assert(InsertPt != TruncUserBB->end()); 1683 // Sink the shift 1684 if (ShiftI->getOpcode() == Instruction::AShr) 1685 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1686 "", &*InsertPt); 1687 else 1688 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1689 "", &*InsertPt); 1690 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1691 1692 // Sink the trunc 1693 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1694 TruncInsertPt++; 1695 assert(TruncInsertPt != TruncUserBB->end()); 1696 1697 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1698 TruncI->getType(), "", &*TruncInsertPt); 1699 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1700 1701 MadeChange = true; 1702 1703 TruncTheUse = InsertedTrunc; 1704 } 1705 } 1706 return MadeChange; 1707 } 1708 1709 /// Sink the shift *right* instruction into user blocks if the uses could 1710 /// potentially be combined with this shift instruction and generate BitExtract 1711 /// instruction. It will only be applied if the architecture supports BitExtract 1712 /// instruction. Here is an example: 1713 /// BB1: 1714 /// %x.extract.shift = lshr i64 %arg1, 32 1715 /// BB2: 1716 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1717 /// ==> 1718 /// 1719 /// BB2: 1720 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1721 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1722 /// 1723 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1724 /// instruction. 1725 /// Return true if any changes are made. 1726 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1727 const TargetLowering &TLI, 1728 const DataLayout &DL) { 1729 BasicBlock *DefBB = ShiftI->getParent(); 1730 1731 /// Only insert instructions in each block once. 1732 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1733 1734 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1735 1736 bool MadeChange = false; 1737 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1738 UI != E;) { 1739 Use &TheUse = UI.getUse(); 1740 Instruction *User = cast<Instruction>(*UI); 1741 // Preincrement use iterator so we don't invalidate it. 1742 ++UI; 1743 1744 // Don't bother for PHI nodes. 1745 if (isa<PHINode>(User)) 1746 continue; 1747 1748 if (!isExtractBitsCandidateUse(User)) 1749 continue; 1750 1751 BasicBlock *UserBB = User->getParent(); 1752 1753 if (UserBB == DefBB) { 1754 // If the shift and truncate instruction are in the same BB. The use of 1755 // the truncate(TruncUse) may still introduce another truncate if not 1756 // legal. In this case, we would like to sink both shift and truncate 1757 // instruction to the BB of TruncUse. 1758 // for example: 1759 // BB1: 1760 // i64 shift.result = lshr i64 opnd, imm 1761 // trunc.result = trunc shift.result to i16 1762 // 1763 // BB2: 1764 // ----> We will have an implicit truncate here if the architecture does 1765 // not have i16 compare. 1766 // cmp i16 trunc.result, opnd2 1767 // 1768 if (isa<TruncInst>(User) && shiftIsLegal 1769 // If the type of the truncate is legal, no truncate will be 1770 // introduced in other basic blocks. 1771 && 1772 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1773 MadeChange = 1774 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1775 1776 continue; 1777 } 1778 // If we have already inserted a shift into this block, use it. 1779 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1780 1781 if (!InsertedShift) { 1782 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1783 assert(InsertPt != UserBB->end()); 1784 1785 if (ShiftI->getOpcode() == Instruction::AShr) 1786 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1787 "", &*InsertPt); 1788 else 1789 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1790 "", &*InsertPt); 1791 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1792 1793 MadeChange = true; 1794 } 1795 1796 // Replace a use of the shift with a use of the new shift. 1797 TheUse = InsertedShift; 1798 } 1799 1800 // If we removed all uses, or there are none, nuke the shift. 1801 if (ShiftI->use_empty()) { 1802 salvageDebugInfo(*ShiftI); 1803 ShiftI->eraseFromParent(); 1804 MadeChange = true; 1805 } 1806 1807 return MadeChange; 1808 } 1809 1810 /// If counting leading or trailing zeros is an expensive operation and a zero 1811 /// input is defined, add a check for zero to avoid calling the intrinsic. 1812 /// 1813 /// We want to transform: 1814 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1815 /// 1816 /// into: 1817 /// entry: 1818 /// %cmpz = icmp eq i64 %A, 0 1819 /// br i1 %cmpz, label %cond.end, label %cond.false 1820 /// cond.false: 1821 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1822 /// br label %cond.end 1823 /// cond.end: 1824 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1825 /// 1826 /// If the transform is performed, return true and set ModifiedDT to true. 1827 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1828 const TargetLowering *TLI, 1829 const DataLayout *DL, 1830 bool &ModifiedDT) { 1831 // If a zero input is undefined, it doesn't make sense to despeculate that. 1832 if (match(CountZeros->getOperand(1), m_One())) 1833 return false; 1834 1835 // If it's cheap to speculate, there's nothing to do. 1836 auto IntrinsicID = CountZeros->getIntrinsicID(); 1837 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1838 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1839 return false; 1840 1841 // Only handle legal scalar cases. Anything else requires too much work. 1842 Type *Ty = CountZeros->getType(); 1843 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1844 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1845 return false; 1846 1847 // The intrinsic will be sunk behind a compare against zero and branch. 1848 BasicBlock *StartBlock = CountZeros->getParent(); 1849 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1850 1851 // Create another block after the count zero intrinsic. A PHI will be added 1852 // in this block to select the result of the intrinsic or the bit-width 1853 // constant if the input to the intrinsic is zero. 1854 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1855 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1856 1857 // Set up a builder to create a compare, conditional branch, and PHI. 1858 IRBuilder<> Builder(CountZeros->getContext()); 1859 Builder.SetInsertPoint(StartBlock->getTerminator()); 1860 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1861 1862 // Replace the unconditional branch that was created by the first split with 1863 // a compare against zero and a conditional branch. 1864 Value *Zero = Constant::getNullValue(Ty); 1865 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1866 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1867 StartBlock->getTerminator()->eraseFromParent(); 1868 1869 // Create a PHI in the end block to select either the output of the intrinsic 1870 // or the bit width of the operand. 1871 Builder.SetInsertPoint(&EndBlock->front()); 1872 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1873 CountZeros->replaceAllUsesWith(PN); 1874 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1875 PN->addIncoming(BitWidth, StartBlock); 1876 PN->addIncoming(CountZeros, CallBlock); 1877 1878 // We are explicitly handling the zero case, so we can set the intrinsic's 1879 // undefined zero argument to 'true'. This will also prevent reprocessing the 1880 // intrinsic; we only despeculate when a zero input is defined. 1881 CountZeros->setArgOperand(1, Builder.getTrue()); 1882 ModifiedDT = true; 1883 return true; 1884 } 1885 1886 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1887 BasicBlock *BB = CI->getParent(); 1888 1889 // Lower inline assembly if we can. 1890 // If we found an inline asm expession, and if the target knows how to 1891 // lower it to normal LLVM code, do so now. 1892 if (isa<InlineAsm>(CI->getCalledValue())) { 1893 if (TLI->ExpandInlineAsm(CI)) { 1894 // Avoid invalidating the iterator. 1895 CurInstIterator = BB->begin(); 1896 // Avoid processing instructions out of order, which could cause 1897 // reuse before a value is defined. 1898 SunkAddrs.clear(); 1899 return true; 1900 } 1901 // Sink address computing for memory operands into the block. 1902 if (optimizeInlineAsmInst(CI)) 1903 return true; 1904 } 1905 1906 // Align the pointer arguments to this call if the target thinks it's a good 1907 // idea 1908 unsigned MinSize, PrefAlign; 1909 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1910 for (auto &Arg : CI->arg_operands()) { 1911 // We want to align both objects whose address is used directly and 1912 // objects whose address is used in casts and GEPs, though it only makes 1913 // sense for GEPs if the offset is a multiple of the desired alignment and 1914 // if size - offset meets the size threshold. 1915 if (!Arg->getType()->isPointerTy()) 1916 continue; 1917 APInt Offset(DL->getIndexSizeInBits( 1918 cast<PointerType>(Arg->getType())->getAddressSpace()), 1919 0); 1920 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1921 uint64_t Offset2 = Offset.getLimitedValue(); 1922 if ((Offset2 & (PrefAlign-1)) != 0) 1923 continue; 1924 AllocaInst *AI; 1925 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1926 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1927 AI->setAlignment(MaybeAlign(PrefAlign)); 1928 // Global variables can only be aligned if they are defined in this 1929 // object (i.e. they are uniquely initialized in this object), and 1930 // over-aligning global variables that have an explicit section is 1931 // forbidden. 1932 GlobalVariable *GV; 1933 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1934 GV->getPointerAlignment(*DL) < PrefAlign && 1935 DL->getTypeAllocSize(GV->getValueType()) >= 1936 MinSize + Offset2) 1937 GV->setAlignment(MaybeAlign(PrefAlign)); 1938 } 1939 // If this is a memcpy (or similar) then we may be able to improve the 1940 // alignment 1941 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1942 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL); 1943 if (DestAlign > MI->getDestAlignment()) 1944 MI->setDestAlignment(DestAlign); 1945 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 1946 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 1947 if (SrcAlign > MTI->getSourceAlignment()) 1948 MTI->setSourceAlignment(SrcAlign); 1949 } 1950 } 1951 } 1952 1953 // If we have a cold call site, try to sink addressing computation into the 1954 // cold block. This interacts with our handling for loads and stores to 1955 // ensure that we can fold all uses of a potential addressing computation 1956 // into their uses. TODO: generalize this to work over profiling data 1957 if (CI->hasFnAttr(Attribute::Cold) && 1958 !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 1959 for (auto &Arg : CI->arg_operands()) { 1960 if (!Arg->getType()->isPointerTy()) 1961 continue; 1962 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1963 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1964 } 1965 1966 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1967 if (II) { 1968 switch (II->getIntrinsicID()) { 1969 default: break; 1970 case Intrinsic::assume: { 1971 II->eraseFromParent(); 1972 return true; 1973 } 1974 1975 case Intrinsic::experimental_widenable_condition: { 1976 // Give up on future widening oppurtunties so that we can fold away dead 1977 // paths and merge blocks before going into block-local instruction 1978 // selection. 1979 if (II->use_empty()) { 1980 II->eraseFromParent(); 1981 return true; 1982 } 1983 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 1984 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1985 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1986 }); 1987 return true; 1988 } 1989 case Intrinsic::objectsize: 1990 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 1991 case Intrinsic::is_constant: 1992 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 1993 case Intrinsic::aarch64_stlxr: 1994 case Intrinsic::aarch64_stxr: { 1995 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1996 if (!ExtVal || !ExtVal->hasOneUse() || 1997 ExtVal->getParent() == CI->getParent()) 1998 return false; 1999 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2000 ExtVal->moveBefore(CI); 2001 // Mark this instruction as "inserted by CGP", so that other 2002 // optimizations don't touch it. 2003 InsertedInsts.insert(ExtVal); 2004 return true; 2005 } 2006 2007 case Intrinsic::launder_invariant_group: 2008 case Intrinsic::strip_invariant_group: { 2009 Value *ArgVal = II->getArgOperand(0); 2010 auto it = LargeOffsetGEPMap.find(II); 2011 if (it != LargeOffsetGEPMap.end()) { 2012 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2013 // Make sure not to have to deal with iterator invalidation 2014 // after possibly adding ArgVal to LargeOffsetGEPMap. 2015 auto GEPs = std::move(it->second); 2016 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2017 LargeOffsetGEPMap.erase(II); 2018 } 2019 2020 II->replaceAllUsesWith(ArgVal); 2021 II->eraseFromParent(); 2022 return true; 2023 } 2024 case Intrinsic::cttz: 2025 case Intrinsic::ctlz: 2026 // If counting zeros is expensive, try to avoid it. 2027 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2028 case Intrinsic::dbg_value: 2029 return fixupDbgValue(II); 2030 case Intrinsic::vscale: { 2031 // If datalayout has no special restrictions on vector data layout, 2032 // replace `llvm.vscale` by an equivalent constant expression 2033 // to benefit from cheap constant propagation. 2034 Type *ScalableVectorTy = 2035 VectorType::get(Type::getInt8Ty(II->getContext()), 1, true); 2036 if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) { 2037 auto Null = Constant::getNullValue(ScalableVectorTy->getPointerTo()); 2038 auto One = ConstantInt::getSigned(II->getType(), 1); 2039 auto *CGep = 2040 ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One); 2041 II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType())); 2042 II->eraseFromParent(); 2043 return true; 2044 } 2045 break; 2046 } 2047 case Intrinsic::masked_gather: 2048 return optimizeGatherScatterInst(II, II->getArgOperand(0)); 2049 case Intrinsic::masked_scatter: 2050 return optimizeGatherScatterInst(II, II->getArgOperand(1)); 2051 } 2052 2053 SmallVector<Value *, 2> PtrOps; 2054 Type *AccessTy; 2055 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2056 while (!PtrOps.empty()) { 2057 Value *PtrVal = PtrOps.pop_back_val(); 2058 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2059 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2060 return true; 2061 } 2062 } 2063 2064 // From here on out we're working with named functions. 2065 if (!CI->getCalledFunction()) return false; 2066 2067 // Lower all default uses of _chk calls. This is very similar 2068 // to what InstCombineCalls does, but here we are only lowering calls 2069 // to fortified library functions (e.g. __memcpy_chk) that have the default 2070 // "don't know" as the objectsize. Anything else should be left alone. 2071 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2072 IRBuilder<> Builder(CI); 2073 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2074 CI->replaceAllUsesWith(V); 2075 CI->eraseFromParent(); 2076 return true; 2077 } 2078 2079 return false; 2080 } 2081 2082 /// Look for opportunities to duplicate return instructions to the predecessor 2083 /// to enable tail call optimizations. The case it is currently looking for is: 2084 /// @code 2085 /// bb0: 2086 /// %tmp0 = tail call i32 @f0() 2087 /// br label %return 2088 /// bb1: 2089 /// %tmp1 = tail call i32 @f1() 2090 /// br label %return 2091 /// bb2: 2092 /// %tmp2 = tail call i32 @f2() 2093 /// br label %return 2094 /// return: 2095 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2096 /// ret i32 %retval 2097 /// @endcode 2098 /// 2099 /// => 2100 /// 2101 /// @code 2102 /// bb0: 2103 /// %tmp0 = tail call i32 @f0() 2104 /// ret i32 %tmp0 2105 /// bb1: 2106 /// %tmp1 = tail call i32 @f1() 2107 /// ret i32 %tmp1 2108 /// bb2: 2109 /// %tmp2 = tail call i32 @f2() 2110 /// ret i32 %tmp2 2111 /// @endcode 2112 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 2113 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2114 if (!RetI) 2115 return false; 2116 2117 PHINode *PN = nullptr; 2118 ExtractValueInst *EVI = nullptr; 2119 BitCastInst *BCI = nullptr; 2120 Value *V = RetI->getReturnValue(); 2121 if (V) { 2122 BCI = dyn_cast<BitCastInst>(V); 2123 if (BCI) 2124 V = BCI->getOperand(0); 2125 2126 EVI = dyn_cast<ExtractValueInst>(V); 2127 if (EVI) { 2128 V = EVI->getOperand(0); 2129 if (!std::all_of(EVI->idx_begin(), EVI->idx_end(), 2130 [](unsigned idx) { return idx == 0; })) 2131 return false; 2132 } 2133 2134 PN = dyn_cast<PHINode>(V); 2135 if (!PN) 2136 return false; 2137 } 2138 2139 if (PN && PN->getParent() != BB) 2140 return false; 2141 2142 // Make sure there are no instructions between the PHI and return, or that the 2143 // return is the first instruction in the block. 2144 if (PN) { 2145 BasicBlock::iterator BI = BB->begin(); 2146 // Skip over debug and the bitcast. 2147 do { 2148 ++BI; 2149 } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI || &*BI == EVI); 2150 if (&*BI != RetI) 2151 return false; 2152 } else { 2153 BasicBlock::iterator BI = BB->begin(); 2154 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2155 if (&*BI != RetI) 2156 return false; 2157 } 2158 2159 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2160 /// call. 2161 const Function *F = BB->getParent(); 2162 SmallVector<BasicBlock*, 4> TailCallBBs; 2163 if (PN) { 2164 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2165 // Look through bitcasts. 2166 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2167 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2168 BasicBlock *PredBB = PN->getIncomingBlock(I); 2169 // Make sure the phi value is indeed produced by the tail call. 2170 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2171 TLI->mayBeEmittedAsTailCall(CI) && 2172 attributesPermitTailCall(F, CI, RetI, *TLI)) 2173 TailCallBBs.push_back(PredBB); 2174 } 2175 } else { 2176 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2177 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2178 if (!VisitedBBs.insert(*PI).second) 2179 continue; 2180 2181 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2182 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2183 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2184 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2185 if (RI == RE) 2186 continue; 2187 2188 CallInst *CI = dyn_cast<CallInst>(&*RI); 2189 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2190 attributesPermitTailCall(F, CI, RetI, *TLI)) 2191 TailCallBBs.push_back(*PI); 2192 } 2193 } 2194 2195 bool Changed = false; 2196 for (auto const &TailCallBB : TailCallBBs) { 2197 // Make sure the call instruction is followed by an unconditional branch to 2198 // the return block. 2199 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2200 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2201 continue; 2202 2203 // Duplicate the return into TailCallBB. 2204 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2205 ModifiedDT = Changed = true; 2206 ++NumRetsDup; 2207 } 2208 2209 // If we eliminated all predecessors of the block, delete the block now. 2210 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2211 BB->eraseFromParent(); 2212 2213 return Changed; 2214 } 2215 2216 //===----------------------------------------------------------------------===// 2217 // Memory Optimization 2218 //===----------------------------------------------------------------------===// 2219 2220 namespace { 2221 2222 /// This is an extended version of TargetLowering::AddrMode 2223 /// which holds actual Value*'s for register values. 2224 struct ExtAddrMode : public TargetLowering::AddrMode { 2225 Value *BaseReg = nullptr; 2226 Value *ScaledReg = nullptr; 2227 Value *OriginalValue = nullptr; 2228 bool InBounds = true; 2229 2230 enum FieldName { 2231 NoField = 0x00, 2232 BaseRegField = 0x01, 2233 BaseGVField = 0x02, 2234 BaseOffsField = 0x04, 2235 ScaledRegField = 0x08, 2236 ScaleField = 0x10, 2237 MultipleFields = 0xff 2238 }; 2239 2240 2241 ExtAddrMode() = default; 2242 2243 void print(raw_ostream &OS) const; 2244 void dump() const; 2245 2246 FieldName compare(const ExtAddrMode &other) { 2247 // First check that the types are the same on each field, as differing types 2248 // is something we can't cope with later on. 2249 if (BaseReg && other.BaseReg && 2250 BaseReg->getType() != other.BaseReg->getType()) 2251 return MultipleFields; 2252 if (BaseGV && other.BaseGV && 2253 BaseGV->getType() != other.BaseGV->getType()) 2254 return MultipleFields; 2255 if (ScaledReg && other.ScaledReg && 2256 ScaledReg->getType() != other.ScaledReg->getType()) 2257 return MultipleFields; 2258 2259 // Conservatively reject 'inbounds' mismatches. 2260 if (InBounds != other.InBounds) 2261 return MultipleFields; 2262 2263 // Check each field to see if it differs. 2264 unsigned Result = NoField; 2265 if (BaseReg != other.BaseReg) 2266 Result |= BaseRegField; 2267 if (BaseGV != other.BaseGV) 2268 Result |= BaseGVField; 2269 if (BaseOffs != other.BaseOffs) 2270 Result |= BaseOffsField; 2271 if (ScaledReg != other.ScaledReg) 2272 Result |= ScaledRegField; 2273 // Don't count 0 as being a different scale, because that actually means 2274 // unscaled (which will already be counted by having no ScaledReg). 2275 if (Scale && other.Scale && Scale != other.Scale) 2276 Result |= ScaleField; 2277 2278 if (countPopulation(Result) > 1) 2279 return MultipleFields; 2280 else 2281 return static_cast<FieldName>(Result); 2282 } 2283 2284 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2285 // with no offset. 2286 bool isTrivial() { 2287 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2288 // trivial if at most one of these terms is nonzero, except that BaseGV and 2289 // BaseReg both being zero actually means a null pointer value, which we 2290 // consider to be 'non-zero' here. 2291 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2292 } 2293 2294 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2295 switch (Field) { 2296 default: 2297 return nullptr; 2298 case BaseRegField: 2299 return BaseReg; 2300 case BaseGVField: 2301 return BaseGV; 2302 case ScaledRegField: 2303 return ScaledReg; 2304 case BaseOffsField: 2305 return ConstantInt::get(IntPtrTy, BaseOffs); 2306 } 2307 } 2308 2309 void SetCombinedField(FieldName Field, Value *V, 2310 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2311 switch (Field) { 2312 default: 2313 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2314 break; 2315 case ExtAddrMode::BaseRegField: 2316 BaseReg = V; 2317 break; 2318 case ExtAddrMode::BaseGVField: 2319 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2320 // in the BaseReg field. 2321 assert(BaseReg == nullptr); 2322 BaseReg = V; 2323 BaseGV = nullptr; 2324 break; 2325 case ExtAddrMode::ScaledRegField: 2326 ScaledReg = V; 2327 // If we have a mix of scaled and unscaled addrmodes then we want scale 2328 // to be the scale and not zero. 2329 if (!Scale) 2330 for (const ExtAddrMode &AM : AddrModes) 2331 if (AM.Scale) { 2332 Scale = AM.Scale; 2333 break; 2334 } 2335 break; 2336 case ExtAddrMode::BaseOffsField: 2337 // The offset is no longer a constant, so it goes in ScaledReg with a 2338 // scale of 1. 2339 assert(ScaledReg == nullptr); 2340 ScaledReg = V; 2341 Scale = 1; 2342 BaseOffs = 0; 2343 break; 2344 } 2345 } 2346 }; 2347 2348 } // end anonymous namespace 2349 2350 #ifndef NDEBUG 2351 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2352 AM.print(OS); 2353 return OS; 2354 } 2355 #endif 2356 2357 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2358 void ExtAddrMode::print(raw_ostream &OS) const { 2359 bool NeedPlus = false; 2360 OS << "["; 2361 if (InBounds) 2362 OS << "inbounds "; 2363 if (BaseGV) { 2364 OS << (NeedPlus ? " + " : "") 2365 << "GV:"; 2366 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2367 NeedPlus = true; 2368 } 2369 2370 if (BaseOffs) { 2371 OS << (NeedPlus ? " + " : "") 2372 << BaseOffs; 2373 NeedPlus = true; 2374 } 2375 2376 if (BaseReg) { 2377 OS << (NeedPlus ? " + " : "") 2378 << "Base:"; 2379 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2380 NeedPlus = true; 2381 } 2382 if (Scale) { 2383 OS << (NeedPlus ? " + " : "") 2384 << Scale << "*"; 2385 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2386 } 2387 2388 OS << ']'; 2389 } 2390 2391 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2392 print(dbgs()); 2393 dbgs() << '\n'; 2394 } 2395 #endif 2396 2397 namespace { 2398 2399 /// This class provides transaction based operation on the IR. 2400 /// Every change made through this class is recorded in the internal state and 2401 /// can be undone (rollback) until commit is called. 2402 class TypePromotionTransaction { 2403 /// This represents the common interface of the individual transaction. 2404 /// Each class implements the logic for doing one specific modification on 2405 /// the IR via the TypePromotionTransaction. 2406 class TypePromotionAction { 2407 protected: 2408 /// The Instruction modified. 2409 Instruction *Inst; 2410 2411 public: 2412 /// Constructor of the action. 2413 /// The constructor performs the related action on the IR. 2414 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2415 2416 virtual ~TypePromotionAction() = default; 2417 2418 /// Undo the modification done by this action. 2419 /// When this method is called, the IR must be in the same state as it was 2420 /// before this action was applied. 2421 /// \pre Undoing the action works if and only if the IR is in the exact same 2422 /// state as it was directly after this action was applied. 2423 virtual void undo() = 0; 2424 2425 /// Advocate every change made by this action. 2426 /// When the results on the IR of the action are to be kept, it is important 2427 /// to call this function, otherwise hidden information may be kept forever. 2428 virtual void commit() { 2429 // Nothing to be done, this action is not doing anything. 2430 } 2431 }; 2432 2433 /// Utility to remember the position of an instruction. 2434 class InsertionHandler { 2435 /// Position of an instruction. 2436 /// Either an instruction: 2437 /// - Is the first in a basic block: BB is used. 2438 /// - Has a previous instruction: PrevInst is used. 2439 union { 2440 Instruction *PrevInst; 2441 BasicBlock *BB; 2442 } Point; 2443 2444 /// Remember whether or not the instruction had a previous instruction. 2445 bool HasPrevInstruction; 2446 2447 public: 2448 /// Record the position of \p Inst. 2449 InsertionHandler(Instruction *Inst) { 2450 BasicBlock::iterator It = Inst->getIterator(); 2451 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2452 if (HasPrevInstruction) 2453 Point.PrevInst = &*--It; 2454 else 2455 Point.BB = Inst->getParent(); 2456 } 2457 2458 /// Insert \p Inst at the recorded position. 2459 void insert(Instruction *Inst) { 2460 if (HasPrevInstruction) { 2461 if (Inst->getParent()) 2462 Inst->removeFromParent(); 2463 Inst->insertAfter(Point.PrevInst); 2464 } else { 2465 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2466 if (Inst->getParent()) 2467 Inst->moveBefore(Position); 2468 else 2469 Inst->insertBefore(Position); 2470 } 2471 } 2472 }; 2473 2474 /// Move an instruction before another. 2475 class InstructionMoveBefore : public TypePromotionAction { 2476 /// Original position of the instruction. 2477 InsertionHandler Position; 2478 2479 public: 2480 /// Move \p Inst before \p Before. 2481 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2482 : TypePromotionAction(Inst), Position(Inst) { 2483 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2484 << "\n"); 2485 Inst->moveBefore(Before); 2486 } 2487 2488 /// Move the instruction back to its original position. 2489 void undo() override { 2490 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2491 Position.insert(Inst); 2492 } 2493 }; 2494 2495 /// Set the operand of an instruction with a new value. 2496 class OperandSetter : public TypePromotionAction { 2497 /// Original operand of the instruction. 2498 Value *Origin; 2499 2500 /// Index of the modified instruction. 2501 unsigned Idx; 2502 2503 public: 2504 /// Set \p Idx operand of \p Inst with \p NewVal. 2505 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2506 : TypePromotionAction(Inst), Idx(Idx) { 2507 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2508 << "for:" << *Inst << "\n" 2509 << "with:" << *NewVal << "\n"); 2510 Origin = Inst->getOperand(Idx); 2511 Inst->setOperand(Idx, NewVal); 2512 } 2513 2514 /// Restore the original value of the instruction. 2515 void undo() override { 2516 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2517 << "for: " << *Inst << "\n" 2518 << "with: " << *Origin << "\n"); 2519 Inst->setOperand(Idx, Origin); 2520 } 2521 }; 2522 2523 /// Hide the operands of an instruction. 2524 /// Do as if this instruction was not using any of its operands. 2525 class OperandsHider : public TypePromotionAction { 2526 /// The list of original operands. 2527 SmallVector<Value *, 4> OriginalValues; 2528 2529 public: 2530 /// Remove \p Inst from the uses of the operands of \p Inst. 2531 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2532 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2533 unsigned NumOpnds = Inst->getNumOperands(); 2534 OriginalValues.reserve(NumOpnds); 2535 for (unsigned It = 0; It < NumOpnds; ++It) { 2536 // Save the current operand. 2537 Value *Val = Inst->getOperand(It); 2538 OriginalValues.push_back(Val); 2539 // Set a dummy one. 2540 // We could use OperandSetter here, but that would imply an overhead 2541 // that we are not willing to pay. 2542 Inst->setOperand(It, UndefValue::get(Val->getType())); 2543 } 2544 } 2545 2546 /// Restore the original list of uses. 2547 void undo() override { 2548 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2549 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2550 Inst->setOperand(It, OriginalValues[It]); 2551 } 2552 }; 2553 2554 /// Build a truncate instruction. 2555 class TruncBuilder : public TypePromotionAction { 2556 Value *Val; 2557 2558 public: 2559 /// Build a truncate instruction of \p Opnd producing a \p Ty 2560 /// result. 2561 /// trunc Opnd to Ty. 2562 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2563 IRBuilder<> Builder(Opnd); 2564 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2565 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2566 } 2567 2568 /// Get the built value. 2569 Value *getBuiltValue() { return Val; } 2570 2571 /// Remove the built instruction. 2572 void undo() override { 2573 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2574 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2575 IVal->eraseFromParent(); 2576 } 2577 }; 2578 2579 /// Build a sign extension instruction. 2580 class SExtBuilder : public TypePromotionAction { 2581 Value *Val; 2582 2583 public: 2584 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2585 /// result. 2586 /// sext Opnd to Ty. 2587 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2588 : TypePromotionAction(InsertPt) { 2589 IRBuilder<> Builder(InsertPt); 2590 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2591 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2592 } 2593 2594 /// Get the built value. 2595 Value *getBuiltValue() { return Val; } 2596 2597 /// Remove the built instruction. 2598 void undo() override { 2599 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2600 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2601 IVal->eraseFromParent(); 2602 } 2603 }; 2604 2605 /// Build a zero extension instruction. 2606 class ZExtBuilder : public TypePromotionAction { 2607 Value *Val; 2608 2609 public: 2610 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2611 /// result. 2612 /// zext Opnd to Ty. 2613 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2614 : TypePromotionAction(InsertPt) { 2615 IRBuilder<> Builder(InsertPt); 2616 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2617 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2618 } 2619 2620 /// Get the built value. 2621 Value *getBuiltValue() { return Val; } 2622 2623 /// Remove the built instruction. 2624 void undo() override { 2625 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2626 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2627 IVal->eraseFromParent(); 2628 } 2629 }; 2630 2631 /// Mutate an instruction to another type. 2632 class TypeMutator : public TypePromotionAction { 2633 /// Record the original type. 2634 Type *OrigTy; 2635 2636 public: 2637 /// Mutate the type of \p Inst into \p NewTy. 2638 TypeMutator(Instruction *Inst, Type *NewTy) 2639 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2640 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2641 << "\n"); 2642 Inst->mutateType(NewTy); 2643 } 2644 2645 /// Mutate the instruction back to its original type. 2646 void undo() override { 2647 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2648 << "\n"); 2649 Inst->mutateType(OrigTy); 2650 } 2651 }; 2652 2653 /// Replace the uses of an instruction by another instruction. 2654 class UsesReplacer : public TypePromotionAction { 2655 /// Helper structure to keep track of the replaced uses. 2656 struct InstructionAndIdx { 2657 /// The instruction using the instruction. 2658 Instruction *Inst; 2659 2660 /// The index where this instruction is used for Inst. 2661 unsigned Idx; 2662 2663 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2664 : Inst(Inst), Idx(Idx) {} 2665 }; 2666 2667 /// Keep track of the original uses (pair Instruction, Index). 2668 SmallVector<InstructionAndIdx, 4> OriginalUses; 2669 /// Keep track of the debug users. 2670 SmallVector<DbgValueInst *, 1> DbgValues; 2671 2672 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2673 2674 public: 2675 /// Replace all the use of \p Inst by \p New. 2676 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2677 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2678 << "\n"); 2679 // Record the original uses. 2680 for (Use &U : Inst->uses()) { 2681 Instruction *UserI = cast<Instruction>(U.getUser()); 2682 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2683 } 2684 // Record the debug uses separately. They are not in the instruction's 2685 // use list, but they are replaced by RAUW. 2686 findDbgValues(DbgValues, Inst); 2687 2688 // Now, we can replace the uses. 2689 Inst->replaceAllUsesWith(New); 2690 } 2691 2692 /// Reassign the original uses of Inst to Inst. 2693 void undo() override { 2694 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2695 for (use_iterator UseIt = OriginalUses.begin(), 2696 EndIt = OriginalUses.end(); 2697 UseIt != EndIt; ++UseIt) { 2698 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2699 } 2700 // RAUW has replaced all original uses with references to the new value, 2701 // including the debug uses. Since we are undoing the replacements, 2702 // the original debug uses must also be reinstated to maintain the 2703 // correctness and utility of debug value instructions. 2704 for (auto *DVI: DbgValues) { 2705 LLVMContext &Ctx = Inst->getType()->getContext(); 2706 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); 2707 DVI->setOperand(0, MV); 2708 } 2709 } 2710 }; 2711 2712 /// Remove an instruction from the IR. 2713 class InstructionRemover : public TypePromotionAction { 2714 /// Original position of the instruction. 2715 InsertionHandler Inserter; 2716 2717 /// Helper structure to hide all the link to the instruction. In other 2718 /// words, this helps to do as if the instruction was removed. 2719 OperandsHider Hider; 2720 2721 /// Keep track of the uses replaced, if any. 2722 UsesReplacer *Replacer = nullptr; 2723 2724 /// Keep track of instructions removed. 2725 SetOfInstrs &RemovedInsts; 2726 2727 public: 2728 /// Remove all reference of \p Inst and optionally replace all its 2729 /// uses with New. 2730 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2731 /// \pre If !Inst->use_empty(), then New != nullptr 2732 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2733 Value *New = nullptr) 2734 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2735 RemovedInsts(RemovedInsts) { 2736 if (New) 2737 Replacer = new UsesReplacer(Inst, New); 2738 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2739 RemovedInsts.insert(Inst); 2740 /// The instructions removed here will be freed after completing 2741 /// optimizeBlock() for all blocks as we need to keep track of the 2742 /// removed instructions during promotion. 2743 Inst->removeFromParent(); 2744 } 2745 2746 ~InstructionRemover() override { delete Replacer; } 2747 2748 /// Resurrect the instruction and reassign it to the proper uses if 2749 /// new value was provided when build this action. 2750 void undo() override { 2751 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2752 Inserter.insert(Inst); 2753 if (Replacer) 2754 Replacer->undo(); 2755 Hider.undo(); 2756 RemovedInsts.erase(Inst); 2757 } 2758 }; 2759 2760 public: 2761 /// Restoration point. 2762 /// The restoration point is a pointer to an action instead of an iterator 2763 /// because the iterator may be invalidated but not the pointer. 2764 using ConstRestorationPt = const TypePromotionAction *; 2765 2766 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2767 : RemovedInsts(RemovedInsts) {} 2768 2769 /// Advocate every changes made in that transaction. 2770 void commit(); 2771 2772 /// Undo all the changes made after the given point. 2773 void rollback(ConstRestorationPt Point); 2774 2775 /// Get the current restoration point. 2776 ConstRestorationPt getRestorationPoint() const; 2777 2778 /// \name API for IR modification with state keeping to support rollback. 2779 /// @{ 2780 /// Same as Instruction::setOperand. 2781 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2782 2783 /// Same as Instruction::eraseFromParent. 2784 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2785 2786 /// Same as Value::replaceAllUsesWith. 2787 void replaceAllUsesWith(Instruction *Inst, Value *New); 2788 2789 /// Same as Value::mutateType. 2790 void mutateType(Instruction *Inst, Type *NewTy); 2791 2792 /// Same as IRBuilder::createTrunc. 2793 Value *createTrunc(Instruction *Opnd, Type *Ty); 2794 2795 /// Same as IRBuilder::createSExt. 2796 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2797 2798 /// Same as IRBuilder::createZExt. 2799 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2800 2801 /// Same as Instruction::moveBefore. 2802 void moveBefore(Instruction *Inst, Instruction *Before); 2803 /// @} 2804 2805 private: 2806 /// The ordered list of actions made so far. 2807 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2808 2809 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2810 2811 SetOfInstrs &RemovedInsts; 2812 }; 2813 2814 } // end anonymous namespace 2815 2816 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2817 Value *NewVal) { 2818 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 2819 Inst, Idx, NewVal)); 2820 } 2821 2822 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2823 Value *NewVal) { 2824 Actions.push_back( 2825 std::make_unique<TypePromotionTransaction::InstructionRemover>( 2826 Inst, RemovedInsts, NewVal)); 2827 } 2828 2829 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2830 Value *New) { 2831 Actions.push_back( 2832 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2833 } 2834 2835 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2836 Actions.push_back( 2837 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2838 } 2839 2840 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2841 Type *Ty) { 2842 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2843 Value *Val = Ptr->getBuiltValue(); 2844 Actions.push_back(std::move(Ptr)); 2845 return Val; 2846 } 2847 2848 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2849 Value *Opnd, Type *Ty) { 2850 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2851 Value *Val = Ptr->getBuiltValue(); 2852 Actions.push_back(std::move(Ptr)); 2853 return Val; 2854 } 2855 2856 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2857 Value *Opnd, Type *Ty) { 2858 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2859 Value *Val = Ptr->getBuiltValue(); 2860 Actions.push_back(std::move(Ptr)); 2861 return Val; 2862 } 2863 2864 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2865 Instruction *Before) { 2866 Actions.push_back( 2867 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2868 Inst, Before)); 2869 } 2870 2871 TypePromotionTransaction::ConstRestorationPt 2872 TypePromotionTransaction::getRestorationPoint() const { 2873 return !Actions.empty() ? Actions.back().get() : nullptr; 2874 } 2875 2876 void TypePromotionTransaction::commit() { 2877 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2878 ++It) 2879 (*It)->commit(); 2880 Actions.clear(); 2881 } 2882 2883 void TypePromotionTransaction::rollback( 2884 TypePromotionTransaction::ConstRestorationPt Point) { 2885 while (!Actions.empty() && Point != Actions.back().get()) { 2886 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2887 Curr->undo(); 2888 } 2889 } 2890 2891 namespace { 2892 2893 /// A helper class for matching addressing modes. 2894 /// 2895 /// This encapsulates the logic for matching the target-legal addressing modes. 2896 class AddressingModeMatcher { 2897 SmallVectorImpl<Instruction*> &AddrModeInsts; 2898 const TargetLowering &TLI; 2899 const TargetRegisterInfo &TRI; 2900 const DataLayout &DL; 2901 2902 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2903 /// the memory instruction that we're computing this address for. 2904 Type *AccessTy; 2905 unsigned AddrSpace; 2906 Instruction *MemoryInst; 2907 2908 /// This is the addressing mode that we're building up. This is 2909 /// part of the return value of this addressing mode matching stuff. 2910 ExtAddrMode &AddrMode; 2911 2912 /// The instructions inserted by other CodeGenPrepare optimizations. 2913 const SetOfInstrs &InsertedInsts; 2914 2915 /// A map from the instructions to their type before promotion. 2916 InstrToOrigTy &PromotedInsts; 2917 2918 /// The ongoing transaction where every action should be registered. 2919 TypePromotionTransaction &TPT; 2920 2921 // A GEP which has too large offset to be folded into the addressing mode. 2922 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 2923 2924 /// This is set to true when we should not do profitability checks. 2925 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2926 bool IgnoreProfitability; 2927 2928 /// True if we are optimizing for size. 2929 bool OptSize; 2930 2931 ProfileSummaryInfo *PSI; 2932 BlockFrequencyInfo *BFI; 2933 2934 AddressingModeMatcher( 2935 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 2936 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 2937 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 2938 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 2939 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 2940 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 2941 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2942 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2943 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2944 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP), 2945 OptSize(OptSize), PSI(PSI), BFI(BFI) { 2946 IgnoreProfitability = false; 2947 } 2948 2949 public: 2950 /// Find the maximal addressing mode that a load/store of V can fold, 2951 /// give an access type of AccessTy. This returns a list of involved 2952 /// instructions in AddrModeInsts. 2953 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2954 /// optimizations. 2955 /// \p PromotedInsts maps the instructions to their type before promotion. 2956 /// \p The ongoing transaction where every action should be registered. 2957 static ExtAddrMode 2958 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 2959 SmallVectorImpl<Instruction *> &AddrModeInsts, 2960 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 2961 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 2962 TypePromotionTransaction &TPT, 2963 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 2964 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 2965 ExtAddrMode Result; 2966 2967 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 2968 MemoryInst, Result, InsertedInsts, 2969 PromotedInsts, TPT, LargeOffsetGEP, 2970 OptSize, PSI, BFI) 2971 .matchAddr(V, 0); 2972 (void)Success; assert(Success && "Couldn't select *anything*?"); 2973 return Result; 2974 } 2975 2976 private: 2977 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2978 bool matchAddr(Value *Addr, unsigned Depth); 2979 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 2980 bool *MovedAway = nullptr); 2981 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2982 ExtAddrMode &AMBefore, 2983 ExtAddrMode &AMAfter); 2984 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2985 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2986 Value *PromotedOperand) const; 2987 }; 2988 2989 class PhiNodeSet; 2990 2991 /// An iterator for PhiNodeSet. 2992 class PhiNodeSetIterator { 2993 PhiNodeSet * const Set; 2994 size_t CurrentIndex = 0; 2995 2996 public: 2997 /// The constructor. Start should point to either a valid element, or be equal 2998 /// to the size of the underlying SmallVector of the PhiNodeSet. 2999 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 3000 PHINode * operator*() const; 3001 PhiNodeSetIterator& operator++(); 3002 bool operator==(const PhiNodeSetIterator &RHS) const; 3003 bool operator!=(const PhiNodeSetIterator &RHS) const; 3004 }; 3005 3006 /// Keeps a set of PHINodes. 3007 /// 3008 /// This is a minimal set implementation for a specific use case: 3009 /// It is very fast when there are very few elements, but also provides good 3010 /// performance when there are many. It is similar to SmallPtrSet, but also 3011 /// provides iteration by insertion order, which is deterministic and stable 3012 /// across runs. It is also similar to SmallSetVector, but provides removing 3013 /// elements in O(1) time. This is achieved by not actually removing the element 3014 /// from the underlying vector, so comes at the cost of using more memory, but 3015 /// that is fine, since PhiNodeSets are used as short lived objects. 3016 class PhiNodeSet { 3017 friend class PhiNodeSetIterator; 3018 3019 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3020 using iterator = PhiNodeSetIterator; 3021 3022 /// Keeps the elements in the order of their insertion in the underlying 3023 /// vector. To achieve constant time removal, it never deletes any element. 3024 SmallVector<PHINode *, 32> NodeList; 3025 3026 /// Keeps the elements in the underlying set implementation. This (and not the 3027 /// NodeList defined above) is the source of truth on whether an element 3028 /// is actually in the collection. 3029 MapType NodeMap; 3030 3031 /// Points to the first valid (not deleted) element when the set is not empty 3032 /// and the value is not zero. Equals to the size of the underlying vector 3033 /// when the set is empty. When the value is 0, as in the beginning, the 3034 /// first element may or may not be valid. 3035 size_t FirstValidElement = 0; 3036 3037 public: 3038 /// Inserts a new element to the collection. 3039 /// \returns true if the element is actually added, i.e. was not in the 3040 /// collection before the operation. 3041 bool insert(PHINode *Ptr) { 3042 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3043 NodeList.push_back(Ptr); 3044 return true; 3045 } 3046 return false; 3047 } 3048 3049 /// Removes the element from the collection. 3050 /// \returns whether the element is actually removed, i.e. was in the 3051 /// collection before the operation. 3052 bool erase(PHINode *Ptr) { 3053 auto it = NodeMap.find(Ptr); 3054 if (it != NodeMap.end()) { 3055 NodeMap.erase(Ptr); 3056 SkipRemovedElements(FirstValidElement); 3057 return true; 3058 } 3059 return false; 3060 } 3061 3062 /// Removes all elements and clears the collection. 3063 void clear() { 3064 NodeMap.clear(); 3065 NodeList.clear(); 3066 FirstValidElement = 0; 3067 } 3068 3069 /// \returns an iterator that will iterate the elements in the order of 3070 /// insertion. 3071 iterator begin() { 3072 if (FirstValidElement == 0) 3073 SkipRemovedElements(FirstValidElement); 3074 return PhiNodeSetIterator(this, FirstValidElement); 3075 } 3076 3077 /// \returns an iterator that points to the end of the collection. 3078 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3079 3080 /// Returns the number of elements in the collection. 3081 size_t size() const { 3082 return NodeMap.size(); 3083 } 3084 3085 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3086 size_t count(PHINode *Ptr) const { 3087 return NodeMap.count(Ptr); 3088 } 3089 3090 private: 3091 /// Updates the CurrentIndex so that it will point to a valid element. 3092 /// 3093 /// If the element of NodeList at CurrentIndex is valid, it does not 3094 /// change it. If there are no more valid elements, it updates CurrentIndex 3095 /// to point to the end of the NodeList. 3096 void SkipRemovedElements(size_t &CurrentIndex) { 3097 while (CurrentIndex < NodeList.size()) { 3098 auto it = NodeMap.find(NodeList[CurrentIndex]); 3099 // If the element has been deleted and added again later, NodeMap will 3100 // point to a different index, so CurrentIndex will still be invalid. 3101 if (it != NodeMap.end() && it->second == CurrentIndex) 3102 break; 3103 ++CurrentIndex; 3104 } 3105 } 3106 }; 3107 3108 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3109 : Set(Set), CurrentIndex(Start) {} 3110 3111 PHINode * PhiNodeSetIterator::operator*() const { 3112 assert(CurrentIndex < Set->NodeList.size() && 3113 "PhiNodeSet access out of range"); 3114 return Set->NodeList[CurrentIndex]; 3115 } 3116 3117 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 3118 assert(CurrentIndex < Set->NodeList.size() && 3119 "PhiNodeSet access out of range"); 3120 ++CurrentIndex; 3121 Set->SkipRemovedElements(CurrentIndex); 3122 return *this; 3123 } 3124 3125 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3126 return CurrentIndex == RHS.CurrentIndex; 3127 } 3128 3129 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3130 return !((*this) == RHS); 3131 } 3132 3133 /// Keep track of simplification of Phi nodes. 3134 /// Accept the set of all phi nodes and erase phi node from this set 3135 /// if it is simplified. 3136 class SimplificationTracker { 3137 DenseMap<Value *, Value *> Storage; 3138 const SimplifyQuery &SQ; 3139 // Tracks newly created Phi nodes. The elements are iterated by insertion 3140 // order. 3141 PhiNodeSet AllPhiNodes; 3142 // Tracks newly created Select nodes. 3143 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3144 3145 public: 3146 SimplificationTracker(const SimplifyQuery &sq) 3147 : SQ(sq) {} 3148 3149 Value *Get(Value *V) { 3150 do { 3151 auto SV = Storage.find(V); 3152 if (SV == Storage.end()) 3153 return V; 3154 V = SV->second; 3155 } while (true); 3156 } 3157 3158 Value *Simplify(Value *Val) { 3159 SmallVector<Value *, 32> WorkList; 3160 SmallPtrSet<Value *, 32> Visited; 3161 WorkList.push_back(Val); 3162 while (!WorkList.empty()) { 3163 auto P = WorkList.pop_back_val(); 3164 if (!Visited.insert(P).second) 3165 continue; 3166 if (auto *PI = dyn_cast<Instruction>(P)) 3167 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3168 for (auto *U : PI->users()) 3169 WorkList.push_back(cast<Value>(U)); 3170 Put(PI, V); 3171 PI->replaceAllUsesWith(V); 3172 if (auto *PHI = dyn_cast<PHINode>(PI)) 3173 AllPhiNodes.erase(PHI); 3174 if (auto *Select = dyn_cast<SelectInst>(PI)) 3175 AllSelectNodes.erase(Select); 3176 PI->eraseFromParent(); 3177 } 3178 } 3179 return Get(Val); 3180 } 3181 3182 void Put(Value *From, Value *To) { 3183 Storage.insert({ From, To }); 3184 } 3185 3186 void ReplacePhi(PHINode *From, PHINode *To) { 3187 Value* OldReplacement = Get(From); 3188 while (OldReplacement != From) { 3189 From = To; 3190 To = dyn_cast<PHINode>(OldReplacement); 3191 OldReplacement = Get(From); 3192 } 3193 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3194 Put(From, To); 3195 From->replaceAllUsesWith(To); 3196 AllPhiNodes.erase(From); 3197 From->eraseFromParent(); 3198 } 3199 3200 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3201 3202 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3203 3204 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3205 3206 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3207 3208 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3209 3210 void destroyNewNodes(Type *CommonType) { 3211 // For safe erasing, replace the uses with dummy value first. 3212 auto Dummy = UndefValue::get(CommonType); 3213 for (auto I : AllPhiNodes) { 3214 I->replaceAllUsesWith(Dummy); 3215 I->eraseFromParent(); 3216 } 3217 AllPhiNodes.clear(); 3218 for (auto I : AllSelectNodes) { 3219 I->replaceAllUsesWith(Dummy); 3220 I->eraseFromParent(); 3221 } 3222 AllSelectNodes.clear(); 3223 } 3224 }; 3225 3226 /// A helper class for combining addressing modes. 3227 class AddressingModeCombiner { 3228 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3229 typedef std::pair<PHINode *, PHINode *> PHIPair; 3230 3231 private: 3232 /// The addressing modes we've collected. 3233 SmallVector<ExtAddrMode, 16> AddrModes; 3234 3235 /// The field in which the AddrModes differ, when we have more than one. 3236 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3237 3238 /// Are the AddrModes that we have all just equal to their original values? 3239 bool AllAddrModesTrivial = true; 3240 3241 /// Common Type for all different fields in addressing modes. 3242 Type *CommonType; 3243 3244 /// SimplifyQuery for simplifyInstruction utility. 3245 const SimplifyQuery &SQ; 3246 3247 /// Original Address. 3248 Value *Original; 3249 3250 public: 3251 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3252 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 3253 3254 /// Get the combined AddrMode 3255 const ExtAddrMode &getAddrMode() const { 3256 return AddrModes[0]; 3257 } 3258 3259 /// Add a new AddrMode if it's compatible with the AddrModes we already 3260 /// have. 3261 /// \return True iff we succeeded in doing so. 3262 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3263 // Take note of if we have any non-trivial AddrModes, as we need to detect 3264 // when all AddrModes are trivial as then we would introduce a phi or select 3265 // which just duplicates what's already there. 3266 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3267 3268 // If this is the first addrmode then everything is fine. 3269 if (AddrModes.empty()) { 3270 AddrModes.emplace_back(NewAddrMode); 3271 return true; 3272 } 3273 3274 // Figure out how different this is from the other address modes, which we 3275 // can do just by comparing against the first one given that we only care 3276 // about the cumulative difference. 3277 ExtAddrMode::FieldName ThisDifferentField = 3278 AddrModes[0].compare(NewAddrMode); 3279 if (DifferentField == ExtAddrMode::NoField) 3280 DifferentField = ThisDifferentField; 3281 else if (DifferentField != ThisDifferentField) 3282 DifferentField = ExtAddrMode::MultipleFields; 3283 3284 // If NewAddrMode differs in more than one dimension we cannot handle it. 3285 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3286 3287 // If Scale Field is different then we reject. 3288 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3289 3290 // We also must reject the case when base offset is different and 3291 // scale reg is not null, we cannot handle this case due to merge of 3292 // different offsets will be used as ScaleReg. 3293 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3294 !NewAddrMode.ScaledReg); 3295 3296 // We also must reject the case when GV is different and BaseReg installed 3297 // due to we want to use base reg as a merge of GV values. 3298 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3299 !NewAddrMode.HasBaseReg); 3300 3301 // Even if NewAddMode is the same we still need to collect it due to 3302 // original value is different. And later we will need all original values 3303 // as anchors during finding the common Phi node. 3304 if (CanHandle) 3305 AddrModes.emplace_back(NewAddrMode); 3306 else 3307 AddrModes.clear(); 3308 3309 return CanHandle; 3310 } 3311 3312 /// Combine the addressing modes we've collected into a single 3313 /// addressing mode. 3314 /// \return True iff we successfully combined them or we only had one so 3315 /// didn't need to combine them anyway. 3316 bool combineAddrModes() { 3317 // If we have no AddrModes then they can't be combined. 3318 if (AddrModes.size() == 0) 3319 return false; 3320 3321 // A single AddrMode can trivially be combined. 3322 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3323 return true; 3324 3325 // If the AddrModes we collected are all just equal to the value they are 3326 // derived from then combining them wouldn't do anything useful. 3327 if (AllAddrModesTrivial) 3328 return false; 3329 3330 if (!addrModeCombiningAllowed()) 3331 return false; 3332 3333 // Build a map between <original value, basic block where we saw it> to 3334 // value of base register. 3335 // Bail out if there is no common type. 3336 FoldAddrToValueMapping Map; 3337 if (!initializeMap(Map)) 3338 return false; 3339 3340 Value *CommonValue = findCommon(Map); 3341 if (CommonValue) 3342 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3343 return CommonValue != nullptr; 3344 } 3345 3346 private: 3347 /// Initialize Map with anchor values. For address seen 3348 /// we set the value of different field saw in this address. 3349 /// At the same time we find a common type for different field we will 3350 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3351 /// Return false if there is no common type found. 3352 bool initializeMap(FoldAddrToValueMapping &Map) { 3353 // Keep track of keys where the value is null. We will need to replace it 3354 // with constant null when we know the common type. 3355 SmallVector<Value *, 2> NullValue; 3356 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3357 for (auto &AM : AddrModes) { 3358 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3359 if (DV) { 3360 auto *Type = DV->getType(); 3361 if (CommonType && CommonType != Type) 3362 return false; 3363 CommonType = Type; 3364 Map[AM.OriginalValue] = DV; 3365 } else { 3366 NullValue.push_back(AM.OriginalValue); 3367 } 3368 } 3369 assert(CommonType && "At least one non-null value must be!"); 3370 for (auto *V : NullValue) 3371 Map[V] = Constant::getNullValue(CommonType); 3372 return true; 3373 } 3374 3375 /// We have mapping between value A and other value B where B was a field in 3376 /// addressing mode represented by A. Also we have an original value C 3377 /// representing an address we start with. Traversing from C through phi and 3378 /// selects we ended up with A's in a map. This utility function tries to find 3379 /// a value V which is a field in addressing mode C and traversing through phi 3380 /// nodes and selects we will end up in corresponded values B in a map. 3381 /// The utility will create a new Phi/Selects if needed. 3382 // The simple example looks as follows: 3383 // BB1: 3384 // p1 = b1 + 40 3385 // br cond BB2, BB3 3386 // BB2: 3387 // p2 = b2 + 40 3388 // br BB3 3389 // BB3: 3390 // p = phi [p1, BB1], [p2, BB2] 3391 // v = load p 3392 // Map is 3393 // p1 -> b1 3394 // p2 -> b2 3395 // Request is 3396 // p -> ? 3397 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3398 Value *findCommon(FoldAddrToValueMapping &Map) { 3399 // Tracks the simplification of newly created phi nodes. The reason we use 3400 // this mapping is because we will add new created Phi nodes in AddrToBase. 3401 // Simplification of Phi nodes is recursive, so some Phi node may 3402 // be simplified after we added it to AddrToBase. In reality this 3403 // simplification is possible only if original phi/selects were not 3404 // simplified yet. 3405 // Using this mapping we can find the current value in AddrToBase. 3406 SimplificationTracker ST(SQ); 3407 3408 // First step, DFS to create PHI nodes for all intermediate blocks. 3409 // Also fill traverse order for the second step. 3410 SmallVector<Value *, 32> TraverseOrder; 3411 InsertPlaceholders(Map, TraverseOrder, ST); 3412 3413 // Second Step, fill new nodes by merged values and simplify if possible. 3414 FillPlaceholders(Map, TraverseOrder, ST); 3415 3416 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3417 ST.destroyNewNodes(CommonType); 3418 return nullptr; 3419 } 3420 3421 // Now we'd like to match New Phi nodes to existed ones. 3422 unsigned PhiNotMatchedCount = 0; 3423 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3424 ST.destroyNewNodes(CommonType); 3425 return nullptr; 3426 } 3427 3428 auto *Result = ST.Get(Map.find(Original)->second); 3429 if (Result) { 3430 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3431 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3432 } 3433 return Result; 3434 } 3435 3436 /// Try to match PHI node to Candidate. 3437 /// Matcher tracks the matched Phi nodes. 3438 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3439 SmallSetVector<PHIPair, 8> &Matcher, 3440 PhiNodeSet &PhiNodesToMatch) { 3441 SmallVector<PHIPair, 8> WorkList; 3442 Matcher.insert({ PHI, Candidate }); 3443 SmallSet<PHINode *, 8> MatchedPHIs; 3444 MatchedPHIs.insert(PHI); 3445 WorkList.push_back({ PHI, Candidate }); 3446 SmallSet<PHIPair, 8> Visited; 3447 while (!WorkList.empty()) { 3448 auto Item = WorkList.pop_back_val(); 3449 if (!Visited.insert(Item).second) 3450 continue; 3451 // We iterate over all incoming values to Phi to compare them. 3452 // If values are different and both of them Phi and the first one is a 3453 // Phi we added (subject to match) and both of them is in the same basic 3454 // block then we can match our pair if values match. So we state that 3455 // these values match and add it to work list to verify that. 3456 for (auto B : Item.first->blocks()) { 3457 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3458 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3459 if (FirstValue == SecondValue) 3460 continue; 3461 3462 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3463 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3464 3465 // One of them is not Phi or 3466 // The first one is not Phi node from the set we'd like to match or 3467 // Phi nodes from different basic blocks then 3468 // we will not be able to match. 3469 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3470 FirstPhi->getParent() != SecondPhi->getParent()) 3471 return false; 3472 3473 // If we already matched them then continue. 3474 if (Matcher.count({ FirstPhi, SecondPhi })) 3475 continue; 3476 // So the values are different and does not match. So we need them to 3477 // match. (But we register no more than one match per PHI node, so that 3478 // we won't later try to replace them twice.) 3479 if (MatchedPHIs.insert(FirstPhi).second) 3480 Matcher.insert({ FirstPhi, SecondPhi }); 3481 // But me must check it. 3482 WorkList.push_back({ FirstPhi, SecondPhi }); 3483 } 3484 } 3485 return true; 3486 } 3487 3488 /// For the given set of PHI nodes (in the SimplificationTracker) try 3489 /// to find their equivalents. 3490 /// Returns false if this matching fails and creation of new Phi is disabled. 3491 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3492 unsigned &PhiNotMatchedCount) { 3493 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3494 // order, so the replacements (ReplacePhi) are also done in a deterministic 3495 // order. 3496 SmallSetVector<PHIPair, 8> Matched; 3497 SmallPtrSet<PHINode *, 8> WillNotMatch; 3498 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3499 while (PhiNodesToMatch.size()) { 3500 PHINode *PHI = *PhiNodesToMatch.begin(); 3501 3502 // Add us, if no Phi nodes in the basic block we do not match. 3503 WillNotMatch.clear(); 3504 WillNotMatch.insert(PHI); 3505 3506 // Traverse all Phis until we found equivalent or fail to do that. 3507 bool IsMatched = false; 3508 for (auto &P : PHI->getParent()->phis()) { 3509 if (&P == PHI) 3510 continue; 3511 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3512 break; 3513 // If it does not match, collect all Phi nodes from matcher. 3514 // if we end up with no match, them all these Phi nodes will not match 3515 // later. 3516 for (auto M : Matched) 3517 WillNotMatch.insert(M.first); 3518 Matched.clear(); 3519 } 3520 if (IsMatched) { 3521 // Replace all matched values and erase them. 3522 for (auto MV : Matched) 3523 ST.ReplacePhi(MV.first, MV.second); 3524 Matched.clear(); 3525 continue; 3526 } 3527 // If we are not allowed to create new nodes then bail out. 3528 if (!AllowNewPhiNodes) 3529 return false; 3530 // Just remove all seen values in matcher. They will not match anything. 3531 PhiNotMatchedCount += WillNotMatch.size(); 3532 for (auto *P : WillNotMatch) 3533 PhiNodesToMatch.erase(P); 3534 } 3535 return true; 3536 } 3537 /// Fill the placeholders with values from predecessors and simplify them. 3538 void FillPlaceholders(FoldAddrToValueMapping &Map, 3539 SmallVectorImpl<Value *> &TraverseOrder, 3540 SimplificationTracker &ST) { 3541 while (!TraverseOrder.empty()) { 3542 Value *Current = TraverseOrder.pop_back_val(); 3543 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3544 Value *V = Map[Current]; 3545 3546 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3547 // CurrentValue also must be Select. 3548 auto *CurrentSelect = cast<SelectInst>(Current); 3549 auto *TrueValue = CurrentSelect->getTrueValue(); 3550 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3551 Select->setTrueValue(ST.Get(Map[TrueValue])); 3552 auto *FalseValue = CurrentSelect->getFalseValue(); 3553 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3554 Select->setFalseValue(ST.Get(Map[FalseValue])); 3555 } else { 3556 // Must be a Phi node then. 3557 auto *PHI = cast<PHINode>(V); 3558 // Fill the Phi node with values from predecessors. 3559 for (auto B : predecessors(PHI->getParent())) { 3560 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3561 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3562 PHI->addIncoming(ST.Get(Map[PV]), B); 3563 } 3564 } 3565 Map[Current] = ST.Simplify(V); 3566 } 3567 } 3568 3569 /// Starting from original value recursively iterates over def-use chain up to 3570 /// known ending values represented in a map. For each traversed phi/select 3571 /// inserts a placeholder Phi or Select. 3572 /// Reports all new created Phi/Select nodes by adding them to set. 3573 /// Also reports and order in what values have been traversed. 3574 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3575 SmallVectorImpl<Value *> &TraverseOrder, 3576 SimplificationTracker &ST) { 3577 SmallVector<Value *, 32> Worklist; 3578 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3579 "Address must be a Phi or Select node"); 3580 auto *Dummy = UndefValue::get(CommonType); 3581 Worklist.push_back(Original); 3582 while (!Worklist.empty()) { 3583 Value *Current = Worklist.pop_back_val(); 3584 // if it is already visited or it is an ending value then skip it. 3585 if (Map.find(Current) != Map.end()) 3586 continue; 3587 TraverseOrder.push_back(Current); 3588 3589 // CurrentValue must be a Phi node or select. All others must be covered 3590 // by anchors. 3591 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3592 // Is it OK to get metadata from OrigSelect?! 3593 // Create a Select placeholder with dummy value. 3594 SelectInst *Select = SelectInst::Create( 3595 CurrentSelect->getCondition(), Dummy, Dummy, 3596 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3597 Map[Current] = Select; 3598 ST.insertNewSelect(Select); 3599 // We are interested in True and False values. 3600 Worklist.push_back(CurrentSelect->getTrueValue()); 3601 Worklist.push_back(CurrentSelect->getFalseValue()); 3602 } else { 3603 // It must be a Phi node then. 3604 PHINode *CurrentPhi = cast<PHINode>(Current); 3605 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3606 PHINode *PHI = 3607 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3608 Map[Current] = PHI; 3609 ST.insertNewPhi(PHI); 3610 for (Value *P : CurrentPhi->incoming_values()) 3611 Worklist.push_back(P); 3612 } 3613 } 3614 } 3615 3616 bool addrModeCombiningAllowed() { 3617 if (DisableComplexAddrModes) 3618 return false; 3619 switch (DifferentField) { 3620 default: 3621 return false; 3622 case ExtAddrMode::BaseRegField: 3623 return AddrSinkCombineBaseReg; 3624 case ExtAddrMode::BaseGVField: 3625 return AddrSinkCombineBaseGV; 3626 case ExtAddrMode::BaseOffsField: 3627 return AddrSinkCombineBaseOffs; 3628 case ExtAddrMode::ScaledRegField: 3629 return AddrSinkCombineScaledReg; 3630 } 3631 } 3632 }; 3633 } // end anonymous namespace 3634 3635 /// Try adding ScaleReg*Scale to the current addressing mode. 3636 /// Return true and update AddrMode if this addr mode is legal for the target, 3637 /// false if not. 3638 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3639 unsigned Depth) { 3640 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3641 // mode. Just process that directly. 3642 if (Scale == 1) 3643 return matchAddr(ScaleReg, Depth); 3644 3645 // If the scale is 0, it takes nothing to add this. 3646 if (Scale == 0) 3647 return true; 3648 3649 // If we already have a scale of this value, we can add to it, otherwise, we 3650 // need an available scale field. 3651 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3652 return false; 3653 3654 ExtAddrMode TestAddrMode = AddrMode; 3655 3656 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3657 // [A+B + A*7] -> [B+A*8]. 3658 TestAddrMode.Scale += Scale; 3659 TestAddrMode.ScaledReg = ScaleReg; 3660 3661 // If the new address isn't legal, bail out. 3662 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3663 return false; 3664 3665 // It was legal, so commit it. 3666 AddrMode = TestAddrMode; 3667 3668 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3669 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3670 // X*Scale + C*Scale to addr mode. 3671 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3672 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3673 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3674 TestAddrMode.InBounds = false; 3675 TestAddrMode.ScaledReg = AddLHS; 3676 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3677 3678 // If this addressing mode is legal, commit it and remember that we folded 3679 // this instruction. 3680 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3681 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3682 AddrMode = TestAddrMode; 3683 return true; 3684 } 3685 } 3686 3687 // Otherwise, not (x+c)*scale, just return what we have. 3688 return true; 3689 } 3690 3691 /// This is a little filter, which returns true if an addressing computation 3692 /// involving I might be folded into a load/store accessing it. 3693 /// This doesn't need to be perfect, but needs to accept at least 3694 /// the set of instructions that MatchOperationAddr can. 3695 static bool MightBeFoldableInst(Instruction *I) { 3696 switch (I->getOpcode()) { 3697 case Instruction::BitCast: 3698 case Instruction::AddrSpaceCast: 3699 // Don't touch identity bitcasts. 3700 if (I->getType() == I->getOperand(0)->getType()) 3701 return false; 3702 return I->getType()->isIntOrPtrTy(); 3703 case Instruction::PtrToInt: 3704 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3705 return true; 3706 case Instruction::IntToPtr: 3707 // We know the input is intptr_t, so this is foldable. 3708 return true; 3709 case Instruction::Add: 3710 return true; 3711 case Instruction::Mul: 3712 case Instruction::Shl: 3713 // Can only handle X*C and X << C. 3714 return isa<ConstantInt>(I->getOperand(1)); 3715 case Instruction::GetElementPtr: 3716 return true; 3717 default: 3718 return false; 3719 } 3720 } 3721 3722 /// Check whether or not \p Val is a legal instruction for \p TLI. 3723 /// \note \p Val is assumed to be the product of some type promotion. 3724 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3725 /// to be legal, as the non-promoted value would have had the same state. 3726 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3727 const DataLayout &DL, Value *Val) { 3728 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3729 if (!PromotedInst) 3730 return false; 3731 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3732 // If the ISDOpcode is undefined, it was undefined before the promotion. 3733 if (!ISDOpcode) 3734 return true; 3735 // Otherwise, check if the promoted instruction is legal or not. 3736 return TLI.isOperationLegalOrCustom( 3737 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3738 } 3739 3740 namespace { 3741 3742 /// Hepler class to perform type promotion. 3743 class TypePromotionHelper { 3744 /// Utility function to add a promoted instruction \p ExtOpnd to 3745 /// \p PromotedInsts and record the type of extension we have seen. 3746 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3747 Instruction *ExtOpnd, 3748 bool IsSExt) { 3749 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3750 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3751 if (It != PromotedInsts.end()) { 3752 // If the new extension is same as original, the information in 3753 // PromotedInsts[ExtOpnd] is still correct. 3754 if (It->second.getInt() == ExtTy) 3755 return; 3756 3757 // Now the new extension is different from old extension, we make 3758 // the type information invalid by setting extension type to 3759 // BothExtension. 3760 ExtTy = BothExtension; 3761 } 3762 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 3763 } 3764 3765 /// Utility function to query the original type of instruction \p Opnd 3766 /// with a matched extension type. If the extension doesn't match, we 3767 /// cannot use the information we had on the original type. 3768 /// BothExtension doesn't match any extension type. 3769 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 3770 Instruction *Opnd, 3771 bool IsSExt) { 3772 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3773 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3774 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 3775 return It->second.getPointer(); 3776 return nullptr; 3777 } 3778 3779 /// Utility function to check whether or not a sign or zero extension 3780 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3781 /// either using the operands of \p Inst or promoting \p Inst. 3782 /// The type of the extension is defined by \p IsSExt. 3783 /// In other words, check if: 3784 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3785 /// #1 Promotion applies: 3786 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3787 /// #2 Operand reuses: 3788 /// ext opnd1 to ConsideredExtType. 3789 /// \p PromotedInsts maps the instructions to their type before promotion. 3790 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3791 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3792 3793 /// Utility function to determine if \p OpIdx should be promoted when 3794 /// promoting \p Inst. 3795 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3796 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3797 } 3798 3799 /// Utility function to promote the operand of \p Ext when this 3800 /// operand is a promotable trunc or sext or zext. 3801 /// \p PromotedInsts maps the instructions to their type before promotion. 3802 /// \p CreatedInstsCost[out] contains the cost of all instructions 3803 /// created to promote the operand of Ext. 3804 /// Newly added extensions are inserted in \p Exts. 3805 /// Newly added truncates are inserted in \p Truncs. 3806 /// Should never be called directly. 3807 /// \return The promoted value which is used instead of Ext. 3808 static Value *promoteOperandForTruncAndAnyExt( 3809 Instruction *Ext, TypePromotionTransaction &TPT, 3810 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3811 SmallVectorImpl<Instruction *> *Exts, 3812 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3813 3814 /// Utility function to promote the operand of \p Ext when this 3815 /// operand is promotable and is not a supported trunc or sext. 3816 /// \p PromotedInsts maps the instructions to their type before promotion. 3817 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3818 /// created to promote the operand of Ext. 3819 /// Newly added extensions are inserted in \p Exts. 3820 /// Newly added truncates are inserted in \p Truncs. 3821 /// Should never be called directly. 3822 /// \return The promoted value which is used instead of Ext. 3823 static Value *promoteOperandForOther(Instruction *Ext, 3824 TypePromotionTransaction &TPT, 3825 InstrToOrigTy &PromotedInsts, 3826 unsigned &CreatedInstsCost, 3827 SmallVectorImpl<Instruction *> *Exts, 3828 SmallVectorImpl<Instruction *> *Truncs, 3829 const TargetLowering &TLI, bool IsSExt); 3830 3831 /// \see promoteOperandForOther. 3832 static Value *signExtendOperandForOther( 3833 Instruction *Ext, TypePromotionTransaction &TPT, 3834 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3835 SmallVectorImpl<Instruction *> *Exts, 3836 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3837 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3838 Exts, Truncs, TLI, true); 3839 } 3840 3841 /// \see promoteOperandForOther. 3842 static Value *zeroExtendOperandForOther( 3843 Instruction *Ext, TypePromotionTransaction &TPT, 3844 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3845 SmallVectorImpl<Instruction *> *Exts, 3846 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3847 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3848 Exts, Truncs, TLI, false); 3849 } 3850 3851 public: 3852 /// Type for the utility function that promotes the operand of Ext. 3853 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3854 InstrToOrigTy &PromotedInsts, 3855 unsigned &CreatedInstsCost, 3856 SmallVectorImpl<Instruction *> *Exts, 3857 SmallVectorImpl<Instruction *> *Truncs, 3858 const TargetLowering &TLI); 3859 3860 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3861 /// action to promote the operand of \p Ext instead of using Ext. 3862 /// \return NULL if no promotable action is possible with the current 3863 /// sign extension. 3864 /// \p InsertedInsts keeps track of all the instructions inserted by the 3865 /// other CodeGenPrepare optimizations. This information is important 3866 /// because we do not want to promote these instructions as CodeGenPrepare 3867 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3868 /// \p PromotedInsts maps the instructions to their type before promotion. 3869 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3870 const TargetLowering &TLI, 3871 const InstrToOrigTy &PromotedInsts); 3872 }; 3873 3874 } // end anonymous namespace 3875 3876 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3877 Type *ConsideredExtType, 3878 const InstrToOrigTy &PromotedInsts, 3879 bool IsSExt) { 3880 // The promotion helper does not know how to deal with vector types yet. 3881 // To be able to fix that, we would need to fix the places where we 3882 // statically extend, e.g., constants and such. 3883 if (Inst->getType()->isVectorTy()) 3884 return false; 3885 3886 // We can always get through zext. 3887 if (isa<ZExtInst>(Inst)) 3888 return true; 3889 3890 // sext(sext) is ok too. 3891 if (IsSExt && isa<SExtInst>(Inst)) 3892 return true; 3893 3894 // We can get through binary operator, if it is legal. In other words, the 3895 // binary operator must have a nuw or nsw flag. 3896 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3897 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3898 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3899 (IsSExt && BinOp->hasNoSignedWrap()))) 3900 return true; 3901 3902 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 3903 if ((Inst->getOpcode() == Instruction::And || 3904 Inst->getOpcode() == Instruction::Or)) 3905 return true; 3906 3907 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 3908 if (Inst->getOpcode() == Instruction::Xor) { 3909 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 3910 // Make sure it is not a NOT. 3911 if (Cst && !Cst->getValue().isAllOnesValue()) 3912 return true; 3913 } 3914 3915 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 3916 // It may change a poisoned value into a regular value, like 3917 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 3918 // poisoned value regular value 3919 // It should be OK since undef covers valid value. 3920 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 3921 return true; 3922 3923 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 3924 // It may change a poisoned value into a regular value, like 3925 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 3926 // poisoned value regular value 3927 // It should be OK since undef covers valid value. 3928 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 3929 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 3930 if (ExtInst->hasOneUse()) { 3931 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 3932 if (AndInst && AndInst->getOpcode() == Instruction::And) { 3933 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 3934 if (Cst && 3935 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 3936 return true; 3937 } 3938 } 3939 } 3940 3941 // Check if we can do the following simplification. 3942 // ext(trunc(opnd)) --> ext(opnd) 3943 if (!isa<TruncInst>(Inst)) 3944 return false; 3945 3946 Value *OpndVal = Inst->getOperand(0); 3947 // Check if we can use this operand in the extension. 3948 // If the type is larger than the result type of the extension, we cannot. 3949 if (!OpndVal->getType()->isIntegerTy() || 3950 OpndVal->getType()->getIntegerBitWidth() > 3951 ConsideredExtType->getIntegerBitWidth()) 3952 return false; 3953 3954 // If the operand of the truncate is not an instruction, we will not have 3955 // any information on the dropped bits. 3956 // (Actually we could for constant but it is not worth the extra logic). 3957 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3958 if (!Opnd) 3959 return false; 3960 3961 // Check if the source of the type is narrow enough. 3962 // I.e., check that trunc just drops extended bits of the same kind of 3963 // the extension. 3964 // #1 get the type of the operand and check the kind of the extended bits. 3965 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 3966 if (OpndType) 3967 ; 3968 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3969 OpndType = Opnd->getOperand(0)->getType(); 3970 else 3971 return false; 3972 3973 // #2 check that the truncate just drops extended bits. 3974 return Inst->getType()->getIntegerBitWidth() >= 3975 OpndType->getIntegerBitWidth(); 3976 } 3977 3978 TypePromotionHelper::Action TypePromotionHelper::getAction( 3979 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3980 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3981 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3982 "Unexpected instruction type"); 3983 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3984 Type *ExtTy = Ext->getType(); 3985 bool IsSExt = isa<SExtInst>(Ext); 3986 // If the operand of the extension is not an instruction, we cannot 3987 // get through. 3988 // If it, check we can get through. 3989 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3990 return nullptr; 3991 3992 // Do not promote if the operand has been added by codegenprepare. 3993 // Otherwise, it means we are undoing an optimization that is likely to be 3994 // redone, thus causing potential infinite loop. 3995 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3996 return nullptr; 3997 3998 // SExt or Trunc instructions. 3999 // Return the related handler. 4000 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 4001 isa<ZExtInst>(ExtOpnd)) 4002 return promoteOperandForTruncAndAnyExt; 4003 4004 // Regular instruction. 4005 // Abort early if we will have to insert non-free instructions. 4006 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 4007 return nullptr; 4008 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 4009 } 4010 4011 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 4012 Instruction *SExt, TypePromotionTransaction &TPT, 4013 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4014 SmallVectorImpl<Instruction *> *Exts, 4015 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4016 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4017 // get through it and this method should not be called. 4018 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4019 Value *ExtVal = SExt; 4020 bool HasMergedNonFreeExt = false; 4021 if (isa<ZExtInst>(SExtOpnd)) { 4022 // Replace s|zext(zext(opnd)) 4023 // => zext(opnd). 4024 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4025 Value *ZExt = 4026 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4027 TPT.replaceAllUsesWith(SExt, ZExt); 4028 TPT.eraseInstruction(SExt); 4029 ExtVal = ZExt; 4030 } else { 4031 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4032 // => z|sext(opnd). 4033 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4034 } 4035 CreatedInstsCost = 0; 4036 4037 // Remove dead code. 4038 if (SExtOpnd->use_empty()) 4039 TPT.eraseInstruction(SExtOpnd); 4040 4041 // Check if the extension is still needed. 4042 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4043 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4044 if (ExtInst) { 4045 if (Exts) 4046 Exts->push_back(ExtInst); 4047 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4048 } 4049 return ExtVal; 4050 } 4051 4052 // At this point we have: ext ty opnd to ty. 4053 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4054 Value *NextVal = ExtInst->getOperand(0); 4055 TPT.eraseInstruction(ExtInst, NextVal); 4056 return NextVal; 4057 } 4058 4059 Value *TypePromotionHelper::promoteOperandForOther( 4060 Instruction *Ext, TypePromotionTransaction &TPT, 4061 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4062 SmallVectorImpl<Instruction *> *Exts, 4063 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4064 bool IsSExt) { 4065 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4066 // get through it and this method should not be called. 4067 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4068 CreatedInstsCost = 0; 4069 if (!ExtOpnd->hasOneUse()) { 4070 // ExtOpnd will be promoted. 4071 // All its uses, but Ext, will need to use a truncated value of the 4072 // promoted version. 4073 // Create the truncate now. 4074 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4075 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4076 // Insert it just after the definition. 4077 ITrunc->moveAfter(ExtOpnd); 4078 if (Truncs) 4079 Truncs->push_back(ITrunc); 4080 } 4081 4082 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4083 // Restore the operand of Ext (which has been replaced by the previous call 4084 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4085 TPT.setOperand(Ext, 0, ExtOpnd); 4086 } 4087 4088 // Get through the Instruction: 4089 // 1. Update its type. 4090 // 2. Replace the uses of Ext by Inst. 4091 // 3. Extend each operand that needs to be extended. 4092 4093 // Remember the original type of the instruction before promotion. 4094 // This is useful to know that the high bits are sign extended bits. 4095 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4096 // Step #1. 4097 TPT.mutateType(ExtOpnd, Ext->getType()); 4098 // Step #2. 4099 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4100 // Step #3. 4101 Instruction *ExtForOpnd = Ext; 4102 4103 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4104 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4105 ++OpIdx) { 4106 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4107 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4108 !shouldExtOperand(ExtOpnd, OpIdx)) { 4109 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4110 continue; 4111 } 4112 // Check if we can statically extend the operand. 4113 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4114 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4115 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4116 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4117 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4118 : Cst->getValue().zext(BitWidth); 4119 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4120 continue; 4121 } 4122 // UndefValue are typed, so we have to statically sign extend them. 4123 if (isa<UndefValue>(Opnd)) { 4124 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4125 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4126 continue; 4127 } 4128 4129 // Otherwise we have to explicitly sign extend the operand. 4130 // Check if Ext was reused to extend an operand. 4131 if (!ExtForOpnd) { 4132 // If yes, create a new one. 4133 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 4134 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 4135 : TPT.createZExt(Ext, Opnd, Ext->getType()); 4136 if (!isa<Instruction>(ValForExtOpnd)) { 4137 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4138 continue; 4139 } 4140 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4141 } 4142 if (Exts) 4143 Exts->push_back(ExtForOpnd); 4144 TPT.setOperand(ExtForOpnd, 0, Opnd); 4145 4146 // Move the sign extension before the insertion point. 4147 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4148 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4149 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4150 // If more sext are required, new instructions will have to be created. 4151 ExtForOpnd = nullptr; 4152 } 4153 if (ExtForOpnd == Ext) { 4154 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4155 TPT.eraseInstruction(Ext); 4156 } 4157 return ExtOpnd; 4158 } 4159 4160 /// Check whether or not promoting an instruction to a wider type is profitable. 4161 /// \p NewCost gives the cost of extension instructions created by the 4162 /// promotion. 4163 /// \p OldCost gives the cost of extension instructions before the promotion 4164 /// plus the number of instructions that have been 4165 /// matched in the addressing mode the promotion. 4166 /// \p PromotedOperand is the value that has been promoted. 4167 /// \return True if the promotion is profitable, false otherwise. 4168 bool AddressingModeMatcher::isPromotionProfitable( 4169 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4170 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4171 << '\n'); 4172 // The cost of the new extensions is greater than the cost of the 4173 // old extension plus what we folded. 4174 // This is not profitable. 4175 if (NewCost > OldCost) 4176 return false; 4177 if (NewCost < OldCost) 4178 return true; 4179 // The promotion is neutral but it may help folding the sign extension in 4180 // loads for instance. 4181 // Check that we did not create an illegal instruction. 4182 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4183 } 4184 4185 /// Given an instruction or constant expr, see if we can fold the operation 4186 /// into the addressing mode. If so, update the addressing mode and return 4187 /// true, otherwise return false without modifying AddrMode. 4188 /// If \p MovedAway is not NULL, it contains the information of whether or 4189 /// not AddrInst has to be folded into the addressing mode on success. 4190 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4191 /// because it has been moved away. 4192 /// Thus AddrInst must not be added in the matched instructions. 4193 /// This state can happen when AddrInst is a sext, since it may be moved away. 4194 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4195 /// not be referenced anymore. 4196 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4197 unsigned Depth, 4198 bool *MovedAway) { 4199 // Avoid exponential behavior on extremely deep expression trees. 4200 if (Depth >= 5) return false; 4201 4202 // By default, all matched instructions stay in place. 4203 if (MovedAway) 4204 *MovedAway = false; 4205 4206 switch (Opcode) { 4207 case Instruction::PtrToInt: 4208 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4209 return matchAddr(AddrInst->getOperand(0), Depth); 4210 case Instruction::IntToPtr: { 4211 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4212 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4213 // This inttoptr is a no-op if the integer type is pointer sized. 4214 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4215 return matchAddr(AddrInst->getOperand(0), Depth); 4216 return false; 4217 } 4218 case Instruction::BitCast: 4219 // BitCast is always a noop, and we can handle it as long as it is 4220 // int->int or pointer->pointer (we don't want int<->fp or something). 4221 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4222 // Don't touch identity bitcasts. These were probably put here by LSR, 4223 // and we don't want to mess around with them. Assume it knows what it 4224 // is doing. 4225 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4226 return matchAddr(AddrInst->getOperand(0), Depth); 4227 return false; 4228 case Instruction::AddrSpaceCast: { 4229 unsigned SrcAS 4230 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4231 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4232 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 4233 return matchAddr(AddrInst->getOperand(0), Depth); 4234 return false; 4235 } 4236 case Instruction::Add: { 4237 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4238 ExtAddrMode BackupAddrMode = AddrMode; 4239 unsigned OldSize = AddrModeInsts.size(); 4240 // Start a transaction at this point. 4241 // The LHS may match but not the RHS. 4242 // Therefore, we need a higher level restoration point to undo partially 4243 // matched operation. 4244 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4245 TPT.getRestorationPoint(); 4246 4247 AddrMode.InBounds = false; 4248 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4249 matchAddr(AddrInst->getOperand(0), Depth+1)) 4250 return true; 4251 4252 // Restore the old addr mode info. 4253 AddrMode = BackupAddrMode; 4254 AddrModeInsts.resize(OldSize); 4255 TPT.rollback(LastKnownGood); 4256 4257 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4258 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4259 matchAddr(AddrInst->getOperand(1), Depth+1)) 4260 return true; 4261 4262 // Otherwise we definitely can't merge the ADD in. 4263 AddrMode = BackupAddrMode; 4264 AddrModeInsts.resize(OldSize); 4265 TPT.rollback(LastKnownGood); 4266 break; 4267 } 4268 //case Instruction::Or: 4269 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4270 //break; 4271 case Instruction::Mul: 4272 case Instruction::Shl: { 4273 // Can only handle X*C and X << C. 4274 AddrMode.InBounds = false; 4275 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4276 if (!RHS || RHS->getBitWidth() > 64) 4277 return false; 4278 int64_t Scale = RHS->getSExtValue(); 4279 if (Opcode == Instruction::Shl) 4280 Scale = 1LL << Scale; 4281 4282 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4283 } 4284 case Instruction::GetElementPtr: { 4285 // Scan the GEP. We check it if it contains constant offsets and at most 4286 // one variable offset. 4287 int VariableOperand = -1; 4288 unsigned VariableScale = 0; 4289 4290 int64_t ConstantOffset = 0; 4291 gep_type_iterator GTI = gep_type_begin(AddrInst); 4292 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4293 if (StructType *STy = GTI.getStructTypeOrNull()) { 4294 const StructLayout *SL = DL.getStructLayout(STy); 4295 unsigned Idx = 4296 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4297 ConstantOffset += SL->getElementOffset(Idx); 4298 } else { 4299 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 4300 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4301 const APInt &CVal = CI->getValue(); 4302 if (CVal.getMinSignedBits() <= 64) { 4303 ConstantOffset += CVal.getSExtValue() * TypeSize; 4304 continue; 4305 } 4306 } 4307 if (TypeSize) { // Scales of zero don't do anything. 4308 // We only allow one variable index at the moment. 4309 if (VariableOperand != -1) 4310 return false; 4311 4312 // Remember the variable index. 4313 VariableOperand = i; 4314 VariableScale = TypeSize; 4315 } 4316 } 4317 } 4318 4319 // A common case is for the GEP to only do a constant offset. In this case, 4320 // just add it to the disp field and check validity. 4321 if (VariableOperand == -1) { 4322 AddrMode.BaseOffs += ConstantOffset; 4323 if (ConstantOffset == 0 || 4324 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4325 // Check to see if we can fold the base pointer in too. 4326 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4327 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4328 AddrMode.InBounds = false; 4329 return true; 4330 } 4331 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4332 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4333 ConstantOffset > 0) { 4334 // Record GEPs with non-zero offsets as candidates for splitting in the 4335 // event that the offset cannot fit into the r+i addressing mode. 4336 // Simple and common case that only one GEP is used in calculating the 4337 // address for the memory access. 4338 Value *Base = AddrInst->getOperand(0); 4339 auto *BaseI = dyn_cast<Instruction>(Base); 4340 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4341 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4342 (BaseI && !isa<CastInst>(BaseI) && 4343 !isa<GetElementPtrInst>(BaseI))) { 4344 // Make sure the parent block allows inserting non-PHI instructions 4345 // before the terminator. 4346 BasicBlock *Parent = 4347 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4348 if (!Parent->getTerminator()->isEHPad()) 4349 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4350 } 4351 } 4352 AddrMode.BaseOffs -= ConstantOffset; 4353 return false; 4354 } 4355 4356 // Save the valid addressing mode in case we can't match. 4357 ExtAddrMode BackupAddrMode = AddrMode; 4358 unsigned OldSize = AddrModeInsts.size(); 4359 4360 // See if the scale and offset amount is valid for this target. 4361 AddrMode.BaseOffs += ConstantOffset; 4362 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4363 AddrMode.InBounds = false; 4364 4365 // Match the base operand of the GEP. 4366 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4367 // If it couldn't be matched, just stuff the value in a register. 4368 if (AddrMode.HasBaseReg) { 4369 AddrMode = BackupAddrMode; 4370 AddrModeInsts.resize(OldSize); 4371 return false; 4372 } 4373 AddrMode.HasBaseReg = true; 4374 AddrMode.BaseReg = AddrInst->getOperand(0); 4375 } 4376 4377 // Match the remaining variable portion of the GEP. 4378 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4379 Depth)) { 4380 // If it couldn't be matched, try stuffing the base into a register 4381 // instead of matching it, and retrying the match of the scale. 4382 AddrMode = BackupAddrMode; 4383 AddrModeInsts.resize(OldSize); 4384 if (AddrMode.HasBaseReg) 4385 return false; 4386 AddrMode.HasBaseReg = true; 4387 AddrMode.BaseReg = AddrInst->getOperand(0); 4388 AddrMode.BaseOffs += ConstantOffset; 4389 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4390 VariableScale, Depth)) { 4391 // If even that didn't work, bail. 4392 AddrMode = BackupAddrMode; 4393 AddrModeInsts.resize(OldSize); 4394 return false; 4395 } 4396 } 4397 4398 return true; 4399 } 4400 case Instruction::SExt: 4401 case Instruction::ZExt: { 4402 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4403 if (!Ext) 4404 return false; 4405 4406 // Try to move this ext out of the way of the addressing mode. 4407 // Ask for a method for doing so. 4408 TypePromotionHelper::Action TPH = 4409 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4410 if (!TPH) 4411 return false; 4412 4413 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4414 TPT.getRestorationPoint(); 4415 unsigned CreatedInstsCost = 0; 4416 unsigned ExtCost = !TLI.isExtFree(Ext); 4417 Value *PromotedOperand = 4418 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4419 // SExt has been moved away. 4420 // Thus either it will be rematched later in the recursive calls or it is 4421 // gone. Anyway, we must not fold it into the addressing mode at this point. 4422 // E.g., 4423 // op = add opnd, 1 4424 // idx = ext op 4425 // addr = gep base, idx 4426 // is now: 4427 // promotedOpnd = ext opnd <- no match here 4428 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4429 // addr = gep base, op <- match 4430 if (MovedAway) 4431 *MovedAway = true; 4432 4433 assert(PromotedOperand && 4434 "TypePromotionHelper should have filtered out those cases"); 4435 4436 ExtAddrMode BackupAddrMode = AddrMode; 4437 unsigned OldSize = AddrModeInsts.size(); 4438 4439 if (!matchAddr(PromotedOperand, Depth) || 4440 // The total of the new cost is equal to the cost of the created 4441 // instructions. 4442 // The total of the old cost is equal to the cost of the extension plus 4443 // what we have saved in the addressing mode. 4444 !isPromotionProfitable(CreatedInstsCost, 4445 ExtCost + (AddrModeInsts.size() - OldSize), 4446 PromotedOperand)) { 4447 AddrMode = BackupAddrMode; 4448 AddrModeInsts.resize(OldSize); 4449 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4450 TPT.rollback(LastKnownGood); 4451 return false; 4452 } 4453 return true; 4454 } 4455 } 4456 return false; 4457 } 4458 4459 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4460 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4461 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4462 /// for the target. 4463 /// 4464 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4465 // Start a transaction at this point that we will rollback if the matching 4466 // fails. 4467 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4468 TPT.getRestorationPoint(); 4469 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4470 // Fold in immediates if legal for the target. 4471 AddrMode.BaseOffs += CI->getSExtValue(); 4472 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4473 return true; 4474 AddrMode.BaseOffs -= CI->getSExtValue(); 4475 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4476 // If this is a global variable, try to fold it into the addressing mode. 4477 if (!AddrMode.BaseGV) { 4478 AddrMode.BaseGV = GV; 4479 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4480 return true; 4481 AddrMode.BaseGV = nullptr; 4482 } 4483 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4484 ExtAddrMode BackupAddrMode = AddrMode; 4485 unsigned OldSize = AddrModeInsts.size(); 4486 4487 // Check to see if it is possible to fold this operation. 4488 bool MovedAway = false; 4489 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4490 // This instruction may have been moved away. If so, there is nothing 4491 // to check here. 4492 if (MovedAway) 4493 return true; 4494 // Okay, it's possible to fold this. Check to see if it is actually 4495 // *profitable* to do so. We use a simple cost model to avoid increasing 4496 // register pressure too much. 4497 if (I->hasOneUse() || 4498 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4499 AddrModeInsts.push_back(I); 4500 return true; 4501 } 4502 4503 // It isn't profitable to do this, roll back. 4504 //cerr << "NOT FOLDING: " << *I; 4505 AddrMode = BackupAddrMode; 4506 AddrModeInsts.resize(OldSize); 4507 TPT.rollback(LastKnownGood); 4508 } 4509 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4510 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4511 return true; 4512 TPT.rollback(LastKnownGood); 4513 } else if (isa<ConstantPointerNull>(Addr)) { 4514 // Null pointer gets folded without affecting the addressing mode. 4515 return true; 4516 } 4517 4518 // Worse case, the target should support [reg] addressing modes. :) 4519 if (!AddrMode.HasBaseReg) { 4520 AddrMode.HasBaseReg = true; 4521 AddrMode.BaseReg = Addr; 4522 // Still check for legality in case the target supports [imm] but not [i+r]. 4523 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4524 return true; 4525 AddrMode.HasBaseReg = false; 4526 AddrMode.BaseReg = nullptr; 4527 } 4528 4529 // If the base register is already taken, see if we can do [r+r]. 4530 if (AddrMode.Scale == 0) { 4531 AddrMode.Scale = 1; 4532 AddrMode.ScaledReg = Addr; 4533 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4534 return true; 4535 AddrMode.Scale = 0; 4536 AddrMode.ScaledReg = nullptr; 4537 } 4538 // Couldn't match. 4539 TPT.rollback(LastKnownGood); 4540 return false; 4541 } 4542 4543 /// Check to see if all uses of OpVal by the specified inline asm call are due 4544 /// to memory operands. If so, return true, otherwise return false. 4545 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4546 const TargetLowering &TLI, 4547 const TargetRegisterInfo &TRI) { 4548 const Function *F = CI->getFunction(); 4549 TargetLowering::AsmOperandInfoVector TargetConstraints = 4550 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI); 4551 4552 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4553 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4554 4555 // Compute the constraint code and ConstraintType to use. 4556 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4557 4558 // If this asm operand is our Value*, and if it isn't an indirect memory 4559 // operand, we can't fold it! 4560 if (OpInfo.CallOperandVal == OpVal && 4561 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4562 !OpInfo.isIndirect)) 4563 return false; 4564 } 4565 4566 return true; 4567 } 4568 4569 // Max number of memory uses to look at before aborting the search to conserve 4570 // compile time. 4571 static constexpr int MaxMemoryUsesToScan = 20; 4572 4573 /// Recursively walk all the uses of I until we find a memory use. 4574 /// If we find an obviously non-foldable instruction, return true. 4575 /// Add the ultimately found memory instructions to MemoryUses. 4576 static bool FindAllMemoryUses( 4577 Instruction *I, 4578 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4579 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4580 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 4581 BlockFrequencyInfo *BFI, int SeenInsts = 0) { 4582 // If we already considered this instruction, we're done. 4583 if (!ConsideredInsts.insert(I).second) 4584 return false; 4585 4586 // If this is an obviously unfoldable instruction, bail out. 4587 if (!MightBeFoldableInst(I)) 4588 return true; 4589 4590 // Loop over all the uses, recursively processing them. 4591 for (Use &U : I->uses()) { 4592 // Conservatively return true if we're seeing a large number or a deep chain 4593 // of users. This avoids excessive compilation times in pathological cases. 4594 if (SeenInsts++ >= MaxMemoryUsesToScan) 4595 return true; 4596 4597 Instruction *UserI = cast<Instruction>(U.getUser()); 4598 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4599 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4600 continue; 4601 } 4602 4603 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4604 unsigned opNo = U.getOperandNo(); 4605 if (opNo != StoreInst::getPointerOperandIndex()) 4606 return true; // Storing addr, not into addr. 4607 MemoryUses.push_back(std::make_pair(SI, opNo)); 4608 continue; 4609 } 4610 4611 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4612 unsigned opNo = U.getOperandNo(); 4613 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4614 return true; // Storing addr, not into addr. 4615 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4616 continue; 4617 } 4618 4619 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4620 unsigned opNo = U.getOperandNo(); 4621 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4622 return true; // Storing addr, not into addr. 4623 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4624 continue; 4625 } 4626 4627 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4628 if (CI->hasFnAttr(Attribute::Cold)) { 4629 // If this is a cold call, we can sink the addressing calculation into 4630 // the cold path. See optimizeCallInst 4631 bool OptForSize = OptSize || 4632 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 4633 if (!OptForSize) 4634 continue; 4635 } 4636 4637 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4638 if (!IA) return true; 4639 4640 // If this is a memory operand, we're cool, otherwise bail out. 4641 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4642 return true; 4643 continue; 4644 } 4645 4646 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4647 PSI, BFI, SeenInsts)) 4648 return true; 4649 } 4650 4651 return false; 4652 } 4653 4654 /// Return true if Val is already known to be live at the use site that we're 4655 /// folding it into. If so, there is no cost to include it in the addressing 4656 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4657 /// instruction already. 4658 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4659 Value *KnownLive2) { 4660 // If Val is either of the known-live values, we know it is live! 4661 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4662 return true; 4663 4664 // All values other than instructions and arguments (e.g. constants) are live. 4665 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4666 4667 // If Val is a constant sized alloca in the entry block, it is live, this is 4668 // true because it is just a reference to the stack/frame pointer, which is 4669 // live for the whole function. 4670 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4671 if (AI->isStaticAlloca()) 4672 return true; 4673 4674 // Check to see if this value is already used in the memory instruction's 4675 // block. If so, it's already live into the block at the very least, so we 4676 // can reasonably fold it. 4677 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4678 } 4679 4680 /// It is possible for the addressing mode of the machine to fold the specified 4681 /// instruction into a load or store that ultimately uses it. 4682 /// However, the specified instruction has multiple uses. 4683 /// Given this, it may actually increase register pressure to fold it 4684 /// into the load. For example, consider this code: 4685 /// 4686 /// X = ... 4687 /// Y = X+1 4688 /// use(Y) -> nonload/store 4689 /// Z = Y+1 4690 /// load Z 4691 /// 4692 /// In this case, Y has multiple uses, and can be folded into the load of Z 4693 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4694 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4695 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4696 /// number of computations either. 4697 /// 4698 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4699 /// X was live across 'load Z' for other reasons, we actually *would* want to 4700 /// fold the addressing mode in the Z case. This would make Y die earlier. 4701 bool AddressingModeMatcher:: 4702 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4703 ExtAddrMode &AMAfter) { 4704 if (IgnoreProfitability) return true; 4705 4706 // AMBefore is the addressing mode before this instruction was folded into it, 4707 // and AMAfter is the addressing mode after the instruction was folded. Get 4708 // the set of registers referenced by AMAfter and subtract out those 4709 // referenced by AMBefore: this is the set of values which folding in this 4710 // address extends the lifetime of. 4711 // 4712 // Note that there are only two potential values being referenced here, 4713 // BaseReg and ScaleReg (global addresses are always available, as are any 4714 // folded immediates). 4715 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4716 4717 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4718 // lifetime wasn't extended by adding this instruction. 4719 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4720 BaseReg = nullptr; 4721 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4722 ScaledReg = nullptr; 4723 4724 // If folding this instruction (and it's subexprs) didn't extend any live 4725 // ranges, we're ok with it. 4726 if (!BaseReg && !ScaledReg) 4727 return true; 4728 4729 // If all uses of this instruction can have the address mode sunk into them, 4730 // we can remove the addressing mode and effectively trade one live register 4731 // for another (at worst.) In this context, folding an addressing mode into 4732 // the use is just a particularly nice way of sinking it. 4733 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4734 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4735 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4736 PSI, BFI)) 4737 return false; // Has a non-memory, non-foldable use! 4738 4739 // Now that we know that all uses of this instruction are part of a chain of 4740 // computation involving only operations that could theoretically be folded 4741 // into a memory use, loop over each of these memory operation uses and see 4742 // if they could *actually* fold the instruction. The assumption is that 4743 // addressing modes are cheap and that duplicating the computation involved 4744 // many times is worthwhile, even on a fastpath. For sinking candidates 4745 // (i.e. cold call sites), this serves as a way to prevent excessive code 4746 // growth since most architectures have some reasonable small and fast way to 4747 // compute an effective address. (i.e LEA on x86) 4748 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4749 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4750 Instruction *User = MemoryUses[i].first; 4751 unsigned OpNo = MemoryUses[i].second; 4752 4753 // Get the access type of this use. If the use isn't a pointer, we don't 4754 // know what it accesses. 4755 Value *Address = User->getOperand(OpNo); 4756 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4757 if (!AddrTy) 4758 return false; 4759 Type *AddressAccessTy = AddrTy->getElementType(); 4760 unsigned AS = AddrTy->getAddressSpace(); 4761 4762 // Do a match against the root of this address, ignoring profitability. This 4763 // will tell us if the addressing mode for the memory operation will 4764 // *actually* cover the shared instruction. 4765 ExtAddrMode Result; 4766 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4767 0); 4768 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4769 TPT.getRestorationPoint(); 4770 AddressingModeMatcher Matcher( 4771 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4772 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, BFI); 4773 Matcher.IgnoreProfitability = true; 4774 bool Success = Matcher.matchAddr(Address, 0); 4775 (void)Success; assert(Success && "Couldn't select *anything*?"); 4776 4777 // The match was to check the profitability, the changes made are not 4778 // part of the original matcher. Therefore, they should be dropped 4779 // otherwise the original matcher will not present the right state. 4780 TPT.rollback(LastKnownGood); 4781 4782 // If the match didn't cover I, then it won't be shared by it. 4783 if (!is_contained(MatchedAddrModeInsts, I)) 4784 return false; 4785 4786 MatchedAddrModeInsts.clear(); 4787 } 4788 4789 return true; 4790 } 4791 4792 /// Return true if the specified values are defined in a 4793 /// different basic block than BB. 4794 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4795 if (Instruction *I = dyn_cast<Instruction>(V)) 4796 return I->getParent() != BB; 4797 return false; 4798 } 4799 4800 /// Sink addressing mode computation immediate before MemoryInst if doing so 4801 /// can be done without increasing register pressure. The need for the 4802 /// register pressure constraint means this can end up being an all or nothing 4803 /// decision for all uses of the same addressing computation. 4804 /// 4805 /// Load and Store Instructions often have addressing modes that can do 4806 /// significant amounts of computation. As such, instruction selection will try 4807 /// to get the load or store to do as much computation as possible for the 4808 /// program. The problem is that isel can only see within a single block. As 4809 /// such, we sink as much legal addressing mode work into the block as possible. 4810 /// 4811 /// This method is used to optimize both load/store and inline asms with memory 4812 /// operands. It's also used to sink addressing computations feeding into cold 4813 /// call sites into their (cold) basic block. 4814 /// 4815 /// The motivation for handling sinking into cold blocks is that doing so can 4816 /// both enable other address mode sinking (by satisfying the register pressure 4817 /// constraint above), and reduce register pressure globally (by removing the 4818 /// addressing mode computation from the fast path entirely.). 4819 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4820 Type *AccessTy, unsigned AddrSpace) { 4821 Value *Repl = Addr; 4822 4823 // Try to collapse single-value PHI nodes. This is necessary to undo 4824 // unprofitable PRE transformations. 4825 SmallVector<Value*, 8> worklist; 4826 SmallPtrSet<Value*, 16> Visited; 4827 worklist.push_back(Addr); 4828 4829 // Use a worklist to iteratively look through PHI and select nodes, and 4830 // ensure that the addressing mode obtained from the non-PHI/select roots of 4831 // the graph are compatible. 4832 bool PhiOrSelectSeen = false; 4833 SmallVector<Instruction*, 16> AddrModeInsts; 4834 const SimplifyQuery SQ(*DL, TLInfo); 4835 AddressingModeCombiner AddrModes(SQ, Addr); 4836 TypePromotionTransaction TPT(RemovedInsts); 4837 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4838 TPT.getRestorationPoint(); 4839 while (!worklist.empty()) { 4840 Value *V = worklist.back(); 4841 worklist.pop_back(); 4842 4843 // We allow traversing cyclic Phi nodes. 4844 // In case of success after this loop we ensure that traversing through 4845 // Phi nodes ends up with all cases to compute address of the form 4846 // BaseGV + Base + Scale * Index + Offset 4847 // where Scale and Offset are constans and BaseGV, Base and Index 4848 // are exactly the same Values in all cases. 4849 // It means that BaseGV, Scale and Offset dominate our memory instruction 4850 // and have the same value as they had in address computation represented 4851 // as Phi. So we can safely sink address computation to memory instruction. 4852 if (!Visited.insert(V).second) 4853 continue; 4854 4855 // For a PHI node, push all of its incoming values. 4856 if (PHINode *P = dyn_cast<PHINode>(V)) { 4857 for (Value *IncValue : P->incoming_values()) 4858 worklist.push_back(IncValue); 4859 PhiOrSelectSeen = true; 4860 continue; 4861 } 4862 // Similar for select. 4863 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4864 worklist.push_back(SI->getFalseValue()); 4865 worklist.push_back(SI->getTrueValue()); 4866 PhiOrSelectSeen = true; 4867 continue; 4868 } 4869 4870 // For non-PHIs, determine the addressing mode being computed. Note that 4871 // the result may differ depending on what other uses our candidate 4872 // addressing instructions might have. 4873 AddrModeInsts.clear(); 4874 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4875 0); 4876 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4877 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4878 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 4879 BFI.get()); 4880 4881 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4882 if (GEP && !NewGEPBases.count(GEP)) { 4883 // If splitting the underlying data structure can reduce the offset of a 4884 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4885 // previously split data structures. 4886 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4887 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4888 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4889 } 4890 4891 NewAddrMode.OriginalValue = V; 4892 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4893 break; 4894 } 4895 4896 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4897 // or we have multiple but either couldn't combine them or combining them 4898 // wouldn't do anything useful, bail out now. 4899 if (!AddrModes.combineAddrModes()) { 4900 TPT.rollback(LastKnownGood); 4901 return false; 4902 } 4903 TPT.commit(); 4904 4905 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4906 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4907 4908 // If all the instructions matched are already in this BB, don't do anything. 4909 // If we saw a Phi node then it is not local definitely, and if we saw a select 4910 // then we want to push the address calculation past it even if it's already 4911 // in this BB. 4912 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4913 return IsNonLocalValue(V, MemoryInst->getParent()); 4914 })) { 4915 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 4916 << "\n"); 4917 return false; 4918 } 4919 4920 // Insert this computation right after this user. Since our caller is 4921 // scanning from the top of the BB to the bottom, reuse of the expr are 4922 // guaranteed to happen later. 4923 IRBuilder<> Builder(MemoryInst); 4924 4925 // Now that we determined the addressing expression we want to use and know 4926 // that we have to sink it into this block. Check to see if we have already 4927 // done this for some other load/store instr in this block. If so, reuse 4928 // the computation. Before attempting reuse, check if the address is valid 4929 // as it may have been erased. 4930 4931 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4932 4933 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4934 if (SunkAddr) { 4935 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 4936 << " for " << *MemoryInst << "\n"); 4937 if (SunkAddr->getType() != Addr->getType()) 4938 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4939 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 4940 SubtargetInfo->addrSinkUsingGEPs())) { 4941 // By default, we use the GEP-based method when AA is used later. This 4942 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4943 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4944 << " for " << *MemoryInst << "\n"); 4945 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4946 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4947 4948 // First, find the pointer. 4949 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4950 ResultPtr = AddrMode.BaseReg; 4951 AddrMode.BaseReg = nullptr; 4952 } 4953 4954 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4955 // We can't add more than one pointer together, nor can we scale a 4956 // pointer (both of which seem meaningless). 4957 if (ResultPtr || AddrMode.Scale != 1) 4958 return false; 4959 4960 ResultPtr = AddrMode.ScaledReg; 4961 AddrMode.Scale = 0; 4962 } 4963 4964 // It is only safe to sign extend the BaseReg if we know that the math 4965 // required to create it did not overflow before we extend it. Since 4966 // the original IR value was tossed in favor of a constant back when 4967 // the AddrMode was created we need to bail out gracefully if widths 4968 // do not match instead of extending it. 4969 // 4970 // (See below for code to add the scale.) 4971 if (AddrMode.Scale) { 4972 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4973 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4974 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4975 return false; 4976 } 4977 4978 if (AddrMode.BaseGV) { 4979 if (ResultPtr) 4980 return false; 4981 4982 ResultPtr = AddrMode.BaseGV; 4983 } 4984 4985 // If the real base value actually came from an inttoptr, then the matcher 4986 // will look through it and provide only the integer value. In that case, 4987 // use it here. 4988 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4989 if (!ResultPtr && AddrMode.BaseReg) { 4990 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4991 "sunkaddr"); 4992 AddrMode.BaseReg = nullptr; 4993 } else if (!ResultPtr && AddrMode.Scale == 1) { 4994 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4995 "sunkaddr"); 4996 AddrMode.Scale = 0; 4997 } 4998 } 4999 5000 if (!ResultPtr && 5001 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 5002 SunkAddr = Constant::getNullValue(Addr->getType()); 5003 } else if (!ResultPtr) { 5004 return false; 5005 } else { 5006 Type *I8PtrTy = 5007 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 5008 Type *I8Ty = Builder.getInt8Ty(); 5009 5010 // Start with the base register. Do this first so that subsequent address 5011 // matching finds it last, which will prevent it from trying to match it 5012 // as the scaled value in case it happens to be a mul. That would be 5013 // problematic if we've sunk a different mul for the scale, because then 5014 // we'd end up sinking both muls. 5015 if (AddrMode.BaseReg) { 5016 Value *V = AddrMode.BaseReg; 5017 if (V->getType() != IntPtrTy) 5018 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5019 5020 ResultIndex = V; 5021 } 5022 5023 // Add the scale value. 5024 if (AddrMode.Scale) { 5025 Value *V = AddrMode.ScaledReg; 5026 if (V->getType() == IntPtrTy) { 5027 // done. 5028 } else { 5029 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5030 cast<IntegerType>(V->getType())->getBitWidth() && 5031 "We can't transform if ScaledReg is too narrow"); 5032 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5033 } 5034 5035 if (AddrMode.Scale != 1) 5036 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5037 "sunkaddr"); 5038 if (ResultIndex) 5039 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5040 else 5041 ResultIndex = V; 5042 } 5043 5044 // Add in the Base Offset if present. 5045 if (AddrMode.BaseOffs) { 5046 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5047 if (ResultIndex) { 5048 // We need to add this separately from the scale above to help with 5049 // SDAG consecutive load/store merging. 5050 if (ResultPtr->getType() != I8PtrTy) 5051 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5052 ResultPtr = 5053 AddrMode.InBounds 5054 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5055 "sunkaddr") 5056 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5057 } 5058 5059 ResultIndex = V; 5060 } 5061 5062 if (!ResultIndex) { 5063 SunkAddr = ResultPtr; 5064 } else { 5065 if (ResultPtr->getType() != I8PtrTy) 5066 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5067 SunkAddr = 5068 AddrMode.InBounds 5069 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5070 "sunkaddr") 5071 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5072 } 5073 5074 if (SunkAddr->getType() != Addr->getType()) 5075 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5076 } 5077 } else { 5078 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5079 // non-integral pointers, so in that case bail out now. 5080 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5081 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5082 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5083 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5084 if (DL->isNonIntegralPointerType(Addr->getType()) || 5085 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5086 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5087 (AddrMode.BaseGV && 5088 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5089 return false; 5090 5091 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5092 << " for " << *MemoryInst << "\n"); 5093 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5094 Value *Result = nullptr; 5095 5096 // Start with the base register. Do this first so that subsequent address 5097 // matching finds it last, which will prevent it from trying to match it 5098 // as the scaled value in case it happens to be a mul. That would be 5099 // problematic if we've sunk a different mul for the scale, because then 5100 // we'd end up sinking both muls. 5101 if (AddrMode.BaseReg) { 5102 Value *V = AddrMode.BaseReg; 5103 if (V->getType()->isPointerTy()) 5104 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5105 if (V->getType() != IntPtrTy) 5106 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5107 Result = V; 5108 } 5109 5110 // Add the scale value. 5111 if (AddrMode.Scale) { 5112 Value *V = AddrMode.ScaledReg; 5113 if (V->getType() == IntPtrTy) { 5114 // done. 5115 } else if (V->getType()->isPointerTy()) { 5116 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5117 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5118 cast<IntegerType>(V->getType())->getBitWidth()) { 5119 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5120 } else { 5121 // It is only safe to sign extend the BaseReg if we know that the math 5122 // required to create it did not overflow before we extend it. Since 5123 // the original IR value was tossed in favor of a constant back when 5124 // the AddrMode was created we need to bail out gracefully if widths 5125 // do not match instead of extending it. 5126 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5127 if (I && (Result != AddrMode.BaseReg)) 5128 I->eraseFromParent(); 5129 return false; 5130 } 5131 if (AddrMode.Scale != 1) 5132 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5133 "sunkaddr"); 5134 if (Result) 5135 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5136 else 5137 Result = V; 5138 } 5139 5140 // Add in the BaseGV if present. 5141 if (AddrMode.BaseGV) { 5142 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5143 if (Result) 5144 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5145 else 5146 Result = V; 5147 } 5148 5149 // Add in the Base Offset if present. 5150 if (AddrMode.BaseOffs) { 5151 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5152 if (Result) 5153 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5154 else 5155 Result = V; 5156 } 5157 5158 if (!Result) 5159 SunkAddr = Constant::getNullValue(Addr->getType()); 5160 else 5161 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5162 } 5163 5164 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5165 // Store the newly computed address into the cache. In the case we reused a 5166 // value, this should be idempotent. 5167 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5168 5169 // If we have no uses, recursively delete the value and all dead instructions 5170 // using it. 5171 if (Repl->use_empty()) { 5172 // This can cause recursive deletion, which can invalidate our iterator. 5173 // Use a WeakTrackingVH to hold onto it in case this happens. 5174 Value *CurValue = &*CurInstIterator; 5175 WeakTrackingVH IterHandle(CurValue); 5176 BasicBlock *BB = CurInstIterator->getParent(); 5177 5178 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 5179 5180 if (IterHandle != CurValue) { 5181 // If the iterator instruction was recursively deleted, start over at the 5182 // start of the block. 5183 CurInstIterator = BB->begin(); 5184 SunkAddrs.clear(); 5185 } 5186 } 5187 ++NumMemoryInsts; 5188 return true; 5189 } 5190 5191 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find 5192 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can 5193 /// only handle a 2 operand GEP in the same basic block or a splat constant 5194 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector 5195 /// index. 5196 /// 5197 /// If the existing GEP has a vector base pointer that is splat, we can look 5198 /// through the splat to find the scalar pointer. If we can't find a scalar 5199 /// pointer there's nothing we can do. 5200 /// 5201 /// If we have a GEP with more than 2 indices where the middle indices are all 5202 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. 5203 /// 5204 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP 5205 /// followed by a GEP with an all zeroes vector index. This will enable 5206 /// SelectionDAGBuilder to use a the scalar GEP as the uniform base and have a 5207 /// zero index. 5208 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, 5209 Value *Ptr) { 5210 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 5211 if (!GEP || !GEP->hasIndices()) 5212 return false; 5213 5214 // If the GEP and the gather/scatter aren't in the same BB, don't optimize. 5215 // FIXME: We should support this by sinking the GEP. 5216 if (MemoryInst->getParent() != GEP->getParent()) 5217 return false; 5218 5219 SmallVector<Value *, 2> Ops(GEP->op_begin(), GEP->op_end()); 5220 5221 bool RewriteGEP = false; 5222 5223 if (Ops[0]->getType()->isVectorTy()) { 5224 Ops[0] = const_cast<Value *>(getSplatValue(Ops[0])); 5225 if (!Ops[0]) 5226 return false; 5227 RewriteGEP = true; 5228 } 5229 5230 unsigned FinalIndex = Ops.size() - 1; 5231 5232 // Ensure all but the last index is 0. 5233 // FIXME: This isn't strictly required. All that's required is that they are 5234 // all scalars or splats. 5235 for (unsigned i = 1; i < FinalIndex; ++i) { 5236 auto *C = dyn_cast<Constant>(Ops[i]); 5237 if (!C) 5238 return false; 5239 if (isa<VectorType>(C->getType())) 5240 C = C->getSplatValue(); 5241 auto *CI = dyn_cast_or_null<ConstantInt>(C); 5242 if (!CI || !CI->isZero()) 5243 return false; 5244 // Scalarize the index if needed. 5245 Ops[i] = CI; 5246 } 5247 5248 // Try to scalarize the final index. 5249 if (Ops[FinalIndex]->getType()->isVectorTy()) { 5250 if (Value *V = const_cast<Value *>(getSplatValue(Ops[FinalIndex]))) { 5251 auto *C = dyn_cast<ConstantInt>(V); 5252 // Don't scalarize all zeros vector. 5253 if (!C || !C->isZero()) { 5254 Ops[FinalIndex] = V; 5255 RewriteGEP = true; 5256 } 5257 } 5258 } 5259 5260 // If we made any changes or the we have extra operands, we need to generate 5261 // new instructions. 5262 if (!RewriteGEP && Ops.size() == 2) 5263 return false; 5264 5265 unsigned NumElts = cast<VectorType>(Ptr->getType())->getNumElements(); 5266 5267 IRBuilder<> Builder(MemoryInst); 5268 5269 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); 5270 5271 Value *NewAddr; 5272 5273 // If the final index isn't a vector, emit a scalar GEP containing all ops 5274 // and a vector GEP with all zeroes final index. 5275 if (!Ops[FinalIndex]->getType()->isVectorTy()) { 5276 NewAddr = Builder.CreateGEP(Ops[0], makeArrayRef(Ops).drop_front()); 5277 Type *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5278 NewAddr = Builder.CreateGEP(NewAddr, Constant::getNullValue(IndexTy)); 5279 } else { 5280 Value *Base = Ops[0]; 5281 Value *Index = Ops[FinalIndex]; 5282 5283 // Create a scalar GEP if there are more than 2 operands. 5284 if (Ops.size() != 2) { 5285 // Replace the last index with 0. 5286 Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy); 5287 Base = Builder.CreateGEP(Base, makeArrayRef(Ops).drop_front()); 5288 } 5289 5290 // Now create the GEP with scalar pointer and vector index. 5291 NewAddr = Builder.CreateGEP(Base, Index); 5292 } 5293 5294 MemoryInst->replaceUsesOfWith(Ptr, NewAddr); 5295 5296 // If we have no uses, recursively delete the value and all dead instructions 5297 // using it. 5298 if (Ptr->use_empty()) 5299 RecursivelyDeleteTriviallyDeadInstructions(Ptr, TLInfo); 5300 5301 return true; 5302 } 5303 5304 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5305 /// address computing into the block when possible / profitable. 5306 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5307 bool MadeChange = false; 5308 5309 const TargetRegisterInfo *TRI = 5310 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5311 TargetLowering::AsmOperandInfoVector TargetConstraints = 5312 TLI->ParseConstraints(*DL, TRI, *CS); 5313 unsigned ArgNo = 0; 5314 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5315 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5316 5317 // Compute the constraint code and ConstraintType to use. 5318 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5319 5320 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5321 OpInfo.isIndirect) { 5322 Value *OpVal = CS->getArgOperand(ArgNo++); 5323 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5324 } else if (OpInfo.Type == InlineAsm::isInput) 5325 ArgNo++; 5326 } 5327 5328 return MadeChange; 5329 } 5330 5331 /// Check if all the uses of \p Val are equivalent (or free) zero or 5332 /// sign extensions. 5333 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5334 assert(!Val->use_empty() && "Input must have at least one use"); 5335 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5336 bool IsSExt = isa<SExtInst>(FirstUser); 5337 Type *ExtTy = FirstUser->getType(); 5338 for (const User *U : Val->users()) { 5339 const Instruction *UI = cast<Instruction>(U); 5340 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5341 return false; 5342 Type *CurTy = UI->getType(); 5343 // Same input and output types: Same instruction after CSE. 5344 if (CurTy == ExtTy) 5345 continue; 5346 5347 // If IsSExt is true, we are in this situation: 5348 // a = Val 5349 // b = sext ty1 a to ty2 5350 // c = sext ty1 a to ty3 5351 // Assuming ty2 is shorter than ty3, this could be turned into: 5352 // a = Val 5353 // b = sext ty1 a to ty2 5354 // c = sext ty2 b to ty3 5355 // However, the last sext is not free. 5356 if (IsSExt) 5357 return false; 5358 5359 // This is a ZExt, maybe this is free to extend from one type to another. 5360 // In that case, we would not account for a different use. 5361 Type *NarrowTy; 5362 Type *LargeTy; 5363 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5364 CurTy->getScalarType()->getIntegerBitWidth()) { 5365 NarrowTy = CurTy; 5366 LargeTy = ExtTy; 5367 } else { 5368 NarrowTy = ExtTy; 5369 LargeTy = CurTy; 5370 } 5371 5372 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5373 return false; 5374 } 5375 // All uses are the same or can be derived from one another for free. 5376 return true; 5377 } 5378 5379 /// Try to speculatively promote extensions in \p Exts and continue 5380 /// promoting through newly promoted operands recursively as far as doing so is 5381 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5382 /// When some promotion happened, \p TPT contains the proper state to revert 5383 /// them. 5384 /// 5385 /// \return true if some promotion happened, false otherwise. 5386 bool CodeGenPrepare::tryToPromoteExts( 5387 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5388 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5389 unsigned CreatedInstsCost) { 5390 bool Promoted = false; 5391 5392 // Iterate over all the extensions to try to promote them. 5393 for (auto I : Exts) { 5394 // Early check if we directly have ext(load). 5395 if (isa<LoadInst>(I->getOperand(0))) { 5396 ProfitablyMovedExts.push_back(I); 5397 continue; 5398 } 5399 5400 // Check whether or not we want to do any promotion. The reason we have 5401 // this check inside the for loop is to catch the case where an extension 5402 // is directly fed by a load because in such case the extension can be moved 5403 // up without any promotion on its operands. 5404 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5405 return false; 5406 5407 // Get the action to perform the promotion. 5408 TypePromotionHelper::Action TPH = 5409 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5410 // Check if we can promote. 5411 if (!TPH) { 5412 // Save the current extension as we cannot move up through its operand. 5413 ProfitablyMovedExts.push_back(I); 5414 continue; 5415 } 5416 5417 // Save the current state. 5418 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5419 TPT.getRestorationPoint(); 5420 SmallVector<Instruction *, 4> NewExts; 5421 unsigned NewCreatedInstsCost = 0; 5422 unsigned ExtCost = !TLI->isExtFree(I); 5423 // Promote. 5424 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5425 &NewExts, nullptr, *TLI); 5426 assert(PromotedVal && 5427 "TypePromotionHelper should have filtered out those cases"); 5428 5429 // We would be able to merge only one extension in a load. 5430 // Therefore, if we have more than 1 new extension we heuristically 5431 // cut this search path, because it means we degrade the code quality. 5432 // With exactly 2, the transformation is neutral, because we will merge 5433 // one extension but leave one. However, we optimistically keep going, 5434 // because the new extension may be removed too. 5435 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5436 // FIXME: It would be possible to propagate a negative value instead of 5437 // conservatively ceiling it to 0. 5438 TotalCreatedInstsCost = 5439 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5440 if (!StressExtLdPromotion && 5441 (TotalCreatedInstsCost > 1 || 5442 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5443 // This promotion is not profitable, rollback to the previous state, and 5444 // save the current extension in ProfitablyMovedExts as the latest 5445 // speculative promotion turned out to be unprofitable. 5446 TPT.rollback(LastKnownGood); 5447 ProfitablyMovedExts.push_back(I); 5448 continue; 5449 } 5450 // Continue promoting NewExts as far as doing so is profitable. 5451 SmallVector<Instruction *, 2> NewlyMovedExts; 5452 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5453 bool NewPromoted = false; 5454 for (auto ExtInst : NewlyMovedExts) { 5455 Instruction *MovedExt = cast<Instruction>(ExtInst); 5456 Value *ExtOperand = MovedExt->getOperand(0); 5457 // If we have reached to a load, we need this extra profitability check 5458 // as it could potentially be merged into an ext(load). 5459 if (isa<LoadInst>(ExtOperand) && 5460 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5461 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5462 continue; 5463 5464 ProfitablyMovedExts.push_back(MovedExt); 5465 NewPromoted = true; 5466 } 5467 5468 // If none of speculative promotions for NewExts is profitable, rollback 5469 // and save the current extension (I) as the last profitable extension. 5470 if (!NewPromoted) { 5471 TPT.rollback(LastKnownGood); 5472 ProfitablyMovedExts.push_back(I); 5473 continue; 5474 } 5475 // The promotion is profitable. 5476 Promoted = true; 5477 } 5478 return Promoted; 5479 } 5480 5481 /// Merging redundant sexts when one is dominating the other. 5482 bool CodeGenPrepare::mergeSExts(Function &F) { 5483 bool Changed = false; 5484 for (auto &Entry : ValToSExtendedUses) { 5485 SExts &Insts = Entry.second; 5486 SExts CurPts; 5487 for (Instruction *Inst : Insts) { 5488 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5489 Inst->getOperand(0) != Entry.first) 5490 continue; 5491 bool inserted = false; 5492 for (auto &Pt : CurPts) { 5493 if (getDT(F).dominates(Inst, Pt)) { 5494 Pt->replaceAllUsesWith(Inst); 5495 RemovedInsts.insert(Pt); 5496 Pt->removeFromParent(); 5497 Pt = Inst; 5498 inserted = true; 5499 Changed = true; 5500 break; 5501 } 5502 if (!getDT(F).dominates(Pt, Inst)) 5503 // Give up if we need to merge in a common dominator as the 5504 // experiments show it is not profitable. 5505 continue; 5506 Inst->replaceAllUsesWith(Pt); 5507 RemovedInsts.insert(Inst); 5508 Inst->removeFromParent(); 5509 inserted = true; 5510 Changed = true; 5511 break; 5512 } 5513 if (!inserted) 5514 CurPts.push_back(Inst); 5515 } 5516 } 5517 return Changed; 5518 } 5519 5520 // Spliting large data structures so that the GEPs accessing them can have 5521 // smaller offsets so that they can be sunk to the same blocks as their users. 5522 // For example, a large struct starting from %base is splitted into two parts 5523 // where the second part starts from %new_base. 5524 // 5525 // Before: 5526 // BB0: 5527 // %base = 5528 // 5529 // BB1: 5530 // %gep0 = gep %base, off0 5531 // %gep1 = gep %base, off1 5532 // %gep2 = gep %base, off2 5533 // 5534 // BB2: 5535 // %load1 = load %gep0 5536 // %load2 = load %gep1 5537 // %load3 = load %gep2 5538 // 5539 // After: 5540 // BB0: 5541 // %base = 5542 // %new_base = gep %base, off0 5543 // 5544 // BB1: 5545 // %new_gep0 = %new_base 5546 // %new_gep1 = gep %new_base, off1 - off0 5547 // %new_gep2 = gep %new_base, off2 - off0 5548 // 5549 // BB2: 5550 // %load1 = load i32, i32* %new_gep0 5551 // %load2 = load i32, i32* %new_gep1 5552 // %load3 = load i32, i32* %new_gep2 5553 // 5554 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5555 // their offsets are smaller enough to fit into the addressing mode. 5556 bool CodeGenPrepare::splitLargeGEPOffsets() { 5557 bool Changed = false; 5558 for (auto &Entry : LargeOffsetGEPMap) { 5559 Value *OldBase = Entry.first; 5560 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5561 &LargeOffsetGEPs = Entry.second; 5562 auto compareGEPOffset = 5563 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5564 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5565 if (LHS.first == RHS.first) 5566 return false; 5567 if (LHS.second != RHS.second) 5568 return LHS.second < RHS.second; 5569 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5570 }; 5571 // Sorting all the GEPs of the same data structures based on the offsets. 5572 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5573 LargeOffsetGEPs.erase( 5574 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5575 LargeOffsetGEPs.end()); 5576 // Skip if all the GEPs have the same offsets. 5577 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5578 continue; 5579 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5580 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5581 Value *NewBaseGEP = nullptr; 5582 5583 auto LargeOffsetGEP = LargeOffsetGEPs.begin(); 5584 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5585 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5586 int64_t Offset = LargeOffsetGEP->second; 5587 if (Offset != BaseOffset) { 5588 TargetLowering::AddrMode AddrMode; 5589 AddrMode.BaseOffs = Offset - BaseOffset; 5590 // The result type of the GEP might not be the type of the memory 5591 // access. 5592 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5593 GEP->getResultElementType(), 5594 GEP->getAddressSpace())) { 5595 // We need to create a new base if the offset to the current base is 5596 // too large to fit into the addressing mode. So, a very large struct 5597 // may be splitted into several parts. 5598 BaseGEP = GEP; 5599 BaseOffset = Offset; 5600 NewBaseGEP = nullptr; 5601 } 5602 } 5603 5604 // Generate a new GEP to replace the current one. 5605 LLVMContext &Ctx = GEP->getContext(); 5606 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5607 Type *I8PtrTy = 5608 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5609 Type *I8Ty = Type::getInt8Ty(Ctx); 5610 5611 if (!NewBaseGEP) { 5612 // Create a new base if we don't have one yet. Find the insertion 5613 // pointer for the new base first. 5614 BasicBlock::iterator NewBaseInsertPt; 5615 BasicBlock *NewBaseInsertBB; 5616 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5617 // If the base of the struct is an instruction, the new base will be 5618 // inserted close to it. 5619 NewBaseInsertBB = BaseI->getParent(); 5620 if (isa<PHINode>(BaseI)) 5621 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5622 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5623 NewBaseInsertBB = 5624 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5625 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5626 } else 5627 NewBaseInsertPt = std::next(BaseI->getIterator()); 5628 } else { 5629 // If the current base is an argument or global value, the new base 5630 // will be inserted to the entry block. 5631 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5632 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5633 } 5634 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5635 // Create a new base. 5636 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5637 NewBaseGEP = OldBase; 5638 if (NewBaseGEP->getType() != I8PtrTy) 5639 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5640 NewBaseGEP = 5641 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5642 NewGEPBases.insert(NewBaseGEP); 5643 } 5644 5645 IRBuilder<> Builder(GEP); 5646 Value *NewGEP = NewBaseGEP; 5647 if (Offset == BaseOffset) { 5648 if (GEP->getType() != I8PtrTy) 5649 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5650 } else { 5651 // Calculate the new offset for the new GEP. 5652 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5653 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5654 5655 if (GEP->getType() != I8PtrTy) 5656 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5657 } 5658 GEP->replaceAllUsesWith(NewGEP); 5659 LargeOffsetGEPID.erase(GEP); 5660 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5661 GEP->eraseFromParent(); 5662 Changed = true; 5663 } 5664 } 5665 return Changed; 5666 } 5667 5668 /// Return true, if an ext(load) can be formed from an extension in 5669 /// \p MovedExts. 5670 bool CodeGenPrepare::canFormExtLd( 5671 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5672 Instruction *&Inst, bool HasPromoted) { 5673 for (auto *MovedExtInst : MovedExts) { 5674 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5675 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5676 Inst = MovedExtInst; 5677 break; 5678 } 5679 } 5680 if (!LI) 5681 return false; 5682 5683 // If they're already in the same block, there's nothing to do. 5684 // Make the cheap checks first if we did not promote. 5685 // If we promoted, we need to check if it is indeed profitable. 5686 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5687 return false; 5688 5689 return TLI->isExtLoad(LI, Inst, *DL); 5690 } 5691 5692 /// Move a zext or sext fed by a load into the same basic block as the load, 5693 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5694 /// extend into the load. 5695 /// 5696 /// E.g., 5697 /// \code 5698 /// %ld = load i32* %addr 5699 /// %add = add nuw i32 %ld, 4 5700 /// %zext = zext i32 %add to i64 5701 // \endcode 5702 /// => 5703 /// \code 5704 /// %ld = load i32* %addr 5705 /// %zext = zext i32 %ld to i64 5706 /// %add = add nuw i64 %zext, 4 5707 /// \encode 5708 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5709 /// allow us to match zext(load i32*) to i64. 5710 /// 5711 /// Also, try to promote the computations used to obtain a sign extended 5712 /// value used into memory accesses. 5713 /// E.g., 5714 /// \code 5715 /// a = add nsw i32 b, 3 5716 /// d = sext i32 a to i64 5717 /// e = getelementptr ..., i64 d 5718 /// \endcode 5719 /// => 5720 /// \code 5721 /// f = sext i32 b to i64 5722 /// a = add nsw i64 f, 3 5723 /// e = getelementptr ..., i64 a 5724 /// \endcode 5725 /// 5726 /// \p Inst[in/out] the extension may be modified during the process if some 5727 /// promotions apply. 5728 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 5729 bool AllowPromotionWithoutCommonHeader = false; 5730 /// See if it is an interesting sext operations for the address type 5731 /// promotion before trying to promote it, e.g., the ones with the right 5732 /// type and used in memory accesses. 5733 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 5734 *Inst, AllowPromotionWithoutCommonHeader); 5735 TypePromotionTransaction TPT(RemovedInsts); 5736 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5737 TPT.getRestorationPoint(); 5738 SmallVector<Instruction *, 1> Exts; 5739 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 5740 Exts.push_back(Inst); 5741 5742 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 5743 5744 // Look for a load being extended. 5745 LoadInst *LI = nullptr; 5746 Instruction *ExtFedByLoad; 5747 5748 // Try to promote a chain of computation if it allows to form an extended 5749 // load. 5750 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5751 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5752 TPT.commit(); 5753 // Move the extend into the same block as the load 5754 ExtFedByLoad->moveAfter(LI); 5755 // CGP does not check if the zext would be speculatively executed when moved 5756 // to the same basic block as the load. Preserving its original location 5757 // would pessimize the debugging experience, as well as negatively impact 5758 // the quality of sample pgo. We don't want to use "line 0" as that has a 5759 // size cost in the line-table section and logically the zext can be seen as 5760 // part of the load. Therefore we conservatively reuse the same debug 5761 // location for the load and the zext. 5762 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 5763 ++NumExtsMoved; 5764 Inst = ExtFedByLoad; 5765 return true; 5766 } 5767 5768 // Continue promoting SExts if known as considerable depending on targets. 5769 if (ATPConsiderable && 5770 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5771 HasPromoted, TPT, SpeculativelyMovedExts)) 5772 return true; 5773 5774 TPT.rollback(LastKnownGood); 5775 return false; 5776 } 5777 5778 // Perform address type promotion if doing so is profitable. 5779 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5780 // instructions that sign extended the same initial value. However, if 5781 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5782 // extension is just profitable. 5783 bool CodeGenPrepare::performAddressTypePromotion( 5784 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5785 bool HasPromoted, TypePromotionTransaction &TPT, 5786 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5787 bool Promoted = false; 5788 SmallPtrSet<Instruction *, 1> UnhandledExts; 5789 bool AllSeenFirst = true; 5790 for (auto I : SpeculativelyMovedExts) { 5791 Value *HeadOfChain = I->getOperand(0); 5792 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 5793 SeenChainsForSExt.find(HeadOfChain); 5794 // If there is an unhandled SExt which has the same header, try to promote 5795 // it as well. 5796 if (AlreadySeen != SeenChainsForSExt.end()) { 5797 if (AlreadySeen->second != nullptr) 5798 UnhandledExts.insert(AlreadySeen->second); 5799 AllSeenFirst = false; 5800 } 5801 } 5802 5803 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 5804 SpeculativelyMovedExts.size() == 1)) { 5805 TPT.commit(); 5806 if (HasPromoted) 5807 Promoted = true; 5808 for (auto I : SpeculativelyMovedExts) { 5809 Value *HeadOfChain = I->getOperand(0); 5810 SeenChainsForSExt[HeadOfChain] = nullptr; 5811 ValToSExtendedUses[HeadOfChain].push_back(I); 5812 } 5813 // Update Inst as promotion happen. 5814 Inst = SpeculativelyMovedExts.pop_back_val(); 5815 } else { 5816 // This is the first chain visited from the header, keep the current chain 5817 // as unhandled. Defer to promote this until we encounter another SExt 5818 // chain derived from the same header. 5819 for (auto I : SpeculativelyMovedExts) { 5820 Value *HeadOfChain = I->getOperand(0); 5821 SeenChainsForSExt[HeadOfChain] = Inst; 5822 } 5823 return false; 5824 } 5825 5826 if (!AllSeenFirst && !UnhandledExts.empty()) 5827 for (auto VisitedSExt : UnhandledExts) { 5828 if (RemovedInsts.count(VisitedSExt)) 5829 continue; 5830 TypePromotionTransaction TPT(RemovedInsts); 5831 SmallVector<Instruction *, 1> Exts; 5832 SmallVector<Instruction *, 2> Chains; 5833 Exts.push_back(VisitedSExt); 5834 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 5835 TPT.commit(); 5836 if (HasPromoted) 5837 Promoted = true; 5838 for (auto I : Chains) { 5839 Value *HeadOfChain = I->getOperand(0); 5840 // Mark this as handled. 5841 SeenChainsForSExt[HeadOfChain] = nullptr; 5842 ValToSExtendedUses[HeadOfChain].push_back(I); 5843 } 5844 } 5845 return Promoted; 5846 } 5847 5848 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5849 BasicBlock *DefBB = I->getParent(); 5850 5851 // If the result of a {s|z}ext and its source are both live out, rewrite all 5852 // other uses of the source with result of extension. 5853 Value *Src = I->getOperand(0); 5854 if (Src->hasOneUse()) 5855 return false; 5856 5857 // Only do this xform if truncating is free. 5858 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 5859 return false; 5860 5861 // Only safe to perform the optimization if the source is also defined in 5862 // this block. 5863 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5864 return false; 5865 5866 bool DefIsLiveOut = false; 5867 for (User *U : I->users()) { 5868 Instruction *UI = cast<Instruction>(U); 5869 5870 // Figure out which BB this ext is used in. 5871 BasicBlock *UserBB = UI->getParent(); 5872 if (UserBB == DefBB) continue; 5873 DefIsLiveOut = true; 5874 break; 5875 } 5876 if (!DefIsLiveOut) 5877 return false; 5878 5879 // Make sure none of the uses are PHI nodes. 5880 for (User *U : Src->users()) { 5881 Instruction *UI = cast<Instruction>(U); 5882 BasicBlock *UserBB = UI->getParent(); 5883 if (UserBB == DefBB) continue; 5884 // Be conservative. We don't want this xform to end up introducing 5885 // reloads just before load / store instructions. 5886 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5887 return false; 5888 } 5889 5890 // InsertedTruncs - Only insert one trunc in each block once. 5891 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5892 5893 bool MadeChange = false; 5894 for (Use &U : Src->uses()) { 5895 Instruction *User = cast<Instruction>(U.getUser()); 5896 5897 // Figure out which BB this ext is used in. 5898 BasicBlock *UserBB = User->getParent(); 5899 if (UserBB == DefBB) continue; 5900 5901 // Both src and def are live in this block. Rewrite the use. 5902 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5903 5904 if (!InsertedTrunc) { 5905 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5906 assert(InsertPt != UserBB->end()); 5907 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5908 InsertedInsts.insert(InsertedTrunc); 5909 } 5910 5911 // Replace a use of the {s|z}ext source with a use of the result. 5912 U = InsertedTrunc; 5913 ++NumExtUses; 5914 MadeChange = true; 5915 } 5916 5917 return MadeChange; 5918 } 5919 5920 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5921 // just after the load if the target can fold this into one extload instruction, 5922 // with the hope of eliminating some of the other later "and" instructions using 5923 // the loaded value. "and"s that are made trivially redundant by the insertion 5924 // of the new "and" are removed by this function, while others (e.g. those whose 5925 // path from the load goes through a phi) are left for isel to potentially 5926 // remove. 5927 // 5928 // For example: 5929 // 5930 // b0: 5931 // x = load i32 5932 // ... 5933 // b1: 5934 // y = and x, 0xff 5935 // z = use y 5936 // 5937 // becomes: 5938 // 5939 // b0: 5940 // x = load i32 5941 // x' = and x, 0xff 5942 // ... 5943 // b1: 5944 // z = use x' 5945 // 5946 // whereas: 5947 // 5948 // b0: 5949 // x1 = load i32 5950 // ... 5951 // b1: 5952 // x2 = load i32 5953 // ... 5954 // b2: 5955 // x = phi x1, x2 5956 // y = and x, 0xff 5957 // 5958 // becomes (after a call to optimizeLoadExt for each load): 5959 // 5960 // b0: 5961 // x1 = load i32 5962 // x1' = and x1, 0xff 5963 // ... 5964 // b1: 5965 // x2 = load i32 5966 // x2' = and x2, 0xff 5967 // ... 5968 // b2: 5969 // x = phi x1', x2' 5970 // y = and x, 0xff 5971 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5972 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 5973 return false; 5974 5975 // Skip loads we've already transformed. 5976 if (Load->hasOneUse() && 5977 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5978 return false; 5979 5980 // Look at all uses of Load, looking through phis, to determine how many bits 5981 // of the loaded value are needed. 5982 SmallVector<Instruction *, 8> WorkList; 5983 SmallPtrSet<Instruction *, 16> Visited; 5984 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5985 for (auto *U : Load->users()) 5986 WorkList.push_back(cast<Instruction>(U)); 5987 5988 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5989 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5990 APInt DemandBits(BitWidth, 0); 5991 APInt WidestAndBits(BitWidth, 0); 5992 5993 while (!WorkList.empty()) { 5994 Instruction *I = WorkList.back(); 5995 WorkList.pop_back(); 5996 5997 // Break use-def graph loops. 5998 if (!Visited.insert(I).second) 5999 continue; 6000 6001 // For a PHI node, push all of its users. 6002 if (auto *Phi = dyn_cast<PHINode>(I)) { 6003 for (auto *U : Phi->users()) 6004 WorkList.push_back(cast<Instruction>(U)); 6005 continue; 6006 } 6007 6008 switch (I->getOpcode()) { 6009 case Instruction::And: { 6010 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 6011 if (!AndC) 6012 return false; 6013 APInt AndBits = AndC->getValue(); 6014 DemandBits |= AndBits; 6015 // Keep track of the widest and mask we see. 6016 if (AndBits.ugt(WidestAndBits)) 6017 WidestAndBits = AndBits; 6018 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 6019 AndsToMaybeRemove.push_back(I); 6020 break; 6021 } 6022 6023 case Instruction::Shl: { 6024 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 6025 if (!ShlC) 6026 return false; 6027 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 6028 DemandBits.setLowBits(BitWidth - ShiftAmt); 6029 break; 6030 } 6031 6032 case Instruction::Trunc: { 6033 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 6034 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 6035 DemandBits.setLowBits(TruncBitWidth); 6036 break; 6037 } 6038 6039 default: 6040 return false; 6041 } 6042 } 6043 6044 uint32_t ActiveBits = DemandBits.getActiveBits(); 6045 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 6046 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 6047 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 6048 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 6049 // followed by an AND. 6050 // TODO: Look into removing this restriction by fixing backends to either 6051 // return false for isLoadExtLegal for i1 or have them select this pattern to 6052 // a single instruction. 6053 // 6054 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 6055 // mask, since these are the only ands that will be removed by isel. 6056 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 6057 WidestAndBits != DemandBits) 6058 return false; 6059 6060 LLVMContext &Ctx = Load->getType()->getContext(); 6061 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 6062 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 6063 6064 // Reject cases that won't be matched as extloads. 6065 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 6066 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 6067 return false; 6068 6069 IRBuilder<> Builder(Load->getNextNode()); 6070 auto *NewAnd = cast<Instruction>( 6071 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 6072 // Mark this instruction as "inserted by CGP", so that other 6073 // optimizations don't touch it. 6074 InsertedInsts.insert(NewAnd); 6075 6076 // Replace all uses of load with new and (except for the use of load in the 6077 // new and itself). 6078 Load->replaceAllUsesWith(NewAnd); 6079 NewAnd->setOperand(0, Load); 6080 6081 // Remove any and instructions that are now redundant. 6082 for (auto *And : AndsToMaybeRemove) 6083 // Check that the and mask is the same as the one we decided to put on the 6084 // new and. 6085 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 6086 And->replaceAllUsesWith(NewAnd); 6087 if (&*CurInstIterator == And) 6088 CurInstIterator = std::next(And->getIterator()); 6089 And->eraseFromParent(); 6090 ++NumAndUses; 6091 } 6092 6093 ++NumAndsAdded; 6094 return true; 6095 } 6096 6097 /// Check if V (an operand of a select instruction) is an expensive instruction 6098 /// that is only used once. 6099 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 6100 auto *I = dyn_cast<Instruction>(V); 6101 // If it's safe to speculatively execute, then it should not have side 6102 // effects; therefore, it's safe to sink and possibly *not* execute. 6103 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 6104 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 6105 } 6106 6107 /// Returns true if a SelectInst should be turned into an explicit branch. 6108 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 6109 const TargetLowering *TLI, 6110 SelectInst *SI) { 6111 // If even a predictable select is cheap, then a branch can't be cheaper. 6112 if (!TLI->isPredictableSelectExpensive()) 6113 return false; 6114 6115 // FIXME: This should use the same heuristics as IfConversion to determine 6116 // whether a select is better represented as a branch. 6117 6118 // If metadata tells us that the select condition is obviously predictable, 6119 // then we want to replace the select with a branch. 6120 uint64_t TrueWeight, FalseWeight; 6121 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 6122 uint64_t Max = std::max(TrueWeight, FalseWeight); 6123 uint64_t Sum = TrueWeight + FalseWeight; 6124 if (Sum != 0) { 6125 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 6126 if (Probability > TLI->getPredictableBranchThreshold()) 6127 return true; 6128 } 6129 } 6130 6131 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 6132 6133 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 6134 // comparison condition. If the compare has more than one use, there's 6135 // probably another cmov or setcc around, so it's not worth emitting a branch. 6136 if (!Cmp || !Cmp->hasOneUse()) 6137 return false; 6138 6139 // If either operand of the select is expensive and only needed on one side 6140 // of the select, we should form a branch. 6141 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 6142 sinkSelectOperand(TTI, SI->getFalseValue())) 6143 return true; 6144 6145 return false; 6146 } 6147 6148 /// If \p isTrue is true, return the true value of \p SI, otherwise return 6149 /// false value of \p SI. If the true/false value of \p SI is defined by any 6150 /// select instructions in \p Selects, look through the defining select 6151 /// instruction until the true/false value is not defined in \p Selects. 6152 static Value *getTrueOrFalseValue( 6153 SelectInst *SI, bool isTrue, 6154 const SmallPtrSet<const Instruction *, 2> &Selects) { 6155 Value *V = nullptr; 6156 6157 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 6158 DefSI = dyn_cast<SelectInst>(V)) { 6159 assert(DefSI->getCondition() == SI->getCondition() && 6160 "The condition of DefSI does not match with SI"); 6161 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 6162 } 6163 6164 assert(V && "Failed to get select true/false value"); 6165 return V; 6166 } 6167 6168 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 6169 assert(Shift->isShift() && "Expected a shift"); 6170 6171 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 6172 // general vector shifts, and (3) the shift amount is a select-of-splatted 6173 // values, hoist the shifts before the select: 6174 // shift Op0, (select Cond, TVal, FVal) --> 6175 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6176 // 6177 // This is inverting a generic IR transform when we know that the cost of a 6178 // general vector shift is more than the cost of 2 shift-by-scalars. 6179 // We can't do this effectively in SDAG because we may not be able to 6180 // determine if the select operands are splats from within a basic block. 6181 Type *Ty = Shift->getType(); 6182 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6183 return false; 6184 Value *Cond, *TVal, *FVal; 6185 if (!match(Shift->getOperand(1), 6186 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6187 return false; 6188 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6189 return false; 6190 6191 IRBuilder<> Builder(Shift); 6192 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6193 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6194 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6195 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6196 Shift->replaceAllUsesWith(NewSel); 6197 Shift->eraseFromParent(); 6198 return true; 6199 } 6200 6201 /// If we have a SelectInst that will likely profit from branch prediction, 6202 /// turn it into a branch. 6203 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6204 // If branch conversion isn't desirable, exit early. 6205 if (DisableSelectToBranch || OptSize || 6206 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get())) 6207 return false; 6208 6209 // Find all consecutive select instructions that share the same condition. 6210 SmallVector<SelectInst *, 2> ASI; 6211 ASI.push_back(SI); 6212 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 6213 It != SI->getParent()->end(); ++It) { 6214 SelectInst *I = dyn_cast<SelectInst>(&*It); 6215 if (I && SI->getCondition() == I->getCondition()) { 6216 ASI.push_back(I); 6217 } else { 6218 break; 6219 } 6220 } 6221 6222 SelectInst *LastSI = ASI.back(); 6223 // Increment the current iterator to skip all the rest of select instructions 6224 // because they will be either "not lowered" or "all lowered" to branch. 6225 CurInstIterator = std::next(LastSI->getIterator()); 6226 6227 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 6228 6229 // Can we convert the 'select' to CF ? 6230 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 6231 return false; 6232 6233 TargetLowering::SelectSupportKind SelectKind; 6234 if (VectorCond) 6235 SelectKind = TargetLowering::VectorMaskSelect; 6236 else if (SI->getType()->isVectorTy()) 6237 SelectKind = TargetLowering::ScalarCondVectorVal; 6238 else 6239 SelectKind = TargetLowering::ScalarValSelect; 6240 6241 if (TLI->isSelectSupported(SelectKind) && 6242 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 6243 return false; 6244 6245 // The DominatorTree needs to be rebuilt by any consumers after this 6246 // transformation. We simply reset here rather than setting the ModifiedDT 6247 // flag to avoid restarting the function walk in runOnFunction for each 6248 // select optimized. 6249 DT.reset(); 6250 6251 // Transform a sequence like this: 6252 // start: 6253 // %cmp = cmp uge i32 %a, %b 6254 // %sel = select i1 %cmp, i32 %c, i32 %d 6255 // 6256 // Into: 6257 // start: 6258 // %cmp = cmp uge i32 %a, %b 6259 // %cmp.frozen = freeze %cmp 6260 // br i1 %cmp.frozen, label %select.true, label %select.false 6261 // select.true: 6262 // br label %select.end 6263 // select.false: 6264 // br label %select.end 6265 // select.end: 6266 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6267 // 6268 // %cmp should be frozen, otherwise it may introduce undefined behavior. 6269 // In addition, we may sink instructions that produce %c or %d from 6270 // the entry block into the destination(s) of the new branch. 6271 // If the true or false blocks do not contain a sunken instruction, that 6272 // block and its branch may be optimized away. In that case, one side of the 6273 // first branch will point directly to select.end, and the corresponding PHI 6274 // predecessor block will be the start block. 6275 6276 // First, we split the block containing the select into 2 blocks. 6277 BasicBlock *StartBlock = SI->getParent(); 6278 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6279 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6280 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); 6281 6282 // Delete the unconditional branch that was just created by the split. 6283 StartBlock->getTerminator()->eraseFromParent(); 6284 6285 // These are the new basic blocks for the conditional branch. 6286 // At least one will become an actual new basic block. 6287 BasicBlock *TrueBlock = nullptr; 6288 BasicBlock *FalseBlock = nullptr; 6289 BranchInst *TrueBranch = nullptr; 6290 BranchInst *FalseBranch = nullptr; 6291 6292 // Sink expensive instructions into the conditional blocks to avoid executing 6293 // them speculatively. 6294 for (SelectInst *SI : ASI) { 6295 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6296 if (TrueBlock == nullptr) { 6297 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6298 EndBlock->getParent(), EndBlock); 6299 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6300 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6301 } 6302 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6303 TrueInst->moveBefore(TrueBranch); 6304 } 6305 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6306 if (FalseBlock == nullptr) { 6307 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6308 EndBlock->getParent(), EndBlock); 6309 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6310 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6311 } 6312 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6313 FalseInst->moveBefore(FalseBranch); 6314 } 6315 } 6316 6317 // If there was nothing to sink, then arbitrarily choose the 'false' side 6318 // for a new input value to the PHI. 6319 if (TrueBlock == FalseBlock) { 6320 assert(TrueBlock == nullptr && 6321 "Unexpected basic block transform while optimizing select"); 6322 6323 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6324 EndBlock->getParent(), EndBlock); 6325 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6326 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6327 } 6328 6329 // Insert the real conditional branch based on the original condition. 6330 // If we did not create a new block for one of the 'true' or 'false' paths 6331 // of the condition, it means that side of the branch goes to the end block 6332 // directly and the path originates from the start block from the point of 6333 // view of the new PHI. 6334 BasicBlock *TT, *FT; 6335 if (TrueBlock == nullptr) { 6336 TT = EndBlock; 6337 FT = FalseBlock; 6338 TrueBlock = StartBlock; 6339 } else if (FalseBlock == nullptr) { 6340 TT = TrueBlock; 6341 FT = EndBlock; 6342 FalseBlock = StartBlock; 6343 } else { 6344 TT = TrueBlock; 6345 FT = FalseBlock; 6346 } 6347 IRBuilder<> IB(SI); 6348 auto CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 6349 IB.CreateCondBr(CondFr, TT, FT, SI); 6350 6351 SmallPtrSet<const Instruction *, 2> INS; 6352 INS.insert(ASI.begin(), ASI.end()); 6353 // Use reverse iterator because later select may use the value of the 6354 // earlier select, and we need to propagate value through earlier select 6355 // to get the PHI operand. 6356 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 6357 SelectInst *SI = *It; 6358 // The select itself is replaced with a PHI Node. 6359 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6360 PN->takeName(SI); 6361 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6362 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6363 PN->setDebugLoc(SI->getDebugLoc()); 6364 6365 SI->replaceAllUsesWith(PN); 6366 SI->eraseFromParent(); 6367 INS.erase(SI); 6368 ++NumSelectsExpanded; 6369 } 6370 6371 // Instruct OptimizeBlock to skip to the next block. 6372 CurInstIterator = StartBlock->end(); 6373 return true; 6374 } 6375 6376 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 6377 ArrayRef<int> Mask(SVI->getShuffleMask()); 6378 int SplatElem = -1; 6379 for (unsigned i = 0; i < Mask.size(); ++i) { 6380 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 6381 return false; 6382 SplatElem = Mask[i]; 6383 } 6384 6385 return true; 6386 } 6387 6388 /// Some targets have expensive vector shifts if the lanes aren't all the same 6389 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 6390 /// it's often worth sinking a shufflevector splat down to its use so that 6391 /// codegen can spot all lanes are identical. 6392 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6393 BasicBlock *DefBB = SVI->getParent(); 6394 6395 // Only do this xform if variable vector shifts are particularly expensive. 6396 if (!TLI->isVectorShiftByScalarCheap(SVI->getType())) 6397 return false; 6398 6399 // We only expect better codegen by sinking a shuffle if we can recognise a 6400 // constant splat. 6401 if (!isBroadcastShuffle(SVI)) 6402 return false; 6403 6404 // InsertedShuffles - Only insert a shuffle in each block once. 6405 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 6406 6407 bool MadeChange = false; 6408 for (User *U : SVI->users()) { 6409 Instruction *UI = cast<Instruction>(U); 6410 6411 // Figure out which BB this ext is used in. 6412 BasicBlock *UserBB = UI->getParent(); 6413 if (UserBB == DefBB) continue; 6414 6415 // For now only apply this when the splat is used by a shift instruction. 6416 if (!UI->isShift()) continue; 6417 6418 // Everything checks out, sink the shuffle if the user's block doesn't 6419 // already have a copy. 6420 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 6421 6422 if (!InsertedShuffle) { 6423 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6424 assert(InsertPt != UserBB->end()); 6425 InsertedShuffle = 6426 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 6427 SVI->getShuffleMask(), "", &*InsertPt); 6428 InsertedShuffle->setDebugLoc(SVI->getDebugLoc()); 6429 } 6430 6431 UI->replaceUsesOfWith(SVI, InsertedShuffle); 6432 MadeChange = true; 6433 } 6434 6435 // If we removed all uses, nuke the shuffle. 6436 if (SVI->use_empty()) { 6437 SVI->eraseFromParent(); 6438 MadeChange = true; 6439 } 6440 6441 return MadeChange; 6442 } 6443 6444 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6445 // If the operands of I can be folded into a target instruction together with 6446 // I, duplicate and sink them. 6447 SmallVector<Use *, 4> OpsToSink; 6448 if (!TLI->shouldSinkOperands(I, OpsToSink)) 6449 return false; 6450 6451 // OpsToSink can contain multiple uses in a use chain (e.g. 6452 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6453 // uses must come first, so we process the ops in reverse order so as to not 6454 // create invalid IR. 6455 BasicBlock *TargetBB = I->getParent(); 6456 bool Changed = false; 6457 SmallVector<Use *, 4> ToReplace; 6458 for (Use *U : reverse(OpsToSink)) { 6459 auto *UI = cast<Instruction>(U->get()); 6460 if (UI->getParent() == TargetBB || isa<PHINode>(UI)) 6461 continue; 6462 ToReplace.push_back(U); 6463 } 6464 6465 SetVector<Instruction *> MaybeDead; 6466 DenseMap<Instruction *, Instruction *> NewInstructions; 6467 Instruction *InsertPoint = I; 6468 for (Use *U : ToReplace) { 6469 auto *UI = cast<Instruction>(U->get()); 6470 Instruction *NI = UI->clone(); 6471 NewInstructions[UI] = NI; 6472 MaybeDead.insert(UI); 6473 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6474 NI->insertBefore(InsertPoint); 6475 InsertPoint = NI; 6476 InsertedInsts.insert(NI); 6477 6478 // Update the use for the new instruction, making sure that we update the 6479 // sunk instruction uses, if it is part of a chain that has already been 6480 // sunk. 6481 Instruction *OldI = cast<Instruction>(U->getUser()); 6482 if (NewInstructions.count(OldI)) 6483 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 6484 else 6485 U->set(NI); 6486 Changed = true; 6487 } 6488 6489 // Remove instructions that are dead after sinking. 6490 for (auto *I : MaybeDead) { 6491 if (!I->hasNUsesOrMore(1)) { 6492 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 6493 I->eraseFromParent(); 6494 } 6495 } 6496 6497 return Changed; 6498 } 6499 6500 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6501 Value *Cond = SI->getCondition(); 6502 Type *OldType = Cond->getType(); 6503 LLVMContext &Context = Cond->getContext(); 6504 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 6505 unsigned RegWidth = RegType.getSizeInBits(); 6506 6507 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6508 return false; 6509 6510 // If the register width is greater than the type width, expand the condition 6511 // of the switch instruction and each case constant to the width of the 6512 // register. By widening the type of the switch condition, subsequent 6513 // comparisons (for case comparisons) will not need to be extended to the 6514 // preferred register width, so we will potentially eliminate N-1 extends, 6515 // where N is the number of cases in the switch. 6516 auto *NewType = Type::getIntNTy(Context, RegWidth); 6517 6518 // Zero-extend the switch condition and case constants unless the switch 6519 // condition is a function argument that is already being sign-extended. 6520 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6521 // everything instead. 6522 Instruction::CastOps ExtType = Instruction::ZExt; 6523 if (auto *Arg = dyn_cast<Argument>(Cond)) 6524 if (Arg->hasSExtAttr()) 6525 ExtType = Instruction::SExt; 6526 6527 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 6528 ExtInst->insertBefore(SI); 6529 ExtInst->setDebugLoc(SI->getDebugLoc()); 6530 SI->setCondition(ExtInst); 6531 for (auto Case : SI->cases()) { 6532 APInt NarrowConst = Case.getCaseValue()->getValue(); 6533 APInt WideConst = (ExtType == Instruction::ZExt) ? 6534 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 6535 Case.setValue(ConstantInt::get(Context, WideConst)); 6536 } 6537 6538 return true; 6539 } 6540 6541 6542 namespace { 6543 6544 /// Helper class to promote a scalar operation to a vector one. 6545 /// This class is used to move downward extractelement transition. 6546 /// E.g., 6547 /// a = vector_op <2 x i32> 6548 /// b = extractelement <2 x i32> a, i32 0 6549 /// c = scalar_op b 6550 /// store c 6551 /// 6552 /// => 6553 /// a = vector_op <2 x i32> 6554 /// c = vector_op a (equivalent to scalar_op on the related lane) 6555 /// * d = extractelement <2 x i32> c, i32 0 6556 /// * store d 6557 /// Assuming both extractelement and store can be combine, we get rid of the 6558 /// transition. 6559 class VectorPromoteHelper { 6560 /// DataLayout associated with the current module. 6561 const DataLayout &DL; 6562 6563 /// Used to perform some checks on the legality of vector operations. 6564 const TargetLowering &TLI; 6565 6566 /// Used to estimated the cost of the promoted chain. 6567 const TargetTransformInfo &TTI; 6568 6569 /// The transition being moved downwards. 6570 Instruction *Transition; 6571 6572 /// The sequence of instructions to be promoted. 6573 SmallVector<Instruction *, 4> InstsToBePromoted; 6574 6575 /// Cost of combining a store and an extract. 6576 unsigned StoreExtractCombineCost; 6577 6578 /// Instruction that will be combined with the transition. 6579 Instruction *CombineInst = nullptr; 6580 6581 /// The instruction that represents the current end of the transition. 6582 /// Since we are faking the promotion until we reach the end of the chain 6583 /// of computation, we need a way to get the current end of the transition. 6584 Instruction *getEndOfTransition() const { 6585 if (InstsToBePromoted.empty()) 6586 return Transition; 6587 return InstsToBePromoted.back(); 6588 } 6589 6590 /// Return the index of the original value in the transition. 6591 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 6592 /// c, is at index 0. 6593 unsigned getTransitionOriginalValueIdx() const { 6594 assert(isa<ExtractElementInst>(Transition) && 6595 "Other kind of transitions are not supported yet"); 6596 return 0; 6597 } 6598 6599 /// Return the index of the index in the transition. 6600 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 6601 /// is at index 1. 6602 unsigned getTransitionIdx() const { 6603 assert(isa<ExtractElementInst>(Transition) && 6604 "Other kind of transitions are not supported yet"); 6605 return 1; 6606 } 6607 6608 /// Get the type of the transition. 6609 /// This is the type of the original value. 6610 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 6611 /// transition is <2 x i32>. 6612 Type *getTransitionType() const { 6613 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 6614 } 6615 6616 /// Promote \p ToBePromoted by moving \p Def downward through. 6617 /// I.e., we have the following sequence: 6618 /// Def = Transition <ty1> a to <ty2> 6619 /// b = ToBePromoted <ty2> Def, ... 6620 /// => 6621 /// b = ToBePromoted <ty1> a, ... 6622 /// Def = Transition <ty1> ToBePromoted to <ty2> 6623 void promoteImpl(Instruction *ToBePromoted); 6624 6625 /// Check whether or not it is profitable to promote all the 6626 /// instructions enqueued to be promoted. 6627 bool isProfitableToPromote() { 6628 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 6629 unsigned Index = isa<ConstantInt>(ValIdx) 6630 ? cast<ConstantInt>(ValIdx)->getZExtValue() 6631 : -1; 6632 Type *PromotedType = getTransitionType(); 6633 6634 StoreInst *ST = cast<StoreInst>(CombineInst); 6635 unsigned AS = ST->getPointerAddressSpace(); 6636 unsigned Align = ST->getAlignment(); 6637 // Check if this store is supported. 6638 if (!TLI.allowsMisalignedMemoryAccesses( 6639 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 6640 Align)) { 6641 // If this is not supported, there is no way we can combine 6642 // the extract with the store. 6643 return false; 6644 } 6645 6646 // The scalar chain of computation has to pay for the transition 6647 // scalar to vector. 6648 // The vector chain has to account for the combining cost. 6649 uint64_t ScalarCost = 6650 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 6651 uint64_t VectorCost = StoreExtractCombineCost; 6652 for (const auto &Inst : InstsToBePromoted) { 6653 // Compute the cost. 6654 // By construction, all instructions being promoted are arithmetic ones. 6655 // Moreover, one argument is a constant that can be viewed as a splat 6656 // constant. 6657 Value *Arg0 = Inst->getOperand(0); 6658 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 6659 isa<ConstantFP>(Arg0); 6660 TargetTransformInfo::OperandValueKind Arg0OVK = 6661 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6662 : TargetTransformInfo::OK_AnyValue; 6663 TargetTransformInfo::OperandValueKind Arg1OVK = 6664 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6665 : TargetTransformInfo::OK_AnyValue; 6666 ScalarCost += TTI.getArithmeticInstrCost( 6667 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 6668 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 6669 Arg0OVK, Arg1OVK); 6670 } 6671 LLVM_DEBUG( 6672 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 6673 << ScalarCost << "\nVector: " << VectorCost << '\n'); 6674 return ScalarCost > VectorCost; 6675 } 6676 6677 /// Generate a constant vector with \p Val with the same 6678 /// number of elements as the transition. 6679 /// \p UseSplat defines whether or not \p Val should be replicated 6680 /// across the whole vector. 6681 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 6682 /// otherwise we generate a vector with as many undef as possible: 6683 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 6684 /// used at the index of the extract. 6685 Value *getConstantVector(Constant *Val, bool UseSplat) const { 6686 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 6687 if (!UseSplat) { 6688 // If we cannot determine where the constant must be, we have to 6689 // use a splat constant. 6690 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 6691 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 6692 ExtractIdx = CstVal->getSExtValue(); 6693 else 6694 UseSplat = true; 6695 } 6696 6697 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); 6698 if (UseSplat) 6699 return ConstantVector::getSplat(EC, Val); 6700 6701 if (!EC.Scalable) { 6702 SmallVector<Constant *, 4> ConstVec; 6703 UndefValue *UndefVal = UndefValue::get(Val->getType()); 6704 for (unsigned Idx = 0; Idx != EC.Min; ++Idx) { 6705 if (Idx == ExtractIdx) 6706 ConstVec.push_back(Val); 6707 else 6708 ConstVec.push_back(UndefVal); 6709 } 6710 return ConstantVector::get(ConstVec); 6711 } else 6712 llvm_unreachable( 6713 "Generate scalable vector for non-splat is unimplemented"); 6714 } 6715 6716 /// Check if promoting to a vector type an operand at \p OperandIdx 6717 /// in \p Use can trigger undefined behavior. 6718 static bool canCauseUndefinedBehavior(const Instruction *Use, 6719 unsigned OperandIdx) { 6720 // This is not safe to introduce undef when the operand is on 6721 // the right hand side of a division-like instruction. 6722 if (OperandIdx != 1) 6723 return false; 6724 switch (Use->getOpcode()) { 6725 default: 6726 return false; 6727 case Instruction::SDiv: 6728 case Instruction::UDiv: 6729 case Instruction::SRem: 6730 case Instruction::URem: 6731 return true; 6732 case Instruction::FDiv: 6733 case Instruction::FRem: 6734 return !Use->hasNoNaNs(); 6735 } 6736 llvm_unreachable(nullptr); 6737 } 6738 6739 public: 6740 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 6741 const TargetTransformInfo &TTI, Instruction *Transition, 6742 unsigned CombineCost) 6743 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 6744 StoreExtractCombineCost(CombineCost) { 6745 assert(Transition && "Do not know how to promote null"); 6746 } 6747 6748 /// Check if we can promote \p ToBePromoted to \p Type. 6749 bool canPromote(const Instruction *ToBePromoted) const { 6750 // We could support CastInst too. 6751 return isa<BinaryOperator>(ToBePromoted); 6752 } 6753 6754 /// Check if it is profitable to promote \p ToBePromoted 6755 /// by moving downward the transition through. 6756 bool shouldPromote(const Instruction *ToBePromoted) const { 6757 // Promote only if all the operands can be statically expanded. 6758 // Indeed, we do not want to introduce any new kind of transitions. 6759 for (const Use &U : ToBePromoted->operands()) { 6760 const Value *Val = U.get(); 6761 if (Val == getEndOfTransition()) { 6762 // If the use is a division and the transition is on the rhs, 6763 // we cannot promote the operation, otherwise we may create a 6764 // division by zero. 6765 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 6766 return false; 6767 continue; 6768 } 6769 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 6770 !isa<ConstantFP>(Val)) 6771 return false; 6772 } 6773 // Check that the resulting operation is legal. 6774 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 6775 if (!ISDOpcode) 6776 return false; 6777 return StressStoreExtract || 6778 TLI.isOperationLegalOrCustom( 6779 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 6780 } 6781 6782 /// Check whether or not \p Use can be combined 6783 /// with the transition. 6784 /// I.e., is it possible to do Use(Transition) => AnotherUse? 6785 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 6786 6787 /// Record \p ToBePromoted as part of the chain to be promoted. 6788 void enqueueForPromotion(Instruction *ToBePromoted) { 6789 InstsToBePromoted.push_back(ToBePromoted); 6790 } 6791 6792 /// Set the instruction that will be combined with the transition. 6793 void recordCombineInstruction(Instruction *ToBeCombined) { 6794 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 6795 CombineInst = ToBeCombined; 6796 } 6797 6798 /// Promote all the instructions enqueued for promotion if it is 6799 /// is profitable. 6800 /// \return True if the promotion happened, false otherwise. 6801 bool promote() { 6802 // Check if there is something to promote. 6803 // Right now, if we do not have anything to combine with, 6804 // we assume the promotion is not profitable. 6805 if (InstsToBePromoted.empty() || !CombineInst) 6806 return false; 6807 6808 // Check cost. 6809 if (!StressStoreExtract && !isProfitableToPromote()) 6810 return false; 6811 6812 // Promote. 6813 for (auto &ToBePromoted : InstsToBePromoted) 6814 promoteImpl(ToBePromoted); 6815 InstsToBePromoted.clear(); 6816 return true; 6817 } 6818 }; 6819 6820 } // end anonymous namespace 6821 6822 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 6823 // At this point, we know that all the operands of ToBePromoted but Def 6824 // can be statically promoted. 6825 // For Def, we need to use its parameter in ToBePromoted: 6826 // b = ToBePromoted ty1 a 6827 // Def = Transition ty1 b to ty2 6828 // Move the transition down. 6829 // 1. Replace all uses of the promoted operation by the transition. 6830 // = ... b => = ... Def. 6831 assert(ToBePromoted->getType() == Transition->getType() && 6832 "The type of the result of the transition does not match " 6833 "the final type"); 6834 ToBePromoted->replaceAllUsesWith(Transition); 6835 // 2. Update the type of the uses. 6836 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 6837 Type *TransitionTy = getTransitionType(); 6838 ToBePromoted->mutateType(TransitionTy); 6839 // 3. Update all the operands of the promoted operation with promoted 6840 // operands. 6841 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 6842 for (Use &U : ToBePromoted->operands()) { 6843 Value *Val = U.get(); 6844 Value *NewVal = nullptr; 6845 if (Val == Transition) 6846 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 6847 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 6848 isa<ConstantFP>(Val)) { 6849 // Use a splat constant if it is not safe to use undef. 6850 NewVal = getConstantVector( 6851 cast<Constant>(Val), 6852 isa<UndefValue>(Val) || 6853 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 6854 } else 6855 llvm_unreachable("Did you modified shouldPromote and forgot to update " 6856 "this?"); 6857 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 6858 } 6859 Transition->moveAfter(ToBePromoted); 6860 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 6861 } 6862 6863 /// Some targets can do store(extractelement) with one instruction. 6864 /// Try to push the extractelement towards the stores when the target 6865 /// has this feature and this is profitable. 6866 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 6867 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 6868 if (DisableStoreExtract || 6869 (!StressStoreExtract && 6870 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 6871 Inst->getOperand(1), CombineCost))) 6872 return false; 6873 6874 // At this point we know that Inst is a vector to scalar transition. 6875 // Try to move it down the def-use chain, until: 6876 // - We can combine the transition with its single use 6877 // => we got rid of the transition. 6878 // - We escape the current basic block 6879 // => we would need to check that we are moving it at a cheaper place and 6880 // we do not do that for now. 6881 BasicBlock *Parent = Inst->getParent(); 6882 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 6883 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 6884 // If the transition has more than one use, assume this is not going to be 6885 // beneficial. 6886 while (Inst->hasOneUse()) { 6887 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 6888 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 6889 6890 if (ToBePromoted->getParent() != Parent) { 6891 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 6892 << ToBePromoted->getParent()->getName() 6893 << ") than the transition (" << Parent->getName() 6894 << ").\n"); 6895 return false; 6896 } 6897 6898 if (VPH.canCombine(ToBePromoted)) { 6899 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 6900 << "will be combined with: " << *ToBePromoted << '\n'); 6901 VPH.recordCombineInstruction(ToBePromoted); 6902 bool Changed = VPH.promote(); 6903 NumStoreExtractExposed += Changed; 6904 return Changed; 6905 } 6906 6907 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 6908 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 6909 return false; 6910 6911 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 6912 6913 VPH.enqueueForPromotion(ToBePromoted); 6914 Inst = ToBePromoted; 6915 } 6916 return false; 6917 } 6918 6919 /// For the instruction sequence of store below, F and I values 6920 /// are bundled together as an i64 value before being stored into memory. 6921 /// Sometimes it is more efficient to generate separate stores for F and I, 6922 /// which can remove the bitwise instructions or sink them to colder places. 6923 /// 6924 /// (store (or (zext (bitcast F to i32) to i64), 6925 /// (shl (zext I to i64), 32)), addr) --> 6926 /// (store F, addr) and (store I, addr+4) 6927 /// 6928 /// Similarly, splitting for other merged store can also be beneficial, like: 6929 /// For pair of {i32, i32}, i64 store --> two i32 stores. 6930 /// For pair of {i32, i16}, i64 store --> two i32 stores. 6931 /// For pair of {i16, i16}, i32 store --> two i16 stores. 6932 /// For pair of {i16, i8}, i32 store --> two i16 stores. 6933 /// For pair of {i8, i8}, i16 store --> two i8 stores. 6934 /// 6935 /// We allow each target to determine specifically which kind of splitting is 6936 /// supported. 6937 /// 6938 /// The store patterns are commonly seen from the simple code snippet below 6939 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 6940 /// void goo(const std::pair<int, float> &); 6941 /// hoo() { 6942 /// ... 6943 /// goo(std::make_pair(tmp, ftmp)); 6944 /// ... 6945 /// } 6946 /// 6947 /// Although we already have similar splitting in DAG Combine, we duplicate 6948 /// it in CodeGenPrepare to catch the case in which pattern is across 6949 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6950 /// during code expansion. 6951 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6952 const TargetLowering &TLI) { 6953 // Handle simple but common cases only. 6954 Type *StoreType = SI.getValueOperand()->getType(); 6955 6956 // The code below assumes shifting a value by <number of bits>, 6957 // whereas scalable vectors would have to be shifted by 6958 // <2log(vscale) + number of bits> in order to store the 6959 // low/high parts. Bailing out for now. 6960 if (StoreType->isVectorTy() && cast<VectorType>(StoreType)->isScalable()) 6961 return false; 6962 6963 if (!DL.typeSizeEqualsStoreSize(StoreType) || 6964 DL.getTypeSizeInBits(StoreType) == 0) 6965 return false; 6966 6967 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6968 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 6969 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 6970 return false; 6971 6972 // Don't split the store if it is volatile. 6973 if (SI.isVolatile()) 6974 return false; 6975 6976 // Match the following patterns: 6977 // (store (or (zext LValue to i64), 6978 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6979 // or 6980 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6981 // (zext LValue to i64), 6982 // Expect both operands of OR and the first operand of SHL have only 6983 // one use. 6984 Value *LValue, *HValue; 6985 if (!match(SI.getValueOperand(), 6986 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6987 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6988 m_SpecificInt(HalfValBitSize)))))) 6989 return false; 6990 6991 // Check LValue and HValue are int with size less or equal than 32. 6992 if (!LValue->getType()->isIntegerTy() || 6993 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6994 !HValue->getType()->isIntegerTy() || 6995 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6996 return false; 6997 6998 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6999 // as the input of target query. 7000 auto *LBC = dyn_cast<BitCastInst>(LValue); 7001 auto *HBC = dyn_cast<BitCastInst>(HValue); 7002 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 7003 : EVT::getEVT(LValue->getType()); 7004 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 7005 : EVT::getEVT(HValue->getType()); 7006 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 7007 return false; 7008 7009 // Start to split store. 7010 IRBuilder<> Builder(SI.getContext()); 7011 Builder.SetInsertPoint(&SI); 7012 7013 // If LValue/HValue is a bitcast in another BB, create a new one in current 7014 // BB so it may be merged with the splitted stores by dag combiner. 7015 if (LBC && LBC->getParent() != SI.getParent()) 7016 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 7017 if (HBC && HBC->getParent() != SI.getParent()) 7018 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 7019 7020 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 7021 auto CreateSplitStore = [&](Value *V, bool Upper) { 7022 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 7023 Value *Addr = Builder.CreateBitCast( 7024 SI.getOperand(1), 7025 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 7026 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 7027 if (IsOffsetStore) 7028 Addr = Builder.CreateGEP( 7029 SplitStoreType, Addr, 7030 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 7031 MaybeAlign Alignment = SI.getAlign(); 7032 if (IsOffsetStore && Alignment) { 7033 // When splitting the store in half, naturally one half will retain the 7034 // alignment of the original wider store, regardless of whether it was 7035 // over-aligned or not, while the other will require adjustment. 7036 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 7037 } 7038 Builder.CreateAlignedStore(V, Addr, Alignment); 7039 }; 7040 7041 CreateSplitStore(LValue, false); 7042 CreateSplitStore(HValue, true); 7043 7044 // Delete the old store. 7045 SI.eraseFromParent(); 7046 return true; 7047 } 7048 7049 // Return true if the GEP has two operands, the first operand is of a sequential 7050 // type, and the second operand is a constant. 7051 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 7052 gep_type_iterator I = gep_type_begin(*GEP); 7053 return GEP->getNumOperands() == 2 && 7054 I.isSequential() && 7055 isa<ConstantInt>(GEP->getOperand(1)); 7056 } 7057 7058 // Try unmerging GEPs to reduce liveness interference (register pressure) across 7059 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 7060 // reducing liveness interference across those edges benefits global register 7061 // allocation. Currently handles only certain cases. 7062 // 7063 // For example, unmerge %GEPI and %UGEPI as below. 7064 // 7065 // ---------- BEFORE ---------- 7066 // SrcBlock: 7067 // ... 7068 // %GEPIOp = ... 7069 // ... 7070 // %GEPI = gep %GEPIOp, Idx 7071 // ... 7072 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 7073 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 7074 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 7075 // %UGEPI) 7076 // 7077 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 7078 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 7079 // ... 7080 // 7081 // DstBi: 7082 // ... 7083 // %UGEPI = gep %GEPIOp, UIdx 7084 // ... 7085 // --------------------------- 7086 // 7087 // ---------- AFTER ---------- 7088 // SrcBlock: 7089 // ... (same as above) 7090 // (* %GEPI is still alive on the indirectbr edges) 7091 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 7092 // unmerging) 7093 // ... 7094 // 7095 // DstBi: 7096 // ... 7097 // %UGEPI = gep %GEPI, (UIdx-Idx) 7098 // ... 7099 // --------------------------- 7100 // 7101 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 7102 // no longer alive on them. 7103 // 7104 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 7105 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 7106 // not to disable further simplications and optimizations as a result of GEP 7107 // merging. 7108 // 7109 // Note this unmerging may increase the length of the data flow critical path 7110 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 7111 // between the register pressure and the length of data-flow critical 7112 // path. Restricting this to the uncommon IndirectBr case would minimize the 7113 // impact of potentially longer critical path, if any, and the impact on compile 7114 // time. 7115 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 7116 const TargetTransformInfo *TTI) { 7117 BasicBlock *SrcBlock = GEPI->getParent(); 7118 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 7119 // (non-IndirectBr) cases exit early here. 7120 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 7121 return false; 7122 // Check that GEPI is a simple gep with a single constant index. 7123 if (!GEPSequentialConstIndexed(GEPI)) 7124 return false; 7125 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 7126 // Check that GEPI is a cheap one. 7127 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 7128 > TargetTransformInfo::TCC_Basic) 7129 return false; 7130 Value *GEPIOp = GEPI->getOperand(0); 7131 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 7132 if (!isa<Instruction>(GEPIOp)) 7133 return false; 7134 auto *GEPIOpI = cast<Instruction>(GEPIOp); 7135 if (GEPIOpI->getParent() != SrcBlock) 7136 return false; 7137 // Check that GEP is used outside the block, meaning it's alive on the 7138 // IndirectBr edge(s). 7139 if (find_if(GEPI->users(), [&](User *Usr) { 7140 if (auto *I = dyn_cast<Instruction>(Usr)) { 7141 if (I->getParent() != SrcBlock) { 7142 return true; 7143 } 7144 } 7145 return false; 7146 }) == GEPI->users().end()) 7147 return false; 7148 // The second elements of the GEP chains to be unmerged. 7149 std::vector<GetElementPtrInst *> UGEPIs; 7150 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 7151 // on IndirectBr edges. 7152 for (User *Usr : GEPIOp->users()) { 7153 if (Usr == GEPI) continue; 7154 // Check if Usr is an Instruction. If not, give up. 7155 if (!isa<Instruction>(Usr)) 7156 return false; 7157 auto *UI = cast<Instruction>(Usr); 7158 // Check if Usr in the same block as GEPIOp, which is fine, skip. 7159 if (UI->getParent() == SrcBlock) 7160 continue; 7161 // Check if Usr is a GEP. If not, give up. 7162 if (!isa<GetElementPtrInst>(Usr)) 7163 return false; 7164 auto *UGEPI = cast<GetElementPtrInst>(Usr); 7165 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 7166 // the pointer operand to it. If so, record it in the vector. If not, give 7167 // up. 7168 if (!GEPSequentialConstIndexed(UGEPI)) 7169 return false; 7170 if (UGEPI->getOperand(0) != GEPIOp) 7171 return false; 7172 if (GEPIIdx->getType() != 7173 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 7174 return false; 7175 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7176 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 7177 > TargetTransformInfo::TCC_Basic) 7178 return false; 7179 UGEPIs.push_back(UGEPI); 7180 } 7181 if (UGEPIs.size() == 0) 7182 return false; 7183 // Check the materializing cost of (Uidx-Idx). 7184 for (GetElementPtrInst *UGEPI : UGEPIs) { 7185 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7186 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 7187 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 7188 if (ImmCost > TargetTransformInfo::TCC_Basic) 7189 return false; 7190 } 7191 // Now unmerge between GEPI and UGEPIs. 7192 for (GetElementPtrInst *UGEPI : UGEPIs) { 7193 UGEPI->setOperand(0, GEPI); 7194 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7195 Constant *NewUGEPIIdx = 7196 ConstantInt::get(GEPIIdx->getType(), 7197 UGEPIIdx->getValue() - GEPIIdx->getValue()); 7198 UGEPI->setOperand(1, NewUGEPIIdx); 7199 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 7200 // inbounds to avoid UB. 7201 if (!GEPI->isInBounds()) { 7202 UGEPI->setIsInBounds(false); 7203 } 7204 } 7205 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 7206 // alive on IndirectBr edges). 7207 assert(find_if(GEPIOp->users(), [&](User *Usr) { 7208 return cast<Instruction>(Usr)->getParent() != SrcBlock; 7209 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 7210 return true; 7211 } 7212 7213 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 7214 // Bail out if we inserted the instruction to prevent optimizations from 7215 // stepping on each other's toes. 7216 if (InsertedInsts.count(I)) 7217 return false; 7218 7219 // TODO: Move into the switch on opcode below here. 7220 if (PHINode *P = dyn_cast<PHINode>(I)) { 7221 // It is possible for very late stage optimizations (such as SimplifyCFG) 7222 // to introduce PHI nodes too late to be cleaned up. If we detect such a 7223 // trivial PHI, go ahead and zap it here. 7224 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 7225 LargeOffsetGEPMap.erase(P); 7226 P->replaceAllUsesWith(V); 7227 P->eraseFromParent(); 7228 ++NumPHIsElim; 7229 return true; 7230 } 7231 return false; 7232 } 7233 7234 if (CastInst *CI = dyn_cast<CastInst>(I)) { 7235 // If the source of the cast is a constant, then this should have 7236 // already been constant folded. The only reason NOT to constant fold 7237 // it is if something (e.g. LSR) was careful to place the constant 7238 // evaluation in a block other than then one that uses it (e.g. to hoist 7239 // the address of globals out of a loop). If this is the case, we don't 7240 // want to forward-subst the cast. 7241 if (isa<Constant>(CI->getOperand(0))) 7242 return false; 7243 7244 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 7245 return true; 7246 7247 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 7248 /// Sink a zext or sext into its user blocks if the target type doesn't 7249 /// fit in one register 7250 if (TLI->getTypeAction(CI->getContext(), 7251 TLI->getValueType(*DL, CI->getType())) == 7252 TargetLowering::TypeExpandInteger) { 7253 return SinkCast(CI); 7254 } else { 7255 bool MadeChange = optimizeExt(I); 7256 return MadeChange | optimizeExtUses(I); 7257 } 7258 } 7259 return false; 7260 } 7261 7262 if (auto *Cmp = dyn_cast<CmpInst>(I)) 7263 if (optimizeCmp(Cmp, ModifiedDT)) 7264 return true; 7265 7266 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7267 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7268 bool Modified = optimizeLoadExt(LI); 7269 unsigned AS = LI->getPointerAddressSpace(); 7270 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 7271 return Modified; 7272 } 7273 7274 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 7275 if (splitMergedValStore(*SI, *DL, *TLI)) 7276 return true; 7277 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7278 unsigned AS = SI->getPointerAddressSpace(); 7279 return optimizeMemoryInst(I, SI->getOperand(1), 7280 SI->getOperand(0)->getType(), AS); 7281 } 7282 7283 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 7284 unsigned AS = RMW->getPointerAddressSpace(); 7285 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7286 RMW->getType(), AS); 7287 } 7288 7289 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7290 unsigned AS = CmpX->getPointerAddressSpace(); 7291 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7292 CmpX->getCompareOperand()->getType(), AS); 7293 } 7294 7295 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7296 7297 if (BinOp && (BinOp->getOpcode() == Instruction::And) && EnableAndCmpSinking) 7298 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 7299 7300 // TODO: Move this into the switch on opcode - it handles shifts already. 7301 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7302 BinOp->getOpcode() == Instruction::LShr)) { 7303 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7304 if (CI && TLI->hasExtractBitsInsn()) 7305 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7306 return true; 7307 } 7308 7309 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7310 if (GEPI->hasAllZeroIndices()) { 7311 /// The GEP operand must be a pointer, so must its result -> BitCast 7312 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7313 GEPI->getName(), GEPI); 7314 NC->setDebugLoc(GEPI->getDebugLoc()); 7315 GEPI->replaceAllUsesWith(NC); 7316 GEPI->eraseFromParent(); 7317 ++NumGEPsElim; 7318 optimizeInst(NC, ModifiedDT); 7319 return true; 7320 } 7321 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7322 return true; 7323 } 7324 return false; 7325 } 7326 7327 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 7328 // freeze(icmp a, const)) -> icmp (freeze a), const 7329 // This helps generate efficient conditional jumps. 7330 Instruction *CmpI = nullptr; 7331 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 7332 CmpI = II; 7333 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 7334 CmpI = F->getFastMathFlags().none() ? F : nullptr; 7335 7336 if (CmpI && CmpI->hasOneUse()) { 7337 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 7338 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 7339 isa<ConstantPointerNull>(Op0); 7340 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 7341 isa<ConstantPointerNull>(Op1); 7342 if (Const0 || Const1) { 7343 if (!Const0 || !Const1) { 7344 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI); 7345 F->takeName(FI); 7346 CmpI->setOperand(Const0 ? 1 : 0, F); 7347 } 7348 FI->replaceAllUsesWith(CmpI); 7349 FI->eraseFromParent(); 7350 return true; 7351 } 7352 } 7353 return false; 7354 } 7355 7356 if (tryToSinkFreeOperands(I)) 7357 return true; 7358 7359 switch (I->getOpcode()) { 7360 case Instruction::Shl: 7361 case Instruction::LShr: 7362 case Instruction::AShr: 7363 return optimizeShiftInst(cast<BinaryOperator>(I)); 7364 case Instruction::Call: 7365 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7366 case Instruction::Select: 7367 return optimizeSelectInst(cast<SelectInst>(I)); 7368 case Instruction::ShuffleVector: 7369 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7370 case Instruction::Switch: 7371 return optimizeSwitchInst(cast<SwitchInst>(I)); 7372 case Instruction::ExtractElement: 7373 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7374 } 7375 7376 return false; 7377 } 7378 7379 /// Given an OR instruction, check to see if this is a bitreverse 7380 /// idiom. If so, insert the new intrinsic and return true. 7381 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 7382 const TargetLowering &TLI) { 7383 if (!I.getType()->isIntegerTy() || 7384 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 7385 TLI.getValueType(DL, I.getType(), true))) 7386 return false; 7387 7388 SmallVector<Instruction*, 4> Insts; 7389 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7390 return false; 7391 Instruction *LastInst = Insts.back(); 7392 I.replaceAllUsesWith(LastInst); 7393 RecursivelyDeleteTriviallyDeadInstructions(&I); 7394 return true; 7395 } 7396 7397 // In this pass we look for GEP and cast instructions that are used 7398 // across basic blocks and rewrite them to improve basic-block-at-a-time 7399 // selection. 7400 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 7401 SunkAddrs.clear(); 7402 bool MadeChange = false; 7403 7404 CurInstIterator = BB.begin(); 7405 while (CurInstIterator != BB.end()) { 7406 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 7407 if (ModifiedDT) 7408 return true; 7409 } 7410 7411 bool MadeBitReverse = true; 7412 while (MadeBitReverse) { 7413 MadeBitReverse = false; 7414 for (auto &I : reverse(BB)) { 7415 if (makeBitReverse(I, *DL, *TLI)) { 7416 MadeBitReverse = MadeChange = true; 7417 break; 7418 } 7419 } 7420 } 7421 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7422 7423 return MadeChange; 7424 } 7425 7426 // Some CGP optimizations may move or alter what's computed in a block. Check 7427 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 7428 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 7429 assert(isa<DbgValueInst>(I)); 7430 DbgValueInst &DVI = *cast<DbgValueInst>(I); 7431 7432 // Does this dbg.value refer to a sunk address calculation? 7433 Value *Location = DVI.getVariableLocation(); 7434 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 7435 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 7436 if (SunkAddr) { 7437 // Point dbg.value at locally computed address, which should give the best 7438 // opportunity to be accurately lowered. This update may change the type of 7439 // pointer being referred to; however this makes no difference to debugging 7440 // information, and we can't generate bitcasts that may affect codegen. 7441 DVI.setOperand(0, MetadataAsValue::get(DVI.getContext(), 7442 ValueAsMetadata::get(SunkAddr))); 7443 return true; 7444 } 7445 return false; 7446 } 7447 7448 // A llvm.dbg.value may be using a value before its definition, due to 7449 // optimizations in this pass and others. Scan for such dbg.values, and rescue 7450 // them by moving the dbg.value to immediately after the value definition. 7451 // FIXME: Ideally this should never be necessary, and this has the potential 7452 // to re-order dbg.value intrinsics. 7453 bool CodeGenPrepare::placeDbgValues(Function &F) { 7454 bool MadeChange = false; 7455 DominatorTree DT(F); 7456 7457 for (BasicBlock &BB : F) { 7458 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 7459 Instruction *Insn = &*BI++; 7460 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 7461 if (!DVI) 7462 continue; 7463 7464 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 7465 7466 if (!VI || VI->isTerminator()) 7467 continue; 7468 7469 // If VI is a phi in a block with an EHPad terminator, we can't insert 7470 // after it. 7471 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 7472 continue; 7473 7474 // If the defining instruction dominates the dbg.value, we do not need 7475 // to move the dbg.value. 7476 if (DT.dominates(VI, DVI)) 7477 continue; 7478 7479 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 7480 << *DVI << ' ' << *VI); 7481 DVI->removeFromParent(); 7482 if (isa<PHINode>(VI)) 7483 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 7484 else 7485 DVI->insertAfter(VI); 7486 MadeChange = true; 7487 ++NumDbgValueMoved; 7488 } 7489 } 7490 return MadeChange; 7491 } 7492 7493 /// Scale down both weights to fit into uint32_t. 7494 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 7495 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 7496 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 7497 NewTrue = NewTrue / Scale; 7498 NewFalse = NewFalse / Scale; 7499 } 7500 7501 /// Some targets prefer to split a conditional branch like: 7502 /// \code 7503 /// %0 = icmp ne i32 %a, 0 7504 /// %1 = icmp ne i32 %b, 0 7505 /// %or.cond = or i1 %0, %1 7506 /// br i1 %or.cond, label %TrueBB, label %FalseBB 7507 /// \endcode 7508 /// into multiple branch instructions like: 7509 /// \code 7510 /// bb1: 7511 /// %0 = icmp ne i32 %a, 0 7512 /// br i1 %0, label %TrueBB, label %bb2 7513 /// bb2: 7514 /// %1 = icmp ne i32 %b, 0 7515 /// br i1 %1, label %TrueBB, label %FalseBB 7516 /// \endcode 7517 /// This usually allows instruction selection to do even further optimizations 7518 /// and combine the compare with the branch instruction. Currently this is 7519 /// applied for targets which have "cheap" jump instructions. 7520 /// 7521 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 7522 /// 7523 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 7524 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 7525 return false; 7526 7527 bool MadeChange = false; 7528 for (auto &BB : F) { 7529 // Does this BB end with the following? 7530 // %cond1 = icmp|fcmp|binary instruction ... 7531 // %cond2 = icmp|fcmp|binary instruction ... 7532 // %cond.or = or|and i1 %cond1, cond2 7533 // br i1 %cond.or label %dest1, label %dest2" 7534 BinaryOperator *LogicOp; 7535 BasicBlock *TBB, *FBB; 7536 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 7537 continue; 7538 7539 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 7540 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 7541 continue; 7542 7543 // The merging of mostly empty BB can cause a degenerate branch. 7544 if (TBB == FBB) 7545 continue; 7546 7547 unsigned Opc; 7548 Value *Cond1, *Cond2; 7549 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 7550 m_OneUse(m_Value(Cond2))))) 7551 Opc = Instruction::And; 7552 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 7553 m_OneUse(m_Value(Cond2))))) 7554 Opc = Instruction::Or; 7555 else 7556 continue; 7557 7558 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 7559 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 7560 continue; 7561 7562 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 7563 7564 // Create a new BB. 7565 auto TmpBB = 7566 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 7567 BB.getParent(), BB.getNextNode()); 7568 7569 // Update original basic block by using the first condition directly by the 7570 // branch instruction and removing the no longer needed and/or instruction. 7571 Br1->setCondition(Cond1); 7572 LogicOp->eraseFromParent(); 7573 7574 // Depending on the condition we have to either replace the true or the 7575 // false successor of the original branch instruction. 7576 if (Opc == Instruction::And) 7577 Br1->setSuccessor(0, TmpBB); 7578 else 7579 Br1->setSuccessor(1, TmpBB); 7580 7581 // Fill in the new basic block. 7582 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 7583 if (auto *I = dyn_cast<Instruction>(Cond2)) { 7584 I->removeFromParent(); 7585 I->insertBefore(Br2); 7586 } 7587 7588 // Update PHI nodes in both successors. The original BB needs to be 7589 // replaced in one successor's PHI nodes, because the branch comes now from 7590 // the newly generated BB (NewBB). In the other successor we need to add one 7591 // incoming edge to the PHI nodes, because both branch instructions target 7592 // now the same successor. Depending on the original branch condition 7593 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 7594 // we perform the correct update for the PHI nodes. 7595 // This doesn't change the successor order of the just created branch 7596 // instruction (or any other instruction). 7597 if (Opc == Instruction::Or) 7598 std::swap(TBB, FBB); 7599 7600 // Replace the old BB with the new BB. 7601 TBB->replacePhiUsesWith(&BB, TmpBB); 7602 7603 // Add another incoming edge form the new BB. 7604 for (PHINode &PN : FBB->phis()) { 7605 auto *Val = PN.getIncomingValueForBlock(&BB); 7606 PN.addIncoming(Val, TmpBB); 7607 } 7608 7609 // Update the branch weights (from SelectionDAGBuilder:: 7610 // FindMergedConditions). 7611 if (Opc == Instruction::Or) { 7612 // Codegen X | Y as: 7613 // BB1: 7614 // jmp_if_X TBB 7615 // jmp TmpBB 7616 // TmpBB: 7617 // jmp_if_Y TBB 7618 // jmp FBB 7619 // 7620 7621 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 7622 // The requirement is that 7623 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 7624 // = TrueProb for original BB. 7625 // Assuming the original weights are A and B, one choice is to set BB1's 7626 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 7627 // assumes that 7628 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 7629 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 7630 // TmpBB, but the math is more complicated. 7631 uint64_t TrueWeight, FalseWeight; 7632 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7633 uint64_t NewTrueWeight = TrueWeight; 7634 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 7635 scaleWeights(NewTrueWeight, NewFalseWeight); 7636 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7637 .createBranchWeights(TrueWeight, FalseWeight)); 7638 7639 NewTrueWeight = TrueWeight; 7640 NewFalseWeight = 2 * FalseWeight; 7641 scaleWeights(NewTrueWeight, NewFalseWeight); 7642 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7643 .createBranchWeights(TrueWeight, FalseWeight)); 7644 } 7645 } else { 7646 // Codegen X & Y as: 7647 // BB1: 7648 // jmp_if_X TmpBB 7649 // jmp FBB 7650 // TmpBB: 7651 // jmp_if_Y TBB 7652 // jmp FBB 7653 // 7654 // This requires creation of TmpBB after CurBB. 7655 7656 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 7657 // The requirement is that 7658 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 7659 // = FalseProb for original BB. 7660 // Assuming the original weights are A and B, one choice is to set BB1's 7661 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 7662 // assumes that 7663 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 7664 uint64_t TrueWeight, FalseWeight; 7665 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7666 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 7667 uint64_t NewFalseWeight = FalseWeight; 7668 scaleWeights(NewTrueWeight, NewFalseWeight); 7669 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7670 .createBranchWeights(TrueWeight, FalseWeight)); 7671 7672 NewTrueWeight = 2 * TrueWeight; 7673 NewFalseWeight = FalseWeight; 7674 scaleWeights(NewTrueWeight, NewFalseWeight); 7675 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7676 .createBranchWeights(TrueWeight, FalseWeight)); 7677 } 7678 } 7679 7680 ModifiedDT = true; 7681 MadeChange = true; 7682 7683 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 7684 TmpBB->dump()); 7685 } 7686 return MadeChange; 7687 } 7688