1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/Passes.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/IR/CallSite.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GetElementPtrTypeIterator.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/PatternMatch.h" 39 #include "llvm/IR/Statepoint.h" 40 #include "llvm/IR/ValueHandle.h" 41 #include "llvm/IR/ValueMap.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetLowering.h" 47 #include "llvm/Target/TargetSubtargetInfo.h" 48 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 49 #include "llvm/Transforms/Utils/BuildLibCalls.h" 50 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 51 #include "llvm/Transforms/Utils/Local.h" 52 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 53 using namespace llvm; 54 using namespace llvm::PatternMatch; 55 56 #define DEBUG_TYPE "codegenprepare" 57 58 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 59 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 60 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 61 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 62 "sunken Cmps"); 63 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 64 "of sunken Casts"); 65 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 66 "computations were sunk"); 67 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 68 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 69 STATISTIC(NumAndsAdded, 70 "Number of and mask instructions added to form ext loads"); 71 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 72 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 73 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 74 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 75 STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches"); 76 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 77 78 static cl::opt<bool> DisableBranchOpts( 79 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 80 cl::desc("Disable branch optimizations in CodeGenPrepare")); 81 82 static cl::opt<bool> 83 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 84 cl::desc("Disable GC optimizations in CodeGenPrepare")); 85 86 static cl::opt<bool> DisableSelectToBranch( 87 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 88 cl::desc("Disable select to branch conversion.")); 89 90 static cl::opt<bool> AddrSinkUsingGEPs( 91 "addr-sink-using-gep", cl::Hidden, cl::init(false), 92 cl::desc("Address sinking in CGP using GEPs.")); 93 94 static cl::opt<bool> EnableAndCmpSinking( 95 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 96 cl::desc("Enable sinkinig and/cmp into branches.")); 97 98 static cl::opt<bool> DisableStoreExtract( 99 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 100 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 101 102 static cl::opt<bool> StressStoreExtract( 103 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 104 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 105 106 static cl::opt<bool> DisableExtLdPromotion( 107 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 108 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 109 "CodeGenPrepare")); 110 111 static cl::opt<bool> StressExtLdPromotion( 112 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 113 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 114 "optimization in CodeGenPrepare")); 115 116 static cl::opt<bool> DisablePreheaderProtect( 117 "disable-preheader-prot", cl::Hidden, cl::init(false), 118 cl::desc("Disable protection against removing loop preheaders")); 119 120 namespace { 121 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; 122 typedef PointerIntPair<Type *, 1, bool> TypeIsSExt; 123 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy; 124 class TypePromotionTransaction; 125 126 class CodeGenPrepare : public FunctionPass { 127 const TargetMachine *TM; 128 const TargetLowering *TLI; 129 const TargetTransformInfo *TTI; 130 const TargetLibraryInfo *TLInfo; 131 const LoopInfo *LI; 132 133 /// As we scan instructions optimizing them, this is the next instruction 134 /// to optimize. Transforms that can invalidate this should update it. 135 BasicBlock::iterator CurInstIterator; 136 137 /// Keeps track of non-local addresses that have been sunk into a block. 138 /// This allows us to avoid inserting duplicate code for blocks with 139 /// multiple load/stores of the same address. 140 ValueMap<Value*, Value*> SunkAddrs; 141 142 /// Keeps track of all instructions inserted for the current function. 143 SetOfInstrs InsertedInsts; 144 /// Keeps track of the type of the related instruction before their 145 /// promotion for the current function. 146 InstrToOrigTy PromotedInsts; 147 148 /// True if CFG is modified in any way. 149 bool ModifiedDT; 150 151 /// True if optimizing for size. 152 bool OptSize; 153 154 /// DataLayout for the Function being processed. 155 const DataLayout *DL; 156 157 public: 158 static char ID; // Pass identification, replacement for typeid 159 explicit CodeGenPrepare(const TargetMachine *TM = nullptr) 160 : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr), DL(nullptr) { 161 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 162 } 163 bool runOnFunction(Function &F) override; 164 165 const char *getPassName() const override { return "CodeGen Prepare"; } 166 167 void getAnalysisUsage(AnalysisUsage &AU) const override { 168 // FIXME: When we can selectively preserve passes, preserve the domtree. 169 AU.addRequired<TargetLibraryInfoWrapperPass>(); 170 AU.addRequired<TargetTransformInfoWrapperPass>(); 171 AU.addRequired<LoopInfoWrapperPass>(); 172 } 173 174 private: 175 bool eliminateFallThrough(Function &F); 176 bool eliminateMostlyEmptyBlocks(Function &F); 177 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 178 void eliminateMostlyEmptyBlock(BasicBlock *BB); 179 bool optimizeBlock(BasicBlock &BB, bool& ModifiedDT); 180 bool optimizeInst(Instruction *I, bool& ModifiedDT); 181 bool optimizeMemoryInst(Instruction *I, Value *Addr, 182 Type *AccessTy, unsigned AS); 183 bool optimizeInlineAsmInst(CallInst *CS); 184 bool optimizeCallInst(CallInst *CI, bool& ModifiedDT); 185 bool moveExtToFormExtLoad(Instruction *&I); 186 bool optimizeExtUses(Instruction *I); 187 bool optimizeLoadExt(LoadInst *I); 188 bool optimizeSelectInst(SelectInst *SI); 189 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); 190 bool optimizeSwitchInst(SwitchInst *CI); 191 bool optimizeExtractElementInst(Instruction *Inst); 192 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 193 bool placeDbgValues(Function &F); 194 bool sinkAndCmp(Function &F); 195 bool extLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI, 196 Instruction *&Inst, 197 const SmallVectorImpl<Instruction *> &Exts, 198 unsigned CreatedInstCost); 199 bool splitBranchCondition(Function &F); 200 bool simplifyOffsetableRelocate(Instruction &I); 201 void stripInvariantGroupMetadata(Instruction &I); 202 }; 203 } 204 205 char CodeGenPrepare::ID = 0; 206 INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare", 207 "Optimize for code generation", false, false) 208 209 FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) { 210 return new CodeGenPrepare(TM); 211 } 212 213 bool CodeGenPrepare::runOnFunction(Function &F) { 214 if (skipOptnoneFunction(F)) 215 return false; 216 217 DL = &F.getParent()->getDataLayout(); 218 219 bool EverMadeChange = false; 220 // Clear per function information. 221 InsertedInsts.clear(); 222 PromotedInsts.clear(); 223 224 ModifiedDT = false; 225 if (TM) 226 TLI = TM->getSubtargetImpl(F)->getTargetLowering(); 227 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 228 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 229 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 230 OptSize = F.optForSize(); 231 232 /// This optimization identifies DIV instructions that can be 233 /// profitably bypassed and carried out with a shorter, faster divide. 234 if (!OptSize && TLI && TLI->isSlowDivBypassed()) { 235 const DenseMap<unsigned int, unsigned int> &BypassWidths = 236 TLI->getBypassSlowDivWidths(); 237 BasicBlock* BB = &*F.begin(); 238 while (BB != nullptr) { 239 // bypassSlowDivision may create new BBs, but we don't want to reapply the 240 // optimization to those blocks. 241 BasicBlock* Next = BB->getNextNode(); 242 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 243 BB = Next; 244 } 245 } 246 247 // Eliminate blocks that contain only PHI nodes and an 248 // unconditional branch. 249 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 250 251 // llvm.dbg.value is far away from the value then iSel may not be able 252 // handle it properly. iSel will drop llvm.dbg.value if it can not 253 // find a node corresponding to the value. 254 EverMadeChange |= placeDbgValues(F); 255 256 // If there is a mask, compare against zero, and branch that can be combined 257 // into a single target instruction, push the mask and compare into branch 258 // users. Do this before OptimizeBlock -> OptimizeInst -> 259 // OptimizeCmpExpression, which perturbs the pattern being searched for. 260 if (!DisableBranchOpts) { 261 EverMadeChange |= sinkAndCmp(F); 262 EverMadeChange |= splitBranchCondition(F); 263 } 264 265 bool MadeChange = true; 266 while (MadeChange) { 267 MadeChange = false; 268 for (Function::iterator I = F.begin(); I != F.end(); ) { 269 BasicBlock *BB = &*I++; 270 bool ModifiedDTOnIteration = false; 271 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 272 273 // Restart BB iteration if the dominator tree of the Function was changed 274 if (ModifiedDTOnIteration) 275 break; 276 } 277 EverMadeChange |= MadeChange; 278 } 279 280 SunkAddrs.clear(); 281 282 if (!DisableBranchOpts) { 283 MadeChange = false; 284 SmallPtrSet<BasicBlock*, 8> WorkList; 285 for (BasicBlock &BB : F) { 286 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 287 MadeChange |= ConstantFoldTerminator(&BB, true); 288 if (!MadeChange) continue; 289 290 for (SmallVectorImpl<BasicBlock*>::iterator 291 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 292 if (pred_begin(*II) == pred_end(*II)) 293 WorkList.insert(*II); 294 } 295 296 // Delete the dead blocks and any of their dead successors. 297 MadeChange |= !WorkList.empty(); 298 while (!WorkList.empty()) { 299 BasicBlock *BB = *WorkList.begin(); 300 WorkList.erase(BB); 301 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 302 303 DeleteDeadBlock(BB); 304 305 for (SmallVectorImpl<BasicBlock*>::iterator 306 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 307 if (pred_begin(*II) == pred_end(*II)) 308 WorkList.insert(*II); 309 } 310 311 // Merge pairs of basic blocks with unconditional branches, connected by 312 // a single edge. 313 if (EverMadeChange || MadeChange) 314 MadeChange |= eliminateFallThrough(F); 315 316 EverMadeChange |= MadeChange; 317 } 318 319 if (!DisableGCOpts) { 320 SmallVector<Instruction *, 2> Statepoints; 321 for (BasicBlock &BB : F) 322 for (Instruction &I : BB) 323 if (isStatepoint(I)) 324 Statepoints.push_back(&I); 325 for (auto &I : Statepoints) 326 EverMadeChange |= simplifyOffsetableRelocate(*I); 327 } 328 329 return EverMadeChange; 330 } 331 332 /// Merge basic blocks which are connected by a single edge, where one of the 333 /// basic blocks has a single successor pointing to the other basic block, 334 /// which has a single predecessor. 335 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 336 bool Changed = false; 337 // Scan all of the blocks in the function, except for the entry block. 338 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 339 BasicBlock *BB = &*I++; 340 // If the destination block has a single pred, then this is a trivial 341 // edge, just collapse it. 342 BasicBlock *SinglePred = BB->getSinglePredecessor(); 343 344 // Don't merge if BB's address is taken. 345 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 346 347 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 348 if (Term && !Term->isConditional()) { 349 Changed = true; 350 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 351 // Remember if SinglePred was the entry block of the function. 352 // If so, we will need to move BB back to the entry position. 353 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 354 MergeBasicBlockIntoOnlyPred(BB, nullptr); 355 356 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 357 BB->moveBefore(&BB->getParent()->getEntryBlock()); 358 359 // We have erased a block. Update the iterator. 360 I = BB->getIterator(); 361 } 362 } 363 return Changed; 364 } 365 366 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 367 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 368 /// edges in ways that are non-optimal for isel. Start by eliminating these 369 /// blocks so we can split them the way we want them. 370 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 371 SmallPtrSet<BasicBlock *, 16> Preheaders; 372 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 373 while (!LoopList.empty()) { 374 Loop *L = LoopList.pop_back_val(); 375 LoopList.insert(LoopList.end(), L->begin(), L->end()); 376 if (BasicBlock *Preheader = L->getLoopPreheader()) 377 Preheaders.insert(Preheader); 378 } 379 380 bool MadeChange = false; 381 // Note that this intentionally skips the entry block. 382 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 383 BasicBlock *BB = &*I++; 384 385 // If this block doesn't end with an uncond branch, ignore it. 386 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 387 if (!BI || !BI->isUnconditional()) 388 continue; 389 390 // If the instruction before the branch (skipping debug info) isn't a phi 391 // node, then other stuff is happening here. 392 BasicBlock::iterator BBI = BI->getIterator(); 393 if (BBI != BB->begin()) { 394 --BBI; 395 while (isa<DbgInfoIntrinsic>(BBI)) { 396 if (BBI == BB->begin()) 397 break; 398 --BBI; 399 } 400 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 401 continue; 402 } 403 404 // Do not break infinite loops. 405 BasicBlock *DestBB = BI->getSuccessor(0); 406 if (DestBB == BB) 407 continue; 408 409 if (!canMergeBlocks(BB, DestBB)) 410 continue; 411 412 // Do not delete loop preheaders if doing so would create a critical edge. 413 // Loop preheaders can be good locations to spill registers. If the 414 // preheader is deleted and we create a critical edge, registers may be 415 // spilled in the loop body instead. 416 if (!DisablePreheaderProtect && Preheaders.count(BB) && 417 !(BB->getSinglePredecessor() && BB->getSinglePredecessor()->getSingleSuccessor())) 418 continue; 419 420 eliminateMostlyEmptyBlock(BB); 421 MadeChange = true; 422 } 423 return MadeChange; 424 } 425 426 /// Return true if we can merge BB into DestBB if there is a single 427 /// unconditional branch between them, and BB contains no other non-phi 428 /// instructions. 429 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 430 const BasicBlock *DestBB) const { 431 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 432 // the successor. If there are more complex condition (e.g. preheaders), 433 // don't mess around with them. 434 BasicBlock::const_iterator BBI = BB->begin(); 435 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 436 for (const User *U : PN->users()) { 437 const Instruction *UI = cast<Instruction>(U); 438 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 439 return false; 440 // If User is inside DestBB block and it is a PHINode then check 441 // incoming value. If incoming value is not from BB then this is 442 // a complex condition (e.g. preheaders) we want to avoid here. 443 if (UI->getParent() == DestBB) { 444 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 445 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 446 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 447 if (Insn && Insn->getParent() == BB && 448 Insn->getParent() != UPN->getIncomingBlock(I)) 449 return false; 450 } 451 } 452 } 453 } 454 455 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 456 // and DestBB may have conflicting incoming values for the block. If so, we 457 // can't merge the block. 458 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 459 if (!DestBBPN) return true; // no conflict. 460 461 // Collect the preds of BB. 462 SmallPtrSet<const BasicBlock*, 16> BBPreds; 463 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 464 // It is faster to get preds from a PHI than with pred_iterator. 465 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 466 BBPreds.insert(BBPN->getIncomingBlock(i)); 467 } else { 468 BBPreds.insert(pred_begin(BB), pred_end(BB)); 469 } 470 471 // Walk the preds of DestBB. 472 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 473 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 474 if (BBPreds.count(Pred)) { // Common predecessor? 475 BBI = DestBB->begin(); 476 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 477 const Value *V1 = PN->getIncomingValueForBlock(Pred); 478 const Value *V2 = PN->getIncomingValueForBlock(BB); 479 480 // If V2 is a phi node in BB, look up what the mapped value will be. 481 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 482 if (V2PN->getParent() == BB) 483 V2 = V2PN->getIncomingValueForBlock(Pred); 484 485 // If there is a conflict, bail out. 486 if (V1 != V2) return false; 487 } 488 } 489 } 490 491 return true; 492 } 493 494 495 /// Eliminate a basic block that has only phi's and an unconditional branch in 496 /// it. 497 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 498 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 499 BasicBlock *DestBB = BI->getSuccessor(0); 500 501 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 502 503 // If the destination block has a single pred, then this is a trivial edge, 504 // just collapse it. 505 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 506 if (SinglePred != DestBB) { 507 // Remember if SinglePred was the entry block of the function. If so, we 508 // will need to move BB back to the entry position. 509 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 510 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 511 512 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 513 BB->moveBefore(&BB->getParent()->getEntryBlock()); 514 515 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 516 return; 517 } 518 } 519 520 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 521 // to handle the new incoming edges it is about to have. 522 PHINode *PN; 523 for (BasicBlock::iterator BBI = DestBB->begin(); 524 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 525 // Remove the incoming value for BB, and remember it. 526 Value *InVal = PN->removeIncomingValue(BB, false); 527 528 // Two options: either the InVal is a phi node defined in BB or it is some 529 // value that dominates BB. 530 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 531 if (InValPhi && InValPhi->getParent() == BB) { 532 // Add all of the input values of the input PHI as inputs of this phi. 533 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 534 PN->addIncoming(InValPhi->getIncomingValue(i), 535 InValPhi->getIncomingBlock(i)); 536 } else { 537 // Otherwise, add one instance of the dominating value for each edge that 538 // we will be adding. 539 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 540 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 541 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 542 } else { 543 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 544 PN->addIncoming(InVal, *PI); 545 } 546 } 547 } 548 549 // The PHIs are now updated, change everything that refers to BB to use 550 // DestBB and remove BB. 551 BB->replaceAllUsesWith(DestBB); 552 BB->eraseFromParent(); 553 ++NumBlocksElim; 554 555 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 556 } 557 558 // Computes a map of base pointer relocation instructions to corresponding 559 // derived pointer relocation instructions given a vector of all relocate calls 560 static void computeBaseDerivedRelocateMap( 561 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 562 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 563 &RelocateInstMap) { 564 // Collect information in two maps: one primarily for locating the base object 565 // while filling the second map; the second map is the final structure holding 566 // a mapping between Base and corresponding Derived relocate calls 567 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 568 for (auto *ThisRelocate : AllRelocateCalls) { 569 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 570 ThisRelocate->getDerivedPtrIndex()); 571 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 572 } 573 for (auto &Item : RelocateIdxMap) { 574 std::pair<unsigned, unsigned> Key = Item.first; 575 if (Key.first == Key.second) 576 // Base relocation: nothing to insert 577 continue; 578 579 GCRelocateInst *I = Item.second; 580 auto BaseKey = std::make_pair(Key.first, Key.first); 581 582 // We're iterating over RelocateIdxMap so we cannot modify it. 583 auto MaybeBase = RelocateIdxMap.find(BaseKey); 584 if (MaybeBase == RelocateIdxMap.end()) 585 // TODO: We might want to insert a new base object relocate and gep off 586 // that, if there are enough derived object relocates. 587 continue; 588 589 RelocateInstMap[MaybeBase->second].push_back(I); 590 } 591 } 592 593 // Accepts a GEP and extracts the operands into a vector provided they're all 594 // small integer constants 595 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 596 SmallVectorImpl<Value *> &OffsetV) { 597 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 598 // Only accept small constant integer operands 599 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 600 if (!Op || Op->getZExtValue() > 20) 601 return false; 602 } 603 604 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 605 OffsetV.push_back(GEP->getOperand(i)); 606 return true; 607 } 608 609 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 610 // replace, computes a replacement, and affects it. 611 static bool 612 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 613 const SmallVectorImpl<GCRelocateInst *> &Targets) { 614 bool MadeChange = false; 615 for (GCRelocateInst *ToReplace : Targets) { 616 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 617 "Not relocating a derived object of the original base object"); 618 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 619 // A duplicate relocate call. TODO: coalesce duplicates. 620 continue; 621 } 622 623 if (RelocatedBase->getParent() != ToReplace->getParent()) { 624 // Base and derived relocates are in different basic blocks. 625 // In this case transform is only valid when base dominates derived 626 // relocate. However it would be too expensive to check dominance 627 // for each such relocate, so we skip the whole transformation. 628 continue; 629 } 630 631 Value *Base = ToReplace->getBasePtr(); 632 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 633 if (!Derived || Derived->getPointerOperand() != Base) 634 continue; 635 636 SmallVector<Value *, 2> OffsetV; 637 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 638 continue; 639 640 // Create a Builder and replace the target callsite with a gep 641 assert(RelocatedBase->getNextNode() && 642 "Should always have one since it's not a terminator"); 643 644 // Insert after RelocatedBase 645 IRBuilder<> Builder(RelocatedBase->getNextNode()); 646 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 647 648 // If gc_relocate does not match the actual type, cast it to the right type. 649 // In theory, there must be a bitcast after gc_relocate if the type does not 650 // match, and we should reuse it to get the derived pointer. But it could be 651 // cases like this: 652 // bb1: 653 // ... 654 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 655 // br label %merge 656 // 657 // bb2: 658 // ... 659 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 660 // br label %merge 661 // 662 // merge: 663 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 664 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 665 // 666 // In this case, we can not find the bitcast any more. So we insert a new bitcast 667 // no matter there is already one or not. In this way, we can handle all cases, and 668 // the extra bitcast should be optimized away in later passes. 669 Value *ActualRelocatedBase = RelocatedBase; 670 if (RelocatedBase->getType() != Base->getType()) { 671 ActualRelocatedBase = 672 Builder.CreateBitCast(RelocatedBase, Base->getType()); 673 } 674 Value *Replacement = Builder.CreateGEP( 675 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 676 Replacement->takeName(ToReplace); 677 // If the newly generated derived pointer's type does not match the original derived 678 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 679 Value *ActualReplacement = Replacement; 680 if (Replacement->getType() != ToReplace->getType()) { 681 ActualReplacement = 682 Builder.CreateBitCast(Replacement, ToReplace->getType()); 683 } 684 ToReplace->replaceAllUsesWith(ActualReplacement); 685 ToReplace->eraseFromParent(); 686 687 MadeChange = true; 688 } 689 return MadeChange; 690 } 691 692 // Turns this: 693 // 694 // %base = ... 695 // %ptr = gep %base + 15 696 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 697 // %base' = relocate(%tok, i32 4, i32 4) 698 // %ptr' = relocate(%tok, i32 4, i32 5) 699 // %val = load %ptr' 700 // 701 // into this: 702 // 703 // %base = ... 704 // %ptr = gep %base + 15 705 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 706 // %base' = gc.relocate(%tok, i32 4, i32 4) 707 // %ptr' = gep %base' + 15 708 // %val = load %ptr' 709 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 710 bool MadeChange = false; 711 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 712 713 for (auto *U : I.users()) 714 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 715 // Collect all the relocate calls associated with a statepoint 716 AllRelocateCalls.push_back(Relocate); 717 718 // We need atleast one base pointer relocation + one derived pointer 719 // relocation to mangle 720 if (AllRelocateCalls.size() < 2) 721 return false; 722 723 // RelocateInstMap is a mapping from the base relocate instruction to the 724 // corresponding derived relocate instructions 725 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 726 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 727 if (RelocateInstMap.empty()) 728 return false; 729 730 for (auto &Item : RelocateInstMap) 731 // Item.first is the RelocatedBase to offset against 732 // Item.second is the vector of Targets to replace 733 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 734 return MadeChange; 735 } 736 737 /// SinkCast - Sink the specified cast instruction into its user blocks 738 static bool SinkCast(CastInst *CI) { 739 BasicBlock *DefBB = CI->getParent(); 740 741 /// InsertedCasts - Only insert a cast in each block once. 742 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 743 744 bool MadeChange = false; 745 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 746 UI != E; ) { 747 Use &TheUse = UI.getUse(); 748 Instruction *User = cast<Instruction>(*UI); 749 750 // Figure out which BB this cast is used in. For PHI's this is the 751 // appropriate predecessor block. 752 BasicBlock *UserBB = User->getParent(); 753 if (PHINode *PN = dyn_cast<PHINode>(User)) { 754 UserBB = PN->getIncomingBlock(TheUse); 755 } 756 757 // Preincrement use iterator so we don't invalidate it. 758 ++UI; 759 760 // If the block selected to receive the cast is an EH pad that does not 761 // allow non-PHI instructions before the terminator, we can't sink the 762 // cast. 763 if (UserBB->getTerminator()->isEHPad()) 764 continue; 765 766 // If this user is in the same block as the cast, don't change the cast. 767 if (UserBB == DefBB) continue; 768 769 // If we have already inserted a cast into this block, use it. 770 CastInst *&InsertedCast = InsertedCasts[UserBB]; 771 772 if (!InsertedCast) { 773 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 774 assert(InsertPt != UserBB->end()); 775 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 776 CI->getType(), "", &*InsertPt); 777 } 778 779 // Replace a use of the cast with a use of the new cast. 780 TheUse = InsertedCast; 781 MadeChange = true; 782 ++NumCastUses; 783 } 784 785 // If we removed all uses, nuke the cast. 786 if (CI->use_empty()) { 787 CI->eraseFromParent(); 788 MadeChange = true; 789 } 790 791 return MadeChange; 792 } 793 794 /// If the specified cast instruction is a noop copy (e.g. it's casting from 795 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 796 /// reduce the number of virtual registers that must be created and coalesced. 797 /// 798 /// Return true if any changes are made. 799 /// 800 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 801 const DataLayout &DL) { 802 // If this is a noop copy, 803 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 804 EVT DstVT = TLI.getValueType(DL, CI->getType()); 805 806 // This is an fp<->int conversion? 807 if (SrcVT.isInteger() != DstVT.isInteger()) 808 return false; 809 810 // If this is an extension, it will be a zero or sign extension, which 811 // isn't a noop. 812 if (SrcVT.bitsLT(DstVT)) return false; 813 814 // If these values will be promoted, find out what they will be promoted 815 // to. This helps us consider truncates on PPC as noop copies when they 816 // are. 817 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 818 TargetLowering::TypePromoteInteger) 819 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 820 if (TLI.getTypeAction(CI->getContext(), DstVT) == 821 TargetLowering::TypePromoteInteger) 822 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 823 824 // If, after promotion, these are the same types, this is a noop copy. 825 if (SrcVT != DstVT) 826 return false; 827 828 return SinkCast(CI); 829 } 830 831 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 832 /// possible. 833 /// 834 /// Return true if any changes were made. 835 static bool CombineUAddWithOverflow(CmpInst *CI) { 836 Value *A, *B; 837 Instruction *AddI; 838 if (!match(CI, 839 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 840 return false; 841 842 Type *Ty = AddI->getType(); 843 if (!isa<IntegerType>(Ty)) 844 return false; 845 846 // We don't want to move around uses of condition values this late, so we we 847 // check if it is legal to create the call to the intrinsic in the basic 848 // block containing the icmp: 849 850 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 851 return false; 852 853 #ifndef NDEBUG 854 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 855 // for now: 856 if (AddI->hasOneUse()) 857 assert(*AddI->user_begin() == CI && "expected!"); 858 #endif 859 860 Module *M = CI->getModule(); 861 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 862 863 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 864 865 auto *UAddWithOverflow = 866 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 867 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 868 auto *Overflow = 869 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 870 871 CI->replaceAllUsesWith(Overflow); 872 AddI->replaceAllUsesWith(UAdd); 873 CI->eraseFromParent(); 874 AddI->eraseFromParent(); 875 return true; 876 } 877 878 /// Sink the given CmpInst into user blocks to reduce the number of virtual 879 /// registers that must be created and coalesced. This is a clear win except on 880 /// targets with multiple condition code registers (PowerPC), where it might 881 /// lose; some adjustment may be wanted there. 882 /// 883 /// Return true if any changes are made. 884 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 885 BasicBlock *DefBB = CI->getParent(); 886 887 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 888 if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI)) 889 return false; 890 891 // Only insert a cmp in each block once. 892 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 893 894 bool MadeChange = false; 895 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 896 UI != E; ) { 897 Use &TheUse = UI.getUse(); 898 Instruction *User = cast<Instruction>(*UI); 899 900 // Preincrement use iterator so we don't invalidate it. 901 ++UI; 902 903 // Don't bother for PHI nodes. 904 if (isa<PHINode>(User)) 905 continue; 906 907 // Figure out which BB this cmp is used in. 908 BasicBlock *UserBB = User->getParent(); 909 910 // If this user is in the same block as the cmp, don't change the cmp. 911 if (UserBB == DefBB) continue; 912 913 // If we have already inserted a cmp into this block, use it. 914 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 915 916 if (!InsertedCmp) { 917 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 918 assert(InsertPt != UserBB->end()); 919 InsertedCmp = 920 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 921 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 922 } 923 924 // Replace a use of the cmp with a use of the new cmp. 925 TheUse = InsertedCmp; 926 MadeChange = true; 927 ++NumCmpUses; 928 } 929 930 // If we removed all uses, nuke the cmp. 931 if (CI->use_empty()) { 932 CI->eraseFromParent(); 933 MadeChange = true; 934 } 935 936 return MadeChange; 937 } 938 939 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 940 if (SinkCmpExpression(CI, TLI)) 941 return true; 942 943 if (CombineUAddWithOverflow(CI)) 944 return true; 945 946 return false; 947 } 948 949 /// Check if the candidates could be combined with a shift instruction, which 950 /// includes: 951 /// 1. Truncate instruction 952 /// 2. And instruction and the imm is a mask of the low bits: 953 /// imm & (imm+1) == 0 954 static bool isExtractBitsCandidateUse(Instruction *User) { 955 if (!isa<TruncInst>(User)) { 956 if (User->getOpcode() != Instruction::And || 957 !isa<ConstantInt>(User->getOperand(1))) 958 return false; 959 960 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 961 962 if ((Cimm & (Cimm + 1)).getBoolValue()) 963 return false; 964 } 965 return true; 966 } 967 968 /// Sink both shift and truncate instruction to the use of truncate's BB. 969 static bool 970 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 971 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 972 const TargetLowering &TLI, const DataLayout &DL) { 973 BasicBlock *UserBB = User->getParent(); 974 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 975 TruncInst *TruncI = dyn_cast<TruncInst>(User); 976 bool MadeChange = false; 977 978 for (Value::user_iterator TruncUI = TruncI->user_begin(), 979 TruncE = TruncI->user_end(); 980 TruncUI != TruncE;) { 981 982 Use &TruncTheUse = TruncUI.getUse(); 983 Instruction *TruncUser = cast<Instruction>(*TruncUI); 984 // Preincrement use iterator so we don't invalidate it. 985 986 ++TruncUI; 987 988 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 989 if (!ISDOpcode) 990 continue; 991 992 // If the use is actually a legal node, there will not be an 993 // implicit truncate. 994 // FIXME: always querying the result type is just an 995 // approximation; some nodes' legality is determined by the 996 // operand or other means. There's no good way to find out though. 997 if (TLI.isOperationLegalOrCustom( 998 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 999 continue; 1000 1001 // Don't bother for PHI nodes. 1002 if (isa<PHINode>(TruncUser)) 1003 continue; 1004 1005 BasicBlock *TruncUserBB = TruncUser->getParent(); 1006 1007 if (UserBB == TruncUserBB) 1008 continue; 1009 1010 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1011 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1012 1013 if (!InsertedShift && !InsertedTrunc) { 1014 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1015 assert(InsertPt != TruncUserBB->end()); 1016 // Sink the shift 1017 if (ShiftI->getOpcode() == Instruction::AShr) 1018 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1019 "", &*InsertPt); 1020 else 1021 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1022 "", &*InsertPt); 1023 1024 // Sink the trunc 1025 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1026 TruncInsertPt++; 1027 assert(TruncInsertPt != TruncUserBB->end()); 1028 1029 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1030 TruncI->getType(), "", &*TruncInsertPt); 1031 1032 MadeChange = true; 1033 1034 TruncTheUse = InsertedTrunc; 1035 } 1036 } 1037 return MadeChange; 1038 } 1039 1040 /// Sink the shift *right* instruction into user blocks if the uses could 1041 /// potentially be combined with this shift instruction and generate BitExtract 1042 /// instruction. It will only be applied if the architecture supports BitExtract 1043 /// instruction. Here is an example: 1044 /// BB1: 1045 /// %x.extract.shift = lshr i64 %arg1, 32 1046 /// BB2: 1047 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1048 /// ==> 1049 /// 1050 /// BB2: 1051 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1052 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1053 /// 1054 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1055 /// instruction. 1056 /// Return true if any changes are made. 1057 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1058 const TargetLowering &TLI, 1059 const DataLayout &DL) { 1060 BasicBlock *DefBB = ShiftI->getParent(); 1061 1062 /// Only insert instructions in each block once. 1063 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1064 1065 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1066 1067 bool MadeChange = false; 1068 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1069 UI != E;) { 1070 Use &TheUse = UI.getUse(); 1071 Instruction *User = cast<Instruction>(*UI); 1072 // Preincrement use iterator so we don't invalidate it. 1073 ++UI; 1074 1075 // Don't bother for PHI nodes. 1076 if (isa<PHINode>(User)) 1077 continue; 1078 1079 if (!isExtractBitsCandidateUse(User)) 1080 continue; 1081 1082 BasicBlock *UserBB = User->getParent(); 1083 1084 if (UserBB == DefBB) { 1085 // If the shift and truncate instruction are in the same BB. The use of 1086 // the truncate(TruncUse) may still introduce another truncate if not 1087 // legal. In this case, we would like to sink both shift and truncate 1088 // instruction to the BB of TruncUse. 1089 // for example: 1090 // BB1: 1091 // i64 shift.result = lshr i64 opnd, imm 1092 // trunc.result = trunc shift.result to i16 1093 // 1094 // BB2: 1095 // ----> We will have an implicit truncate here if the architecture does 1096 // not have i16 compare. 1097 // cmp i16 trunc.result, opnd2 1098 // 1099 if (isa<TruncInst>(User) && shiftIsLegal 1100 // If the type of the truncate is legal, no trucate will be 1101 // introduced in other basic blocks. 1102 && 1103 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1104 MadeChange = 1105 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1106 1107 continue; 1108 } 1109 // If we have already inserted a shift into this block, use it. 1110 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1111 1112 if (!InsertedShift) { 1113 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1114 assert(InsertPt != UserBB->end()); 1115 1116 if (ShiftI->getOpcode() == Instruction::AShr) 1117 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1118 "", &*InsertPt); 1119 else 1120 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1121 "", &*InsertPt); 1122 1123 MadeChange = true; 1124 } 1125 1126 // Replace a use of the shift with a use of the new shift. 1127 TheUse = InsertedShift; 1128 } 1129 1130 // If we removed all uses, nuke the shift. 1131 if (ShiftI->use_empty()) 1132 ShiftI->eraseFromParent(); 1133 1134 return MadeChange; 1135 } 1136 1137 // Translate a masked load intrinsic like 1138 // <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align, 1139 // <16 x i1> %mask, <16 x i32> %passthru) 1140 // to a chain of basic blocks, with loading element one-by-one if 1141 // the appropriate mask bit is set 1142 // 1143 // %1 = bitcast i8* %addr to i32* 1144 // %2 = extractelement <16 x i1> %mask, i32 0 1145 // %3 = icmp eq i1 %2, true 1146 // br i1 %3, label %cond.load, label %else 1147 // 1148 //cond.load: ; preds = %0 1149 // %4 = getelementptr i32* %1, i32 0 1150 // %5 = load i32* %4 1151 // %6 = insertelement <16 x i32> undef, i32 %5, i32 0 1152 // br label %else 1153 // 1154 //else: ; preds = %0, %cond.load 1155 // %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ] 1156 // %7 = extractelement <16 x i1> %mask, i32 1 1157 // %8 = icmp eq i1 %7, true 1158 // br i1 %8, label %cond.load1, label %else2 1159 // 1160 //cond.load1: ; preds = %else 1161 // %9 = getelementptr i32* %1, i32 1 1162 // %10 = load i32* %9 1163 // %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1 1164 // br label %else2 1165 // 1166 //else2: ; preds = %else, %cond.load1 1167 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1168 // %12 = extractelement <16 x i1> %mask, i32 2 1169 // %13 = icmp eq i1 %12, true 1170 // br i1 %13, label %cond.load4, label %else5 1171 // 1172 static void scalarizeMaskedLoad(CallInst *CI) { 1173 Value *Ptr = CI->getArgOperand(0); 1174 Value *Alignment = CI->getArgOperand(1); 1175 Value *Mask = CI->getArgOperand(2); 1176 Value *Src0 = CI->getArgOperand(3); 1177 1178 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1179 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1180 assert(VecType && "Unexpected return type of masked load intrinsic"); 1181 1182 Type *EltTy = CI->getType()->getVectorElementType(); 1183 1184 IRBuilder<> Builder(CI->getContext()); 1185 Instruction *InsertPt = CI; 1186 BasicBlock *IfBlock = CI->getParent(); 1187 BasicBlock *CondBlock = nullptr; 1188 BasicBlock *PrevIfBlock = CI->getParent(); 1189 1190 Builder.SetInsertPoint(InsertPt); 1191 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1192 1193 // Short-cut if the mask is all-true. 1194 bool IsAllOnesMask = isa<Constant>(Mask) && 1195 cast<Constant>(Mask)->isAllOnesValue(); 1196 1197 if (IsAllOnesMask) { 1198 Value *NewI = Builder.CreateAlignedLoad(Ptr, AlignVal); 1199 CI->replaceAllUsesWith(NewI); 1200 CI->eraseFromParent(); 1201 return; 1202 } 1203 1204 // Adjust alignment for the scalar instruction. 1205 AlignVal = std::min(AlignVal, VecType->getScalarSizeInBits()/8); 1206 // Bitcast %addr fron i8* to EltTy* 1207 Type *NewPtrType = 1208 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1209 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1210 unsigned VectorWidth = VecType->getNumElements(); 1211 1212 Value *UndefVal = UndefValue::get(VecType); 1213 1214 // The result vector 1215 Value *VResult = UndefVal; 1216 1217 if (isa<ConstantVector>(Mask)) { 1218 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1219 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1220 continue; 1221 Value *Gep = 1222 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1223 LoadInst* Load = Builder.CreateAlignedLoad(Gep, AlignVal); 1224 VResult = Builder.CreateInsertElement(VResult, Load, 1225 Builder.getInt32(Idx)); 1226 } 1227 Value *NewI = Builder.CreateSelect(Mask, VResult, Src0); 1228 CI->replaceAllUsesWith(NewI); 1229 CI->eraseFromParent(); 1230 return; 1231 } 1232 1233 PHINode *Phi = nullptr; 1234 Value *PrevPhi = UndefVal; 1235 1236 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1237 1238 // Fill the "else" block, created in the previous iteration 1239 // 1240 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1241 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1242 // %to_load = icmp eq i1 %mask_1, true 1243 // br i1 %to_load, label %cond.load, label %else 1244 // 1245 if (Idx > 0) { 1246 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1247 Phi->addIncoming(VResult, CondBlock); 1248 Phi->addIncoming(PrevPhi, PrevIfBlock); 1249 PrevPhi = Phi; 1250 VResult = Phi; 1251 } 1252 1253 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1254 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1255 ConstantInt::get(Predicate->getType(), 1)); 1256 1257 // Create "cond" block 1258 // 1259 // %EltAddr = getelementptr i32* %1, i32 0 1260 // %Elt = load i32* %EltAddr 1261 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1262 // 1263 CondBlock = IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.load"); 1264 Builder.SetInsertPoint(InsertPt); 1265 1266 Value *Gep = 1267 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1268 LoadInst *Load = Builder.CreateAlignedLoad(Gep, AlignVal); 1269 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx)); 1270 1271 // Create "else" block, fill it in the next iteration 1272 BasicBlock *NewIfBlock = 1273 CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); 1274 Builder.SetInsertPoint(InsertPt); 1275 Instruction *OldBr = IfBlock->getTerminator(); 1276 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1277 OldBr->eraseFromParent(); 1278 PrevIfBlock = IfBlock; 1279 IfBlock = NewIfBlock; 1280 } 1281 1282 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1283 Phi->addIncoming(VResult, CondBlock); 1284 Phi->addIncoming(PrevPhi, PrevIfBlock); 1285 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1286 CI->replaceAllUsesWith(NewI); 1287 CI->eraseFromParent(); 1288 } 1289 1290 // Translate a masked store intrinsic, like 1291 // void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align, 1292 // <16 x i1> %mask) 1293 // to a chain of basic blocks, that stores element one-by-one if 1294 // the appropriate mask bit is set 1295 // 1296 // %1 = bitcast i8* %addr to i32* 1297 // %2 = extractelement <16 x i1> %mask, i32 0 1298 // %3 = icmp eq i1 %2, true 1299 // br i1 %3, label %cond.store, label %else 1300 // 1301 // cond.store: ; preds = %0 1302 // %4 = extractelement <16 x i32> %val, i32 0 1303 // %5 = getelementptr i32* %1, i32 0 1304 // store i32 %4, i32* %5 1305 // br label %else 1306 // 1307 // else: ; preds = %0, %cond.store 1308 // %6 = extractelement <16 x i1> %mask, i32 1 1309 // %7 = icmp eq i1 %6, true 1310 // br i1 %7, label %cond.store1, label %else2 1311 // 1312 // cond.store1: ; preds = %else 1313 // %8 = extractelement <16 x i32> %val, i32 1 1314 // %9 = getelementptr i32* %1, i32 1 1315 // store i32 %8, i32* %9 1316 // br label %else2 1317 // . . . 1318 static void scalarizeMaskedStore(CallInst *CI) { 1319 Value *Src = CI->getArgOperand(0); 1320 Value *Ptr = CI->getArgOperand(1); 1321 Value *Alignment = CI->getArgOperand(2); 1322 Value *Mask = CI->getArgOperand(3); 1323 1324 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1325 VectorType *VecType = dyn_cast<VectorType>(Src->getType()); 1326 assert(VecType && "Unexpected data type in masked store intrinsic"); 1327 1328 Type *EltTy = VecType->getElementType(); 1329 1330 IRBuilder<> Builder(CI->getContext()); 1331 Instruction *InsertPt = CI; 1332 BasicBlock *IfBlock = CI->getParent(); 1333 Builder.SetInsertPoint(InsertPt); 1334 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1335 1336 // Short-cut if the mask is all-true. 1337 bool IsAllOnesMask = isa<Constant>(Mask) && 1338 cast<Constant>(Mask)->isAllOnesValue(); 1339 1340 if (IsAllOnesMask) { 1341 Builder.CreateAlignedStore(Src, Ptr, AlignVal); 1342 CI->eraseFromParent(); 1343 return; 1344 } 1345 1346 // Adjust alignment for the scalar instruction. 1347 AlignVal = std::max(AlignVal, VecType->getScalarSizeInBits()/8); 1348 // Bitcast %addr fron i8* to EltTy* 1349 Type *NewPtrType = 1350 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1351 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1352 unsigned VectorWidth = VecType->getNumElements(); 1353 1354 if (isa<ConstantVector>(Mask)) { 1355 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1356 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1357 continue; 1358 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1359 Value *Gep = 1360 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1361 Builder.CreateAlignedStore(OneElt, Gep, AlignVal); 1362 } 1363 CI->eraseFromParent(); 1364 return; 1365 } 1366 1367 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1368 1369 // Fill the "else" block, created in the previous iteration 1370 // 1371 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1372 // %to_store = icmp eq i1 %mask_1, true 1373 // br i1 %to_store, label %cond.store, label %else 1374 // 1375 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1376 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1377 ConstantInt::get(Predicate->getType(), 1)); 1378 1379 // Create "cond" block 1380 // 1381 // %OneElt = extractelement <16 x i32> %Src, i32 Idx 1382 // %EltAddr = getelementptr i32* %1, i32 0 1383 // %store i32 %OneElt, i32* %EltAddr 1384 // 1385 BasicBlock *CondBlock = 1386 IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.store"); 1387 Builder.SetInsertPoint(InsertPt); 1388 1389 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1390 Value *Gep = 1391 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1392 Builder.CreateAlignedStore(OneElt, Gep, AlignVal); 1393 1394 // Create "else" block, fill it in the next iteration 1395 BasicBlock *NewIfBlock = 1396 CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); 1397 Builder.SetInsertPoint(InsertPt); 1398 Instruction *OldBr = IfBlock->getTerminator(); 1399 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1400 OldBr->eraseFromParent(); 1401 IfBlock = NewIfBlock; 1402 } 1403 CI->eraseFromParent(); 1404 } 1405 1406 // Translate a masked gather intrinsic like 1407 // <16 x i32 > @llvm.masked.gather.v16i32( <16 x i32*> %Ptrs, i32 4, 1408 // <16 x i1> %Mask, <16 x i32> %Src) 1409 // to a chain of basic blocks, with loading element one-by-one if 1410 // the appropriate mask bit is set 1411 // 1412 // % Ptrs = getelementptr i32, i32* %base, <16 x i64> %ind 1413 // % Mask0 = extractelement <16 x i1> %Mask, i32 0 1414 // % ToLoad0 = icmp eq i1 % Mask0, true 1415 // br i1 % ToLoad0, label %cond.load, label %else 1416 // 1417 // cond.load: 1418 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0 1419 // % Load0 = load i32, i32* % Ptr0, align 4 1420 // % Res0 = insertelement <16 x i32> undef, i32 % Load0, i32 0 1421 // br label %else 1422 // 1423 // else: 1424 // %res.phi.else = phi <16 x i32>[% Res0, %cond.load], [undef, % 0] 1425 // % Mask1 = extractelement <16 x i1> %Mask, i32 1 1426 // % ToLoad1 = icmp eq i1 % Mask1, true 1427 // br i1 % ToLoad1, label %cond.load1, label %else2 1428 // 1429 // cond.load1: 1430 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1431 // % Load1 = load i32, i32* % Ptr1, align 4 1432 // % Res1 = insertelement <16 x i32> %res.phi.else, i32 % Load1, i32 1 1433 // br label %else2 1434 // . . . 1435 // % Result = select <16 x i1> %Mask, <16 x i32> %res.phi.select, <16 x i32> %Src 1436 // ret <16 x i32> %Result 1437 static void scalarizeMaskedGather(CallInst *CI) { 1438 Value *Ptrs = CI->getArgOperand(0); 1439 Value *Alignment = CI->getArgOperand(1); 1440 Value *Mask = CI->getArgOperand(2); 1441 Value *Src0 = CI->getArgOperand(3); 1442 1443 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1444 1445 assert(VecType && "Unexpected return type of masked load intrinsic"); 1446 1447 IRBuilder<> Builder(CI->getContext()); 1448 Instruction *InsertPt = CI; 1449 BasicBlock *IfBlock = CI->getParent(); 1450 BasicBlock *CondBlock = nullptr; 1451 BasicBlock *PrevIfBlock = CI->getParent(); 1452 Builder.SetInsertPoint(InsertPt); 1453 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1454 1455 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1456 1457 Value *UndefVal = UndefValue::get(VecType); 1458 1459 // The result vector 1460 Value *VResult = UndefVal; 1461 unsigned VectorWidth = VecType->getNumElements(); 1462 1463 // Shorten the way if the mask is a vector of constants. 1464 bool IsConstMask = isa<ConstantVector>(Mask); 1465 1466 if (IsConstMask) { 1467 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1468 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1469 continue; 1470 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1471 "Ptr" + Twine(Idx)); 1472 LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal, 1473 "Load" + Twine(Idx)); 1474 VResult = Builder.CreateInsertElement(VResult, Load, 1475 Builder.getInt32(Idx), 1476 "Res" + Twine(Idx)); 1477 } 1478 Value *NewI = Builder.CreateSelect(Mask, VResult, Src0); 1479 CI->replaceAllUsesWith(NewI); 1480 CI->eraseFromParent(); 1481 return; 1482 } 1483 1484 PHINode *Phi = nullptr; 1485 Value *PrevPhi = UndefVal; 1486 1487 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1488 1489 // Fill the "else" block, created in the previous iteration 1490 // 1491 // %Mask1 = extractelement <16 x i1> %Mask, i32 1 1492 // %ToLoad1 = icmp eq i1 %Mask1, true 1493 // br i1 %ToLoad1, label %cond.load, label %else 1494 // 1495 if (Idx > 0) { 1496 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1497 Phi->addIncoming(VResult, CondBlock); 1498 Phi->addIncoming(PrevPhi, PrevIfBlock); 1499 PrevPhi = Phi; 1500 VResult = Phi; 1501 } 1502 1503 Value *Predicate = Builder.CreateExtractElement(Mask, 1504 Builder.getInt32(Idx), 1505 "Mask" + Twine(Idx)); 1506 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1507 ConstantInt::get(Predicate->getType(), 1), 1508 "ToLoad" + Twine(Idx)); 1509 1510 // Create "cond" block 1511 // 1512 // %EltAddr = getelementptr i32* %1, i32 0 1513 // %Elt = load i32* %EltAddr 1514 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1515 // 1516 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load"); 1517 Builder.SetInsertPoint(InsertPt); 1518 1519 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1520 "Ptr" + Twine(Idx)); 1521 LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal, 1522 "Load" + Twine(Idx)); 1523 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx), 1524 "Res" + Twine(Idx)); 1525 1526 // Create "else" block, fill it in the next iteration 1527 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1528 Builder.SetInsertPoint(InsertPt); 1529 Instruction *OldBr = IfBlock->getTerminator(); 1530 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1531 OldBr->eraseFromParent(); 1532 PrevIfBlock = IfBlock; 1533 IfBlock = NewIfBlock; 1534 } 1535 1536 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1537 Phi->addIncoming(VResult, CondBlock); 1538 Phi->addIncoming(PrevPhi, PrevIfBlock); 1539 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1540 CI->replaceAllUsesWith(NewI); 1541 CI->eraseFromParent(); 1542 } 1543 1544 // Translate a masked scatter intrinsic, like 1545 // void @llvm.masked.scatter.v16i32(<16 x i32> %Src, <16 x i32*>* %Ptrs, i32 4, 1546 // <16 x i1> %Mask) 1547 // to a chain of basic blocks, that stores element one-by-one if 1548 // the appropriate mask bit is set. 1549 // 1550 // % Ptrs = getelementptr i32, i32* %ptr, <16 x i64> %ind 1551 // % Mask0 = extractelement <16 x i1> % Mask, i32 0 1552 // % ToStore0 = icmp eq i1 % Mask0, true 1553 // br i1 %ToStore0, label %cond.store, label %else 1554 // 1555 // cond.store: 1556 // % Elt0 = extractelement <16 x i32> %Src, i32 0 1557 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0 1558 // store i32 %Elt0, i32* % Ptr0, align 4 1559 // br label %else 1560 // 1561 // else: 1562 // % Mask1 = extractelement <16 x i1> % Mask, i32 1 1563 // % ToStore1 = icmp eq i1 % Mask1, true 1564 // br i1 % ToStore1, label %cond.store1, label %else2 1565 // 1566 // cond.store1: 1567 // % Elt1 = extractelement <16 x i32> %Src, i32 1 1568 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1569 // store i32 % Elt1, i32* % Ptr1, align 4 1570 // br label %else2 1571 // . . . 1572 static void scalarizeMaskedScatter(CallInst *CI) { 1573 Value *Src = CI->getArgOperand(0); 1574 Value *Ptrs = CI->getArgOperand(1); 1575 Value *Alignment = CI->getArgOperand(2); 1576 Value *Mask = CI->getArgOperand(3); 1577 1578 assert(isa<VectorType>(Src->getType()) && 1579 "Unexpected data type in masked scatter intrinsic"); 1580 assert(isa<VectorType>(Ptrs->getType()) && 1581 isa<PointerType>(Ptrs->getType()->getVectorElementType()) && 1582 "Vector of pointers is expected in masked scatter intrinsic"); 1583 1584 IRBuilder<> Builder(CI->getContext()); 1585 Instruction *InsertPt = CI; 1586 BasicBlock *IfBlock = CI->getParent(); 1587 Builder.SetInsertPoint(InsertPt); 1588 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1589 1590 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1591 unsigned VectorWidth = Src->getType()->getVectorNumElements(); 1592 1593 // Shorten the way if the mask is a vector of constants. 1594 bool IsConstMask = isa<ConstantVector>(Mask); 1595 1596 if (IsConstMask) { 1597 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1598 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1599 continue; 1600 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx), 1601 "Elt" + Twine(Idx)); 1602 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1603 "Ptr" + Twine(Idx)); 1604 Builder.CreateAlignedStore(OneElt, Ptr, AlignVal); 1605 } 1606 CI->eraseFromParent(); 1607 return; 1608 } 1609 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1610 // Fill the "else" block, created in the previous iteration 1611 // 1612 // % Mask1 = extractelement <16 x i1> % Mask, i32 Idx 1613 // % ToStore = icmp eq i1 % Mask1, true 1614 // br i1 % ToStore, label %cond.store, label %else 1615 // 1616 Value *Predicate = Builder.CreateExtractElement(Mask, 1617 Builder.getInt32(Idx), 1618 "Mask" + Twine(Idx)); 1619 Value *Cmp = 1620 Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1621 ConstantInt::get(Predicate->getType(), 1), 1622 "ToStore" + Twine(Idx)); 1623 1624 // Create "cond" block 1625 // 1626 // % Elt1 = extractelement <16 x i32> %Src, i32 1 1627 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1628 // %store i32 % Elt1, i32* % Ptr1 1629 // 1630 BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1631 Builder.SetInsertPoint(InsertPt); 1632 1633 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx), 1634 "Elt" + Twine(Idx)); 1635 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1636 "Ptr" + Twine(Idx)); 1637 Builder.CreateAlignedStore(OneElt, Ptr, AlignVal); 1638 1639 // Create "else" block, fill it in the next iteration 1640 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1641 Builder.SetInsertPoint(InsertPt); 1642 Instruction *OldBr = IfBlock->getTerminator(); 1643 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1644 OldBr->eraseFromParent(); 1645 IfBlock = NewIfBlock; 1646 } 1647 CI->eraseFromParent(); 1648 } 1649 1650 /// If counting leading or trailing zeros is an expensive operation and a zero 1651 /// input is defined, add a check for zero to avoid calling the intrinsic. 1652 /// 1653 /// We want to transform: 1654 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1655 /// 1656 /// into: 1657 /// entry: 1658 /// %cmpz = icmp eq i64 %A, 0 1659 /// br i1 %cmpz, label %cond.end, label %cond.false 1660 /// cond.false: 1661 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1662 /// br label %cond.end 1663 /// cond.end: 1664 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1665 /// 1666 /// If the transform is performed, return true and set ModifiedDT to true. 1667 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1668 const TargetLowering *TLI, 1669 const DataLayout *DL, 1670 bool &ModifiedDT) { 1671 if (!TLI || !DL) 1672 return false; 1673 1674 // If a zero input is undefined, it doesn't make sense to despeculate that. 1675 if (match(CountZeros->getOperand(1), m_One())) 1676 return false; 1677 1678 // If it's cheap to speculate, there's nothing to do. 1679 auto IntrinsicID = CountZeros->getIntrinsicID(); 1680 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1681 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1682 return false; 1683 1684 // Only handle legal scalar cases. Anything else requires too much work. 1685 Type *Ty = CountZeros->getType(); 1686 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1687 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSize()) 1688 return false; 1689 1690 // The intrinsic will be sunk behind a compare against zero and branch. 1691 BasicBlock *StartBlock = CountZeros->getParent(); 1692 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1693 1694 // Create another block after the count zero intrinsic. A PHI will be added 1695 // in this block to select the result of the intrinsic or the bit-width 1696 // constant if the input to the intrinsic is zero. 1697 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1698 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1699 1700 // Set up a builder to create a compare, conditional branch, and PHI. 1701 IRBuilder<> Builder(CountZeros->getContext()); 1702 Builder.SetInsertPoint(StartBlock->getTerminator()); 1703 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1704 1705 // Replace the unconditional branch that was created by the first split with 1706 // a compare against zero and a conditional branch. 1707 Value *Zero = Constant::getNullValue(Ty); 1708 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1709 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1710 StartBlock->getTerminator()->eraseFromParent(); 1711 1712 // Create a PHI in the end block to select either the output of the intrinsic 1713 // or the bit width of the operand. 1714 Builder.SetInsertPoint(&EndBlock->front()); 1715 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1716 CountZeros->replaceAllUsesWith(PN); 1717 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1718 PN->addIncoming(BitWidth, StartBlock); 1719 PN->addIncoming(CountZeros, CallBlock); 1720 1721 // We are explicitly handling the zero case, so we can set the intrinsic's 1722 // undefined zero argument to 'true'. This will also prevent reprocessing the 1723 // intrinsic; we only despeculate when a zero input is defined. 1724 CountZeros->setArgOperand(1, Builder.getTrue()); 1725 ModifiedDT = true; 1726 return true; 1727 } 1728 1729 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool& ModifiedDT) { 1730 BasicBlock *BB = CI->getParent(); 1731 1732 // Lower inline assembly if we can. 1733 // If we found an inline asm expession, and if the target knows how to 1734 // lower it to normal LLVM code, do so now. 1735 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1736 if (TLI->ExpandInlineAsm(CI)) { 1737 // Avoid invalidating the iterator. 1738 CurInstIterator = BB->begin(); 1739 // Avoid processing instructions out of order, which could cause 1740 // reuse before a value is defined. 1741 SunkAddrs.clear(); 1742 return true; 1743 } 1744 // Sink address computing for memory operands into the block. 1745 if (optimizeInlineAsmInst(CI)) 1746 return true; 1747 } 1748 1749 // Align the pointer arguments to this call if the target thinks it's a good 1750 // idea 1751 unsigned MinSize, PrefAlign; 1752 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1753 for (auto &Arg : CI->arg_operands()) { 1754 // We want to align both objects whose address is used directly and 1755 // objects whose address is used in casts and GEPs, though it only makes 1756 // sense for GEPs if the offset is a multiple of the desired alignment and 1757 // if size - offset meets the size threshold. 1758 if (!Arg->getType()->isPointerTy()) 1759 continue; 1760 APInt Offset(DL->getPointerSizeInBits( 1761 cast<PointerType>(Arg->getType())->getAddressSpace()), 1762 0); 1763 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1764 uint64_t Offset2 = Offset.getLimitedValue(); 1765 if ((Offset2 & (PrefAlign-1)) != 0) 1766 continue; 1767 AllocaInst *AI; 1768 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1769 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1770 AI->setAlignment(PrefAlign); 1771 // Global variables can only be aligned if they are defined in this 1772 // object (i.e. they are uniquely initialized in this object), and 1773 // over-aligning global variables that have an explicit section is 1774 // forbidden. 1775 GlobalVariable *GV; 1776 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1777 GV->getAlignment() < PrefAlign && 1778 DL->getTypeAllocSize(GV->getValueType()) >= 1779 MinSize + Offset2) 1780 GV->setAlignment(PrefAlign); 1781 } 1782 // If this is a memcpy (or similar) then we may be able to improve the 1783 // alignment 1784 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1785 unsigned Align = getKnownAlignment(MI->getDest(), *DL); 1786 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 1787 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL)); 1788 if (Align > MI->getAlignment()) 1789 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align)); 1790 } 1791 } 1792 1793 // If we have a cold call site, try to sink addressing computation into the 1794 // cold block. This interacts with our handling for loads and stores to 1795 // ensure that we can fold all uses of a potential addressing computation 1796 // into their uses. TODO: generalize this to work over profiling data 1797 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1798 for (auto &Arg : CI->arg_operands()) { 1799 if (!Arg->getType()->isPointerTy()) 1800 continue; 1801 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1802 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1803 } 1804 1805 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1806 if (II) { 1807 switch (II->getIntrinsicID()) { 1808 default: break; 1809 case Intrinsic::objectsize: { 1810 // Lower all uses of llvm.objectsize.* 1811 uint64_t Size; 1812 Type *ReturnTy = CI->getType(); 1813 Constant *RetVal = nullptr; 1814 ConstantInt *Op1 = cast<ConstantInt>(II->getArgOperand(1)); 1815 ObjSizeMode Mode = Op1->isZero() ? ObjSizeMode::Max : ObjSizeMode::Min; 1816 if (getObjectSize(II->getArgOperand(0), 1817 Size, *DL, TLInfo, false, Mode)) { 1818 RetVal = ConstantInt::get(ReturnTy, Size); 1819 } else { 1820 RetVal = ConstantInt::get(ReturnTy, 1821 Mode == ObjSizeMode::Min ? 0 : -1ULL); 1822 } 1823 // Substituting this can cause recursive simplifications, which can 1824 // invalidate our iterator. Use a WeakVH to hold onto it in case this 1825 // happens. 1826 Value *CurValue = &*CurInstIterator; 1827 WeakVH IterHandle(CurValue); 1828 1829 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1830 1831 // If the iterator instruction was recursively deleted, start over at the 1832 // start of the block. 1833 if (IterHandle != CurValue) { 1834 CurInstIterator = BB->begin(); 1835 SunkAddrs.clear(); 1836 } 1837 return true; 1838 } 1839 case Intrinsic::masked_load: { 1840 // Scalarize unsupported vector masked load 1841 if (!TTI->isLegalMaskedLoad(CI->getType())) { 1842 scalarizeMaskedLoad(CI); 1843 ModifiedDT = true; 1844 return true; 1845 } 1846 return false; 1847 } 1848 case Intrinsic::masked_store: { 1849 if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType())) { 1850 scalarizeMaskedStore(CI); 1851 ModifiedDT = true; 1852 return true; 1853 } 1854 return false; 1855 } 1856 case Intrinsic::masked_gather: { 1857 if (!TTI->isLegalMaskedGather(CI->getType())) { 1858 scalarizeMaskedGather(CI); 1859 ModifiedDT = true; 1860 return true; 1861 } 1862 return false; 1863 } 1864 case Intrinsic::masked_scatter: { 1865 if (!TTI->isLegalMaskedScatter(CI->getArgOperand(0)->getType())) { 1866 scalarizeMaskedScatter(CI); 1867 ModifiedDT = true; 1868 return true; 1869 } 1870 return false; 1871 } 1872 case Intrinsic::aarch64_stlxr: 1873 case Intrinsic::aarch64_stxr: { 1874 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1875 if (!ExtVal || !ExtVal->hasOneUse() || 1876 ExtVal->getParent() == CI->getParent()) 1877 return false; 1878 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1879 ExtVal->moveBefore(CI); 1880 // Mark this instruction as "inserted by CGP", so that other 1881 // optimizations don't touch it. 1882 InsertedInsts.insert(ExtVal); 1883 return true; 1884 } 1885 case Intrinsic::invariant_group_barrier: 1886 II->replaceAllUsesWith(II->getArgOperand(0)); 1887 II->eraseFromParent(); 1888 return true; 1889 1890 case Intrinsic::cttz: 1891 case Intrinsic::ctlz: 1892 // If counting zeros is expensive, try to avoid it. 1893 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 1894 } 1895 1896 if (TLI) { 1897 // Unknown address space. 1898 // TODO: Target hook to pick which address space the intrinsic cares 1899 // about? 1900 unsigned AddrSpace = ~0u; 1901 SmallVector<Value*, 2> PtrOps; 1902 Type *AccessTy; 1903 if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy, AddrSpace)) 1904 while (!PtrOps.empty()) 1905 if (optimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy, AddrSpace)) 1906 return true; 1907 } 1908 } 1909 1910 // From here on out we're working with named functions. 1911 if (!CI->getCalledFunction()) return false; 1912 1913 // Lower all default uses of _chk calls. This is very similar 1914 // to what InstCombineCalls does, but here we are only lowering calls 1915 // to fortified library functions (e.g. __memcpy_chk) that have the default 1916 // "don't know" as the objectsize. Anything else should be left alone. 1917 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1918 if (Value *V = Simplifier.optimizeCall(CI)) { 1919 CI->replaceAllUsesWith(V); 1920 CI->eraseFromParent(); 1921 return true; 1922 } 1923 return false; 1924 } 1925 1926 /// Look for opportunities to duplicate return instructions to the predecessor 1927 /// to enable tail call optimizations. The case it is currently looking for is: 1928 /// @code 1929 /// bb0: 1930 /// %tmp0 = tail call i32 @f0() 1931 /// br label %return 1932 /// bb1: 1933 /// %tmp1 = tail call i32 @f1() 1934 /// br label %return 1935 /// bb2: 1936 /// %tmp2 = tail call i32 @f2() 1937 /// br label %return 1938 /// return: 1939 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1940 /// ret i32 %retval 1941 /// @endcode 1942 /// 1943 /// => 1944 /// 1945 /// @code 1946 /// bb0: 1947 /// %tmp0 = tail call i32 @f0() 1948 /// ret i32 %tmp0 1949 /// bb1: 1950 /// %tmp1 = tail call i32 @f1() 1951 /// ret i32 %tmp1 1952 /// bb2: 1953 /// %tmp2 = tail call i32 @f2() 1954 /// ret i32 %tmp2 1955 /// @endcode 1956 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 1957 if (!TLI) 1958 return false; 1959 1960 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()); 1961 if (!RI) 1962 return false; 1963 1964 PHINode *PN = nullptr; 1965 BitCastInst *BCI = nullptr; 1966 Value *V = RI->getReturnValue(); 1967 if (V) { 1968 BCI = dyn_cast<BitCastInst>(V); 1969 if (BCI) 1970 V = BCI->getOperand(0); 1971 1972 PN = dyn_cast<PHINode>(V); 1973 if (!PN) 1974 return false; 1975 } 1976 1977 if (PN && PN->getParent() != BB) 1978 return false; 1979 1980 // It's not safe to eliminate the sign / zero extension of the return value. 1981 // See llvm::isInTailCallPosition(). 1982 const Function *F = BB->getParent(); 1983 AttributeSet CallerAttrs = F->getAttributes(); 1984 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 1985 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 1986 return false; 1987 1988 // Make sure there are no instructions between the PHI and return, or that the 1989 // return is the first instruction in the block. 1990 if (PN) { 1991 BasicBlock::iterator BI = BB->begin(); 1992 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1993 if (&*BI == BCI) 1994 // Also skip over the bitcast. 1995 ++BI; 1996 if (&*BI != RI) 1997 return false; 1998 } else { 1999 BasicBlock::iterator BI = BB->begin(); 2000 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2001 if (&*BI != RI) 2002 return false; 2003 } 2004 2005 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2006 /// call. 2007 SmallVector<CallInst*, 4> TailCalls; 2008 if (PN) { 2009 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2010 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 2011 // Make sure the phi value is indeed produced by the tail call. 2012 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 2013 TLI->mayBeEmittedAsTailCall(CI)) 2014 TailCalls.push_back(CI); 2015 } 2016 } else { 2017 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2018 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2019 if (!VisitedBBs.insert(*PI).second) 2020 continue; 2021 2022 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2023 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2024 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2025 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2026 if (RI == RE) 2027 continue; 2028 2029 CallInst *CI = dyn_cast<CallInst>(&*RI); 2030 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI)) 2031 TailCalls.push_back(CI); 2032 } 2033 } 2034 2035 bool Changed = false; 2036 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 2037 CallInst *CI = TailCalls[i]; 2038 CallSite CS(CI); 2039 2040 // Conservatively require the attributes of the call to match those of the 2041 // return. Ignore noalias because it doesn't affect the call sequence. 2042 AttributeSet CalleeAttrs = CS.getAttributes(); 2043 if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 2044 removeAttribute(Attribute::NoAlias) != 2045 AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 2046 removeAttribute(Attribute::NoAlias)) 2047 continue; 2048 2049 // Make sure the call instruction is followed by an unconditional branch to 2050 // the return block. 2051 BasicBlock *CallBB = CI->getParent(); 2052 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 2053 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2054 continue; 2055 2056 // Duplicate the return into CallBB. 2057 (void)FoldReturnIntoUncondBranch(RI, BB, CallBB); 2058 ModifiedDT = Changed = true; 2059 ++NumRetsDup; 2060 } 2061 2062 // If we eliminated all predecessors of the block, delete the block now. 2063 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2064 BB->eraseFromParent(); 2065 2066 return Changed; 2067 } 2068 2069 //===----------------------------------------------------------------------===// 2070 // Memory Optimization 2071 //===----------------------------------------------------------------------===// 2072 2073 namespace { 2074 2075 /// This is an extended version of TargetLowering::AddrMode 2076 /// which holds actual Value*'s for register values. 2077 struct ExtAddrMode : public TargetLowering::AddrMode { 2078 Value *BaseReg; 2079 Value *ScaledReg; 2080 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} 2081 void print(raw_ostream &OS) const; 2082 void dump() const; 2083 2084 bool operator==(const ExtAddrMode& O) const { 2085 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && 2086 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && 2087 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); 2088 } 2089 }; 2090 2091 #ifndef NDEBUG 2092 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2093 AM.print(OS); 2094 return OS; 2095 } 2096 #endif 2097 2098 void ExtAddrMode::print(raw_ostream &OS) const { 2099 bool NeedPlus = false; 2100 OS << "["; 2101 if (BaseGV) { 2102 OS << (NeedPlus ? " + " : "") 2103 << "GV:"; 2104 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2105 NeedPlus = true; 2106 } 2107 2108 if (BaseOffs) { 2109 OS << (NeedPlus ? " + " : "") 2110 << BaseOffs; 2111 NeedPlus = true; 2112 } 2113 2114 if (BaseReg) { 2115 OS << (NeedPlus ? " + " : "") 2116 << "Base:"; 2117 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2118 NeedPlus = true; 2119 } 2120 if (Scale) { 2121 OS << (NeedPlus ? " + " : "") 2122 << Scale << "*"; 2123 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2124 } 2125 2126 OS << ']'; 2127 } 2128 2129 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2130 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2131 print(dbgs()); 2132 dbgs() << '\n'; 2133 } 2134 #endif 2135 2136 /// \brief This class provides transaction based operation on the IR. 2137 /// Every change made through this class is recorded in the internal state and 2138 /// can be undone (rollback) until commit is called. 2139 class TypePromotionTransaction { 2140 2141 /// \brief This represents the common interface of the individual transaction. 2142 /// Each class implements the logic for doing one specific modification on 2143 /// the IR via the TypePromotionTransaction. 2144 class TypePromotionAction { 2145 protected: 2146 /// The Instruction modified. 2147 Instruction *Inst; 2148 2149 public: 2150 /// \brief Constructor of the action. 2151 /// The constructor performs the related action on the IR. 2152 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2153 2154 virtual ~TypePromotionAction() {} 2155 2156 /// \brief Undo the modification done by this action. 2157 /// When this method is called, the IR must be in the same state as it was 2158 /// before this action was applied. 2159 /// \pre Undoing the action works if and only if the IR is in the exact same 2160 /// state as it was directly after this action was applied. 2161 virtual void undo() = 0; 2162 2163 /// \brief Advocate every change made by this action. 2164 /// When the results on the IR of the action are to be kept, it is important 2165 /// to call this function, otherwise hidden information may be kept forever. 2166 virtual void commit() { 2167 // Nothing to be done, this action is not doing anything. 2168 } 2169 }; 2170 2171 /// \brief Utility to remember the position of an instruction. 2172 class InsertionHandler { 2173 /// Position of an instruction. 2174 /// Either an instruction: 2175 /// - Is the first in a basic block: BB is used. 2176 /// - Has a previous instructon: PrevInst is used. 2177 union { 2178 Instruction *PrevInst; 2179 BasicBlock *BB; 2180 } Point; 2181 /// Remember whether or not the instruction had a previous instruction. 2182 bool HasPrevInstruction; 2183 2184 public: 2185 /// \brief Record the position of \p Inst. 2186 InsertionHandler(Instruction *Inst) { 2187 BasicBlock::iterator It = Inst->getIterator(); 2188 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2189 if (HasPrevInstruction) 2190 Point.PrevInst = &*--It; 2191 else 2192 Point.BB = Inst->getParent(); 2193 } 2194 2195 /// \brief Insert \p Inst at the recorded position. 2196 void insert(Instruction *Inst) { 2197 if (HasPrevInstruction) { 2198 if (Inst->getParent()) 2199 Inst->removeFromParent(); 2200 Inst->insertAfter(Point.PrevInst); 2201 } else { 2202 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2203 if (Inst->getParent()) 2204 Inst->moveBefore(Position); 2205 else 2206 Inst->insertBefore(Position); 2207 } 2208 } 2209 }; 2210 2211 /// \brief Move an instruction before another. 2212 class InstructionMoveBefore : public TypePromotionAction { 2213 /// Original position of the instruction. 2214 InsertionHandler Position; 2215 2216 public: 2217 /// \brief Move \p Inst before \p Before. 2218 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2219 : TypePromotionAction(Inst), Position(Inst) { 2220 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 2221 Inst->moveBefore(Before); 2222 } 2223 2224 /// \brief Move the instruction back to its original position. 2225 void undo() override { 2226 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2227 Position.insert(Inst); 2228 } 2229 }; 2230 2231 /// \brief Set the operand of an instruction with a new value. 2232 class OperandSetter : public TypePromotionAction { 2233 /// Original operand of the instruction. 2234 Value *Origin; 2235 /// Index of the modified instruction. 2236 unsigned Idx; 2237 2238 public: 2239 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 2240 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2241 : TypePromotionAction(Inst), Idx(Idx) { 2242 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2243 << "for:" << *Inst << "\n" 2244 << "with:" << *NewVal << "\n"); 2245 Origin = Inst->getOperand(Idx); 2246 Inst->setOperand(Idx, NewVal); 2247 } 2248 2249 /// \brief Restore the original value of the instruction. 2250 void undo() override { 2251 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2252 << "for: " << *Inst << "\n" 2253 << "with: " << *Origin << "\n"); 2254 Inst->setOperand(Idx, Origin); 2255 } 2256 }; 2257 2258 /// \brief Hide the operands of an instruction. 2259 /// Do as if this instruction was not using any of its operands. 2260 class OperandsHider : public TypePromotionAction { 2261 /// The list of original operands. 2262 SmallVector<Value *, 4> OriginalValues; 2263 2264 public: 2265 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 2266 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2267 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2268 unsigned NumOpnds = Inst->getNumOperands(); 2269 OriginalValues.reserve(NumOpnds); 2270 for (unsigned It = 0; It < NumOpnds; ++It) { 2271 // Save the current operand. 2272 Value *Val = Inst->getOperand(It); 2273 OriginalValues.push_back(Val); 2274 // Set a dummy one. 2275 // We could use OperandSetter here, but that would imply an overhead 2276 // that we are not willing to pay. 2277 Inst->setOperand(It, UndefValue::get(Val->getType())); 2278 } 2279 } 2280 2281 /// \brief Restore the original list of uses. 2282 void undo() override { 2283 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2284 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2285 Inst->setOperand(It, OriginalValues[It]); 2286 } 2287 }; 2288 2289 /// \brief Build a truncate instruction. 2290 class TruncBuilder : public TypePromotionAction { 2291 Value *Val; 2292 public: 2293 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 2294 /// result. 2295 /// trunc Opnd to Ty. 2296 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2297 IRBuilder<> Builder(Opnd); 2298 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2299 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2300 } 2301 2302 /// \brief Get the built value. 2303 Value *getBuiltValue() { return Val; } 2304 2305 /// \brief Remove the built instruction. 2306 void undo() override { 2307 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2308 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2309 IVal->eraseFromParent(); 2310 } 2311 }; 2312 2313 /// \brief Build a sign extension instruction. 2314 class SExtBuilder : public TypePromotionAction { 2315 Value *Val; 2316 public: 2317 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 2318 /// result. 2319 /// sext Opnd to Ty. 2320 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2321 : TypePromotionAction(InsertPt) { 2322 IRBuilder<> Builder(InsertPt); 2323 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2324 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2325 } 2326 2327 /// \brief Get the built value. 2328 Value *getBuiltValue() { return Val; } 2329 2330 /// \brief Remove the built instruction. 2331 void undo() override { 2332 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2333 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2334 IVal->eraseFromParent(); 2335 } 2336 }; 2337 2338 /// \brief Build a zero extension instruction. 2339 class ZExtBuilder : public TypePromotionAction { 2340 Value *Val; 2341 public: 2342 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 2343 /// result. 2344 /// zext Opnd to Ty. 2345 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2346 : TypePromotionAction(InsertPt) { 2347 IRBuilder<> Builder(InsertPt); 2348 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2349 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2350 } 2351 2352 /// \brief Get the built value. 2353 Value *getBuiltValue() { return Val; } 2354 2355 /// \brief Remove the built instruction. 2356 void undo() override { 2357 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2358 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2359 IVal->eraseFromParent(); 2360 } 2361 }; 2362 2363 /// \brief Mutate an instruction to another type. 2364 class TypeMutator : public TypePromotionAction { 2365 /// Record the original type. 2366 Type *OrigTy; 2367 2368 public: 2369 /// \brief Mutate the type of \p Inst into \p NewTy. 2370 TypeMutator(Instruction *Inst, Type *NewTy) 2371 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2372 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2373 << "\n"); 2374 Inst->mutateType(NewTy); 2375 } 2376 2377 /// \brief Mutate the instruction back to its original type. 2378 void undo() override { 2379 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2380 << "\n"); 2381 Inst->mutateType(OrigTy); 2382 } 2383 }; 2384 2385 /// \brief Replace the uses of an instruction by another instruction. 2386 class UsesReplacer : public TypePromotionAction { 2387 /// Helper structure to keep track of the replaced uses. 2388 struct InstructionAndIdx { 2389 /// The instruction using the instruction. 2390 Instruction *Inst; 2391 /// The index where this instruction is used for Inst. 2392 unsigned Idx; 2393 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2394 : Inst(Inst), Idx(Idx) {} 2395 }; 2396 2397 /// Keep track of the original uses (pair Instruction, Index). 2398 SmallVector<InstructionAndIdx, 4> OriginalUses; 2399 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator; 2400 2401 public: 2402 /// \brief Replace all the use of \p Inst by \p New. 2403 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2404 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2405 << "\n"); 2406 // Record the original uses. 2407 for (Use &U : Inst->uses()) { 2408 Instruction *UserI = cast<Instruction>(U.getUser()); 2409 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2410 } 2411 // Now, we can replace the uses. 2412 Inst->replaceAllUsesWith(New); 2413 } 2414 2415 /// \brief Reassign the original uses of Inst to Inst. 2416 void undo() override { 2417 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2418 for (use_iterator UseIt = OriginalUses.begin(), 2419 EndIt = OriginalUses.end(); 2420 UseIt != EndIt; ++UseIt) { 2421 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2422 } 2423 } 2424 }; 2425 2426 /// \brief Remove an instruction from the IR. 2427 class InstructionRemover : public TypePromotionAction { 2428 /// Original position of the instruction. 2429 InsertionHandler Inserter; 2430 /// Helper structure to hide all the link to the instruction. In other 2431 /// words, this helps to do as if the instruction was removed. 2432 OperandsHider Hider; 2433 /// Keep track of the uses replaced, if any. 2434 UsesReplacer *Replacer; 2435 2436 public: 2437 /// \brief Remove all reference of \p Inst and optinally replace all its 2438 /// uses with New. 2439 /// \pre If !Inst->use_empty(), then New != nullptr 2440 InstructionRemover(Instruction *Inst, Value *New = nullptr) 2441 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2442 Replacer(nullptr) { 2443 if (New) 2444 Replacer = new UsesReplacer(Inst, New); 2445 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2446 Inst->removeFromParent(); 2447 } 2448 2449 ~InstructionRemover() override { delete Replacer; } 2450 2451 /// \brief Really remove the instruction. 2452 void commit() override { delete Inst; } 2453 2454 /// \brief Resurrect the instruction and reassign it to the proper uses if 2455 /// new value was provided when build this action. 2456 void undo() override { 2457 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2458 Inserter.insert(Inst); 2459 if (Replacer) 2460 Replacer->undo(); 2461 Hider.undo(); 2462 } 2463 }; 2464 2465 public: 2466 /// Restoration point. 2467 /// The restoration point is a pointer to an action instead of an iterator 2468 /// because the iterator may be invalidated but not the pointer. 2469 typedef const TypePromotionAction *ConstRestorationPt; 2470 /// Advocate every changes made in that transaction. 2471 void commit(); 2472 /// Undo all the changes made after the given point. 2473 void rollback(ConstRestorationPt Point); 2474 /// Get the current restoration point. 2475 ConstRestorationPt getRestorationPoint() const; 2476 2477 /// \name API for IR modification with state keeping to support rollback. 2478 /// @{ 2479 /// Same as Instruction::setOperand. 2480 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2481 /// Same as Instruction::eraseFromParent. 2482 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2483 /// Same as Value::replaceAllUsesWith. 2484 void replaceAllUsesWith(Instruction *Inst, Value *New); 2485 /// Same as Value::mutateType. 2486 void mutateType(Instruction *Inst, Type *NewTy); 2487 /// Same as IRBuilder::createTrunc. 2488 Value *createTrunc(Instruction *Opnd, Type *Ty); 2489 /// Same as IRBuilder::createSExt. 2490 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2491 /// Same as IRBuilder::createZExt. 2492 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2493 /// Same as Instruction::moveBefore. 2494 void moveBefore(Instruction *Inst, Instruction *Before); 2495 /// @} 2496 2497 private: 2498 /// The ordered list of actions made so far. 2499 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2500 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt; 2501 }; 2502 2503 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2504 Value *NewVal) { 2505 Actions.push_back( 2506 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal)); 2507 } 2508 2509 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2510 Value *NewVal) { 2511 Actions.push_back( 2512 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal)); 2513 } 2514 2515 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2516 Value *New) { 2517 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2518 } 2519 2520 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2521 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2522 } 2523 2524 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2525 Type *Ty) { 2526 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2527 Value *Val = Ptr->getBuiltValue(); 2528 Actions.push_back(std::move(Ptr)); 2529 return Val; 2530 } 2531 2532 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2533 Value *Opnd, Type *Ty) { 2534 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2535 Value *Val = Ptr->getBuiltValue(); 2536 Actions.push_back(std::move(Ptr)); 2537 return Val; 2538 } 2539 2540 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2541 Value *Opnd, Type *Ty) { 2542 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2543 Value *Val = Ptr->getBuiltValue(); 2544 Actions.push_back(std::move(Ptr)); 2545 return Val; 2546 } 2547 2548 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2549 Instruction *Before) { 2550 Actions.push_back( 2551 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before)); 2552 } 2553 2554 TypePromotionTransaction::ConstRestorationPt 2555 TypePromotionTransaction::getRestorationPoint() const { 2556 return !Actions.empty() ? Actions.back().get() : nullptr; 2557 } 2558 2559 void TypePromotionTransaction::commit() { 2560 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2561 ++It) 2562 (*It)->commit(); 2563 Actions.clear(); 2564 } 2565 2566 void TypePromotionTransaction::rollback( 2567 TypePromotionTransaction::ConstRestorationPt Point) { 2568 while (!Actions.empty() && Point != Actions.back().get()) { 2569 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2570 Curr->undo(); 2571 } 2572 } 2573 2574 /// \brief A helper class for matching addressing modes. 2575 /// 2576 /// This encapsulates the logic for matching the target-legal addressing modes. 2577 class AddressingModeMatcher { 2578 SmallVectorImpl<Instruction*> &AddrModeInsts; 2579 const TargetMachine &TM; 2580 const TargetLowering &TLI; 2581 const DataLayout &DL; 2582 2583 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2584 /// the memory instruction that we're computing this address for. 2585 Type *AccessTy; 2586 unsigned AddrSpace; 2587 Instruction *MemoryInst; 2588 2589 /// This is the addressing mode that we're building up. This is 2590 /// part of the return value of this addressing mode matching stuff. 2591 ExtAddrMode &AddrMode; 2592 2593 /// The instructions inserted by other CodeGenPrepare optimizations. 2594 const SetOfInstrs &InsertedInsts; 2595 /// A map from the instructions to their type before promotion. 2596 InstrToOrigTy &PromotedInsts; 2597 /// The ongoing transaction where every action should be registered. 2598 TypePromotionTransaction &TPT; 2599 2600 /// This is set to true when we should not do profitability checks. 2601 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2602 bool IgnoreProfitability; 2603 2604 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, 2605 const TargetMachine &TM, Type *AT, unsigned AS, 2606 Instruction *MI, ExtAddrMode &AM, 2607 const SetOfInstrs &InsertedInsts, 2608 InstrToOrigTy &PromotedInsts, 2609 TypePromotionTransaction &TPT) 2610 : AddrModeInsts(AMI), TM(TM), 2611 TLI(*TM.getSubtargetImpl(*MI->getParent()->getParent()) 2612 ->getTargetLowering()), 2613 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2614 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2615 PromotedInsts(PromotedInsts), TPT(TPT) { 2616 IgnoreProfitability = false; 2617 } 2618 public: 2619 2620 /// Find the maximal addressing mode that a load/store of V can fold, 2621 /// give an access type of AccessTy. This returns a list of involved 2622 /// instructions in AddrModeInsts. 2623 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2624 /// optimizations. 2625 /// \p PromotedInsts maps the instructions to their type before promotion. 2626 /// \p The ongoing transaction where every action should be registered. 2627 static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, 2628 Instruction *MemoryInst, 2629 SmallVectorImpl<Instruction*> &AddrModeInsts, 2630 const TargetMachine &TM, 2631 const SetOfInstrs &InsertedInsts, 2632 InstrToOrigTy &PromotedInsts, 2633 TypePromotionTransaction &TPT) { 2634 ExtAddrMode Result; 2635 2636 bool Success = AddressingModeMatcher(AddrModeInsts, TM, AccessTy, AS, 2637 MemoryInst, Result, InsertedInsts, 2638 PromotedInsts, TPT).matchAddr(V, 0); 2639 (void)Success; assert(Success && "Couldn't select *anything*?"); 2640 return Result; 2641 } 2642 private: 2643 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2644 bool matchAddr(Value *V, unsigned Depth); 2645 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 2646 bool *MovedAway = nullptr); 2647 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2648 ExtAddrMode &AMBefore, 2649 ExtAddrMode &AMAfter); 2650 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2651 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2652 Value *PromotedOperand) const; 2653 }; 2654 2655 /// Try adding ScaleReg*Scale to the current addressing mode. 2656 /// Return true and update AddrMode if this addr mode is legal for the target, 2657 /// false if not. 2658 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 2659 unsigned Depth) { 2660 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 2661 // mode. Just process that directly. 2662 if (Scale == 1) 2663 return matchAddr(ScaleReg, Depth); 2664 2665 // If the scale is 0, it takes nothing to add this. 2666 if (Scale == 0) 2667 return true; 2668 2669 // If we already have a scale of this value, we can add to it, otherwise, we 2670 // need an available scale field. 2671 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 2672 return false; 2673 2674 ExtAddrMode TestAddrMode = AddrMode; 2675 2676 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 2677 // [A+B + A*7] -> [B+A*8]. 2678 TestAddrMode.Scale += Scale; 2679 TestAddrMode.ScaledReg = ScaleReg; 2680 2681 // If the new address isn't legal, bail out. 2682 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 2683 return false; 2684 2685 // It was legal, so commit it. 2686 AddrMode = TestAddrMode; 2687 2688 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 2689 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 2690 // X*Scale + C*Scale to addr mode. 2691 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 2692 if (isa<Instruction>(ScaleReg) && // not a constant expr. 2693 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 2694 TestAddrMode.ScaledReg = AddLHS; 2695 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 2696 2697 // If this addressing mode is legal, commit it and remember that we folded 2698 // this instruction. 2699 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 2700 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 2701 AddrMode = TestAddrMode; 2702 return true; 2703 } 2704 } 2705 2706 // Otherwise, not (x+c)*scale, just return what we have. 2707 return true; 2708 } 2709 2710 /// This is a little filter, which returns true if an addressing computation 2711 /// involving I might be folded into a load/store accessing it. 2712 /// This doesn't need to be perfect, but needs to accept at least 2713 /// the set of instructions that MatchOperationAddr can. 2714 static bool MightBeFoldableInst(Instruction *I) { 2715 switch (I->getOpcode()) { 2716 case Instruction::BitCast: 2717 case Instruction::AddrSpaceCast: 2718 // Don't touch identity bitcasts. 2719 if (I->getType() == I->getOperand(0)->getType()) 2720 return false; 2721 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 2722 case Instruction::PtrToInt: 2723 // PtrToInt is always a noop, as we know that the int type is pointer sized. 2724 return true; 2725 case Instruction::IntToPtr: 2726 // We know the input is intptr_t, so this is foldable. 2727 return true; 2728 case Instruction::Add: 2729 return true; 2730 case Instruction::Mul: 2731 case Instruction::Shl: 2732 // Can only handle X*C and X << C. 2733 return isa<ConstantInt>(I->getOperand(1)); 2734 case Instruction::GetElementPtr: 2735 return true; 2736 default: 2737 return false; 2738 } 2739 } 2740 2741 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 2742 /// \note \p Val is assumed to be the product of some type promotion. 2743 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 2744 /// to be legal, as the non-promoted value would have had the same state. 2745 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 2746 const DataLayout &DL, Value *Val) { 2747 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 2748 if (!PromotedInst) 2749 return false; 2750 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 2751 // If the ISDOpcode is undefined, it was undefined before the promotion. 2752 if (!ISDOpcode) 2753 return true; 2754 // Otherwise, check if the promoted instruction is legal or not. 2755 return TLI.isOperationLegalOrCustom( 2756 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 2757 } 2758 2759 /// \brief Hepler class to perform type promotion. 2760 class TypePromotionHelper { 2761 /// \brief Utility function to check whether or not a sign or zero extension 2762 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 2763 /// either using the operands of \p Inst or promoting \p Inst. 2764 /// The type of the extension is defined by \p IsSExt. 2765 /// In other words, check if: 2766 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 2767 /// #1 Promotion applies: 2768 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 2769 /// #2 Operand reuses: 2770 /// ext opnd1 to ConsideredExtType. 2771 /// \p PromotedInsts maps the instructions to their type before promotion. 2772 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 2773 const InstrToOrigTy &PromotedInsts, bool IsSExt); 2774 2775 /// \brief Utility function to determine if \p OpIdx should be promoted when 2776 /// promoting \p Inst. 2777 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 2778 return !(isa<SelectInst>(Inst) && OpIdx == 0); 2779 } 2780 2781 /// \brief Utility function to promote the operand of \p Ext when this 2782 /// operand is a promotable trunc or sext or zext. 2783 /// \p PromotedInsts maps the instructions to their type before promotion. 2784 /// \p CreatedInstsCost[out] contains the cost of all instructions 2785 /// created to promote the operand of Ext. 2786 /// Newly added extensions are inserted in \p Exts. 2787 /// Newly added truncates are inserted in \p Truncs. 2788 /// Should never be called directly. 2789 /// \return The promoted value which is used instead of Ext. 2790 static Value *promoteOperandForTruncAndAnyExt( 2791 Instruction *Ext, TypePromotionTransaction &TPT, 2792 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2793 SmallVectorImpl<Instruction *> *Exts, 2794 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 2795 2796 /// \brief Utility function to promote the operand of \p Ext when this 2797 /// operand is promotable and is not a supported trunc or sext. 2798 /// \p PromotedInsts maps the instructions to their type before promotion. 2799 /// \p CreatedInstsCost[out] contains the cost of all the instructions 2800 /// created to promote the operand of Ext. 2801 /// Newly added extensions are inserted in \p Exts. 2802 /// Newly added truncates are inserted in \p Truncs. 2803 /// Should never be called directly. 2804 /// \return The promoted value which is used instead of Ext. 2805 static Value *promoteOperandForOther(Instruction *Ext, 2806 TypePromotionTransaction &TPT, 2807 InstrToOrigTy &PromotedInsts, 2808 unsigned &CreatedInstsCost, 2809 SmallVectorImpl<Instruction *> *Exts, 2810 SmallVectorImpl<Instruction *> *Truncs, 2811 const TargetLowering &TLI, bool IsSExt); 2812 2813 /// \see promoteOperandForOther. 2814 static Value *signExtendOperandForOther( 2815 Instruction *Ext, TypePromotionTransaction &TPT, 2816 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2817 SmallVectorImpl<Instruction *> *Exts, 2818 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2819 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2820 Exts, Truncs, TLI, true); 2821 } 2822 2823 /// \see promoteOperandForOther. 2824 static Value *zeroExtendOperandForOther( 2825 Instruction *Ext, TypePromotionTransaction &TPT, 2826 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2827 SmallVectorImpl<Instruction *> *Exts, 2828 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2829 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2830 Exts, Truncs, TLI, false); 2831 } 2832 2833 public: 2834 /// Type for the utility function that promotes the operand of Ext. 2835 typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT, 2836 InstrToOrigTy &PromotedInsts, 2837 unsigned &CreatedInstsCost, 2838 SmallVectorImpl<Instruction *> *Exts, 2839 SmallVectorImpl<Instruction *> *Truncs, 2840 const TargetLowering &TLI); 2841 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 2842 /// action to promote the operand of \p Ext instead of using Ext. 2843 /// \return NULL if no promotable action is possible with the current 2844 /// sign extension. 2845 /// \p InsertedInsts keeps track of all the instructions inserted by the 2846 /// other CodeGenPrepare optimizations. This information is important 2847 /// because we do not want to promote these instructions as CodeGenPrepare 2848 /// will reinsert them later. Thus creating an infinite loop: create/remove. 2849 /// \p PromotedInsts maps the instructions to their type before promotion. 2850 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 2851 const TargetLowering &TLI, 2852 const InstrToOrigTy &PromotedInsts); 2853 }; 2854 2855 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 2856 Type *ConsideredExtType, 2857 const InstrToOrigTy &PromotedInsts, 2858 bool IsSExt) { 2859 // The promotion helper does not know how to deal with vector types yet. 2860 // To be able to fix that, we would need to fix the places where we 2861 // statically extend, e.g., constants and such. 2862 if (Inst->getType()->isVectorTy()) 2863 return false; 2864 2865 // We can always get through zext. 2866 if (isa<ZExtInst>(Inst)) 2867 return true; 2868 2869 // sext(sext) is ok too. 2870 if (IsSExt && isa<SExtInst>(Inst)) 2871 return true; 2872 2873 // We can get through binary operator, if it is legal. In other words, the 2874 // binary operator must have a nuw or nsw flag. 2875 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 2876 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 2877 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 2878 (IsSExt && BinOp->hasNoSignedWrap()))) 2879 return true; 2880 2881 // Check if we can do the following simplification. 2882 // ext(trunc(opnd)) --> ext(opnd) 2883 if (!isa<TruncInst>(Inst)) 2884 return false; 2885 2886 Value *OpndVal = Inst->getOperand(0); 2887 // Check if we can use this operand in the extension. 2888 // If the type is larger than the result type of the extension, we cannot. 2889 if (!OpndVal->getType()->isIntegerTy() || 2890 OpndVal->getType()->getIntegerBitWidth() > 2891 ConsideredExtType->getIntegerBitWidth()) 2892 return false; 2893 2894 // If the operand of the truncate is not an instruction, we will not have 2895 // any information on the dropped bits. 2896 // (Actually we could for constant but it is not worth the extra logic). 2897 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 2898 if (!Opnd) 2899 return false; 2900 2901 // Check if the source of the type is narrow enough. 2902 // I.e., check that trunc just drops extended bits of the same kind of 2903 // the extension. 2904 // #1 get the type of the operand and check the kind of the extended bits. 2905 const Type *OpndType; 2906 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 2907 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 2908 OpndType = It->second.getPointer(); 2909 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 2910 OpndType = Opnd->getOperand(0)->getType(); 2911 else 2912 return false; 2913 2914 // #2 check that the truncate just drops extended bits. 2915 return Inst->getType()->getIntegerBitWidth() >= 2916 OpndType->getIntegerBitWidth(); 2917 } 2918 2919 TypePromotionHelper::Action TypePromotionHelper::getAction( 2920 Instruction *Ext, const SetOfInstrs &InsertedInsts, 2921 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 2922 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2923 "Unexpected instruction type"); 2924 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 2925 Type *ExtTy = Ext->getType(); 2926 bool IsSExt = isa<SExtInst>(Ext); 2927 // If the operand of the extension is not an instruction, we cannot 2928 // get through. 2929 // If it, check we can get through. 2930 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 2931 return nullptr; 2932 2933 // Do not promote if the operand has been added by codegenprepare. 2934 // Otherwise, it means we are undoing an optimization that is likely to be 2935 // redone, thus causing potential infinite loop. 2936 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 2937 return nullptr; 2938 2939 // SExt or Trunc instructions. 2940 // Return the related handler. 2941 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 2942 isa<ZExtInst>(ExtOpnd)) 2943 return promoteOperandForTruncAndAnyExt; 2944 2945 // Regular instruction. 2946 // Abort early if we will have to insert non-free instructions. 2947 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 2948 return nullptr; 2949 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 2950 } 2951 2952 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 2953 llvm::Instruction *SExt, TypePromotionTransaction &TPT, 2954 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2955 SmallVectorImpl<Instruction *> *Exts, 2956 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2957 // By construction, the operand of SExt is an instruction. Otherwise we cannot 2958 // get through it and this method should not be called. 2959 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 2960 Value *ExtVal = SExt; 2961 bool HasMergedNonFreeExt = false; 2962 if (isa<ZExtInst>(SExtOpnd)) { 2963 // Replace s|zext(zext(opnd)) 2964 // => zext(opnd). 2965 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 2966 Value *ZExt = 2967 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 2968 TPT.replaceAllUsesWith(SExt, ZExt); 2969 TPT.eraseInstruction(SExt); 2970 ExtVal = ZExt; 2971 } else { 2972 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 2973 // => z|sext(opnd). 2974 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 2975 } 2976 CreatedInstsCost = 0; 2977 2978 // Remove dead code. 2979 if (SExtOpnd->use_empty()) 2980 TPT.eraseInstruction(SExtOpnd); 2981 2982 // Check if the extension is still needed. 2983 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 2984 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 2985 if (ExtInst) { 2986 if (Exts) 2987 Exts->push_back(ExtInst); 2988 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 2989 } 2990 return ExtVal; 2991 } 2992 2993 // At this point we have: ext ty opnd to ty. 2994 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 2995 Value *NextVal = ExtInst->getOperand(0); 2996 TPT.eraseInstruction(ExtInst, NextVal); 2997 return NextVal; 2998 } 2999 3000 Value *TypePromotionHelper::promoteOperandForOther( 3001 Instruction *Ext, TypePromotionTransaction &TPT, 3002 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3003 SmallVectorImpl<Instruction *> *Exts, 3004 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3005 bool IsSExt) { 3006 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3007 // get through it and this method should not be called. 3008 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3009 CreatedInstsCost = 0; 3010 if (!ExtOpnd->hasOneUse()) { 3011 // ExtOpnd will be promoted. 3012 // All its uses, but Ext, will need to use a truncated value of the 3013 // promoted version. 3014 // Create the truncate now. 3015 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3016 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3017 ITrunc->removeFromParent(); 3018 // Insert it just after the definition. 3019 ITrunc->insertAfter(ExtOpnd); 3020 if (Truncs) 3021 Truncs->push_back(ITrunc); 3022 } 3023 3024 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3025 // Restore the operand of Ext (which has been replaced by the previous call 3026 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3027 TPT.setOperand(Ext, 0, ExtOpnd); 3028 } 3029 3030 // Get through the Instruction: 3031 // 1. Update its type. 3032 // 2. Replace the uses of Ext by Inst. 3033 // 3. Extend each operand that needs to be extended. 3034 3035 // Remember the original type of the instruction before promotion. 3036 // This is useful to know that the high bits are sign extended bits. 3037 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 3038 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 3039 // Step #1. 3040 TPT.mutateType(ExtOpnd, Ext->getType()); 3041 // Step #2. 3042 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3043 // Step #3. 3044 Instruction *ExtForOpnd = Ext; 3045 3046 DEBUG(dbgs() << "Propagate Ext to operands\n"); 3047 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3048 ++OpIdx) { 3049 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3050 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3051 !shouldExtOperand(ExtOpnd, OpIdx)) { 3052 DEBUG(dbgs() << "No need to propagate\n"); 3053 continue; 3054 } 3055 // Check if we can statically extend the operand. 3056 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3057 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3058 DEBUG(dbgs() << "Statically extend\n"); 3059 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3060 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3061 : Cst->getValue().zext(BitWidth); 3062 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3063 continue; 3064 } 3065 // UndefValue are typed, so we have to statically sign extend them. 3066 if (isa<UndefValue>(Opnd)) { 3067 DEBUG(dbgs() << "Statically extend\n"); 3068 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3069 continue; 3070 } 3071 3072 // Otherwise we have to explicity sign extend the operand. 3073 // Check if Ext was reused to extend an operand. 3074 if (!ExtForOpnd) { 3075 // If yes, create a new one. 3076 DEBUG(dbgs() << "More operands to ext\n"); 3077 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3078 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3079 if (!isa<Instruction>(ValForExtOpnd)) { 3080 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3081 continue; 3082 } 3083 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3084 } 3085 if (Exts) 3086 Exts->push_back(ExtForOpnd); 3087 TPT.setOperand(ExtForOpnd, 0, Opnd); 3088 3089 // Move the sign extension before the insertion point. 3090 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3091 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3092 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3093 // If more sext are required, new instructions will have to be created. 3094 ExtForOpnd = nullptr; 3095 } 3096 if (ExtForOpnd == Ext) { 3097 DEBUG(dbgs() << "Extension is useless now\n"); 3098 TPT.eraseInstruction(Ext); 3099 } 3100 return ExtOpnd; 3101 } 3102 3103 /// Check whether or not promoting an instruction to a wider type is profitable. 3104 /// \p NewCost gives the cost of extension instructions created by the 3105 /// promotion. 3106 /// \p OldCost gives the cost of extension instructions before the promotion 3107 /// plus the number of instructions that have been 3108 /// matched in the addressing mode the promotion. 3109 /// \p PromotedOperand is the value that has been promoted. 3110 /// \return True if the promotion is profitable, false otherwise. 3111 bool AddressingModeMatcher::isPromotionProfitable( 3112 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3113 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); 3114 // The cost of the new extensions is greater than the cost of the 3115 // old extension plus what we folded. 3116 // This is not profitable. 3117 if (NewCost > OldCost) 3118 return false; 3119 if (NewCost < OldCost) 3120 return true; 3121 // The promotion is neutral but it may help folding the sign extension in 3122 // loads for instance. 3123 // Check that we did not create an illegal instruction. 3124 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3125 } 3126 3127 /// Given an instruction or constant expr, see if we can fold the operation 3128 /// into the addressing mode. If so, update the addressing mode and return 3129 /// true, otherwise return false without modifying AddrMode. 3130 /// If \p MovedAway is not NULL, it contains the information of whether or 3131 /// not AddrInst has to be folded into the addressing mode on success. 3132 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3133 /// because it has been moved away. 3134 /// Thus AddrInst must not be added in the matched instructions. 3135 /// This state can happen when AddrInst is a sext, since it may be moved away. 3136 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3137 /// not be referenced anymore. 3138 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3139 unsigned Depth, 3140 bool *MovedAway) { 3141 // Avoid exponential behavior on extremely deep expression trees. 3142 if (Depth >= 5) return false; 3143 3144 // By default, all matched instructions stay in place. 3145 if (MovedAway) 3146 *MovedAway = false; 3147 3148 switch (Opcode) { 3149 case Instruction::PtrToInt: 3150 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3151 return matchAddr(AddrInst->getOperand(0), Depth); 3152 case Instruction::IntToPtr: { 3153 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3154 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3155 // This inttoptr is a no-op if the integer type is pointer sized. 3156 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3157 return matchAddr(AddrInst->getOperand(0), Depth); 3158 return false; 3159 } 3160 case Instruction::BitCast: 3161 // BitCast is always a noop, and we can handle it as long as it is 3162 // int->int or pointer->pointer (we don't want int<->fp or something). 3163 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 3164 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 3165 // Don't touch identity bitcasts. These were probably put here by LSR, 3166 // and we don't want to mess around with them. Assume it knows what it 3167 // is doing. 3168 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3169 return matchAddr(AddrInst->getOperand(0), Depth); 3170 return false; 3171 case Instruction::AddrSpaceCast: { 3172 unsigned SrcAS 3173 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3174 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3175 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3176 return matchAddr(AddrInst->getOperand(0), Depth); 3177 return false; 3178 } 3179 case Instruction::Add: { 3180 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3181 ExtAddrMode BackupAddrMode = AddrMode; 3182 unsigned OldSize = AddrModeInsts.size(); 3183 // Start a transaction at this point. 3184 // The LHS may match but not the RHS. 3185 // Therefore, we need a higher level restoration point to undo partially 3186 // matched operation. 3187 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3188 TPT.getRestorationPoint(); 3189 3190 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3191 matchAddr(AddrInst->getOperand(0), Depth+1)) 3192 return true; 3193 3194 // Restore the old addr mode info. 3195 AddrMode = BackupAddrMode; 3196 AddrModeInsts.resize(OldSize); 3197 TPT.rollback(LastKnownGood); 3198 3199 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3200 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3201 matchAddr(AddrInst->getOperand(1), Depth+1)) 3202 return true; 3203 3204 // Otherwise we definitely can't merge the ADD in. 3205 AddrMode = BackupAddrMode; 3206 AddrModeInsts.resize(OldSize); 3207 TPT.rollback(LastKnownGood); 3208 break; 3209 } 3210 //case Instruction::Or: 3211 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3212 //break; 3213 case Instruction::Mul: 3214 case Instruction::Shl: { 3215 // Can only handle X*C and X << C. 3216 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3217 if (!RHS) 3218 return false; 3219 int64_t Scale = RHS->getSExtValue(); 3220 if (Opcode == Instruction::Shl) 3221 Scale = 1LL << Scale; 3222 3223 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3224 } 3225 case Instruction::GetElementPtr: { 3226 // Scan the GEP. We check it if it contains constant offsets and at most 3227 // one variable offset. 3228 int VariableOperand = -1; 3229 unsigned VariableScale = 0; 3230 3231 int64_t ConstantOffset = 0; 3232 gep_type_iterator GTI = gep_type_begin(AddrInst); 3233 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3234 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 3235 const StructLayout *SL = DL.getStructLayout(STy); 3236 unsigned Idx = 3237 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3238 ConstantOffset += SL->getElementOffset(Idx); 3239 } else { 3240 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3241 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3242 ConstantOffset += CI->getSExtValue()*TypeSize; 3243 } else if (TypeSize) { // Scales of zero don't do anything. 3244 // We only allow one variable index at the moment. 3245 if (VariableOperand != -1) 3246 return false; 3247 3248 // Remember the variable index. 3249 VariableOperand = i; 3250 VariableScale = TypeSize; 3251 } 3252 } 3253 } 3254 3255 // A common case is for the GEP to only do a constant offset. In this case, 3256 // just add it to the disp field and check validity. 3257 if (VariableOperand == -1) { 3258 AddrMode.BaseOffs += ConstantOffset; 3259 if (ConstantOffset == 0 || 3260 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 3261 // Check to see if we can fold the base pointer in too. 3262 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 3263 return true; 3264 } 3265 AddrMode.BaseOffs -= ConstantOffset; 3266 return false; 3267 } 3268 3269 // Save the valid addressing mode in case we can't match. 3270 ExtAddrMode BackupAddrMode = AddrMode; 3271 unsigned OldSize = AddrModeInsts.size(); 3272 3273 // See if the scale and offset amount is valid for this target. 3274 AddrMode.BaseOffs += ConstantOffset; 3275 3276 // Match the base operand of the GEP. 3277 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 3278 // If it couldn't be matched, just stuff the value in a register. 3279 if (AddrMode.HasBaseReg) { 3280 AddrMode = BackupAddrMode; 3281 AddrModeInsts.resize(OldSize); 3282 return false; 3283 } 3284 AddrMode.HasBaseReg = true; 3285 AddrMode.BaseReg = AddrInst->getOperand(0); 3286 } 3287 3288 // Match the remaining variable portion of the GEP. 3289 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 3290 Depth)) { 3291 // If it couldn't be matched, try stuffing the base into a register 3292 // instead of matching it, and retrying the match of the scale. 3293 AddrMode = BackupAddrMode; 3294 AddrModeInsts.resize(OldSize); 3295 if (AddrMode.HasBaseReg) 3296 return false; 3297 AddrMode.HasBaseReg = true; 3298 AddrMode.BaseReg = AddrInst->getOperand(0); 3299 AddrMode.BaseOffs += ConstantOffset; 3300 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 3301 VariableScale, Depth)) { 3302 // If even that didn't work, bail. 3303 AddrMode = BackupAddrMode; 3304 AddrModeInsts.resize(OldSize); 3305 return false; 3306 } 3307 } 3308 3309 return true; 3310 } 3311 case Instruction::SExt: 3312 case Instruction::ZExt: { 3313 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 3314 if (!Ext) 3315 return false; 3316 3317 // Try to move this ext out of the way of the addressing mode. 3318 // Ask for a method for doing so. 3319 TypePromotionHelper::Action TPH = 3320 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 3321 if (!TPH) 3322 return false; 3323 3324 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3325 TPT.getRestorationPoint(); 3326 unsigned CreatedInstsCost = 0; 3327 unsigned ExtCost = !TLI.isExtFree(Ext); 3328 Value *PromotedOperand = 3329 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 3330 // SExt has been moved away. 3331 // Thus either it will be rematched later in the recursive calls or it is 3332 // gone. Anyway, we must not fold it into the addressing mode at this point. 3333 // E.g., 3334 // op = add opnd, 1 3335 // idx = ext op 3336 // addr = gep base, idx 3337 // is now: 3338 // promotedOpnd = ext opnd <- no match here 3339 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 3340 // addr = gep base, op <- match 3341 if (MovedAway) 3342 *MovedAway = true; 3343 3344 assert(PromotedOperand && 3345 "TypePromotionHelper should have filtered out those cases"); 3346 3347 ExtAddrMode BackupAddrMode = AddrMode; 3348 unsigned OldSize = AddrModeInsts.size(); 3349 3350 if (!matchAddr(PromotedOperand, Depth) || 3351 // The total of the new cost is equal to the cost of the created 3352 // instructions. 3353 // The total of the old cost is equal to the cost of the extension plus 3354 // what we have saved in the addressing mode. 3355 !isPromotionProfitable(CreatedInstsCost, 3356 ExtCost + (AddrModeInsts.size() - OldSize), 3357 PromotedOperand)) { 3358 AddrMode = BackupAddrMode; 3359 AddrModeInsts.resize(OldSize); 3360 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 3361 TPT.rollback(LastKnownGood); 3362 return false; 3363 } 3364 return true; 3365 } 3366 } 3367 return false; 3368 } 3369 3370 /// If we can, try to add the value of 'Addr' into the current addressing mode. 3371 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 3372 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 3373 /// for the target. 3374 /// 3375 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 3376 // Start a transaction at this point that we will rollback if the matching 3377 // fails. 3378 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3379 TPT.getRestorationPoint(); 3380 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 3381 // Fold in immediates if legal for the target. 3382 AddrMode.BaseOffs += CI->getSExtValue(); 3383 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3384 return true; 3385 AddrMode.BaseOffs -= CI->getSExtValue(); 3386 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 3387 // If this is a global variable, try to fold it into the addressing mode. 3388 if (!AddrMode.BaseGV) { 3389 AddrMode.BaseGV = GV; 3390 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3391 return true; 3392 AddrMode.BaseGV = nullptr; 3393 } 3394 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 3395 ExtAddrMode BackupAddrMode = AddrMode; 3396 unsigned OldSize = AddrModeInsts.size(); 3397 3398 // Check to see if it is possible to fold this operation. 3399 bool MovedAway = false; 3400 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 3401 // This instruction may have been moved away. If so, there is nothing 3402 // to check here. 3403 if (MovedAway) 3404 return true; 3405 // Okay, it's possible to fold this. Check to see if it is actually 3406 // *profitable* to do so. We use a simple cost model to avoid increasing 3407 // register pressure too much. 3408 if (I->hasOneUse() || 3409 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 3410 AddrModeInsts.push_back(I); 3411 return true; 3412 } 3413 3414 // It isn't profitable to do this, roll back. 3415 //cerr << "NOT FOLDING: " << *I; 3416 AddrMode = BackupAddrMode; 3417 AddrModeInsts.resize(OldSize); 3418 TPT.rollback(LastKnownGood); 3419 } 3420 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 3421 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 3422 return true; 3423 TPT.rollback(LastKnownGood); 3424 } else if (isa<ConstantPointerNull>(Addr)) { 3425 // Null pointer gets folded without affecting the addressing mode. 3426 return true; 3427 } 3428 3429 // Worse case, the target should support [reg] addressing modes. :) 3430 if (!AddrMode.HasBaseReg) { 3431 AddrMode.HasBaseReg = true; 3432 AddrMode.BaseReg = Addr; 3433 // Still check for legality in case the target supports [imm] but not [i+r]. 3434 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3435 return true; 3436 AddrMode.HasBaseReg = false; 3437 AddrMode.BaseReg = nullptr; 3438 } 3439 3440 // If the base register is already taken, see if we can do [r+r]. 3441 if (AddrMode.Scale == 0) { 3442 AddrMode.Scale = 1; 3443 AddrMode.ScaledReg = Addr; 3444 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3445 return true; 3446 AddrMode.Scale = 0; 3447 AddrMode.ScaledReg = nullptr; 3448 } 3449 // Couldn't match. 3450 TPT.rollback(LastKnownGood); 3451 return false; 3452 } 3453 3454 /// Check to see if all uses of OpVal by the specified inline asm call are due 3455 /// to memory operands. If so, return true, otherwise return false. 3456 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 3457 const TargetMachine &TM) { 3458 const Function *F = CI->getParent()->getParent(); 3459 const TargetLowering *TLI = TM.getSubtargetImpl(*F)->getTargetLowering(); 3460 const TargetRegisterInfo *TRI = TM.getSubtargetImpl(*F)->getRegisterInfo(); 3461 TargetLowering::AsmOperandInfoVector TargetConstraints = 3462 TLI->ParseConstraints(F->getParent()->getDataLayout(), TRI, 3463 ImmutableCallSite(CI)); 3464 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3465 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3466 3467 // Compute the constraint code and ConstraintType to use. 3468 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 3469 3470 // If this asm operand is our Value*, and if it isn't an indirect memory 3471 // operand, we can't fold it! 3472 if (OpInfo.CallOperandVal == OpVal && 3473 (OpInfo.ConstraintType != TargetLowering::C_Memory || 3474 !OpInfo.isIndirect)) 3475 return false; 3476 } 3477 3478 return true; 3479 } 3480 3481 /// Recursively walk all the uses of I until we find a memory use. 3482 /// If we find an obviously non-foldable instruction, return true. 3483 /// Add the ultimately found memory instructions to MemoryUses. 3484 static bool FindAllMemoryUses( 3485 Instruction *I, 3486 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 3487 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetMachine &TM) { 3488 // If we already considered this instruction, we're done. 3489 if (!ConsideredInsts.insert(I).second) 3490 return false; 3491 3492 // If this is an obviously unfoldable instruction, bail out. 3493 if (!MightBeFoldableInst(I)) 3494 return true; 3495 3496 const bool OptSize = I->getFunction()->optForSize(); 3497 3498 // Loop over all the uses, recursively processing them. 3499 for (Use &U : I->uses()) { 3500 Instruction *UserI = cast<Instruction>(U.getUser()); 3501 3502 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 3503 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 3504 continue; 3505 } 3506 3507 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 3508 unsigned opNo = U.getOperandNo(); 3509 if (opNo == 0) return true; // Storing addr, not into addr. 3510 MemoryUses.push_back(std::make_pair(SI, opNo)); 3511 continue; 3512 } 3513 3514 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 3515 // If this is a cold call, we can sink the addressing calculation into 3516 // the cold path. See optimizeCallInst 3517 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 3518 continue; 3519 3520 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 3521 if (!IA) return true; 3522 3523 // If this is a memory operand, we're cool, otherwise bail out. 3524 if (!IsOperandAMemoryOperand(CI, IA, I, TM)) 3525 return true; 3526 continue; 3527 } 3528 3529 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TM)) 3530 return true; 3531 } 3532 3533 return false; 3534 } 3535 3536 /// Return true if Val is already known to be live at the use site that we're 3537 /// folding it into. If so, there is no cost to include it in the addressing 3538 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 3539 /// instruction already. 3540 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 3541 Value *KnownLive2) { 3542 // If Val is either of the known-live values, we know it is live! 3543 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 3544 return true; 3545 3546 // All values other than instructions and arguments (e.g. constants) are live. 3547 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 3548 3549 // If Val is a constant sized alloca in the entry block, it is live, this is 3550 // true because it is just a reference to the stack/frame pointer, which is 3551 // live for the whole function. 3552 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 3553 if (AI->isStaticAlloca()) 3554 return true; 3555 3556 // Check to see if this value is already used in the memory instruction's 3557 // block. If so, it's already live into the block at the very least, so we 3558 // can reasonably fold it. 3559 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 3560 } 3561 3562 /// It is possible for the addressing mode of the machine to fold the specified 3563 /// instruction into a load or store that ultimately uses it. 3564 /// However, the specified instruction has multiple uses. 3565 /// Given this, it may actually increase register pressure to fold it 3566 /// into the load. For example, consider this code: 3567 /// 3568 /// X = ... 3569 /// Y = X+1 3570 /// use(Y) -> nonload/store 3571 /// Z = Y+1 3572 /// load Z 3573 /// 3574 /// In this case, Y has multiple uses, and can be folded into the load of Z 3575 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 3576 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 3577 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 3578 /// number of computations either. 3579 /// 3580 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 3581 /// X was live across 'load Z' for other reasons, we actually *would* want to 3582 /// fold the addressing mode in the Z case. This would make Y die earlier. 3583 bool AddressingModeMatcher:: 3584 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 3585 ExtAddrMode &AMAfter) { 3586 if (IgnoreProfitability) return true; 3587 3588 // AMBefore is the addressing mode before this instruction was folded into it, 3589 // and AMAfter is the addressing mode after the instruction was folded. Get 3590 // the set of registers referenced by AMAfter and subtract out those 3591 // referenced by AMBefore: this is the set of values which folding in this 3592 // address extends the lifetime of. 3593 // 3594 // Note that there are only two potential values being referenced here, 3595 // BaseReg and ScaleReg (global addresses are always available, as are any 3596 // folded immediates). 3597 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 3598 3599 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 3600 // lifetime wasn't extended by adding this instruction. 3601 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3602 BaseReg = nullptr; 3603 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3604 ScaledReg = nullptr; 3605 3606 // If folding this instruction (and it's subexprs) didn't extend any live 3607 // ranges, we're ok with it. 3608 if (!BaseReg && !ScaledReg) 3609 return true; 3610 3611 // If all uses of this instruction can have the address mode sunk into them, 3612 // we can remove the addressing mode and effectively trade one live register 3613 // for another (at worst.) In this context, folding an addressing mode into 3614 // the use is just a particularly nice way of sinking it. 3615 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 3616 SmallPtrSet<Instruction*, 16> ConsideredInsts; 3617 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TM)) 3618 return false; // Has a non-memory, non-foldable use! 3619 3620 // Now that we know that all uses of this instruction are part of a chain of 3621 // computation involving only operations that could theoretically be folded 3622 // into a memory use, loop over each of these memory operation uses and see 3623 // if they could *actually* fold the instruction. The assumption is that 3624 // addressing modes are cheap and that duplicating the computation involved 3625 // many times is worthwhile, even on a fastpath. For sinking candidates 3626 // (i.e. cold call sites), this serves as a way to prevent excessive code 3627 // growth since most architectures have some reasonable small and fast way to 3628 // compute an effective address. (i.e LEA on x86) 3629 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 3630 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 3631 Instruction *User = MemoryUses[i].first; 3632 unsigned OpNo = MemoryUses[i].second; 3633 3634 // Get the access type of this use. If the use isn't a pointer, we don't 3635 // know what it accesses. 3636 Value *Address = User->getOperand(OpNo); 3637 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 3638 if (!AddrTy) 3639 return false; 3640 Type *AddressAccessTy = AddrTy->getElementType(); 3641 unsigned AS = AddrTy->getAddressSpace(); 3642 3643 // Do a match against the root of this address, ignoring profitability. This 3644 // will tell us if the addressing mode for the memory operation will 3645 // *actually* cover the shared instruction. 3646 ExtAddrMode Result; 3647 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3648 TPT.getRestorationPoint(); 3649 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TM, AddressAccessTy, AS, 3650 MemoryInst, Result, InsertedInsts, 3651 PromotedInsts, TPT); 3652 Matcher.IgnoreProfitability = true; 3653 bool Success = Matcher.matchAddr(Address, 0); 3654 (void)Success; assert(Success && "Couldn't select *anything*?"); 3655 3656 // The match was to check the profitability, the changes made are not 3657 // part of the original matcher. Therefore, they should be dropped 3658 // otherwise the original matcher will not present the right state. 3659 TPT.rollback(LastKnownGood); 3660 3661 // If the match didn't cover I, then it won't be shared by it. 3662 if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(), 3663 I) == MatchedAddrModeInsts.end()) 3664 return false; 3665 3666 MatchedAddrModeInsts.clear(); 3667 } 3668 3669 return true; 3670 } 3671 3672 } // end anonymous namespace 3673 3674 /// Return true if the specified values are defined in a 3675 /// different basic block than BB. 3676 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 3677 if (Instruction *I = dyn_cast<Instruction>(V)) 3678 return I->getParent() != BB; 3679 return false; 3680 } 3681 3682 /// Sink addressing mode computation immediate before MemoryInst if doing so 3683 /// can be done without increasing register pressure. The need for the 3684 /// register pressure constraint means this can end up being an all or nothing 3685 /// decision for all uses of the same addressing computation. 3686 /// 3687 /// Load and Store Instructions often have addressing modes that can do 3688 /// significant amounts of computation. As such, instruction selection will try 3689 /// to get the load or store to do as much computation as possible for the 3690 /// program. The problem is that isel can only see within a single block. As 3691 /// such, we sink as much legal addressing mode work into the block as possible. 3692 /// 3693 /// This method is used to optimize both load/store and inline asms with memory 3694 /// operands. It's also used to sink addressing computations feeding into cold 3695 /// call sites into their (cold) basic block. 3696 /// 3697 /// The motivation for handling sinking into cold blocks is that doing so can 3698 /// both enable other address mode sinking (by satisfying the register pressure 3699 /// constraint above), and reduce register pressure globally (by removing the 3700 /// addressing mode computation from the fast path entirely.). 3701 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 3702 Type *AccessTy, unsigned AddrSpace) { 3703 Value *Repl = Addr; 3704 3705 // Try to collapse single-value PHI nodes. This is necessary to undo 3706 // unprofitable PRE transformations. 3707 SmallVector<Value*, 8> worklist; 3708 SmallPtrSet<Value*, 16> Visited; 3709 worklist.push_back(Addr); 3710 3711 // Use a worklist to iteratively look through PHI nodes, and ensure that 3712 // the addressing mode obtained from the non-PHI roots of the graph 3713 // are equivalent. 3714 Value *Consensus = nullptr; 3715 unsigned NumUsesConsensus = 0; 3716 bool IsNumUsesConsensusValid = false; 3717 SmallVector<Instruction*, 16> AddrModeInsts; 3718 ExtAddrMode AddrMode; 3719 TypePromotionTransaction TPT; 3720 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3721 TPT.getRestorationPoint(); 3722 while (!worklist.empty()) { 3723 Value *V = worklist.back(); 3724 worklist.pop_back(); 3725 3726 // Break use-def graph loops. 3727 if (!Visited.insert(V).second) { 3728 Consensus = nullptr; 3729 break; 3730 } 3731 3732 // For a PHI node, push all of its incoming values. 3733 if (PHINode *P = dyn_cast<PHINode>(V)) { 3734 for (Value *IncValue : P->incoming_values()) 3735 worklist.push_back(IncValue); 3736 continue; 3737 } 3738 3739 // For non-PHIs, determine the addressing mode being computed. Note that 3740 // the result may differ depending on what other uses our candidate 3741 // addressing instructions might have. 3742 SmallVector<Instruction*, 16> NewAddrModeInsts; 3743 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 3744 V, AccessTy, AddrSpace, MemoryInst, NewAddrModeInsts, *TM, 3745 InsertedInsts, PromotedInsts, TPT); 3746 3747 // This check is broken into two cases with very similar code to avoid using 3748 // getNumUses() as much as possible. Some values have a lot of uses, so 3749 // calling getNumUses() unconditionally caused a significant compile-time 3750 // regression. 3751 if (!Consensus) { 3752 Consensus = V; 3753 AddrMode = NewAddrMode; 3754 AddrModeInsts = NewAddrModeInsts; 3755 continue; 3756 } else if (NewAddrMode == AddrMode) { 3757 if (!IsNumUsesConsensusValid) { 3758 NumUsesConsensus = Consensus->getNumUses(); 3759 IsNumUsesConsensusValid = true; 3760 } 3761 3762 // Ensure that the obtained addressing mode is equivalent to that obtained 3763 // for all other roots of the PHI traversal. Also, when choosing one 3764 // such root as representative, select the one with the most uses in order 3765 // to keep the cost modeling heuristics in AddressingModeMatcher 3766 // applicable. 3767 unsigned NumUses = V->getNumUses(); 3768 if (NumUses > NumUsesConsensus) { 3769 Consensus = V; 3770 NumUsesConsensus = NumUses; 3771 AddrModeInsts = NewAddrModeInsts; 3772 } 3773 continue; 3774 } 3775 3776 Consensus = nullptr; 3777 break; 3778 } 3779 3780 // If the addressing mode couldn't be determined, or if multiple different 3781 // ones were determined, bail out now. 3782 if (!Consensus) { 3783 TPT.rollback(LastKnownGood); 3784 return false; 3785 } 3786 TPT.commit(); 3787 3788 // Check to see if any of the instructions supersumed by this addr mode are 3789 // non-local to I's BB. 3790 bool AnyNonLocal = false; 3791 for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) { 3792 if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) { 3793 AnyNonLocal = true; 3794 break; 3795 } 3796 } 3797 3798 // If all the instructions matched are already in this BB, don't do anything. 3799 if (!AnyNonLocal) { 3800 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 3801 return false; 3802 } 3803 3804 // Insert this computation right after this user. Since our caller is 3805 // scanning from the top of the BB to the bottom, reuse of the expr are 3806 // guaranteed to happen later. 3807 IRBuilder<> Builder(MemoryInst); 3808 3809 // Now that we determined the addressing expression we want to use and know 3810 // that we have to sink it into this block. Check to see if we have already 3811 // done this for some other load/store instr in this block. If so, reuse the 3812 // computation. 3813 Value *&SunkAddr = SunkAddrs[Addr]; 3814 if (SunkAddr) { 3815 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 3816 << *MemoryInst << "\n"); 3817 if (SunkAddr->getType() != Addr->getType()) 3818 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3819 } else if (AddrSinkUsingGEPs || 3820 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 3821 TM->getSubtargetImpl(*MemoryInst->getParent()->getParent()) 3822 ->useAA())) { 3823 // By default, we use the GEP-based method when AA is used later. This 3824 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 3825 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3826 << *MemoryInst << "\n"); 3827 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 3828 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 3829 3830 // First, find the pointer. 3831 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 3832 ResultPtr = AddrMode.BaseReg; 3833 AddrMode.BaseReg = nullptr; 3834 } 3835 3836 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 3837 // We can't add more than one pointer together, nor can we scale a 3838 // pointer (both of which seem meaningless). 3839 if (ResultPtr || AddrMode.Scale != 1) 3840 return false; 3841 3842 ResultPtr = AddrMode.ScaledReg; 3843 AddrMode.Scale = 0; 3844 } 3845 3846 if (AddrMode.BaseGV) { 3847 if (ResultPtr) 3848 return false; 3849 3850 ResultPtr = AddrMode.BaseGV; 3851 } 3852 3853 // If the real base value actually came from an inttoptr, then the matcher 3854 // will look through it and provide only the integer value. In that case, 3855 // use it here. 3856 if (!ResultPtr && AddrMode.BaseReg) { 3857 ResultPtr = 3858 Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr"); 3859 AddrMode.BaseReg = nullptr; 3860 } else if (!ResultPtr && AddrMode.Scale == 1) { 3861 ResultPtr = 3862 Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr"); 3863 AddrMode.Scale = 0; 3864 } 3865 3866 if (!ResultPtr && 3867 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 3868 SunkAddr = Constant::getNullValue(Addr->getType()); 3869 } else if (!ResultPtr) { 3870 return false; 3871 } else { 3872 Type *I8PtrTy = 3873 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 3874 Type *I8Ty = Builder.getInt8Ty(); 3875 3876 // Start with the base register. Do this first so that subsequent address 3877 // matching finds it last, which will prevent it from trying to match it 3878 // as the scaled value in case it happens to be a mul. That would be 3879 // problematic if we've sunk a different mul for the scale, because then 3880 // we'd end up sinking both muls. 3881 if (AddrMode.BaseReg) { 3882 Value *V = AddrMode.BaseReg; 3883 if (V->getType() != IntPtrTy) 3884 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3885 3886 ResultIndex = V; 3887 } 3888 3889 // Add the scale value. 3890 if (AddrMode.Scale) { 3891 Value *V = AddrMode.ScaledReg; 3892 if (V->getType() == IntPtrTy) { 3893 // done. 3894 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3895 cast<IntegerType>(V->getType())->getBitWidth()) { 3896 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3897 } else { 3898 // It is only safe to sign extend the BaseReg if we know that the math 3899 // required to create it did not overflow before we extend it. Since 3900 // the original IR value was tossed in favor of a constant back when 3901 // the AddrMode was created we need to bail out gracefully if widths 3902 // do not match instead of extending it. 3903 Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex); 3904 if (I && (ResultIndex != AddrMode.BaseReg)) 3905 I->eraseFromParent(); 3906 return false; 3907 } 3908 3909 if (AddrMode.Scale != 1) 3910 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3911 "sunkaddr"); 3912 if (ResultIndex) 3913 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 3914 else 3915 ResultIndex = V; 3916 } 3917 3918 // Add in the Base Offset if present. 3919 if (AddrMode.BaseOffs) { 3920 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3921 if (ResultIndex) { 3922 // We need to add this separately from the scale above to help with 3923 // SDAG consecutive load/store merging. 3924 if (ResultPtr->getType() != I8PtrTy) 3925 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3926 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 3927 } 3928 3929 ResultIndex = V; 3930 } 3931 3932 if (!ResultIndex) { 3933 SunkAddr = ResultPtr; 3934 } else { 3935 if (ResultPtr->getType() != I8PtrTy) 3936 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3937 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 3938 } 3939 3940 if (SunkAddr->getType() != Addr->getType()) 3941 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3942 } 3943 } else { 3944 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3945 << *MemoryInst << "\n"); 3946 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 3947 Value *Result = nullptr; 3948 3949 // Start with the base register. Do this first so that subsequent address 3950 // matching finds it last, which will prevent it from trying to match it 3951 // as the scaled value in case it happens to be a mul. That would be 3952 // problematic if we've sunk a different mul for the scale, because then 3953 // we'd end up sinking both muls. 3954 if (AddrMode.BaseReg) { 3955 Value *V = AddrMode.BaseReg; 3956 if (V->getType()->isPointerTy()) 3957 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3958 if (V->getType() != IntPtrTy) 3959 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3960 Result = V; 3961 } 3962 3963 // Add the scale value. 3964 if (AddrMode.Scale) { 3965 Value *V = AddrMode.ScaledReg; 3966 if (V->getType() == IntPtrTy) { 3967 // done. 3968 } else if (V->getType()->isPointerTy()) { 3969 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3970 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3971 cast<IntegerType>(V->getType())->getBitWidth()) { 3972 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3973 } else { 3974 // It is only safe to sign extend the BaseReg if we know that the math 3975 // required to create it did not overflow before we extend it. Since 3976 // the original IR value was tossed in favor of a constant back when 3977 // the AddrMode was created we need to bail out gracefully if widths 3978 // do not match instead of extending it. 3979 Instruction *I = dyn_cast_or_null<Instruction>(Result); 3980 if (I && (Result != AddrMode.BaseReg)) 3981 I->eraseFromParent(); 3982 return false; 3983 } 3984 if (AddrMode.Scale != 1) 3985 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3986 "sunkaddr"); 3987 if (Result) 3988 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3989 else 3990 Result = V; 3991 } 3992 3993 // Add in the BaseGV if present. 3994 if (AddrMode.BaseGV) { 3995 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 3996 if (Result) 3997 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3998 else 3999 Result = V; 4000 } 4001 4002 // Add in the Base Offset if present. 4003 if (AddrMode.BaseOffs) { 4004 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4005 if (Result) 4006 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4007 else 4008 Result = V; 4009 } 4010 4011 if (!Result) 4012 SunkAddr = Constant::getNullValue(Addr->getType()); 4013 else 4014 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 4015 } 4016 4017 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 4018 4019 // If we have no uses, recursively delete the value and all dead instructions 4020 // using it. 4021 if (Repl->use_empty()) { 4022 // This can cause recursive deletion, which can invalidate our iterator. 4023 // Use a WeakVH to hold onto it in case this happens. 4024 Value *CurValue = &*CurInstIterator; 4025 WeakVH IterHandle(CurValue); 4026 BasicBlock *BB = CurInstIterator->getParent(); 4027 4028 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 4029 4030 if (IterHandle != CurValue) { 4031 // If the iterator instruction was recursively deleted, start over at the 4032 // start of the block. 4033 CurInstIterator = BB->begin(); 4034 SunkAddrs.clear(); 4035 } 4036 } 4037 ++NumMemoryInsts; 4038 return true; 4039 } 4040 4041 /// If there are any memory operands, use OptimizeMemoryInst to sink their 4042 /// address computing into the block when possible / profitable. 4043 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 4044 bool MadeChange = false; 4045 4046 const TargetRegisterInfo *TRI = 4047 TM->getSubtargetImpl(*CS->getParent()->getParent())->getRegisterInfo(); 4048 TargetLowering::AsmOperandInfoVector TargetConstraints = 4049 TLI->ParseConstraints(*DL, TRI, CS); 4050 unsigned ArgNo = 0; 4051 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4052 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4053 4054 // Compute the constraint code and ConstraintType to use. 4055 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 4056 4057 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4058 OpInfo.isIndirect) { 4059 Value *OpVal = CS->getArgOperand(ArgNo++); 4060 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 4061 } else if (OpInfo.Type == InlineAsm::isInput) 4062 ArgNo++; 4063 } 4064 4065 return MadeChange; 4066 } 4067 4068 /// \brief Check if all the uses of \p Inst are equivalent (or free) zero or 4069 /// sign extensions. 4070 static bool hasSameExtUse(Instruction *Inst, const TargetLowering &TLI) { 4071 assert(!Inst->use_empty() && "Input must have at least one use"); 4072 const Instruction *FirstUser = cast<Instruction>(*Inst->user_begin()); 4073 bool IsSExt = isa<SExtInst>(FirstUser); 4074 Type *ExtTy = FirstUser->getType(); 4075 for (const User *U : Inst->users()) { 4076 const Instruction *UI = cast<Instruction>(U); 4077 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 4078 return false; 4079 Type *CurTy = UI->getType(); 4080 // Same input and output types: Same instruction after CSE. 4081 if (CurTy == ExtTy) 4082 continue; 4083 4084 // If IsSExt is true, we are in this situation: 4085 // a = Inst 4086 // b = sext ty1 a to ty2 4087 // c = sext ty1 a to ty3 4088 // Assuming ty2 is shorter than ty3, this could be turned into: 4089 // a = Inst 4090 // b = sext ty1 a to ty2 4091 // c = sext ty2 b to ty3 4092 // However, the last sext is not free. 4093 if (IsSExt) 4094 return false; 4095 4096 // This is a ZExt, maybe this is free to extend from one type to another. 4097 // In that case, we would not account for a different use. 4098 Type *NarrowTy; 4099 Type *LargeTy; 4100 if (ExtTy->getScalarType()->getIntegerBitWidth() > 4101 CurTy->getScalarType()->getIntegerBitWidth()) { 4102 NarrowTy = CurTy; 4103 LargeTy = ExtTy; 4104 } else { 4105 NarrowTy = ExtTy; 4106 LargeTy = CurTy; 4107 } 4108 4109 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 4110 return false; 4111 } 4112 // All uses are the same or can be derived from one another for free. 4113 return true; 4114 } 4115 4116 /// \brief Try to form ExtLd by promoting \p Exts until they reach a 4117 /// load instruction. 4118 /// If an ext(load) can be formed, it is returned via \p LI for the load 4119 /// and \p Inst for the extension. 4120 /// Otherwise LI == nullptr and Inst == nullptr. 4121 /// When some promotion happened, \p TPT contains the proper state to 4122 /// revert them. 4123 /// 4124 /// \return true when promoting was necessary to expose the ext(load) 4125 /// opportunity, false otherwise. 4126 /// 4127 /// Example: 4128 /// \code 4129 /// %ld = load i32* %addr 4130 /// %add = add nuw i32 %ld, 4 4131 /// %zext = zext i32 %add to i64 4132 /// \endcode 4133 /// => 4134 /// \code 4135 /// %ld = load i32* %addr 4136 /// %zext = zext i32 %ld to i64 4137 /// %add = add nuw i64 %zext, 4 4138 /// \encode 4139 /// Thanks to the promotion, we can match zext(load i32*) to i64. 4140 bool CodeGenPrepare::extLdPromotion(TypePromotionTransaction &TPT, 4141 LoadInst *&LI, Instruction *&Inst, 4142 const SmallVectorImpl<Instruction *> &Exts, 4143 unsigned CreatedInstsCost = 0) { 4144 // Iterate over all the extensions to see if one form an ext(load). 4145 for (auto I : Exts) { 4146 // Check if we directly have ext(load). 4147 if ((LI = dyn_cast<LoadInst>(I->getOperand(0)))) { 4148 Inst = I; 4149 // No promotion happened here. 4150 return false; 4151 } 4152 // Check whether or not we want to do any promotion. 4153 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4154 continue; 4155 // Get the action to perform the promotion. 4156 TypePromotionHelper::Action TPH = TypePromotionHelper::getAction( 4157 I, InsertedInsts, *TLI, PromotedInsts); 4158 // Check if we can promote. 4159 if (!TPH) 4160 continue; 4161 // Save the current state. 4162 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4163 TPT.getRestorationPoint(); 4164 SmallVector<Instruction *, 4> NewExts; 4165 unsigned NewCreatedInstsCost = 0; 4166 unsigned ExtCost = !TLI->isExtFree(I); 4167 // Promote. 4168 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4169 &NewExts, nullptr, *TLI); 4170 assert(PromotedVal && 4171 "TypePromotionHelper should have filtered out those cases"); 4172 4173 // We would be able to merge only one extension in a load. 4174 // Therefore, if we have more than 1 new extension we heuristically 4175 // cut this search path, because it means we degrade the code quality. 4176 // With exactly 2, the transformation is neutral, because we will merge 4177 // one extension but leave one. However, we optimistically keep going, 4178 // because the new extension may be removed too. 4179 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4180 TotalCreatedInstsCost -= ExtCost; 4181 if (!StressExtLdPromotion && 4182 (TotalCreatedInstsCost > 1 || 4183 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 4184 // The promotion is not profitable, rollback to the previous state. 4185 TPT.rollback(LastKnownGood); 4186 continue; 4187 } 4188 // The promotion is profitable. 4189 // Check if it exposes an ext(load). 4190 (void)extLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInstsCost); 4191 if (LI && (StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 4192 // If we have created a new extension, i.e., now we have two 4193 // extensions. We must make sure one of them is merged with 4194 // the load, otherwise we may degrade the code quality. 4195 (LI->hasOneUse() || hasSameExtUse(LI, *TLI)))) 4196 // Promotion happened. 4197 return true; 4198 // If this does not help to expose an ext(load) then, rollback. 4199 TPT.rollback(LastKnownGood); 4200 } 4201 // None of the extension can form an ext(load). 4202 LI = nullptr; 4203 Inst = nullptr; 4204 return false; 4205 } 4206 4207 /// Move a zext or sext fed by a load into the same basic block as the load, 4208 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 4209 /// extend into the load. 4210 /// \p I[in/out] the extension may be modified during the process if some 4211 /// promotions apply. 4212 /// 4213 bool CodeGenPrepare::moveExtToFormExtLoad(Instruction *&I) { 4214 // Try to promote a chain of computation if it allows to form 4215 // an extended load. 4216 TypePromotionTransaction TPT; 4217 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4218 TPT.getRestorationPoint(); 4219 SmallVector<Instruction *, 1> Exts; 4220 Exts.push_back(I); 4221 // Look for a load being extended. 4222 LoadInst *LI = nullptr; 4223 Instruction *OldExt = I; 4224 bool HasPromoted = extLdPromotion(TPT, LI, I, Exts); 4225 if (!LI || !I) { 4226 assert(!HasPromoted && !LI && "If we did not match any load instruction " 4227 "the code must remain the same"); 4228 I = OldExt; 4229 return false; 4230 } 4231 4232 // If they're already in the same block, there's nothing to do. 4233 // Make the cheap checks first if we did not promote. 4234 // If we promoted, we need to check if it is indeed profitable. 4235 if (!HasPromoted && LI->getParent() == I->getParent()) 4236 return false; 4237 4238 EVT VT = TLI->getValueType(*DL, I->getType()); 4239 EVT LoadVT = TLI->getValueType(*DL, LI->getType()); 4240 4241 // If the load has other users and the truncate is not free, this probably 4242 // isn't worthwhile. 4243 if (!LI->hasOneUse() && TLI && 4244 (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) && 4245 !TLI->isTruncateFree(I->getType(), LI->getType())) { 4246 I = OldExt; 4247 TPT.rollback(LastKnownGood); 4248 return false; 4249 } 4250 4251 // Check whether the target supports casts folded into loads. 4252 unsigned LType; 4253 if (isa<ZExtInst>(I)) 4254 LType = ISD::ZEXTLOAD; 4255 else { 4256 assert(isa<SExtInst>(I) && "Unexpected ext type!"); 4257 LType = ISD::SEXTLOAD; 4258 } 4259 if (TLI && !TLI->isLoadExtLegal(LType, VT, LoadVT)) { 4260 I = OldExt; 4261 TPT.rollback(LastKnownGood); 4262 return false; 4263 } 4264 4265 // Move the extend into the same block as the load, so that SelectionDAG 4266 // can fold it. 4267 TPT.commit(); 4268 I->removeFromParent(); 4269 I->insertAfter(LI); 4270 ++NumExtsMoved; 4271 return true; 4272 } 4273 4274 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 4275 BasicBlock *DefBB = I->getParent(); 4276 4277 // If the result of a {s|z}ext and its source are both live out, rewrite all 4278 // other uses of the source with result of extension. 4279 Value *Src = I->getOperand(0); 4280 if (Src->hasOneUse()) 4281 return false; 4282 4283 // Only do this xform if truncating is free. 4284 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 4285 return false; 4286 4287 // Only safe to perform the optimization if the source is also defined in 4288 // this block. 4289 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 4290 return false; 4291 4292 bool DefIsLiveOut = false; 4293 for (User *U : I->users()) { 4294 Instruction *UI = cast<Instruction>(U); 4295 4296 // Figure out which BB this ext is used in. 4297 BasicBlock *UserBB = UI->getParent(); 4298 if (UserBB == DefBB) continue; 4299 DefIsLiveOut = true; 4300 break; 4301 } 4302 if (!DefIsLiveOut) 4303 return false; 4304 4305 // Make sure none of the uses are PHI nodes. 4306 for (User *U : Src->users()) { 4307 Instruction *UI = cast<Instruction>(U); 4308 BasicBlock *UserBB = UI->getParent(); 4309 if (UserBB == DefBB) continue; 4310 // Be conservative. We don't want this xform to end up introducing 4311 // reloads just before load / store instructions. 4312 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 4313 return false; 4314 } 4315 4316 // InsertedTruncs - Only insert one trunc in each block once. 4317 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 4318 4319 bool MadeChange = false; 4320 for (Use &U : Src->uses()) { 4321 Instruction *User = cast<Instruction>(U.getUser()); 4322 4323 // Figure out which BB this ext is used in. 4324 BasicBlock *UserBB = User->getParent(); 4325 if (UserBB == DefBB) continue; 4326 4327 // Both src and def are live in this block. Rewrite the use. 4328 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 4329 4330 if (!InsertedTrunc) { 4331 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 4332 assert(InsertPt != UserBB->end()); 4333 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 4334 InsertedInsts.insert(InsertedTrunc); 4335 } 4336 4337 // Replace a use of the {s|z}ext source with a use of the result. 4338 U = InsertedTrunc; 4339 ++NumExtUses; 4340 MadeChange = true; 4341 } 4342 4343 return MadeChange; 4344 } 4345 4346 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 4347 // just after the load if the target can fold this into one extload instruction, 4348 // with the hope of eliminating some of the other later "and" instructions using 4349 // the loaded value. "and"s that are made trivially redundant by the insertion 4350 // of the new "and" are removed by this function, while others (e.g. those whose 4351 // path from the load goes through a phi) are left for isel to potentially 4352 // remove. 4353 // 4354 // For example: 4355 // 4356 // b0: 4357 // x = load i32 4358 // ... 4359 // b1: 4360 // y = and x, 0xff 4361 // z = use y 4362 // 4363 // becomes: 4364 // 4365 // b0: 4366 // x = load i32 4367 // x' = and x, 0xff 4368 // ... 4369 // b1: 4370 // z = use x' 4371 // 4372 // whereas: 4373 // 4374 // b0: 4375 // x1 = load i32 4376 // ... 4377 // b1: 4378 // x2 = load i32 4379 // ... 4380 // b2: 4381 // x = phi x1, x2 4382 // y = and x, 0xff 4383 // 4384 // becomes (after a call to optimizeLoadExt for each load): 4385 // 4386 // b0: 4387 // x1 = load i32 4388 // x1' = and x1, 0xff 4389 // ... 4390 // b1: 4391 // x2 = load i32 4392 // x2' = and x2, 0xff 4393 // ... 4394 // b2: 4395 // x = phi x1', x2' 4396 // y = and x, 0xff 4397 // 4398 4399 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 4400 4401 if (!Load->isSimple() || 4402 !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy())) 4403 return false; 4404 4405 // Skip loads we've already transformed or have no reason to transform. 4406 if (Load->hasOneUse()) { 4407 User *LoadUser = *Load->user_begin(); 4408 if (cast<Instruction>(LoadUser)->getParent() == Load->getParent() && 4409 !dyn_cast<PHINode>(LoadUser)) 4410 return false; 4411 } 4412 4413 // Look at all uses of Load, looking through phis, to determine how many bits 4414 // of the loaded value are needed. 4415 SmallVector<Instruction *, 8> WorkList; 4416 SmallPtrSet<Instruction *, 16> Visited; 4417 SmallVector<Instruction *, 8> AndsToMaybeRemove; 4418 for (auto *U : Load->users()) 4419 WorkList.push_back(cast<Instruction>(U)); 4420 4421 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 4422 unsigned BitWidth = LoadResultVT.getSizeInBits(); 4423 APInt DemandBits(BitWidth, 0); 4424 APInt WidestAndBits(BitWidth, 0); 4425 4426 while (!WorkList.empty()) { 4427 Instruction *I = WorkList.back(); 4428 WorkList.pop_back(); 4429 4430 // Break use-def graph loops. 4431 if (!Visited.insert(I).second) 4432 continue; 4433 4434 // For a PHI node, push all of its users. 4435 if (auto *Phi = dyn_cast<PHINode>(I)) { 4436 for (auto *U : Phi->users()) 4437 WorkList.push_back(cast<Instruction>(U)); 4438 continue; 4439 } 4440 4441 switch (I->getOpcode()) { 4442 case llvm::Instruction::And: { 4443 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 4444 if (!AndC) 4445 return false; 4446 APInt AndBits = AndC->getValue(); 4447 DemandBits |= AndBits; 4448 // Keep track of the widest and mask we see. 4449 if (AndBits.ugt(WidestAndBits)) 4450 WidestAndBits = AndBits; 4451 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 4452 AndsToMaybeRemove.push_back(I); 4453 break; 4454 } 4455 4456 case llvm::Instruction::Shl: { 4457 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 4458 if (!ShlC) 4459 return false; 4460 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 4461 auto ShlDemandBits = APInt::getAllOnesValue(BitWidth).lshr(ShiftAmt); 4462 DemandBits |= ShlDemandBits; 4463 break; 4464 } 4465 4466 case llvm::Instruction::Trunc: { 4467 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 4468 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 4469 auto TruncBits = APInt::getAllOnesValue(TruncBitWidth).zext(BitWidth); 4470 DemandBits |= TruncBits; 4471 break; 4472 } 4473 4474 default: 4475 return false; 4476 } 4477 } 4478 4479 uint32_t ActiveBits = DemandBits.getActiveBits(); 4480 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 4481 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 4482 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 4483 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 4484 // followed by an AND. 4485 // TODO: Look into removing this restriction by fixing backends to either 4486 // return false for isLoadExtLegal for i1 or have them select this pattern to 4487 // a single instruction. 4488 // 4489 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 4490 // mask, since these are the only ands that will be removed by isel. 4491 if (ActiveBits <= 1 || !APIntOps::isMask(ActiveBits, DemandBits) || 4492 WidestAndBits != DemandBits) 4493 return false; 4494 4495 LLVMContext &Ctx = Load->getType()->getContext(); 4496 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 4497 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 4498 4499 // Reject cases that won't be matched as extloads. 4500 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 4501 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 4502 return false; 4503 4504 IRBuilder<> Builder(Load->getNextNode()); 4505 auto *NewAnd = dyn_cast<Instruction>( 4506 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 4507 4508 // Replace all uses of load with new and (except for the use of load in the 4509 // new and itself). 4510 Load->replaceAllUsesWith(NewAnd); 4511 NewAnd->setOperand(0, Load); 4512 4513 // Remove any and instructions that are now redundant. 4514 for (auto *And : AndsToMaybeRemove) 4515 // Check that the and mask is the same as the one we decided to put on the 4516 // new and. 4517 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 4518 And->replaceAllUsesWith(NewAnd); 4519 if (&*CurInstIterator == And) 4520 CurInstIterator = std::next(And->getIterator()); 4521 And->eraseFromParent(); 4522 ++NumAndUses; 4523 } 4524 4525 ++NumAndsAdded; 4526 return true; 4527 } 4528 4529 /// Check if V (an operand of a select instruction) is an expensive instruction 4530 /// that is only used once. 4531 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 4532 auto *I = dyn_cast<Instruction>(V); 4533 // If it's safe to speculatively execute, then it should not have side 4534 // effects; therefore, it's safe to sink and possibly *not* execute. 4535 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 4536 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 4537 } 4538 4539 /// Returns true if a SelectInst should be turned into an explicit branch. 4540 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 4541 SelectInst *SI) { 4542 // FIXME: This should use the same heuristics as IfConversion to determine 4543 // whether a select is better represented as a branch. This requires that 4544 // branch probability metadata is preserved for the select, which is not the 4545 // case currently. 4546 4547 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 4548 4549 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 4550 // comparison condition. If the compare has more than one use, there's 4551 // probably another cmov or setcc around, so it's not worth emitting a branch. 4552 if (!Cmp || !Cmp->hasOneUse()) 4553 return false; 4554 4555 // If either operand of the select is expensive and only needed on one side 4556 // of the select, we should form a branch. 4557 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 4558 sinkSelectOperand(TTI, SI->getFalseValue())) 4559 return true; 4560 4561 return false; 4562 } 4563 4564 4565 /// If we have a SelectInst that will likely profit from branch prediction, 4566 /// turn it into a branch. 4567 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 4568 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 4569 4570 // Can we convert the 'select' to CF ? 4571 if (DisableSelectToBranch || OptSize || !TLI || VectorCond) 4572 return false; 4573 4574 TargetLowering::SelectSupportKind SelectKind; 4575 if (VectorCond) 4576 SelectKind = TargetLowering::VectorMaskSelect; 4577 else if (SI->getType()->isVectorTy()) 4578 SelectKind = TargetLowering::ScalarCondVectorVal; 4579 else 4580 SelectKind = TargetLowering::ScalarValSelect; 4581 4582 // Do we have efficient codegen support for this kind of 'selects' ? 4583 if (TLI->isSelectSupported(SelectKind)) { 4584 // We have efficient codegen support for the select instruction. 4585 // Check if it is profitable to keep this 'select'. 4586 if (!TLI->isPredictableSelectExpensive() || 4587 !isFormingBranchFromSelectProfitable(TTI, SI)) 4588 return false; 4589 } 4590 4591 ModifiedDT = true; 4592 4593 // Transform a sequence like this: 4594 // start: 4595 // %cmp = cmp uge i32 %a, %b 4596 // %sel = select i1 %cmp, i32 %c, i32 %d 4597 // 4598 // Into: 4599 // start: 4600 // %cmp = cmp uge i32 %a, %b 4601 // br i1 %cmp, label %select.true, label %select.false 4602 // select.true: 4603 // br label %select.end 4604 // select.false: 4605 // br label %select.end 4606 // select.end: 4607 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 4608 // 4609 // In addition, we may sink instructions that produce %c or %d from 4610 // the entry block into the destination(s) of the new branch. 4611 // If the true or false blocks do not contain a sunken instruction, that 4612 // block and its branch may be optimized away. In that case, one side of the 4613 // first branch will point directly to select.end, and the corresponding PHI 4614 // predecessor block will be the start block. 4615 4616 // First, we split the block containing the select into 2 blocks. 4617 BasicBlock *StartBlock = SI->getParent(); 4618 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI)); 4619 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 4620 4621 // Delete the unconditional branch that was just created by the split. 4622 StartBlock->getTerminator()->eraseFromParent(); 4623 4624 // These are the new basic blocks for the conditional branch. 4625 // At least one will become an actual new basic block. 4626 BasicBlock *TrueBlock = nullptr; 4627 BasicBlock *FalseBlock = nullptr; 4628 4629 // Sink expensive instructions into the conditional blocks to avoid executing 4630 // them speculatively. 4631 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 4632 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 4633 EndBlock->getParent(), EndBlock); 4634 auto *TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 4635 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 4636 TrueInst->moveBefore(TrueBranch); 4637 } 4638 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 4639 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 4640 EndBlock->getParent(), EndBlock); 4641 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 4642 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 4643 FalseInst->moveBefore(FalseBranch); 4644 } 4645 4646 // If there was nothing to sink, then arbitrarily choose the 'false' side 4647 // for a new input value to the PHI. 4648 if (TrueBlock == FalseBlock) { 4649 assert(TrueBlock == nullptr && 4650 "Unexpected basic block transform while optimizing select"); 4651 4652 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 4653 EndBlock->getParent(), EndBlock); 4654 BranchInst::Create(EndBlock, FalseBlock); 4655 } 4656 4657 // Insert the real conditional branch based on the original condition. 4658 // If we did not create a new block for one of the 'true' or 'false' paths 4659 // of the condition, it means that side of the branch goes to the end block 4660 // directly and the path originates from the start block from the point of 4661 // view of the new PHI. 4662 if (TrueBlock == nullptr) { 4663 BranchInst::Create(EndBlock, FalseBlock, SI->getCondition(), SI); 4664 TrueBlock = StartBlock; 4665 } else if (FalseBlock == nullptr) { 4666 BranchInst::Create(TrueBlock, EndBlock, SI->getCondition(), SI); 4667 FalseBlock = StartBlock; 4668 } else { 4669 BranchInst::Create(TrueBlock, FalseBlock, SI->getCondition(), SI); 4670 } 4671 4672 // The select itself is replaced with a PHI Node. 4673 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 4674 PN->takeName(SI); 4675 PN->addIncoming(SI->getTrueValue(), TrueBlock); 4676 PN->addIncoming(SI->getFalseValue(), FalseBlock); 4677 4678 SI->replaceAllUsesWith(PN); 4679 SI->eraseFromParent(); 4680 4681 // Instruct OptimizeBlock to skip to the next block. 4682 CurInstIterator = StartBlock->end(); 4683 ++NumSelectsExpanded; 4684 return true; 4685 } 4686 4687 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 4688 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 4689 int SplatElem = -1; 4690 for (unsigned i = 0; i < Mask.size(); ++i) { 4691 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 4692 return false; 4693 SplatElem = Mask[i]; 4694 } 4695 4696 return true; 4697 } 4698 4699 /// Some targets have expensive vector shifts if the lanes aren't all the same 4700 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 4701 /// it's often worth sinking a shufflevector splat down to its use so that 4702 /// codegen can spot all lanes are identical. 4703 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 4704 BasicBlock *DefBB = SVI->getParent(); 4705 4706 // Only do this xform if variable vector shifts are particularly expensive. 4707 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 4708 return false; 4709 4710 // We only expect better codegen by sinking a shuffle if we can recognise a 4711 // constant splat. 4712 if (!isBroadcastShuffle(SVI)) 4713 return false; 4714 4715 // InsertedShuffles - Only insert a shuffle in each block once. 4716 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 4717 4718 bool MadeChange = false; 4719 for (User *U : SVI->users()) { 4720 Instruction *UI = cast<Instruction>(U); 4721 4722 // Figure out which BB this ext is used in. 4723 BasicBlock *UserBB = UI->getParent(); 4724 if (UserBB == DefBB) continue; 4725 4726 // For now only apply this when the splat is used by a shift instruction. 4727 if (!UI->isShift()) continue; 4728 4729 // Everything checks out, sink the shuffle if the user's block doesn't 4730 // already have a copy. 4731 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 4732 4733 if (!InsertedShuffle) { 4734 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 4735 assert(InsertPt != UserBB->end()); 4736 InsertedShuffle = 4737 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 4738 SVI->getOperand(2), "", &*InsertPt); 4739 } 4740 4741 UI->replaceUsesOfWith(SVI, InsertedShuffle); 4742 MadeChange = true; 4743 } 4744 4745 // If we removed all uses, nuke the shuffle. 4746 if (SVI->use_empty()) { 4747 SVI->eraseFromParent(); 4748 MadeChange = true; 4749 } 4750 4751 return MadeChange; 4752 } 4753 4754 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 4755 if (!TLI || !DL) 4756 return false; 4757 4758 Value *Cond = SI->getCondition(); 4759 Type *OldType = Cond->getType(); 4760 LLVMContext &Context = Cond->getContext(); 4761 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 4762 unsigned RegWidth = RegType.getSizeInBits(); 4763 4764 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 4765 return false; 4766 4767 // If the register width is greater than the type width, expand the condition 4768 // of the switch instruction and each case constant to the width of the 4769 // register. By widening the type of the switch condition, subsequent 4770 // comparisons (for case comparisons) will not need to be extended to the 4771 // preferred register width, so we will potentially eliminate N-1 extends, 4772 // where N is the number of cases in the switch. 4773 auto *NewType = Type::getIntNTy(Context, RegWidth); 4774 4775 // Zero-extend the switch condition and case constants unless the switch 4776 // condition is a function argument that is already being sign-extended. 4777 // In that case, we can avoid an unnecessary mask/extension by sign-extending 4778 // everything instead. 4779 Instruction::CastOps ExtType = Instruction::ZExt; 4780 if (auto *Arg = dyn_cast<Argument>(Cond)) 4781 if (Arg->hasSExtAttr()) 4782 ExtType = Instruction::SExt; 4783 4784 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 4785 ExtInst->insertBefore(SI); 4786 SI->setCondition(ExtInst); 4787 for (SwitchInst::CaseIt Case : SI->cases()) { 4788 APInt NarrowConst = Case.getCaseValue()->getValue(); 4789 APInt WideConst = (ExtType == Instruction::ZExt) ? 4790 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 4791 Case.setValue(ConstantInt::get(Context, WideConst)); 4792 } 4793 4794 return true; 4795 } 4796 4797 namespace { 4798 /// \brief Helper class to promote a scalar operation to a vector one. 4799 /// This class is used to move downward extractelement transition. 4800 /// E.g., 4801 /// a = vector_op <2 x i32> 4802 /// b = extractelement <2 x i32> a, i32 0 4803 /// c = scalar_op b 4804 /// store c 4805 /// 4806 /// => 4807 /// a = vector_op <2 x i32> 4808 /// c = vector_op a (equivalent to scalar_op on the related lane) 4809 /// * d = extractelement <2 x i32> c, i32 0 4810 /// * store d 4811 /// Assuming both extractelement and store can be combine, we get rid of the 4812 /// transition. 4813 class VectorPromoteHelper { 4814 /// DataLayout associated with the current module. 4815 const DataLayout &DL; 4816 4817 /// Used to perform some checks on the legality of vector operations. 4818 const TargetLowering &TLI; 4819 4820 /// Used to estimated the cost of the promoted chain. 4821 const TargetTransformInfo &TTI; 4822 4823 /// The transition being moved downwards. 4824 Instruction *Transition; 4825 /// The sequence of instructions to be promoted. 4826 SmallVector<Instruction *, 4> InstsToBePromoted; 4827 /// Cost of combining a store and an extract. 4828 unsigned StoreExtractCombineCost; 4829 /// Instruction that will be combined with the transition. 4830 Instruction *CombineInst; 4831 4832 /// \brief The instruction that represents the current end of the transition. 4833 /// Since we are faking the promotion until we reach the end of the chain 4834 /// of computation, we need a way to get the current end of the transition. 4835 Instruction *getEndOfTransition() const { 4836 if (InstsToBePromoted.empty()) 4837 return Transition; 4838 return InstsToBePromoted.back(); 4839 } 4840 4841 /// \brief Return the index of the original value in the transition. 4842 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 4843 /// c, is at index 0. 4844 unsigned getTransitionOriginalValueIdx() const { 4845 assert(isa<ExtractElementInst>(Transition) && 4846 "Other kind of transitions are not supported yet"); 4847 return 0; 4848 } 4849 4850 /// \brief Return the index of the index in the transition. 4851 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 4852 /// is at index 1. 4853 unsigned getTransitionIdx() const { 4854 assert(isa<ExtractElementInst>(Transition) && 4855 "Other kind of transitions are not supported yet"); 4856 return 1; 4857 } 4858 4859 /// \brief Get the type of the transition. 4860 /// This is the type of the original value. 4861 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 4862 /// transition is <2 x i32>. 4863 Type *getTransitionType() const { 4864 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 4865 } 4866 4867 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 4868 /// I.e., we have the following sequence: 4869 /// Def = Transition <ty1> a to <ty2> 4870 /// b = ToBePromoted <ty2> Def, ... 4871 /// => 4872 /// b = ToBePromoted <ty1> a, ... 4873 /// Def = Transition <ty1> ToBePromoted to <ty2> 4874 void promoteImpl(Instruction *ToBePromoted); 4875 4876 /// \brief Check whether or not it is profitable to promote all the 4877 /// instructions enqueued to be promoted. 4878 bool isProfitableToPromote() { 4879 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 4880 unsigned Index = isa<ConstantInt>(ValIdx) 4881 ? cast<ConstantInt>(ValIdx)->getZExtValue() 4882 : -1; 4883 Type *PromotedType = getTransitionType(); 4884 4885 StoreInst *ST = cast<StoreInst>(CombineInst); 4886 unsigned AS = ST->getPointerAddressSpace(); 4887 unsigned Align = ST->getAlignment(); 4888 // Check if this store is supported. 4889 if (!TLI.allowsMisalignedMemoryAccesses( 4890 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 4891 Align)) { 4892 // If this is not supported, there is no way we can combine 4893 // the extract with the store. 4894 return false; 4895 } 4896 4897 // The scalar chain of computation has to pay for the transition 4898 // scalar to vector. 4899 // The vector chain has to account for the combining cost. 4900 uint64_t ScalarCost = 4901 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 4902 uint64_t VectorCost = StoreExtractCombineCost; 4903 for (const auto &Inst : InstsToBePromoted) { 4904 // Compute the cost. 4905 // By construction, all instructions being promoted are arithmetic ones. 4906 // Moreover, one argument is a constant that can be viewed as a splat 4907 // constant. 4908 Value *Arg0 = Inst->getOperand(0); 4909 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 4910 isa<ConstantFP>(Arg0); 4911 TargetTransformInfo::OperandValueKind Arg0OVK = 4912 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 4913 : TargetTransformInfo::OK_AnyValue; 4914 TargetTransformInfo::OperandValueKind Arg1OVK = 4915 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 4916 : TargetTransformInfo::OK_AnyValue; 4917 ScalarCost += TTI.getArithmeticInstrCost( 4918 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 4919 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 4920 Arg0OVK, Arg1OVK); 4921 } 4922 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 4923 << ScalarCost << "\nVector: " << VectorCost << '\n'); 4924 return ScalarCost > VectorCost; 4925 } 4926 4927 /// \brief Generate a constant vector with \p Val with the same 4928 /// number of elements as the transition. 4929 /// \p UseSplat defines whether or not \p Val should be replicated 4930 /// across the whole vector. 4931 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 4932 /// otherwise we generate a vector with as many undef as possible: 4933 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 4934 /// used at the index of the extract. 4935 Value *getConstantVector(Constant *Val, bool UseSplat) const { 4936 unsigned ExtractIdx = UINT_MAX; 4937 if (!UseSplat) { 4938 // If we cannot determine where the constant must be, we have to 4939 // use a splat constant. 4940 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 4941 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 4942 ExtractIdx = CstVal->getSExtValue(); 4943 else 4944 UseSplat = true; 4945 } 4946 4947 unsigned End = getTransitionType()->getVectorNumElements(); 4948 if (UseSplat) 4949 return ConstantVector::getSplat(End, Val); 4950 4951 SmallVector<Constant *, 4> ConstVec; 4952 UndefValue *UndefVal = UndefValue::get(Val->getType()); 4953 for (unsigned Idx = 0; Idx != End; ++Idx) { 4954 if (Idx == ExtractIdx) 4955 ConstVec.push_back(Val); 4956 else 4957 ConstVec.push_back(UndefVal); 4958 } 4959 return ConstantVector::get(ConstVec); 4960 } 4961 4962 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 4963 /// in \p Use can trigger undefined behavior. 4964 static bool canCauseUndefinedBehavior(const Instruction *Use, 4965 unsigned OperandIdx) { 4966 // This is not safe to introduce undef when the operand is on 4967 // the right hand side of a division-like instruction. 4968 if (OperandIdx != 1) 4969 return false; 4970 switch (Use->getOpcode()) { 4971 default: 4972 return false; 4973 case Instruction::SDiv: 4974 case Instruction::UDiv: 4975 case Instruction::SRem: 4976 case Instruction::URem: 4977 return true; 4978 case Instruction::FDiv: 4979 case Instruction::FRem: 4980 return !Use->hasNoNaNs(); 4981 } 4982 llvm_unreachable(nullptr); 4983 } 4984 4985 public: 4986 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 4987 const TargetTransformInfo &TTI, Instruction *Transition, 4988 unsigned CombineCost) 4989 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 4990 StoreExtractCombineCost(CombineCost), CombineInst(nullptr) { 4991 assert(Transition && "Do not know how to promote null"); 4992 } 4993 4994 /// \brief Check if we can promote \p ToBePromoted to \p Type. 4995 bool canPromote(const Instruction *ToBePromoted) const { 4996 // We could support CastInst too. 4997 return isa<BinaryOperator>(ToBePromoted); 4998 } 4999 5000 /// \brief Check if it is profitable to promote \p ToBePromoted 5001 /// by moving downward the transition through. 5002 bool shouldPromote(const Instruction *ToBePromoted) const { 5003 // Promote only if all the operands can be statically expanded. 5004 // Indeed, we do not want to introduce any new kind of transitions. 5005 for (const Use &U : ToBePromoted->operands()) { 5006 const Value *Val = U.get(); 5007 if (Val == getEndOfTransition()) { 5008 // If the use is a division and the transition is on the rhs, 5009 // we cannot promote the operation, otherwise we may create a 5010 // division by zero. 5011 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 5012 return false; 5013 continue; 5014 } 5015 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 5016 !isa<ConstantFP>(Val)) 5017 return false; 5018 } 5019 // Check that the resulting operation is legal. 5020 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 5021 if (!ISDOpcode) 5022 return false; 5023 return StressStoreExtract || 5024 TLI.isOperationLegalOrCustom( 5025 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 5026 } 5027 5028 /// \brief Check whether or not \p Use can be combined 5029 /// with the transition. 5030 /// I.e., is it possible to do Use(Transition) => AnotherUse? 5031 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 5032 5033 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 5034 void enqueueForPromotion(Instruction *ToBePromoted) { 5035 InstsToBePromoted.push_back(ToBePromoted); 5036 } 5037 5038 /// \brief Set the instruction that will be combined with the transition. 5039 void recordCombineInstruction(Instruction *ToBeCombined) { 5040 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 5041 CombineInst = ToBeCombined; 5042 } 5043 5044 /// \brief Promote all the instructions enqueued for promotion if it is 5045 /// is profitable. 5046 /// \return True if the promotion happened, false otherwise. 5047 bool promote() { 5048 // Check if there is something to promote. 5049 // Right now, if we do not have anything to combine with, 5050 // we assume the promotion is not profitable. 5051 if (InstsToBePromoted.empty() || !CombineInst) 5052 return false; 5053 5054 // Check cost. 5055 if (!StressStoreExtract && !isProfitableToPromote()) 5056 return false; 5057 5058 // Promote. 5059 for (auto &ToBePromoted : InstsToBePromoted) 5060 promoteImpl(ToBePromoted); 5061 InstsToBePromoted.clear(); 5062 return true; 5063 } 5064 }; 5065 } // End of anonymous namespace. 5066 5067 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 5068 // At this point, we know that all the operands of ToBePromoted but Def 5069 // can be statically promoted. 5070 // For Def, we need to use its parameter in ToBePromoted: 5071 // b = ToBePromoted ty1 a 5072 // Def = Transition ty1 b to ty2 5073 // Move the transition down. 5074 // 1. Replace all uses of the promoted operation by the transition. 5075 // = ... b => = ... Def. 5076 assert(ToBePromoted->getType() == Transition->getType() && 5077 "The type of the result of the transition does not match " 5078 "the final type"); 5079 ToBePromoted->replaceAllUsesWith(Transition); 5080 // 2. Update the type of the uses. 5081 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 5082 Type *TransitionTy = getTransitionType(); 5083 ToBePromoted->mutateType(TransitionTy); 5084 // 3. Update all the operands of the promoted operation with promoted 5085 // operands. 5086 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 5087 for (Use &U : ToBePromoted->operands()) { 5088 Value *Val = U.get(); 5089 Value *NewVal = nullptr; 5090 if (Val == Transition) 5091 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 5092 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 5093 isa<ConstantFP>(Val)) { 5094 // Use a splat constant if it is not safe to use undef. 5095 NewVal = getConstantVector( 5096 cast<Constant>(Val), 5097 isa<UndefValue>(Val) || 5098 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 5099 } else 5100 llvm_unreachable("Did you modified shouldPromote and forgot to update " 5101 "this?"); 5102 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 5103 } 5104 Transition->removeFromParent(); 5105 Transition->insertAfter(ToBePromoted); 5106 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 5107 } 5108 5109 /// Some targets can do store(extractelement) with one instruction. 5110 /// Try to push the extractelement towards the stores when the target 5111 /// has this feature and this is profitable. 5112 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 5113 unsigned CombineCost = UINT_MAX; 5114 if (DisableStoreExtract || !TLI || 5115 (!StressStoreExtract && 5116 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 5117 Inst->getOperand(1), CombineCost))) 5118 return false; 5119 5120 // At this point we know that Inst is a vector to scalar transition. 5121 // Try to move it down the def-use chain, until: 5122 // - We can combine the transition with its single use 5123 // => we got rid of the transition. 5124 // - We escape the current basic block 5125 // => we would need to check that we are moving it at a cheaper place and 5126 // we do not do that for now. 5127 BasicBlock *Parent = Inst->getParent(); 5128 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 5129 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 5130 // If the transition has more than one use, assume this is not going to be 5131 // beneficial. 5132 while (Inst->hasOneUse()) { 5133 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 5134 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 5135 5136 if (ToBePromoted->getParent() != Parent) { 5137 DEBUG(dbgs() << "Instruction to promote is in a different block (" 5138 << ToBePromoted->getParent()->getName() 5139 << ") than the transition (" << Parent->getName() << ").\n"); 5140 return false; 5141 } 5142 5143 if (VPH.canCombine(ToBePromoted)) { 5144 DEBUG(dbgs() << "Assume " << *Inst << '\n' 5145 << "will be combined with: " << *ToBePromoted << '\n'); 5146 VPH.recordCombineInstruction(ToBePromoted); 5147 bool Changed = VPH.promote(); 5148 NumStoreExtractExposed += Changed; 5149 return Changed; 5150 } 5151 5152 DEBUG(dbgs() << "Try promoting.\n"); 5153 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 5154 return false; 5155 5156 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 5157 5158 VPH.enqueueForPromotion(ToBePromoted); 5159 Inst = ToBePromoted; 5160 } 5161 return false; 5162 } 5163 5164 bool CodeGenPrepare::optimizeInst(Instruction *I, bool& ModifiedDT) { 5165 // Bail out if we inserted the instruction to prevent optimizations from 5166 // stepping on each other's toes. 5167 if (InsertedInsts.count(I)) 5168 return false; 5169 5170 if (PHINode *P = dyn_cast<PHINode>(I)) { 5171 // It is possible for very late stage optimizations (such as SimplifyCFG) 5172 // to introduce PHI nodes too late to be cleaned up. If we detect such a 5173 // trivial PHI, go ahead and zap it here. 5174 if (Value *V = SimplifyInstruction(P, *DL, TLInfo, nullptr)) { 5175 P->replaceAllUsesWith(V); 5176 P->eraseFromParent(); 5177 ++NumPHIsElim; 5178 return true; 5179 } 5180 return false; 5181 } 5182 5183 if (CastInst *CI = dyn_cast<CastInst>(I)) { 5184 // If the source of the cast is a constant, then this should have 5185 // already been constant folded. The only reason NOT to constant fold 5186 // it is if something (e.g. LSR) was careful to place the constant 5187 // evaluation in a block other than then one that uses it (e.g. to hoist 5188 // the address of globals out of a loop). If this is the case, we don't 5189 // want to forward-subst the cast. 5190 if (isa<Constant>(CI->getOperand(0))) 5191 return false; 5192 5193 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 5194 return true; 5195 5196 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 5197 /// Sink a zext or sext into its user blocks if the target type doesn't 5198 /// fit in one register 5199 if (TLI && 5200 TLI->getTypeAction(CI->getContext(), 5201 TLI->getValueType(*DL, CI->getType())) == 5202 TargetLowering::TypeExpandInteger) { 5203 return SinkCast(CI); 5204 } else { 5205 bool MadeChange = moveExtToFormExtLoad(I); 5206 return MadeChange | optimizeExtUses(I); 5207 } 5208 } 5209 return false; 5210 } 5211 5212 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5213 if (!TLI || !TLI->hasMultipleConditionRegisters()) 5214 return OptimizeCmpExpression(CI, TLI); 5215 5216 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5217 stripInvariantGroupMetadata(*LI); 5218 if (TLI) { 5219 bool Modified = optimizeLoadExt(LI); 5220 unsigned AS = LI->getPointerAddressSpace(); 5221 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 5222 return Modified; 5223 } 5224 return false; 5225 } 5226 5227 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 5228 stripInvariantGroupMetadata(*SI); 5229 if (TLI) { 5230 unsigned AS = SI->getPointerAddressSpace(); 5231 return optimizeMemoryInst(I, SI->getOperand(1), 5232 SI->getOperand(0)->getType(), AS); 5233 } 5234 return false; 5235 } 5236 5237 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 5238 5239 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 5240 BinOp->getOpcode() == Instruction::LShr)) { 5241 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 5242 if (TLI && CI && TLI->hasExtractBitsInsn()) 5243 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 5244 5245 return false; 5246 } 5247 5248 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 5249 if (GEPI->hasAllZeroIndices()) { 5250 /// The GEP operand must be a pointer, so must its result -> BitCast 5251 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 5252 GEPI->getName(), GEPI); 5253 GEPI->replaceAllUsesWith(NC); 5254 GEPI->eraseFromParent(); 5255 ++NumGEPsElim; 5256 optimizeInst(NC, ModifiedDT); 5257 return true; 5258 } 5259 return false; 5260 } 5261 5262 if (CallInst *CI = dyn_cast<CallInst>(I)) 5263 return optimizeCallInst(CI, ModifiedDT); 5264 5265 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 5266 return optimizeSelectInst(SI); 5267 5268 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 5269 return optimizeShuffleVectorInst(SVI); 5270 5271 if (auto *Switch = dyn_cast<SwitchInst>(I)) 5272 return optimizeSwitchInst(Switch); 5273 5274 if (isa<ExtractElementInst>(I)) 5275 return optimizeExtractElementInst(I); 5276 5277 return false; 5278 } 5279 5280 /// Given an OR instruction, check to see if this is a bitreverse 5281 /// idiom. If so, insert the new intrinsic and return true. 5282 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 5283 const TargetLowering &TLI) { 5284 if (!I.getType()->isIntegerTy() || 5285 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 5286 TLI.getValueType(DL, I.getType(), true))) 5287 return false; 5288 5289 SmallVector<Instruction*, 4> Insts; 5290 if (!recognizeBitReverseOrBSwapIdiom(&I, false, true, Insts)) 5291 return false; 5292 Instruction *LastInst = Insts.back(); 5293 I.replaceAllUsesWith(LastInst); 5294 RecursivelyDeleteTriviallyDeadInstructions(&I); 5295 return true; 5296 } 5297 5298 // In this pass we look for GEP and cast instructions that are used 5299 // across basic blocks and rewrite them to improve basic-block-at-a-time 5300 // selection. 5301 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool& ModifiedDT) { 5302 SunkAddrs.clear(); 5303 bool MadeChange = false; 5304 5305 CurInstIterator = BB.begin(); 5306 while (CurInstIterator != BB.end()) { 5307 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 5308 if (ModifiedDT) 5309 return true; 5310 } 5311 5312 bool MadeBitReverse = true; 5313 while (TLI && MadeBitReverse) { 5314 MadeBitReverse = false; 5315 for (auto &I : reverse(BB)) { 5316 if (makeBitReverse(I, *DL, *TLI)) { 5317 MadeBitReverse = MadeChange = true; 5318 ModifiedDT = true; 5319 break; 5320 } 5321 } 5322 } 5323 MadeChange |= dupRetToEnableTailCallOpts(&BB); 5324 5325 return MadeChange; 5326 } 5327 5328 // llvm.dbg.value is far away from the value then iSel may not be able 5329 // handle it properly. iSel will drop llvm.dbg.value if it can not 5330 // find a node corresponding to the value. 5331 bool CodeGenPrepare::placeDbgValues(Function &F) { 5332 bool MadeChange = false; 5333 for (BasicBlock &BB : F) { 5334 Instruction *PrevNonDbgInst = nullptr; 5335 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 5336 Instruction *Insn = &*BI++; 5337 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 5338 // Leave dbg.values that refer to an alloca alone. These 5339 // instrinsics describe the address of a variable (= the alloca) 5340 // being taken. They should not be moved next to the alloca 5341 // (and to the beginning of the scope), but rather stay close to 5342 // where said address is used. 5343 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 5344 PrevNonDbgInst = Insn; 5345 continue; 5346 } 5347 5348 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 5349 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 5350 // If VI is a phi in a block with an EHPad terminator, we can't insert 5351 // after it. 5352 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 5353 continue; 5354 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 5355 DVI->removeFromParent(); 5356 if (isa<PHINode>(VI)) 5357 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 5358 else 5359 DVI->insertAfter(VI); 5360 MadeChange = true; 5361 ++NumDbgValueMoved; 5362 } 5363 } 5364 } 5365 return MadeChange; 5366 } 5367 5368 // If there is a sequence that branches based on comparing a single bit 5369 // against zero that can be combined into a single instruction, and the 5370 // target supports folding these into a single instruction, sink the 5371 // mask and compare into the branch uses. Do this before OptimizeBlock -> 5372 // OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being 5373 // searched for. 5374 bool CodeGenPrepare::sinkAndCmp(Function &F) { 5375 if (!EnableAndCmpSinking) 5376 return false; 5377 if (!TLI || !TLI->isMaskAndBranchFoldingLegal()) 5378 return false; 5379 bool MadeChange = false; 5380 for (BasicBlock &BB : F) { 5381 // Does this BB end with the following? 5382 // %andVal = and %val, #single-bit-set 5383 // %icmpVal = icmp %andResult, 0 5384 // br i1 %cmpVal label %dest1, label %dest2" 5385 BranchInst *Brcc = dyn_cast<BranchInst>(BB.getTerminator()); 5386 if (!Brcc || !Brcc->isConditional()) 5387 continue; 5388 ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0)); 5389 if (!Cmp || Cmp->getParent() != &BB) 5390 continue; 5391 ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 5392 if (!Zero || !Zero->isZero()) 5393 continue; 5394 Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0)); 5395 if (!And || And->getOpcode() != Instruction::And || And->getParent() != &BB) 5396 continue; 5397 ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1)); 5398 if (!Mask || !Mask->getUniqueInteger().isPowerOf2()) 5399 continue; 5400 DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB.dump()); 5401 5402 // Push the "and; icmp" for any users that are conditional branches. 5403 // Since there can only be one branch use per BB, we don't need to keep 5404 // track of which BBs we insert into. 5405 for (Use &TheUse : Cmp->uses()) { 5406 // Find brcc use. 5407 BranchInst *BrccUser = dyn_cast<BranchInst>(TheUse); 5408 if (!BrccUser || !BrccUser->isConditional()) 5409 continue; 5410 BasicBlock *UserBB = BrccUser->getParent(); 5411 if (UserBB == &BB) continue; 5412 DEBUG(dbgs() << "found Brcc use\n"); 5413 5414 // Sink the "and; icmp" to use. 5415 MadeChange = true; 5416 BinaryOperator *NewAnd = 5417 BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "", 5418 BrccUser); 5419 CmpInst *NewCmp = 5420 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero, 5421 "", BrccUser); 5422 TheUse = NewCmp; 5423 ++NumAndCmpsMoved; 5424 DEBUG(BrccUser->getParent()->dump()); 5425 } 5426 } 5427 return MadeChange; 5428 } 5429 5430 /// \brief Retrieve the probabilities of a conditional branch. Returns true on 5431 /// success, or returns false if no or invalid metadata was found. 5432 static bool extractBranchMetadata(BranchInst *BI, 5433 uint64_t &ProbTrue, uint64_t &ProbFalse) { 5434 assert(BI->isConditional() && 5435 "Looking for probabilities on unconditional branch?"); 5436 auto *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 5437 if (!ProfileData || ProfileData->getNumOperands() != 3) 5438 return false; 5439 5440 const auto *CITrue = 5441 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 5442 const auto *CIFalse = 5443 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 5444 if (!CITrue || !CIFalse) 5445 return false; 5446 5447 ProbTrue = CITrue->getValue().getZExtValue(); 5448 ProbFalse = CIFalse->getValue().getZExtValue(); 5449 5450 return true; 5451 } 5452 5453 /// \brief Scale down both weights to fit into uint32_t. 5454 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 5455 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 5456 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 5457 NewTrue = NewTrue / Scale; 5458 NewFalse = NewFalse / Scale; 5459 } 5460 5461 /// \brief Some targets prefer to split a conditional branch like: 5462 /// \code 5463 /// %0 = icmp ne i32 %a, 0 5464 /// %1 = icmp ne i32 %b, 0 5465 /// %or.cond = or i1 %0, %1 5466 /// br i1 %or.cond, label %TrueBB, label %FalseBB 5467 /// \endcode 5468 /// into multiple branch instructions like: 5469 /// \code 5470 /// bb1: 5471 /// %0 = icmp ne i32 %a, 0 5472 /// br i1 %0, label %TrueBB, label %bb2 5473 /// bb2: 5474 /// %1 = icmp ne i32 %b, 0 5475 /// br i1 %1, label %TrueBB, label %FalseBB 5476 /// \endcode 5477 /// This usually allows instruction selection to do even further optimizations 5478 /// and combine the compare with the branch instruction. Currently this is 5479 /// applied for targets which have "cheap" jump instructions. 5480 /// 5481 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 5482 /// 5483 bool CodeGenPrepare::splitBranchCondition(Function &F) { 5484 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 5485 return false; 5486 5487 bool MadeChange = false; 5488 for (auto &BB : F) { 5489 // Does this BB end with the following? 5490 // %cond1 = icmp|fcmp|binary instruction ... 5491 // %cond2 = icmp|fcmp|binary instruction ... 5492 // %cond.or = or|and i1 %cond1, cond2 5493 // br i1 %cond.or label %dest1, label %dest2" 5494 BinaryOperator *LogicOp; 5495 BasicBlock *TBB, *FBB; 5496 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 5497 continue; 5498 5499 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 5500 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 5501 continue; 5502 5503 unsigned Opc; 5504 Value *Cond1, *Cond2; 5505 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 5506 m_OneUse(m_Value(Cond2))))) 5507 Opc = Instruction::And; 5508 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 5509 m_OneUse(m_Value(Cond2))))) 5510 Opc = Instruction::Or; 5511 else 5512 continue; 5513 5514 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 5515 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 5516 continue; 5517 5518 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 5519 5520 // Create a new BB. 5521 auto TmpBB = 5522 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 5523 BB.getParent(), BB.getNextNode()); 5524 5525 // Update original basic block by using the first condition directly by the 5526 // branch instruction and removing the no longer needed and/or instruction. 5527 Br1->setCondition(Cond1); 5528 LogicOp->eraseFromParent(); 5529 5530 // Depending on the conditon we have to either replace the true or the false 5531 // successor of the original branch instruction. 5532 if (Opc == Instruction::And) 5533 Br1->setSuccessor(0, TmpBB); 5534 else 5535 Br1->setSuccessor(1, TmpBB); 5536 5537 // Fill in the new basic block. 5538 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 5539 if (auto *I = dyn_cast<Instruction>(Cond2)) { 5540 I->removeFromParent(); 5541 I->insertBefore(Br2); 5542 } 5543 5544 // Update PHI nodes in both successors. The original BB needs to be 5545 // replaced in one succesor's PHI nodes, because the branch comes now from 5546 // the newly generated BB (NewBB). In the other successor we need to add one 5547 // incoming edge to the PHI nodes, because both branch instructions target 5548 // now the same successor. Depending on the original branch condition 5549 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 5550 // we perfrom the correct update for the PHI nodes. 5551 // This doesn't change the successor order of the just created branch 5552 // instruction (or any other instruction). 5553 if (Opc == Instruction::Or) 5554 std::swap(TBB, FBB); 5555 5556 // Replace the old BB with the new BB. 5557 for (auto &I : *TBB) { 5558 PHINode *PN = dyn_cast<PHINode>(&I); 5559 if (!PN) 5560 break; 5561 int i; 5562 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 5563 PN->setIncomingBlock(i, TmpBB); 5564 } 5565 5566 // Add another incoming edge form the new BB. 5567 for (auto &I : *FBB) { 5568 PHINode *PN = dyn_cast<PHINode>(&I); 5569 if (!PN) 5570 break; 5571 auto *Val = PN->getIncomingValueForBlock(&BB); 5572 PN->addIncoming(Val, TmpBB); 5573 } 5574 5575 // Update the branch weights (from SelectionDAGBuilder:: 5576 // FindMergedConditions). 5577 if (Opc == Instruction::Or) { 5578 // Codegen X | Y as: 5579 // BB1: 5580 // jmp_if_X TBB 5581 // jmp TmpBB 5582 // TmpBB: 5583 // jmp_if_Y TBB 5584 // jmp FBB 5585 // 5586 5587 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 5588 // The requirement is that 5589 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 5590 // = TrueProb for orignal BB. 5591 // Assuming the orignal weights are A and B, one choice is to set BB1's 5592 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 5593 // assumes that 5594 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 5595 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 5596 // TmpBB, but the math is more complicated. 5597 uint64_t TrueWeight, FalseWeight; 5598 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { 5599 uint64_t NewTrueWeight = TrueWeight; 5600 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 5601 scaleWeights(NewTrueWeight, NewFalseWeight); 5602 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 5603 .createBranchWeights(TrueWeight, FalseWeight)); 5604 5605 NewTrueWeight = TrueWeight; 5606 NewFalseWeight = 2 * FalseWeight; 5607 scaleWeights(NewTrueWeight, NewFalseWeight); 5608 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 5609 .createBranchWeights(TrueWeight, FalseWeight)); 5610 } 5611 } else { 5612 // Codegen X & Y as: 5613 // BB1: 5614 // jmp_if_X TmpBB 5615 // jmp FBB 5616 // TmpBB: 5617 // jmp_if_Y TBB 5618 // jmp FBB 5619 // 5620 // This requires creation of TmpBB after CurBB. 5621 5622 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 5623 // The requirement is that 5624 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 5625 // = FalseProb for orignal BB. 5626 // Assuming the orignal weights are A and B, one choice is to set BB1's 5627 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 5628 // assumes that 5629 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 5630 uint64_t TrueWeight, FalseWeight; 5631 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { 5632 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 5633 uint64_t NewFalseWeight = FalseWeight; 5634 scaleWeights(NewTrueWeight, NewFalseWeight); 5635 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 5636 .createBranchWeights(TrueWeight, FalseWeight)); 5637 5638 NewTrueWeight = 2 * TrueWeight; 5639 NewFalseWeight = FalseWeight; 5640 scaleWeights(NewTrueWeight, NewFalseWeight); 5641 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 5642 .createBranchWeights(TrueWeight, FalseWeight)); 5643 } 5644 } 5645 5646 // Note: No point in getting fancy here, since the DT info is never 5647 // available to CodeGenPrepare. 5648 ModifiedDT = true; 5649 5650 MadeChange = true; 5651 5652 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 5653 TmpBB->dump()); 5654 } 5655 return MadeChange; 5656 } 5657 5658 void CodeGenPrepare::stripInvariantGroupMetadata(Instruction &I) { 5659 if (auto *InvariantMD = I.getMetadata(LLVMContext::MD_invariant_group)) 5660 I.dropUnknownNonDebugMetadata(InvariantMD->getMetadataID()); 5661 } 5662