1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/Passes.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/IR/CallSite.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GetElementPtrTypeIterator.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/InlineAsm.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/IR/Statepoint.h" 37 #include "llvm/IR/ValueHandle.h" 38 #include "llvm/IR/ValueMap.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Target/TargetLowering.h" 44 #include "llvm/Target/TargetSubtargetInfo.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/BuildLibCalls.h" 47 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 48 #include "llvm/Transforms/Utils/Local.h" 49 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 50 using namespace llvm; 51 using namespace llvm::PatternMatch; 52 53 #define DEBUG_TYPE "codegenprepare" 54 55 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 56 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 57 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 58 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 59 "sunken Cmps"); 60 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 61 "of sunken Casts"); 62 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 63 "computations were sunk"); 64 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 65 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 66 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 67 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 68 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 69 STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches"); 70 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 71 72 static cl::opt<bool> DisableBranchOpts( 73 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 74 cl::desc("Disable branch optimizations in CodeGenPrepare")); 75 76 static cl::opt<bool> 77 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 78 cl::desc("Disable GC optimizations in CodeGenPrepare")); 79 80 static cl::opt<bool> DisableSelectToBranch( 81 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 82 cl::desc("Disable select to branch conversion.")); 83 84 static cl::opt<bool> AddrSinkUsingGEPs( 85 "addr-sink-using-gep", cl::Hidden, cl::init(false), 86 cl::desc("Address sinking in CGP using GEPs.")); 87 88 static cl::opt<bool> EnableAndCmpSinking( 89 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 90 cl::desc("Enable sinkinig and/cmp into branches.")); 91 92 static cl::opt<bool> DisableStoreExtract( 93 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 94 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 95 96 static cl::opt<bool> StressStoreExtract( 97 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 98 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 99 100 static cl::opt<bool> DisableExtLdPromotion( 101 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 102 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 103 "CodeGenPrepare")); 104 105 static cl::opt<bool> StressExtLdPromotion( 106 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 107 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 108 "optimization in CodeGenPrepare")); 109 110 namespace { 111 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; 112 struct TypeIsSExt { 113 Type *Ty; 114 bool IsSExt; 115 TypeIsSExt(Type *Ty, bool IsSExt) : Ty(Ty), IsSExt(IsSExt) {} 116 }; 117 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy; 118 class TypePromotionTransaction; 119 120 class CodeGenPrepare : public FunctionPass { 121 /// TLI - Keep a pointer of a TargetLowering to consult for determining 122 /// transformation profitability. 123 const TargetMachine *TM; 124 const TargetLowering *TLI; 125 const TargetTransformInfo *TTI; 126 const TargetLibraryInfo *TLInfo; 127 DominatorTree *DT; 128 129 /// CurInstIterator - As we scan instructions optimizing them, this is the 130 /// next instruction to optimize. Xforms that can invalidate this should 131 /// update it. 132 BasicBlock::iterator CurInstIterator; 133 134 /// Keeps track of non-local addresses that have been sunk into a block. 135 /// This allows us to avoid inserting duplicate code for blocks with 136 /// multiple load/stores of the same address. 137 ValueMap<Value*, Value*> SunkAddrs; 138 139 /// Keeps track of all truncates inserted for the current function. 140 SetOfInstrs InsertedTruncsSet; 141 /// Keeps track of the type of the related instruction before their 142 /// promotion for the current function. 143 InstrToOrigTy PromotedInsts; 144 145 /// ModifiedDT - If CFG is modified in anyway, dominator tree may need to 146 /// be updated. 147 bool ModifiedDT; 148 149 /// OptSize - True if optimizing for size. 150 bool OptSize; 151 152 public: 153 static char ID; // Pass identification, replacement for typeid 154 explicit CodeGenPrepare(const TargetMachine *TM = nullptr) 155 : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr) { 156 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 157 } 158 bool runOnFunction(Function &F) override; 159 160 const char *getPassName() const override { return "CodeGen Prepare"; } 161 162 void getAnalysisUsage(AnalysisUsage &AU) const override { 163 AU.addPreserved<DominatorTreeWrapperPass>(); 164 AU.addRequired<TargetLibraryInfoWrapperPass>(); 165 AU.addRequired<TargetTransformInfoWrapperPass>(); 166 } 167 168 private: 169 bool EliminateFallThrough(Function &F); 170 bool EliminateMostlyEmptyBlocks(Function &F); 171 bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 172 void EliminateMostlyEmptyBlock(BasicBlock *BB); 173 bool OptimizeBlock(BasicBlock &BB, bool& ModifiedDT); 174 bool OptimizeInst(Instruction *I, bool& ModifiedDT); 175 bool OptimizeMemoryInst(Instruction *I, Value *Addr, Type *AccessTy); 176 bool OptimizeInlineAsmInst(CallInst *CS); 177 bool OptimizeCallInst(CallInst *CI, bool& ModifiedDT); 178 bool MoveExtToFormExtLoad(Instruction *&I); 179 bool OptimizeExtUses(Instruction *I); 180 bool OptimizeSelectInst(SelectInst *SI); 181 bool OptimizeShuffleVectorInst(ShuffleVectorInst *SI); 182 bool OptimizeExtractElementInst(Instruction *Inst); 183 bool DupRetToEnableTailCallOpts(BasicBlock *BB); 184 bool PlaceDbgValues(Function &F); 185 bool sinkAndCmp(Function &F); 186 bool ExtLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI, 187 Instruction *&Inst, 188 const SmallVectorImpl<Instruction *> &Exts, 189 unsigned CreatedInst); 190 bool splitBranchCondition(Function &F); 191 bool simplifyOffsetableRelocate(Instruction &I); 192 }; 193 } 194 195 char CodeGenPrepare::ID = 0; 196 INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare", 197 "Optimize for code generation", false, false) 198 199 FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) { 200 return new CodeGenPrepare(TM); 201 } 202 203 bool CodeGenPrepare::runOnFunction(Function &F) { 204 if (skipOptnoneFunction(F)) 205 return false; 206 207 bool EverMadeChange = false; 208 // Clear per function information. 209 InsertedTruncsSet.clear(); 210 PromotedInsts.clear(); 211 212 ModifiedDT = false; 213 if (TM) 214 TLI = TM->getSubtargetImpl(F)->getTargetLowering(); 215 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 216 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 217 DominatorTreeWrapperPass *DTWP = 218 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 219 DT = DTWP ? &DTWP->getDomTree() : nullptr; 220 OptSize = F.hasFnAttribute(Attribute::OptimizeForSize); 221 222 /// This optimization identifies DIV instructions that can be 223 /// profitably bypassed and carried out with a shorter, faster divide. 224 if (!OptSize && TLI && TLI->isSlowDivBypassed()) { 225 const DenseMap<unsigned int, unsigned int> &BypassWidths = 226 TLI->getBypassSlowDivWidths(); 227 for (Function::iterator I = F.begin(); I != F.end(); I++) 228 EverMadeChange |= bypassSlowDivision(F, I, BypassWidths); 229 } 230 231 // Eliminate blocks that contain only PHI nodes and an 232 // unconditional branch. 233 EverMadeChange |= EliminateMostlyEmptyBlocks(F); 234 235 // llvm.dbg.value is far away from the value then iSel may not be able 236 // handle it properly. iSel will drop llvm.dbg.value if it can not 237 // find a node corresponding to the value. 238 EverMadeChange |= PlaceDbgValues(F); 239 240 // If there is a mask, compare against zero, and branch that can be combined 241 // into a single target instruction, push the mask and compare into branch 242 // users. Do this before OptimizeBlock -> OptimizeInst -> 243 // OptimizeCmpExpression, which perturbs the pattern being searched for. 244 if (!DisableBranchOpts) { 245 EverMadeChange |= sinkAndCmp(F); 246 EverMadeChange |= splitBranchCondition(F); 247 } 248 249 bool MadeChange = true; 250 while (MadeChange) { 251 MadeChange = false; 252 for (Function::iterator I = F.begin(); I != F.end(); ) { 253 BasicBlock *BB = I++; 254 bool ModifiedDTOnIteration = false; 255 MadeChange |= OptimizeBlock(*BB, ModifiedDTOnIteration); 256 257 // Restart BB iteration if the dominator tree of the Function was changed 258 ModifiedDT |= ModifiedDTOnIteration; 259 if (ModifiedDTOnIteration) 260 break; 261 } 262 EverMadeChange |= MadeChange; 263 } 264 265 SunkAddrs.clear(); 266 267 if (!DisableBranchOpts) { 268 MadeChange = false; 269 SmallPtrSet<BasicBlock*, 8> WorkList; 270 for (BasicBlock &BB : F) { 271 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 272 MadeChange |= ConstantFoldTerminator(&BB, true); 273 if (!MadeChange) continue; 274 275 for (SmallVectorImpl<BasicBlock*>::iterator 276 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 277 if (pred_begin(*II) == pred_end(*II)) 278 WorkList.insert(*II); 279 } 280 281 // Delete the dead blocks and any of their dead successors. 282 MadeChange |= !WorkList.empty(); 283 while (!WorkList.empty()) { 284 BasicBlock *BB = *WorkList.begin(); 285 WorkList.erase(BB); 286 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 287 288 DeleteDeadBlock(BB); 289 290 for (SmallVectorImpl<BasicBlock*>::iterator 291 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 292 if (pred_begin(*II) == pred_end(*II)) 293 WorkList.insert(*II); 294 } 295 296 // Merge pairs of basic blocks with unconditional branches, connected by 297 // a single edge. 298 if (EverMadeChange || MadeChange) 299 MadeChange |= EliminateFallThrough(F); 300 301 if (MadeChange) 302 ModifiedDT = true; 303 EverMadeChange |= MadeChange; 304 } 305 306 if (!DisableGCOpts) { 307 SmallVector<Instruction *, 2> Statepoints; 308 for (BasicBlock &BB : F) 309 for (Instruction &I : BB) 310 if (isStatepoint(I)) 311 Statepoints.push_back(&I); 312 for (auto &I : Statepoints) 313 EverMadeChange |= simplifyOffsetableRelocate(*I); 314 } 315 316 if (ModifiedDT && DT) 317 DT->recalculate(F); 318 319 return EverMadeChange; 320 } 321 322 /// EliminateFallThrough - Merge basic blocks which are connected 323 /// by a single edge, where one of the basic blocks has a single successor 324 /// pointing to the other basic block, which has a single predecessor. 325 bool CodeGenPrepare::EliminateFallThrough(Function &F) { 326 bool Changed = false; 327 // Scan all of the blocks in the function, except for the entry block. 328 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 329 BasicBlock *BB = I++; 330 // If the destination block has a single pred, then this is a trivial 331 // edge, just collapse it. 332 BasicBlock *SinglePred = BB->getSinglePredecessor(); 333 334 // Don't merge if BB's address is taken. 335 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 336 337 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 338 if (Term && !Term->isConditional()) { 339 Changed = true; 340 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 341 // Remember if SinglePred was the entry block of the function. 342 // If so, we will need to move BB back to the entry position. 343 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 344 MergeBasicBlockIntoOnlyPred(BB, DT); 345 346 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 347 BB->moveBefore(&BB->getParent()->getEntryBlock()); 348 349 // We have erased a block. Update the iterator. 350 I = BB; 351 } 352 } 353 return Changed; 354 } 355 356 /// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes, 357 /// debug info directives, and an unconditional branch. Passes before isel 358 /// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for 359 /// isel. Start by eliminating these blocks so we can split them the way we 360 /// want them. 361 bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) { 362 bool MadeChange = false; 363 // Note that this intentionally skips the entry block. 364 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 365 BasicBlock *BB = I++; 366 367 // If this block doesn't end with an uncond branch, ignore it. 368 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 369 if (!BI || !BI->isUnconditional()) 370 continue; 371 372 // If the instruction before the branch (skipping debug info) isn't a phi 373 // node, then other stuff is happening here. 374 BasicBlock::iterator BBI = BI; 375 if (BBI != BB->begin()) { 376 --BBI; 377 while (isa<DbgInfoIntrinsic>(BBI)) { 378 if (BBI == BB->begin()) 379 break; 380 --BBI; 381 } 382 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 383 continue; 384 } 385 386 // Do not break infinite loops. 387 BasicBlock *DestBB = BI->getSuccessor(0); 388 if (DestBB == BB) 389 continue; 390 391 if (!CanMergeBlocks(BB, DestBB)) 392 continue; 393 394 EliminateMostlyEmptyBlock(BB); 395 MadeChange = true; 396 } 397 return MadeChange; 398 } 399 400 /// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a 401 /// single uncond branch between them, and BB contains no other non-phi 402 /// instructions. 403 bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB, 404 const BasicBlock *DestBB) const { 405 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 406 // the successor. If there are more complex condition (e.g. preheaders), 407 // don't mess around with them. 408 BasicBlock::const_iterator BBI = BB->begin(); 409 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 410 for (const User *U : PN->users()) { 411 const Instruction *UI = cast<Instruction>(U); 412 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 413 return false; 414 // If User is inside DestBB block and it is a PHINode then check 415 // incoming value. If incoming value is not from BB then this is 416 // a complex condition (e.g. preheaders) we want to avoid here. 417 if (UI->getParent() == DestBB) { 418 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 419 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 420 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 421 if (Insn && Insn->getParent() == BB && 422 Insn->getParent() != UPN->getIncomingBlock(I)) 423 return false; 424 } 425 } 426 } 427 } 428 429 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 430 // and DestBB may have conflicting incoming values for the block. If so, we 431 // can't merge the block. 432 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 433 if (!DestBBPN) return true; // no conflict. 434 435 // Collect the preds of BB. 436 SmallPtrSet<const BasicBlock*, 16> BBPreds; 437 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 438 // It is faster to get preds from a PHI than with pred_iterator. 439 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 440 BBPreds.insert(BBPN->getIncomingBlock(i)); 441 } else { 442 BBPreds.insert(pred_begin(BB), pred_end(BB)); 443 } 444 445 // Walk the preds of DestBB. 446 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 447 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 448 if (BBPreds.count(Pred)) { // Common predecessor? 449 BBI = DestBB->begin(); 450 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 451 const Value *V1 = PN->getIncomingValueForBlock(Pred); 452 const Value *V2 = PN->getIncomingValueForBlock(BB); 453 454 // If V2 is a phi node in BB, look up what the mapped value will be. 455 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 456 if (V2PN->getParent() == BB) 457 V2 = V2PN->getIncomingValueForBlock(Pred); 458 459 // If there is a conflict, bail out. 460 if (V1 != V2) return false; 461 } 462 } 463 } 464 465 return true; 466 } 467 468 469 /// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and 470 /// an unconditional branch in it. 471 void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) { 472 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 473 BasicBlock *DestBB = BI->getSuccessor(0); 474 475 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 476 477 // If the destination block has a single pred, then this is a trivial edge, 478 // just collapse it. 479 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 480 if (SinglePred != DestBB) { 481 // Remember if SinglePred was the entry block of the function. If so, we 482 // will need to move BB back to the entry position. 483 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 484 MergeBasicBlockIntoOnlyPred(DestBB, DT); 485 486 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 487 BB->moveBefore(&BB->getParent()->getEntryBlock()); 488 489 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 490 return; 491 } 492 } 493 494 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 495 // to handle the new incoming edges it is about to have. 496 PHINode *PN; 497 for (BasicBlock::iterator BBI = DestBB->begin(); 498 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 499 // Remove the incoming value for BB, and remember it. 500 Value *InVal = PN->removeIncomingValue(BB, false); 501 502 // Two options: either the InVal is a phi node defined in BB or it is some 503 // value that dominates BB. 504 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 505 if (InValPhi && InValPhi->getParent() == BB) { 506 // Add all of the input values of the input PHI as inputs of this phi. 507 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 508 PN->addIncoming(InValPhi->getIncomingValue(i), 509 InValPhi->getIncomingBlock(i)); 510 } else { 511 // Otherwise, add one instance of the dominating value for each edge that 512 // we will be adding. 513 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 514 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 515 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 516 } else { 517 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 518 PN->addIncoming(InVal, *PI); 519 } 520 } 521 } 522 523 // The PHIs are now updated, change everything that refers to BB to use 524 // DestBB and remove BB. 525 BB->replaceAllUsesWith(DestBB); 526 if (DT && !ModifiedDT) { 527 BasicBlock *BBIDom = DT->getNode(BB)->getIDom()->getBlock(); 528 BasicBlock *DestBBIDom = DT->getNode(DestBB)->getIDom()->getBlock(); 529 BasicBlock *NewIDom = DT->findNearestCommonDominator(BBIDom, DestBBIDom); 530 DT->changeImmediateDominator(DestBB, NewIDom); 531 DT->eraseNode(BB); 532 } 533 BB->eraseFromParent(); 534 ++NumBlocksElim; 535 536 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 537 } 538 539 // Computes a map of base pointer relocation instructions to corresponding 540 // derived pointer relocation instructions given a vector of all relocate calls 541 static void computeBaseDerivedRelocateMap( 542 const SmallVectorImpl<User *> &AllRelocateCalls, 543 DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> & 544 RelocateInstMap) { 545 // Collect information in two maps: one primarily for locating the base object 546 // while filling the second map; the second map is the final structure holding 547 // a mapping between Base and corresponding Derived relocate calls 548 DenseMap<std::pair<unsigned, unsigned>, IntrinsicInst *> RelocateIdxMap; 549 for (auto &U : AllRelocateCalls) { 550 GCRelocateOperands ThisRelocate(U); 551 IntrinsicInst *I = cast<IntrinsicInst>(U); 552 auto K = std::make_pair(ThisRelocate.basePtrIndex(), 553 ThisRelocate.derivedPtrIndex()); 554 RelocateIdxMap.insert(std::make_pair(K, I)); 555 } 556 for (auto &Item : RelocateIdxMap) { 557 std::pair<unsigned, unsigned> Key = Item.first; 558 if (Key.first == Key.second) 559 // Base relocation: nothing to insert 560 continue; 561 562 IntrinsicInst *I = Item.second; 563 auto BaseKey = std::make_pair(Key.first, Key.first); 564 IntrinsicInst *Base = RelocateIdxMap[BaseKey]; 565 if (!Base) 566 // TODO: We might want to insert a new base object relocate and gep off 567 // that, if there are enough derived object relocates. 568 continue; 569 RelocateInstMap[Base].push_back(I); 570 } 571 } 572 573 // Accepts a GEP and extracts the operands into a vector provided they're all 574 // small integer constants 575 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 576 SmallVectorImpl<Value *> &OffsetV) { 577 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 578 // Only accept small constant integer operands 579 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 580 if (!Op || Op->getZExtValue() > 20) 581 return false; 582 } 583 584 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 585 OffsetV.push_back(GEP->getOperand(i)); 586 return true; 587 } 588 589 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 590 // replace, computes a replacement, and affects it. 591 static bool 592 simplifyRelocatesOffABase(IntrinsicInst *RelocatedBase, 593 const SmallVectorImpl<IntrinsicInst *> &Targets) { 594 bool MadeChange = false; 595 for (auto &ToReplace : Targets) { 596 GCRelocateOperands MasterRelocate(RelocatedBase); 597 GCRelocateOperands ThisRelocate(ToReplace); 598 599 assert(ThisRelocate.basePtrIndex() == MasterRelocate.basePtrIndex() && 600 "Not relocating a derived object of the original base object"); 601 if (ThisRelocate.basePtrIndex() == ThisRelocate.derivedPtrIndex()) { 602 // A duplicate relocate call. TODO: coalesce duplicates. 603 continue; 604 } 605 606 Value *Base = ThisRelocate.basePtr(); 607 auto Derived = dyn_cast<GetElementPtrInst>(ThisRelocate.derivedPtr()); 608 if (!Derived || Derived->getPointerOperand() != Base) 609 continue; 610 611 SmallVector<Value *, 2> OffsetV; 612 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 613 continue; 614 615 // Create a Builder and replace the target callsite with a gep 616 IRBuilder<> Builder(ToReplace); 617 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 618 Value *Replacement = 619 Builder.CreateGEP(RelocatedBase, makeArrayRef(OffsetV)); 620 Instruction *ReplacementInst = cast<Instruction>(Replacement); 621 ReplacementInst->removeFromParent(); 622 ReplacementInst->insertAfter(RelocatedBase); 623 Replacement->takeName(ToReplace); 624 ToReplace->replaceAllUsesWith(Replacement); 625 ToReplace->eraseFromParent(); 626 627 MadeChange = true; 628 } 629 return MadeChange; 630 } 631 632 // Turns this: 633 // 634 // %base = ... 635 // %ptr = gep %base + 15 636 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 637 // %base' = relocate(%tok, i32 4, i32 4) 638 // %ptr' = relocate(%tok, i32 4, i32 5) 639 // %val = load %ptr' 640 // 641 // into this: 642 // 643 // %base = ... 644 // %ptr = gep %base + 15 645 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 646 // %base' = gc.relocate(%tok, i32 4, i32 4) 647 // %ptr' = gep %base' + 15 648 // %val = load %ptr' 649 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 650 bool MadeChange = false; 651 SmallVector<User *, 2> AllRelocateCalls; 652 653 for (auto *U : I.users()) 654 if (isGCRelocate(dyn_cast<Instruction>(U))) 655 // Collect all the relocate calls associated with a statepoint 656 AllRelocateCalls.push_back(U); 657 658 // We need atleast one base pointer relocation + one derived pointer 659 // relocation to mangle 660 if (AllRelocateCalls.size() < 2) 661 return false; 662 663 // RelocateInstMap is a mapping from the base relocate instruction to the 664 // corresponding derived relocate instructions 665 DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> RelocateInstMap; 666 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 667 if (RelocateInstMap.empty()) 668 return false; 669 670 for (auto &Item : RelocateInstMap) 671 // Item.first is the RelocatedBase to offset against 672 // Item.second is the vector of Targets to replace 673 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 674 return MadeChange; 675 } 676 677 /// SinkCast - Sink the specified cast instruction into its user blocks 678 static bool SinkCast(CastInst *CI) { 679 BasicBlock *DefBB = CI->getParent(); 680 681 /// InsertedCasts - Only insert a cast in each block once. 682 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 683 684 bool MadeChange = false; 685 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 686 UI != E; ) { 687 Use &TheUse = UI.getUse(); 688 Instruction *User = cast<Instruction>(*UI); 689 690 // Figure out which BB this cast is used in. For PHI's this is the 691 // appropriate predecessor block. 692 BasicBlock *UserBB = User->getParent(); 693 if (PHINode *PN = dyn_cast<PHINode>(User)) { 694 UserBB = PN->getIncomingBlock(TheUse); 695 } 696 697 // Preincrement use iterator so we don't invalidate it. 698 ++UI; 699 700 // If this user is in the same block as the cast, don't change the cast. 701 if (UserBB == DefBB) continue; 702 703 // If we have already inserted a cast into this block, use it. 704 CastInst *&InsertedCast = InsertedCasts[UserBB]; 705 706 if (!InsertedCast) { 707 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 708 InsertedCast = 709 CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "", 710 InsertPt); 711 MadeChange = true; 712 } 713 714 // Replace a use of the cast with a use of the new cast. 715 TheUse = InsertedCast; 716 ++NumCastUses; 717 } 718 719 // If we removed all uses, nuke the cast. 720 if (CI->use_empty()) { 721 CI->eraseFromParent(); 722 MadeChange = true; 723 } 724 725 return MadeChange; 726 } 727 728 /// OptimizeNoopCopyExpression - If the specified cast instruction is a noop 729 /// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC), 730 /// sink it into user blocks to reduce the number of virtual 731 /// registers that must be created and coalesced. 732 /// 733 /// Return true if any changes are made. 734 /// 735 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){ 736 // If this is a noop copy, 737 EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType()); 738 EVT DstVT = TLI.getValueType(CI->getType()); 739 740 // This is an fp<->int conversion? 741 if (SrcVT.isInteger() != DstVT.isInteger()) 742 return false; 743 744 // If this is an extension, it will be a zero or sign extension, which 745 // isn't a noop. 746 if (SrcVT.bitsLT(DstVT)) return false; 747 748 // If these values will be promoted, find out what they will be promoted 749 // to. This helps us consider truncates on PPC as noop copies when they 750 // are. 751 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 752 TargetLowering::TypePromoteInteger) 753 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 754 if (TLI.getTypeAction(CI->getContext(), DstVT) == 755 TargetLowering::TypePromoteInteger) 756 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 757 758 // If, after promotion, these are the same types, this is a noop copy. 759 if (SrcVT != DstVT) 760 return false; 761 762 return SinkCast(CI); 763 } 764 765 /// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce 766 /// the number of virtual registers that must be created and coalesced. This is 767 /// a clear win except on targets with multiple condition code registers 768 /// (PowerPC), where it might lose; some adjustment may be wanted there. 769 /// 770 /// Return true if any changes are made. 771 static bool OptimizeCmpExpression(CmpInst *CI) { 772 BasicBlock *DefBB = CI->getParent(); 773 774 /// InsertedCmp - Only insert a cmp in each block once. 775 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 776 777 bool MadeChange = false; 778 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 779 UI != E; ) { 780 Use &TheUse = UI.getUse(); 781 Instruction *User = cast<Instruction>(*UI); 782 783 // Preincrement use iterator so we don't invalidate it. 784 ++UI; 785 786 // Don't bother for PHI nodes. 787 if (isa<PHINode>(User)) 788 continue; 789 790 // Figure out which BB this cmp is used in. 791 BasicBlock *UserBB = User->getParent(); 792 793 // If this user is in the same block as the cmp, don't change the cmp. 794 if (UserBB == DefBB) continue; 795 796 // If we have already inserted a cmp into this block, use it. 797 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 798 799 if (!InsertedCmp) { 800 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 801 InsertedCmp = 802 CmpInst::Create(CI->getOpcode(), 803 CI->getPredicate(), CI->getOperand(0), 804 CI->getOperand(1), "", InsertPt); 805 MadeChange = true; 806 } 807 808 // Replace a use of the cmp with a use of the new cmp. 809 TheUse = InsertedCmp; 810 ++NumCmpUses; 811 } 812 813 // If we removed all uses, nuke the cmp. 814 if (CI->use_empty()) 815 CI->eraseFromParent(); 816 817 return MadeChange; 818 } 819 820 /// isExtractBitsCandidateUse - Check if the candidates could 821 /// be combined with shift instruction, which includes: 822 /// 1. Truncate instruction 823 /// 2. And instruction and the imm is a mask of the low bits: 824 /// imm & (imm+1) == 0 825 static bool isExtractBitsCandidateUse(Instruction *User) { 826 if (!isa<TruncInst>(User)) { 827 if (User->getOpcode() != Instruction::And || 828 !isa<ConstantInt>(User->getOperand(1))) 829 return false; 830 831 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 832 833 if ((Cimm & (Cimm + 1)).getBoolValue()) 834 return false; 835 } 836 return true; 837 } 838 839 /// SinkShiftAndTruncate - sink both shift and truncate instruction 840 /// to the use of truncate's BB. 841 static bool 842 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 843 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 844 const TargetLowering &TLI) { 845 BasicBlock *UserBB = User->getParent(); 846 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 847 TruncInst *TruncI = dyn_cast<TruncInst>(User); 848 bool MadeChange = false; 849 850 for (Value::user_iterator TruncUI = TruncI->user_begin(), 851 TruncE = TruncI->user_end(); 852 TruncUI != TruncE;) { 853 854 Use &TruncTheUse = TruncUI.getUse(); 855 Instruction *TruncUser = cast<Instruction>(*TruncUI); 856 // Preincrement use iterator so we don't invalidate it. 857 858 ++TruncUI; 859 860 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 861 if (!ISDOpcode) 862 continue; 863 864 // If the use is actually a legal node, there will not be an 865 // implicit truncate. 866 // FIXME: always querying the result type is just an 867 // approximation; some nodes' legality is determined by the 868 // operand or other means. There's no good way to find out though. 869 if (TLI.isOperationLegalOrCustom( 870 ISDOpcode, TLI.getValueType(TruncUser->getType(), true))) 871 continue; 872 873 // Don't bother for PHI nodes. 874 if (isa<PHINode>(TruncUser)) 875 continue; 876 877 BasicBlock *TruncUserBB = TruncUser->getParent(); 878 879 if (UserBB == TruncUserBB) 880 continue; 881 882 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 883 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 884 885 if (!InsertedShift && !InsertedTrunc) { 886 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 887 // Sink the shift 888 if (ShiftI->getOpcode() == Instruction::AShr) 889 InsertedShift = 890 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt); 891 else 892 InsertedShift = 893 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt); 894 895 // Sink the trunc 896 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 897 TruncInsertPt++; 898 899 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 900 TruncI->getType(), "", TruncInsertPt); 901 902 MadeChange = true; 903 904 TruncTheUse = InsertedTrunc; 905 } 906 } 907 return MadeChange; 908 } 909 910 /// OptimizeExtractBits - sink the shift *right* instruction into user blocks if 911 /// the uses could potentially be combined with this shift instruction and 912 /// generate BitExtract instruction. It will only be applied if the architecture 913 /// supports BitExtract instruction. Here is an example: 914 /// BB1: 915 /// %x.extract.shift = lshr i64 %arg1, 32 916 /// BB2: 917 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 918 /// ==> 919 /// 920 /// BB2: 921 /// %x.extract.shift.1 = lshr i64 %arg1, 32 922 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 923 /// 924 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 925 /// instruction. 926 /// Return true if any changes are made. 927 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 928 const TargetLowering &TLI) { 929 BasicBlock *DefBB = ShiftI->getParent(); 930 931 /// Only insert instructions in each block once. 932 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 933 934 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(ShiftI->getType())); 935 936 bool MadeChange = false; 937 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 938 UI != E;) { 939 Use &TheUse = UI.getUse(); 940 Instruction *User = cast<Instruction>(*UI); 941 // Preincrement use iterator so we don't invalidate it. 942 ++UI; 943 944 // Don't bother for PHI nodes. 945 if (isa<PHINode>(User)) 946 continue; 947 948 if (!isExtractBitsCandidateUse(User)) 949 continue; 950 951 BasicBlock *UserBB = User->getParent(); 952 953 if (UserBB == DefBB) { 954 // If the shift and truncate instruction are in the same BB. The use of 955 // the truncate(TruncUse) may still introduce another truncate if not 956 // legal. In this case, we would like to sink both shift and truncate 957 // instruction to the BB of TruncUse. 958 // for example: 959 // BB1: 960 // i64 shift.result = lshr i64 opnd, imm 961 // trunc.result = trunc shift.result to i16 962 // 963 // BB2: 964 // ----> We will have an implicit truncate here if the architecture does 965 // not have i16 compare. 966 // cmp i16 trunc.result, opnd2 967 // 968 if (isa<TruncInst>(User) && shiftIsLegal 969 // If the type of the truncate is legal, no trucate will be 970 // introduced in other basic blocks. 971 && (!TLI.isTypeLegal(TLI.getValueType(User->getType())))) 972 MadeChange = 973 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI); 974 975 continue; 976 } 977 // If we have already inserted a shift into this block, use it. 978 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 979 980 if (!InsertedShift) { 981 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 982 983 if (ShiftI->getOpcode() == Instruction::AShr) 984 InsertedShift = 985 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt); 986 else 987 InsertedShift = 988 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt); 989 990 MadeChange = true; 991 } 992 993 // Replace a use of the shift with a use of the new shift. 994 TheUse = InsertedShift; 995 } 996 997 // If we removed all uses, nuke the shift. 998 if (ShiftI->use_empty()) 999 ShiftI->eraseFromParent(); 1000 1001 return MadeChange; 1002 } 1003 1004 // ScalarizeMaskedLoad() translates masked load intrinsic, like 1005 // <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align, 1006 // <16 x i1> %mask, <16 x i32> %passthru) 1007 // to a chain of basic blocks, whith loading element one-by-one if 1008 // the appropriate mask bit is set 1009 // 1010 // %1 = bitcast i8* %addr to i32* 1011 // %2 = extractelement <16 x i1> %mask, i32 0 1012 // %3 = icmp eq i1 %2, true 1013 // br i1 %3, label %cond.load, label %else 1014 // 1015 //cond.load: ; preds = %0 1016 // %4 = getelementptr i32* %1, i32 0 1017 // %5 = load i32* %4 1018 // %6 = insertelement <16 x i32> undef, i32 %5, i32 0 1019 // br label %else 1020 // 1021 //else: ; preds = %0, %cond.load 1022 // %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ] 1023 // %7 = extractelement <16 x i1> %mask, i32 1 1024 // %8 = icmp eq i1 %7, true 1025 // br i1 %8, label %cond.load1, label %else2 1026 // 1027 //cond.load1: ; preds = %else 1028 // %9 = getelementptr i32* %1, i32 1 1029 // %10 = load i32* %9 1030 // %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1 1031 // br label %else2 1032 // 1033 //else2: ; preds = %else, %cond.load1 1034 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1035 // %12 = extractelement <16 x i1> %mask, i32 2 1036 // %13 = icmp eq i1 %12, true 1037 // br i1 %13, label %cond.load4, label %else5 1038 // 1039 static void ScalarizeMaskedLoad(CallInst *CI) { 1040 Value *Ptr = CI->getArgOperand(0); 1041 Value *Src0 = CI->getArgOperand(3); 1042 Value *Mask = CI->getArgOperand(2); 1043 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1044 Type *EltTy = VecType->getElementType(); 1045 1046 assert(VecType && "Unexpected return type of masked load intrinsic"); 1047 1048 IRBuilder<> Builder(CI->getContext()); 1049 Instruction *InsertPt = CI; 1050 BasicBlock *IfBlock = CI->getParent(); 1051 BasicBlock *CondBlock = nullptr; 1052 BasicBlock *PrevIfBlock = CI->getParent(); 1053 Builder.SetInsertPoint(InsertPt); 1054 1055 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1056 1057 // Bitcast %addr fron i8* to EltTy* 1058 Type *NewPtrType = 1059 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1060 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1061 Value *UndefVal = UndefValue::get(VecType); 1062 1063 // The result vector 1064 Value *VResult = UndefVal; 1065 1066 PHINode *Phi = nullptr; 1067 Value *PrevPhi = UndefVal; 1068 1069 unsigned VectorWidth = VecType->getNumElements(); 1070 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1071 1072 // Fill the "else" block, created in the previous iteration 1073 // 1074 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1075 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1076 // %to_load = icmp eq i1 %mask_1, true 1077 // br i1 %to_load, label %cond.load, label %else 1078 // 1079 if (Idx > 0) { 1080 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1081 Phi->addIncoming(VResult, CondBlock); 1082 Phi->addIncoming(PrevPhi, PrevIfBlock); 1083 PrevPhi = Phi; 1084 VResult = Phi; 1085 } 1086 1087 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1088 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1089 ConstantInt::get(Predicate->getType(), 1)); 1090 1091 // Create "cond" block 1092 // 1093 // %EltAddr = getelementptr i32* %1, i32 0 1094 // %Elt = load i32* %EltAddr 1095 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1096 // 1097 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load"); 1098 Builder.SetInsertPoint(InsertPt); 1099 1100 Value* Gep = Builder.CreateInBoundsGEP(FirstEltPtr, Builder.getInt32(Idx)); 1101 LoadInst* Load = Builder.CreateLoad(Gep, false); 1102 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx)); 1103 1104 // Create "else" block, fill it in the next iteration 1105 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1106 Builder.SetInsertPoint(InsertPt); 1107 Instruction *OldBr = IfBlock->getTerminator(); 1108 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1109 OldBr->eraseFromParent(); 1110 PrevIfBlock = IfBlock; 1111 IfBlock = NewIfBlock; 1112 } 1113 1114 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1115 Phi->addIncoming(VResult, CondBlock); 1116 Phi->addIncoming(PrevPhi, PrevIfBlock); 1117 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1118 CI->replaceAllUsesWith(NewI); 1119 CI->eraseFromParent(); 1120 } 1121 1122 // ScalarizeMaskedStore() translates masked store intrinsic, like 1123 // void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align, 1124 // <16 x i1> %mask) 1125 // to a chain of basic blocks, that stores element one-by-one if 1126 // the appropriate mask bit is set 1127 // 1128 // %1 = bitcast i8* %addr to i32* 1129 // %2 = extractelement <16 x i1> %mask, i32 0 1130 // %3 = icmp eq i1 %2, true 1131 // br i1 %3, label %cond.store, label %else 1132 // 1133 // cond.store: ; preds = %0 1134 // %4 = extractelement <16 x i32> %val, i32 0 1135 // %5 = getelementptr i32* %1, i32 0 1136 // store i32 %4, i32* %5 1137 // br label %else 1138 // 1139 // else: ; preds = %0, %cond.store 1140 // %6 = extractelement <16 x i1> %mask, i32 1 1141 // %7 = icmp eq i1 %6, true 1142 // br i1 %7, label %cond.store1, label %else2 1143 // 1144 // cond.store1: ; preds = %else 1145 // %8 = extractelement <16 x i32> %val, i32 1 1146 // %9 = getelementptr i32* %1, i32 1 1147 // store i32 %8, i32* %9 1148 // br label %else2 1149 // . . . 1150 static void ScalarizeMaskedStore(CallInst *CI) { 1151 Value *Ptr = CI->getArgOperand(1); 1152 Value *Src = CI->getArgOperand(0); 1153 Value *Mask = CI->getArgOperand(3); 1154 1155 VectorType *VecType = dyn_cast<VectorType>(Src->getType()); 1156 Type *EltTy = VecType->getElementType(); 1157 1158 assert(VecType && "Unexpected data type in masked store intrinsic"); 1159 1160 IRBuilder<> Builder(CI->getContext()); 1161 Instruction *InsertPt = CI; 1162 BasicBlock *IfBlock = CI->getParent(); 1163 Builder.SetInsertPoint(InsertPt); 1164 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1165 1166 // Bitcast %addr fron i8* to EltTy* 1167 Type *NewPtrType = 1168 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1169 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1170 1171 unsigned VectorWidth = VecType->getNumElements(); 1172 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1173 1174 // Fill the "else" block, created in the previous iteration 1175 // 1176 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1177 // %to_store = icmp eq i1 %mask_1, true 1178 // br i1 %to_load, label %cond.store, label %else 1179 // 1180 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1181 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1182 ConstantInt::get(Predicate->getType(), 1)); 1183 1184 // Create "cond" block 1185 // 1186 // %OneElt = extractelement <16 x i32> %Src, i32 Idx 1187 // %EltAddr = getelementptr i32* %1, i32 0 1188 // %store i32 %OneElt, i32* %EltAddr 1189 // 1190 BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1191 Builder.SetInsertPoint(InsertPt); 1192 1193 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1194 Value* Gep = Builder.CreateInBoundsGEP(FirstEltPtr, Builder.getInt32(Idx)); 1195 Builder.CreateStore(OneElt, Gep); 1196 1197 // Create "else" block, fill it in the next iteration 1198 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1199 Builder.SetInsertPoint(InsertPt); 1200 Instruction *OldBr = IfBlock->getTerminator(); 1201 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1202 OldBr->eraseFromParent(); 1203 IfBlock = NewIfBlock; 1204 } 1205 CI->eraseFromParent(); 1206 } 1207 1208 bool CodeGenPrepare::OptimizeCallInst(CallInst *CI, bool& ModifiedDT) { 1209 BasicBlock *BB = CI->getParent(); 1210 1211 // Lower inline assembly if we can. 1212 // If we found an inline asm expession, and if the target knows how to 1213 // lower it to normal LLVM code, do so now. 1214 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1215 if (TLI->ExpandInlineAsm(CI)) { 1216 // Avoid invalidating the iterator. 1217 CurInstIterator = BB->begin(); 1218 // Avoid processing instructions out of order, which could cause 1219 // reuse before a value is defined. 1220 SunkAddrs.clear(); 1221 return true; 1222 } 1223 // Sink address computing for memory operands into the block. 1224 if (OptimizeInlineAsmInst(CI)) 1225 return true; 1226 } 1227 1228 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1229 if (II) { 1230 switch (II->getIntrinsicID()) { 1231 default: break; 1232 case Intrinsic::objectsize: { 1233 // Lower all uses of llvm.objectsize.* 1234 bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1); 1235 Type *ReturnTy = CI->getType(); 1236 Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL); 1237 1238 // Substituting this can cause recursive simplifications, which can 1239 // invalidate our iterator. Use a WeakVH to hold onto it in case this 1240 // happens. 1241 WeakVH IterHandle(CurInstIterator); 1242 1243 replaceAndRecursivelySimplify(CI, RetVal, 1244 TLI ? TLI->getDataLayout() : nullptr, 1245 TLInfo, ModifiedDT ? nullptr : DT); 1246 1247 // If the iterator instruction was recursively deleted, start over at the 1248 // start of the block. 1249 if (IterHandle != CurInstIterator) { 1250 CurInstIterator = BB->begin(); 1251 SunkAddrs.clear(); 1252 } 1253 return true; 1254 } 1255 case Intrinsic::masked_load: { 1256 // Scalarize unsupported vector masked load 1257 if (!TTI->isLegalMaskedLoad(CI->getType(), 1)) { 1258 ScalarizeMaskedLoad(CI); 1259 ModifiedDT = true; 1260 return true; 1261 } 1262 return false; 1263 } 1264 case Intrinsic::masked_store: { 1265 if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType(), 1)) { 1266 ScalarizeMaskedStore(CI); 1267 ModifiedDT = true; 1268 return true; 1269 } 1270 return false; 1271 } 1272 } 1273 1274 if (TLI) { 1275 SmallVector<Value*, 2> PtrOps; 1276 Type *AccessTy; 1277 if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy)) 1278 while (!PtrOps.empty()) 1279 if (OptimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy)) 1280 return true; 1281 } 1282 } 1283 1284 // From here on out we're working with named functions. 1285 if (!CI->getCalledFunction()) return false; 1286 1287 // We'll need DataLayout from here on out. 1288 const DataLayout *TD = TLI ? TLI->getDataLayout() : nullptr; 1289 if (!TD) return false; 1290 1291 // Lower all default uses of _chk calls. This is very similar 1292 // to what InstCombineCalls does, but here we are only lowering calls 1293 // to fortified library functions (e.g. __memcpy_chk) that have the default 1294 // "don't know" as the objectsize. Anything else should be left alone. 1295 FortifiedLibCallSimplifier Simplifier(TD, TLInfo, true); 1296 if (Value *V = Simplifier.optimizeCall(CI)) { 1297 CI->replaceAllUsesWith(V); 1298 CI->eraseFromParent(); 1299 return true; 1300 } 1301 return false; 1302 } 1303 1304 /// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return 1305 /// instructions to the predecessor to enable tail call optimizations. The 1306 /// case it is currently looking for is: 1307 /// @code 1308 /// bb0: 1309 /// %tmp0 = tail call i32 @f0() 1310 /// br label %return 1311 /// bb1: 1312 /// %tmp1 = tail call i32 @f1() 1313 /// br label %return 1314 /// bb2: 1315 /// %tmp2 = tail call i32 @f2() 1316 /// br label %return 1317 /// return: 1318 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1319 /// ret i32 %retval 1320 /// @endcode 1321 /// 1322 /// => 1323 /// 1324 /// @code 1325 /// bb0: 1326 /// %tmp0 = tail call i32 @f0() 1327 /// ret i32 %tmp0 1328 /// bb1: 1329 /// %tmp1 = tail call i32 @f1() 1330 /// ret i32 %tmp1 1331 /// bb2: 1332 /// %tmp2 = tail call i32 @f2() 1333 /// ret i32 %tmp2 1334 /// @endcode 1335 bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) { 1336 if (!TLI) 1337 return false; 1338 1339 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()); 1340 if (!RI) 1341 return false; 1342 1343 PHINode *PN = nullptr; 1344 BitCastInst *BCI = nullptr; 1345 Value *V = RI->getReturnValue(); 1346 if (V) { 1347 BCI = dyn_cast<BitCastInst>(V); 1348 if (BCI) 1349 V = BCI->getOperand(0); 1350 1351 PN = dyn_cast<PHINode>(V); 1352 if (!PN) 1353 return false; 1354 } 1355 1356 if (PN && PN->getParent() != BB) 1357 return false; 1358 1359 // It's not safe to eliminate the sign / zero extension of the return value. 1360 // See llvm::isInTailCallPosition(). 1361 const Function *F = BB->getParent(); 1362 AttributeSet CallerAttrs = F->getAttributes(); 1363 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 1364 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 1365 return false; 1366 1367 // Make sure there are no instructions between the PHI and return, or that the 1368 // return is the first instruction in the block. 1369 if (PN) { 1370 BasicBlock::iterator BI = BB->begin(); 1371 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1372 if (&*BI == BCI) 1373 // Also skip over the bitcast. 1374 ++BI; 1375 if (&*BI != RI) 1376 return false; 1377 } else { 1378 BasicBlock::iterator BI = BB->begin(); 1379 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1380 if (&*BI != RI) 1381 return false; 1382 } 1383 1384 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1385 /// call. 1386 SmallVector<CallInst*, 4> TailCalls; 1387 if (PN) { 1388 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 1389 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 1390 // Make sure the phi value is indeed produced by the tail call. 1391 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 1392 TLI->mayBeEmittedAsTailCall(CI)) 1393 TailCalls.push_back(CI); 1394 } 1395 } else { 1396 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 1397 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 1398 if (!VisitedBBs.insert(*PI).second) 1399 continue; 1400 1401 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 1402 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 1403 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 1404 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 1405 if (RI == RE) 1406 continue; 1407 1408 CallInst *CI = dyn_cast<CallInst>(&*RI); 1409 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI)) 1410 TailCalls.push_back(CI); 1411 } 1412 } 1413 1414 bool Changed = false; 1415 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1416 CallInst *CI = TailCalls[i]; 1417 CallSite CS(CI); 1418 1419 // Conservatively require the attributes of the call to match those of the 1420 // return. Ignore noalias because it doesn't affect the call sequence. 1421 AttributeSet CalleeAttrs = CS.getAttributes(); 1422 if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 1423 removeAttribute(Attribute::NoAlias) != 1424 AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 1425 removeAttribute(Attribute::NoAlias)) 1426 continue; 1427 1428 // Make sure the call instruction is followed by an unconditional branch to 1429 // the return block. 1430 BasicBlock *CallBB = CI->getParent(); 1431 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 1432 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 1433 continue; 1434 1435 // Duplicate the return into CallBB. 1436 (void)FoldReturnIntoUncondBranch(RI, BB, CallBB); 1437 ModifiedDT = Changed = true; 1438 ++NumRetsDup; 1439 } 1440 1441 // If we eliminated all predecessors of the block, delete the block now. 1442 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 1443 BB->eraseFromParent(); 1444 1445 return Changed; 1446 } 1447 1448 //===----------------------------------------------------------------------===// 1449 // Memory Optimization 1450 //===----------------------------------------------------------------------===// 1451 1452 namespace { 1453 1454 /// ExtAddrMode - This is an extended version of TargetLowering::AddrMode 1455 /// which holds actual Value*'s for register values. 1456 struct ExtAddrMode : public TargetLowering::AddrMode { 1457 Value *BaseReg; 1458 Value *ScaledReg; 1459 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} 1460 void print(raw_ostream &OS) const; 1461 void dump() const; 1462 1463 bool operator==(const ExtAddrMode& O) const { 1464 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && 1465 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && 1466 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); 1467 } 1468 }; 1469 1470 #ifndef NDEBUG 1471 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 1472 AM.print(OS); 1473 return OS; 1474 } 1475 #endif 1476 1477 void ExtAddrMode::print(raw_ostream &OS) const { 1478 bool NeedPlus = false; 1479 OS << "["; 1480 if (BaseGV) { 1481 OS << (NeedPlus ? " + " : "") 1482 << "GV:"; 1483 BaseGV->printAsOperand(OS, /*PrintType=*/false); 1484 NeedPlus = true; 1485 } 1486 1487 if (BaseOffs) { 1488 OS << (NeedPlus ? " + " : "") 1489 << BaseOffs; 1490 NeedPlus = true; 1491 } 1492 1493 if (BaseReg) { 1494 OS << (NeedPlus ? " + " : "") 1495 << "Base:"; 1496 BaseReg->printAsOperand(OS, /*PrintType=*/false); 1497 NeedPlus = true; 1498 } 1499 if (Scale) { 1500 OS << (NeedPlus ? " + " : "") 1501 << Scale << "*"; 1502 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 1503 } 1504 1505 OS << ']'; 1506 } 1507 1508 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1509 void ExtAddrMode::dump() const { 1510 print(dbgs()); 1511 dbgs() << '\n'; 1512 } 1513 #endif 1514 1515 /// \brief This class provides transaction based operation on the IR. 1516 /// Every change made through this class is recorded in the internal state and 1517 /// can be undone (rollback) until commit is called. 1518 class TypePromotionTransaction { 1519 1520 /// \brief This represents the common interface of the individual transaction. 1521 /// Each class implements the logic for doing one specific modification on 1522 /// the IR via the TypePromotionTransaction. 1523 class TypePromotionAction { 1524 protected: 1525 /// The Instruction modified. 1526 Instruction *Inst; 1527 1528 public: 1529 /// \brief Constructor of the action. 1530 /// The constructor performs the related action on the IR. 1531 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 1532 1533 virtual ~TypePromotionAction() {} 1534 1535 /// \brief Undo the modification done by this action. 1536 /// When this method is called, the IR must be in the same state as it was 1537 /// before this action was applied. 1538 /// \pre Undoing the action works if and only if the IR is in the exact same 1539 /// state as it was directly after this action was applied. 1540 virtual void undo() = 0; 1541 1542 /// \brief Advocate every change made by this action. 1543 /// When the results on the IR of the action are to be kept, it is important 1544 /// to call this function, otherwise hidden information may be kept forever. 1545 virtual void commit() { 1546 // Nothing to be done, this action is not doing anything. 1547 } 1548 }; 1549 1550 /// \brief Utility to remember the position of an instruction. 1551 class InsertionHandler { 1552 /// Position of an instruction. 1553 /// Either an instruction: 1554 /// - Is the first in a basic block: BB is used. 1555 /// - Has a previous instructon: PrevInst is used. 1556 union { 1557 Instruction *PrevInst; 1558 BasicBlock *BB; 1559 } Point; 1560 /// Remember whether or not the instruction had a previous instruction. 1561 bool HasPrevInstruction; 1562 1563 public: 1564 /// \brief Record the position of \p Inst. 1565 InsertionHandler(Instruction *Inst) { 1566 BasicBlock::iterator It = Inst; 1567 HasPrevInstruction = (It != (Inst->getParent()->begin())); 1568 if (HasPrevInstruction) 1569 Point.PrevInst = --It; 1570 else 1571 Point.BB = Inst->getParent(); 1572 } 1573 1574 /// \brief Insert \p Inst at the recorded position. 1575 void insert(Instruction *Inst) { 1576 if (HasPrevInstruction) { 1577 if (Inst->getParent()) 1578 Inst->removeFromParent(); 1579 Inst->insertAfter(Point.PrevInst); 1580 } else { 1581 Instruction *Position = Point.BB->getFirstInsertionPt(); 1582 if (Inst->getParent()) 1583 Inst->moveBefore(Position); 1584 else 1585 Inst->insertBefore(Position); 1586 } 1587 } 1588 }; 1589 1590 /// \brief Move an instruction before another. 1591 class InstructionMoveBefore : public TypePromotionAction { 1592 /// Original position of the instruction. 1593 InsertionHandler Position; 1594 1595 public: 1596 /// \brief Move \p Inst before \p Before. 1597 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 1598 : TypePromotionAction(Inst), Position(Inst) { 1599 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 1600 Inst->moveBefore(Before); 1601 } 1602 1603 /// \brief Move the instruction back to its original position. 1604 void undo() override { 1605 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 1606 Position.insert(Inst); 1607 } 1608 }; 1609 1610 /// \brief Set the operand of an instruction with a new value. 1611 class OperandSetter : public TypePromotionAction { 1612 /// Original operand of the instruction. 1613 Value *Origin; 1614 /// Index of the modified instruction. 1615 unsigned Idx; 1616 1617 public: 1618 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 1619 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 1620 : TypePromotionAction(Inst), Idx(Idx) { 1621 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 1622 << "for:" << *Inst << "\n" 1623 << "with:" << *NewVal << "\n"); 1624 Origin = Inst->getOperand(Idx); 1625 Inst->setOperand(Idx, NewVal); 1626 } 1627 1628 /// \brief Restore the original value of the instruction. 1629 void undo() override { 1630 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 1631 << "for: " << *Inst << "\n" 1632 << "with: " << *Origin << "\n"); 1633 Inst->setOperand(Idx, Origin); 1634 } 1635 }; 1636 1637 /// \brief Hide the operands of an instruction. 1638 /// Do as if this instruction was not using any of its operands. 1639 class OperandsHider : public TypePromotionAction { 1640 /// The list of original operands. 1641 SmallVector<Value *, 4> OriginalValues; 1642 1643 public: 1644 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 1645 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 1646 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 1647 unsigned NumOpnds = Inst->getNumOperands(); 1648 OriginalValues.reserve(NumOpnds); 1649 for (unsigned It = 0; It < NumOpnds; ++It) { 1650 // Save the current operand. 1651 Value *Val = Inst->getOperand(It); 1652 OriginalValues.push_back(Val); 1653 // Set a dummy one. 1654 // We could use OperandSetter here, but that would implied an overhead 1655 // that we are not willing to pay. 1656 Inst->setOperand(It, UndefValue::get(Val->getType())); 1657 } 1658 } 1659 1660 /// \brief Restore the original list of uses. 1661 void undo() override { 1662 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 1663 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 1664 Inst->setOperand(It, OriginalValues[It]); 1665 } 1666 }; 1667 1668 /// \brief Build a truncate instruction. 1669 class TruncBuilder : public TypePromotionAction { 1670 Value *Val; 1671 public: 1672 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 1673 /// result. 1674 /// trunc Opnd to Ty. 1675 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 1676 IRBuilder<> Builder(Opnd); 1677 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 1678 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 1679 } 1680 1681 /// \brief Get the built value. 1682 Value *getBuiltValue() { return Val; } 1683 1684 /// \brief Remove the built instruction. 1685 void undo() override { 1686 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 1687 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 1688 IVal->eraseFromParent(); 1689 } 1690 }; 1691 1692 /// \brief Build a sign extension instruction. 1693 class SExtBuilder : public TypePromotionAction { 1694 Value *Val; 1695 public: 1696 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 1697 /// result. 1698 /// sext Opnd to Ty. 1699 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 1700 : TypePromotionAction(InsertPt) { 1701 IRBuilder<> Builder(InsertPt); 1702 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 1703 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 1704 } 1705 1706 /// \brief Get the built value. 1707 Value *getBuiltValue() { return Val; } 1708 1709 /// \brief Remove the built instruction. 1710 void undo() override { 1711 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 1712 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 1713 IVal->eraseFromParent(); 1714 } 1715 }; 1716 1717 /// \brief Build a zero extension instruction. 1718 class ZExtBuilder : public TypePromotionAction { 1719 Value *Val; 1720 public: 1721 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 1722 /// result. 1723 /// zext Opnd to Ty. 1724 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 1725 : TypePromotionAction(InsertPt) { 1726 IRBuilder<> Builder(InsertPt); 1727 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 1728 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 1729 } 1730 1731 /// \brief Get the built value. 1732 Value *getBuiltValue() { return Val; } 1733 1734 /// \brief Remove the built instruction. 1735 void undo() override { 1736 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 1737 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 1738 IVal->eraseFromParent(); 1739 } 1740 }; 1741 1742 /// \brief Mutate an instruction to another type. 1743 class TypeMutator : public TypePromotionAction { 1744 /// Record the original type. 1745 Type *OrigTy; 1746 1747 public: 1748 /// \brief Mutate the type of \p Inst into \p NewTy. 1749 TypeMutator(Instruction *Inst, Type *NewTy) 1750 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 1751 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 1752 << "\n"); 1753 Inst->mutateType(NewTy); 1754 } 1755 1756 /// \brief Mutate the instruction back to its original type. 1757 void undo() override { 1758 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 1759 << "\n"); 1760 Inst->mutateType(OrigTy); 1761 } 1762 }; 1763 1764 /// \brief Replace the uses of an instruction by another instruction. 1765 class UsesReplacer : public TypePromotionAction { 1766 /// Helper structure to keep track of the replaced uses. 1767 struct InstructionAndIdx { 1768 /// The instruction using the instruction. 1769 Instruction *Inst; 1770 /// The index where this instruction is used for Inst. 1771 unsigned Idx; 1772 InstructionAndIdx(Instruction *Inst, unsigned Idx) 1773 : Inst(Inst), Idx(Idx) {} 1774 }; 1775 1776 /// Keep track of the original uses (pair Instruction, Index). 1777 SmallVector<InstructionAndIdx, 4> OriginalUses; 1778 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator; 1779 1780 public: 1781 /// \brief Replace all the use of \p Inst by \p New. 1782 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 1783 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 1784 << "\n"); 1785 // Record the original uses. 1786 for (Use &U : Inst->uses()) { 1787 Instruction *UserI = cast<Instruction>(U.getUser()); 1788 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 1789 } 1790 // Now, we can replace the uses. 1791 Inst->replaceAllUsesWith(New); 1792 } 1793 1794 /// \brief Reassign the original uses of Inst to Inst. 1795 void undo() override { 1796 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 1797 for (use_iterator UseIt = OriginalUses.begin(), 1798 EndIt = OriginalUses.end(); 1799 UseIt != EndIt; ++UseIt) { 1800 UseIt->Inst->setOperand(UseIt->Idx, Inst); 1801 } 1802 } 1803 }; 1804 1805 /// \brief Remove an instruction from the IR. 1806 class InstructionRemover : public TypePromotionAction { 1807 /// Original position of the instruction. 1808 InsertionHandler Inserter; 1809 /// Helper structure to hide all the link to the instruction. In other 1810 /// words, this helps to do as if the instruction was removed. 1811 OperandsHider Hider; 1812 /// Keep track of the uses replaced, if any. 1813 UsesReplacer *Replacer; 1814 1815 public: 1816 /// \brief Remove all reference of \p Inst and optinally replace all its 1817 /// uses with New. 1818 /// \pre If !Inst->use_empty(), then New != nullptr 1819 InstructionRemover(Instruction *Inst, Value *New = nullptr) 1820 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 1821 Replacer(nullptr) { 1822 if (New) 1823 Replacer = new UsesReplacer(Inst, New); 1824 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 1825 Inst->removeFromParent(); 1826 } 1827 1828 ~InstructionRemover() { delete Replacer; } 1829 1830 /// \brief Really remove the instruction. 1831 void commit() override { delete Inst; } 1832 1833 /// \brief Resurrect the instruction and reassign it to the proper uses if 1834 /// new value was provided when build this action. 1835 void undo() override { 1836 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 1837 Inserter.insert(Inst); 1838 if (Replacer) 1839 Replacer->undo(); 1840 Hider.undo(); 1841 } 1842 }; 1843 1844 public: 1845 /// Restoration point. 1846 /// The restoration point is a pointer to an action instead of an iterator 1847 /// because the iterator may be invalidated but not the pointer. 1848 typedef const TypePromotionAction *ConstRestorationPt; 1849 /// Advocate every changes made in that transaction. 1850 void commit(); 1851 /// Undo all the changes made after the given point. 1852 void rollback(ConstRestorationPt Point); 1853 /// Get the current restoration point. 1854 ConstRestorationPt getRestorationPoint() const; 1855 1856 /// \name API for IR modification with state keeping to support rollback. 1857 /// @{ 1858 /// Same as Instruction::setOperand. 1859 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 1860 /// Same as Instruction::eraseFromParent. 1861 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 1862 /// Same as Value::replaceAllUsesWith. 1863 void replaceAllUsesWith(Instruction *Inst, Value *New); 1864 /// Same as Value::mutateType. 1865 void mutateType(Instruction *Inst, Type *NewTy); 1866 /// Same as IRBuilder::createTrunc. 1867 Value *createTrunc(Instruction *Opnd, Type *Ty); 1868 /// Same as IRBuilder::createSExt. 1869 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 1870 /// Same as IRBuilder::createZExt. 1871 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 1872 /// Same as Instruction::moveBefore. 1873 void moveBefore(Instruction *Inst, Instruction *Before); 1874 /// @} 1875 1876 private: 1877 /// The ordered list of actions made so far. 1878 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 1879 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt; 1880 }; 1881 1882 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 1883 Value *NewVal) { 1884 Actions.push_back( 1885 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal)); 1886 } 1887 1888 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 1889 Value *NewVal) { 1890 Actions.push_back( 1891 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal)); 1892 } 1893 1894 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 1895 Value *New) { 1896 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 1897 } 1898 1899 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 1900 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 1901 } 1902 1903 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 1904 Type *Ty) { 1905 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 1906 Value *Val = Ptr->getBuiltValue(); 1907 Actions.push_back(std::move(Ptr)); 1908 return Val; 1909 } 1910 1911 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 1912 Value *Opnd, Type *Ty) { 1913 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 1914 Value *Val = Ptr->getBuiltValue(); 1915 Actions.push_back(std::move(Ptr)); 1916 return Val; 1917 } 1918 1919 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 1920 Value *Opnd, Type *Ty) { 1921 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 1922 Value *Val = Ptr->getBuiltValue(); 1923 Actions.push_back(std::move(Ptr)); 1924 return Val; 1925 } 1926 1927 void TypePromotionTransaction::moveBefore(Instruction *Inst, 1928 Instruction *Before) { 1929 Actions.push_back( 1930 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before)); 1931 } 1932 1933 TypePromotionTransaction::ConstRestorationPt 1934 TypePromotionTransaction::getRestorationPoint() const { 1935 return !Actions.empty() ? Actions.back().get() : nullptr; 1936 } 1937 1938 void TypePromotionTransaction::commit() { 1939 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 1940 ++It) 1941 (*It)->commit(); 1942 Actions.clear(); 1943 } 1944 1945 void TypePromotionTransaction::rollback( 1946 TypePromotionTransaction::ConstRestorationPt Point) { 1947 while (!Actions.empty() && Point != Actions.back().get()) { 1948 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 1949 Curr->undo(); 1950 } 1951 } 1952 1953 /// \brief A helper class for matching addressing modes. 1954 /// 1955 /// This encapsulates the logic for matching the target-legal addressing modes. 1956 class AddressingModeMatcher { 1957 SmallVectorImpl<Instruction*> &AddrModeInsts; 1958 const TargetLowering &TLI; 1959 1960 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 1961 /// the memory instruction that we're computing this address for. 1962 Type *AccessTy; 1963 Instruction *MemoryInst; 1964 1965 /// AddrMode - This is the addressing mode that we're building up. This is 1966 /// part of the return value of this addressing mode matching stuff. 1967 ExtAddrMode &AddrMode; 1968 1969 /// The truncate instruction inserted by other CodeGenPrepare optimizations. 1970 const SetOfInstrs &InsertedTruncs; 1971 /// A map from the instructions to their type before promotion. 1972 InstrToOrigTy &PromotedInsts; 1973 /// The ongoing transaction where every action should be registered. 1974 TypePromotionTransaction &TPT; 1975 1976 /// IgnoreProfitability - This is set to true when we should not do 1977 /// profitability checks. When true, IsProfitableToFoldIntoAddressingMode 1978 /// always returns true. 1979 bool IgnoreProfitability; 1980 1981 AddressingModeMatcher(SmallVectorImpl<Instruction*> &AMI, 1982 const TargetLowering &T, Type *AT, 1983 Instruction *MI, ExtAddrMode &AM, 1984 const SetOfInstrs &InsertedTruncs, 1985 InstrToOrigTy &PromotedInsts, 1986 TypePromotionTransaction &TPT) 1987 : AddrModeInsts(AMI), TLI(T), AccessTy(AT), MemoryInst(MI), AddrMode(AM), 1988 InsertedTruncs(InsertedTruncs), PromotedInsts(PromotedInsts), TPT(TPT) { 1989 IgnoreProfitability = false; 1990 } 1991 public: 1992 1993 /// Match - Find the maximal addressing mode that a load/store of V can fold, 1994 /// give an access type of AccessTy. This returns a list of involved 1995 /// instructions in AddrModeInsts. 1996 /// \p InsertedTruncs The truncate instruction inserted by other 1997 /// CodeGenPrepare 1998 /// optimizations. 1999 /// \p PromotedInsts maps the instructions to their type before promotion. 2000 /// \p The ongoing transaction where every action should be registered. 2001 static ExtAddrMode Match(Value *V, Type *AccessTy, 2002 Instruction *MemoryInst, 2003 SmallVectorImpl<Instruction*> &AddrModeInsts, 2004 const TargetLowering &TLI, 2005 const SetOfInstrs &InsertedTruncs, 2006 InstrToOrigTy &PromotedInsts, 2007 TypePromotionTransaction &TPT) { 2008 ExtAddrMode Result; 2009 2010 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, AccessTy, 2011 MemoryInst, Result, InsertedTruncs, 2012 PromotedInsts, TPT).MatchAddr(V, 0); 2013 (void)Success; assert(Success && "Couldn't select *anything*?"); 2014 return Result; 2015 } 2016 private: 2017 bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2018 bool MatchAddr(Value *V, unsigned Depth); 2019 bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 2020 bool *MovedAway = nullptr); 2021 bool IsProfitableToFoldIntoAddressingMode(Instruction *I, 2022 ExtAddrMode &AMBefore, 2023 ExtAddrMode &AMAfter); 2024 bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2025 bool IsPromotionProfitable(unsigned MatchedSize, unsigned SizeWithPromotion, 2026 Value *PromotedOperand) const; 2027 }; 2028 2029 /// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode. 2030 /// Return true and update AddrMode if this addr mode is legal for the target, 2031 /// false if not. 2032 bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale, 2033 unsigned Depth) { 2034 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 2035 // mode. Just process that directly. 2036 if (Scale == 1) 2037 return MatchAddr(ScaleReg, Depth); 2038 2039 // If the scale is 0, it takes nothing to add this. 2040 if (Scale == 0) 2041 return true; 2042 2043 // If we already have a scale of this value, we can add to it, otherwise, we 2044 // need an available scale field. 2045 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 2046 return false; 2047 2048 ExtAddrMode TestAddrMode = AddrMode; 2049 2050 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 2051 // [A+B + A*7] -> [B+A*8]. 2052 TestAddrMode.Scale += Scale; 2053 TestAddrMode.ScaledReg = ScaleReg; 2054 2055 // If the new address isn't legal, bail out. 2056 if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) 2057 return false; 2058 2059 // It was legal, so commit it. 2060 AddrMode = TestAddrMode; 2061 2062 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 2063 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 2064 // X*Scale + C*Scale to addr mode. 2065 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 2066 if (isa<Instruction>(ScaleReg) && // not a constant expr. 2067 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 2068 TestAddrMode.ScaledReg = AddLHS; 2069 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 2070 2071 // If this addressing mode is legal, commit it and remember that we folded 2072 // this instruction. 2073 if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) { 2074 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 2075 AddrMode = TestAddrMode; 2076 return true; 2077 } 2078 } 2079 2080 // Otherwise, not (x+c)*scale, just return what we have. 2081 return true; 2082 } 2083 2084 /// MightBeFoldableInst - This is a little filter, which returns true if an 2085 /// addressing computation involving I might be folded into a load/store 2086 /// accessing it. This doesn't need to be perfect, but needs to accept at least 2087 /// the set of instructions that MatchOperationAddr can. 2088 static bool MightBeFoldableInst(Instruction *I) { 2089 switch (I->getOpcode()) { 2090 case Instruction::BitCast: 2091 case Instruction::AddrSpaceCast: 2092 // Don't touch identity bitcasts. 2093 if (I->getType() == I->getOperand(0)->getType()) 2094 return false; 2095 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 2096 case Instruction::PtrToInt: 2097 // PtrToInt is always a noop, as we know that the int type is pointer sized. 2098 return true; 2099 case Instruction::IntToPtr: 2100 // We know the input is intptr_t, so this is foldable. 2101 return true; 2102 case Instruction::Add: 2103 return true; 2104 case Instruction::Mul: 2105 case Instruction::Shl: 2106 // Can only handle X*C and X << C. 2107 return isa<ConstantInt>(I->getOperand(1)); 2108 case Instruction::GetElementPtr: 2109 return true; 2110 default: 2111 return false; 2112 } 2113 } 2114 2115 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 2116 /// \note \p Val is assumed to be the product of some type promotion. 2117 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 2118 /// to be legal, as the non-promoted value would have had the same state. 2119 static bool isPromotedInstructionLegal(const TargetLowering &TLI, Value *Val) { 2120 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 2121 if (!PromotedInst) 2122 return false; 2123 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 2124 // If the ISDOpcode is undefined, it was undefined before the promotion. 2125 if (!ISDOpcode) 2126 return true; 2127 // Otherwise, check if the promoted instruction is legal or not. 2128 return TLI.isOperationLegalOrCustom( 2129 ISDOpcode, TLI.getValueType(PromotedInst->getType())); 2130 } 2131 2132 /// \brief Hepler class to perform type promotion. 2133 class TypePromotionHelper { 2134 /// \brief Utility function to check whether or not a sign or zero extension 2135 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 2136 /// either using the operands of \p Inst or promoting \p Inst. 2137 /// The type of the extension is defined by \p IsSExt. 2138 /// In other words, check if: 2139 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 2140 /// #1 Promotion applies: 2141 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 2142 /// #2 Operand reuses: 2143 /// ext opnd1 to ConsideredExtType. 2144 /// \p PromotedInsts maps the instructions to their type before promotion. 2145 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 2146 const InstrToOrigTy &PromotedInsts, bool IsSExt); 2147 2148 /// \brief Utility function to determine if \p OpIdx should be promoted when 2149 /// promoting \p Inst. 2150 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 2151 if (isa<SelectInst>(Inst) && OpIdx == 0) 2152 return false; 2153 return true; 2154 } 2155 2156 /// \brief Utility function to promote the operand of \p Ext when this 2157 /// operand is a promotable trunc or sext or zext. 2158 /// \p PromotedInsts maps the instructions to their type before promotion. 2159 /// \p CreatedInsts[out] contains how many non-free instructions have been 2160 /// created to promote the operand of Ext. 2161 /// Newly added extensions are inserted in \p Exts. 2162 /// Newly added truncates are inserted in \p Truncs. 2163 /// Should never be called directly. 2164 /// \return The promoted value which is used instead of Ext. 2165 static Value *promoteOperandForTruncAndAnyExt( 2166 Instruction *Ext, TypePromotionTransaction &TPT, 2167 InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts, 2168 SmallVectorImpl<Instruction *> *Exts, 2169 SmallVectorImpl<Instruction *> *Truncs); 2170 2171 /// \brief Utility function to promote the operand of \p Ext when this 2172 /// operand is promotable and is not a supported trunc or sext. 2173 /// \p PromotedInsts maps the instructions to their type before promotion. 2174 /// \p CreatedInsts[out] contains how many non-free instructions have been 2175 /// created to promote the operand of Ext. 2176 /// Newly added extensions are inserted in \p Exts. 2177 /// Newly added truncates are inserted in \p Truncs. 2178 /// Should never be called directly. 2179 /// \return The promoted value which is used instead of Ext. 2180 static Value * 2181 promoteOperandForOther(Instruction *Ext, TypePromotionTransaction &TPT, 2182 InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts, 2183 SmallVectorImpl<Instruction *> *Exts, 2184 SmallVectorImpl<Instruction *> *Truncs, bool IsSExt); 2185 2186 /// \see promoteOperandForOther. 2187 static Value * 2188 signExtendOperandForOther(Instruction *Ext, TypePromotionTransaction &TPT, 2189 InstrToOrigTy &PromotedInsts, 2190 unsigned &CreatedInsts, 2191 SmallVectorImpl<Instruction *> *Exts, 2192 SmallVectorImpl<Instruction *> *Truncs) { 2193 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInsts, Exts, 2194 Truncs, true); 2195 } 2196 2197 /// \see promoteOperandForOther. 2198 static Value * 2199 zeroExtendOperandForOther(Instruction *Ext, TypePromotionTransaction &TPT, 2200 InstrToOrigTy &PromotedInsts, 2201 unsigned &CreatedInsts, 2202 SmallVectorImpl<Instruction *> *Exts, 2203 SmallVectorImpl<Instruction *> *Truncs) { 2204 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInsts, Exts, 2205 Truncs, false); 2206 } 2207 2208 public: 2209 /// Type for the utility function that promotes the operand of Ext. 2210 typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT, 2211 InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts, 2212 SmallVectorImpl<Instruction *> *Exts, 2213 SmallVectorImpl<Instruction *> *Truncs); 2214 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 2215 /// action to promote the operand of \p Ext instead of using Ext. 2216 /// \return NULL if no promotable action is possible with the current 2217 /// sign extension. 2218 /// \p InsertedTruncs keeps track of all the truncate instructions inserted by 2219 /// the others CodeGenPrepare optimizations. This information is important 2220 /// because we do not want to promote these instructions as CodeGenPrepare 2221 /// will reinsert them later. Thus creating an infinite loop: create/remove. 2222 /// \p PromotedInsts maps the instructions to their type before promotion. 2223 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedTruncs, 2224 const TargetLowering &TLI, 2225 const InstrToOrigTy &PromotedInsts); 2226 }; 2227 2228 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 2229 Type *ConsideredExtType, 2230 const InstrToOrigTy &PromotedInsts, 2231 bool IsSExt) { 2232 // The promotion helper does not know how to deal with vector types yet. 2233 // To be able to fix that, we would need to fix the places where we 2234 // statically extend, e.g., constants and such. 2235 if (Inst->getType()->isVectorTy()) 2236 return false; 2237 2238 // We can always get through zext. 2239 if (isa<ZExtInst>(Inst)) 2240 return true; 2241 2242 // sext(sext) is ok too. 2243 if (IsSExt && isa<SExtInst>(Inst)) 2244 return true; 2245 2246 // We can get through binary operator, if it is legal. In other words, the 2247 // binary operator must have a nuw or nsw flag. 2248 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 2249 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 2250 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 2251 (IsSExt && BinOp->hasNoSignedWrap()))) 2252 return true; 2253 2254 // Check if we can do the following simplification. 2255 // ext(trunc(opnd)) --> ext(opnd) 2256 if (!isa<TruncInst>(Inst)) 2257 return false; 2258 2259 Value *OpndVal = Inst->getOperand(0); 2260 // Check if we can use this operand in the extension. 2261 // If the type is larger than the result type of the extension, 2262 // we cannot. 2263 if (!OpndVal->getType()->isIntegerTy() || 2264 OpndVal->getType()->getIntegerBitWidth() > 2265 ConsideredExtType->getIntegerBitWidth()) 2266 return false; 2267 2268 // If the operand of the truncate is not an instruction, we will not have 2269 // any information on the dropped bits. 2270 // (Actually we could for constant but it is not worth the extra logic). 2271 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 2272 if (!Opnd) 2273 return false; 2274 2275 // Check if the source of the type is narrow enough. 2276 // I.e., check that trunc just drops extended bits of the same kind of 2277 // the extension. 2278 // #1 get the type of the operand and check the kind of the extended bits. 2279 const Type *OpndType; 2280 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 2281 if (It != PromotedInsts.end() && It->second.IsSExt == IsSExt) 2282 OpndType = It->second.Ty; 2283 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 2284 OpndType = Opnd->getOperand(0)->getType(); 2285 else 2286 return false; 2287 2288 // #2 check that the truncate just drop extended bits. 2289 if (Inst->getType()->getIntegerBitWidth() >= OpndType->getIntegerBitWidth()) 2290 return true; 2291 2292 return false; 2293 } 2294 2295 TypePromotionHelper::Action TypePromotionHelper::getAction( 2296 Instruction *Ext, const SetOfInstrs &InsertedTruncs, 2297 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 2298 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2299 "Unexpected instruction type"); 2300 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 2301 Type *ExtTy = Ext->getType(); 2302 bool IsSExt = isa<SExtInst>(Ext); 2303 // If the operand of the extension is not an instruction, we cannot 2304 // get through. 2305 // If it, check we can get through. 2306 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 2307 return nullptr; 2308 2309 // Do not promote if the operand has been added by codegenprepare. 2310 // Otherwise, it means we are undoing an optimization that is likely to be 2311 // redone, thus causing potential infinite loop. 2312 if (isa<TruncInst>(ExtOpnd) && InsertedTruncs.count(ExtOpnd)) 2313 return nullptr; 2314 2315 // SExt or Trunc instructions. 2316 // Return the related handler. 2317 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 2318 isa<ZExtInst>(ExtOpnd)) 2319 return promoteOperandForTruncAndAnyExt; 2320 2321 // Regular instruction. 2322 // Abort early if we will have to insert non-free instructions. 2323 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 2324 return nullptr; 2325 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 2326 } 2327 2328 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 2329 llvm::Instruction *SExt, TypePromotionTransaction &TPT, 2330 InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts, 2331 SmallVectorImpl<Instruction *> *Exts, 2332 SmallVectorImpl<Instruction *> *Truncs) { 2333 // By construction, the operand of SExt is an instruction. Otherwise we cannot 2334 // get through it and this method should not be called. 2335 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 2336 Value *ExtVal = SExt; 2337 if (isa<ZExtInst>(SExtOpnd)) { 2338 // Replace s|zext(zext(opnd)) 2339 // => zext(opnd). 2340 Value *ZExt = 2341 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 2342 TPT.replaceAllUsesWith(SExt, ZExt); 2343 TPT.eraseInstruction(SExt); 2344 ExtVal = ZExt; 2345 } else { 2346 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 2347 // => z|sext(opnd). 2348 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 2349 } 2350 CreatedInsts = 0; 2351 2352 // Remove dead code. 2353 if (SExtOpnd->use_empty()) 2354 TPT.eraseInstruction(SExtOpnd); 2355 2356 // Check if the extension is still needed. 2357 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 2358 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 2359 if (ExtInst && Exts) 2360 Exts->push_back(ExtInst); 2361 return ExtVal; 2362 } 2363 2364 // At this point we have: ext ty opnd to ty. 2365 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 2366 Value *NextVal = ExtInst->getOperand(0); 2367 TPT.eraseInstruction(ExtInst, NextVal); 2368 return NextVal; 2369 } 2370 2371 Value *TypePromotionHelper::promoteOperandForOther( 2372 Instruction *Ext, TypePromotionTransaction &TPT, 2373 InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts, 2374 SmallVectorImpl<Instruction *> *Exts, 2375 SmallVectorImpl<Instruction *> *Truncs, bool IsSExt) { 2376 // By construction, the operand of Ext is an instruction. Otherwise we cannot 2377 // get through it and this method should not be called. 2378 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 2379 CreatedInsts = 0; 2380 if (!ExtOpnd->hasOneUse()) { 2381 // ExtOpnd will be promoted. 2382 // All its uses, but Ext, will need to use a truncated value of the 2383 // promoted version. 2384 // Create the truncate now. 2385 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 2386 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 2387 ITrunc->removeFromParent(); 2388 // Insert it just after the definition. 2389 ITrunc->insertAfter(ExtOpnd); 2390 if (Truncs) 2391 Truncs->push_back(ITrunc); 2392 } 2393 2394 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 2395 // Restore the operand of Ext (which has been replace by the previous call 2396 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 2397 TPT.setOperand(Ext, 0, ExtOpnd); 2398 } 2399 2400 // Get through the Instruction: 2401 // 1. Update its type. 2402 // 2. Replace the uses of Ext by Inst. 2403 // 3. Extend each operand that needs to be extended. 2404 2405 // Remember the original type of the instruction before promotion. 2406 // This is useful to know that the high bits are sign extended bits. 2407 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 2408 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 2409 // Step #1. 2410 TPT.mutateType(ExtOpnd, Ext->getType()); 2411 // Step #2. 2412 TPT.replaceAllUsesWith(Ext, ExtOpnd); 2413 // Step #3. 2414 Instruction *ExtForOpnd = Ext; 2415 2416 DEBUG(dbgs() << "Propagate Ext to operands\n"); 2417 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 2418 ++OpIdx) { 2419 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 2420 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 2421 !shouldExtOperand(ExtOpnd, OpIdx)) { 2422 DEBUG(dbgs() << "No need to propagate\n"); 2423 continue; 2424 } 2425 // Check if we can statically extend the operand. 2426 Value *Opnd = ExtOpnd->getOperand(OpIdx); 2427 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 2428 DEBUG(dbgs() << "Statically extend\n"); 2429 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 2430 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 2431 : Cst->getValue().zext(BitWidth); 2432 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 2433 continue; 2434 } 2435 // UndefValue are typed, so we have to statically sign extend them. 2436 if (isa<UndefValue>(Opnd)) { 2437 DEBUG(dbgs() << "Statically extend\n"); 2438 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 2439 continue; 2440 } 2441 2442 // Otherwise we have to explicity sign extend the operand. 2443 // Check if Ext was reused to extend an operand. 2444 if (!ExtForOpnd) { 2445 // If yes, create a new one. 2446 DEBUG(dbgs() << "More operands to ext\n"); 2447 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 2448 : TPT.createZExt(Ext, Opnd, Ext->getType()); 2449 if (!isa<Instruction>(ValForExtOpnd)) { 2450 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 2451 continue; 2452 } 2453 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 2454 ++CreatedInsts; 2455 } 2456 if (Exts) 2457 Exts->push_back(ExtForOpnd); 2458 TPT.setOperand(ExtForOpnd, 0, Opnd); 2459 2460 // Move the sign extension before the insertion point. 2461 TPT.moveBefore(ExtForOpnd, ExtOpnd); 2462 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 2463 // If more sext are required, new instructions will have to be created. 2464 ExtForOpnd = nullptr; 2465 } 2466 if (ExtForOpnd == Ext) { 2467 DEBUG(dbgs() << "Extension is useless now\n"); 2468 TPT.eraseInstruction(Ext); 2469 } 2470 return ExtOpnd; 2471 } 2472 2473 /// IsPromotionProfitable - Check whether or not promoting an instruction 2474 /// to a wider type was profitable. 2475 /// \p MatchedSize gives the number of instructions that have been matched 2476 /// in the addressing mode after the promotion was applied. 2477 /// \p SizeWithPromotion gives the number of created instructions for 2478 /// the promotion plus the number of instructions that have been 2479 /// matched in the addressing mode before the promotion. 2480 /// \p PromotedOperand is the value that has been promoted. 2481 /// \return True if the promotion is profitable, false otherwise. 2482 bool 2483 AddressingModeMatcher::IsPromotionProfitable(unsigned MatchedSize, 2484 unsigned SizeWithPromotion, 2485 Value *PromotedOperand) const { 2486 // We folded less instructions than what we created to promote the operand. 2487 // This is not profitable. 2488 if (MatchedSize < SizeWithPromotion) 2489 return false; 2490 if (MatchedSize > SizeWithPromotion) 2491 return true; 2492 // The promotion is neutral but it may help folding the sign extension in 2493 // loads for instance. 2494 // Check that we did not create an illegal instruction. 2495 return isPromotedInstructionLegal(TLI, PromotedOperand); 2496 } 2497 2498 /// MatchOperationAddr - Given an instruction or constant expr, see if we can 2499 /// fold the operation into the addressing mode. If so, update the addressing 2500 /// mode and return true, otherwise return false without modifying AddrMode. 2501 /// If \p MovedAway is not NULL, it contains the information of whether or 2502 /// not AddrInst has to be folded into the addressing mode on success. 2503 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 2504 /// because it has been moved away. 2505 /// Thus AddrInst must not be added in the matched instructions. 2506 /// This state can happen when AddrInst is a sext, since it may be moved away. 2507 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 2508 /// not be referenced anymore. 2509 bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode, 2510 unsigned Depth, 2511 bool *MovedAway) { 2512 // Avoid exponential behavior on extremely deep expression trees. 2513 if (Depth >= 5) return false; 2514 2515 // By default, all matched instructions stay in place. 2516 if (MovedAway) 2517 *MovedAway = false; 2518 2519 switch (Opcode) { 2520 case Instruction::PtrToInt: 2521 // PtrToInt is always a noop, as we know that the int type is pointer sized. 2522 return MatchAddr(AddrInst->getOperand(0), Depth); 2523 case Instruction::IntToPtr: 2524 // This inttoptr is a no-op if the integer type is pointer sized. 2525 if (TLI.getValueType(AddrInst->getOperand(0)->getType()) == 2526 TLI.getPointerTy(AddrInst->getType()->getPointerAddressSpace())) 2527 return MatchAddr(AddrInst->getOperand(0), Depth); 2528 return false; 2529 case Instruction::BitCast: 2530 case Instruction::AddrSpaceCast: 2531 // BitCast is always a noop, and we can handle it as long as it is 2532 // int->int or pointer->pointer (we don't want int<->fp or something). 2533 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 2534 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 2535 // Don't touch identity bitcasts. These were probably put here by LSR, 2536 // and we don't want to mess around with them. Assume it knows what it 2537 // is doing. 2538 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 2539 return MatchAddr(AddrInst->getOperand(0), Depth); 2540 return false; 2541 case Instruction::Add: { 2542 // Check to see if we can merge in the RHS then the LHS. If so, we win. 2543 ExtAddrMode BackupAddrMode = AddrMode; 2544 unsigned OldSize = AddrModeInsts.size(); 2545 // Start a transaction at this point. 2546 // The LHS may match but not the RHS. 2547 // Therefore, we need a higher level restoration point to undo partially 2548 // matched operation. 2549 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2550 TPT.getRestorationPoint(); 2551 2552 if (MatchAddr(AddrInst->getOperand(1), Depth+1) && 2553 MatchAddr(AddrInst->getOperand(0), Depth+1)) 2554 return true; 2555 2556 // Restore the old addr mode info. 2557 AddrMode = BackupAddrMode; 2558 AddrModeInsts.resize(OldSize); 2559 TPT.rollback(LastKnownGood); 2560 2561 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 2562 if (MatchAddr(AddrInst->getOperand(0), Depth+1) && 2563 MatchAddr(AddrInst->getOperand(1), Depth+1)) 2564 return true; 2565 2566 // Otherwise we definitely can't merge the ADD in. 2567 AddrMode = BackupAddrMode; 2568 AddrModeInsts.resize(OldSize); 2569 TPT.rollback(LastKnownGood); 2570 break; 2571 } 2572 //case Instruction::Or: 2573 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 2574 //break; 2575 case Instruction::Mul: 2576 case Instruction::Shl: { 2577 // Can only handle X*C and X << C. 2578 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 2579 if (!RHS) 2580 return false; 2581 int64_t Scale = RHS->getSExtValue(); 2582 if (Opcode == Instruction::Shl) 2583 Scale = 1LL << Scale; 2584 2585 return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth); 2586 } 2587 case Instruction::GetElementPtr: { 2588 // Scan the GEP. We check it if it contains constant offsets and at most 2589 // one variable offset. 2590 int VariableOperand = -1; 2591 unsigned VariableScale = 0; 2592 2593 int64_t ConstantOffset = 0; 2594 const DataLayout *TD = TLI.getDataLayout(); 2595 gep_type_iterator GTI = gep_type_begin(AddrInst); 2596 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 2597 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 2598 const StructLayout *SL = TD->getStructLayout(STy); 2599 unsigned Idx = 2600 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 2601 ConstantOffset += SL->getElementOffset(Idx); 2602 } else { 2603 uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType()); 2604 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 2605 ConstantOffset += CI->getSExtValue()*TypeSize; 2606 } else if (TypeSize) { // Scales of zero don't do anything. 2607 // We only allow one variable index at the moment. 2608 if (VariableOperand != -1) 2609 return false; 2610 2611 // Remember the variable index. 2612 VariableOperand = i; 2613 VariableScale = TypeSize; 2614 } 2615 } 2616 } 2617 2618 // A common case is for the GEP to only do a constant offset. In this case, 2619 // just add it to the disp field and check validity. 2620 if (VariableOperand == -1) { 2621 AddrMode.BaseOffs += ConstantOffset; 2622 if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){ 2623 // Check to see if we can fold the base pointer in too. 2624 if (MatchAddr(AddrInst->getOperand(0), Depth+1)) 2625 return true; 2626 } 2627 AddrMode.BaseOffs -= ConstantOffset; 2628 return false; 2629 } 2630 2631 // Save the valid addressing mode in case we can't match. 2632 ExtAddrMode BackupAddrMode = AddrMode; 2633 unsigned OldSize = AddrModeInsts.size(); 2634 2635 // See if the scale and offset amount is valid for this target. 2636 AddrMode.BaseOffs += ConstantOffset; 2637 2638 // Match the base operand of the GEP. 2639 if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) { 2640 // If it couldn't be matched, just stuff the value in a register. 2641 if (AddrMode.HasBaseReg) { 2642 AddrMode = BackupAddrMode; 2643 AddrModeInsts.resize(OldSize); 2644 return false; 2645 } 2646 AddrMode.HasBaseReg = true; 2647 AddrMode.BaseReg = AddrInst->getOperand(0); 2648 } 2649 2650 // Match the remaining variable portion of the GEP. 2651 if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 2652 Depth)) { 2653 // If it couldn't be matched, try stuffing the base into a register 2654 // instead of matching it, and retrying the match of the scale. 2655 AddrMode = BackupAddrMode; 2656 AddrModeInsts.resize(OldSize); 2657 if (AddrMode.HasBaseReg) 2658 return false; 2659 AddrMode.HasBaseReg = true; 2660 AddrMode.BaseReg = AddrInst->getOperand(0); 2661 AddrMode.BaseOffs += ConstantOffset; 2662 if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), 2663 VariableScale, Depth)) { 2664 // If even that didn't work, bail. 2665 AddrMode = BackupAddrMode; 2666 AddrModeInsts.resize(OldSize); 2667 return false; 2668 } 2669 } 2670 2671 return true; 2672 } 2673 case Instruction::SExt: 2674 case Instruction::ZExt: { 2675 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 2676 if (!Ext) 2677 return false; 2678 2679 // Try to move this ext out of the way of the addressing mode. 2680 // Ask for a method for doing so. 2681 TypePromotionHelper::Action TPH = 2682 TypePromotionHelper::getAction(Ext, InsertedTruncs, TLI, PromotedInsts); 2683 if (!TPH) 2684 return false; 2685 2686 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2687 TPT.getRestorationPoint(); 2688 unsigned CreatedInsts = 0; 2689 Value *PromotedOperand = 2690 TPH(Ext, TPT, PromotedInsts, CreatedInsts, nullptr, nullptr); 2691 // SExt has been moved away. 2692 // Thus either it will be rematched later in the recursive calls or it is 2693 // gone. Anyway, we must not fold it into the addressing mode at this point. 2694 // E.g., 2695 // op = add opnd, 1 2696 // idx = ext op 2697 // addr = gep base, idx 2698 // is now: 2699 // promotedOpnd = ext opnd <- no match here 2700 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 2701 // addr = gep base, op <- match 2702 if (MovedAway) 2703 *MovedAway = true; 2704 2705 assert(PromotedOperand && 2706 "TypePromotionHelper should have filtered out those cases"); 2707 2708 ExtAddrMode BackupAddrMode = AddrMode; 2709 unsigned OldSize = AddrModeInsts.size(); 2710 2711 if (!MatchAddr(PromotedOperand, Depth) || 2712 !IsPromotionProfitable(AddrModeInsts.size(), OldSize + CreatedInsts, 2713 PromotedOperand)) { 2714 AddrMode = BackupAddrMode; 2715 AddrModeInsts.resize(OldSize); 2716 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 2717 TPT.rollback(LastKnownGood); 2718 return false; 2719 } 2720 return true; 2721 } 2722 } 2723 return false; 2724 } 2725 2726 /// MatchAddr - If we can, try to add the value of 'Addr' into the current 2727 /// addressing mode. If Addr can't be added to AddrMode this returns false and 2728 /// leaves AddrMode unmodified. This assumes that Addr is either a pointer type 2729 /// or intptr_t for the target. 2730 /// 2731 bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) { 2732 // Start a transaction at this point that we will rollback if the matching 2733 // fails. 2734 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2735 TPT.getRestorationPoint(); 2736 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 2737 // Fold in immediates if legal for the target. 2738 AddrMode.BaseOffs += CI->getSExtValue(); 2739 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) 2740 return true; 2741 AddrMode.BaseOffs -= CI->getSExtValue(); 2742 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 2743 // If this is a global variable, try to fold it into the addressing mode. 2744 if (!AddrMode.BaseGV) { 2745 AddrMode.BaseGV = GV; 2746 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) 2747 return true; 2748 AddrMode.BaseGV = nullptr; 2749 } 2750 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 2751 ExtAddrMode BackupAddrMode = AddrMode; 2752 unsigned OldSize = AddrModeInsts.size(); 2753 2754 // Check to see if it is possible to fold this operation. 2755 bool MovedAway = false; 2756 if (MatchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 2757 // This instruction may have been move away. If so, there is nothing 2758 // to check here. 2759 if (MovedAway) 2760 return true; 2761 // Okay, it's possible to fold this. Check to see if it is actually 2762 // *profitable* to do so. We use a simple cost model to avoid increasing 2763 // register pressure too much. 2764 if (I->hasOneUse() || 2765 IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 2766 AddrModeInsts.push_back(I); 2767 return true; 2768 } 2769 2770 // It isn't profitable to do this, roll back. 2771 //cerr << "NOT FOLDING: " << *I; 2772 AddrMode = BackupAddrMode; 2773 AddrModeInsts.resize(OldSize); 2774 TPT.rollback(LastKnownGood); 2775 } 2776 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 2777 if (MatchOperationAddr(CE, CE->getOpcode(), Depth)) 2778 return true; 2779 TPT.rollback(LastKnownGood); 2780 } else if (isa<ConstantPointerNull>(Addr)) { 2781 // Null pointer gets folded without affecting the addressing mode. 2782 return true; 2783 } 2784 2785 // Worse case, the target should support [reg] addressing modes. :) 2786 if (!AddrMode.HasBaseReg) { 2787 AddrMode.HasBaseReg = true; 2788 AddrMode.BaseReg = Addr; 2789 // Still check for legality in case the target supports [imm] but not [i+r]. 2790 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) 2791 return true; 2792 AddrMode.HasBaseReg = false; 2793 AddrMode.BaseReg = nullptr; 2794 } 2795 2796 // If the base register is already taken, see if we can do [r+r]. 2797 if (AddrMode.Scale == 0) { 2798 AddrMode.Scale = 1; 2799 AddrMode.ScaledReg = Addr; 2800 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) 2801 return true; 2802 AddrMode.Scale = 0; 2803 AddrMode.ScaledReg = nullptr; 2804 } 2805 // Couldn't match. 2806 TPT.rollback(LastKnownGood); 2807 return false; 2808 } 2809 2810 /// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified 2811 /// inline asm call are due to memory operands. If so, return true, otherwise 2812 /// return false. 2813 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 2814 const TargetLowering &TLI) { 2815 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(ImmutableCallSite(CI)); 2816 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 2817 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 2818 2819 // Compute the constraint code and ConstraintType to use. 2820 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 2821 2822 // If this asm operand is our Value*, and if it isn't an indirect memory 2823 // operand, we can't fold it! 2824 if (OpInfo.CallOperandVal == OpVal && 2825 (OpInfo.ConstraintType != TargetLowering::C_Memory || 2826 !OpInfo.isIndirect)) 2827 return false; 2828 } 2829 2830 return true; 2831 } 2832 2833 /// FindAllMemoryUses - Recursively walk all the uses of I until we find a 2834 /// memory use. If we find an obviously non-foldable instruction, return true. 2835 /// Add the ultimately found memory instructions to MemoryUses. 2836 static bool FindAllMemoryUses(Instruction *I, 2837 SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses, 2838 SmallPtrSetImpl<Instruction*> &ConsideredInsts, 2839 const TargetLowering &TLI) { 2840 // If we already considered this instruction, we're done. 2841 if (!ConsideredInsts.insert(I).second) 2842 return false; 2843 2844 // If this is an obviously unfoldable instruction, bail out. 2845 if (!MightBeFoldableInst(I)) 2846 return true; 2847 2848 // Loop over all the uses, recursively processing them. 2849 for (Use &U : I->uses()) { 2850 Instruction *UserI = cast<Instruction>(U.getUser()); 2851 2852 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 2853 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 2854 continue; 2855 } 2856 2857 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 2858 unsigned opNo = U.getOperandNo(); 2859 if (opNo == 0) return true; // Storing addr, not into addr. 2860 MemoryUses.push_back(std::make_pair(SI, opNo)); 2861 continue; 2862 } 2863 2864 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 2865 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 2866 if (!IA) return true; 2867 2868 // If this is a memory operand, we're cool, otherwise bail out. 2869 if (!IsOperandAMemoryOperand(CI, IA, I, TLI)) 2870 return true; 2871 continue; 2872 } 2873 2874 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI)) 2875 return true; 2876 } 2877 2878 return false; 2879 } 2880 2881 /// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at 2882 /// the use site that we're folding it into. If so, there is no cost to 2883 /// include it in the addressing mode. KnownLive1 and KnownLive2 are two values 2884 /// that we know are live at the instruction already. 2885 bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 2886 Value *KnownLive2) { 2887 // If Val is either of the known-live values, we know it is live! 2888 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 2889 return true; 2890 2891 // All values other than instructions and arguments (e.g. constants) are live. 2892 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 2893 2894 // If Val is a constant sized alloca in the entry block, it is live, this is 2895 // true because it is just a reference to the stack/frame pointer, which is 2896 // live for the whole function. 2897 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 2898 if (AI->isStaticAlloca()) 2899 return true; 2900 2901 // Check to see if this value is already used in the memory instruction's 2902 // block. If so, it's already live into the block at the very least, so we 2903 // can reasonably fold it. 2904 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 2905 } 2906 2907 /// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing 2908 /// mode of the machine to fold the specified instruction into a load or store 2909 /// that ultimately uses it. However, the specified instruction has multiple 2910 /// uses. Given this, it may actually increase register pressure to fold it 2911 /// into the load. For example, consider this code: 2912 /// 2913 /// X = ... 2914 /// Y = X+1 2915 /// use(Y) -> nonload/store 2916 /// Z = Y+1 2917 /// load Z 2918 /// 2919 /// In this case, Y has multiple uses, and can be folded into the load of Z 2920 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 2921 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 2922 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 2923 /// number of computations either. 2924 /// 2925 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 2926 /// X was live across 'load Z' for other reasons, we actually *would* want to 2927 /// fold the addressing mode in the Z case. This would make Y die earlier. 2928 bool AddressingModeMatcher:: 2929 IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 2930 ExtAddrMode &AMAfter) { 2931 if (IgnoreProfitability) return true; 2932 2933 // AMBefore is the addressing mode before this instruction was folded into it, 2934 // and AMAfter is the addressing mode after the instruction was folded. Get 2935 // the set of registers referenced by AMAfter and subtract out those 2936 // referenced by AMBefore: this is the set of values which folding in this 2937 // address extends the lifetime of. 2938 // 2939 // Note that there are only two potential values being referenced here, 2940 // BaseReg and ScaleReg (global addresses are always available, as are any 2941 // folded immediates). 2942 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 2943 2944 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 2945 // lifetime wasn't extended by adding this instruction. 2946 if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 2947 BaseReg = nullptr; 2948 if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 2949 ScaledReg = nullptr; 2950 2951 // If folding this instruction (and it's subexprs) didn't extend any live 2952 // ranges, we're ok with it. 2953 if (!BaseReg && !ScaledReg) 2954 return true; 2955 2956 // If all uses of this instruction are ultimately load/store/inlineasm's, 2957 // check to see if their addressing modes will include this instruction. If 2958 // so, we can fold it into all uses, so it doesn't matter if it has multiple 2959 // uses. 2960 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 2961 SmallPtrSet<Instruction*, 16> ConsideredInsts; 2962 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI)) 2963 return false; // Has a non-memory, non-foldable use! 2964 2965 // Now that we know that all uses of this instruction are part of a chain of 2966 // computation involving only operations that could theoretically be folded 2967 // into a memory use, loop over each of these uses and see if they could 2968 // *actually* fold the instruction. 2969 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 2970 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 2971 Instruction *User = MemoryUses[i].first; 2972 unsigned OpNo = MemoryUses[i].second; 2973 2974 // Get the access type of this use. If the use isn't a pointer, we don't 2975 // know what it accesses. 2976 Value *Address = User->getOperand(OpNo); 2977 if (!Address->getType()->isPointerTy()) 2978 return false; 2979 Type *AddressAccessTy = Address->getType()->getPointerElementType(); 2980 2981 // Do a match against the root of this address, ignoring profitability. This 2982 // will tell us if the addressing mode for the memory operation will 2983 // *actually* cover the shared instruction. 2984 ExtAddrMode Result; 2985 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2986 TPT.getRestorationPoint(); 2987 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy, 2988 MemoryInst, Result, InsertedTruncs, 2989 PromotedInsts, TPT); 2990 Matcher.IgnoreProfitability = true; 2991 bool Success = Matcher.MatchAddr(Address, 0); 2992 (void)Success; assert(Success && "Couldn't select *anything*?"); 2993 2994 // The match was to check the profitability, the changes made are not 2995 // part of the original matcher. Therefore, they should be dropped 2996 // otherwise the original matcher will not present the right state. 2997 TPT.rollback(LastKnownGood); 2998 2999 // If the match didn't cover I, then it won't be shared by it. 3000 if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(), 3001 I) == MatchedAddrModeInsts.end()) 3002 return false; 3003 3004 MatchedAddrModeInsts.clear(); 3005 } 3006 3007 return true; 3008 } 3009 3010 } // end anonymous namespace 3011 3012 /// IsNonLocalValue - Return true if the specified values are defined in a 3013 /// different basic block than BB. 3014 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 3015 if (Instruction *I = dyn_cast<Instruction>(V)) 3016 return I->getParent() != BB; 3017 return false; 3018 } 3019 3020 /// OptimizeMemoryInst - Load and Store Instructions often have 3021 /// addressing modes that can do significant amounts of computation. As such, 3022 /// instruction selection will try to get the load or store to do as much 3023 /// computation as possible for the program. The problem is that isel can only 3024 /// see within a single block. As such, we sink as much legal addressing mode 3025 /// stuff into the block as possible. 3026 /// 3027 /// This method is used to optimize both load/store and inline asms with memory 3028 /// operands. 3029 bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 3030 Type *AccessTy) { 3031 Value *Repl = Addr; 3032 3033 // Try to collapse single-value PHI nodes. This is necessary to undo 3034 // unprofitable PRE transformations. 3035 SmallVector<Value*, 8> worklist; 3036 SmallPtrSet<Value*, 16> Visited; 3037 worklist.push_back(Addr); 3038 3039 // Use a worklist to iteratively look through PHI nodes, and ensure that 3040 // the addressing mode obtained from the non-PHI roots of the graph 3041 // are equivalent. 3042 Value *Consensus = nullptr; 3043 unsigned NumUsesConsensus = 0; 3044 bool IsNumUsesConsensusValid = false; 3045 SmallVector<Instruction*, 16> AddrModeInsts; 3046 ExtAddrMode AddrMode; 3047 TypePromotionTransaction TPT; 3048 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3049 TPT.getRestorationPoint(); 3050 while (!worklist.empty()) { 3051 Value *V = worklist.back(); 3052 worklist.pop_back(); 3053 3054 // Break use-def graph loops. 3055 if (!Visited.insert(V).second) { 3056 Consensus = nullptr; 3057 break; 3058 } 3059 3060 // For a PHI node, push all of its incoming values. 3061 if (PHINode *P = dyn_cast<PHINode>(V)) { 3062 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) 3063 worklist.push_back(P->getIncomingValue(i)); 3064 continue; 3065 } 3066 3067 // For non-PHIs, determine the addressing mode being computed. 3068 SmallVector<Instruction*, 16> NewAddrModeInsts; 3069 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 3070 V, AccessTy, MemoryInst, NewAddrModeInsts, *TLI, InsertedTruncsSet, 3071 PromotedInsts, TPT); 3072 3073 // This check is broken into two cases with very similar code to avoid using 3074 // getNumUses() as much as possible. Some values have a lot of uses, so 3075 // calling getNumUses() unconditionally caused a significant compile-time 3076 // regression. 3077 if (!Consensus) { 3078 Consensus = V; 3079 AddrMode = NewAddrMode; 3080 AddrModeInsts = NewAddrModeInsts; 3081 continue; 3082 } else if (NewAddrMode == AddrMode) { 3083 if (!IsNumUsesConsensusValid) { 3084 NumUsesConsensus = Consensus->getNumUses(); 3085 IsNumUsesConsensusValid = true; 3086 } 3087 3088 // Ensure that the obtained addressing mode is equivalent to that obtained 3089 // for all other roots of the PHI traversal. Also, when choosing one 3090 // such root as representative, select the one with the most uses in order 3091 // to keep the cost modeling heuristics in AddressingModeMatcher 3092 // applicable. 3093 unsigned NumUses = V->getNumUses(); 3094 if (NumUses > NumUsesConsensus) { 3095 Consensus = V; 3096 NumUsesConsensus = NumUses; 3097 AddrModeInsts = NewAddrModeInsts; 3098 } 3099 continue; 3100 } 3101 3102 Consensus = nullptr; 3103 break; 3104 } 3105 3106 // If the addressing mode couldn't be determined, or if multiple different 3107 // ones were determined, bail out now. 3108 if (!Consensus) { 3109 TPT.rollback(LastKnownGood); 3110 return false; 3111 } 3112 TPT.commit(); 3113 3114 // Check to see if any of the instructions supersumed by this addr mode are 3115 // non-local to I's BB. 3116 bool AnyNonLocal = false; 3117 for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) { 3118 if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) { 3119 AnyNonLocal = true; 3120 break; 3121 } 3122 } 3123 3124 // If all the instructions matched are already in this BB, don't do anything. 3125 if (!AnyNonLocal) { 3126 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 3127 return false; 3128 } 3129 3130 // Insert this computation right after this user. Since our caller is 3131 // scanning from the top of the BB to the bottom, reuse of the expr are 3132 // guaranteed to happen later. 3133 IRBuilder<> Builder(MemoryInst); 3134 3135 // Now that we determined the addressing expression we want to use and know 3136 // that we have to sink it into this block. Check to see if we have already 3137 // done this for some other load/store instr in this block. If so, reuse the 3138 // computation. 3139 Value *&SunkAddr = SunkAddrs[Addr]; 3140 if (SunkAddr) { 3141 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 3142 << *MemoryInst << "\n"); 3143 if (SunkAddr->getType() != Addr->getType()) 3144 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3145 } else if (AddrSinkUsingGEPs || 3146 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 3147 TM->getSubtargetImpl(*MemoryInst->getParent()->getParent()) 3148 ->useAA())) { 3149 // By default, we use the GEP-based method when AA is used later. This 3150 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 3151 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3152 << *MemoryInst << "\n"); 3153 Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType()); 3154 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 3155 3156 // First, find the pointer. 3157 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 3158 ResultPtr = AddrMode.BaseReg; 3159 AddrMode.BaseReg = nullptr; 3160 } 3161 3162 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 3163 // We can't add more than one pointer together, nor can we scale a 3164 // pointer (both of which seem meaningless). 3165 if (ResultPtr || AddrMode.Scale != 1) 3166 return false; 3167 3168 ResultPtr = AddrMode.ScaledReg; 3169 AddrMode.Scale = 0; 3170 } 3171 3172 if (AddrMode.BaseGV) { 3173 if (ResultPtr) 3174 return false; 3175 3176 ResultPtr = AddrMode.BaseGV; 3177 } 3178 3179 // If the real base value actually came from an inttoptr, then the matcher 3180 // will look through it and provide only the integer value. In that case, 3181 // use it here. 3182 if (!ResultPtr && AddrMode.BaseReg) { 3183 ResultPtr = 3184 Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr"); 3185 AddrMode.BaseReg = nullptr; 3186 } else if (!ResultPtr && AddrMode.Scale == 1) { 3187 ResultPtr = 3188 Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr"); 3189 AddrMode.Scale = 0; 3190 } 3191 3192 if (!ResultPtr && 3193 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 3194 SunkAddr = Constant::getNullValue(Addr->getType()); 3195 } else if (!ResultPtr) { 3196 return false; 3197 } else { 3198 Type *I8PtrTy = 3199 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 3200 3201 // Start with the base register. Do this first so that subsequent address 3202 // matching finds it last, which will prevent it from trying to match it 3203 // as the scaled value in case it happens to be a mul. That would be 3204 // problematic if we've sunk a different mul for the scale, because then 3205 // we'd end up sinking both muls. 3206 if (AddrMode.BaseReg) { 3207 Value *V = AddrMode.BaseReg; 3208 if (V->getType() != IntPtrTy) 3209 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3210 3211 ResultIndex = V; 3212 } 3213 3214 // Add the scale value. 3215 if (AddrMode.Scale) { 3216 Value *V = AddrMode.ScaledReg; 3217 if (V->getType() == IntPtrTy) { 3218 // done. 3219 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3220 cast<IntegerType>(V->getType())->getBitWidth()) { 3221 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3222 } else { 3223 // It is only safe to sign extend the BaseReg if we know that the math 3224 // required to create it did not overflow before we extend it. Since 3225 // the original IR value was tossed in favor of a constant back when 3226 // the AddrMode was created we need to bail out gracefully if widths 3227 // do not match instead of extending it. 3228 Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex); 3229 if (I && (ResultIndex != AddrMode.BaseReg)) 3230 I->eraseFromParent(); 3231 return false; 3232 } 3233 3234 if (AddrMode.Scale != 1) 3235 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3236 "sunkaddr"); 3237 if (ResultIndex) 3238 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 3239 else 3240 ResultIndex = V; 3241 } 3242 3243 // Add in the Base Offset if present. 3244 if (AddrMode.BaseOffs) { 3245 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3246 if (ResultIndex) { 3247 // We need to add this separately from the scale above to help with 3248 // SDAG consecutive load/store merging. 3249 if (ResultPtr->getType() != I8PtrTy) 3250 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3251 ResultPtr = Builder.CreateGEP(ResultPtr, ResultIndex, "sunkaddr"); 3252 } 3253 3254 ResultIndex = V; 3255 } 3256 3257 if (!ResultIndex) { 3258 SunkAddr = ResultPtr; 3259 } else { 3260 if (ResultPtr->getType() != I8PtrTy) 3261 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3262 SunkAddr = Builder.CreateGEP(ResultPtr, ResultIndex, "sunkaddr"); 3263 } 3264 3265 if (SunkAddr->getType() != Addr->getType()) 3266 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3267 } 3268 } else { 3269 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3270 << *MemoryInst << "\n"); 3271 Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType()); 3272 Value *Result = nullptr; 3273 3274 // Start with the base register. Do this first so that subsequent address 3275 // matching finds it last, which will prevent it from trying to match it 3276 // as the scaled value in case it happens to be a mul. That would be 3277 // problematic if we've sunk a different mul for the scale, because then 3278 // we'd end up sinking both muls. 3279 if (AddrMode.BaseReg) { 3280 Value *V = AddrMode.BaseReg; 3281 if (V->getType()->isPointerTy()) 3282 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3283 if (V->getType() != IntPtrTy) 3284 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3285 Result = V; 3286 } 3287 3288 // Add the scale value. 3289 if (AddrMode.Scale) { 3290 Value *V = AddrMode.ScaledReg; 3291 if (V->getType() == IntPtrTy) { 3292 // done. 3293 } else if (V->getType()->isPointerTy()) { 3294 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3295 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3296 cast<IntegerType>(V->getType())->getBitWidth()) { 3297 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3298 } else { 3299 // It is only safe to sign extend the BaseReg if we know that the math 3300 // required to create it did not overflow before we extend it. Since 3301 // the original IR value was tossed in favor of a constant back when 3302 // the AddrMode was created we need to bail out gracefully if widths 3303 // do not match instead of extending it. 3304 Instruction *I = dyn_cast_or_null<Instruction>(Result); 3305 if (I && (Result != AddrMode.BaseReg)) 3306 I->eraseFromParent(); 3307 return false; 3308 } 3309 if (AddrMode.Scale != 1) 3310 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3311 "sunkaddr"); 3312 if (Result) 3313 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3314 else 3315 Result = V; 3316 } 3317 3318 // Add in the BaseGV if present. 3319 if (AddrMode.BaseGV) { 3320 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 3321 if (Result) 3322 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3323 else 3324 Result = V; 3325 } 3326 3327 // Add in the Base Offset if present. 3328 if (AddrMode.BaseOffs) { 3329 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3330 if (Result) 3331 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3332 else 3333 Result = V; 3334 } 3335 3336 if (!Result) 3337 SunkAddr = Constant::getNullValue(Addr->getType()); 3338 else 3339 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 3340 } 3341 3342 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 3343 3344 // If we have no uses, recursively delete the value and all dead instructions 3345 // using it. 3346 if (Repl->use_empty()) { 3347 // This can cause recursive deletion, which can invalidate our iterator. 3348 // Use a WeakVH to hold onto it in case this happens. 3349 WeakVH IterHandle(CurInstIterator); 3350 BasicBlock *BB = CurInstIterator->getParent(); 3351 3352 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 3353 3354 if (IterHandle != CurInstIterator) { 3355 // If the iterator instruction was recursively deleted, start over at the 3356 // start of the block. 3357 CurInstIterator = BB->begin(); 3358 SunkAddrs.clear(); 3359 } 3360 } 3361 ++NumMemoryInsts; 3362 return true; 3363 } 3364 3365 /// OptimizeInlineAsmInst - If there are any memory operands, use 3366 /// OptimizeMemoryInst to sink their address computing into the block when 3367 /// possible / profitable. 3368 bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) { 3369 bool MadeChange = false; 3370 3371 TargetLowering::AsmOperandInfoVector 3372 TargetConstraints = TLI->ParseConstraints(CS); 3373 unsigned ArgNo = 0; 3374 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3375 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3376 3377 // Compute the constraint code and ConstraintType to use. 3378 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 3379 3380 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 3381 OpInfo.isIndirect) { 3382 Value *OpVal = CS->getArgOperand(ArgNo++); 3383 MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType()); 3384 } else if (OpInfo.Type == InlineAsm::isInput) 3385 ArgNo++; 3386 } 3387 3388 return MadeChange; 3389 } 3390 3391 /// \brief Check if all the uses of \p Inst are equivalent (or free) zero or 3392 /// sign extensions. 3393 static bool hasSameExtUse(Instruction *Inst, const TargetLowering &TLI) { 3394 assert(!Inst->use_empty() && "Input must have at least one use"); 3395 const Instruction *FirstUser = cast<Instruction>(*Inst->user_begin()); 3396 bool IsSExt = isa<SExtInst>(FirstUser); 3397 Type *ExtTy = FirstUser->getType(); 3398 for (const User *U : Inst->users()) { 3399 const Instruction *UI = cast<Instruction>(U); 3400 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 3401 return false; 3402 Type *CurTy = UI->getType(); 3403 // Same input and output types: Same instruction after CSE. 3404 if (CurTy == ExtTy) 3405 continue; 3406 3407 // If IsSExt is true, we are in this situation: 3408 // a = Inst 3409 // b = sext ty1 a to ty2 3410 // c = sext ty1 a to ty3 3411 // Assuming ty2 is shorter than ty3, this could be turned into: 3412 // a = Inst 3413 // b = sext ty1 a to ty2 3414 // c = sext ty2 b to ty3 3415 // However, the last sext is not free. 3416 if (IsSExt) 3417 return false; 3418 3419 // This is a ZExt, maybe this is free to extend from one type to another. 3420 // In that case, we would not account for a different use. 3421 Type *NarrowTy; 3422 Type *LargeTy; 3423 if (ExtTy->getScalarType()->getIntegerBitWidth() > 3424 CurTy->getScalarType()->getIntegerBitWidth()) { 3425 NarrowTy = CurTy; 3426 LargeTy = ExtTy; 3427 } else { 3428 NarrowTy = ExtTy; 3429 LargeTy = CurTy; 3430 } 3431 3432 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 3433 return false; 3434 } 3435 // All uses are the same or can be derived from one another for free. 3436 return true; 3437 } 3438 3439 /// \brief Try to form ExtLd by promoting \p Exts until they reach a 3440 /// load instruction. 3441 /// If an ext(load) can be formed, it is returned via \p LI for the load 3442 /// and \p Inst for the extension. 3443 /// Otherwise LI == nullptr and Inst == nullptr. 3444 /// When some promotion happened, \p TPT contains the proper state to 3445 /// revert them. 3446 /// 3447 /// \return true when promoting was necessary to expose the ext(load) 3448 /// opportunity, false otherwise. 3449 /// 3450 /// Example: 3451 /// \code 3452 /// %ld = load i32* %addr 3453 /// %add = add nuw i32 %ld, 4 3454 /// %zext = zext i32 %add to i64 3455 /// \endcode 3456 /// => 3457 /// \code 3458 /// %ld = load i32* %addr 3459 /// %zext = zext i32 %ld to i64 3460 /// %add = add nuw i64 %zext, 4 3461 /// \encode 3462 /// Thanks to the promotion, we can match zext(load i32*) to i64. 3463 bool CodeGenPrepare::ExtLdPromotion(TypePromotionTransaction &TPT, 3464 LoadInst *&LI, Instruction *&Inst, 3465 const SmallVectorImpl<Instruction *> &Exts, 3466 unsigned CreatedInsts = 0) { 3467 // Iterate over all the extensions to see if one form an ext(load). 3468 for (auto I : Exts) { 3469 // Check if we directly have ext(load). 3470 if ((LI = dyn_cast<LoadInst>(I->getOperand(0)))) { 3471 Inst = I; 3472 // No promotion happened here. 3473 return false; 3474 } 3475 // Check whether or not we want to do any promotion. 3476 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 3477 continue; 3478 // Get the action to perform the promotion. 3479 TypePromotionHelper::Action TPH = TypePromotionHelper::getAction( 3480 I, InsertedTruncsSet, *TLI, PromotedInsts); 3481 // Check if we can promote. 3482 if (!TPH) 3483 continue; 3484 // Save the current state. 3485 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3486 TPT.getRestorationPoint(); 3487 SmallVector<Instruction *, 4> NewExts; 3488 unsigned NewCreatedInsts = 0; 3489 // Promote. 3490 Value *PromotedVal = 3491 TPH(I, TPT, PromotedInsts, NewCreatedInsts, &NewExts, nullptr); 3492 assert(PromotedVal && 3493 "TypePromotionHelper should have filtered out those cases"); 3494 3495 // We would be able to merge only one extension in a load. 3496 // Therefore, if we have more than 1 new extension we heuristically 3497 // cut this search path, because it means we degrade the code quality. 3498 // With exactly 2, the transformation is neutral, because we will merge 3499 // one extension but leave one. However, we optimistically keep going, 3500 // because the new extension may be removed too. 3501 unsigned TotalCreatedInsts = CreatedInsts + NewCreatedInsts; 3502 if (!StressExtLdPromotion && 3503 (TotalCreatedInsts > 1 || 3504 !isPromotedInstructionLegal(*TLI, PromotedVal))) { 3505 // The promotion is not profitable, rollback to the previous state. 3506 TPT.rollback(LastKnownGood); 3507 continue; 3508 } 3509 // The promotion is profitable. 3510 // Check if it exposes an ext(load). 3511 (void)ExtLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInsts); 3512 if (LI && (StressExtLdPromotion || NewCreatedInsts == 0 || 3513 // If we have created a new extension, i.e., now we have two 3514 // extensions. We must make sure one of them is merged with 3515 // the load, otherwise we may degrade the code quality. 3516 (LI->hasOneUse() || hasSameExtUse(LI, *TLI)))) 3517 // Promotion happened. 3518 return true; 3519 // If this does not help to expose an ext(load) then, rollback. 3520 TPT.rollback(LastKnownGood); 3521 } 3522 // None of the extension can form an ext(load). 3523 LI = nullptr; 3524 Inst = nullptr; 3525 return false; 3526 } 3527 3528 /// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same 3529 /// basic block as the load, unless conditions are unfavorable. This allows 3530 /// SelectionDAG to fold the extend into the load. 3531 /// \p I[in/out] the extension may be modified during the process if some 3532 /// promotions apply. 3533 /// 3534 bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *&I) { 3535 // Try to promote a chain of computation if it allows to form 3536 // an extended load. 3537 TypePromotionTransaction TPT; 3538 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3539 TPT.getRestorationPoint(); 3540 SmallVector<Instruction *, 1> Exts; 3541 Exts.push_back(I); 3542 // Look for a load being extended. 3543 LoadInst *LI = nullptr; 3544 Instruction *OldExt = I; 3545 bool HasPromoted = ExtLdPromotion(TPT, LI, I, Exts); 3546 if (!LI || !I) { 3547 assert(!HasPromoted && !LI && "If we did not match any load instruction " 3548 "the code must remain the same"); 3549 I = OldExt; 3550 return false; 3551 } 3552 3553 // If they're already in the same block, there's nothing to do. 3554 // Make the cheap checks first if we did not promote. 3555 // If we promoted, we need to check if it is indeed profitable. 3556 if (!HasPromoted && LI->getParent() == I->getParent()) 3557 return false; 3558 3559 EVT VT = TLI->getValueType(I->getType()); 3560 EVT LoadVT = TLI->getValueType(LI->getType()); 3561 3562 // If the load has other users and the truncate is not free, this probably 3563 // isn't worthwhile. 3564 if (!LI->hasOneUse() && TLI && 3565 (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) && 3566 !TLI->isTruncateFree(I->getType(), LI->getType())) { 3567 I = OldExt; 3568 TPT.rollback(LastKnownGood); 3569 return false; 3570 } 3571 3572 // Check whether the target supports casts folded into loads. 3573 unsigned LType; 3574 if (isa<ZExtInst>(I)) 3575 LType = ISD::ZEXTLOAD; 3576 else { 3577 assert(isa<SExtInst>(I) && "Unexpected ext type!"); 3578 LType = ISD::SEXTLOAD; 3579 } 3580 if (TLI && !TLI->isLoadExtLegal(LType, VT, LoadVT)) { 3581 I = OldExt; 3582 TPT.rollback(LastKnownGood); 3583 return false; 3584 } 3585 3586 // Move the extend into the same block as the load, so that SelectionDAG 3587 // can fold it. 3588 TPT.commit(); 3589 I->removeFromParent(); 3590 I->insertAfter(LI); 3591 ++NumExtsMoved; 3592 return true; 3593 } 3594 3595 bool CodeGenPrepare::OptimizeExtUses(Instruction *I) { 3596 BasicBlock *DefBB = I->getParent(); 3597 3598 // If the result of a {s|z}ext and its source are both live out, rewrite all 3599 // other uses of the source with result of extension. 3600 Value *Src = I->getOperand(0); 3601 if (Src->hasOneUse()) 3602 return false; 3603 3604 // Only do this xform if truncating is free. 3605 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 3606 return false; 3607 3608 // Only safe to perform the optimization if the source is also defined in 3609 // this block. 3610 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 3611 return false; 3612 3613 bool DefIsLiveOut = false; 3614 for (User *U : I->users()) { 3615 Instruction *UI = cast<Instruction>(U); 3616 3617 // Figure out which BB this ext is used in. 3618 BasicBlock *UserBB = UI->getParent(); 3619 if (UserBB == DefBB) continue; 3620 DefIsLiveOut = true; 3621 break; 3622 } 3623 if (!DefIsLiveOut) 3624 return false; 3625 3626 // Make sure none of the uses are PHI nodes. 3627 for (User *U : Src->users()) { 3628 Instruction *UI = cast<Instruction>(U); 3629 BasicBlock *UserBB = UI->getParent(); 3630 if (UserBB == DefBB) continue; 3631 // Be conservative. We don't want this xform to end up introducing 3632 // reloads just before load / store instructions. 3633 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 3634 return false; 3635 } 3636 3637 // InsertedTruncs - Only insert one trunc in each block once. 3638 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 3639 3640 bool MadeChange = false; 3641 for (Use &U : Src->uses()) { 3642 Instruction *User = cast<Instruction>(U.getUser()); 3643 3644 // Figure out which BB this ext is used in. 3645 BasicBlock *UserBB = User->getParent(); 3646 if (UserBB == DefBB) continue; 3647 3648 // Both src and def are live in this block. Rewrite the use. 3649 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 3650 3651 if (!InsertedTrunc) { 3652 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 3653 InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt); 3654 InsertedTruncsSet.insert(InsertedTrunc); 3655 } 3656 3657 // Replace a use of the {s|z}ext source with a use of the result. 3658 U = InsertedTrunc; 3659 ++NumExtUses; 3660 MadeChange = true; 3661 } 3662 3663 return MadeChange; 3664 } 3665 3666 /// isFormingBranchFromSelectProfitable - Returns true if a SelectInst should be 3667 /// turned into an explicit branch. 3668 static bool isFormingBranchFromSelectProfitable(SelectInst *SI) { 3669 // FIXME: This should use the same heuristics as IfConversion to determine 3670 // whether a select is better represented as a branch. This requires that 3671 // branch probability metadata is preserved for the select, which is not the 3672 // case currently. 3673 3674 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 3675 3676 // If the branch is predicted right, an out of order CPU can avoid blocking on 3677 // the compare. Emit cmovs on compares with a memory operand as branches to 3678 // avoid stalls on the load from memory. If the compare has more than one use 3679 // there's probably another cmov or setcc around so it's not worth emitting a 3680 // branch. 3681 if (!Cmp) 3682 return false; 3683 3684 Value *CmpOp0 = Cmp->getOperand(0); 3685 Value *CmpOp1 = Cmp->getOperand(1); 3686 3687 // We check that the memory operand has one use to avoid uses of the loaded 3688 // value directly after the compare, making branches unprofitable. 3689 return Cmp->hasOneUse() && 3690 ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) || 3691 (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse())); 3692 } 3693 3694 3695 /// If we have a SelectInst that will likely profit from branch prediction, 3696 /// turn it into a branch. 3697 bool CodeGenPrepare::OptimizeSelectInst(SelectInst *SI) { 3698 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 3699 3700 // Can we convert the 'select' to CF ? 3701 if (DisableSelectToBranch || OptSize || !TLI || VectorCond) 3702 return false; 3703 3704 TargetLowering::SelectSupportKind SelectKind; 3705 if (VectorCond) 3706 SelectKind = TargetLowering::VectorMaskSelect; 3707 else if (SI->getType()->isVectorTy()) 3708 SelectKind = TargetLowering::ScalarCondVectorVal; 3709 else 3710 SelectKind = TargetLowering::ScalarValSelect; 3711 3712 // Do we have efficient codegen support for this kind of 'selects' ? 3713 if (TLI->isSelectSupported(SelectKind)) { 3714 // We have efficient codegen support for the select instruction. 3715 // Check if it is profitable to keep this 'select'. 3716 if (!TLI->isPredictableSelectExpensive() || 3717 !isFormingBranchFromSelectProfitable(SI)) 3718 return false; 3719 } 3720 3721 ModifiedDT = true; 3722 3723 // First, we split the block containing the select into 2 blocks. 3724 BasicBlock *StartBlock = SI->getParent(); 3725 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI)); 3726 BasicBlock *NextBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 3727 3728 // Create a new block serving as the landing pad for the branch. 3729 BasicBlock *SmallBlock = BasicBlock::Create(SI->getContext(), "select.mid", 3730 NextBlock->getParent(), NextBlock); 3731 3732 // Move the unconditional branch from the block with the select in it into our 3733 // landing pad block. 3734 StartBlock->getTerminator()->eraseFromParent(); 3735 BranchInst::Create(NextBlock, SmallBlock); 3736 3737 // Insert the real conditional branch based on the original condition. 3738 BranchInst::Create(NextBlock, SmallBlock, SI->getCondition(), SI); 3739 3740 // The select itself is replaced with a PHI Node. 3741 PHINode *PN = PHINode::Create(SI->getType(), 2, "", NextBlock->begin()); 3742 PN->takeName(SI); 3743 PN->addIncoming(SI->getTrueValue(), StartBlock); 3744 PN->addIncoming(SI->getFalseValue(), SmallBlock); 3745 SI->replaceAllUsesWith(PN); 3746 SI->eraseFromParent(); 3747 3748 // Instruct OptimizeBlock to skip to the next block. 3749 CurInstIterator = StartBlock->end(); 3750 ++NumSelectsExpanded; 3751 return true; 3752 } 3753 3754 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 3755 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 3756 int SplatElem = -1; 3757 for (unsigned i = 0; i < Mask.size(); ++i) { 3758 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 3759 return false; 3760 SplatElem = Mask[i]; 3761 } 3762 3763 return true; 3764 } 3765 3766 /// Some targets have expensive vector shifts if the lanes aren't all the same 3767 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 3768 /// it's often worth sinking a shufflevector splat down to its use so that 3769 /// codegen can spot all lanes are identical. 3770 bool CodeGenPrepare::OptimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 3771 BasicBlock *DefBB = SVI->getParent(); 3772 3773 // Only do this xform if variable vector shifts are particularly expensive. 3774 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 3775 return false; 3776 3777 // We only expect better codegen by sinking a shuffle if we can recognise a 3778 // constant splat. 3779 if (!isBroadcastShuffle(SVI)) 3780 return false; 3781 3782 // InsertedShuffles - Only insert a shuffle in each block once. 3783 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 3784 3785 bool MadeChange = false; 3786 for (User *U : SVI->users()) { 3787 Instruction *UI = cast<Instruction>(U); 3788 3789 // Figure out which BB this ext is used in. 3790 BasicBlock *UserBB = UI->getParent(); 3791 if (UserBB == DefBB) continue; 3792 3793 // For now only apply this when the splat is used by a shift instruction. 3794 if (!UI->isShift()) continue; 3795 3796 // Everything checks out, sink the shuffle if the user's block doesn't 3797 // already have a copy. 3798 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 3799 3800 if (!InsertedShuffle) { 3801 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 3802 InsertedShuffle = new ShuffleVectorInst(SVI->getOperand(0), 3803 SVI->getOperand(1), 3804 SVI->getOperand(2), "", InsertPt); 3805 } 3806 3807 UI->replaceUsesOfWith(SVI, InsertedShuffle); 3808 MadeChange = true; 3809 } 3810 3811 // If we removed all uses, nuke the shuffle. 3812 if (SVI->use_empty()) { 3813 SVI->eraseFromParent(); 3814 MadeChange = true; 3815 } 3816 3817 return MadeChange; 3818 } 3819 3820 namespace { 3821 /// \brief Helper class to promote a scalar operation to a vector one. 3822 /// This class is used to move downward extractelement transition. 3823 /// E.g., 3824 /// a = vector_op <2 x i32> 3825 /// b = extractelement <2 x i32> a, i32 0 3826 /// c = scalar_op b 3827 /// store c 3828 /// 3829 /// => 3830 /// a = vector_op <2 x i32> 3831 /// c = vector_op a (equivalent to scalar_op on the related lane) 3832 /// * d = extractelement <2 x i32> c, i32 0 3833 /// * store d 3834 /// Assuming both extractelement and store can be combine, we get rid of the 3835 /// transition. 3836 class VectorPromoteHelper { 3837 /// Used to perform some checks on the legality of vector operations. 3838 const TargetLowering &TLI; 3839 3840 /// Used to estimated the cost of the promoted chain. 3841 const TargetTransformInfo &TTI; 3842 3843 /// The transition being moved downwards. 3844 Instruction *Transition; 3845 /// The sequence of instructions to be promoted. 3846 SmallVector<Instruction *, 4> InstsToBePromoted; 3847 /// Cost of combining a store and an extract. 3848 unsigned StoreExtractCombineCost; 3849 /// Instruction that will be combined with the transition. 3850 Instruction *CombineInst; 3851 3852 /// \brief The instruction that represents the current end of the transition. 3853 /// Since we are faking the promotion until we reach the end of the chain 3854 /// of computation, we need a way to get the current end of the transition. 3855 Instruction *getEndOfTransition() const { 3856 if (InstsToBePromoted.empty()) 3857 return Transition; 3858 return InstsToBePromoted.back(); 3859 } 3860 3861 /// \brief Return the index of the original value in the transition. 3862 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 3863 /// c, is at index 0. 3864 unsigned getTransitionOriginalValueIdx() const { 3865 assert(isa<ExtractElementInst>(Transition) && 3866 "Other kind of transitions are not supported yet"); 3867 return 0; 3868 } 3869 3870 /// \brief Return the index of the index in the transition. 3871 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 3872 /// is at index 1. 3873 unsigned getTransitionIdx() const { 3874 assert(isa<ExtractElementInst>(Transition) && 3875 "Other kind of transitions are not supported yet"); 3876 return 1; 3877 } 3878 3879 /// \brief Get the type of the transition. 3880 /// This is the type of the original value. 3881 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 3882 /// transition is <2 x i32>. 3883 Type *getTransitionType() const { 3884 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 3885 } 3886 3887 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 3888 /// I.e., we have the following sequence: 3889 /// Def = Transition <ty1> a to <ty2> 3890 /// b = ToBePromoted <ty2> Def, ... 3891 /// => 3892 /// b = ToBePromoted <ty1> a, ... 3893 /// Def = Transition <ty1> ToBePromoted to <ty2> 3894 void promoteImpl(Instruction *ToBePromoted); 3895 3896 /// \brief Check whether or not it is profitable to promote all the 3897 /// instructions enqueued to be promoted. 3898 bool isProfitableToPromote() { 3899 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 3900 unsigned Index = isa<ConstantInt>(ValIdx) 3901 ? cast<ConstantInt>(ValIdx)->getZExtValue() 3902 : -1; 3903 Type *PromotedType = getTransitionType(); 3904 3905 StoreInst *ST = cast<StoreInst>(CombineInst); 3906 unsigned AS = ST->getPointerAddressSpace(); 3907 unsigned Align = ST->getAlignment(); 3908 // Check if this store is supported. 3909 if (!TLI.allowsMisalignedMemoryAccesses( 3910 TLI.getValueType(ST->getValueOperand()->getType()), AS, Align)) { 3911 // If this is not supported, there is no way we can combine 3912 // the extract with the store. 3913 return false; 3914 } 3915 3916 // The scalar chain of computation has to pay for the transition 3917 // scalar to vector. 3918 // The vector chain has to account for the combining cost. 3919 uint64_t ScalarCost = 3920 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 3921 uint64_t VectorCost = StoreExtractCombineCost; 3922 for (const auto &Inst : InstsToBePromoted) { 3923 // Compute the cost. 3924 // By construction, all instructions being promoted are arithmetic ones. 3925 // Moreover, one argument is a constant that can be viewed as a splat 3926 // constant. 3927 Value *Arg0 = Inst->getOperand(0); 3928 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 3929 isa<ConstantFP>(Arg0); 3930 TargetTransformInfo::OperandValueKind Arg0OVK = 3931 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 3932 : TargetTransformInfo::OK_AnyValue; 3933 TargetTransformInfo::OperandValueKind Arg1OVK = 3934 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 3935 : TargetTransformInfo::OK_AnyValue; 3936 ScalarCost += TTI.getArithmeticInstrCost( 3937 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 3938 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 3939 Arg0OVK, Arg1OVK); 3940 } 3941 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 3942 << ScalarCost << "\nVector: " << VectorCost << '\n'); 3943 return ScalarCost > VectorCost; 3944 } 3945 3946 /// \brief Generate a constant vector with \p Val with the same 3947 /// number of elements as the transition. 3948 /// \p UseSplat defines whether or not \p Val should be replicated 3949 /// accross the whole vector. 3950 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 3951 /// otherwise we generate a vector with as many undef as possible: 3952 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 3953 /// used at the index of the extract. 3954 Value *getConstantVector(Constant *Val, bool UseSplat) const { 3955 unsigned ExtractIdx = UINT_MAX; 3956 if (!UseSplat) { 3957 // If we cannot determine where the constant must be, we have to 3958 // use a splat constant. 3959 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 3960 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 3961 ExtractIdx = CstVal->getSExtValue(); 3962 else 3963 UseSplat = true; 3964 } 3965 3966 unsigned End = getTransitionType()->getVectorNumElements(); 3967 if (UseSplat) 3968 return ConstantVector::getSplat(End, Val); 3969 3970 SmallVector<Constant *, 4> ConstVec; 3971 UndefValue *UndefVal = UndefValue::get(Val->getType()); 3972 for (unsigned Idx = 0; Idx != End; ++Idx) { 3973 if (Idx == ExtractIdx) 3974 ConstVec.push_back(Val); 3975 else 3976 ConstVec.push_back(UndefVal); 3977 } 3978 return ConstantVector::get(ConstVec); 3979 } 3980 3981 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 3982 /// in \p Use can trigger undefined behavior. 3983 static bool canCauseUndefinedBehavior(const Instruction *Use, 3984 unsigned OperandIdx) { 3985 // This is not safe to introduce undef when the operand is on 3986 // the right hand side of a division-like instruction. 3987 if (OperandIdx != 1) 3988 return false; 3989 switch (Use->getOpcode()) { 3990 default: 3991 return false; 3992 case Instruction::SDiv: 3993 case Instruction::UDiv: 3994 case Instruction::SRem: 3995 case Instruction::URem: 3996 return true; 3997 case Instruction::FDiv: 3998 case Instruction::FRem: 3999 return !Use->hasNoNaNs(); 4000 } 4001 llvm_unreachable(nullptr); 4002 } 4003 4004 public: 4005 VectorPromoteHelper(const TargetLowering &TLI, const TargetTransformInfo &TTI, 4006 Instruction *Transition, unsigned CombineCost) 4007 : TLI(TLI), TTI(TTI), Transition(Transition), 4008 StoreExtractCombineCost(CombineCost), CombineInst(nullptr) { 4009 assert(Transition && "Do not know how to promote null"); 4010 } 4011 4012 /// \brief Check if we can promote \p ToBePromoted to \p Type. 4013 bool canPromote(const Instruction *ToBePromoted) const { 4014 // We could support CastInst too. 4015 return isa<BinaryOperator>(ToBePromoted); 4016 } 4017 4018 /// \brief Check if it is profitable to promote \p ToBePromoted 4019 /// by moving downward the transition through. 4020 bool shouldPromote(const Instruction *ToBePromoted) const { 4021 // Promote only if all the operands can be statically expanded. 4022 // Indeed, we do not want to introduce any new kind of transitions. 4023 for (const Use &U : ToBePromoted->operands()) { 4024 const Value *Val = U.get(); 4025 if (Val == getEndOfTransition()) { 4026 // If the use is a division and the transition is on the rhs, 4027 // we cannot promote the operation, otherwise we may create a 4028 // division by zero. 4029 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 4030 return false; 4031 continue; 4032 } 4033 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 4034 !isa<ConstantFP>(Val)) 4035 return false; 4036 } 4037 // Check that the resulting operation is legal. 4038 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 4039 if (!ISDOpcode) 4040 return false; 4041 return StressStoreExtract || 4042 TLI.isOperationLegalOrCustom( 4043 ISDOpcode, TLI.getValueType(getTransitionType(), true)); 4044 } 4045 4046 /// \brief Check whether or not \p Use can be combined 4047 /// with the transition. 4048 /// I.e., is it possible to do Use(Transition) => AnotherUse? 4049 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 4050 4051 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 4052 void enqueueForPromotion(Instruction *ToBePromoted) { 4053 InstsToBePromoted.push_back(ToBePromoted); 4054 } 4055 4056 /// \brief Set the instruction that will be combined with the transition. 4057 void recordCombineInstruction(Instruction *ToBeCombined) { 4058 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 4059 CombineInst = ToBeCombined; 4060 } 4061 4062 /// \brief Promote all the instructions enqueued for promotion if it is 4063 /// is profitable. 4064 /// \return True if the promotion happened, false otherwise. 4065 bool promote() { 4066 // Check if there is something to promote. 4067 // Right now, if we do not have anything to combine with, 4068 // we assume the promotion is not profitable. 4069 if (InstsToBePromoted.empty() || !CombineInst) 4070 return false; 4071 4072 // Check cost. 4073 if (!StressStoreExtract && !isProfitableToPromote()) 4074 return false; 4075 4076 // Promote. 4077 for (auto &ToBePromoted : InstsToBePromoted) 4078 promoteImpl(ToBePromoted); 4079 InstsToBePromoted.clear(); 4080 return true; 4081 } 4082 }; 4083 } // End of anonymous namespace. 4084 4085 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 4086 // At this point, we know that all the operands of ToBePromoted but Def 4087 // can be statically promoted. 4088 // For Def, we need to use its parameter in ToBePromoted: 4089 // b = ToBePromoted ty1 a 4090 // Def = Transition ty1 b to ty2 4091 // Move the transition down. 4092 // 1. Replace all uses of the promoted operation by the transition. 4093 // = ... b => = ... Def. 4094 assert(ToBePromoted->getType() == Transition->getType() && 4095 "The type of the result of the transition does not match " 4096 "the final type"); 4097 ToBePromoted->replaceAllUsesWith(Transition); 4098 // 2. Update the type of the uses. 4099 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 4100 Type *TransitionTy = getTransitionType(); 4101 ToBePromoted->mutateType(TransitionTy); 4102 // 3. Update all the operands of the promoted operation with promoted 4103 // operands. 4104 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 4105 for (Use &U : ToBePromoted->operands()) { 4106 Value *Val = U.get(); 4107 Value *NewVal = nullptr; 4108 if (Val == Transition) 4109 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 4110 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 4111 isa<ConstantFP>(Val)) { 4112 // Use a splat constant if it is not safe to use undef. 4113 NewVal = getConstantVector( 4114 cast<Constant>(Val), 4115 isa<UndefValue>(Val) || 4116 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 4117 } else 4118 llvm_unreachable("Did you modified shouldPromote and forgot to update " 4119 "this?"); 4120 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 4121 } 4122 Transition->removeFromParent(); 4123 Transition->insertAfter(ToBePromoted); 4124 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 4125 } 4126 4127 /// Some targets can do store(extractelement) with one instruction. 4128 /// Try to push the extractelement towards the stores when the target 4129 /// has this feature and this is profitable. 4130 bool CodeGenPrepare::OptimizeExtractElementInst(Instruction *Inst) { 4131 unsigned CombineCost = UINT_MAX; 4132 if (DisableStoreExtract || !TLI || 4133 (!StressStoreExtract && 4134 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 4135 Inst->getOperand(1), CombineCost))) 4136 return false; 4137 4138 // At this point we know that Inst is a vector to scalar transition. 4139 // Try to move it down the def-use chain, until: 4140 // - We can combine the transition with its single use 4141 // => we got rid of the transition. 4142 // - We escape the current basic block 4143 // => we would need to check that we are moving it at a cheaper place and 4144 // we do not do that for now. 4145 BasicBlock *Parent = Inst->getParent(); 4146 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 4147 VectorPromoteHelper VPH(*TLI, *TTI, Inst, CombineCost); 4148 // If the transition has more than one use, assume this is not going to be 4149 // beneficial. 4150 while (Inst->hasOneUse()) { 4151 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 4152 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 4153 4154 if (ToBePromoted->getParent() != Parent) { 4155 DEBUG(dbgs() << "Instruction to promote is in a different block (" 4156 << ToBePromoted->getParent()->getName() 4157 << ") than the transition (" << Parent->getName() << ").\n"); 4158 return false; 4159 } 4160 4161 if (VPH.canCombine(ToBePromoted)) { 4162 DEBUG(dbgs() << "Assume " << *Inst << '\n' 4163 << "will be combined with: " << *ToBePromoted << '\n'); 4164 VPH.recordCombineInstruction(ToBePromoted); 4165 bool Changed = VPH.promote(); 4166 NumStoreExtractExposed += Changed; 4167 return Changed; 4168 } 4169 4170 DEBUG(dbgs() << "Try promoting.\n"); 4171 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 4172 return false; 4173 4174 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 4175 4176 VPH.enqueueForPromotion(ToBePromoted); 4177 Inst = ToBePromoted; 4178 } 4179 return false; 4180 } 4181 4182 bool CodeGenPrepare::OptimizeInst(Instruction *I, bool& ModifiedDT) { 4183 if (PHINode *P = dyn_cast<PHINode>(I)) { 4184 // It is possible for very late stage optimizations (such as SimplifyCFG) 4185 // to introduce PHI nodes too late to be cleaned up. If we detect such a 4186 // trivial PHI, go ahead and zap it here. 4187 if (Value *V = SimplifyInstruction(P, TLI ? TLI->getDataLayout() : nullptr, 4188 TLInfo, DT)) { 4189 P->replaceAllUsesWith(V); 4190 P->eraseFromParent(); 4191 ++NumPHIsElim; 4192 return true; 4193 } 4194 return false; 4195 } 4196 4197 if (CastInst *CI = dyn_cast<CastInst>(I)) { 4198 // If the source of the cast is a constant, then this should have 4199 // already been constant folded. The only reason NOT to constant fold 4200 // it is if something (e.g. LSR) was careful to place the constant 4201 // evaluation in a block other than then one that uses it (e.g. to hoist 4202 // the address of globals out of a loop). If this is the case, we don't 4203 // want to forward-subst the cast. 4204 if (isa<Constant>(CI->getOperand(0))) 4205 return false; 4206 4207 if (TLI && OptimizeNoopCopyExpression(CI, *TLI)) 4208 return true; 4209 4210 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 4211 /// Sink a zext or sext into its user blocks if the target type doesn't 4212 /// fit in one register 4213 if (TLI && TLI->getTypeAction(CI->getContext(), 4214 TLI->getValueType(CI->getType())) == 4215 TargetLowering::TypeExpandInteger) { 4216 return SinkCast(CI); 4217 } else { 4218 bool MadeChange = MoveExtToFormExtLoad(I); 4219 return MadeChange | OptimizeExtUses(I); 4220 } 4221 } 4222 return false; 4223 } 4224 4225 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 4226 if (!TLI || !TLI->hasMultipleConditionRegisters()) 4227 return OptimizeCmpExpression(CI); 4228 4229 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 4230 if (TLI) 4231 return OptimizeMemoryInst(I, I->getOperand(0), LI->getType()); 4232 return false; 4233 } 4234 4235 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 4236 if (TLI) 4237 return OptimizeMemoryInst(I, SI->getOperand(1), 4238 SI->getOperand(0)->getType()); 4239 return false; 4240 } 4241 4242 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 4243 4244 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 4245 BinOp->getOpcode() == Instruction::LShr)) { 4246 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 4247 if (TLI && CI && TLI->hasExtractBitsInsn()) 4248 return OptimizeExtractBits(BinOp, CI, *TLI); 4249 4250 return false; 4251 } 4252 4253 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 4254 if (GEPI->hasAllZeroIndices()) { 4255 /// The GEP operand must be a pointer, so must its result -> BitCast 4256 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 4257 GEPI->getName(), GEPI); 4258 GEPI->replaceAllUsesWith(NC); 4259 GEPI->eraseFromParent(); 4260 ++NumGEPsElim; 4261 OptimizeInst(NC, ModifiedDT); 4262 return true; 4263 } 4264 return false; 4265 } 4266 4267 if (CallInst *CI = dyn_cast<CallInst>(I)) 4268 return OptimizeCallInst(CI, ModifiedDT); 4269 4270 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 4271 return OptimizeSelectInst(SI); 4272 4273 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 4274 return OptimizeShuffleVectorInst(SVI); 4275 4276 if (isa<ExtractElementInst>(I)) 4277 return OptimizeExtractElementInst(I); 4278 4279 return false; 4280 } 4281 4282 // In this pass we look for GEP and cast instructions that are used 4283 // across basic blocks and rewrite them to improve basic-block-at-a-time 4284 // selection. 4285 bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB, bool& ModifiedDT) { 4286 SunkAddrs.clear(); 4287 bool MadeChange = false; 4288 4289 CurInstIterator = BB.begin(); 4290 while (CurInstIterator != BB.end()) { 4291 MadeChange |= OptimizeInst(CurInstIterator++, ModifiedDT); 4292 if (ModifiedDT) 4293 return true; 4294 } 4295 MadeChange |= DupRetToEnableTailCallOpts(&BB); 4296 4297 return MadeChange; 4298 } 4299 4300 // llvm.dbg.value is far away from the value then iSel may not be able 4301 // handle it properly. iSel will drop llvm.dbg.value if it can not 4302 // find a node corresponding to the value. 4303 bool CodeGenPrepare::PlaceDbgValues(Function &F) { 4304 bool MadeChange = false; 4305 for (BasicBlock &BB : F) { 4306 Instruction *PrevNonDbgInst = nullptr; 4307 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 4308 Instruction *Insn = BI++; 4309 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 4310 // Leave dbg.values that refer to an alloca alone. These 4311 // instrinsics describe the address of a variable (= the alloca) 4312 // being taken. They should not be moved next to the alloca 4313 // (and to the beginning of the scope), but rather stay close to 4314 // where said address is used. 4315 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 4316 PrevNonDbgInst = Insn; 4317 continue; 4318 } 4319 4320 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 4321 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 4322 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 4323 DVI->removeFromParent(); 4324 if (isa<PHINode>(VI)) 4325 DVI->insertBefore(VI->getParent()->getFirstInsertionPt()); 4326 else 4327 DVI->insertAfter(VI); 4328 MadeChange = true; 4329 ++NumDbgValueMoved; 4330 } 4331 } 4332 } 4333 return MadeChange; 4334 } 4335 4336 // If there is a sequence that branches based on comparing a single bit 4337 // against zero that can be combined into a single instruction, and the 4338 // target supports folding these into a single instruction, sink the 4339 // mask and compare into the branch uses. Do this before OptimizeBlock -> 4340 // OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being 4341 // searched for. 4342 bool CodeGenPrepare::sinkAndCmp(Function &F) { 4343 if (!EnableAndCmpSinking) 4344 return false; 4345 if (!TLI || !TLI->isMaskAndBranchFoldingLegal()) 4346 return false; 4347 bool MadeChange = false; 4348 for (Function::iterator I = F.begin(), E = F.end(); I != E; ) { 4349 BasicBlock *BB = I++; 4350 4351 // Does this BB end with the following? 4352 // %andVal = and %val, #single-bit-set 4353 // %icmpVal = icmp %andResult, 0 4354 // br i1 %cmpVal label %dest1, label %dest2" 4355 BranchInst *Brcc = dyn_cast<BranchInst>(BB->getTerminator()); 4356 if (!Brcc || !Brcc->isConditional()) 4357 continue; 4358 ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0)); 4359 if (!Cmp || Cmp->getParent() != BB) 4360 continue; 4361 ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 4362 if (!Zero || !Zero->isZero()) 4363 continue; 4364 Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0)); 4365 if (!And || And->getOpcode() != Instruction::And || And->getParent() != BB) 4366 continue; 4367 ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1)); 4368 if (!Mask || !Mask->getUniqueInteger().isPowerOf2()) 4369 continue; 4370 DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB->dump()); 4371 4372 // Push the "and; icmp" for any users that are conditional branches. 4373 // Since there can only be one branch use per BB, we don't need to keep 4374 // track of which BBs we insert into. 4375 for (Value::use_iterator UI = Cmp->use_begin(), E = Cmp->use_end(); 4376 UI != E; ) { 4377 Use &TheUse = *UI; 4378 // Find brcc use. 4379 BranchInst *BrccUser = dyn_cast<BranchInst>(*UI); 4380 ++UI; 4381 if (!BrccUser || !BrccUser->isConditional()) 4382 continue; 4383 BasicBlock *UserBB = BrccUser->getParent(); 4384 if (UserBB == BB) continue; 4385 DEBUG(dbgs() << "found Brcc use\n"); 4386 4387 // Sink the "and; icmp" to use. 4388 MadeChange = true; 4389 BinaryOperator *NewAnd = 4390 BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "", 4391 BrccUser); 4392 CmpInst *NewCmp = 4393 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero, 4394 "", BrccUser); 4395 TheUse = NewCmp; 4396 ++NumAndCmpsMoved; 4397 DEBUG(BrccUser->getParent()->dump()); 4398 } 4399 } 4400 return MadeChange; 4401 } 4402 4403 /// \brief Retrieve the probabilities of a conditional branch. Returns true on 4404 /// success, or returns false if no or invalid metadata was found. 4405 static bool extractBranchMetadata(BranchInst *BI, 4406 uint64_t &ProbTrue, uint64_t &ProbFalse) { 4407 assert(BI->isConditional() && 4408 "Looking for probabilities on unconditional branch?"); 4409 auto *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 4410 if (!ProfileData || ProfileData->getNumOperands() != 3) 4411 return false; 4412 4413 const auto *CITrue = 4414 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 4415 const auto *CIFalse = 4416 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 4417 if (!CITrue || !CIFalse) 4418 return false; 4419 4420 ProbTrue = CITrue->getValue().getZExtValue(); 4421 ProbFalse = CIFalse->getValue().getZExtValue(); 4422 4423 return true; 4424 } 4425 4426 /// \brief Scale down both weights to fit into uint32_t. 4427 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 4428 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 4429 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 4430 NewTrue = NewTrue / Scale; 4431 NewFalse = NewFalse / Scale; 4432 } 4433 4434 /// \brief Some targets prefer to split a conditional branch like: 4435 /// \code 4436 /// %0 = icmp ne i32 %a, 0 4437 /// %1 = icmp ne i32 %b, 0 4438 /// %or.cond = or i1 %0, %1 4439 /// br i1 %or.cond, label %TrueBB, label %FalseBB 4440 /// \endcode 4441 /// into multiple branch instructions like: 4442 /// \code 4443 /// bb1: 4444 /// %0 = icmp ne i32 %a, 0 4445 /// br i1 %0, label %TrueBB, label %bb2 4446 /// bb2: 4447 /// %1 = icmp ne i32 %b, 0 4448 /// br i1 %1, label %TrueBB, label %FalseBB 4449 /// \endcode 4450 /// This usually allows instruction selection to do even further optimizations 4451 /// and combine the compare with the branch instruction. Currently this is 4452 /// applied for targets which have "cheap" jump instructions. 4453 /// 4454 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 4455 /// 4456 bool CodeGenPrepare::splitBranchCondition(Function &F) { 4457 if (!TM || TM->Options.EnableFastISel != true || 4458 !TLI || TLI->isJumpExpensive()) 4459 return false; 4460 4461 bool MadeChange = false; 4462 for (auto &BB : F) { 4463 // Does this BB end with the following? 4464 // %cond1 = icmp|fcmp|binary instruction ... 4465 // %cond2 = icmp|fcmp|binary instruction ... 4466 // %cond.or = or|and i1 %cond1, cond2 4467 // br i1 %cond.or label %dest1, label %dest2" 4468 BinaryOperator *LogicOp; 4469 BasicBlock *TBB, *FBB; 4470 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 4471 continue; 4472 4473 unsigned Opc; 4474 Value *Cond1, *Cond2; 4475 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 4476 m_OneUse(m_Value(Cond2))))) 4477 Opc = Instruction::And; 4478 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 4479 m_OneUse(m_Value(Cond2))))) 4480 Opc = Instruction::Or; 4481 else 4482 continue; 4483 4484 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 4485 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 4486 continue; 4487 4488 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 4489 4490 // Create a new BB. 4491 auto *InsertBefore = std::next(Function::iterator(BB)) 4492 .getNodePtrUnchecked(); 4493 auto TmpBB = BasicBlock::Create(BB.getContext(), 4494 BB.getName() + ".cond.split", 4495 BB.getParent(), InsertBefore); 4496 4497 // Update original basic block by using the first condition directly by the 4498 // branch instruction and removing the no longer needed and/or instruction. 4499 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 4500 Br1->setCondition(Cond1); 4501 LogicOp->eraseFromParent(); 4502 4503 // Depending on the conditon we have to either replace the true or the false 4504 // successor of the original branch instruction. 4505 if (Opc == Instruction::And) 4506 Br1->setSuccessor(0, TmpBB); 4507 else 4508 Br1->setSuccessor(1, TmpBB); 4509 4510 // Fill in the new basic block. 4511 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 4512 if (auto *I = dyn_cast<Instruction>(Cond2)) { 4513 I->removeFromParent(); 4514 I->insertBefore(Br2); 4515 } 4516 4517 // Update PHI nodes in both successors. The original BB needs to be 4518 // replaced in one succesor's PHI nodes, because the branch comes now from 4519 // the newly generated BB (NewBB). In the other successor we need to add one 4520 // incoming edge to the PHI nodes, because both branch instructions target 4521 // now the same successor. Depending on the original branch condition 4522 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 4523 // we perfrom the correct update for the PHI nodes. 4524 // This doesn't change the successor order of the just created branch 4525 // instruction (or any other instruction). 4526 if (Opc == Instruction::Or) 4527 std::swap(TBB, FBB); 4528 4529 // Replace the old BB with the new BB. 4530 for (auto &I : *TBB) { 4531 PHINode *PN = dyn_cast<PHINode>(&I); 4532 if (!PN) 4533 break; 4534 int i; 4535 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 4536 PN->setIncomingBlock(i, TmpBB); 4537 } 4538 4539 // Add another incoming edge form the new BB. 4540 for (auto &I : *FBB) { 4541 PHINode *PN = dyn_cast<PHINode>(&I); 4542 if (!PN) 4543 break; 4544 auto *Val = PN->getIncomingValueForBlock(&BB); 4545 PN->addIncoming(Val, TmpBB); 4546 } 4547 4548 // Update the branch weights (from SelectionDAGBuilder:: 4549 // FindMergedConditions). 4550 if (Opc == Instruction::Or) { 4551 // Codegen X | Y as: 4552 // BB1: 4553 // jmp_if_X TBB 4554 // jmp TmpBB 4555 // TmpBB: 4556 // jmp_if_Y TBB 4557 // jmp FBB 4558 // 4559 4560 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 4561 // The requirement is that 4562 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 4563 // = TrueProb for orignal BB. 4564 // Assuming the orignal weights are A and B, one choice is to set BB1's 4565 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 4566 // assumes that 4567 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 4568 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 4569 // TmpBB, but the math is more complicated. 4570 uint64_t TrueWeight, FalseWeight; 4571 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { 4572 uint64_t NewTrueWeight = TrueWeight; 4573 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 4574 scaleWeights(NewTrueWeight, NewFalseWeight); 4575 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 4576 .createBranchWeights(TrueWeight, FalseWeight)); 4577 4578 NewTrueWeight = TrueWeight; 4579 NewFalseWeight = 2 * FalseWeight; 4580 scaleWeights(NewTrueWeight, NewFalseWeight); 4581 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 4582 .createBranchWeights(TrueWeight, FalseWeight)); 4583 } 4584 } else { 4585 // Codegen X & Y as: 4586 // BB1: 4587 // jmp_if_X TmpBB 4588 // jmp FBB 4589 // TmpBB: 4590 // jmp_if_Y TBB 4591 // jmp FBB 4592 // 4593 // This requires creation of TmpBB after CurBB. 4594 4595 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 4596 // The requirement is that 4597 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 4598 // = FalseProb for orignal BB. 4599 // Assuming the orignal weights are A and B, one choice is to set BB1's 4600 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 4601 // assumes that 4602 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 4603 uint64_t TrueWeight, FalseWeight; 4604 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { 4605 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 4606 uint64_t NewFalseWeight = FalseWeight; 4607 scaleWeights(NewTrueWeight, NewFalseWeight); 4608 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 4609 .createBranchWeights(TrueWeight, FalseWeight)); 4610 4611 NewTrueWeight = 2 * TrueWeight; 4612 NewFalseWeight = FalseWeight; 4613 scaleWeights(NewTrueWeight, NewFalseWeight); 4614 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 4615 .createBranchWeights(TrueWeight, FalseWeight)); 4616 } 4617 } 4618 4619 // Request DOM Tree update. 4620 // Note: No point in getting fancy here, since the DT info is never 4621 // available to CodeGenPrepare and the existing update code is broken 4622 // anyways. 4623 ModifiedDT = true; 4624 4625 MadeChange = true; 4626 4627 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 4628 TmpBB->dump()); 4629 } 4630 return MadeChange; 4631 } 4632