1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass munges the code in the input function to better prepare it for
11 // SelectionDAG-based code generation. This works around limitations in it's
12 // basic-block-at-a-time approach. It should eventually be removed.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/BlockFrequencyInfo.h"
26 #include "llvm/Analysis/BranchProbabilityInfo.h"
27 #include "llvm/Analysis/ConstantFolding.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/LoopInfo.h"
30 #include "llvm/Analysis/MemoryBuiltins.h"
31 #include "llvm/Analysis/ProfileSummaryInfo.h"
32 #include "llvm/Analysis/TargetLibraryInfo.h"
33 #include "llvm/Analysis/TargetTransformInfo.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/CodeGen/Analysis.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/MachineValueType.h"
38 #include "llvm/CodeGen/SelectionDAGNodes.h"
39 #include "llvm/CodeGen/TargetPassConfig.h"
40 #include "llvm/CodeGen/ValueTypes.h"
41 #include "llvm/IR/Argument.h"
42 #include "llvm/IR/Attributes.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/CallSite.h"
45 #include "llvm/IR/Constant.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/Dominators.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/GetElementPtrTypeIterator.h"
52 #include "llvm/IR/GlobalValue.h"
53 #include "llvm/IR/GlobalVariable.h"
54 #include "llvm/IR/IRBuilder.h"
55 #include "llvm/IR/InlineAsm.h"
56 #include "llvm/IR/InstrTypes.h"
57 #include "llvm/IR/Instruction.h"
58 #include "llvm/IR/Instructions.h"
59 #include "llvm/IR/IntrinsicInst.h"
60 #include "llvm/IR/Intrinsics.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/IR/MDBuilder.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/Operator.h"
65 #include "llvm/IR/PatternMatch.h"
66 #include "llvm/IR/Statepoint.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/Use.h"
69 #include "llvm/IR/User.h"
70 #include "llvm/IR/Value.h"
71 #include "llvm/IR/ValueHandle.h"
72 #include "llvm/IR/ValueMap.h"
73 #include "llvm/Pass.h"
74 #include "llvm/Support/BlockFrequency.h"
75 #include "llvm/Support/BranchProbability.h"
76 #include "llvm/Support/Casting.h"
77 #include "llvm/Support/CommandLine.h"
78 #include "llvm/Support/Compiler.h"
79 #include "llvm/Support/Debug.h"
80 #include "llvm/Support/ErrorHandling.h"
81 #include "llvm/Support/MathExtras.h"
82 #include "llvm/Support/raw_ostream.h"
83 #include "llvm/Target/TargetLowering.h"
84 #include "llvm/Target/TargetMachine.h"
85 #include "llvm/Target/TargetOptions.h"
86 #include "llvm/Target/TargetSubtargetInfo.h"
87 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
88 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
89 #include "llvm/Transforms/Utils/Cloning.h"
90 #include "llvm/Transforms/Utils/Local.h"
91 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
92 #include "llvm/Transforms/Utils/ValueMapper.h"
93 #include <algorithm>
94 #include <cassert>
95 #include <cstdint>
96 #include <iterator>
97 #include <limits>
98 #include <memory>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 using namespace llvm::PatternMatch;
104 
105 #define DEBUG_TYPE "codegenprepare"
106 
107 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
108 STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
109 STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
110 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
111                       "sunken Cmps");
112 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
113                        "of sunken Casts");
114 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
115                           "computations were sunk");
116 STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
117 STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
118 STATISTIC(NumAndsAdded,
119           "Number of and mask instructions added to form ext loads");
120 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
121 STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
122 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
123 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
124 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
125 
126 STATISTIC(NumMemCmpCalls, "Number of memcmp calls");
127 STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size");
128 STATISTIC(NumMemCmpGreaterThanMax,
129           "Number of memcmp calls with size greater than max size");
130 STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls");
131 
132 static cl::opt<bool> DisableBranchOpts(
133   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
134   cl::desc("Disable branch optimizations in CodeGenPrepare"));
135 
136 static cl::opt<bool>
137     DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
138                   cl::desc("Disable GC optimizations in CodeGenPrepare"));
139 
140 static cl::opt<bool> DisableSelectToBranch(
141   "disable-cgp-select2branch", cl::Hidden, cl::init(false),
142   cl::desc("Disable select to branch conversion."));
143 
144 static cl::opt<bool> AddrSinkUsingGEPs(
145   "addr-sink-using-gep", cl::Hidden, cl::init(true),
146   cl::desc("Address sinking in CGP using GEPs."));
147 
148 static cl::opt<bool> EnableAndCmpSinking(
149    "enable-andcmp-sinking", cl::Hidden, cl::init(true),
150    cl::desc("Enable sinkinig and/cmp into branches."));
151 
152 static cl::opt<bool> DisableStoreExtract(
153     "disable-cgp-store-extract", cl::Hidden, cl::init(false),
154     cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
155 
156 static cl::opt<bool> StressStoreExtract(
157     "stress-cgp-store-extract", cl::Hidden, cl::init(false),
158     cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
159 
160 static cl::opt<bool> DisableExtLdPromotion(
161     "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
162     cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
163              "CodeGenPrepare"));
164 
165 static cl::opt<bool> StressExtLdPromotion(
166     "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
167     cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
168              "optimization in CodeGenPrepare"));
169 
170 static cl::opt<bool> DisablePreheaderProtect(
171     "disable-preheader-prot", cl::Hidden, cl::init(false),
172     cl::desc("Disable protection against removing loop preheaders"));
173 
174 static cl::opt<bool> ProfileGuidedSectionPrefix(
175     "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
176     cl::desc("Use profile info to add section prefix for hot/cold functions"));
177 
178 static cl::opt<unsigned> FreqRatioToSkipMerge(
179     "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
180     cl::desc("Skip merging empty blocks if (frequency of empty block) / "
181              "(frequency of destination block) is greater than this ratio"));
182 
183 static cl::opt<bool> ForceSplitStore(
184     "force-split-store", cl::Hidden, cl::init(false),
185     cl::desc("Force store splitting no matter what the target query says."));
186 
187 static cl::opt<bool>
188 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
189     cl::desc("Enable merging of redundant sexts when one is dominating"
190     " the other."), cl::init(true));
191 
192 static cl::opt<unsigned> MemCmpNumLoadsPerBlock(
193     "memcmp-num-loads-per-block", cl::Hidden, cl::init(1),
194     cl::desc("The number of loads per basic block for inline expansion of "
195              "memcmp that is only being compared against zero."));
196 
197 namespace {
198 
199 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
200 using TypeIsSExt = PointerIntPair<Type *, 1, bool>;
201 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
202 using SExts = SmallVector<Instruction *, 16>;
203 using ValueToSExts = DenseMap<Value *, SExts>;
204 
205 class TypePromotionTransaction;
206 
207   class CodeGenPrepare : public FunctionPass {
208     const TargetMachine *TM = nullptr;
209     const TargetSubtargetInfo *SubtargetInfo;
210     const TargetLowering *TLI = nullptr;
211     const TargetRegisterInfo *TRI;
212     const TargetTransformInfo *TTI = nullptr;
213     const TargetLibraryInfo *TLInfo;
214     const LoopInfo *LI;
215     std::unique_ptr<BlockFrequencyInfo> BFI;
216     std::unique_ptr<BranchProbabilityInfo> BPI;
217 
218     /// As we scan instructions optimizing them, this is the next instruction
219     /// to optimize. Transforms that can invalidate this should update it.
220     BasicBlock::iterator CurInstIterator;
221 
222     /// Keeps track of non-local addresses that have been sunk into a block.
223     /// This allows us to avoid inserting duplicate code for blocks with
224     /// multiple load/stores of the same address.
225     ValueMap<Value*, Value*> SunkAddrs;
226 
227     /// Keeps track of all instructions inserted for the current function.
228     SetOfInstrs InsertedInsts;
229 
230     /// Keeps track of the type of the related instruction before their
231     /// promotion for the current function.
232     InstrToOrigTy PromotedInsts;
233 
234     /// Keep track of instructions removed during promotion.
235     SetOfInstrs RemovedInsts;
236 
237     /// Keep track of sext chains based on their initial value.
238     DenseMap<Value *, Instruction *> SeenChainsForSExt;
239 
240     /// Keep track of SExt promoted.
241     ValueToSExts ValToSExtendedUses;
242 
243     /// True if CFG is modified in any way.
244     bool ModifiedDT;
245 
246     /// True if optimizing for size.
247     bool OptSize;
248 
249     /// DataLayout for the Function being processed.
250     const DataLayout *DL = nullptr;
251 
252   public:
253     static char ID; // Pass identification, replacement for typeid
254 
255     CodeGenPrepare() : FunctionPass(ID) {
256       initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
257     }
258 
259     bool runOnFunction(Function &F) override;
260 
261     StringRef getPassName() const override { return "CodeGen Prepare"; }
262 
263     void getAnalysisUsage(AnalysisUsage &AU) const override {
264       // FIXME: When we can selectively preserve passes, preserve the domtree.
265       AU.addRequired<ProfileSummaryInfoWrapperPass>();
266       AU.addRequired<TargetLibraryInfoWrapperPass>();
267       AU.addRequired<TargetTransformInfoWrapperPass>();
268       AU.addRequired<LoopInfoWrapperPass>();
269     }
270 
271   private:
272     bool eliminateFallThrough(Function &F);
273     bool eliminateMostlyEmptyBlocks(Function &F);
274     BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
275     bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
276     void eliminateMostlyEmptyBlock(BasicBlock *BB);
277     bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
278                                        bool isPreheader);
279     bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT);
280     bool optimizeInst(Instruction *I, bool &ModifiedDT);
281     bool optimizeMemoryInst(Instruction *I, Value *Addr,
282                             Type *AccessTy, unsigned AS);
283     bool optimizeInlineAsmInst(CallInst *CS);
284     bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
285     bool optimizeExt(Instruction *&I);
286     bool optimizeExtUses(Instruction *I);
287     bool optimizeLoadExt(LoadInst *I);
288     bool optimizeSelectInst(SelectInst *SI);
289     bool optimizeShuffleVectorInst(ShuffleVectorInst *SI);
290     bool optimizeSwitchInst(SwitchInst *CI);
291     bool optimizeExtractElementInst(Instruction *Inst);
292     bool dupRetToEnableTailCallOpts(BasicBlock *BB);
293     bool placeDbgValues(Function &F);
294     bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
295                       LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
296     bool tryToPromoteExts(TypePromotionTransaction &TPT,
297                           const SmallVectorImpl<Instruction *> &Exts,
298                           SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
299                           unsigned CreatedInstsCost = 0);
300     bool mergeSExts(Function &F);
301     bool performAddressTypePromotion(
302         Instruction *&Inst,
303         bool AllowPromotionWithoutCommonHeader,
304         bool HasPromoted, TypePromotionTransaction &TPT,
305         SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
306     bool splitBranchCondition(Function &F);
307     bool simplifyOffsetableRelocate(Instruction &I);
308     bool splitIndirectCriticalEdges(Function &F);
309   };
310 
311 } // end anonymous namespace
312 
313 char CodeGenPrepare::ID = 0;
314 
315 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
316                       "Optimize for code generation", false, false)
317 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
318 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
319                     "Optimize for code generation", false, false)
320 
321 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
322 
323 bool CodeGenPrepare::runOnFunction(Function &F) {
324   if (skipFunction(F))
325     return false;
326 
327   DL = &F.getParent()->getDataLayout();
328 
329   bool EverMadeChange = false;
330   // Clear per function information.
331   InsertedInsts.clear();
332   PromotedInsts.clear();
333   BFI.reset();
334   BPI.reset();
335 
336   ModifiedDT = false;
337   if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
338     TM = &TPC->getTM<TargetMachine>();
339     SubtargetInfo = TM->getSubtargetImpl(F);
340     TLI = SubtargetInfo->getTargetLowering();
341     TRI = SubtargetInfo->getRegisterInfo();
342   }
343   TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
344   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
345   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
346   OptSize = F.optForSize();
347 
348   if (ProfileGuidedSectionPrefix) {
349     ProfileSummaryInfo *PSI =
350         getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
351     if (PSI->isFunctionHotInCallGraph(&F))
352       F.setSectionPrefix(".hot");
353     else if (PSI->isFunctionColdInCallGraph(&F))
354       F.setSectionPrefix(".unlikely");
355   }
356 
357   /// This optimization identifies DIV instructions that can be
358   /// profitably bypassed and carried out with a shorter, faster divide.
359   if (!OptSize && TLI && TLI->isSlowDivBypassed()) {
360     const DenseMap<unsigned int, unsigned int> &BypassWidths =
361        TLI->getBypassSlowDivWidths();
362     BasicBlock* BB = &*F.begin();
363     while (BB != nullptr) {
364       // bypassSlowDivision may create new BBs, but we don't want to reapply the
365       // optimization to those blocks.
366       BasicBlock* Next = BB->getNextNode();
367       EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
368       BB = Next;
369     }
370   }
371 
372   // Eliminate blocks that contain only PHI nodes and an
373   // unconditional branch.
374   EverMadeChange |= eliminateMostlyEmptyBlocks(F);
375 
376   // llvm.dbg.value is far away from the value then iSel may not be able
377   // handle it properly. iSel will drop llvm.dbg.value if it can not
378   // find a node corresponding to the value.
379   EverMadeChange |= placeDbgValues(F);
380 
381   if (!DisableBranchOpts)
382     EverMadeChange |= splitBranchCondition(F);
383 
384   // Split some critical edges where one of the sources is an indirect branch,
385   // to help generate sane code for PHIs involving such edges.
386   EverMadeChange |= splitIndirectCriticalEdges(F);
387 
388   bool MadeChange = true;
389   while (MadeChange) {
390     MadeChange = false;
391     SeenChainsForSExt.clear();
392     ValToSExtendedUses.clear();
393     RemovedInsts.clear();
394     for (Function::iterator I = F.begin(); I != F.end(); ) {
395       BasicBlock *BB = &*I++;
396       bool ModifiedDTOnIteration = false;
397       MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
398 
399       // Restart BB iteration if the dominator tree of the Function was changed
400       if (ModifiedDTOnIteration)
401         break;
402     }
403     if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
404       MadeChange |= mergeSExts(F);
405 
406     // Really free removed instructions during promotion.
407     for (Instruction *I : RemovedInsts)
408       I->deleteValue();
409 
410     EverMadeChange |= MadeChange;
411   }
412 
413   SunkAddrs.clear();
414 
415   if (!DisableBranchOpts) {
416     MadeChange = false;
417     SmallPtrSet<BasicBlock*, 8> WorkList;
418     for (BasicBlock &BB : F) {
419       SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
420       MadeChange |= ConstantFoldTerminator(&BB, true);
421       if (!MadeChange) continue;
422 
423       for (SmallVectorImpl<BasicBlock*>::iterator
424              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
425         if (pred_begin(*II) == pred_end(*II))
426           WorkList.insert(*II);
427     }
428 
429     // Delete the dead blocks and any of their dead successors.
430     MadeChange |= !WorkList.empty();
431     while (!WorkList.empty()) {
432       BasicBlock *BB = *WorkList.begin();
433       WorkList.erase(BB);
434       SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
435 
436       DeleteDeadBlock(BB);
437 
438       for (SmallVectorImpl<BasicBlock*>::iterator
439              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
440         if (pred_begin(*II) == pred_end(*II))
441           WorkList.insert(*II);
442     }
443 
444     // Merge pairs of basic blocks with unconditional branches, connected by
445     // a single edge.
446     if (EverMadeChange || MadeChange)
447       MadeChange |= eliminateFallThrough(F);
448 
449     EverMadeChange |= MadeChange;
450   }
451 
452   if (!DisableGCOpts) {
453     SmallVector<Instruction *, 2> Statepoints;
454     for (BasicBlock &BB : F)
455       for (Instruction &I : BB)
456         if (isStatepoint(I))
457           Statepoints.push_back(&I);
458     for (auto &I : Statepoints)
459       EverMadeChange |= simplifyOffsetableRelocate(*I);
460   }
461 
462   return EverMadeChange;
463 }
464 
465 /// Merge basic blocks which are connected by a single edge, where one of the
466 /// basic blocks has a single successor pointing to the other basic block,
467 /// which has a single predecessor.
468 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
469   bool Changed = false;
470   // Scan all of the blocks in the function, except for the entry block.
471   for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
472     BasicBlock *BB = &*I++;
473     // If the destination block has a single pred, then this is a trivial
474     // edge, just collapse it.
475     BasicBlock *SinglePred = BB->getSinglePredecessor();
476 
477     // Don't merge if BB's address is taken.
478     if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
479 
480     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
481     if (Term && !Term->isConditional()) {
482       Changed = true;
483       DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n");
484       // Remember if SinglePred was the entry block of the function.
485       // If so, we will need to move BB back to the entry position.
486       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
487       MergeBasicBlockIntoOnlyPred(BB, nullptr);
488 
489       if (isEntry && BB != &BB->getParent()->getEntryBlock())
490         BB->moveBefore(&BB->getParent()->getEntryBlock());
491 
492       // We have erased a block. Update the iterator.
493       I = BB->getIterator();
494     }
495   }
496   return Changed;
497 }
498 
499 /// Find a destination block from BB if BB is mergeable empty block.
500 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
501   // If this block doesn't end with an uncond branch, ignore it.
502   BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
503   if (!BI || !BI->isUnconditional())
504     return nullptr;
505 
506   // If the instruction before the branch (skipping debug info) isn't a phi
507   // node, then other stuff is happening here.
508   BasicBlock::iterator BBI = BI->getIterator();
509   if (BBI != BB->begin()) {
510     --BBI;
511     while (isa<DbgInfoIntrinsic>(BBI)) {
512       if (BBI == BB->begin())
513         break;
514       --BBI;
515     }
516     if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
517       return nullptr;
518   }
519 
520   // Do not break infinite loops.
521   BasicBlock *DestBB = BI->getSuccessor(0);
522   if (DestBB == BB)
523     return nullptr;
524 
525   if (!canMergeBlocks(BB, DestBB))
526     DestBB = nullptr;
527 
528   return DestBB;
529 }
530 
531 // Return the unique indirectbr predecessor of a block. This may return null
532 // even if such a predecessor exists, if it's not useful for splitting.
533 // If a predecessor is found, OtherPreds will contain all other (non-indirectbr)
534 // predecessors of BB.
535 static BasicBlock *
536 findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) {
537   // If the block doesn't have any PHIs, we don't care about it, since there's
538   // no point in splitting it.
539   PHINode *PN = dyn_cast<PHINode>(BB->begin());
540   if (!PN)
541     return nullptr;
542 
543   // Verify we have exactly one IBR predecessor.
544   // Conservatively bail out if one of the other predecessors is not a "regular"
545   // terminator (that is, not a switch or a br).
546   BasicBlock *IBB = nullptr;
547   for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) {
548     BasicBlock *PredBB = PN->getIncomingBlock(Pred);
549     TerminatorInst *PredTerm = PredBB->getTerminator();
550     switch (PredTerm->getOpcode()) {
551     case Instruction::IndirectBr:
552       if (IBB)
553         return nullptr;
554       IBB = PredBB;
555       break;
556     case Instruction::Br:
557     case Instruction::Switch:
558       OtherPreds.push_back(PredBB);
559       continue;
560     default:
561       return nullptr;
562     }
563   }
564 
565   return IBB;
566 }
567 
568 // Split critical edges where the source of the edge is an indirectbr
569 // instruction. This isn't always possible, but we can handle some easy cases.
570 // This is useful because MI is unable to split such critical edges,
571 // which means it will not be able to sink instructions along those edges.
572 // This is especially painful for indirect branches with many successors, where
573 // we end up having to prepare all outgoing values in the origin block.
574 //
575 // Our normal algorithm for splitting critical edges requires us to update
576 // the outgoing edges of the edge origin block, but for an indirectbr this
577 // is hard, since it would require finding and updating the block addresses
578 // the indirect branch uses. But if a block only has a single indirectbr
579 // predecessor, with the others being regular branches, we can do it in a
580 // different way.
581 // Say we have A -> D, B -> D, I -> D where only I -> D is an indirectbr.
582 // We can split D into D0 and D1, where D0 contains only the PHIs from D,
583 // and D1 is the D block body. We can then duplicate D0 as D0A and D0B, and
584 // create the following structure:
585 // A -> D0A, B -> D0A, I -> D0B, D0A -> D1, D0B -> D1
586 bool CodeGenPrepare::splitIndirectCriticalEdges(Function &F) {
587   // Check whether the function has any indirectbrs, and collect which blocks
588   // they may jump to. Since most functions don't have indirect branches,
589   // this lowers the common case's overhead to O(Blocks) instead of O(Edges).
590   SmallSetVector<BasicBlock *, 16> Targets;
591   for (auto &BB : F) {
592     auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator());
593     if (!IBI)
594       continue;
595 
596     for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ)
597       Targets.insert(IBI->getSuccessor(Succ));
598   }
599 
600   if (Targets.empty())
601     return false;
602 
603   bool Changed = false;
604   for (BasicBlock *Target : Targets) {
605     SmallVector<BasicBlock *, 16> OtherPreds;
606     BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds);
607     // If we did not found an indirectbr, or the indirectbr is the only
608     // incoming edge, this isn't the kind of edge we're looking for.
609     if (!IBRPred || OtherPreds.empty())
610       continue;
611 
612     // Don't even think about ehpads/landingpads.
613     Instruction *FirstNonPHI = Target->getFirstNonPHI();
614     if (FirstNonPHI->isEHPad() || Target->isLandingPad())
615       continue;
616 
617     BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split");
618     // It's possible Target was its own successor through an indirectbr.
619     // In this case, the indirectbr now comes from BodyBlock.
620     if (IBRPred == Target)
621       IBRPred = BodyBlock;
622 
623     // At this point Target only has PHIs, and BodyBlock has the rest of the
624     // block's body. Create a copy of Target that will be used by the "direct"
625     // preds.
626     ValueToValueMapTy VMap;
627     BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F);
628 
629     for (BasicBlock *Pred : OtherPreds) {
630       // If the target is a loop to itself, then the terminator of the split
631       // block needs to be updated.
632       if (Pred == Target)
633         BodyBlock->getTerminator()->replaceUsesOfWith(Target, DirectSucc);
634       else
635         Pred->getTerminator()->replaceUsesOfWith(Target, DirectSucc);
636     }
637 
638     // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that
639     // they are clones, so the number of PHIs are the same.
640     // (a) Remove the edge coming from IBRPred from the "Direct" PHI
641     // (b) Leave that as the only edge in the "Indirect" PHI.
642     // (c) Merge the two in the body block.
643     BasicBlock::iterator Indirect = Target->begin(),
644                          End = Target->getFirstNonPHI()->getIterator();
645     BasicBlock::iterator Direct = DirectSucc->begin();
646     BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt();
647 
648     assert(&*End == Target->getTerminator() &&
649            "Block was expected to only contain PHIs");
650 
651     while (Indirect != End) {
652       PHINode *DirPHI = cast<PHINode>(Direct);
653       PHINode *IndPHI = cast<PHINode>(Indirect);
654 
655       // Now, clean up - the direct block shouldn't get the indirect value,
656       // and vice versa.
657       DirPHI->removeIncomingValue(IBRPred);
658       Direct++;
659 
660       // Advance the pointer here, to avoid invalidation issues when the old
661       // PHI is erased.
662       Indirect++;
663 
664       PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI);
665       NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred),
666                              IBRPred);
667 
668       // Create a PHI in the body block, to merge the direct and indirect
669       // predecessors.
670       PHINode *MergePHI =
671           PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert);
672       MergePHI->addIncoming(NewIndPHI, Target);
673       MergePHI->addIncoming(DirPHI, DirectSucc);
674 
675       IndPHI->replaceAllUsesWith(MergePHI);
676       IndPHI->eraseFromParent();
677     }
678 
679     Changed = true;
680   }
681 
682   return Changed;
683 }
684 
685 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
686 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
687 /// edges in ways that are non-optimal for isel. Start by eliminating these
688 /// blocks so we can split them the way we want them.
689 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
690   SmallPtrSet<BasicBlock *, 16> Preheaders;
691   SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
692   while (!LoopList.empty()) {
693     Loop *L = LoopList.pop_back_val();
694     LoopList.insert(LoopList.end(), L->begin(), L->end());
695     if (BasicBlock *Preheader = L->getLoopPreheader())
696       Preheaders.insert(Preheader);
697   }
698 
699   bool MadeChange = false;
700   // Note that this intentionally skips the entry block.
701   for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
702     BasicBlock *BB = &*I++;
703     BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
704     if (!DestBB ||
705         !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
706       continue;
707 
708     eliminateMostlyEmptyBlock(BB);
709     MadeChange = true;
710   }
711   return MadeChange;
712 }
713 
714 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
715                                                    BasicBlock *DestBB,
716                                                    bool isPreheader) {
717   // Do not delete loop preheaders if doing so would create a critical edge.
718   // Loop preheaders can be good locations to spill registers. If the
719   // preheader is deleted and we create a critical edge, registers may be
720   // spilled in the loop body instead.
721   if (!DisablePreheaderProtect && isPreheader &&
722       !(BB->getSinglePredecessor() &&
723         BB->getSinglePredecessor()->getSingleSuccessor()))
724     return false;
725 
726   // Try to skip merging if the unique predecessor of BB is terminated by a
727   // switch or indirect branch instruction, and BB is used as an incoming block
728   // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
729   // add COPY instructions in the predecessor of BB instead of BB (if it is not
730   // merged). Note that the critical edge created by merging such blocks wont be
731   // split in MachineSink because the jump table is not analyzable. By keeping
732   // such empty block (BB), ISel will place COPY instructions in BB, not in the
733   // predecessor of BB.
734   BasicBlock *Pred = BB->getUniquePredecessor();
735   if (!Pred ||
736       !(isa<SwitchInst>(Pred->getTerminator()) ||
737         isa<IndirectBrInst>(Pred->getTerminator())))
738     return true;
739 
740   if (BB->getTerminator() != BB->getFirstNonPHI())
741     return true;
742 
743   // We use a simple cost heuristic which determine skipping merging is
744   // profitable if the cost of skipping merging is less than the cost of
745   // merging : Cost(skipping merging) < Cost(merging BB), where the
746   // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
747   // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
748   // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
749   //   Freq(Pred) / Freq(BB) > 2.
750   // Note that if there are multiple empty blocks sharing the same incoming
751   // value for the PHIs in the DestBB, we consider them together. In such
752   // case, Cost(merging BB) will be the sum of their frequencies.
753 
754   if (!isa<PHINode>(DestBB->begin()))
755     return true;
756 
757   SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
758 
759   // Find all other incoming blocks from which incoming values of all PHIs in
760   // DestBB are the same as the ones from BB.
761   for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E;
762        ++PI) {
763     BasicBlock *DestBBPred = *PI;
764     if (DestBBPred == BB)
765       continue;
766 
767     bool HasAllSameValue = true;
768     BasicBlock::const_iterator DestBBI = DestBB->begin();
769     while (const PHINode *DestPN = dyn_cast<PHINode>(DestBBI++)) {
770       if (DestPN->getIncomingValueForBlock(BB) !=
771           DestPN->getIncomingValueForBlock(DestBBPred)) {
772         HasAllSameValue = false;
773         break;
774       }
775     }
776     if (HasAllSameValue)
777       SameIncomingValueBBs.insert(DestBBPred);
778   }
779 
780   // See if all BB's incoming values are same as the value from Pred. In this
781   // case, no reason to skip merging because COPYs are expected to be place in
782   // Pred already.
783   if (SameIncomingValueBBs.count(Pred))
784     return true;
785 
786   if (!BFI) {
787     Function &F = *BB->getParent();
788     LoopInfo LI{DominatorTree(F)};
789     BPI.reset(new BranchProbabilityInfo(F, LI));
790     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
791   }
792 
793   BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
794   BlockFrequency BBFreq = BFI->getBlockFreq(BB);
795 
796   for (auto SameValueBB : SameIncomingValueBBs)
797     if (SameValueBB->getUniquePredecessor() == Pred &&
798         DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
799       BBFreq += BFI->getBlockFreq(SameValueBB);
800 
801   return PredFreq.getFrequency() <=
802          BBFreq.getFrequency() * FreqRatioToSkipMerge;
803 }
804 
805 /// Return true if we can merge BB into DestBB if there is a single
806 /// unconditional branch between them, and BB contains no other non-phi
807 /// instructions.
808 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
809                                     const BasicBlock *DestBB) const {
810   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
811   // the successor.  If there are more complex condition (e.g. preheaders),
812   // don't mess around with them.
813   BasicBlock::const_iterator BBI = BB->begin();
814   while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
815     for (const User *U : PN->users()) {
816       const Instruction *UI = cast<Instruction>(U);
817       if (UI->getParent() != DestBB || !isa<PHINode>(UI))
818         return false;
819       // If User is inside DestBB block and it is a PHINode then check
820       // incoming value. If incoming value is not from BB then this is
821       // a complex condition (e.g. preheaders) we want to avoid here.
822       if (UI->getParent() == DestBB) {
823         if (const PHINode *UPN = dyn_cast<PHINode>(UI))
824           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
825             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
826             if (Insn && Insn->getParent() == BB &&
827                 Insn->getParent() != UPN->getIncomingBlock(I))
828               return false;
829           }
830       }
831     }
832   }
833 
834   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
835   // and DestBB may have conflicting incoming values for the block.  If so, we
836   // can't merge the block.
837   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
838   if (!DestBBPN) return true;  // no conflict.
839 
840   // Collect the preds of BB.
841   SmallPtrSet<const BasicBlock*, 16> BBPreds;
842   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
843     // It is faster to get preds from a PHI than with pred_iterator.
844     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
845       BBPreds.insert(BBPN->getIncomingBlock(i));
846   } else {
847     BBPreds.insert(pred_begin(BB), pred_end(BB));
848   }
849 
850   // Walk the preds of DestBB.
851   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
852     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
853     if (BBPreds.count(Pred)) {   // Common predecessor?
854       BBI = DestBB->begin();
855       while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
856         const Value *V1 = PN->getIncomingValueForBlock(Pred);
857         const Value *V2 = PN->getIncomingValueForBlock(BB);
858 
859         // If V2 is a phi node in BB, look up what the mapped value will be.
860         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
861           if (V2PN->getParent() == BB)
862             V2 = V2PN->getIncomingValueForBlock(Pred);
863 
864         // If there is a conflict, bail out.
865         if (V1 != V2) return false;
866       }
867     }
868   }
869 
870   return true;
871 }
872 
873 /// Eliminate a basic block that has only phi's and an unconditional branch in
874 /// it.
875 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
876   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
877   BasicBlock *DestBB = BI->getSuccessor(0);
878 
879   DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
880 
881   // If the destination block has a single pred, then this is a trivial edge,
882   // just collapse it.
883   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
884     if (SinglePred != DestBB) {
885       // Remember if SinglePred was the entry block of the function.  If so, we
886       // will need to move BB back to the entry position.
887       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
888       MergeBasicBlockIntoOnlyPred(DestBB, nullptr);
889 
890       if (isEntry && BB != &BB->getParent()->getEntryBlock())
891         BB->moveBefore(&BB->getParent()->getEntryBlock());
892 
893       DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
894       return;
895     }
896   }
897 
898   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
899   // to handle the new incoming edges it is about to have.
900   PHINode *PN;
901   for (BasicBlock::iterator BBI = DestBB->begin();
902        (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
903     // Remove the incoming value for BB, and remember it.
904     Value *InVal = PN->removeIncomingValue(BB, false);
905 
906     // Two options: either the InVal is a phi node defined in BB or it is some
907     // value that dominates BB.
908     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
909     if (InValPhi && InValPhi->getParent() == BB) {
910       // Add all of the input values of the input PHI as inputs of this phi.
911       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
912         PN->addIncoming(InValPhi->getIncomingValue(i),
913                         InValPhi->getIncomingBlock(i));
914     } else {
915       // Otherwise, add one instance of the dominating value for each edge that
916       // we will be adding.
917       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
918         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
919           PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
920       } else {
921         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
922           PN->addIncoming(InVal, *PI);
923       }
924     }
925   }
926 
927   // The PHIs are now updated, change everything that refers to BB to use
928   // DestBB and remove BB.
929   BB->replaceAllUsesWith(DestBB);
930   BB->eraseFromParent();
931   ++NumBlocksElim;
932 
933   DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
934 }
935 
936 // Computes a map of base pointer relocation instructions to corresponding
937 // derived pointer relocation instructions given a vector of all relocate calls
938 static void computeBaseDerivedRelocateMap(
939     const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
940     DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
941         &RelocateInstMap) {
942   // Collect information in two maps: one primarily for locating the base object
943   // while filling the second map; the second map is the final structure holding
944   // a mapping between Base and corresponding Derived relocate calls
945   DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
946   for (auto *ThisRelocate : AllRelocateCalls) {
947     auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
948                             ThisRelocate->getDerivedPtrIndex());
949     RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
950   }
951   for (auto &Item : RelocateIdxMap) {
952     std::pair<unsigned, unsigned> Key = Item.first;
953     if (Key.first == Key.second)
954       // Base relocation: nothing to insert
955       continue;
956 
957     GCRelocateInst *I = Item.second;
958     auto BaseKey = std::make_pair(Key.first, Key.first);
959 
960     // We're iterating over RelocateIdxMap so we cannot modify it.
961     auto MaybeBase = RelocateIdxMap.find(BaseKey);
962     if (MaybeBase == RelocateIdxMap.end())
963       // TODO: We might want to insert a new base object relocate and gep off
964       // that, if there are enough derived object relocates.
965       continue;
966 
967     RelocateInstMap[MaybeBase->second].push_back(I);
968   }
969 }
970 
971 // Accepts a GEP and extracts the operands into a vector provided they're all
972 // small integer constants
973 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
974                                           SmallVectorImpl<Value *> &OffsetV) {
975   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
976     // Only accept small constant integer operands
977     auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
978     if (!Op || Op->getZExtValue() > 20)
979       return false;
980   }
981 
982   for (unsigned i = 1; i < GEP->getNumOperands(); i++)
983     OffsetV.push_back(GEP->getOperand(i));
984   return true;
985 }
986 
987 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
988 // replace, computes a replacement, and affects it.
989 static bool
990 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
991                           const SmallVectorImpl<GCRelocateInst *> &Targets) {
992   bool MadeChange = false;
993   // We must ensure the relocation of derived pointer is defined after
994   // relocation of base pointer. If we find a relocation corresponding to base
995   // defined earlier than relocation of base then we move relocation of base
996   // right before found relocation. We consider only relocation in the same
997   // basic block as relocation of base. Relocations from other basic block will
998   // be skipped by optimization and we do not care about them.
999   for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
1000        &*R != RelocatedBase; ++R)
1001     if (auto RI = dyn_cast<GCRelocateInst>(R))
1002       if (RI->getStatepoint() == RelocatedBase->getStatepoint())
1003         if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
1004           RelocatedBase->moveBefore(RI);
1005           break;
1006         }
1007 
1008   for (GCRelocateInst *ToReplace : Targets) {
1009     assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
1010            "Not relocating a derived object of the original base object");
1011     if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
1012       // A duplicate relocate call. TODO: coalesce duplicates.
1013       continue;
1014     }
1015 
1016     if (RelocatedBase->getParent() != ToReplace->getParent()) {
1017       // Base and derived relocates are in different basic blocks.
1018       // In this case transform is only valid when base dominates derived
1019       // relocate. However it would be too expensive to check dominance
1020       // for each such relocate, so we skip the whole transformation.
1021       continue;
1022     }
1023 
1024     Value *Base = ToReplace->getBasePtr();
1025     auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
1026     if (!Derived || Derived->getPointerOperand() != Base)
1027       continue;
1028 
1029     SmallVector<Value *, 2> OffsetV;
1030     if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
1031       continue;
1032 
1033     // Create a Builder and replace the target callsite with a gep
1034     assert(RelocatedBase->getNextNode() &&
1035            "Should always have one since it's not a terminator");
1036 
1037     // Insert after RelocatedBase
1038     IRBuilder<> Builder(RelocatedBase->getNextNode());
1039     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1040 
1041     // If gc_relocate does not match the actual type, cast it to the right type.
1042     // In theory, there must be a bitcast after gc_relocate if the type does not
1043     // match, and we should reuse it to get the derived pointer. But it could be
1044     // cases like this:
1045     // bb1:
1046     //  ...
1047     //  %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
1048     //  br label %merge
1049     //
1050     // bb2:
1051     //  ...
1052     //  %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
1053     //  br label %merge
1054     //
1055     // merge:
1056     //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
1057     //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
1058     //
1059     // In this case, we can not find the bitcast any more. So we insert a new bitcast
1060     // no matter there is already one or not. In this way, we can handle all cases, and
1061     // the extra bitcast should be optimized away in later passes.
1062     Value *ActualRelocatedBase = RelocatedBase;
1063     if (RelocatedBase->getType() != Base->getType()) {
1064       ActualRelocatedBase =
1065           Builder.CreateBitCast(RelocatedBase, Base->getType());
1066     }
1067     Value *Replacement = Builder.CreateGEP(
1068         Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
1069     Replacement->takeName(ToReplace);
1070     // If the newly generated derived pointer's type does not match the original derived
1071     // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
1072     Value *ActualReplacement = Replacement;
1073     if (Replacement->getType() != ToReplace->getType()) {
1074       ActualReplacement =
1075           Builder.CreateBitCast(Replacement, ToReplace->getType());
1076     }
1077     ToReplace->replaceAllUsesWith(ActualReplacement);
1078     ToReplace->eraseFromParent();
1079 
1080     MadeChange = true;
1081   }
1082   return MadeChange;
1083 }
1084 
1085 // Turns this:
1086 //
1087 // %base = ...
1088 // %ptr = gep %base + 15
1089 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1090 // %base' = relocate(%tok, i32 4, i32 4)
1091 // %ptr' = relocate(%tok, i32 4, i32 5)
1092 // %val = load %ptr'
1093 //
1094 // into this:
1095 //
1096 // %base = ...
1097 // %ptr = gep %base + 15
1098 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1099 // %base' = gc.relocate(%tok, i32 4, i32 4)
1100 // %ptr' = gep %base' + 15
1101 // %val = load %ptr'
1102 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
1103   bool MadeChange = false;
1104   SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1105 
1106   for (auto *U : I.users())
1107     if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1108       // Collect all the relocate calls associated with a statepoint
1109       AllRelocateCalls.push_back(Relocate);
1110 
1111   // We need atleast one base pointer relocation + one derived pointer
1112   // relocation to mangle
1113   if (AllRelocateCalls.size() < 2)
1114     return false;
1115 
1116   // RelocateInstMap is a mapping from the base relocate instruction to the
1117   // corresponding derived relocate instructions
1118   DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
1119   computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1120   if (RelocateInstMap.empty())
1121     return false;
1122 
1123   for (auto &Item : RelocateInstMap)
1124     // Item.first is the RelocatedBase to offset against
1125     // Item.second is the vector of Targets to replace
1126     MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1127   return MadeChange;
1128 }
1129 
1130 /// SinkCast - Sink the specified cast instruction into its user blocks
1131 static bool SinkCast(CastInst *CI) {
1132   BasicBlock *DefBB = CI->getParent();
1133 
1134   /// InsertedCasts - Only insert a cast in each block once.
1135   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
1136 
1137   bool MadeChange = false;
1138   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1139        UI != E; ) {
1140     Use &TheUse = UI.getUse();
1141     Instruction *User = cast<Instruction>(*UI);
1142 
1143     // Figure out which BB this cast is used in.  For PHI's this is the
1144     // appropriate predecessor block.
1145     BasicBlock *UserBB = User->getParent();
1146     if (PHINode *PN = dyn_cast<PHINode>(User)) {
1147       UserBB = PN->getIncomingBlock(TheUse);
1148     }
1149 
1150     // Preincrement use iterator so we don't invalidate it.
1151     ++UI;
1152 
1153     // The first insertion point of a block containing an EH pad is after the
1154     // pad.  If the pad is the user, we cannot sink the cast past the pad.
1155     if (User->isEHPad())
1156       continue;
1157 
1158     // If the block selected to receive the cast is an EH pad that does not
1159     // allow non-PHI instructions before the terminator, we can't sink the
1160     // cast.
1161     if (UserBB->getTerminator()->isEHPad())
1162       continue;
1163 
1164     // If this user is in the same block as the cast, don't change the cast.
1165     if (UserBB == DefBB) continue;
1166 
1167     // If we have already inserted a cast into this block, use it.
1168     CastInst *&InsertedCast = InsertedCasts[UserBB];
1169 
1170     if (!InsertedCast) {
1171       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1172       assert(InsertPt != UserBB->end());
1173       InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1174                                       CI->getType(), "", &*InsertPt);
1175     }
1176 
1177     // Replace a use of the cast with a use of the new cast.
1178     TheUse = InsertedCast;
1179     MadeChange = true;
1180     ++NumCastUses;
1181   }
1182 
1183   // If we removed all uses, nuke the cast.
1184   if (CI->use_empty()) {
1185     CI->eraseFromParent();
1186     MadeChange = true;
1187   }
1188 
1189   return MadeChange;
1190 }
1191 
1192 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1193 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1194 /// reduce the number of virtual registers that must be created and coalesced.
1195 ///
1196 /// Return true if any changes are made.
1197 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1198                                        const DataLayout &DL) {
1199   // Sink only "cheap" (or nop) address-space casts.  This is a weaker condition
1200   // than sinking only nop casts, but is helpful on some platforms.
1201   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1202     if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(),
1203                                   ASC->getDestAddressSpace()))
1204       return false;
1205   }
1206 
1207   // If this is a noop copy,
1208   EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1209   EVT DstVT = TLI.getValueType(DL, CI->getType());
1210 
1211   // This is an fp<->int conversion?
1212   if (SrcVT.isInteger() != DstVT.isInteger())
1213     return false;
1214 
1215   // If this is an extension, it will be a zero or sign extension, which
1216   // isn't a noop.
1217   if (SrcVT.bitsLT(DstVT)) return false;
1218 
1219   // If these values will be promoted, find out what they will be promoted
1220   // to.  This helps us consider truncates on PPC as noop copies when they
1221   // are.
1222   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1223       TargetLowering::TypePromoteInteger)
1224     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1225   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1226       TargetLowering::TypePromoteInteger)
1227     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1228 
1229   // If, after promotion, these are the same types, this is a noop copy.
1230   if (SrcVT != DstVT)
1231     return false;
1232 
1233   return SinkCast(CI);
1234 }
1235 
1236 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if
1237 /// possible.
1238 ///
1239 /// Return true if any changes were made.
1240 static bool CombineUAddWithOverflow(CmpInst *CI) {
1241   Value *A, *B;
1242   Instruction *AddI;
1243   if (!match(CI,
1244              m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI))))
1245     return false;
1246 
1247   Type *Ty = AddI->getType();
1248   if (!isa<IntegerType>(Ty))
1249     return false;
1250 
1251   // We don't want to move around uses of condition values this late, so we we
1252   // check if it is legal to create the call to the intrinsic in the basic
1253   // block containing the icmp:
1254 
1255   if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse())
1256     return false;
1257 
1258 #ifndef NDEBUG
1259   // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption
1260   // for now:
1261   if (AddI->hasOneUse())
1262     assert(*AddI->user_begin() == CI && "expected!");
1263 #endif
1264 
1265   Module *M = CI->getModule();
1266   Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
1267 
1268   auto *InsertPt = AddI->hasOneUse() ? CI : AddI;
1269 
1270   auto *UAddWithOverflow =
1271       CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt);
1272   auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt);
1273   auto *Overflow =
1274       ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt);
1275 
1276   CI->replaceAllUsesWith(Overflow);
1277   AddI->replaceAllUsesWith(UAdd);
1278   CI->eraseFromParent();
1279   AddI->eraseFromParent();
1280   return true;
1281 }
1282 
1283 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1284 /// registers that must be created and coalesced. This is a clear win except on
1285 /// targets with multiple condition code registers (PowerPC), where it might
1286 /// lose; some adjustment may be wanted there.
1287 ///
1288 /// Return true if any changes are made.
1289 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) {
1290   BasicBlock *DefBB = CI->getParent();
1291 
1292   // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1293   if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI))
1294     return false;
1295 
1296   // Only insert a cmp in each block once.
1297   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
1298 
1299   bool MadeChange = false;
1300   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1301        UI != E; ) {
1302     Use &TheUse = UI.getUse();
1303     Instruction *User = cast<Instruction>(*UI);
1304 
1305     // Preincrement use iterator so we don't invalidate it.
1306     ++UI;
1307 
1308     // Don't bother for PHI nodes.
1309     if (isa<PHINode>(User))
1310       continue;
1311 
1312     // Figure out which BB this cmp is used in.
1313     BasicBlock *UserBB = User->getParent();
1314 
1315     // If this user is in the same block as the cmp, don't change the cmp.
1316     if (UserBB == DefBB) continue;
1317 
1318     // If we have already inserted a cmp into this block, use it.
1319     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1320 
1321     if (!InsertedCmp) {
1322       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1323       assert(InsertPt != UserBB->end());
1324       InsertedCmp =
1325           CmpInst::Create(CI->getOpcode(), CI->getPredicate(),
1326                           CI->getOperand(0), CI->getOperand(1), "", &*InsertPt);
1327       // Propagate the debug info.
1328       InsertedCmp->setDebugLoc(CI->getDebugLoc());
1329     }
1330 
1331     // Replace a use of the cmp with a use of the new cmp.
1332     TheUse = InsertedCmp;
1333     MadeChange = true;
1334     ++NumCmpUses;
1335   }
1336 
1337   // If we removed all uses, nuke the cmp.
1338   if (CI->use_empty()) {
1339     CI->eraseFromParent();
1340     MadeChange = true;
1341   }
1342 
1343   return MadeChange;
1344 }
1345 
1346 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) {
1347   if (SinkCmpExpression(CI, TLI))
1348     return true;
1349 
1350   if (CombineUAddWithOverflow(CI))
1351     return true;
1352 
1353   return false;
1354 }
1355 
1356 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1357 /// used in a compare to allow isel to generate better code for targets where
1358 /// this operation can be combined.
1359 ///
1360 /// Return true if any changes are made.
1361 static bool sinkAndCmp0Expression(Instruction *AndI,
1362                                   const TargetLowering &TLI,
1363                                   SetOfInstrs &InsertedInsts) {
1364   // Double-check that we're not trying to optimize an instruction that was
1365   // already optimized by some other part of this pass.
1366   assert(!InsertedInsts.count(AndI) &&
1367          "Attempting to optimize already optimized and instruction");
1368   (void) InsertedInsts;
1369 
1370   // Nothing to do for single use in same basic block.
1371   if (AndI->hasOneUse() &&
1372       AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
1373     return false;
1374 
1375   // Try to avoid cases where sinking/duplicating is likely to increase register
1376   // pressure.
1377   if (!isa<ConstantInt>(AndI->getOperand(0)) &&
1378       !isa<ConstantInt>(AndI->getOperand(1)) &&
1379       AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
1380     return false;
1381 
1382   for (auto *U : AndI->users()) {
1383     Instruction *User = cast<Instruction>(U);
1384 
1385     // Only sink for and mask feeding icmp with 0.
1386     if (!isa<ICmpInst>(User))
1387       return false;
1388 
1389     auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
1390     if (!CmpC || !CmpC->isZero())
1391       return false;
1392   }
1393 
1394   if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
1395     return false;
1396 
1397   DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1398   DEBUG(AndI->getParent()->dump());
1399 
1400   // Push the 'and' into the same block as the icmp 0.  There should only be
1401   // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1402   // others, so we don't need to keep track of which BBs we insert into.
1403   for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
1404        UI != E; ) {
1405     Use &TheUse = UI.getUse();
1406     Instruction *User = cast<Instruction>(*UI);
1407 
1408     // Preincrement use iterator so we don't invalidate it.
1409     ++UI;
1410 
1411     DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
1412 
1413     // Keep the 'and' in the same place if the use is already in the same block.
1414     Instruction *InsertPt =
1415         User->getParent() == AndI->getParent() ? AndI : User;
1416     Instruction *InsertedAnd =
1417         BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
1418                                AndI->getOperand(1), "", InsertPt);
1419     // Propagate the debug info.
1420     InsertedAnd->setDebugLoc(AndI->getDebugLoc());
1421 
1422     // Replace a use of the 'and' with a use of the new 'and'.
1423     TheUse = InsertedAnd;
1424     ++NumAndUses;
1425     DEBUG(User->getParent()->dump());
1426   }
1427 
1428   // We removed all uses, nuke the and.
1429   AndI->eraseFromParent();
1430   return true;
1431 }
1432 
1433 /// Check if the candidates could be combined with a shift instruction, which
1434 /// includes:
1435 /// 1. Truncate instruction
1436 /// 2. And instruction and the imm is a mask of the low bits:
1437 /// imm & (imm+1) == 0
1438 static bool isExtractBitsCandidateUse(Instruction *User) {
1439   if (!isa<TruncInst>(User)) {
1440     if (User->getOpcode() != Instruction::And ||
1441         !isa<ConstantInt>(User->getOperand(1)))
1442       return false;
1443 
1444     const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
1445 
1446     if ((Cimm & (Cimm + 1)).getBoolValue())
1447       return false;
1448   }
1449   return true;
1450 }
1451 
1452 /// Sink both shift and truncate instruction to the use of truncate's BB.
1453 static bool
1454 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
1455                      DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
1456                      const TargetLowering &TLI, const DataLayout &DL) {
1457   BasicBlock *UserBB = User->getParent();
1458   DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
1459   TruncInst *TruncI = dyn_cast<TruncInst>(User);
1460   bool MadeChange = false;
1461 
1462   for (Value::user_iterator TruncUI = TruncI->user_begin(),
1463                             TruncE = TruncI->user_end();
1464        TruncUI != TruncE;) {
1465 
1466     Use &TruncTheUse = TruncUI.getUse();
1467     Instruction *TruncUser = cast<Instruction>(*TruncUI);
1468     // Preincrement use iterator so we don't invalidate it.
1469 
1470     ++TruncUI;
1471 
1472     int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
1473     if (!ISDOpcode)
1474       continue;
1475 
1476     // If the use is actually a legal node, there will not be an
1477     // implicit truncate.
1478     // FIXME: always querying the result type is just an
1479     // approximation; some nodes' legality is determined by the
1480     // operand or other means. There's no good way to find out though.
1481     if (TLI.isOperationLegalOrCustom(
1482             ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
1483       continue;
1484 
1485     // Don't bother for PHI nodes.
1486     if (isa<PHINode>(TruncUser))
1487       continue;
1488 
1489     BasicBlock *TruncUserBB = TruncUser->getParent();
1490 
1491     if (UserBB == TruncUserBB)
1492       continue;
1493 
1494     BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
1495     CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
1496 
1497     if (!InsertedShift && !InsertedTrunc) {
1498       BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
1499       assert(InsertPt != TruncUserBB->end());
1500       // Sink the shift
1501       if (ShiftI->getOpcode() == Instruction::AShr)
1502         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1503                                                    "", &*InsertPt);
1504       else
1505         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1506                                                    "", &*InsertPt);
1507 
1508       // Sink the trunc
1509       BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
1510       TruncInsertPt++;
1511       assert(TruncInsertPt != TruncUserBB->end());
1512 
1513       InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
1514                                        TruncI->getType(), "", &*TruncInsertPt);
1515 
1516       MadeChange = true;
1517 
1518       TruncTheUse = InsertedTrunc;
1519     }
1520   }
1521   return MadeChange;
1522 }
1523 
1524 /// Sink the shift *right* instruction into user blocks if the uses could
1525 /// potentially be combined with this shift instruction and generate BitExtract
1526 /// instruction. It will only be applied if the architecture supports BitExtract
1527 /// instruction. Here is an example:
1528 /// BB1:
1529 ///   %x.extract.shift = lshr i64 %arg1, 32
1530 /// BB2:
1531 ///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
1532 /// ==>
1533 ///
1534 /// BB2:
1535 ///   %x.extract.shift.1 = lshr i64 %arg1, 32
1536 ///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1537 ///
1538 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract
1539 /// instruction.
1540 /// Return true if any changes are made.
1541 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1542                                 const TargetLowering &TLI,
1543                                 const DataLayout &DL) {
1544   BasicBlock *DefBB = ShiftI->getParent();
1545 
1546   /// Only insert instructions in each block once.
1547   DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1548 
1549   bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1550 
1551   bool MadeChange = false;
1552   for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1553        UI != E;) {
1554     Use &TheUse = UI.getUse();
1555     Instruction *User = cast<Instruction>(*UI);
1556     // Preincrement use iterator so we don't invalidate it.
1557     ++UI;
1558 
1559     // Don't bother for PHI nodes.
1560     if (isa<PHINode>(User))
1561       continue;
1562 
1563     if (!isExtractBitsCandidateUse(User))
1564       continue;
1565 
1566     BasicBlock *UserBB = User->getParent();
1567 
1568     if (UserBB == DefBB) {
1569       // If the shift and truncate instruction are in the same BB. The use of
1570       // the truncate(TruncUse) may still introduce another truncate if not
1571       // legal. In this case, we would like to sink both shift and truncate
1572       // instruction to the BB of TruncUse.
1573       // for example:
1574       // BB1:
1575       // i64 shift.result = lshr i64 opnd, imm
1576       // trunc.result = trunc shift.result to i16
1577       //
1578       // BB2:
1579       //   ----> We will have an implicit truncate here if the architecture does
1580       //   not have i16 compare.
1581       // cmp i16 trunc.result, opnd2
1582       //
1583       if (isa<TruncInst>(User) && shiftIsLegal
1584           // If the type of the truncate is legal, no trucate will be
1585           // introduced in other basic blocks.
1586           &&
1587           (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1588         MadeChange =
1589             SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1590 
1591       continue;
1592     }
1593     // If we have already inserted a shift into this block, use it.
1594     BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1595 
1596     if (!InsertedShift) {
1597       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1598       assert(InsertPt != UserBB->end());
1599 
1600       if (ShiftI->getOpcode() == Instruction::AShr)
1601         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1602                                                    "", &*InsertPt);
1603       else
1604         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1605                                                    "", &*InsertPt);
1606 
1607       MadeChange = true;
1608     }
1609 
1610     // Replace a use of the shift with a use of the new shift.
1611     TheUse = InsertedShift;
1612   }
1613 
1614   // If we removed all uses, nuke the shift.
1615   if (ShiftI->use_empty())
1616     ShiftI->eraseFromParent();
1617 
1618   return MadeChange;
1619 }
1620 
1621 /// If counting leading or trailing zeros is an expensive operation and a zero
1622 /// input is defined, add a check for zero to avoid calling the intrinsic.
1623 ///
1624 /// We want to transform:
1625 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
1626 ///
1627 /// into:
1628 ///   entry:
1629 ///     %cmpz = icmp eq i64 %A, 0
1630 ///     br i1 %cmpz, label %cond.end, label %cond.false
1631 ///   cond.false:
1632 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
1633 ///     br label %cond.end
1634 ///   cond.end:
1635 ///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
1636 ///
1637 /// If the transform is performed, return true and set ModifiedDT to true.
1638 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
1639                                   const TargetLowering *TLI,
1640                                   const DataLayout *DL,
1641                                   bool &ModifiedDT) {
1642   if (!TLI || !DL)
1643     return false;
1644 
1645   // If a zero input is undefined, it doesn't make sense to despeculate that.
1646   if (match(CountZeros->getOperand(1), m_One()))
1647     return false;
1648 
1649   // If it's cheap to speculate, there's nothing to do.
1650   auto IntrinsicID = CountZeros->getIntrinsicID();
1651   if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
1652       (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
1653     return false;
1654 
1655   // Only handle legal scalar cases. Anything else requires too much work.
1656   Type *Ty = CountZeros->getType();
1657   unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
1658   if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
1659     return false;
1660 
1661   // The intrinsic will be sunk behind a compare against zero and branch.
1662   BasicBlock *StartBlock = CountZeros->getParent();
1663   BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
1664 
1665   // Create another block after the count zero intrinsic. A PHI will be added
1666   // in this block to select the result of the intrinsic or the bit-width
1667   // constant if the input to the intrinsic is zero.
1668   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
1669   BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
1670 
1671   // Set up a builder to create a compare, conditional branch, and PHI.
1672   IRBuilder<> Builder(CountZeros->getContext());
1673   Builder.SetInsertPoint(StartBlock->getTerminator());
1674   Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
1675 
1676   // Replace the unconditional branch that was created by the first split with
1677   // a compare against zero and a conditional branch.
1678   Value *Zero = Constant::getNullValue(Ty);
1679   Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
1680   Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
1681   StartBlock->getTerminator()->eraseFromParent();
1682 
1683   // Create a PHI in the end block to select either the output of the intrinsic
1684   // or the bit width of the operand.
1685   Builder.SetInsertPoint(&EndBlock->front());
1686   PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
1687   CountZeros->replaceAllUsesWith(PN);
1688   Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
1689   PN->addIncoming(BitWidth, StartBlock);
1690   PN->addIncoming(CountZeros, CallBlock);
1691 
1692   // We are explicitly handling the zero case, so we can set the intrinsic's
1693   // undefined zero argument to 'true'. This will also prevent reprocessing the
1694   // intrinsic; we only despeculate when a zero input is defined.
1695   CountZeros->setArgOperand(1, Builder.getTrue());
1696   ModifiedDT = true;
1697   return true;
1698 }
1699 
1700 namespace {
1701 
1702 // This class provides helper functions to expand a memcmp library call into an
1703 // inline expansion.
1704 class MemCmpExpansion {
1705   struct ResultBlock {
1706     BasicBlock *BB = nullptr;
1707     PHINode *PhiSrc1 = nullptr;
1708     PHINode *PhiSrc2 = nullptr;
1709 
1710     ResultBlock() = default;
1711   };
1712 
1713   CallInst *CI;
1714   ResultBlock ResBlock;
1715   unsigned MaxLoadSize;
1716   unsigned NumBlocks;
1717   unsigned NumBlocksNonOneByte;
1718   unsigned NumLoadsPerBlock;
1719   std::vector<BasicBlock *> LoadCmpBlocks;
1720   BasicBlock *EndBlock;
1721   PHINode *PhiRes;
1722   bool IsUsedForZeroCmp;
1723   const DataLayout &DL;
1724   IRBuilder<> Builder;
1725 
1726   unsigned calculateNumBlocks(unsigned Size);
1727   void createLoadCmpBlocks();
1728   void createResultBlock();
1729   void setupResultBlockPHINodes();
1730   void setupEndBlockPHINodes();
1731   void emitLoadCompareBlock(unsigned Index, unsigned LoadSize,
1732                             unsigned GEPIndex);
1733   Value *getCompareLoadPairs(unsigned Index, unsigned Size,
1734                              unsigned &NumBytesProcessed);
1735   void emitLoadCompareBlockMultipleLoads(unsigned Index, unsigned Size,
1736                                          unsigned &NumBytesProcessed);
1737   void emitLoadCompareByteBlock(unsigned Index, unsigned GEPIndex);
1738   void emitMemCmpResultBlock();
1739   Value *getMemCmpExpansionZeroCase(unsigned Size);
1740   Value *getMemCmpEqZeroOneBlock(unsigned Size);
1741   Value *getMemCmpOneBlock(unsigned Size);
1742   unsigned getLoadSize(unsigned Size);
1743   unsigned getNumLoads(unsigned Size);
1744 
1745 public:
1746   MemCmpExpansion(CallInst *CI, uint64_t Size, unsigned MaxLoadSize,
1747                   unsigned NumLoadsPerBlock, const DataLayout &DL);
1748 
1749   Value *getMemCmpExpansion(uint64_t Size);
1750 };
1751 
1752 } // end anonymous namespace
1753 
1754 // Initialize the basic block structure required for expansion of memcmp call
1755 // with given maximum load size and memcmp size parameter.
1756 // This structure includes:
1757 // 1. A list of load compare blocks - LoadCmpBlocks.
1758 // 2. An EndBlock, split from original instruction point, which is the block to
1759 // return from.
1760 // 3. ResultBlock, block to branch to for early exit when a
1761 // LoadCmpBlock finds a difference.
1762 MemCmpExpansion::MemCmpExpansion(CallInst *CI, uint64_t Size,
1763                                  unsigned MaxLoadSize, unsigned LoadsPerBlock,
1764                                  const DataLayout &TheDataLayout)
1765     : CI(CI), MaxLoadSize(MaxLoadSize), NumLoadsPerBlock(LoadsPerBlock),
1766       DL(TheDataLayout), Builder(CI) {
1767   // A memcmp with zero-comparison with only one block of load and compare does
1768   // not need to set up any extra blocks. This case could be handled in the DAG,
1769   // but since we have all of the machinery to flexibly expand any memcpy here,
1770   // we choose to handle this case too to avoid fragmented lowering.
1771   IsUsedForZeroCmp = isOnlyUsedInZeroEqualityComparison(CI);
1772   NumBlocks = calculateNumBlocks(Size);
1773   if ((!IsUsedForZeroCmp && NumLoadsPerBlock != 1) || NumBlocks != 1) {
1774     BasicBlock *StartBlock = CI->getParent();
1775     EndBlock = StartBlock->splitBasicBlock(CI, "endblock");
1776     setupEndBlockPHINodes();
1777     createResultBlock();
1778 
1779     // If return value of memcmp is not used in a zero equality, we need to
1780     // calculate which source was larger. The calculation requires the
1781     // two loaded source values of each load compare block.
1782     // These will be saved in the phi nodes created by setupResultBlockPHINodes.
1783     if (!IsUsedForZeroCmp)
1784       setupResultBlockPHINodes();
1785 
1786     // Create the number of required load compare basic blocks.
1787     createLoadCmpBlocks();
1788 
1789     // Update the terminator added by splitBasicBlock to branch to the first
1790     // LoadCmpBlock.
1791     StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]);
1792   }
1793 
1794   Builder.SetCurrentDebugLocation(CI->getDebugLoc());
1795 }
1796 
1797 void MemCmpExpansion::createLoadCmpBlocks() {
1798   for (unsigned i = 0; i < NumBlocks; i++) {
1799     BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb",
1800                                         EndBlock->getParent(), EndBlock);
1801     LoadCmpBlocks.push_back(BB);
1802   }
1803 }
1804 
1805 void MemCmpExpansion::createResultBlock() {
1806   ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block",
1807                                    EndBlock->getParent(), EndBlock);
1808 }
1809 
1810 // This function creates the IR instructions for loading and comparing 1 byte.
1811 // It loads 1 byte from each source of the memcmp parameters with the given
1812 // GEPIndex. It then subtracts the two loaded values and adds this result to the
1813 // final phi node for selecting the memcmp result.
1814 void MemCmpExpansion::emitLoadCompareByteBlock(unsigned Index,
1815                                                unsigned GEPIndex) {
1816   Value *Source1 = CI->getArgOperand(0);
1817   Value *Source2 = CI->getArgOperand(1);
1818 
1819   Builder.SetInsertPoint(LoadCmpBlocks[Index]);
1820   Type *LoadSizeType = Type::getInt8Ty(CI->getContext());
1821   // Cast source to LoadSizeType*.
1822   if (Source1->getType() != LoadSizeType)
1823     Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
1824   if (Source2->getType() != LoadSizeType)
1825     Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
1826 
1827   // Get the base address using the GEPIndex.
1828   if (GEPIndex != 0) {
1829     Source1 = Builder.CreateGEP(LoadSizeType, Source1,
1830                                 ConstantInt::get(LoadSizeType, GEPIndex));
1831     Source2 = Builder.CreateGEP(LoadSizeType, Source2,
1832                                 ConstantInt::get(LoadSizeType, GEPIndex));
1833   }
1834 
1835   Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
1836   Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
1837 
1838   LoadSrc1 = Builder.CreateZExt(LoadSrc1, Type::getInt32Ty(CI->getContext()));
1839   LoadSrc2 = Builder.CreateZExt(LoadSrc2, Type::getInt32Ty(CI->getContext()));
1840   Value *Diff = Builder.CreateSub(LoadSrc1, LoadSrc2);
1841 
1842   PhiRes->addIncoming(Diff, LoadCmpBlocks[Index]);
1843 
1844   if (Index < (LoadCmpBlocks.size() - 1)) {
1845     // Early exit branch if difference found to EndBlock. Otherwise, continue to
1846     // next LoadCmpBlock,
1847     Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff,
1848                                     ConstantInt::get(Diff->getType(), 0));
1849     BranchInst *CmpBr =
1850         BranchInst::Create(EndBlock, LoadCmpBlocks[Index + 1], Cmp);
1851     Builder.Insert(CmpBr);
1852   } else {
1853     // The last block has an unconditional branch to EndBlock.
1854     BranchInst *CmpBr = BranchInst::Create(EndBlock);
1855     Builder.Insert(CmpBr);
1856   }
1857 }
1858 
1859 unsigned MemCmpExpansion::getNumLoads(unsigned Size) {
1860   return (Size / MaxLoadSize) + countPopulation(Size % MaxLoadSize);
1861 }
1862 
1863 unsigned MemCmpExpansion::getLoadSize(unsigned Size) {
1864   return MinAlign(PowerOf2Floor(Size), MaxLoadSize);
1865 }
1866 
1867 /// Generate an equality comparison for one or more pairs of loaded values.
1868 /// This is used in the case where the memcmp() call is compared equal or not
1869 /// equal to zero.
1870 Value *MemCmpExpansion::getCompareLoadPairs(unsigned Index, unsigned Size,
1871                                             unsigned &NumBytesProcessed) {
1872   std::vector<Value *> XorList, OrList;
1873   Value *Diff;
1874 
1875   unsigned RemainingBytes = Size - NumBytesProcessed;
1876   unsigned NumLoadsRemaining = getNumLoads(RemainingBytes);
1877   unsigned NumLoads = std::min(NumLoadsRemaining, NumLoadsPerBlock);
1878 
1879   // For a single-block expansion, start inserting before the memcmp call.
1880   if (LoadCmpBlocks.empty())
1881     Builder.SetInsertPoint(CI);
1882   else
1883     Builder.SetInsertPoint(LoadCmpBlocks[Index]);
1884 
1885   Value *Cmp = nullptr;
1886   for (unsigned i = 0; i < NumLoads; ++i) {
1887     unsigned LoadSize = getLoadSize(RemainingBytes);
1888     unsigned GEPIndex = NumBytesProcessed / LoadSize;
1889     NumBytesProcessed += LoadSize;
1890     RemainingBytes -= LoadSize;
1891 
1892     Type *LoadSizeType = IntegerType::get(CI->getContext(), LoadSize * 8);
1893     Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
1894     assert(LoadSize <= MaxLoadSize && "Unexpected load type");
1895 
1896     Value *Source1 = CI->getArgOperand(0);
1897     Value *Source2 = CI->getArgOperand(1);
1898 
1899     // Cast source to LoadSizeType*.
1900     if (Source1->getType() != LoadSizeType)
1901       Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
1902     if (Source2->getType() != LoadSizeType)
1903       Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
1904 
1905     // Get the base address using the GEPIndex.
1906     if (GEPIndex != 0) {
1907       Source1 = Builder.CreateGEP(LoadSizeType, Source1,
1908                                   ConstantInt::get(LoadSizeType, GEPIndex));
1909       Source2 = Builder.CreateGEP(LoadSizeType, Source2,
1910                                   ConstantInt::get(LoadSizeType, GEPIndex));
1911     }
1912 
1913     // Get a constant or load a value for each source address.
1914     Value *LoadSrc1 = nullptr;
1915     if (auto *Source1C = dyn_cast<Constant>(Source1))
1916       LoadSrc1 = ConstantFoldLoadFromConstPtr(Source1C, LoadSizeType, DL);
1917     if (!LoadSrc1)
1918       LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
1919 
1920     Value *LoadSrc2 = nullptr;
1921     if (auto *Source2C = dyn_cast<Constant>(Source2))
1922       LoadSrc2 = ConstantFoldLoadFromConstPtr(Source2C, LoadSizeType, DL);
1923     if (!LoadSrc2)
1924       LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
1925 
1926     if (NumLoads != 1) {
1927       if (LoadSizeType != MaxLoadType) {
1928         LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType);
1929         LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType);
1930       }
1931       // If we have multiple loads per block, we need to generate a composite
1932       // comparison using xor+or.
1933       Diff = Builder.CreateXor(LoadSrc1, LoadSrc2);
1934       Diff = Builder.CreateZExt(Diff, MaxLoadType);
1935       XorList.push_back(Diff);
1936     } else {
1937       // If there's only one load per block, we just compare the loaded values.
1938       Cmp = Builder.CreateICmpNE(LoadSrc1, LoadSrc2);
1939     }
1940   }
1941 
1942   auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> {
1943     std::vector<Value *> OutList;
1944     for (unsigned i = 0; i < InList.size() - 1; i = i + 2) {
1945       Value *Or = Builder.CreateOr(InList[i], InList[i + 1]);
1946       OutList.push_back(Or);
1947     }
1948     if (InList.size() % 2 != 0)
1949       OutList.push_back(InList.back());
1950     return OutList;
1951   };
1952 
1953   if (!Cmp) {
1954     // Pairwise OR the XOR results.
1955     OrList = pairWiseOr(XorList);
1956 
1957     // Pairwise OR the OR results until one result left.
1958     while (OrList.size() != 1) {
1959       OrList = pairWiseOr(OrList);
1960     }
1961     Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0));
1962   }
1963 
1964   return Cmp;
1965 }
1966 
1967 void MemCmpExpansion::emitLoadCompareBlockMultipleLoads(
1968     unsigned Index, unsigned Size, unsigned &NumBytesProcessed) {
1969   Value *Cmp = getCompareLoadPairs(Index, Size, NumBytesProcessed);
1970 
1971   BasicBlock *NextBB = (Index == (LoadCmpBlocks.size() - 1))
1972                            ? EndBlock
1973                            : LoadCmpBlocks[Index + 1];
1974   // Early exit branch if difference found to ResultBlock. Otherwise,
1975   // continue to next LoadCmpBlock or EndBlock.
1976   BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp);
1977   Builder.Insert(CmpBr);
1978 
1979   // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
1980   // since early exit to ResultBlock was not taken (no difference was found in
1981   // any of the bytes).
1982   if (Index == LoadCmpBlocks.size() - 1) {
1983     Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
1984     PhiRes->addIncoming(Zero, LoadCmpBlocks[Index]);
1985   }
1986 }
1987 
1988 // This function creates the IR intructions for loading and comparing using the
1989 // given LoadSize. It loads the number of bytes specified by LoadSize from each
1990 // source of the memcmp parameters. It then does a subtract to see if there was
1991 // a difference in the loaded values. If a difference is found, it branches
1992 // with an early exit to the ResultBlock for calculating which source was
1993 // larger. Otherwise, it falls through to the either the next LoadCmpBlock or
1994 // the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with
1995 // a special case through emitLoadCompareByteBlock. The special handling can
1996 // simply subtract the loaded values and add it to the result phi node.
1997 void MemCmpExpansion::emitLoadCompareBlock(unsigned Index, unsigned LoadSize,
1998                                            unsigned GEPIndex) {
1999   if (LoadSize == 1) {
2000     MemCmpExpansion::emitLoadCompareByteBlock(Index, GEPIndex);
2001     return;
2002   }
2003 
2004   Type *LoadSizeType = IntegerType::get(CI->getContext(), LoadSize * 8);
2005   Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
2006   assert(LoadSize <= MaxLoadSize && "Unexpected load type");
2007 
2008   Value *Source1 = CI->getArgOperand(0);
2009   Value *Source2 = CI->getArgOperand(1);
2010 
2011   Builder.SetInsertPoint(LoadCmpBlocks[Index]);
2012   // Cast source to LoadSizeType*.
2013   if (Source1->getType() != LoadSizeType)
2014     Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
2015   if (Source2->getType() != LoadSizeType)
2016     Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
2017 
2018   // Get the base address using the GEPIndex.
2019   if (GEPIndex != 0) {
2020     Source1 = Builder.CreateGEP(LoadSizeType, Source1,
2021                                 ConstantInt::get(LoadSizeType, GEPIndex));
2022     Source2 = Builder.CreateGEP(LoadSizeType, Source2,
2023                                 ConstantInt::get(LoadSizeType, GEPIndex));
2024   }
2025 
2026   // Load LoadSizeType from the base address.
2027   Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
2028   Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
2029 
2030   if (DL.isLittleEndian()) {
2031     Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
2032                                                 Intrinsic::bswap, LoadSizeType);
2033     LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1);
2034     LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2);
2035   }
2036 
2037   if (LoadSizeType != MaxLoadType) {
2038     LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType);
2039     LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType);
2040   }
2041 
2042   // Add the loaded values to the phi nodes for calculating memcmp result only
2043   // if result is not used in a zero equality.
2044   if (!IsUsedForZeroCmp) {
2045     ResBlock.PhiSrc1->addIncoming(LoadSrc1, LoadCmpBlocks[Index]);
2046     ResBlock.PhiSrc2->addIncoming(LoadSrc2, LoadCmpBlocks[Index]);
2047   }
2048 
2049   Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, LoadSrc1, LoadSrc2);
2050   BasicBlock *NextBB = (Index == (LoadCmpBlocks.size() - 1))
2051                            ? EndBlock
2052                            : LoadCmpBlocks[Index + 1];
2053   // Early exit branch if difference found to ResultBlock. Otherwise, continue
2054   // to next LoadCmpBlock or EndBlock.
2055   BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp);
2056   Builder.Insert(CmpBr);
2057 
2058   // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
2059   // since early exit to ResultBlock was not taken (no difference was found in
2060   // any of the bytes).
2061   if (Index == LoadCmpBlocks.size() - 1) {
2062     Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
2063     PhiRes->addIncoming(Zero, LoadCmpBlocks[Index]);
2064   }
2065 }
2066 
2067 // This function populates the ResultBlock with a sequence to calculate the
2068 // memcmp result. It compares the two loaded source values and returns -1 if
2069 // src1 < src2 and 1 if src1 > src2.
2070 void MemCmpExpansion::emitMemCmpResultBlock() {
2071   // Special case: if memcmp result is used in a zero equality, result does not
2072   // need to be calculated and can simply return 1.
2073   if (IsUsedForZeroCmp) {
2074     BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
2075     Builder.SetInsertPoint(ResBlock.BB, InsertPt);
2076     Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1);
2077     PhiRes->addIncoming(Res, ResBlock.BB);
2078     BranchInst *NewBr = BranchInst::Create(EndBlock);
2079     Builder.Insert(NewBr);
2080     return;
2081   }
2082   BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
2083   Builder.SetInsertPoint(ResBlock.BB, InsertPt);
2084 
2085   Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1,
2086                                   ResBlock.PhiSrc2);
2087 
2088   Value *Res =
2089       Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1),
2090                            ConstantInt::get(Builder.getInt32Ty(), 1));
2091 
2092   BranchInst *NewBr = BranchInst::Create(EndBlock);
2093   Builder.Insert(NewBr);
2094   PhiRes->addIncoming(Res, ResBlock.BB);
2095 }
2096 
2097 unsigned MemCmpExpansion::calculateNumBlocks(unsigned Size) {
2098   unsigned NumBlocks = 0;
2099   bool HaveOneByteLoad = false;
2100   unsigned RemainingSize = Size;
2101   unsigned LoadSize = MaxLoadSize;
2102   while (RemainingSize) {
2103     if (LoadSize == 1)
2104       HaveOneByteLoad = true;
2105     NumBlocks += RemainingSize / LoadSize;
2106     RemainingSize = RemainingSize % LoadSize;
2107     LoadSize = LoadSize / 2;
2108   }
2109   NumBlocksNonOneByte = HaveOneByteLoad ? (NumBlocks - 1) : NumBlocks;
2110 
2111   if (IsUsedForZeroCmp)
2112     NumBlocks = NumBlocks / NumLoadsPerBlock +
2113                 (NumBlocks % NumLoadsPerBlock != 0 ? 1 : 0);
2114 
2115   return NumBlocks;
2116 }
2117 
2118 void MemCmpExpansion::setupResultBlockPHINodes() {
2119   Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
2120   Builder.SetInsertPoint(ResBlock.BB);
2121   ResBlock.PhiSrc1 =
2122       Builder.CreatePHI(MaxLoadType, NumBlocksNonOneByte, "phi.src1");
2123   ResBlock.PhiSrc2 =
2124       Builder.CreatePHI(MaxLoadType, NumBlocksNonOneByte, "phi.src2");
2125 }
2126 
2127 void MemCmpExpansion::setupEndBlockPHINodes() {
2128   Builder.SetInsertPoint(&EndBlock->front());
2129   PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res");
2130 }
2131 
2132 Value *MemCmpExpansion::getMemCmpExpansionZeroCase(unsigned Size) {
2133   unsigned NumBytesProcessed = 0;
2134   // This loop populates each of the LoadCmpBlocks with the IR sequence to
2135   // handle multiple loads per block.
2136   for (unsigned i = 0; i < NumBlocks; ++i)
2137     emitLoadCompareBlockMultipleLoads(i, Size, NumBytesProcessed);
2138 
2139   emitMemCmpResultBlock();
2140   return PhiRes;
2141 }
2142 
2143 /// A memcmp expansion that compares equality with 0 and only has one block of
2144 /// load and compare can bypass the compare, branch, and phi IR that is required
2145 /// in the general case.
2146 Value *MemCmpExpansion::getMemCmpEqZeroOneBlock(unsigned Size) {
2147   unsigned NumBytesProcessed = 0;
2148   Value *Cmp = getCompareLoadPairs(0, Size, NumBytesProcessed);
2149   return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext()));
2150 }
2151 
2152 /// A memcmp expansion that only has one block of load and compare can bypass
2153 /// the compare, branch, and phi IR that is required in the general case.
2154 Value *MemCmpExpansion::getMemCmpOneBlock(unsigned Size) {
2155   assert(NumLoadsPerBlock == 1 && "Only handles one load pair per block");
2156 
2157   Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8);
2158   Value *Source1 = CI->getArgOperand(0);
2159   Value *Source2 = CI->getArgOperand(1);
2160 
2161   // Cast source to LoadSizeType*.
2162   if (Source1->getType() != LoadSizeType)
2163     Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
2164   if (Source2->getType() != LoadSizeType)
2165     Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
2166 
2167   // Load LoadSizeType from the base address.
2168   Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
2169   Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
2170 
2171   if (DL.isLittleEndian() && Size != 1) {
2172     Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
2173                                                 Intrinsic::bswap, LoadSizeType);
2174     LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1);
2175     LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2);
2176   }
2177 
2178   if (Size < 4) {
2179     // The i8 and i16 cases don't need compares. We zext the loaded values and
2180     // subtract them to get the suitable negative, zero, or positive i32 result.
2181     LoadSrc1 = Builder.CreateZExt(LoadSrc1, Builder.getInt32Ty());
2182     LoadSrc2 = Builder.CreateZExt(LoadSrc2, Builder.getInt32Ty());
2183     return Builder.CreateSub(LoadSrc1, LoadSrc2);
2184   }
2185 
2186   // The result of memcmp is negative, zero, or positive, so produce that by
2187   // subtracting 2 extended compare bits: sub (ugt, ult).
2188   // If a target prefers to use selects to get -1/0/1, they should be able
2189   // to transform this later. The inverse transform (going from selects to math)
2190   // may not be possible in the DAG because the selects got converted into
2191   // branches before we got there.
2192   Value *CmpUGT = Builder.CreateICmpUGT(LoadSrc1, LoadSrc2);
2193   Value *CmpULT = Builder.CreateICmpULT(LoadSrc1, LoadSrc2);
2194   Value *ZextUGT = Builder.CreateZExt(CmpUGT, Builder.getInt32Ty());
2195   Value *ZextULT = Builder.CreateZExt(CmpULT, Builder.getInt32Ty());
2196   return Builder.CreateSub(ZextUGT, ZextULT);
2197 }
2198 
2199 // This function expands the memcmp call into an inline expansion and returns
2200 // the memcmp result.
2201 Value *MemCmpExpansion::getMemCmpExpansion(uint64_t Size) {
2202   if (IsUsedForZeroCmp)
2203     return NumBlocks == 1 ? getMemCmpEqZeroOneBlock(Size) :
2204                             getMemCmpExpansionZeroCase(Size);
2205 
2206   // TODO: Handle more than one load pair per block in getMemCmpOneBlock().
2207   if (NumBlocks == 1 && NumLoadsPerBlock == 1)
2208     return getMemCmpOneBlock(Size);
2209 
2210   // This loop calls emitLoadCompareBlock for comparing Size bytes of the two
2211   // memcmp sources. It starts with loading using the maximum load size set by
2212   // the target. It processes any remaining bytes using a load size which is the
2213   // next smallest power of 2.
2214   unsigned LoadSize = MaxLoadSize;
2215   unsigned NumBytesToBeProcessed = Size;
2216   unsigned Index = 0;
2217   while (NumBytesToBeProcessed) {
2218     // Calculate how many blocks we can create with the current load size.
2219     unsigned NumBlocks = NumBytesToBeProcessed / LoadSize;
2220     unsigned GEPIndex = (Size - NumBytesToBeProcessed) / LoadSize;
2221     NumBytesToBeProcessed = NumBytesToBeProcessed % LoadSize;
2222 
2223     // For each NumBlocks, populate the instruction sequence for loading and
2224     // comparing LoadSize bytes.
2225     while (NumBlocks--) {
2226       emitLoadCompareBlock(Index, LoadSize, GEPIndex);
2227       Index++;
2228       GEPIndex++;
2229     }
2230     // Get the next LoadSize to use.
2231     LoadSize = LoadSize / 2;
2232   }
2233 
2234   emitMemCmpResultBlock();
2235   return PhiRes;
2236 }
2237 
2238 // This function checks to see if an expansion of memcmp can be generated.
2239 // It checks for constant compare size that is less than the max inline size.
2240 // If an expansion cannot occur, returns false to leave as a library call.
2241 // Otherwise, the library call is replaced with a new IR instruction sequence.
2242 /// We want to transform:
2243 /// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15)
2244 /// To:
2245 /// loadbb:
2246 ///  %0 = bitcast i32* %buffer2 to i8*
2247 ///  %1 = bitcast i32* %buffer1 to i8*
2248 ///  %2 = bitcast i8* %1 to i64*
2249 ///  %3 = bitcast i8* %0 to i64*
2250 ///  %4 = load i64, i64* %2
2251 ///  %5 = load i64, i64* %3
2252 ///  %6 = call i64 @llvm.bswap.i64(i64 %4)
2253 ///  %7 = call i64 @llvm.bswap.i64(i64 %5)
2254 ///  %8 = sub i64 %6, %7
2255 ///  %9 = icmp ne i64 %8, 0
2256 ///  br i1 %9, label %res_block, label %loadbb1
2257 /// res_block:                                        ; preds = %loadbb2,
2258 /// %loadbb1, %loadbb
2259 ///  %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ]
2260 ///  %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ]
2261 ///  %10 = icmp ult i64 %phi.src1, %phi.src2
2262 ///  %11 = select i1 %10, i32 -1, i32 1
2263 ///  br label %endblock
2264 /// loadbb1:                                          ; preds = %loadbb
2265 ///  %12 = bitcast i32* %buffer2 to i8*
2266 ///  %13 = bitcast i32* %buffer1 to i8*
2267 ///  %14 = bitcast i8* %13 to i32*
2268 ///  %15 = bitcast i8* %12 to i32*
2269 ///  %16 = getelementptr i32, i32* %14, i32 2
2270 ///  %17 = getelementptr i32, i32* %15, i32 2
2271 ///  %18 = load i32, i32* %16
2272 ///  %19 = load i32, i32* %17
2273 ///  %20 = call i32 @llvm.bswap.i32(i32 %18)
2274 ///  %21 = call i32 @llvm.bswap.i32(i32 %19)
2275 ///  %22 = zext i32 %20 to i64
2276 ///  %23 = zext i32 %21 to i64
2277 ///  %24 = sub i64 %22, %23
2278 ///  %25 = icmp ne i64 %24, 0
2279 ///  br i1 %25, label %res_block, label %loadbb2
2280 /// loadbb2:                                          ; preds = %loadbb1
2281 ///  %26 = bitcast i32* %buffer2 to i8*
2282 ///  %27 = bitcast i32* %buffer1 to i8*
2283 ///  %28 = bitcast i8* %27 to i16*
2284 ///  %29 = bitcast i8* %26 to i16*
2285 ///  %30 = getelementptr i16, i16* %28, i16 6
2286 ///  %31 = getelementptr i16, i16* %29, i16 6
2287 ///  %32 = load i16, i16* %30
2288 ///  %33 = load i16, i16* %31
2289 ///  %34 = call i16 @llvm.bswap.i16(i16 %32)
2290 ///  %35 = call i16 @llvm.bswap.i16(i16 %33)
2291 ///  %36 = zext i16 %34 to i64
2292 ///  %37 = zext i16 %35 to i64
2293 ///  %38 = sub i64 %36, %37
2294 ///  %39 = icmp ne i64 %38, 0
2295 ///  br i1 %39, label %res_block, label %loadbb3
2296 /// loadbb3:                                          ; preds = %loadbb2
2297 ///  %40 = bitcast i32* %buffer2 to i8*
2298 ///  %41 = bitcast i32* %buffer1 to i8*
2299 ///  %42 = getelementptr i8, i8* %41, i8 14
2300 ///  %43 = getelementptr i8, i8* %40, i8 14
2301 ///  %44 = load i8, i8* %42
2302 ///  %45 = load i8, i8* %43
2303 ///  %46 = zext i8 %44 to i32
2304 ///  %47 = zext i8 %45 to i32
2305 ///  %48 = sub i32 %46, %47
2306 ///  br label %endblock
2307 /// endblock:                                         ; preds = %res_block,
2308 /// %loadbb3
2309 ///  %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ]
2310 ///  ret i32 %phi.res
2311 static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI,
2312                          const TargetLowering *TLI, const DataLayout *DL) {
2313   NumMemCmpCalls++;
2314 
2315   // TTI call to check if target would like to expand memcmp. Also, get the
2316   // MaxLoadSize.
2317   unsigned MaxLoadSize;
2318   if (!TTI->enableMemCmpExpansion(MaxLoadSize))
2319     return false;
2320 
2321   // Early exit from expansion if -Oz.
2322   if (CI->getFunction()->optForMinSize())
2323     return false;
2324 
2325   // Early exit from expansion if size is not a constant.
2326   ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2));
2327   if (!SizeCast) {
2328     NumMemCmpNotConstant++;
2329     return false;
2330   }
2331 
2332   // Scale the max size down if the target can load more bytes than we need.
2333   uint64_t SizeVal = SizeCast->getZExtValue();
2334   if (MaxLoadSize > SizeVal)
2335     MaxLoadSize = 1 << SizeCast->getValue().logBase2();
2336 
2337   // Calculate how many load pairs are needed for the constant size.
2338   unsigned NumLoads = 0;
2339   unsigned RemainingSize = SizeVal;
2340   unsigned LoadSize = MaxLoadSize;
2341   while (RemainingSize) {
2342     NumLoads += RemainingSize / LoadSize;
2343     RemainingSize = RemainingSize % LoadSize;
2344     LoadSize = LoadSize / 2;
2345   }
2346 
2347   // Don't expand if this will require more loads than desired by the target.
2348   if (NumLoads > TLI->getMaxExpandSizeMemcmp(CI->getFunction()->optForSize())) {
2349     NumMemCmpGreaterThanMax++;
2350     return false;
2351   }
2352 
2353   NumMemCmpInlined++;
2354 
2355   // MemCmpHelper object creates and sets up basic blocks required for
2356   // expanding memcmp with size SizeVal.
2357   unsigned NumLoadsPerBlock = MemCmpNumLoadsPerBlock;
2358   MemCmpExpansion MemCmpHelper(CI, SizeVal, MaxLoadSize, NumLoadsPerBlock, *DL);
2359 
2360   Value *Res = MemCmpHelper.getMemCmpExpansion(SizeVal);
2361 
2362   // Replace call with result of expansion and erase call.
2363   CI->replaceAllUsesWith(Res);
2364   CI->eraseFromParent();
2365 
2366   return true;
2367 }
2368 
2369 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
2370   BasicBlock *BB = CI->getParent();
2371 
2372   // Lower inline assembly if we can.
2373   // If we found an inline asm expession, and if the target knows how to
2374   // lower it to normal LLVM code, do so now.
2375   if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
2376     if (TLI->ExpandInlineAsm(CI)) {
2377       // Avoid invalidating the iterator.
2378       CurInstIterator = BB->begin();
2379       // Avoid processing instructions out of order, which could cause
2380       // reuse before a value is defined.
2381       SunkAddrs.clear();
2382       return true;
2383     }
2384     // Sink address computing for memory operands into the block.
2385     if (optimizeInlineAsmInst(CI))
2386       return true;
2387   }
2388 
2389   // Align the pointer arguments to this call if the target thinks it's a good
2390   // idea
2391   unsigned MinSize, PrefAlign;
2392   if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
2393     for (auto &Arg : CI->arg_operands()) {
2394       // We want to align both objects whose address is used directly and
2395       // objects whose address is used in casts and GEPs, though it only makes
2396       // sense for GEPs if the offset is a multiple of the desired alignment and
2397       // if size - offset meets the size threshold.
2398       if (!Arg->getType()->isPointerTy())
2399         continue;
2400       APInt Offset(DL->getPointerSizeInBits(
2401                        cast<PointerType>(Arg->getType())->getAddressSpace()),
2402                    0);
2403       Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
2404       uint64_t Offset2 = Offset.getLimitedValue();
2405       if ((Offset2 & (PrefAlign-1)) != 0)
2406         continue;
2407       AllocaInst *AI;
2408       if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
2409           DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
2410         AI->setAlignment(PrefAlign);
2411       // Global variables can only be aligned if they are defined in this
2412       // object (i.e. they are uniquely initialized in this object), and
2413       // over-aligning global variables that have an explicit section is
2414       // forbidden.
2415       GlobalVariable *GV;
2416       if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
2417           GV->getPointerAlignment(*DL) < PrefAlign &&
2418           DL->getTypeAllocSize(GV->getValueType()) >=
2419               MinSize + Offset2)
2420         GV->setAlignment(PrefAlign);
2421     }
2422     // If this is a memcpy (or similar) then we may be able to improve the
2423     // alignment
2424     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
2425       unsigned Align = getKnownAlignment(MI->getDest(), *DL);
2426       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
2427         Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL));
2428       if (Align > MI->getAlignment())
2429         MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align));
2430     }
2431   }
2432 
2433   // If we have a cold call site, try to sink addressing computation into the
2434   // cold block.  This interacts with our handling for loads and stores to
2435   // ensure that we can fold all uses of a potential addressing computation
2436   // into their uses.  TODO: generalize this to work over profiling data
2437   if (!OptSize && CI->hasFnAttr(Attribute::Cold))
2438     for (auto &Arg : CI->arg_operands()) {
2439       if (!Arg->getType()->isPointerTy())
2440         continue;
2441       unsigned AS = Arg->getType()->getPointerAddressSpace();
2442       return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
2443     }
2444 
2445   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
2446   if (II) {
2447     switch (II->getIntrinsicID()) {
2448     default: break;
2449     case Intrinsic::objectsize: {
2450       // Lower all uses of llvm.objectsize.*
2451       ConstantInt *RetVal =
2452           lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true);
2453       // Substituting this can cause recursive simplifications, which can
2454       // invalidate our iterator.  Use a WeakTrackingVH to hold onto it in case
2455       // this
2456       // happens.
2457       Value *CurValue = &*CurInstIterator;
2458       WeakTrackingVH IterHandle(CurValue);
2459 
2460       replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
2461 
2462       // If the iterator instruction was recursively deleted, start over at the
2463       // start of the block.
2464       if (IterHandle != CurValue) {
2465         CurInstIterator = BB->begin();
2466         SunkAddrs.clear();
2467       }
2468       return true;
2469     }
2470     case Intrinsic::aarch64_stlxr:
2471     case Intrinsic::aarch64_stxr: {
2472       ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
2473       if (!ExtVal || !ExtVal->hasOneUse() ||
2474           ExtVal->getParent() == CI->getParent())
2475         return false;
2476       // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
2477       ExtVal->moveBefore(CI);
2478       // Mark this instruction as "inserted by CGP", so that other
2479       // optimizations don't touch it.
2480       InsertedInsts.insert(ExtVal);
2481       return true;
2482     }
2483     case Intrinsic::invariant_group_barrier:
2484       II->replaceAllUsesWith(II->getArgOperand(0));
2485       II->eraseFromParent();
2486       return true;
2487 
2488     case Intrinsic::cttz:
2489     case Intrinsic::ctlz:
2490       // If counting zeros is expensive, try to avoid it.
2491       return despeculateCountZeros(II, TLI, DL, ModifiedDT);
2492     }
2493 
2494     if (TLI) {
2495       SmallVector<Value*, 2> PtrOps;
2496       Type *AccessTy;
2497       if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
2498         while (!PtrOps.empty()) {
2499           Value *PtrVal = PtrOps.pop_back_val();
2500           unsigned AS = PtrVal->getType()->getPointerAddressSpace();
2501           if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
2502             return true;
2503         }
2504     }
2505   }
2506 
2507   // From here on out we're working with named functions.
2508   if (!CI->getCalledFunction()) return false;
2509 
2510   // Lower all default uses of _chk calls.  This is very similar
2511   // to what InstCombineCalls does, but here we are only lowering calls
2512   // to fortified library functions (e.g. __memcpy_chk) that have the default
2513   // "don't know" as the objectsize.  Anything else should be left alone.
2514   FortifiedLibCallSimplifier Simplifier(TLInfo, true);
2515   if (Value *V = Simplifier.optimizeCall(CI)) {
2516     CI->replaceAllUsesWith(V);
2517     CI->eraseFromParent();
2518     return true;
2519   }
2520 
2521   LibFunc Func;
2522   if (TLInfo->getLibFunc(ImmutableCallSite(CI), Func) &&
2523       Func == LibFunc_memcmp && expandMemCmp(CI, TTI, TLI, DL)) {
2524     ModifiedDT = true;
2525     return true;
2526   }
2527   return false;
2528 }
2529 
2530 /// Look for opportunities to duplicate return instructions to the predecessor
2531 /// to enable tail call optimizations. The case it is currently looking for is:
2532 /// @code
2533 /// bb0:
2534 ///   %tmp0 = tail call i32 @f0()
2535 ///   br label %return
2536 /// bb1:
2537 ///   %tmp1 = tail call i32 @f1()
2538 ///   br label %return
2539 /// bb2:
2540 ///   %tmp2 = tail call i32 @f2()
2541 ///   br label %return
2542 /// return:
2543 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
2544 ///   ret i32 %retval
2545 /// @endcode
2546 ///
2547 /// =>
2548 ///
2549 /// @code
2550 /// bb0:
2551 ///   %tmp0 = tail call i32 @f0()
2552 ///   ret i32 %tmp0
2553 /// bb1:
2554 ///   %tmp1 = tail call i32 @f1()
2555 ///   ret i32 %tmp1
2556 /// bb2:
2557 ///   %tmp2 = tail call i32 @f2()
2558 ///   ret i32 %tmp2
2559 /// @endcode
2560 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) {
2561   if (!TLI)
2562     return false;
2563 
2564   ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
2565   if (!RetI)
2566     return false;
2567 
2568   PHINode *PN = nullptr;
2569   BitCastInst *BCI = nullptr;
2570   Value *V = RetI->getReturnValue();
2571   if (V) {
2572     BCI = dyn_cast<BitCastInst>(V);
2573     if (BCI)
2574       V = BCI->getOperand(0);
2575 
2576     PN = dyn_cast<PHINode>(V);
2577     if (!PN)
2578       return false;
2579   }
2580 
2581   if (PN && PN->getParent() != BB)
2582     return false;
2583 
2584   // Make sure there are no instructions between the PHI and return, or that the
2585   // return is the first instruction in the block.
2586   if (PN) {
2587     BasicBlock::iterator BI = BB->begin();
2588     do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
2589     if (&*BI == BCI)
2590       // Also skip over the bitcast.
2591       ++BI;
2592     if (&*BI != RetI)
2593       return false;
2594   } else {
2595     BasicBlock::iterator BI = BB->begin();
2596     while (isa<DbgInfoIntrinsic>(BI)) ++BI;
2597     if (&*BI != RetI)
2598       return false;
2599   }
2600 
2601   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
2602   /// call.
2603   const Function *F = BB->getParent();
2604   SmallVector<CallInst*, 4> TailCalls;
2605   if (PN) {
2606     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
2607       CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
2608       // Make sure the phi value is indeed produced by the tail call.
2609       if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
2610           TLI->mayBeEmittedAsTailCall(CI) &&
2611           attributesPermitTailCall(F, CI, RetI, *TLI))
2612         TailCalls.push_back(CI);
2613     }
2614   } else {
2615     SmallPtrSet<BasicBlock*, 4> VisitedBBs;
2616     for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
2617       if (!VisitedBBs.insert(*PI).second)
2618         continue;
2619 
2620       BasicBlock::InstListType &InstList = (*PI)->getInstList();
2621       BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
2622       BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
2623       do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
2624       if (RI == RE)
2625         continue;
2626 
2627       CallInst *CI = dyn_cast<CallInst>(&*RI);
2628       if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
2629           attributesPermitTailCall(F, CI, RetI, *TLI))
2630         TailCalls.push_back(CI);
2631     }
2632   }
2633 
2634   bool Changed = false;
2635   for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
2636     CallInst *CI = TailCalls[i];
2637     CallSite CS(CI);
2638 
2639     // Conservatively require the attributes of the call to match those of the
2640     // return. Ignore noalias because it doesn't affect the call sequence.
2641     AttributeList CalleeAttrs = CS.getAttributes();
2642     if (AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex)
2643             .removeAttribute(Attribute::NoAlias) !=
2644         AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex)
2645             .removeAttribute(Attribute::NoAlias))
2646       continue;
2647 
2648     // Make sure the call instruction is followed by an unconditional branch to
2649     // the return block.
2650     BasicBlock *CallBB = CI->getParent();
2651     BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
2652     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
2653       continue;
2654 
2655     // Duplicate the return into CallBB.
2656     (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB);
2657     ModifiedDT = Changed = true;
2658     ++NumRetsDup;
2659   }
2660 
2661   // If we eliminated all predecessors of the block, delete the block now.
2662   if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
2663     BB->eraseFromParent();
2664 
2665   return Changed;
2666 }
2667 
2668 //===----------------------------------------------------------------------===//
2669 // Memory Optimization
2670 //===----------------------------------------------------------------------===//
2671 
2672 namespace {
2673 
2674 /// This is an extended version of TargetLowering::AddrMode
2675 /// which holds actual Value*'s for register values.
2676 struct ExtAddrMode : public TargetLowering::AddrMode {
2677   Value *BaseReg = nullptr;
2678   Value *ScaledReg = nullptr;
2679   Value *OriginalValue = nullptr;
2680 
2681   enum FieldName {
2682     NoField        = 0x00,
2683     BaseRegField   = 0x01,
2684     BaseGVField    = 0x02,
2685     BaseOffsField  = 0x04,
2686     ScaledRegField = 0x08,
2687     ScaleField     = 0x10,
2688     MultipleFields = 0xff
2689   };
2690 
2691   ExtAddrMode() = default;
2692 
2693   void print(raw_ostream &OS) const;
2694   void dump() const;
2695 
2696   FieldName compare(const ExtAddrMode &other) {
2697     // First check that the types are the same on each field, as differing types
2698     // is something we can't cope with later on.
2699     if (BaseReg && other.BaseReg &&
2700         BaseReg->getType() != other.BaseReg->getType())
2701       return MultipleFields;
2702     if (BaseGV && other.BaseGV &&
2703         BaseGV->getType() != other.BaseGV->getType())
2704       return MultipleFields;
2705     if (ScaledReg && other.ScaledReg &&
2706         ScaledReg->getType() != other.ScaledReg->getType())
2707       return MultipleFields;
2708 
2709     // Check each field to see if it differs.
2710     unsigned Result = NoField;
2711     if (BaseReg != other.BaseReg)
2712       Result |= BaseRegField;
2713     if (BaseGV != other.BaseGV)
2714       Result |= BaseGVField;
2715     if (BaseOffs != other.BaseOffs)
2716       Result |= BaseOffsField;
2717     if (ScaledReg != other.ScaledReg)
2718       Result |= ScaledRegField;
2719     // Don't count 0 as being a different scale, because that actually means
2720     // unscaled (which will already be counted by having no ScaledReg).
2721     if (Scale && other.Scale && Scale != other.Scale)
2722       Result |= ScaleField;
2723 
2724     if (countPopulation(Result) > 1)
2725       return MultipleFields;
2726     else
2727       return static_cast<FieldName>(Result);
2728   }
2729 
2730   // AddrModes with a base reg or gv where the reg/gv is just the original
2731   // value are trivial.
2732   bool isTrivial() {
2733     bool Trivial = (BaseGV && BaseGV == OriginalValue) ||
2734       (BaseReg && BaseReg == OriginalValue);
2735     // If the AddrMode is trivial it shouldn't have an offset or be scaled.
2736     if (Trivial) {
2737       assert(BaseOffs == 0);
2738       assert(Scale == 0);
2739     }
2740     return Trivial;
2741   }
2742 };
2743 
2744 } // end anonymous namespace
2745 
2746 #ifndef NDEBUG
2747 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2748   AM.print(OS);
2749   return OS;
2750 }
2751 #endif
2752 
2753 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2754 void ExtAddrMode::print(raw_ostream &OS) const {
2755   bool NeedPlus = false;
2756   OS << "[";
2757   if (BaseGV) {
2758     OS << (NeedPlus ? " + " : "")
2759        << "GV:";
2760     BaseGV->printAsOperand(OS, /*PrintType=*/false);
2761     NeedPlus = true;
2762   }
2763 
2764   if (BaseOffs) {
2765     OS << (NeedPlus ? " + " : "")
2766        << BaseOffs;
2767     NeedPlus = true;
2768   }
2769 
2770   if (BaseReg) {
2771     OS << (NeedPlus ? " + " : "")
2772        << "Base:";
2773     BaseReg->printAsOperand(OS, /*PrintType=*/false);
2774     NeedPlus = true;
2775   }
2776   if (Scale) {
2777     OS << (NeedPlus ? " + " : "")
2778        << Scale << "*";
2779     ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2780   }
2781 
2782   OS << ']';
2783 }
2784 
2785 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2786   print(dbgs());
2787   dbgs() << '\n';
2788 }
2789 #endif
2790 
2791 namespace {
2792 
2793 /// \brief This class provides transaction based operation on the IR.
2794 /// Every change made through this class is recorded in the internal state and
2795 /// can be undone (rollback) until commit is called.
2796 class TypePromotionTransaction {
2797   /// \brief This represents the common interface of the individual transaction.
2798   /// Each class implements the logic for doing one specific modification on
2799   /// the IR via the TypePromotionTransaction.
2800   class TypePromotionAction {
2801   protected:
2802     /// The Instruction modified.
2803     Instruction *Inst;
2804 
2805   public:
2806     /// \brief Constructor of the action.
2807     /// The constructor performs the related action on the IR.
2808     TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2809 
2810     virtual ~TypePromotionAction() = default;
2811 
2812     /// \brief Undo the modification done by this action.
2813     /// When this method is called, the IR must be in the same state as it was
2814     /// before this action was applied.
2815     /// \pre Undoing the action works if and only if the IR is in the exact same
2816     /// state as it was directly after this action was applied.
2817     virtual void undo() = 0;
2818 
2819     /// \brief Advocate every change made by this action.
2820     /// When the results on the IR of the action are to be kept, it is important
2821     /// to call this function, otherwise hidden information may be kept forever.
2822     virtual void commit() {
2823       // Nothing to be done, this action is not doing anything.
2824     }
2825   };
2826 
2827   /// \brief Utility to remember the position of an instruction.
2828   class InsertionHandler {
2829     /// Position of an instruction.
2830     /// Either an instruction:
2831     /// - Is the first in a basic block: BB is used.
2832     /// - Has a previous instructon: PrevInst is used.
2833     union {
2834       Instruction *PrevInst;
2835       BasicBlock *BB;
2836     } Point;
2837 
2838     /// Remember whether or not the instruction had a previous instruction.
2839     bool HasPrevInstruction;
2840 
2841   public:
2842     /// \brief Record the position of \p Inst.
2843     InsertionHandler(Instruction *Inst) {
2844       BasicBlock::iterator It = Inst->getIterator();
2845       HasPrevInstruction = (It != (Inst->getParent()->begin()));
2846       if (HasPrevInstruction)
2847         Point.PrevInst = &*--It;
2848       else
2849         Point.BB = Inst->getParent();
2850     }
2851 
2852     /// \brief Insert \p Inst at the recorded position.
2853     void insert(Instruction *Inst) {
2854       if (HasPrevInstruction) {
2855         if (Inst->getParent())
2856           Inst->removeFromParent();
2857         Inst->insertAfter(Point.PrevInst);
2858       } else {
2859         Instruction *Position = &*Point.BB->getFirstInsertionPt();
2860         if (Inst->getParent())
2861           Inst->moveBefore(Position);
2862         else
2863           Inst->insertBefore(Position);
2864       }
2865     }
2866   };
2867 
2868   /// \brief Move an instruction before another.
2869   class InstructionMoveBefore : public TypePromotionAction {
2870     /// Original position of the instruction.
2871     InsertionHandler Position;
2872 
2873   public:
2874     /// \brief Move \p Inst before \p Before.
2875     InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2876         : TypePromotionAction(Inst), Position(Inst) {
2877       DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n");
2878       Inst->moveBefore(Before);
2879     }
2880 
2881     /// \brief Move the instruction back to its original position.
2882     void undo() override {
2883       DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2884       Position.insert(Inst);
2885     }
2886   };
2887 
2888   /// \brief Set the operand of an instruction with a new value.
2889   class OperandSetter : public TypePromotionAction {
2890     /// Original operand of the instruction.
2891     Value *Origin;
2892 
2893     /// Index of the modified instruction.
2894     unsigned Idx;
2895 
2896   public:
2897     /// \brief Set \p Idx operand of \p Inst with \p NewVal.
2898     OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2899         : TypePromotionAction(Inst), Idx(Idx) {
2900       DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2901                    << "for:" << *Inst << "\n"
2902                    << "with:" << *NewVal << "\n");
2903       Origin = Inst->getOperand(Idx);
2904       Inst->setOperand(Idx, NewVal);
2905     }
2906 
2907     /// \brief Restore the original value of the instruction.
2908     void undo() override {
2909       DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2910                    << "for: " << *Inst << "\n"
2911                    << "with: " << *Origin << "\n");
2912       Inst->setOperand(Idx, Origin);
2913     }
2914   };
2915 
2916   /// \brief Hide the operands of an instruction.
2917   /// Do as if this instruction was not using any of its operands.
2918   class OperandsHider : public TypePromotionAction {
2919     /// The list of original operands.
2920     SmallVector<Value *, 4> OriginalValues;
2921 
2922   public:
2923     /// \brief Remove \p Inst from the uses of the operands of \p Inst.
2924     OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2925       DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2926       unsigned NumOpnds = Inst->getNumOperands();
2927       OriginalValues.reserve(NumOpnds);
2928       for (unsigned It = 0; It < NumOpnds; ++It) {
2929         // Save the current operand.
2930         Value *Val = Inst->getOperand(It);
2931         OriginalValues.push_back(Val);
2932         // Set a dummy one.
2933         // We could use OperandSetter here, but that would imply an overhead
2934         // that we are not willing to pay.
2935         Inst->setOperand(It, UndefValue::get(Val->getType()));
2936       }
2937     }
2938 
2939     /// \brief Restore the original list of uses.
2940     void undo() override {
2941       DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2942       for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2943         Inst->setOperand(It, OriginalValues[It]);
2944     }
2945   };
2946 
2947   /// \brief Build a truncate instruction.
2948   class TruncBuilder : public TypePromotionAction {
2949     Value *Val;
2950 
2951   public:
2952     /// \brief Build a truncate instruction of \p Opnd producing a \p Ty
2953     /// result.
2954     /// trunc Opnd to Ty.
2955     TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2956       IRBuilder<> Builder(Opnd);
2957       Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2958       DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2959     }
2960 
2961     /// \brief Get the built value.
2962     Value *getBuiltValue() { return Val; }
2963 
2964     /// \brief Remove the built instruction.
2965     void undo() override {
2966       DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2967       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2968         IVal->eraseFromParent();
2969     }
2970   };
2971 
2972   /// \brief Build a sign extension instruction.
2973   class SExtBuilder : public TypePromotionAction {
2974     Value *Val;
2975 
2976   public:
2977     /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty
2978     /// result.
2979     /// sext Opnd to Ty.
2980     SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2981         : TypePromotionAction(InsertPt) {
2982       IRBuilder<> Builder(InsertPt);
2983       Val = Builder.CreateSExt(Opnd, Ty, "promoted");
2984       DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
2985     }
2986 
2987     /// \brief Get the built value.
2988     Value *getBuiltValue() { return Val; }
2989 
2990     /// \brief Remove the built instruction.
2991     void undo() override {
2992       DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
2993       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2994         IVal->eraseFromParent();
2995     }
2996   };
2997 
2998   /// \brief Build a zero extension instruction.
2999   class ZExtBuilder : public TypePromotionAction {
3000     Value *Val;
3001 
3002   public:
3003     /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty
3004     /// result.
3005     /// zext Opnd to Ty.
3006     ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
3007         : TypePromotionAction(InsertPt) {
3008       IRBuilder<> Builder(InsertPt);
3009       Val = Builder.CreateZExt(Opnd, Ty, "promoted");
3010       DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
3011     }
3012 
3013     /// \brief Get the built value.
3014     Value *getBuiltValue() { return Val; }
3015 
3016     /// \brief Remove the built instruction.
3017     void undo() override {
3018       DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
3019       if (Instruction *IVal = dyn_cast<Instruction>(Val))
3020         IVal->eraseFromParent();
3021     }
3022   };
3023 
3024   /// \brief Mutate an instruction to another type.
3025   class TypeMutator : public TypePromotionAction {
3026     /// Record the original type.
3027     Type *OrigTy;
3028 
3029   public:
3030     /// \brief Mutate the type of \p Inst into \p NewTy.
3031     TypeMutator(Instruction *Inst, Type *NewTy)
3032         : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
3033       DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
3034                    << "\n");
3035       Inst->mutateType(NewTy);
3036     }
3037 
3038     /// \brief Mutate the instruction back to its original type.
3039     void undo() override {
3040       DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
3041                    << "\n");
3042       Inst->mutateType(OrigTy);
3043     }
3044   };
3045 
3046   /// \brief Replace the uses of an instruction by another instruction.
3047   class UsesReplacer : public TypePromotionAction {
3048     /// Helper structure to keep track of the replaced uses.
3049     struct InstructionAndIdx {
3050       /// The instruction using the instruction.
3051       Instruction *Inst;
3052 
3053       /// The index where this instruction is used for Inst.
3054       unsigned Idx;
3055 
3056       InstructionAndIdx(Instruction *Inst, unsigned Idx)
3057           : Inst(Inst), Idx(Idx) {}
3058     };
3059 
3060     /// Keep track of the original uses (pair Instruction, Index).
3061     SmallVector<InstructionAndIdx, 4> OriginalUses;
3062 
3063     using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
3064 
3065   public:
3066     /// \brief Replace all the use of \p Inst by \p New.
3067     UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
3068       DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
3069                    << "\n");
3070       // Record the original uses.
3071       for (Use &U : Inst->uses()) {
3072         Instruction *UserI = cast<Instruction>(U.getUser());
3073         OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
3074       }
3075       // Now, we can replace the uses.
3076       Inst->replaceAllUsesWith(New);
3077     }
3078 
3079     /// \brief Reassign the original uses of Inst to Inst.
3080     void undo() override {
3081       DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
3082       for (use_iterator UseIt = OriginalUses.begin(),
3083                         EndIt = OriginalUses.end();
3084            UseIt != EndIt; ++UseIt) {
3085         UseIt->Inst->setOperand(UseIt->Idx, Inst);
3086       }
3087     }
3088   };
3089 
3090   /// \brief Remove an instruction from the IR.
3091   class InstructionRemover : public TypePromotionAction {
3092     /// Original position of the instruction.
3093     InsertionHandler Inserter;
3094 
3095     /// Helper structure to hide all the link to the instruction. In other
3096     /// words, this helps to do as if the instruction was removed.
3097     OperandsHider Hider;
3098 
3099     /// Keep track of the uses replaced, if any.
3100     UsesReplacer *Replacer = nullptr;
3101 
3102     /// Keep track of instructions removed.
3103     SetOfInstrs &RemovedInsts;
3104 
3105   public:
3106     /// \brief Remove all reference of \p Inst and optinally replace all its
3107     /// uses with New.
3108     /// \p RemovedInsts Keep track of the instructions removed by this Action.
3109     /// \pre If !Inst->use_empty(), then New != nullptr
3110     InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
3111                        Value *New = nullptr)
3112         : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
3113           RemovedInsts(RemovedInsts) {
3114       if (New)
3115         Replacer = new UsesReplacer(Inst, New);
3116       DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
3117       RemovedInsts.insert(Inst);
3118       /// The instructions removed here will be freed after completing
3119       /// optimizeBlock() for all blocks as we need to keep track of the
3120       /// removed instructions during promotion.
3121       Inst->removeFromParent();
3122     }
3123 
3124     ~InstructionRemover() override { delete Replacer; }
3125 
3126     /// \brief Resurrect the instruction and reassign it to the proper uses if
3127     /// new value was provided when build this action.
3128     void undo() override {
3129       DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
3130       Inserter.insert(Inst);
3131       if (Replacer)
3132         Replacer->undo();
3133       Hider.undo();
3134       RemovedInsts.erase(Inst);
3135     }
3136   };
3137 
3138 public:
3139   /// Restoration point.
3140   /// The restoration point is a pointer to an action instead of an iterator
3141   /// because the iterator may be invalidated but not the pointer.
3142   using ConstRestorationPt = const TypePromotionAction *;
3143 
3144   TypePromotionTransaction(SetOfInstrs &RemovedInsts)
3145       : RemovedInsts(RemovedInsts) {}
3146 
3147   /// Advocate every changes made in that transaction.
3148   void commit();
3149 
3150   /// Undo all the changes made after the given point.
3151   void rollback(ConstRestorationPt Point);
3152 
3153   /// Get the current restoration point.
3154   ConstRestorationPt getRestorationPoint() const;
3155 
3156   /// \name API for IR modification with state keeping to support rollback.
3157   /// @{
3158   /// Same as Instruction::setOperand.
3159   void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
3160 
3161   /// Same as Instruction::eraseFromParent.
3162   void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
3163 
3164   /// Same as Value::replaceAllUsesWith.
3165   void replaceAllUsesWith(Instruction *Inst, Value *New);
3166 
3167   /// Same as Value::mutateType.
3168   void mutateType(Instruction *Inst, Type *NewTy);
3169 
3170   /// Same as IRBuilder::createTrunc.
3171   Value *createTrunc(Instruction *Opnd, Type *Ty);
3172 
3173   /// Same as IRBuilder::createSExt.
3174   Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
3175 
3176   /// Same as IRBuilder::createZExt.
3177   Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
3178 
3179   /// Same as Instruction::moveBefore.
3180   void moveBefore(Instruction *Inst, Instruction *Before);
3181   /// @}
3182 
3183 private:
3184   /// The ordered list of actions made so far.
3185   SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
3186 
3187   using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
3188 
3189   SetOfInstrs &RemovedInsts;
3190 };
3191 
3192 } // end anonymous namespace
3193 
3194 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
3195                                           Value *NewVal) {
3196   Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>(
3197       Inst, Idx, NewVal));
3198 }
3199 
3200 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
3201                                                 Value *NewVal) {
3202   Actions.push_back(
3203       llvm::make_unique<TypePromotionTransaction::InstructionRemover>(
3204           Inst, RemovedInsts, NewVal));
3205 }
3206 
3207 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
3208                                                   Value *New) {
3209   Actions.push_back(
3210       llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
3211 }
3212 
3213 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
3214   Actions.push_back(
3215       llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
3216 }
3217 
3218 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
3219                                              Type *Ty) {
3220   std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
3221   Value *Val = Ptr->getBuiltValue();
3222   Actions.push_back(std::move(Ptr));
3223   return Val;
3224 }
3225 
3226 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
3227                                             Value *Opnd, Type *Ty) {
3228   std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
3229   Value *Val = Ptr->getBuiltValue();
3230   Actions.push_back(std::move(Ptr));
3231   return Val;
3232 }
3233 
3234 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
3235                                             Value *Opnd, Type *Ty) {
3236   std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
3237   Value *Val = Ptr->getBuiltValue();
3238   Actions.push_back(std::move(Ptr));
3239   return Val;
3240 }
3241 
3242 void TypePromotionTransaction::moveBefore(Instruction *Inst,
3243                                           Instruction *Before) {
3244   Actions.push_back(
3245       llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
3246           Inst, Before));
3247 }
3248 
3249 TypePromotionTransaction::ConstRestorationPt
3250 TypePromotionTransaction::getRestorationPoint() const {
3251   return !Actions.empty() ? Actions.back().get() : nullptr;
3252 }
3253 
3254 void TypePromotionTransaction::commit() {
3255   for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
3256        ++It)
3257     (*It)->commit();
3258   Actions.clear();
3259 }
3260 
3261 void TypePromotionTransaction::rollback(
3262     TypePromotionTransaction::ConstRestorationPt Point) {
3263   while (!Actions.empty() && Point != Actions.back().get()) {
3264     std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
3265     Curr->undo();
3266   }
3267 }
3268 
3269 namespace {
3270 
3271 /// \brief A helper class for matching addressing modes.
3272 ///
3273 /// This encapsulates the logic for matching the target-legal addressing modes.
3274 class AddressingModeMatcher {
3275   SmallVectorImpl<Instruction*> &AddrModeInsts;
3276   const TargetLowering &TLI;
3277   const TargetRegisterInfo &TRI;
3278   const DataLayout &DL;
3279 
3280   /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
3281   /// the memory instruction that we're computing this address for.
3282   Type *AccessTy;
3283   unsigned AddrSpace;
3284   Instruction *MemoryInst;
3285 
3286   /// This is the addressing mode that we're building up. This is
3287   /// part of the return value of this addressing mode matching stuff.
3288   ExtAddrMode &AddrMode;
3289 
3290   /// The instructions inserted by other CodeGenPrepare optimizations.
3291   const SetOfInstrs &InsertedInsts;
3292 
3293   /// A map from the instructions to their type before promotion.
3294   InstrToOrigTy &PromotedInsts;
3295 
3296   /// The ongoing transaction where every action should be registered.
3297   TypePromotionTransaction &TPT;
3298 
3299   /// This is set to true when we should not do profitability checks.
3300   /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
3301   bool IgnoreProfitability;
3302 
3303   AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI,
3304                         const TargetLowering &TLI,
3305                         const TargetRegisterInfo &TRI,
3306                         Type *AT, unsigned AS,
3307                         Instruction *MI, ExtAddrMode &AM,
3308                         const SetOfInstrs &InsertedInsts,
3309                         InstrToOrigTy &PromotedInsts,
3310                         TypePromotionTransaction &TPT)
3311       : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
3312         DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
3313         MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
3314         PromotedInsts(PromotedInsts), TPT(TPT) {
3315     IgnoreProfitability = false;
3316   }
3317 
3318 public:
3319   /// Find the maximal addressing mode that a load/store of V can fold,
3320   /// give an access type of AccessTy.  This returns a list of involved
3321   /// instructions in AddrModeInsts.
3322   /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
3323   /// optimizations.
3324   /// \p PromotedInsts maps the instructions to their type before promotion.
3325   /// \p The ongoing transaction where every action should be registered.
3326   static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS,
3327                            Instruction *MemoryInst,
3328                            SmallVectorImpl<Instruction*> &AddrModeInsts,
3329                            const TargetLowering &TLI,
3330                            const TargetRegisterInfo &TRI,
3331                            const SetOfInstrs &InsertedInsts,
3332                            InstrToOrigTy &PromotedInsts,
3333                            TypePromotionTransaction &TPT) {
3334     ExtAddrMode Result;
3335 
3336     bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI,
3337                                          AccessTy, AS,
3338                                          MemoryInst, Result, InsertedInsts,
3339                                          PromotedInsts, TPT).matchAddr(V, 0);
3340     (void)Success; assert(Success && "Couldn't select *anything*?");
3341     return Result;
3342   }
3343 
3344 private:
3345   bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
3346   bool matchAddr(Value *V, unsigned Depth);
3347   bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth,
3348                           bool *MovedAway = nullptr);
3349   bool isProfitableToFoldIntoAddressingMode(Instruction *I,
3350                                             ExtAddrMode &AMBefore,
3351                                             ExtAddrMode &AMAfter);
3352   bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
3353   bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
3354                              Value *PromotedOperand) const;
3355 };
3356 
3357 /// \brief A helper class for combining addressing modes.
3358 class AddressingModeCombiner {
3359 private:
3360   /// The addressing modes we've collected.
3361   SmallVector<ExtAddrMode, 16> AddrModes;
3362 
3363   /// The field in which the AddrModes differ, when we have more than one.
3364   ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
3365 
3366   /// Are the AddrModes that we have all just equal to their original values?
3367   bool AllAddrModesTrivial = true;
3368 
3369 public:
3370   /// \brief Get the combined AddrMode
3371   const ExtAddrMode &getAddrMode() const {
3372     return AddrModes[0];
3373   }
3374 
3375   /// \brief Add a new AddrMode if it's compatible with the AddrModes we already
3376   /// have.
3377   /// \return True iff we succeeded in doing so.
3378   bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
3379     // Take note of if we have any non-trivial AddrModes, as we need to detect
3380     // when all AddrModes are trivial as then we would introduce a phi or select
3381     // which just duplicates what's already there.
3382     AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
3383 
3384     // If this is the first addrmode then everything is fine.
3385     if (AddrModes.empty()) {
3386       AddrModes.emplace_back(NewAddrMode);
3387       return true;
3388     }
3389 
3390     // Figure out how different this is from the other address modes, which we
3391     // can do just by comparing against the first one given that we only care
3392     // about the cumulative difference.
3393     ExtAddrMode::FieldName ThisDifferentField =
3394       AddrModes[0].compare(NewAddrMode);
3395     if (DifferentField == ExtAddrMode::NoField)
3396       DifferentField = ThisDifferentField;
3397     else if (DifferentField != ThisDifferentField)
3398       DifferentField = ExtAddrMode::MultipleFields;
3399 
3400     // If this AddrMode is the same as all the others then everything is fine
3401     // (which should only happen when there is actually only one AddrMode).
3402     if (DifferentField == ExtAddrMode::NoField) {
3403       assert(AddrModes.size() == 1);
3404       return true;
3405     }
3406 
3407     // If NewAddrMode differs in only one dimension then we can handle it by
3408     // inserting a phi/select later on.
3409     if (DifferentField != ExtAddrMode::MultipleFields) {
3410       AddrModes.emplace_back(NewAddrMode);
3411       return true;
3412     }
3413 
3414     // We couldn't combine NewAddrMode with the rest, so return failure.
3415     AddrModes.clear();
3416     return false;
3417   }
3418 
3419   /// \brief Combine the addressing modes we've collected into a single
3420   /// addressing mode.
3421   /// \return True iff we successfully combined them or we only had one so
3422   /// didn't need to combine them anyway.
3423   bool combineAddrModes() {
3424     // If we have no AddrModes then they can't be combined.
3425     if (AddrModes.size() == 0)
3426       return false;
3427 
3428     // A single AddrMode can trivially be combined.
3429     if (AddrModes.size() == 1)
3430       return true;
3431 
3432     // If the AddrModes we collected are all just equal to the value they are
3433     // derived from then combining them wouldn't do anything useful.
3434     if (AllAddrModesTrivial)
3435       return false;
3436 
3437     // TODO: Combine multiple AddrModes by inserting a select or phi for the
3438     // field in which the AddrModes differ.
3439     return false;
3440   }
3441 };
3442 
3443 } // end anonymous namespace
3444 
3445 /// Try adding ScaleReg*Scale to the current addressing mode.
3446 /// Return true and update AddrMode if this addr mode is legal for the target,
3447 /// false if not.
3448 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
3449                                              unsigned Depth) {
3450   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3451   // mode.  Just process that directly.
3452   if (Scale == 1)
3453     return matchAddr(ScaleReg, Depth);
3454 
3455   // If the scale is 0, it takes nothing to add this.
3456   if (Scale == 0)
3457     return true;
3458 
3459   // If we already have a scale of this value, we can add to it, otherwise, we
3460   // need an available scale field.
3461   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
3462     return false;
3463 
3464   ExtAddrMode TestAddrMode = AddrMode;
3465 
3466   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
3467   // [A+B + A*7] -> [B+A*8].
3468   TestAddrMode.Scale += Scale;
3469   TestAddrMode.ScaledReg = ScaleReg;
3470 
3471   // If the new address isn't legal, bail out.
3472   if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
3473     return false;
3474 
3475   // It was legal, so commit it.
3476   AddrMode = TestAddrMode;
3477 
3478   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
3479   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
3480   // X*Scale + C*Scale to addr mode.
3481   ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
3482   if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
3483       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
3484     TestAddrMode.ScaledReg = AddLHS;
3485     TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
3486 
3487     // If this addressing mode is legal, commit it and remember that we folded
3488     // this instruction.
3489     if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
3490       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
3491       AddrMode = TestAddrMode;
3492       return true;
3493     }
3494   }
3495 
3496   // Otherwise, not (x+c)*scale, just return what we have.
3497   return true;
3498 }
3499 
3500 /// This is a little filter, which returns true if an addressing computation
3501 /// involving I might be folded into a load/store accessing it.
3502 /// This doesn't need to be perfect, but needs to accept at least
3503 /// the set of instructions that MatchOperationAddr can.
3504 static bool MightBeFoldableInst(Instruction *I) {
3505   switch (I->getOpcode()) {
3506   case Instruction::BitCast:
3507   case Instruction::AddrSpaceCast:
3508     // Don't touch identity bitcasts.
3509     if (I->getType() == I->getOperand(0)->getType())
3510       return false;
3511     return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
3512   case Instruction::PtrToInt:
3513     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3514     return true;
3515   case Instruction::IntToPtr:
3516     // We know the input is intptr_t, so this is foldable.
3517     return true;
3518   case Instruction::Add:
3519     return true;
3520   case Instruction::Mul:
3521   case Instruction::Shl:
3522     // Can only handle X*C and X << C.
3523     return isa<ConstantInt>(I->getOperand(1));
3524   case Instruction::GetElementPtr:
3525     return true;
3526   default:
3527     return false;
3528   }
3529 }
3530 
3531 /// \brief Check whether or not \p Val is a legal instruction for \p TLI.
3532 /// \note \p Val is assumed to be the product of some type promotion.
3533 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
3534 /// to be legal, as the non-promoted value would have had the same state.
3535 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
3536                                        const DataLayout &DL, Value *Val) {
3537   Instruction *PromotedInst = dyn_cast<Instruction>(Val);
3538   if (!PromotedInst)
3539     return false;
3540   int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
3541   // If the ISDOpcode is undefined, it was undefined before the promotion.
3542   if (!ISDOpcode)
3543     return true;
3544   // Otherwise, check if the promoted instruction is legal or not.
3545   return TLI.isOperationLegalOrCustom(
3546       ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
3547 }
3548 
3549 namespace {
3550 
3551 /// \brief Hepler class to perform type promotion.
3552 class TypePromotionHelper {
3553   /// \brief Utility function to check whether or not a sign or zero extension
3554   /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
3555   /// either using the operands of \p Inst or promoting \p Inst.
3556   /// The type of the extension is defined by \p IsSExt.
3557   /// In other words, check if:
3558   /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
3559   /// #1 Promotion applies:
3560   /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
3561   /// #2 Operand reuses:
3562   /// ext opnd1 to ConsideredExtType.
3563   /// \p PromotedInsts maps the instructions to their type before promotion.
3564   static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
3565                             const InstrToOrigTy &PromotedInsts, bool IsSExt);
3566 
3567   /// \brief Utility function to determine if \p OpIdx should be promoted when
3568   /// promoting \p Inst.
3569   static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
3570     return !(isa<SelectInst>(Inst) && OpIdx == 0);
3571   }
3572 
3573   /// \brief Utility function to promote the operand of \p Ext when this
3574   /// operand is a promotable trunc or sext or zext.
3575   /// \p PromotedInsts maps the instructions to their type before promotion.
3576   /// \p CreatedInstsCost[out] contains the cost of all instructions
3577   /// created to promote the operand of Ext.
3578   /// Newly added extensions are inserted in \p Exts.
3579   /// Newly added truncates are inserted in \p Truncs.
3580   /// Should never be called directly.
3581   /// \return The promoted value which is used instead of Ext.
3582   static Value *promoteOperandForTruncAndAnyExt(
3583       Instruction *Ext, TypePromotionTransaction &TPT,
3584       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3585       SmallVectorImpl<Instruction *> *Exts,
3586       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
3587 
3588   /// \brief Utility function to promote the operand of \p Ext when this
3589   /// operand is promotable and is not a supported trunc or sext.
3590   /// \p PromotedInsts maps the instructions to their type before promotion.
3591   /// \p CreatedInstsCost[out] contains the cost of all the instructions
3592   /// created to promote the operand of Ext.
3593   /// Newly added extensions are inserted in \p Exts.
3594   /// Newly added truncates are inserted in \p Truncs.
3595   /// Should never be called directly.
3596   /// \return The promoted value which is used instead of Ext.
3597   static Value *promoteOperandForOther(Instruction *Ext,
3598                                        TypePromotionTransaction &TPT,
3599                                        InstrToOrigTy &PromotedInsts,
3600                                        unsigned &CreatedInstsCost,
3601                                        SmallVectorImpl<Instruction *> *Exts,
3602                                        SmallVectorImpl<Instruction *> *Truncs,
3603                                        const TargetLowering &TLI, bool IsSExt);
3604 
3605   /// \see promoteOperandForOther.
3606   static Value *signExtendOperandForOther(
3607       Instruction *Ext, TypePromotionTransaction &TPT,
3608       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3609       SmallVectorImpl<Instruction *> *Exts,
3610       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3611     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3612                                   Exts, Truncs, TLI, true);
3613   }
3614 
3615   /// \see promoteOperandForOther.
3616   static Value *zeroExtendOperandForOther(
3617       Instruction *Ext, TypePromotionTransaction &TPT,
3618       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3619       SmallVectorImpl<Instruction *> *Exts,
3620       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3621     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3622                                   Exts, Truncs, TLI, false);
3623   }
3624 
3625 public:
3626   /// Type for the utility function that promotes the operand of Ext.
3627   using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
3628                             InstrToOrigTy &PromotedInsts,
3629                             unsigned &CreatedInstsCost,
3630                             SmallVectorImpl<Instruction *> *Exts,
3631                             SmallVectorImpl<Instruction *> *Truncs,
3632                             const TargetLowering &TLI);
3633 
3634   /// \brief Given a sign/zero extend instruction \p Ext, return the approriate
3635   /// action to promote the operand of \p Ext instead of using Ext.
3636   /// \return NULL if no promotable action is possible with the current
3637   /// sign extension.
3638   /// \p InsertedInsts keeps track of all the instructions inserted by the
3639   /// other CodeGenPrepare optimizations. This information is important
3640   /// because we do not want to promote these instructions as CodeGenPrepare
3641   /// will reinsert them later. Thus creating an infinite loop: create/remove.
3642   /// \p PromotedInsts maps the instructions to their type before promotion.
3643   static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
3644                           const TargetLowering &TLI,
3645                           const InstrToOrigTy &PromotedInsts);
3646 };
3647 
3648 } // end anonymous namespace
3649 
3650 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
3651                                         Type *ConsideredExtType,
3652                                         const InstrToOrigTy &PromotedInsts,
3653                                         bool IsSExt) {
3654   // The promotion helper does not know how to deal with vector types yet.
3655   // To be able to fix that, we would need to fix the places where we
3656   // statically extend, e.g., constants and such.
3657   if (Inst->getType()->isVectorTy())
3658     return false;
3659 
3660   // We can always get through zext.
3661   if (isa<ZExtInst>(Inst))
3662     return true;
3663 
3664   // sext(sext) is ok too.
3665   if (IsSExt && isa<SExtInst>(Inst))
3666     return true;
3667 
3668   // We can get through binary operator, if it is legal. In other words, the
3669   // binary operator must have a nuw or nsw flag.
3670   const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
3671   if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
3672       ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
3673        (IsSExt && BinOp->hasNoSignedWrap())))
3674     return true;
3675 
3676   // Check if we can do the following simplification.
3677   // ext(trunc(opnd)) --> ext(opnd)
3678   if (!isa<TruncInst>(Inst))
3679     return false;
3680 
3681   Value *OpndVal = Inst->getOperand(0);
3682   // Check if we can use this operand in the extension.
3683   // If the type is larger than the result type of the extension, we cannot.
3684   if (!OpndVal->getType()->isIntegerTy() ||
3685       OpndVal->getType()->getIntegerBitWidth() >
3686           ConsideredExtType->getIntegerBitWidth())
3687     return false;
3688 
3689   // If the operand of the truncate is not an instruction, we will not have
3690   // any information on the dropped bits.
3691   // (Actually we could for constant but it is not worth the extra logic).
3692   Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
3693   if (!Opnd)
3694     return false;
3695 
3696   // Check if the source of the type is narrow enough.
3697   // I.e., check that trunc just drops extended bits of the same kind of
3698   // the extension.
3699   // #1 get the type of the operand and check the kind of the extended bits.
3700   const Type *OpndType;
3701   InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
3702   if (It != PromotedInsts.end() && It->second.getInt() == IsSExt)
3703     OpndType = It->second.getPointer();
3704   else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
3705     OpndType = Opnd->getOperand(0)->getType();
3706   else
3707     return false;
3708 
3709   // #2 check that the truncate just drops extended bits.
3710   return Inst->getType()->getIntegerBitWidth() >=
3711          OpndType->getIntegerBitWidth();
3712 }
3713 
3714 TypePromotionHelper::Action TypePromotionHelper::getAction(
3715     Instruction *Ext, const SetOfInstrs &InsertedInsts,
3716     const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
3717   assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3718          "Unexpected instruction type");
3719   Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
3720   Type *ExtTy = Ext->getType();
3721   bool IsSExt = isa<SExtInst>(Ext);
3722   // If the operand of the extension is not an instruction, we cannot
3723   // get through.
3724   // If it, check we can get through.
3725   if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
3726     return nullptr;
3727 
3728   // Do not promote if the operand has been added by codegenprepare.
3729   // Otherwise, it means we are undoing an optimization that is likely to be
3730   // redone, thus causing potential infinite loop.
3731   if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
3732     return nullptr;
3733 
3734   // SExt or Trunc instructions.
3735   // Return the related handler.
3736   if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
3737       isa<ZExtInst>(ExtOpnd))
3738     return promoteOperandForTruncAndAnyExt;
3739 
3740   // Regular instruction.
3741   // Abort early if we will have to insert non-free instructions.
3742   if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
3743     return nullptr;
3744   return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
3745 }
3746 
3747 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
3748     Instruction *SExt, TypePromotionTransaction &TPT,
3749     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3750     SmallVectorImpl<Instruction *> *Exts,
3751     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3752   // By construction, the operand of SExt is an instruction. Otherwise we cannot
3753   // get through it and this method should not be called.
3754   Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
3755   Value *ExtVal = SExt;
3756   bool HasMergedNonFreeExt = false;
3757   if (isa<ZExtInst>(SExtOpnd)) {
3758     // Replace s|zext(zext(opnd))
3759     // => zext(opnd).
3760     HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
3761     Value *ZExt =
3762         TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
3763     TPT.replaceAllUsesWith(SExt, ZExt);
3764     TPT.eraseInstruction(SExt);
3765     ExtVal = ZExt;
3766   } else {
3767     // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
3768     // => z|sext(opnd).
3769     TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
3770   }
3771   CreatedInstsCost = 0;
3772 
3773   // Remove dead code.
3774   if (SExtOpnd->use_empty())
3775     TPT.eraseInstruction(SExtOpnd);
3776 
3777   // Check if the extension is still needed.
3778   Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
3779   if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
3780     if (ExtInst) {
3781       if (Exts)
3782         Exts->push_back(ExtInst);
3783       CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
3784     }
3785     return ExtVal;
3786   }
3787 
3788   // At this point we have: ext ty opnd to ty.
3789   // Reassign the uses of ExtInst to the opnd and remove ExtInst.
3790   Value *NextVal = ExtInst->getOperand(0);
3791   TPT.eraseInstruction(ExtInst, NextVal);
3792   return NextVal;
3793 }
3794 
3795 Value *TypePromotionHelper::promoteOperandForOther(
3796     Instruction *Ext, TypePromotionTransaction &TPT,
3797     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3798     SmallVectorImpl<Instruction *> *Exts,
3799     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
3800     bool IsSExt) {
3801   // By construction, the operand of Ext is an instruction. Otherwise we cannot
3802   // get through it and this method should not be called.
3803   Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
3804   CreatedInstsCost = 0;
3805   if (!ExtOpnd->hasOneUse()) {
3806     // ExtOpnd will be promoted.
3807     // All its uses, but Ext, will need to use a truncated value of the
3808     // promoted version.
3809     // Create the truncate now.
3810     Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
3811     if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
3812       // Insert it just after the definition.
3813       ITrunc->moveAfter(ExtOpnd);
3814       if (Truncs)
3815         Truncs->push_back(ITrunc);
3816     }
3817 
3818     TPT.replaceAllUsesWith(ExtOpnd, Trunc);
3819     // Restore the operand of Ext (which has been replaced by the previous call
3820     // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
3821     TPT.setOperand(Ext, 0, ExtOpnd);
3822   }
3823 
3824   // Get through the Instruction:
3825   // 1. Update its type.
3826   // 2. Replace the uses of Ext by Inst.
3827   // 3. Extend each operand that needs to be extended.
3828 
3829   // Remember the original type of the instruction before promotion.
3830   // This is useful to know that the high bits are sign extended bits.
3831   PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>(
3832       ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt)));
3833   // Step #1.
3834   TPT.mutateType(ExtOpnd, Ext->getType());
3835   // Step #2.
3836   TPT.replaceAllUsesWith(Ext, ExtOpnd);
3837   // Step #3.
3838   Instruction *ExtForOpnd = Ext;
3839 
3840   DEBUG(dbgs() << "Propagate Ext to operands\n");
3841   for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
3842        ++OpIdx) {
3843     DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
3844     if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
3845         !shouldExtOperand(ExtOpnd, OpIdx)) {
3846       DEBUG(dbgs() << "No need to propagate\n");
3847       continue;
3848     }
3849     // Check if we can statically extend the operand.
3850     Value *Opnd = ExtOpnd->getOperand(OpIdx);
3851     if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
3852       DEBUG(dbgs() << "Statically extend\n");
3853       unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
3854       APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
3855                             : Cst->getValue().zext(BitWidth);
3856       TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
3857       continue;
3858     }
3859     // UndefValue are typed, so we have to statically sign extend them.
3860     if (isa<UndefValue>(Opnd)) {
3861       DEBUG(dbgs() << "Statically extend\n");
3862       TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
3863       continue;
3864     }
3865 
3866     // Otherwise we have to explicity sign extend the operand.
3867     // Check if Ext was reused to extend an operand.
3868     if (!ExtForOpnd) {
3869       // If yes, create a new one.
3870       DEBUG(dbgs() << "More operands to ext\n");
3871       Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
3872         : TPT.createZExt(Ext, Opnd, Ext->getType());
3873       if (!isa<Instruction>(ValForExtOpnd)) {
3874         TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
3875         continue;
3876       }
3877       ExtForOpnd = cast<Instruction>(ValForExtOpnd);
3878     }
3879     if (Exts)
3880       Exts->push_back(ExtForOpnd);
3881     TPT.setOperand(ExtForOpnd, 0, Opnd);
3882 
3883     // Move the sign extension before the insertion point.
3884     TPT.moveBefore(ExtForOpnd, ExtOpnd);
3885     TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
3886     CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
3887     // If more sext are required, new instructions will have to be created.
3888     ExtForOpnd = nullptr;
3889   }
3890   if (ExtForOpnd == Ext) {
3891     DEBUG(dbgs() << "Extension is useless now\n");
3892     TPT.eraseInstruction(Ext);
3893   }
3894   return ExtOpnd;
3895 }
3896 
3897 /// Check whether or not promoting an instruction to a wider type is profitable.
3898 /// \p NewCost gives the cost of extension instructions created by the
3899 /// promotion.
3900 /// \p OldCost gives the cost of extension instructions before the promotion
3901 /// plus the number of instructions that have been
3902 /// matched in the addressing mode the promotion.
3903 /// \p PromotedOperand is the value that has been promoted.
3904 /// \return True if the promotion is profitable, false otherwise.
3905 bool AddressingModeMatcher::isPromotionProfitable(
3906     unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
3907   DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n');
3908   // The cost of the new extensions is greater than the cost of the
3909   // old extension plus what we folded.
3910   // This is not profitable.
3911   if (NewCost > OldCost)
3912     return false;
3913   if (NewCost < OldCost)
3914     return true;
3915   // The promotion is neutral but it may help folding the sign extension in
3916   // loads for instance.
3917   // Check that we did not create an illegal instruction.
3918   return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
3919 }
3920 
3921 /// Given an instruction or constant expr, see if we can fold the operation
3922 /// into the addressing mode. If so, update the addressing mode and return
3923 /// true, otherwise return false without modifying AddrMode.
3924 /// If \p MovedAway is not NULL, it contains the information of whether or
3925 /// not AddrInst has to be folded into the addressing mode on success.
3926 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
3927 /// because it has been moved away.
3928 /// Thus AddrInst must not be added in the matched instructions.
3929 /// This state can happen when AddrInst is a sext, since it may be moved away.
3930 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
3931 /// not be referenced anymore.
3932 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
3933                                                unsigned Depth,
3934                                                bool *MovedAway) {
3935   // Avoid exponential behavior on extremely deep expression trees.
3936   if (Depth >= 5) return false;
3937 
3938   // By default, all matched instructions stay in place.
3939   if (MovedAway)
3940     *MovedAway = false;
3941 
3942   switch (Opcode) {
3943   case Instruction::PtrToInt:
3944     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3945     return matchAddr(AddrInst->getOperand(0), Depth);
3946   case Instruction::IntToPtr: {
3947     auto AS = AddrInst->getType()->getPointerAddressSpace();
3948     auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
3949     // This inttoptr is a no-op if the integer type is pointer sized.
3950     if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
3951       return matchAddr(AddrInst->getOperand(0), Depth);
3952     return false;
3953   }
3954   case Instruction::BitCast:
3955     // BitCast is always a noop, and we can handle it as long as it is
3956     // int->int or pointer->pointer (we don't want int<->fp or something).
3957     if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
3958          AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
3959         // Don't touch identity bitcasts.  These were probably put here by LSR,
3960         // and we don't want to mess around with them.  Assume it knows what it
3961         // is doing.
3962         AddrInst->getOperand(0)->getType() != AddrInst->getType())
3963       return matchAddr(AddrInst->getOperand(0), Depth);
3964     return false;
3965   case Instruction::AddrSpaceCast: {
3966     unsigned SrcAS
3967       = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
3968     unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
3969     if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3970       return matchAddr(AddrInst->getOperand(0), Depth);
3971     return false;
3972   }
3973   case Instruction::Add: {
3974     // Check to see if we can merge in the RHS then the LHS.  If so, we win.
3975     ExtAddrMode BackupAddrMode = AddrMode;
3976     unsigned OldSize = AddrModeInsts.size();
3977     // Start a transaction at this point.
3978     // The LHS may match but not the RHS.
3979     // Therefore, we need a higher level restoration point to undo partially
3980     // matched operation.
3981     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3982         TPT.getRestorationPoint();
3983 
3984     if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
3985         matchAddr(AddrInst->getOperand(0), Depth+1))
3986       return true;
3987 
3988     // Restore the old addr mode info.
3989     AddrMode = BackupAddrMode;
3990     AddrModeInsts.resize(OldSize);
3991     TPT.rollback(LastKnownGood);
3992 
3993     // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
3994     if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
3995         matchAddr(AddrInst->getOperand(1), Depth+1))
3996       return true;
3997 
3998     // Otherwise we definitely can't merge the ADD in.
3999     AddrMode = BackupAddrMode;
4000     AddrModeInsts.resize(OldSize);
4001     TPT.rollback(LastKnownGood);
4002     break;
4003   }
4004   //case Instruction::Or:
4005   // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
4006   //break;
4007   case Instruction::Mul:
4008   case Instruction::Shl: {
4009     // Can only handle X*C and X << C.
4010     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
4011     if (!RHS)
4012       return false;
4013     int64_t Scale = RHS->getSExtValue();
4014     if (Opcode == Instruction::Shl)
4015       Scale = 1LL << Scale;
4016 
4017     return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
4018   }
4019   case Instruction::GetElementPtr: {
4020     // Scan the GEP.  We check it if it contains constant offsets and at most
4021     // one variable offset.
4022     int VariableOperand = -1;
4023     unsigned VariableScale = 0;
4024 
4025     int64_t ConstantOffset = 0;
4026     gep_type_iterator GTI = gep_type_begin(AddrInst);
4027     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
4028       if (StructType *STy = GTI.getStructTypeOrNull()) {
4029         const StructLayout *SL = DL.getStructLayout(STy);
4030         unsigned Idx =
4031           cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
4032         ConstantOffset += SL->getElementOffset(Idx);
4033       } else {
4034         uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType());
4035         if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
4036           ConstantOffset += CI->getSExtValue()*TypeSize;
4037         } else if (TypeSize) {  // Scales of zero don't do anything.
4038           // We only allow one variable index at the moment.
4039           if (VariableOperand != -1)
4040             return false;
4041 
4042           // Remember the variable index.
4043           VariableOperand = i;
4044           VariableScale = TypeSize;
4045         }
4046       }
4047     }
4048 
4049     // A common case is for the GEP to only do a constant offset.  In this case,
4050     // just add it to the disp field and check validity.
4051     if (VariableOperand == -1) {
4052       AddrMode.BaseOffs += ConstantOffset;
4053       if (ConstantOffset == 0 ||
4054           TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
4055         // Check to see if we can fold the base pointer in too.
4056         if (matchAddr(AddrInst->getOperand(0), Depth+1))
4057           return true;
4058       }
4059       AddrMode.BaseOffs -= ConstantOffset;
4060       return false;
4061     }
4062 
4063     // Save the valid addressing mode in case we can't match.
4064     ExtAddrMode BackupAddrMode = AddrMode;
4065     unsigned OldSize = AddrModeInsts.size();
4066 
4067     // See if the scale and offset amount is valid for this target.
4068     AddrMode.BaseOffs += ConstantOffset;
4069 
4070     // Match the base operand of the GEP.
4071     if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
4072       // If it couldn't be matched, just stuff the value in a register.
4073       if (AddrMode.HasBaseReg) {
4074         AddrMode = BackupAddrMode;
4075         AddrModeInsts.resize(OldSize);
4076         return false;
4077       }
4078       AddrMode.HasBaseReg = true;
4079       AddrMode.BaseReg = AddrInst->getOperand(0);
4080     }
4081 
4082     // Match the remaining variable portion of the GEP.
4083     if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
4084                           Depth)) {
4085       // If it couldn't be matched, try stuffing the base into a register
4086       // instead of matching it, and retrying the match of the scale.
4087       AddrMode = BackupAddrMode;
4088       AddrModeInsts.resize(OldSize);
4089       if (AddrMode.HasBaseReg)
4090         return false;
4091       AddrMode.HasBaseReg = true;
4092       AddrMode.BaseReg = AddrInst->getOperand(0);
4093       AddrMode.BaseOffs += ConstantOffset;
4094       if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
4095                             VariableScale, Depth)) {
4096         // If even that didn't work, bail.
4097         AddrMode = BackupAddrMode;
4098         AddrModeInsts.resize(OldSize);
4099         return false;
4100       }
4101     }
4102 
4103     return true;
4104   }
4105   case Instruction::SExt:
4106   case Instruction::ZExt: {
4107     Instruction *Ext = dyn_cast<Instruction>(AddrInst);
4108     if (!Ext)
4109       return false;
4110 
4111     // Try to move this ext out of the way of the addressing mode.
4112     // Ask for a method for doing so.
4113     TypePromotionHelper::Action TPH =
4114         TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
4115     if (!TPH)
4116       return false;
4117 
4118     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4119         TPT.getRestorationPoint();
4120     unsigned CreatedInstsCost = 0;
4121     unsigned ExtCost = !TLI.isExtFree(Ext);
4122     Value *PromotedOperand =
4123         TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
4124     // SExt has been moved away.
4125     // Thus either it will be rematched later in the recursive calls or it is
4126     // gone. Anyway, we must not fold it into the addressing mode at this point.
4127     // E.g.,
4128     // op = add opnd, 1
4129     // idx = ext op
4130     // addr = gep base, idx
4131     // is now:
4132     // promotedOpnd = ext opnd            <- no match here
4133     // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
4134     // addr = gep base, op                <- match
4135     if (MovedAway)
4136       *MovedAway = true;
4137 
4138     assert(PromotedOperand &&
4139            "TypePromotionHelper should have filtered out those cases");
4140 
4141     ExtAddrMode BackupAddrMode = AddrMode;
4142     unsigned OldSize = AddrModeInsts.size();
4143 
4144     if (!matchAddr(PromotedOperand, Depth) ||
4145         // The total of the new cost is equal to the cost of the created
4146         // instructions.
4147         // The total of the old cost is equal to the cost of the extension plus
4148         // what we have saved in the addressing mode.
4149         !isPromotionProfitable(CreatedInstsCost,
4150                                ExtCost + (AddrModeInsts.size() - OldSize),
4151                                PromotedOperand)) {
4152       AddrMode = BackupAddrMode;
4153       AddrModeInsts.resize(OldSize);
4154       DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
4155       TPT.rollback(LastKnownGood);
4156       return false;
4157     }
4158     return true;
4159   }
4160   }
4161   return false;
4162 }
4163 
4164 /// If we can, try to add the value of 'Addr' into the current addressing mode.
4165 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4166 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
4167 /// for the target.
4168 ///
4169 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
4170   // Start a transaction at this point that we will rollback if the matching
4171   // fails.
4172   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4173       TPT.getRestorationPoint();
4174   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
4175     // Fold in immediates if legal for the target.
4176     AddrMode.BaseOffs += CI->getSExtValue();
4177     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4178       return true;
4179     AddrMode.BaseOffs -= CI->getSExtValue();
4180   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
4181     // If this is a global variable, try to fold it into the addressing mode.
4182     if (!AddrMode.BaseGV) {
4183       AddrMode.BaseGV = GV;
4184       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4185         return true;
4186       AddrMode.BaseGV = nullptr;
4187     }
4188   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
4189     ExtAddrMode BackupAddrMode = AddrMode;
4190     unsigned OldSize = AddrModeInsts.size();
4191 
4192     // Check to see if it is possible to fold this operation.
4193     bool MovedAway = false;
4194     if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
4195       // This instruction may have been moved away. If so, there is nothing
4196       // to check here.
4197       if (MovedAway)
4198         return true;
4199       // Okay, it's possible to fold this.  Check to see if it is actually
4200       // *profitable* to do so.  We use a simple cost model to avoid increasing
4201       // register pressure too much.
4202       if (I->hasOneUse() ||
4203           isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
4204         AddrModeInsts.push_back(I);
4205         return true;
4206       }
4207 
4208       // It isn't profitable to do this, roll back.
4209       //cerr << "NOT FOLDING: " << *I;
4210       AddrMode = BackupAddrMode;
4211       AddrModeInsts.resize(OldSize);
4212       TPT.rollback(LastKnownGood);
4213     }
4214   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
4215     if (matchOperationAddr(CE, CE->getOpcode(), Depth))
4216       return true;
4217     TPT.rollback(LastKnownGood);
4218   } else if (isa<ConstantPointerNull>(Addr)) {
4219     // Null pointer gets folded without affecting the addressing mode.
4220     return true;
4221   }
4222 
4223   // Worse case, the target should support [reg] addressing modes. :)
4224   if (!AddrMode.HasBaseReg) {
4225     AddrMode.HasBaseReg = true;
4226     AddrMode.BaseReg = Addr;
4227     // Still check for legality in case the target supports [imm] but not [i+r].
4228     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4229       return true;
4230     AddrMode.HasBaseReg = false;
4231     AddrMode.BaseReg = nullptr;
4232   }
4233 
4234   // If the base register is already taken, see if we can do [r+r].
4235   if (AddrMode.Scale == 0) {
4236     AddrMode.Scale = 1;
4237     AddrMode.ScaledReg = Addr;
4238     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4239       return true;
4240     AddrMode.Scale = 0;
4241     AddrMode.ScaledReg = nullptr;
4242   }
4243   // Couldn't match.
4244   TPT.rollback(LastKnownGood);
4245   return false;
4246 }
4247 
4248 /// Check to see if all uses of OpVal by the specified inline asm call are due
4249 /// to memory operands. If so, return true, otherwise return false.
4250 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
4251                                     const TargetLowering &TLI,
4252                                     const TargetRegisterInfo &TRI) {
4253   const Function *F = CI->getFunction();
4254   TargetLowering::AsmOperandInfoVector TargetConstraints =
4255       TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI,
4256                             ImmutableCallSite(CI));
4257 
4258   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4259     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4260 
4261     // Compute the constraint code and ConstraintType to use.
4262     TLI.ComputeConstraintToUse(OpInfo, SDValue());
4263 
4264     // If this asm operand is our Value*, and if it isn't an indirect memory
4265     // operand, we can't fold it!
4266     if (OpInfo.CallOperandVal == OpVal &&
4267         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
4268          !OpInfo.isIndirect))
4269       return false;
4270   }
4271 
4272   return true;
4273 }
4274 
4275 // Max number of memory uses to look at before aborting the search to conserve
4276 // compile time.
4277 static constexpr int MaxMemoryUsesToScan = 20;
4278 
4279 /// Recursively walk all the uses of I until we find a memory use.
4280 /// If we find an obviously non-foldable instruction, return true.
4281 /// Add the ultimately found memory instructions to MemoryUses.
4282 static bool FindAllMemoryUses(
4283     Instruction *I,
4284     SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
4285     SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
4286     const TargetRegisterInfo &TRI, int SeenInsts = 0) {
4287   // If we already considered this instruction, we're done.
4288   if (!ConsideredInsts.insert(I).second)
4289     return false;
4290 
4291   // If this is an obviously unfoldable instruction, bail out.
4292   if (!MightBeFoldableInst(I))
4293     return true;
4294 
4295   const bool OptSize = I->getFunction()->optForSize();
4296 
4297   // Loop over all the uses, recursively processing them.
4298   for (Use &U : I->uses()) {
4299     // Conservatively return true if we're seeing a large number or a deep chain
4300     // of users. This avoids excessive compilation times in pathological cases.
4301     if (SeenInsts++ >= MaxMemoryUsesToScan)
4302       return true;
4303 
4304     Instruction *UserI = cast<Instruction>(U.getUser());
4305     if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
4306       MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
4307       continue;
4308     }
4309 
4310     if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
4311       unsigned opNo = U.getOperandNo();
4312       if (opNo != StoreInst::getPointerOperandIndex())
4313         return true; // Storing addr, not into addr.
4314       MemoryUses.push_back(std::make_pair(SI, opNo));
4315       continue;
4316     }
4317 
4318     if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
4319       unsigned opNo = U.getOperandNo();
4320       if (opNo != AtomicRMWInst::getPointerOperandIndex())
4321         return true; // Storing addr, not into addr.
4322       MemoryUses.push_back(std::make_pair(RMW, opNo));
4323       continue;
4324     }
4325 
4326     if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
4327       unsigned opNo = U.getOperandNo();
4328       if (opNo != AtomicCmpXchgInst::getPointerOperandIndex())
4329         return true; // Storing addr, not into addr.
4330       MemoryUses.push_back(std::make_pair(CmpX, opNo));
4331       continue;
4332     }
4333 
4334     if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
4335       // If this is a cold call, we can sink the addressing calculation into
4336       // the cold path.  See optimizeCallInst
4337       if (!OptSize && CI->hasFnAttr(Attribute::Cold))
4338         continue;
4339 
4340       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
4341       if (!IA) return true;
4342 
4343       // If this is a memory operand, we're cool, otherwise bail out.
4344       if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
4345         return true;
4346       continue;
4347     }
4348 
4349     if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI,
4350                           SeenInsts))
4351       return true;
4352   }
4353 
4354   return false;
4355 }
4356 
4357 /// Return true if Val is already known to be live at the use site that we're
4358 /// folding it into. If so, there is no cost to include it in the addressing
4359 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4360 /// instruction already.
4361 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
4362                                                    Value *KnownLive2) {
4363   // If Val is either of the known-live values, we know it is live!
4364   if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
4365     return true;
4366 
4367   // All values other than instructions and arguments (e.g. constants) are live.
4368   if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
4369 
4370   // If Val is a constant sized alloca in the entry block, it is live, this is
4371   // true because it is just a reference to the stack/frame pointer, which is
4372   // live for the whole function.
4373   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
4374     if (AI->isStaticAlloca())
4375       return true;
4376 
4377   // Check to see if this value is already used in the memory instruction's
4378   // block.  If so, it's already live into the block at the very least, so we
4379   // can reasonably fold it.
4380   return Val->isUsedInBasicBlock(MemoryInst->getParent());
4381 }
4382 
4383 /// It is possible for the addressing mode of the machine to fold the specified
4384 /// instruction into a load or store that ultimately uses it.
4385 /// However, the specified instruction has multiple uses.
4386 /// Given this, it may actually increase register pressure to fold it
4387 /// into the load. For example, consider this code:
4388 ///
4389 ///     X = ...
4390 ///     Y = X+1
4391 ///     use(Y)   -> nonload/store
4392 ///     Z = Y+1
4393 ///     load Z
4394 ///
4395 /// In this case, Y has multiple uses, and can be folded into the load of Z
4396 /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
4397 /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
4398 /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
4399 /// number of computations either.
4400 ///
4401 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
4402 /// X was live across 'load Z' for other reasons, we actually *would* want to
4403 /// fold the addressing mode in the Z case.  This would make Y die earlier.
4404 bool AddressingModeMatcher::
4405 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
4406                                      ExtAddrMode &AMAfter) {
4407   if (IgnoreProfitability) return true;
4408 
4409   // AMBefore is the addressing mode before this instruction was folded into it,
4410   // and AMAfter is the addressing mode after the instruction was folded.  Get
4411   // the set of registers referenced by AMAfter and subtract out those
4412   // referenced by AMBefore: this is the set of values which folding in this
4413   // address extends the lifetime of.
4414   //
4415   // Note that there are only two potential values being referenced here,
4416   // BaseReg and ScaleReg (global addresses are always available, as are any
4417   // folded immediates).
4418   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
4419 
4420   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
4421   // lifetime wasn't extended by adding this instruction.
4422   if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4423     BaseReg = nullptr;
4424   if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4425     ScaledReg = nullptr;
4426 
4427   // If folding this instruction (and it's subexprs) didn't extend any live
4428   // ranges, we're ok with it.
4429   if (!BaseReg && !ScaledReg)
4430     return true;
4431 
4432   // If all uses of this instruction can have the address mode sunk into them,
4433   // we can remove the addressing mode and effectively trade one live register
4434   // for another (at worst.)  In this context, folding an addressing mode into
4435   // the use is just a particularly nice way of sinking it.
4436   SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
4437   SmallPtrSet<Instruction*, 16> ConsideredInsts;
4438   if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI))
4439     return false;  // Has a non-memory, non-foldable use!
4440 
4441   // Now that we know that all uses of this instruction are part of a chain of
4442   // computation involving only operations that could theoretically be folded
4443   // into a memory use, loop over each of these memory operation uses and see
4444   // if they could  *actually* fold the instruction.  The assumption is that
4445   // addressing modes are cheap and that duplicating the computation involved
4446   // many times is worthwhile, even on a fastpath. For sinking candidates
4447   // (i.e. cold call sites), this serves as a way to prevent excessive code
4448   // growth since most architectures have some reasonable small and fast way to
4449   // compute an effective address.  (i.e LEA on x86)
4450   SmallVector<Instruction*, 32> MatchedAddrModeInsts;
4451   for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
4452     Instruction *User = MemoryUses[i].first;
4453     unsigned OpNo = MemoryUses[i].second;
4454 
4455     // Get the access type of this use.  If the use isn't a pointer, we don't
4456     // know what it accesses.
4457     Value *Address = User->getOperand(OpNo);
4458     PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
4459     if (!AddrTy)
4460       return false;
4461     Type *AddressAccessTy = AddrTy->getElementType();
4462     unsigned AS = AddrTy->getAddressSpace();
4463 
4464     // Do a match against the root of this address, ignoring profitability. This
4465     // will tell us if the addressing mode for the memory operation will
4466     // *actually* cover the shared instruction.
4467     ExtAddrMode Result;
4468     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4469         TPT.getRestorationPoint();
4470     AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI,
4471                                   AddressAccessTy, AS,
4472                                   MemoryInst, Result, InsertedInsts,
4473                                   PromotedInsts, TPT);
4474     Matcher.IgnoreProfitability = true;
4475     bool Success = Matcher.matchAddr(Address, 0);
4476     (void)Success; assert(Success && "Couldn't select *anything*?");
4477 
4478     // The match was to check the profitability, the changes made are not
4479     // part of the original matcher. Therefore, they should be dropped
4480     // otherwise the original matcher will not present the right state.
4481     TPT.rollback(LastKnownGood);
4482 
4483     // If the match didn't cover I, then it won't be shared by it.
4484     if (!is_contained(MatchedAddrModeInsts, I))
4485       return false;
4486 
4487     MatchedAddrModeInsts.clear();
4488   }
4489 
4490   return true;
4491 }
4492 
4493 /// Return true if the specified values are defined in a
4494 /// different basic block than BB.
4495 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
4496   if (Instruction *I = dyn_cast<Instruction>(V))
4497     return I->getParent() != BB;
4498   return false;
4499 }
4500 
4501 /// Sink addressing mode computation immediate before MemoryInst if doing so
4502 /// can be done without increasing register pressure.  The need for the
4503 /// register pressure constraint means this can end up being an all or nothing
4504 /// decision for all uses of the same addressing computation.
4505 ///
4506 /// Load and Store Instructions often have addressing modes that can do
4507 /// significant amounts of computation. As such, instruction selection will try
4508 /// to get the load or store to do as much computation as possible for the
4509 /// program. The problem is that isel can only see within a single block. As
4510 /// such, we sink as much legal addressing mode work into the block as possible.
4511 ///
4512 /// This method is used to optimize both load/store and inline asms with memory
4513 /// operands.  It's also used to sink addressing computations feeding into cold
4514 /// call sites into their (cold) basic block.
4515 ///
4516 /// The motivation for handling sinking into cold blocks is that doing so can
4517 /// both enable other address mode sinking (by satisfying the register pressure
4518 /// constraint above), and reduce register pressure globally (by removing the
4519 /// addressing mode computation from the fast path entirely.).
4520 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
4521                                         Type *AccessTy, unsigned AddrSpace) {
4522   Value *Repl = Addr;
4523 
4524   // Try to collapse single-value PHI nodes.  This is necessary to undo
4525   // unprofitable PRE transformations.
4526   SmallVector<Value*, 8> worklist;
4527   SmallPtrSet<Value*, 16> Visited;
4528   worklist.push_back(Addr);
4529 
4530   // Use a worklist to iteratively look through PHI and select nodes, and
4531   // ensure that the addressing mode obtained from the non-PHI/select roots of
4532   // the graph are compatible.
4533   bool PhiOrSelectSeen = false;
4534   SmallVector<Instruction*, 16> AddrModeInsts;
4535   AddressingModeCombiner AddrModes;
4536   TypePromotionTransaction TPT(RemovedInsts);
4537   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4538       TPT.getRestorationPoint();
4539   while (!worklist.empty()) {
4540     Value *V = worklist.back();
4541     worklist.pop_back();
4542 
4543     // We allow traversing cyclic Phi nodes.
4544     // In case of success after this loop we ensure that traversing through
4545     // Phi nodes ends up with all cases to compute address of the form
4546     //    BaseGV + Base + Scale * Index + Offset
4547     // where Scale and Offset are constans and BaseGV, Base and Index
4548     // are exactly the same Values in all cases.
4549     // It means that BaseGV, Scale and Offset dominate our memory instruction
4550     // and have the same value as they had in address computation represented
4551     // as Phi. So we can safely sink address computation to memory instruction.
4552     if (!Visited.insert(V).second)
4553       continue;
4554 
4555     // For a PHI node, push all of its incoming values.
4556     if (PHINode *P = dyn_cast<PHINode>(V)) {
4557       for (Value *IncValue : P->incoming_values())
4558         worklist.push_back(IncValue);
4559       PhiOrSelectSeen = true;
4560       continue;
4561     }
4562     // Similar for select.
4563     if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
4564       worklist.push_back(SI->getFalseValue());
4565       worklist.push_back(SI->getTrueValue());
4566       PhiOrSelectSeen = true;
4567       continue;
4568     }
4569 
4570     // For non-PHIs, determine the addressing mode being computed.  Note that
4571     // the result may differ depending on what other uses our candidate
4572     // addressing instructions might have.
4573     AddrModeInsts.clear();
4574     ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
4575         V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI,
4576         InsertedInsts, PromotedInsts, TPT);
4577     NewAddrMode.OriginalValue = V;
4578 
4579     if (!AddrModes.addNewAddrMode(NewAddrMode))
4580       break;
4581   }
4582 
4583   // Try to combine the AddrModes we've collected. If we couldn't collect any,
4584   // or we have multiple but either couldn't combine them or combining them
4585   // wouldn't do anything useful, bail out now.
4586   if (!AddrModes.combineAddrModes()) {
4587     TPT.rollback(LastKnownGood);
4588     return false;
4589   }
4590   TPT.commit();
4591 
4592   // Get the combined AddrMode (or the only AddrMode, if we only had one).
4593   ExtAddrMode AddrMode = AddrModes.getAddrMode();
4594 
4595   // If all the instructions matched are already in this BB, don't do anything.
4596   // If we saw a Phi node then it is not local definitely, and if we saw a select
4597   // then we want to push the address calculation past it even if it's already
4598   // in this BB.
4599   if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
4600         return IsNonLocalValue(V, MemoryInst->getParent());
4601                   })) {
4602     DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode << "\n");
4603     return false;
4604   }
4605 
4606   // Insert this computation right after this user.  Since our caller is
4607   // scanning from the top of the BB to the bottom, reuse of the expr are
4608   // guaranteed to happen later.
4609   IRBuilder<> Builder(MemoryInst);
4610 
4611   // Now that we determined the addressing expression we want to use and know
4612   // that we have to sink it into this block.  Check to see if we have already
4613   // done this for some other load/store instr in this block.  If so, reuse the
4614   // computation.
4615   Value *&SunkAddr = SunkAddrs[Addr];
4616   if (SunkAddr) {
4617     DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
4618                  << *MemoryInst << "\n");
4619     if (SunkAddr->getType() != Addr->getType())
4620       SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4621   } else if (AddrSinkUsingGEPs ||
4622              (!AddrSinkUsingGEPs.getNumOccurrences() && TM &&
4623               SubtargetInfo->useAA())) {
4624     // By default, we use the GEP-based method when AA is used later. This
4625     // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
4626     DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
4627                  << *MemoryInst << "\n");
4628     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4629     Value *ResultPtr = nullptr, *ResultIndex = nullptr;
4630 
4631     // First, find the pointer.
4632     if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
4633       ResultPtr = AddrMode.BaseReg;
4634       AddrMode.BaseReg = nullptr;
4635     }
4636 
4637     if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
4638       // We can't add more than one pointer together, nor can we scale a
4639       // pointer (both of which seem meaningless).
4640       if (ResultPtr || AddrMode.Scale != 1)
4641         return false;
4642 
4643       ResultPtr = AddrMode.ScaledReg;
4644       AddrMode.Scale = 0;
4645     }
4646 
4647     // It is only safe to sign extend the BaseReg if we know that the math
4648     // required to create it did not overflow before we extend it. Since
4649     // the original IR value was tossed in favor of a constant back when
4650     // the AddrMode was created we need to bail out gracefully if widths
4651     // do not match instead of extending it.
4652     //
4653     // (See below for code to add the scale.)
4654     if (AddrMode.Scale) {
4655       Type *ScaledRegTy = AddrMode.ScaledReg->getType();
4656       if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
4657           cast<IntegerType>(ScaledRegTy)->getBitWidth())
4658         return false;
4659     }
4660 
4661     if (AddrMode.BaseGV) {
4662       if (ResultPtr)
4663         return false;
4664 
4665       ResultPtr = AddrMode.BaseGV;
4666     }
4667 
4668     // If the real base value actually came from an inttoptr, then the matcher
4669     // will look through it and provide only the integer value. In that case,
4670     // use it here.
4671     if (!DL->isNonIntegralPointerType(Addr->getType())) {
4672       if (!ResultPtr && AddrMode.BaseReg) {
4673         ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
4674                                            "sunkaddr");
4675         AddrMode.BaseReg = nullptr;
4676       } else if (!ResultPtr && AddrMode.Scale == 1) {
4677         ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
4678                                            "sunkaddr");
4679         AddrMode.Scale = 0;
4680       }
4681     }
4682 
4683     if (!ResultPtr &&
4684         !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
4685       SunkAddr = Constant::getNullValue(Addr->getType());
4686     } else if (!ResultPtr) {
4687       return false;
4688     } else {
4689       Type *I8PtrTy =
4690           Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
4691       Type *I8Ty = Builder.getInt8Ty();
4692 
4693       // Start with the base register. Do this first so that subsequent address
4694       // matching finds it last, which will prevent it from trying to match it
4695       // as the scaled value in case it happens to be a mul. That would be
4696       // problematic if we've sunk a different mul for the scale, because then
4697       // we'd end up sinking both muls.
4698       if (AddrMode.BaseReg) {
4699         Value *V = AddrMode.BaseReg;
4700         if (V->getType() != IntPtrTy)
4701           V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4702 
4703         ResultIndex = V;
4704       }
4705 
4706       // Add the scale value.
4707       if (AddrMode.Scale) {
4708         Value *V = AddrMode.ScaledReg;
4709         if (V->getType() == IntPtrTy) {
4710           // done.
4711         } else {
4712           assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
4713                  cast<IntegerType>(V->getType())->getBitWidth() &&
4714                  "We can't transform if ScaledReg is too narrow");
4715           V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4716         }
4717 
4718         if (AddrMode.Scale != 1)
4719           V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4720                                 "sunkaddr");
4721         if (ResultIndex)
4722           ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
4723         else
4724           ResultIndex = V;
4725       }
4726 
4727       // Add in the Base Offset if present.
4728       if (AddrMode.BaseOffs) {
4729         Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
4730         if (ResultIndex) {
4731           // We need to add this separately from the scale above to help with
4732           // SDAG consecutive load/store merging.
4733           if (ResultPtr->getType() != I8PtrTy)
4734             ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4735           ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4736         }
4737 
4738         ResultIndex = V;
4739       }
4740 
4741       if (!ResultIndex) {
4742         SunkAddr = ResultPtr;
4743       } else {
4744         if (ResultPtr->getType() != I8PtrTy)
4745           ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4746         SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4747       }
4748 
4749       if (SunkAddr->getType() != Addr->getType())
4750         SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4751     }
4752   } else {
4753     // We'd require a ptrtoint/inttoptr down the line, which we can't do for
4754     // non-integral pointers, so in that case bail out now.
4755     Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
4756     Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
4757     PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
4758     PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
4759     if (DL->isNonIntegralPointerType(Addr->getType()) ||
4760         (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
4761         (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
4762         (AddrMode.BaseGV &&
4763          DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
4764       return false;
4765 
4766     DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
4767                  << *MemoryInst << "\n");
4768     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4769     Value *Result = nullptr;
4770 
4771     // Start with the base register. Do this first so that subsequent address
4772     // matching finds it last, which will prevent it from trying to match it
4773     // as the scaled value in case it happens to be a mul. That would be
4774     // problematic if we've sunk a different mul for the scale, because then
4775     // we'd end up sinking both muls.
4776     if (AddrMode.BaseReg) {
4777       Value *V = AddrMode.BaseReg;
4778       if (V->getType()->isPointerTy())
4779         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4780       if (V->getType() != IntPtrTy)
4781         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4782       Result = V;
4783     }
4784 
4785     // Add the scale value.
4786     if (AddrMode.Scale) {
4787       Value *V = AddrMode.ScaledReg;
4788       if (V->getType() == IntPtrTy) {
4789         // done.
4790       } else if (V->getType()->isPointerTy()) {
4791         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4792       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
4793                  cast<IntegerType>(V->getType())->getBitWidth()) {
4794         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4795       } else {
4796         // It is only safe to sign extend the BaseReg if we know that the math
4797         // required to create it did not overflow before we extend it. Since
4798         // the original IR value was tossed in favor of a constant back when
4799         // the AddrMode was created we need to bail out gracefully if widths
4800         // do not match instead of extending it.
4801         Instruction *I = dyn_cast_or_null<Instruction>(Result);
4802         if (I && (Result != AddrMode.BaseReg))
4803           I->eraseFromParent();
4804         return false;
4805       }
4806       if (AddrMode.Scale != 1)
4807         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4808                               "sunkaddr");
4809       if (Result)
4810         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4811       else
4812         Result = V;
4813     }
4814 
4815     // Add in the BaseGV if present.
4816     if (AddrMode.BaseGV) {
4817       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
4818       if (Result)
4819         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4820       else
4821         Result = V;
4822     }
4823 
4824     // Add in the Base Offset if present.
4825     if (AddrMode.BaseOffs) {
4826       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
4827       if (Result)
4828         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4829       else
4830         Result = V;
4831     }
4832 
4833     if (!Result)
4834       SunkAddr = Constant::getNullValue(Addr->getType());
4835     else
4836       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
4837   }
4838 
4839   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
4840 
4841   // If we have no uses, recursively delete the value and all dead instructions
4842   // using it.
4843   if (Repl->use_empty()) {
4844     // This can cause recursive deletion, which can invalidate our iterator.
4845     // Use a WeakTrackingVH to hold onto it in case this happens.
4846     Value *CurValue = &*CurInstIterator;
4847     WeakTrackingVH IterHandle(CurValue);
4848     BasicBlock *BB = CurInstIterator->getParent();
4849 
4850     RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
4851 
4852     if (IterHandle != CurValue) {
4853       // If the iterator instruction was recursively deleted, start over at the
4854       // start of the block.
4855       CurInstIterator = BB->begin();
4856       SunkAddrs.clear();
4857     }
4858   }
4859   ++NumMemoryInsts;
4860   return true;
4861 }
4862 
4863 /// If there are any memory operands, use OptimizeMemoryInst to sink their
4864 /// address computing into the block when possible / profitable.
4865 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
4866   bool MadeChange = false;
4867 
4868   const TargetRegisterInfo *TRI =
4869       TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
4870   TargetLowering::AsmOperandInfoVector TargetConstraints =
4871       TLI->ParseConstraints(*DL, TRI, CS);
4872   unsigned ArgNo = 0;
4873   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4874     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4875 
4876     // Compute the constraint code and ConstraintType to use.
4877     TLI->ComputeConstraintToUse(OpInfo, SDValue());
4878 
4879     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
4880         OpInfo.isIndirect) {
4881       Value *OpVal = CS->getArgOperand(ArgNo++);
4882       MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
4883     } else if (OpInfo.Type == InlineAsm::isInput)
4884       ArgNo++;
4885   }
4886 
4887   return MadeChange;
4888 }
4889 
4890 /// \brief Check if all the uses of \p Val are equivalent (or free) zero or
4891 /// sign extensions.
4892 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
4893   assert(!Val->use_empty() && "Input must have at least one use");
4894   const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
4895   bool IsSExt = isa<SExtInst>(FirstUser);
4896   Type *ExtTy = FirstUser->getType();
4897   for (const User *U : Val->users()) {
4898     const Instruction *UI = cast<Instruction>(U);
4899     if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
4900       return false;
4901     Type *CurTy = UI->getType();
4902     // Same input and output types: Same instruction after CSE.
4903     if (CurTy == ExtTy)
4904       continue;
4905 
4906     // If IsSExt is true, we are in this situation:
4907     // a = Val
4908     // b = sext ty1 a to ty2
4909     // c = sext ty1 a to ty3
4910     // Assuming ty2 is shorter than ty3, this could be turned into:
4911     // a = Val
4912     // b = sext ty1 a to ty2
4913     // c = sext ty2 b to ty3
4914     // However, the last sext is not free.
4915     if (IsSExt)
4916       return false;
4917 
4918     // This is a ZExt, maybe this is free to extend from one type to another.
4919     // In that case, we would not account for a different use.
4920     Type *NarrowTy;
4921     Type *LargeTy;
4922     if (ExtTy->getScalarType()->getIntegerBitWidth() >
4923         CurTy->getScalarType()->getIntegerBitWidth()) {
4924       NarrowTy = CurTy;
4925       LargeTy = ExtTy;
4926     } else {
4927       NarrowTy = ExtTy;
4928       LargeTy = CurTy;
4929     }
4930 
4931     if (!TLI.isZExtFree(NarrowTy, LargeTy))
4932       return false;
4933   }
4934   // All uses are the same or can be derived from one another for free.
4935   return true;
4936 }
4937 
4938 /// \brief Try to speculatively promote extensions in \p Exts and continue
4939 /// promoting through newly promoted operands recursively as far as doing so is
4940 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
4941 /// When some promotion happened, \p TPT contains the proper state to revert
4942 /// them.
4943 ///
4944 /// \return true if some promotion happened, false otherwise.
4945 bool CodeGenPrepare::tryToPromoteExts(
4946     TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
4947     SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
4948     unsigned CreatedInstsCost) {
4949   bool Promoted = false;
4950 
4951   // Iterate over all the extensions to try to promote them.
4952   for (auto I : Exts) {
4953     // Early check if we directly have ext(load).
4954     if (isa<LoadInst>(I->getOperand(0))) {
4955       ProfitablyMovedExts.push_back(I);
4956       continue;
4957     }
4958 
4959     // Check whether or not we want to do any promotion.  The reason we have
4960     // this check inside the for loop is to catch the case where an extension
4961     // is directly fed by a load because in such case the extension can be moved
4962     // up without any promotion on its operands.
4963     if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion)
4964       return false;
4965 
4966     // Get the action to perform the promotion.
4967     TypePromotionHelper::Action TPH =
4968         TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
4969     // Check if we can promote.
4970     if (!TPH) {
4971       // Save the current extension as we cannot move up through its operand.
4972       ProfitablyMovedExts.push_back(I);
4973       continue;
4974     }
4975 
4976     // Save the current state.
4977     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4978         TPT.getRestorationPoint();
4979     SmallVector<Instruction *, 4> NewExts;
4980     unsigned NewCreatedInstsCost = 0;
4981     unsigned ExtCost = !TLI->isExtFree(I);
4982     // Promote.
4983     Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
4984                              &NewExts, nullptr, *TLI);
4985     assert(PromotedVal &&
4986            "TypePromotionHelper should have filtered out those cases");
4987 
4988     // We would be able to merge only one extension in a load.
4989     // Therefore, if we have more than 1 new extension we heuristically
4990     // cut this search path, because it means we degrade the code quality.
4991     // With exactly 2, the transformation is neutral, because we will merge
4992     // one extension but leave one. However, we optimistically keep going,
4993     // because the new extension may be removed too.
4994     long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
4995     // FIXME: It would be possible to propagate a negative value instead of
4996     // conservatively ceiling it to 0.
4997     TotalCreatedInstsCost =
4998         std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
4999     if (!StressExtLdPromotion &&
5000         (TotalCreatedInstsCost > 1 ||
5001          !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
5002       // This promotion is not profitable, rollback to the previous state, and
5003       // save the current extension in ProfitablyMovedExts as the latest
5004       // speculative promotion turned out to be unprofitable.
5005       TPT.rollback(LastKnownGood);
5006       ProfitablyMovedExts.push_back(I);
5007       continue;
5008     }
5009     // Continue promoting NewExts as far as doing so is profitable.
5010     SmallVector<Instruction *, 2> NewlyMovedExts;
5011     (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
5012     bool NewPromoted = false;
5013     for (auto ExtInst : NewlyMovedExts) {
5014       Instruction *MovedExt = cast<Instruction>(ExtInst);
5015       Value *ExtOperand = MovedExt->getOperand(0);
5016       // If we have reached to a load, we need this extra profitability check
5017       // as it could potentially be merged into an ext(load).
5018       if (isa<LoadInst>(ExtOperand) &&
5019           !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
5020             (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
5021         continue;
5022 
5023       ProfitablyMovedExts.push_back(MovedExt);
5024       NewPromoted = true;
5025     }
5026 
5027     // If none of speculative promotions for NewExts is profitable, rollback
5028     // and save the current extension (I) as the last profitable extension.
5029     if (!NewPromoted) {
5030       TPT.rollback(LastKnownGood);
5031       ProfitablyMovedExts.push_back(I);
5032       continue;
5033     }
5034     // The promotion is profitable.
5035     Promoted = true;
5036   }
5037   return Promoted;
5038 }
5039 
5040 /// Merging redundant sexts when one is dominating the other.
5041 bool CodeGenPrepare::mergeSExts(Function &F) {
5042   DominatorTree DT(F);
5043   bool Changed = false;
5044   for (auto &Entry : ValToSExtendedUses) {
5045     SExts &Insts = Entry.second;
5046     SExts CurPts;
5047     for (Instruction *Inst : Insts) {
5048       if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
5049           Inst->getOperand(0) != Entry.first)
5050         continue;
5051       bool inserted = false;
5052       for (auto &Pt : CurPts) {
5053         if (DT.dominates(Inst, Pt)) {
5054           Pt->replaceAllUsesWith(Inst);
5055           RemovedInsts.insert(Pt);
5056           Pt->removeFromParent();
5057           Pt = Inst;
5058           inserted = true;
5059           Changed = true;
5060           break;
5061         }
5062         if (!DT.dominates(Pt, Inst))
5063           // Give up if we need to merge in a common dominator as the
5064           // expermients show it is not profitable.
5065           continue;
5066         Inst->replaceAllUsesWith(Pt);
5067         RemovedInsts.insert(Inst);
5068         Inst->removeFromParent();
5069         inserted = true;
5070         Changed = true;
5071         break;
5072       }
5073       if (!inserted)
5074         CurPts.push_back(Inst);
5075     }
5076   }
5077   return Changed;
5078 }
5079 
5080 /// Return true, if an ext(load) can be formed from an extension in
5081 /// \p MovedExts.
5082 bool CodeGenPrepare::canFormExtLd(
5083     const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
5084     Instruction *&Inst, bool HasPromoted) {
5085   for (auto *MovedExtInst : MovedExts) {
5086     if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
5087       LI = cast<LoadInst>(MovedExtInst->getOperand(0));
5088       Inst = MovedExtInst;
5089       break;
5090     }
5091   }
5092   if (!LI)
5093     return false;
5094 
5095   // If they're already in the same block, there's nothing to do.
5096   // Make the cheap checks first if we did not promote.
5097   // If we promoted, we need to check if it is indeed profitable.
5098   if (!HasPromoted && LI->getParent() == Inst->getParent())
5099     return false;
5100 
5101   return TLI->isExtLoad(LI, Inst, *DL);
5102 }
5103 
5104 /// Move a zext or sext fed by a load into the same basic block as the load,
5105 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
5106 /// extend into the load.
5107 ///
5108 /// E.g.,
5109 /// \code
5110 /// %ld = load i32* %addr
5111 /// %add = add nuw i32 %ld, 4
5112 /// %zext = zext i32 %add to i64
5113 // \endcode
5114 /// =>
5115 /// \code
5116 /// %ld = load i32* %addr
5117 /// %zext = zext i32 %ld to i64
5118 /// %add = add nuw i64 %zext, 4
5119 /// \encode
5120 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
5121 /// allow us to match zext(load i32*) to i64.
5122 ///
5123 /// Also, try to promote the computations used to obtain a sign extended
5124 /// value used into memory accesses.
5125 /// E.g.,
5126 /// \code
5127 /// a = add nsw i32 b, 3
5128 /// d = sext i32 a to i64
5129 /// e = getelementptr ..., i64 d
5130 /// \endcode
5131 /// =>
5132 /// \code
5133 /// f = sext i32 b to i64
5134 /// a = add nsw i64 f, 3
5135 /// e = getelementptr ..., i64 a
5136 /// \endcode
5137 ///
5138 /// \p Inst[in/out] the extension may be modified during the process if some
5139 /// promotions apply.
5140 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
5141   // ExtLoad formation and address type promotion infrastructure requires TLI to
5142   // be effective.
5143   if (!TLI)
5144     return false;
5145 
5146   bool AllowPromotionWithoutCommonHeader = false;
5147   /// See if it is an interesting sext operations for the address type
5148   /// promotion before trying to promote it, e.g., the ones with the right
5149   /// type and used in memory accesses.
5150   bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
5151       *Inst, AllowPromotionWithoutCommonHeader);
5152   TypePromotionTransaction TPT(RemovedInsts);
5153   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5154       TPT.getRestorationPoint();
5155   SmallVector<Instruction *, 1> Exts;
5156   SmallVector<Instruction *, 2> SpeculativelyMovedExts;
5157   Exts.push_back(Inst);
5158 
5159   bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
5160 
5161   // Look for a load being extended.
5162   LoadInst *LI = nullptr;
5163   Instruction *ExtFedByLoad;
5164 
5165   // Try to promote a chain of computation if it allows to form an extended
5166   // load.
5167   if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
5168     assert(LI && ExtFedByLoad && "Expect a valid load and extension");
5169     TPT.commit();
5170     // Move the extend into the same block as the load
5171     ExtFedByLoad->moveAfter(LI);
5172     // CGP does not check if the zext would be speculatively executed when moved
5173     // to the same basic block as the load. Preserving its original location
5174     // would pessimize the debugging experience, as well as negatively impact
5175     // the quality of sample pgo. We don't want to use "line 0" as that has a
5176     // size cost in the line-table section and logically the zext can be seen as
5177     // part of the load. Therefore we conservatively reuse the same debug
5178     // location for the load and the zext.
5179     ExtFedByLoad->setDebugLoc(LI->getDebugLoc());
5180     ++NumExtsMoved;
5181     Inst = ExtFedByLoad;
5182     return true;
5183   }
5184 
5185   // Continue promoting SExts if known as considerable depending on targets.
5186   if (ATPConsiderable &&
5187       performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
5188                                   HasPromoted, TPT, SpeculativelyMovedExts))
5189     return true;
5190 
5191   TPT.rollback(LastKnownGood);
5192   return false;
5193 }
5194 
5195 // Perform address type promotion if doing so is profitable.
5196 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
5197 // instructions that sign extended the same initial value. However, if
5198 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
5199 // extension is just profitable.
5200 bool CodeGenPrepare::performAddressTypePromotion(
5201     Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
5202     bool HasPromoted, TypePromotionTransaction &TPT,
5203     SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
5204   bool Promoted = false;
5205   SmallPtrSet<Instruction *, 1> UnhandledExts;
5206   bool AllSeenFirst = true;
5207   for (auto I : SpeculativelyMovedExts) {
5208     Value *HeadOfChain = I->getOperand(0);
5209     DenseMap<Value *, Instruction *>::iterator AlreadySeen =
5210         SeenChainsForSExt.find(HeadOfChain);
5211     // If there is an unhandled SExt which has the same header, try to promote
5212     // it as well.
5213     if (AlreadySeen != SeenChainsForSExt.end()) {
5214       if (AlreadySeen->second != nullptr)
5215         UnhandledExts.insert(AlreadySeen->second);
5216       AllSeenFirst = false;
5217     }
5218   }
5219 
5220   if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
5221                         SpeculativelyMovedExts.size() == 1)) {
5222     TPT.commit();
5223     if (HasPromoted)
5224       Promoted = true;
5225     for (auto I : SpeculativelyMovedExts) {
5226       Value *HeadOfChain = I->getOperand(0);
5227       SeenChainsForSExt[HeadOfChain] = nullptr;
5228       ValToSExtendedUses[HeadOfChain].push_back(I);
5229     }
5230     // Update Inst as promotion happen.
5231     Inst = SpeculativelyMovedExts.pop_back_val();
5232   } else {
5233     // This is the first chain visited from the header, keep the current chain
5234     // as unhandled. Defer to promote this until we encounter another SExt
5235     // chain derived from the same header.
5236     for (auto I : SpeculativelyMovedExts) {
5237       Value *HeadOfChain = I->getOperand(0);
5238       SeenChainsForSExt[HeadOfChain] = Inst;
5239     }
5240     return false;
5241   }
5242 
5243   if (!AllSeenFirst && !UnhandledExts.empty())
5244     for (auto VisitedSExt : UnhandledExts) {
5245       if (RemovedInsts.count(VisitedSExt))
5246         continue;
5247       TypePromotionTransaction TPT(RemovedInsts);
5248       SmallVector<Instruction *, 1> Exts;
5249       SmallVector<Instruction *, 2> Chains;
5250       Exts.push_back(VisitedSExt);
5251       bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
5252       TPT.commit();
5253       if (HasPromoted)
5254         Promoted = true;
5255       for (auto I : Chains) {
5256         Value *HeadOfChain = I->getOperand(0);
5257         // Mark this as handled.
5258         SeenChainsForSExt[HeadOfChain] = nullptr;
5259         ValToSExtendedUses[HeadOfChain].push_back(I);
5260       }
5261     }
5262   return Promoted;
5263 }
5264 
5265 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
5266   BasicBlock *DefBB = I->getParent();
5267 
5268   // If the result of a {s|z}ext and its source are both live out, rewrite all
5269   // other uses of the source with result of extension.
5270   Value *Src = I->getOperand(0);
5271   if (Src->hasOneUse())
5272     return false;
5273 
5274   // Only do this xform if truncating is free.
5275   if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
5276     return false;
5277 
5278   // Only safe to perform the optimization if the source is also defined in
5279   // this block.
5280   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
5281     return false;
5282 
5283   bool DefIsLiveOut = false;
5284   for (User *U : I->users()) {
5285     Instruction *UI = cast<Instruction>(U);
5286 
5287     // Figure out which BB this ext is used in.
5288     BasicBlock *UserBB = UI->getParent();
5289     if (UserBB == DefBB) continue;
5290     DefIsLiveOut = true;
5291     break;
5292   }
5293   if (!DefIsLiveOut)
5294     return false;
5295 
5296   // Make sure none of the uses are PHI nodes.
5297   for (User *U : Src->users()) {
5298     Instruction *UI = cast<Instruction>(U);
5299     BasicBlock *UserBB = UI->getParent();
5300     if (UserBB == DefBB) continue;
5301     // Be conservative. We don't want this xform to end up introducing
5302     // reloads just before load / store instructions.
5303     if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
5304       return false;
5305   }
5306 
5307   // InsertedTruncs - Only insert one trunc in each block once.
5308   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
5309 
5310   bool MadeChange = false;
5311   for (Use &U : Src->uses()) {
5312     Instruction *User = cast<Instruction>(U.getUser());
5313 
5314     // Figure out which BB this ext is used in.
5315     BasicBlock *UserBB = User->getParent();
5316     if (UserBB == DefBB) continue;
5317 
5318     // Both src and def are live in this block. Rewrite the use.
5319     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
5320 
5321     if (!InsertedTrunc) {
5322       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5323       assert(InsertPt != UserBB->end());
5324       InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
5325       InsertedInsts.insert(InsertedTrunc);
5326     }
5327 
5328     // Replace a use of the {s|z}ext source with a use of the result.
5329     U = InsertedTrunc;
5330     ++NumExtUses;
5331     MadeChange = true;
5332   }
5333 
5334   return MadeChange;
5335 }
5336 
5337 // Find loads whose uses only use some of the loaded value's bits.  Add an "and"
5338 // just after the load if the target can fold this into one extload instruction,
5339 // with the hope of eliminating some of the other later "and" instructions using
5340 // the loaded value.  "and"s that are made trivially redundant by the insertion
5341 // of the new "and" are removed by this function, while others (e.g. those whose
5342 // path from the load goes through a phi) are left for isel to potentially
5343 // remove.
5344 //
5345 // For example:
5346 //
5347 // b0:
5348 //   x = load i32
5349 //   ...
5350 // b1:
5351 //   y = and x, 0xff
5352 //   z = use y
5353 //
5354 // becomes:
5355 //
5356 // b0:
5357 //   x = load i32
5358 //   x' = and x, 0xff
5359 //   ...
5360 // b1:
5361 //   z = use x'
5362 //
5363 // whereas:
5364 //
5365 // b0:
5366 //   x1 = load i32
5367 //   ...
5368 // b1:
5369 //   x2 = load i32
5370 //   ...
5371 // b2:
5372 //   x = phi x1, x2
5373 //   y = and x, 0xff
5374 //
5375 // becomes (after a call to optimizeLoadExt for each load):
5376 //
5377 // b0:
5378 //   x1 = load i32
5379 //   x1' = and x1, 0xff
5380 //   ...
5381 // b1:
5382 //   x2 = load i32
5383 //   x2' = and x2, 0xff
5384 //   ...
5385 // b2:
5386 //   x = phi x1', x2'
5387 //   y = and x, 0xff
5388 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
5389   if (!Load->isSimple() ||
5390       !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy()))
5391     return false;
5392 
5393   // Skip loads we've already transformed.
5394   if (Load->hasOneUse() &&
5395       InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
5396     return false;
5397 
5398   // Look at all uses of Load, looking through phis, to determine how many bits
5399   // of the loaded value are needed.
5400   SmallVector<Instruction *, 8> WorkList;
5401   SmallPtrSet<Instruction *, 16> Visited;
5402   SmallVector<Instruction *, 8> AndsToMaybeRemove;
5403   for (auto *U : Load->users())
5404     WorkList.push_back(cast<Instruction>(U));
5405 
5406   EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
5407   unsigned BitWidth = LoadResultVT.getSizeInBits();
5408   APInt DemandBits(BitWidth, 0);
5409   APInt WidestAndBits(BitWidth, 0);
5410 
5411   while (!WorkList.empty()) {
5412     Instruction *I = WorkList.back();
5413     WorkList.pop_back();
5414 
5415     // Break use-def graph loops.
5416     if (!Visited.insert(I).second)
5417       continue;
5418 
5419     // For a PHI node, push all of its users.
5420     if (auto *Phi = dyn_cast<PHINode>(I)) {
5421       for (auto *U : Phi->users())
5422         WorkList.push_back(cast<Instruction>(U));
5423       continue;
5424     }
5425 
5426     switch (I->getOpcode()) {
5427     case Instruction::And: {
5428       auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
5429       if (!AndC)
5430         return false;
5431       APInt AndBits = AndC->getValue();
5432       DemandBits |= AndBits;
5433       // Keep track of the widest and mask we see.
5434       if (AndBits.ugt(WidestAndBits))
5435         WidestAndBits = AndBits;
5436       if (AndBits == WidestAndBits && I->getOperand(0) == Load)
5437         AndsToMaybeRemove.push_back(I);
5438       break;
5439     }
5440 
5441     case Instruction::Shl: {
5442       auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
5443       if (!ShlC)
5444         return false;
5445       uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
5446       DemandBits.setLowBits(BitWidth - ShiftAmt);
5447       break;
5448     }
5449 
5450     case Instruction::Trunc: {
5451       EVT TruncVT = TLI->getValueType(*DL, I->getType());
5452       unsigned TruncBitWidth = TruncVT.getSizeInBits();
5453       DemandBits.setLowBits(TruncBitWidth);
5454       break;
5455     }
5456 
5457     default:
5458       return false;
5459     }
5460   }
5461 
5462   uint32_t ActiveBits = DemandBits.getActiveBits();
5463   // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
5464   // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
5465   // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
5466   // (and (load x) 1) is not matched as a single instruction, rather as a LDR
5467   // followed by an AND.
5468   // TODO: Look into removing this restriction by fixing backends to either
5469   // return false for isLoadExtLegal for i1 or have them select this pattern to
5470   // a single instruction.
5471   //
5472   // Also avoid hoisting if we didn't see any ands with the exact DemandBits
5473   // mask, since these are the only ands that will be removed by isel.
5474   if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
5475       WidestAndBits != DemandBits)
5476     return false;
5477 
5478   LLVMContext &Ctx = Load->getType()->getContext();
5479   Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
5480   EVT TruncVT = TLI->getValueType(*DL, TruncTy);
5481 
5482   // Reject cases that won't be matched as extloads.
5483   if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
5484       !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
5485     return false;
5486 
5487   IRBuilder<> Builder(Load->getNextNode());
5488   auto *NewAnd = dyn_cast<Instruction>(
5489       Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
5490   // Mark this instruction as "inserted by CGP", so that other
5491   // optimizations don't touch it.
5492   InsertedInsts.insert(NewAnd);
5493 
5494   // Replace all uses of load with new and (except for the use of load in the
5495   // new and itself).
5496   Load->replaceAllUsesWith(NewAnd);
5497   NewAnd->setOperand(0, Load);
5498 
5499   // Remove any and instructions that are now redundant.
5500   for (auto *And : AndsToMaybeRemove)
5501     // Check that the and mask is the same as the one we decided to put on the
5502     // new and.
5503     if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
5504       And->replaceAllUsesWith(NewAnd);
5505       if (&*CurInstIterator == And)
5506         CurInstIterator = std::next(And->getIterator());
5507       And->eraseFromParent();
5508       ++NumAndUses;
5509     }
5510 
5511   ++NumAndsAdded;
5512   return true;
5513 }
5514 
5515 /// Check if V (an operand of a select instruction) is an expensive instruction
5516 /// that is only used once.
5517 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
5518   auto *I = dyn_cast<Instruction>(V);
5519   // If it's safe to speculatively execute, then it should not have side
5520   // effects; therefore, it's safe to sink and possibly *not* execute.
5521   return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
5522          TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive;
5523 }
5524 
5525 /// Returns true if a SelectInst should be turned into an explicit branch.
5526 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
5527                                                 const TargetLowering *TLI,
5528                                                 SelectInst *SI) {
5529   // If even a predictable select is cheap, then a branch can't be cheaper.
5530   if (!TLI->isPredictableSelectExpensive())
5531     return false;
5532 
5533   // FIXME: This should use the same heuristics as IfConversion to determine
5534   // whether a select is better represented as a branch.
5535 
5536   // If metadata tells us that the select condition is obviously predictable,
5537   // then we want to replace the select with a branch.
5538   uint64_t TrueWeight, FalseWeight;
5539   if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
5540     uint64_t Max = std::max(TrueWeight, FalseWeight);
5541     uint64_t Sum = TrueWeight + FalseWeight;
5542     if (Sum != 0) {
5543       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
5544       if (Probability > TLI->getPredictableBranchThreshold())
5545         return true;
5546     }
5547   }
5548 
5549   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
5550 
5551   // If a branch is predictable, an out-of-order CPU can avoid blocking on its
5552   // comparison condition. If the compare has more than one use, there's
5553   // probably another cmov or setcc around, so it's not worth emitting a branch.
5554   if (!Cmp || !Cmp->hasOneUse())
5555     return false;
5556 
5557   // If either operand of the select is expensive and only needed on one side
5558   // of the select, we should form a branch.
5559   if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
5560       sinkSelectOperand(TTI, SI->getFalseValue()))
5561     return true;
5562 
5563   return false;
5564 }
5565 
5566 /// If \p isTrue is true, return the true value of \p SI, otherwise return
5567 /// false value of \p SI. If the true/false value of \p SI is defined by any
5568 /// select instructions in \p Selects, look through the defining select
5569 /// instruction until the true/false value is not defined in \p Selects.
5570 static Value *getTrueOrFalseValue(
5571     SelectInst *SI, bool isTrue,
5572     const SmallPtrSet<const Instruction *, 2> &Selects) {
5573   Value *V;
5574 
5575   for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
5576        DefSI = dyn_cast<SelectInst>(V)) {
5577     assert(DefSI->getCondition() == SI->getCondition() &&
5578            "The condition of DefSI does not match with SI");
5579     V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
5580   }
5581   return V;
5582 }
5583 
5584 /// If we have a SelectInst that will likely profit from branch prediction,
5585 /// turn it into a branch.
5586 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
5587   // Find all consecutive select instructions that share the same condition.
5588   SmallVector<SelectInst *, 2> ASI;
5589   ASI.push_back(SI);
5590   for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
5591        It != SI->getParent()->end(); ++It) {
5592     SelectInst *I = dyn_cast<SelectInst>(&*It);
5593     if (I && SI->getCondition() == I->getCondition()) {
5594       ASI.push_back(I);
5595     } else {
5596       break;
5597     }
5598   }
5599 
5600   SelectInst *LastSI = ASI.back();
5601   // Increment the current iterator to skip all the rest of select instructions
5602   // because they will be either "not lowered" or "all lowered" to branch.
5603   CurInstIterator = std::next(LastSI->getIterator());
5604 
5605   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
5606 
5607   // Can we convert the 'select' to CF ?
5608   if (DisableSelectToBranch || OptSize || !TLI || VectorCond ||
5609       SI->getMetadata(LLVMContext::MD_unpredictable))
5610     return false;
5611 
5612   TargetLowering::SelectSupportKind SelectKind;
5613   if (VectorCond)
5614     SelectKind = TargetLowering::VectorMaskSelect;
5615   else if (SI->getType()->isVectorTy())
5616     SelectKind = TargetLowering::ScalarCondVectorVal;
5617   else
5618     SelectKind = TargetLowering::ScalarValSelect;
5619 
5620   if (TLI->isSelectSupported(SelectKind) &&
5621       !isFormingBranchFromSelectProfitable(TTI, TLI, SI))
5622     return false;
5623 
5624   ModifiedDT = true;
5625 
5626   // Transform a sequence like this:
5627   //    start:
5628   //       %cmp = cmp uge i32 %a, %b
5629   //       %sel = select i1 %cmp, i32 %c, i32 %d
5630   //
5631   // Into:
5632   //    start:
5633   //       %cmp = cmp uge i32 %a, %b
5634   //       br i1 %cmp, label %select.true, label %select.false
5635   //    select.true:
5636   //       br label %select.end
5637   //    select.false:
5638   //       br label %select.end
5639   //    select.end:
5640   //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
5641   //
5642   // In addition, we may sink instructions that produce %c or %d from
5643   // the entry block into the destination(s) of the new branch.
5644   // If the true or false blocks do not contain a sunken instruction, that
5645   // block and its branch may be optimized away. In that case, one side of the
5646   // first branch will point directly to select.end, and the corresponding PHI
5647   // predecessor block will be the start block.
5648 
5649   // First, we split the block containing the select into 2 blocks.
5650   BasicBlock *StartBlock = SI->getParent();
5651   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
5652   BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
5653 
5654   // Delete the unconditional branch that was just created by the split.
5655   StartBlock->getTerminator()->eraseFromParent();
5656 
5657   // These are the new basic blocks for the conditional branch.
5658   // At least one will become an actual new basic block.
5659   BasicBlock *TrueBlock = nullptr;
5660   BasicBlock *FalseBlock = nullptr;
5661   BranchInst *TrueBranch = nullptr;
5662   BranchInst *FalseBranch = nullptr;
5663 
5664   // Sink expensive instructions into the conditional blocks to avoid executing
5665   // them speculatively.
5666   for (SelectInst *SI : ASI) {
5667     if (sinkSelectOperand(TTI, SI->getTrueValue())) {
5668       if (TrueBlock == nullptr) {
5669         TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
5670                                        EndBlock->getParent(), EndBlock);
5671         TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
5672       }
5673       auto *TrueInst = cast<Instruction>(SI->getTrueValue());
5674       TrueInst->moveBefore(TrueBranch);
5675     }
5676     if (sinkSelectOperand(TTI, SI->getFalseValue())) {
5677       if (FalseBlock == nullptr) {
5678         FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
5679                                         EndBlock->getParent(), EndBlock);
5680         FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
5681       }
5682       auto *FalseInst = cast<Instruction>(SI->getFalseValue());
5683       FalseInst->moveBefore(FalseBranch);
5684     }
5685   }
5686 
5687   // If there was nothing to sink, then arbitrarily choose the 'false' side
5688   // for a new input value to the PHI.
5689   if (TrueBlock == FalseBlock) {
5690     assert(TrueBlock == nullptr &&
5691            "Unexpected basic block transform while optimizing select");
5692 
5693     FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
5694                                     EndBlock->getParent(), EndBlock);
5695     BranchInst::Create(EndBlock, FalseBlock);
5696   }
5697 
5698   // Insert the real conditional branch based on the original condition.
5699   // If we did not create a new block for one of the 'true' or 'false' paths
5700   // of the condition, it means that side of the branch goes to the end block
5701   // directly and the path originates from the start block from the point of
5702   // view of the new PHI.
5703   BasicBlock *TT, *FT;
5704   if (TrueBlock == nullptr) {
5705     TT = EndBlock;
5706     FT = FalseBlock;
5707     TrueBlock = StartBlock;
5708   } else if (FalseBlock == nullptr) {
5709     TT = TrueBlock;
5710     FT = EndBlock;
5711     FalseBlock = StartBlock;
5712   } else {
5713     TT = TrueBlock;
5714     FT = FalseBlock;
5715   }
5716   IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI);
5717 
5718   SmallPtrSet<const Instruction *, 2> INS;
5719   INS.insert(ASI.begin(), ASI.end());
5720   // Use reverse iterator because later select may use the value of the
5721   // earlier select, and we need to propagate value through earlier select
5722   // to get the PHI operand.
5723   for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
5724     SelectInst *SI = *It;
5725     // The select itself is replaced with a PHI Node.
5726     PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
5727     PN->takeName(SI);
5728     PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
5729     PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
5730 
5731     SI->replaceAllUsesWith(PN);
5732     SI->eraseFromParent();
5733     INS.erase(SI);
5734     ++NumSelectsExpanded;
5735   }
5736 
5737   // Instruct OptimizeBlock to skip to the next block.
5738   CurInstIterator = StartBlock->end();
5739   return true;
5740 }
5741 
5742 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
5743   SmallVector<int, 16> Mask(SVI->getShuffleMask());
5744   int SplatElem = -1;
5745   for (unsigned i = 0; i < Mask.size(); ++i) {
5746     if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
5747       return false;
5748     SplatElem = Mask[i];
5749   }
5750 
5751   return true;
5752 }
5753 
5754 /// Some targets have expensive vector shifts if the lanes aren't all the same
5755 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
5756 /// it's often worth sinking a shufflevector splat down to its use so that
5757 /// codegen can spot all lanes are identical.
5758 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
5759   BasicBlock *DefBB = SVI->getParent();
5760 
5761   // Only do this xform if variable vector shifts are particularly expensive.
5762   if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
5763     return false;
5764 
5765   // We only expect better codegen by sinking a shuffle if we can recognise a
5766   // constant splat.
5767   if (!isBroadcastShuffle(SVI))
5768     return false;
5769 
5770   // InsertedShuffles - Only insert a shuffle in each block once.
5771   DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
5772 
5773   bool MadeChange = false;
5774   for (User *U : SVI->users()) {
5775     Instruction *UI = cast<Instruction>(U);
5776 
5777     // Figure out which BB this ext is used in.
5778     BasicBlock *UserBB = UI->getParent();
5779     if (UserBB == DefBB) continue;
5780 
5781     // For now only apply this when the splat is used by a shift instruction.
5782     if (!UI->isShift()) continue;
5783 
5784     // Everything checks out, sink the shuffle if the user's block doesn't
5785     // already have a copy.
5786     Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
5787 
5788     if (!InsertedShuffle) {
5789       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5790       assert(InsertPt != UserBB->end());
5791       InsertedShuffle =
5792           new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
5793                                 SVI->getOperand(2), "", &*InsertPt);
5794     }
5795 
5796     UI->replaceUsesOfWith(SVI, InsertedShuffle);
5797     MadeChange = true;
5798   }
5799 
5800   // If we removed all uses, nuke the shuffle.
5801   if (SVI->use_empty()) {
5802     SVI->eraseFromParent();
5803     MadeChange = true;
5804   }
5805 
5806   return MadeChange;
5807 }
5808 
5809 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
5810   if (!TLI || !DL)
5811     return false;
5812 
5813   Value *Cond = SI->getCondition();
5814   Type *OldType = Cond->getType();
5815   LLVMContext &Context = Cond->getContext();
5816   MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
5817   unsigned RegWidth = RegType.getSizeInBits();
5818 
5819   if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
5820     return false;
5821 
5822   // If the register width is greater than the type width, expand the condition
5823   // of the switch instruction and each case constant to the width of the
5824   // register. By widening the type of the switch condition, subsequent
5825   // comparisons (for case comparisons) will not need to be extended to the
5826   // preferred register width, so we will potentially eliminate N-1 extends,
5827   // where N is the number of cases in the switch.
5828   auto *NewType = Type::getIntNTy(Context, RegWidth);
5829 
5830   // Zero-extend the switch condition and case constants unless the switch
5831   // condition is a function argument that is already being sign-extended.
5832   // In that case, we can avoid an unnecessary mask/extension by sign-extending
5833   // everything instead.
5834   Instruction::CastOps ExtType = Instruction::ZExt;
5835   if (auto *Arg = dyn_cast<Argument>(Cond))
5836     if (Arg->hasSExtAttr())
5837       ExtType = Instruction::SExt;
5838 
5839   auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
5840   ExtInst->insertBefore(SI);
5841   SI->setCondition(ExtInst);
5842   for (auto Case : SI->cases()) {
5843     APInt NarrowConst = Case.getCaseValue()->getValue();
5844     APInt WideConst = (ExtType == Instruction::ZExt) ?
5845                       NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
5846     Case.setValue(ConstantInt::get(Context, WideConst));
5847   }
5848 
5849   return true;
5850 }
5851 
5852 
5853 namespace {
5854 
5855 /// \brief Helper class to promote a scalar operation to a vector one.
5856 /// This class is used to move downward extractelement transition.
5857 /// E.g.,
5858 /// a = vector_op <2 x i32>
5859 /// b = extractelement <2 x i32> a, i32 0
5860 /// c = scalar_op b
5861 /// store c
5862 ///
5863 /// =>
5864 /// a = vector_op <2 x i32>
5865 /// c = vector_op a (equivalent to scalar_op on the related lane)
5866 /// * d = extractelement <2 x i32> c, i32 0
5867 /// * store d
5868 /// Assuming both extractelement and store can be combine, we get rid of the
5869 /// transition.
5870 class VectorPromoteHelper {
5871   /// DataLayout associated with the current module.
5872   const DataLayout &DL;
5873 
5874   /// Used to perform some checks on the legality of vector operations.
5875   const TargetLowering &TLI;
5876 
5877   /// Used to estimated the cost of the promoted chain.
5878   const TargetTransformInfo &TTI;
5879 
5880   /// The transition being moved downwards.
5881   Instruction *Transition;
5882 
5883   /// The sequence of instructions to be promoted.
5884   SmallVector<Instruction *, 4> InstsToBePromoted;
5885 
5886   /// Cost of combining a store and an extract.
5887   unsigned StoreExtractCombineCost;
5888 
5889   /// Instruction that will be combined with the transition.
5890   Instruction *CombineInst = nullptr;
5891 
5892   /// \brief The instruction that represents the current end of the transition.
5893   /// Since we are faking the promotion until we reach the end of the chain
5894   /// of computation, we need a way to get the current end of the transition.
5895   Instruction *getEndOfTransition() const {
5896     if (InstsToBePromoted.empty())
5897       return Transition;
5898     return InstsToBePromoted.back();
5899   }
5900 
5901   /// \brief Return the index of the original value in the transition.
5902   /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
5903   /// c, is at index 0.
5904   unsigned getTransitionOriginalValueIdx() const {
5905     assert(isa<ExtractElementInst>(Transition) &&
5906            "Other kind of transitions are not supported yet");
5907     return 0;
5908   }
5909 
5910   /// \brief Return the index of the index in the transition.
5911   /// E.g., for "extractelement <2 x i32> c, i32 0" the index
5912   /// is at index 1.
5913   unsigned getTransitionIdx() const {
5914     assert(isa<ExtractElementInst>(Transition) &&
5915            "Other kind of transitions are not supported yet");
5916     return 1;
5917   }
5918 
5919   /// \brief Get the type of the transition.
5920   /// This is the type of the original value.
5921   /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
5922   /// transition is <2 x i32>.
5923   Type *getTransitionType() const {
5924     return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
5925   }
5926 
5927   /// \brief Promote \p ToBePromoted by moving \p Def downward through.
5928   /// I.e., we have the following sequence:
5929   /// Def = Transition <ty1> a to <ty2>
5930   /// b = ToBePromoted <ty2> Def, ...
5931   /// =>
5932   /// b = ToBePromoted <ty1> a, ...
5933   /// Def = Transition <ty1> ToBePromoted to <ty2>
5934   void promoteImpl(Instruction *ToBePromoted);
5935 
5936   /// \brief Check whether or not it is profitable to promote all the
5937   /// instructions enqueued to be promoted.
5938   bool isProfitableToPromote() {
5939     Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
5940     unsigned Index = isa<ConstantInt>(ValIdx)
5941                          ? cast<ConstantInt>(ValIdx)->getZExtValue()
5942                          : -1;
5943     Type *PromotedType = getTransitionType();
5944 
5945     StoreInst *ST = cast<StoreInst>(CombineInst);
5946     unsigned AS = ST->getPointerAddressSpace();
5947     unsigned Align = ST->getAlignment();
5948     // Check if this store is supported.
5949     if (!TLI.allowsMisalignedMemoryAccesses(
5950             TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
5951             Align)) {
5952       // If this is not supported, there is no way we can combine
5953       // the extract with the store.
5954       return false;
5955     }
5956 
5957     // The scalar chain of computation has to pay for the transition
5958     // scalar to vector.
5959     // The vector chain has to account for the combining cost.
5960     uint64_t ScalarCost =
5961         TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
5962     uint64_t VectorCost = StoreExtractCombineCost;
5963     for (const auto &Inst : InstsToBePromoted) {
5964       // Compute the cost.
5965       // By construction, all instructions being promoted are arithmetic ones.
5966       // Moreover, one argument is a constant that can be viewed as a splat
5967       // constant.
5968       Value *Arg0 = Inst->getOperand(0);
5969       bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
5970                             isa<ConstantFP>(Arg0);
5971       TargetTransformInfo::OperandValueKind Arg0OVK =
5972           IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
5973                          : TargetTransformInfo::OK_AnyValue;
5974       TargetTransformInfo::OperandValueKind Arg1OVK =
5975           !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
5976                           : TargetTransformInfo::OK_AnyValue;
5977       ScalarCost += TTI.getArithmeticInstrCost(
5978           Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
5979       VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
5980                                                Arg0OVK, Arg1OVK);
5981     }
5982     DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
5983                  << ScalarCost << "\nVector: " << VectorCost << '\n');
5984     return ScalarCost > VectorCost;
5985   }
5986 
5987   /// \brief Generate a constant vector with \p Val with the same
5988   /// number of elements as the transition.
5989   /// \p UseSplat defines whether or not \p Val should be replicated
5990   /// across the whole vector.
5991   /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
5992   /// otherwise we generate a vector with as many undef as possible:
5993   /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
5994   /// used at the index of the extract.
5995   Value *getConstantVector(Constant *Val, bool UseSplat) const {
5996     unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
5997     if (!UseSplat) {
5998       // If we cannot determine where the constant must be, we have to
5999       // use a splat constant.
6000       Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
6001       if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
6002         ExtractIdx = CstVal->getSExtValue();
6003       else
6004         UseSplat = true;
6005     }
6006 
6007     unsigned End = getTransitionType()->getVectorNumElements();
6008     if (UseSplat)
6009       return ConstantVector::getSplat(End, Val);
6010 
6011     SmallVector<Constant *, 4> ConstVec;
6012     UndefValue *UndefVal = UndefValue::get(Val->getType());
6013     for (unsigned Idx = 0; Idx != End; ++Idx) {
6014       if (Idx == ExtractIdx)
6015         ConstVec.push_back(Val);
6016       else
6017         ConstVec.push_back(UndefVal);
6018     }
6019     return ConstantVector::get(ConstVec);
6020   }
6021 
6022   /// \brief Check if promoting to a vector type an operand at \p OperandIdx
6023   /// in \p Use can trigger undefined behavior.
6024   static bool canCauseUndefinedBehavior(const Instruction *Use,
6025                                         unsigned OperandIdx) {
6026     // This is not safe to introduce undef when the operand is on
6027     // the right hand side of a division-like instruction.
6028     if (OperandIdx != 1)
6029       return false;
6030     switch (Use->getOpcode()) {
6031     default:
6032       return false;
6033     case Instruction::SDiv:
6034     case Instruction::UDiv:
6035     case Instruction::SRem:
6036     case Instruction::URem:
6037       return true;
6038     case Instruction::FDiv:
6039     case Instruction::FRem:
6040       return !Use->hasNoNaNs();
6041     }
6042     llvm_unreachable(nullptr);
6043   }
6044 
6045 public:
6046   VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
6047                       const TargetTransformInfo &TTI, Instruction *Transition,
6048                       unsigned CombineCost)
6049       : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
6050         StoreExtractCombineCost(CombineCost) {
6051     assert(Transition && "Do not know how to promote null");
6052   }
6053 
6054   /// \brief Check if we can promote \p ToBePromoted to \p Type.
6055   bool canPromote(const Instruction *ToBePromoted) const {
6056     // We could support CastInst too.
6057     return isa<BinaryOperator>(ToBePromoted);
6058   }
6059 
6060   /// \brief Check if it is profitable to promote \p ToBePromoted
6061   /// by moving downward the transition through.
6062   bool shouldPromote(const Instruction *ToBePromoted) const {
6063     // Promote only if all the operands can be statically expanded.
6064     // Indeed, we do not want to introduce any new kind of transitions.
6065     for (const Use &U : ToBePromoted->operands()) {
6066       const Value *Val = U.get();
6067       if (Val == getEndOfTransition()) {
6068         // If the use is a division and the transition is on the rhs,
6069         // we cannot promote the operation, otherwise we may create a
6070         // division by zero.
6071         if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
6072           return false;
6073         continue;
6074       }
6075       if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
6076           !isa<ConstantFP>(Val))
6077         return false;
6078     }
6079     // Check that the resulting operation is legal.
6080     int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
6081     if (!ISDOpcode)
6082       return false;
6083     return StressStoreExtract ||
6084            TLI.isOperationLegalOrCustom(
6085                ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
6086   }
6087 
6088   /// \brief Check whether or not \p Use can be combined
6089   /// with the transition.
6090   /// I.e., is it possible to do Use(Transition) => AnotherUse?
6091   bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
6092 
6093   /// \brief Record \p ToBePromoted as part of the chain to be promoted.
6094   void enqueueForPromotion(Instruction *ToBePromoted) {
6095     InstsToBePromoted.push_back(ToBePromoted);
6096   }
6097 
6098   /// \brief Set the instruction that will be combined with the transition.
6099   void recordCombineInstruction(Instruction *ToBeCombined) {
6100     assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
6101     CombineInst = ToBeCombined;
6102   }
6103 
6104   /// \brief Promote all the instructions enqueued for promotion if it is
6105   /// is profitable.
6106   /// \return True if the promotion happened, false otherwise.
6107   bool promote() {
6108     // Check if there is something to promote.
6109     // Right now, if we do not have anything to combine with,
6110     // we assume the promotion is not profitable.
6111     if (InstsToBePromoted.empty() || !CombineInst)
6112       return false;
6113 
6114     // Check cost.
6115     if (!StressStoreExtract && !isProfitableToPromote())
6116       return false;
6117 
6118     // Promote.
6119     for (auto &ToBePromoted : InstsToBePromoted)
6120       promoteImpl(ToBePromoted);
6121     InstsToBePromoted.clear();
6122     return true;
6123   }
6124 };
6125 
6126 } // end anonymous namespace
6127 
6128 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
6129   // At this point, we know that all the operands of ToBePromoted but Def
6130   // can be statically promoted.
6131   // For Def, we need to use its parameter in ToBePromoted:
6132   // b = ToBePromoted ty1 a
6133   // Def = Transition ty1 b to ty2
6134   // Move the transition down.
6135   // 1. Replace all uses of the promoted operation by the transition.
6136   // = ... b => = ... Def.
6137   assert(ToBePromoted->getType() == Transition->getType() &&
6138          "The type of the result of the transition does not match "
6139          "the final type");
6140   ToBePromoted->replaceAllUsesWith(Transition);
6141   // 2. Update the type of the uses.
6142   // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
6143   Type *TransitionTy = getTransitionType();
6144   ToBePromoted->mutateType(TransitionTy);
6145   // 3. Update all the operands of the promoted operation with promoted
6146   // operands.
6147   // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
6148   for (Use &U : ToBePromoted->operands()) {
6149     Value *Val = U.get();
6150     Value *NewVal = nullptr;
6151     if (Val == Transition)
6152       NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
6153     else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
6154              isa<ConstantFP>(Val)) {
6155       // Use a splat constant if it is not safe to use undef.
6156       NewVal = getConstantVector(
6157           cast<Constant>(Val),
6158           isa<UndefValue>(Val) ||
6159               canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
6160     } else
6161       llvm_unreachable("Did you modified shouldPromote and forgot to update "
6162                        "this?");
6163     ToBePromoted->setOperand(U.getOperandNo(), NewVal);
6164   }
6165   Transition->moveAfter(ToBePromoted);
6166   Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
6167 }
6168 
6169 /// Some targets can do store(extractelement) with one instruction.
6170 /// Try to push the extractelement towards the stores when the target
6171 /// has this feature and this is profitable.
6172 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
6173   unsigned CombineCost = std::numeric_limits<unsigned>::max();
6174   if (DisableStoreExtract || !TLI ||
6175       (!StressStoreExtract &&
6176        !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
6177                                        Inst->getOperand(1), CombineCost)))
6178     return false;
6179 
6180   // At this point we know that Inst is a vector to scalar transition.
6181   // Try to move it down the def-use chain, until:
6182   // - We can combine the transition with its single use
6183   //   => we got rid of the transition.
6184   // - We escape the current basic block
6185   //   => we would need to check that we are moving it at a cheaper place and
6186   //      we do not do that for now.
6187   BasicBlock *Parent = Inst->getParent();
6188   DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
6189   VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
6190   // If the transition has more than one use, assume this is not going to be
6191   // beneficial.
6192   while (Inst->hasOneUse()) {
6193     Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
6194     DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
6195 
6196     if (ToBePromoted->getParent() != Parent) {
6197       DEBUG(dbgs() << "Instruction to promote is in a different block ("
6198                    << ToBePromoted->getParent()->getName()
6199                    << ") than the transition (" << Parent->getName() << ").\n");
6200       return false;
6201     }
6202 
6203     if (VPH.canCombine(ToBePromoted)) {
6204       DEBUG(dbgs() << "Assume " << *Inst << '\n'
6205                    << "will be combined with: " << *ToBePromoted << '\n');
6206       VPH.recordCombineInstruction(ToBePromoted);
6207       bool Changed = VPH.promote();
6208       NumStoreExtractExposed += Changed;
6209       return Changed;
6210     }
6211 
6212     DEBUG(dbgs() << "Try promoting.\n");
6213     if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
6214       return false;
6215 
6216     DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
6217 
6218     VPH.enqueueForPromotion(ToBePromoted);
6219     Inst = ToBePromoted;
6220   }
6221   return false;
6222 }
6223 
6224 /// For the instruction sequence of store below, F and I values
6225 /// are bundled together as an i64 value before being stored into memory.
6226 /// Sometimes it is more efficent to generate separate stores for F and I,
6227 /// which can remove the bitwise instructions or sink them to colder places.
6228 ///
6229 ///   (store (or (zext (bitcast F to i32) to i64),
6230 ///              (shl (zext I to i64), 32)), addr)  -->
6231 ///   (store F, addr) and (store I, addr+4)
6232 ///
6233 /// Similarly, splitting for other merged store can also be beneficial, like:
6234 /// For pair of {i32, i32}, i64 store --> two i32 stores.
6235 /// For pair of {i32, i16}, i64 store --> two i32 stores.
6236 /// For pair of {i16, i16}, i32 store --> two i16 stores.
6237 /// For pair of {i16, i8},  i32 store --> two i16 stores.
6238 /// For pair of {i8, i8},   i16 store --> two i8 stores.
6239 ///
6240 /// We allow each target to determine specifically which kind of splitting is
6241 /// supported.
6242 ///
6243 /// The store patterns are commonly seen from the simple code snippet below
6244 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
6245 ///   void goo(const std::pair<int, float> &);
6246 ///   hoo() {
6247 ///     ...
6248 ///     goo(std::make_pair(tmp, ftmp));
6249 ///     ...
6250 ///   }
6251 ///
6252 /// Although we already have similar splitting in DAG Combine, we duplicate
6253 /// it in CodeGenPrepare to catch the case in which pattern is across
6254 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
6255 /// during code expansion.
6256 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
6257                                 const TargetLowering &TLI) {
6258   // Handle simple but common cases only.
6259   Type *StoreType = SI.getValueOperand()->getType();
6260   if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) ||
6261       DL.getTypeSizeInBits(StoreType) == 0)
6262     return false;
6263 
6264   unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
6265   Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
6266   if (DL.getTypeStoreSizeInBits(SplitStoreType) !=
6267       DL.getTypeSizeInBits(SplitStoreType))
6268     return false;
6269 
6270   // Match the following patterns:
6271   // (store (or (zext LValue to i64),
6272   //            (shl (zext HValue to i64), 32)), HalfValBitSize)
6273   //  or
6274   // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
6275   //            (zext LValue to i64),
6276   // Expect both operands of OR and the first operand of SHL have only
6277   // one use.
6278   Value *LValue, *HValue;
6279   if (!match(SI.getValueOperand(),
6280              m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
6281                     m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
6282                                    m_SpecificInt(HalfValBitSize))))))
6283     return false;
6284 
6285   // Check LValue and HValue are int with size less or equal than 32.
6286   if (!LValue->getType()->isIntegerTy() ||
6287       DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
6288       !HValue->getType()->isIntegerTy() ||
6289       DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
6290     return false;
6291 
6292   // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
6293   // as the input of target query.
6294   auto *LBC = dyn_cast<BitCastInst>(LValue);
6295   auto *HBC = dyn_cast<BitCastInst>(HValue);
6296   EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
6297                   : EVT::getEVT(LValue->getType());
6298   EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
6299                    : EVT::getEVT(HValue->getType());
6300   if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
6301     return false;
6302 
6303   // Start to split store.
6304   IRBuilder<> Builder(SI.getContext());
6305   Builder.SetInsertPoint(&SI);
6306 
6307   // If LValue/HValue is a bitcast in another BB, create a new one in current
6308   // BB so it may be merged with the splitted stores by dag combiner.
6309   if (LBC && LBC->getParent() != SI.getParent())
6310     LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
6311   if (HBC && HBC->getParent() != SI.getParent())
6312     HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
6313 
6314   auto CreateSplitStore = [&](Value *V, bool Upper) {
6315     V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
6316     Value *Addr = Builder.CreateBitCast(
6317         SI.getOperand(1),
6318         SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
6319     if (Upper)
6320       Addr = Builder.CreateGEP(
6321           SplitStoreType, Addr,
6322           ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
6323     Builder.CreateAlignedStore(
6324         V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment());
6325   };
6326 
6327   CreateSplitStore(LValue, false);
6328   CreateSplitStore(HValue, true);
6329 
6330   // Delete the old store.
6331   SI.eraseFromParent();
6332   return true;
6333 }
6334 
6335 // Return true if the GEP has two operands, the first operand is of a sequential
6336 // type, and the second operand is a constant.
6337 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
6338   gep_type_iterator I = gep_type_begin(*GEP);
6339   return GEP->getNumOperands() == 2 &&
6340       I.isSequential() &&
6341       isa<ConstantInt>(GEP->getOperand(1));
6342 }
6343 
6344 // Try unmerging GEPs to reduce liveness interference (register pressure) across
6345 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
6346 // reducing liveness interference across those edges benefits global register
6347 // allocation. Currently handles only certain cases.
6348 //
6349 // For example, unmerge %GEPI and %UGEPI as below.
6350 //
6351 // ---------- BEFORE ----------
6352 // SrcBlock:
6353 //   ...
6354 //   %GEPIOp = ...
6355 //   ...
6356 //   %GEPI = gep %GEPIOp, Idx
6357 //   ...
6358 //   indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
6359 //   (* %GEPI is alive on the indirectbr edges due to other uses ahead)
6360 //   (* %GEPIOp is alive on the indirectbr edges only because of it's used by
6361 //   %UGEPI)
6362 //
6363 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
6364 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
6365 // ...
6366 //
6367 // DstBi:
6368 //   ...
6369 //   %UGEPI = gep %GEPIOp, UIdx
6370 // ...
6371 // ---------------------------
6372 //
6373 // ---------- AFTER ----------
6374 // SrcBlock:
6375 //   ... (same as above)
6376 //    (* %GEPI is still alive on the indirectbr edges)
6377 //    (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
6378 //    unmerging)
6379 // ...
6380 //
6381 // DstBi:
6382 //   ...
6383 //   %UGEPI = gep %GEPI, (UIdx-Idx)
6384 //   ...
6385 // ---------------------------
6386 //
6387 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
6388 // no longer alive on them.
6389 //
6390 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
6391 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
6392 // not to disable further simplications and optimizations as a result of GEP
6393 // merging.
6394 //
6395 // Note this unmerging may increase the length of the data flow critical path
6396 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
6397 // between the register pressure and the length of data-flow critical
6398 // path. Restricting this to the uncommon IndirectBr case would minimize the
6399 // impact of potentially longer critical path, if any, and the impact on compile
6400 // time.
6401 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
6402                                              const TargetTransformInfo *TTI) {
6403   BasicBlock *SrcBlock = GEPI->getParent();
6404   // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
6405   // (non-IndirectBr) cases exit early here.
6406   if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
6407     return false;
6408   // Check that GEPI is a simple gep with a single constant index.
6409   if (!GEPSequentialConstIndexed(GEPI))
6410     return false;
6411   ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
6412   // Check that GEPI is a cheap one.
6413   if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType())
6414       > TargetTransformInfo::TCC_Basic)
6415     return false;
6416   Value *GEPIOp = GEPI->getOperand(0);
6417   // Check that GEPIOp is an instruction that's also defined in SrcBlock.
6418   if (!isa<Instruction>(GEPIOp))
6419     return false;
6420   auto *GEPIOpI = cast<Instruction>(GEPIOp);
6421   if (GEPIOpI->getParent() != SrcBlock)
6422     return false;
6423   // Check that GEP is used outside the block, meaning it's alive on the
6424   // IndirectBr edge(s).
6425   if (find_if(GEPI->users(), [&](User *Usr) {
6426         if (auto *I = dyn_cast<Instruction>(Usr)) {
6427           if (I->getParent() != SrcBlock) {
6428             return true;
6429           }
6430         }
6431         return false;
6432       }) == GEPI->users().end())
6433     return false;
6434   // The second elements of the GEP chains to be unmerged.
6435   std::vector<GetElementPtrInst *> UGEPIs;
6436   // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
6437   // on IndirectBr edges.
6438   for (User *Usr : GEPIOp->users()) {
6439     if (Usr == GEPI) continue;
6440     // Check if Usr is an Instruction. If not, give up.
6441     if (!isa<Instruction>(Usr))
6442       return false;
6443     auto *UI = cast<Instruction>(Usr);
6444     // Check if Usr in the same block as GEPIOp, which is fine, skip.
6445     if (UI->getParent() == SrcBlock)
6446       continue;
6447     // Check if Usr is a GEP. If not, give up.
6448     if (!isa<GetElementPtrInst>(Usr))
6449       return false;
6450     auto *UGEPI = cast<GetElementPtrInst>(Usr);
6451     // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
6452     // the pointer operand to it. If so, record it in the vector. If not, give
6453     // up.
6454     if (!GEPSequentialConstIndexed(UGEPI))
6455       return false;
6456     if (UGEPI->getOperand(0) != GEPIOp)
6457       return false;
6458     if (GEPIIdx->getType() !=
6459         cast<ConstantInt>(UGEPI->getOperand(1))->getType())
6460       return false;
6461     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6462     if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType())
6463         > TargetTransformInfo::TCC_Basic)
6464       return false;
6465     UGEPIs.push_back(UGEPI);
6466   }
6467   if (UGEPIs.size() == 0)
6468     return false;
6469   // Check the materializing cost of (Uidx-Idx).
6470   for (GetElementPtrInst *UGEPI : UGEPIs) {
6471     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6472     APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
6473     unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType());
6474     if (ImmCost > TargetTransformInfo::TCC_Basic)
6475       return false;
6476   }
6477   // Now unmerge between GEPI and UGEPIs.
6478   for (GetElementPtrInst *UGEPI : UGEPIs) {
6479     UGEPI->setOperand(0, GEPI);
6480     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6481     Constant *NewUGEPIIdx =
6482         ConstantInt::get(GEPIIdx->getType(),
6483                          UGEPIIdx->getValue() - GEPIIdx->getValue());
6484     UGEPI->setOperand(1, NewUGEPIIdx);
6485     // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
6486     // inbounds to avoid UB.
6487     if (!GEPI->isInBounds()) {
6488       UGEPI->setIsInBounds(false);
6489     }
6490   }
6491   // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
6492   // alive on IndirectBr edges).
6493   assert(find_if(GEPIOp->users(), [&](User *Usr) {
6494         return cast<Instruction>(Usr)->getParent() != SrcBlock;
6495       }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock");
6496   return true;
6497 }
6498 
6499 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) {
6500   // Bail out if we inserted the instruction to prevent optimizations from
6501   // stepping on each other's toes.
6502   if (InsertedInsts.count(I))
6503     return false;
6504 
6505   if (PHINode *P = dyn_cast<PHINode>(I)) {
6506     // It is possible for very late stage optimizations (such as SimplifyCFG)
6507     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
6508     // trivial PHI, go ahead and zap it here.
6509     if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
6510       P->replaceAllUsesWith(V);
6511       P->eraseFromParent();
6512       ++NumPHIsElim;
6513       return true;
6514     }
6515     return false;
6516   }
6517 
6518   if (CastInst *CI = dyn_cast<CastInst>(I)) {
6519     // If the source of the cast is a constant, then this should have
6520     // already been constant folded.  The only reason NOT to constant fold
6521     // it is if something (e.g. LSR) was careful to place the constant
6522     // evaluation in a block other than then one that uses it (e.g. to hoist
6523     // the address of globals out of a loop).  If this is the case, we don't
6524     // want to forward-subst the cast.
6525     if (isa<Constant>(CI->getOperand(0)))
6526       return false;
6527 
6528     if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL))
6529       return true;
6530 
6531     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
6532       /// Sink a zext or sext into its user blocks if the target type doesn't
6533       /// fit in one register
6534       if (TLI &&
6535           TLI->getTypeAction(CI->getContext(),
6536                              TLI->getValueType(*DL, CI->getType())) ==
6537               TargetLowering::TypeExpandInteger) {
6538         return SinkCast(CI);
6539       } else {
6540         bool MadeChange = optimizeExt(I);
6541         return MadeChange | optimizeExtUses(I);
6542       }
6543     }
6544     return false;
6545   }
6546 
6547   if (CmpInst *CI = dyn_cast<CmpInst>(I))
6548     if (!TLI || !TLI->hasMultipleConditionRegisters())
6549       return OptimizeCmpExpression(CI, TLI);
6550 
6551   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6552     LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6553     if (TLI) {
6554       bool Modified = optimizeLoadExt(LI);
6555       unsigned AS = LI->getPointerAddressSpace();
6556       Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
6557       return Modified;
6558     }
6559     return false;
6560   }
6561 
6562   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
6563     if (TLI && splitMergedValStore(*SI, *DL, *TLI))
6564       return true;
6565     SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6566     if (TLI) {
6567       unsigned AS = SI->getPointerAddressSpace();
6568       return optimizeMemoryInst(I, SI->getOperand(1),
6569                                 SI->getOperand(0)->getType(), AS);
6570     }
6571     return false;
6572   }
6573 
6574   if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
6575       unsigned AS = RMW->getPointerAddressSpace();
6576       return optimizeMemoryInst(I, RMW->getPointerOperand(),
6577                                 RMW->getType(), AS);
6578   }
6579 
6580   if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
6581       unsigned AS = CmpX->getPointerAddressSpace();
6582       return optimizeMemoryInst(I, CmpX->getPointerOperand(),
6583                                 CmpX->getCompareOperand()->getType(), AS);
6584   }
6585 
6586   BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
6587 
6588   if (BinOp && (BinOp->getOpcode() == Instruction::And) &&
6589       EnableAndCmpSinking && TLI)
6590     return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts);
6591 
6592   if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
6593                 BinOp->getOpcode() == Instruction::LShr)) {
6594     ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
6595     if (TLI && CI && TLI->hasExtractBitsInsn())
6596       return OptimizeExtractBits(BinOp, CI, *TLI, *DL);
6597 
6598     return false;
6599   }
6600 
6601   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
6602     if (GEPI->hasAllZeroIndices()) {
6603       /// The GEP operand must be a pointer, so must its result -> BitCast
6604       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
6605                                         GEPI->getName(), GEPI);
6606       GEPI->replaceAllUsesWith(NC);
6607       GEPI->eraseFromParent();
6608       ++NumGEPsElim;
6609       optimizeInst(NC, ModifiedDT);
6610       return true;
6611     }
6612     if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
6613       return true;
6614     }
6615     return false;
6616   }
6617 
6618   if (CallInst *CI = dyn_cast<CallInst>(I))
6619     return optimizeCallInst(CI, ModifiedDT);
6620 
6621   if (SelectInst *SI = dyn_cast<SelectInst>(I))
6622     return optimizeSelectInst(SI);
6623 
6624   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
6625     return optimizeShuffleVectorInst(SVI);
6626 
6627   if (auto *Switch = dyn_cast<SwitchInst>(I))
6628     return optimizeSwitchInst(Switch);
6629 
6630   if (isa<ExtractElementInst>(I))
6631     return optimizeExtractElementInst(I);
6632 
6633   return false;
6634 }
6635 
6636 /// Given an OR instruction, check to see if this is a bitreverse
6637 /// idiom. If so, insert the new intrinsic and return true.
6638 static bool makeBitReverse(Instruction &I, const DataLayout &DL,
6639                            const TargetLowering &TLI) {
6640   if (!I.getType()->isIntegerTy() ||
6641       !TLI.isOperationLegalOrCustom(ISD::BITREVERSE,
6642                                     TLI.getValueType(DL, I.getType(), true)))
6643     return false;
6644 
6645   SmallVector<Instruction*, 4> Insts;
6646   if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
6647     return false;
6648   Instruction *LastInst = Insts.back();
6649   I.replaceAllUsesWith(LastInst);
6650   RecursivelyDeleteTriviallyDeadInstructions(&I);
6651   return true;
6652 }
6653 
6654 // In this pass we look for GEP and cast instructions that are used
6655 // across basic blocks and rewrite them to improve basic-block-at-a-time
6656 // selection.
6657 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) {
6658   SunkAddrs.clear();
6659   bool MadeChange = false;
6660 
6661   CurInstIterator = BB.begin();
6662   while (CurInstIterator != BB.end()) {
6663     MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
6664     if (ModifiedDT)
6665       return true;
6666   }
6667 
6668   bool MadeBitReverse = true;
6669   while (TLI && MadeBitReverse) {
6670     MadeBitReverse = false;
6671     for (auto &I : reverse(BB)) {
6672       if (makeBitReverse(I, *DL, *TLI)) {
6673         MadeBitReverse = MadeChange = true;
6674         ModifiedDT = true;
6675         break;
6676       }
6677     }
6678   }
6679   MadeChange |= dupRetToEnableTailCallOpts(&BB);
6680 
6681   return MadeChange;
6682 }
6683 
6684 // llvm.dbg.value is far away from the value then iSel may not be able
6685 // handle it properly. iSel will drop llvm.dbg.value if it can not
6686 // find a node corresponding to the value.
6687 bool CodeGenPrepare::placeDbgValues(Function &F) {
6688   bool MadeChange = false;
6689   for (BasicBlock &BB : F) {
6690     Instruction *PrevNonDbgInst = nullptr;
6691     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
6692       Instruction *Insn = &*BI++;
6693       DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
6694       // Leave dbg.values that refer to an alloca alone. These
6695       // instrinsics describe the address of a variable (= the alloca)
6696       // being taken.  They should not be moved next to the alloca
6697       // (and to the beginning of the scope), but rather stay close to
6698       // where said address is used.
6699       if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
6700         PrevNonDbgInst = Insn;
6701         continue;
6702       }
6703 
6704       Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
6705       if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
6706         // If VI is a phi in a block with an EHPad terminator, we can't insert
6707         // after it.
6708         if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
6709           continue;
6710         DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI);
6711         DVI->removeFromParent();
6712         if (isa<PHINode>(VI))
6713           DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
6714         else
6715           DVI->insertAfter(VI);
6716         MadeChange = true;
6717         ++NumDbgValueMoved;
6718       }
6719     }
6720   }
6721   return MadeChange;
6722 }
6723 
6724 /// \brief Scale down both weights to fit into uint32_t.
6725 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
6726   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
6727   uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
6728   NewTrue = NewTrue / Scale;
6729   NewFalse = NewFalse / Scale;
6730 }
6731 
6732 /// \brief Some targets prefer to split a conditional branch like:
6733 /// \code
6734 ///   %0 = icmp ne i32 %a, 0
6735 ///   %1 = icmp ne i32 %b, 0
6736 ///   %or.cond = or i1 %0, %1
6737 ///   br i1 %or.cond, label %TrueBB, label %FalseBB
6738 /// \endcode
6739 /// into multiple branch instructions like:
6740 /// \code
6741 ///   bb1:
6742 ///     %0 = icmp ne i32 %a, 0
6743 ///     br i1 %0, label %TrueBB, label %bb2
6744 ///   bb2:
6745 ///     %1 = icmp ne i32 %b, 0
6746 ///     br i1 %1, label %TrueBB, label %FalseBB
6747 /// \endcode
6748 /// This usually allows instruction selection to do even further optimizations
6749 /// and combine the compare with the branch instruction. Currently this is
6750 /// applied for targets which have "cheap" jump instructions.
6751 ///
6752 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
6753 ///
6754 bool CodeGenPrepare::splitBranchCondition(Function &F) {
6755   if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive())
6756     return false;
6757 
6758   bool MadeChange = false;
6759   for (auto &BB : F) {
6760     // Does this BB end with the following?
6761     //   %cond1 = icmp|fcmp|binary instruction ...
6762     //   %cond2 = icmp|fcmp|binary instruction ...
6763     //   %cond.or = or|and i1 %cond1, cond2
6764     //   br i1 %cond.or label %dest1, label %dest2"
6765     BinaryOperator *LogicOp;
6766     BasicBlock *TBB, *FBB;
6767     if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
6768       continue;
6769 
6770     auto *Br1 = cast<BranchInst>(BB.getTerminator());
6771     if (Br1->getMetadata(LLVMContext::MD_unpredictable))
6772       continue;
6773 
6774     unsigned Opc;
6775     Value *Cond1, *Cond2;
6776     if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
6777                              m_OneUse(m_Value(Cond2)))))
6778       Opc = Instruction::And;
6779     else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
6780                                  m_OneUse(m_Value(Cond2)))))
6781       Opc = Instruction::Or;
6782     else
6783       continue;
6784 
6785     if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
6786         !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp()))   )
6787       continue;
6788 
6789     DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
6790 
6791     // Create a new BB.
6792     auto TmpBB =
6793         BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
6794                            BB.getParent(), BB.getNextNode());
6795 
6796     // Update original basic block by using the first condition directly by the
6797     // branch instruction and removing the no longer needed and/or instruction.
6798     Br1->setCondition(Cond1);
6799     LogicOp->eraseFromParent();
6800 
6801     // Depending on the conditon we have to either replace the true or the false
6802     // successor of the original branch instruction.
6803     if (Opc == Instruction::And)
6804       Br1->setSuccessor(0, TmpBB);
6805     else
6806       Br1->setSuccessor(1, TmpBB);
6807 
6808     // Fill in the new basic block.
6809     auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
6810     if (auto *I = dyn_cast<Instruction>(Cond2)) {
6811       I->removeFromParent();
6812       I->insertBefore(Br2);
6813     }
6814 
6815     // Update PHI nodes in both successors. The original BB needs to be
6816     // replaced in one successor's PHI nodes, because the branch comes now from
6817     // the newly generated BB (NewBB). In the other successor we need to add one
6818     // incoming edge to the PHI nodes, because both branch instructions target
6819     // now the same successor. Depending on the original branch condition
6820     // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
6821     // we perform the correct update for the PHI nodes.
6822     // This doesn't change the successor order of the just created branch
6823     // instruction (or any other instruction).
6824     if (Opc == Instruction::Or)
6825       std::swap(TBB, FBB);
6826 
6827     // Replace the old BB with the new BB.
6828     for (auto &I : *TBB) {
6829       PHINode *PN = dyn_cast<PHINode>(&I);
6830       if (!PN)
6831         break;
6832       int i;
6833       while ((i = PN->getBasicBlockIndex(&BB)) >= 0)
6834         PN->setIncomingBlock(i, TmpBB);
6835     }
6836 
6837     // Add another incoming edge form the new BB.
6838     for (auto &I : *FBB) {
6839       PHINode *PN = dyn_cast<PHINode>(&I);
6840       if (!PN)
6841         break;
6842       auto *Val = PN->getIncomingValueForBlock(&BB);
6843       PN->addIncoming(Val, TmpBB);
6844     }
6845 
6846     // Update the branch weights (from SelectionDAGBuilder::
6847     // FindMergedConditions).
6848     if (Opc == Instruction::Or) {
6849       // Codegen X | Y as:
6850       // BB1:
6851       //   jmp_if_X TBB
6852       //   jmp TmpBB
6853       // TmpBB:
6854       //   jmp_if_Y TBB
6855       //   jmp FBB
6856       //
6857 
6858       // We have flexibility in setting Prob for BB1 and Prob for NewBB.
6859       // The requirement is that
6860       //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
6861       //     = TrueProb for orignal BB.
6862       // Assuming the orignal weights are A and B, one choice is to set BB1's
6863       // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
6864       // assumes that
6865       //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
6866       // Another choice is to assume TrueProb for BB1 equals to TrueProb for
6867       // TmpBB, but the math is more complicated.
6868       uint64_t TrueWeight, FalseWeight;
6869       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
6870         uint64_t NewTrueWeight = TrueWeight;
6871         uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
6872         scaleWeights(NewTrueWeight, NewFalseWeight);
6873         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
6874                          .createBranchWeights(TrueWeight, FalseWeight));
6875 
6876         NewTrueWeight = TrueWeight;
6877         NewFalseWeight = 2 * FalseWeight;
6878         scaleWeights(NewTrueWeight, NewFalseWeight);
6879         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
6880                          .createBranchWeights(TrueWeight, FalseWeight));
6881       }
6882     } else {
6883       // Codegen X & Y as:
6884       // BB1:
6885       //   jmp_if_X TmpBB
6886       //   jmp FBB
6887       // TmpBB:
6888       //   jmp_if_Y TBB
6889       //   jmp FBB
6890       //
6891       //  This requires creation of TmpBB after CurBB.
6892 
6893       // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
6894       // The requirement is that
6895       //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
6896       //     = FalseProb for orignal BB.
6897       // Assuming the orignal weights are A and B, one choice is to set BB1's
6898       // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
6899       // assumes that
6900       //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
6901       uint64_t TrueWeight, FalseWeight;
6902       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
6903         uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
6904         uint64_t NewFalseWeight = FalseWeight;
6905         scaleWeights(NewTrueWeight, NewFalseWeight);
6906         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
6907                          .createBranchWeights(TrueWeight, FalseWeight));
6908 
6909         NewTrueWeight = 2 * TrueWeight;
6910         NewFalseWeight = FalseWeight;
6911         scaleWeights(NewTrueWeight, NewFalseWeight);
6912         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
6913                          .createBranchWeights(TrueWeight, FalseWeight));
6914       }
6915     }
6916 
6917     // Note: No point in getting fancy here, since the DT info is never
6918     // available to CodeGenPrepare.
6919     ModifiedDT = true;
6920 
6921     MadeChange = true;
6922 
6923     DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
6924           TmpBB->dump());
6925   }
6926   return MadeChange;
6927 }
6928