1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/Passes.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/BlockFrequencyInfo.h" 22 #include "llvm/Analysis/BranchProbabilityInfo.h" 23 #include "llvm/Analysis/CFG.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/ProfileSummaryInfo.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/MemoryBuiltins.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/IR/CallSite.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GetElementPtrTypeIterator.h" 39 #include "llvm/IR/IRBuilder.h" 40 #include "llvm/IR/InlineAsm.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/MDBuilder.h" 44 #include "llvm/IR/PatternMatch.h" 45 #include "llvm/IR/Statepoint.h" 46 #include "llvm/IR/ValueHandle.h" 47 #include "llvm/IR/ValueMap.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/BranchProbability.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetLowering.h" 54 #include "llvm/Target/TargetSubtargetInfo.h" 55 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 56 #include "llvm/Transforms/Utils/BuildLibCalls.h" 57 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 58 #include "llvm/Transforms/Utils/Cloning.h" 59 #include "llvm/Transforms/Utils/Local.h" 60 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 61 #include "llvm/Transforms/Utils/ValueMapper.h" 62 using namespace llvm; 63 using namespace llvm::PatternMatch; 64 65 #define DEBUG_TYPE "codegenprepare" 66 67 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 68 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 69 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 70 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 71 "sunken Cmps"); 72 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 73 "of sunken Casts"); 74 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 75 "computations were sunk"); 76 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 77 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 78 STATISTIC(NumAndsAdded, 79 "Number of and mask instructions added to form ext loads"); 80 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 81 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 82 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 83 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 84 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 85 86 static cl::opt<bool> DisableBranchOpts( 87 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 88 cl::desc("Disable branch optimizations in CodeGenPrepare")); 89 90 static cl::opt<bool> 91 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 92 cl::desc("Disable GC optimizations in CodeGenPrepare")); 93 94 static cl::opt<bool> DisableSelectToBranch( 95 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 96 cl::desc("Disable select to branch conversion.")); 97 98 static cl::opt<bool> AddrSinkUsingGEPs( 99 "addr-sink-using-gep", cl::Hidden, cl::init(true), 100 cl::desc("Address sinking in CGP using GEPs.")); 101 102 static cl::opt<bool> EnableAndCmpSinking( 103 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 104 cl::desc("Enable sinkinig and/cmp into branches.")); 105 106 static cl::opt<bool> DisableStoreExtract( 107 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 108 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 109 110 static cl::opt<bool> StressStoreExtract( 111 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 112 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 113 114 static cl::opt<bool> DisableExtLdPromotion( 115 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 116 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 117 "CodeGenPrepare")); 118 119 static cl::opt<bool> StressExtLdPromotion( 120 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 121 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 122 "optimization in CodeGenPrepare")); 123 124 static cl::opt<bool> DisablePreheaderProtect( 125 "disable-preheader-prot", cl::Hidden, cl::init(false), 126 cl::desc("Disable protection against removing loop preheaders")); 127 128 static cl::opt<bool> ProfileGuidedSectionPrefix( 129 "profile-guided-section-prefix", cl::Hidden, cl::init(true), 130 cl::desc("Use profile info to add section prefix for hot/cold functions")); 131 132 static cl::opt<unsigned> FreqRatioToSkipMerge( 133 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 134 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 135 "(frequency of destination block) is greater than this ratio")); 136 137 static cl::opt<bool> ForceSplitStore( 138 "force-split-store", cl::Hidden, cl::init(false), 139 cl::desc("Force store splitting no matter what the target query says.")); 140 141 static cl::opt<bool> 142 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 143 cl::desc("Enable merging of redundant sexts when one is dominating" 144 " the other."), cl::init(true)); 145 146 namespace { 147 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; 148 typedef PointerIntPair<Type *, 1, bool> TypeIsSExt; 149 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy; 150 typedef SmallVector<Instruction *, 16> SExts; 151 typedef DenseMap<Value *, SExts> ValueToSExts; 152 class TypePromotionTransaction; 153 154 class CodeGenPrepare : public FunctionPass { 155 const TargetMachine *TM; 156 const TargetSubtargetInfo *SubtargetInfo; 157 const TargetLowering *TLI; 158 const TargetRegisterInfo *TRI; 159 const TargetTransformInfo *TTI; 160 const TargetLibraryInfo *TLInfo; 161 const LoopInfo *LI; 162 std::unique_ptr<BlockFrequencyInfo> BFI; 163 std::unique_ptr<BranchProbabilityInfo> BPI; 164 165 /// As we scan instructions optimizing them, this is the next instruction 166 /// to optimize. Transforms that can invalidate this should update it. 167 BasicBlock::iterator CurInstIterator; 168 169 /// Keeps track of non-local addresses that have been sunk into a block. 170 /// This allows us to avoid inserting duplicate code for blocks with 171 /// multiple load/stores of the same address. 172 ValueMap<Value*, Value*> SunkAddrs; 173 174 /// Keeps track of all instructions inserted for the current function. 175 SetOfInstrs InsertedInsts; 176 /// Keeps track of the type of the related instruction before their 177 /// promotion for the current function. 178 InstrToOrigTy PromotedInsts; 179 180 /// Keep track of instructions removed during promotion. 181 SetOfInstrs RemovedInsts; 182 183 /// Keep track of sext chains based on their initial value. 184 DenseMap<Value *, Instruction *> SeenChainsForSExt; 185 186 /// Keep track of SExt promoted. 187 ValueToSExts ValToSExtendedUses; 188 189 /// True if CFG is modified in any way. 190 bool ModifiedDT; 191 192 /// True if optimizing for size. 193 bool OptSize; 194 195 /// DataLayout for the Function being processed. 196 const DataLayout *DL; 197 198 public: 199 static char ID; // Pass identification, replacement for typeid 200 explicit CodeGenPrepare(const TargetMachine *TM = nullptr) 201 : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr), DL(nullptr) { 202 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 203 } 204 bool runOnFunction(Function &F) override; 205 206 StringRef getPassName() const override { return "CodeGen Prepare"; } 207 208 void getAnalysisUsage(AnalysisUsage &AU) const override { 209 // FIXME: When we can selectively preserve passes, preserve the domtree. 210 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 211 AU.addRequired<TargetLibraryInfoWrapperPass>(); 212 AU.addRequired<TargetTransformInfoWrapperPass>(); 213 AU.addRequired<LoopInfoWrapperPass>(); 214 } 215 216 private: 217 bool eliminateFallThrough(Function &F); 218 bool eliminateMostlyEmptyBlocks(Function &F); 219 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 220 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 221 void eliminateMostlyEmptyBlock(BasicBlock *BB); 222 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 223 bool isPreheader); 224 bool optimizeBlock(BasicBlock &BB, bool& ModifiedDT); 225 bool optimizeInst(Instruction *I, bool& ModifiedDT); 226 bool optimizeMemoryInst(Instruction *I, Value *Addr, 227 Type *AccessTy, unsigned AS); 228 bool optimizeInlineAsmInst(CallInst *CS); 229 bool optimizeCallInst(CallInst *CI, bool& ModifiedDT); 230 bool optimizeExt(Instruction *&I); 231 bool optimizeExtUses(Instruction *I); 232 bool optimizeLoadExt(LoadInst *I); 233 bool optimizeSelectInst(SelectInst *SI); 234 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); 235 bool optimizeSwitchInst(SwitchInst *CI); 236 bool optimizeExtractElementInst(Instruction *Inst); 237 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 238 bool placeDbgValues(Function &F); 239 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 240 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 241 bool tryToPromoteExts(TypePromotionTransaction &TPT, 242 const SmallVectorImpl<Instruction *> &Exts, 243 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 244 unsigned CreatedInstsCost = 0); 245 bool mergeSExts(Function &F); 246 bool performAddressTypePromotion( 247 Instruction *&Inst, 248 bool AllowPromotionWithoutCommonHeader, 249 bool HasPromoted, TypePromotionTransaction &TPT, 250 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 251 bool splitBranchCondition(Function &F); 252 bool simplifyOffsetableRelocate(Instruction &I); 253 bool splitIndirectCriticalEdges(Function &F); 254 }; 255 } 256 257 char CodeGenPrepare::ID = 0; 258 INITIALIZE_TM_PASS_BEGIN(CodeGenPrepare, "codegenprepare", 259 "Optimize for code generation", false, false) 260 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 261 INITIALIZE_TM_PASS_END(CodeGenPrepare, "codegenprepare", 262 "Optimize for code generation", false, false) 263 264 FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) { 265 return new CodeGenPrepare(TM); 266 } 267 268 bool CodeGenPrepare::runOnFunction(Function &F) { 269 if (skipFunction(F)) 270 return false; 271 272 DL = &F.getParent()->getDataLayout(); 273 274 bool EverMadeChange = false; 275 // Clear per function information. 276 InsertedInsts.clear(); 277 PromotedInsts.clear(); 278 BFI.reset(); 279 BPI.reset(); 280 281 ModifiedDT = false; 282 if (TM) { 283 SubtargetInfo = TM->getSubtargetImpl(F); 284 TLI = SubtargetInfo->getTargetLowering(); 285 TRI = SubtargetInfo->getRegisterInfo(); 286 } 287 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 288 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 289 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 290 OptSize = F.optForSize(); 291 292 if (ProfileGuidedSectionPrefix) { 293 ProfileSummaryInfo *PSI = 294 getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 295 if (PSI->isFunctionHotInCallGraph(&F)) 296 F.setSectionPrefix(".hot"); 297 else if (PSI->isFunctionColdInCallGraph(&F)) 298 F.setSectionPrefix(".cold"); 299 } 300 301 /// This optimization identifies DIV instructions that can be 302 /// profitably bypassed and carried out with a shorter, faster divide. 303 if (!OptSize && TLI && TLI->isSlowDivBypassed()) { 304 const DenseMap<unsigned int, unsigned int> &BypassWidths = 305 TLI->getBypassSlowDivWidths(); 306 BasicBlock* BB = &*F.begin(); 307 while (BB != nullptr) { 308 // bypassSlowDivision may create new BBs, but we don't want to reapply the 309 // optimization to those blocks. 310 BasicBlock* Next = BB->getNextNode(); 311 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 312 BB = Next; 313 } 314 } 315 316 // Eliminate blocks that contain only PHI nodes and an 317 // unconditional branch. 318 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 319 320 // llvm.dbg.value is far away from the value then iSel may not be able 321 // handle it properly. iSel will drop llvm.dbg.value if it can not 322 // find a node corresponding to the value. 323 EverMadeChange |= placeDbgValues(F); 324 325 if (!DisableBranchOpts) 326 EverMadeChange |= splitBranchCondition(F); 327 328 // Split some critical edges where one of the sources is an indirect branch, 329 // to help generate sane code for PHIs involving such edges. 330 EverMadeChange |= splitIndirectCriticalEdges(F); 331 332 bool MadeChange = true; 333 while (MadeChange) { 334 MadeChange = false; 335 SeenChainsForSExt.clear(); 336 ValToSExtendedUses.clear(); 337 RemovedInsts.clear(); 338 for (Function::iterator I = F.begin(); I != F.end(); ) { 339 BasicBlock *BB = &*I++; 340 bool ModifiedDTOnIteration = false; 341 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 342 343 // Restart BB iteration if the dominator tree of the Function was changed 344 if (ModifiedDTOnIteration) 345 break; 346 } 347 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 348 MadeChange |= mergeSExts(F); 349 350 // Really free removed instructions during promotion. 351 for (Instruction *I : RemovedInsts) 352 delete I; 353 354 EverMadeChange |= MadeChange; 355 } 356 357 SunkAddrs.clear(); 358 359 if (!DisableBranchOpts) { 360 MadeChange = false; 361 SmallPtrSet<BasicBlock*, 8> WorkList; 362 for (BasicBlock &BB : F) { 363 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 364 MadeChange |= ConstantFoldTerminator(&BB, true); 365 if (!MadeChange) continue; 366 367 for (SmallVectorImpl<BasicBlock*>::iterator 368 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 369 if (pred_begin(*II) == pred_end(*II)) 370 WorkList.insert(*II); 371 } 372 373 // Delete the dead blocks and any of their dead successors. 374 MadeChange |= !WorkList.empty(); 375 while (!WorkList.empty()) { 376 BasicBlock *BB = *WorkList.begin(); 377 WorkList.erase(BB); 378 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 379 380 DeleteDeadBlock(BB); 381 382 for (SmallVectorImpl<BasicBlock*>::iterator 383 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 384 if (pred_begin(*II) == pred_end(*II)) 385 WorkList.insert(*II); 386 } 387 388 // Merge pairs of basic blocks with unconditional branches, connected by 389 // a single edge. 390 if (EverMadeChange || MadeChange) 391 MadeChange |= eliminateFallThrough(F); 392 393 EverMadeChange |= MadeChange; 394 } 395 396 if (!DisableGCOpts) { 397 SmallVector<Instruction *, 2> Statepoints; 398 for (BasicBlock &BB : F) 399 for (Instruction &I : BB) 400 if (isStatepoint(I)) 401 Statepoints.push_back(&I); 402 for (auto &I : Statepoints) 403 EverMadeChange |= simplifyOffsetableRelocate(*I); 404 } 405 406 return EverMadeChange; 407 } 408 409 /// Merge basic blocks which are connected by a single edge, where one of the 410 /// basic blocks has a single successor pointing to the other basic block, 411 /// which has a single predecessor. 412 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 413 bool Changed = false; 414 // Scan all of the blocks in the function, except for the entry block. 415 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 416 BasicBlock *BB = &*I++; 417 // If the destination block has a single pred, then this is a trivial 418 // edge, just collapse it. 419 BasicBlock *SinglePred = BB->getSinglePredecessor(); 420 421 // Don't merge if BB's address is taken. 422 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 423 424 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 425 if (Term && !Term->isConditional()) { 426 Changed = true; 427 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 428 // Remember if SinglePred was the entry block of the function. 429 // If so, we will need to move BB back to the entry position. 430 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 431 MergeBasicBlockIntoOnlyPred(BB, nullptr); 432 433 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 434 BB->moveBefore(&BB->getParent()->getEntryBlock()); 435 436 // We have erased a block. Update the iterator. 437 I = BB->getIterator(); 438 } 439 } 440 return Changed; 441 } 442 443 /// Find a destination block from BB if BB is mergeable empty block. 444 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 445 // If this block doesn't end with an uncond branch, ignore it. 446 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 447 if (!BI || !BI->isUnconditional()) 448 return nullptr; 449 450 // If the instruction before the branch (skipping debug info) isn't a phi 451 // node, then other stuff is happening here. 452 BasicBlock::iterator BBI = BI->getIterator(); 453 if (BBI != BB->begin()) { 454 --BBI; 455 while (isa<DbgInfoIntrinsic>(BBI)) { 456 if (BBI == BB->begin()) 457 break; 458 --BBI; 459 } 460 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 461 return nullptr; 462 } 463 464 // Do not break infinite loops. 465 BasicBlock *DestBB = BI->getSuccessor(0); 466 if (DestBB == BB) 467 return nullptr; 468 469 if (!canMergeBlocks(BB, DestBB)) 470 DestBB = nullptr; 471 472 return DestBB; 473 } 474 475 // Return the unique indirectbr predecessor of a block. This may return null 476 // even if such a predecessor exists, if it's not useful for splitting. 477 // If a predecessor is found, OtherPreds will contain all other (non-indirectbr) 478 // predecessors of BB. 479 static BasicBlock * 480 findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) { 481 // If the block doesn't have any PHIs, we don't care about it, since there's 482 // no point in splitting it. 483 PHINode *PN = dyn_cast<PHINode>(BB->begin()); 484 if (!PN) 485 return nullptr; 486 487 // Verify we have exactly one IBR predecessor. 488 // Conservatively bail out if one of the other predecessors is not a "regular" 489 // terminator (that is, not a switch or a br). 490 BasicBlock *IBB = nullptr; 491 for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) { 492 BasicBlock *PredBB = PN->getIncomingBlock(Pred); 493 TerminatorInst *PredTerm = PredBB->getTerminator(); 494 switch (PredTerm->getOpcode()) { 495 case Instruction::IndirectBr: 496 if (IBB) 497 return nullptr; 498 IBB = PredBB; 499 break; 500 case Instruction::Br: 501 case Instruction::Switch: 502 OtherPreds.push_back(PredBB); 503 continue; 504 default: 505 return nullptr; 506 } 507 } 508 509 return IBB; 510 } 511 512 // Split critical edges where the source of the edge is an indirectbr 513 // instruction. This isn't always possible, but we can handle some easy cases. 514 // This is useful because MI is unable to split such critical edges, 515 // which means it will not be able to sink instructions along those edges. 516 // This is especially painful for indirect branches with many successors, where 517 // we end up having to prepare all outgoing values in the origin block. 518 // 519 // Our normal algorithm for splitting critical edges requires us to update 520 // the outgoing edges of the edge origin block, but for an indirectbr this 521 // is hard, since it would require finding and updating the block addresses 522 // the indirect branch uses. But if a block only has a single indirectbr 523 // predecessor, with the others being regular branches, we can do it in a 524 // different way. 525 // Say we have A -> D, B -> D, I -> D where only I -> D is an indirectbr. 526 // We can split D into D0 and D1, where D0 contains only the PHIs from D, 527 // and D1 is the D block body. We can then duplicate D0 as D0A and D0B, and 528 // create the following structure: 529 // A -> D0A, B -> D0A, I -> D0B, D0A -> D1, D0B -> D1 530 bool CodeGenPrepare::splitIndirectCriticalEdges(Function &F) { 531 // Check whether the function has any indirectbrs, and collect which blocks 532 // they may jump to. Since most functions don't have indirect branches, 533 // this lowers the common case's overhead to O(Blocks) instead of O(Edges). 534 SmallSetVector<BasicBlock *, 16> Targets; 535 for (auto &BB : F) { 536 auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator()); 537 if (!IBI) 538 continue; 539 540 for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ) 541 Targets.insert(IBI->getSuccessor(Succ)); 542 } 543 544 if (Targets.empty()) 545 return false; 546 547 bool Changed = false; 548 for (BasicBlock *Target : Targets) { 549 SmallVector<BasicBlock *, 16> OtherPreds; 550 BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds); 551 // If we did not found an indirectbr, or the indirectbr is the only 552 // incoming edge, this isn't the kind of edge we're looking for. 553 if (!IBRPred || OtherPreds.empty()) 554 continue; 555 556 // Don't even think about ehpads/landingpads. 557 Instruction *FirstNonPHI = Target->getFirstNonPHI(); 558 if (FirstNonPHI->isEHPad() || Target->isLandingPad()) 559 continue; 560 561 BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split"); 562 // It's possible Target was its own successor through an indirectbr. 563 // In this case, the indirectbr now comes from BodyBlock. 564 if (IBRPred == Target) 565 IBRPred = BodyBlock; 566 567 // At this point Target only has PHIs, and BodyBlock has the rest of the 568 // block's body. Create a copy of Target that will be used by the "direct" 569 // preds. 570 ValueToValueMapTy VMap; 571 BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F); 572 573 for (BasicBlock *Pred : OtherPreds) 574 Pred->getTerminator()->replaceUsesOfWith(Target, DirectSucc); 575 576 // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that 577 // they are clones, so the number of PHIs are the same. 578 // (a) Remove the edge coming from IBRPred from the "Direct" PHI 579 // (b) Leave that as the only edge in the "Indirect" PHI. 580 // (c) Merge the two in the body block. 581 BasicBlock::iterator Indirect = Target->begin(), 582 End = Target->getFirstNonPHI()->getIterator(); 583 BasicBlock::iterator Direct = DirectSucc->begin(); 584 BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt(); 585 586 assert(&*End == Target->getTerminator() && 587 "Block was expected to only contain PHIs"); 588 589 while (Indirect != End) { 590 PHINode *DirPHI = cast<PHINode>(Direct); 591 PHINode *IndPHI = cast<PHINode>(Indirect); 592 593 // Now, clean up - the direct block shouldn't get the indirect value, 594 // and vice versa. 595 DirPHI->removeIncomingValue(IBRPred); 596 Direct++; 597 598 // Advance the pointer here, to avoid invalidation issues when the old 599 // PHI is erased. 600 Indirect++; 601 602 PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI); 603 NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred), 604 IBRPred); 605 606 // Create a PHI in the body block, to merge the direct and indirect 607 // predecessors. 608 PHINode *MergePHI = 609 PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert); 610 MergePHI->addIncoming(NewIndPHI, Target); 611 MergePHI->addIncoming(DirPHI, DirectSucc); 612 613 IndPHI->replaceAllUsesWith(MergePHI); 614 IndPHI->eraseFromParent(); 615 } 616 617 Changed = true; 618 } 619 620 return Changed; 621 } 622 623 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 624 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 625 /// edges in ways that are non-optimal for isel. Start by eliminating these 626 /// blocks so we can split them the way we want them. 627 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 628 SmallPtrSet<BasicBlock *, 16> Preheaders; 629 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 630 while (!LoopList.empty()) { 631 Loop *L = LoopList.pop_back_val(); 632 LoopList.insert(LoopList.end(), L->begin(), L->end()); 633 if (BasicBlock *Preheader = L->getLoopPreheader()) 634 Preheaders.insert(Preheader); 635 } 636 637 bool MadeChange = false; 638 // Note that this intentionally skips the entry block. 639 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 640 BasicBlock *BB = &*I++; 641 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 642 if (!DestBB || 643 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 644 continue; 645 646 eliminateMostlyEmptyBlock(BB); 647 MadeChange = true; 648 } 649 return MadeChange; 650 } 651 652 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 653 BasicBlock *DestBB, 654 bool isPreheader) { 655 // Do not delete loop preheaders if doing so would create a critical edge. 656 // Loop preheaders can be good locations to spill registers. If the 657 // preheader is deleted and we create a critical edge, registers may be 658 // spilled in the loop body instead. 659 if (!DisablePreheaderProtect && isPreheader && 660 !(BB->getSinglePredecessor() && 661 BB->getSinglePredecessor()->getSingleSuccessor())) 662 return false; 663 664 // Try to skip merging if the unique predecessor of BB is terminated by a 665 // switch or indirect branch instruction, and BB is used as an incoming block 666 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 667 // add COPY instructions in the predecessor of BB instead of BB (if it is not 668 // merged). Note that the critical edge created by merging such blocks wont be 669 // split in MachineSink because the jump table is not analyzable. By keeping 670 // such empty block (BB), ISel will place COPY instructions in BB, not in the 671 // predecessor of BB. 672 BasicBlock *Pred = BB->getUniquePredecessor(); 673 if (!Pred || 674 !(isa<SwitchInst>(Pred->getTerminator()) || 675 isa<IndirectBrInst>(Pred->getTerminator()))) 676 return true; 677 678 if (BB->getTerminator() != BB->getFirstNonPHI()) 679 return true; 680 681 // We use a simple cost heuristic which determine skipping merging is 682 // profitable if the cost of skipping merging is less than the cost of 683 // merging : Cost(skipping merging) < Cost(merging BB), where the 684 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 685 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 686 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 687 // Freq(Pred) / Freq(BB) > 2. 688 // Note that if there are multiple empty blocks sharing the same incoming 689 // value for the PHIs in the DestBB, we consider them together. In such 690 // case, Cost(merging BB) will be the sum of their frequencies. 691 692 if (!isa<PHINode>(DestBB->begin())) 693 return true; 694 695 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 696 697 // Find all other incoming blocks from which incoming values of all PHIs in 698 // DestBB are the same as the ones from BB. 699 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 700 ++PI) { 701 BasicBlock *DestBBPred = *PI; 702 if (DestBBPred == BB) 703 continue; 704 705 bool HasAllSameValue = true; 706 BasicBlock::const_iterator DestBBI = DestBB->begin(); 707 while (const PHINode *DestPN = dyn_cast<PHINode>(DestBBI++)) { 708 if (DestPN->getIncomingValueForBlock(BB) != 709 DestPN->getIncomingValueForBlock(DestBBPred)) { 710 HasAllSameValue = false; 711 break; 712 } 713 } 714 if (HasAllSameValue) 715 SameIncomingValueBBs.insert(DestBBPred); 716 } 717 718 // See if all BB's incoming values are same as the value from Pred. In this 719 // case, no reason to skip merging because COPYs are expected to be place in 720 // Pred already. 721 if (SameIncomingValueBBs.count(Pred)) 722 return true; 723 724 if (!BFI) { 725 Function &F = *BB->getParent(); 726 LoopInfo LI{DominatorTree(F)}; 727 BPI.reset(new BranchProbabilityInfo(F, LI)); 728 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 729 } 730 731 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 732 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 733 734 for (auto SameValueBB : SameIncomingValueBBs) 735 if (SameValueBB->getUniquePredecessor() == Pred && 736 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 737 BBFreq += BFI->getBlockFreq(SameValueBB); 738 739 return PredFreq.getFrequency() <= 740 BBFreq.getFrequency() * FreqRatioToSkipMerge; 741 } 742 743 /// Return true if we can merge BB into DestBB if there is a single 744 /// unconditional branch between them, and BB contains no other non-phi 745 /// instructions. 746 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 747 const BasicBlock *DestBB) const { 748 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 749 // the successor. If there are more complex condition (e.g. preheaders), 750 // don't mess around with them. 751 BasicBlock::const_iterator BBI = BB->begin(); 752 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 753 for (const User *U : PN->users()) { 754 const Instruction *UI = cast<Instruction>(U); 755 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 756 return false; 757 // If User is inside DestBB block and it is a PHINode then check 758 // incoming value. If incoming value is not from BB then this is 759 // a complex condition (e.g. preheaders) we want to avoid here. 760 if (UI->getParent() == DestBB) { 761 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 762 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 763 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 764 if (Insn && Insn->getParent() == BB && 765 Insn->getParent() != UPN->getIncomingBlock(I)) 766 return false; 767 } 768 } 769 } 770 } 771 772 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 773 // and DestBB may have conflicting incoming values for the block. If so, we 774 // can't merge the block. 775 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 776 if (!DestBBPN) return true; // no conflict. 777 778 // Collect the preds of BB. 779 SmallPtrSet<const BasicBlock*, 16> BBPreds; 780 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 781 // It is faster to get preds from a PHI than with pred_iterator. 782 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 783 BBPreds.insert(BBPN->getIncomingBlock(i)); 784 } else { 785 BBPreds.insert(pred_begin(BB), pred_end(BB)); 786 } 787 788 // Walk the preds of DestBB. 789 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 790 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 791 if (BBPreds.count(Pred)) { // Common predecessor? 792 BBI = DestBB->begin(); 793 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 794 const Value *V1 = PN->getIncomingValueForBlock(Pred); 795 const Value *V2 = PN->getIncomingValueForBlock(BB); 796 797 // If V2 is a phi node in BB, look up what the mapped value will be. 798 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 799 if (V2PN->getParent() == BB) 800 V2 = V2PN->getIncomingValueForBlock(Pred); 801 802 // If there is a conflict, bail out. 803 if (V1 != V2) return false; 804 } 805 } 806 } 807 808 return true; 809 } 810 811 812 /// Eliminate a basic block that has only phi's and an unconditional branch in 813 /// it. 814 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 815 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 816 BasicBlock *DestBB = BI->getSuccessor(0); 817 818 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 819 820 // If the destination block has a single pred, then this is a trivial edge, 821 // just collapse it. 822 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 823 if (SinglePred != DestBB) { 824 // Remember if SinglePred was the entry block of the function. If so, we 825 // will need to move BB back to the entry position. 826 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 827 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 828 829 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 830 BB->moveBefore(&BB->getParent()->getEntryBlock()); 831 832 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 833 return; 834 } 835 } 836 837 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 838 // to handle the new incoming edges it is about to have. 839 PHINode *PN; 840 for (BasicBlock::iterator BBI = DestBB->begin(); 841 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 842 // Remove the incoming value for BB, and remember it. 843 Value *InVal = PN->removeIncomingValue(BB, false); 844 845 // Two options: either the InVal is a phi node defined in BB or it is some 846 // value that dominates BB. 847 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 848 if (InValPhi && InValPhi->getParent() == BB) { 849 // Add all of the input values of the input PHI as inputs of this phi. 850 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 851 PN->addIncoming(InValPhi->getIncomingValue(i), 852 InValPhi->getIncomingBlock(i)); 853 } else { 854 // Otherwise, add one instance of the dominating value for each edge that 855 // we will be adding. 856 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 857 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 858 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 859 } else { 860 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 861 PN->addIncoming(InVal, *PI); 862 } 863 } 864 } 865 866 // The PHIs are now updated, change everything that refers to BB to use 867 // DestBB and remove BB. 868 BB->replaceAllUsesWith(DestBB); 869 BB->eraseFromParent(); 870 ++NumBlocksElim; 871 872 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 873 } 874 875 // Computes a map of base pointer relocation instructions to corresponding 876 // derived pointer relocation instructions given a vector of all relocate calls 877 static void computeBaseDerivedRelocateMap( 878 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 879 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 880 &RelocateInstMap) { 881 // Collect information in two maps: one primarily for locating the base object 882 // while filling the second map; the second map is the final structure holding 883 // a mapping between Base and corresponding Derived relocate calls 884 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 885 for (auto *ThisRelocate : AllRelocateCalls) { 886 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 887 ThisRelocate->getDerivedPtrIndex()); 888 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 889 } 890 for (auto &Item : RelocateIdxMap) { 891 std::pair<unsigned, unsigned> Key = Item.first; 892 if (Key.first == Key.second) 893 // Base relocation: nothing to insert 894 continue; 895 896 GCRelocateInst *I = Item.second; 897 auto BaseKey = std::make_pair(Key.first, Key.first); 898 899 // We're iterating over RelocateIdxMap so we cannot modify it. 900 auto MaybeBase = RelocateIdxMap.find(BaseKey); 901 if (MaybeBase == RelocateIdxMap.end()) 902 // TODO: We might want to insert a new base object relocate and gep off 903 // that, if there are enough derived object relocates. 904 continue; 905 906 RelocateInstMap[MaybeBase->second].push_back(I); 907 } 908 } 909 910 // Accepts a GEP and extracts the operands into a vector provided they're all 911 // small integer constants 912 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 913 SmallVectorImpl<Value *> &OffsetV) { 914 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 915 // Only accept small constant integer operands 916 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 917 if (!Op || Op->getZExtValue() > 20) 918 return false; 919 } 920 921 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 922 OffsetV.push_back(GEP->getOperand(i)); 923 return true; 924 } 925 926 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 927 // replace, computes a replacement, and affects it. 928 static bool 929 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 930 const SmallVectorImpl<GCRelocateInst *> &Targets) { 931 bool MadeChange = false; 932 for (GCRelocateInst *ToReplace : Targets) { 933 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 934 "Not relocating a derived object of the original base object"); 935 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 936 // A duplicate relocate call. TODO: coalesce duplicates. 937 continue; 938 } 939 940 if (RelocatedBase->getParent() != ToReplace->getParent()) { 941 // Base and derived relocates are in different basic blocks. 942 // In this case transform is only valid when base dominates derived 943 // relocate. However it would be too expensive to check dominance 944 // for each such relocate, so we skip the whole transformation. 945 continue; 946 } 947 948 Value *Base = ToReplace->getBasePtr(); 949 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 950 if (!Derived || Derived->getPointerOperand() != Base) 951 continue; 952 953 SmallVector<Value *, 2> OffsetV; 954 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 955 continue; 956 957 // Create a Builder and replace the target callsite with a gep 958 assert(RelocatedBase->getNextNode() && 959 "Should always have one since it's not a terminator"); 960 961 // Insert after RelocatedBase 962 IRBuilder<> Builder(RelocatedBase->getNextNode()); 963 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 964 965 // If gc_relocate does not match the actual type, cast it to the right type. 966 // In theory, there must be a bitcast after gc_relocate if the type does not 967 // match, and we should reuse it to get the derived pointer. But it could be 968 // cases like this: 969 // bb1: 970 // ... 971 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 972 // br label %merge 973 // 974 // bb2: 975 // ... 976 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 977 // br label %merge 978 // 979 // merge: 980 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 981 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 982 // 983 // In this case, we can not find the bitcast any more. So we insert a new bitcast 984 // no matter there is already one or not. In this way, we can handle all cases, and 985 // the extra bitcast should be optimized away in later passes. 986 Value *ActualRelocatedBase = RelocatedBase; 987 if (RelocatedBase->getType() != Base->getType()) { 988 ActualRelocatedBase = 989 Builder.CreateBitCast(RelocatedBase, Base->getType()); 990 } 991 Value *Replacement = Builder.CreateGEP( 992 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 993 Replacement->takeName(ToReplace); 994 // If the newly generated derived pointer's type does not match the original derived 995 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 996 Value *ActualReplacement = Replacement; 997 if (Replacement->getType() != ToReplace->getType()) { 998 ActualReplacement = 999 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1000 } 1001 ToReplace->replaceAllUsesWith(ActualReplacement); 1002 ToReplace->eraseFromParent(); 1003 1004 MadeChange = true; 1005 } 1006 return MadeChange; 1007 } 1008 1009 // Turns this: 1010 // 1011 // %base = ... 1012 // %ptr = gep %base + 15 1013 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1014 // %base' = relocate(%tok, i32 4, i32 4) 1015 // %ptr' = relocate(%tok, i32 4, i32 5) 1016 // %val = load %ptr' 1017 // 1018 // into this: 1019 // 1020 // %base = ... 1021 // %ptr = gep %base + 15 1022 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1023 // %base' = gc.relocate(%tok, i32 4, i32 4) 1024 // %ptr' = gep %base' + 15 1025 // %val = load %ptr' 1026 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1027 bool MadeChange = false; 1028 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1029 1030 for (auto *U : I.users()) 1031 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1032 // Collect all the relocate calls associated with a statepoint 1033 AllRelocateCalls.push_back(Relocate); 1034 1035 // We need atleast one base pointer relocation + one derived pointer 1036 // relocation to mangle 1037 if (AllRelocateCalls.size() < 2) 1038 return false; 1039 1040 // RelocateInstMap is a mapping from the base relocate instruction to the 1041 // corresponding derived relocate instructions 1042 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1043 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1044 if (RelocateInstMap.empty()) 1045 return false; 1046 1047 for (auto &Item : RelocateInstMap) 1048 // Item.first is the RelocatedBase to offset against 1049 // Item.second is the vector of Targets to replace 1050 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1051 return MadeChange; 1052 } 1053 1054 /// SinkCast - Sink the specified cast instruction into its user blocks 1055 static bool SinkCast(CastInst *CI) { 1056 BasicBlock *DefBB = CI->getParent(); 1057 1058 /// InsertedCasts - Only insert a cast in each block once. 1059 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1060 1061 bool MadeChange = false; 1062 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1063 UI != E; ) { 1064 Use &TheUse = UI.getUse(); 1065 Instruction *User = cast<Instruction>(*UI); 1066 1067 // Figure out which BB this cast is used in. For PHI's this is the 1068 // appropriate predecessor block. 1069 BasicBlock *UserBB = User->getParent(); 1070 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1071 UserBB = PN->getIncomingBlock(TheUse); 1072 } 1073 1074 // Preincrement use iterator so we don't invalidate it. 1075 ++UI; 1076 1077 // The first insertion point of a block containing an EH pad is after the 1078 // pad. If the pad is the user, we cannot sink the cast past the pad. 1079 if (User->isEHPad()) 1080 continue; 1081 1082 // If the block selected to receive the cast is an EH pad that does not 1083 // allow non-PHI instructions before the terminator, we can't sink the 1084 // cast. 1085 if (UserBB->getTerminator()->isEHPad()) 1086 continue; 1087 1088 // If this user is in the same block as the cast, don't change the cast. 1089 if (UserBB == DefBB) continue; 1090 1091 // If we have already inserted a cast into this block, use it. 1092 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1093 1094 if (!InsertedCast) { 1095 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1096 assert(InsertPt != UserBB->end()); 1097 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1098 CI->getType(), "", &*InsertPt); 1099 } 1100 1101 // Replace a use of the cast with a use of the new cast. 1102 TheUse = InsertedCast; 1103 MadeChange = true; 1104 ++NumCastUses; 1105 } 1106 1107 // If we removed all uses, nuke the cast. 1108 if (CI->use_empty()) { 1109 CI->eraseFromParent(); 1110 MadeChange = true; 1111 } 1112 1113 return MadeChange; 1114 } 1115 1116 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1117 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1118 /// reduce the number of virtual registers that must be created and coalesced. 1119 /// 1120 /// Return true if any changes are made. 1121 /// 1122 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1123 const DataLayout &DL) { 1124 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1125 // than sinking only nop casts, but is helpful on some platforms. 1126 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1127 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), 1128 ASC->getDestAddressSpace())) 1129 return false; 1130 } 1131 1132 // If this is a noop copy, 1133 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1134 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1135 1136 // This is an fp<->int conversion? 1137 if (SrcVT.isInteger() != DstVT.isInteger()) 1138 return false; 1139 1140 // If this is an extension, it will be a zero or sign extension, which 1141 // isn't a noop. 1142 if (SrcVT.bitsLT(DstVT)) return false; 1143 1144 // If these values will be promoted, find out what they will be promoted 1145 // to. This helps us consider truncates on PPC as noop copies when they 1146 // are. 1147 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1148 TargetLowering::TypePromoteInteger) 1149 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1150 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1151 TargetLowering::TypePromoteInteger) 1152 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1153 1154 // If, after promotion, these are the same types, this is a noop copy. 1155 if (SrcVT != DstVT) 1156 return false; 1157 1158 return SinkCast(CI); 1159 } 1160 1161 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 1162 /// possible. 1163 /// 1164 /// Return true if any changes were made. 1165 static bool CombineUAddWithOverflow(CmpInst *CI) { 1166 Value *A, *B; 1167 Instruction *AddI; 1168 if (!match(CI, 1169 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 1170 return false; 1171 1172 Type *Ty = AddI->getType(); 1173 if (!isa<IntegerType>(Ty)) 1174 return false; 1175 1176 // We don't want to move around uses of condition values this late, so we we 1177 // check if it is legal to create the call to the intrinsic in the basic 1178 // block containing the icmp: 1179 1180 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 1181 return false; 1182 1183 #ifndef NDEBUG 1184 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 1185 // for now: 1186 if (AddI->hasOneUse()) 1187 assert(*AddI->user_begin() == CI && "expected!"); 1188 #endif 1189 1190 Module *M = CI->getModule(); 1191 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 1192 1193 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 1194 1195 auto *UAddWithOverflow = 1196 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 1197 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 1198 auto *Overflow = 1199 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 1200 1201 CI->replaceAllUsesWith(Overflow); 1202 AddI->replaceAllUsesWith(UAdd); 1203 CI->eraseFromParent(); 1204 AddI->eraseFromParent(); 1205 return true; 1206 } 1207 1208 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1209 /// registers that must be created and coalesced. This is a clear win except on 1210 /// targets with multiple condition code registers (PowerPC), where it might 1211 /// lose; some adjustment may be wanted there. 1212 /// 1213 /// Return true if any changes are made. 1214 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1215 BasicBlock *DefBB = CI->getParent(); 1216 1217 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1218 if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI)) 1219 return false; 1220 1221 // Only insert a cmp in each block once. 1222 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1223 1224 bool MadeChange = false; 1225 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1226 UI != E; ) { 1227 Use &TheUse = UI.getUse(); 1228 Instruction *User = cast<Instruction>(*UI); 1229 1230 // Preincrement use iterator so we don't invalidate it. 1231 ++UI; 1232 1233 // Don't bother for PHI nodes. 1234 if (isa<PHINode>(User)) 1235 continue; 1236 1237 // Figure out which BB this cmp is used in. 1238 BasicBlock *UserBB = User->getParent(); 1239 1240 // If this user is in the same block as the cmp, don't change the cmp. 1241 if (UserBB == DefBB) continue; 1242 1243 // If we have already inserted a cmp into this block, use it. 1244 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1245 1246 if (!InsertedCmp) { 1247 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1248 assert(InsertPt != UserBB->end()); 1249 InsertedCmp = 1250 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 1251 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 1252 // Propagate the debug info. 1253 InsertedCmp->setDebugLoc(CI->getDebugLoc()); 1254 } 1255 1256 // Replace a use of the cmp with a use of the new cmp. 1257 TheUse = InsertedCmp; 1258 MadeChange = true; 1259 ++NumCmpUses; 1260 } 1261 1262 // If we removed all uses, nuke the cmp. 1263 if (CI->use_empty()) { 1264 CI->eraseFromParent(); 1265 MadeChange = true; 1266 } 1267 1268 return MadeChange; 1269 } 1270 1271 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1272 if (SinkCmpExpression(CI, TLI)) 1273 return true; 1274 1275 if (CombineUAddWithOverflow(CI)) 1276 return true; 1277 1278 return false; 1279 } 1280 1281 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1282 /// used in a compare to allow isel to generate better code for targets where 1283 /// this operation can be combined. 1284 /// 1285 /// Return true if any changes are made. 1286 static bool sinkAndCmp0Expression(Instruction *AndI, 1287 const TargetLowering &TLI, 1288 SetOfInstrs &InsertedInsts) { 1289 // Double-check that we're not trying to optimize an instruction that was 1290 // already optimized by some other part of this pass. 1291 assert(!InsertedInsts.count(AndI) && 1292 "Attempting to optimize already optimized and instruction"); 1293 (void) InsertedInsts; 1294 1295 // Nothing to do for single use in same basic block. 1296 if (AndI->hasOneUse() && 1297 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1298 return false; 1299 1300 // Try to avoid cases where sinking/duplicating is likely to increase register 1301 // pressure. 1302 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1303 !isa<ConstantInt>(AndI->getOperand(1)) && 1304 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1305 return false; 1306 1307 for (auto *U : AndI->users()) { 1308 Instruction *User = cast<Instruction>(U); 1309 1310 // Only sink for and mask feeding icmp with 0. 1311 if (!isa<ICmpInst>(User)) 1312 return false; 1313 1314 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1315 if (!CmpC || !CmpC->isZero()) 1316 return false; 1317 } 1318 1319 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1320 return false; 1321 1322 DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1323 DEBUG(AndI->getParent()->dump()); 1324 1325 // Push the 'and' into the same block as the icmp 0. There should only be 1326 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1327 // others, so we don't need to keep track of which BBs we insert into. 1328 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1329 UI != E; ) { 1330 Use &TheUse = UI.getUse(); 1331 Instruction *User = cast<Instruction>(*UI); 1332 1333 // Preincrement use iterator so we don't invalidate it. 1334 ++UI; 1335 1336 DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1337 1338 // Keep the 'and' in the same place if the use is already in the same block. 1339 Instruction *InsertPt = 1340 User->getParent() == AndI->getParent() ? AndI : User; 1341 Instruction *InsertedAnd = 1342 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1343 AndI->getOperand(1), "", InsertPt); 1344 // Propagate the debug info. 1345 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1346 1347 // Replace a use of the 'and' with a use of the new 'and'. 1348 TheUse = InsertedAnd; 1349 ++NumAndUses; 1350 DEBUG(User->getParent()->dump()); 1351 } 1352 1353 // We removed all uses, nuke the and. 1354 AndI->eraseFromParent(); 1355 return true; 1356 } 1357 1358 /// Check if the candidates could be combined with a shift instruction, which 1359 /// includes: 1360 /// 1. Truncate instruction 1361 /// 2. And instruction and the imm is a mask of the low bits: 1362 /// imm & (imm+1) == 0 1363 static bool isExtractBitsCandidateUse(Instruction *User) { 1364 if (!isa<TruncInst>(User)) { 1365 if (User->getOpcode() != Instruction::And || 1366 !isa<ConstantInt>(User->getOperand(1))) 1367 return false; 1368 1369 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1370 1371 if ((Cimm & (Cimm + 1)).getBoolValue()) 1372 return false; 1373 } 1374 return true; 1375 } 1376 1377 /// Sink both shift and truncate instruction to the use of truncate's BB. 1378 static bool 1379 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1380 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1381 const TargetLowering &TLI, const DataLayout &DL) { 1382 BasicBlock *UserBB = User->getParent(); 1383 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1384 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1385 bool MadeChange = false; 1386 1387 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1388 TruncE = TruncI->user_end(); 1389 TruncUI != TruncE;) { 1390 1391 Use &TruncTheUse = TruncUI.getUse(); 1392 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1393 // Preincrement use iterator so we don't invalidate it. 1394 1395 ++TruncUI; 1396 1397 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1398 if (!ISDOpcode) 1399 continue; 1400 1401 // If the use is actually a legal node, there will not be an 1402 // implicit truncate. 1403 // FIXME: always querying the result type is just an 1404 // approximation; some nodes' legality is determined by the 1405 // operand or other means. There's no good way to find out though. 1406 if (TLI.isOperationLegalOrCustom( 1407 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1408 continue; 1409 1410 // Don't bother for PHI nodes. 1411 if (isa<PHINode>(TruncUser)) 1412 continue; 1413 1414 BasicBlock *TruncUserBB = TruncUser->getParent(); 1415 1416 if (UserBB == TruncUserBB) 1417 continue; 1418 1419 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1420 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1421 1422 if (!InsertedShift && !InsertedTrunc) { 1423 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1424 assert(InsertPt != TruncUserBB->end()); 1425 // Sink the shift 1426 if (ShiftI->getOpcode() == Instruction::AShr) 1427 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1428 "", &*InsertPt); 1429 else 1430 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1431 "", &*InsertPt); 1432 1433 // Sink the trunc 1434 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1435 TruncInsertPt++; 1436 assert(TruncInsertPt != TruncUserBB->end()); 1437 1438 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1439 TruncI->getType(), "", &*TruncInsertPt); 1440 1441 MadeChange = true; 1442 1443 TruncTheUse = InsertedTrunc; 1444 } 1445 } 1446 return MadeChange; 1447 } 1448 1449 /// Sink the shift *right* instruction into user blocks if the uses could 1450 /// potentially be combined with this shift instruction and generate BitExtract 1451 /// instruction. It will only be applied if the architecture supports BitExtract 1452 /// instruction. Here is an example: 1453 /// BB1: 1454 /// %x.extract.shift = lshr i64 %arg1, 32 1455 /// BB2: 1456 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1457 /// ==> 1458 /// 1459 /// BB2: 1460 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1461 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1462 /// 1463 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1464 /// instruction. 1465 /// Return true if any changes are made. 1466 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1467 const TargetLowering &TLI, 1468 const DataLayout &DL) { 1469 BasicBlock *DefBB = ShiftI->getParent(); 1470 1471 /// Only insert instructions in each block once. 1472 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1473 1474 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1475 1476 bool MadeChange = false; 1477 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1478 UI != E;) { 1479 Use &TheUse = UI.getUse(); 1480 Instruction *User = cast<Instruction>(*UI); 1481 // Preincrement use iterator so we don't invalidate it. 1482 ++UI; 1483 1484 // Don't bother for PHI nodes. 1485 if (isa<PHINode>(User)) 1486 continue; 1487 1488 if (!isExtractBitsCandidateUse(User)) 1489 continue; 1490 1491 BasicBlock *UserBB = User->getParent(); 1492 1493 if (UserBB == DefBB) { 1494 // If the shift and truncate instruction are in the same BB. The use of 1495 // the truncate(TruncUse) may still introduce another truncate if not 1496 // legal. In this case, we would like to sink both shift and truncate 1497 // instruction to the BB of TruncUse. 1498 // for example: 1499 // BB1: 1500 // i64 shift.result = lshr i64 opnd, imm 1501 // trunc.result = trunc shift.result to i16 1502 // 1503 // BB2: 1504 // ----> We will have an implicit truncate here if the architecture does 1505 // not have i16 compare. 1506 // cmp i16 trunc.result, opnd2 1507 // 1508 if (isa<TruncInst>(User) && shiftIsLegal 1509 // If the type of the truncate is legal, no trucate will be 1510 // introduced in other basic blocks. 1511 && 1512 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1513 MadeChange = 1514 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1515 1516 continue; 1517 } 1518 // If we have already inserted a shift into this block, use it. 1519 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1520 1521 if (!InsertedShift) { 1522 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1523 assert(InsertPt != UserBB->end()); 1524 1525 if (ShiftI->getOpcode() == Instruction::AShr) 1526 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1527 "", &*InsertPt); 1528 else 1529 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1530 "", &*InsertPt); 1531 1532 MadeChange = true; 1533 } 1534 1535 // Replace a use of the shift with a use of the new shift. 1536 TheUse = InsertedShift; 1537 } 1538 1539 // If we removed all uses, nuke the shift. 1540 if (ShiftI->use_empty()) 1541 ShiftI->eraseFromParent(); 1542 1543 return MadeChange; 1544 } 1545 1546 // Translate a masked load intrinsic like 1547 // <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align, 1548 // <16 x i1> %mask, <16 x i32> %passthru) 1549 // to a chain of basic blocks, with loading element one-by-one if 1550 // the appropriate mask bit is set 1551 // 1552 // %1 = bitcast i8* %addr to i32* 1553 // %2 = extractelement <16 x i1> %mask, i32 0 1554 // %3 = icmp eq i1 %2, true 1555 // br i1 %3, label %cond.load, label %else 1556 // 1557 //cond.load: ; preds = %0 1558 // %4 = getelementptr i32* %1, i32 0 1559 // %5 = load i32* %4 1560 // %6 = insertelement <16 x i32> undef, i32 %5, i32 0 1561 // br label %else 1562 // 1563 //else: ; preds = %0, %cond.load 1564 // %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ] 1565 // %7 = extractelement <16 x i1> %mask, i32 1 1566 // %8 = icmp eq i1 %7, true 1567 // br i1 %8, label %cond.load1, label %else2 1568 // 1569 //cond.load1: ; preds = %else 1570 // %9 = getelementptr i32* %1, i32 1 1571 // %10 = load i32* %9 1572 // %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1 1573 // br label %else2 1574 // 1575 //else2: ; preds = %else, %cond.load1 1576 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1577 // %12 = extractelement <16 x i1> %mask, i32 2 1578 // %13 = icmp eq i1 %12, true 1579 // br i1 %13, label %cond.load4, label %else5 1580 // 1581 static void scalarizeMaskedLoad(CallInst *CI) { 1582 Value *Ptr = CI->getArgOperand(0); 1583 Value *Alignment = CI->getArgOperand(1); 1584 Value *Mask = CI->getArgOperand(2); 1585 Value *Src0 = CI->getArgOperand(3); 1586 1587 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1588 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1589 assert(VecType && "Unexpected return type of masked load intrinsic"); 1590 1591 Type *EltTy = CI->getType()->getVectorElementType(); 1592 1593 IRBuilder<> Builder(CI->getContext()); 1594 Instruction *InsertPt = CI; 1595 BasicBlock *IfBlock = CI->getParent(); 1596 BasicBlock *CondBlock = nullptr; 1597 BasicBlock *PrevIfBlock = CI->getParent(); 1598 1599 Builder.SetInsertPoint(InsertPt); 1600 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1601 1602 // Short-cut if the mask is all-true. 1603 bool IsAllOnesMask = isa<Constant>(Mask) && 1604 cast<Constant>(Mask)->isAllOnesValue(); 1605 1606 if (IsAllOnesMask) { 1607 Value *NewI = Builder.CreateAlignedLoad(Ptr, AlignVal); 1608 CI->replaceAllUsesWith(NewI); 1609 CI->eraseFromParent(); 1610 return; 1611 } 1612 1613 // Adjust alignment for the scalar instruction. 1614 AlignVal = std::min(AlignVal, VecType->getScalarSizeInBits()/8); 1615 // Bitcast %addr fron i8* to EltTy* 1616 Type *NewPtrType = 1617 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1618 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1619 unsigned VectorWidth = VecType->getNumElements(); 1620 1621 Value *UndefVal = UndefValue::get(VecType); 1622 1623 // The result vector 1624 Value *VResult = UndefVal; 1625 1626 if (isa<ConstantVector>(Mask)) { 1627 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1628 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1629 continue; 1630 Value *Gep = 1631 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1632 LoadInst* Load = Builder.CreateAlignedLoad(Gep, AlignVal); 1633 VResult = Builder.CreateInsertElement(VResult, Load, 1634 Builder.getInt32(Idx)); 1635 } 1636 Value *NewI = Builder.CreateSelect(Mask, VResult, Src0); 1637 CI->replaceAllUsesWith(NewI); 1638 CI->eraseFromParent(); 1639 return; 1640 } 1641 1642 PHINode *Phi = nullptr; 1643 Value *PrevPhi = UndefVal; 1644 1645 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1646 1647 // Fill the "else" block, created in the previous iteration 1648 // 1649 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1650 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1651 // %to_load = icmp eq i1 %mask_1, true 1652 // br i1 %to_load, label %cond.load, label %else 1653 // 1654 if (Idx > 0) { 1655 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1656 Phi->addIncoming(VResult, CondBlock); 1657 Phi->addIncoming(PrevPhi, PrevIfBlock); 1658 PrevPhi = Phi; 1659 VResult = Phi; 1660 } 1661 1662 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1663 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1664 ConstantInt::get(Predicate->getType(), 1)); 1665 1666 // Create "cond" block 1667 // 1668 // %EltAddr = getelementptr i32* %1, i32 0 1669 // %Elt = load i32* %EltAddr 1670 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1671 // 1672 CondBlock = IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.load"); 1673 Builder.SetInsertPoint(InsertPt); 1674 1675 Value *Gep = 1676 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1677 LoadInst *Load = Builder.CreateAlignedLoad(Gep, AlignVal); 1678 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx)); 1679 1680 // Create "else" block, fill it in the next iteration 1681 BasicBlock *NewIfBlock = 1682 CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); 1683 Builder.SetInsertPoint(InsertPt); 1684 Instruction *OldBr = IfBlock->getTerminator(); 1685 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1686 OldBr->eraseFromParent(); 1687 PrevIfBlock = IfBlock; 1688 IfBlock = NewIfBlock; 1689 } 1690 1691 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1692 Phi->addIncoming(VResult, CondBlock); 1693 Phi->addIncoming(PrevPhi, PrevIfBlock); 1694 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1695 CI->replaceAllUsesWith(NewI); 1696 CI->eraseFromParent(); 1697 } 1698 1699 // Translate a masked store intrinsic, like 1700 // void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align, 1701 // <16 x i1> %mask) 1702 // to a chain of basic blocks, that stores element one-by-one if 1703 // the appropriate mask bit is set 1704 // 1705 // %1 = bitcast i8* %addr to i32* 1706 // %2 = extractelement <16 x i1> %mask, i32 0 1707 // %3 = icmp eq i1 %2, true 1708 // br i1 %3, label %cond.store, label %else 1709 // 1710 // cond.store: ; preds = %0 1711 // %4 = extractelement <16 x i32> %val, i32 0 1712 // %5 = getelementptr i32* %1, i32 0 1713 // store i32 %4, i32* %5 1714 // br label %else 1715 // 1716 // else: ; preds = %0, %cond.store 1717 // %6 = extractelement <16 x i1> %mask, i32 1 1718 // %7 = icmp eq i1 %6, true 1719 // br i1 %7, label %cond.store1, label %else2 1720 // 1721 // cond.store1: ; preds = %else 1722 // %8 = extractelement <16 x i32> %val, i32 1 1723 // %9 = getelementptr i32* %1, i32 1 1724 // store i32 %8, i32* %9 1725 // br label %else2 1726 // . . . 1727 static void scalarizeMaskedStore(CallInst *CI) { 1728 Value *Src = CI->getArgOperand(0); 1729 Value *Ptr = CI->getArgOperand(1); 1730 Value *Alignment = CI->getArgOperand(2); 1731 Value *Mask = CI->getArgOperand(3); 1732 1733 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1734 VectorType *VecType = dyn_cast<VectorType>(Src->getType()); 1735 assert(VecType && "Unexpected data type in masked store intrinsic"); 1736 1737 Type *EltTy = VecType->getElementType(); 1738 1739 IRBuilder<> Builder(CI->getContext()); 1740 Instruction *InsertPt = CI; 1741 BasicBlock *IfBlock = CI->getParent(); 1742 Builder.SetInsertPoint(InsertPt); 1743 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1744 1745 // Short-cut if the mask is all-true. 1746 bool IsAllOnesMask = isa<Constant>(Mask) && 1747 cast<Constant>(Mask)->isAllOnesValue(); 1748 1749 if (IsAllOnesMask) { 1750 Builder.CreateAlignedStore(Src, Ptr, AlignVal); 1751 CI->eraseFromParent(); 1752 return; 1753 } 1754 1755 // Adjust alignment for the scalar instruction. 1756 AlignVal = std::max(AlignVal, VecType->getScalarSizeInBits()/8); 1757 // Bitcast %addr fron i8* to EltTy* 1758 Type *NewPtrType = 1759 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1760 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1761 unsigned VectorWidth = VecType->getNumElements(); 1762 1763 if (isa<ConstantVector>(Mask)) { 1764 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1765 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1766 continue; 1767 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1768 Value *Gep = 1769 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1770 Builder.CreateAlignedStore(OneElt, Gep, AlignVal); 1771 } 1772 CI->eraseFromParent(); 1773 return; 1774 } 1775 1776 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1777 1778 // Fill the "else" block, created in the previous iteration 1779 // 1780 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1781 // %to_store = icmp eq i1 %mask_1, true 1782 // br i1 %to_store, label %cond.store, label %else 1783 // 1784 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1785 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1786 ConstantInt::get(Predicate->getType(), 1)); 1787 1788 // Create "cond" block 1789 // 1790 // %OneElt = extractelement <16 x i32> %Src, i32 Idx 1791 // %EltAddr = getelementptr i32* %1, i32 0 1792 // %store i32 %OneElt, i32* %EltAddr 1793 // 1794 BasicBlock *CondBlock = 1795 IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.store"); 1796 Builder.SetInsertPoint(InsertPt); 1797 1798 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1799 Value *Gep = 1800 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1801 Builder.CreateAlignedStore(OneElt, Gep, AlignVal); 1802 1803 // Create "else" block, fill it in the next iteration 1804 BasicBlock *NewIfBlock = 1805 CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); 1806 Builder.SetInsertPoint(InsertPt); 1807 Instruction *OldBr = IfBlock->getTerminator(); 1808 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1809 OldBr->eraseFromParent(); 1810 IfBlock = NewIfBlock; 1811 } 1812 CI->eraseFromParent(); 1813 } 1814 1815 // Translate a masked gather intrinsic like 1816 // <16 x i32 > @llvm.masked.gather.v16i32( <16 x i32*> %Ptrs, i32 4, 1817 // <16 x i1> %Mask, <16 x i32> %Src) 1818 // to a chain of basic blocks, with loading element one-by-one if 1819 // the appropriate mask bit is set 1820 // 1821 // % Ptrs = getelementptr i32, i32* %base, <16 x i64> %ind 1822 // % Mask0 = extractelement <16 x i1> %Mask, i32 0 1823 // % ToLoad0 = icmp eq i1 % Mask0, true 1824 // br i1 % ToLoad0, label %cond.load, label %else 1825 // 1826 // cond.load: 1827 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0 1828 // % Load0 = load i32, i32* % Ptr0, align 4 1829 // % Res0 = insertelement <16 x i32> undef, i32 % Load0, i32 0 1830 // br label %else 1831 // 1832 // else: 1833 // %res.phi.else = phi <16 x i32>[% Res0, %cond.load], [undef, % 0] 1834 // % Mask1 = extractelement <16 x i1> %Mask, i32 1 1835 // % ToLoad1 = icmp eq i1 % Mask1, true 1836 // br i1 % ToLoad1, label %cond.load1, label %else2 1837 // 1838 // cond.load1: 1839 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1840 // % Load1 = load i32, i32* % Ptr1, align 4 1841 // % Res1 = insertelement <16 x i32> %res.phi.else, i32 % Load1, i32 1 1842 // br label %else2 1843 // . . . 1844 // % Result = select <16 x i1> %Mask, <16 x i32> %res.phi.select, <16 x i32> %Src 1845 // ret <16 x i32> %Result 1846 static void scalarizeMaskedGather(CallInst *CI) { 1847 Value *Ptrs = CI->getArgOperand(0); 1848 Value *Alignment = CI->getArgOperand(1); 1849 Value *Mask = CI->getArgOperand(2); 1850 Value *Src0 = CI->getArgOperand(3); 1851 1852 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1853 1854 assert(VecType && "Unexpected return type of masked load intrinsic"); 1855 1856 IRBuilder<> Builder(CI->getContext()); 1857 Instruction *InsertPt = CI; 1858 BasicBlock *IfBlock = CI->getParent(); 1859 BasicBlock *CondBlock = nullptr; 1860 BasicBlock *PrevIfBlock = CI->getParent(); 1861 Builder.SetInsertPoint(InsertPt); 1862 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1863 1864 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1865 1866 Value *UndefVal = UndefValue::get(VecType); 1867 1868 // The result vector 1869 Value *VResult = UndefVal; 1870 unsigned VectorWidth = VecType->getNumElements(); 1871 1872 // Shorten the way if the mask is a vector of constants. 1873 bool IsConstMask = isa<ConstantVector>(Mask); 1874 1875 if (IsConstMask) { 1876 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1877 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1878 continue; 1879 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1880 "Ptr" + Twine(Idx)); 1881 LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal, 1882 "Load" + Twine(Idx)); 1883 VResult = Builder.CreateInsertElement(VResult, Load, 1884 Builder.getInt32(Idx), 1885 "Res" + Twine(Idx)); 1886 } 1887 Value *NewI = Builder.CreateSelect(Mask, VResult, Src0); 1888 CI->replaceAllUsesWith(NewI); 1889 CI->eraseFromParent(); 1890 return; 1891 } 1892 1893 PHINode *Phi = nullptr; 1894 Value *PrevPhi = UndefVal; 1895 1896 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1897 1898 // Fill the "else" block, created in the previous iteration 1899 // 1900 // %Mask1 = extractelement <16 x i1> %Mask, i32 1 1901 // %ToLoad1 = icmp eq i1 %Mask1, true 1902 // br i1 %ToLoad1, label %cond.load, label %else 1903 // 1904 if (Idx > 0) { 1905 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1906 Phi->addIncoming(VResult, CondBlock); 1907 Phi->addIncoming(PrevPhi, PrevIfBlock); 1908 PrevPhi = Phi; 1909 VResult = Phi; 1910 } 1911 1912 Value *Predicate = Builder.CreateExtractElement(Mask, 1913 Builder.getInt32(Idx), 1914 "Mask" + Twine(Idx)); 1915 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1916 ConstantInt::get(Predicate->getType(), 1), 1917 "ToLoad" + Twine(Idx)); 1918 1919 // Create "cond" block 1920 // 1921 // %EltAddr = getelementptr i32* %1, i32 0 1922 // %Elt = load i32* %EltAddr 1923 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1924 // 1925 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load"); 1926 Builder.SetInsertPoint(InsertPt); 1927 1928 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1929 "Ptr" + Twine(Idx)); 1930 LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal, 1931 "Load" + Twine(Idx)); 1932 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx), 1933 "Res" + Twine(Idx)); 1934 1935 // Create "else" block, fill it in the next iteration 1936 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1937 Builder.SetInsertPoint(InsertPt); 1938 Instruction *OldBr = IfBlock->getTerminator(); 1939 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1940 OldBr->eraseFromParent(); 1941 PrevIfBlock = IfBlock; 1942 IfBlock = NewIfBlock; 1943 } 1944 1945 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1946 Phi->addIncoming(VResult, CondBlock); 1947 Phi->addIncoming(PrevPhi, PrevIfBlock); 1948 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1949 CI->replaceAllUsesWith(NewI); 1950 CI->eraseFromParent(); 1951 } 1952 1953 // Translate a masked scatter intrinsic, like 1954 // void @llvm.masked.scatter.v16i32(<16 x i32> %Src, <16 x i32*>* %Ptrs, i32 4, 1955 // <16 x i1> %Mask) 1956 // to a chain of basic blocks, that stores element one-by-one if 1957 // the appropriate mask bit is set. 1958 // 1959 // % Ptrs = getelementptr i32, i32* %ptr, <16 x i64> %ind 1960 // % Mask0 = extractelement <16 x i1> % Mask, i32 0 1961 // % ToStore0 = icmp eq i1 % Mask0, true 1962 // br i1 %ToStore0, label %cond.store, label %else 1963 // 1964 // cond.store: 1965 // % Elt0 = extractelement <16 x i32> %Src, i32 0 1966 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0 1967 // store i32 %Elt0, i32* % Ptr0, align 4 1968 // br label %else 1969 // 1970 // else: 1971 // % Mask1 = extractelement <16 x i1> % Mask, i32 1 1972 // % ToStore1 = icmp eq i1 % Mask1, true 1973 // br i1 % ToStore1, label %cond.store1, label %else2 1974 // 1975 // cond.store1: 1976 // % Elt1 = extractelement <16 x i32> %Src, i32 1 1977 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1978 // store i32 % Elt1, i32* % Ptr1, align 4 1979 // br label %else2 1980 // . . . 1981 static void scalarizeMaskedScatter(CallInst *CI) { 1982 Value *Src = CI->getArgOperand(0); 1983 Value *Ptrs = CI->getArgOperand(1); 1984 Value *Alignment = CI->getArgOperand(2); 1985 Value *Mask = CI->getArgOperand(3); 1986 1987 assert(isa<VectorType>(Src->getType()) && 1988 "Unexpected data type in masked scatter intrinsic"); 1989 assert(isa<VectorType>(Ptrs->getType()) && 1990 isa<PointerType>(Ptrs->getType()->getVectorElementType()) && 1991 "Vector of pointers is expected in masked scatter intrinsic"); 1992 1993 IRBuilder<> Builder(CI->getContext()); 1994 Instruction *InsertPt = CI; 1995 BasicBlock *IfBlock = CI->getParent(); 1996 Builder.SetInsertPoint(InsertPt); 1997 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1998 1999 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 2000 unsigned VectorWidth = Src->getType()->getVectorNumElements(); 2001 2002 // Shorten the way if the mask is a vector of constants. 2003 bool IsConstMask = isa<ConstantVector>(Mask); 2004 2005 if (IsConstMask) { 2006 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 2007 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 2008 continue; 2009 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx), 2010 "Elt" + Twine(Idx)); 2011 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 2012 "Ptr" + Twine(Idx)); 2013 Builder.CreateAlignedStore(OneElt, Ptr, AlignVal); 2014 } 2015 CI->eraseFromParent(); 2016 return; 2017 } 2018 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 2019 // Fill the "else" block, created in the previous iteration 2020 // 2021 // % Mask1 = extractelement <16 x i1> % Mask, i32 Idx 2022 // % ToStore = icmp eq i1 % Mask1, true 2023 // br i1 % ToStore, label %cond.store, label %else 2024 // 2025 Value *Predicate = Builder.CreateExtractElement(Mask, 2026 Builder.getInt32(Idx), 2027 "Mask" + Twine(Idx)); 2028 Value *Cmp = 2029 Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 2030 ConstantInt::get(Predicate->getType(), 1), 2031 "ToStore" + Twine(Idx)); 2032 2033 // Create "cond" block 2034 // 2035 // % Elt1 = extractelement <16 x i32> %Src, i32 1 2036 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 2037 // %store i32 % Elt1, i32* % Ptr1 2038 // 2039 BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 2040 Builder.SetInsertPoint(InsertPt); 2041 2042 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx), 2043 "Elt" + Twine(Idx)); 2044 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 2045 "Ptr" + Twine(Idx)); 2046 Builder.CreateAlignedStore(OneElt, Ptr, AlignVal); 2047 2048 // Create "else" block, fill it in the next iteration 2049 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 2050 Builder.SetInsertPoint(InsertPt); 2051 Instruction *OldBr = IfBlock->getTerminator(); 2052 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 2053 OldBr->eraseFromParent(); 2054 IfBlock = NewIfBlock; 2055 } 2056 CI->eraseFromParent(); 2057 } 2058 2059 /// If counting leading or trailing zeros is an expensive operation and a zero 2060 /// input is defined, add a check for zero to avoid calling the intrinsic. 2061 /// 2062 /// We want to transform: 2063 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 2064 /// 2065 /// into: 2066 /// entry: 2067 /// %cmpz = icmp eq i64 %A, 0 2068 /// br i1 %cmpz, label %cond.end, label %cond.false 2069 /// cond.false: 2070 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 2071 /// br label %cond.end 2072 /// cond.end: 2073 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 2074 /// 2075 /// If the transform is performed, return true and set ModifiedDT to true. 2076 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 2077 const TargetLowering *TLI, 2078 const DataLayout *DL, 2079 bool &ModifiedDT) { 2080 if (!TLI || !DL) 2081 return false; 2082 2083 // If a zero input is undefined, it doesn't make sense to despeculate that. 2084 if (match(CountZeros->getOperand(1), m_One())) 2085 return false; 2086 2087 // If it's cheap to speculate, there's nothing to do. 2088 auto IntrinsicID = CountZeros->getIntrinsicID(); 2089 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 2090 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 2091 return false; 2092 2093 // Only handle legal scalar cases. Anything else requires too much work. 2094 Type *Ty = CountZeros->getType(); 2095 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 2096 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 2097 return false; 2098 2099 // The intrinsic will be sunk behind a compare against zero and branch. 2100 BasicBlock *StartBlock = CountZeros->getParent(); 2101 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 2102 2103 // Create another block after the count zero intrinsic. A PHI will be added 2104 // in this block to select the result of the intrinsic or the bit-width 2105 // constant if the input to the intrinsic is zero. 2106 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 2107 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 2108 2109 // Set up a builder to create a compare, conditional branch, and PHI. 2110 IRBuilder<> Builder(CountZeros->getContext()); 2111 Builder.SetInsertPoint(StartBlock->getTerminator()); 2112 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 2113 2114 // Replace the unconditional branch that was created by the first split with 2115 // a compare against zero and a conditional branch. 2116 Value *Zero = Constant::getNullValue(Ty); 2117 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 2118 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 2119 StartBlock->getTerminator()->eraseFromParent(); 2120 2121 // Create a PHI in the end block to select either the output of the intrinsic 2122 // or the bit width of the operand. 2123 Builder.SetInsertPoint(&EndBlock->front()); 2124 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 2125 CountZeros->replaceAllUsesWith(PN); 2126 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 2127 PN->addIncoming(BitWidth, StartBlock); 2128 PN->addIncoming(CountZeros, CallBlock); 2129 2130 // We are explicitly handling the zero case, so we can set the intrinsic's 2131 // undefined zero argument to 'true'. This will also prevent reprocessing the 2132 // intrinsic; we only despeculate when a zero input is defined. 2133 CountZeros->setArgOperand(1, Builder.getTrue()); 2134 ModifiedDT = true; 2135 return true; 2136 } 2137 2138 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool& ModifiedDT) { 2139 BasicBlock *BB = CI->getParent(); 2140 2141 // Lower inline assembly if we can. 2142 // If we found an inline asm expession, and if the target knows how to 2143 // lower it to normal LLVM code, do so now. 2144 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 2145 if (TLI->ExpandInlineAsm(CI)) { 2146 // Avoid invalidating the iterator. 2147 CurInstIterator = BB->begin(); 2148 // Avoid processing instructions out of order, which could cause 2149 // reuse before a value is defined. 2150 SunkAddrs.clear(); 2151 return true; 2152 } 2153 // Sink address computing for memory operands into the block. 2154 if (optimizeInlineAsmInst(CI)) 2155 return true; 2156 } 2157 2158 // Align the pointer arguments to this call if the target thinks it's a good 2159 // idea 2160 unsigned MinSize, PrefAlign; 2161 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 2162 for (auto &Arg : CI->arg_operands()) { 2163 // We want to align both objects whose address is used directly and 2164 // objects whose address is used in casts and GEPs, though it only makes 2165 // sense for GEPs if the offset is a multiple of the desired alignment and 2166 // if size - offset meets the size threshold. 2167 if (!Arg->getType()->isPointerTy()) 2168 continue; 2169 APInt Offset(DL->getPointerSizeInBits( 2170 cast<PointerType>(Arg->getType())->getAddressSpace()), 2171 0); 2172 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 2173 uint64_t Offset2 = Offset.getLimitedValue(); 2174 if ((Offset2 & (PrefAlign-1)) != 0) 2175 continue; 2176 AllocaInst *AI; 2177 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 2178 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2179 AI->setAlignment(PrefAlign); 2180 // Global variables can only be aligned if they are defined in this 2181 // object (i.e. they are uniquely initialized in this object), and 2182 // over-aligning global variables that have an explicit section is 2183 // forbidden. 2184 GlobalVariable *GV; 2185 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2186 GV->getPointerAlignment(*DL) < PrefAlign && 2187 DL->getTypeAllocSize(GV->getValueType()) >= 2188 MinSize + Offset2) 2189 GV->setAlignment(PrefAlign); 2190 } 2191 // If this is a memcpy (or similar) then we may be able to improve the 2192 // alignment 2193 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2194 unsigned Align = getKnownAlignment(MI->getDest(), *DL); 2195 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 2196 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL)); 2197 if (Align > MI->getAlignment()) 2198 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align)); 2199 } 2200 } 2201 2202 // If we have a cold call site, try to sink addressing computation into the 2203 // cold block. This interacts with our handling for loads and stores to 2204 // ensure that we can fold all uses of a potential addressing computation 2205 // into their uses. TODO: generalize this to work over profiling data 2206 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 2207 for (auto &Arg : CI->arg_operands()) { 2208 if (!Arg->getType()->isPointerTy()) 2209 continue; 2210 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2211 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 2212 } 2213 2214 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2215 if (II) { 2216 switch (II->getIntrinsicID()) { 2217 default: break; 2218 case Intrinsic::objectsize: { 2219 // Lower all uses of llvm.objectsize.* 2220 ConstantInt *RetVal = 2221 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 2222 // Substituting this can cause recursive simplifications, which can 2223 // invalidate our iterator. Use a WeakVH to hold onto it in case this 2224 // happens. 2225 Value *CurValue = &*CurInstIterator; 2226 WeakVH IterHandle(CurValue); 2227 2228 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2229 2230 // If the iterator instruction was recursively deleted, start over at the 2231 // start of the block. 2232 if (IterHandle != CurValue) { 2233 CurInstIterator = BB->begin(); 2234 SunkAddrs.clear(); 2235 } 2236 return true; 2237 } 2238 case Intrinsic::masked_load: { 2239 // Scalarize unsupported vector masked load 2240 if (!TTI->isLegalMaskedLoad(CI->getType())) { 2241 scalarizeMaskedLoad(CI); 2242 ModifiedDT = true; 2243 return true; 2244 } 2245 return false; 2246 } 2247 case Intrinsic::masked_store: { 2248 if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType())) { 2249 scalarizeMaskedStore(CI); 2250 ModifiedDT = true; 2251 return true; 2252 } 2253 return false; 2254 } 2255 case Intrinsic::masked_gather: { 2256 if (!TTI->isLegalMaskedGather(CI->getType())) { 2257 scalarizeMaskedGather(CI); 2258 ModifiedDT = true; 2259 return true; 2260 } 2261 return false; 2262 } 2263 case Intrinsic::masked_scatter: { 2264 if (!TTI->isLegalMaskedScatter(CI->getArgOperand(0)->getType())) { 2265 scalarizeMaskedScatter(CI); 2266 ModifiedDT = true; 2267 return true; 2268 } 2269 return false; 2270 } 2271 case Intrinsic::aarch64_stlxr: 2272 case Intrinsic::aarch64_stxr: { 2273 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2274 if (!ExtVal || !ExtVal->hasOneUse() || 2275 ExtVal->getParent() == CI->getParent()) 2276 return false; 2277 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2278 ExtVal->moveBefore(CI); 2279 // Mark this instruction as "inserted by CGP", so that other 2280 // optimizations don't touch it. 2281 InsertedInsts.insert(ExtVal); 2282 return true; 2283 } 2284 case Intrinsic::invariant_group_barrier: 2285 II->replaceAllUsesWith(II->getArgOperand(0)); 2286 II->eraseFromParent(); 2287 return true; 2288 2289 case Intrinsic::cttz: 2290 case Intrinsic::ctlz: 2291 // If counting zeros is expensive, try to avoid it. 2292 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2293 } 2294 2295 if (TLI) { 2296 SmallVector<Value*, 2> PtrOps; 2297 Type *AccessTy; 2298 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2299 while (!PtrOps.empty()) { 2300 Value *PtrVal = PtrOps.pop_back_val(); 2301 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2302 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2303 return true; 2304 } 2305 } 2306 } 2307 2308 // From here on out we're working with named functions. 2309 if (!CI->getCalledFunction()) return false; 2310 2311 // Lower all default uses of _chk calls. This is very similar 2312 // to what InstCombineCalls does, but here we are only lowering calls 2313 // to fortified library functions (e.g. __memcpy_chk) that have the default 2314 // "don't know" as the objectsize. Anything else should be left alone. 2315 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2316 if (Value *V = Simplifier.optimizeCall(CI)) { 2317 CI->replaceAllUsesWith(V); 2318 CI->eraseFromParent(); 2319 return true; 2320 } 2321 return false; 2322 } 2323 2324 /// Look for opportunities to duplicate return instructions to the predecessor 2325 /// to enable tail call optimizations. The case it is currently looking for is: 2326 /// @code 2327 /// bb0: 2328 /// %tmp0 = tail call i32 @f0() 2329 /// br label %return 2330 /// bb1: 2331 /// %tmp1 = tail call i32 @f1() 2332 /// br label %return 2333 /// bb2: 2334 /// %tmp2 = tail call i32 @f2() 2335 /// br label %return 2336 /// return: 2337 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2338 /// ret i32 %retval 2339 /// @endcode 2340 /// 2341 /// => 2342 /// 2343 /// @code 2344 /// bb0: 2345 /// %tmp0 = tail call i32 @f0() 2346 /// ret i32 %tmp0 2347 /// bb1: 2348 /// %tmp1 = tail call i32 @f1() 2349 /// ret i32 %tmp1 2350 /// bb2: 2351 /// %tmp2 = tail call i32 @f2() 2352 /// ret i32 %tmp2 2353 /// @endcode 2354 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 2355 if (!TLI) 2356 return false; 2357 2358 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2359 if (!RetI) 2360 return false; 2361 2362 PHINode *PN = nullptr; 2363 BitCastInst *BCI = nullptr; 2364 Value *V = RetI->getReturnValue(); 2365 if (V) { 2366 BCI = dyn_cast<BitCastInst>(V); 2367 if (BCI) 2368 V = BCI->getOperand(0); 2369 2370 PN = dyn_cast<PHINode>(V); 2371 if (!PN) 2372 return false; 2373 } 2374 2375 if (PN && PN->getParent() != BB) 2376 return false; 2377 2378 // Make sure there are no instructions between the PHI and return, or that the 2379 // return is the first instruction in the block. 2380 if (PN) { 2381 BasicBlock::iterator BI = BB->begin(); 2382 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 2383 if (&*BI == BCI) 2384 // Also skip over the bitcast. 2385 ++BI; 2386 if (&*BI != RetI) 2387 return false; 2388 } else { 2389 BasicBlock::iterator BI = BB->begin(); 2390 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2391 if (&*BI != RetI) 2392 return false; 2393 } 2394 2395 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2396 /// call. 2397 const Function *F = BB->getParent(); 2398 SmallVector<CallInst*, 4> TailCalls; 2399 if (PN) { 2400 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2401 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 2402 // Make sure the phi value is indeed produced by the tail call. 2403 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 2404 TLI->mayBeEmittedAsTailCall(CI) && 2405 attributesPermitTailCall(F, CI, RetI, *TLI)) 2406 TailCalls.push_back(CI); 2407 } 2408 } else { 2409 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2410 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2411 if (!VisitedBBs.insert(*PI).second) 2412 continue; 2413 2414 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2415 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2416 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2417 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2418 if (RI == RE) 2419 continue; 2420 2421 CallInst *CI = dyn_cast<CallInst>(&*RI); 2422 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2423 attributesPermitTailCall(F, CI, RetI, *TLI)) 2424 TailCalls.push_back(CI); 2425 } 2426 } 2427 2428 bool Changed = false; 2429 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 2430 CallInst *CI = TailCalls[i]; 2431 CallSite CS(CI); 2432 2433 // Conservatively require the attributes of the call to match those of the 2434 // return. Ignore noalias because it doesn't affect the call sequence. 2435 AttributeList CalleeAttrs = CS.getAttributes(); 2436 if (AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 2437 .removeAttribute(Attribute::NoAlias) != 2438 AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 2439 .removeAttribute(Attribute::NoAlias)) 2440 continue; 2441 2442 // Make sure the call instruction is followed by an unconditional branch to 2443 // the return block. 2444 BasicBlock *CallBB = CI->getParent(); 2445 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 2446 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2447 continue; 2448 2449 // Duplicate the return into CallBB. 2450 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 2451 ModifiedDT = Changed = true; 2452 ++NumRetsDup; 2453 } 2454 2455 // If we eliminated all predecessors of the block, delete the block now. 2456 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2457 BB->eraseFromParent(); 2458 2459 return Changed; 2460 } 2461 2462 //===----------------------------------------------------------------------===// 2463 // Memory Optimization 2464 //===----------------------------------------------------------------------===// 2465 2466 namespace { 2467 2468 /// This is an extended version of TargetLowering::AddrMode 2469 /// which holds actual Value*'s for register values. 2470 struct ExtAddrMode : public TargetLowering::AddrMode { 2471 Value *BaseReg; 2472 Value *ScaledReg; 2473 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} 2474 void print(raw_ostream &OS) const; 2475 void dump() const; 2476 2477 bool operator==(const ExtAddrMode& O) const { 2478 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && 2479 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && 2480 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); 2481 } 2482 }; 2483 2484 #ifndef NDEBUG 2485 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2486 AM.print(OS); 2487 return OS; 2488 } 2489 #endif 2490 2491 void ExtAddrMode::print(raw_ostream &OS) const { 2492 bool NeedPlus = false; 2493 OS << "["; 2494 if (BaseGV) { 2495 OS << (NeedPlus ? " + " : "") 2496 << "GV:"; 2497 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2498 NeedPlus = true; 2499 } 2500 2501 if (BaseOffs) { 2502 OS << (NeedPlus ? " + " : "") 2503 << BaseOffs; 2504 NeedPlus = true; 2505 } 2506 2507 if (BaseReg) { 2508 OS << (NeedPlus ? " + " : "") 2509 << "Base:"; 2510 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2511 NeedPlus = true; 2512 } 2513 if (Scale) { 2514 OS << (NeedPlus ? " + " : "") 2515 << Scale << "*"; 2516 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2517 } 2518 2519 OS << ']'; 2520 } 2521 2522 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2523 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2524 print(dbgs()); 2525 dbgs() << '\n'; 2526 } 2527 #endif 2528 2529 /// \brief This class provides transaction based operation on the IR. 2530 /// Every change made through this class is recorded in the internal state and 2531 /// can be undone (rollback) until commit is called. 2532 class TypePromotionTransaction { 2533 2534 /// \brief This represents the common interface of the individual transaction. 2535 /// Each class implements the logic for doing one specific modification on 2536 /// the IR via the TypePromotionTransaction. 2537 class TypePromotionAction { 2538 protected: 2539 /// The Instruction modified. 2540 Instruction *Inst; 2541 2542 public: 2543 /// \brief Constructor of the action. 2544 /// The constructor performs the related action on the IR. 2545 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2546 2547 virtual ~TypePromotionAction() {} 2548 2549 /// \brief Undo the modification done by this action. 2550 /// When this method is called, the IR must be in the same state as it was 2551 /// before this action was applied. 2552 /// \pre Undoing the action works if and only if the IR is in the exact same 2553 /// state as it was directly after this action was applied. 2554 virtual void undo() = 0; 2555 2556 /// \brief Advocate every change made by this action. 2557 /// When the results on the IR of the action are to be kept, it is important 2558 /// to call this function, otherwise hidden information may be kept forever. 2559 virtual void commit() { 2560 // Nothing to be done, this action is not doing anything. 2561 } 2562 }; 2563 2564 /// \brief Utility to remember the position of an instruction. 2565 class InsertionHandler { 2566 /// Position of an instruction. 2567 /// Either an instruction: 2568 /// - Is the first in a basic block: BB is used. 2569 /// - Has a previous instructon: PrevInst is used. 2570 union { 2571 Instruction *PrevInst; 2572 BasicBlock *BB; 2573 } Point; 2574 /// Remember whether or not the instruction had a previous instruction. 2575 bool HasPrevInstruction; 2576 2577 public: 2578 /// \brief Record the position of \p Inst. 2579 InsertionHandler(Instruction *Inst) { 2580 BasicBlock::iterator It = Inst->getIterator(); 2581 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2582 if (HasPrevInstruction) 2583 Point.PrevInst = &*--It; 2584 else 2585 Point.BB = Inst->getParent(); 2586 } 2587 2588 /// \brief Insert \p Inst at the recorded position. 2589 void insert(Instruction *Inst) { 2590 if (HasPrevInstruction) { 2591 if (Inst->getParent()) 2592 Inst->removeFromParent(); 2593 Inst->insertAfter(Point.PrevInst); 2594 } else { 2595 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2596 if (Inst->getParent()) 2597 Inst->moveBefore(Position); 2598 else 2599 Inst->insertBefore(Position); 2600 } 2601 } 2602 }; 2603 2604 /// \brief Move an instruction before another. 2605 class InstructionMoveBefore : public TypePromotionAction { 2606 /// Original position of the instruction. 2607 InsertionHandler Position; 2608 2609 public: 2610 /// \brief Move \p Inst before \p Before. 2611 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2612 : TypePromotionAction(Inst), Position(Inst) { 2613 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 2614 Inst->moveBefore(Before); 2615 } 2616 2617 /// \brief Move the instruction back to its original position. 2618 void undo() override { 2619 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2620 Position.insert(Inst); 2621 } 2622 }; 2623 2624 /// \brief Set the operand of an instruction with a new value. 2625 class OperandSetter : public TypePromotionAction { 2626 /// Original operand of the instruction. 2627 Value *Origin; 2628 /// Index of the modified instruction. 2629 unsigned Idx; 2630 2631 public: 2632 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 2633 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2634 : TypePromotionAction(Inst), Idx(Idx) { 2635 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2636 << "for:" << *Inst << "\n" 2637 << "with:" << *NewVal << "\n"); 2638 Origin = Inst->getOperand(Idx); 2639 Inst->setOperand(Idx, NewVal); 2640 } 2641 2642 /// \brief Restore the original value of the instruction. 2643 void undo() override { 2644 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2645 << "for: " << *Inst << "\n" 2646 << "with: " << *Origin << "\n"); 2647 Inst->setOperand(Idx, Origin); 2648 } 2649 }; 2650 2651 /// \brief Hide the operands of an instruction. 2652 /// Do as if this instruction was not using any of its operands. 2653 class OperandsHider : public TypePromotionAction { 2654 /// The list of original operands. 2655 SmallVector<Value *, 4> OriginalValues; 2656 2657 public: 2658 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 2659 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2660 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2661 unsigned NumOpnds = Inst->getNumOperands(); 2662 OriginalValues.reserve(NumOpnds); 2663 for (unsigned It = 0; It < NumOpnds; ++It) { 2664 // Save the current operand. 2665 Value *Val = Inst->getOperand(It); 2666 OriginalValues.push_back(Val); 2667 // Set a dummy one. 2668 // We could use OperandSetter here, but that would imply an overhead 2669 // that we are not willing to pay. 2670 Inst->setOperand(It, UndefValue::get(Val->getType())); 2671 } 2672 } 2673 2674 /// \brief Restore the original list of uses. 2675 void undo() override { 2676 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2677 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2678 Inst->setOperand(It, OriginalValues[It]); 2679 } 2680 }; 2681 2682 /// \brief Build a truncate instruction. 2683 class TruncBuilder : public TypePromotionAction { 2684 Value *Val; 2685 public: 2686 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 2687 /// result. 2688 /// trunc Opnd to Ty. 2689 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2690 IRBuilder<> Builder(Opnd); 2691 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2692 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2693 } 2694 2695 /// \brief Get the built value. 2696 Value *getBuiltValue() { return Val; } 2697 2698 /// \brief Remove the built instruction. 2699 void undo() override { 2700 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2701 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2702 IVal->eraseFromParent(); 2703 } 2704 }; 2705 2706 /// \brief Build a sign extension instruction. 2707 class SExtBuilder : public TypePromotionAction { 2708 Value *Val; 2709 public: 2710 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 2711 /// result. 2712 /// sext Opnd to Ty. 2713 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2714 : TypePromotionAction(InsertPt) { 2715 IRBuilder<> Builder(InsertPt); 2716 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2717 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2718 } 2719 2720 /// \brief Get the built value. 2721 Value *getBuiltValue() { return Val; } 2722 2723 /// \brief Remove the built instruction. 2724 void undo() override { 2725 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2726 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2727 IVal->eraseFromParent(); 2728 } 2729 }; 2730 2731 /// \brief Build a zero extension instruction. 2732 class ZExtBuilder : public TypePromotionAction { 2733 Value *Val; 2734 public: 2735 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 2736 /// result. 2737 /// zext Opnd to Ty. 2738 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2739 : TypePromotionAction(InsertPt) { 2740 IRBuilder<> Builder(InsertPt); 2741 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2742 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2743 } 2744 2745 /// \brief Get the built value. 2746 Value *getBuiltValue() { return Val; } 2747 2748 /// \brief Remove the built instruction. 2749 void undo() override { 2750 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2751 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2752 IVal->eraseFromParent(); 2753 } 2754 }; 2755 2756 /// \brief Mutate an instruction to another type. 2757 class TypeMutator : public TypePromotionAction { 2758 /// Record the original type. 2759 Type *OrigTy; 2760 2761 public: 2762 /// \brief Mutate the type of \p Inst into \p NewTy. 2763 TypeMutator(Instruction *Inst, Type *NewTy) 2764 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2765 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2766 << "\n"); 2767 Inst->mutateType(NewTy); 2768 } 2769 2770 /// \brief Mutate the instruction back to its original type. 2771 void undo() override { 2772 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2773 << "\n"); 2774 Inst->mutateType(OrigTy); 2775 } 2776 }; 2777 2778 /// \brief Replace the uses of an instruction by another instruction. 2779 class UsesReplacer : public TypePromotionAction { 2780 /// Helper structure to keep track of the replaced uses. 2781 struct InstructionAndIdx { 2782 /// The instruction using the instruction. 2783 Instruction *Inst; 2784 /// The index where this instruction is used for Inst. 2785 unsigned Idx; 2786 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2787 : Inst(Inst), Idx(Idx) {} 2788 }; 2789 2790 /// Keep track of the original uses (pair Instruction, Index). 2791 SmallVector<InstructionAndIdx, 4> OriginalUses; 2792 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator; 2793 2794 public: 2795 /// \brief Replace all the use of \p Inst by \p New. 2796 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2797 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2798 << "\n"); 2799 // Record the original uses. 2800 for (Use &U : Inst->uses()) { 2801 Instruction *UserI = cast<Instruction>(U.getUser()); 2802 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2803 } 2804 // Now, we can replace the uses. 2805 Inst->replaceAllUsesWith(New); 2806 } 2807 2808 /// \brief Reassign the original uses of Inst to Inst. 2809 void undo() override { 2810 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2811 for (use_iterator UseIt = OriginalUses.begin(), 2812 EndIt = OriginalUses.end(); 2813 UseIt != EndIt; ++UseIt) { 2814 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2815 } 2816 } 2817 }; 2818 2819 /// \brief Remove an instruction from the IR. 2820 class InstructionRemover : public TypePromotionAction { 2821 /// Original position of the instruction. 2822 InsertionHandler Inserter; 2823 /// Helper structure to hide all the link to the instruction. In other 2824 /// words, this helps to do as if the instruction was removed. 2825 OperandsHider Hider; 2826 /// Keep track of the uses replaced, if any. 2827 UsesReplacer *Replacer; 2828 /// Keep track of instructions removed. 2829 SetOfInstrs &RemovedInsts; 2830 2831 public: 2832 /// \brief Remove all reference of \p Inst and optinally replace all its 2833 /// uses with New. 2834 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2835 /// \pre If !Inst->use_empty(), then New != nullptr 2836 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2837 Value *New = nullptr) 2838 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2839 Replacer(nullptr), RemovedInsts(RemovedInsts) { 2840 if (New) 2841 Replacer = new UsesReplacer(Inst, New); 2842 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2843 RemovedInsts.insert(Inst); 2844 /// The instructions removed here will be freed after completing 2845 /// optimizeBlock() for all blocks as we need to keep track of the 2846 /// removed instructions during promotion. 2847 Inst->removeFromParent(); 2848 } 2849 2850 ~InstructionRemover() override { delete Replacer; } 2851 2852 /// \brief Resurrect the instruction and reassign it to the proper uses if 2853 /// new value was provided when build this action. 2854 void undo() override { 2855 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2856 Inserter.insert(Inst); 2857 if (Replacer) 2858 Replacer->undo(); 2859 Hider.undo(); 2860 RemovedInsts.erase(Inst); 2861 } 2862 }; 2863 2864 public: 2865 /// Restoration point. 2866 /// The restoration point is a pointer to an action instead of an iterator 2867 /// because the iterator may be invalidated but not the pointer. 2868 typedef const TypePromotionAction *ConstRestorationPt; 2869 2870 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2871 : RemovedInsts(RemovedInsts) {} 2872 2873 /// Advocate every changes made in that transaction. 2874 void commit(); 2875 /// Undo all the changes made after the given point. 2876 void rollback(ConstRestorationPt Point); 2877 /// Get the current restoration point. 2878 ConstRestorationPt getRestorationPoint() const; 2879 2880 /// \name API for IR modification with state keeping to support rollback. 2881 /// @{ 2882 /// Same as Instruction::setOperand. 2883 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2884 /// Same as Instruction::eraseFromParent. 2885 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2886 /// Same as Value::replaceAllUsesWith. 2887 void replaceAllUsesWith(Instruction *Inst, Value *New); 2888 /// Same as Value::mutateType. 2889 void mutateType(Instruction *Inst, Type *NewTy); 2890 /// Same as IRBuilder::createTrunc. 2891 Value *createTrunc(Instruction *Opnd, Type *Ty); 2892 /// Same as IRBuilder::createSExt. 2893 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2894 /// Same as IRBuilder::createZExt. 2895 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2896 /// Same as Instruction::moveBefore. 2897 void moveBefore(Instruction *Inst, Instruction *Before); 2898 /// @} 2899 2900 private: 2901 /// The ordered list of actions made so far. 2902 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2903 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt; 2904 SetOfInstrs &RemovedInsts; 2905 }; 2906 2907 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2908 Value *NewVal) { 2909 Actions.push_back( 2910 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal)); 2911 } 2912 2913 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2914 Value *NewVal) { 2915 Actions.push_back( 2916 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, 2917 RemovedInsts, NewVal)); 2918 } 2919 2920 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2921 Value *New) { 2922 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2923 } 2924 2925 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2926 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2927 } 2928 2929 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2930 Type *Ty) { 2931 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2932 Value *Val = Ptr->getBuiltValue(); 2933 Actions.push_back(std::move(Ptr)); 2934 return Val; 2935 } 2936 2937 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2938 Value *Opnd, Type *Ty) { 2939 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2940 Value *Val = Ptr->getBuiltValue(); 2941 Actions.push_back(std::move(Ptr)); 2942 return Val; 2943 } 2944 2945 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2946 Value *Opnd, Type *Ty) { 2947 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2948 Value *Val = Ptr->getBuiltValue(); 2949 Actions.push_back(std::move(Ptr)); 2950 return Val; 2951 } 2952 2953 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2954 Instruction *Before) { 2955 Actions.push_back( 2956 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before)); 2957 } 2958 2959 TypePromotionTransaction::ConstRestorationPt 2960 TypePromotionTransaction::getRestorationPoint() const { 2961 return !Actions.empty() ? Actions.back().get() : nullptr; 2962 } 2963 2964 void TypePromotionTransaction::commit() { 2965 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2966 ++It) 2967 (*It)->commit(); 2968 Actions.clear(); 2969 } 2970 2971 void TypePromotionTransaction::rollback( 2972 TypePromotionTransaction::ConstRestorationPt Point) { 2973 while (!Actions.empty() && Point != Actions.back().get()) { 2974 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2975 Curr->undo(); 2976 } 2977 } 2978 2979 /// \brief A helper class for matching addressing modes. 2980 /// 2981 /// This encapsulates the logic for matching the target-legal addressing modes. 2982 class AddressingModeMatcher { 2983 SmallVectorImpl<Instruction*> &AddrModeInsts; 2984 const TargetLowering &TLI; 2985 const TargetRegisterInfo &TRI; 2986 const DataLayout &DL; 2987 2988 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2989 /// the memory instruction that we're computing this address for. 2990 Type *AccessTy; 2991 unsigned AddrSpace; 2992 Instruction *MemoryInst; 2993 2994 /// This is the addressing mode that we're building up. This is 2995 /// part of the return value of this addressing mode matching stuff. 2996 ExtAddrMode &AddrMode; 2997 2998 /// The instructions inserted by other CodeGenPrepare optimizations. 2999 const SetOfInstrs &InsertedInsts; 3000 /// A map from the instructions to their type before promotion. 3001 InstrToOrigTy &PromotedInsts; 3002 /// The ongoing transaction where every action should be registered. 3003 TypePromotionTransaction &TPT; 3004 3005 /// This is set to true when we should not do profitability checks. 3006 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 3007 bool IgnoreProfitability; 3008 3009 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, 3010 const TargetLowering &TLI, 3011 const TargetRegisterInfo &TRI, 3012 Type *AT, unsigned AS, 3013 Instruction *MI, ExtAddrMode &AM, 3014 const SetOfInstrs &InsertedInsts, 3015 InstrToOrigTy &PromotedInsts, 3016 TypePromotionTransaction &TPT) 3017 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 3018 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 3019 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 3020 PromotedInsts(PromotedInsts), TPT(TPT) { 3021 IgnoreProfitability = false; 3022 } 3023 public: 3024 3025 /// Find the maximal addressing mode that a load/store of V can fold, 3026 /// give an access type of AccessTy. This returns a list of involved 3027 /// instructions in AddrModeInsts. 3028 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3029 /// optimizations. 3030 /// \p PromotedInsts maps the instructions to their type before promotion. 3031 /// \p The ongoing transaction where every action should be registered. 3032 static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, 3033 Instruction *MemoryInst, 3034 SmallVectorImpl<Instruction*> &AddrModeInsts, 3035 const TargetLowering &TLI, 3036 const TargetRegisterInfo &TRI, 3037 const SetOfInstrs &InsertedInsts, 3038 InstrToOrigTy &PromotedInsts, 3039 TypePromotionTransaction &TPT) { 3040 ExtAddrMode Result; 3041 3042 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, 3043 AccessTy, AS, 3044 MemoryInst, Result, InsertedInsts, 3045 PromotedInsts, TPT).matchAddr(V, 0); 3046 (void)Success; assert(Success && "Couldn't select *anything*?"); 3047 return Result; 3048 } 3049 private: 3050 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3051 bool matchAddr(Value *V, unsigned Depth); 3052 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 3053 bool *MovedAway = nullptr); 3054 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3055 ExtAddrMode &AMBefore, 3056 ExtAddrMode &AMAfter); 3057 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3058 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3059 Value *PromotedOperand) const; 3060 }; 3061 3062 /// Try adding ScaleReg*Scale to the current addressing mode. 3063 /// Return true and update AddrMode if this addr mode is legal for the target, 3064 /// false if not. 3065 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3066 unsigned Depth) { 3067 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3068 // mode. Just process that directly. 3069 if (Scale == 1) 3070 return matchAddr(ScaleReg, Depth); 3071 3072 // If the scale is 0, it takes nothing to add this. 3073 if (Scale == 0) 3074 return true; 3075 3076 // If we already have a scale of this value, we can add to it, otherwise, we 3077 // need an available scale field. 3078 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3079 return false; 3080 3081 ExtAddrMode TestAddrMode = AddrMode; 3082 3083 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3084 // [A+B + A*7] -> [B+A*8]. 3085 TestAddrMode.Scale += Scale; 3086 TestAddrMode.ScaledReg = ScaleReg; 3087 3088 // If the new address isn't legal, bail out. 3089 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3090 return false; 3091 3092 // It was legal, so commit it. 3093 AddrMode = TestAddrMode; 3094 3095 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3096 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3097 // X*Scale + C*Scale to addr mode. 3098 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3099 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3100 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3101 TestAddrMode.ScaledReg = AddLHS; 3102 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3103 3104 // If this addressing mode is legal, commit it and remember that we folded 3105 // this instruction. 3106 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3107 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3108 AddrMode = TestAddrMode; 3109 return true; 3110 } 3111 } 3112 3113 // Otherwise, not (x+c)*scale, just return what we have. 3114 return true; 3115 } 3116 3117 /// This is a little filter, which returns true if an addressing computation 3118 /// involving I might be folded into a load/store accessing it. 3119 /// This doesn't need to be perfect, but needs to accept at least 3120 /// the set of instructions that MatchOperationAddr can. 3121 static bool MightBeFoldableInst(Instruction *I) { 3122 switch (I->getOpcode()) { 3123 case Instruction::BitCast: 3124 case Instruction::AddrSpaceCast: 3125 // Don't touch identity bitcasts. 3126 if (I->getType() == I->getOperand(0)->getType()) 3127 return false; 3128 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 3129 case Instruction::PtrToInt: 3130 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3131 return true; 3132 case Instruction::IntToPtr: 3133 // We know the input is intptr_t, so this is foldable. 3134 return true; 3135 case Instruction::Add: 3136 return true; 3137 case Instruction::Mul: 3138 case Instruction::Shl: 3139 // Can only handle X*C and X << C. 3140 return isa<ConstantInt>(I->getOperand(1)); 3141 case Instruction::GetElementPtr: 3142 return true; 3143 default: 3144 return false; 3145 } 3146 } 3147 3148 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 3149 /// \note \p Val is assumed to be the product of some type promotion. 3150 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3151 /// to be legal, as the non-promoted value would have had the same state. 3152 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3153 const DataLayout &DL, Value *Val) { 3154 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3155 if (!PromotedInst) 3156 return false; 3157 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3158 // If the ISDOpcode is undefined, it was undefined before the promotion. 3159 if (!ISDOpcode) 3160 return true; 3161 // Otherwise, check if the promoted instruction is legal or not. 3162 return TLI.isOperationLegalOrCustom( 3163 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3164 } 3165 3166 /// \brief Hepler class to perform type promotion. 3167 class TypePromotionHelper { 3168 /// \brief Utility function to check whether or not a sign or zero extension 3169 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3170 /// either using the operands of \p Inst or promoting \p Inst. 3171 /// The type of the extension is defined by \p IsSExt. 3172 /// In other words, check if: 3173 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3174 /// #1 Promotion applies: 3175 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3176 /// #2 Operand reuses: 3177 /// ext opnd1 to ConsideredExtType. 3178 /// \p PromotedInsts maps the instructions to their type before promotion. 3179 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3180 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3181 3182 /// \brief Utility function to determine if \p OpIdx should be promoted when 3183 /// promoting \p Inst. 3184 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3185 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3186 } 3187 3188 /// \brief Utility function to promote the operand of \p Ext when this 3189 /// operand is a promotable trunc or sext or zext. 3190 /// \p PromotedInsts maps the instructions to their type before promotion. 3191 /// \p CreatedInstsCost[out] contains the cost of all instructions 3192 /// created to promote the operand of Ext. 3193 /// Newly added extensions are inserted in \p Exts. 3194 /// Newly added truncates are inserted in \p Truncs. 3195 /// Should never be called directly. 3196 /// \return The promoted value which is used instead of Ext. 3197 static Value *promoteOperandForTruncAndAnyExt( 3198 Instruction *Ext, TypePromotionTransaction &TPT, 3199 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3200 SmallVectorImpl<Instruction *> *Exts, 3201 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3202 3203 /// \brief Utility function to promote the operand of \p Ext when this 3204 /// operand is promotable and is not a supported trunc or sext. 3205 /// \p PromotedInsts maps the instructions to their type before promotion. 3206 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3207 /// created to promote the operand of Ext. 3208 /// Newly added extensions are inserted in \p Exts. 3209 /// Newly added truncates are inserted in \p Truncs. 3210 /// Should never be called directly. 3211 /// \return The promoted value which is used instead of Ext. 3212 static Value *promoteOperandForOther(Instruction *Ext, 3213 TypePromotionTransaction &TPT, 3214 InstrToOrigTy &PromotedInsts, 3215 unsigned &CreatedInstsCost, 3216 SmallVectorImpl<Instruction *> *Exts, 3217 SmallVectorImpl<Instruction *> *Truncs, 3218 const TargetLowering &TLI, bool IsSExt); 3219 3220 /// \see promoteOperandForOther. 3221 static Value *signExtendOperandForOther( 3222 Instruction *Ext, TypePromotionTransaction &TPT, 3223 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3224 SmallVectorImpl<Instruction *> *Exts, 3225 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3226 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3227 Exts, Truncs, TLI, true); 3228 } 3229 3230 /// \see promoteOperandForOther. 3231 static Value *zeroExtendOperandForOther( 3232 Instruction *Ext, TypePromotionTransaction &TPT, 3233 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3234 SmallVectorImpl<Instruction *> *Exts, 3235 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3236 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3237 Exts, Truncs, TLI, false); 3238 } 3239 3240 public: 3241 /// Type for the utility function that promotes the operand of Ext. 3242 typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT, 3243 InstrToOrigTy &PromotedInsts, 3244 unsigned &CreatedInstsCost, 3245 SmallVectorImpl<Instruction *> *Exts, 3246 SmallVectorImpl<Instruction *> *Truncs, 3247 const TargetLowering &TLI); 3248 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 3249 /// action to promote the operand of \p Ext instead of using Ext. 3250 /// \return NULL if no promotable action is possible with the current 3251 /// sign extension. 3252 /// \p InsertedInsts keeps track of all the instructions inserted by the 3253 /// other CodeGenPrepare optimizations. This information is important 3254 /// because we do not want to promote these instructions as CodeGenPrepare 3255 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3256 /// \p PromotedInsts maps the instructions to their type before promotion. 3257 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3258 const TargetLowering &TLI, 3259 const InstrToOrigTy &PromotedInsts); 3260 }; 3261 3262 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3263 Type *ConsideredExtType, 3264 const InstrToOrigTy &PromotedInsts, 3265 bool IsSExt) { 3266 // The promotion helper does not know how to deal with vector types yet. 3267 // To be able to fix that, we would need to fix the places where we 3268 // statically extend, e.g., constants and such. 3269 if (Inst->getType()->isVectorTy()) 3270 return false; 3271 3272 // We can always get through zext. 3273 if (isa<ZExtInst>(Inst)) 3274 return true; 3275 3276 // sext(sext) is ok too. 3277 if (IsSExt && isa<SExtInst>(Inst)) 3278 return true; 3279 3280 // We can get through binary operator, if it is legal. In other words, the 3281 // binary operator must have a nuw or nsw flag. 3282 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3283 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3284 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3285 (IsSExt && BinOp->hasNoSignedWrap()))) 3286 return true; 3287 3288 // Check if we can do the following simplification. 3289 // ext(trunc(opnd)) --> ext(opnd) 3290 if (!isa<TruncInst>(Inst)) 3291 return false; 3292 3293 Value *OpndVal = Inst->getOperand(0); 3294 // Check if we can use this operand in the extension. 3295 // If the type is larger than the result type of the extension, we cannot. 3296 if (!OpndVal->getType()->isIntegerTy() || 3297 OpndVal->getType()->getIntegerBitWidth() > 3298 ConsideredExtType->getIntegerBitWidth()) 3299 return false; 3300 3301 // If the operand of the truncate is not an instruction, we will not have 3302 // any information on the dropped bits. 3303 // (Actually we could for constant but it is not worth the extra logic). 3304 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3305 if (!Opnd) 3306 return false; 3307 3308 // Check if the source of the type is narrow enough. 3309 // I.e., check that trunc just drops extended bits of the same kind of 3310 // the extension. 3311 // #1 get the type of the operand and check the kind of the extended bits. 3312 const Type *OpndType; 3313 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3314 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 3315 OpndType = It->second.getPointer(); 3316 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3317 OpndType = Opnd->getOperand(0)->getType(); 3318 else 3319 return false; 3320 3321 // #2 check that the truncate just drops extended bits. 3322 return Inst->getType()->getIntegerBitWidth() >= 3323 OpndType->getIntegerBitWidth(); 3324 } 3325 3326 TypePromotionHelper::Action TypePromotionHelper::getAction( 3327 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3328 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3329 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3330 "Unexpected instruction type"); 3331 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3332 Type *ExtTy = Ext->getType(); 3333 bool IsSExt = isa<SExtInst>(Ext); 3334 // If the operand of the extension is not an instruction, we cannot 3335 // get through. 3336 // If it, check we can get through. 3337 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3338 return nullptr; 3339 3340 // Do not promote if the operand has been added by codegenprepare. 3341 // Otherwise, it means we are undoing an optimization that is likely to be 3342 // redone, thus causing potential infinite loop. 3343 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3344 return nullptr; 3345 3346 // SExt or Trunc instructions. 3347 // Return the related handler. 3348 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3349 isa<ZExtInst>(ExtOpnd)) 3350 return promoteOperandForTruncAndAnyExt; 3351 3352 // Regular instruction. 3353 // Abort early if we will have to insert non-free instructions. 3354 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3355 return nullptr; 3356 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3357 } 3358 3359 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3360 llvm::Instruction *SExt, TypePromotionTransaction &TPT, 3361 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3362 SmallVectorImpl<Instruction *> *Exts, 3363 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3364 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3365 // get through it and this method should not be called. 3366 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3367 Value *ExtVal = SExt; 3368 bool HasMergedNonFreeExt = false; 3369 if (isa<ZExtInst>(SExtOpnd)) { 3370 // Replace s|zext(zext(opnd)) 3371 // => zext(opnd). 3372 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3373 Value *ZExt = 3374 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3375 TPT.replaceAllUsesWith(SExt, ZExt); 3376 TPT.eraseInstruction(SExt); 3377 ExtVal = ZExt; 3378 } else { 3379 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3380 // => z|sext(opnd). 3381 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3382 } 3383 CreatedInstsCost = 0; 3384 3385 // Remove dead code. 3386 if (SExtOpnd->use_empty()) 3387 TPT.eraseInstruction(SExtOpnd); 3388 3389 // Check if the extension is still needed. 3390 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3391 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3392 if (ExtInst) { 3393 if (Exts) 3394 Exts->push_back(ExtInst); 3395 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3396 } 3397 return ExtVal; 3398 } 3399 3400 // At this point we have: ext ty opnd to ty. 3401 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3402 Value *NextVal = ExtInst->getOperand(0); 3403 TPT.eraseInstruction(ExtInst, NextVal); 3404 return NextVal; 3405 } 3406 3407 Value *TypePromotionHelper::promoteOperandForOther( 3408 Instruction *Ext, TypePromotionTransaction &TPT, 3409 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3410 SmallVectorImpl<Instruction *> *Exts, 3411 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3412 bool IsSExt) { 3413 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3414 // get through it and this method should not be called. 3415 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3416 CreatedInstsCost = 0; 3417 if (!ExtOpnd->hasOneUse()) { 3418 // ExtOpnd will be promoted. 3419 // All its uses, but Ext, will need to use a truncated value of the 3420 // promoted version. 3421 // Create the truncate now. 3422 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3423 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3424 ITrunc->removeFromParent(); 3425 // Insert it just after the definition. 3426 ITrunc->insertAfter(ExtOpnd); 3427 if (Truncs) 3428 Truncs->push_back(ITrunc); 3429 } 3430 3431 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3432 // Restore the operand of Ext (which has been replaced by the previous call 3433 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3434 TPT.setOperand(Ext, 0, ExtOpnd); 3435 } 3436 3437 // Get through the Instruction: 3438 // 1. Update its type. 3439 // 2. Replace the uses of Ext by Inst. 3440 // 3. Extend each operand that needs to be extended. 3441 3442 // Remember the original type of the instruction before promotion. 3443 // This is useful to know that the high bits are sign extended bits. 3444 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 3445 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 3446 // Step #1. 3447 TPT.mutateType(ExtOpnd, Ext->getType()); 3448 // Step #2. 3449 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3450 // Step #3. 3451 Instruction *ExtForOpnd = Ext; 3452 3453 DEBUG(dbgs() << "Propagate Ext to operands\n"); 3454 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3455 ++OpIdx) { 3456 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3457 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3458 !shouldExtOperand(ExtOpnd, OpIdx)) { 3459 DEBUG(dbgs() << "No need to propagate\n"); 3460 continue; 3461 } 3462 // Check if we can statically extend the operand. 3463 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3464 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3465 DEBUG(dbgs() << "Statically extend\n"); 3466 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3467 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3468 : Cst->getValue().zext(BitWidth); 3469 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3470 continue; 3471 } 3472 // UndefValue are typed, so we have to statically sign extend them. 3473 if (isa<UndefValue>(Opnd)) { 3474 DEBUG(dbgs() << "Statically extend\n"); 3475 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3476 continue; 3477 } 3478 3479 // Otherwise we have to explicity sign extend the operand. 3480 // Check if Ext was reused to extend an operand. 3481 if (!ExtForOpnd) { 3482 // If yes, create a new one. 3483 DEBUG(dbgs() << "More operands to ext\n"); 3484 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3485 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3486 if (!isa<Instruction>(ValForExtOpnd)) { 3487 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3488 continue; 3489 } 3490 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3491 } 3492 if (Exts) 3493 Exts->push_back(ExtForOpnd); 3494 TPT.setOperand(ExtForOpnd, 0, Opnd); 3495 3496 // Move the sign extension before the insertion point. 3497 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3498 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3499 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3500 // If more sext are required, new instructions will have to be created. 3501 ExtForOpnd = nullptr; 3502 } 3503 if (ExtForOpnd == Ext) { 3504 DEBUG(dbgs() << "Extension is useless now\n"); 3505 TPT.eraseInstruction(Ext); 3506 } 3507 return ExtOpnd; 3508 } 3509 3510 /// Check whether or not promoting an instruction to a wider type is profitable. 3511 /// \p NewCost gives the cost of extension instructions created by the 3512 /// promotion. 3513 /// \p OldCost gives the cost of extension instructions before the promotion 3514 /// plus the number of instructions that have been 3515 /// matched in the addressing mode the promotion. 3516 /// \p PromotedOperand is the value that has been promoted. 3517 /// \return True if the promotion is profitable, false otherwise. 3518 bool AddressingModeMatcher::isPromotionProfitable( 3519 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3520 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); 3521 // The cost of the new extensions is greater than the cost of the 3522 // old extension plus what we folded. 3523 // This is not profitable. 3524 if (NewCost > OldCost) 3525 return false; 3526 if (NewCost < OldCost) 3527 return true; 3528 // The promotion is neutral but it may help folding the sign extension in 3529 // loads for instance. 3530 // Check that we did not create an illegal instruction. 3531 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3532 } 3533 3534 /// Given an instruction or constant expr, see if we can fold the operation 3535 /// into the addressing mode. If so, update the addressing mode and return 3536 /// true, otherwise return false without modifying AddrMode. 3537 /// If \p MovedAway is not NULL, it contains the information of whether or 3538 /// not AddrInst has to be folded into the addressing mode on success. 3539 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3540 /// because it has been moved away. 3541 /// Thus AddrInst must not be added in the matched instructions. 3542 /// This state can happen when AddrInst is a sext, since it may be moved away. 3543 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3544 /// not be referenced anymore. 3545 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3546 unsigned Depth, 3547 bool *MovedAway) { 3548 // Avoid exponential behavior on extremely deep expression trees. 3549 if (Depth >= 5) return false; 3550 3551 // By default, all matched instructions stay in place. 3552 if (MovedAway) 3553 *MovedAway = false; 3554 3555 switch (Opcode) { 3556 case Instruction::PtrToInt: 3557 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3558 return matchAddr(AddrInst->getOperand(0), Depth); 3559 case Instruction::IntToPtr: { 3560 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3561 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3562 // This inttoptr is a no-op if the integer type is pointer sized. 3563 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3564 return matchAddr(AddrInst->getOperand(0), Depth); 3565 return false; 3566 } 3567 case Instruction::BitCast: 3568 // BitCast is always a noop, and we can handle it as long as it is 3569 // int->int or pointer->pointer (we don't want int<->fp or something). 3570 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 3571 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 3572 // Don't touch identity bitcasts. These were probably put here by LSR, 3573 // and we don't want to mess around with them. Assume it knows what it 3574 // is doing. 3575 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3576 return matchAddr(AddrInst->getOperand(0), Depth); 3577 return false; 3578 case Instruction::AddrSpaceCast: { 3579 unsigned SrcAS 3580 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3581 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3582 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3583 return matchAddr(AddrInst->getOperand(0), Depth); 3584 return false; 3585 } 3586 case Instruction::Add: { 3587 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3588 ExtAddrMode BackupAddrMode = AddrMode; 3589 unsigned OldSize = AddrModeInsts.size(); 3590 // Start a transaction at this point. 3591 // The LHS may match but not the RHS. 3592 // Therefore, we need a higher level restoration point to undo partially 3593 // matched operation. 3594 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3595 TPT.getRestorationPoint(); 3596 3597 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3598 matchAddr(AddrInst->getOperand(0), Depth+1)) 3599 return true; 3600 3601 // Restore the old addr mode info. 3602 AddrMode = BackupAddrMode; 3603 AddrModeInsts.resize(OldSize); 3604 TPT.rollback(LastKnownGood); 3605 3606 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3607 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3608 matchAddr(AddrInst->getOperand(1), Depth+1)) 3609 return true; 3610 3611 // Otherwise we definitely can't merge the ADD in. 3612 AddrMode = BackupAddrMode; 3613 AddrModeInsts.resize(OldSize); 3614 TPT.rollback(LastKnownGood); 3615 break; 3616 } 3617 //case Instruction::Or: 3618 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3619 //break; 3620 case Instruction::Mul: 3621 case Instruction::Shl: { 3622 // Can only handle X*C and X << C. 3623 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3624 if (!RHS) 3625 return false; 3626 int64_t Scale = RHS->getSExtValue(); 3627 if (Opcode == Instruction::Shl) 3628 Scale = 1LL << Scale; 3629 3630 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3631 } 3632 case Instruction::GetElementPtr: { 3633 // Scan the GEP. We check it if it contains constant offsets and at most 3634 // one variable offset. 3635 int VariableOperand = -1; 3636 unsigned VariableScale = 0; 3637 3638 int64_t ConstantOffset = 0; 3639 gep_type_iterator GTI = gep_type_begin(AddrInst); 3640 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3641 if (StructType *STy = GTI.getStructTypeOrNull()) { 3642 const StructLayout *SL = DL.getStructLayout(STy); 3643 unsigned Idx = 3644 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3645 ConstantOffset += SL->getElementOffset(Idx); 3646 } else { 3647 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3648 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3649 ConstantOffset += CI->getSExtValue()*TypeSize; 3650 } else if (TypeSize) { // Scales of zero don't do anything. 3651 // We only allow one variable index at the moment. 3652 if (VariableOperand != -1) 3653 return false; 3654 3655 // Remember the variable index. 3656 VariableOperand = i; 3657 VariableScale = TypeSize; 3658 } 3659 } 3660 } 3661 3662 // A common case is for the GEP to only do a constant offset. In this case, 3663 // just add it to the disp field and check validity. 3664 if (VariableOperand == -1) { 3665 AddrMode.BaseOffs += ConstantOffset; 3666 if (ConstantOffset == 0 || 3667 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 3668 // Check to see if we can fold the base pointer in too. 3669 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 3670 return true; 3671 } 3672 AddrMode.BaseOffs -= ConstantOffset; 3673 return false; 3674 } 3675 3676 // Save the valid addressing mode in case we can't match. 3677 ExtAddrMode BackupAddrMode = AddrMode; 3678 unsigned OldSize = AddrModeInsts.size(); 3679 3680 // See if the scale and offset amount is valid for this target. 3681 AddrMode.BaseOffs += ConstantOffset; 3682 3683 // Match the base operand of the GEP. 3684 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 3685 // If it couldn't be matched, just stuff the value in a register. 3686 if (AddrMode.HasBaseReg) { 3687 AddrMode = BackupAddrMode; 3688 AddrModeInsts.resize(OldSize); 3689 return false; 3690 } 3691 AddrMode.HasBaseReg = true; 3692 AddrMode.BaseReg = AddrInst->getOperand(0); 3693 } 3694 3695 // Match the remaining variable portion of the GEP. 3696 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 3697 Depth)) { 3698 // If it couldn't be matched, try stuffing the base into a register 3699 // instead of matching it, and retrying the match of the scale. 3700 AddrMode = BackupAddrMode; 3701 AddrModeInsts.resize(OldSize); 3702 if (AddrMode.HasBaseReg) 3703 return false; 3704 AddrMode.HasBaseReg = true; 3705 AddrMode.BaseReg = AddrInst->getOperand(0); 3706 AddrMode.BaseOffs += ConstantOffset; 3707 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 3708 VariableScale, Depth)) { 3709 // If even that didn't work, bail. 3710 AddrMode = BackupAddrMode; 3711 AddrModeInsts.resize(OldSize); 3712 return false; 3713 } 3714 } 3715 3716 return true; 3717 } 3718 case Instruction::SExt: 3719 case Instruction::ZExt: { 3720 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 3721 if (!Ext) 3722 return false; 3723 3724 // Try to move this ext out of the way of the addressing mode. 3725 // Ask for a method for doing so. 3726 TypePromotionHelper::Action TPH = 3727 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 3728 if (!TPH) 3729 return false; 3730 3731 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3732 TPT.getRestorationPoint(); 3733 unsigned CreatedInstsCost = 0; 3734 unsigned ExtCost = !TLI.isExtFree(Ext); 3735 Value *PromotedOperand = 3736 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 3737 // SExt has been moved away. 3738 // Thus either it will be rematched later in the recursive calls or it is 3739 // gone. Anyway, we must not fold it into the addressing mode at this point. 3740 // E.g., 3741 // op = add opnd, 1 3742 // idx = ext op 3743 // addr = gep base, idx 3744 // is now: 3745 // promotedOpnd = ext opnd <- no match here 3746 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 3747 // addr = gep base, op <- match 3748 if (MovedAway) 3749 *MovedAway = true; 3750 3751 assert(PromotedOperand && 3752 "TypePromotionHelper should have filtered out those cases"); 3753 3754 ExtAddrMode BackupAddrMode = AddrMode; 3755 unsigned OldSize = AddrModeInsts.size(); 3756 3757 if (!matchAddr(PromotedOperand, Depth) || 3758 // The total of the new cost is equal to the cost of the created 3759 // instructions. 3760 // The total of the old cost is equal to the cost of the extension plus 3761 // what we have saved in the addressing mode. 3762 !isPromotionProfitable(CreatedInstsCost, 3763 ExtCost + (AddrModeInsts.size() - OldSize), 3764 PromotedOperand)) { 3765 AddrMode = BackupAddrMode; 3766 AddrModeInsts.resize(OldSize); 3767 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 3768 TPT.rollback(LastKnownGood); 3769 return false; 3770 } 3771 return true; 3772 } 3773 } 3774 return false; 3775 } 3776 3777 /// If we can, try to add the value of 'Addr' into the current addressing mode. 3778 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 3779 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 3780 /// for the target. 3781 /// 3782 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 3783 // Start a transaction at this point that we will rollback if the matching 3784 // fails. 3785 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3786 TPT.getRestorationPoint(); 3787 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 3788 // Fold in immediates if legal for the target. 3789 AddrMode.BaseOffs += CI->getSExtValue(); 3790 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3791 return true; 3792 AddrMode.BaseOffs -= CI->getSExtValue(); 3793 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 3794 // If this is a global variable, try to fold it into the addressing mode. 3795 if (!AddrMode.BaseGV) { 3796 AddrMode.BaseGV = GV; 3797 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3798 return true; 3799 AddrMode.BaseGV = nullptr; 3800 } 3801 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 3802 ExtAddrMode BackupAddrMode = AddrMode; 3803 unsigned OldSize = AddrModeInsts.size(); 3804 3805 // Check to see if it is possible to fold this operation. 3806 bool MovedAway = false; 3807 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 3808 // This instruction may have been moved away. If so, there is nothing 3809 // to check here. 3810 if (MovedAway) 3811 return true; 3812 // Okay, it's possible to fold this. Check to see if it is actually 3813 // *profitable* to do so. We use a simple cost model to avoid increasing 3814 // register pressure too much. 3815 if (I->hasOneUse() || 3816 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 3817 AddrModeInsts.push_back(I); 3818 return true; 3819 } 3820 3821 // It isn't profitable to do this, roll back. 3822 //cerr << "NOT FOLDING: " << *I; 3823 AddrMode = BackupAddrMode; 3824 AddrModeInsts.resize(OldSize); 3825 TPT.rollback(LastKnownGood); 3826 } 3827 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 3828 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 3829 return true; 3830 TPT.rollback(LastKnownGood); 3831 } else if (isa<ConstantPointerNull>(Addr)) { 3832 // Null pointer gets folded without affecting the addressing mode. 3833 return true; 3834 } 3835 3836 // Worse case, the target should support [reg] addressing modes. :) 3837 if (!AddrMode.HasBaseReg) { 3838 AddrMode.HasBaseReg = true; 3839 AddrMode.BaseReg = Addr; 3840 // Still check for legality in case the target supports [imm] but not [i+r]. 3841 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3842 return true; 3843 AddrMode.HasBaseReg = false; 3844 AddrMode.BaseReg = nullptr; 3845 } 3846 3847 // If the base register is already taken, see if we can do [r+r]. 3848 if (AddrMode.Scale == 0) { 3849 AddrMode.Scale = 1; 3850 AddrMode.ScaledReg = Addr; 3851 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3852 return true; 3853 AddrMode.Scale = 0; 3854 AddrMode.ScaledReg = nullptr; 3855 } 3856 // Couldn't match. 3857 TPT.rollback(LastKnownGood); 3858 return false; 3859 } 3860 3861 /// Check to see if all uses of OpVal by the specified inline asm call are due 3862 /// to memory operands. If so, return true, otherwise return false. 3863 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 3864 const TargetLowering &TLI, 3865 const TargetRegisterInfo &TRI) { 3866 const Function *F = CI->getParent()->getParent(); 3867 TargetLowering::AsmOperandInfoVector TargetConstraints = 3868 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 3869 ImmutableCallSite(CI)); 3870 3871 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3872 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3873 3874 // Compute the constraint code and ConstraintType to use. 3875 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 3876 3877 // If this asm operand is our Value*, and if it isn't an indirect memory 3878 // operand, we can't fold it! 3879 if (OpInfo.CallOperandVal == OpVal && 3880 (OpInfo.ConstraintType != TargetLowering::C_Memory || 3881 !OpInfo.isIndirect)) 3882 return false; 3883 } 3884 3885 return true; 3886 } 3887 3888 /// Recursively walk all the uses of I until we find a memory use. 3889 /// If we find an obviously non-foldable instruction, return true. 3890 /// Add the ultimately found memory instructions to MemoryUses. 3891 static bool FindAllMemoryUses( 3892 Instruction *I, 3893 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 3894 SmallPtrSetImpl<Instruction *> &ConsideredInsts, 3895 const TargetLowering &TLI, const TargetRegisterInfo &TRI) { 3896 // If we already considered this instruction, we're done. 3897 if (!ConsideredInsts.insert(I).second) 3898 return false; 3899 3900 // If this is an obviously unfoldable instruction, bail out. 3901 if (!MightBeFoldableInst(I)) 3902 return true; 3903 3904 const bool OptSize = I->getFunction()->optForSize(); 3905 3906 // Loop over all the uses, recursively processing them. 3907 for (Use &U : I->uses()) { 3908 Instruction *UserI = cast<Instruction>(U.getUser()); 3909 3910 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 3911 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 3912 continue; 3913 } 3914 3915 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 3916 unsigned opNo = U.getOperandNo(); 3917 if (opNo != StoreInst::getPointerOperandIndex()) 3918 return true; // Storing addr, not into addr. 3919 MemoryUses.push_back(std::make_pair(SI, opNo)); 3920 continue; 3921 } 3922 3923 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 3924 unsigned opNo = U.getOperandNo(); 3925 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 3926 return true; // Storing addr, not into addr. 3927 MemoryUses.push_back(std::make_pair(RMW, opNo)); 3928 continue; 3929 } 3930 3931 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 3932 unsigned opNo = U.getOperandNo(); 3933 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 3934 return true; // Storing addr, not into addr. 3935 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 3936 continue; 3937 } 3938 3939 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 3940 // If this is a cold call, we can sink the addressing calculation into 3941 // the cold path. See optimizeCallInst 3942 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 3943 continue; 3944 3945 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 3946 if (!IA) return true; 3947 3948 // If this is a memory operand, we're cool, otherwise bail out. 3949 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 3950 return true; 3951 continue; 3952 } 3953 3954 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI)) 3955 return true; 3956 } 3957 3958 return false; 3959 } 3960 3961 /// Return true if Val is already known to be live at the use site that we're 3962 /// folding it into. If so, there is no cost to include it in the addressing 3963 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 3964 /// instruction already. 3965 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 3966 Value *KnownLive2) { 3967 // If Val is either of the known-live values, we know it is live! 3968 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 3969 return true; 3970 3971 // All values other than instructions and arguments (e.g. constants) are live. 3972 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 3973 3974 // If Val is a constant sized alloca in the entry block, it is live, this is 3975 // true because it is just a reference to the stack/frame pointer, which is 3976 // live for the whole function. 3977 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 3978 if (AI->isStaticAlloca()) 3979 return true; 3980 3981 // Check to see if this value is already used in the memory instruction's 3982 // block. If so, it's already live into the block at the very least, so we 3983 // can reasonably fold it. 3984 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 3985 } 3986 3987 /// It is possible for the addressing mode of the machine to fold the specified 3988 /// instruction into a load or store that ultimately uses it. 3989 /// However, the specified instruction has multiple uses. 3990 /// Given this, it may actually increase register pressure to fold it 3991 /// into the load. For example, consider this code: 3992 /// 3993 /// X = ... 3994 /// Y = X+1 3995 /// use(Y) -> nonload/store 3996 /// Z = Y+1 3997 /// load Z 3998 /// 3999 /// In this case, Y has multiple uses, and can be folded into the load of Z 4000 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4001 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4002 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4003 /// number of computations either. 4004 /// 4005 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4006 /// X was live across 'load Z' for other reasons, we actually *would* want to 4007 /// fold the addressing mode in the Z case. This would make Y die earlier. 4008 bool AddressingModeMatcher:: 4009 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4010 ExtAddrMode &AMAfter) { 4011 if (IgnoreProfitability) return true; 4012 4013 // AMBefore is the addressing mode before this instruction was folded into it, 4014 // and AMAfter is the addressing mode after the instruction was folded. Get 4015 // the set of registers referenced by AMAfter and subtract out those 4016 // referenced by AMBefore: this is the set of values which folding in this 4017 // address extends the lifetime of. 4018 // 4019 // Note that there are only two potential values being referenced here, 4020 // BaseReg and ScaleReg (global addresses are always available, as are any 4021 // folded immediates). 4022 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4023 4024 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4025 // lifetime wasn't extended by adding this instruction. 4026 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4027 BaseReg = nullptr; 4028 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4029 ScaledReg = nullptr; 4030 4031 // If folding this instruction (and it's subexprs) didn't extend any live 4032 // ranges, we're ok with it. 4033 if (!BaseReg && !ScaledReg) 4034 return true; 4035 4036 // If all uses of this instruction can have the address mode sunk into them, 4037 // we can remove the addressing mode and effectively trade one live register 4038 // for another (at worst.) In this context, folding an addressing mode into 4039 // the use is just a particularly nice way of sinking it. 4040 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4041 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4042 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 4043 return false; // Has a non-memory, non-foldable use! 4044 4045 // Now that we know that all uses of this instruction are part of a chain of 4046 // computation involving only operations that could theoretically be folded 4047 // into a memory use, loop over each of these memory operation uses and see 4048 // if they could *actually* fold the instruction. The assumption is that 4049 // addressing modes are cheap and that duplicating the computation involved 4050 // many times is worthwhile, even on a fastpath. For sinking candidates 4051 // (i.e. cold call sites), this serves as a way to prevent excessive code 4052 // growth since most architectures have some reasonable small and fast way to 4053 // compute an effective address. (i.e LEA on x86) 4054 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4055 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4056 Instruction *User = MemoryUses[i].first; 4057 unsigned OpNo = MemoryUses[i].second; 4058 4059 // Get the access type of this use. If the use isn't a pointer, we don't 4060 // know what it accesses. 4061 Value *Address = User->getOperand(OpNo); 4062 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4063 if (!AddrTy) 4064 return false; 4065 Type *AddressAccessTy = AddrTy->getElementType(); 4066 unsigned AS = AddrTy->getAddressSpace(); 4067 4068 // Do a match against the root of this address, ignoring profitability. This 4069 // will tell us if the addressing mode for the memory operation will 4070 // *actually* cover the shared instruction. 4071 ExtAddrMode Result; 4072 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4073 TPT.getRestorationPoint(); 4074 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, 4075 AddressAccessTy, AS, 4076 MemoryInst, Result, InsertedInsts, 4077 PromotedInsts, TPT); 4078 Matcher.IgnoreProfitability = true; 4079 bool Success = Matcher.matchAddr(Address, 0); 4080 (void)Success; assert(Success && "Couldn't select *anything*?"); 4081 4082 // The match was to check the profitability, the changes made are not 4083 // part of the original matcher. Therefore, they should be dropped 4084 // otherwise the original matcher will not present the right state. 4085 TPT.rollback(LastKnownGood); 4086 4087 // If the match didn't cover I, then it won't be shared by it. 4088 if (!is_contained(MatchedAddrModeInsts, I)) 4089 return false; 4090 4091 MatchedAddrModeInsts.clear(); 4092 } 4093 4094 return true; 4095 } 4096 4097 } // end anonymous namespace 4098 4099 /// Return true if the specified values are defined in a 4100 /// different basic block than BB. 4101 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4102 if (Instruction *I = dyn_cast<Instruction>(V)) 4103 return I->getParent() != BB; 4104 return false; 4105 } 4106 4107 /// Sink addressing mode computation immediate before MemoryInst if doing so 4108 /// can be done without increasing register pressure. The need for the 4109 /// register pressure constraint means this can end up being an all or nothing 4110 /// decision for all uses of the same addressing computation. 4111 /// 4112 /// Load and Store Instructions often have addressing modes that can do 4113 /// significant amounts of computation. As such, instruction selection will try 4114 /// to get the load or store to do as much computation as possible for the 4115 /// program. The problem is that isel can only see within a single block. As 4116 /// such, we sink as much legal addressing mode work into the block as possible. 4117 /// 4118 /// This method is used to optimize both load/store and inline asms with memory 4119 /// operands. It's also used to sink addressing computations feeding into cold 4120 /// call sites into their (cold) basic block. 4121 /// 4122 /// The motivation for handling sinking into cold blocks is that doing so can 4123 /// both enable other address mode sinking (by satisfying the register pressure 4124 /// constraint above), and reduce register pressure globally (by removing the 4125 /// addressing mode computation from the fast path entirely.). 4126 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4127 Type *AccessTy, unsigned AddrSpace) { 4128 Value *Repl = Addr; 4129 4130 // Try to collapse single-value PHI nodes. This is necessary to undo 4131 // unprofitable PRE transformations. 4132 SmallVector<Value*, 8> worklist; 4133 SmallPtrSet<Value*, 16> Visited; 4134 worklist.push_back(Addr); 4135 4136 // Use a worklist to iteratively look through PHI nodes, and ensure that 4137 // the addressing mode obtained from the non-PHI roots of the graph 4138 // are equivalent. 4139 Value *Consensus = nullptr; 4140 unsigned NumUsesConsensus = 0; 4141 bool IsNumUsesConsensusValid = false; 4142 SmallVector<Instruction*, 16> AddrModeInsts; 4143 ExtAddrMode AddrMode; 4144 TypePromotionTransaction TPT(RemovedInsts); 4145 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4146 TPT.getRestorationPoint(); 4147 while (!worklist.empty()) { 4148 Value *V = worklist.back(); 4149 worklist.pop_back(); 4150 4151 // Break use-def graph loops. 4152 if (!Visited.insert(V).second) { 4153 Consensus = nullptr; 4154 break; 4155 } 4156 4157 // For a PHI node, push all of its incoming values. 4158 if (PHINode *P = dyn_cast<PHINode>(V)) { 4159 for (Value *IncValue : P->incoming_values()) 4160 worklist.push_back(IncValue); 4161 continue; 4162 } 4163 4164 // For non-PHIs, determine the addressing mode being computed. Note that 4165 // the result may differ depending on what other uses our candidate 4166 // addressing instructions might have. 4167 SmallVector<Instruction*, 16> NewAddrModeInsts; 4168 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4169 V, AccessTy, AddrSpace, MemoryInst, NewAddrModeInsts, *TLI, *TRI, 4170 InsertedInsts, PromotedInsts, TPT); 4171 4172 // This check is broken into two cases with very similar code to avoid using 4173 // getNumUses() as much as possible. Some values have a lot of uses, so 4174 // calling getNumUses() unconditionally caused a significant compile-time 4175 // regression. 4176 if (!Consensus) { 4177 Consensus = V; 4178 AddrMode = NewAddrMode; 4179 AddrModeInsts = NewAddrModeInsts; 4180 continue; 4181 } else if (NewAddrMode == AddrMode) { 4182 if (!IsNumUsesConsensusValid) { 4183 NumUsesConsensus = Consensus->getNumUses(); 4184 IsNumUsesConsensusValid = true; 4185 } 4186 4187 // Ensure that the obtained addressing mode is equivalent to that obtained 4188 // for all other roots of the PHI traversal. Also, when choosing one 4189 // such root as representative, select the one with the most uses in order 4190 // to keep the cost modeling heuristics in AddressingModeMatcher 4191 // applicable. 4192 unsigned NumUses = V->getNumUses(); 4193 if (NumUses > NumUsesConsensus) { 4194 Consensus = V; 4195 NumUsesConsensus = NumUses; 4196 AddrModeInsts = NewAddrModeInsts; 4197 } 4198 continue; 4199 } 4200 4201 Consensus = nullptr; 4202 break; 4203 } 4204 4205 // If the addressing mode couldn't be determined, or if multiple different 4206 // ones were determined, bail out now. 4207 if (!Consensus) { 4208 TPT.rollback(LastKnownGood); 4209 return false; 4210 } 4211 TPT.commit(); 4212 4213 // If all the instructions matched are already in this BB, don't do anything. 4214 if (none_of(AddrModeInsts, [&](Value *V) { 4215 return IsNonLocalValue(V, MemoryInst->getParent()); 4216 })) { 4217 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 4218 return false; 4219 } 4220 4221 // Insert this computation right after this user. Since our caller is 4222 // scanning from the top of the BB to the bottom, reuse of the expr are 4223 // guaranteed to happen later. 4224 IRBuilder<> Builder(MemoryInst); 4225 4226 // Now that we determined the addressing expression we want to use and know 4227 // that we have to sink it into this block. Check to see if we have already 4228 // done this for some other load/store instr in this block. If so, reuse the 4229 // computation. 4230 Value *&SunkAddr = SunkAddrs[Addr]; 4231 if (SunkAddr) { 4232 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 4233 << *MemoryInst << "\n"); 4234 if (SunkAddr->getType() != Addr->getType()) 4235 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4236 } else if (AddrSinkUsingGEPs || 4237 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 4238 SubtargetInfo->useAA())) { 4239 // By default, we use the GEP-based method when AA is used later. This 4240 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4241 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 4242 << *MemoryInst << "\n"); 4243 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4244 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4245 4246 // First, find the pointer. 4247 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4248 ResultPtr = AddrMode.BaseReg; 4249 AddrMode.BaseReg = nullptr; 4250 } 4251 4252 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4253 // We can't add more than one pointer together, nor can we scale a 4254 // pointer (both of which seem meaningless). 4255 if (ResultPtr || AddrMode.Scale != 1) 4256 return false; 4257 4258 ResultPtr = AddrMode.ScaledReg; 4259 AddrMode.Scale = 0; 4260 } 4261 4262 if (AddrMode.BaseGV) { 4263 if (ResultPtr) 4264 return false; 4265 4266 ResultPtr = AddrMode.BaseGV; 4267 } 4268 4269 // If the real base value actually came from an inttoptr, then the matcher 4270 // will look through it and provide only the integer value. In that case, 4271 // use it here. 4272 if (!ResultPtr && AddrMode.BaseReg) { 4273 ResultPtr = 4274 Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr"); 4275 AddrMode.BaseReg = nullptr; 4276 } else if (!ResultPtr && AddrMode.Scale == 1) { 4277 ResultPtr = 4278 Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr"); 4279 AddrMode.Scale = 0; 4280 } 4281 4282 if (!ResultPtr && 4283 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4284 SunkAddr = Constant::getNullValue(Addr->getType()); 4285 } else if (!ResultPtr) { 4286 return false; 4287 } else { 4288 Type *I8PtrTy = 4289 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4290 Type *I8Ty = Builder.getInt8Ty(); 4291 4292 // Start with the base register. Do this first so that subsequent address 4293 // matching finds it last, which will prevent it from trying to match it 4294 // as the scaled value in case it happens to be a mul. That would be 4295 // problematic if we've sunk a different mul for the scale, because then 4296 // we'd end up sinking both muls. 4297 if (AddrMode.BaseReg) { 4298 Value *V = AddrMode.BaseReg; 4299 if (V->getType() != IntPtrTy) 4300 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4301 4302 ResultIndex = V; 4303 } 4304 4305 // Add the scale value. 4306 if (AddrMode.Scale) { 4307 Value *V = AddrMode.ScaledReg; 4308 if (V->getType() == IntPtrTy) { 4309 // done. 4310 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4311 cast<IntegerType>(V->getType())->getBitWidth()) { 4312 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4313 } else { 4314 // It is only safe to sign extend the BaseReg if we know that the math 4315 // required to create it did not overflow before we extend it. Since 4316 // the original IR value was tossed in favor of a constant back when 4317 // the AddrMode was created we need to bail out gracefully if widths 4318 // do not match instead of extending it. 4319 Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex); 4320 if (I && (ResultIndex != AddrMode.BaseReg)) 4321 I->eraseFromParent(); 4322 return false; 4323 } 4324 4325 if (AddrMode.Scale != 1) 4326 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4327 "sunkaddr"); 4328 if (ResultIndex) 4329 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4330 else 4331 ResultIndex = V; 4332 } 4333 4334 // Add in the Base Offset if present. 4335 if (AddrMode.BaseOffs) { 4336 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4337 if (ResultIndex) { 4338 // We need to add this separately from the scale above to help with 4339 // SDAG consecutive load/store merging. 4340 if (ResultPtr->getType() != I8PtrTy) 4341 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4342 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4343 } 4344 4345 ResultIndex = V; 4346 } 4347 4348 if (!ResultIndex) { 4349 SunkAddr = ResultPtr; 4350 } else { 4351 if (ResultPtr->getType() != I8PtrTy) 4352 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4353 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4354 } 4355 4356 if (SunkAddr->getType() != Addr->getType()) 4357 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4358 } 4359 } else { 4360 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 4361 << *MemoryInst << "\n"); 4362 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4363 Value *Result = nullptr; 4364 4365 // Start with the base register. Do this first so that subsequent address 4366 // matching finds it last, which will prevent it from trying to match it 4367 // as the scaled value in case it happens to be a mul. That would be 4368 // problematic if we've sunk a different mul for the scale, because then 4369 // we'd end up sinking both muls. 4370 if (AddrMode.BaseReg) { 4371 Value *V = AddrMode.BaseReg; 4372 if (V->getType()->isPointerTy()) 4373 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4374 if (V->getType() != IntPtrTy) 4375 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4376 Result = V; 4377 } 4378 4379 // Add the scale value. 4380 if (AddrMode.Scale) { 4381 Value *V = AddrMode.ScaledReg; 4382 if (V->getType() == IntPtrTy) { 4383 // done. 4384 } else if (V->getType()->isPointerTy()) { 4385 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4386 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4387 cast<IntegerType>(V->getType())->getBitWidth()) { 4388 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4389 } else { 4390 // It is only safe to sign extend the BaseReg if we know that the math 4391 // required to create it did not overflow before we extend it. Since 4392 // the original IR value was tossed in favor of a constant back when 4393 // the AddrMode was created we need to bail out gracefully if widths 4394 // do not match instead of extending it. 4395 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4396 if (I && (Result != AddrMode.BaseReg)) 4397 I->eraseFromParent(); 4398 return false; 4399 } 4400 if (AddrMode.Scale != 1) 4401 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4402 "sunkaddr"); 4403 if (Result) 4404 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4405 else 4406 Result = V; 4407 } 4408 4409 // Add in the BaseGV if present. 4410 if (AddrMode.BaseGV) { 4411 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 4412 if (Result) 4413 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4414 else 4415 Result = V; 4416 } 4417 4418 // Add in the Base Offset if present. 4419 if (AddrMode.BaseOffs) { 4420 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4421 if (Result) 4422 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4423 else 4424 Result = V; 4425 } 4426 4427 if (!Result) 4428 SunkAddr = Constant::getNullValue(Addr->getType()); 4429 else 4430 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 4431 } 4432 4433 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 4434 4435 // If we have no uses, recursively delete the value and all dead instructions 4436 // using it. 4437 if (Repl->use_empty()) { 4438 // This can cause recursive deletion, which can invalidate our iterator. 4439 // Use a WeakVH to hold onto it in case this happens. 4440 Value *CurValue = &*CurInstIterator; 4441 WeakVH IterHandle(CurValue); 4442 BasicBlock *BB = CurInstIterator->getParent(); 4443 4444 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 4445 4446 if (IterHandle != CurValue) { 4447 // If the iterator instruction was recursively deleted, start over at the 4448 // start of the block. 4449 CurInstIterator = BB->begin(); 4450 SunkAddrs.clear(); 4451 } 4452 } 4453 ++NumMemoryInsts; 4454 return true; 4455 } 4456 4457 /// If there are any memory operands, use OptimizeMemoryInst to sink their 4458 /// address computing into the block when possible / profitable. 4459 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 4460 bool MadeChange = false; 4461 4462 const TargetRegisterInfo *TRI = 4463 TM->getSubtargetImpl(*CS->getParent()->getParent())->getRegisterInfo(); 4464 TargetLowering::AsmOperandInfoVector TargetConstraints = 4465 TLI->ParseConstraints(*DL, TRI, CS); 4466 unsigned ArgNo = 0; 4467 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4468 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4469 4470 // Compute the constraint code and ConstraintType to use. 4471 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 4472 4473 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4474 OpInfo.isIndirect) { 4475 Value *OpVal = CS->getArgOperand(ArgNo++); 4476 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 4477 } else if (OpInfo.Type == InlineAsm::isInput) 4478 ArgNo++; 4479 } 4480 4481 return MadeChange; 4482 } 4483 4484 /// \brief Check if all the uses of \p Val are equivalent (or free) zero or 4485 /// sign extensions. 4486 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 4487 assert(!Val->use_empty() && "Input must have at least one use"); 4488 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 4489 bool IsSExt = isa<SExtInst>(FirstUser); 4490 Type *ExtTy = FirstUser->getType(); 4491 for (const User *U : Val->users()) { 4492 const Instruction *UI = cast<Instruction>(U); 4493 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 4494 return false; 4495 Type *CurTy = UI->getType(); 4496 // Same input and output types: Same instruction after CSE. 4497 if (CurTy == ExtTy) 4498 continue; 4499 4500 // If IsSExt is true, we are in this situation: 4501 // a = Val 4502 // b = sext ty1 a to ty2 4503 // c = sext ty1 a to ty3 4504 // Assuming ty2 is shorter than ty3, this could be turned into: 4505 // a = Val 4506 // b = sext ty1 a to ty2 4507 // c = sext ty2 b to ty3 4508 // However, the last sext is not free. 4509 if (IsSExt) 4510 return false; 4511 4512 // This is a ZExt, maybe this is free to extend from one type to another. 4513 // In that case, we would not account for a different use. 4514 Type *NarrowTy; 4515 Type *LargeTy; 4516 if (ExtTy->getScalarType()->getIntegerBitWidth() > 4517 CurTy->getScalarType()->getIntegerBitWidth()) { 4518 NarrowTy = CurTy; 4519 LargeTy = ExtTy; 4520 } else { 4521 NarrowTy = ExtTy; 4522 LargeTy = CurTy; 4523 } 4524 4525 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 4526 return false; 4527 } 4528 // All uses are the same or can be derived from one another for free. 4529 return true; 4530 } 4531 4532 /// \brief Try to speculatively promote extensions in \p Exts and continue 4533 /// promoting through newly promoted operands recursively as far as doing so is 4534 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 4535 /// When some promotion happened, \p TPT contains the proper state to revert 4536 /// them. 4537 /// 4538 /// \return true if some promotion happened, false otherwise. 4539 bool CodeGenPrepare::tryToPromoteExts( 4540 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 4541 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 4542 unsigned CreatedInstsCost) { 4543 bool Promoted = false; 4544 4545 // Iterate over all the extensions to try to promote them. 4546 for (auto I : Exts) { 4547 // Early check if we directly have ext(load). 4548 if (isa<LoadInst>(I->getOperand(0))) { 4549 ProfitablyMovedExts.push_back(I); 4550 continue; 4551 } 4552 4553 // Check whether or not we want to do any promotion. The reason we have 4554 // this check inside the for loop is to catch the case where an extension 4555 // is directly fed by a load because in such case the extension can be moved 4556 // up without any promotion on its operands. 4557 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4558 return false; 4559 4560 // Get the action to perform the promotion. 4561 TypePromotionHelper::Action TPH = 4562 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 4563 // Check if we can promote. 4564 if (!TPH) { 4565 // Save the current extension as we cannot move up through its operand. 4566 ProfitablyMovedExts.push_back(I); 4567 continue; 4568 } 4569 4570 // Save the current state. 4571 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4572 TPT.getRestorationPoint(); 4573 SmallVector<Instruction *, 4> NewExts; 4574 unsigned NewCreatedInstsCost = 0; 4575 unsigned ExtCost = !TLI->isExtFree(I); 4576 // Promote. 4577 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4578 &NewExts, nullptr, *TLI); 4579 assert(PromotedVal && 4580 "TypePromotionHelper should have filtered out those cases"); 4581 4582 // We would be able to merge only one extension in a load. 4583 // Therefore, if we have more than 1 new extension we heuristically 4584 // cut this search path, because it means we degrade the code quality. 4585 // With exactly 2, the transformation is neutral, because we will merge 4586 // one extension but leave one. However, we optimistically keep going, 4587 // because the new extension may be removed too. 4588 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4589 // FIXME: It would be possible to propagate a negative value instead of 4590 // conservatively ceiling it to 0. 4591 TotalCreatedInstsCost = 4592 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 4593 if (!StressExtLdPromotion && 4594 (TotalCreatedInstsCost > 1 || 4595 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 4596 // This promotion is not profitable, rollback to the previous state, and 4597 // save the current extension in ProfitablyMovedExts as the latest 4598 // speculative promotion turned out to be unprofitable. 4599 TPT.rollback(LastKnownGood); 4600 ProfitablyMovedExts.push_back(I); 4601 continue; 4602 } 4603 // Continue promoting NewExts as far as doing so is profitable. 4604 SmallVector<Instruction *, 2> NewlyMovedExts; 4605 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 4606 bool NewPromoted = false; 4607 for (auto ExtInst : NewlyMovedExts) { 4608 Instruction *MovedExt = cast<Instruction>(ExtInst); 4609 Value *ExtOperand = MovedExt->getOperand(0); 4610 // If we have reached to a load, we need this extra profitability check 4611 // as it could potentially be merged into an ext(load). 4612 if (isa<LoadInst>(ExtOperand) && 4613 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 4614 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 4615 continue; 4616 4617 ProfitablyMovedExts.push_back(MovedExt); 4618 NewPromoted = true; 4619 } 4620 4621 // If none of speculative promotions for NewExts is profitable, rollback 4622 // and save the current extension (I) as the last profitable extension. 4623 if (!NewPromoted) { 4624 TPT.rollback(LastKnownGood); 4625 ProfitablyMovedExts.push_back(I); 4626 continue; 4627 } 4628 // The promotion is profitable. 4629 Promoted = true; 4630 } 4631 return Promoted; 4632 } 4633 4634 /// Merging redundant sexts when one is dominating the other. 4635 bool CodeGenPrepare::mergeSExts(Function &F) { 4636 DominatorTree DT(F); 4637 bool Changed = false; 4638 for (auto &Entry : ValToSExtendedUses) { 4639 SExts &Insts = Entry.second; 4640 SExts CurPts; 4641 for (Instruction *Inst : Insts) { 4642 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 4643 Inst->getOperand(0) != Entry.first) 4644 continue; 4645 bool inserted = false; 4646 for (auto &Pt : CurPts) { 4647 if (DT.dominates(Inst, Pt)) { 4648 Pt->replaceAllUsesWith(Inst); 4649 RemovedInsts.insert(Pt); 4650 Pt->removeFromParent(); 4651 Pt = Inst; 4652 inserted = true; 4653 Changed = true; 4654 break; 4655 } 4656 if (!DT.dominates(Pt, Inst)) 4657 // Give up if we need to merge in a common dominator as the 4658 // expermients show it is not profitable. 4659 continue; 4660 Inst->replaceAllUsesWith(Pt); 4661 RemovedInsts.insert(Inst); 4662 Inst->removeFromParent(); 4663 inserted = true; 4664 Changed = true; 4665 break; 4666 } 4667 if (!inserted) 4668 CurPts.push_back(Inst); 4669 } 4670 } 4671 return Changed; 4672 } 4673 4674 /// Return true, if an ext(load) can be formed from an extension in 4675 /// \p MovedExts. 4676 bool CodeGenPrepare::canFormExtLd( 4677 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 4678 Instruction *&Inst, bool HasPromoted) { 4679 for (auto *MovedExtInst : MovedExts) { 4680 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 4681 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 4682 Inst = MovedExtInst; 4683 break; 4684 } 4685 } 4686 if (!LI) 4687 return false; 4688 4689 // If they're already in the same block, there's nothing to do. 4690 // Make the cheap checks first if we did not promote. 4691 // If we promoted, we need to check if it is indeed profitable. 4692 if (!HasPromoted && LI->getParent() == Inst->getParent()) 4693 return false; 4694 4695 EVT VT = TLI->getValueType(*DL, Inst->getType()); 4696 EVT LoadVT = TLI->getValueType(*DL, LI->getType()); 4697 4698 // If the load has other users and the truncate is not free, this probably 4699 // isn't worthwhile. 4700 if (!LI->hasOneUse() && (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) && 4701 !TLI->isTruncateFree(Inst->getType(), LI->getType())) 4702 return false; 4703 4704 // Check whether the target supports casts folded into loads. 4705 unsigned LType; 4706 if (isa<ZExtInst>(Inst)) 4707 LType = ISD::ZEXTLOAD; 4708 else { 4709 assert(isa<SExtInst>(Inst) && "Unexpected ext type!"); 4710 LType = ISD::SEXTLOAD; 4711 } 4712 4713 return TLI->isLoadExtLegal(LType, VT, LoadVT); 4714 } 4715 4716 /// Move a zext or sext fed by a load into the same basic block as the load, 4717 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 4718 /// extend into the load. 4719 /// 4720 /// E.g., 4721 /// \code 4722 /// %ld = load i32* %addr 4723 /// %add = add nuw i32 %ld, 4 4724 /// %zext = zext i32 %add to i64 4725 // \endcode 4726 /// => 4727 /// \code 4728 /// %ld = load i32* %addr 4729 /// %zext = zext i32 %ld to i64 4730 /// %add = add nuw i64 %zext, 4 4731 /// \encode 4732 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 4733 /// allow us to match zext(load i32*) to i64. 4734 /// 4735 /// Also, try to promote the computations used to obtain a sign extended 4736 /// value used into memory accesses. 4737 /// E.g., 4738 /// \code 4739 /// a = add nsw i32 b, 3 4740 /// d = sext i32 a to i64 4741 /// e = getelementptr ..., i64 d 4742 /// \endcode 4743 /// => 4744 /// \code 4745 /// f = sext i32 b to i64 4746 /// a = add nsw i64 f, 3 4747 /// e = getelementptr ..., i64 a 4748 /// \endcode 4749 /// 4750 /// \p Inst[in/out] the extension may be modified during the process if some 4751 /// promotions apply. 4752 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 4753 // ExtLoad formation and address type promotion infrastructure requires TLI to 4754 // be effective. 4755 if (!TLI) 4756 return false; 4757 4758 bool AllowPromotionWithoutCommonHeader = false; 4759 /// See if it is an interesting sext operations for the address type 4760 /// promotion before trying to promote it, e.g., the ones with the right 4761 /// type and used in memory accesses. 4762 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 4763 *Inst, AllowPromotionWithoutCommonHeader); 4764 TypePromotionTransaction TPT(RemovedInsts); 4765 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4766 TPT.getRestorationPoint(); 4767 SmallVector<Instruction *, 1> Exts; 4768 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 4769 Exts.push_back(Inst); 4770 4771 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 4772 4773 // Look for a load being extended. 4774 LoadInst *LI = nullptr; 4775 Instruction *ExtFedByLoad; 4776 4777 // Try to promote a chain of computation if it allows to form an extended 4778 // load. 4779 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 4780 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 4781 TPT.commit(); 4782 // Move the extend into the same block as the load 4783 ExtFedByLoad->removeFromParent(); 4784 ExtFedByLoad->insertAfter(LI); 4785 // CGP does not check if the zext would be speculatively executed when moved 4786 // to the same basic block as the load. Preserving its original location 4787 // would pessimize the debugging experience, as well as negatively impact 4788 // the quality of sample pgo. We don't want to use "line 0" as that has a 4789 // size cost in the line-table section and logically the zext can be seen as 4790 // part of the load. Therefore we conservatively reuse the same debug 4791 // location for the load and the zext. 4792 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 4793 ++NumExtsMoved; 4794 Inst = ExtFedByLoad; 4795 return true; 4796 } 4797 4798 // Continue promoting SExts if known as considerable depending on targets. 4799 if (ATPConsiderable && 4800 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 4801 HasPromoted, TPT, SpeculativelyMovedExts)) 4802 return true; 4803 4804 TPT.rollback(LastKnownGood); 4805 return false; 4806 } 4807 4808 // Perform address type promotion if doing so is profitable. 4809 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 4810 // instructions that sign extended the same initial value. However, if 4811 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 4812 // extension is just profitable. 4813 bool CodeGenPrepare::performAddressTypePromotion( 4814 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 4815 bool HasPromoted, TypePromotionTransaction &TPT, 4816 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 4817 bool Promoted = false; 4818 SmallPtrSet<Instruction *, 1> UnhandledExts; 4819 bool AllSeenFirst = true; 4820 for (auto I : SpeculativelyMovedExts) { 4821 Value *HeadOfChain = I->getOperand(0); 4822 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 4823 SeenChainsForSExt.find(HeadOfChain); 4824 // If there is an unhandled SExt which has the same header, try to promote 4825 // it as well. 4826 if (AlreadySeen != SeenChainsForSExt.end()) { 4827 if (AlreadySeen->second != nullptr) 4828 UnhandledExts.insert(AlreadySeen->second); 4829 AllSeenFirst = false; 4830 } 4831 } 4832 4833 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 4834 SpeculativelyMovedExts.size() == 1)) { 4835 TPT.commit(); 4836 if (HasPromoted) 4837 Promoted = true; 4838 for (auto I : SpeculativelyMovedExts) { 4839 Value *HeadOfChain = I->getOperand(0); 4840 SeenChainsForSExt[HeadOfChain] = nullptr; 4841 ValToSExtendedUses[HeadOfChain].push_back(I); 4842 } 4843 // Update Inst as promotion happen. 4844 Inst = SpeculativelyMovedExts.pop_back_val(); 4845 } else { 4846 // This is the first chain visited from the header, keep the current chain 4847 // as unhandled. Defer to promote this until we encounter another SExt 4848 // chain derived from the same header. 4849 for (auto I : SpeculativelyMovedExts) { 4850 Value *HeadOfChain = I->getOperand(0); 4851 SeenChainsForSExt[HeadOfChain] = Inst; 4852 } 4853 return false; 4854 } 4855 4856 if (!AllSeenFirst && !UnhandledExts.empty()) 4857 for (auto VisitedSExt : UnhandledExts) { 4858 if (RemovedInsts.count(VisitedSExt)) 4859 continue; 4860 TypePromotionTransaction TPT(RemovedInsts); 4861 SmallVector<Instruction *, 1> Exts; 4862 SmallVector<Instruction *, 2> Chains; 4863 Exts.push_back(VisitedSExt); 4864 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 4865 TPT.commit(); 4866 if (HasPromoted) 4867 Promoted = true; 4868 for (auto I : Chains) { 4869 Value *HeadOfChain = I->getOperand(0); 4870 // Mark this as handled. 4871 SeenChainsForSExt[HeadOfChain] = nullptr; 4872 ValToSExtendedUses[HeadOfChain].push_back(I); 4873 } 4874 } 4875 return Promoted; 4876 } 4877 4878 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 4879 BasicBlock *DefBB = I->getParent(); 4880 4881 // If the result of a {s|z}ext and its source are both live out, rewrite all 4882 // other uses of the source with result of extension. 4883 Value *Src = I->getOperand(0); 4884 if (Src->hasOneUse()) 4885 return false; 4886 4887 // Only do this xform if truncating is free. 4888 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 4889 return false; 4890 4891 // Only safe to perform the optimization if the source is also defined in 4892 // this block. 4893 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 4894 return false; 4895 4896 bool DefIsLiveOut = false; 4897 for (User *U : I->users()) { 4898 Instruction *UI = cast<Instruction>(U); 4899 4900 // Figure out which BB this ext is used in. 4901 BasicBlock *UserBB = UI->getParent(); 4902 if (UserBB == DefBB) continue; 4903 DefIsLiveOut = true; 4904 break; 4905 } 4906 if (!DefIsLiveOut) 4907 return false; 4908 4909 // Make sure none of the uses are PHI nodes. 4910 for (User *U : Src->users()) { 4911 Instruction *UI = cast<Instruction>(U); 4912 BasicBlock *UserBB = UI->getParent(); 4913 if (UserBB == DefBB) continue; 4914 // Be conservative. We don't want this xform to end up introducing 4915 // reloads just before load / store instructions. 4916 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 4917 return false; 4918 } 4919 4920 // InsertedTruncs - Only insert one trunc in each block once. 4921 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 4922 4923 bool MadeChange = false; 4924 for (Use &U : Src->uses()) { 4925 Instruction *User = cast<Instruction>(U.getUser()); 4926 4927 // Figure out which BB this ext is used in. 4928 BasicBlock *UserBB = User->getParent(); 4929 if (UserBB == DefBB) continue; 4930 4931 // Both src and def are live in this block. Rewrite the use. 4932 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 4933 4934 if (!InsertedTrunc) { 4935 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 4936 assert(InsertPt != UserBB->end()); 4937 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 4938 InsertedInsts.insert(InsertedTrunc); 4939 } 4940 4941 // Replace a use of the {s|z}ext source with a use of the result. 4942 U = InsertedTrunc; 4943 ++NumExtUses; 4944 MadeChange = true; 4945 } 4946 4947 return MadeChange; 4948 } 4949 4950 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 4951 // just after the load if the target can fold this into one extload instruction, 4952 // with the hope of eliminating some of the other later "and" instructions using 4953 // the loaded value. "and"s that are made trivially redundant by the insertion 4954 // of the new "and" are removed by this function, while others (e.g. those whose 4955 // path from the load goes through a phi) are left for isel to potentially 4956 // remove. 4957 // 4958 // For example: 4959 // 4960 // b0: 4961 // x = load i32 4962 // ... 4963 // b1: 4964 // y = and x, 0xff 4965 // z = use y 4966 // 4967 // becomes: 4968 // 4969 // b0: 4970 // x = load i32 4971 // x' = and x, 0xff 4972 // ... 4973 // b1: 4974 // z = use x' 4975 // 4976 // whereas: 4977 // 4978 // b0: 4979 // x1 = load i32 4980 // ... 4981 // b1: 4982 // x2 = load i32 4983 // ... 4984 // b2: 4985 // x = phi x1, x2 4986 // y = and x, 0xff 4987 // 4988 // becomes (after a call to optimizeLoadExt for each load): 4989 // 4990 // b0: 4991 // x1 = load i32 4992 // x1' = and x1, 0xff 4993 // ... 4994 // b1: 4995 // x2 = load i32 4996 // x2' = and x2, 0xff 4997 // ... 4998 // b2: 4999 // x = phi x1', x2' 5000 // y = and x, 0xff 5001 // 5002 5003 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5004 5005 if (!Load->isSimple() || 5006 !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy())) 5007 return false; 5008 5009 // Skip loads we've already transformed. 5010 if (Load->hasOneUse() && 5011 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5012 return false; 5013 5014 // Look at all uses of Load, looking through phis, to determine how many bits 5015 // of the loaded value are needed. 5016 SmallVector<Instruction *, 8> WorkList; 5017 SmallPtrSet<Instruction *, 16> Visited; 5018 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5019 for (auto *U : Load->users()) 5020 WorkList.push_back(cast<Instruction>(U)); 5021 5022 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5023 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5024 APInt DemandBits(BitWidth, 0); 5025 APInt WidestAndBits(BitWidth, 0); 5026 5027 while (!WorkList.empty()) { 5028 Instruction *I = WorkList.back(); 5029 WorkList.pop_back(); 5030 5031 // Break use-def graph loops. 5032 if (!Visited.insert(I).second) 5033 continue; 5034 5035 // For a PHI node, push all of its users. 5036 if (auto *Phi = dyn_cast<PHINode>(I)) { 5037 for (auto *U : Phi->users()) 5038 WorkList.push_back(cast<Instruction>(U)); 5039 continue; 5040 } 5041 5042 switch (I->getOpcode()) { 5043 case llvm::Instruction::And: { 5044 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5045 if (!AndC) 5046 return false; 5047 APInt AndBits = AndC->getValue(); 5048 DemandBits |= AndBits; 5049 // Keep track of the widest and mask we see. 5050 if (AndBits.ugt(WidestAndBits)) 5051 WidestAndBits = AndBits; 5052 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5053 AndsToMaybeRemove.push_back(I); 5054 break; 5055 } 5056 5057 case llvm::Instruction::Shl: { 5058 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5059 if (!ShlC) 5060 return false; 5061 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5062 auto ShlDemandBits = APInt::getAllOnesValue(BitWidth).lshr(ShiftAmt); 5063 DemandBits |= ShlDemandBits; 5064 break; 5065 } 5066 5067 case llvm::Instruction::Trunc: { 5068 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5069 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5070 auto TruncBits = APInt::getAllOnesValue(TruncBitWidth).zext(BitWidth); 5071 DemandBits |= TruncBits; 5072 break; 5073 } 5074 5075 default: 5076 return false; 5077 } 5078 } 5079 5080 uint32_t ActiveBits = DemandBits.getActiveBits(); 5081 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5082 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5083 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5084 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5085 // followed by an AND. 5086 // TODO: Look into removing this restriction by fixing backends to either 5087 // return false for isLoadExtLegal for i1 or have them select this pattern to 5088 // a single instruction. 5089 // 5090 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5091 // mask, since these are the only ands that will be removed by isel. 5092 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5093 WidestAndBits != DemandBits) 5094 return false; 5095 5096 LLVMContext &Ctx = Load->getType()->getContext(); 5097 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5098 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5099 5100 // Reject cases that won't be matched as extloads. 5101 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5102 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5103 return false; 5104 5105 IRBuilder<> Builder(Load->getNextNode()); 5106 auto *NewAnd = dyn_cast<Instruction>( 5107 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5108 // Mark this instruction as "inserted by CGP", so that other 5109 // optimizations don't touch it. 5110 InsertedInsts.insert(NewAnd); 5111 5112 // Replace all uses of load with new and (except for the use of load in the 5113 // new and itself). 5114 Load->replaceAllUsesWith(NewAnd); 5115 NewAnd->setOperand(0, Load); 5116 5117 // Remove any and instructions that are now redundant. 5118 for (auto *And : AndsToMaybeRemove) 5119 // Check that the and mask is the same as the one we decided to put on the 5120 // new and. 5121 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5122 And->replaceAllUsesWith(NewAnd); 5123 if (&*CurInstIterator == And) 5124 CurInstIterator = std::next(And->getIterator()); 5125 And->eraseFromParent(); 5126 ++NumAndUses; 5127 } 5128 5129 ++NumAndsAdded; 5130 return true; 5131 } 5132 5133 /// Check if V (an operand of a select instruction) is an expensive instruction 5134 /// that is only used once. 5135 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5136 auto *I = dyn_cast<Instruction>(V); 5137 // If it's safe to speculatively execute, then it should not have side 5138 // effects; therefore, it's safe to sink and possibly *not* execute. 5139 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5140 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5141 } 5142 5143 /// Returns true if a SelectInst should be turned into an explicit branch. 5144 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5145 const TargetLowering *TLI, 5146 SelectInst *SI) { 5147 // If even a predictable select is cheap, then a branch can't be cheaper. 5148 if (!TLI->isPredictableSelectExpensive()) 5149 return false; 5150 5151 // FIXME: This should use the same heuristics as IfConversion to determine 5152 // whether a select is better represented as a branch. 5153 5154 // If metadata tells us that the select condition is obviously predictable, 5155 // then we want to replace the select with a branch. 5156 uint64_t TrueWeight, FalseWeight; 5157 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5158 uint64_t Max = std::max(TrueWeight, FalseWeight); 5159 uint64_t Sum = TrueWeight + FalseWeight; 5160 if (Sum != 0) { 5161 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5162 if (Probability > TLI->getPredictableBranchThreshold()) 5163 return true; 5164 } 5165 } 5166 5167 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5168 5169 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5170 // comparison condition. If the compare has more than one use, there's 5171 // probably another cmov or setcc around, so it's not worth emitting a branch. 5172 if (!Cmp || !Cmp->hasOneUse()) 5173 return false; 5174 5175 // If either operand of the select is expensive and only needed on one side 5176 // of the select, we should form a branch. 5177 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5178 sinkSelectOperand(TTI, SI->getFalseValue())) 5179 return true; 5180 5181 return false; 5182 } 5183 5184 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5185 /// false value of \p SI. If the true/false value of \p SI is defined by any 5186 /// select instructions in \p Selects, look through the defining select 5187 /// instruction until the true/false value is not defined in \p Selects. 5188 static Value *getTrueOrFalseValue( 5189 SelectInst *SI, bool isTrue, 5190 const SmallPtrSet<const Instruction *, 2> &Selects) { 5191 Value *V; 5192 5193 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 5194 DefSI = dyn_cast<SelectInst>(V)) { 5195 assert(DefSI->getCondition() == SI->getCondition() && 5196 "The condition of DefSI does not match with SI"); 5197 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 5198 } 5199 return V; 5200 } 5201 5202 /// If we have a SelectInst that will likely profit from branch prediction, 5203 /// turn it into a branch. 5204 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 5205 // Find all consecutive select instructions that share the same condition. 5206 SmallVector<SelectInst *, 2> ASI; 5207 ASI.push_back(SI); 5208 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 5209 It != SI->getParent()->end(); ++It) { 5210 SelectInst *I = dyn_cast<SelectInst>(&*It); 5211 if (I && SI->getCondition() == I->getCondition()) { 5212 ASI.push_back(I); 5213 } else { 5214 break; 5215 } 5216 } 5217 5218 SelectInst *LastSI = ASI.back(); 5219 // Increment the current iterator to skip all the rest of select instructions 5220 // because they will be either "not lowered" or "all lowered" to branch. 5221 CurInstIterator = std::next(LastSI->getIterator()); 5222 5223 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 5224 5225 // Can we convert the 'select' to CF ? 5226 if (DisableSelectToBranch || OptSize || !TLI || VectorCond || 5227 SI->getMetadata(LLVMContext::MD_unpredictable)) 5228 return false; 5229 5230 TargetLowering::SelectSupportKind SelectKind; 5231 if (VectorCond) 5232 SelectKind = TargetLowering::VectorMaskSelect; 5233 else if (SI->getType()->isVectorTy()) 5234 SelectKind = TargetLowering::ScalarCondVectorVal; 5235 else 5236 SelectKind = TargetLowering::ScalarValSelect; 5237 5238 if (TLI->isSelectSupported(SelectKind) && 5239 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 5240 return false; 5241 5242 ModifiedDT = true; 5243 5244 // Transform a sequence like this: 5245 // start: 5246 // %cmp = cmp uge i32 %a, %b 5247 // %sel = select i1 %cmp, i32 %c, i32 %d 5248 // 5249 // Into: 5250 // start: 5251 // %cmp = cmp uge i32 %a, %b 5252 // br i1 %cmp, label %select.true, label %select.false 5253 // select.true: 5254 // br label %select.end 5255 // select.false: 5256 // br label %select.end 5257 // select.end: 5258 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 5259 // 5260 // In addition, we may sink instructions that produce %c or %d from 5261 // the entry block into the destination(s) of the new branch. 5262 // If the true or false blocks do not contain a sunken instruction, that 5263 // block and its branch may be optimized away. In that case, one side of the 5264 // first branch will point directly to select.end, and the corresponding PHI 5265 // predecessor block will be the start block. 5266 5267 // First, we split the block containing the select into 2 blocks. 5268 BasicBlock *StartBlock = SI->getParent(); 5269 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 5270 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 5271 5272 // Delete the unconditional branch that was just created by the split. 5273 StartBlock->getTerminator()->eraseFromParent(); 5274 5275 // These are the new basic blocks for the conditional branch. 5276 // At least one will become an actual new basic block. 5277 BasicBlock *TrueBlock = nullptr; 5278 BasicBlock *FalseBlock = nullptr; 5279 BranchInst *TrueBranch = nullptr; 5280 BranchInst *FalseBranch = nullptr; 5281 5282 // Sink expensive instructions into the conditional blocks to avoid executing 5283 // them speculatively. 5284 for (SelectInst *SI : ASI) { 5285 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 5286 if (TrueBlock == nullptr) { 5287 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 5288 EndBlock->getParent(), EndBlock); 5289 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 5290 } 5291 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 5292 TrueInst->moveBefore(TrueBranch); 5293 } 5294 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 5295 if (FalseBlock == nullptr) { 5296 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 5297 EndBlock->getParent(), EndBlock); 5298 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 5299 } 5300 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 5301 FalseInst->moveBefore(FalseBranch); 5302 } 5303 } 5304 5305 // If there was nothing to sink, then arbitrarily choose the 'false' side 5306 // for a new input value to the PHI. 5307 if (TrueBlock == FalseBlock) { 5308 assert(TrueBlock == nullptr && 5309 "Unexpected basic block transform while optimizing select"); 5310 5311 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 5312 EndBlock->getParent(), EndBlock); 5313 BranchInst::Create(EndBlock, FalseBlock); 5314 } 5315 5316 // Insert the real conditional branch based on the original condition. 5317 // If we did not create a new block for one of the 'true' or 'false' paths 5318 // of the condition, it means that side of the branch goes to the end block 5319 // directly and the path originates from the start block from the point of 5320 // view of the new PHI. 5321 BasicBlock *TT, *FT; 5322 if (TrueBlock == nullptr) { 5323 TT = EndBlock; 5324 FT = FalseBlock; 5325 TrueBlock = StartBlock; 5326 } else if (FalseBlock == nullptr) { 5327 TT = TrueBlock; 5328 FT = EndBlock; 5329 FalseBlock = StartBlock; 5330 } else { 5331 TT = TrueBlock; 5332 FT = FalseBlock; 5333 } 5334 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 5335 5336 SmallPtrSet<const Instruction *, 2> INS; 5337 INS.insert(ASI.begin(), ASI.end()); 5338 // Use reverse iterator because later select may use the value of the 5339 // earlier select, and we need to propagate value through earlier select 5340 // to get the PHI operand. 5341 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 5342 SelectInst *SI = *It; 5343 // The select itself is replaced with a PHI Node. 5344 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 5345 PN->takeName(SI); 5346 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 5347 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 5348 5349 SI->replaceAllUsesWith(PN); 5350 SI->eraseFromParent(); 5351 INS.erase(SI); 5352 ++NumSelectsExpanded; 5353 } 5354 5355 // Instruct OptimizeBlock to skip to the next block. 5356 CurInstIterator = StartBlock->end(); 5357 return true; 5358 } 5359 5360 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 5361 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 5362 int SplatElem = -1; 5363 for (unsigned i = 0; i < Mask.size(); ++i) { 5364 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 5365 return false; 5366 SplatElem = Mask[i]; 5367 } 5368 5369 return true; 5370 } 5371 5372 /// Some targets have expensive vector shifts if the lanes aren't all the same 5373 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 5374 /// it's often worth sinking a shufflevector splat down to its use so that 5375 /// codegen can spot all lanes are identical. 5376 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 5377 BasicBlock *DefBB = SVI->getParent(); 5378 5379 // Only do this xform if variable vector shifts are particularly expensive. 5380 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 5381 return false; 5382 5383 // We only expect better codegen by sinking a shuffle if we can recognise a 5384 // constant splat. 5385 if (!isBroadcastShuffle(SVI)) 5386 return false; 5387 5388 // InsertedShuffles - Only insert a shuffle in each block once. 5389 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 5390 5391 bool MadeChange = false; 5392 for (User *U : SVI->users()) { 5393 Instruction *UI = cast<Instruction>(U); 5394 5395 // Figure out which BB this ext is used in. 5396 BasicBlock *UserBB = UI->getParent(); 5397 if (UserBB == DefBB) continue; 5398 5399 // For now only apply this when the splat is used by a shift instruction. 5400 if (!UI->isShift()) continue; 5401 5402 // Everything checks out, sink the shuffle if the user's block doesn't 5403 // already have a copy. 5404 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 5405 5406 if (!InsertedShuffle) { 5407 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5408 assert(InsertPt != UserBB->end()); 5409 InsertedShuffle = 5410 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5411 SVI->getOperand(2), "", &*InsertPt); 5412 } 5413 5414 UI->replaceUsesOfWith(SVI, InsertedShuffle); 5415 MadeChange = true; 5416 } 5417 5418 // If we removed all uses, nuke the shuffle. 5419 if (SVI->use_empty()) { 5420 SVI->eraseFromParent(); 5421 MadeChange = true; 5422 } 5423 5424 return MadeChange; 5425 } 5426 5427 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 5428 if (!TLI || !DL) 5429 return false; 5430 5431 Value *Cond = SI->getCondition(); 5432 Type *OldType = Cond->getType(); 5433 LLVMContext &Context = Cond->getContext(); 5434 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 5435 unsigned RegWidth = RegType.getSizeInBits(); 5436 5437 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 5438 return false; 5439 5440 // If the register width is greater than the type width, expand the condition 5441 // of the switch instruction and each case constant to the width of the 5442 // register. By widening the type of the switch condition, subsequent 5443 // comparisons (for case comparisons) will not need to be extended to the 5444 // preferred register width, so we will potentially eliminate N-1 extends, 5445 // where N is the number of cases in the switch. 5446 auto *NewType = Type::getIntNTy(Context, RegWidth); 5447 5448 // Zero-extend the switch condition and case constants unless the switch 5449 // condition is a function argument that is already being sign-extended. 5450 // In that case, we can avoid an unnecessary mask/extension by sign-extending 5451 // everything instead. 5452 Instruction::CastOps ExtType = Instruction::ZExt; 5453 if (auto *Arg = dyn_cast<Argument>(Cond)) 5454 if (Arg->hasSExtAttr()) 5455 ExtType = Instruction::SExt; 5456 5457 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 5458 ExtInst->insertBefore(SI); 5459 SI->setCondition(ExtInst); 5460 for (auto Case : SI->cases()) { 5461 APInt NarrowConst = Case.getCaseValue()->getValue(); 5462 APInt WideConst = (ExtType == Instruction::ZExt) ? 5463 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 5464 Case.setValue(ConstantInt::get(Context, WideConst)); 5465 } 5466 5467 return true; 5468 } 5469 5470 namespace { 5471 /// \brief Helper class to promote a scalar operation to a vector one. 5472 /// This class is used to move downward extractelement transition. 5473 /// E.g., 5474 /// a = vector_op <2 x i32> 5475 /// b = extractelement <2 x i32> a, i32 0 5476 /// c = scalar_op b 5477 /// store c 5478 /// 5479 /// => 5480 /// a = vector_op <2 x i32> 5481 /// c = vector_op a (equivalent to scalar_op on the related lane) 5482 /// * d = extractelement <2 x i32> c, i32 0 5483 /// * store d 5484 /// Assuming both extractelement and store can be combine, we get rid of the 5485 /// transition. 5486 class VectorPromoteHelper { 5487 /// DataLayout associated with the current module. 5488 const DataLayout &DL; 5489 5490 /// Used to perform some checks on the legality of vector operations. 5491 const TargetLowering &TLI; 5492 5493 /// Used to estimated the cost of the promoted chain. 5494 const TargetTransformInfo &TTI; 5495 5496 /// The transition being moved downwards. 5497 Instruction *Transition; 5498 /// The sequence of instructions to be promoted. 5499 SmallVector<Instruction *, 4> InstsToBePromoted; 5500 /// Cost of combining a store and an extract. 5501 unsigned StoreExtractCombineCost; 5502 /// Instruction that will be combined with the transition. 5503 Instruction *CombineInst; 5504 5505 /// \brief The instruction that represents the current end of the transition. 5506 /// Since we are faking the promotion until we reach the end of the chain 5507 /// of computation, we need a way to get the current end of the transition. 5508 Instruction *getEndOfTransition() const { 5509 if (InstsToBePromoted.empty()) 5510 return Transition; 5511 return InstsToBePromoted.back(); 5512 } 5513 5514 /// \brief Return the index of the original value in the transition. 5515 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 5516 /// c, is at index 0. 5517 unsigned getTransitionOriginalValueIdx() const { 5518 assert(isa<ExtractElementInst>(Transition) && 5519 "Other kind of transitions are not supported yet"); 5520 return 0; 5521 } 5522 5523 /// \brief Return the index of the index in the transition. 5524 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 5525 /// is at index 1. 5526 unsigned getTransitionIdx() const { 5527 assert(isa<ExtractElementInst>(Transition) && 5528 "Other kind of transitions are not supported yet"); 5529 return 1; 5530 } 5531 5532 /// \brief Get the type of the transition. 5533 /// This is the type of the original value. 5534 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 5535 /// transition is <2 x i32>. 5536 Type *getTransitionType() const { 5537 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 5538 } 5539 5540 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 5541 /// I.e., we have the following sequence: 5542 /// Def = Transition <ty1> a to <ty2> 5543 /// b = ToBePromoted <ty2> Def, ... 5544 /// => 5545 /// b = ToBePromoted <ty1> a, ... 5546 /// Def = Transition <ty1> ToBePromoted to <ty2> 5547 void promoteImpl(Instruction *ToBePromoted); 5548 5549 /// \brief Check whether or not it is profitable to promote all the 5550 /// instructions enqueued to be promoted. 5551 bool isProfitableToPromote() { 5552 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 5553 unsigned Index = isa<ConstantInt>(ValIdx) 5554 ? cast<ConstantInt>(ValIdx)->getZExtValue() 5555 : -1; 5556 Type *PromotedType = getTransitionType(); 5557 5558 StoreInst *ST = cast<StoreInst>(CombineInst); 5559 unsigned AS = ST->getPointerAddressSpace(); 5560 unsigned Align = ST->getAlignment(); 5561 // Check if this store is supported. 5562 if (!TLI.allowsMisalignedMemoryAccesses( 5563 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 5564 Align)) { 5565 // If this is not supported, there is no way we can combine 5566 // the extract with the store. 5567 return false; 5568 } 5569 5570 // The scalar chain of computation has to pay for the transition 5571 // scalar to vector. 5572 // The vector chain has to account for the combining cost. 5573 uint64_t ScalarCost = 5574 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 5575 uint64_t VectorCost = StoreExtractCombineCost; 5576 for (const auto &Inst : InstsToBePromoted) { 5577 // Compute the cost. 5578 // By construction, all instructions being promoted are arithmetic ones. 5579 // Moreover, one argument is a constant that can be viewed as a splat 5580 // constant. 5581 Value *Arg0 = Inst->getOperand(0); 5582 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 5583 isa<ConstantFP>(Arg0); 5584 TargetTransformInfo::OperandValueKind Arg0OVK = 5585 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5586 : TargetTransformInfo::OK_AnyValue; 5587 TargetTransformInfo::OperandValueKind Arg1OVK = 5588 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5589 : TargetTransformInfo::OK_AnyValue; 5590 ScalarCost += TTI.getArithmeticInstrCost( 5591 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 5592 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 5593 Arg0OVK, Arg1OVK); 5594 } 5595 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 5596 << ScalarCost << "\nVector: " << VectorCost << '\n'); 5597 return ScalarCost > VectorCost; 5598 } 5599 5600 /// \brief Generate a constant vector with \p Val with the same 5601 /// number of elements as the transition. 5602 /// \p UseSplat defines whether or not \p Val should be replicated 5603 /// across the whole vector. 5604 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 5605 /// otherwise we generate a vector with as many undef as possible: 5606 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 5607 /// used at the index of the extract. 5608 Value *getConstantVector(Constant *Val, bool UseSplat) const { 5609 unsigned ExtractIdx = UINT_MAX; 5610 if (!UseSplat) { 5611 // If we cannot determine where the constant must be, we have to 5612 // use a splat constant. 5613 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 5614 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 5615 ExtractIdx = CstVal->getSExtValue(); 5616 else 5617 UseSplat = true; 5618 } 5619 5620 unsigned End = getTransitionType()->getVectorNumElements(); 5621 if (UseSplat) 5622 return ConstantVector::getSplat(End, Val); 5623 5624 SmallVector<Constant *, 4> ConstVec; 5625 UndefValue *UndefVal = UndefValue::get(Val->getType()); 5626 for (unsigned Idx = 0; Idx != End; ++Idx) { 5627 if (Idx == ExtractIdx) 5628 ConstVec.push_back(Val); 5629 else 5630 ConstVec.push_back(UndefVal); 5631 } 5632 return ConstantVector::get(ConstVec); 5633 } 5634 5635 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 5636 /// in \p Use can trigger undefined behavior. 5637 static bool canCauseUndefinedBehavior(const Instruction *Use, 5638 unsigned OperandIdx) { 5639 // This is not safe to introduce undef when the operand is on 5640 // the right hand side of a division-like instruction. 5641 if (OperandIdx != 1) 5642 return false; 5643 switch (Use->getOpcode()) { 5644 default: 5645 return false; 5646 case Instruction::SDiv: 5647 case Instruction::UDiv: 5648 case Instruction::SRem: 5649 case Instruction::URem: 5650 return true; 5651 case Instruction::FDiv: 5652 case Instruction::FRem: 5653 return !Use->hasNoNaNs(); 5654 } 5655 llvm_unreachable(nullptr); 5656 } 5657 5658 public: 5659 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 5660 const TargetTransformInfo &TTI, Instruction *Transition, 5661 unsigned CombineCost) 5662 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 5663 StoreExtractCombineCost(CombineCost), CombineInst(nullptr) { 5664 assert(Transition && "Do not know how to promote null"); 5665 } 5666 5667 /// \brief Check if we can promote \p ToBePromoted to \p Type. 5668 bool canPromote(const Instruction *ToBePromoted) const { 5669 // We could support CastInst too. 5670 return isa<BinaryOperator>(ToBePromoted); 5671 } 5672 5673 /// \brief Check if it is profitable to promote \p ToBePromoted 5674 /// by moving downward the transition through. 5675 bool shouldPromote(const Instruction *ToBePromoted) const { 5676 // Promote only if all the operands can be statically expanded. 5677 // Indeed, we do not want to introduce any new kind of transitions. 5678 for (const Use &U : ToBePromoted->operands()) { 5679 const Value *Val = U.get(); 5680 if (Val == getEndOfTransition()) { 5681 // If the use is a division and the transition is on the rhs, 5682 // we cannot promote the operation, otherwise we may create a 5683 // division by zero. 5684 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 5685 return false; 5686 continue; 5687 } 5688 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 5689 !isa<ConstantFP>(Val)) 5690 return false; 5691 } 5692 // Check that the resulting operation is legal. 5693 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 5694 if (!ISDOpcode) 5695 return false; 5696 return StressStoreExtract || 5697 TLI.isOperationLegalOrCustom( 5698 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 5699 } 5700 5701 /// \brief Check whether or not \p Use can be combined 5702 /// with the transition. 5703 /// I.e., is it possible to do Use(Transition) => AnotherUse? 5704 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 5705 5706 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 5707 void enqueueForPromotion(Instruction *ToBePromoted) { 5708 InstsToBePromoted.push_back(ToBePromoted); 5709 } 5710 5711 /// \brief Set the instruction that will be combined with the transition. 5712 void recordCombineInstruction(Instruction *ToBeCombined) { 5713 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 5714 CombineInst = ToBeCombined; 5715 } 5716 5717 /// \brief Promote all the instructions enqueued for promotion if it is 5718 /// is profitable. 5719 /// \return True if the promotion happened, false otherwise. 5720 bool promote() { 5721 // Check if there is something to promote. 5722 // Right now, if we do not have anything to combine with, 5723 // we assume the promotion is not profitable. 5724 if (InstsToBePromoted.empty() || !CombineInst) 5725 return false; 5726 5727 // Check cost. 5728 if (!StressStoreExtract && !isProfitableToPromote()) 5729 return false; 5730 5731 // Promote. 5732 for (auto &ToBePromoted : InstsToBePromoted) 5733 promoteImpl(ToBePromoted); 5734 InstsToBePromoted.clear(); 5735 return true; 5736 } 5737 }; 5738 } // End of anonymous namespace. 5739 5740 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 5741 // At this point, we know that all the operands of ToBePromoted but Def 5742 // can be statically promoted. 5743 // For Def, we need to use its parameter in ToBePromoted: 5744 // b = ToBePromoted ty1 a 5745 // Def = Transition ty1 b to ty2 5746 // Move the transition down. 5747 // 1. Replace all uses of the promoted operation by the transition. 5748 // = ... b => = ... Def. 5749 assert(ToBePromoted->getType() == Transition->getType() && 5750 "The type of the result of the transition does not match " 5751 "the final type"); 5752 ToBePromoted->replaceAllUsesWith(Transition); 5753 // 2. Update the type of the uses. 5754 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 5755 Type *TransitionTy = getTransitionType(); 5756 ToBePromoted->mutateType(TransitionTy); 5757 // 3. Update all the operands of the promoted operation with promoted 5758 // operands. 5759 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 5760 for (Use &U : ToBePromoted->operands()) { 5761 Value *Val = U.get(); 5762 Value *NewVal = nullptr; 5763 if (Val == Transition) 5764 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 5765 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 5766 isa<ConstantFP>(Val)) { 5767 // Use a splat constant if it is not safe to use undef. 5768 NewVal = getConstantVector( 5769 cast<Constant>(Val), 5770 isa<UndefValue>(Val) || 5771 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 5772 } else 5773 llvm_unreachable("Did you modified shouldPromote and forgot to update " 5774 "this?"); 5775 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 5776 } 5777 Transition->removeFromParent(); 5778 Transition->insertAfter(ToBePromoted); 5779 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 5780 } 5781 5782 /// Some targets can do store(extractelement) with one instruction. 5783 /// Try to push the extractelement towards the stores when the target 5784 /// has this feature and this is profitable. 5785 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 5786 unsigned CombineCost = UINT_MAX; 5787 if (DisableStoreExtract || !TLI || 5788 (!StressStoreExtract && 5789 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 5790 Inst->getOperand(1), CombineCost))) 5791 return false; 5792 5793 // At this point we know that Inst is a vector to scalar transition. 5794 // Try to move it down the def-use chain, until: 5795 // - We can combine the transition with its single use 5796 // => we got rid of the transition. 5797 // - We escape the current basic block 5798 // => we would need to check that we are moving it at a cheaper place and 5799 // we do not do that for now. 5800 BasicBlock *Parent = Inst->getParent(); 5801 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 5802 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 5803 // If the transition has more than one use, assume this is not going to be 5804 // beneficial. 5805 while (Inst->hasOneUse()) { 5806 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 5807 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 5808 5809 if (ToBePromoted->getParent() != Parent) { 5810 DEBUG(dbgs() << "Instruction to promote is in a different block (" 5811 << ToBePromoted->getParent()->getName() 5812 << ") than the transition (" << Parent->getName() << ").\n"); 5813 return false; 5814 } 5815 5816 if (VPH.canCombine(ToBePromoted)) { 5817 DEBUG(dbgs() << "Assume " << *Inst << '\n' 5818 << "will be combined with: " << *ToBePromoted << '\n'); 5819 VPH.recordCombineInstruction(ToBePromoted); 5820 bool Changed = VPH.promote(); 5821 NumStoreExtractExposed += Changed; 5822 return Changed; 5823 } 5824 5825 DEBUG(dbgs() << "Try promoting.\n"); 5826 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 5827 return false; 5828 5829 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 5830 5831 VPH.enqueueForPromotion(ToBePromoted); 5832 Inst = ToBePromoted; 5833 } 5834 return false; 5835 } 5836 5837 /// For the instruction sequence of store below, F and I values 5838 /// are bundled together as an i64 value before being stored into memory. 5839 /// Sometimes it is more efficent to generate separate stores for F and I, 5840 /// which can remove the bitwise instructions or sink them to colder places. 5841 /// 5842 /// (store (or (zext (bitcast F to i32) to i64), 5843 /// (shl (zext I to i64), 32)), addr) --> 5844 /// (store F, addr) and (store I, addr+4) 5845 /// 5846 /// Similarly, splitting for other merged store can also be beneficial, like: 5847 /// For pair of {i32, i32}, i64 store --> two i32 stores. 5848 /// For pair of {i32, i16}, i64 store --> two i32 stores. 5849 /// For pair of {i16, i16}, i32 store --> two i16 stores. 5850 /// For pair of {i16, i8}, i32 store --> two i16 stores. 5851 /// For pair of {i8, i8}, i16 store --> two i8 stores. 5852 /// 5853 /// We allow each target to determine specifically which kind of splitting is 5854 /// supported. 5855 /// 5856 /// The store patterns are commonly seen from the simple code snippet below 5857 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 5858 /// void goo(const std::pair<int, float> &); 5859 /// hoo() { 5860 /// ... 5861 /// goo(std::make_pair(tmp, ftmp)); 5862 /// ... 5863 /// } 5864 /// 5865 /// Although we already have similar splitting in DAG Combine, we duplicate 5866 /// it in CodeGenPrepare to catch the case in which pattern is across 5867 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 5868 /// during code expansion. 5869 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 5870 const TargetLowering &TLI) { 5871 // Handle simple but common cases only. 5872 Type *StoreType = SI.getValueOperand()->getType(); 5873 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || 5874 DL.getTypeSizeInBits(StoreType) == 0) 5875 return false; 5876 5877 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 5878 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 5879 if (DL.getTypeStoreSizeInBits(SplitStoreType) != 5880 DL.getTypeSizeInBits(SplitStoreType)) 5881 return false; 5882 5883 // Match the following patterns: 5884 // (store (or (zext LValue to i64), 5885 // (shl (zext HValue to i64), 32)), HalfValBitSize) 5886 // or 5887 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 5888 // (zext LValue to i64), 5889 // Expect both operands of OR and the first operand of SHL have only 5890 // one use. 5891 Value *LValue, *HValue; 5892 if (!match(SI.getValueOperand(), 5893 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 5894 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 5895 m_SpecificInt(HalfValBitSize)))))) 5896 return false; 5897 5898 // Check LValue and HValue are int with size less or equal than 32. 5899 if (!LValue->getType()->isIntegerTy() || 5900 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 5901 !HValue->getType()->isIntegerTy() || 5902 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 5903 return false; 5904 5905 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 5906 // as the input of target query. 5907 auto *LBC = dyn_cast<BitCastInst>(LValue); 5908 auto *HBC = dyn_cast<BitCastInst>(HValue); 5909 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 5910 : EVT::getEVT(LValue->getType()); 5911 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 5912 : EVT::getEVT(HValue->getType()); 5913 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 5914 return false; 5915 5916 // Start to split store. 5917 IRBuilder<> Builder(SI.getContext()); 5918 Builder.SetInsertPoint(&SI); 5919 5920 // If LValue/HValue is a bitcast in another BB, create a new one in current 5921 // BB so it may be merged with the splitted stores by dag combiner. 5922 if (LBC && LBC->getParent() != SI.getParent()) 5923 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 5924 if (HBC && HBC->getParent() != SI.getParent()) 5925 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 5926 5927 auto CreateSplitStore = [&](Value *V, bool Upper) { 5928 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 5929 Value *Addr = Builder.CreateBitCast( 5930 SI.getOperand(1), 5931 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 5932 if (Upper) 5933 Addr = Builder.CreateGEP( 5934 SplitStoreType, Addr, 5935 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 5936 Builder.CreateAlignedStore( 5937 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 5938 }; 5939 5940 CreateSplitStore(LValue, false); 5941 CreateSplitStore(HValue, true); 5942 5943 // Delete the old store. 5944 SI.eraseFromParent(); 5945 return true; 5946 } 5947 5948 bool CodeGenPrepare::optimizeInst(Instruction *I, bool& ModifiedDT) { 5949 // Bail out if we inserted the instruction to prevent optimizations from 5950 // stepping on each other's toes. 5951 if (InsertedInsts.count(I)) 5952 return false; 5953 5954 if (PHINode *P = dyn_cast<PHINode>(I)) { 5955 // It is possible for very late stage optimizations (such as SimplifyCFG) 5956 // to introduce PHI nodes too late to be cleaned up. If we detect such a 5957 // trivial PHI, go ahead and zap it here. 5958 if (Value *V = SimplifyInstruction(P, *DL, TLInfo, nullptr)) { 5959 P->replaceAllUsesWith(V); 5960 P->eraseFromParent(); 5961 ++NumPHIsElim; 5962 return true; 5963 } 5964 return false; 5965 } 5966 5967 if (CastInst *CI = dyn_cast<CastInst>(I)) { 5968 // If the source of the cast is a constant, then this should have 5969 // already been constant folded. The only reason NOT to constant fold 5970 // it is if something (e.g. LSR) was careful to place the constant 5971 // evaluation in a block other than then one that uses it (e.g. to hoist 5972 // the address of globals out of a loop). If this is the case, we don't 5973 // want to forward-subst the cast. 5974 if (isa<Constant>(CI->getOperand(0))) 5975 return false; 5976 5977 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 5978 return true; 5979 5980 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 5981 /// Sink a zext or sext into its user blocks if the target type doesn't 5982 /// fit in one register 5983 if (TLI && 5984 TLI->getTypeAction(CI->getContext(), 5985 TLI->getValueType(*DL, CI->getType())) == 5986 TargetLowering::TypeExpandInteger) { 5987 return SinkCast(CI); 5988 } else { 5989 bool MadeChange = optimizeExt(I); 5990 return MadeChange | optimizeExtUses(I); 5991 } 5992 } 5993 return false; 5994 } 5995 5996 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5997 if (!TLI || !TLI->hasMultipleConditionRegisters()) 5998 return OptimizeCmpExpression(CI, TLI); 5999 6000 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6001 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6002 if (TLI) { 6003 bool Modified = optimizeLoadExt(LI); 6004 unsigned AS = LI->getPointerAddressSpace(); 6005 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 6006 return Modified; 6007 } 6008 return false; 6009 } 6010 6011 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 6012 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 6013 return true; 6014 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6015 if (TLI) { 6016 unsigned AS = SI->getPointerAddressSpace(); 6017 return optimizeMemoryInst(I, SI->getOperand(1), 6018 SI->getOperand(0)->getType(), AS); 6019 } 6020 return false; 6021 } 6022 6023 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 6024 unsigned AS = RMW->getPointerAddressSpace(); 6025 return optimizeMemoryInst(I, RMW->getPointerOperand(), 6026 RMW->getType(), AS); 6027 } 6028 6029 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 6030 unsigned AS = CmpX->getPointerAddressSpace(); 6031 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 6032 CmpX->getCompareOperand()->getType(), AS); 6033 } 6034 6035 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 6036 6037 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 6038 EnableAndCmpSinking && TLI) 6039 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 6040 6041 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 6042 BinOp->getOpcode() == Instruction::LShr)) { 6043 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 6044 if (TLI && CI && TLI->hasExtractBitsInsn()) 6045 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 6046 6047 return false; 6048 } 6049 6050 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 6051 if (GEPI->hasAllZeroIndices()) { 6052 /// The GEP operand must be a pointer, so must its result -> BitCast 6053 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 6054 GEPI->getName(), GEPI); 6055 GEPI->replaceAllUsesWith(NC); 6056 GEPI->eraseFromParent(); 6057 ++NumGEPsElim; 6058 optimizeInst(NC, ModifiedDT); 6059 return true; 6060 } 6061 return false; 6062 } 6063 6064 if (CallInst *CI = dyn_cast<CallInst>(I)) 6065 return optimizeCallInst(CI, ModifiedDT); 6066 6067 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 6068 return optimizeSelectInst(SI); 6069 6070 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 6071 return optimizeShuffleVectorInst(SVI); 6072 6073 if (auto *Switch = dyn_cast<SwitchInst>(I)) 6074 return optimizeSwitchInst(Switch); 6075 6076 if (isa<ExtractElementInst>(I)) 6077 return optimizeExtractElementInst(I); 6078 6079 return false; 6080 } 6081 6082 /// Given an OR instruction, check to see if this is a bitreverse 6083 /// idiom. If so, insert the new intrinsic and return true. 6084 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 6085 const TargetLowering &TLI) { 6086 if (!I.getType()->isIntegerTy() || 6087 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 6088 TLI.getValueType(DL, I.getType(), true))) 6089 return false; 6090 6091 SmallVector<Instruction*, 4> Insts; 6092 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 6093 return false; 6094 Instruction *LastInst = Insts.back(); 6095 I.replaceAllUsesWith(LastInst); 6096 RecursivelyDeleteTriviallyDeadInstructions(&I); 6097 return true; 6098 } 6099 6100 // In this pass we look for GEP and cast instructions that are used 6101 // across basic blocks and rewrite them to improve basic-block-at-a-time 6102 // selection. 6103 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool& ModifiedDT) { 6104 SunkAddrs.clear(); 6105 bool MadeChange = false; 6106 6107 CurInstIterator = BB.begin(); 6108 while (CurInstIterator != BB.end()) { 6109 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 6110 if (ModifiedDT) 6111 return true; 6112 } 6113 6114 bool MadeBitReverse = true; 6115 while (TLI && MadeBitReverse) { 6116 MadeBitReverse = false; 6117 for (auto &I : reverse(BB)) { 6118 if (makeBitReverse(I, *DL, *TLI)) { 6119 MadeBitReverse = MadeChange = true; 6120 ModifiedDT = true; 6121 break; 6122 } 6123 } 6124 } 6125 MadeChange |= dupRetToEnableTailCallOpts(&BB); 6126 6127 return MadeChange; 6128 } 6129 6130 // llvm.dbg.value is far away from the value then iSel may not be able 6131 // handle it properly. iSel will drop llvm.dbg.value if it can not 6132 // find a node corresponding to the value. 6133 bool CodeGenPrepare::placeDbgValues(Function &F) { 6134 bool MadeChange = false; 6135 for (BasicBlock &BB : F) { 6136 Instruction *PrevNonDbgInst = nullptr; 6137 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 6138 Instruction *Insn = &*BI++; 6139 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 6140 // Leave dbg.values that refer to an alloca alone. These 6141 // instrinsics describe the address of a variable (= the alloca) 6142 // being taken. They should not be moved next to the alloca 6143 // (and to the beginning of the scope), but rather stay close to 6144 // where said address is used. 6145 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 6146 PrevNonDbgInst = Insn; 6147 continue; 6148 } 6149 6150 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 6151 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 6152 // If VI is a phi in a block with an EHPad terminator, we can't insert 6153 // after it. 6154 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 6155 continue; 6156 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 6157 DVI->removeFromParent(); 6158 if (isa<PHINode>(VI)) 6159 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 6160 else 6161 DVI->insertAfter(VI); 6162 MadeChange = true; 6163 ++NumDbgValueMoved; 6164 } 6165 } 6166 } 6167 return MadeChange; 6168 } 6169 6170 /// \brief Scale down both weights to fit into uint32_t. 6171 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 6172 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 6173 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 6174 NewTrue = NewTrue / Scale; 6175 NewFalse = NewFalse / Scale; 6176 } 6177 6178 /// \brief Some targets prefer to split a conditional branch like: 6179 /// \code 6180 /// %0 = icmp ne i32 %a, 0 6181 /// %1 = icmp ne i32 %b, 0 6182 /// %or.cond = or i1 %0, %1 6183 /// br i1 %or.cond, label %TrueBB, label %FalseBB 6184 /// \endcode 6185 /// into multiple branch instructions like: 6186 /// \code 6187 /// bb1: 6188 /// %0 = icmp ne i32 %a, 0 6189 /// br i1 %0, label %TrueBB, label %bb2 6190 /// bb2: 6191 /// %1 = icmp ne i32 %b, 0 6192 /// br i1 %1, label %TrueBB, label %FalseBB 6193 /// \endcode 6194 /// This usually allows instruction selection to do even further optimizations 6195 /// and combine the compare with the branch instruction. Currently this is 6196 /// applied for targets which have "cheap" jump instructions. 6197 /// 6198 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 6199 /// 6200 bool CodeGenPrepare::splitBranchCondition(Function &F) { 6201 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 6202 return false; 6203 6204 bool MadeChange = false; 6205 for (auto &BB : F) { 6206 // Does this BB end with the following? 6207 // %cond1 = icmp|fcmp|binary instruction ... 6208 // %cond2 = icmp|fcmp|binary instruction ... 6209 // %cond.or = or|and i1 %cond1, cond2 6210 // br i1 %cond.or label %dest1, label %dest2" 6211 BinaryOperator *LogicOp; 6212 BasicBlock *TBB, *FBB; 6213 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 6214 continue; 6215 6216 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 6217 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 6218 continue; 6219 6220 unsigned Opc; 6221 Value *Cond1, *Cond2; 6222 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 6223 m_OneUse(m_Value(Cond2))))) 6224 Opc = Instruction::And; 6225 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 6226 m_OneUse(m_Value(Cond2))))) 6227 Opc = Instruction::Or; 6228 else 6229 continue; 6230 6231 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 6232 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 6233 continue; 6234 6235 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 6236 6237 // Create a new BB. 6238 auto TmpBB = 6239 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 6240 BB.getParent(), BB.getNextNode()); 6241 6242 // Update original basic block by using the first condition directly by the 6243 // branch instruction and removing the no longer needed and/or instruction. 6244 Br1->setCondition(Cond1); 6245 LogicOp->eraseFromParent(); 6246 6247 // Depending on the conditon we have to either replace the true or the false 6248 // successor of the original branch instruction. 6249 if (Opc == Instruction::And) 6250 Br1->setSuccessor(0, TmpBB); 6251 else 6252 Br1->setSuccessor(1, TmpBB); 6253 6254 // Fill in the new basic block. 6255 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 6256 if (auto *I = dyn_cast<Instruction>(Cond2)) { 6257 I->removeFromParent(); 6258 I->insertBefore(Br2); 6259 } 6260 6261 // Update PHI nodes in both successors. The original BB needs to be 6262 // replaced in one succesor's PHI nodes, because the branch comes now from 6263 // the newly generated BB (NewBB). In the other successor we need to add one 6264 // incoming edge to the PHI nodes, because both branch instructions target 6265 // now the same successor. Depending on the original branch condition 6266 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 6267 // we perform the correct update for the PHI nodes. 6268 // This doesn't change the successor order of the just created branch 6269 // instruction (or any other instruction). 6270 if (Opc == Instruction::Or) 6271 std::swap(TBB, FBB); 6272 6273 // Replace the old BB with the new BB. 6274 for (auto &I : *TBB) { 6275 PHINode *PN = dyn_cast<PHINode>(&I); 6276 if (!PN) 6277 break; 6278 int i; 6279 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 6280 PN->setIncomingBlock(i, TmpBB); 6281 } 6282 6283 // Add another incoming edge form the new BB. 6284 for (auto &I : *FBB) { 6285 PHINode *PN = dyn_cast<PHINode>(&I); 6286 if (!PN) 6287 break; 6288 auto *Val = PN->getIncomingValueForBlock(&BB); 6289 PN->addIncoming(Val, TmpBB); 6290 } 6291 6292 // Update the branch weights (from SelectionDAGBuilder:: 6293 // FindMergedConditions). 6294 if (Opc == Instruction::Or) { 6295 // Codegen X | Y as: 6296 // BB1: 6297 // jmp_if_X TBB 6298 // jmp TmpBB 6299 // TmpBB: 6300 // jmp_if_Y TBB 6301 // jmp FBB 6302 // 6303 6304 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 6305 // The requirement is that 6306 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 6307 // = TrueProb for orignal BB. 6308 // Assuming the orignal weights are A and B, one choice is to set BB1's 6309 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 6310 // assumes that 6311 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 6312 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 6313 // TmpBB, but the math is more complicated. 6314 uint64_t TrueWeight, FalseWeight; 6315 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6316 uint64_t NewTrueWeight = TrueWeight; 6317 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 6318 scaleWeights(NewTrueWeight, NewFalseWeight); 6319 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6320 .createBranchWeights(TrueWeight, FalseWeight)); 6321 6322 NewTrueWeight = TrueWeight; 6323 NewFalseWeight = 2 * FalseWeight; 6324 scaleWeights(NewTrueWeight, NewFalseWeight); 6325 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6326 .createBranchWeights(TrueWeight, FalseWeight)); 6327 } 6328 } else { 6329 // Codegen X & Y as: 6330 // BB1: 6331 // jmp_if_X TmpBB 6332 // jmp FBB 6333 // TmpBB: 6334 // jmp_if_Y TBB 6335 // jmp FBB 6336 // 6337 // This requires creation of TmpBB after CurBB. 6338 6339 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 6340 // The requirement is that 6341 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 6342 // = FalseProb for orignal BB. 6343 // Assuming the orignal weights are A and B, one choice is to set BB1's 6344 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 6345 // assumes that 6346 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 6347 uint64_t TrueWeight, FalseWeight; 6348 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6349 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 6350 uint64_t NewFalseWeight = FalseWeight; 6351 scaleWeights(NewTrueWeight, NewFalseWeight); 6352 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6353 .createBranchWeights(TrueWeight, FalseWeight)); 6354 6355 NewTrueWeight = 2 * TrueWeight; 6356 NewFalseWeight = FalseWeight; 6357 scaleWeights(NewTrueWeight, NewFalseWeight); 6358 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6359 .createBranchWeights(TrueWeight, FalseWeight)); 6360 } 6361 } 6362 6363 // Note: No point in getting fancy here, since the DT info is never 6364 // available to CodeGenPrepare. 6365 ModifiedDT = true; 6366 6367 MadeChange = true; 6368 6369 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 6370 TmpBB->dump()); 6371 } 6372 return MadeChange; 6373 } 6374