1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/BlockFrequencyInfo.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/MemoryBuiltins.h" 31 #include "llvm/Analysis/ProfileSummaryInfo.h" 32 #include "llvm/Analysis/TargetLibraryInfo.h" 33 #include "llvm/Analysis/TargetTransformInfo.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/MachineValueType.h" 38 #include "llvm/CodeGen/SelectionDAGNodes.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/ValueTypes.h" 41 #include "llvm/IR/Argument.h" 42 #include "llvm/IR/Attributes.h" 43 #include "llvm/IR/BasicBlock.h" 44 #include "llvm/IR/CallSite.h" 45 #include "llvm/IR/Constant.h" 46 #include "llvm/IR/Constants.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/DerivedTypes.h" 49 #include "llvm/IR/Dominators.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/GetElementPtrTypeIterator.h" 52 #include "llvm/IR/GlobalValue.h" 53 #include "llvm/IR/GlobalVariable.h" 54 #include "llvm/IR/IRBuilder.h" 55 #include "llvm/IR/InlineAsm.h" 56 #include "llvm/IR/InstrTypes.h" 57 #include "llvm/IR/Instruction.h" 58 #include "llvm/IR/Instructions.h" 59 #include "llvm/IR/IntrinsicInst.h" 60 #include "llvm/IR/Intrinsics.h" 61 #include "llvm/IR/LLVMContext.h" 62 #include "llvm/IR/MDBuilder.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/Operator.h" 65 #include "llvm/IR/PatternMatch.h" 66 #include "llvm/IR/Statepoint.h" 67 #include "llvm/IR/Type.h" 68 #include "llvm/IR/Use.h" 69 #include "llvm/IR/User.h" 70 #include "llvm/IR/Value.h" 71 #include "llvm/IR/ValueHandle.h" 72 #include "llvm/IR/ValueMap.h" 73 #include "llvm/Pass.h" 74 #include "llvm/Support/BlockFrequency.h" 75 #include "llvm/Support/BranchProbability.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Compiler.h" 79 #include "llvm/Support/Debug.h" 80 #include "llvm/Support/ErrorHandling.h" 81 #include "llvm/Support/MathExtras.h" 82 #include "llvm/Support/raw_ostream.h" 83 #include "llvm/Target/TargetLowering.h" 84 #include "llvm/Target/TargetMachine.h" 85 #include "llvm/Target/TargetOptions.h" 86 #include "llvm/Target/TargetSubtargetInfo.h" 87 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 88 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 89 #include "llvm/Transforms/Utils/Cloning.h" 90 #include "llvm/Transforms/Utils/Local.h" 91 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 92 #include "llvm/Transforms/Utils/ValueMapper.h" 93 #include <algorithm> 94 #include <cassert> 95 #include <cstdint> 96 #include <iterator> 97 #include <limits> 98 #include <memory> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 using namespace llvm::PatternMatch; 104 105 #define DEBUG_TYPE "codegenprepare" 106 107 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 108 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 109 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 110 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 111 "sunken Cmps"); 112 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 113 "of sunken Casts"); 114 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 115 "computations were sunk"); 116 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 117 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 118 STATISTIC(NumAndsAdded, 119 "Number of and mask instructions added to form ext loads"); 120 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 121 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 122 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 123 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 124 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 125 126 STATISTIC(NumMemCmpCalls, "Number of memcmp calls"); 127 STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size"); 128 STATISTIC(NumMemCmpGreaterThanMax, 129 "Number of memcmp calls with size greater than max size"); 130 STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls"); 131 132 static cl::opt<bool> DisableBranchOpts( 133 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 134 cl::desc("Disable branch optimizations in CodeGenPrepare")); 135 136 static cl::opt<bool> 137 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 138 cl::desc("Disable GC optimizations in CodeGenPrepare")); 139 140 static cl::opt<bool> DisableSelectToBranch( 141 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 142 cl::desc("Disable select to branch conversion.")); 143 144 static cl::opt<bool> AddrSinkUsingGEPs( 145 "addr-sink-using-gep", cl::Hidden, cl::init(true), 146 cl::desc("Address sinking in CGP using GEPs.")); 147 148 static cl::opt<bool> EnableAndCmpSinking( 149 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 150 cl::desc("Enable sinkinig and/cmp into branches.")); 151 152 static cl::opt<bool> DisableStoreExtract( 153 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 154 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 155 156 static cl::opt<bool> StressStoreExtract( 157 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 158 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 159 160 static cl::opt<bool> DisableExtLdPromotion( 161 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 162 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 163 "CodeGenPrepare")); 164 165 static cl::opt<bool> StressExtLdPromotion( 166 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 167 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 168 "optimization in CodeGenPrepare")); 169 170 static cl::opt<bool> DisablePreheaderProtect( 171 "disable-preheader-prot", cl::Hidden, cl::init(false), 172 cl::desc("Disable protection against removing loop preheaders")); 173 174 static cl::opt<bool> ProfileGuidedSectionPrefix( 175 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 176 cl::desc("Use profile info to add section prefix for hot/cold functions")); 177 178 static cl::opt<unsigned> FreqRatioToSkipMerge( 179 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 180 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 181 "(frequency of destination block) is greater than this ratio")); 182 183 static cl::opt<bool> ForceSplitStore( 184 "force-split-store", cl::Hidden, cl::init(false), 185 cl::desc("Force store splitting no matter what the target query says.")); 186 187 static cl::opt<bool> 188 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 189 cl::desc("Enable merging of redundant sexts when one is dominating" 190 " the other."), cl::init(true)); 191 192 static cl::opt<unsigned> MemCmpNumLoadsPerBlock( 193 "memcmp-num-loads-per-block", cl::Hidden, cl::init(1), 194 cl::desc("The number of loads per basic block for inline expansion of " 195 "memcmp that is only being compared against zero.")); 196 197 namespace { 198 199 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 200 using TypeIsSExt = PointerIntPair<Type *, 1, bool>; 201 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 202 using SExts = SmallVector<Instruction *, 16>; 203 using ValueToSExts = DenseMap<Value *, SExts>; 204 205 class TypePromotionTransaction; 206 207 class CodeGenPrepare : public FunctionPass { 208 const TargetMachine *TM = nullptr; 209 const TargetSubtargetInfo *SubtargetInfo; 210 const TargetLowering *TLI = nullptr; 211 const TargetRegisterInfo *TRI; 212 const TargetTransformInfo *TTI = nullptr; 213 const TargetLibraryInfo *TLInfo; 214 const LoopInfo *LI; 215 std::unique_ptr<BlockFrequencyInfo> BFI; 216 std::unique_ptr<BranchProbabilityInfo> BPI; 217 218 /// As we scan instructions optimizing them, this is the next instruction 219 /// to optimize. Transforms that can invalidate this should update it. 220 BasicBlock::iterator CurInstIterator; 221 222 /// Keeps track of non-local addresses that have been sunk into a block. 223 /// This allows us to avoid inserting duplicate code for blocks with 224 /// multiple load/stores of the same address. 225 ValueMap<Value*, Value*> SunkAddrs; 226 227 /// Keeps track of all instructions inserted for the current function. 228 SetOfInstrs InsertedInsts; 229 230 /// Keeps track of the type of the related instruction before their 231 /// promotion for the current function. 232 InstrToOrigTy PromotedInsts; 233 234 /// Keep track of instructions removed during promotion. 235 SetOfInstrs RemovedInsts; 236 237 /// Keep track of sext chains based on their initial value. 238 DenseMap<Value *, Instruction *> SeenChainsForSExt; 239 240 /// Keep track of SExt promoted. 241 ValueToSExts ValToSExtendedUses; 242 243 /// True if CFG is modified in any way. 244 bool ModifiedDT; 245 246 /// True if optimizing for size. 247 bool OptSize; 248 249 /// DataLayout for the Function being processed. 250 const DataLayout *DL = nullptr; 251 252 public: 253 static char ID; // Pass identification, replacement for typeid 254 255 CodeGenPrepare() : FunctionPass(ID) { 256 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 257 } 258 259 bool runOnFunction(Function &F) override; 260 261 StringRef getPassName() const override { return "CodeGen Prepare"; } 262 263 void getAnalysisUsage(AnalysisUsage &AU) const override { 264 // FIXME: When we can selectively preserve passes, preserve the domtree. 265 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 266 AU.addRequired<TargetLibraryInfoWrapperPass>(); 267 AU.addRequired<TargetTransformInfoWrapperPass>(); 268 AU.addRequired<LoopInfoWrapperPass>(); 269 } 270 271 private: 272 bool eliminateFallThrough(Function &F); 273 bool eliminateMostlyEmptyBlocks(Function &F); 274 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 275 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 276 void eliminateMostlyEmptyBlock(BasicBlock *BB); 277 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 278 bool isPreheader); 279 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 280 bool optimizeInst(Instruction *I, bool &ModifiedDT); 281 bool optimizeMemoryInst(Instruction *I, Value *Addr, 282 Type *AccessTy, unsigned AS); 283 bool optimizeInlineAsmInst(CallInst *CS); 284 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 285 bool optimizeExt(Instruction *&I); 286 bool optimizeExtUses(Instruction *I); 287 bool optimizeLoadExt(LoadInst *I); 288 bool optimizeSelectInst(SelectInst *SI); 289 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); 290 bool optimizeSwitchInst(SwitchInst *CI); 291 bool optimizeExtractElementInst(Instruction *Inst); 292 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 293 bool placeDbgValues(Function &F); 294 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 295 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 296 bool tryToPromoteExts(TypePromotionTransaction &TPT, 297 const SmallVectorImpl<Instruction *> &Exts, 298 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 299 unsigned CreatedInstsCost = 0); 300 bool mergeSExts(Function &F); 301 bool performAddressTypePromotion( 302 Instruction *&Inst, 303 bool AllowPromotionWithoutCommonHeader, 304 bool HasPromoted, TypePromotionTransaction &TPT, 305 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 306 bool splitBranchCondition(Function &F); 307 bool simplifyOffsetableRelocate(Instruction &I); 308 bool splitIndirectCriticalEdges(Function &F); 309 }; 310 311 } // end anonymous namespace 312 313 char CodeGenPrepare::ID = 0; 314 315 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 316 "Optimize for code generation", false, false) 317 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 318 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 319 "Optimize for code generation", false, false) 320 321 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 322 323 bool CodeGenPrepare::runOnFunction(Function &F) { 324 if (skipFunction(F)) 325 return false; 326 327 DL = &F.getParent()->getDataLayout(); 328 329 bool EverMadeChange = false; 330 // Clear per function information. 331 InsertedInsts.clear(); 332 PromotedInsts.clear(); 333 BFI.reset(); 334 BPI.reset(); 335 336 ModifiedDT = false; 337 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 338 TM = &TPC->getTM<TargetMachine>(); 339 SubtargetInfo = TM->getSubtargetImpl(F); 340 TLI = SubtargetInfo->getTargetLowering(); 341 TRI = SubtargetInfo->getRegisterInfo(); 342 } 343 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 344 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 345 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 346 OptSize = F.optForSize(); 347 348 if (ProfileGuidedSectionPrefix) { 349 ProfileSummaryInfo *PSI = 350 getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 351 if (PSI->isFunctionHotInCallGraph(&F)) 352 F.setSectionPrefix(".hot"); 353 else if (PSI->isFunctionColdInCallGraph(&F)) 354 F.setSectionPrefix(".unlikely"); 355 } 356 357 /// This optimization identifies DIV instructions that can be 358 /// profitably bypassed and carried out with a shorter, faster divide. 359 if (!OptSize && TLI && TLI->isSlowDivBypassed()) { 360 const DenseMap<unsigned int, unsigned int> &BypassWidths = 361 TLI->getBypassSlowDivWidths(); 362 BasicBlock* BB = &*F.begin(); 363 while (BB != nullptr) { 364 // bypassSlowDivision may create new BBs, but we don't want to reapply the 365 // optimization to those blocks. 366 BasicBlock* Next = BB->getNextNode(); 367 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 368 BB = Next; 369 } 370 } 371 372 // Eliminate blocks that contain only PHI nodes and an 373 // unconditional branch. 374 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 375 376 // llvm.dbg.value is far away from the value then iSel may not be able 377 // handle it properly. iSel will drop llvm.dbg.value if it can not 378 // find a node corresponding to the value. 379 EverMadeChange |= placeDbgValues(F); 380 381 if (!DisableBranchOpts) 382 EverMadeChange |= splitBranchCondition(F); 383 384 // Split some critical edges where one of the sources is an indirect branch, 385 // to help generate sane code for PHIs involving such edges. 386 EverMadeChange |= splitIndirectCriticalEdges(F); 387 388 bool MadeChange = true; 389 while (MadeChange) { 390 MadeChange = false; 391 SeenChainsForSExt.clear(); 392 ValToSExtendedUses.clear(); 393 RemovedInsts.clear(); 394 for (Function::iterator I = F.begin(); I != F.end(); ) { 395 BasicBlock *BB = &*I++; 396 bool ModifiedDTOnIteration = false; 397 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 398 399 // Restart BB iteration if the dominator tree of the Function was changed 400 if (ModifiedDTOnIteration) 401 break; 402 } 403 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 404 MadeChange |= mergeSExts(F); 405 406 // Really free removed instructions during promotion. 407 for (Instruction *I : RemovedInsts) 408 I->deleteValue(); 409 410 EverMadeChange |= MadeChange; 411 } 412 413 SunkAddrs.clear(); 414 415 if (!DisableBranchOpts) { 416 MadeChange = false; 417 SmallPtrSet<BasicBlock*, 8> WorkList; 418 for (BasicBlock &BB : F) { 419 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 420 MadeChange |= ConstantFoldTerminator(&BB, true); 421 if (!MadeChange) continue; 422 423 for (SmallVectorImpl<BasicBlock*>::iterator 424 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 425 if (pred_begin(*II) == pred_end(*II)) 426 WorkList.insert(*II); 427 } 428 429 // Delete the dead blocks and any of their dead successors. 430 MadeChange |= !WorkList.empty(); 431 while (!WorkList.empty()) { 432 BasicBlock *BB = *WorkList.begin(); 433 WorkList.erase(BB); 434 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 435 436 DeleteDeadBlock(BB); 437 438 for (SmallVectorImpl<BasicBlock*>::iterator 439 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 440 if (pred_begin(*II) == pred_end(*II)) 441 WorkList.insert(*II); 442 } 443 444 // Merge pairs of basic blocks with unconditional branches, connected by 445 // a single edge. 446 if (EverMadeChange || MadeChange) 447 MadeChange |= eliminateFallThrough(F); 448 449 EverMadeChange |= MadeChange; 450 } 451 452 if (!DisableGCOpts) { 453 SmallVector<Instruction *, 2> Statepoints; 454 for (BasicBlock &BB : F) 455 for (Instruction &I : BB) 456 if (isStatepoint(I)) 457 Statepoints.push_back(&I); 458 for (auto &I : Statepoints) 459 EverMadeChange |= simplifyOffsetableRelocate(*I); 460 } 461 462 return EverMadeChange; 463 } 464 465 /// Merge basic blocks which are connected by a single edge, where one of the 466 /// basic blocks has a single successor pointing to the other basic block, 467 /// which has a single predecessor. 468 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 469 bool Changed = false; 470 // Scan all of the blocks in the function, except for the entry block. 471 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 472 BasicBlock *BB = &*I++; 473 // If the destination block has a single pred, then this is a trivial 474 // edge, just collapse it. 475 BasicBlock *SinglePred = BB->getSinglePredecessor(); 476 477 // Don't merge if BB's address is taken. 478 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 479 480 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 481 if (Term && !Term->isConditional()) { 482 Changed = true; 483 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 484 // Remember if SinglePred was the entry block of the function. 485 // If so, we will need to move BB back to the entry position. 486 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 487 MergeBasicBlockIntoOnlyPred(BB, nullptr); 488 489 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 490 BB->moveBefore(&BB->getParent()->getEntryBlock()); 491 492 // We have erased a block. Update the iterator. 493 I = BB->getIterator(); 494 } 495 } 496 return Changed; 497 } 498 499 /// Find a destination block from BB if BB is mergeable empty block. 500 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 501 // If this block doesn't end with an uncond branch, ignore it. 502 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 503 if (!BI || !BI->isUnconditional()) 504 return nullptr; 505 506 // If the instruction before the branch (skipping debug info) isn't a phi 507 // node, then other stuff is happening here. 508 BasicBlock::iterator BBI = BI->getIterator(); 509 if (BBI != BB->begin()) { 510 --BBI; 511 while (isa<DbgInfoIntrinsic>(BBI)) { 512 if (BBI == BB->begin()) 513 break; 514 --BBI; 515 } 516 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 517 return nullptr; 518 } 519 520 // Do not break infinite loops. 521 BasicBlock *DestBB = BI->getSuccessor(0); 522 if (DestBB == BB) 523 return nullptr; 524 525 if (!canMergeBlocks(BB, DestBB)) 526 DestBB = nullptr; 527 528 return DestBB; 529 } 530 531 // Return the unique indirectbr predecessor of a block. This may return null 532 // even if such a predecessor exists, if it's not useful for splitting. 533 // If a predecessor is found, OtherPreds will contain all other (non-indirectbr) 534 // predecessors of BB. 535 static BasicBlock * 536 findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) { 537 // If the block doesn't have any PHIs, we don't care about it, since there's 538 // no point in splitting it. 539 PHINode *PN = dyn_cast<PHINode>(BB->begin()); 540 if (!PN) 541 return nullptr; 542 543 // Verify we have exactly one IBR predecessor. 544 // Conservatively bail out if one of the other predecessors is not a "regular" 545 // terminator (that is, not a switch or a br). 546 BasicBlock *IBB = nullptr; 547 for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) { 548 BasicBlock *PredBB = PN->getIncomingBlock(Pred); 549 TerminatorInst *PredTerm = PredBB->getTerminator(); 550 switch (PredTerm->getOpcode()) { 551 case Instruction::IndirectBr: 552 if (IBB) 553 return nullptr; 554 IBB = PredBB; 555 break; 556 case Instruction::Br: 557 case Instruction::Switch: 558 OtherPreds.push_back(PredBB); 559 continue; 560 default: 561 return nullptr; 562 } 563 } 564 565 return IBB; 566 } 567 568 // Split critical edges where the source of the edge is an indirectbr 569 // instruction. This isn't always possible, but we can handle some easy cases. 570 // This is useful because MI is unable to split such critical edges, 571 // which means it will not be able to sink instructions along those edges. 572 // This is especially painful for indirect branches with many successors, where 573 // we end up having to prepare all outgoing values in the origin block. 574 // 575 // Our normal algorithm for splitting critical edges requires us to update 576 // the outgoing edges of the edge origin block, but for an indirectbr this 577 // is hard, since it would require finding and updating the block addresses 578 // the indirect branch uses. But if a block only has a single indirectbr 579 // predecessor, with the others being regular branches, we can do it in a 580 // different way. 581 // Say we have A -> D, B -> D, I -> D where only I -> D is an indirectbr. 582 // We can split D into D0 and D1, where D0 contains only the PHIs from D, 583 // and D1 is the D block body. We can then duplicate D0 as D0A and D0B, and 584 // create the following structure: 585 // A -> D0A, B -> D0A, I -> D0B, D0A -> D1, D0B -> D1 586 bool CodeGenPrepare::splitIndirectCriticalEdges(Function &F) { 587 // Check whether the function has any indirectbrs, and collect which blocks 588 // they may jump to. Since most functions don't have indirect branches, 589 // this lowers the common case's overhead to O(Blocks) instead of O(Edges). 590 SmallSetVector<BasicBlock *, 16> Targets; 591 for (auto &BB : F) { 592 auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator()); 593 if (!IBI) 594 continue; 595 596 for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ) 597 Targets.insert(IBI->getSuccessor(Succ)); 598 } 599 600 if (Targets.empty()) 601 return false; 602 603 bool Changed = false; 604 for (BasicBlock *Target : Targets) { 605 SmallVector<BasicBlock *, 16> OtherPreds; 606 BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds); 607 // If we did not found an indirectbr, or the indirectbr is the only 608 // incoming edge, this isn't the kind of edge we're looking for. 609 if (!IBRPred || OtherPreds.empty()) 610 continue; 611 612 // Don't even think about ehpads/landingpads. 613 Instruction *FirstNonPHI = Target->getFirstNonPHI(); 614 if (FirstNonPHI->isEHPad() || Target->isLandingPad()) 615 continue; 616 617 BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split"); 618 // It's possible Target was its own successor through an indirectbr. 619 // In this case, the indirectbr now comes from BodyBlock. 620 if (IBRPred == Target) 621 IBRPred = BodyBlock; 622 623 // At this point Target only has PHIs, and BodyBlock has the rest of the 624 // block's body. Create a copy of Target that will be used by the "direct" 625 // preds. 626 ValueToValueMapTy VMap; 627 BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F); 628 629 for (BasicBlock *Pred : OtherPreds) { 630 // If the target is a loop to itself, then the terminator of the split 631 // block needs to be updated. 632 if (Pred == Target) 633 BodyBlock->getTerminator()->replaceUsesOfWith(Target, DirectSucc); 634 else 635 Pred->getTerminator()->replaceUsesOfWith(Target, DirectSucc); 636 } 637 638 // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that 639 // they are clones, so the number of PHIs are the same. 640 // (a) Remove the edge coming from IBRPred from the "Direct" PHI 641 // (b) Leave that as the only edge in the "Indirect" PHI. 642 // (c) Merge the two in the body block. 643 BasicBlock::iterator Indirect = Target->begin(), 644 End = Target->getFirstNonPHI()->getIterator(); 645 BasicBlock::iterator Direct = DirectSucc->begin(); 646 BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt(); 647 648 assert(&*End == Target->getTerminator() && 649 "Block was expected to only contain PHIs"); 650 651 while (Indirect != End) { 652 PHINode *DirPHI = cast<PHINode>(Direct); 653 PHINode *IndPHI = cast<PHINode>(Indirect); 654 655 // Now, clean up - the direct block shouldn't get the indirect value, 656 // and vice versa. 657 DirPHI->removeIncomingValue(IBRPred); 658 Direct++; 659 660 // Advance the pointer here, to avoid invalidation issues when the old 661 // PHI is erased. 662 Indirect++; 663 664 PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI); 665 NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred), 666 IBRPred); 667 668 // Create a PHI in the body block, to merge the direct and indirect 669 // predecessors. 670 PHINode *MergePHI = 671 PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert); 672 MergePHI->addIncoming(NewIndPHI, Target); 673 MergePHI->addIncoming(DirPHI, DirectSucc); 674 675 IndPHI->replaceAllUsesWith(MergePHI); 676 IndPHI->eraseFromParent(); 677 } 678 679 Changed = true; 680 } 681 682 return Changed; 683 } 684 685 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 686 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 687 /// edges in ways that are non-optimal for isel. Start by eliminating these 688 /// blocks so we can split them the way we want them. 689 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 690 SmallPtrSet<BasicBlock *, 16> Preheaders; 691 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 692 while (!LoopList.empty()) { 693 Loop *L = LoopList.pop_back_val(); 694 LoopList.insert(LoopList.end(), L->begin(), L->end()); 695 if (BasicBlock *Preheader = L->getLoopPreheader()) 696 Preheaders.insert(Preheader); 697 } 698 699 bool MadeChange = false; 700 // Note that this intentionally skips the entry block. 701 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 702 BasicBlock *BB = &*I++; 703 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 704 if (!DestBB || 705 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 706 continue; 707 708 eliminateMostlyEmptyBlock(BB); 709 MadeChange = true; 710 } 711 return MadeChange; 712 } 713 714 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 715 BasicBlock *DestBB, 716 bool isPreheader) { 717 // Do not delete loop preheaders if doing so would create a critical edge. 718 // Loop preheaders can be good locations to spill registers. If the 719 // preheader is deleted and we create a critical edge, registers may be 720 // spilled in the loop body instead. 721 if (!DisablePreheaderProtect && isPreheader && 722 !(BB->getSinglePredecessor() && 723 BB->getSinglePredecessor()->getSingleSuccessor())) 724 return false; 725 726 // Try to skip merging if the unique predecessor of BB is terminated by a 727 // switch or indirect branch instruction, and BB is used as an incoming block 728 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 729 // add COPY instructions in the predecessor of BB instead of BB (if it is not 730 // merged). Note that the critical edge created by merging such blocks wont be 731 // split in MachineSink because the jump table is not analyzable. By keeping 732 // such empty block (BB), ISel will place COPY instructions in BB, not in the 733 // predecessor of BB. 734 BasicBlock *Pred = BB->getUniquePredecessor(); 735 if (!Pred || 736 !(isa<SwitchInst>(Pred->getTerminator()) || 737 isa<IndirectBrInst>(Pred->getTerminator()))) 738 return true; 739 740 if (BB->getTerminator() != BB->getFirstNonPHI()) 741 return true; 742 743 // We use a simple cost heuristic which determine skipping merging is 744 // profitable if the cost of skipping merging is less than the cost of 745 // merging : Cost(skipping merging) < Cost(merging BB), where the 746 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 747 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 748 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 749 // Freq(Pred) / Freq(BB) > 2. 750 // Note that if there are multiple empty blocks sharing the same incoming 751 // value for the PHIs in the DestBB, we consider them together. In such 752 // case, Cost(merging BB) will be the sum of their frequencies. 753 754 if (!isa<PHINode>(DestBB->begin())) 755 return true; 756 757 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 758 759 // Find all other incoming blocks from which incoming values of all PHIs in 760 // DestBB are the same as the ones from BB. 761 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 762 ++PI) { 763 BasicBlock *DestBBPred = *PI; 764 if (DestBBPred == BB) 765 continue; 766 767 bool HasAllSameValue = true; 768 BasicBlock::const_iterator DestBBI = DestBB->begin(); 769 while (const PHINode *DestPN = dyn_cast<PHINode>(DestBBI++)) { 770 if (DestPN->getIncomingValueForBlock(BB) != 771 DestPN->getIncomingValueForBlock(DestBBPred)) { 772 HasAllSameValue = false; 773 break; 774 } 775 } 776 if (HasAllSameValue) 777 SameIncomingValueBBs.insert(DestBBPred); 778 } 779 780 // See if all BB's incoming values are same as the value from Pred. In this 781 // case, no reason to skip merging because COPYs are expected to be place in 782 // Pred already. 783 if (SameIncomingValueBBs.count(Pred)) 784 return true; 785 786 if (!BFI) { 787 Function &F = *BB->getParent(); 788 LoopInfo LI{DominatorTree(F)}; 789 BPI.reset(new BranchProbabilityInfo(F, LI)); 790 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 791 } 792 793 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 794 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 795 796 for (auto SameValueBB : SameIncomingValueBBs) 797 if (SameValueBB->getUniquePredecessor() == Pred && 798 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 799 BBFreq += BFI->getBlockFreq(SameValueBB); 800 801 return PredFreq.getFrequency() <= 802 BBFreq.getFrequency() * FreqRatioToSkipMerge; 803 } 804 805 /// Return true if we can merge BB into DestBB if there is a single 806 /// unconditional branch between them, and BB contains no other non-phi 807 /// instructions. 808 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 809 const BasicBlock *DestBB) const { 810 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 811 // the successor. If there are more complex condition (e.g. preheaders), 812 // don't mess around with them. 813 BasicBlock::const_iterator BBI = BB->begin(); 814 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 815 for (const User *U : PN->users()) { 816 const Instruction *UI = cast<Instruction>(U); 817 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 818 return false; 819 // If User is inside DestBB block and it is a PHINode then check 820 // incoming value. If incoming value is not from BB then this is 821 // a complex condition (e.g. preheaders) we want to avoid here. 822 if (UI->getParent() == DestBB) { 823 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 824 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 825 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 826 if (Insn && Insn->getParent() == BB && 827 Insn->getParent() != UPN->getIncomingBlock(I)) 828 return false; 829 } 830 } 831 } 832 } 833 834 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 835 // and DestBB may have conflicting incoming values for the block. If so, we 836 // can't merge the block. 837 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 838 if (!DestBBPN) return true; // no conflict. 839 840 // Collect the preds of BB. 841 SmallPtrSet<const BasicBlock*, 16> BBPreds; 842 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 843 // It is faster to get preds from a PHI than with pred_iterator. 844 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 845 BBPreds.insert(BBPN->getIncomingBlock(i)); 846 } else { 847 BBPreds.insert(pred_begin(BB), pred_end(BB)); 848 } 849 850 // Walk the preds of DestBB. 851 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 852 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 853 if (BBPreds.count(Pred)) { // Common predecessor? 854 BBI = DestBB->begin(); 855 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 856 const Value *V1 = PN->getIncomingValueForBlock(Pred); 857 const Value *V2 = PN->getIncomingValueForBlock(BB); 858 859 // If V2 is a phi node in BB, look up what the mapped value will be. 860 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 861 if (V2PN->getParent() == BB) 862 V2 = V2PN->getIncomingValueForBlock(Pred); 863 864 // If there is a conflict, bail out. 865 if (V1 != V2) return false; 866 } 867 } 868 } 869 870 return true; 871 } 872 873 /// Eliminate a basic block that has only phi's and an unconditional branch in 874 /// it. 875 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 876 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 877 BasicBlock *DestBB = BI->getSuccessor(0); 878 879 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 880 881 // If the destination block has a single pred, then this is a trivial edge, 882 // just collapse it. 883 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 884 if (SinglePred != DestBB) { 885 // Remember if SinglePred was the entry block of the function. If so, we 886 // will need to move BB back to the entry position. 887 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 888 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 889 890 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 891 BB->moveBefore(&BB->getParent()->getEntryBlock()); 892 893 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 894 return; 895 } 896 } 897 898 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 899 // to handle the new incoming edges it is about to have. 900 PHINode *PN; 901 for (BasicBlock::iterator BBI = DestBB->begin(); 902 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 903 // Remove the incoming value for BB, and remember it. 904 Value *InVal = PN->removeIncomingValue(BB, false); 905 906 // Two options: either the InVal is a phi node defined in BB or it is some 907 // value that dominates BB. 908 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 909 if (InValPhi && InValPhi->getParent() == BB) { 910 // Add all of the input values of the input PHI as inputs of this phi. 911 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 912 PN->addIncoming(InValPhi->getIncomingValue(i), 913 InValPhi->getIncomingBlock(i)); 914 } else { 915 // Otherwise, add one instance of the dominating value for each edge that 916 // we will be adding. 917 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 918 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 919 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 920 } else { 921 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 922 PN->addIncoming(InVal, *PI); 923 } 924 } 925 } 926 927 // The PHIs are now updated, change everything that refers to BB to use 928 // DestBB and remove BB. 929 BB->replaceAllUsesWith(DestBB); 930 BB->eraseFromParent(); 931 ++NumBlocksElim; 932 933 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 934 } 935 936 // Computes a map of base pointer relocation instructions to corresponding 937 // derived pointer relocation instructions given a vector of all relocate calls 938 static void computeBaseDerivedRelocateMap( 939 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 940 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 941 &RelocateInstMap) { 942 // Collect information in two maps: one primarily for locating the base object 943 // while filling the second map; the second map is the final structure holding 944 // a mapping between Base and corresponding Derived relocate calls 945 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 946 for (auto *ThisRelocate : AllRelocateCalls) { 947 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 948 ThisRelocate->getDerivedPtrIndex()); 949 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 950 } 951 for (auto &Item : RelocateIdxMap) { 952 std::pair<unsigned, unsigned> Key = Item.first; 953 if (Key.first == Key.second) 954 // Base relocation: nothing to insert 955 continue; 956 957 GCRelocateInst *I = Item.second; 958 auto BaseKey = std::make_pair(Key.first, Key.first); 959 960 // We're iterating over RelocateIdxMap so we cannot modify it. 961 auto MaybeBase = RelocateIdxMap.find(BaseKey); 962 if (MaybeBase == RelocateIdxMap.end()) 963 // TODO: We might want to insert a new base object relocate and gep off 964 // that, if there are enough derived object relocates. 965 continue; 966 967 RelocateInstMap[MaybeBase->second].push_back(I); 968 } 969 } 970 971 // Accepts a GEP and extracts the operands into a vector provided they're all 972 // small integer constants 973 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 974 SmallVectorImpl<Value *> &OffsetV) { 975 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 976 // Only accept small constant integer operands 977 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 978 if (!Op || Op->getZExtValue() > 20) 979 return false; 980 } 981 982 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 983 OffsetV.push_back(GEP->getOperand(i)); 984 return true; 985 } 986 987 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 988 // replace, computes a replacement, and affects it. 989 static bool 990 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 991 const SmallVectorImpl<GCRelocateInst *> &Targets) { 992 bool MadeChange = false; 993 // We must ensure the relocation of derived pointer is defined after 994 // relocation of base pointer. If we find a relocation corresponding to base 995 // defined earlier than relocation of base then we move relocation of base 996 // right before found relocation. We consider only relocation in the same 997 // basic block as relocation of base. Relocations from other basic block will 998 // be skipped by optimization and we do not care about them. 999 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 1000 &*R != RelocatedBase; ++R) 1001 if (auto RI = dyn_cast<GCRelocateInst>(R)) 1002 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 1003 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 1004 RelocatedBase->moveBefore(RI); 1005 break; 1006 } 1007 1008 for (GCRelocateInst *ToReplace : Targets) { 1009 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 1010 "Not relocating a derived object of the original base object"); 1011 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 1012 // A duplicate relocate call. TODO: coalesce duplicates. 1013 continue; 1014 } 1015 1016 if (RelocatedBase->getParent() != ToReplace->getParent()) { 1017 // Base and derived relocates are in different basic blocks. 1018 // In this case transform is only valid when base dominates derived 1019 // relocate. However it would be too expensive to check dominance 1020 // for each such relocate, so we skip the whole transformation. 1021 continue; 1022 } 1023 1024 Value *Base = ToReplace->getBasePtr(); 1025 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 1026 if (!Derived || Derived->getPointerOperand() != Base) 1027 continue; 1028 1029 SmallVector<Value *, 2> OffsetV; 1030 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 1031 continue; 1032 1033 // Create a Builder and replace the target callsite with a gep 1034 assert(RelocatedBase->getNextNode() && 1035 "Should always have one since it's not a terminator"); 1036 1037 // Insert after RelocatedBase 1038 IRBuilder<> Builder(RelocatedBase->getNextNode()); 1039 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1040 1041 // If gc_relocate does not match the actual type, cast it to the right type. 1042 // In theory, there must be a bitcast after gc_relocate if the type does not 1043 // match, and we should reuse it to get the derived pointer. But it could be 1044 // cases like this: 1045 // bb1: 1046 // ... 1047 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1048 // br label %merge 1049 // 1050 // bb2: 1051 // ... 1052 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1053 // br label %merge 1054 // 1055 // merge: 1056 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1057 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1058 // 1059 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1060 // no matter there is already one or not. In this way, we can handle all cases, and 1061 // the extra bitcast should be optimized away in later passes. 1062 Value *ActualRelocatedBase = RelocatedBase; 1063 if (RelocatedBase->getType() != Base->getType()) { 1064 ActualRelocatedBase = 1065 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1066 } 1067 Value *Replacement = Builder.CreateGEP( 1068 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1069 Replacement->takeName(ToReplace); 1070 // If the newly generated derived pointer's type does not match the original derived 1071 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1072 Value *ActualReplacement = Replacement; 1073 if (Replacement->getType() != ToReplace->getType()) { 1074 ActualReplacement = 1075 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1076 } 1077 ToReplace->replaceAllUsesWith(ActualReplacement); 1078 ToReplace->eraseFromParent(); 1079 1080 MadeChange = true; 1081 } 1082 return MadeChange; 1083 } 1084 1085 // Turns this: 1086 // 1087 // %base = ... 1088 // %ptr = gep %base + 15 1089 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1090 // %base' = relocate(%tok, i32 4, i32 4) 1091 // %ptr' = relocate(%tok, i32 4, i32 5) 1092 // %val = load %ptr' 1093 // 1094 // into this: 1095 // 1096 // %base = ... 1097 // %ptr = gep %base + 15 1098 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1099 // %base' = gc.relocate(%tok, i32 4, i32 4) 1100 // %ptr' = gep %base' + 15 1101 // %val = load %ptr' 1102 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1103 bool MadeChange = false; 1104 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1105 1106 for (auto *U : I.users()) 1107 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1108 // Collect all the relocate calls associated with a statepoint 1109 AllRelocateCalls.push_back(Relocate); 1110 1111 // We need atleast one base pointer relocation + one derived pointer 1112 // relocation to mangle 1113 if (AllRelocateCalls.size() < 2) 1114 return false; 1115 1116 // RelocateInstMap is a mapping from the base relocate instruction to the 1117 // corresponding derived relocate instructions 1118 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1119 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1120 if (RelocateInstMap.empty()) 1121 return false; 1122 1123 for (auto &Item : RelocateInstMap) 1124 // Item.first is the RelocatedBase to offset against 1125 // Item.second is the vector of Targets to replace 1126 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1127 return MadeChange; 1128 } 1129 1130 /// SinkCast - Sink the specified cast instruction into its user blocks 1131 static bool SinkCast(CastInst *CI) { 1132 BasicBlock *DefBB = CI->getParent(); 1133 1134 /// InsertedCasts - Only insert a cast in each block once. 1135 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1136 1137 bool MadeChange = false; 1138 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1139 UI != E; ) { 1140 Use &TheUse = UI.getUse(); 1141 Instruction *User = cast<Instruction>(*UI); 1142 1143 // Figure out which BB this cast is used in. For PHI's this is the 1144 // appropriate predecessor block. 1145 BasicBlock *UserBB = User->getParent(); 1146 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1147 UserBB = PN->getIncomingBlock(TheUse); 1148 } 1149 1150 // Preincrement use iterator so we don't invalidate it. 1151 ++UI; 1152 1153 // The first insertion point of a block containing an EH pad is after the 1154 // pad. If the pad is the user, we cannot sink the cast past the pad. 1155 if (User->isEHPad()) 1156 continue; 1157 1158 // If the block selected to receive the cast is an EH pad that does not 1159 // allow non-PHI instructions before the terminator, we can't sink the 1160 // cast. 1161 if (UserBB->getTerminator()->isEHPad()) 1162 continue; 1163 1164 // If this user is in the same block as the cast, don't change the cast. 1165 if (UserBB == DefBB) continue; 1166 1167 // If we have already inserted a cast into this block, use it. 1168 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1169 1170 if (!InsertedCast) { 1171 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1172 assert(InsertPt != UserBB->end()); 1173 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1174 CI->getType(), "", &*InsertPt); 1175 } 1176 1177 // Replace a use of the cast with a use of the new cast. 1178 TheUse = InsertedCast; 1179 MadeChange = true; 1180 ++NumCastUses; 1181 } 1182 1183 // If we removed all uses, nuke the cast. 1184 if (CI->use_empty()) { 1185 CI->eraseFromParent(); 1186 MadeChange = true; 1187 } 1188 1189 return MadeChange; 1190 } 1191 1192 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1193 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1194 /// reduce the number of virtual registers that must be created and coalesced. 1195 /// 1196 /// Return true if any changes are made. 1197 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1198 const DataLayout &DL) { 1199 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1200 // than sinking only nop casts, but is helpful on some platforms. 1201 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1202 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), 1203 ASC->getDestAddressSpace())) 1204 return false; 1205 } 1206 1207 // If this is a noop copy, 1208 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1209 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1210 1211 // This is an fp<->int conversion? 1212 if (SrcVT.isInteger() != DstVT.isInteger()) 1213 return false; 1214 1215 // If this is an extension, it will be a zero or sign extension, which 1216 // isn't a noop. 1217 if (SrcVT.bitsLT(DstVT)) return false; 1218 1219 // If these values will be promoted, find out what they will be promoted 1220 // to. This helps us consider truncates on PPC as noop copies when they 1221 // are. 1222 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1223 TargetLowering::TypePromoteInteger) 1224 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1225 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1226 TargetLowering::TypePromoteInteger) 1227 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1228 1229 // If, after promotion, these are the same types, this is a noop copy. 1230 if (SrcVT != DstVT) 1231 return false; 1232 1233 return SinkCast(CI); 1234 } 1235 1236 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 1237 /// possible. 1238 /// 1239 /// Return true if any changes were made. 1240 static bool CombineUAddWithOverflow(CmpInst *CI) { 1241 Value *A, *B; 1242 Instruction *AddI; 1243 if (!match(CI, 1244 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 1245 return false; 1246 1247 Type *Ty = AddI->getType(); 1248 if (!isa<IntegerType>(Ty)) 1249 return false; 1250 1251 // We don't want to move around uses of condition values this late, so we we 1252 // check if it is legal to create the call to the intrinsic in the basic 1253 // block containing the icmp: 1254 1255 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 1256 return false; 1257 1258 #ifndef NDEBUG 1259 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 1260 // for now: 1261 if (AddI->hasOneUse()) 1262 assert(*AddI->user_begin() == CI && "expected!"); 1263 #endif 1264 1265 Module *M = CI->getModule(); 1266 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 1267 1268 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 1269 1270 auto *UAddWithOverflow = 1271 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 1272 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 1273 auto *Overflow = 1274 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 1275 1276 CI->replaceAllUsesWith(Overflow); 1277 AddI->replaceAllUsesWith(UAdd); 1278 CI->eraseFromParent(); 1279 AddI->eraseFromParent(); 1280 return true; 1281 } 1282 1283 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1284 /// registers that must be created and coalesced. This is a clear win except on 1285 /// targets with multiple condition code registers (PowerPC), where it might 1286 /// lose; some adjustment may be wanted there. 1287 /// 1288 /// Return true if any changes are made. 1289 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1290 BasicBlock *DefBB = CI->getParent(); 1291 1292 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1293 if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI)) 1294 return false; 1295 1296 // Only insert a cmp in each block once. 1297 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1298 1299 bool MadeChange = false; 1300 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1301 UI != E; ) { 1302 Use &TheUse = UI.getUse(); 1303 Instruction *User = cast<Instruction>(*UI); 1304 1305 // Preincrement use iterator so we don't invalidate it. 1306 ++UI; 1307 1308 // Don't bother for PHI nodes. 1309 if (isa<PHINode>(User)) 1310 continue; 1311 1312 // Figure out which BB this cmp is used in. 1313 BasicBlock *UserBB = User->getParent(); 1314 1315 // If this user is in the same block as the cmp, don't change the cmp. 1316 if (UserBB == DefBB) continue; 1317 1318 // If we have already inserted a cmp into this block, use it. 1319 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1320 1321 if (!InsertedCmp) { 1322 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1323 assert(InsertPt != UserBB->end()); 1324 InsertedCmp = 1325 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 1326 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 1327 // Propagate the debug info. 1328 InsertedCmp->setDebugLoc(CI->getDebugLoc()); 1329 } 1330 1331 // Replace a use of the cmp with a use of the new cmp. 1332 TheUse = InsertedCmp; 1333 MadeChange = true; 1334 ++NumCmpUses; 1335 } 1336 1337 // If we removed all uses, nuke the cmp. 1338 if (CI->use_empty()) { 1339 CI->eraseFromParent(); 1340 MadeChange = true; 1341 } 1342 1343 return MadeChange; 1344 } 1345 1346 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1347 if (SinkCmpExpression(CI, TLI)) 1348 return true; 1349 1350 if (CombineUAddWithOverflow(CI)) 1351 return true; 1352 1353 return false; 1354 } 1355 1356 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1357 /// used in a compare to allow isel to generate better code for targets where 1358 /// this operation can be combined. 1359 /// 1360 /// Return true if any changes are made. 1361 static bool sinkAndCmp0Expression(Instruction *AndI, 1362 const TargetLowering &TLI, 1363 SetOfInstrs &InsertedInsts) { 1364 // Double-check that we're not trying to optimize an instruction that was 1365 // already optimized by some other part of this pass. 1366 assert(!InsertedInsts.count(AndI) && 1367 "Attempting to optimize already optimized and instruction"); 1368 (void) InsertedInsts; 1369 1370 // Nothing to do for single use in same basic block. 1371 if (AndI->hasOneUse() && 1372 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1373 return false; 1374 1375 // Try to avoid cases where sinking/duplicating is likely to increase register 1376 // pressure. 1377 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1378 !isa<ConstantInt>(AndI->getOperand(1)) && 1379 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1380 return false; 1381 1382 for (auto *U : AndI->users()) { 1383 Instruction *User = cast<Instruction>(U); 1384 1385 // Only sink for and mask feeding icmp with 0. 1386 if (!isa<ICmpInst>(User)) 1387 return false; 1388 1389 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1390 if (!CmpC || !CmpC->isZero()) 1391 return false; 1392 } 1393 1394 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1395 return false; 1396 1397 DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1398 DEBUG(AndI->getParent()->dump()); 1399 1400 // Push the 'and' into the same block as the icmp 0. There should only be 1401 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1402 // others, so we don't need to keep track of which BBs we insert into. 1403 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1404 UI != E; ) { 1405 Use &TheUse = UI.getUse(); 1406 Instruction *User = cast<Instruction>(*UI); 1407 1408 // Preincrement use iterator so we don't invalidate it. 1409 ++UI; 1410 1411 DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1412 1413 // Keep the 'and' in the same place if the use is already in the same block. 1414 Instruction *InsertPt = 1415 User->getParent() == AndI->getParent() ? AndI : User; 1416 Instruction *InsertedAnd = 1417 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1418 AndI->getOperand(1), "", InsertPt); 1419 // Propagate the debug info. 1420 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1421 1422 // Replace a use of the 'and' with a use of the new 'and'. 1423 TheUse = InsertedAnd; 1424 ++NumAndUses; 1425 DEBUG(User->getParent()->dump()); 1426 } 1427 1428 // We removed all uses, nuke the and. 1429 AndI->eraseFromParent(); 1430 return true; 1431 } 1432 1433 /// Check if the candidates could be combined with a shift instruction, which 1434 /// includes: 1435 /// 1. Truncate instruction 1436 /// 2. And instruction and the imm is a mask of the low bits: 1437 /// imm & (imm+1) == 0 1438 static bool isExtractBitsCandidateUse(Instruction *User) { 1439 if (!isa<TruncInst>(User)) { 1440 if (User->getOpcode() != Instruction::And || 1441 !isa<ConstantInt>(User->getOperand(1))) 1442 return false; 1443 1444 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1445 1446 if ((Cimm & (Cimm + 1)).getBoolValue()) 1447 return false; 1448 } 1449 return true; 1450 } 1451 1452 /// Sink both shift and truncate instruction to the use of truncate's BB. 1453 static bool 1454 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1455 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1456 const TargetLowering &TLI, const DataLayout &DL) { 1457 BasicBlock *UserBB = User->getParent(); 1458 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1459 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1460 bool MadeChange = false; 1461 1462 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1463 TruncE = TruncI->user_end(); 1464 TruncUI != TruncE;) { 1465 1466 Use &TruncTheUse = TruncUI.getUse(); 1467 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1468 // Preincrement use iterator so we don't invalidate it. 1469 1470 ++TruncUI; 1471 1472 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1473 if (!ISDOpcode) 1474 continue; 1475 1476 // If the use is actually a legal node, there will not be an 1477 // implicit truncate. 1478 // FIXME: always querying the result type is just an 1479 // approximation; some nodes' legality is determined by the 1480 // operand or other means. There's no good way to find out though. 1481 if (TLI.isOperationLegalOrCustom( 1482 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1483 continue; 1484 1485 // Don't bother for PHI nodes. 1486 if (isa<PHINode>(TruncUser)) 1487 continue; 1488 1489 BasicBlock *TruncUserBB = TruncUser->getParent(); 1490 1491 if (UserBB == TruncUserBB) 1492 continue; 1493 1494 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1495 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1496 1497 if (!InsertedShift && !InsertedTrunc) { 1498 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1499 assert(InsertPt != TruncUserBB->end()); 1500 // Sink the shift 1501 if (ShiftI->getOpcode() == Instruction::AShr) 1502 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1503 "", &*InsertPt); 1504 else 1505 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1506 "", &*InsertPt); 1507 1508 // Sink the trunc 1509 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1510 TruncInsertPt++; 1511 assert(TruncInsertPt != TruncUserBB->end()); 1512 1513 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1514 TruncI->getType(), "", &*TruncInsertPt); 1515 1516 MadeChange = true; 1517 1518 TruncTheUse = InsertedTrunc; 1519 } 1520 } 1521 return MadeChange; 1522 } 1523 1524 /// Sink the shift *right* instruction into user blocks if the uses could 1525 /// potentially be combined with this shift instruction and generate BitExtract 1526 /// instruction. It will only be applied if the architecture supports BitExtract 1527 /// instruction. Here is an example: 1528 /// BB1: 1529 /// %x.extract.shift = lshr i64 %arg1, 32 1530 /// BB2: 1531 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1532 /// ==> 1533 /// 1534 /// BB2: 1535 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1536 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1537 /// 1538 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1539 /// instruction. 1540 /// Return true if any changes are made. 1541 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1542 const TargetLowering &TLI, 1543 const DataLayout &DL) { 1544 BasicBlock *DefBB = ShiftI->getParent(); 1545 1546 /// Only insert instructions in each block once. 1547 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1548 1549 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1550 1551 bool MadeChange = false; 1552 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1553 UI != E;) { 1554 Use &TheUse = UI.getUse(); 1555 Instruction *User = cast<Instruction>(*UI); 1556 // Preincrement use iterator so we don't invalidate it. 1557 ++UI; 1558 1559 // Don't bother for PHI nodes. 1560 if (isa<PHINode>(User)) 1561 continue; 1562 1563 if (!isExtractBitsCandidateUse(User)) 1564 continue; 1565 1566 BasicBlock *UserBB = User->getParent(); 1567 1568 if (UserBB == DefBB) { 1569 // If the shift and truncate instruction are in the same BB. The use of 1570 // the truncate(TruncUse) may still introduce another truncate if not 1571 // legal. In this case, we would like to sink both shift and truncate 1572 // instruction to the BB of TruncUse. 1573 // for example: 1574 // BB1: 1575 // i64 shift.result = lshr i64 opnd, imm 1576 // trunc.result = trunc shift.result to i16 1577 // 1578 // BB2: 1579 // ----> We will have an implicit truncate here if the architecture does 1580 // not have i16 compare. 1581 // cmp i16 trunc.result, opnd2 1582 // 1583 if (isa<TruncInst>(User) && shiftIsLegal 1584 // If the type of the truncate is legal, no trucate will be 1585 // introduced in other basic blocks. 1586 && 1587 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1588 MadeChange = 1589 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1590 1591 continue; 1592 } 1593 // If we have already inserted a shift into this block, use it. 1594 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1595 1596 if (!InsertedShift) { 1597 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1598 assert(InsertPt != UserBB->end()); 1599 1600 if (ShiftI->getOpcode() == Instruction::AShr) 1601 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1602 "", &*InsertPt); 1603 else 1604 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1605 "", &*InsertPt); 1606 1607 MadeChange = true; 1608 } 1609 1610 // Replace a use of the shift with a use of the new shift. 1611 TheUse = InsertedShift; 1612 } 1613 1614 // If we removed all uses, nuke the shift. 1615 if (ShiftI->use_empty()) 1616 ShiftI->eraseFromParent(); 1617 1618 return MadeChange; 1619 } 1620 1621 /// If counting leading or trailing zeros is an expensive operation and a zero 1622 /// input is defined, add a check for zero to avoid calling the intrinsic. 1623 /// 1624 /// We want to transform: 1625 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1626 /// 1627 /// into: 1628 /// entry: 1629 /// %cmpz = icmp eq i64 %A, 0 1630 /// br i1 %cmpz, label %cond.end, label %cond.false 1631 /// cond.false: 1632 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1633 /// br label %cond.end 1634 /// cond.end: 1635 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1636 /// 1637 /// If the transform is performed, return true and set ModifiedDT to true. 1638 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1639 const TargetLowering *TLI, 1640 const DataLayout *DL, 1641 bool &ModifiedDT) { 1642 if (!TLI || !DL) 1643 return false; 1644 1645 // If a zero input is undefined, it doesn't make sense to despeculate that. 1646 if (match(CountZeros->getOperand(1), m_One())) 1647 return false; 1648 1649 // If it's cheap to speculate, there's nothing to do. 1650 auto IntrinsicID = CountZeros->getIntrinsicID(); 1651 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1652 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1653 return false; 1654 1655 // Only handle legal scalar cases. Anything else requires too much work. 1656 Type *Ty = CountZeros->getType(); 1657 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1658 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1659 return false; 1660 1661 // The intrinsic will be sunk behind a compare against zero and branch. 1662 BasicBlock *StartBlock = CountZeros->getParent(); 1663 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1664 1665 // Create another block after the count zero intrinsic. A PHI will be added 1666 // in this block to select the result of the intrinsic or the bit-width 1667 // constant if the input to the intrinsic is zero. 1668 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1669 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1670 1671 // Set up a builder to create a compare, conditional branch, and PHI. 1672 IRBuilder<> Builder(CountZeros->getContext()); 1673 Builder.SetInsertPoint(StartBlock->getTerminator()); 1674 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1675 1676 // Replace the unconditional branch that was created by the first split with 1677 // a compare against zero and a conditional branch. 1678 Value *Zero = Constant::getNullValue(Ty); 1679 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1680 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1681 StartBlock->getTerminator()->eraseFromParent(); 1682 1683 // Create a PHI in the end block to select either the output of the intrinsic 1684 // or the bit width of the operand. 1685 Builder.SetInsertPoint(&EndBlock->front()); 1686 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1687 CountZeros->replaceAllUsesWith(PN); 1688 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1689 PN->addIncoming(BitWidth, StartBlock); 1690 PN->addIncoming(CountZeros, CallBlock); 1691 1692 // We are explicitly handling the zero case, so we can set the intrinsic's 1693 // undefined zero argument to 'true'. This will also prevent reprocessing the 1694 // intrinsic; we only despeculate when a zero input is defined. 1695 CountZeros->setArgOperand(1, Builder.getTrue()); 1696 ModifiedDT = true; 1697 return true; 1698 } 1699 1700 namespace { 1701 1702 // This class provides helper functions to expand a memcmp library call into an 1703 // inline expansion. 1704 class MemCmpExpansion { 1705 struct ResultBlock { 1706 BasicBlock *BB = nullptr; 1707 PHINode *PhiSrc1 = nullptr; 1708 PHINode *PhiSrc2 = nullptr; 1709 1710 ResultBlock() = default; 1711 }; 1712 1713 CallInst *CI; 1714 ResultBlock ResBlock; 1715 unsigned MaxLoadSize; 1716 unsigned NumBlocks; 1717 unsigned NumBlocksNonOneByte; 1718 unsigned NumLoadsPerBlock; 1719 std::vector<BasicBlock *> LoadCmpBlocks; 1720 BasicBlock *EndBlock; 1721 PHINode *PhiRes; 1722 bool IsUsedForZeroCmp; 1723 const DataLayout &DL; 1724 IRBuilder<> Builder; 1725 1726 unsigned calculateNumBlocks(unsigned Size); 1727 void createLoadCmpBlocks(); 1728 void createResultBlock(); 1729 void setupResultBlockPHINodes(); 1730 void setupEndBlockPHINodes(); 1731 void emitLoadCompareBlock(unsigned Index, unsigned LoadSize, 1732 unsigned GEPIndex); 1733 Value *getCompareLoadPairs(unsigned Index, unsigned Size, 1734 unsigned &NumBytesProcessed); 1735 void emitLoadCompareBlockMultipleLoads(unsigned Index, unsigned Size, 1736 unsigned &NumBytesProcessed); 1737 void emitLoadCompareByteBlock(unsigned Index, unsigned GEPIndex); 1738 void emitMemCmpResultBlock(); 1739 Value *getMemCmpExpansionZeroCase(unsigned Size); 1740 Value *getMemCmpEqZeroOneBlock(unsigned Size); 1741 Value *getMemCmpOneBlock(unsigned Size); 1742 unsigned getLoadSize(unsigned Size); 1743 unsigned getNumLoads(unsigned Size); 1744 1745 public: 1746 MemCmpExpansion(CallInst *CI, uint64_t Size, unsigned MaxLoadSize, 1747 unsigned NumLoadsPerBlock, const DataLayout &DL); 1748 1749 Value *getMemCmpExpansion(uint64_t Size); 1750 }; 1751 1752 } // end anonymous namespace 1753 1754 // Initialize the basic block structure required for expansion of memcmp call 1755 // with given maximum load size and memcmp size parameter. 1756 // This structure includes: 1757 // 1. A list of load compare blocks - LoadCmpBlocks. 1758 // 2. An EndBlock, split from original instruction point, which is the block to 1759 // return from. 1760 // 3. ResultBlock, block to branch to for early exit when a 1761 // LoadCmpBlock finds a difference. 1762 MemCmpExpansion::MemCmpExpansion(CallInst *CI, uint64_t Size, 1763 unsigned MaxLoadSize, unsigned LoadsPerBlock, 1764 const DataLayout &TheDataLayout) 1765 : CI(CI), MaxLoadSize(MaxLoadSize), NumLoadsPerBlock(LoadsPerBlock), 1766 DL(TheDataLayout), Builder(CI) { 1767 // A memcmp with zero-comparison with only one block of load and compare does 1768 // not need to set up any extra blocks. This case could be handled in the DAG, 1769 // but since we have all of the machinery to flexibly expand any memcpy here, 1770 // we choose to handle this case too to avoid fragmented lowering. 1771 IsUsedForZeroCmp = isOnlyUsedInZeroEqualityComparison(CI); 1772 NumBlocks = calculateNumBlocks(Size); 1773 if ((!IsUsedForZeroCmp && NumLoadsPerBlock != 1) || NumBlocks != 1) { 1774 BasicBlock *StartBlock = CI->getParent(); 1775 EndBlock = StartBlock->splitBasicBlock(CI, "endblock"); 1776 setupEndBlockPHINodes(); 1777 createResultBlock(); 1778 1779 // If return value of memcmp is not used in a zero equality, we need to 1780 // calculate which source was larger. The calculation requires the 1781 // two loaded source values of each load compare block. 1782 // These will be saved in the phi nodes created by setupResultBlockPHINodes. 1783 if (!IsUsedForZeroCmp) 1784 setupResultBlockPHINodes(); 1785 1786 // Create the number of required load compare basic blocks. 1787 createLoadCmpBlocks(); 1788 1789 // Update the terminator added by splitBasicBlock to branch to the first 1790 // LoadCmpBlock. 1791 StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]); 1792 } 1793 1794 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1795 } 1796 1797 void MemCmpExpansion::createLoadCmpBlocks() { 1798 for (unsigned i = 0; i < NumBlocks; i++) { 1799 BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb", 1800 EndBlock->getParent(), EndBlock); 1801 LoadCmpBlocks.push_back(BB); 1802 } 1803 } 1804 1805 void MemCmpExpansion::createResultBlock() { 1806 ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block", 1807 EndBlock->getParent(), EndBlock); 1808 } 1809 1810 // This function creates the IR instructions for loading and comparing 1 byte. 1811 // It loads 1 byte from each source of the memcmp parameters with the given 1812 // GEPIndex. It then subtracts the two loaded values and adds this result to the 1813 // final phi node for selecting the memcmp result. 1814 void MemCmpExpansion::emitLoadCompareByteBlock(unsigned Index, 1815 unsigned GEPIndex) { 1816 Value *Source1 = CI->getArgOperand(0); 1817 Value *Source2 = CI->getArgOperand(1); 1818 1819 Builder.SetInsertPoint(LoadCmpBlocks[Index]); 1820 Type *LoadSizeType = Type::getInt8Ty(CI->getContext()); 1821 // Cast source to LoadSizeType*. 1822 if (Source1->getType() != LoadSizeType) 1823 Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo()); 1824 if (Source2->getType() != LoadSizeType) 1825 Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo()); 1826 1827 // Get the base address using the GEPIndex. 1828 if (GEPIndex != 0) { 1829 Source1 = Builder.CreateGEP(LoadSizeType, Source1, 1830 ConstantInt::get(LoadSizeType, GEPIndex)); 1831 Source2 = Builder.CreateGEP(LoadSizeType, Source2, 1832 ConstantInt::get(LoadSizeType, GEPIndex)); 1833 } 1834 1835 Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1); 1836 Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2); 1837 1838 LoadSrc1 = Builder.CreateZExt(LoadSrc1, Type::getInt32Ty(CI->getContext())); 1839 LoadSrc2 = Builder.CreateZExt(LoadSrc2, Type::getInt32Ty(CI->getContext())); 1840 Value *Diff = Builder.CreateSub(LoadSrc1, LoadSrc2); 1841 1842 PhiRes->addIncoming(Diff, LoadCmpBlocks[Index]); 1843 1844 if (Index < (LoadCmpBlocks.size() - 1)) { 1845 // Early exit branch if difference found to EndBlock. Otherwise, continue to 1846 // next LoadCmpBlock, 1847 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff, 1848 ConstantInt::get(Diff->getType(), 0)); 1849 BranchInst *CmpBr = 1850 BranchInst::Create(EndBlock, LoadCmpBlocks[Index + 1], Cmp); 1851 Builder.Insert(CmpBr); 1852 } else { 1853 // The last block has an unconditional branch to EndBlock. 1854 BranchInst *CmpBr = BranchInst::Create(EndBlock); 1855 Builder.Insert(CmpBr); 1856 } 1857 } 1858 1859 unsigned MemCmpExpansion::getNumLoads(unsigned Size) { 1860 return (Size / MaxLoadSize) + countPopulation(Size % MaxLoadSize); 1861 } 1862 1863 unsigned MemCmpExpansion::getLoadSize(unsigned Size) { 1864 return MinAlign(PowerOf2Floor(Size), MaxLoadSize); 1865 } 1866 1867 /// Generate an equality comparison for one or more pairs of loaded values. 1868 /// This is used in the case where the memcmp() call is compared equal or not 1869 /// equal to zero. 1870 Value *MemCmpExpansion::getCompareLoadPairs(unsigned Index, unsigned Size, 1871 unsigned &NumBytesProcessed) { 1872 std::vector<Value *> XorList, OrList; 1873 Value *Diff; 1874 1875 unsigned RemainingBytes = Size - NumBytesProcessed; 1876 unsigned NumLoadsRemaining = getNumLoads(RemainingBytes); 1877 unsigned NumLoads = std::min(NumLoadsRemaining, NumLoadsPerBlock); 1878 1879 // For a single-block expansion, start inserting before the memcmp call. 1880 if (LoadCmpBlocks.empty()) 1881 Builder.SetInsertPoint(CI); 1882 else 1883 Builder.SetInsertPoint(LoadCmpBlocks[Index]); 1884 1885 Value *Cmp = nullptr; 1886 for (unsigned i = 0; i < NumLoads; ++i) { 1887 unsigned LoadSize = getLoadSize(RemainingBytes); 1888 unsigned GEPIndex = NumBytesProcessed / LoadSize; 1889 NumBytesProcessed += LoadSize; 1890 RemainingBytes -= LoadSize; 1891 1892 Type *LoadSizeType = IntegerType::get(CI->getContext(), LoadSize * 8); 1893 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8); 1894 assert(LoadSize <= MaxLoadSize && "Unexpected load type"); 1895 1896 Value *Source1 = CI->getArgOperand(0); 1897 Value *Source2 = CI->getArgOperand(1); 1898 1899 // Cast source to LoadSizeType*. 1900 if (Source1->getType() != LoadSizeType) 1901 Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo()); 1902 if (Source2->getType() != LoadSizeType) 1903 Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo()); 1904 1905 // Get the base address using the GEPIndex. 1906 if (GEPIndex != 0) { 1907 Source1 = Builder.CreateGEP(LoadSizeType, Source1, 1908 ConstantInt::get(LoadSizeType, GEPIndex)); 1909 Source2 = Builder.CreateGEP(LoadSizeType, Source2, 1910 ConstantInt::get(LoadSizeType, GEPIndex)); 1911 } 1912 1913 // Get a constant or load a value for each source address. 1914 Value *LoadSrc1 = nullptr; 1915 if (auto *Source1C = dyn_cast<Constant>(Source1)) 1916 LoadSrc1 = ConstantFoldLoadFromConstPtr(Source1C, LoadSizeType, DL); 1917 if (!LoadSrc1) 1918 LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1); 1919 1920 Value *LoadSrc2 = nullptr; 1921 if (auto *Source2C = dyn_cast<Constant>(Source2)) 1922 LoadSrc2 = ConstantFoldLoadFromConstPtr(Source2C, LoadSizeType, DL); 1923 if (!LoadSrc2) 1924 LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2); 1925 1926 if (NumLoads != 1) { 1927 if (LoadSizeType != MaxLoadType) { 1928 LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType); 1929 LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType); 1930 } 1931 // If we have multiple loads per block, we need to generate a composite 1932 // comparison using xor+or. 1933 Diff = Builder.CreateXor(LoadSrc1, LoadSrc2); 1934 Diff = Builder.CreateZExt(Diff, MaxLoadType); 1935 XorList.push_back(Diff); 1936 } else { 1937 // If there's only one load per block, we just compare the loaded values. 1938 Cmp = Builder.CreateICmpNE(LoadSrc1, LoadSrc2); 1939 } 1940 } 1941 1942 auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> { 1943 std::vector<Value *> OutList; 1944 for (unsigned i = 0; i < InList.size() - 1; i = i + 2) { 1945 Value *Or = Builder.CreateOr(InList[i], InList[i + 1]); 1946 OutList.push_back(Or); 1947 } 1948 if (InList.size() % 2 != 0) 1949 OutList.push_back(InList.back()); 1950 return OutList; 1951 }; 1952 1953 if (!Cmp) { 1954 // Pairwise OR the XOR results. 1955 OrList = pairWiseOr(XorList); 1956 1957 // Pairwise OR the OR results until one result left. 1958 while (OrList.size() != 1) { 1959 OrList = pairWiseOr(OrList); 1960 } 1961 Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0)); 1962 } 1963 1964 return Cmp; 1965 } 1966 1967 void MemCmpExpansion::emitLoadCompareBlockMultipleLoads( 1968 unsigned Index, unsigned Size, unsigned &NumBytesProcessed) { 1969 Value *Cmp = getCompareLoadPairs(Index, Size, NumBytesProcessed); 1970 1971 BasicBlock *NextBB = (Index == (LoadCmpBlocks.size() - 1)) 1972 ? EndBlock 1973 : LoadCmpBlocks[Index + 1]; 1974 // Early exit branch if difference found to ResultBlock. Otherwise, 1975 // continue to next LoadCmpBlock or EndBlock. 1976 BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp); 1977 Builder.Insert(CmpBr); 1978 1979 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0 1980 // since early exit to ResultBlock was not taken (no difference was found in 1981 // any of the bytes). 1982 if (Index == LoadCmpBlocks.size() - 1) { 1983 Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0); 1984 PhiRes->addIncoming(Zero, LoadCmpBlocks[Index]); 1985 } 1986 } 1987 1988 // This function creates the IR intructions for loading and comparing using the 1989 // given LoadSize. It loads the number of bytes specified by LoadSize from each 1990 // source of the memcmp parameters. It then does a subtract to see if there was 1991 // a difference in the loaded values. If a difference is found, it branches 1992 // with an early exit to the ResultBlock for calculating which source was 1993 // larger. Otherwise, it falls through to the either the next LoadCmpBlock or 1994 // the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with 1995 // a special case through emitLoadCompareByteBlock. The special handling can 1996 // simply subtract the loaded values and add it to the result phi node. 1997 void MemCmpExpansion::emitLoadCompareBlock(unsigned Index, unsigned LoadSize, 1998 unsigned GEPIndex) { 1999 if (LoadSize == 1) { 2000 MemCmpExpansion::emitLoadCompareByteBlock(Index, GEPIndex); 2001 return; 2002 } 2003 2004 Type *LoadSizeType = IntegerType::get(CI->getContext(), LoadSize * 8); 2005 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8); 2006 assert(LoadSize <= MaxLoadSize && "Unexpected load type"); 2007 2008 Value *Source1 = CI->getArgOperand(0); 2009 Value *Source2 = CI->getArgOperand(1); 2010 2011 Builder.SetInsertPoint(LoadCmpBlocks[Index]); 2012 // Cast source to LoadSizeType*. 2013 if (Source1->getType() != LoadSizeType) 2014 Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo()); 2015 if (Source2->getType() != LoadSizeType) 2016 Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo()); 2017 2018 // Get the base address using the GEPIndex. 2019 if (GEPIndex != 0) { 2020 Source1 = Builder.CreateGEP(LoadSizeType, Source1, 2021 ConstantInt::get(LoadSizeType, GEPIndex)); 2022 Source2 = Builder.CreateGEP(LoadSizeType, Source2, 2023 ConstantInt::get(LoadSizeType, GEPIndex)); 2024 } 2025 2026 // Load LoadSizeType from the base address. 2027 Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1); 2028 Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2); 2029 2030 if (DL.isLittleEndian()) { 2031 Function *Bswap = Intrinsic::getDeclaration(CI->getModule(), 2032 Intrinsic::bswap, LoadSizeType); 2033 LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1); 2034 LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2); 2035 } 2036 2037 if (LoadSizeType != MaxLoadType) { 2038 LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType); 2039 LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType); 2040 } 2041 2042 // Add the loaded values to the phi nodes for calculating memcmp result only 2043 // if result is not used in a zero equality. 2044 if (!IsUsedForZeroCmp) { 2045 ResBlock.PhiSrc1->addIncoming(LoadSrc1, LoadCmpBlocks[Index]); 2046 ResBlock.PhiSrc2->addIncoming(LoadSrc2, LoadCmpBlocks[Index]); 2047 } 2048 2049 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, LoadSrc1, LoadSrc2); 2050 BasicBlock *NextBB = (Index == (LoadCmpBlocks.size() - 1)) 2051 ? EndBlock 2052 : LoadCmpBlocks[Index + 1]; 2053 // Early exit branch if difference found to ResultBlock. Otherwise, continue 2054 // to next LoadCmpBlock or EndBlock. 2055 BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp); 2056 Builder.Insert(CmpBr); 2057 2058 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0 2059 // since early exit to ResultBlock was not taken (no difference was found in 2060 // any of the bytes). 2061 if (Index == LoadCmpBlocks.size() - 1) { 2062 Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0); 2063 PhiRes->addIncoming(Zero, LoadCmpBlocks[Index]); 2064 } 2065 } 2066 2067 // This function populates the ResultBlock with a sequence to calculate the 2068 // memcmp result. It compares the two loaded source values and returns -1 if 2069 // src1 < src2 and 1 if src1 > src2. 2070 void MemCmpExpansion::emitMemCmpResultBlock() { 2071 // Special case: if memcmp result is used in a zero equality, result does not 2072 // need to be calculated and can simply return 1. 2073 if (IsUsedForZeroCmp) { 2074 BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt(); 2075 Builder.SetInsertPoint(ResBlock.BB, InsertPt); 2076 Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1); 2077 PhiRes->addIncoming(Res, ResBlock.BB); 2078 BranchInst *NewBr = BranchInst::Create(EndBlock); 2079 Builder.Insert(NewBr); 2080 return; 2081 } 2082 BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt(); 2083 Builder.SetInsertPoint(ResBlock.BB, InsertPt); 2084 2085 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1, 2086 ResBlock.PhiSrc2); 2087 2088 Value *Res = 2089 Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1), 2090 ConstantInt::get(Builder.getInt32Ty(), 1)); 2091 2092 BranchInst *NewBr = BranchInst::Create(EndBlock); 2093 Builder.Insert(NewBr); 2094 PhiRes->addIncoming(Res, ResBlock.BB); 2095 } 2096 2097 unsigned MemCmpExpansion::calculateNumBlocks(unsigned Size) { 2098 unsigned NumBlocks = 0; 2099 bool HaveOneByteLoad = false; 2100 unsigned RemainingSize = Size; 2101 unsigned LoadSize = MaxLoadSize; 2102 while (RemainingSize) { 2103 if (LoadSize == 1) 2104 HaveOneByteLoad = true; 2105 NumBlocks += RemainingSize / LoadSize; 2106 RemainingSize = RemainingSize % LoadSize; 2107 LoadSize = LoadSize / 2; 2108 } 2109 NumBlocksNonOneByte = HaveOneByteLoad ? (NumBlocks - 1) : NumBlocks; 2110 2111 if (IsUsedForZeroCmp) 2112 NumBlocks = NumBlocks / NumLoadsPerBlock + 2113 (NumBlocks % NumLoadsPerBlock != 0 ? 1 : 0); 2114 2115 return NumBlocks; 2116 } 2117 2118 void MemCmpExpansion::setupResultBlockPHINodes() { 2119 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8); 2120 Builder.SetInsertPoint(ResBlock.BB); 2121 ResBlock.PhiSrc1 = 2122 Builder.CreatePHI(MaxLoadType, NumBlocksNonOneByte, "phi.src1"); 2123 ResBlock.PhiSrc2 = 2124 Builder.CreatePHI(MaxLoadType, NumBlocksNonOneByte, "phi.src2"); 2125 } 2126 2127 void MemCmpExpansion::setupEndBlockPHINodes() { 2128 Builder.SetInsertPoint(&EndBlock->front()); 2129 PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res"); 2130 } 2131 2132 Value *MemCmpExpansion::getMemCmpExpansionZeroCase(unsigned Size) { 2133 unsigned NumBytesProcessed = 0; 2134 // This loop populates each of the LoadCmpBlocks with the IR sequence to 2135 // handle multiple loads per block. 2136 for (unsigned i = 0; i < NumBlocks; ++i) 2137 emitLoadCompareBlockMultipleLoads(i, Size, NumBytesProcessed); 2138 2139 emitMemCmpResultBlock(); 2140 return PhiRes; 2141 } 2142 2143 /// A memcmp expansion that compares equality with 0 and only has one block of 2144 /// load and compare can bypass the compare, branch, and phi IR that is required 2145 /// in the general case. 2146 Value *MemCmpExpansion::getMemCmpEqZeroOneBlock(unsigned Size) { 2147 unsigned NumBytesProcessed = 0; 2148 Value *Cmp = getCompareLoadPairs(0, Size, NumBytesProcessed); 2149 return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext())); 2150 } 2151 2152 /// A memcmp expansion that only has one block of load and compare can bypass 2153 /// the compare, branch, and phi IR that is required in the general case. 2154 Value *MemCmpExpansion::getMemCmpOneBlock(unsigned Size) { 2155 assert(NumLoadsPerBlock == 1 && "Only handles one load pair per block"); 2156 2157 Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8); 2158 Value *Source1 = CI->getArgOperand(0); 2159 Value *Source2 = CI->getArgOperand(1); 2160 2161 // Cast source to LoadSizeType*. 2162 if (Source1->getType() != LoadSizeType) 2163 Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo()); 2164 if (Source2->getType() != LoadSizeType) 2165 Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo()); 2166 2167 // Load LoadSizeType from the base address. 2168 Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1); 2169 Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2); 2170 2171 if (DL.isLittleEndian() && Size != 1) { 2172 Function *Bswap = Intrinsic::getDeclaration(CI->getModule(), 2173 Intrinsic::bswap, LoadSizeType); 2174 LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1); 2175 LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2); 2176 } 2177 2178 if (Size < 4) { 2179 // The i8 and i16 cases don't need compares. We zext the loaded values and 2180 // subtract them to get the suitable negative, zero, or positive i32 result. 2181 LoadSrc1 = Builder.CreateZExt(LoadSrc1, Builder.getInt32Ty()); 2182 LoadSrc2 = Builder.CreateZExt(LoadSrc2, Builder.getInt32Ty()); 2183 return Builder.CreateSub(LoadSrc1, LoadSrc2); 2184 } 2185 2186 // The result of memcmp is negative, zero, or positive, so produce that by 2187 // subtracting 2 extended compare bits: sub (ugt, ult). 2188 // If a target prefers to use selects to get -1/0/1, they should be able 2189 // to transform this later. The inverse transform (going from selects to math) 2190 // may not be possible in the DAG because the selects got converted into 2191 // branches before we got there. 2192 Value *CmpUGT = Builder.CreateICmpUGT(LoadSrc1, LoadSrc2); 2193 Value *CmpULT = Builder.CreateICmpULT(LoadSrc1, LoadSrc2); 2194 Value *ZextUGT = Builder.CreateZExt(CmpUGT, Builder.getInt32Ty()); 2195 Value *ZextULT = Builder.CreateZExt(CmpULT, Builder.getInt32Ty()); 2196 return Builder.CreateSub(ZextUGT, ZextULT); 2197 } 2198 2199 // This function expands the memcmp call into an inline expansion and returns 2200 // the memcmp result. 2201 Value *MemCmpExpansion::getMemCmpExpansion(uint64_t Size) { 2202 if (IsUsedForZeroCmp) 2203 return NumBlocks == 1 ? getMemCmpEqZeroOneBlock(Size) : 2204 getMemCmpExpansionZeroCase(Size); 2205 2206 // TODO: Handle more than one load pair per block in getMemCmpOneBlock(). 2207 if (NumBlocks == 1 && NumLoadsPerBlock == 1) 2208 return getMemCmpOneBlock(Size); 2209 2210 // This loop calls emitLoadCompareBlock for comparing Size bytes of the two 2211 // memcmp sources. It starts with loading using the maximum load size set by 2212 // the target. It processes any remaining bytes using a load size which is the 2213 // next smallest power of 2. 2214 unsigned LoadSize = MaxLoadSize; 2215 unsigned NumBytesToBeProcessed = Size; 2216 unsigned Index = 0; 2217 while (NumBytesToBeProcessed) { 2218 // Calculate how many blocks we can create with the current load size. 2219 unsigned NumBlocks = NumBytesToBeProcessed / LoadSize; 2220 unsigned GEPIndex = (Size - NumBytesToBeProcessed) / LoadSize; 2221 NumBytesToBeProcessed = NumBytesToBeProcessed % LoadSize; 2222 2223 // For each NumBlocks, populate the instruction sequence for loading and 2224 // comparing LoadSize bytes. 2225 while (NumBlocks--) { 2226 emitLoadCompareBlock(Index, LoadSize, GEPIndex); 2227 Index++; 2228 GEPIndex++; 2229 } 2230 // Get the next LoadSize to use. 2231 LoadSize = LoadSize / 2; 2232 } 2233 2234 emitMemCmpResultBlock(); 2235 return PhiRes; 2236 } 2237 2238 // This function checks to see if an expansion of memcmp can be generated. 2239 // It checks for constant compare size that is less than the max inline size. 2240 // If an expansion cannot occur, returns false to leave as a library call. 2241 // Otherwise, the library call is replaced with a new IR instruction sequence. 2242 /// We want to transform: 2243 /// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15) 2244 /// To: 2245 /// loadbb: 2246 /// %0 = bitcast i32* %buffer2 to i8* 2247 /// %1 = bitcast i32* %buffer1 to i8* 2248 /// %2 = bitcast i8* %1 to i64* 2249 /// %3 = bitcast i8* %0 to i64* 2250 /// %4 = load i64, i64* %2 2251 /// %5 = load i64, i64* %3 2252 /// %6 = call i64 @llvm.bswap.i64(i64 %4) 2253 /// %7 = call i64 @llvm.bswap.i64(i64 %5) 2254 /// %8 = sub i64 %6, %7 2255 /// %9 = icmp ne i64 %8, 0 2256 /// br i1 %9, label %res_block, label %loadbb1 2257 /// res_block: ; preds = %loadbb2, 2258 /// %loadbb1, %loadbb 2259 /// %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ] 2260 /// %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ] 2261 /// %10 = icmp ult i64 %phi.src1, %phi.src2 2262 /// %11 = select i1 %10, i32 -1, i32 1 2263 /// br label %endblock 2264 /// loadbb1: ; preds = %loadbb 2265 /// %12 = bitcast i32* %buffer2 to i8* 2266 /// %13 = bitcast i32* %buffer1 to i8* 2267 /// %14 = bitcast i8* %13 to i32* 2268 /// %15 = bitcast i8* %12 to i32* 2269 /// %16 = getelementptr i32, i32* %14, i32 2 2270 /// %17 = getelementptr i32, i32* %15, i32 2 2271 /// %18 = load i32, i32* %16 2272 /// %19 = load i32, i32* %17 2273 /// %20 = call i32 @llvm.bswap.i32(i32 %18) 2274 /// %21 = call i32 @llvm.bswap.i32(i32 %19) 2275 /// %22 = zext i32 %20 to i64 2276 /// %23 = zext i32 %21 to i64 2277 /// %24 = sub i64 %22, %23 2278 /// %25 = icmp ne i64 %24, 0 2279 /// br i1 %25, label %res_block, label %loadbb2 2280 /// loadbb2: ; preds = %loadbb1 2281 /// %26 = bitcast i32* %buffer2 to i8* 2282 /// %27 = bitcast i32* %buffer1 to i8* 2283 /// %28 = bitcast i8* %27 to i16* 2284 /// %29 = bitcast i8* %26 to i16* 2285 /// %30 = getelementptr i16, i16* %28, i16 6 2286 /// %31 = getelementptr i16, i16* %29, i16 6 2287 /// %32 = load i16, i16* %30 2288 /// %33 = load i16, i16* %31 2289 /// %34 = call i16 @llvm.bswap.i16(i16 %32) 2290 /// %35 = call i16 @llvm.bswap.i16(i16 %33) 2291 /// %36 = zext i16 %34 to i64 2292 /// %37 = zext i16 %35 to i64 2293 /// %38 = sub i64 %36, %37 2294 /// %39 = icmp ne i64 %38, 0 2295 /// br i1 %39, label %res_block, label %loadbb3 2296 /// loadbb3: ; preds = %loadbb2 2297 /// %40 = bitcast i32* %buffer2 to i8* 2298 /// %41 = bitcast i32* %buffer1 to i8* 2299 /// %42 = getelementptr i8, i8* %41, i8 14 2300 /// %43 = getelementptr i8, i8* %40, i8 14 2301 /// %44 = load i8, i8* %42 2302 /// %45 = load i8, i8* %43 2303 /// %46 = zext i8 %44 to i32 2304 /// %47 = zext i8 %45 to i32 2305 /// %48 = sub i32 %46, %47 2306 /// br label %endblock 2307 /// endblock: ; preds = %res_block, 2308 /// %loadbb3 2309 /// %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ] 2310 /// ret i32 %phi.res 2311 static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI, 2312 const TargetLowering *TLI, const DataLayout *DL) { 2313 NumMemCmpCalls++; 2314 2315 // TTI call to check if target would like to expand memcmp. Also, get the 2316 // MaxLoadSize. 2317 unsigned MaxLoadSize; 2318 if (!TTI->enableMemCmpExpansion(MaxLoadSize)) 2319 return false; 2320 2321 // Early exit from expansion if -Oz. 2322 if (CI->getFunction()->optForMinSize()) 2323 return false; 2324 2325 // Early exit from expansion if size is not a constant. 2326 ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2327 if (!SizeCast) { 2328 NumMemCmpNotConstant++; 2329 return false; 2330 } 2331 2332 // Scale the max size down if the target can load more bytes than we need. 2333 uint64_t SizeVal = SizeCast->getZExtValue(); 2334 if (MaxLoadSize > SizeVal) 2335 MaxLoadSize = 1 << SizeCast->getValue().logBase2(); 2336 2337 // Calculate how many load pairs are needed for the constant size. 2338 unsigned NumLoads = 0; 2339 unsigned RemainingSize = SizeVal; 2340 unsigned LoadSize = MaxLoadSize; 2341 while (RemainingSize) { 2342 NumLoads += RemainingSize / LoadSize; 2343 RemainingSize = RemainingSize % LoadSize; 2344 LoadSize = LoadSize / 2; 2345 } 2346 2347 // Don't expand if this will require more loads than desired by the target. 2348 if (NumLoads > TLI->getMaxExpandSizeMemcmp(CI->getFunction()->optForSize())) { 2349 NumMemCmpGreaterThanMax++; 2350 return false; 2351 } 2352 2353 NumMemCmpInlined++; 2354 2355 // MemCmpHelper object creates and sets up basic blocks required for 2356 // expanding memcmp with size SizeVal. 2357 unsigned NumLoadsPerBlock = MemCmpNumLoadsPerBlock; 2358 MemCmpExpansion MemCmpHelper(CI, SizeVal, MaxLoadSize, NumLoadsPerBlock, *DL); 2359 2360 Value *Res = MemCmpHelper.getMemCmpExpansion(SizeVal); 2361 2362 // Replace call with result of expansion and erase call. 2363 CI->replaceAllUsesWith(Res); 2364 CI->eraseFromParent(); 2365 2366 return true; 2367 } 2368 2369 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 2370 BasicBlock *BB = CI->getParent(); 2371 2372 // Lower inline assembly if we can. 2373 // If we found an inline asm expession, and if the target knows how to 2374 // lower it to normal LLVM code, do so now. 2375 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 2376 if (TLI->ExpandInlineAsm(CI)) { 2377 // Avoid invalidating the iterator. 2378 CurInstIterator = BB->begin(); 2379 // Avoid processing instructions out of order, which could cause 2380 // reuse before a value is defined. 2381 SunkAddrs.clear(); 2382 return true; 2383 } 2384 // Sink address computing for memory operands into the block. 2385 if (optimizeInlineAsmInst(CI)) 2386 return true; 2387 } 2388 2389 // Align the pointer arguments to this call if the target thinks it's a good 2390 // idea 2391 unsigned MinSize, PrefAlign; 2392 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 2393 for (auto &Arg : CI->arg_operands()) { 2394 // We want to align both objects whose address is used directly and 2395 // objects whose address is used in casts and GEPs, though it only makes 2396 // sense for GEPs if the offset is a multiple of the desired alignment and 2397 // if size - offset meets the size threshold. 2398 if (!Arg->getType()->isPointerTy()) 2399 continue; 2400 APInt Offset(DL->getPointerSizeInBits( 2401 cast<PointerType>(Arg->getType())->getAddressSpace()), 2402 0); 2403 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 2404 uint64_t Offset2 = Offset.getLimitedValue(); 2405 if ((Offset2 & (PrefAlign-1)) != 0) 2406 continue; 2407 AllocaInst *AI; 2408 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 2409 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2410 AI->setAlignment(PrefAlign); 2411 // Global variables can only be aligned if they are defined in this 2412 // object (i.e. they are uniquely initialized in this object), and 2413 // over-aligning global variables that have an explicit section is 2414 // forbidden. 2415 GlobalVariable *GV; 2416 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2417 GV->getPointerAlignment(*DL) < PrefAlign && 2418 DL->getTypeAllocSize(GV->getValueType()) >= 2419 MinSize + Offset2) 2420 GV->setAlignment(PrefAlign); 2421 } 2422 // If this is a memcpy (or similar) then we may be able to improve the 2423 // alignment 2424 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2425 unsigned Align = getKnownAlignment(MI->getDest(), *DL); 2426 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 2427 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL)); 2428 if (Align > MI->getAlignment()) 2429 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align)); 2430 } 2431 } 2432 2433 // If we have a cold call site, try to sink addressing computation into the 2434 // cold block. This interacts with our handling for loads and stores to 2435 // ensure that we can fold all uses of a potential addressing computation 2436 // into their uses. TODO: generalize this to work over profiling data 2437 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 2438 for (auto &Arg : CI->arg_operands()) { 2439 if (!Arg->getType()->isPointerTy()) 2440 continue; 2441 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2442 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 2443 } 2444 2445 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2446 if (II) { 2447 switch (II->getIntrinsicID()) { 2448 default: break; 2449 case Intrinsic::objectsize: { 2450 // Lower all uses of llvm.objectsize.* 2451 ConstantInt *RetVal = 2452 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 2453 // Substituting this can cause recursive simplifications, which can 2454 // invalidate our iterator. Use a WeakTrackingVH to hold onto it in case 2455 // this 2456 // happens. 2457 Value *CurValue = &*CurInstIterator; 2458 WeakTrackingVH IterHandle(CurValue); 2459 2460 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2461 2462 // If the iterator instruction was recursively deleted, start over at the 2463 // start of the block. 2464 if (IterHandle != CurValue) { 2465 CurInstIterator = BB->begin(); 2466 SunkAddrs.clear(); 2467 } 2468 return true; 2469 } 2470 case Intrinsic::aarch64_stlxr: 2471 case Intrinsic::aarch64_stxr: { 2472 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2473 if (!ExtVal || !ExtVal->hasOneUse() || 2474 ExtVal->getParent() == CI->getParent()) 2475 return false; 2476 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2477 ExtVal->moveBefore(CI); 2478 // Mark this instruction as "inserted by CGP", so that other 2479 // optimizations don't touch it. 2480 InsertedInsts.insert(ExtVal); 2481 return true; 2482 } 2483 case Intrinsic::invariant_group_barrier: 2484 II->replaceAllUsesWith(II->getArgOperand(0)); 2485 II->eraseFromParent(); 2486 return true; 2487 2488 case Intrinsic::cttz: 2489 case Intrinsic::ctlz: 2490 // If counting zeros is expensive, try to avoid it. 2491 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2492 } 2493 2494 if (TLI) { 2495 SmallVector<Value*, 2> PtrOps; 2496 Type *AccessTy; 2497 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2498 while (!PtrOps.empty()) { 2499 Value *PtrVal = PtrOps.pop_back_val(); 2500 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2501 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2502 return true; 2503 } 2504 } 2505 } 2506 2507 // From here on out we're working with named functions. 2508 if (!CI->getCalledFunction()) return false; 2509 2510 // Lower all default uses of _chk calls. This is very similar 2511 // to what InstCombineCalls does, but here we are only lowering calls 2512 // to fortified library functions (e.g. __memcpy_chk) that have the default 2513 // "don't know" as the objectsize. Anything else should be left alone. 2514 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2515 if (Value *V = Simplifier.optimizeCall(CI)) { 2516 CI->replaceAllUsesWith(V); 2517 CI->eraseFromParent(); 2518 return true; 2519 } 2520 2521 LibFunc Func; 2522 if (TLInfo->getLibFunc(ImmutableCallSite(CI), Func) && 2523 Func == LibFunc_memcmp && expandMemCmp(CI, TTI, TLI, DL)) { 2524 ModifiedDT = true; 2525 return true; 2526 } 2527 return false; 2528 } 2529 2530 /// Look for opportunities to duplicate return instructions to the predecessor 2531 /// to enable tail call optimizations. The case it is currently looking for is: 2532 /// @code 2533 /// bb0: 2534 /// %tmp0 = tail call i32 @f0() 2535 /// br label %return 2536 /// bb1: 2537 /// %tmp1 = tail call i32 @f1() 2538 /// br label %return 2539 /// bb2: 2540 /// %tmp2 = tail call i32 @f2() 2541 /// br label %return 2542 /// return: 2543 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2544 /// ret i32 %retval 2545 /// @endcode 2546 /// 2547 /// => 2548 /// 2549 /// @code 2550 /// bb0: 2551 /// %tmp0 = tail call i32 @f0() 2552 /// ret i32 %tmp0 2553 /// bb1: 2554 /// %tmp1 = tail call i32 @f1() 2555 /// ret i32 %tmp1 2556 /// bb2: 2557 /// %tmp2 = tail call i32 @f2() 2558 /// ret i32 %tmp2 2559 /// @endcode 2560 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 2561 if (!TLI) 2562 return false; 2563 2564 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2565 if (!RetI) 2566 return false; 2567 2568 PHINode *PN = nullptr; 2569 BitCastInst *BCI = nullptr; 2570 Value *V = RetI->getReturnValue(); 2571 if (V) { 2572 BCI = dyn_cast<BitCastInst>(V); 2573 if (BCI) 2574 V = BCI->getOperand(0); 2575 2576 PN = dyn_cast<PHINode>(V); 2577 if (!PN) 2578 return false; 2579 } 2580 2581 if (PN && PN->getParent() != BB) 2582 return false; 2583 2584 // Make sure there are no instructions between the PHI and return, or that the 2585 // return is the first instruction in the block. 2586 if (PN) { 2587 BasicBlock::iterator BI = BB->begin(); 2588 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 2589 if (&*BI == BCI) 2590 // Also skip over the bitcast. 2591 ++BI; 2592 if (&*BI != RetI) 2593 return false; 2594 } else { 2595 BasicBlock::iterator BI = BB->begin(); 2596 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2597 if (&*BI != RetI) 2598 return false; 2599 } 2600 2601 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2602 /// call. 2603 const Function *F = BB->getParent(); 2604 SmallVector<CallInst*, 4> TailCalls; 2605 if (PN) { 2606 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2607 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 2608 // Make sure the phi value is indeed produced by the tail call. 2609 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 2610 TLI->mayBeEmittedAsTailCall(CI) && 2611 attributesPermitTailCall(F, CI, RetI, *TLI)) 2612 TailCalls.push_back(CI); 2613 } 2614 } else { 2615 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2616 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2617 if (!VisitedBBs.insert(*PI).second) 2618 continue; 2619 2620 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2621 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2622 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2623 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2624 if (RI == RE) 2625 continue; 2626 2627 CallInst *CI = dyn_cast<CallInst>(&*RI); 2628 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2629 attributesPermitTailCall(F, CI, RetI, *TLI)) 2630 TailCalls.push_back(CI); 2631 } 2632 } 2633 2634 bool Changed = false; 2635 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 2636 CallInst *CI = TailCalls[i]; 2637 CallSite CS(CI); 2638 2639 // Conservatively require the attributes of the call to match those of the 2640 // return. Ignore noalias because it doesn't affect the call sequence. 2641 AttributeList CalleeAttrs = CS.getAttributes(); 2642 if (AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 2643 .removeAttribute(Attribute::NoAlias) != 2644 AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 2645 .removeAttribute(Attribute::NoAlias)) 2646 continue; 2647 2648 // Make sure the call instruction is followed by an unconditional branch to 2649 // the return block. 2650 BasicBlock *CallBB = CI->getParent(); 2651 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 2652 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2653 continue; 2654 2655 // Duplicate the return into CallBB. 2656 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 2657 ModifiedDT = Changed = true; 2658 ++NumRetsDup; 2659 } 2660 2661 // If we eliminated all predecessors of the block, delete the block now. 2662 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2663 BB->eraseFromParent(); 2664 2665 return Changed; 2666 } 2667 2668 //===----------------------------------------------------------------------===// 2669 // Memory Optimization 2670 //===----------------------------------------------------------------------===// 2671 2672 namespace { 2673 2674 /// This is an extended version of TargetLowering::AddrMode 2675 /// which holds actual Value*'s for register values. 2676 struct ExtAddrMode : public TargetLowering::AddrMode { 2677 Value *BaseReg = nullptr; 2678 Value *ScaledReg = nullptr; 2679 Value *OriginalValue = nullptr; 2680 2681 enum FieldName { 2682 NoField = 0x00, 2683 BaseRegField = 0x01, 2684 BaseGVField = 0x02, 2685 BaseOffsField = 0x04, 2686 ScaledRegField = 0x08, 2687 ScaleField = 0x10, 2688 MultipleFields = 0xff 2689 }; 2690 2691 ExtAddrMode() = default; 2692 2693 void print(raw_ostream &OS) const; 2694 void dump() const; 2695 2696 FieldName compare(const ExtAddrMode &other) { 2697 // First check that the types are the same on each field, as differing types 2698 // is something we can't cope with later on. 2699 if (BaseReg && other.BaseReg && 2700 BaseReg->getType() != other.BaseReg->getType()) 2701 return MultipleFields; 2702 if (BaseGV && other.BaseGV && 2703 BaseGV->getType() != other.BaseGV->getType()) 2704 return MultipleFields; 2705 if (ScaledReg && other.ScaledReg && 2706 ScaledReg->getType() != other.ScaledReg->getType()) 2707 return MultipleFields; 2708 2709 // Check each field to see if it differs. 2710 unsigned Result = NoField; 2711 if (BaseReg != other.BaseReg) 2712 Result |= BaseRegField; 2713 if (BaseGV != other.BaseGV) 2714 Result |= BaseGVField; 2715 if (BaseOffs != other.BaseOffs) 2716 Result |= BaseOffsField; 2717 if (ScaledReg != other.ScaledReg) 2718 Result |= ScaledRegField; 2719 // Don't count 0 as being a different scale, because that actually means 2720 // unscaled (which will already be counted by having no ScaledReg). 2721 if (Scale && other.Scale && Scale != other.Scale) 2722 Result |= ScaleField; 2723 2724 if (countPopulation(Result) > 1) 2725 return MultipleFields; 2726 else 2727 return static_cast<FieldName>(Result); 2728 } 2729 2730 // AddrModes with a base reg or gv where the reg/gv is just the original 2731 // value are trivial. 2732 bool isTrivial() { 2733 bool Trivial = (BaseGV && BaseGV == OriginalValue) || 2734 (BaseReg && BaseReg == OriginalValue); 2735 // If the AddrMode is trivial it shouldn't have an offset or be scaled. 2736 if (Trivial) { 2737 assert(BaseOffs == 0); 2738 assert(Scale == 0); 2739 } 2740 return Trivial; 2741 } 2742 }; 2743 2744 } // end anonymous namespace 2745 2746 #ifndef NDEBUG 2747 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2748 AM.print(OS); 2749 return OS; 2750 } 2751 #endif 2752 2753 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2754 void ExtAddrMode::print(raw_ostream &OS) const { 2755 bool NeedPlus = false; 2756 OS << "["; 2757 if (BaseGV) { 2758 OS << (NeedPlus ? " + " : "") 2759 << "GV:"; 2760 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2761 NeedPlus = true; 2762 } 2763 2764 if (BaseOffs) { 2765 OS << (NeedPlus ? " + " : "") 2766 << BaseOffs; 2767 NeedPlus = true; 2768 } 2769 2770 if (BaseReg) { 2771 OS << (NeedPlus ? " + " : "") 2772 << "Base:"; 2773 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2774 NeedPlus = true; 2775 } 2776 if (Scale) { 2777 OS << (NeedPlus ? " + " : "") 2778 << Scale << "*"; 2779 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2780 } 2781 2782 OS << ']'; 2783 } 2784 2785 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2786 print(dbgs()); 2787 dbgs() << '\n'; 2788 } 2789 #endif 2790 2791 namespace { 2792 2793 /// \brief This class provides transaction based operation on the IR. 2794 /// Every change made through this class is recorded in the internal state and 2795 /// can be undone (rollback) until commit is called. 2796 class TypePromotionTransaction { 2797 /// \brief This represents the common interface of the individual transaction. 2798 /// Each class implements the logic for doing one specific modification on 2799 /// the IR via the TypePromotionTransaction. 2800 class TypePromotionAction { 2801 protected: 2802 /// The Instruction modified. 2803 Instruction *Inst; 2804 2805 public: 2806 /// \brief Constructor of the action. 2807 /// The constructor performs the related action on the IR. 2808 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2809 2810 virtual ~TypePromotionAction() = default; 2811 2812 /// \brief Undo the modification done by this action. 2813 /// When this method is called, the IR must be in the same state as it was 2814 /// before this action was applied. 2815 /// \pre Undoing the action works if and only if the IR is in the exact same 2816 /// state as it was directly after this action was applied. 2817 virtual void undo() = 0; 2818 2819 /// \brief Advocate every change made by this action. 2820 /// When the results on the IR of the action are to be kept, it is important 2821 /// to call this function, otherwise hidden information may be kept forever. 2822 virtual void commit() { 2823 // Nothing to be done, this action is not doing anything. 2824 } 2825 }; 2826 2827 /// \brief Utility to remember the position of an instruction. 2828 class InsertionHandler { 2829 /// Position of an instruction. 2830 /// Either an instruction: 2831 /// - Is the first in a basic block: BB is used. 2832 /// - Has a previous instructon: PrevInst is used. 2833 union { 2834 Instruction *PrevInst; 2835 BasicBlock *BB; 2836 } Point; 2837 2838 /// Remember whether or not the instruction had a previous instruction. 2839 bool HasPrevInstruction; 2840 2841 public: 2842 /// \brief Record the position of \p Inst. 2843 InsertionHandler(Instruction *Inst) { 2844 BasicBlock::iterator It = Inst->getIterator(); 2845 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2846 if (HasPrevInstruction) 2847 Point.PrevInst = &*--It; 2848 else 2849 Point.BB = Inst->getParent(); 2850 } 2851 2852 /// \brief Insert \p Inst at the recorded position. 2853 void insert(Instruction *Inst) { 2854 if (HasPrevInstruction) { 2855 if (Inst->getParent()) 2856 Inst->removeFromParent(); 2857 Inst->insertAfter(Point.PrevInst); 2858 } else { 2859 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2860 if (Inst->getParent()) 2861 Inst->moveBefore(Position); 2862 else 2863 Inst->insertBefore(Position); 2864 } 2865 } 2866 }; 2867 2868 /// \brief Move an instruction before another. 2869 class InstructionMoveBefore : public TypePromotionAction { 2870 /// Original position of the instruction. 2871 InsertionHandler Position; 2872 2873 public: 2874 /// \brief Move \p Inst before \p Before. 2875 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2876 : TypePromotionAction(Inst), Position(Inst) { 2877 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 2878 Inst->moveBefore(Before); 2879 } 2880 2881 /// \brief Move the instruction back to its original position. 2882 void undo() override { 2883 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2884 Position.insert(Inst); 2885 } 2886 }; 2887 2888 /// \brief Set the operand of an instruction with a new value. 2889 class OperandSetter : public TypePromotionAction { 2890 /// Original operand of the instruction. 2891 Value *Origin; 2892 2893 /// Index of the modified instruction. 2894 unsigned Idx; 2895 2896 public: 2897 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 2898 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2899 : TypePromotionAction(Inst), Idx(Idx) { 2900 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2901 << "for:" << *Inst << "\n" 2902 << "with:" << *NewVal << "\n"); 2903 Origin = Inst->getOperand(Idx); 2904 Inst->setOperand(Idx, NewVal); 2905 } 2906 2907 /// \brief Restore the original value of the instruction. 2908 void undo() override { 2909 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2910 << "for: " << *Inst << "\n" 2911 << "with: " << *Origin << "\n"); 2912 Inst->setOperand(Idx, Origin); 2913 } 2914 }; 2915 2916 /// \brief Hide the operands of an instruction. 2917 /// Do as if this instruction was not using any of its operands. 2918 class OperandsHider : public TypePromotionAction { 2919 /// The list of original operands. 2920 SmallVector<Value *, 4> OriginalValues; 2921 2922 public: 2923 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 2924 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2925 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2926 unsigned NumOpnds = Inst->getNumOperands(); 2927 OriginalValues.reserve(NumOpnds); 2928 for (unsigned It = 0; It < NumOpnds; ++It) { 2929 // Save the current operand. 2930 Value *Val = Inst->getOperand(It); 2931 OriginalValues.push_back(Val); 2932 // Set a dummy one. 2933 // We could use OperandSetter here, but that would imply an overhead 2934 // that we are not willing to pay. 2935 Inst->setOperand(It, UndefValue::get(Val->getType())); 2936 } 2937 } 2938 2939 /// \brief Restore the original list of uses. 2940 void undo() override { 2941 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2942 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2943 Inst->setOperand(It, OriginalValues[It]); 2944 } 2945 }; 2946 2947 /// \brief Build a truncate instruction. 2948 class TruncBuilder : public TypePromotionAction { 2949 Value *Val; 2950 2951 public: 2952 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 2953 /// result. 2954 /// trunc Opnd to Ty. 2955 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2956 IRBuilder<> Builder(Opnd); 2957 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2958 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2959 } 2960 2961 /// \brief Get the built value. 2962 Value *getBuiltValue() { return Val; } 2963 2964 /// \brief Remove the built instruction. 2965 void undo() override { 2966 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2967 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2968 IVal->eraseFromParent(); 2969 } 2970 }; 2971 2972 /// \brief Build a sign extension instruction. 2973 class SExtBuilder : public TypePromotionAction { 2974 Value *Val; 2975 2976 public: 2977 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 2978 /// result. 2979 /// sext Opnd to Ty. 2980 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2981 : TypePromotionAction(InsertPt) { 2982 IRBuilder<> Builder(InsertPt); 2983 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2984 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2985 } 2986 2987 /// \brief Get the built value. 2988 Value *getBuiltValue() { return Val; } 2989 2990 /// \brief Remove the built instruction. 2991 void undo() override { 2992 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2993 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2994 IVal->eraseFromParent(); 2995 } 2996 }; 2997 2998 /// \brief Build a zero extension instruction. 2999 class ZExtBuilder : public TypePromotionAction { 3000 Value *Val; 3001 3002 public: 3003 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 3004 /// result. 3005 /// zext Opnd to Ty. 3006 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 3007 : TypePromotionAction(InsertPt) { 3008 IRBuilder<> Builder(InsertPt); 3009 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 3010 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 3011 } 3012 3013 /// \brief Get the built value. 3014 Value *getBuiltValue() { return Val; } 3015 3016 /// \brief Remove the built instruction. 3017 void undo() override { 3018 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 3019 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 3020 IVal->eraseFromParent(); 3021 } 3022 }; 3023 3024 /// \brief Mutate an instruction to another type. 3025 class TypeMutator : public TypePromotionAction { 3026 /// Record the original type. 3027 Type *OrigTy; 3028 3029 public: 3030 /// \brief Mutate the type of \p Inst into \p NewTy. 3031 TypeMutator(Instruction *Inst, Type *NewTy) 3032 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 3033 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 3034 << "\n"); 3035 Inst->mutateType(NewTy); 3036 } 3037 3038 /// \brief Mutate the instruction back to its original type. 3039 void undo() override { 3040 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 3041 << "\n"); 3042 Inst->mutateType(OrigTy); 3043 } 3044 }; 3045 3046 /// \brief Replace the uses of an instruction by another instruction. 3047 class UsesReplacer : public TypePromotionAction { 3048 /// Helper structure to keep track of the replaced uses. 3049 struct InstructionAndIdx { 3050 /// The instruction using the instruction. 3051 Instruction *Inst; 3052 3053 /// The index where this instruction is used for Inst. 3054 unsigned Idx; 3055 3056 InstructionAndIdx(Instruction *Inst, unsigned Idx) 3057 : Inst(Inst), Idx(Idx) {} 3058 }; 3059 3060 /// Keep track of the original uses (pair Instruction, Index). 3061 SmallVector<InstructionAndIdx, 4> OriginalUses; 3062 3063 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 3064 3065 public: 3066 /// \brief Replace all the use of \p Inst by \p New. 3067 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 3068 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 3069 << "\n"); 3070 // Record the original uses. 3071 for (Use &U : Inst->uses()) { 3072 Instruction *UserI = cast<Instruction>(U.getUser()); 3073 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 3074 } 3075 // Now, we can replace the uses. 3076 Inst->replaceAllUsesWith(New); 3077 } 3078 3079 /// \brief Reassign the original uses of Inst to Inst. 3080 void undo() override { 3081 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 3082 for (use_iterator UseIt = OriginalUses.begin(), 3083 EndIt = OriginalUses.end(); 3084 UseIt != EndIt; ++UseIt) { 3085 UseIt->Inst->setOperand(UseIt->Idx, Inst); 3086 } 3087 } 3088 }; 3089 3090 /// \brief Remove an instruction from the IR. 3091 class InstructionRemover : public TypePromotionAction { 3092 /// Original position of the instruction. 3093 InsertionHandler Inserter; 3094 3095 /// Helper structure to hide all the link to the instruction. In other 3096 /// words, this helps to do as if the instruction was removed. 3097 OperandsHider Hider; 3098 3099 /// Keep track of the uses replaced, if any. 3100 UsesReplacer *Replacer = nullptr; 3101 3102 /// Keep track of instructions removed. 3103 SetOfInstrs &RemovedInsts; 3104 3105 public: 3106 /// \brief Remove all reference of \p Inst and optinally replace all its 3107 /// uses with New. 3108 /// \p RemovedInsts Keep track of the instructions removed by this Action. 3109 /// \pre If !Inst->use_empty(), then New != nullptr 3110 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 3111 Value *New = nullptr) 3112 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 3113 RemovedInsts(RemovedInsts) { 3114 if (New) 3115 Replacer = new UsesReplacer(Inst, New); 3116 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 3117 RemovedInsts.insert(Inst); 3118 /// The instructions removed here will be freed after completing 3119 /// optimizeBlock() for all blocks as we need to keep track of the 3120 /// removed instructions during promotion. 3121 Inst->removeFromParent(); 3122 } 3123 3124 ~InstructionRemover() override { delete Replacer; } 3125 3126 /// \brief Resurrect the instruction and reassign it to the proper uses if 3127 /// new value was provided when build this action. 3128 void undo() override { 3129 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 3130 Inserter.insert(Inst); 3131 if (Replacer) 3132 Replacer->undo(); 3133 Hider.undo(); 3134 RemovedInsts.erase(Inst); 3135 } 3136 }; 3137 3138 public: 3139 /// Restoration point. 3140 /// The restoration point is a pointer to an action instead of an iterator 3141 /// because the iterator may be invalidated but not the pointer. 3142 using ConstRestorationPt = const TypePromotionAction *; 3143 3144 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 3145 : RemovedInsts(RemovedInsts) {} 3146 3147 /// Advocate every changes made in that transaction. 3148 void commit(); 3149 3150 /// Undo all the changes made after the given point. 3151 void rollback(ConstRestorationPt Point); 3152 3153 /// Get the current restoration point. 3154 ConstRestorationPt getRestorationPoint() const; 3155 3156 /// \name API for IR modification with state keeping to support rollback. 3157 /// @{ 3158 /// Same as Instruction::setOperand. 3159 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 3160 3161 /// Same as Instruction::eraseFromParent. 3162 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 3163 3164 /// Same as Value::replaceAllUsesWith. 3165 void replaceAllUsesWith(Instruction *Inst, Value *New); 3166 3167 /// Same as Value::mutateType. 3168 void mutateType(Instruction *Inst, Type *NewTy); 3169 3170 /// Same as IRBuilder::createTrunc. 3171 Value *createTrunc(Instruction *Opnd, Type *Ty); 3172 3173 /// Same as IRBuilder::createSExt. 3174 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 3175 3176 /// Same as IRBuilder::createZExt. 3177 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 3178 3179 /// Same as Instruction::moveBefore. 3180 void moveBefore(Instruction *Inst, Instruction *Before); 3181 /// @} 3182 3183 private: 3184 /// The ordered list of actions made so far. 3185 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 3186 3187 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 3188 3189 SetOfInstrs &RemovedInsts; 3190 }; 3191 3192 } // end anonymous namespace 3193 3194 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 3195 Value *NewVal) { 3196 Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>( 3197 Inst, Idx, NewVal)); 3198 } 3199 3200 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 3201 Value *NewVal) { 3202 Actions.push_back( 3203 llvm::make_unique<TypePromotionTransaction::InstructionRemover>( 3204 Inst, RemovedInsts, NewVal)); 3205 } 3206 3207 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 3208 Value *New) { 3209 Actions.push_back( 3210 llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 3211 } 3212 3213 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 3214 Actions.push_back( 3215 llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 3216 } 3217 3218 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 3219 Type *Ty) { 3220 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 3221 Value *Val = Ptr->getBuiltValue(); 3222 Actions.push_back(std::move(Ptr)); 3223 return Val; 3224 } 3225 3226 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 3227 Value *Opnd, Type *Ty) { 3228 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 3229 Value *Val = Ptr->getBuiltValue(); 3230 Actions.push_back(std::move(Ptr)); 3231 return Val; 3232 } 3233 3234 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 3235 Value *Opnd, Type *Ty) { 3236 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 3237 Value *Val = Ptr->getBuiltValue(); 3238 Actions.push_back(std::move(Ptr)); 3239 return Val; 3240 } 3241 3242 void TypePromotionTransaction::moveBefore(Instruction *Inst, 3243 Instruction *Before) { 3244 Actions.push_back( 3245 llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 3246 Inst, Before)); 3247 } 3248 3249 TypePromotionTransaction::ConstRestorationPt 3250 TypePromotionTransaction::getRestorationPoint() const { 3251 return !Actions.empty() ? Actions.back().get() : nullptr; 3252 } 3253 3254 void TypePromotionTransaction::commit() { 3255 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 3256 ++It) 3257 (*It)->commit(); 3258 Actions.clear(); 3259 } 3260 3261 void TypePromotionTransaction::rollback( 3262 TypePromotionTransaction::ConstRestorationPt Point) { 3263 while (!Actions.empty() && Point != Actions.back().get()) { 3264 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 3265 Curr->undo(); 3266 } 3267 } 3268 3269 namespace { 3270 3271 /// \brief A helper class for matching addressing modes. 3272 /// 3273 /// This encapsulates the logic for matching the target-legal addressing modes. 3274 class AddressingModeMatcher { 3275 SmallVectorImpl<Instruction*> &AddrModeInsts; 3276 const TargetLowering &TLI; 3277 const TargetRegisterInfo &TRI; 3278 const DataLayout &DL; 3279 3280 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 3281 /// the memory instruction that we're computing this address for. 3282 Type *AccessTy; 3283 unsigned AddrSpace; 3284 Instruction *MemoryInst; 3285 3286 /// This is the addressing mode that we're building up. This is 3287 /// part of the return value of this addressing mode matching stuff. 3288 ExtAddrMode &AddrMode; 3289 3290 /// The instructions inserted by other CodeGenPrepare optimizations. 3291 const SetOfInstrs &InsertedInsts; 3292 3293 /// A map from the instructions to their type before promotion. 3294 InstrToOrigTy &PromotedInsts; 3295 3296 /// The ongoing transaction where every action should be registered. 3297 TypePromotionTransaction &TPT; 3298 3299 /// This is set to true when we should not do profitability checks. 3300 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 3301 bool IgnoreProfitability; 3302 3303 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, 3304 const TargetLowering &TLI, 3305 const TargetRegisterInfo &TRI, 3306 Type *AT, unsigned AS, 3307 Instruction *MI, ExtAddrMode &AM, 3308 const SetOfInstrs &InsertedInsts, 3309 InstrToOrigTy &PromotedInsts, 3310 TypePromotionTransaction &TPT) 3311 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 3312 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 3313 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 3314 PromotedInsts(PromotedInsts), TPT(TPT) { 3315 IgnoreProfitability = false; 3316 } 3317 3318 public: 3319 /// Find the maximal addressing mode that a load/store of V can fold, 3320 /// give an access type of AccessTy. This returns a list of involved 3321 /// instructions in AddrModeInsts. 3322 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3323 /// optimizations. 3324 /// \p PromotedInsts maps the instructions to their type before promotion. 3325 /// \p The ongoing transaction where every action should be registered. 3326 static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, 3327 Instruction *MemoryInst, 3328 SmallVectorImpl<Instruction*> &AddrModeInsts, 3329 const TargetLowering &TLI, 3330 const TargetRegisterInfo &TRI, 3331 const SetOfInstrs &InsertedInsts, 3332 InstrToOrigTy &PromotedInsts, 3333 TypePromotionTransaction &TPT) { 3334 ExtAddrMode Result; 3335 3336 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, 3337 AccessTy, AS, 3338 MemoryInst, Result, InsertedInsts, 3339 PromotedInsts, TPT).matchAddr(V, 0); 3340 (void)Success; assert(Success && "Couldn't select *anything*?"); 3341 return Result; 3342 } 3343 3344 private: 3345 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3346 bool matchAddr(Value *V, unsigned Depth); 3347 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 3348 bool *MovedAway = nullptr); 3349 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3350 ExtAddrMode &AMBefore, 3351 ExtAddrMode &AMAfter); 3352 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3353 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3354 Value *PromotedOperand) const; 3355 }; 3356 3357 /// \brief A helper class for combining addressing modes. 3358 class AddressingModeCombiner { 3359 private: 3360 /// The addressing modes we've collected. 3361 SmallVector<ExtAddrMode, 16> AddrModes; 3362 3363 /// The field in which the AddrModes differ, when we have more than one. 3364 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3365 3366 /// Are the AddrModes that we have all just equal to their original values? 3367 bool AllAddrModesTrivial = true; 3368 3369 public: 3370 /// \brief Get the combined AddrMode 3371 const ExtAddrMode &getAddrMode() const { 3372 return AddrModes[0]; 3373 } 3374 3375 /// \brief Add a new AddrMode if it's compatible with the AddrModes we already 3376 /// have. 3377 /// \return True iff we succeeded in doing so. 3378 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3379 // Take note of if we have any non-trivial AddrModes, as we need to detect 3380 // when all AddrModes are trivial as then we would introduce a phi or select 3381 // which just duplicates what's already there. 3382 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3383 3384 // If this is the first addrmode then everything is fine. 3385 if (AddrModes.empty()) { 3386 AddrModes.emplace_back(NewAddrMode); 3387 return true; 3388 } 3389 3390 // Figure out how different this is from the other address modes, which we 3391 // can do just by comparing against the first one given that we only care 3392 // about the cumulative difference. 3393 ExtAddrMode::FieldName ThisDifferentField = 3394 AddrModes[0].compare(NewAddrMode); 3395 if (DifferentField == ExtAddrMode::NoField) 3396 DifferentField = ThisDifferentField; 3397 else if (DifferentField != ThisDifferentField) 3398 DifferentField = ExtAddrMode::MultipleFields; 3399 3400 // If this AddrMode is the same as all the others then everything is fine 3401 // (which should only happen when there is actually only one AddrMode). 3402 if (DifferentField == ExtAddrMode::NoField) { 3403 assert(AddrModes.size() == 1); 3404 return true; 3405 } 3406 3407 // If NewAddrMode differs in only one dimension then we can handle it by 3408 // inserting a phi/select later on. 3409 if (DifferentField != ExtAddrMode::MultipleFields) { 3410 AddrModes.emplace_back(NewAddrMode); 3411 return true; 3412 } 3413 3414 // We couldn't combine NewAddrMode with the rest, so return failure. 3415 AddrModes.clear(); 3416 return false; 3417 } 3418 3419 /// \brief Combine the addressing modes we've collected into a single 3420 /// addressing mode. 3421 /// \return True iff we successfully combined them or we only had one so 3422 /// didn't need to combine them anyway. 3423 bool combineAddrModes() { 3424 // If we have no AddrModes then they can't be combined. 3425 if (AddrModes.size() == 0) 3426 return false; 3427 3428 // A single AddrMode can trivially be combined. 3429 if (AddrModes.size() == 1) 3430 return true; 3431 3432 // If the AddrModes we collected are all just equal to the value they are 3433 // derived from then combining them wouldn't do anything useful. 3434 if (AllAddrModesTrivial) 3435 return false; 3436 3437 // TODO: Combine multiple AddrModes by inserting a select or phi for the 3438 // field in which the AddrModes differ. 3439 return false; 3440 } 3441 }; 3442 3443 } // end anonymous namespace 3444 3445 /// Try adding ScaleReg*Scale to the current addressing mode. 3446 /// Return true and update AddrMode if this addr mode is legal for the target, 3447 /// false if not. 3448 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3449 unsigned Depth) { 3450 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3451 // mode. Just process that directly. 3452 if (Scale == 1) 3453 return matchAddr(ScaleReg, Depth); 3454 3455 // If the scale is 0, it takes nothing to add this. 3456 if (Scale == 0) 3457 return true; 3458 3459 // If we already have a scale of this value, we can add to it, otherwise, we 3460 // need an available scale field. 3461 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3462 return false; 3463 3464 ExtAddrMode TestAddrMode = AddrMode; 3465 3466 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3467 // [A+B + A*7] -> [B+A*8]. 3468 TestAddrMode.Scale += Scale; 3469 TestAddrMode.ScaledReg = ScaleReg; 3470 3471 // If the new address isn't legal, bail out. 3472 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3473 return false; 3474 3475 // It was legal, so commit it. 3476 AddrMode = TestAddrMode; 3477 3478 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3479 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3480 // X*Scale + C*Scale to addr mode. 3481 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3482 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3483 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3484 TestAddrMode.ScaledReg = AddLHS; 3485 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3486 3487 // If this addressing mode is legal, commit it and remember that we folded 3488 // this instruction. 3489 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3490 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3491 AddrMode = TestAddrMode; 3492 return true; 3493 } 3494 } 3495 3496 // Otherwise, not (x+c)*scale, just return what we have. 3497 return true; 3498 } 3499 3500 /// This is a little filter, which returns true if an addressing computation 3501 /// involving I might be folded into a load/store accessing it. 3502 /// This doesn't need to be perfect, but needs to accept at least 3503 /// the set of instructions that MatchOperationAddr can. 3504 static bool MightBeFoldableInst(Instruction *I) { 3505 switch (I->getOpcode()) { 3506 case Instruction::BitCast: 3507 case Instruction::AddrSpaceCast: 3508 // Don't touch identity bitcasts. 3509 if (I->getType() == I->getOperand(0)->getType()) 3510 return false; 3511 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 3512 case Instruction::PtrToInt: 3513 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3514 return true; 3515 case Instruction::IntToPtr: 3516 // We know the input is intptr_t, so this is foldable. 3517 return true; 3518 case Instruction::Add: 3519 return true; 3520 case Instruction::Mul: 3521 case Instruction::Shl: 3522 // Can only handle X*C and X << C. 3523 return isa<ConstantInt>(I->getOperand(1)); 3524 case Instruction::GetElementPtr: 3525 return true; 3526 default: 3527 return false; 3528 } 3529 } 3530 3531 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 3532 /// \note \p Val is assumed to be the product of some type promotion. 3533 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3534 /// to be legal, as the non-promoted value would have had the same state. 3535 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3536 const DataLayout &DL, Value *Val) { 3537 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3538 if (!PromotedInst) 3539 return false; 3540 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3541 // If the ISDOpcode is undefined, it was undefined before the promotion. 3542 if (!ISDOpcode) 3543 return true; 3544 // Otherwise, check if the promoted instruction is legal or not. 3545 return TLI.isOperationLegalOrCustom( 3546 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3547 } 3548 3549 namespace { 3550 3551 /// \brief Hepler class to perform type promotion. 3552 class TypePromotionHelper { 3553 /// \brief Utility function to check whether or not a sign or zero extension 3554 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3555 /// either using the operands of \p Inst or promoting \p Inst. 3556 /// The type of the extension is defined by \p IsSExt. 3557 /// In other words, check if: 3558 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3559 /// #1 Promotion applies: 3560 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3561 /// #2 Operand reuses: 3562 /// ext opnd1 to ConsideredExtType. 3563 /// \p PromotedInsts maps the instructions to their type before promotion. 3564 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3565 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3566 3567 /// \brief Utility function to determine if \p OpIdx should be promoted when 3568 /// promoting \p Inst. 3569 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3570 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3571 } 3572 3573 /// \brief Utility function to promote the operand of \p Ext when this 3574 /// operand is a promotable trunc or sext or zext. 3575 /// \p PromotedInsts maps the instructions to their type before promotion. 3576 /// \p CreatedInstsCost[out] contains the cost of all instructions 3577 /// created to promote the operand of Ext. 3578 /// Newly added extensions are inserted in \p Exts. 3579 /// Newly added truncates are inserted in \p Truncs. 3580 /// Should never be called directly. 3581 /// \return The promoted value which is used instead of Ext. 3582 static Value *promoteOperandForTruncAndAnyExt( 3583 Instruction *Ext, TypePromotionTransaction &TPT, 3584 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3585 SmallVectorImpl<Instruction *> *Exts, 3586 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3587 3588 /// \brief Utility function to promote the operand of \p Ext when this 3589 /// operand is promotable and is not a supported trunc or sext. 3590 /// \p PromotedInsts maps the instructions to their type before promotion. 3591 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3592 /// created to promote the operand of Ext. 3593 /// Newly added extensions are inserted in \p Exts. 3594 /// Newly added truncates are inserted in \p Truncs. 3595 /// Should never be called directly. 3596 /// \return The promoted value which is used instead of Ext. 3597 static Value *promoteOperandForOther(Instruction *Ext, 3598 TypePromotionTransaction &TPT, 3599 InstrToOrigTy &PromotedInsts, 3600 unsigned &CreatedInstsCost, 3601 SmallVectorImpl<Instruction *> *Exts, 3602 SmallVectorImpl<Instruction *> *Truncs, 3603 const TargetLowering &TLI, bool IsSExt); 3604 3605 /// \see promoteOperandForOther. 3606 static Value *signExtendOperandForOther( 3607 Instruction *Ext, TypePromotionTransaction &TPT, 3608 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3609 SmallVectorImpl<Instruction *> *Exts, 3610 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3611 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3612 Exts, Truncs, TLI, true); 3613 } 3614 3615 /// \see promoteOperandForOther. 3616 static Value *zeroExtendOperandForOther( 3617 Instruction *Ext, TypePromotionTransaction &TPT, 3618 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3619 SmallVectorImpl<Instruction *> *Exts, 3620 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3621 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3622 Exts, Truncs, TLI, false); 3623 } 3624 3625 public: 3626 /// Type for the utility function that promotes the operand of Ext. 3627 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3628 InstrToOrigTy &PromotedInsts, 3629 unsigned &CreatedInstsCost, 3630 SmallVectorImpl<Instruction *> *Exts, 3631 SmallVectorImpl<Instruction *> *Truncs, 3632 const TargetLowering &TLI); 3633 3634 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 3635 /// action to promote the operand of \p Ext instead of using Ext. 3636 /// \return NULL if no promotable action is possible with the current 3637 /// sign extension. 3638 /// \p InsertedInsts keeps track of all the instructions inserted by the 3639 /// other CodeGenPrepare optimizations. This information is important 3640 /// because we do not want to promote these instructions as CodeGenPrepare 3641 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3642 /// \p PromotedInsts maps the instructions to their type before promotion. 3643 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3644 const TargetLowering &TLI, 3645 const InstrToOrigTy &PromotedInsts); 3646 }; 3647 3648 } // end anonymous namespace 3649 3650 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3651 Type *ConsideredExtType, 3652 const InstrToOrigTy &PromotedInsts, 3653 bool IsSExt) { 3654 // The promotion helper does not know how to deal with vector types yet. 3655 // To be able to fix that, we would need to fix the places where we 3656 // statically extend, e.g., constants and such. 3657 if (Inst->getType()->isVectorTy()) 3658 return false; 3659 3660 // We can always get through zext. 3661 if (isa<ZExtInst>(Inst)) 3662 return true; 3663 3664 // sext(sext) is ok too. 3665 if (IsSExt && isa<SExtInst>(Inst)) 3666 return true; 3667 3668 // We can get through binary operator, if it is legal. In other words, the 3669 // binary operator must have a nuw or nsw flag. 3670 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3671 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3672 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3673 (IsSExt && BinOp->hasNoSignedWrap()))) 3674 return true; 3675 3676 // Check if we can do the following simplification. 3677 // ext(trunc(opnd)) --> ext(opnd) 3678 if (!isa<TruncInst>(Inst)) 3679 return false; 3680 3681 Value *OpndVal = Inst->getOperand(0); 3682 // Check if we can use this operand in the extension. 3683 // If the type is larger than the result type of the extension, we cannot. 3684 if (!OpndVal->getType()->isIntegerTy() || 3685 OpndVal->getType()->getIntegerBitWidth() > 3686 ConsideredExtType->getIntegerBitWidth()) 3687 return false; 3688 3689 // If the operand of the truncate is not an instruction, we will not have 3690 // any information on the dropped bits. 3691 // (Actually we could for constant but it is not worth the extra logic). 3692 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3693 if (!Opnd) 3694 return false; 3695 3696 // Check if the source of the type is narrow enough. 3697 // I.e., check that trunc just drops extended bits of the same kind of 3698 // the extension. 3699 // #1 get the type of the operand and check the kind of the extended bits. 3700 const Type *OpndType; 3701 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3702 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 3703 OpndType = It->second.getPointer(); 3704 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3705 OpndType = Opnd->getOperand(0)->getType(); 3706 else 3707 return false; 3708 3709 // #2 check that the truncate just drops extended bits. 3710 return Inst->getType()->getIntegerBitWidth() >= 3711 OpndType->getIntegerBitWidth(); 3712 } 3713 3714 TypePromotionHelper::Action TypePromotionHelper::getAction( 3715 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3716 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3717 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3718 "Unexpected instruction type"); 3719 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3720 Type *ExtTy = Ext->getType(); 3721 bool IsSExt = isa<SExtInst>(Ext); 3722 // If the operand of the extension is not an instruction, we cannot 3723 // get through. 3724 // If it, check we can get through. 3725 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3726 return nullptr; 3727 3728 // Do not promote if the operand has been added by codegenprepare. 3729 // Otherwise, it means we are undoing an optimization that is likely to be 3730 // redone, thus causing potential infinite loop. 3731 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3732 return nullptr; 3733 3734 // SExt or Trunc instructions. 3735 // Return the related handler. 3736 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3737 isa<ZExtInst>(ExtOpnd)) 3738 return promoteOperandForTruncAndAnyExt; 3739 3740 // Regular instruction. 3741 // Abort early if we will have to insert non-free instructions. 3742 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3743 return nullptr; 3744 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3745 } 3746 3747 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3748 Instruction *SExt, TypePromotionTransaction &TPT, 3749 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3750 SmallVectorImpl<Instruction *> *Exts, 3751 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3752 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3753 // get through it and this method should not be called. 3754 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3755 Value *ExtVal = SExt; 3756 bool HasMergedNonFreeExt = false; 3757 if (isa<ZExtInst>(SExtOpnd)) { 3758 // Replace s|zext(zext(opnd)) 3759 // => zext(opnd). 3760 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3761 Value *ZExt = 3762 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3763 TPT.replaceAllUsesWith(SExt, ZExt); 3764 TPT.eraseInstruction(SExt); 3765 ExtVal = ZExt; 3766 } else { 3767 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3768 // => z|sext(opnd). 3769 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3770 } 3771 CreatedInstsCost = 0; 3772 3773 // Remove dead code. 3774 if (SExtOpnd->use_empty()) 3775 TPT.eraseInstruction(SExtOpnd); 3776 3777 // Check if the extension is still needed. 3778 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3779 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3780 if (ExtInst) { 3781 if (Exts) 3782 Exts->push_back(ExtInst); 3783 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3784 } 3785 return ExtVal; 3786 } 3787 3788 // At this point we have: ext ty opnd to ty. 3789 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3790 Value *NextVal = ExtInst->getOperand(0); 3791 TPT.eraseInstruction(ExtInst, NextVal); 3792 return NextVal; 3793 } 3794 3795 Value *TypePromotionHelper::promoteOperandForOther( 3796 Instruction *Ext, TypePromotionTransaction &TPT, 3797 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3798 SmallVectorImpl<Instruction *> *Exts, 3799 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3800 bool IsSExt) { 3801 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3802 // get through it and this method should not be called. 3803 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3804 CreatedInstsCost = 0; 3805 if (!ExtOpnd->hasOneUse()) { 3806 // ExtOpnd will be promoted. 3807 // All its uses, but Ext, will need to use a truncated value of the 3808 // promoted version. 3809 // Create the truncate now. 3810 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3811 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3812 // Insert it just after the definition. 3813 ITrunc->moveAfter(ExtOpnd); 3814 if (Truncs) 3815 Truncs->push_back(ITrunc); 3816 } 3817 3818 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3819 // Restore the operand of Ext (which has been replaced by the previous call 3820 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3821 TPT.setOperand(Ext, 0, ExtOpnd); 3822 } 3823 3824 // Get through the Instruction: 3825 // 1. Update its type. 3826 // 2. Replace the uses of Ext by Inst. 3827 // 3. Extend each operand that needs to be extended. 3828 3829 // Remember the original type of the instruction before promotion. 3830 // This is useful to know that the high bits are sign extended bits. 3831 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 3832 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 3833 // Step #1. 3834 TPT.mutateType(ExtOpnd, Ext->getType()); 3835 // Step #2. 3836 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3837 // Step #3. 3838 Instruction *ExtForOpnd = Ext; 3839 3840 DEBUG(dbgs() << "Propagate Ext to operands\n"); 3841 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3842 ++OpIdx) { 3843 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3844 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3845 !shouldExtOperand(ExtOpnd, OpIdx)) { 3846 DEBUG(dbgs() << "No need to propagate\n"); 3847 continue; 3848 } 3849 // Check if we can statically extend the operand. 3850 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3851 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3852 DEBUG(dbgs() << "Statically extend\n"); 3853 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3854 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3855 : Cst->getValue().zext(BitWidth); 3856 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3857 continue; 3858 } 3859 // UndefValue are typed, so we have to statically sign extend them. 3860 if (isa<UndefValue>(Opnd)) { 3861 DEBUG(dbgs() << "Statically extend\n"); 3862 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3863 continue; 3864 } 3865 3866 // Otherwise we have to explicity sign extend the operand. 3867 // Check if Ext was reused to extend an operand. 3868 if (!ExtForOpnd) { 3869 // If yes, create a new one. 3870 DEBUG(dbgs() << "More operands to ext\n"); 3871 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3872 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3873 if (!isa<Instruction>(ValForExtOpnd)) { 3874 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3875 continue; 3876 } 3877 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3878 } 3879 if (Exts) 3880 Exts->push_back(ExtForOpnd); 3881 TPT.setOperand(ExtForOpnd, 0, Opnd); 3882 3883 // Move the sign extension before the insertion point. 3884 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3885 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3886 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3887 // If more sext are required, new instructions will have to be created. 3888 ExtForOpnd = nullptr; 3889 } 3890 if (ExtForOpnd == Ext) { 3891 DEBUG(dbgs() << "Extension is useless now\n"); 3892 TPT.eraseInstruction(Ext); 3893 } 3894 return ExtOpnd; 3895 } 3896 3897 /// Check whether or not promoting an instruction to a wider type is profitable. 3898 /// \p NewCost gives the cost of extension instructions created by the 3899 /// promotion. 3900 /// \p OldCost gives the cost of extension instructions before the promotion 3901 /// plus the number of instructions that have been 3902 /// matched in the addressing mode the promotion. 3903 /// \p PromotedOperand is the value that has been promoted. 3904 /// \return True if the promotion is profitable, false otherwise. 3905 bool AddressingModeMatcher::isPromotionProfitable( 3906 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3907 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); 3908 // The cost of the new extensions is greater than the cost of the 3909 // old extension plus what we folded. 3910 // This is not profitable. 3911 if (NewCost > OldCost) 3912 return false; 3913 if (NewCost < OldCost) 3914 return true; 3915 // The promotion is neutral but it may help folding the sign extension in 3916 // loads for instance. 3917 // Check that we did not create an illegal instruction. 3918 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3919 } 3920 3921 /// Given an instruction or constant expr, see if we can fold the operation 3922 /// into the addressing mode. If so, update the addressing mode and return 3923 /// true, otherwise return false without modifying AddrMode. 3924 /// If \p MovedAway is not NULL, it contains the information of whether or 3925 /// not AddrInst has to be folded into the addressing mode on success. 3926 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3927 /// because it has been moved away. 3928 /// Thus AddrInst must not be added in the matched instructions. 3929 /// This state can happen when AddrInst is a sext, since it may be moved away. 3930 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3931 /// not be referenced anymore. 3932 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3933 unsigned Depth, 3934 bool *MovedAway) { 3935 // Avoid exponential behavior on extremely deep expression trees. 3936 if (Depth >= 5) return false; 3937 3938 // By default, all matched instructions stay in place. 3939 if (MovedAway) 3940 *MovedAway = false; 3941 3942 switch (Opcode) { 3943 case Instruction::PtrToInt: 3944 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3945 return matchAddr(AddrInst->getOperand(0), Depth); 3946 case Instruction::IntToPtr: { 3947 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3948 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3949 // This inttoptr is a no-op if the integer type is pointer sized. 3950 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3951 return matchAddr(AddrInst->getOperand(0), Depth); 3952 return false; 3953 } 3954 case Instruction::BitCast: 3955 // BitCast is always a noop, and we can handle it as long as it is 3956 // int->int or pointer->pointer (we don't want int<->fp or something). 3957 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 3958 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 3959 // Don't touch identity bitcasts. These were probably put here by LSR, 3960 // and we don't want to mess around with them. Assume it knows what it 3961 // is doing. 3962 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3963 return matchAddr(AddrInst->getOperand(0), Depth); 3964 return false; 3965 case Instruction::AddrSpaceCast: { 3966 unsigned SrcAS 3967 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3968 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3969 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3970 return matchAddr(AddrInst->getOperand(0), Depth); 3971 return false; 3972 } 3973 case Instruction::Add: { 3974 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3975 ExtAddrMode BackupAddrMode = AddrMode; 3976 unsigned OldSize = AddrModeInsts.size(); 3977 // Start a transaction at this point. 3978 // The LHS may match but not the RHS. 3979 // Therefore, we need a higher level restoration point to undo partially 3980 // matched operation. 3981 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3982 TPT.getRestorationPoint(); 3983 3984 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3985 matchAddr(AddrInst->getOperand(0), Depth+1)) 3986 return true; 3987 3988 // Restore the old addr mode info. 3989 AddrMode = BackupAddrMode; 3990 AddrModeInsts.resize(OldSize); 3991 TPT.rollback(LastKnownGood); 3992 3993 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3994 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3995 matchAddr(AddrInst->getOperand(1), Depth+1)) 3996 return true; 3997 3998 // Otherwise we definitely can't merge the ADD in. 3999 AddrMode = BackupAddrMode; 4000 AddrModeInsts.resize(OldSize); 4001 TPT.rollback(LastKnownGood); 4002 break; 4003 } 4004 //case Instruction::Or: 4005 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4006 //break; 4007 case Instruction::Mul: 4008 case Instruction::Shl: { 4009 // Can only handle X*C and X << C. 4010 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4011 if (!RHS) 4012 return false; 4013 int64_t Scale = RHS->getSExtValue(); 4014 if (Opcode == Instruction::Shl) 4015 Scale = 1LL << Scale; 4016 4017 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4018 } 4019 case Instruction::GetElementPtr: { 4020 // Scan the GEP. We check it if it contains constant offsets and at most 4021 // one variable offset. 4022 int VariableOperand = -1; 4023 unsigned VariableScale = 0; 4024 4025 int64_t ConstantOffset = 0; 4026 gep_type_iterator GTI = gep_type_begin(AddrInst); 4027 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4028 if (StructType *STy = GTI.getStructTypeOrNull()) { 4029 const StructLayout *SL = DL.getStructLayout(STy); 4030 unsigned Idx = 4031 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4032 ConstantOffset += SL->getElementOffset(Idx); 4033 } else { 4034 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 4035 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4036 ConstantOffset += CI->getSExtValue()*TypeSize; 4037 } else if (TypeSize) { // Scales of zero don't do anything. 4038 // We only allow one variable index at the moment. 4039 if (VariableOperand != -1) 4040 return false; 4041 4042 // Remember the variable index. 4043 VariableOperand = i; 4044 VariableScale = TypeSize; 4045 } 4046 } 4047 } 4048 4049 // A common case is for the GEP to only do a constant offset. In this case, 4050 // just add it to the disp field and check validity. 4051 if (VariableOperand == -1) { 4052 AddrMode.BaseOffs += ConstantOffset; 4053 if (ConstantOffset == 0 || 4054 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4055 // Check to see if we can fold the base pointer in too. 4056 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 4057 return true; 4058 } 4059 AddrMode.BaseOffs -= ConstantOffset; 4060 return false; 4061 } 4062 4063 // Save the valid addressing mode in case we can't match. 4064 ExtAddrMode BackupAddrMode = AddrMode; 4065 unsigned OldSize = AddrModeInsts.size(); 4066 4067 // See if the scale and offset amount is valid for this target. 4068 AddrMode.BaseOffs += ConstantOffset; 4069 4070 // Match the base operand of the GEP. 4071 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4072 // If it couldn't be matched, just stuff the value in a register. 4073 if (AddrMode.HasBaseReg) { 4074 AddrMode = BackupAddrMode; 4075 AddrModeInsts.resize(OldSize); 4076 return false; 4077 } 4078 AddrMode.HasBaseReg = true; 4079 AddrMode.BaseReg = AddrInst->getOperand(0); 4080 } 4081 4082 // Match the remaining variable portion of the GEP. 4083 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4084 Depth)) { 4085 // If it couldn't be matched, try stuffing the base into a register 4086 // instead of matching it, and retrying the match of the scale. 4087 AddrMode = BackupAddrMode; 4088 AddrModeInsts.resize(OldSize); 4089 if (AddrMode.HasBaseReg) 4090 return false; 4091 AddrMode.HasBaseReg = true; 4092 AddrMode.BaseReg = AddrInst->getOperand(0); 4093 AddrMode.BaseOffs += ConstantOffset; 4094 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4095 VariableScale, Depth)) { 4096 // If even that didn't work, bail. 4097 AddrMode = BackupAddrMode; 4098 AddrModeInsts.resize(OldSize); 4099 return false; 4100 } 4101 } 4102 4103 return true; 4104 } 4105 case Instruction::SExt: 4106 case Instruction::ZExt: { 4107 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4108 if (!Ext) 4109 return false; 4110 4111 // Try to move this ext out of the way of the addressing mode. 4112 // Ask for a method for doing so. 4113 TypePromotionHelper::Action TPH = 4114 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4115 if (!TPH) 4116 return false; 4117 4118 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4119 TPT.getRestorationPoint(); 4120 unsigned CreatedInstsCost = 0; 4121 unsigned ExtCost = !TLI.isExtFree(Ext); 4122 Value *PromotedOperand = 4123 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4124 // SExt has been moved away. 4125 // Thus either it will be rematched later in the recursive calls or it is 4126 // gone. Anyway, we must not fold it into the addressing mode at this point. 4127 // E.g., 4128 // op = add opnd, 1 4129 // idx = ext op 4130 // addr = gep base, idx 4131 // is now: 4132 // promotedOpnd = ext opnd <- no match here 4133 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4134 // addr = gep base, op <- match 4135 if (MovedAway) 4136 *MovedAway = true; 4137 4138 assert(PromotedOperand && 4139 "TypePromotionHelper should have filtered out those cases"); 4140 4141 ExtAddrMode BackupAddrMode = AddrMode; 4142 unsigned OldSize = AddrModeInsts.size(); 4143 4144 if (!matchAddr(PromotedOperand, Depth) || 4145 // The total of the new cost is equal to the cost of the created 4146 // instructions. 4147 // The total of the old cost is equal to the cost of the extension plus 4148 // what we have saved in the addressing mode. 4149 !isPromotionProfitable(CreatedInstsCost, 4150 ExtCost + (AddrModeInsts.size() - OldSize), 4151 PromotedOperand)) { 4152 AddrMode = BackupAddrMode; 4153 AddrModeInsts.resize(OldSize); 4154 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4155 TPT.rollback(LastKnownGood); 4156 return false; 4157 } 4158 return true; 4159 } 4160 } 4161 return false; 4162 } 4163 4164 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4165 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4166 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4167 /// for the target. 4168 /// 4169 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4170 // Start a transaction at this point that we will rollback if the matching 4171 // fails. 4172 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4173 TPT.getRestorationPoint(); 4174 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4175 // Fold in immediates if legal for the target. 4176 AddrMode.BaseOffs += CI->getSExtValue(); 4177 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4178 return true; 4179 AddrMode.BaseOffs -= CI->getSExtValue(); 4180 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4181 // If this is a global variable, try to fold it into the addressing mode. 4182 if (!AddrMode.BaseGV) { 4183 AddrMode.BaseGV = GV; 4184 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4185 return true; 4186 AddrMode.BaseGV = nullptr; 4187 } 4188 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4189 ExtAddrMode BackupAddrMode = AddrMode; 4190 unsigned OldSize = AddrModeInsts.size(); 4191 4192 // Check to see if it is possible to fold this operation. 4193 bool MovedAway = false; 4194 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4195 // This instruction may have been moved away. If so, there is nothing 4196 // to check here. 4197 if (MovedAway) 4198 return true; 4199 // Okay, it's possible to fold this. Check to see if it is actually 4200 // *profitable* to do so. We use a simple cost model to avoid increasing 4201 // register pressure too much. 4202 if (I->hasOneUse() || 4203 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4204 AddrModeInsts.push_back(I); 4205 return true; 4206 } 4207 4208 // It isn't profitable to do this, roll back. 4209 //cerr << "NOT FOLDING: " << *I; 4210 AddrMode = BackupAddrMode; 4211 AddrModeInsts.resize(OldSize); 4212 TPT.rollback(LastKnownGood); 4213 } 4214 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4215 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4216 return true; 4217 TPT.rollback(LastKnownGood); 4218 } else if (isa<ConstantPointerNull>(Addr)) { 4219 // Null pointer gets folded without affecting the addressing mode. 4220 return true; 4221 } 4222 4223 // Worse case, the target should support [reg] addressing modes. :) 4224 if (!AddrMode.HasBaseReg) { 4225 AddrMode.HasBaseReg = true; 4226 AddrMode.BaseReg = Addr; 4227 // Still check for legality in case the target supports [imm] but not [i+r]. 4228 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4229 return true; 4230 AddrMode.HasBaseReg = false; 4231 AddrMode.BaseReg = nullptr; 4232 } 4233 4234 // If the base register is already taken, see if we can do [r+r]. 4235 if (AddrMode.Scale == 0) { 4236 AddrMode.Scale = 1; 4237 AddrMode.ScaledReg = Addr; 4238 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4239 return true; 4240 AddrMode.Scale = 0; 4241 AddrMode.ScaledReg = nullptr; 4242 } 4243 // Couldn't match. 4244 TPT.rollback(LastKnownGood); 4245 return false; 4246 } 4247 4248 /// Check to see if all uses of OpVal by the specified inline asm call are due 4249 /// to memory operands. If so, return true, otherwise return false. 4250 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4251 const TargetLowering &TLI, 4252 const TargetRegisterInfo &TRI) { 4253 const Function *F = CI->getFunction(); 4254 TargetLowering::AsmOperandInfoVector TargetConstraints = 4255 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 4256 ImmutableCallSite(CI)); 4257 4258 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4259 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4260 4261 // Compute the constraint code and ConstraintType to use. 4262 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4263 4264 // If this asm operand is our Value*, and if it isn't an indirect memory 4265 // operand, we can't fold it! 4266 if (OpInfo.CallOperandVal == OpVal && 4267 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4268 !OpInfo.isIndirect)) 4269 return false; 4270 } 4271 4272 return true; 4273 } 4274 4275 // Max number of memory uses to look at before aborting the search to conserve 4276 // compile time. 4277 static constexpr int MaxMemoryUsesToScan = 20; 4278 4279 /// Recursively walk all the uses of I until we find a memory use. 4280 /// If we find an obviously non-foldable instruction, return true. 4281 /// Add the ultimately found memory instructions to MemoryUses. 4282 static bool FindAllMemoryUses( 4283 Instruction *I, 4284 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4285 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4286 const TargetRegisterInfo &TRI, int SeenInsts = 0) { 4287 // If we already considered this instruction, we're done. 4288 if (!ConsideredInsts.insert(I).second) 4289 return false; 4290 4291 // If this is an obviously unfoldable instruction, bail out. 4292 if (!MightBeFoldableInst(I)) 4293 return true; 4294 4295 const bool OptSize = I->getFunction()->optForSize(); 4296 4297 // Loop over all the uses, recursively processing them. 4298 for (Use &U : I->uses()) { 4299 // Conservatively return true if we're seeing a large number or a deep chain 4300 // of users. This avoids excessive compilation times in pathological cases. 4301 if (SeenInsts++ >= MaxMemoryUsesToScan) 4302 return true; 4303 4304 Instruction *UserI = cast<Instruction>(U.getUser()); 4305 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4306 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4307 continue; 4308 } 4309 4310 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4311 unsigned opNo = U.getOperandNo(); 4312 if (opNo != StoreInst::getPointerOperandIndex()) 4313 return true; // Storing addr, not into addr. 4314 MemoryUses.push_back(std::make_pair(SI, opNo)); 4315 continue; 4316 } 4317 4318 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4319 unsigned opNo = U.getOperandNo(); 4320 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4321 return true; // Storing addr, not into addr. 4322 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4323 continue; 4324 } 4325 4326 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4327 unsigned opNo = U.getOperandNo(); 4328 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4329 return true; // Storing addr, not into addr. 4330 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4331 continue; 4332 } 4333 4334 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4335 // If this is a cold call, we can sink the addressing calculation into 4336 // the cold path. See optimizeCallInst 4337 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 4338 continue; 4339 4340 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4341 if (!IA) return true; 4342 4343 // If this is a memory operand, we're cool, otherwise bail out. 4344 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4345 return true; 4346 continue; 4347 } 4348 4349 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, 4350 SeenInsts)) 4351 return true; 4352 } 4353 4354 return false; 4355 } 4356 4357 /// Return true if Val is already known to be live at the use site that we're 4358 /// folding it into. If so, there is no cost to include it in the addressing 4359 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4360 /// instruction already. 4361 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4362 Value *KnownLive2) { 4363 // If Val is either of the known-live values, we know it is live! 4364 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4365 return true; 4366 4367 // All values other than instructions and arguments (e.g. constants) are live. 4368 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4369 4370 // If Val is a constant sized alloca in the entry block, it is live, this is 4371 // true because it is just a reference to the stack/frame pointer, which is 4372 // live for the whole function. 4373 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4374 if (AI->isStaticAlloca()) 4375 return true; 4376 4377 // Check to see if this value is already used in the memory instruction's 4378 // block. If so, it's already live into the block at the very least, so we 4379 // can reasonably fold it. 4380 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4381 } 4382 4383 /// It is possible for the addressing mode of the machine to fold the specified 4384 /// instruction into a load or store that ultimately uses it. 4385 /// However, the specified instruction has multiple uses. 4386 /// Given this, it may actually increase register pressure to fold it 4387 /// into the load. For example, consider this code: 4388 /// 4389 /// X = ... 4390 /// Y = X+1 4391 /// use(Y) -> nonload/store 4392 /// Z = Y+1 4393 /// load Z 4394 /// 4395 /// In this case, Y has multiple uses, and can be folded into the load of Z 4396 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4397 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4398 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4399 /// number of computations either. 4400 /// 4401 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4402 /// X was live across 'load Z' for other reasons, we actually *would* want to 4403 /// fold the addressing mode in the Z case. This would make Y die earlier. 4404 bool AddressingModeMatcher:: 4405 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4406 ExtAddrMode &AMAfter) { 4407 if (IgnoreProfitability) return true; 4408 4409 // AMBefore is the addressing mode before this instruction was folded into it, 4410 // and AMAfter is the addressing mode after the instruction was folded. Get 4411 // the set of registers referenced by AMAfter and subtract out those 4412 // referenced by AMBefore: this is the set of values which folding in this 4413 // address extends the lifetime of. 4414 // 4415 // Note that there are only two potential values being referenced here, 4416 // BaseReg and ScaleReg (global addresses are always available, as are any 4417 // folded immediates). 4418 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4419 4420 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4421 // lifetime wasn't extended by adding this instruction. 4422 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4423 BaseReg = nullptr; 4424 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4425 ScaledReg = nullptr; 4426 4427 // If folding this instruction (and it's subexprs) didn't extend any live 4428 // ranges, we're ok with it. 4429 if (!BaseReg && !ScaledReg) 4430 return true; 4431 4432 // If all uses of this instruction can have the address mode sunk into them, 4433 // we can remove the addressing mode and effectively trade one live register 4434 // for another (at worst.) In this context, folding an addressing mode into 4435 // the use is just a particularly nice way of sinking it. 4436 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4437 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4438 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 4439 return false; // Has a non-memory, non-foldable use! 4440 4441 // Now that we know that all uses of this instruction are part of a chain of 4442 // computation involving only operations that could theoretically be folded 4443 // into a memory use, loop over each of these memory operation uses and see 4444 // if they could *actually* fold the instruction. The assumption is that 4445 // addressing modes are cheap and that duplicating the computation involved 4446 // many times is worthwhile, even on a fastpath. For sinking candidates 4447 // (i.e. cold call sites), this serves as a way to prevent excessive code 4448 // growth since most architectures have some reasonable small and fast way to 4449 // compute an effective address. (i.e LEA on x86) 4450 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4451 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4452 Instruction *User = MemoryUses[i].first; 4453 unsigned OpNo = MemoryUses[i].second; 4454 4455 // Get the access type of this use. If the use isn't a pointer, we don't 4456 // know what it accesses. 4457 Value *Address = User->getOperand(OpNo); 4458 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4459 if (!AddrTy) 4460 return false; 4461 Type *AddressAccessTy = AddrTy->getElementType(); 4462 unsigned AS = AddrTy->getAddressSpace(); 4463 4464 // Do a match against the root of this address, ignoring profitability. This 4465 // will tell us if the addressing mode for the memory operation will 4466 // *actually* cover the shared instruction. 4467 ExtAddrMode Result; 4468 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4469 TPT.getRestorationPoint(); 4470 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, 4471 AddressAccessTy, AS, 4472 MemoryInst, Result, InsertedInsts, 4473 PromotedInsts, TPT); 4474 Matcher.IgnoreProfitability = true; 4475 bool Success = Matcher.matchAddr(Address, 0); 4476 (void)Success; assert(Success && "Couldn't select *anything*?"); 4477 4478 // The match was to check the profitability, the changes made are not 4479 // part of the original matcher. Therefore, they should be dropped 4480 // otherwise the original matcher will not present the right state. 4481 TPT.rollback(LastKnownGood); 4482 4483 // If the match didn't cover I, then it won't be shared by it. 4484 if (!is_contained(MatchedAddrModeInsts, I)) 4485 return false; 4486 4487 MatchedAddrModeInsts.clear(); 4488 } 4489 4490 return true; 4491 } 4492 4493 /// Return true if the specified values are defined in a 4494 /// different basic block than BB. 4495 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4496 if (Instruction *I = dyn_cast<Instruction>(V)) 4497 return I->getParent() != BB; 4498 return false; 4499 } 4500 4501 /// Sink addressing mode computation immediate before MemoryInst if doing so 4502 /// can be done without increasing register pressure. The need for the 4503 /// register pressure constraint means this can end up being an all or nothing 4504 /// decision for all uses of the same addressing computation. 4505 /// 4506 /// Load and Store Instructions often have addressing modes that can do 4507 /// significant amounts of computation. As such, instruction selection will try 4508 /// to get the load or store to do as much computation as possible for the 4509 /// program. The problem is that isel can only see within a single block. As 4510 /// such, we sink as much legal addressing mode work into the block as possible. 4511 /// 4512 /// This method is used to optimize both load/store and inline asms with memory 4513 /// operands. It's also used to sink addressing computations feeding into cold 4514 /// call sites into their (cold) basic block. 4515 /// 4516 /// The motivation for handling sinking into cold blocks is that doing so can 4517 /// both enable other address mode sinking (by satisfying the register pressure 4518 /// constraint above), and reduce register pressure globally (by removing the 4519 /// addressing mode computation from the fast path entirely.). 4520 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4521 Type *AccessTy, unsigned AddrSpace) { 4522 Value *Repl = Addr; 4523 4524 // Try to collapse single-value PHI nodes. This is necessary to undo 4525 // unprofitable PRE transformations. 4526 SmallVector<Value*, 8> worklist; 4527 SmallPtrSet<Value*, 16> Visited; 4528 worklist.push_back(Addr); 4529 4530 // Use a worklist to iteratively look through PHI and select nodes, and 4531 // ensure that the addressing mode obtained from the non-PHI/select roots of 4532 // the graph are compatible. 4533 bool PhiOrSelectSeen = false; 4534 SmallVector<Instruction*, 16> AddrModeInsts; 4535 AddressingModeCombiner AddrModes; 4536 TypePromotionTransaction TPT(RemovedInsts); 4537 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4538 TPT.getRestorationPoint(); 4539 while (!worklist.empty()) { 4540 Value *V = worklist.back(); 4541 worklist.pop_back(); 4542 4543 // We allow traversing cyclic Phi nodes. 4544 // In case of success after this loop we ensure that traversing through 4545 // Phi nodes ends up with all cases to compute address of the form 4546 // BaseGV + Base + Scale * Index + Offset 4547 // where Scale and Offset are constans and BaseGV, Base and Index 4548 // are exactly the same Values in all cases. 4549 // It means that BaseGV, Scale and Offset dominate our memory instruction 4550 // and have the same value as they had in address computation represented 4551 // as Phi. So we can safely sink address computation to memory instruction. 4552 if (!Visited.insert(V).second) 4553 continue; 4554 4555 // For a PHI node, push all of its incoming values. 4556 if (PHINode *P = dyn_cast<PHINode>(V)) { 4557 for (Value *IncValue : P->incoming_values()) 4558 worklist.push_back(IncValue); 4559 PhiOrSelectSeen = true; 4560 continue; 4561 } 4562 // Similar for select. 4563 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4564 worklist.push_back(SI->getFalseValue()); 4565 worklist.push_back(SI->getTrueValue()); 4566 PhiOrSelectSeen = true; 4567 continue; 4568 } 4569 4570 // For non-PHIs, determine the addressing mode being computed. Note that 4571 // the result may differ depending on what other uses our candidate 4572 // addressing instructions might have. 4573 AddrModeInsts.clear(); 4574 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4575 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4576 InsertedInsts, PromotedInsts, TPT); 4577 NewAddrMode.OriginalValue = V; 4578 4579 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4580 break; 4581 } 4582 4583 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4584 // or we have multiple but either couldn't combine them or combining them 4585 // wouldn't do anything useful, bail out now. 4586 if (!AddrModes.combineAddrModes()) { 4587 TPT.rollback(LastKnownGood); 4588 return false; 4589 } 4590 TPT.commit(); 4591 4592 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4593 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4594 4595 // If all the instructions matched are already in this BB, don't do anything. 4596 // If we saw a Phi node then it is not local definitely, and if we saw a select 4597 // then we want to push the address calculation past it even if it's already 4598 // in this BB. 4599 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4600 return IsNonLocalValue(V, MemoryInst->getParent()); 4601 })) { 4602 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 4603 return false; 4604 } 4605 4606 // Insert this computation right after this user. Since our caller is 4607 // scanning from the top of the BB to the bottom, reuse of the expr are 4608 // guaranteed to happen later. 4609 IRBuilder<> Builder(MemoryInst); 4610 4611 // Now that we determined the addressing expression we want to use and know 4612 // that we have to sink it into this block. Check to see if we have already 4613 // done this for some other load/store instr in this block. If so, reuse the 4614 // computation. 4615 Value *&SunkAddr = SunkAddrs[Addr]; 4616 if (SunkAddr) { 4617 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 4618 << *MemoryInst << "\n"); 4619 if (SunkAddr->getType() != Addr->getType()) 4620 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4621 } else if (AddrSinkUsingGEPs || 4622 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 4623 SubtargetInfo->useAA())) { 4624 // By default, we use the GEP-based method when AA is used later. This 4625 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4626 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 4627 << *MemoryInst << "\n"); 4628 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4629 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4630 4631 // First, find the pointer. 4632 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4633 ResultPtr = AddrMode.BaseReg; 4634 AddrMode.BaseReg = nullptr; 4635 } 4636 4637 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4638 // We can't add more than one pointer together, nor can we scale a 4639 // pointer (both of which seem meaningless). 4640 if (ResultPtr || AddrMode.Scale != 1) 4641 return false; 4642 4643 ResultPtr = AddrMode.ScaledReg; 4644 AddrMode.Scale = 0; 4645 } 4646 4647 // It is only safe to sign extend the BaseReg if we know that the math 4648 // required to create it did not overflow before we extend it. Since 4649 // the original IR value was tossed in favor of a constant back when 4650 // the AddrMode was created we need to bail out gracefully if widths 4651 // do not match instead of extending it. 4652 // 4653 // (See below for code to add the scale.) 4654 if (AddrMode.Scale) { 4655 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4656 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4657 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4658 return false; 4659 } 4660 4661 if (AddrMode.BaseGV) { 4662 if (ResultPtr) 4663 return false; 4664 4665 ResultPtr = AddrMode.BaseGV; 4666 } 4667 4668 // If the real base value actually came from an inttoptr, then the matcher 4669 // will look through it and provide only the integer value. In that case, 4670 // use it here. 4671 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4672 if (!ResultPtr && AddrMode.BaseReg) { 4673 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4674 "sunkaddr"); 4675 AddrMode.BaseReg = nullptr; 4676 } else if (!ResultPtr && AddrMode.Scale == 1) { 4677 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4678 "sunkaddr"); 4679 AddrMode.Scale = 0; 4680 } 4681 } 4682 4683 if (!ResultPtr && 4684 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4685 SunkAddr = Constant::getNullValue(Addr->getType()); 4686 } else if (!ResultPtr) { 4687 return false; 4688 } else { 4689 Type *I8PtrTy = 4690 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4691 Type *I8Ty = Builder.getInt8Ty(); 4692 4693 // Start with the base register. Do this first so that subsequent address 4694 // matching finds it last, which will prevent it from trying to match it 4695 // as the scaled value in case it happens to be a mul. That would be 4696 // problematic if we've sunk a different mul for the scale, because then 4697 // we'd end up sinking both muls. 4698 if (AddrMode.BaseReg) { 4699 Value *V = AddrMode.BaseReg; 4700 if (V->getType() != IntPtrTy) 4701 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4702 4703 ResultIndex = V; 4704 } 4705 4706 // Add the scale value. 4707 if (AddrMode.Scale) { 4708 Value *V = AddrMode.ScaledReg; 4709 if (V->getType() == IntPtrTy) { 4710 // done. 4711 } else { 4712 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 4713 cast<IntegerType>(V->getType())->getBitWidth() && 4714 "We can't transform if ScaledReg is too narrow"); 4715 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4716 } 4717 4718 if (AddrMode.Scale != 1) 4719 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4720 "sunkaddr"); 4721 if (ResultIndex) 4722 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4723 else 4724 ResultIndex = V; 4725 } 4726 4727 // Add in the Base Offset if present. 4728 if (AddrMode.BaseOffs) { 4729 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4730 if (ResultIndex) { 4731 // We need to add this separately from the scale above to help with 4732 // SDAG consecutive load/store merging. 4733 if (ResultPtr->getType() != I8PtrTy) 4734 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4735 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4736 } 4737 4738 ResultIndex = V; 4739 } 4740 4741 if (!ResultIndex) { 4742 SunkAddr = ResultPtr; 4743 } else { 4744 if (ResultPtr->getType() != I8PtrTy) 4745 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4746 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4747 } 4748 4749 if (SunkAddr->getType() != Addr->getType()) 4750 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4751 } 4752 } else { 4753 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 4754 // non-integral pointers, so in that case bail out now. 4755 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 4756 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 4757 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 4758 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 4759 if (DL->isNonIntegralPointerType(Addr->getType()) || 4760 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 4761 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 4762 (AddrMode.BaseGV && 4763 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 4764 return false; 4765 4766 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 4767 << *MemoryInst << "\n"); 4768 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4769 Value *Result = nullptr; 4770 4771 // Start with the base register. Do this first so that subsequent address 4772 // matching finds it last, which will prevent it from trying to match it 4773 // as the scaled value in case it happens to be a mul. That would be 4774 // problematic if we've sunk a different mul for the scale, because then 4775 // we'd end up sinking both muls. 4776 if (AddrMode.BaseReg) { 4777 Value *V = AddrMode.BaseReg; 4778 if (V->getType()->isPointerTy()) 4779 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4780 if (V->getType() != IntPtrTy) 4781 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4782 Result = V; 4783 } 4784 4785 // Add the scale value. 4786 if (AddrMode.Scale) { 4787 Value *V = AddrMode.ScaledReg; 4788 if (V->getType() == IntPtrTy) { 4789 // done. 4790 } else if (V->getType()->isPointerTy()) { 4791 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4792 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4793 cast<IntegerType>(V->getType())->getBitWidth()) { 4794 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4795 } else { 4796 // It is only safe to sign extend the BaseReg if we know that the math 4797 // required to create it did not overflow before we extend it. Since 4798 // the original IR value was tossed in favor of a constant back when 4799 // the AddrMode was created we need to bail out gracefully if widths 4800 // do not match instead of extending it. 4801 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4802 if (I && (Result != AddrMode.BaseReg)) 4803 I->eraseFromParent(); 4804 return false; 4805 } 4806 if (AddrMode.Scale != 1) 4807 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4808 "sunkaddr"); 4809 if (Result) 4810 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4811 else 4812 Result = V; 4813 } 4814 4815 // Add in the BaseGV if present. 4816 if (AddrMode.BaseGV) { 4817 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 4818 if (Result) 4819 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4820 else 4821 Result = V; 4822 } 4823 4824 // Add in the Base Offset if present. 4825 if (AddrMode.BaseOffs) { 4826 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4827 if (Result) 4828 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4829 else 4830 Result = V; 4831 } 4832 4833 if (!Result) 4834 SunkAddr = Constant::getNullValue(Addr->getType()); 4835 else 4836 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 4837 } 4838 4839 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 4840 4841 // If we have no uses, recursively delete the value and all dead instructions 4842 // using it. 4843 if (Repl->use_empty()) { 4844 // This can cause recursive deletion, which can invalidate our iterator. 4845 // Use a WeakTrackingVH to hold onto it in case this happens. 4846 Value *CurValue = &*CurInstIterator; 4847 WeakTrackingVH IterHandle(CurValue); 4848 BasicBlock *BB = CurInstIterator->getParent(); 4849 4850 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 4851 4852 if (IterHandle != CurValue) { 4853 // If the iterator instruction was recursively deleted, start over at the 4854 // start of the block. 4855 CurInstIterator = BB->begin(); 4856 SunkAddrs.clear(); 4857 } 4858 } 4859 ++NumMemoryInsts; 4860 return true; 4861 } 4862 4863 /// If there are any memory operands, use OptimizeMemoryInst to sink their 4864 /// address computing into the block when possible / profitable. 4865 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 4866 bool MadeChange = false; 4867 4868 const TargetRegisterInfo *TRI = 4869 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 4870 TargetLowering::AsmOperandInfoVector TargetConstraints = 4871 TLI->ParseConstraints(*DL, TRI, CS); 4872 unsigned ArgNo = 0; 4873 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4874 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4875 4876 // Compute the constraint code and ConstraintType to use. 4877 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 4878 4879 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4880 OpInfo.isIndirect) { 4881 Value *OpVal = CS->getArgOperand(ArgNo++); 4882 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 4883 } else if (OpInfo.Type == InlineAsm::isInput) 4884 ArgNo++; 4885 } 4886 4887 return MadeChange; 4888 } 4889 4890 /// \brief Check if all the uses of \p Val are equivalent (or free) zero or 4891 /// sign extensions. 4892 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 4893 assert(!Val->use_empty() && "Input must have at least one use"); 4894 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 4895 bool IsSExt = isa<SExtInst>(FirstUser); 4896 Type *ExtTy = FirstUser->getType(); 4897 for (const User *U : Val->users()) { 4898 const Instruction *UI = cast<Instruction>(U); 4899 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 4900 return false; 4901 Type *CurTy = UI->getType(); 4902 // Same input and output types: Same instruction after CSE. 4903 if (CurTy == ExtTy) 4904 continue; 4905 4906 // If IsSExt is true, we are in this situation: 4907 // a = Val 4908 // b = sext ty1 a to ty2 4909 // c = sext ty1 a to ty3 4910 // Assuming ty2 is shorter than ty3, this could be turned into: 4911 // a = Val 4912 // b = sext ty1 a to ty2 4913 // c = sext ty2 b to ty3 4914 // However, the last sext is not free. 4915 if (IsSExt) 4916 return false; 4917 4918 // This is a ZExt, maybe this is free to extend from one type to another. 4919 // In that case, we would not account for a different use. 4920 Type *NarrowTy; 4921 Type *LargeTy; 4922 if (ExtTy->getScalarType()->getIntegerBitWidth() > 4923 CurTy->getScalarType()->getIntegerBitWidth()) { 4924 NarrowTy = CurTy; 4925 LargeTy = ExtTy; 4926 } else { 4927 NarrowTy = ExtTy; 4928 LargeTy = CurTy; 4929 } 4930 4931 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 4932 return false; 4933 } 4934 // All uses are the same or can be derived from one another for free. 4935 return true; 4936 } 4937 4938 /// \brief Try to speculatively promote extensions in \p Exts and continue 4939 /// promoting through newly promoted operands recursively as far as doing so is 4940 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 4941 /// When some promotion happened, \p TPT contains the proper state to revert 4942 /// them. 4943 /// 4944 /// \return true if some promotion happened, false otherwise. 4945 bool CodeGenPrepare::tryToPromoteExts( 4946 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 4947 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 4948 unsigned CreatedInstsCost) { 4949 bool Promoted = false; 4950 4951 // Iterate over all the extensions to try to promote them. 4952 for (auto I : Exts) { 4953 // Early check if we directly have ext(load). 4954 if (isa<LoadInst>(I->getOperand(0))) { 4955 ProfitablyMovedExts.push_back(I); 4956 continue; 4957 } 4958 4959 // Check whether or not we want to do any promotion. The reason we have 4960 // this check inside the for loop is to catch the case where an extension 4961 // is directly fed by a load because in such case the extension can be moved 4962 // up without any promotion on its operands. 4963 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4964 return false; 4965 4966 // Get the action to perform the promotion. 4967 TypePromotionHelper::Action TPH = 4968 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 4969 // Check if we can promote. 4970 if (!TPH) { 4971 // Save the current extension as we cannot move up through its operand. 4972 ProfitablyMovedExts.push_back(I); 4973 continue; 4974 } 4975 4976 // Save the current state. 4977 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4978 TPT.getRestorationPoint(); 4979 SmallVector<Instruction *, 4> NewExts; 4980 unsigned NewCreatedInstsCost = 0; 4981 unsigned ExtCost = !TLI->isExtFree(I); 4982 // Promote. 4983 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4984 &NewExts, nullptr, *TLI); 4985 assert(PromotedVal && 4986 "TypePromotionHelper should have filtered out those cases"); 4987 4988 // We would be able to merge only one extension in a load. 4989 // Therefore, if we have more than 1 new extension we heuristically 4990 // cut this search path, because it means we degrade the code quality. 4991 // With exactly 2, the transformation is neutral, because we will merge 4992 // one extension but leave one. However, we optimistically keep going, 4993 // because the new extension may be removed too. 4994 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4995 // FIXME: It would be possible to propagate a negative value instead of 4996 // conservatively ceiling it to 0. 4997 TotalCreatedInstsCost = 4998 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 4999 if (!StressExtLdPromotion && 5000 (TotalCreatedInstsCost > 1 || 5001 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5002 // This promotion is not profitable, rollback to the previous state, and 5003 // save the current extension in ProfitablyMovedExts as the latest 5004 // speculative promotion turned out to be unprofitable. 5005 TPT.rollback(LastKnownGood); 5006 ProfitablyMovedExts.push_back(I); 5007 continue; 5008 } 5009 // Continue promoting NewExts as far as doing so is profitable. 5010 SmallVector<Instruction *, 2> NewlyMovedExts; 5011 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5012 bool NewPromoted = false; 5013 for (auto ExtInst : NewlyMovedExts) { 5014 Instruction *MovedExt = cast<Instruction>(ExtInst); 5015 Value *ExtOperand = MovedExt->getOperand(0); 5016 // If we have reached to a load, we need this extra profitability check 5017 // as it could potentially be merged into an ext(load). 5018 if (isa<LoadInst>(ExtOperand) && 5019 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5020 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5021 continue; 5022 5023 ProfitablyMovedExts.push_back(MovedExt); 5024 NewPromoted = true; 5025 } 5026 5027 // If none of speculative promotions for NewExts is profitable, rollback 5028 // and save the current extension (I) as the last profitable extension. 5029 if (!NewPromoted) { 5030 TPT.rollback(LastKnownGood); 5031 ProfitablyMovedExts.push_back(I); 5032 continue; 5033 } 5034 // The promotion is profitable. 5035 Promoted = true; 5036 } 5037 return Promoted; 5038 } 5039 5040 /// Merging redundant sexts when one is dominating the other. 5041 bool CodeGenPrepare::mergeSExts(Function &F) { 5042 DominatorTree DT(F); 5043 bool Changed = false; 5044 for (auto &Entry : ValToSExtendedUses) { 5045 SExts &Insts = Entry.second; 5046 SExts CurPts; 5047 for (Instruction *Inst : Insts) { 5048 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5049 Inst->getOperand(0) != Entry.first) 5050 continue; 5051 bool inserted = false; 5052 for (auto &Pt : CurPts) { 5053 if (DT.dominates(Inst, Pt)) { 5054 Pt->replaceAllUsesWith(Inst); 5055 RemovedInsts.insert(Pt); 5056 Pt->removeFromParent(); 5057 Pt = Inst; 5058 inserted = true; 5059 Changed = true; 5060 break; 5061 } 5062 if (!DT.dominates(Pt, Inst)) 5063 // Give up if we need to merge in a common dominator as the 5064 // expermients show it is not profitable. 5065 continue; 5066 Inst->replaceAllUsesWith(Pt); 5067 RemovedInsts.insert(Inst); 5068 Inst->removeFromParent(); 5069 inserted = true; 5070 Changed = true; 5071 break; 5072 } 5073 if (!inserted) 5074 CurPts.push_back(Inst); 5075 } 5076 } 5077 return Changed; 5078 } 5079 5080 /// Return true, if an ext(load) can be formed from an extension in 5081 /// \p MovedExts. 5082 bool CodeGenPrepare::canFormExtLd( 5083 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5084 Instruction *&Inst, bool HasPromoted) { 5085 for (auto *MovedExtInst : MovedExts) { 5086 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5087 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5088 Inst = MovedExtInst; 5089 break; 5090 } 5091 } 5092 if (!LI) 5093 return false; 5094 5095 // If they're already in the same block, there's nothing to do. 5096 // Make the cheap checks first if we did not promote. 5097 // If we promoted, we need to check if it is indeed profitable. 5098 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5099 return false; 5100 5101 return TLI->isExtLoad(LI, Inst, *DL); 5102 } 5103 5104 /// Move a zext or sext fed by a load into the same basic block as the load, 5105 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5106 /// extend into the load. 5107 /// 5108 /// E.g., 5109 /// \code 5110 /// %ld = load i32* %addr 5111 /// %add = add nuw i32 %ld, 4 5112 /// %zext = zext i32 %add to i64 5113 // \endcode 5114 /// => 5115 /// \code 5116 /// %ld = load i32* %addr 5117 /// %zext = zext i32 %ld to i64 5118 /// %add = add nuw i64 %zext, 4 5119 /// \encode 5120 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5121 /// allow us to match zext(load i32*) to i64. 5122 /// 5123 /// Also, try to promote the computations used to obtain a sign extended 5124 /// value used into memory accesses. 5125 /// E.g., 5126 /// \code 5127 /// a = add nsw i32 b, 3 5128 /// d = sext i32 a to i64 5129 /// e = getelementptr ..., i64 d 5130 /// \endcode 5131 /// => 5132 /// \code 5133 /// f = sext i32 b to i64 5134 /// a = add nsw i64 f, 3 5135 /// e = getelementptr ..., i64 a 5136 /// \endcode 5137 /// 5138 /// \p Inst[in/out] the extension may be modified during the process if some 5139 /// promotions apply. 5140 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 5141 // ExtLoad formation and address type promotion infrastructure requires TLI to 5142 // be effective. 5143 if (!TLI) 5144 return false; 5145 5146 bool AllowPromotionWithoutCommonHeader = false; 5147 /// See if it is an interesting sext operations for the address type 5148 /// promotion before trying to promote it, e.g., the ones with the right 5149 /// type and used in memory accesses. 5150 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 5151 *Inst, AllowPromotionWithoutCommonHeader); 5152 TypePromotionTransaction TPT(RemovedInsts); 5153 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5154 TPT.getRestorationPoint(); 5155 SmallVector<Instruction *, 1> Exts; 5156 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 5157 Exts.push_back(Inst); 5158 5159 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 5160 5161 // Look for a load being extended. 5162 LoadInst *LI = nullptr; 5163 Instruction *ExtFedByLoad; 5164 5165 // Try to promote a chain of computation if it allows to form an extended 5166 // load. 5167 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5168 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5169 TPT.commit(); 5170 // Move the extend into the same block as the load 5171 ExtFedByLoad->moveAfter(LI); 5172 // CGP does not check if the zext would be speculatively executed when moved 5173 // to the same basic block as the load. Preserving its original location 5174 // would pessimize the debugging experience, as well as negatively impact 5175 // the quality of sample pgo. We don't want to use "line 0" as that has a 5176 // size cost in the line-table section and logically the zext can be seen as 5177 // part of the load. Therefore we conservatively reuse the same debug 5178 // location for the load and the zext. 5179 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 5180 ++NumExtsMoved; 5181 Inst = ExtFedByLoad; 5182 return true; 5183 } 5184 5185 // Continue promoting SExts if known as considerable depending on targets. 5186 if (ATPConsiderable && 5187 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5188 HasPromoted, TPT, SpeculativelyMovedExts)) 5189 return true; 5190 5191 TPT.rollback(LastKnownGood); 5192 return false; 5193 } 5194 5195 // Perform address type promotion if doing so is profitable. 5196 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5197 // instructions that sign extended the same initial value. However, if 5198 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5199 // extension is just profitable. 5200 bool CodeGenPrepare::performAddressTypePromotion( 5201 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5202 bool HasPromoted, TypePromotionTransaction &TPT, 5203 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5204 bool Promoted = false; 5205 SmallPtrSet<Instruction *, 1> UnhandledExts; 5206 bool AllSeenFirst = true; 5207 for (auto I : SpeculativelyMovedExts) { 5208 Value *HeadOfChain = I->getOperand(0); 5209 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 5210 SeenChainsForSExt.find(HeadOfChain); 5211 // If there is an unhandled SExt which has the same header, try to promote 5212 // it as well. 5213 if (AlreadySeen != SeenChainsForSExt.end()) { 5214 if (AlreadySeen->second != nullptr) 5215 UnhandledExts.insert(AlreadySeen->second); 5216 AllSeenFirst = false; 5217 } 5218 } 5219 5220 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 5221 SpeculativelyMovedExts.size() == 1)) { 5222 TPT.commit(); 5223 if (HasPromoted) 5224 Promoted = true; 5225 for (auto I : SpeculativelyMovedExts) { 5226 Value *HeadOfChain = I->getOperand(0); 5227 SeenChainsForSExt[HeadOfChain] = nullptr; 5228 ValToSExtendedUses[HeadOfChain].push_back(I); 5229 } 5230 // Update Inst as promotion happen. 5231 Inst = SpeculativelyMovedExts.pop_back_val(); 5232 } else { 5233 // This is the first chain visited from the header, keep the current chain 5234 // as unhandled. Defer to promote this until we encounter another SExt 5235 // chain derived from the same header. 5236 for (auto I : SpeculativelyMovedExts) { 5237 Value *HeadOfChain = I->getOperand(0); 5238 SeenChainsForSExt[HeadOfChain] = Inst; 5239 } 5240 return false; 5241 } 5242 5243 if (!AllSeenFirst && !UnhandledExts.empty()) 5244 for (auto VisitedSExt : UnhandledExts) { 5245 if (RemovedInsts.count(VisitedSExt)) 5246 continue; 5247 TypePromotionTransaction TPT(RemovedInsts); 5248 SmallVector<Instruction *, 1> Exts; 5249 SmallVector<Instruction *, 2> Chains; 5250 Exts.push_back(VisitedSExt); 5251 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 5252 TPT.commit(); 5253 if (HasPromoted) 5254 Promoted = true; 5255 for (auto I : Chains) { 5256 Value *HeadOfChain = I->getOperand(0); 5257 // Mark this as handled. 5258 SeenChainsForSExt[HeadOfChain] = nullptr; 5259 ValToSExtendedUses[HeadOfChain].push_back(I); 5260 } 5261 } 5262 return Promoted; 5263 } 5264 5265 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5266 BasicBlock *DefBB = I->getParent(); 5267 5268 // If the result of a {s|z}ext and its source are both live out, rewrite all 5269 // other uses of the source with result of extension. 5270 Value *Src = I->getOperand(0); 5271 if (Src->hasOneUse()) 5272 return false; 5273 5274 // Only do this xform if truncating is free. 5275 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 5276 return false; 5277 5278 // Only safe to perform the optimization if the source is also defined in 5279 // this block. 5280 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5281 return false; 5282 5283 bool DefIsLiveOut = false; 5284 for (User *U : I->users()) { 5285 Instruction *UI = cast<Instruction>(U); 5286 5287 // Figure out which BB this ext is used in. 5288 BasicBlock *UserBB = UI->getParent(); 5289 if (UserBB == DefBB) continue; 5290 DefIsLiveOut = true; 5291 break; 5292 } 5293 if (!DefIsLiveOut) 5294 return false; 5295 5296 // Make sure none of the uses are PHI nodes. 5297 for (User *U : Src->users()) { 5298 Instruction *UI = cast<Instruction>(U); 5299 BasicBlock *UserBB = UI->getParent(); 5300 if (UserBB == DefBB) continue; 5301 // Be conservative. We don't want this xform to end up introducing 5302 // reloads just before load / store instructions. 5303 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5304 return false; 5305 } 5306 5307 // InsertedTruncs - Only insert one trunc in each block once. 5308 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5309 5310 bool MadeChange = false; 5311 for (Use &U : Src->uses()) { 5312 Instruction *User = cast<Instruction>(U.getUser()); 5313 5314 // Figure out which BB this ext is used in. 5315 BasicBlock *UserBB = User->getParent(); 5316 if (UserBB == DefBB) continue; 5317 5318 // Both src and def are live in this block. Rewrite the use. 5319 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5320 5321 if (!InsertedTrunc) { 5322 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5323 assert(InsertPt != UserBB->end()); 5324 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5325 InsertedInsts.insert(InsertedTrunc); 5326 } 5327 5328 // Replace a use of the {s|z}ext source with a use of the result. 5329 U = InsertedTrunc; 5330 ++NumExtUses; 5331 MadeChange = true; 5332 } 5333 5334 return MadeChange; 5335 } 5336 5337 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5338 // just after the load if the target can fold this into one extload instruction, 5339 // with the hope of eliminating some of the other later "and" instructions using 5340 // the loaded value. "and"s that are made trivially redundant by the insertion 5341 // of the new "and" are removed by this function, while others (e.g. those whose 5342 // path from the load goes through a phi) are left for isel to potentially 5343 // remove. 5344 // 5345 // For example: 5346 // 5347 // b0: 5348 // x = load i32 5349 // ... 5350 // b1: 5351 // y = and x, 0xff 5352 // z = use y 5353 // 5354 // becomes: 5355 // 5356 // b0: 5357 // x = load i32 5358 // x' = and x, 0xff 5359 // ... 5360 // b1: 5361 // z = use x' 5362 // 5363 // whereas: 5364 // 5365 // b0: 5366 // x1 = load i32 5367 // ... 5368 // b1: 5369 // x2 = load i32 5370 // ... 5371 // b2: 5372 // x = phi x1, x2 5373 // y = and x, 0xff 5374 // 5375 // becomes (after a call to optimizeLoadExt for each load): 5376 // 5377 // b0: 5378 // x1 = load i32 5379 // x1' = and x1, 0xff 5380 // ... 5381 // b1: 5382 // x2 = load i32 5383 // x2' = and x2, 0xff 5384 // ... 5385 // b2: 5386 // x = phi x1', x2' 5387 // y = and x, 0xff 5388 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5389 if (!Load->isSimple() || 5390 !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy())) 5391 return false; 5392 5393 // Skip loads we've already transformed. 5394 if (Load->hasOneUse() && 5395 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5396 return false; 5397 5398 // Look at all uses of Load, looking through phis, to determine how many bits 5399 // of the loaded value are needed. 5400 SmallVector<Instruction *, 8> WorkList; 5401 SmallPtrSet<Instruction *, 16> Visited; 5402 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5403 for (auto *U : Load->users()) 5404 WorkList.push_back(cast<Instruction>(U)); 5405 5406 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5407 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5408 APInt DemandBits(BitWidth, 0); 5409 APInt WidestAndBits(BitWidth, 0); 5410 5411 while (!WorkList.empty()) { 5412 Instruction *I = WorkList.back(); 5413 WorkList.pop_back(); 5414 5415 // Break use-def graph loops. 5416 if (!Visited.insert(I).second) 5417 continue; 5418 5419 // For a PHI node, push all of its users. 5420 if (auto *Phi = dyn_cast<PHINode>(I)) { 5421 for (auto *U : Phi->users()) 5422 WorkList.push_back(cast<Instruction>(U)); 5423 continue; 5424 } 5425 5426 switch (I->getOpcode()) { 5427 case Instruction::And: { 5428 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5429 if (!AndC) 5430 return false; 5431 APInt AndBits = AndC->getValue(); 5432 DemandBits |= AndBits; 5433 // Keep track of the widest and mask we see. 5434 if (AndBits.ugt(WidestAndBits)) 5435 WidestAndBits = AndBits; 5436 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5437 AndsToMaybeRemove.push_back(I); 5438 break; 5439 } 5440 5441 case Instruction::Shl: { 5442 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5443 if (!ShlC) 5444 return false; 5445 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5446 DemandBits.setLowBits(BitWidth - ShiftAmt); 5447 break; 5448 } 5449 5450 case Instruction::Trunc: { 5451 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5452 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5453 DemandBits.setLowBits(TruncBitWidth); 5454 break; 5455 } 5456 5457 default: 5458 return false; 5459 } 5460 } 5461 5462 uint32_t ActiveBits = DemandBits.getActiveBits(); 5463 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5464 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5465 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5466 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5467 // followed by an AND. 5468 // TODO: Look into removing this restriction by fixing backends to either 5469 // return false for isLoadExtLegal for i1 or have them select this pattern to 5470 // a single instruction. 5471 // 5472 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5473 // mask, since these are the only ands that will be removed by isel. 5474 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5475 WidestAndBits != DemandBits) 5476 return false; 5477 5478 LLVMContext &Ctx = Load->getType()->getContext(); 5479 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5480 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5481 5482 // Reject cases that won't be matched as extloads. 5483 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5484 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5485 return false; 5486 5487 IRBuilder<> Builder(Load->getNextNode()); 5488 auto *NewAnd = dyn_cast<Instruction>( 5489 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5490 // Mark this instruction as "inserted by CGP", so that other 5491 // optimizations don't touch it. 5492 InsertedInsts.insert(NewAnd); 5493 5494 // Replace all uses of load with new and (except for the use of load in the 5495 // new and itself). 5496 Load->replaceAllUsesWith(NewAnd); 5497 NewAnd->setOperand(0, Load); 5498 5499 // Remove any and instructions that are now redundant. 5500 for (auto *And : AndsToMaybeRemove) 5501 // Check that the and mask is the same as the one we decided to put on the 5502 // new and. 5503 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5504 And->replaceAllUsesWith(NewAnd); 5505 if (&*CurInstIterator == And) 5506 CurInstIterator = std::next(And->getIterator()); 5507 And->eraseFromParent(); 5508 ++NumAndUses; 5509 } 5510 5511 ++NumAndsAdded; 5512 return true; 5513 } 5514 5515 /// Check if V (an operand of a select instruction) is an expensive instruction 5516 /// that is only used once. 5517 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5518 auto *I = dyn_cast<Instruction>(V); 5519 // If it's safe to speculatively execute, then it should not have side 5520 // effects; therefore, it's safe to sink and possibly *not* execute. 5521 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5522 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5523 } 5524 5525 /// Returns true if a SelectInst should be turned into an explicit branch. 5526 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5527 const TargetLowering *TLI, 5528 SelectInst *SI) { 5529 // If even a predictable select is cheap, then a branch can't be cheaper. 5530 if (!TLI->isPredictableSelectExpensive()) 5531 return false; 5532 5533 // FIXME: This should use the same heuristics as IfConversion to determine 5534 // whether a select is better represented as a branch. 5535 5536 // If metadata tells us that the select condition is obviously predictable, 5537 // then we want to replace the select with a branch. 5538 uint64_t TrueWeight, FalseWeight; 5539 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5540 uint64_t Max = std::max(TrueWeight, FalseWeight); 5541 uint64_t Sum = TrueWeight + FalseWeight; 5542 if (Sum != 0) { 5543 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5544 if (Probability > TLI->getPredictableBranchThreshold()) 5545 return true; 5546 } 5547 } 5548 5549 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5550 5551 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5552 // comparison condition. If the compare has more than one use, there's 5553 // probably another cmov or setcc around, so it's not worth emitting a branch. 5554 if (!Cmp || !Cmp->hasOneUse()) 5555 return false; 5556 5557 // If either operand of the select is expensive and only needed on one side 5558 // of the select, we should form a branch. 5559 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5560 sinkSelectOperand(TTI, SI->getFalseValue())) 5561 return true; 5562 5563 return false; 5564 } 5565 5566 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5567 /// false value of \p SI. If the true/false value of \p SI is defined by any 5568 /// select instructions in \p Selects, look through the defining select 5569 /// instruction until the true/false value is not defined in \p Selects. 5570 static Value *getTrueOrFalseValue( 5571 SelectInst *SI, bool isTrue, 5572 const SmallPtrSet<const Instruction *, 2> &Selects) { 5573 Value *V; 5574 5575 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 5576 DefSI = dyn_cast<SelectInst>(V)) { 5577 assert(DefSI->getCondition() == SI->getCondition() && 5578 "The condition of DefSI does not match with SI"); 5579 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 5580 } 5581 return V; 5582 } 5583 5584 /// If we have a SelectInst that will likely profit from branch prediction, 5585 /// turn it into a branch. 5586 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 5587 // Find all consecutive select instructions that share the same condition. 5588 SmallVector<SelectInst *, 2> ASI; 5589 ASI.push_back(SI); 5590 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 5591 It != SI->getParent()->end(); ++It) { 5592 SelectInst *I = dyn_cast<SelectInst>(&*It); 5593 if (I && SI->getCondition() == I->getCondition()) { 5594 ASI.push_back(I); 5595 } else { 5596 break; 5597 } 5598 } 5599 5600 SelectInst *LastSI = ASI.back(); 5601 // Increment the current iterator to skip all the rest of select instructions 5602 // because they will be either "not lowered" or "all lowered" to branch. 5603 CurInstIterator = std::next(LastSI->getIterator()); 5604 5605 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 5606 5607 // Can we convert the 'select' to CF ? 5608 if (DisableSelectToBranch || OptSize || !TLI || VectorCond || 5609 SI->getMetadata(LLVMContext::MD_unpredictable)) 5610 return false; 5611 5612 TargetLowering::SelectSupportKind SelectKind; 5613 if (VectorCond) 5614 SelectKind = TargetLowering::VectorMaskSelect; 5615 else if (SI->getType()->isVectorTy()) 5616 SelectKind = TargetLowering::ScalarCondVectorVal; 5617 else 5618 SelectKind = TargetLowering::ScalarValSelect; 5619 5620 if (TLI->isSelectSupported(SelectKind) && 5621 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 5622 return false; 5623 5624 ModifiedDT = true; 5625 5626 // Transform a sequence like this: 5627 // start: 5628 // %cmp = cmp uge i32 %a, %b 5629 // %sel = select i1 %cmp, i32 %c, i32 %d 5630 // 5631 // Into: 5632 // start: 5633 // %cmp = cmp uge i32 %a, %b 5634 // br i1 %cmp, label %select.true, label %select.false 5635 // select.true: 5636 // br label %select.end 5637 // select.false: 5638 // br label %select.end 5639 // select.end: 5640 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 5641 // 5642 // In addition, we may sink instructions that produce %c or %d from 5643 // the entry block into the destination(s) of the new branch. 5644 // If the true or false blocks do not contain a sunken instruction, that 5645 // block and its branch may be optimized away. In that case, one side of the 5646 // first branch will point directly to select.end, and the corresponding PHI 5647 // predecessor block will be the start block. 5648 5649 // First, we split the block containing the select into 2 blocks. 5650 BasicBlock *StartBlock = SI->getParent(); 5651 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 5652 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 5653 5654 // Delete the unconditional branch that was just created by the split. 5655 StartBlock->getTerminator()->eraseFromParent(); 5656 5657 // These are the new basic blocks for the conditional branch. 5658 // At least one will become an actual new basic block. 5659 BasicBlock *TrueBlock = nullptr; 5660 BasicBlock *FalseBlock = nullptr; 5661 BranchInst *TrueBranch = nullptr; 5662 BranchInst *FalseBranch = nullptr; 5663 5664 // Sink expensive instructions into the conditional blocks to avoid executing 5665 // them speculatively. 5666 for (SelectInst *SI : ASI) { 5667 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 5668 if (TrueBlock == nullptr) { 5669 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 5670 EndBlock->getParent(), EndBlock); 5671 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 5672 } 5673 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 5674 TrueInst->moveBefore(TrueBranch); 5675 } 5676 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 5677 if (FalseBlock == nullptr) { 5678 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 5679 EndBlock->getParent(), EndBlock); 5680 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 5681 } 5682 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 5683 FalseInst->moveBefore(FalseBranch); 5684 } 5685 } 5686 5687 // If there was nothing to sink, then arbitrarily choose the 'false' side 5688 // for a new input value to the PHI. 5689 if (TrueBlock == FalseBlock) { 5690 assert(TrueBlock == nullptr && 5691 "Unexpected basic block transform while optimizing select"); 5692 5693 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 5694 EndBlock->getParent(), EndBlock); 5695 BranchInst::Create(EndBlock, FalseBlock); 5696 } 5697 5698 // Insert the real conditional branch based on the original condition. 5699 // If we did not create a new block for one of the 'true' or 'false' paths 5700 // of the condition, it means that side of the branch goes to the end block 5701 // directly and the path originates from the start block from the point of 5702 // view of the new PHI. 5703 BasicBlock *TT, *FT; 5704 if (TrueBlock == nullptr) { 5705 TT = EndBlock; 5706 FT = FalseBlock; 5707 TrueBlock = StartBlock; 5708 } else if (FalseBlock == nullptr) { 5709 TT = TrueBlock; 5710 FT = EndBlock; 5711 FalseBlock = StartBlock; 5712 } else { 5713 TT = TrueBlock; 5714 FT = FalseBlock; 5715 } 5716 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 5717 5718 SmallPtrSet<const Instruction *, 2> INS; 5719 INS.insert(ASI.begin(), ASI.end()); 5720 // Use reverse iterator because later select may use the value of the 5721 // earlier select, and we need to propagate value through earlier select 5722 // to get the PHI operand. 5723 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 5724 SelectInst *SI = *It; 5725 // The select itself is replaced with a PHI Node. 5726 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 5727 PN->takeName(SI); 5728 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 5729 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 5730 5731 SI->replaceAllUsesWith(PN); 5732 SI->eraseFromParent(); 5733 INS.erase(SI); 5734 ++NumSelectsExpanded; 5735 } 5736 5737 // Instruct OptimizeBlock to skip to the next block. 5738 CurInstIterator = StartBlock->end(); 5739 return true; 5740 } 5741 5742 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 5743 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 5744 int SplatElem = -1; 5745 for (unsigned i = 0; i < Mask.size(); ++i) { 5746 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 5747 return false; 5748 SplatElem = Mask[i]; 5749 } 5750 5751 return true; 5752 } 5753 5754 /// Some targets have expensive vector shifts if the lanes aren't all the same 5755 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 5756 /// it's often worth sinking a shufflevector splat down to its use so that 5757 /// codegen can spot all lanes are identical. 5758 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 5759 BasicBlock *DefBB = SVI->getParent(); 5760 5761 // Only do this xform if variable vector shifts are particularly expensive. 5762 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 5763 return false; 5764 5765 // We only expect better codegen by sinking a shuffle if we can recognise a 5766 // constant splat. 5767 if (!isBroadcastShuffle(SVI)) 5768 return false; 5769 5770 // InsertedShuffles - Only insert a shuffle in each block once. 5771 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 5772 5773 bool MadeChange = false; 5774 for (User *U : SVI->users()) { 5775 Instruction *UI = cast<Instruction>(U); 5776 5777 // Figure out which BB this ext is used in. 5778 BasicBlock *UserBB = UI->getParent(); 5779 if (UserBB == DefBB) continue; 5780 5781 // For now only apply this when the splat is used by a shift instruction. 5782 if (!UI->isShift()) continue; 5783 5784 // Everything checks out, sink the shuffle if the user's block doesn't 5785 // already have a copy. 5786 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 5787 5788 if (!InsertedShuffle) { 5789 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5790 assert(InsertPt != UserBB->end()); 5791 InsertedShuffle = 5792 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5793 SVI->getOperand(2), "", &*InsertPt); 5794 } 5795 5796 UI->replaceUsesOfWith(SVI, InsertedShuffle); 5797 MadeChange = true; 5798 } 5799 5800 // If we removed all uses, nuke the shuffle. 5801 if (SVI->use_empty()) { 5802 SVI->eraseFromParent(); 5803 MadeChange = true; 5804 } 5805 5806 return MadeChange; 5807 } 5808 5809 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 5810 if (!TLI || !DL) 5811 return false; 5812 5813 Value *Cond = SI->getCondition(); 5814 Type *OldType = Cond->getType(); 5815 LLVMContext &Context = Cond->getContext(); 5816 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 5817 unsigned RegWidth = RegType.getSizeInBits(); 5818 5819 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 5820 return false; 5821 5822 // If the register width is greater than the type width, expand the condition 5823 // of the switch instruction and each case constant to the width of the 5824 // register. By widening the type of the switch condition, subsequent 5825 // comparisons (for case comparisons) will not need to be extended to the 5826 // preferred register width, so we will potentially eliminate N-1 extends, 5827 // where N is the number of cases in the switch. 5828 auto *NewType = Type::getIntNTy(Context, RegWidth); 5829 5830 // Zero-extend the switch condition and case constants unless the switch 5831 // condition is a function argument that is already being sign-extended. 5832 // In that case, we can avoid an unnecessary mask/extension by sign-extending 5833 // everything instead. 5834 Instruction::CastOps ExtType = Instruction::ZExt; 5835 if (auto *Arg = dyn_cast<Argument>(Cond)) 5836 if (Arg->hasSExtAttr()) 5837 ExtType = Instruction::SExt; 5838 5839 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 5840 ExtInst->insertBefore(SI); 5841 SI->setCondition(ExtInst); 5842 for (auto Case : SI->cases()) { 5843 APInt NarrowConst = Case.getCaseValue()->getValue(); 5844 APInt WideConst = (ExtType == Instruction::ZExt) ? 5845 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 5846 Case.setValue(ConstantInt::get(Context, WideConst)); 5847 } 5848 5849 return true; 5850 } 5851 5852 5853 namespace { 5854 5855 /// \brief Helper class to promote a scalar operation to a vector one. 5856 /// This class is used to move downward extractelement transition. 5857 /// E.g., 5858 /// a = vector_op <2 x i32> 5859 /// b = extractelement <2 x i32> a, i32 0 5860 /// c = scalar_op b 5861 /// store c 5862 /// 5863 /// => 5864 /// a = vector_op <2 x i32> 5865 /// c = vector_op a (equivalent to scalar_op on the related lane) 5866 /// * d = extractelement <2 x i32> c, i32 0 5867 /// * store d 5868 /// Assuming both extractelement and store can be combine, we get rid of the 5869 /// transition. 5870 class VectorPromoteHelper { 5871 /// DataLayout associated with the current module. 5872 const DataLayout &DL; 5873 5874 /// Used to perform some checks on the legality of vector operations. 5875 const TargetLowering &TLI; 5876 5877 /// Used to estimated the cost of the promoted chain. 5878 const TargetTransformInfo &TTI; 5879 5880 /// The transition being moved downwards. 5881 Instruction *Transition; 5882 5883 /// The sequence of instructions to be promoted. 5884 SmallVector<Instruction *, 4> InstsToBePromoted; 5885 5886 /// Cost of combining a store and an extract. 5887 unsigned StoreExtractCombineCost; 5888 5889 /// Instruction that will be combined with the transition. 5890 Instruction *CombineInst = nullptr; 5891 5892 /// \brief The instruction that represents the current end of the transition. 5893 /// Since we are faking the promotion until we reach the end of the chain 5894 /// of computation, we need a way to get the current end of the transition. 5895 Instruction *getEndOfTransition() const { 5896 if (InstsToBePromoted.empty()) 5897 return Transition; 5898 return InstsToBePromoted.back(); 5899 } 5900 5901 /// \brief Return the index of the original value in the transition. 5902 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 5903 /// c, is at index 0. 5904 unsigned getTransitionOriginalValueIdx() const { 5905 assert(isa<ExtractElementInst>(Transition) && 5906 "Other kind of transitions are not supported yet"); 5907 return 0; 5908 } 5909 5910 /// \brief Return the index of the index in the transition. 5911 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 5912 /// is at index 1. 5913 unsigned getTransitionIdx() const { 5914 assert(isa<ExtractElementInst>(Transition) && 5915 "Other kind of transitions are not supported yet"); 5916 return 1; 5917 } 5918 5919 /// \brief Get the type of the transition. 5920 /// This is the type of the original value. 5921 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 5922 /// transition is <2 x i32>. 5923 Type *getTransitionType() const { 5924 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 5925 } 5926 5927 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 5928 /// I.e., we have the following sequence: 5929 /// Def = Transition <ty1> a to <ty2> 5930 /// b = ToBePromoted <ty2> Def, ... 5931 /// => 5932 /// b = ToBePromoted <ty1> a, ... 5933 /// Def = Transition <ty1> ToBePromoted to <ty2> 5934 void promoteImpl(Instruction *ToBePromoted); 5935 5936 /// \brief Check whether or not it is profitable to promote all the 5937 /// instructions enqueued to be promoted. 5938 bool isProfitableToPromote() { 5939 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 5940 unsigned Index = isa<ConstantInt>(ValIdx) 5941 ? cast<ConstantInt>(ValIdx)->getZExtValue() 5942 : -1; 5943 Type *PromotedType = getTransitionType(); 5944 5945 StoreInst *ST = cast<StoreInst>(CombineInst); 5946 unsigned AS = ST->getPointerAddressSpace(); 5947 unsigned Align = ST->getAlignment(); 5948 // Check if this store is supported. 5949 if (!TLI.allowsMisalignedMemoryAccesses( 5950 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 5951 Align)) { 5952 // If this is not supported, there is no way we can combine 5953 // the extract with the store. 5954 return false; 5955 } 5956 5957 // The scalar chain of computation has to pay for the transition 5958 // scalar to vector. 5959 // The vector chain has to account for the combining cost. 5960 uint64_t ScalarCost = 5961 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 5962 uint64_t VectorCost = StoreExtractCombineCost; 5963 for (const auto &Inst : InstsToBePromoted) { 5964 // Compute the cost. 5965 // By construction, all instructions being promoted are arithmetic ones. 5966 // Moreover, one argument is a constant that can be viewed as a splat 5967 // constant. 5968 Value *Arg0 = Inst->getOperand(0); 5969 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 5970 isa<ConstantFP>(Arg0); 5971 TargetTransformInfo::OperandValueKind Arg0OVK = 5972 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5973 : TargetTransformInfo::OK_AnyValue; 5974 TargetTransformInfo::OperandValueKind Arg1OVK = 5975 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5976 : TargetTransformInfo::OK_AnyValue; 5977 ScalarCost += TTI.getArithmeticInstrCost( 5978 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 5979 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 5980 Arg0OVK, Arg1OVK); 5981 } 5982 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 5983 << ScalarCost << "\nVector: " << VectorCost << '\n'); 5984 return ScalarCost > VectorCost; 5985 } 5986 5987 /// \brief Generate a constant vector with \p Val with the same 5988 /// number of elements as the transition. 5989 /// \p UseSplat defines whether or not \p Val should be replicated 5990 /// across the whole vector. 5991 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 5992 /// otherwise we generate a vector with as many undef as possible: 5993 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 5994 /// used at the index of the extract. 5995 Value *getConstantVector(Constant *Val, bool UseSplat) const { 5996 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 5997 if (!UseSplat) { 5998 // If we cannot determine where the constant must be, we have to 5999 // use a splat constant. 6000 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 6001 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 6002 ExtractIdx = CstVal->getSExtValue(); 6003 else 6004 UseSplat = true; 6005 } 6006 6007 unsigned End = getTransitionType()->getVectorNumElements(); 6008 if (UseSplat) 6009 return ConstantVector::getSplat(End, Val); 6010 6011 SmallVector<Constant *, 4> ConstVec; 6012 UndefValue *UndefVal = UndefValue::get(Val->getType()); 6013 for (unsigned Idx = 0; Idx != End; ++Idx) { 6014 if (Idx == ExtractIdx) 6015 ConstVec.push_back(Val); 6016 else 6017 ConstVec.push_back(UndefVal); 6018 } 6019 return ConstantVector::get(ConstVec); 6020 } 6021 6022 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 6023 /// in \p Use can trigger undefined behavior. 6024 static bool canCauseUndefinedBehavior(const Instruction *Use, 6025 unsigned OperandIdx) { 6026 // This is not safe to introduce undef when the operand is on 6027 // the right hand side of a division-like instruction. 6028 if (OperandIdx != 1) 6029 return false; 6030 switch (Use->getOpcode()) { 6031 default: 6032 return false; 6033 case Instruction::SDiv: 6034 case Instruction::UDiv: 6035 case Instruction::SRem: 6036 case Instruction::URem: 6037 return true; 6038 case Instruction::FDiv: 6039 case Instruction::FRem: 6040 return !Use->hasNoNaNs(); 6041 } 6042 llvm_unreachable(nullptr); 6043 } 6044 6045 public: 6046 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 6047 const TargetTransformInfo &TTI, Instruction *Transition, 6048 unsigned CombineCost) 6049 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 6050 StoreExtractCombineCost(CombineCost) { 6051 assert(Transition && "Do not know how to promote null"); 6052 } 6053 6054 /// \brief Check if we can promote \p ToBePromoted to \p Type. 6055 bool canPromote(const Instruction *ToBePromoted) const { 6056 // We could support CastInst too. 6057 return isa<BinaryOperator>(ToBePromoted); 6058 } 6059 6060 /// \brief Check if it is profitable to promote \p ToBePromoted 6061 /// by moving downward the transition through. 6062 bool shouldPromote(const Instruction *ToBePromoted) const { 6063 // Promote only if all the operands can be statically expanded. 6064 // Indeed, we do not want to introduce any new kind of transitions. 6065 for (const Use &U : ToBePromoted->operands()) { 6066 const Value *Val = U.get(); 6067 if (Val == getEndOfTransition()) { 6068 // If the use is a division and the transition is on the rhs, 6069 // we cannot promote the operation, otherwise we may create a 6070 // division by zero. 6071 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 6072 return false; 6073 continue; 6074 } 6075 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 6076 !isa<ConstantFP>(Val)) 6077 return false; 6078 } 6079 // Check that the resulting operation is legal. 6080 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 6081 if (!ISDOpcode) 6082 return false; 6083 return StressStoreExtract || 6084 TLI.isOperationLegalOrCustom( 6085 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 6086 } 6087 6088 /// \brief Check whether or not \p Use can be combined 6089 /// with the transition. 6090 /// I.e., is it possible to do Use(Transition) => AnotherUse? 6091 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 6092 6093 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 6094 void enqueueForPromotion(Instruction *ToBePromoted) { 6095 InstsToBePromoted.push_back(ToBePromoted); 6096 } 6097 6098 /// \brief Set the instruction that will be combined with the transition. 6099 void recordCombineInstruction(Instruction *ToBeCombined) { 6100 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 6101 CombineInst = ToBeCombined; 6102 } 6103 6104 /// \brief Promote all the instructions enqueued for promotion if it is 6105 /// is profitable. 6106 /// \return True if the promotion happened, false otherwise. 6107 bool promote() { 6108 // Check if there is something to promote. 6109 // Right now, if we do not have anything to combine with, 6110 // we assume the promotion is not profitable. 6111 if (InstsToBePromoted.empty() || !CombineInst) 6112 return false; 6113 6114 // Check cost. 6115 if (!StressStoreExtract && !isProfitableToPromote()) 6116 return false; 6117 6118 // Promote. 6119 for (auto &ToBePromoted : InstsToBePromoted) 6120 promoteImpl(ToBePromoted); 6121 InstsToBePromoted.clear(); 6122 return true; 6123 } 6124 }; 6125 6126 } // end anonymous namespace 6127 6128 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 6129 // At this point, we know that all the operands of ToBePromoted but Def 6130 // can be statically promoted. 6131 // For Def, we need to use its parameter in ToBePromoted: 6132 // b = ToBePromoted ty1 a 6133 // Def = Transition ty1 b to ty2 6134 // Move the transition down. 6135 // 1. Replace all uses of the promoted operation by the transition. 6136 // = ... b => = ... Def. 6137 assert(ToBePromoted->getType() == Transition->getType() && 6138 "The type of the result of the transition does not match " 6139 "the final type"); 6140 ToBePromoted->replaceAllUsesWith(Transition); 6141 // 2. Update the type of the uses. 6142 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 6143 Type *TransitionTy = getTransitionType(); 6144 ToBePromoted->mutateType(TransitionTy); 6145 // 3. Update all the operands of the promoted operation with promoted 6146 // operands. 6147 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 6148 for (Use &U : ToBePromoted->operands()) { 6149 Value *Val = U.get(); 6150 Value *NewVal = nullptr; 6151 if (Val == Transition) 6152 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 6153 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 6154 isa<ConstantFP>(Val)) { 6155 // Use a splat constant if it is not safe to use undef. 6156 NewVal = getConstantVector( 6157 cast<Constant>(Val), 6158 isa<UndefValue>(Val) || 6159 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 6160 } else 6161 llvm_unreachable("Did you modified shouldPromote and forgot to update " 6162 "this?"); 6163 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 6164 } 6165 Transition->moveAfter(ToBePromoted); 6166 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 6167 } 6168 6169 /// Some targets can do store(extractelement) with one instruction. 6170 /// Try to push the extractelement towards the stores when the target 6171 /// has this feature and this is profitable. 6172 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 6173 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 6174 if (DisableStoreExtract || !TLI || 6175 (!StressStoreExtract && 6176 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 6177 Inst->getOperand(1), CombineCost))) 6178 return false; 6179 6180 // At this point we know that Inst is a vector to scalar transition. 6181 // Try to move it down the def-use chain, until: 6182 // - We can combine the transition with its single use 6183 // => we got rid of the transition. 6184 // - We escape the current basic block 6185 // => we would need to check that we are moving it at a cheaper place and 6186 // we do not do that for now. 6187 BasicBlock *Parent = Inst->getParent(); 6188 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 6189 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 6190 // If the transition has more than one use, assume this is not going to be 6191 // beneficial. 6192 while (Inst->hasOneUse()) { 6193 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 6194 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 6195 6196 if (ToBePromoted->getParent() != Parent) { 6197 DEBUG(dbgs() << "Instruction to promote is in a different block (" 6198 << ToBePromoted->getParent()->getName() 6199 << ") than the transition (" << Parent->getName() << ").\n"); 6200 return false; 6201 } 6202 6203 if (VPH.canCombine(ToBePromoted)) { 6204 DEBUG(dbgs() << "Assume " << *Inst << '\n' 6205 << "will be combined with: " << *ToBePromoted << '\n'); 6206 VPH.recordCombineInstruction(ToBePromoted); 6207 bool Changed = VPH.promote(); 6208 NumStoreExtractExposed += Changed; 6209 return Changed; 6210 } 6211 6212 DEBUG(dbgs() << "Try promoting.\n"); 6213 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 6214 return false; 6215 6216 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 6217 6218 VPH.enqueueForPromotion(ToBePromoted); 6219 Inst = ToBePromoted; 6220 } 6221 return false; 6222 } 6223 6224 /// For the instruction sequence of store below, F and I values 6225 /// are bundled together as an i64 value before being stored into memory. 6226 /// Sometimes it is more efficent to generate separate stores for F and I, 6227 /// which can remove the bitwise instructions or sink them to colder places. 6228 /// 6229 /// (store (or (zext (bitcast F to i32) to i64), 6230 /// (shl (zext I to i64), 32)), addr) --> 6231 /// (store F, addr) and (store I, addr+4) 6232 /// 6233 /// Similarly, splitting for other merged store can also be beneficial, like: 6234 /// For pair of {i32, i32}, i64 store --> two i32 stores. 6235 /// For pair of {i32, i16}, i64 store --> two i32 stores. 6236 /// For pair of {i16, i16}, i32 store --> two i16 stores. 6237 /// For pair of {i16, i8}, i32 store --> two i16 stores. 6238 /// For pair of {i8, i8}, i16 store --> two i8 stores. 6239 /// 6240 /// We allow each target to determine specifically which kind of splitting is 6241 /// supported. 6242 /// 6243 /// The store patterns are commonly seen from the simple code snippet below 6244 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 6245 /// void goo(const std::pair<int, float> &); 6246 /// hoo() { 6247 /// ... 6248 /// goo(std::make_pair(tmp, ftmp)); 6249 /// ... 6250 /// } 6251 /// 6252 /// Although we already have similar splitting in DAG Combine, we duplicate 6253 /// it in CodeGenPrepare to catch the case in which pattern is across 6254 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6255 /// during code expansion. 6256 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6257 const TargetLowering &TLI) { 6258 // Handle simple but common cases only. 6259 Type *StoreType = SI.getValueOperand()->getType(); 6260 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || 6261 DL.getTypeSizeInBits(StoreType) == 0) 6262 return false; 6263 6264 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6265 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 6266 if (DL.getTypeStoreSizeInBits(SplitStoreType) != 6267 DL.getTypeSizeInBits(SplitStoreType)) 6268 return false; 6269 6270 // Match the following patterns: 6271 // (store (or (zext LValue to i64), 6272 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6273 // or 6274 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6275 // (zext LValue to i64), 6276 // Expect both operands of OR and the first operand of SHL have only 6277 // one use. 6278 Value *LValue, *HValue; 6279 if (!match(SI.getValueOperand(), 6280 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6281 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6282 m_SpecificInt(HalfValBitSize)))))) 6283 return false; 6284 6285 // Check LValue and HValue are int with size less or equal than 32. 6286 if (!LValue->getType()->isIntegerTy() || 6287 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6288 !HValue->getType()->isIntegerTy() || 6289 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6290 return false; 6291 6292 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6293 // as the input of target query. 6294 auto *LBC = dyn_cast<BitCastInst>(LValue); 6295 auto *HBC = dyn_cast<BitCastInst>(HValue); 6296 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6297 : EVT::getEVT(LValue->getType()); 6298 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6299 : EVT::getEVT(HValue->getType()); 6300 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6301 return false; 6302 6303 // Start to split store. 6304 IRBuilder<> Builder(SI.getContext()); 6305 Builder.SetInsertPoint(&SI); 6306 6307 // If LValue/HValue is a bitcast in another BB, create a new one in current 6308 // BB so it may be merged with the splitted stores by dag combiner. 6309 if (LBC && LBC->getParent() != SI.getParent()) 6310 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6311 if (HBC && HBC->getParent() != SI.getParent()) 6312 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6313 6314 auto CreateSplitStore = [&](Value *V, bool Upper) { 6315 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6316 Value *Addr = Builder.CreateBitCast( 6317 SI.getOperand(1), 6318 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6319 if (Upper) 6320 Addr = Builder.CreateGEP( 6321 SplitStoreType, Addr, 6322 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6323 Builder.CreateAlignedStore( 6324 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 6325 }; 6326 6327 CreateSplitStore(LValue, false); 6328 CreateSplitStore(HValue, true); 6329 6330 // Delete the old store. 6331 SI.eraseFromParent(); 6332 return true; 6333 } 6334 6335 // Return true if the GEP has two operands, the first operand is of a sequential 6336 // type, and the second operand is a constant. 6337 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6338 gep_type_iterator I = gep_type_begin(*GEP); 6339 return GEP->getNumOperands() == 2 && 6340 I.isSequential() && 6341 isa<ConstantInt>(GEP->getOperand(1)); 6342 } 6343 6344 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6345 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6346 // reducing liveness interference across those edges benefits global register 6347 // allocation. Currently handles only certain cases. 6348 // 6349 // For example, unmerge %GEPI and %UGEPI as below. 6350 // 6351 // ---------- BEFORE ---------- 6352 // SrcBlock: 6353 // ... 6354 // %GEPIOp = ... 6355 // ... 6356 // %GEPI = gep %GEPIOp, Idx 6357 // ... 6358 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6359 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6360 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6361 // %UGEPI) 6362 // 6363 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6364 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6365 // ... 6366 // 6367 // DstBi: 6368 // ... 6369 // %UGEPI = gep %GEPIOp, UIdx 6370 // ... 6371 // --------------------------- 6372 // 6373 // ---------- AFTER ---------- 6374 // SrcBlock: 6375 // ... (same as above) 6376 // (* %GEPI is still alive on the indirectbr edges) 6377 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6378 // unmerging) 6379 // ... 6380 // 6381 // DstBi: 6382 // ... 6383 // %UGEPI = gep %GEPI, (UIdx-Idx) 6384 // ... 6385 // --------------------------- 6386 // 6387 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6388 // no longer alive on them. 6389 // 6390 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6391 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6392 // not to disable further simplications and optimizations as a result of GEP 6393 // merging. 6394 // 6395 // Note this unmerging may increase the length of the data flow critical path 6396 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6397 // between the register pressure and the length of data-flow critical 6398 // path. Restricting this to the uncommon IndirectBr case would minimize the 6399 // impact of potentially longer critical path, if any, and the impact on compile 6400 // time. 6401 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6402 const TargetTransformInfo *TTI) { 6403 BasicBlock *SrcBlock = GEPI->getParent(); 6404 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 6405 // (non-IndirectBr) cases exit early here. 6406 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 6407 return false; 6408 // Check that GEPI is a simple gep with a single constant index. 6409 if (!GEPSequentialConstIndexed(GEPI)) 6410 return false; 6411 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 6412 // Check that GEPI is a cheap one. 6413 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 6414 > TargetTransformInfo::TCC_Basic) 6415 return false; 6416 Value *GEPIOp = GEPI->getOperand(0); 6417 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 6418 if (!isa<Instruction>(GEPIOp)) 6419 return false; 6420 auto *GEPIOpI = cast<Instruction>(GEPIOp); 6421 if (GEPIOpI->getParent() != SrcBlock) 6422 return false; 6423 // Check that GEP is used outside the block, meaning it's alive on the 6424 // IndirectBr edge(s). 6425 if (find_if(GEPI->users(), [&](User *Usr) { 6426 if (auto *I = dyn_cast<Instruction>(Usr)) { 6427 if (I->getParent() != SrcBlock) { 6428 return true; 6429 } 6430 } 6431 return false; 6432 }) == GEPI->users().end()) 6433 return false; 6434 // The second elements of the GEP chains to be unmerged. 6435 std::vector<GetElementPtrInst *> UGEPIs; 6436 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 6437 // on IndirectBr edges. 6438 for (User *Usr : GEPIOp->users()) { 6439 if (Usr == GEPI) continue; 6440 // Check if Usr is an Instruction. If not, give up. 6441 if (!isa<Instruction>(Usr)) 6442 return false; 6443 auto *UI = cast<Instruction>(Usr); 6444 // Check if Usr in the same block as GEPIOp, which is fine, skip. 6445 if (UI->getParent() == SrcBlock) 6446 continue; 6447 // Check if Usr is a GEP. If not, give up. 6448 if (!isa<GetElementPtrInst>(Usr)) 6449 return false; 6450 auto *UGEPI = cast<GetElementPtrInst>(Usr); 6451 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 6452 // the pointer operand to it. If so, record it in the vector. If not, give 6453 // up. 6454 if (!GEPSequentialConstIndexed(UGEPI)) 6455 return false; 6456 if (UGEPI->getOperand(0) != GEPIOp) 6457 return false; 6458 if (GEPIIdx->getType() != 6459 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 6460 return false; 6461 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6462 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 6463 > TargetTransformInfo::TCC_Basic) 6464 return false; 6465 UGEPIs.push_back(UGEPI); 6466 } 6467 if (UGEPIs.size() == 0) 6468 return false; 6469 // Check the materializing cost of (Uidx-Idx). 6470 for (GetElementPtrInst *UGEPI : UGEPIs) { 6471 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6472 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 6473 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 6474 if (ImmCost > TargetTransformInfo::TCC_Basic) 6475 return false; 6476 } 6477 // Now unmerge between GEPI and UGEPIs. 6478 for (GetElementPtrInst *UGEPI : UGEPIs) { 6479 UGEPI->setOperand(0, GEPI); 6480 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6481 Constant *NewUGEPIIdx = 6482 ConstantInt::get(GEPIIdx->getType(), 6483 UGEPIIdx->getValue() - GEPIIdx->getValue()); 6484 UGEPI->setOperand(1, NewUGEPIIdx); 6485 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 6486 // inbounds to avoid UB. 6487 if (!GEPI->isInBounds()) { 6488 UGEPI->setIsInBounds(false); 6489 } 6490 } 6491 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 6492 // alive on IndirectBr edges). 6493 assert(find_if(GEPIOp->users(), [&](User *Usr) { 6494 return cast<Instruction>(Usr)->getParent() != SrcBlock; 6495 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 6496 return true; 6497 } 6498 6499 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 6500 // Bail out if we inserted the instruction to prevent optimizations from 6501 // stepping on each other's toes. 6502 if (InsertedInsts.count(I)) 6503 return false; 6504 6505 if (PHINode *P = dyn_cast<PHINode>(I)) { 6506 // It is possible for very late stage optimizations (such as SimplifyCFG) 6507 // to introduce PHI nodes too late to be cleaned up. If we detect such a 6508 // trivial PHI, go ahead and zap it here. 6509 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 6510 P->replaceAllUsesWith(V); 6511 P->eraseFromParent(); 6512 ++NumPHIsElim; 6513 return true; 6514 } 6515 return false; 6516 } 6517 6518 if (CastInst *CI = dyn_cast<CastInst>(I)) { 6519 // If the source of the cast is a constant, then this should have 6520 // already been constant folded. The only reason NOT to constant fold 6521 // it is if something (e.g. LSR) was careful to place the constant 6522 // evaluation in a block other than then one that uses it (e.g. to hoist 6523 // the address of globals out of a loop). If this is the case, we don't 6524 // want to forward-subst the cast. 6525 if (isa<Constant>(CI->getOperand(0))) 6526 return false; 6527 6528 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 6529 return true; 6530 6531 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 6532 /// Sink a zext or sext into its user blocks if the target type doesn't 6533 /// fit in one register 6534 if (TLI && 6535 TLI->getTypeAction(CI->getContext(), 6536 TLI->getValueType(*DL, CI->getType())) == 6537 TargetLowering::TypeExpandInteger) { 6538 return SinkCast(CI); 6539 } else { 6540 bool MadeChange = optimizeExt(I); 6541 return MadeChange | optimizeExtUses(I); 6542 } 6543 } 6544 return false; 6545 } 6546 6547 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 6548 if (!TLI || !TLI->hasMultipleConditionRegisters()) 6549 return OptimizeCmpExpression(CI, TLI); 6550 6551 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6552 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6553 if (TLI) { 6554 bool Modified = optimizeLoadExt(LI); 6555 unsigned AS = LI->getPointerAddressSpace(); 6556 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 6557 return Modified; 6558 } 6559 return false; 6560 } 6561 6562 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 6563 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 6564 return true; 6565 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6566 if (TLI) { 6567 unsigned AS = SI->getPointerAddressSpace(); 6568 return optimizeMemoryInst(I, SI->getOperand(1), 6569 SI->getOperand(0)->getType(), AS); 6570 } 6571 return false; 6572 } 6573 6574 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 6575 unsigned AS = RMW->getPointerAddressSpace(); 6576 return optimizeMemoryInst(I, RMW->getPointerOperand(), 6577 RMW->getType(), AS); 6578 } 6579 6580 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 6581 unsigned AS = CmpX->getPointerAddressSpace(); 6582 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 6583 CmpX->getCompareOperand()->getType(), AS); 6584 } 6585 6586 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 6587 6588 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 6589 EnableAndCmpSinking && TLI) 6590 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 6591 6592 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 6593 BinOp->getOpcode() == Instruction::LShr)) { 6594 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 6595 if (TLI && CI && TLI->hasExtractBitsInsn()) 6596 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 6597 6598 return false; 6599 } 6600 6601 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 6602 if (GEPI->hasAllZeroIndices()) { 6603 /// The GEP operand must be a pointer, so must its result -> BitCast 6604 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 6605 GEPI->getName(), GEPI); 6606 GEPI->replaceAllUsesWith(NC); 6607 GEPI->eraseFromParent(); 6608 ++NumGEPsElim; 6609 optimizeInst(NC, ModifiedDT); 6610 return true; 6611 } 6612 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 6613 return true; 6614 } 6615 return false; 6616 } 6617 6618 if (CallInst *CI = dyn_cast<CallInst>(I)) 6619 return optimizeCallInst(CI, ModifiedDT); 6620 6621 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 6622 return optimizeSelectInst(SI); 6623 6624 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 6625 return optimizeShuffleVectorInst(SVI); 6626 6627 if (auto *Switch = dyn_cast<SwitchInst>(I)) 6628 return optimizeSwitchInst(Switch); 6629 6630 if (isa<ExtractElementInst>(I)) 6631 return optimizeExtractElementInst(I); 6632 6633 return false; 6634 } 6635 6636 /// Given an OR instruction, check to see if this is a bitreverse 6637 /// idiom. If so, insert the new intrinsic and return true. 6638 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 6639 const TargetLowering &TLI) { 6640 if (!I.getType()->isIntegerTy() || 6641 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 6642 TLI.getValueType(DL, I.getType(), true))) 6643 return false; 6644 6645 SmallVector<Instruction*, 4> Insts; 6646 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 6647 return false; 6648 Instruction *LastInst = Insts.back(); 6649 I.replaceAllUsesWith(LastInst); 6650 RecursivelyDeleteTriviallyDeadInstructions(&I); 6651 return true; 6652 } 6653 6654 // In this pass we look for GEP and cast instructions that are used 6655 // across basic blocks and rewrite them to improve basic-block-at-a-time 6656 // selection. 6657 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 6658 SunkAddrs.clear(); 6659 bool MadeChange = false; 6660 6661 CurInstIterator = BB.begin(); 6662 while (CurInstIterator != BB.end()) { 6663 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 6664 if (ModifiedDT) 6665 return true; 6666 } 6667 6668 bool MadeBitReverse = true; 6669 while (TLI && MadeBitReverse) { 6670 MadeBitReverse = false; 6671 for (auto &I : reverse(BB)) { 6672 if (makeBitReverse(I, *DL, *TLI)) { 6673 MadeBitReverse = MadeChange = true; 6674 ModifiedDT = true; 6675 break; 6676 } 6677 } 6678 } 6679 MadeChange |= dupRetToEnableTailCallOpts(&BB); 6680 6681 return MadeChange; 6682 } 6683 6684 // llvm.dbg.value is far away from the value then iSel may not be able 6685 // handle it properly. iSel will drop llvm.dbg.value if it can not 6686 // find a node corresponding to the value. 6687 bool CodeGenPrepare::placeDbgValues(Function &F) { 6688 bool MadeChange = false; 6689 for (BasicBlock &BB : F) { 6690 Instruction *PrevNonDbgInst = nullptr; 6691 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 6692 Instruction *Insn = &*BI++; 6693 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 6694 // Leave dbg.values that refer to an alloca alone. These 6695 // instrinsics describe the address of a variable (= the alloca) 6696 // being taken. They should not be moved next to the alloca 6697 // (and to the beginning of the scope), but rather stay close to 6698 // where said address is used. 6699 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 6700 PrevNonDbgInst = Insn; 6701 continue; 6702 } 6703 6704 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 6705 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 6706 // If VI is a phi in a block with an EHPad terminator, we can't insert 6707 // after it. 6708 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 6709 continue; 6710 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 6711 DVI->removeFromParent(); 6712 if (isa<PHINode>(VI)) 6713 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 6714 else 6715 DVI->insertAfter(VI); 6716 MadeChange = true; 6717 ++NumDbgValueMoved; 6718 } 6719 } 6720 } 6721 return MadeChange; 6722 } 6723 6724 /// \brief Scale down both weights to fit into uint32_t. 6725 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 6726 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 6727 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 6728 NewTrue = NewTrue / Scale; 6729 NewFalse = NewFalse / Scale; 6730 } 6731 6732 /// \brief Some targets prefer to split a conditional branch like: 6733 /// \code 6734 /// %0 = icmp ne i32 %a, 0 6735 /// %1 = icmp ne i32 %b, 0 6736 /// %or.cond = or i1 %0, %1 6737 /// br i1 %or.cond, label %TrueBB, label %FalseBB 6738 /// \endcode 6739 /// into multiple branch instructions like: 6740 /// \code 6741 /// bb1: 6742 /// %0 = icmp ne i32 %a, 0 6743 /// br i1 %0, label %TrueBB, label %bb2 6744 /// bb2: 6745 /// %1 = icmp ne i32 %b, 0 6746 /// br i1 %1, label %TrueBB, label %FalseBB 6747 /// \endcode 6748 /// This usually allows instruction selection to do even further optimizations 6749 /// and combine the compare with the branch instruction. Currently this is 6750 /// applied for targets which have "cheap" jump instructions. 6751 /// 6752 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 6753 /// 6754 bool CodeGenPrepare::splitBranchCondition(Function &F) { 6755 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 6756 return false; 6757 6758 bool MadeChange = false; 6759 for (auto &BB : F) { 6760 // Does this BB end with the following? 6761 // %cond1 = icmp|fcmp|binary instruction ... 6762 // %cond2 = icmp|fcmp|binary instruction ... 6763 // %cond.or = or|and i1 %cond1, cond2 6764 // br i1 %cond.or label %dest1, label %dest2" 6765 BinaryOperator *LogicOp; 6766 BasicBlock *TBB, *FBB; 6767 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 6768 continue; 6769 6770 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 6771 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 6772 continue; 6773 6774 unsigned Opc; 6775 Value *Cond1, *Cond2; 6776 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 6777 m_OneUse(m_Value(Cond2))))) 6778 Opc = Instruction::And; 6779 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 6780 m_OneUse(m_Value(Cond2))))) 6781 Opc = Instruction::Or; 6782 else 6783 continue; 6784 6785 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 6786 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 6787 continue; 6788 6789 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 6790 6791 // Create a new BB. 6792 auto TmpBB = 6793 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 6794 BB.getParent(), BB.getNextNode()); 6795 6796 // Update original basic block by using the first condition directly by the 6797 // branch instruction and removing the no longer needed and/or instruction. 6798 Br1->setCondition(Cond1); 6799 LogicOp->eraseFromParent(); 6800 6801 // Depending on the conditon we have to either replace the true or the false 6802 // successor of the original branch instruction. 6803 if (Opc == Instruction::And) 6804 Br1->setSuccessor(0, TmpBB); 6805 else 6806 Br1->setSuccessor(1, TmpBB); 6807 6808 // Fill in the new basic block. 6809 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 6810 if (auto *I = dyn_cast<Instruction>(Cond2)) { 6811 I->removeFromParent(); 6812 I->insertBefore(Br2); 6813 } 6814 6815 // Update PHI nodes in both successors. The original BB needs to be 6816 // replaced in one successor's PHI nodes, because the branch comes now from 6817 // the newly generated BB (NewBB). In the other successor we need to add one 6818 // incoming edge to the PHI nodes, because both branch instructions target 6819 // now the same successor. Depending on the original branch condition 6820 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 6821 // we perform the correct update for the PHI nodes. 6822 // This doesn't change the successor order of the just created branch 6823 // instruction (or any other instruction). 6824 if (Opc == Instruction::Or) 6825 std::swap(TBB, FBB); 6826 6827 // Replace the old BB with the new BB. 6828 for (auto &I : *TBB) { 6829 PHINode *PN = dyn_cast<PHINode>(&I); 6830 if (!PN) 6831 break; 6832 int i; 6833 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 6834 PN->setIncomingBlock(i, TmpBB); 6835 } 6836 6837 // Add another incoming edge form the new BB. 6838 for (auto &I : *FBB) { 6839 PHINode *PN = dyn_cast<PHINode>(&I); 6840 if (!PN) 6841 break; 6842 auto *Val = PN->getIncomingValueForBlock(&BB); 6843 PN->addIncoming(Val, TmpBB); 6844 } 6845 6846 // Update the branch weights (from SelectionDAGBuilder:: 6847 // FindMergedConditions). 6848 if (Opc == Instruction::Or) { 6849 // Codegen X | Y as: 6850 // BB1: 6851 // jmp_if_X TBB 6852 // jmp TmpBB 6853 // TmpBB: 6854 // jmp_if_Y TBB 6855 // jmp FBB 6856 // 6857 6858 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 6859 // The requirement is that 6860 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 6861 // = TrueProb for orignal BB. 6862 // Assuming the orignal weights are A and B, one choice is to set BB1's 6863 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 6864 // assumes that 6865 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 6866 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 6867 // TmpBB, but the math is more complicated. 6868 uint64_t TrueWeight, FalseWeight; 6869 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6870 uint64_t NewTrueWeight = TrueWeight; 6871 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 6872 scaleWeights(NewTrueWeight, NewFalseWeight); 6873 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6874 .createBranchWeights(TrueWeight, FalseWeight)); 6875 6876 NewTrueWeight = TrueWeight; 6877 NewFalseWeight = 2 * FalseWeight; 6878 scaleWeights(NewTrueWeight, NewFalseWeight); 6879 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6880 .createBranchWeights(TrueWeight, FalseWeight)); 6881 } 6882 } else { 6883 // Codegen X & Y as: 6884 // BB1: 6885 // jmp_if_X TmpBB 6886 // jmp FBB 6887 // TmpBB: 6888 // jmp_if_Y TBB 6889 // jmp FBB 6890 // 6891 // This requires creation of TmpBB after CurBB. 6892 6893 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 6894 // The requirement is that 6895 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 6896 // = FalseProb for orignal BB. 6897 // Assuming the orignal weights are A and B, one choice is to set BB1's 6898 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 6899 // assumes that 6900 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 6901 uint64_t TrueWeight, FalseWeight; 6902 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6903 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 6904 uint64_t NewFalseWeight = FalseWeight; 6905 scaleWeights(NewTrueWeight, NewFalseWeight); 6906 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6907 .createBranchWeights(TrueWeight, FalseWeight)); 6908 6909 NewTrueWeight = 2 * TrueWeight; 6910 NewFalseWeight = FalseWeight; 6911 scaleWeights(NewTrueWeight, NewFalseWeight); 6912 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6913 .createBranchWeights(TrueWeight, FalseWeight)); 6914 } 6915 } 6916 6917 // Note: No point in getting fancy here, since the DT info is never 6918 // available to CodeGenPrepare. 6919 ModifiedDT = true; 6920 6921 MadeChange = true; 6922 6923 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 6924 TmpBB->dump()); 6925 } 6926 return MadeChange; 6927 } 6928