1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InlineAsm.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/IntrinsicsAArch64.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/MDBuilder.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Statepoint.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/ValueMap.h" 75 #include "llvm/InitializePasses.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/BlockFrequency.h" 78 #include "llvm/Support/BranchProbability.h" 79 #include "llvm/Support/Casting.h" 80 #include "llvm/Support/CommandLine.h" 81 #include "llvm/Support/Compiler.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/MachineValueType.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Target/TargetMachine.h" 88 #include "llvm/Target/TargetOptions.h" 89 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 90 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 91 #include "llvm/Transforms/Utils/Local.h" 92 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 93 #include "llvm/Transforms/Utils/SizeOpts.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <limits> 99 #include <memory> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 106 #define DEBUG_TYPE "codegenprepare" 107 108 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 109 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 110 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 111 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 112 "sunken Cmps"); 113 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 114 "of sunken Casts"); 115 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 116 "computations were sunk"); 117 STATISTIC(NumMemoryInstsPhiCreated, 118 "Number of phis created when address " 119 "computations were sunk to memory instructions"); 120 STATISTIC(NumMemoryInstsSelectCreated, 121 "Number of select created when address " 122 "computations were sunk to memory instructions"); 123 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 124 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 125 STATISTIC(NumAndsAdded, 126 "Number of and mask instructions added to form ext loads"); 127 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 128 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 129 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 130 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 131 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 132 133 static cl::opt<bool> DisableBranchOpts( 134 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 135 cl::desc("Disable branch optimizations in CodeGenPrepare")); 136 137 static cl::opt<bool> 138 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 139 cl::desc("Disable GC optimizations in CodeGenPrepare")); 140 141 static cl::opt<bool> DisableSelectToBranch( 142 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 143 cl::desc("Disable select to branch conversion.")); 144 145 static cl::opt<bool> AddrSinkUsingGEPs( 146 "addr-sink-using-gep", cl::Hidden, cl::init(true), 147 cl::desc("Address sinking in CGP using GEPs.")); 148 149 static cl::opt<bool> EnableAndCmpSinking( 150 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 151 cl::desc("Enable sinkinig and/cmp into branches.")); 152 153 static cl::opt<bool> DisableStoreExtract( 154 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 155 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 156 157 static cl::opt<bool> StressStoreExtract( 158 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 159 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 160 161 static cl::opt<bool> DisableExtLdPromotion( 162 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 163 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 164 "CodeGenPrepare")); 165 166 static cl::opt<bool> StressExtLdPromotion( 167 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 168 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 169 "optimization in CodeGenPrepare")); 170 171 static cl::opt<bool> DisablePreheaderProtect( 172 "disable-preheader-prot", cl::Hidden, cl::init(false), 173 cl::desc("Disable protection against removing loop preheaders")); 174 175 static cl::opt<bool> ProfileGuidedSectionPrefix( 176 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 177 cl::desc("Use profile info to add section prefix for hot/cold functions")); 178 179 static cl::opt<bool> ProfileUnknownInSpecialSection( 180 "profile-unknown-in-special-section", cl::Hidden, cl::init(false), 181 cl::ZeroOrMore, 182 cl::desc("In profiling mode like sampleFDO, if a function doesn't have " 183 "profile, we cannot tell the function is cold for sure because " 184 "it may be a function newly added without ever being sampled. " 185 "With the flag enabled, compiler can put such profile unknown " 186 "functions into a special section, so runtime system can choose " 187 "to handle it in a different way than .text section, to save " 188 "RAM for example. ")); 189 190 static cl::opt<unsigned> FreqRatioToSkipMerge( 191 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 192 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 193 "(frequency of destination block) is greater than this ratio")); 194 195 static cl::opt<bool> ForceSplitStore( 196 "force-split-store", cl::Hidden, cl::init(false), 197 cl::desc("Force store splitting no matter what the target query says.")); 198 199 static cl::opt<bool> 200 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 201 cl::desc("Enable merging of redundant sexts when one is dominating" 202 " the other."), cl::init(true)); 203 204 static cl::opt<bool> DisableComplexAddrModes( 205 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 206 cl::desc("Disables combining addressing modes with different parts " 207 "in optimizeMemoryInst.")); 208 209 static cl::opt<bool> 210 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 211 cl::desc("Allow creation of Phis in Address sinking.")); 212 213 static cl::opt<bool> 214 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 215 cl::desc("Allow creation of selects in Address sinking.")); 216 217 static cl::opt<bool> AddrSinkCombineBaseReg( 218 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 219 cl::desc("Allow combining of BaseReg field in Address sinking.")); 220 221 static cl::opt<bool> AddrSinkCombineBaseGV( 222 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 223 cl::desc("Allow combining of BaseGV field in Address sinking.")); 224 225 static cl::opt<bool> AddrSinkCombineBaseOffs( 226 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 227 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 228 229 static cl::opt<bool> AddrSinkCombineScaledReg( 230 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 231 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 232 233 static cl::opt<bool> 234 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 235 cl::init(true), 236 cl::desc("Enable splitting large offset of GEP.")); 237 238 static cl::opt<bool> EnableICMP_EQToICMP_ST( 239 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 240 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 241 242 static cl::opt<bool> 243 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), 244 cl::desc("Enable BFI update verification for " 245 "CodeGenPrepare.")); 246 247 static cl::opt<bool> OptimizePhiTypes( 248 "cgp-optimize-phi-types", cl::Hidden, cl::init(false), 249 cl::desc("Enable converting phi types in CodeGenPrepare")); 250 251 namespace { 252 253 enum ExtType { 254 ZeroExtension, // Zero extension has been seen. 255 SignExtension, // Sign extension has been seen. 256 BothExtension // This extension type is used if we saw sext after 257 // ZeroExtension had been set, or if we saw zext after 258 // SignExtension had been set. It makes the type 259 // information of a promoted instruction invalid. 260 }; 261 262 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 263 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 264 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 265 using SExts = SmallVector<Instruction *, 16>; 266 using ValueToSExts = DenseMap<Value *, SExts>; 267 268 class TypePromotionTransaction; 269 270 class CodeGenPrepare : public FunctionPass { 271 const TargetMachine *TM = nullptr; 272 const TargetSubtargetInfo *SubtargetInfo; 273 const TargetLowering *TLI = nullptr; 274 const TargetRegisterInfo *TRI; 275 const TargetTransformInfo *TTI = nullptr; 276 const TargetLibraryInfo *TLInfo; 277 const LoopInfo *LI; 278 std::unique_ptr<BlockFrequencyInfo> BFI; 279 std::unique_ptr<BranchProbabilityInfo> BPI; 280 ProfileSummaryInfo *PSI; 281 282 /// As we scan instructions optimizing them, this is the next instruction 283 /// to optimize. Transforms that can invalidate this should update it. 284 BasicBlock::iterator CurInstIterator; 285 286 /// Keeps track of non-local addresses that have been sunk into a block. 287 /// This allows us to avoid inserting duplicate code for blocks with 288 /// multiple load/stores of the same address. The usage of WeakTrackingVH 289 /// enables SunkAddrs to be treated as a cache whose entries can be 290 /// invalidated if a sunken address computation has been erased. 291 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 292 293 /// Keeps track of all instructions inserted for the current function. 294 SetOfInstrs InsertedInsts; 295 296 /// Keeps track of the type of the related instruction before their 297 /// promotion for the current function. 298 InstrToOrigTy PromotedInsts; 299 300 /// Keep track of instructions removed during promotion. 301 SetOfInstrs RemovedInsts; 302 303 /// Keep track of sext chains based on their initial value. 304 DenseMap<Value *, Instruction *> SeenChainsForSExt; 305 306 /// Keep track of GEPs accessing the same data structures such as structs or 307 /// arrays that are candidates to be split later because of their large 308 /// size. 309 MapVector< 310 AssertingVH<Value>, 311 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 312 LargeOffsetGEPMap; 313 314 /// Keep track of new GEP base after splitting the GEPs having large offset. 315 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 316 317 /// Map serial numbers to Large offset GEPs. 318 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 319 320 /// Keep track of SExt promoted. 321 ValueToSExts ValToSExtendedUses; 322 323 /// True if the function has the OptSize attribute. 324 bool OptSize; 325 326 /// DataLayout for the Function being processed. 327 const DataLayout *DL = nullptr; 328 329 /// Building the dominator tree can be expensive, so we only build it 330 /// lazily and update it when required. 331 std::unique_ptr<DominatorTree> DT; 332 333 public: 334 static char ID; // Pass identification, replacement for typeid 335 336 CodeGenPrepare() : FunctionPass(ID) { 337 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 338 } 339 340 bool runOnFunction(Function &F) override; 341 342 StringRef getPassName() const override { return "CodeGen Prepare"; } 343 344 void getAnalysisUsage(AnalysisUsage &AU) const override { 345 // FIXME: When we can selectively preserve passes, preserve the domtree. 346 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 347 AU.addRequired<TargetLibraryInfoWrapperPass>(); 348 AU.addRequired<TargetPassConfig>(); 349 AU.addRequired<TargetTransformInfoWrapperPass>(); 350 AU.addRequired<LoopInfoWrapperPass>(); 351 } 352 353 private: 354 template <typename F> 355 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 356 // Substituting can cause recursive simplifications, which can invalidate 357 // our iterator. Use a WeakTrackingVH to hold onto it in case this 358 // happens. 359 Value *CurValue = &*CurInstIterator; 360 WeakTrackingVH IterHandle(CurValue); 361 362 f(); 363 364 // If the iterator instruction was recursively deleted, start over at the 365 // start of the block. 366 if (IterHandle != CurValue) { 367 CurInstIterator = BB->begin(); 368 SunkAddrs.clear(); 369 } 370 } 371 372 // Get the DominatorTree, building if necessary. 373 DominatorTree &getDT(Function &F) { 374 if (!DT) 375 DT = std::make_unique<DominatorTree>(F); 376 return *DT; 377 } 378 379 void removeAllAssertingVHReferences(Value *V); 380 bool eliminateFallThrough(Function &F); 381 bool eliminateMostlyEmptyBlocks(Function &F); 382 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 383 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 384 void eliminateMostlyEmptyBlock(BasicBlock *BB); 385 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 386 bool isPreheader); 387 bool makeBitReverse(Instruction &I); 388 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 389 bool optimizeInst(Instruction *I, bool &ModifiedDT); 390 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 391 Type *AccessTy, unsigned AddrSpace); 392 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); 393 bool optimizeInlineAsmInst(CallInst *CS); 394 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 395 bool optimizeExt(Instruction *&I); 396 bool optimizeExtUses(Instruction *I); 397 bool optimizeLoadExt(LoadInst *Load); 398 bool optimizeShiftInst(BinaryOperator *BO); 399 bool optimizeFunnelShift(IntrinsicInst *Fsh); 400 bool optimizeSelectInst(SelectInst *SI); 401 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 402 bool optimizeSwitchInst(SwitchInst *SI); 403 bool optimizeExtractElementInst(Instruction *Inst); 404 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 405 bool fixupDbgValue(Instruction *I); 406 bool placeDbgValues(Function &F); 407 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 408 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 409 bool tryToPromoteExts(TypePromotionTransaction &TPT, 410 const SmallVectorImpl<Instruction *> &Exts, 411 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 412 unsigned CreatedInstsCost = 0); 413 bool mergeSExts(Function &F); 414 bool splitLargeGEPOffsets(); 415 bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, 416 SmallPtrSetImpl<Instruction *> &DeletedInstrs); 417 bool optimizePhiTypes(Function &F); 418 bool performAddressTypePromotion( 419 Instruction *&Inst, 420 bool AllowPromotionWithoutCommonHeader, 421 bool HasPromoted, TypePromotionTransaction &TPT, 422 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 423 bool splitBranchCondition(Function &F, bool &ModifiedDT); 424 bool simplifyOffsetableRelocate(GCStatepointInst &I); 425 426 bool tryToSinkFreeOperands(Instruction *I); 427 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, 428 Value *Arg1, CmpInst *Cmp, 429 Intrinsic::ID IID); 430 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 431 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 432 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 433 void verifyBFIUpdates(Function &F); 434 }; 435 436 } // end anonymous namespace 437 438 char CodeGenPrepare::ID = 0; 439 440 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 441 "Optimize for code generation", false, false) 442 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 443 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 444 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 445 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 446 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 447 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 448 "Optimize for code generation", false, false) 449 450 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 451 452 bool CodeGenPrepare::runOnFunction(Function &F) { 453 if (skipFunction(F)) 454 return false; 455 456 DL = &F.getParent()->getDataLayout(); 457 458 bool EverMadeChange = false; 459 // Clear per function information. 460 InsertedInsts.clear(); 461 PromotedInsts.clear(); 462 463 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 464 SubtargetInfo = TM->getSubtargetImpl(F); 465 TLI = SubtargetInfo->getTargetLowering(); 466 TRI = SubtargetInfo->getRegisterInfo(); 467 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 468 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 469 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 470 BPI.reset(new BranchProbabilityInfo(F, *LI)); 471 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 472 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 473 OptSize = F.hasOptSize(); 474 if (ProfileGuidedSectionPrefix) { 475 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 476 F.setSectionPrefix(".hot"); 477 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 478 F.setSectionPrefix(".unlikely"); 479 else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && 480 PSI->isFunctionHotnessUnknown(F)) 481 F.setSectionPrefix(".unknown"); 482 } 483 484 /// This optimization identifies DIV instructions that can be 485 /// profitably bypassed and carried out with a shorter, faster divide. 486 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 487 const DenseMap<unsigned int, unsigned int> &BypassWidths = 488 TLI->getBypassSlowDivWidths(); 489 BasicBlock* BB = &*F.begin(); 490 while (BB != nullptr) { 491 // bypassSlowDivision may create new BBs, but we don't want to reapply the 492 // optimization to those blocks. 493 BasicBlock* Next = BB->getNextNode(); 494 // F.hasOptSize is already checked in the outer if statement. 495 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 496 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 497 BB = Next; 498 } 499 } 500 501 // Eliminate blocks that contain only PHI nodes and an 502 // unconditional branch. 503 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 504 505 bool ModifiedDT = false; 506 if (!DisableBranchOpts) 507 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 508 509 // Split some critical edges where one of the sources is an indirect branch, 510 // to help generate sane code for PHIs involving such edges. 511 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 512 513 bool MadeChange = true; 514 while (MadeChange) { 515 MadeChange = false; 516 DT.reset(); 517 for (Function::iterator I = F.begin(); I != F.end(); ) { 518 BasicBlock *BB = &*I++; 519 bool ModifiedDTOnIteration = false; 520 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 521 522 // Restart BB iteration if the dominator tree of the Function was changed 523 if (ModifiedDTOnIteration) 524 break; 525 } 526 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 527 MadeChange |= mergeSExts(F); 528 if (!LargeOffsetGEPMap.empty()) 529 MadeChange |= splitLargeGEPOffsets(); 530 MadeChange |= optimizePhiTypes(F); 531 532 if (MadeChange) 533 eliminateFallThrough(F); 534 535 // Really free removed instructions during promotion. 536 for (Instruction *I : RemovedInsts) 537 I->deleteValue(); 538 539 EverMadeChange |= MadeChange; 540 SeenChainsForSExt.clear(); 541 ValToSExtendedUses.clear(); 542 RemovedInsts.clear(); 543 LargeOffsetGEPMap.clear(); 544 LargeOffsetGEPID.clear(); 545 } 546 547 SunkAddrs.clear(); 548 549 if (!DisableBranchOpts) { 550 MadeChange = false; 551 // Use a set vector to get deterministic iteration order. The order the 552 // blocks are removed may affect whether or not PHI nodes in successors 553 // are removed. 554 SmallSetVector<BasicBlock*, 8> WorkList; 555 for (BasicBlock &BB : F) { 556 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 557 MadeChange |= ConstantFoldTerminator(&BB, true); 558 if (!MadeChange) continue; 559 560 for (SmallVectorImpl<BasicBlock*>::iterator 561 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 562 if (pred_begin(*II) == pred_end(*II)) 563 WorkList.insert(*II); 564 } 565 566 // Delete the dead blocks and any of their dead successors. 567 MadeChange |= !WorkList.empty(); 568 while (!WorkList.empty()) { 569 BasicBlock *BB = WorkList.pop_back_val(); 570 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 571 572 DeleteDeadBlock(BB); 573 574 for (SmallVectorImpl<BasicBlock*>::iterator 575 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 576 if (pred_begin(*II) == pred_end(*II)) 577 WorkList.insert(*II); 578 } 579 580 // Merge pairs of basic blocks with unconditional branches, connected by 581 // a single edge. 582 if (EverMadeChange || MadeChange) 583 MadeChange |= eliminateFallThrough(F); 584 585 EverMadeChange |= MadeChange; 586 } 587 588 if (!DisableGCOpts) { 589 SmallVector<GCStatepointInst *, 2> Statepoints; 590 for (BasicBlock &BB : F) 591 for (Instruction &I : BB) 592 if (auto *SP = dyn_cast<GCStatepointInst>(&I)) 593 Statepoints.push_back(SP); 594 for (auto &I : Statepoints) 595 EverMadeChange |= simplifyOffsetableRelocate(*I); 596 } 597 598 // Do this last to clean up use-before-def scenarios introduced by other 599 // preparatory transforms. 600 EverMadeChange |= placeDbgValues(F); 601 602 #ifndef NDEBUG 603 if (VerifyBFIUpdates) 604 verifyBFIUpdates(F); 605 #endif 606 607 return EverMadeChange; 608 } 609 610 /// An instruction is about to be deleted, so remove all references to it in our 611 /// GEP-tracking data strcutures. 612 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) { 613 LargeOffsetGEPMap.erase(V); 614 NewGEPBases.erase(V); 615 616 auto GEP = dyn_cast<GetElementPtrInst>(V); 617 if (!GEP) 618 return; 619 620 LargeOffsetGEPID.erase(GEP); 621 622 auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand()); 623 if (VecI == LargeOffsetGEPMap.end()) 624 return; 625 626 auto &GEPVector = VecI->second; 627 const auto &I = std::find_if(GEPVector.begin(), GEPVector.end(), 628 [=](auto &Elt) { return Elt.first == GEP; }); 629 if (I == GEPVector.end()) 630 return; 631 632 GEPVector.erase(I); 633 if (GEPVector.empty()) 634 LargeOffsetGEPMap.erase(VecI); 635 } 636 637 // Verify BFI has been updated correctly by recomputing BFI and comparing them. 638 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) { 639 DominatorTree NewDT(F); 640 LoopInfo NewLI(NewDT); 641 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); 642 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); 643 NewBFI.verifyMatch(*BFI); 644 } 645 646 /// Merge basic blocks which are connected by a single edge, where one of the 647 /// basic blocks has a single successor pointing to the other basic block, 648 /// which has a single predecessor. 649 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 650 bool Changed = false; 651 // Scan all of the blocks in the function, except for the entry block. 652 // Use a temporary array to avoid iterator being invalidated when 653 // deleting blocks. 654 SmallVector<WeakTrackingVH, 16> Blocks; 655 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 656 Blocks.push_back(&Block); 657 658 SmallSet<WeakTrackingVH, 16> Preds; 659 for (auto &Block : Blocks) { 660 auto *BB = cast_or_null<BasicBlock>(Block); 661 if (!BB) 662 continue; 663 // If the destination block has a single pred, then this is a trivial 664 // edge, just collapse it. 665 BasicBlock *SinglePred = BB->getSinglePredecessor(); 666 667 // Don't merge if BB's address is taken. 668 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 669 670 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 671 if (Term && !Term->isConditional()) { 672 Changed = true; 673 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 674 675 // Merge BB into SinglePred and delete it. 676 MergeBlockIntoPredecessor(BB); 677 Preds.insert(SinglePred); 678 } 679 } 680 681 // (Repeatedly) merging blocks into their predecessors can create redundant 682 // debug intrinsics. 683 for (auto &Pred : Preds) 684 if (auto *BB = cast_or_null<BasicBlock>(Pred)) 685 RemoveRedundantDbgInstrs(BB); 686 687 return Changed; 688 } 689 690 /// Find a destination block from BB if BB is mergeable empty block. 691 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 692 // If this block doesn't end with an uncond branch, ignore it. 693 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 694 if (!BI || !BI->isUnconditional()) 695 return nullptr; 696 697 // If the instruction before the branch (skipping debug info) isn't a phi 698 // node, then other stuff is happening here. 699 BasicBlock::iterator BBI = BI->getIterator(); 700 if (BBI != BB->begin()) { 701 --BBI; 702 while (isa<DbgInfoIntrinsic>(BBI)) { 703 if (BBI == BB->begin()) 704 break; 705 --BBI; 706 } 707 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 708 return nullptr; 709 } 710 711 // Do not break infinite loops. 712 BasicBlock *DestBB = BI->getSuccessor(0); 713 if (DestBB == BB) 714 return nullptr; 715 716 if (!canMergeBlocks(BB, DestBB)) 717 DestBB = nullptr; 718 719 return DestBB; 720 } 721 722 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 723 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 724 /// edges in ways that are non-optimal for isel. Start by eliminating these 725 /// blocks so we can split them the way we want them. 726 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 727 SmallPtrSet<BasicBlock *, 16> Preheaders; 728 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 729 while (!LoopList.empty()) { 730 Loop *L = LoopList.pop_back_val(); 731 LoopList.insert(LoopList.end(), L->begin(), L->end()); 732 if (BasicBlock *Preheader = L->getLoopPreheader()) 733 Preheaders.insert(Preheader); 734 } 735 736 bool MadeChange = false; 737 // Copy blocks into a temporary array to avoid iterator invalidation issues 738 // as we remove them. 739 // Note that this intentionally skips the entry block. 740 SmallVector<WeakTrackingVH, 16> Blocks; 741 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 742 Blocks.push_back(&Block); 743 744 for (auto &Block : Blocks) { 745 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 746 if (!BB) 747 continue; 748 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 749 if (!DestBB || 750 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 751 continue; 752 753 eliminateMostlyEmptyBlock(BB); 754 MadeChange = true; 755 } 756 return MadeChange; 757 } 758 759 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 760 BasicBlock *DestBB, 761 bool isPreheader) { 762 // Do not delete loop preheaders if doing so would create a critical edge. 763 // Loop preheaders can be good locations to spill registers. If the 764 // preheader is deleted and we create a critical edge, registers may be 765 // spilled in the loop body instead. 766 if (!DisablePreheaderProtect && isPreheader && 767 !(BB->getSinglePredecessor() && 768 BB->getSinglePredecessor()->getSingleSuccessor())) 769 return false; 770 771 // Skip merging if the block's successor is also a successor to any callbr 772 // that leads to this block. 773 // FIXME: Is this really needed? Is this a correctness issue? 774 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 775 if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator())) 776 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 777 if (DestBB == CBI->getSuccessor(i)) 778 return false; 779 } 780 781 // Try to skip merging if the unique predecessor of BB is terminated by a 782 // switch or indirect branch instruction, and BB is used as an incoming block 783 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 784 // add COPY instructions in the predecessor of BB instead of BB (if it is not 785 // merged). Note that the critical edge created by merging such blocks wont be 786 // split in MachineSink because the jump table is not analyzable. By keeping 787 // such empty block (BB), ISel will place COPY instructions in BB, not in the 788 // predecessor of BB. 789 BasicBlock *Pred = BB->getUniquePredecessor(); 790 if (!Pred || 791 !(isa<SwitchInst>(Pred->getTerminator()) || 792 isa<IndirectBrInst>(Pred->getTerminator()))) 793 return true; 794 795 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 796 return true; 797 798 // We use a simple cost heuristic which determine skipping merging is 799 // profitable if the cost of skipping merging is less than the cost of 800 // merging : Cost(skipping merging) < Cost(merging BB), where the 801 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 802 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 803 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 804 // Freq(Pred) / Freq(BB) > 2. 805 // Note that if there are multiple empty blocks sharing the same incoming 806 // value for the PHIs in the DestBB, we consider them together. In such 807 // case, Cost(merging BB) will be the sum of their frequencies. 808 809 if (!isa<PHINode>(DestBB->begin())) 810 return true; 811 812 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 813 814 // Find all other incoming blocks from which incoming values of all PHIs in 815 // DestBB are the same as the ones from BB. 816 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 817 ++PI) { 818 BasicBlock *DestBBPred = *PI; 819 if (DestBBPred == BB) 820 continue; 821 822 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 823 return DestPN.getIncomingValueForBlock(BB) == 824 DestPN.getIncomingValueForBlock(DestBBPred); 825 })) 826 SameIncomingValueBBs.insert(DestBBPred); 827 } 828 829 // See if all BB's incoming values are same as the value from Pred. In this 830 // case, no reason to skip merging because COPYs are expected to be place in 831 // Pred already. 832 if (SameIncomingValueBBs.count(Pred)) 833 return true; 834 835 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 836 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 837 838 for (auto *SameValueBB : SameIncomingValueBBs) 839 if (SameValueBB->getUniquePredecessor() == Pred && 840 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 841 BBFreq += BFI->getBlockFreq(SameValueBB); 842 843 return PredFreq.getFrequency() <= 844 BBFreq.getFrequency() * FreqRatioToSkipMerge; 845 } 846 847 /// Return true if we can merge BB into DestBB if there is a single 848 /// unconditional branch between them, and BB contains no other non-phi 849 /// instructions. 850 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 851 const BasicBlock *DestBB) const { 852 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 853 // the successor. If there are more complex condition (e.g. preheaders), 854 // don't mess around with them. 855 for (const PHINode &PN : BB->phis()) { 856 for (const User *U : PN.users()) { 857 const Instruction *UI = cast<Instruction>(U); 858 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 859 return false; 860 // If User is inside DestBB block and it is a PHINode then check 861 // incoming value. If incoming value is not from BB then this is 862 // a complex condition (e.g. preheaders) we want to avoid here. 863 if (UI->getParent() == DestBB) { 864 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 865 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 866 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 867 if (Insn && Insn->getParent() == BB && 868 Insn->getParent() != UPN->getIncomingBlock(I)) 869 return false; 870 } 871 } 872 } 873 } 874 875 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 876 // and DestBB may have conflicting incoming values for the block. If so, we 877 // can't merge the block. 878 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 879 if (!DestBBPN) return true; // no conflict. 880 881 // Collect the preds of BB. 882 SmallPtrSet<const BasicBlock*, 16> BBPreds; 883 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 884 // It is faster to get preds from a PHI than with pred_iterator. 885 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 886 BBPreds.insert(BBPN->getIncomingBlock(i)); 887 } else { 888 BBPreds.insert(pred_begin(BB), pred_end(BB)); 889 } 890 891 // Walk the preds of DestBB. 892 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 893 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 894 if (BBPreds.count(Pred)) { // Common predecessor? 895 for (const PHINode &PN : DestBB->phis()) { 896 const Value *V1 = PN.getIncomingValueForBlock(Pred); 897 const Value *V2 = PN.getIncomingValueForBlock(BB); 898 899 // If V2 is a phi node in BB, look up what the mapped value will be. 900 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 901 if (V2PN->getParent() == BB) 902 V2 = V2PN->getIncomingValueForBlock(Pred); 903 904 // If there is a conflict, bail out. 905 if (V1 != V2) return false; 906 } 907 } 908 } 909 910 return true; 911 } 912 913 /// Eliminate a basic block that has only phi's and an unconditional branch in 914 /// it. 915 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 916 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 917 BasicBlock *DestBB = BI->getSuccessor(0); 918 919 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 920 << *BB << *DestBB); 921 922 // If the destination block has a single pred, then this is a trivial edge, 923 // just collapse it. 924 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 925 if (SinglePred != DestBB) { 926 assert(SinglePred == BB && 927 "Single predecessor not the same as predecessor"); 928 // Merge DestBB into SinglePred/BB and delete it. 929 MergeBlockIntoPredecessor(DestBB); 930 // Note: BB(=SinglePred) will not be deleted on this path. 931 // DestBB(=its single successor) is the one that was deleted. 932 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 933 return; 934 } 935 } 936 937 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 938 // to handle the new incoming edges it is about to have. 939 for (PHINode &PN : DestBB->phis()) { 940 // Remove the incoming value for BB, and remember it. 941 Value *InVal = PN.removeIncomingValue(BB, false); 942 943 // Two options: either the InVal is a phi node defined in BB or it is some 944 // value that dominates BB. 945 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 946 if (InValPhi && InValPhi->getParent() == BB) { 947 // Add all of the input values of the input PHI as inputs of this phi. 948 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 949 PN.addIncoming(InValPhi->getIncomingValue(i), 950 InValPhi->getIncomingBlock(i)); 951 } else { 952 // Otherwise, add one instance of the dominating value for each edge that 953 // we will be adding. 954 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 955 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 956 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 957 } else { 958 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 959 PN.addIncoming(InVal, *PI); 960 } 961 } 962 } 963 964 // The PHIs are now updated, change everything that refers to BB to use 965 // DestBB and remove BB. 966 BB->replaceAllUsesWith(DestBB); 967 BB->eraseFromParent(); 968 ++NumBlocksElim; 969 970 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 971 } 972 973 // Computes a map of base pointer relocation instructions to corresponding 974 // derived pointer relocation instructions given a vector of all relocate calls 975 static void computeBaseDerivedRelocateMap( 976 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 977 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 978 &RelocateInstMap) { 979 // Collect information in two maps: one primarily for locating the base object 980 // while filling the second map; the second map is the final structure holding 981 // a mapping between Base and corresponding Derived relocate calls 982 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 983 for (auto *ThisRelocate : AllRelocateCalls) { 984 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 985 ThisRelocate->getDerivedPtrIndex()); 986 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 987 } 988 for (auto &Item : RelocateIdxMap) { 989 std::pair<unsigned, unsigned> Key = Item.first; 990 if (Key.first == Key.second) 991 // Base relocation: nothing to insert 992 continue; 993 994 GCRelocateInst *I = Item.second; 995 auto BaseKey = std::make_pair(Key.first, Key.first); 996 997 // We're iterating over RelocateIdxMap so we cannot modify it. 998 auto MaybeBase = RelocateIdxMap.find(BaseKey); 999 if (MaybeBase == RelocateIdxMap.end()) 1000 // TODO: We might want to insert a new base object relocate and gep off 1001 // that, if there are enough derived object relocates. 1002 continue; 1003 1004 RelocateInstMap[MaybeBase->second].push_back(I); 1005 } 1006 } 1007 1008 // Accepts a GEP and extracts the operands into a vector provided they're all 1009 // small integer constants 1010 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 1011 SmallVectorImpl<Value *> &OffsetV) { 1012 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 1013 // Only accept small constant integer operands 1014 auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 1015 if (!Op || Op->getZExtValue() > 20) 1016 return false; 1017 } 1018 1019 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 1020 OffsetV.push_back(GEP->getOperand(i)); 1021 return true; 1022 } 1023 1024 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 1025 // replace, computes a replacement, and affects it. 1026 static bool 1027 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 1028 const SmallVectorImpl<GCRelocateInst *> &Targets) { 1029 bool MadeChange = false; 1030 // We must ensure the relocation of derived pointer is defined after 1031 // relocation of base pointer. If we find a relocation corresponding to base 1032 // defined earlier than relocation of base then we move relocation of base 1033 // right before found relocation. We consider only relocation in the same 1034 // basic block as relocation of base. Relocations from other basic block will 1035 // be skipped by optimization and we do not care about them. 1036 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 1037 &*R != RelocatedBase; ++R) 1038 if (auto *RI = dyn_cast<GCRelocateInst>(R)) 1039 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 1040 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 1041 RelocatedBase->moveBefore(RI); 1042 break; 1043 } 1044 1045 for (GCRelocateInst *ToReplace : Targets) { 1046 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 1047 "Not relocating a derived object of the original base object"); 1048 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 1049 // A duplicate relocate call. TODO: coalesce duplicates. 1050 continue; 1051 } 1052 1053 if (RelocatedBase->getParent() != ToReplace->getParent()) { 1054 // Base and derived relocates are in different basic blocks. 1055 // In this case transform is only valid when base dominates derived 1056 // relocate. However it would be too expensive to check dominance 1057 // for each such relocate, so we skip the whole transformation. 1058 continue; 1059 } 1060 1061 Value *Base = ToReplace->getBasePtr(); 1062 auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 1063 if (!Derived || Derived->getPointerOperand() != Base) 1064 continue; 1065 1066 SmallVector<Value *, 2> OffsetV; 1067 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 1068 continue; 1069 1070 // Create a Builder and replace the target callsite with a gep 1071 assert(RelocatedBase->getNextNode() && 1072 "Should always have one since it's not a terminator"); 1073 1074 // Insert after RelocatedBase 1075 IRBuilder<> Builder(RelocatedBase->getNextNode()); 1076 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1077 1078 // If gc_relocate does not match the actual type, cast it to the right type. 1079 // In theory, there must be a bitcast after gc_relocate if the type does not 1080 // match, and we should reuse it to get the derived pointer. But it could be 1081 // cases like this: 1082 // bb1: 1083 // ... 1084 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1085 // br label %merge 1086 // 1087 // bb2: 1088 // ... 1089 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1090 // br label %merge 1091 // 1092 // merge: 1093 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1094 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1095 // 1096 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1097 // no matter there is already one or not. In this way, we can handle all cases, and 1098 // the extra bitcast should be optimized away in later passes. 1099 Value *ActualRelocatedBase = RelocatedBase; 1100 if (RelocatedBase->getType() != Base->getType()) { 1101 ActualRelocatedBase = 1102 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1103 } 1104 Value *Replacement = Builder.CreateGEP( 1105 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1106 Replacement->takeName(ToReplace); 1107 // If the newly generated derived pointer's type does not match the original derived 1108 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1109 Value *ActualReplacement = Replacement; 1110 if (Replacement->getType() != ToReplace->getType()) { 1111 ActualReplacement = 1112 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1113 } 1114 ToReplace->replaceAllUsesWith(ActualReplacement); 1115 ToReplace->eraseFromParent(); 1116 1117 MadeChange = true; 1118 } 1119 return MadeChange; 1120 } 1121 1122 // Turns this: 1123 // 1124 // %base = ... 1125 // %ptr = gep %base + 15 1126 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1127 // %base' = relocate(%tok, i32 4, i32 4) 1128 // %ptr' = relocate(%tok, i32 4, i32 5) 1129 // %val = load %ptr' 1130 // 1131 // into this: 1132 // 1133 // %base = ... 1134 // %ptr = gep %base + 15 1135 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1136 // %base' = gc.relocate(%tok, i32 4, i32 4) 1137 // %ptr' = gep %base' + 15 1138 // %val = load %ptr' 1139 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { 1140 bool MadeChange = false; 1141 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1142 for (auto *U : I.users()) 1143 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1144 // Collect all the relocate calls associated with a statepoint 1145 AllRelocateCalls.push_back(Relocate); 1146 1147 // We need at least one base pointer relocation + one derived pointer 1148 // relocation to mangle 1149 if (AllRelocateCalls.size() < 2) 1150 return false; 1151 1152 // RelocateInstMap is a mapping from the base relocate instruction to the 1153 // corresponding derived relocate instructions 1154 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1155 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1156 if (RelocateInstMap.empty()) 1157 return false; 1158 1159 for (auto &Item : RelocateInstMap) 1160 // Item.first is the RelocatedBase to offset against 1161 // Item.second is the vector of Targets to replace 1162 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1163 return MadeChange; 1164 } 1165 1166 /// Sink the specified cast instruction into its user blocks. 1167 static bool SinkCast(CastInst *CI) { 1168 BasicBlock *DefBB = CI->getParent(); 1169 1170 /// InsertedCasts - Only insert a cast in each block once. 1171 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1172 1173 bool MadeChange = false; 1174 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1175 UI != E; ) { 1176 Use &TheUse = UI.getUse(); 1177 Instruction *User = cast<Instruction>(*UI); 1178 1179 // Figure out which BB this cast is used in. For PHI's this is the 1180 // appropriate predecessor block. 1181 BasicBlock *UserBB = User->getParent(); 1182 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1183 UserBB = PN->getIncomingBlock(TheUse); 1184 } 1185 1186 // Preincrement use iterator so we don't invalidate it. 1187 ++UI; 1188 1189 // The first insertion point of a block containing an EH pad is after the 1190 // pad. If the pad is the user, we cannot sink the cast past the pad. 1191 if (User->isEHPad()) 1192 continue; 1193 1194 // If the block selected to receive the cast is an EH pad that does not 1195 // allow non-PHI instructions before the terminator, we can't sink the 1196 // cast. 1197 if (UserBB->getTerminator()->isEHPad()) 1198 continue; 1199 1200 // If this user is in the same block as the cast, don't change the cast. 1201 if (UserBB == DefBB) continue; 1202 1203 // If we have already inserted a cast into this block, use it. 1204 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1205 1206 if (!InsertedCast) { 1207 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1208 assert(InsertPt != UserBB->end()); 1209 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1210 CI->getType(), "", &*InsertPt); 1211 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1212 } 1213 1214 // Replace a use of the cast with a use of the new cast. 1215 TheUse = InsertedCast; 1216 MadeChange = true; 1217 ++NumCastUses; 1218 } 1219 1220 // If we removed all uses, nuke the cast. 1221 if (CI->use_empty()) { 1222 salvageDebugInfo(*CI); 1223 CI->eraseFromParent(); 1224 MadeChange = true; 1225 } 1226 1227 return MadeChange; 1228 } 1229 1230 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1231 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1232 /// reduce the number of virtual registers that must be created and coalesced. 1233 /// 1234 /// Return true if any changes are made. 1235 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1236 const DataLayout &DL) { 1237 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1238 // than sinking only nop casts, but is helpful on some platforms. 1239 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1240 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1241 ASC->getDestAddressSpace())) 1242 return false; 1243 } 1244 1245 // If this is a noop copy, 1246 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1247 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1248 1249 // This is an fp<->int conversion? 1250 if (SrcVT.isInteger() != DstVT.isInteger()) 1251 return false; 1252 1253 // If this is an extension, it will be a zero or sign extension, which 1254 // isn't a noop. 1255 if (SrcVT.bitsLT(DstVT)) return false; 1256 1257 // If these values will be promoted, find out what they will be promoted 1258 // to. This helps us consider truncates on PPC as noop copies when they 1259 // are. 1260 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1261 TargetLowering::TypePromoteInteger) 1262 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1263 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1264 TargetLowering::TypePromoteInteger) 1265 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1266 1267 // If, after promotion, these are the same types, this is a noop copy. 1268 if (SrcVT != DstVT) 1269 return false; 1270 1271 return SinkCast(CI); 1272 } 1273 1274 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1275 Value *Arg0, Value *Arg1, 1276 CmpInst *Cmp, 1277 Intrinsic::ID IID) { 1278 if (BO->getParent() != Cmp->getParent()) { 1279 // We used to use a dominator tree here to allow multi-block optimization. 1280 // But that was problematic because: 1281 // 1. It could cause a perf regression by hoisting the math op into the 1282 // critical path. 1283 // 2. It could cause a perf regression by creating a value that was live 1284 // across multiple blocks and increasing register pressure. 1285 // 3. Use of a dominator tree could cause large compile-time regression. 1286 // This is because we recompute the DT on every change in the main CGP 1287 // run-loop. The recomputing is probably unnecessary in many cases, so if 1288 // that was fixed, using a DT here would be ok. 1289 return false; 1290 } 1291 1292 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1293 if (BO->getOpcode() == Instruction::Add && 1294 IID == Intrinsic::usub_with_overflow) { 1295 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1296 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1297 } 1298 1299 // Insert at the first instruction of the pair. 1300 Instruction *InsertPt = nullptr; 1301 for (Instruction &Iter : *Cmp->getParent()) { 1302 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1303 // the overflow intrinsic are defined. 1304 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1305 InsertPt = &Iter; 1306 break; 1307 } 1308 } 1309 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1310 1311 IRBuilder<> Builder(InsertPt); 1312 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1313 if (BO->getOpcode() != Instruction::Xor) { 1314 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1315 BO->replaceAllUsesWith(Math); 1316 } else 1317 assert(BO->hasOneUse() && 1318 "Patterns with XOr should use the BO only in the compare"); 1319 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1320 Cmp->replaceAllUsesWith(OV); 1321 Cmp->eraseFromParent(); 1322 BO->eraseFromParent(); 1323 return true; 1324 } 1325 1326 /// Match special-case patterns that check for unsigned add overflow. 1327 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1328 BinaryOperator *&Add) { 1329 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1330 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1331 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1332 1333 // We are not expecting non-canonical/degenerate code. Just bail out. 1334 if (isa<Constant>(A)) 1335 return false; 1336 1337 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1338 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1339 B = ConstantInt::get(B->getType(), 1); 1340 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1341 B = ConstantInt::get(B->getType(), -1); 1342 else 1343 return false; 1344 1345 // Check the users of the variable operand of the compare looking for an add 1346 // with the adjusted constant. 1347 for (User *U : A->users()) { 1348 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1349 Add = cast<BinaryOperator>(U); 1350 return true; 1351 } 1352 } 1353 return false; 1354 } 1355 1356 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1357 /// intrinsic. Return true if any changes were made. 1358 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1359 bool &ModifiedDT) { 1360 Value *A, *B; 1361 BinaryOperator *Add; 1362 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1363 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1364 return false; 1365 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1366 A = Add->getOperand(0); 1367 B = Add->getOperand(1); 1368 } 1369 1370 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1371 TLI->getValueType(*DL, Add->getType()), 1372 Add->hasNUsesOrMore(2))) 1373 return false; 1374 1375 // We don't want to move around uses of condition values this late, so we 1376 // check if it is legal to create the call to the intrinsic in the basic 1377 // block containing the icmp. 1378 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1379 return false; 1380 1381 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1382 Intrinsic::uadd_with_overflow)) 1383 return false; 1384 1385 // Reset callers - do not crash by iterating over a dead instruction. 1386 ModifiedDT = true; 1387 return true; 1388 } 1389 1390 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1391 bool &ModifiedDT) { 1392 // We are not expecting non-canonical/degenerate code. Just bail out. 1393 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1394 if (isa<Constant>(A) && isa<Constant>(B)) 1395 return false; 1396 1397 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1398 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1399 if (Pred == ICmpInst::ICMP_UGT) { 1400 std::swap(A, B); 1401 Pred = ICmpInst::ICMP_ULT; 1402 } 1403 // Convert special-case: (A == 0) is the same as (A u< 1). 1404 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1405 B = ConstantInt::get(B->getType(), 1); 1406 Pred = ICmpInst::ICMP_ULT; 1407 } 1408 // Convert special-case: (A != 0) is the same as (0 u< A). 1409 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1410 std::swap(A, B); 1411 Pred = ICmpInst::ICMP_ULT; 1412 } 1413 if (Pred != ICmpInst::ICMP_ULT) 1414 return false; 1415 1416 // Walk the users of a variable operand of a compare looking for a subtract or 1417 // add with that same operand. Also match the 2nd operand of the compare to 1418 // the add/sub, but that may be a negated constant operand of an add. 1419 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1420 BinaryOperator *Sub = nullptr; 1421 for (User *U : CmpVariableOperand->users()) { 1422 // A - B, A u< B --> usubo(A, B) 1423 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1424 Sub = cast<BinaryOperator>(U); 1425 break; 1426 } 1427 1428 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1429 const APInt *CmpC, *AddC; 1430 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1431 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1432 Sub = cast<BinaryOperator>(U); 1433 break; 1434 } 1435 } 1436 if (!Sub) 1437 return false; 1438 1439 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1440 TLI->getValueType(*DL, Sub->getType()), 1441 Sub->hasNUsesOrMore(2))) 1442 return false; 1443 1444 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1445 Cmp, Intrinsic::usub_with_overflow)) 1446 return false; 1447 1448 // Reset callers - do not crash by iterating over a dead instruction. 1449 ModifiedDT = true; 1450 return true; 1451 } 1452 1453 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1454 /// registers that must be created and coalesced. This is a clear win except on 1455 /// targets with multiple condition code registers (PowerPC), where it might 1456 /// lose; some adjustment may be wanted there. 1457 /// 1458 /// Return true if any changes are made. 1459 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1460 if (TLI.hasMultipleConditionRegisters()) 1461 return false; 1462 1463 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1464 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1465 return false; 1466 1467 // Only insert a cmp in each block once. 1468 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1469 1470 bool MadeChange = false; 1471 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1472 UI != E; ) { 1473 Use &TheUse = UI.getUse(); 1474 Instruction *User = cast<Instruction>(*UI); 1475 1476 // Preincrement use iterator so we don't invalidate it. 1477 ++UI; 1478 1479 // Don't bother for PHI nodes. 1480 if (isa<PHINode>(User)) 1481 continue; 1482 1483 // Figure out which BB this cmp is used in. 1484 BasicBlock *UserBB = User->getParent(); 1485 BasicBlock *DefBB = Cmp->getParent(); 1486 1487 // If this user is in the same block as the cmp, don't change the cmp. 1488 if (UserBB == DefBB) continue; 1489 1490 // If we have already inserted a cmp into this block, use it. 1491 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1492 1493 if (!InsertedCmp) { 1494 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1495 assert(InsertPt != UserBB->end()); 1496 InsertedCmp = 1497 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1498 Cmp->getOperand(0), Cmp->getOperand(1), "", 1499 &*InsertPt); 1500 // Propagate the debug info. 1501 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1502 } 1503 1504 // Replace a use of the cmp with a use of the new cmp. 1505 TheUse = InsertedCmp; 1506 MadeChange = true; 1507 ++NumCmpUses; 1508 } 1509 1510 // If we removed all uses, nuke the cmp. 1511 if (Cmp->use_empty()) { 1512 Cmp->eraseFromParent(); 1513 MadeChange = true; 1514 } 1515 1516 return MadeChange; 1517 } 1518 1519 /// For pattern like: 1520 /// 1521 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1522 /// ... 1523 /// DomBB: 1524 /// ... 1525 /// br DomCond, TrueBB, CmpBB 1526 /// CmpBB: (with DomBB being the single predecessor) 1527 /// ... 1528 /// Cmp = icmp eq CmpOp0, CmpOp1 1529 /// ... 1530 /// 1531 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1532 /// different from lowering of icmp eq (PowerPC). This function try to convert 1533 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1534 /// After that, DomCond and Cmp can use the same comparison so reduce one 1535 /// comparison. 1536 /// 1537 /// Return true if any changes are made. 1538 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1539 const TargetLowering &TLI) { 1540 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1541 return false; 1542 1543 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1544 if (Pred != ICmpInst::ICMP_EQ) 1545 return false; 1546 1547 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1548 // icmp slt/sgt would introduce more redundant LLVM IR. 1549 for (User *U : Cmp->users()) { 1550 if (isa<BranchInst>(U)) 1551 continue; 1552 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1553 continue; 1554 return false; 1555 } 1556 1557 // This is a cheap/incomplete check for dominance - just match a single 1558 // predecessor with a conditional branch. 1559 BasicBlock *CmpBB = Cmp->getParent(); 1560 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1561 if (!DomBB) 1562 return false; 1563 1564 // We want to ensure that the only way control gets to the comparison of 1565 // interest is that a less/greater than comparison on the same operands is 1566 // false. 1567 Value *DomCond; 1568 BasicBlock *TrueBB, *FalseBB; 1569 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1570 return false; 1571 if (CmpBB != FalseBB) 1572 return false; 1573 1574 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1575 ICmpInst::Predicate DomPred; 1576 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1577 return false; 1578 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1579 return false; 1580 1581 // Convert the equality comparison to the opposite of the dominating 1582 // comparison and swap the direction for all branch/select users. 1583 // We have conceptually converted: 1584 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1585 // to 1586 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1587 // And similarly for branches. 1588 for (User *U : Cmp->users()) { 1589 if (auto *BI = dyn_cast<BranchInst>(U)) { 1590 assert(BI->isConditional() && "Must be conditional"); 1591 BI->swapSuccessors(); 1592 continue; 1593 } 1594 if (auto *SI = dyn_cast<SelectInst>(U)) { 1595 // Swap operands 1596 SI->swapValues(); 1597 SI->swapProfMetadata(); 1598 continue; 1599 } 1600 llvm_unreachable("Must be a branch or a select"); 1601 } 1602 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1603 return true; 1604 } 1605 1606 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1607 if (sinkCmpExpression(Cmp, *TLI)) 1608 return true; 1609 1610 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1611 return true; 1612 1613 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1614 return true; 1615 1616 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1617 return true; 1618 1619 return false; 1620 } 1621 1622 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1623 /// used in a compare to allow isel to generate better code for targets where 1624 /// this operation can be combined. 1625 /// 1626 /// Return true if any changes are made. 1627 static bool sinkAndCmp0Expression(Instruction *AndI, 1628 const TargetLowering &TLI, 1629 SetOfInstrs &InsertedInsts) { 1630 // Double-check that we're not trying to optimize an instruction that was 1631 // already optimized by some other part of this pass. 1632 assert(!InsertedInsts.count(AndI) && 1633 "Attempting to optimize already optimized and instruction"); 1634 (void) InsertedInsts; 1635 1636 // Nothing to do for single use in same basic block. 1637 if (AndI->hasOneUse() && 1638 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1639 return false; 1640 1641 // Try to avoid cases where sinking/duplicating is likely to increase register 1642 // pressure. 1643 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1644 !isa<ConstantInt>(AndI->getOperand(1)) && 1645 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1646 return false; 1647 1648 for (auto *U : AndI->users()) { 1649 Instruction *User = cast<Instruction>(U); 1650 1651 // Only sink 'and' feeding icmp with 0. 1652 if (!isa<ICmpInst>(User)) 1653 return false; 1654 1655 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1656 if (!CmpC || !CmpC->isZero()) 1657 return false; 1658 } 1659 1660 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1661 return false; 1662 1663 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1664 LLVM_DEBUG(AndI->getParent()->dump()); 1665 1666 // Push the 'and' into the same block as the icmp 0. There should only be 1667 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1668 // others, so we don't need to keep track of which BBs we insert into. 1669 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1670 UI != E; ) { 1671 Use &TheUse = UI.getUse(); 1672 Instruction *User = cast<Instruction>(*UI); 1673 1674 // Preincrement use iterator so we don't invalidate it. 1675 ++UI; 1676 1677 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1678 1679 // Keep the 'and' in the same place if the use is already in the same block. 1680 Instruction *InsertPt = 1681 User->getParent() == AndI->getParent() ? AndI : User; 1682 Instruction *InsertedAnd = 1683 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1684 AndI->getOperand(1), "", InsertPt); 1685 // Propagate the debug info. 1686 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1687 1688 // Replace a use of the 'and' with a use of the new 'and'. 1689 TheUse = InsertedAnd; 1690 ++NumAndUses; 1691 LLVM_DEBUG(User->getParent()->dump()); 1692 } 1693 1694 // We removed all uses, nuke the and. 1695 AndI->eraseFromParent(); 1696 return true; 1697 } 1698 1699 /// Check if the candidates could be combined with a shift instruction, which 1700 /// includes: 1701 /// 1. Truncate instruction 1702 /// 2. And instruction and the imm is a mask of the low bits: 1703 /// imm & (imm+1) == 0 1704 static bool isExtractBitsCandidateUse(Instruction *User) { 1705 if (!isa<TruncInst>(User)) { 1706 if (User->getOpcode() != Instruction::And || 1707 !isa<ConstantInt>(User->getOperand(1))) 1708 return false; 1709 1710 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1711 1712 if ((Cimm & (Cimm + 1)).getBoolValue()) 1713 return false; 1714 } 1715 return true; 1716 } 1717 1718 /// Sink both shift and truncate instruction to the use of truncate's BB. 1719 static bool 1720 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1721 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1722 const TargetLowering &TLI, const DataLayout &DL) { 1723 BasicBlock *UserBB = User->getParent(); 1724 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1725 auto *TruncI = cast<TruncInst>(User); 1726 bool MadeChange = false; 1727 1728 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1729 TruncE = TruncI->user_end(); 1730 TruncUI != TruncE;) { 1731 1732 Use &TruncTheUse = TruncUI.getUse(); 1733 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1734 // Preincrement use iterator so we don't invalidate it. 1735 1736 ++TruncUI; 1737 1738 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1739 if (!ISDOpcode) 1740 continue; 1741 1742 // If the use is actually a legal node, there will not be an 1743 // implicit truncate. 1744 // FIXME: always querying the result type is just an 1745 // approximation; some nodes' legality is determined by the 1746 // operand or other means. There's no good way to find out though. 1747 if (TLI.isOperationLegalOrCustom( 1748 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1749 continue; 1750 1751 // Don't bother for PHI nodes. 1752 if (isa<PHINode>(TruncUser)) 1753 continue; 1754 1755 BasicBlock *TruncUserBB = TruncUser->getParent(); 1756 1757 if (UserBB == TruncUserBB) 1758 continue; 1759 1760 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1761 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1762 1763 if (!InsertedShift && !InsertedTrunc) { 1764 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1765 assert(InsertPt != TruncUserBB->end()); 1766 // Sink the shift 1767 if (ShiftI->getOpcode() == Instruction::AShr) 1768 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1769 "", &*InsertPt); 1770 else 1771 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1772 "", &*InsertPt); 1773 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1774 1775 // Sink the trunc 1776 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1777 TruncInsertPt++; 1778 assert(TruncInsertPt != TruncUserBB->end()); 1779 1780 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1781 TruncI->getType(), "", &*TruncInsertPt); 1782 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1783 1784 MadeChange = true; 1785 1786 TruncTheUse = InsertedTrunc; 1787 } 1788 } 1789 return MadeChange; 1790 } 1791 1792 /// Sink the shift *right* instruction into user blocks if the uses could 1793 /// potentially be combined with this shift instruction and generate BitExtract 1794 /// instruction. It will only be applied if the architecture supports BitExtract 1795 /// instruction. Here is an example: 1796 /// BB1: 1797 /// %x.extract.shift = lshr i64 %arg1, 32 1798 /// BB2: 1799 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1800 /// ==> 1801 /// 1802 /// BB2: 1803 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1804 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1805 /// 1806 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1807 /// instruction. 1808 /// Return true if any changes are made. 1809 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1810 const TargetLowering &TLI, 1811 const DataLayout &DL) { 1812 BasicBlock *DefBB = ShiftI->getParent(); 1813 1814 /// Only insert instructions in each block once. 1815 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1816 1817 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1818 1819 bool MadeChange = false; 1820 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1821 UI != E;) { 1822 Use &TheUse = UI.getUse(); 1823 Instruction *User = cast<Instruction>(*UI); 1824 // Preincrement use iterator so we don't invalidate it. 1825 ++UI; 1826 1827 // Don't bother for PHI nodes. 1828 if (isa<PHINode>(User)) 1829 continue; 1830 1831 if (!isExtractBitsCandidateUse(User)) 1832 continue; 1833 1834 BasicBlock *UserBB = User->getParent(); 1835 1836 if (UserBB == DefBB) { 1837 // If the shift and truncate instruction are in the same BB. The use of 1838 // the truncate(TruncUse) may still introduce another truncate if not 1839 // legal. In this case, we would like to sink both shift and truncate 1840 // instruction to the BB of TruncUse. 1841 // for example: 1842 // BB1: 1843 // i64 shift.result = lshr i64 opnd, imm 1844 // trunc.result = trunc shift.result to i16 1845 // 1846 // BB2: 1847 // ----> We will have an implicit truncate here if the architecture does 1848 // not have i16 compare. 1849 // cmp i16 trunc.result, opnd2 1850 // 1851 if (isa<TruncInst>(User) && shiftIsLegal 1852 // If the type of the truncate is legal, no truncate will be 1853 // introduced in other basic blocks. 1854 && 1855 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1856 MadeChange = 1857 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1858 1859 continue; 1860 } 1861 // If we have already inserted a shift into this block, use it. 1862 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1863 1864 if (!InsertedShift) { 1865 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1866 assert(InsertPt != UserBB->end()); 1867 1868 if (ShiftI->getOpcode() == Instruction::AShr) 1869 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1870 "", &*InsertPt); 1871 else 1872 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1873 "", &*InsertPt); 1874 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1875 1876 MadeChange = true; 1877 } 1878 1879 // Replace a use of the shift with a use of the new shift. 1880 TheUse = InsertedShift; 1881 } 1882 1883 // If we removed all uses, or there are none, nuke the shift. 1884 if (ShiftI->use_empty()) { 1885 salvageDebugInfo(*ShiftI); 1886 ShiftI->eraseFromParent(); 1887 MadeChange = true; 1888 } 1889 1890 return MadeChange; 1891 } 1892 1893 /// If counting leading or trailing zeros is an expensive operation and a zero 1894 /// input is defined, add a check for zero to avoid calling the intrinsic. 1895 /// 1896 /// We want to transform: 1897 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1898 /// 1899 /// into: 1900 /// entry: 1901 /// %cmpz = icmp eq i64 %A, 0 1902 /// br i1 %cmpz, label %cond.end, label %cond.false 1903 /// cond.false: 1904 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1905 /// br label %cond.end 1906 /// cond.end: 1907 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1908 /// 1909 /// If the transform is performed, return true and set ModifiedDT to true. 1910 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1911 const TargetLowering *TLI, 1912 const DataLayout *DL, 1913 bool &ModifiedDT) { 1914 // If a zero input is undefined, it doesn't make sense to despeculate that. 1915 if (match(CountZeros->getOperand(1), m_One())) 1916 return false; 1917 1918 // If it's cheap to speculate, there's nothing to do. 1919 auto IntrinsicID = CountZeros->getIntrinsicID(); 1920 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1921 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1922 return false; 1923 1924 // Only handle legal scalar cases. Anything else requires too much work. 1925 Type *Ty = CountZeros->getType(); 1926 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1927 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1928 return false; 1929 1930 // The intrinsic will be sunk behind a compare against zero and branch. 1931 BasicBlock *StartBlock = CountZeros->getParent(); 1932 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1933 1934 // Create another block after the count zero intrinsic. A PHI will be added 1935 // in this block to select the result of the intrinsic or the bit-width 1936 // constant if the input to the intrinsic is zero. 1937 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1938 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1939 1940 // Set up a builder to create a compare, conditional branch, and PHI. 1941 IRBuilder<> Builder(CountZeros->getContext()); 1942 Builder.SetInsertPoint(StartBlock->getTerminator()); 1943 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1944 1945 // Replace the unconditional branch that was created by the first split with 1946 // a compare against zero and a conditional branch. 1947 Value *Zero = Constant::getNullValue(Ty); 1948 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1949 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1950 StartBlock->getTerminator()->eraseFromParent(); 1951 1952 // Create a PHI in the end block to select either the output of the intrinsic 1953 // or the bit width of the operand. 1954 Builder.SetInsertPoint(&EndBlock->front()); 1955 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1956 CountZeros->replaceAllUsesWith(PN); 1957 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1958 PN->addIncoming(BitWidth, StartBlock); 1959 PN->addIncoming(CountZeros, CallBlock); 1960 1961 // We are explicitly handling the zero case, so we can set the intrinsic's 1962 // undefined zero argument to 'true'. This will also prevent reprocessing the 1963 // intrinsic; we only despeculate when a zero input is defined. 1964 CountZeros->setArgOperand(1, Builder.getTrue()); 1965 ModifiedDT = true; 1966 return true; 1967 } 1968 1969 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1970 BasicBlock *BB = CI->getParent(); 1971 1972 // Lower inline assembly if we can. 1973 // If we found an inline asm expession, and if the target knows how to 1974 // lower it to normal LLVM code, do so now. 1975 if (CI->isInlineAsm()) { 1976 if (TLI->ExpandInlineAsm(CI)) { 1977 // Avoid invalidating the iterator. 1978 CurInstIterator = BB->begin(); 1979 // Avoid processing instructions out of order, which could cause 1980 // reuse before a value is defined. 1981 SunkAddrs.clear(); 1982 return true; 1983 } 1984 // Sink address computing for memory operands into the block. 1985 if (optimizeInlineAsmInst(CI)) 1986 return true; 1987 } 1988 1989 // Align the pointer arguments to this call if the target thinks it's a good 1990 // idea 1991 unsigned MinSize, PrefAlign; 1992 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1993 for (auto &Arg : CI->arg_operands()) { 1994 // We want to align both objects whose address is used directly and 1995 // objects whose address is used in casts and GEPs, though it only makes 1996 // sense for GEPs if the offset is a multiple of the desired alignment and 1997 // if size - offset meets the size threshold. 1998 if (!Arg->getType()->isPointerTy()) 1999 continue; 2000 APInt Offset(DL->getIndexSizeInBits( 2001 cast<PointerType>(Arg->getType())->getAddressSpace()), 2002 0); 2003 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 2004 uint64_t Offset2 = Offset.getLimitedValue(); 2005 if ((Offset2 & (PrefAlign-1)) != 0) 2006 continue; 2007 AllocaInst *AI; 2008 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 2009 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2010 AI->setAlignment(Align(PrefAlign)); 2011 // Global variables can only be aligned if they are defined in this 2012 // object (i.e. they are uniquely initialized in this object), and 2013 // over-aligning global variables that have an explicit section is 2014 // forbidden. 2015 GlobalVariable *GV; 2016 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2017 GV->getPointerAlignment(*DL) < PrefAlign && 2018 DL->getTypeAllocSize(GV->getValueType()) >= 2019 MinSize + Offset2) 2020 GV->setAlignment(MaybeAlign(PrefAlign)); 2021 } 2022 // If this is a memcpy (or similar) then we may be able to improve the 2023 // alignment 2024 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2025 Align DestAlign = getKnownAlignment(MI->getDest(), *DL); 2026 MaybeAlign MIDestAlign = MI->getDestAlign(); 2027 if (!MIDestAlign || DestAlign > *MIDestAlign) 2028 MI->setDestAlignment(DestAlign); 2029 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 2030 MaybeAlign MTISrcAlign = MTI->getSourceAlign(); 2031 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 2032 if (!MTISrcAlign || SrcAlign > *MTISrcAlign) 2033 MTI->setSourceAlignment(SrcAlign); 2034 } 2035 } 2036 } 2037 2038 // If we have a cold call site, try to sink addressing computation into the 2039 // cold block. This interacts with our handling for loads and stores to 2040 // ensure that we can fold all uses of a potential addressing computation 2041 // into their uses. TODO: generalize this to work over profiling data 2042 if (CI->hasFnAttr(Attribute::Cold) && 2043 !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 2044 for (auto &Arg : CI->arg_operands()) { 2045 if (!Arg->getType()->isPointerTy()) 2046 continue; 2047 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2048 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 2049 } 2050 2051 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2052 if (II) { 2053 switch (II->getIntrinsicID()) { 2054 default: break; 2055 case Intrinsic::assume: { 2056 Value *Operand = II->getOperand(0); 2057 II->eraseFromParent(); 2058 // Prune the operand, it's most likely dead. 2059 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2060 RecursivelyDeleteTriviallyDeadInstructions( 2061 Operand, TLInfo, nullptr, 2062 [&](Value *V) { removeAllAssertingVHReferences(V); }); 2063 }); 2064 return true; 2065 } 2066 2067 case Intrinsic::experimental_widenable_condition: { 2068 // Give up on future widening oppurtunties so that we can fold away dead 2069 // paths and merge blocks before going into block-local instruction 2070 // selection. 2071 if (II->use_empty()) { 2072 II->eraseFromParent(); 2073 return true; 2074 } 2075 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 2076 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2077 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2078 }); 2079 return true; 2080 } 2081 case Intrinsic::objectsize: 2082 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2083 case Intrinsic::is_constant: 2084 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2085 case Intrinsic::aarch64_stlxr: 2086 case Intrinsic::aarch64_stxr: { 2087 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2088 if (!ExtVal || !ExtVal->hasOneUse() || 2089 ExtVal->getParent() == CI->getParent()) 2090 return false; 2091 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2092 ExtVal->moveBefore(CI); 2093 // Mark this instruction as "inserted by CGP", so that other 2094 // optimizations don't touch it. 2095 InsertedInsts.insert(ExtVal); 2096 return true; 2097 } 2098 2099 case Intrinsic::launder_invariant_group: 2100 case Intrinsic::strip_invariant_group: { 2101 Value *ArgVal = II->getArgOperand(0); 2102 auto it = LargeOffsetGEPMap.find(II); 2103 if (it != LargeOffsetGEPMap.end()) { 2104 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2105 // Make sure not to have to deal with iterator invalidation 2106 // after possibly adding ArgVal to LargeOffsetGEPMap. 2107 auto GEPs = std::move(it->second); 2108 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2109 LargeOffsetGEPMap.erase(II); 2110 } 2111 2112 II->replaceAllUsesWith(ArgVal); 2113 II->eraseFromParent(); 2114 return true; 2115 } 2116 case Intrinsic::cttz: 2117 case Intrinsic::ctlz: 2118 // If counting zeros is expensive, try to avoid it. 2119 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2120 case Intrinsic::fshl: 2121 case Intrinsic::fshr: 2122 return optimizeFunnelShift(II); 2123 case Intrinsic::dbg_value: 2124 return fixupDbgValue(II); 2125 case Intrinsic::vscale: { 2126 // If datalayout has no special restrictions on vector data layout, 2127 // replace `llvm.vscale` by an equivalent constant expression 2128 // to benefit from cheap constant propagation. 2129 Type *ScalableVectorTy = 2130 VectorType::get(Type::getInt8Ty(II->getContext()), 1, true); 2131 if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) { 2132 auto *Null = Constant::getNullValue(ScalableVectorTy->getPointerTo()); 2133 auto *One = ConstantInt::getSigned(II->getType(), 1); 2134 auto *CGep = 2135 ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One); 2136 II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType())); 2137 II->eraseFromParent(); 2138 return true; 2139 } 2140 break; 2141 } 2142 case Intrinsic::masked_gather: 2143 return optimizeGatherScatterInst(II, II->getArgOperand(0)); 2144 case Intrinsic::masked_scatter: 2145 return optimizeGatherScatterInst(II, II->getArgOperand(1)); 2146 } 2147 2148 SmallVector<Value *, 2> PtrOps; 2149 Type *AccessTy; 2150 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2151 while (!PtrOps.empty()) { 2152 Value *PtrVal = PtrOps.pop_back_val(); 2153 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2154 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2155 return true; 2156 } 2157 } 2158 2159 // From here on out we're working with named functions. 2160 if (!CI->getCalledFunction()) return false; 2161 2162 // Lower all default uses of _chk calls. This is very similar 2163 // to what InstCombineCalls does, but here we are only lowering calls 2164 // to fortified library functions (e.g. __memcpy_chk) that have the default 2165 // "don't know" as the objectsize. Anything else should be left alone. 2166 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2167 IRBuilder<> Builder(CI); 2168 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2169 CI->replaceAllUsesWith(V); 2170 CI->eraseFromParent(); 2171 return true; 2172 } 2173 2174 return false; 2175 } 2176 2177 /// Look for opportunities to duplicate return instructions to the predecessor 2178 /// to enable tail call optimizations. The case it is currently looking for is: 2179 /// @code 2180 /// bb0: 2181 /// %tmp0 = tail call i32 @f0() 2182 /// br label %return 2183 /// bb1: 2184 /// %tmp1 = tail call i32 @f1() 2185 /// br label %return 2186 /// bb2: 2187 /// %tmp2 = tail call i32 @f2() 2188 /// br label %return 2189 /// return: 2190 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2191 /// ret i32 %retval 2192 /// @endcode 2193 /// 2194 /// => 2195 /// 2196 /// @code 2197 /// bb0: 2198 /// %tmp0 = tail call i32 @f0() 2199 /// ret i32 %tmp0 2200 /// bb1: 2201 /// %tmp1 = tail call i32 @f1() 2202 /// ret i32 %tmp1 2203 /// bb2: 2204 /// %tmp2 = tail call i32 @f2() 2205 /// ret i32 %tmp2 2206 /// @endcode 2207 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 2208 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2209 if (!RetI) 2210 return false; 2211 2212 PHINode *PN = nullptr; 2213 ExtractValueInst *EVI = nullptr; 2214 BitCastInst *BCI = nullptr; 2215 Value *V = RetI->getReturnValue(); 2216 if (V) { 2217 BCI = dyn_cast<BitCastInst>(V); 2218 if (BCI) 2219 V = BCI->getOperand(0); 2220 2221 EVI = dyn_cast<ExtractValueInst>(V); 2222 if (EVI) { 2223 V = EVI->getOperand(0); 2224 if (!std::all_of(EVI->idx_begin(), EVI->idx_end(), 2225 [](unsigned idx) { return idx == 0; })) 2226 return false; 2227 } 2228 2229 PN = dyn_cast<PHINode>(V); 2230 if (!PN) 2231 return false; 2232 } 2233 2234 if (PN && PN->getParent() != BB) 2235 return false; 2236 2237 // Make sure there are no instructions between the PHI and return, or that the 2238 // return is the first instruction in the block. 2239 if (PN) { 2240 BasicBlock::iterator BI = BB->begin(); 2241 // Skip over debug and the bitcast. 2242 do { 2243 ++BI; 2244 } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI || &*BI == EVI || 2245 isa<PseudoProbeInst>(BI)); 2246 if (&*BI != RetI) 2247 return false; 2248 } else { 2249 if (BB->getFirstNonPHIOrDbg(true) != RetI) 2250 return false; 2251 } 2252 2253 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2254 /// call. 2255 const Function *F = BB->getParent(); 2256 SmallVector<BasicBlock*, 4> TailCallBBs; 2257 if (PN) { 2258 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2259 // Look through bitcasts. 2260 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2261 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2262 BasicBlock *PredBB = PN->getIncomingBlock(I); 2263 // Make sure the phi value is indeed produced by the tail call. 2264 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2265 TLI->mayBeEmittedAsTailCall(CI) && 2266 attributesPermitTailCall(F, CI, RetI, *TLI)) 2267 TailCallBBs.push_back(PredBB); 2268 } 2269 } else { 2270 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2271 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2272 if (!VisitedBBs.insert(*PI).second) 2273 continue; 2274 if (Instruction *I = (*PI)->rbegin()->getPrevNonDebugInstruction(true)) { 2275 CallInst *CI = dyn_cast<CallInst>(I); 2276 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2277 attributesPermitTailCall(F, CI, RetI, *TLI)) 2278 TailCallBBs.push_back(*PI); 2279 } 2280 } 2281 } 2282 2283 bool Changed = false; 2284 for (auto const &TailCallBB : TailCallBBs) { 2285 // Make sure the call instruction is followed by an unconditional branch to 2286 // the return block. 2287 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2288 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2289 continue; 2290 2291 // Duplicate the return into TailCallBB. 2292 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2293 assert(!VerifyBFIUpdates || 2294 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); 2295 BFI->setBlockFreq( 2296 BB, 2297 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency()); 2298 ModifiedDT = Changed = true; 2299 ++NumRetsDup; 2300 } 2301 2302 // If we eliminated all predecessors of the block, delete the block now. 2303 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2304 BB->eraseFromParent(); 2305 2306 return Changed; 2307 } 2308 2309 //===----------------------------------------------------------------------===// 2310 // Memory Optimization 2311 //===----------------------------------------------------------------------===// 2312 2313 namespace { 2314 2315 /// This is an extended version of TargetLowering::AddrMode 2316 /// which holds actual Value*'s for register values. 2317 struct ExtAddrMode : public TargetLowering::AddrMode { 2318 Value *BaseReg = nullptr; 2319 Value *ScaledReg = nullptr; 2320 Value *OriginalValue = nullptr; 2321 bool InBounds = true; 2322 2323 enum FieldName { 2324 NoField = 0x00, 2325 BaseRegField = 0x01, 2326 BaseGVField = 0x02, 2327 BaseOffsField = 0x04, 2328 ScaledRegField = 0x08, 2329 ScaleField = 0x10, 2330 MultipleFields = 0xff 2331 }; 2332 2333 2334 ExtAddrMode() = default; 2335 2336 void print(raw_ostream &OS) const; 2337 void dump() const; 2338 2339 FieldName compare(const ExtAddrMode &other) { 2340 // First check that the types are the same on each field, as differing types 2341 // is something we can't cope with later on. 2342 if (BaseReg && other.BaseReg && 2343 BaseReg->getType() != other.BaseReg->getType()) 2344 return MultipleFields; 2345 if (BaseGV && other.BaseGV && 2346 BaseGV->getType() != other.BaseGV->getType()) 2347 return MultipleFields; 2348 if (ScaledReg && other.ScaledReg && 2349 ScaledReg->getType() != other.ScaledReg->getType()) 2350 return MultipleFields; 2351 2352 // Conservatively reject 'inbounds' mismatches. 2353 if (InBounds != other.InBounds) 2354 return MultipleFields; 2355 2356 // Check each field to see if it differs. 2357 unsigned Result = NoField; 2358 if (BaseReg != other.BaseReg) 2359 Result |= BaseRegField; 2360 if (BaseGV != other.BaseGV) 2361 Result |= BaseGVField; 2362 if (BaseOffs != other.BaseOffs) 2363 Result |= BaseOffsField; 2364 if (ScaledReg != other.ScaledReg) 2365 Result |= ScaledRegField; 2366 // Don't count 0 as being a different scale, because that actually means 2367 // unscaled (which will already be counted by having no ScaledReg). 2368 if (Scale && other.Scale && Scale != other.Scale) 2369 Result |= ScaleField; 2370 2371 if (countPopulation(Result) > 1) 2372 return MultipleFields; 2373 else 2374 return static_cast<FieldName>(Result); 2375 } 2376 2377 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2378 // with no offset. 2379 bool isTrivial() { 2380 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2381 // trivial if at most one of these terms is nonzero, except that BaseGV and 2382 // BaseReg both being zero actually means a null pointer value, which we 2383 // consider to be 'non-zero' here. 2384 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2385 } 2386 2387 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2388 switch (Field) { 2389 default: 2390 return nullptr; 2391 case BaseRegField: 2392 return BaseReg; 2393 case BaseGVField: 2394 return BaseGV; 2395 case ScaledRegField: 2396 return ScaledReg; 2397 case BaseOffsField: 2398 return ConstantInt::get(IntPtrTy, BaseOffs); 2399 } 2400 } 2401 2402 void SetCombinedField(FieldName Field, Value *V, 2403 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2404 switch (Field) { 2405 default: 2406 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2407 break; 2408 case ExtAddrMode::BaseRegField: 2409 BaseReg = V; 2410 break; 2411 case ExtAddrMode::BaseGVField: 2412 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2413 // in the BaseReg field. 2414 assert(BaseReg == nullptr); 2415 BaseReg = V; 2416 BaseGV = nullptr; 2417 break; 2418 case ExtAddrMode::ScaledRegField: 2419 ScaledReg = V; 2420 // If we have a mix of scaled and unscaled addrmodes then we want scale 2421 // to be the scale and not zero. 2422 if (!Scale) 2423 for (const ExtAddrMode &AM : AddrModes) 2424 if (AM.Scale) { 2425 Scale = AM.Scale; 2426 break; 2427 } 2428 break; 2429 case ExtAddrMode::BaseOffsField: 2430 // The offset is no longer a constant, so it goes in ScaledReg with a 2431 // scale of 1. 2432 assert(ScaledReg == nullptr); 2433 ScaledReg = V; 2434 Scale = 1; 2435 BaseOffs = 0; 2436 break; 2437 } 2438 } 2439 }; 2440 2441 } // end anonymous namespace 2442 2443 #ifndef NDEBUG 2444 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2445 AM.print(OS); 2446 return OS; 2447 } 2448 #endif 2449 2450 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2451 void ExtAddrMode::print(raw_ostream &OS) const { 2452 bool NeedPlus = false; 2453 OS << "["; 2454 if (InBounds) 2455 OS << "inbounds "; 2456 if (BaseGV) { 2457 OS << (NeedPlus ? " + " : "") 2458 << "GV:"; 2459 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2460 NeedPlus = true; 2461 } 2462 2463 if (BaseOffs) { 2464 OS << (NeedPlus ? " + " : "") 2465 << BaseOffs; 2466 NeedPlus = true; 2467 } 2468 2469 if (BaseReg) { 2470 OS << (NeedPlus ? " + " : "") 2471 << "Base:"; 2472 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2473 NeedPlus = true; 2474 } 2475 if (Scale) { 2476 OS << (NeedPlus ? " + " : "") 2477 << Scale << "*"; 2478 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2479 } 2480 2481 OS << ']'; 2482 } 2483 2484 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2485 print(dbgs()); 2486 dbgs() << '\n'; 2487 } 2488 #endif 2489 2490 namespace { 2491 2492 /// This class provides transaction based operation on the IR. 2493 /// Every change made through this class is recorded in the internal state and 2494 /// can be undone (rollback) until commit is called. 2495 /// CGP does not check if instructions could be speculatively executed when 2496 /// moved. Preserving the original location would pessimize the debugging 2497 /// experience, as well as negatively impact the quality of sample PGO. 2498 class TypePromotionTransaction { 2499 /// This represents the common interface of the individual transaction. 2500 /// Each class implements the logic for doing one specific modification on 2501 /// the IR via the TypePromotionTransaction. 2502 class TypePromotionAction { 2503 protected: 2504 /// The Instruction modified. 2505 Instruction *Inst; 2506 2507 public: 2508 /// Constructor of the action. 2509 /// The constructor performs the related action on the IR. 2510 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2511 2512 virtual ~TypePromotionAction() = default; 2513 2514 /// Undo the modification done by this action. 2515 /// When this method is called, the IR must be in the same state as it was 2516 /// before this action was applied. 2517 /// \pre Undoing the action works if and only if the IR is in the exact same 2518 /// state as it was directly after this action was applied. 2519 virtual void undo() = 0; 2520 2521 /// Advocate every change made by this action. 2522 /// When the results on the IR of the action are to be kept, it is important 2523 /// to call this function, otherwise hidden information may be kept forever. 2524 virtual void commit() { 2525 // Nothing to be done, this action is not doing anything. 2526 } 2527 }; 2528 2529 /// Utility to remember the position of an instruction. 2530 class InsertionHandler { 2531 /// Position of an instruction. 2532 /// Either an instruction: 2533 /// - Is the first in a basic block: BB is used. 2534 /// - Has a previous instruction: PrevInst is used. 2535 union { 2536 Instruction *PrevInst; 2537 BasicBlock *BB; 2538 } Point; 2539 2540 /// Remember whether or not the instruction had a previous instruction. 2541 bool HasPrevInstruction; 2542 2543 public: 2544 /// Record the position of \p Inst. 2545 InsertionHandler(Instruction *Inst) { 2546 BasicBlock::iterator It = Inst->getIterator(); 2547 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2548 if (HasPrevInstruction) 2549 Point.PrevInst = &*--It; 2550 else 2551 Point.BB = Inst->getParent(); 2552 } 2553 2554 /// Insert \p Inst at the recorded position. 2555 void insert(Instruction *Inst) { 2556 if (HasPrevInstruction) { 2557 if (Inst->getParent()) 2558 Inst->removeFromParent(); 2559 Inst->insertAfter(Point.PrevInst); 2560 } else { 2561 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2562 if (Inst->getParent()) 2563 Inst->moveBefore(Position); 2564 else 2565 Inst->insertBefore(Position); 2566 } 2567 } 2568 }; 2569 2570 /// Move an instruction before another. 2571 class InstructionMoveBefore : public TypePromotionAction { 2572 /// Original position of the instruction. 2573 InsertionHandler Position; 2574 2575 public: 2576 /// Move \p Inst before \p Before. 2577 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2578 : TypePromotionAction(Inst), Position(Inst) { 2579 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2580 << "\n"); 2581 Inst->moveBefore(Before); 2582 } 2583 2584 /// Move the instruction back to its original position. 2585 void undo() override { 2586 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2587 Position.insert(Inst); 2588 } 2589 }; 2590 2591 /// Set the operand of an instruction with a new value. 2592 class OperandSetter : public TypePromotionAction { 2593 /// Original operand of the instruction. 2594 Value *Origin; 2595 2596 /// Index of the modified instruction. 2597 unsigned Idx; 2598 2599 public: 2600 /// Set \p Idx operand of \p Inst with \p NewVal. 2601 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2602 : TypePromotionAction(Inst), Idx(Idx) { 2603 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2604 << "for:" << *Inst << "\n" 2605 << "with:" << *NewVal << "\n"); 2606 Origin = Inst->getOperand(Idx); 2607 Inst->setOperand(Idx, NewVal); 2608 } 2609 2610 /// Restore the original value of the instruction. 2611 void undo() override { 2612 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2613 << "for: " << *Inst << "\n" 2614 << "with: " << *Origin << "\n"); 2615 Inst->setOperand(Idx, Origin); 2616 } 2617 }; 2618 2619 /// Hide the operands of an instruction. 2620 /// Do as if this instruction was not using any of its operands. 2621 class OperandsHider : public TypePromotionAction { 2622 /// The list of original operands. 2623 SmallVector<Value *, 4> OriginalValues; 2624 2625 public: 2626 /// Remove \p Inst from the uses of the operands of \p Inst. 2627 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2628 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2629 unsigned NumOpnds = Inst->getNumOperands(); 2630 OriginalValues.reserve(NumOpnds); 2631 for (unsigned It = 0; It < NumOpnds; ++It) { 2632 // Save the current operand. 2633 Value *Val = Inst->getOperand(It); 2634 OriginalValues.push_back(Val); 2635 // Set a dummy one. 2636 // We could use OperandSetter here, but that would imply an overhead 2637 // that we are not willing to pay. 2638 Inst->setOperand(It, UndefValue::get(Val->getType())); 2639 } 2640 } 2641 2642 /// Restore the original list of uses. 2643 void undo() override { 2644 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2645 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2646 Inst->setOperand(It, OriginalValues[It]); 2647 } 2648 }; 2649 2650 /// Build a truncate instruction. 2651 class TruncBuilder : public TypePromotionAction { 2652 Value *Val; 2653 2654 public: 2655 /// Build a truncate instruction of \p Opnd producing a \p Ty 2656 /// result. 2657 /// trunc Opnd to Ty. 2658 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2659 IRBuilder<> Builder(Opnd); 2660 Builder.SetCurrentDebugLocation(DebugLoc()); 2661 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2662 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2663 } 2664 2665 /// Get the built value. 2666 Value *getBuiltValue() { return Val; } 2667 2668 /// Remove the built instruction. 2669 void undo() override { 2670 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2671 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2672 IVal->eraseFromParent(); 2673 } 2674 }; 2675 2676 /// Build a sign extension instruction. 2677 class SExtBuilder : public TypePromotionAction { 2678 Value *Val; 2679 2680 public: 2681 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2682 /// result. 2683 /// sext Opnd to Ty. 2684 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2685 : TypePromotionAction(InsertPt) { 2686 IRBuilder<> Builder(InsertPt); 2687 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2688 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2689 } 2690 2691 /// Get the built value. 2692 Value *getBuiltValue() { return Val; } 2693 2694 /// Remove the built instruction. 2695 void undo() override { 2696 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2697 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2698 IVal->eraseFromParent(); 2699 } 2700 }; 2701 2702 /// Build a zero extension instruction. 2703 class ZExtBuilder : public TypePromotionAction { 2704 Value *Val; 2705 2706 public: 2707 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2708 /// result. 2709 /// zext Opnd to Ty. 2710 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2711 : TypePromotionAction(InsertPt) { 2712 IRBuilder<> Builder(InsertPt); 2713 Builder.SetCurrentDebugLocation(DebugLoc()); 2714 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2715 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2716 } 2717 2718 /// Get the built value. 2719 Value *getBuiltValue() { return Val; } 2720 2721 /// Remove the built instruction. 2722 void undo() override { 2723 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2724 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2725 IVal->eraseFromParent(); 2726 } 2727 }; 2728 2729 /// Mutate an instruction to another type. 2730 class TypeMutator : public TypePromotionAction { 2731 /// Record the original type. 2732 Type *OrigTy; 2733 2734 public: 2735 /// Mutate the type of \p Inst into \p NewTy. 2736 TypeMutator(Instruction *Inst, Type *NewTy) 2737 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2738 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2739 << "\n"); 2740 Inst->mutateType(NewTy); 2741 } 2742 2743 /// Mutate the instruction back to its original type. 2744 void undo() override { 2745 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2746 << "\n"); 2747 Inst->mutateType(OrigTy); 2748 } 2749 }; 2750 2751 /// Replace the uses of an instruction by another instruction. 2752 class UsesReplacer : public TypePromotionAction { 2753 /// Helper structure to keep track of the replaced uses. 2754 struct InstructionAndIdx { 2755 /// The instruction using the instruction. 2756 Instruction *Inst; 2757 2758 /// The index where this instruction is used for Inst. 2759 unsigned Idx; 2760 2761 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2762 : Inst(Inst), Idx(Idx) {} 2763 }; 2764 2765 /// Keep track of the original uses (pair Instruction, Index). 2766 SmallVector<InstructionAndIdx, 4> OriginalUses; 2767 /// Keep track of the debug users. 2768 SmallVector<DbgValueInst *, 1> DbgValues; 2769 2770 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2771 2772 public: 2773 /// Replace all the use of \p Inst by \p New. 2774 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2775 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2776 << "\n"); 2777 // Record the original uses. 2778 for (Use &U : Inst->uses()) { 2779 Instruction *UserI = cast<Instruction>(U.getUser()); 2780 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2781 } 2782 // Record the debug uses separately. They are not in the instruction's 2783 // use list, but they are replaced by RAUW. 2784 findDbgValues(DbgValues, Inst); 2785 2786 // Now, we can replace the uses. 2787 Inst->replaceAllUsesWith(New); 2788 } 2789 2790 /// Reassign the original uses of Inst to Inst. 2791 void undo() override { 2792 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2793 for (use_iterator UseIt = OriginalUses.begin(), 2794 EndIt = OriginalUses.end(); 2795 UseIt != EndIt; ++UseIt) { 2796 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2797 } 2798 // RAUW has replaced all original uses with references to the new value, 2799 // including the debug uses. Since we are undoing the replacements, 2800 // the original debug uses must also be reinstated to maintain the 2801 // correctness and utility of debug value instructions. 2802 for (auto *DVI: DbgValues) { 2803 LLVMContext &Ctx = Inst->getType()->getContext(); 2804 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); 2805 DVI->setOperand(0, MV); 2806 } 2807 } 2808 }; 2809 2810 /// Remove an instruction from the IR. 2811 class InstructionRemover : public TypePromotionAction { 2812 /// Original position of the instruction. 2813 InsertionHandler Inserter; 2814 2815 /// Helper structure to hide all the link to the instruction. In other 2816 /// words, this helps to do as if the instruction was removed. 2817 OperandsHider Hider; 2818 2819 /// Keep track of the uses replaced, if any. 2820 UsesReplacer *Replacer = nullptr; 2821 2822 /// Keep track of instructions removed. 2823 SetOfInstrs &RemovedInsts; 2824 2825 public: 2826 /// Remove all reference of \p Inst and optionally replace all its 2827 /// uses with New. 2828 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2829 /// \pre If !Inst->use_empty(), then New != nullptr 2830 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2831 Value *New = nullptr) 2832 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2833 RemovedInsts(RemovedInsts) { 2834 if (New) 2835 Replacer = new UsesReplacer(Inst, New); 2836 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2837 RemovedInsts.insert(Inst); 2838 /// The instructions removed here will be freed after completing 2839 /// optimizeBlock() for all blocks as we need to keep track of the 2840 /// removed instructions during promotion. 2841 Inst->removeFromParent(); 2842 } 2843 2844 ~InstructionRemover() override { delete Replacer; } 2845 2846 /// Resurrect the instruction and reassign it to the proper uses if 2847 /// new value was provided when build this action. 2848 void undo() override { 2849 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2850 Inserter.insert(Inst); 2851 if (Replacer) 2852 Replacer->undo(); 2853 Hider.undo(); 2854 RemovedInsts.erase(Inst); 2855 } 2856 }; 2857 2858 public: 2859 /// Restoration point. 2860 /// The restoration point is a pointer to an action instead of an iterator 2861 /// because the iterator may be invalidated but not the pointer. 2862 using ConstRestorationPt = const TypePromotionAction *; 2863 2864 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2865 : RemovedInsts(RemovedInsts) {} 2866 2867 /// Advocate every changes made in that transaction. Return true if any change 2868 /// happen. 2869 bool commit(); 2870 2871 /// Undo all the changes made after the given point. 2872 void rollback(ConstRestorationPt Point); 2873 2874 /// Get the current restoration point. 2875 ConstRestorationPt getRestorationPoint() const; 2876 2877 /// \name API for IR modification with state keeping to support rollback. 2878 /// @{ 2879 /// Same as Instruction::setOperand. 2880 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2881 2882 /// Same as Instruction::eraseFromParent. 2883 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2884 2885 /// Same as Value::replaceAllUsesWith. 2886 void replaceAllUsesWith(Instruction *Inst, Value *New); 2887 2888 /// Same as Value::mutateType. 2889 void mutateType(Instruction *Inst, Type *NewTy); 2890 2891 /// Same as IRBuilder::createTrunc. 2892 Value *createTrunc(Instruction *Opnd, Type *Ty); 2893 2894 /// Same as IRBuilder::createSExt. 2895 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2896 2897 /// Same as IRBuilder::createZExt. 2898 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2899 2900 /// Same as Instruction::moveBefore. 2901 void moveBefore(Instruction *Inst, Instruction *Before); 2902 /// @} 2903 2904 private: 2905 /// The ordered list of actions made so far. 2906 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2907 2908 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2909 2910 SetOfInstrs &RemovedInsts; 2911 }; 2912 2913 } // end anonymous namespace 2914 2915 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2916 Value *NewVal) { 2917 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 2918 Inst, Idx, NewVal)); 2919 } 2920 2921 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2922 Value *NewVal) { 2923 Actions.push_back( 2924 std::make_unique<TypePromotionTransaction::InstructionRemover>( 2925 Inst, RemovedInsts, NewVal)); 2926 } 2927 2928 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2929 Value *New) { 2930 Actions.push_back( 2931 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2932 } 2933 2934 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2935 Actions.push_back( 2936 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2937 } 2938 2939 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2940 Type *Ty) { 2941 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2942 Value *Val = Ptr->getBuiltValue(); 2943 Actions.push_back(std::move(Ptr)); 2944 return Val; 2945 } 2946 2947 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2948 Value *Opnd, Type *Ty) { 2949 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2950 Value *Val = Ptr->getBuiltValue(); 2951 Actions.push_back(std::move(Ptr)); 2952 return Val; 2953 } 2954 2955 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2956 Value *Opnd, Type *Ty) { 2957 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2958 Value *Val = Ptr->getBuiltValue(); 2959 Actions.push_back(std::move(Ptr)); 2960 return Val; 2961 } 2962 2963 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2964 Instruction *Before) { 2965 Actions.push_back( 2966 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2967 Inst, Before)); 2968 } 2969 2970 TypePromotionTransaction::ConstRestorationPt 2971 TypePromotionTransaction::getRestorationPoint() const { 2972 return !Actions.empty() ? Actions.back().get() : nullptr; 2973 } 2974 2975 bool TypePromotionTransaction::commit() { 2976 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2977 ++It) 2978 (*It)->commit(); 2979 bool Modified = !Actions.empty(); 2980 Actions.clear(); 2981 return Modified; 2982 } 2983 2984 void TypePromotionTransaction::rollback( 2985 TypePromotionTransaction::ConstRestorationPt Point) { 2986 while (!Actions.empty() && Point != Actions.back().get()) { 2987 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2988 Curr->undo(); 2989 } 2990 } 2991 2992 namespace { 2993 2994 /// A helper class for matching addressing modes. 2995 /// 2996 /// This encapsulates the logic for matching the target-legal addressing modes. 2997 class AddressingModeMatcher { 2998 SmallVectorImpl<Instruction*> &AddrModeInsts; 2999 const TargetLowering &TLI; 3000 const TargetRegisterInfo &TRI; 3001 const DataLayout &DL; 3002 3003 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 3004 /// the memory instruction that we're computing this address for. 3005 Type *AccessTy; 3006 unsigned AddrSpace; 3007 Instruction *MemoryInst; 3008 3009 /// This is the addressing mode that we're building up. This is 3010 /// part of the return value of this addressing mode matching stuff. 3011 ExtAddrMode &AddrMode; 3012 3013 /// The instructions inserted by other CodeGenPrepare optimizations. 3014 const SetOfInstrs &InsertedInsts; 3015 3016 /// A map from the instructions to their type before promotion. 3017 InstrToOrigTy &PromotedInsts; 3018 3019 /// The ongoing transaction where every action should be registered. 3020 TypePromotionTransaction &TPT; 3021 3022 // A GEP which has too large offset to be folded into the addressing mode. 3023 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 3024 3025 /// This is set to true when we should not do profitability checks. 3026 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 3027 bool IgnoreProfitability; 3028 3029 /// True if we are optimizing for size. 3030 bool OptSize; 3031 3032 ProfileSummaryInfo *PSI; 3033 BlockFrequencyInfo *BFI; 3034 3035 AddressingModeMatcher( 3036 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 3037 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 3038 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 3039 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 3040 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3041 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 3042 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 3043 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 3044 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 3045 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP), 3046 OptSize(OptSize), PSI(PSI), BFI(BFI) { 3047 IgnoreProfitability = false; 3048 } 3049 3050 public: 3051 /// Find the maximal addressing mode that a load/store of V can fold, 3052 /// give an access type of AccessTy. This returns a list of involved 3053 /// instructions in AddrModeInsts. 3054 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3055 /// optimizations. 3056 /// \p PromotedInsts maps the instructions to their type before promotion. 3057 /// \p The ongoing transaction where every action should be registered. 3058 static ExtAddrMode 3059 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 3060 SmallVectorImpl<Instruction *> &AddrModeInsts, 3061 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 3062 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 3063 TypePromotionTransaction &TPT, 3064 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3065 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 3066 ExtAddrMode Result; 3067 3068 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 3069 MemoryInst, Result, InsertedInsts, 3070 PromotedInsts, TPT, LargeOffsetGEP, 3071 OptSize, PSI, BFI) 3072 .matchAddr(V, 0); 3073 (void)Success; assert(Success && "Couldn't select *anything*?"); 3074 return Result; 3075 } 3076 3077 private: 3078 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3079 bool matchAddr(Value *Addr, unsigned Depth); 3080 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 3081 bool *MovedAway = nullptr); 3082 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3083 ExtAddrMode &AMBefore, 3084 ExtAddrMode &AMAfter); 3085 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3086 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3087 Value *PromotedOperand) const; 3088 }; 3089 3090 class PhiNodeSet; 3091 3092 /// An iterator for PhiNodeSet. 3093 class PhiNodeSetIterator { 3094 PhiNodeSet * const Set; 3095 size_t CurrentIndex = 0; 3096 3097 public: 3098 /// The constructor. Start should point to either a valid element, or be equal 3099 /// to the size of the underlying SmallVector of the PhiNodeSet. 3100 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 3101 PHINode * operator*() const; 3102 PhiNodeSetIterator& operator++(); 3103 bool operator==(const PhiNodeSetIterator &RHS) const; 3104 bool operator!=(const PhiNodeSetIterator &RHS) const; 3105 }; 3106 3107 /// Keeps a set of PHINodes. 3108 /// 3109 /// This is a minimal set implementation for a specific use case: 3110 /// It is very fast when there are very few elements, but also provides good 3111 /// performance when there are many. It is similar to SmallPtrSet, but also 3112 /// provides iteration by insertion order, which is deterministic and stable 3113 /// across runs. It is also similar to SmallSetVector, but provides removing 3114 /// elements in O(1) time. This is achieved by not actually removing the element 3115 /// from the underlying vector, so comes at the cost of using more memory, but 3116 /// that is fine, since PhiNodeSets are used as short lived objects. 3117 class PhiNodeSet { 3118 friend class PhiNodeSetIterator; 3119 3120 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3121 using iterator = PhiNodeSetIterator; 3122 3123 /// Keeps the elements in the order of their insertion in the underlying 3124 /// vector. To achieve constant time removal, it never deletes any element. 3125 SmallVector<PHINode *, 32> NodeList; 3126 3127 /// Keeps the elements in the underlying set implementation. This (and not the 3128 /// NodeList defined above) is the source of truth on whether an element 3129 /// is actually in the collection. 3130 MapType NodeMap; 3131 3132 /// Points to the first valid (not deleted) element when the set is not empty 3133 /// and the value is not zero. Equals to the size of the underlying vector 3134 /// when the set is empty. When the value is 0, as in the beginning, the 3135 /// first element may or may not be valid. 3136 size_t FirstValidElement = 0; 3137 3138 public: 3139 /// Inserts a new element to the collection. 3140 /// \returns true if the element is actually added, i.e. was not in the 3141 /// collection before the operation. 3142 bool insert(PHINode *Ptr) { 3143 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3144 NodeList.push_back(Ptr); 3145 return true; 3146 } 3147 return false; 3148 } 3149 3150 /// Removes the element from the collection. 3151 /// \returns whether the element is actually removed, i.e. was in the 3152 /// collection before the operation. 3153 bool erase(PHINode *Ptr) { 3154 auto it = NodeMap.find(Ptr); 3155 if (it != NodeMap.end()) { 3156 NodeMap.erase(Ptr); 3157 SkipRemovedElements(FirstValidElement); 3158 return true; 3159 } 3160 return false; 3161 } 3162 3163 /// Removes all elements and clears the collection. 3164 void clear() { 3165 NodeMap.clear(); 3166 NodeList.clear(); 3167 FirstValidElement = 0; 3168 } 3169 3170 /// \returns an iterator that will iterate the elements in the order of 3171 /// insertion. 3172 iterator begin() { 3173 if (FirstValidElement == 0) 3174 SkipRemovedElements(FirstValidElement); 3175 return PhiNodeSetIterator(this, FirstValidElement); 3176 } 3177 3178 /// \returns an iterator that points to the end of the collection. 3179 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3180 3181 /// Returns the number of elements in the collection. 3182 size_t size() const { 3183 return NodeMap.size(); 3184 } 3185 3186 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3187 size_t count(PHINode *Ptr) const { 3188 return NodeMap.count(Ptr); 3189 } 3190 3191 private: 3192 /// Updates the CurrentIndex so that it will point to a valid element. 3193 /// 3194 /// If the element of NodeList at CurrentIndex is valid, it does not 3195 /// change it. If there are no more valid elements, it updates CurrentIndex 3196 /// to point to the end of the NodeList. 3197 void SkipRemovedElements(size_t &CurrentIndex) { 3198 while (CurrentIndex < NodeList.size()) { 3199 auto it = NodeMap.find(NodeList[CurrentIndex]); 3200 // If the element has been deleted and added again later, NodeMap will 3201 // point to a different index, so CurrentIndex will still be invalid. 3202 if (it != NodeMap.end() && it->second == CurrentIndex) 3203 break; 3204 ++CurrentIndex; 3205 } 3206 } 3207 }; 3208 3209 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3210 : Set(Set), CurrentIndex(Start) {} 3211 3212 PHINode * PhiNodeSetIterator::operator*() const { 3213 assert(CurrentIndex < Set->NodeList.size() && 3214 "PhiNodeSet access out of range"); 3215 return Set->NodeList[CurrentIndex]; 3216 } 3217 3218 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 3219 assert(CurrentIndex < Set->NodeList.size() && 3220 "PhiNodeSet access out of range"); 3221 ++CurrentIndex; 3222 Set->SkipRemovedElements(CurrentIndex); 3223 return *this; 3224 } 3225 3226 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3227 return CurrentIndex == RHS.CurrentIndex; 3228 } 3229 3230 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3231 return !((*this) == RHS); 3232 } 3233 3234 /// Keep track of simplification of Phi nodes. 3235 /// Accept the set of all phi nodes and erase phi node from this set 3236 /// if it is simplified. 3237 class SimplificationTracker { 3238 DenseMap<Value *, Value *> Storage; 3239 const SimplifyQuery &SQ; 3240 // Tracks newly created Phi nodes. The elements are iterated by insertion 3241 // order. 3242 PhiNodeSet AllPhiNodes; 3243 // Tracks newly created Select nodes. 3244 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3245 3246 public: 3247 SimplificationTracker(const SimplifyQuery &sq) 3248 : SQ(sq) {} 3249 3250 Value *Get(Value *V) { 3251 do { 3252 auto SV = Storage.find(V); 3253 if (SV == Storage.end()) 3254 return V; 3255 V = SV->second; 3256 } while (true); 3257 } 3258 3259 Value *Simplify(Value *Val) { 3260 SmallVector<Value *, 32> WorkList; 3261 SmallPtrSet<Value *, 32> Visited; 3262 WorkList.push_back(Val); 3263 while (!WorkList.empty()) { 3264 auto *P = WorkList.pop_back_val(); 3265 if (!Visited.insert(P).second) 3266 continue; 3267 if (auto *PI = dyn_cast<Instruction>(P)) 3268 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3269 for (auto *U : PI->users()) 3270 WorkList.push_back(cast<Value>(U)); 3271 Put(PI, V); 3272 PI->replaceAllUsesWith(V); 3273 if (auto *PHI = dyn_cast<PHINode>(PI)) 3274 AllPhiNodes.erase(PHI); 3275 if (auto *Select = dyn_cast<SelectInst>(PI)) 3276 AllSelectNodes.erase(Select); 3277 PI->eraseFromParent(); 3278 } 3279 } 3280 return Get(Val); 3281 } 3282 3283 void Put(Value *From, Value *To) { 3284 Storage.insert({ From, To }); 3285 } 3286 3287 void ReplacePhi(PHINode *From, PHINode *To) { 3288 Value* OldReplacement = Get(From); 3289 while (OldReplacement != From) { 3290 From = To; 3291 To = dyn_cast<PHINode>(OldReplacement); 3292 OldReplacement = Get(From); 3293 } 3294 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3295 Put(From, To); 3296 From->replaceAllUsesWith(To); 3297 AllPhiNodes.erase(From); 3298 From->eraseFromParent(); 3299 } 3300 3301 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3302 3303 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3304 3305 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3306 3307 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3308 3309 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3310 3311 void destroyNewNodes(Type *CommonType) { 3312 // For safe erasing, replace the uses with dummy value first. 3313 auto *Dummy = UndefValue::get(CommonType); 3314 for (auto *I : AllPhiNodes) { 3315 I->replaceAllUsesWith(Dummy); 3316 I->eraseFromParent(); 3317 } 3318 AllPhiNodes.clear(); 3319 for (auto *I : AllSelectNodes) { 3320 I->replaceAllUsesWith(Dummy); 3321 I->eraseFromParent(); 3322 } 3323 AllSelectNodes.clear(); 3324 } 3325 }; 3326 3327 /// A helper class for combining addressing modes. 3328 class AddressingModeCombiner { 3329 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3330 typedef std::pair<PHINode *, PHINode *> PHIPair; 3331 3332 private: 3333 /// The addressing modes we've collected. 3334 SmallVector<ExtAddrMode, 16> AddrModes; 3335 3336 /// The field in which the AddrModes differ, when we have more than one. 3337 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3338 3339 /// Are the AddrModes that we have all just equal to their original values? 3340 bool AllAddrModesTrivial = true; 3341 3342 /// Common Type for all different fields in addressing modes. 3343 Type *CommonType; 3344 3345 /// SimplifyQuery for simplifyInstruction utility. 3346 const SimplifyQuery &SQ; 3347 3348 /// Original Address. 3349 Value *Original; 3350 3351 public: 3352 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3353 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 3354 3355 /// Get the combined AddrMode 3356 const ExtAddrMode &getAddrMode() const { 3357 return AddrModes[0]; 3358 } 3359 3360 /// Add a new AddrMode if it's compatible with the AddrModes we already 3361 /// have. 3362 /// \return True iff we succeeded in doing so. 3363 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3364 // Take note of if we have any non-trivial AddrModes, as we need to detect 3365 // when all AddrModes are trivial as then we would introduce a phi or select 3366 // which just duplicates what's already there. 3367 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3368 3369 // If this is the first addrmode then everything is fine. 3370 if (AddrModes.empty()) { 3371 AddrModes.emplace_back(NewAddrMode); 3372 return true; 3373 } 3374 3375 // Figure out how different this is from the other address modes, which we 3376 // can do just by comparing against the first one given that we only care 3377 // about the cumulative difference. 3378 ExtAddrMode::FieldName ThisDifferentField = 3379 AddrModes[0].compare(NewAddrMode); 3380 if (DifferentField == ExtAddrMode::NoField) 3381 DifferentField = ThisDifferentField; 3382 else if (DifferentField != ThisDifferentField) 3383 DifferentField = ExtAddrMode::MultipleFields; 3384 3385 // If NewAddrMode differs in more than one dimension we cannot handle it. 3386 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3387 3388 // If Scale Field is different then we reject. 3389 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3390 3391 // We also must reject the case when base offset is different and 3392 // scale reg is not null, we cannot handle this case due to merge of 3393 // different offsets will be used as ScaleReg. 3394 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3395 !NewAddrMode.ScaledReg); 3396 3397 // We also must reject the case when GV is different and BaseReg installed 3398 // due to we want to use base reg as a merge of GV values. 3399 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3400 !NewAddrMode.HasBaseReg); 3401 3402 // Even if NewAddMode is the same we still need to collect it due to 3403 // original value is different. And later we will need all original values 3404 // as anchors during finding the common Phi node. 3405 if (CanHandle) 3406 AddrModes.emplace_back(NewAddrMode); 3407 else 3408 AddrModes.clear(); 3409 3410 return CanHandle; 3411 } 3412 3413 /// Combine the addressing modes we've collected into a single 3414 /// addressing mode. 3415 /// \return True iff we successfully combined them or we only had one so 3416 /// didn't need to combine them anyway. 3417 bool combineAddrModes() { 3418 // If we have no AddrModes then they can't be combined. 3419 if (AddrModes.size() == 0) 3420 return false; 3421 3422 // A single AddrMode can trivially be combined. 3423 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3424 return true; 3425 3426 // If the AddrModes we collected are all just equal to the value they are 3427 // derived from then combining them wouldn't do anything useful. 3428 if (AllAddrModesTrivial) 3429 return false; 3430 3431 if (!addrModeCombiningAllowed()) 3432 return false; 3433 3434 // Build a map between <original value, basic block where we saw it> to 3435 // value of base register. 3436 // Bail out if there is no common type. 3437 FoldAddrToValueMapping Map; 3438 if (!initializeMap(Map)) 3439 return false; 3440 3441 Value *CommonValue = findCommon(Map); 3442 if (CommonValue) 3443 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3444 return CommonValue != nullptr; 3445 } 3446 3447 private: 3448 /// Initialize Map with anchor values. For address seen 3449 /// we set the value of different field saw in this address. 3450 /// At the same time we find a common type for different field we will 3451 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3452 /// Return false if there is no common type found. 3453 bool initializeMap(FoldAddrToValueMapping &Map) { 3454 // Keep track of keys where the value is null. We will need to replace it 3455 // with constant null when we know the common type. 3456 SmallVector<Value *, 2> NullValue; 3457 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3458 for (auto &AM : AddrModes) { 3459 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3460 if (DV) { 3461 auto *Type = DV->getType(); 3462 if (CommonType && CommonType != Type) 3463 return false; 3464 CommonType = Type; 3465 Map[AM.OriginalValue] = DV; 3466 } else { 3467 NullValue.push_back(AM.OriginalValue); 3468 } 3469 } 3470 assert(CommonType && "At least one non-null value must be!"); 3471 for (auto *V : NullValue) 3472 Map[V] = Constant::getNullValue(CommonType); 3473 return true; 3474 } 3475 3476 /// We have mapping between value A and other value B where B was a field in 3477 /// addressing mode represented by A. Also we have an original value C 3478 /// representing an address we start with. Traversing from C through phi and 3479 /// selects we ended up with A's in a map. This utility function tries to find 3480 /// a value V which is a field in addressing mode C and traversing through phi 3481 /// nodes and selects we will end up in corresponded values B in a map. 3482 /// The utility will create a new Phi/Selects if needed. 3483 // The simple example looks as follows: 3484 // BB1: 3485 // p1 = b1 + 40 3486 // br cond BB2, BB3 3487 // BB2: 3488 // p2 = b2 + 40 3489 // br BB3 3490 // BB3: 3491 // p = phi [p1, BB1], [p2, BB2] 3492 // v = load p 3493 // Map is 3494 // p1 -> b1 3495 // p2 -> b2 3496 // Request is 3497 // p -> ? 3498 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3499 Value *findCommon(FoldAddrToValueMapping &Map) { 3500 // Tracks the simplification of newly created phi nodes. The reason we use 3501 // this mapping is because we will add new created Phi nodes in AddrToBase. 3502 // Simplification of Phi nodes is recursive, so some Phi node may 3503 // be simplified after we added it to AddrToBase. In reality this 3504 // simplification is possible only if original phi/selects were not 3505 // simplified yet. 3506 // Using this mapping we can find the current value in AddrToBase. 3507 SimplificationTracker ST(SQ); 3508 3509 // First step, DFS to create PHI nodes for all intermediate blocks. 3510 // Also fill traverse order for the second step. 3511 SmallVector<Value *, 32> TraverseOrder; 3512 InsertPlaceholders(Map, TraverseOrder, ST); 3513 3514 // Second Step, fill new nodes by merged values and simplify if possible. 3515 FillPlaceholders(Map, TraverseOrder, ST); 3516 3517 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3518 ST.destroyNewNodes(CommonType); 3519 return nullptr; 3520 } 3521 3522 // Now we'd like to match New Phi nodes to existed ones. 3523 unsigned PhiNotMatchedCount = 0; 3524 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3525 ST.destroyNewNodes(CommonType); 3526 return nullptr; 3527 } 3528 3529 auto *Result = ST.Get(Map.find(Original)->second); 3530 if (Result) { 3531 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3532 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3533 } 3534 return Result; 3535 } 3536 3537 /// Try to match PHI node to Candidate. 3538 /// Matcher tracks the matched Phi nodes. 3539 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3540 SmallSetVector<PHIPair, 8> &Matcher, 3541 PhiNodeSet &PhiNodesToMatch) { 3542 SmallVector<PHIPair, 8> WorkList; 3543 Matcher.insert({ PHI, Candidate }); 3544 SmallSet<PHINode *, 8> MatchedPHIs; 3545 MatchedPHIs.insert(PHI); 3546 WorkList.push_back({ PHI, Candidate }); 3547 SmallSet<PHIPair, 8> Visited; 3548 while (!WorkList.empty()) { 3549 auto Item = WorkList.pop_back_val(); 3550 if (!Visited.insert(Item).second) 3551 continue; 3552 // We iterate over all incoming values to Phi to compare them. 3553 // If values are different and both of them Phi and the first one is a 3554 // Phi we added (subject to match) and both of them is in the same basic 3555 // block then we can match our pair if values match. So we state that 3556 // these values match and add it to work list to verify that. 3557 for (auto B : Item.first->blocks()) { 3558 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3559 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3560 if (FirstValue == SecondValue) 3561 continue; 3562 3563 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3564 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3565 3566 // One of them is not Phi or 3567 // The first one is not Phi node from the set we'd like to match or 3568 // Phi nodes from different basic blocks then 3569 // we will not be able to match. 3570 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3571 FirstPhi->getParent() != SecondPhi->getParent()) 3572 return false; 3573 3574 // If we already matched them then continue. 3575 if (Matcher.count({ FirstPhi, SecondPhi })) 3576 continue; 3577 // So the values are different and does not match. So we need them to 3578 // match. (But we register no more than one match per PHI node, so that 3579 // we won't later try to replace them twice.) 3580 if (MatchedPHIs.insert(FirstPhi).second) 3581 Matcher.insert({ FirstPhi, SecondPhi }); 3582 // But me must check it. 3583 WorkList.push_back({ FirstPhi, SecondPhi }); 3584 } 3585 } 3586 return true; 3587 } 3588 3589 /// For the given set of PHI nodes (in the SimplificationTracker) try 3590 /// to find their equivalents. 3591 /// Returns false if this matching fails and creation of new Phi is disabled. 3592 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3593 unsigned &PhiNotMatchedCount) { 3594 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3595 // order, so the replacements (ReplacePhi) are also done in a deterministic 3596 // order. 3597 SmallSetVector<PHIPair, 8> Matched; 3598 SmallPtrSet<PHINode *, 8> WillNotMatch; 3599 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3600 while (PhiNodesToMatch.size()) { 3601 PHINode *PHI = *PhiNodesToMatch.begin(); 3602 3603 // Add us, if no Phi nodes in the basic block we do not match. 3604 WillNotMatch.clear(); 3605 WillNotMatch.insert(PHI); 3606 3607 // Traverse all Phis until we found equivalent or fail to do that. 3608 bool IsMatched = false; 3609 for (auto &P : PHI->getParent()->phis()) { 3610 if (&P == PHI) 3611 continue; 3612 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3613 break; 3614 // If it does not match, collect all Phi nodes from matcher. 3615 // if we end up with no match, them all these Phi nodes will not match 3616 // later. 3617 for (auto M : Matched) 3618 WillNotMatch.insert(M.first); 3619 Matched.clear(); 3620 } 3621 if (IsMatched) { 3622 // Replace all matched values and erase them. 3623 for (auto MV : Matched) 3624 ST.ReplacePhi(MV.first, MV.second); 3625 Matched.clear(); 3626 continue; 3627 } 3628 // If we are not allowed to create new nodes then bail out. 3629 if (!AllowNewPhiNodes) 3630 return false; 3631 // Just remove all seen values in matcher. They will not match anything. 3632 PhiNotMatchedCount += WillNotMatch.size(); 3633 for (auto *P : WillNotMatch) 3634 PhiNodesToMatch.erase(P); 3635 } 3636 return true; 3637 } 3638 /// Fill the placeholders with values from predecessors and simplify them. 3639 void FillPlaceholders(FoldAddrToValueMapping &Map, 3640 SmallVectorImpl<Value *> &TraverseOrder, 3641 SimplificationTracker &ST) { 3642 while (!TraverseOrder.empty()) { 3643 Value *Current = TraverseOrder.pop_back_val(); 3644 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3645 Value *V = Map[Current]; 3646 3647 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3648 // CurrentValue also must be Select. 3649 auto *CurrentSelect = cast<SelectInst>(Current); 3650 auto *TrueValue = CurrentSelect->getTrueValue(); 3651 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3652 Select->setTrueValue(ST.Get(Map[TrueValue])); 3653 auto *FalseValue = CurrentSelect->getFalseValue(); 3654 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3655 Select->setFalseValue(ST.Get(Map[FalseValue])); 3656 } else { 3657 // Must be a Phi node then. 3658 auto *PHI = cast<PHINode>(V); 3659 // Fill the Phi node with values from predecessors. 3660 for (auto *B : predecessors(PHI->getParent())) { 3661 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3662 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3663 PHI->addIncoming(ST.Get(Map[PV]), B); 3664 } 3665 } 3666 Map[Current] = ST.Simplify(V); 3667 } 3668 } 3669 3670 /// Starting from original value recursively iterates over def-use chain up to 3671 /// known ending values represented in a map. For each traversed phi/select 3672 /// inserts a placeholder Phi or Select. 3673 /// Reports all new created Phi/Select nodes by adding them to set. 3674 /// Also reports and order in what values have been traversed. 3675 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3676 SmallVectorImpl<Value *> &TraverseOrder, 3677 SimplificationTracker &ST) { 3678 SmallVector<Value *, 32> Worklist; 3679 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3680 "Address must be a Phi or Select node"); 3681 auto *Dummy = UndefValue::get(CommonType); 3682 Worklist.push_back(Original); 3683 while (!Worklist.empty()) { 3684 Value *Current = Worklist.pop_back_val(); 3685 // if it is already visited or it is an ending value then skip it. 3686 if (Map.find(Current) != Map.end()) 3687 continue; 3688 TraverseOrder.push_back(Current); 3689 3690 // CurrentValue must be a Phi node or select. All others must be covered 3691 // by anchors. 3692 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3693 // Is it OK to get metadata from OrigSelect?! 3694 // Create a Select placeholder with dummy value. 3695 SelectInst *Select = SelectInst::Create( 3696 CurrentSelect->getCondition(), Dummy, Dummy, 3697 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3698 Map[Current] = Select; 3699 ST.insertNewSelect(Select); 3700 // We are interested in True and False values. 3701 Worklist.push_back(CurrentSelect->getTrueValue()); 3702 Worklist.push_back(CurrentSelect->getFalseValue()); 3703 } else { 3704 // It must be a Phi node then. 3705 PHINode *CurrentPhi = cast<PHINode>(Current); 3706 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3707 PHINode *PHI = 3708 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3709 Map[Current] = PHI; 3710 ST.insertNewPhi(PHI); 3711 for (Value *P : CurrentPhi->incoming_values()) 3712 Worklist.push_back(P); 3713 } 3714 } 3715 } 3716 3717 bool addrModeCombiningAllowed() { 3718 if (DisableComplexAddrModes) 3719 return false; 3720 switch (DifferentField) { 3721 default: 3722 return false; 3723 case ExtAddrMode::BaseRegField: 3724 return AddrSinkCombineBaseReg; 3725 case ExtAddrMode::BaseGVField: 3726 return AddrSinkCombineBaseGV; 3727 case ExtAddrMode::BaseOffsField: 3728 return AddrSinkCombineBaseOffs; 3729 case ExtAddrMode::ScaledRegField: 3730 return AddrSinkCombineScaledReg; 3731 } 3732 } 3733 }; 3734 } // end anonymous namespace 3735 3736 /// Try adding ScaleReg*Scale to the current addressing mode. 3737 /// Return true and update AddrMode if this addr mode is legal for the target, 3738 /// false if not. 3739 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3740 unsigned Depth) { 3741 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3742 // mode. Just process that directly. 3743 if (Scale == 1) 3744 return matchAddr(ScaleReg, Depth); 3745 3746 // If the scale is 0, it takes nothing to add this. 3747 if (Scale == 0) 3748 return true; 3749 3750 // If we already have a scale of this value, we can add to it, otherwise, we 3751 // need an available scale field. 3752 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3753 return false; 3754 3755 ExtAddrMode TestAddrMode = AddrMode; 3756 3757 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3758 // [A+B + A*7] -> [B+A*8]. 3759 TestAddrMode.Scale += Scale; 3760 TestAddrMode.ScaledReg = ScaleReg; 3761 3762 // If the new address isn't legal, bail out. 3763 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3764 return false; 3765 3766 // It was legal, so commit it. 3767 AddrMode = TestAddrMode; 3768 3769 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3770 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3771 // X*Scale + C*Scale to addr mode. 3772 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3773 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3774 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) && 3775 CI->getValue().isSignedIntN(64)) { 3776 TestAddrMode.InBounds = false; 3777 TestAddrMode.ScaledReg = AddLHS; 3778 TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; 3779 3780 // If this addressing mode is legal, commit it and remember that we folded 3781 // this instruction. 3782 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3783 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3784 AddrMode = TestAddrMode; 3785 return true; 3786 } 3787 } 3788 3789 // Otherwise, not (x+c)*scale, just return what we have. 3790 return true; 3791 } 3792 3793 /// This is a little filter, which returns true if an addressing computation 3794 /// involving I might be folded into a load/store accessing it. 3795 /// This doesn't need to be perfect, but needs to accept at least 3796 /// the set of instructions that MatchOperationAddr can. 3797 static bool MightBeFoldableInst(Instruction *I) { 3798 switch (I->getOpcode()) { 3799 case Instruction::BitCast: 3800 case Instruction::AddrSpaceCast: 3801 // Don't touch identity bitcasts. 3802 if (I->getType() == I->getOperand(0)->getType()) 3803 return false; 3804 return I->getType()->isIntOrPtrTy(); 3805 case Instruction::PtrToInt: 3806 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3807 return true; 3808 case Instruction::IntToPtr: 3809 // We know the input is intptr_t, so this is foldable. 3810 return true; 3811 case Instruction::Add: 3812 return true; 3813 case Instruction::Mul: 3814 case Instruction::Shl: 3815 // Can only handle X*C and X << C. 3816 return isa<ConstantInt>(I->getOperand(1)); 3817 case Instruction::GetElementPtr: 3818 return true; 3819 default: 3820 return false; 3821 } 3822 } 3823 3824 /// Check whether or not \p Val is a legal instruction for \p TLI. 3825 /// \note \p Val is assumed to be the product of some type promotion. 3826 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3827 /// to be legal, as the non-promoted value would have had the same state. 3828 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3829 const DataLayout &DL, Value *Val) { 3830 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3831 if (!PromotedInst) 3832 return false; 3833 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3834 // If the ISDOpcode is undefined, it was undefined before the promotion. 3835 if (!ISDOpcode) 3836 return true; 3837 // Otherwise, check if the promoted instruction is legal or not. 3838 return TLI.isOperationLegalOrCustom( 3839 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3840 } 3841 3842 namespace { 3843 3844 /// Hepler class to perform type promotion. 3845 class TypePromotionHelper { 3846 /// Utility function to add a promoted instruction \p ExtOpnd to 3847 /// \p PromotedInsts and record the type of extension we have seen. 3848 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3849 Instruction *ExtOpnd, 3850 bool IsSExt) { 3851 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3852 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3853 if (It != PromotedInsts.end()) { 3854 // If the new extension is same as original, the information in 3855 // PromotedInsts[ExtOpnd] is still correct. 3856 if (It->second.getInt() == ExtTy) 3857 return; 3858 3859 // Now the new extension is different from old extension, we make 3860 // the type information invalid by setting extension type to 3861 // BothExtension. 3862 ExtTy = BothExtension; 3863 } 3864 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 3865 } 3866 3867 /// Utility function to query the original type of instruction \p Opnd 3868 /// with a matched extension type. If the extension doesn't match, we 3869 /// cannot use the information we had on the original type. 3870 /// BothExtension doesn't match any extension type. 3871 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 3872 Instruction *Opnd, 3873 bool IsSExt) { 3874 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3875 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3876 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 3877 return It->second.getPointer(); 3878 return nullptr; 3879 } 3880 3881 /// Utility function to check whether or not a sign or zero extension 3882 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3883 /// either using the operands of \p Inst or promoting \p Inst. 3884 /// The type of the extension is defined by \p IsSExt. 3885 /// In other words, check if: 3886 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3887 /// #1 Promotion applies: 3888 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3889 /// #2 Operand reuses: 3890 /// ext opnd1 to ConsideredExtType. 3891 /// \p PromotedInsts maps the instructions to their type before promotion. 3892 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3893 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3894 3895 /// Utility function to determine if \p OpIdx should be promoted when 3896 /// promoting \p Inst. 3897 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3898 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3899 } 3900 3901 /// Utility function to promote the operand of \p Ext when this 3902 /// operand is a promotable trunc or sext or zext. 3903 /// \p PromotedInsts maps the instructions to their type before promotion. 3904 /// \p CreatedInstsCost[out] contains the cost of all instructions 3905 /// created to promote the operand of Ext. 3906 /// Newly added extensions are inserted in \p Exts. 3907 /// Newly added truncates are inserted in \p Truncs. 3908 /// Should never be called directly. 3909 /// \return The promoted value which is used instead of Ext. 3910 static Value *promoteOperandForTruncAndAnyExt( 3911 Instruction *Ext, TypePromotionTransaction &TPT, 3912 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3913 SmallVectorImpl<Instruction *> *Exts, 3914 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3915 3916 /// Utility function to promote the operand of \p Ext when this 3917 /// operand is promotable and is not a supported trunc or sext. 3918 /// \p PromotedInsts maps the instructions to their type before promotion. 3919 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3920 /// created to promote the operand of Ext. 3921 /// Newly added extensions are inserted in \p Exts. 3922 /// Newly added truncates are inserted in \p Truncs. 3923 /// Should never be called directly. 3924 /// \return The promoted value which is used instead of Ext. 3925 static Value *promoteOperandForOther(Instruction *Ext, 3926 TypePromotionTransaction &TPT, 3927 InstrToOrigTy &PromotedInsts, 3928 unsigned &CreatedInstsCost, 3929 SmallVectorImpl<Instruction *> *Exts, 3930 SmallVectorImpl<Instruction *> *Truncs, 3931 const TargetLowering &TLI, bool IsSExt); 3932 3933 /// \see promoteOperandForOther. 3934 static Value *signExtendOperandForOther( 3935 Instruction *Ext, TypePromotionTransaction &TPT, 3936 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3937 SmallVectorImpl<Instruction *> *Exts, 3938 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3939 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3940 Exts, Truncs, TLI, true); 3941 } 3942 3943 /// \see promoteOperandForOther. 3944 static Value *zeroExtendOperandForOther( 3945 Instruction *Ext, TypePromotionTransaction &TPT, 3946 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3947 SmallVectorImpl<Instruction *> *Exts, 3948 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3949 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3950 Exts, Truncs, TLI, false); 3951 } 3952 3953 public: 3954 /// Type for the utility function that promotes the operand of Ext. 3955 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3956 InstrToOrigTy &PromotedInsts, 3957 unsigned &CreatedInstsCost, 3958 SmallVectorImpl<Instruction *> *Exts, 3959 SmallVectorImpl<Instruction *> *Truncs, 3960 const TargetLowering &TLI); 3961 3962 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3963 /// action to promote the operand of \p Ext instead of using Ext. 3964 /// \return NULL if no promotable action is possible with the current 3965 /// sign extension. 3966 /// \p InsertedInsts keeps track of all the instructions inserted by the 3967 /// other CodeGenPrepare optimizations. This information is important 3968 /// because we do not want to promote these instructions as CodeGenPrepare 3969 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3970 /// \p PromotedInsts maps the instructions to their type before promotion. 3971 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3972 const TargetLowering &TLI, 3973 const InstrToOrigTy &PromotedInsts); 3974 }; 3975 3976 } // end anonymous namespace 3977 3978 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3979 Type *ConsideredExtType, 3980 const InstrToOrigTy &PromotedInsts, 3981 bool IsSExt) { 3982 // The promotion helper does not know how to deal with vector types yet. 3983 // To be able to fix that, we would need to fix the places where we 3984 // statically extend, e.g., constants and such. 3985 if (Inst->getType()->isVectorTy()) 3986 return false; 3987 3988 // We can always get through zext. 3989 if (isa<ZExtInst>(Inst)) 3990 return true; 3991 3992 // sext(sext) is ok too. 3993 if (IsSExt && isa<SExtInst>(Inst)) 3994 return true; 3995 3996 // We can get through binary operator, if it is legal. In other words, the 3997 // binary operator must have a nuw or nsw flag. 3998 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3999 if (isa_and_nonnull<OverflowingBinaryOperator>(BinOp) && 4000 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 4001 (IsSExt && BinOp->hasNoSignedWrap()))) 4002 return true; 4003 4004 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 4005 if ((Inst->getOpcode() == Instruction::And || 4006 Inst->getOpcode() == Instruction::Or)) 4007 return true; 4008 4009 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 4010 if (Inst->getOpcode() == Instruction::Xor) { 4011 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 4012 // Make sure it is not a NOT. 4013 if (Cst && !Cst->getValue().isAllOnesValue()) 4014 return true; 4015 } 4016 4017 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 4018 // It may change a poisoned value into a regular value, like 4019 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 4020 // poisoned value regular value 4021 // It should be OK since undef covers valid value. 4022 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 4023 return true; 4024 4025 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 4026 // It may change a poisoned value into a regular value, like 4027 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 4028 // poisoned value regular value 4029 // It should be OK since undef covers valid value. 4030 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 4031 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 4032 if (ExtInst->hasOneUse()) { 4033 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 4034 if (AndInst && AndInst->getOpcode() == Instruction::And) { 4035 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 4036 if (Cst && 4037 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 4038 return true; 4039 } 4040 } 4041 } 4042 4043 // Check if we can do the following simplification. 4044 // ext(trunc(opnd)) --> ext(opnd) 4045 if (!isa<TruncInst>(Inst)) 4046 return false; 4047 4048 Value *OpndVal = Inst->getOperand(0); 4049 // Check if we can use this operand in the extension. 4050 // If the type is larger than the result type of the extension, we cannot. 4051 if (!OpndVal->getType()->isIntegerTy() || 4052 OpndVal->getType()->getIntegerBitWidth() > 4053 ConsideredExtType->getIntegerBitWidth()) 4054 return false; 4055 4056 // If the operand of the truncate is not an instruction, we will not have 4057 // any information on the dropped bits. 4058 // (Actually we could for constant but it is not worth the extra logic). 4059 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 4060 if (!Opnd) 4061 return false; 4062 4063 // Check if the source of the type is narrow enough. 4064 // I.e., check that trunc just drops extended bits of the same kind of 4065 // the extension. 4066 // #1 get the type of the operand and check the kind of the extended bits. 4067 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 4068 if (OpndType) 4069 ; 4070 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 4071 OpndType = Opnd->getOperand(0)->getType(); 4072 else 4073 return false; 4074 4075 // #2 check that the truncate just drops extended bits. 4076 return Inst->getType()->getIntegerBitWidth() >= 4077 OpndType->getIntegerBitWidth(); 4078 } 4079 4080 TypePromotionHelper::Action TypePromotionHelper::getAction( 4081 Instruction *Ext, const SetOfInstrs &InsertedInsts, 4082 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 4083 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4084 "Unexpected instruction type"); 4085 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 4086 Type *ExtTy = Ext->getType(); 4087 bool IsSExt = isa<SExtInst>(Ext); 4088 // If the operand of the extension is not an instruction, we cannot 4089 // get through. 4090 // If it, check we can get through. 4091 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 4092 return nullptr; 4093 4094 // Do not promote if the operand has been added by codegenprepare. 4095 // Otherwise, it means we are undoing an optimization that is likely to be 4096 // redone, thus causing potential infinite loop. 4097 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 4098 return nullptr; 4099 4100 // SExt or Trunc instructions. 4101 // Return the related handler. 4102 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 4103 isa<ZExtInst>(ExtOpnd)) 4104 return promoteOperandForTruncAndAnyExt; 4105 4106 // Regular instruction. 4107 // Abort early if we will have to insert non-free instructions. 4108 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 4109 return nullptr; 4110 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 4111 } 4112 4113 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 4114 Instruction *SExt, TypePromotionTransaction &TPT, 4115 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4116 SmallVectorImpl<Instruction *> *Exts, 4117 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4118 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4119 // get through it and this method should not be called. 4120 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4121 Value *ExtVal = SExt; 4122 bool HasMergedNonFreeExt = false; 4123 if (isa<ZExtInst>(SExtOpnd)) { 4124 // Replace s|zext(zext(opnd)) 4125 // => zext(opnd). 4126 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4127 Value *ZExt = 4128 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4129 TPT.replaceAllUsesWith(SExt, ZExt); 4130 TPT.eraseInstruction(SExt); 4131 ExtVal = ZExt; 4132 } else { 4133 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4134 // => z|sext(opnd). 4135 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4136 } 4137 CreatedInstsCost = 0; 4138 4139 // Remove dead code. 4140 if (SExtOpnd->use_empty()) 4141 TPT.eraseInstruction(SExtOpnd); 4142 4143 // Check if the extension is still needed. 4144 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4145 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4146 if (ExtInst) { 4147 if (Exts) 4148 Exts->push_back(ExtInst); 4149 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4150 } 4151 return ExtVal; 4152 } 4153 4154 // At this point we have: ext ty opnd to ty. 4155 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4156 Value *NextVal = ExtInst->getOperand(0); 4157 TPT.eraseInstruction(ExtInst, NextVal); 4158 return NextVal; 4159 } 4160 4161 Value *TypePromotionHelper::promoteOperandForOther( 4162 Instruction *Ext, TypePromotionTransaction &TPT, 4163 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4164 SmallVectorImpl<Instruction *> *Exts, 4165 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4166 bool IsSExt) { 4167 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4168 // get through it and this method should not be called. 4169 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4170 CreatedInstsCost = 0; 4171 if (!ExtOpnd->hasOneUse()) { 4172 // ExtOpnd will be promoted. 4173 // All its uses, but Ext, will need to use a truncated value of the 4174 // promoted version. 4175 // Create the truncate now. 4176 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4177 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4178 // Insert it just after the definition. 4179 ITrunc->moveAfter(ExtOpnd); 4180 if (Truncs) 4181 Truncs->push_back(ITrunc); 4182 } 4183 4184 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4185 // Restore the operand of Ext (which has been replaced by the previous call 4186 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4187 TPT.setOperand(Ext, 0, ExtOpnd); 4188 } 4189 4190 // Get through the Instruction: 4191 // 1. Update its type. 4192 // 2. Replace the uses of Ext by Inst. 4193 // 3. Extend each operand that needs to be extended. 4194 4195 // Remember the original type of the instruction before promotion. 4196 // This is useful to know that the high bits are sign extended bits. 4197 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4198 // Step #1. 4199 TPT.mutateType(ExtOpnd, Ext->getType()); 4200 // Step #2. 4201 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4202 // Step #3. 4203 Instruction *ExtForOpnd = Ext; 4204 4205 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4206 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4207 ++OpIdx) { 4208 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4209 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4210 !shouldExtOperand(ExtOpnd, OpIdx)) { 4211 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4212 continue; 4213 } 4214 // Check if we can statically extend the operand. 4215 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4216 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4217 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4218 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4219 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4220 : Cst->getValue().zext(BitWidth); 4221 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4222 continue; 4223 } 4224 // UndefValue are typed, so we have to statically sign extend them. 4225 if (isa<UndefValue>(Opnd)) { 4226 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4227 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4228 continue; 4229 } 4230 4231 // Otherwise we have to explicitly sign extend the operand. 4232 // Check if Ext was reused to extend an operand. 4233 if (!ExtForOpnd) { 4234 // If yes, create a new one. 4235 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 4236 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 4237 : TPT.createZExt(Ext, Opnd, Ext->getType()); 4238 if (!isa<Instruction>(ValForExtOpnd)) { 4239 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4240 continue; 4241 } 4242 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4243 } 4244 if (Exts) 4245 Exts->push_back(ExtForOpnd); 4246 TPT.setOperand(ExtForOpnd, 0, Opnd); 4247 4248 // Move the sign extension before the insertion point. 4249 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4250 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4251 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4252 // If more sext are required, new instructions will have to be created. 4253 ExtForOpnd = nullptr; 4254 } 4255 if (ExtForOpnd == Ext) { 4256 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4257 TPT.eraseInstruction(Ext); 4258 } 4259 return ExtOpnd; 4260 } 4261 4262 /// Check whether or not promoting an instruction to a wider type is profitable. 4263 /// \p NewCost gives the cost of extension instructions created by the 4264 /// promotion. 4265 /// \p OldCost gives the cost of extension instructions before the promotion 4266 /// plus the number of instructions that have been 4267 /// matched in the addressing mode the promotion. 4268 /// \p PromotedOperand is the value that has been promoted. 4269 /// \return True if the promotion is profitable, false otherwise. 4270 bool AddressingModeMatcher::isPromotionProfitable( 4271 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4272 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4273 << '\n'); 4274 // The cost of the new extensions is greater than the cost of the 4275 // old extension plus what we folded. 4276 // This is not profitable. 4277 if (NewCost > OldCost) 4278 return false; 4279 if (NewCost < OldCost) 4280 return true; 4281 // The promotion is neutral but it may help folding the sign extension in 4282 // loads for instance. 4283 // Check that we did not create an illegal instruction. 4284 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4285 } 4286 4287 /// Given an instruction or constant expr, see if we can fold the operation 4288 /// into the addressing mode. If so, update the addressing mode and return 4289 /// true, otherwise return false without modifying AddrMode. 4290 /// If \p MovedAway is not NULL, it contains the information of whether or 4291 /// not AddrInst has to be folded into the addressing mode on success. 4292 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4293 /// because it has been moved away. 4294 /// Thus AddrInst must not be added in the matched instructions. 4295 /// This state can happen when AddrInst is a sext, since it may be moved away. 4296 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4297 /// not be referenced anymore. 4298 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4299 unsigned Depth, 4300 bool *MovedAway) { 4301 // Avoid exponential behavior on extremely deep expression trees. 4302 if (Depth >= 5) return false; 4303 4304 // By default, all matched instructions stay in place. 4305 if (MovedAway) 4306 *MovedAway = false; 4307 4308 switch (Opcode) { 4309 case Instruction::PtrToInt: 4310 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4311 return matchAddr(AddrInst->getOperand(0), Depth); 4312 case Instruction::IntToPtr: { 4313 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4314 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4315 // This inttoptr is a no-op if the integer type is pointer sized. 4316 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4317 return matchAddr(AddrInst->getOperand(0), Depth); 4318 return false; 4319 } 4320 case Instruction::BitCast: 4321 // BitCast is always a noop, and we can handle it as long as it is 4322 // int->int or pointer->pointer (we don't want int<->fp or something). 4323 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4324 // Don't touch identity bitcasts. These were probably put here by LSR, 4325 // and we don't want to mess around with them. Assume it knows what it 4326 // is doing. 4327 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4328 return matchAddr(AddrInst->getOperand(0), Depth); 4329 return false; 4330 case Instruction::AddrSpaceCast: { 4331 unsigned SrcAS 4332 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4333 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4334 if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS)) 4335 return matchAddr(AddrInst->getOperand(0), Depth); 4336 return false; 4337 } 4338 case Instruction::Add: { 4339 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4340 ExtAddrMode BackupAddrMode = AddrMode; 4341 unsigned OldSize = AddrModeInsts.size(); 4342 // Start a transaction at this point. 4343 // The LHS may match but not the RHS. 4344 // Therefore, we need a higher level restoration point to undo partially 4345 // matched operation. 4346 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4347 TPT.getRestorationPoint(); 4348 4349 AddrMode.InBounds = false; 4350 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4351 matchAddr(AddrInst->getOperand(0), Depth+1)) 4352 return true; 4353 4354 // Restore the old addr mode info. 4355 AddrMode = BackupAddrMode; 4356 AddrModeInsts.resize(OldSize); 4357 TPT.rollback(LastKnownGood); 4358 4359 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4360 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4361 matchAddr(AddrInst->getOperand(1), Depth+1)) 4362 return true; 4363 4364 // Otherwise we definitely can't merge the ADD in. 4365 AddrMode = BackupAddrMode; 4366 AddrModeInsts.resize(OldSize); 4367 TPT.rollback(LastKnownGood); 4368 break; 4369 } 4370 //case Instruction::Or: 4371 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4372 //break; 4373 case Instruction::Mul: 4374 case Instruction::Shl: { 4375 // Can only handle X*C and X << C. 4376 AddrMode.InBounds = false; 4377 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4378 if (!RHS || RHS->getBitWidth() > 64) 4379 return false; 4380 int64_t Scale = RHS->getSExtValue(); 4381 if (Opcode == Instruction::Shl) 4382 Scale = 1LL << Scale; 4383 4384 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4385 } 4386 case Instruction::GetElementPtr: { 4387 // Scan the GEP. We check it if it contains constant offsets and at most 4388 // one variable offset. 4389 int VariableOperand = -1; 4390 unsigned VariableScale = 0; 4391 4392 int64_t ConstantOffset = 0; 4393 gep_type_iterator GTI = gep_type_begin(AddrInst); 4394 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4395 if (StructType *STy = GTI.getStructTypeOrNull()) { 4396 const StructLayout *SL = DL.getStructLayout(STy); 4397 unsigned Idx = 4398 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4399 ConstantOffset += SL->getElementOffset(Idx); 4400 } else { 4401 TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType()); 4402 if (TS.isNonZero()) { 4403 // The optimisations below currently only work for fixed offsets. 4404 if (TS.isScalable()) 4405 return false; 4406 int64_t TypeSize = TS.getFixedSize(); 4407 if (ConstantInt *CI = 4408 dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4409 const APInt &CVal = CI->getValue(); 4410 if (CVal.getMinSignedBits() <= 64) { 4411 ConstantOffset += CVal.getSExtValue() * TypeSize; 4412 continue; 4413 } 4414 } 4415 // We only allow one variable index at the moment. 4416 if (VariableOperand != -1) 4417 return false; 4418 4419 // Remember the variable index. 4420 VariableOperand = i; 4421 VariableScale = TypeSize; 4422 } 4423 } 4424 } 4425 4426 // A common case is for the GEP to only do a constant offset. In this case, 4427 // just add it to the disp field and check validity. 4428 if (VariableOperand == -1) { 4429 AddrMode.BaseOffs += ConstantOffset; 4430 if (ConstantOffset == 0 || 4431 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4432 // Check to see if we can fold the base pointer in too. 4433 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4434 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4435 AddrMode.InBounds = false; 4436 return true; 4437 } 4438 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4439 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4440 ConstantOffset > 0) { 4441 // Record GEPs with non-zero offsets as candidates for splitting in the 4442 // event that the offset cannot fit into the r+i addressing mode. 4443 // Simple and common case that only one GEP is used in calculating the 4444 // address for the memory access. 4445 Value *Base = AddrInst->getOperand(0); 4446 auto *BaseI = dyn_cast<Instruction>(Base); 4447 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4448 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4449 (BaseI && !isa<CastInst>(BaseI) && 4450 !isa<GetElementPtrInst>(BaseI))) { 4451 // Make sure the parent block allows inserting non-PHI instructions 4452 // before the terminator. 4453 BasicBlock *Parent = 4454 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4455 if (!Parent->getTerminator()->isEHPad()) 4456 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4457 } 4458 } 4459 AddrMode.BaseOffs -= ConstantOffset; 4460 return false; 4461 } 4462 4463 // Save the valid addressing mode in case we can't match. 4464 ExtAddrMode BackupAddrMode = AddrMode; 4465 unsigned OldSize = AddrModeInsts.size(); 4466 4467 // See if the scale and offset amount is valid for this target. 4468 AddrMode.BaseOffs += ConstantOffset; 4469 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4470 AddrMode.InBounds = false; 4471 4472 // Match the base operand of the GEP. 4473 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4474 // If it couldn't be matched, just stuff the value in a register. 4475 if (AddrMode.HasBaseReg) { 4476 AddrMode = BackupAddrMode; 4477 AddrModeInsts.resize(OldSize); 4478 return false; 4479 } 4480 AddrMode.HasBaseReg = true; 4481 AddrMode.BaseReg = AddrInst->getOperand(0); 4482 } 4483 4484 // Match the remaining variable portion of the GEP. 4485 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4486 Depth)) { 4487 // If it couldn't be matched, try stuffing the base into a register 4488 // instead of matching it, and retrying the match of the scale. 4489 AddrMode = BackupAddrMode; 4490 AddrModeInsts.resize(OldSize); 4491 if (AddrMode.HasBaseReg) 4492 return false; 4493 AddrMode.HasBaseReg = true; 4494 AddrMode.BaseReg = AddrInst->getOperand(0); 4495 AddrMode.BaseOffs += ConstantOffset; 4496 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4497 VariableScale, Depth)) { 4498 // If even that didn't work, bail. 4499 AddrMode = BackupAddrMode; 4500 AddrModeInsts.resize(OldSize); 4501 return false; 4502 } 4503 } 4504 4505 return true; 4506 } 4507 case Instruction::SExt: 4508 case Instruction::ZExt: { 4509 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4510 if (!Ext) 4511 return false; 4512 4513 // Try to move this ext out of the way of the addressing mode. 4514 // Ask for a method for doing so. 4515 TypePromotionHelper::Action TPH = 4516 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4517 if (!TPH) 4518 return false; 4519 4520 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4521 TPT.getRestorationPoint(); 4522 unsigned CreatedInstsCost = 0; 4523 unsigned ExtCost = !TLI.isExtFree(Ext); 4524 Value *PromotedOperand = 4525 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4526 // SExt has been moved away. 4527 // Thus either it will be rematched later in the recursive calls or it is 4528 // gone. Anyway, we must not fold it into the addressing mode at this point. 4529 // E.g., 4530 // op = add opnd, 1 4531 // idx = ext op 4532 // addr = gep base, idx 4533 // is now: 4534 // promotedOpnd = ext opnd <- no match here 4535 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4536 // addr = gep base, op <- match 4537 if (MovedAway) 4538 *MovedAway = true; 4539 4540 assert(PromotedOperand && 4541 "TypePromotionHelper should have filtered out those cases"); 4542 4543 ExtAddrMode BackupAddrMode = AddrMode; 4544 unsigned OldSize = AddrModeInsts.size(); 4545 4546 if (!matchAddr(PromotedOperand, Depth) || 4547 // The total of the new cost is equal to the cost of the created 4548 // instructions. 4549 // The total of the old cost is equal to the cost of the extension plus 4550 // what we have saved in the addressing mode. 4551 !isPromotionProfitable(CreatedInstsCost, 4552 ExtCost + (AddrModeInsts.size() - OldSize), 4553 PromotedOperand)) { 4554 AddrMode = BackupAddrMode; 4555 AddrModeInsts.resize(OldSize); 4556 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4557 TPT.rollback(LastKnownGood); 4558 return false; 4559 } 4560 return true; 4561 } 4562 } 4563 return false; 4564 } 4565 4566 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4567 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4568 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4569 /// for the target. 4570 /// 4571 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4572 // Start a transaction at this point that we will rollback if the matching 4573 // fails. 4574 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4575 TPT.getRestorationPoint(); 4576 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4577 if (CI->getValue().isSignedIntN(64)) { 4578 // Fold in immediates if legal for the target. 4579 AddrMode.BaseOffs += CI->getSExtValue(); 4580 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4581 return true; 4582 AddrMode.BaseOffs -= CI->getSExtValue(); 4583 } 4584 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4585 // If this is a global variable, try to fold it into the addressing mode. 4586 if (!AddrMode.BaseGV) { 4587 AddrMode.BaseGV = GV; 4588 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4589 return true; 4590 AddrMode.BaseGV = nullptr; 4591 } 4592 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4593 ExtAddrMode BackupAddrMode = AddrMode; 4594 unsigned OldSize = AddrModeInsts.size(); 4595 4596 // Check to see if it is possible to fold this operation. 4597 bool MovedAway = false; 4598 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4599 // This instruction may have been moved away. If so, there is nothing 4600 // to check here. 4601 if (MovedAway) 4602 return true; 4603 // Okay, it's possible to fold this. Check to see if it is actually 4604 // *profitable* to do so. We use a simple cost model to avoid increasing 4605 // register pressure too much. 4606 if (I->hasOneUse() || 4607 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4608 AddrModeInsts.push_back(I); 4609 return true; 4610 } 4611 4612 // It isn't profitable to do this, roll back. 4613 //cerr << "NOT FOLDING: " << *I; 4614 AddrMode = BackupAddrMode; 4615 AddrModeInsts.resize(OldSize); 4616 TPT.rollback(LastKnownGood); 4617 } 4618 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4619 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4620 return true; 4621 TPT.rollback(LastKnownGood); 4622 } else if (isa<ConstantPointerNull>(Addr)) { 4623 // Null pointer gets folded without affecting the addressing mode. 4624 return true; 4625 } 4626 4627 // Worse case, the target should support [reg] addressing modes. :) 4628 if (!AddrMode.HasBaseReg) { 4629 AddrMode.HasBaseReg = true; 4630 AddrMode.BaseReg = Addr; 4631 // Still check for legality in case the target supports [imm] but not [i+r]. 4632 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4633 return true; 4634 AddrMode.HasBaseReg = false; 4635 AddrMode.BaseReg = nullptr; 4636 } 4637 4638 // If the base register is already taken, see if we can do [r+r]. 4639 if (AddrMode.Scale == 0) { 4640 AddrMode.Scale = 1; 4641 AddrMode.ScaledReg = Addr; 4642 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4643 return true; 4644 AddrMode.Scale = 0; 4645 AddrMode.ScaledReg = nullptr; 4646 } 4647 // Couldn't match. 4648 TPT.rollback(LastKnownGood); 4649 return false; 4650 } 4651 4652 /// Check to see if all uses of OpVal by the specified inline asm call are due 4653 /// to memory operands. If so, return true, otherwise return false. 4654 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4655 const TargetLowering &TLI, 4656 const TargetRegisterInfo &TRI) { 4657 const Function *F = CI->getFunction(); 4658 TargetLowering::AsmOperandInfoVector TargetConstraints = 4659 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI); 4660 4661 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4662 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4663 4664 // Compute the constraint code and ConstraintType to use. 4665 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4666 4667 // If this asm operand is our Value*, and if it isn't an indirect memory 4668 // operand, we can't fold it! 4669 if (OpInfo.CallOperandVal == OpVal && 4670 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4671 !OpInfo.isIndirect)) 4672 return false; 4673 } 4674 4675 return true; 4676 } 4677 4678 // Max number of memory uses to look at before aborting the search to conserve 4679 // compile time. 4680 static constexpr int MaxMemoryUsesToScan = 20; 4681 4682 /// Recursively walk all the uses of I until we find a memory use. 4683 /// If we find an obviously non-foldable instruction, return true. 4684 /// Add the ultimately found memory instructions to MemoryUses. 4685 static bool FindAllMemoryUses( 4686 Instruction *I, 4687 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4688 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4689 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 4690 BlockFrequencyInfo *BFI, int SeenInsts = 0) { 4691 // If we already considered this instruction, we're done. 4692 if (!ConsideredInsts.insert(I).second) 4693 return false; 4694 4695 // If this is an obviously unfoldable instruction, bail out. 4696 if (!MightBeFoldableInst(I)) 4697 return true; 4698 4699 // Loop over all the uses, recursively processing them. 4700 for (Use &U : I->uses()) { 4701 // Conservatively return true if we're seeing a large number or a deep chain 4702 // of users. This avoids excessive compilation times in pathological cases. 4703 if (SeenInsts++ >= MaxMemoryUsesToScan) 4704 return true; 4705 4706 Instruction *UserI = cast<Instruction>(U.getUser()); 4707 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4708 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4709 continue; 4710 } 4711 4712 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4713 unsigned opNo = U.getOperandNo(); 4714 if (opNo != StoreInst::getPointerOperandIndex()) 4715 return true; // Storing addr, not into addr. 4716 MemoryUses.push_back(std::make_pair(SI, opNo)); 4717 continue; 4718 } 4719 4720 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4721 unsigned opNo = U.getOperandNo(); 4722 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4723 return true; // Storing addr, not into addr. 4724 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4725 continue; 4726 } 4727 4728 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4729 unsigned opNo = U.getOperandNo(); 4730 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4731 return true; // Storing addr, not into addr. 4732 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4733 continue; 4734 } 4735 4736 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4737 if (CI->hasFnAttr(Attribute::Cold)) { 4738 // If this is a cold call, we can sink the addressing calculation into 4739 // the cold path. See optimizeCallInst 4740 bool OptForSize = OptSize || 4741 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 4742 if (!OptForSize) 4743 continue; 4744 } 4745 4746 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); 4747 if (!IA) return true; 4748 4749 // If this is a memory operand, we're cool, otherwise bail out. 4750 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4751 return true; 4752 continue; 4753 } 4754 4755 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4756 PSI, BFI, SeenInsts)) 4757 return true; 4758 } 4759 4760 return false; 4761 } 4762 4763 /// Return true if Val is already known to be live at the use site that we're 4764 /// folding it into. If so, there is no cost to include it in the addressing 4765 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4766 /// instruction already. 4767 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4768 Value *KnownLive2) { 4769 // If Val is either of the known-live values, we know it is live! 4770 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4771 return true; 4772 4773 // All values other than instructions and arguments (e.g. constants) are live. 4774 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4775 4776 // If Val is a constant sized alloca in the entry block, it is live, this is 4777 // true because it is just a reference to the stack/frame pointer, which is 4778 // live for the whole function. 4779 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4780 if (AI->isStaticAlloca()) 4781 return true; 4782 4783 // Check to see if this value is already used in the memory instruction's 4784 // block. If so, it's already live into the block at the very least, so we 4785 // can reasonably fold it. 4786 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4787 } 4788 4789 /// It is possible for the addressing mode of the machine to fold the specified 4790 /// instruction into a load or store that ultimately uses it. 4791 /// However, the specified instruction has multiple uses. 4792 /// Given this, it may actually increase register pressure to fold it 4793 /// into the load. For example, consider this code: 4794 /// 4795 /// X = ... 4796 /// Y = X+1 4797 /// use(Y) -> nonload/store 4798 /// Z = Y+1 4799 /// load Z 4800 /// 4801 /// In this case, Y has multiple uses, and can be folded into the load of Z 4802 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4803 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4804 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4805 /// number of computations either. 4806 /// 4807 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4808 /// X was live across 'load Z' for other reasons, we actually *would* want to 4809 /// fold the addressing mode in the Z case. This would make Y die earlier. 4810 bool AddressingModeMatcher:: 4811 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4812 ExtAddrMode &AMAfter) { 4813 if (IgnoreProfitability) return true; 4814 4815 // AMBefore is the addressing mode before this instruction was folded into it, 4816 // and AMAfter is the addressing mode after the instruction was folded. Get 4817 // the set of registers referenced by AMAfter and subtract out those 4818 // referenced by AMBefore: this is the set of values which folding in this 4819 // address extends the lifetime of. 4820 // 4821 // Note that there are only two potential values being referenced here, 4822 // BaseReg and ScaleReg (global addresses are always available, as are any 4823 // folded immediates). 4824 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4825 4826 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4827 // lifetime wasn't extended by adding this instruction. 4828 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4829 BaseReg = nullptr; 4830 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4831 ScaledReg = nullptr; 4832 4833 // If folding this instruction (and it's subexprs) didn't extend any live 4834 // ranges, we're ok with it. 4835 if (!BaseReg && !ScaledReg) 4836 return true; 4837 4838 // If all uses of this instruction can have the address mode sunk into them, 4839 // we can remove the addressing mode and effectively trade one live register 4840 // for another (at worst.) In this context, folding an addressing mode into 4841 // the use is just a particularly nice way of sinking it. 4842 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4843 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4844 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4845 PSI, BFI)) 4846 return false; // Has a non-memory, non-foldable use! 4847 4848 // Now that we know that all uses of this instruction are part of a chain of 4849 // computation involving only operations that could theoretically be folded 4850 // into a memory use, loop over each of these memory operation uses and see 4851 // if they could *actually* fold the instruction. The assumption is that 4852 // addressing modes are cheap and that duplicating the computation involved 4853 // many times is worthwhile, even on a fastpath. For sinking candidates 4854 // (i.e. cold call sites), this serves as a way to prevent excessive code 4855 // growth since most architectures have some reasonable small and fast way to 4856 // compute an effective address. (i.e LEA on x86) 4857 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4858 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4859 Instruction *User = MemoryUses[i].first; 4860 unsigned OpNo = MemoryUses[i].second; 4861 4862 // Get the access type of this use. If the use isn't a pointer, we don't 4863 // know what it accesses. 4864 Value *Address = User->getOperand(OpNo); 4865 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4866 if (!AddrTy) 4867 return false; 4868 Type *AddressAccessTy = AddrTy->getElementType(); 4869 unsigned AS = AddrTy->getAddressSpace(); 4870 4871 // Do a match against the root of this address, ignoring profitability. This 4872 // will tell us if the addressing mode for the memory operation will 4873 // *actually* cover the shared instruction. 4874 ExtAddrMode Result; 4875 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4876 0); 4877 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4878 TPT.getRestorationPoint(); 4879 AddressingModeMatcher Matcher( 4880 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4881 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, BFI); 4882 Matcher.IgnoreProfitability = true; 4883 bool Success = Matcher.matchAddr(Address, 0); 4884 (void)Success; assert(Success && "Couldn't select *anything*?"); 4885 4886 // The match was to check the profitability, the changes made are not 4887 // part of the original matcher. Therefore, they should be dropped 4888 // otherwise the original matcher will not present the right state. 4889 TPT.rollback(LastKnownGood); 4890 4891 // If the match didn't cover I, then it won't be shared by it. 4892 if (!is_contained(MatchedAddrModeInsts, I)) 4893 return false; 4894 4895 MatchedAddrModeInsts.clear(); 4896 } 4897 4898 return true; 4899 } 4900 4901 /// Return true if the specified values are defined in a 4902 /// different basic block than BB. 4903 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4904 if (Instruction *I = dyn_cast<Instruction>(V)) 4905 return I->getParent() != BB; 4906 return false; 4907 } 4908 4909 /// Sink addressing mode computation immediate before MemoryInst if doing so 4910 /// can be done without increasing register pressure. The need for the 4911 /// register pressure constraint means this can end up being an all or nothing 4912 /// decision for all uses of the same addressing computation. 4913 /// 4914 /// Load and Store Instructions often have addressing modes that can do 4915 /// significant amounts of computation. As such, instruction selection will try 4916 /// to get the load or store to do as much computation as possible for the 4917 /// program. The problem is that isel can only see within a single block. As 4918 /// such, we sink as much legal addressing mode work into the block as possible. 4919 /// 4920 /// This method is used to optimize both load/store and inline asms with memory 4921 /// operands. It's also used to sink addressing computations feeding into cold 4922 /// call sites into their (cold) basic block. 4923 /// 4924 /// The motivation for handling sinking into cold blocks is that doing so can 4925 /// both enable other address mode sinking (by satisfying the register pressure 4926 /// constraint above), and reduce register pressure globally (by removing the 4927 /// addressing mode computation from the fast path entirely.). 4928 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4929 Type *AccessTy, unsigned AddrSpace) { 4930 Value *Repl = Addr; 4931 4932 // Try to collapse single-value PHI nodes. This is necessary to undo 4933 // unprofitable PRE transformations. 4934 SmallVector<Value*, 8> worklist; 4935 SmallPtrSet<Value*, 16> Visited; 4936 worklist.push_back(Addr); 4937 4938 // Use a worklist to iteratively look through PHI and select nodes, and 4939 // ensure that the addressing mode obtained from the non-PHI/select roots of 4940 // the graph are compatible. 4941 bool PhiOrSelectSeen = false; 4942 SmallVector<Instruction*, 16> AddrModeInsts; 4943 const SimplifyQuery SQ(*DL, TLInfo); 4944 AddressingModeCombiner AddrModes(SQ, Addr); 4945 TypePromotionTransaction TPT(RemovedInsts); 4946 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4947 TPT.getRestorationPoint(); 4948 while (!worklist.empty()) { 4949 Value *V = worklist.back(); 4950 worklist.pop_back(); 4951 4952 // We allow traversing cyclic Phi nodes. 4953 // In case of success after this loop we ensure that traversing through 4954 // Phi nodes ends up with all cases to compute address of the form 4955 // BaseGV + Base + Scale * Index + Offset 4956 // where Scale and Offset are constans and BaseGV, Base and Index 4957 // are exactly the same Values in all cases. 4958 // It means that BaseGV, Scale and Offset dominate our memory instruction 4959 // and have the same value as they had in address computation represented 4960 // as Phi. So we can safely sink address computation to memory instruction. 4961 if (!Visited.insert(V).second) 4962 continue; 4963 4964 // For a PHI node, push all of its incoming values. 4965 if (PHINode *P = dyn_cast<PHINode>(V)) { 4966 for (Value *IncValue : P->incoming_values()) 4967 worklist.push_back(IncValue); 4968 PhiOrSelectSeen = true; 4969 continue; 4970 } 4971 // Similar for select. 4972 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4973 worklist.push_back(SI->getFalseValue()); 4974 worklist.push_back(SI->getTrueValue()); 4975 PhiOrSelectSeen = true; 4976 continue; 4977 } 4978 4979 // For non-PHIs, determine the addressing mode being computed. Note that 4980 // the result may differ depending on what other uses our candidate 4981 // addressing instructions might have. 4982 AddrModeInsts.clear(); 4983 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4984 0); 4985 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4986 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4987 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 4988 BFI.get()); 4989 4990 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4991 if (GEP && !NewGEPBases.count(GEP)) { 4992 // If splitting the underlying data structure can reduce the offset of a 4993 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4994 // previously split data structures. 4995 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4996 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4997 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4998 } 4999 5000 NewAddrMode.OriginalValue = V; 5001 if (!AddrModes.addNewAddrMode(NewAddrMode)) 5002 break; 5003 } 5004 5005 // Try to combine the AddrModes we've collected. If we couldn't collect any, 5006 // or we have multiple but either couldn't combine them or combining them 5007 // wouldn't do anything useful, bail out now. 5008 if (!AddrModes.combineAddrModes()) { 5009 TPT.rollback(LastKnownGood); 5010 return false; 5011 } 5012 bool Modified = TPT.commit(); 5013 5014 // Get the combined AddrMode (or the only AddrMode, if we only had one). 5015 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 5016 5017 // If all the instructions matched are already in this BB, don't do anything. 5018 // If we saw a Phi node then it is not local definitely, and if we saw a select 5019 // then we want to push the address calculation past it even if it's already 5020 // in this BB. 5021 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 5022 return IsNonLocalValue(V, MemoryInst->getParent()); 5023 })) { 5024 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 5025 << "\n"); 5026 return Modified; 5027 } 5028 5029 // Insert this computation right after this user. Since our caller is 5030 // scanning from the top of the BB to the bottom, reuse of the expr are 5031 // guaranteed to happen later. 5032 IRBuilder<> Builder(MemoryInst); 5033 5034 // Now that we determined the addressing expression we want to use and know 5035 // that we have to sink it into this block. Check to see if we have already 5036 // done this for some other load/store instr in this block. If so, reuse 5037 // the computation. Before attempting reuse, check if the address is valid 5038 // as it may have been erased. 5039 5040 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 5041 5042 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 5043 if (SunkAddr) { 5044 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 5045 << " for " << *MemoryInst << "\n"); 5046 if (SunkAddr->getType() != Addr->getType()) 5047 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5048 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 5049 SubtargetInfo->addrSinkUsingGEPs())) { 5050 // By default, we use the GEP-based method when AA is used later. This 5051 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 5052 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5053 << " for " << *MemoryInst << "\n"); 5054 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5055 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 5056 5057 // First, find the pointer. 5058 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 5059 ResultPtr = AddrMode.BaseReg; 5060 AddrMode.BaseReg = nullptr; 5061 } 5062 5063 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 5064 // We can't add more than one pointer together, nor can we scale a 5065 // pointer (both of which seem meaningless). 5066 if (ResultPtr || AddrMode.Scale != 1) 5067 return Modified; 5068 5069 ResultPtr = AddrMode.ScaledReg; 5070 AddrMode.Scale = 0; 5071 } 5072 5073 // It is only safe to sign extend the BaseReg if we know that the math 5074 // required to create it did not overflow before we extend it. Since 5075 // the original IR value was tossed in favor of a constant back when 5076 // the AddrMode was created we need to bail out gracefully if widths 5077 // do not match instead of extending it. 5078 // 5079 // (See below for code to add the scale.) 5080 if (AddrMode.Scale) { 5081 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 5082 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 5083 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 5084 return Modified; 5085 } 5086 5087 if (AddrMode.BaseGV) { 5088 if (ResultPtr) 5089 return Modified; 5090 5091 ResultPtr = AddrMode.BaseGV; 5092 } 5093 5094 // If the real base value actually came from an inttoptr, then the matcher 5095 // will look through it and provide only the integer value. In that case, 5096 // use it here. 5097 if (!DL->isNonIntegralPointerType(Addr->getType())) { 5098 if (!ResultPtr && AddrMode.BaseReg) { 5099 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 5100 "sunkaddr"); 5101 AddrMode.BaseReg = nullptr; 5102 } else if (!ResultPtr && AddrMode.Scale == 1) { 5103 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 5104 "sunkaddr"); 5105 AddrMode.Scale = 0; 5106 } 5107 } 5108 5109 if (!ResultPtr && 5110 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 5111 SunkAddr = Constant::getNullValue(Addr->getType()); 5112 } else if (!ResultPtr) { 5113 return Modified; 5114 } else { 5115 Type *I8PtrTy = 5116 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 5117 Type *I8Ty = Builder.getInt8Ty(); 5118 5119 // Start with the base register. Do this first so that subsequent address 5120 // matching finds it last, which will prevent it from trying to match it 5121 // as the scaled value in case it happens to be a mul. That would be 5122 // problematic if we've sunk a different mul for the scale, because then 5123 // we'd end up sinking both muls. 5124 if (AddrMode.BaseReg) { 5125 Value *V = AddrMode.BaseReg; 5126 if (V->getType() != IntPtrTy) 5127 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5128 5129 ResultIndex = V; 5130 } 5131 5132 // Add the scale value. 5133 if (AddrMode.Scale) { 5134 Value *V = AddrMode.ScaledReg; 5135 if (V->getType() == IntPtrTy) { 5136 // done. 5137 } else { 5138 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5139 cast<IntegerType>(V->getType())->getBitWidth() && 5140 "We can't transform if ScaledReg is too narrow"); 5141 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5142 } 5143 5144 if (AddrMode.Scale != 1) 5145 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5146 "sunkaddr"); 5147 if (ResultIndex) 5148 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5149 else 5150 ResultIndex = V; 5151 } 5152 5153 // Add in the Base Offset if present. 5154 if (AddrMode.BaseOffs) { 5155 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5156 if (ResultIndex) { 5157 // We need to add this separately from the scale above to help with 5158 // SDAG consecutive load/store merging. 5159 if (ResultPtr->getType() != I8PtrTy) 5160 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5161 ResultPtr = 5162 AddrMode.InBounds 5163 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5164 "sunkaddr") 5165 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5166 } 5167 5168 ResultIndex = V; 5169 } 5170 5171 if (!ResultIndex) { 5172 SunkAddr = ResultPtr; 5173 } else { 5174 if (ResultPtr->getType() != I8PtrTy) 5175 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5176 SunkAddr = 5177 AddrMode.InBounds 5178 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5179 "sunkaddr") 5180 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5181 } 5182 5183 if (SunkAddr->getType() != Addr->getType()) 5184 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5185 } 5186 } else { 5187 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5188 // non-integral pointers, so in that case bail out now. 5189 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5190 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5191 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5192 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5193 if (DL->isNonIntegralPointerType(Addr->getType()) || 5194 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5195 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5196 (AddrMode.BaseGV && 5197 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5198 return Modified; 5199 5200 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5201 << " for " << *MemoryInst << "\n"); 5202 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5203 Value *Result = nullptr; 5204 5205 // Start with the base register. Do this first so that subsequent address 5206 // matching finds it last, which will prevent it from trying to match it 5207 // as the scaled value in case it happens to be a mul. That would be 5208 // problematic if we've sunk a different mul for the scale, because then 5209 // we'd end up sinking both muls. 5210 if (AddrMode.BaseReg) { 5211 Value *V = AddrMode.BaseReg; 5212 if (V->getType()->isPointerTy()) 5213 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5214 if (V->getType() != IntPtrTy) 5215 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5216 Result = V; 5217 } 5218 5219 // Add the scale value. 5220 if (AddrMode.Scale) { 5221 Value *V = AddrMode.ScaledReg; 5222 if (V->getType() == IntPtrTy) { 5223 // done. 5224 } else if (V->getType()->isPointerTy()) { 5225 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5226 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5227 cast<IntegerType>(V->getType())->getBitWidth()) { 5228 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5229 } else { 5230 // It is only safe to sign extend the BaseReg if we know that the math 5231 // required to create it did not overflow before we extend it. Since 5232 // the original IR value was tossed in favor of a constant back when 5233 // the AddrMode was created we need to bail out gracefully if widths 5234 // do not match instead of extending it. 5235 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5236 if (I && (Result != AddrMode.BaseReg)) 5237 I->eraseFromParent(); 5238 return Modified; 5239 } 5240 if (AddrMode.Scale != 1) 5241 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5242 "sunkaddr"); 5243 if (Result) 5244 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5245 else 5246 Result = V; 5247 } 5248 5249 // Add in the BaseGV if present. 5250 if (AddrMode.BaseGV) { 5251 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5252 if (Result) 5253 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5254 else 5255 Result = V; 5256 } 5257 5258 // Add in the Base Offset if present. 5259 if (AddrMode.BaseOffs) { 5260 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5261 if (Result) 5262 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5263 else 5264 Result = V; 5265 } 5266 5267 if (!Result) 5268 SunkAddr = Constant::getNullValue(Addr->getType()); 5269 else 5270 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5271 } 5272 5273 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5274 // Store the newly computed address into the cache. In the case we reused a 5275 // value, this should be idempotent. 5276 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5277 5278 // If we have no uses, recursively delete the value and all dead instructions 5279 // using it. 5280 if (Repl->use_empty()) { 5281 resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() { 5282 RecursivelyDeleteTriviallyDeadInstructions( 5283 Repl, TLInfo, nullptr, 5284 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5285 }); 5286 } 5287 ++NumMemoryInsts; 5288 return true; 5289 } 5290 5291 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find 5292 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can 5293 /// only handle a 2 operand GEP in the same basic block or a splat constant 5294 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector 5295 /// index. 5296 /// 5297 /// If the existing GEP has a vector base pointer that is splat, we can look 5298 /// through the splat to find the scalar pointer. If we can't find a scalar 5299 /// pointer there's nothing we can do. 5300 /// 5301 /// If we have a GEP with more than 2 indices where the middle indices are all 5302 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. 5303 /// 5304 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP 5305 /// followed by a GEP with an all zeroes vector index. This will enable 5306 /// SelectionDAGBuilder to use a the scalar GEP as the uniform base and have a 5307 /// zero index. 5308 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, 5309 Value *Ptr) { 5310 // FIXME: Support scalable vectors. 5311 if (isa<ScalableVectorType>(Ptr->getType())) 5312 return false; 5313 5314 Value *NewAddr; 5315 5316 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 5317 // Don't optimize GEPs that don't have indices. 5318 if (!GEP->hasIndices()) 5319 return false; 5320 5321 // If the GEP and the gather/scatter aren't in the same BB, don't optimize. 5322 // FIXME: We should support this by sinking the GEP. 5323 if (MemoryInst->getParent() != GEP->getParent()) 5324 return false; 5325 5326 SmallVector<Value *, 2> Ops(GEP->op_begin(), GEP->op_end()); 5327 5328 bool RewriteGEP = false; 5329 5330 if (Ops[0]->getType()->isVectorTy()) { 5331 Ops[0] = getSplatValue(Ops[0]); 5332 if (!Ops[0]) 5333 return false; 5334 RewriteGEP = true; 5335 } 5336 5337 unsigned FinalIndex = Ops.size() - 1; 5338 5339 // Ensure all but the last index is 0. 5340 // FIXME: This isn't strictly required. All that's required is that they are 5341 // all scalars or splats. 5342 for (unsigned i = 1; i < FinalIndex; ++i) { 5343 auto *C = dyn_cast<Constant>(Ops[i]); 5344 if (!C) 5345 return false; 5346 if (isa<VectorType>(C->getType())) 5347 C = C->getSplatValue(); 5348 auto *CI = dyn_cast_or_null<ConstantInt>(C); 5349 if (!CI || !CI->isZero()) 5350 return false; 5351 // Scalarize the index if needed. 5352 Ops[i] = CI; 5353 } 5354 5355 // Try to scalarize the final index. 5356 if (Ops[FinalIndex]->getType()->isVectorTy()) { 5357 if (Value *V = getSplatValue(Ops[FinalIndex])) { 5358 auto *C = dyn_cast<ConstantInt>(V); 5359 // Don't scalarize all zeros vector. 5360 if (!C || !C->isZero()) { 5361 Ops[FinalIndex] = V; 5362 RewriteGEP = true; 5363 } 5364 } 5365 } 5366 5367 // If we made any changes or the we have extra operands, we need to generate 5368 // new instructions. 5369 if (!RewriteGEP && Ops.size() == 2) 5370 return false; 5371 5372 unsigned NumElts = cast<FixedVectorType>(Ptr->getType())->getNumElements(); 5373 5374 IRBuilder<> Builder(MemoryInst); 5375 5376 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); 5377 5378 // If the final index isn't a vector, emit a scalar GEP containing all ops 5379 // and a vector GEP with all zeroes final index. 5380 if (!Ops[FinalIndex]->getType()->isVectorTy()) { 5381 NewAddr = Builder.CreateGEP(Ops[0], makeArrayRef(Ops).drop_front()); 5382 auto *IndexTy = FixedVectorType::get(ScalarIndexTy, NumElts); 5383 NewAddr = Builder.CreateGEP(NewAddr, Constant::getNullValue(IndexTy)); 5384 } else { 5385 Value *Base = Ops[0]; 5386 Value *Index = Ops[FinalIndex]; 5387 5388 // Create a scalar GEP if there are more than 2 operands. 5389 if (Ops.size() != 2) { 5390 // Replace the last index with 0. 5391 Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy); 5392 Base = Builder.CreateGEP(Base, makeArrayRef(Ops).drop_front()); 5393 } 5394 5395 // Now create the GEP with scalar pointer and vector index. 5396 NewAddr = Builder.CreateGEP(Base, Index); 5397 } 5398 } else if (!isa<Constant>(Ptr)) { 5399 // Not a GEP, maybe its a splat and we can create a GEP to enable 5400 // SelectionDAGBuilder to use it as a uniform base. 5401 Value *V = getSplatValue(Ptr); 5402 if (!V) 5403 return false; 5404 5405 unsigned NumElts = cast<FixedVectorType>(Ptr->getType())->getNumElements(); 5406 5407 IRBuilder<> Builder(MemoryInst); 5408 5409 // Emit a vector GEP with a scalar pointer and all 0s vector index. 5410 Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType()); 5411 auto *IndexTy = FixedVectorType::get(ScalarIndexTy, NumElts); 5412 NewAddr = Builder.CreateGEP(V, Constant::getNullValue(IndexTy)); 5413 } else { 5414 // Constant, SelectionDAGBuilder knows to check if its a splat. 5415 return false; 5416 } 5417 5418 MemoryInst->replaceUsesOfWith(Ptr, NewAddr); 5419 5420 // If we have no uses, recursively delete the value and all dead instructions 5421 // using it. 5422 if (Ptr->use_empty()) 5423 RecursivelyDeleteTriviallyDeadInstructions( 5424 Ptr, TLInfo, nullptr, 5425 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5426 5427 return true; 5428 } 5429 5430 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5431 /// address computing into the block when possible / profitable. 5432 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5433 bool MadeChange = false; 5434 5435 const TargetRegisterInfo *TRI = 5436 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5437 TargetLowering::AsmOperandInfoVector TargetConstraints = 5438 TLI->ParseConstraints(*DL, TRI, *CS); 5439 unsigned ArgNo = 0; 5440 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5441 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5442 5443 // Compute the constraint code and ConstraintType to use. 5444 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5445 5446 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5447 OpInfo.isIndirect) { 5448 Value *OpVal = CS->getArgOperand(ArgNo++); 5449 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5450 } else if (OpInfo.Type == InlineAsm::isInput) 5451 ArgNo++; 5452 } 5453 5454 return MadeChange; 5455 } 5456 5457 /// Check if all the uses of \p Val are equivalent (or free) zero or 5458 /// sign extensions. 5459 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5460 assert(!Val->use_empty() && "Input must have at least one use"); 5461 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5462 bool IsSExt = isa<SExtInst>(FirstUser); 5463 Type *ExtTy = FirstUser->getType(); 5464 for (const User *U : Val->users()) { 5465 const Instruction *UI = cast<Instruction>(U); 5466 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5467 return false; 5468 Type *CurTy = UI->getType(); 5469 // Same input and output types: Same instruction after CSE. 5470 if (CurTy == ExtTy) 5471 continue; 5472 5473 // If IsSExt is true, we are in this situation: 5474 // a = Val 5475 // b = sext ty1 a to ty2 5476 // c = sext ty1 a to ty3 5477 // Assuming ty2 is shorter than ty3, this could be turned into: 5478 // a = Val 5479 // b = sext ty1 a to ty2 5480 // c = sext ty2 b to ty3 5481 // However, the last sext is not free. 5482 if (IsSExt) 5483 return false; 5484 5485 // This is a ZExt, maybe this is free to extend from one type to another. 5486 // In that case, we would not account for a different use. 5487 Type *NarrowTy; 5488 Type *LargeTy; 5489 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5490 CurTy->getScalarType()->getIntegerBitWidth()) { 5491 NarrowTy = CurTy; 5492 LargeTy = ExtTy; 5493 } else { 5494 NarrowTy = ExtTy; 5495 LargeTy = CurTy; 5496 } 5497 5498 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5499 return false; 5500 } 5501 // All uses are the same or can be derived from one another for free. 5502 return true; 5503 } 5504 5505 /// Try to speculatively promote extensions in \p Exts and continue 5506 /// promoting through newly promoted operands recursively as far as doing so is 5507 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5508 /// When some promotion happened, \p TPT contains the proper state to revert 5509 /// them. 5510 /// 5511 /// \return true if some promotion happened, false otherwise. 5512 bool CodeGenPrepare::tryToPromoteExts( 5513 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5514 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5515 unsigned CreatedInstsCost) { 5516 bool Promoted = false; 5517 5518 // Iterate over all the extensions to try to promote them. 5519 for (auto *I : Exts) { 5520 // Early check if we directly have ext(load). 5521 if (isa<LoadInst>(I->getOperand(0))) { 5522 ProfitablyMovedExts.push_back(I); 5523 continue; 5524 } 5525 5526 // Check whether or not we want to do any promotion. The reason we have 5527 // this check inside the for loop is to catch the case where an extension 5528 // is directly fed by a load because in such case the extension can be moved 5529 // up without any promotion on its operands. 5530 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5531 return false; 5532 5533 // Get the action to perform the promotion. 5534 TypePromotionHelper::Action TPH = 5535 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5536 // Check if we can promote. 5537 if (!TPH) { 5538 // Save the current extension as we cannot move up through its operand. 5539 ProfitablyMovedExts.push_back(I); 5540 continue; 5541 } 5542 5543 // Save the current state. 5544 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5545 TPT.getRestorationPoint(); 5546 SmallVector<Instruction *, 4> NewExts; 5547 unsigned NewCreatedInstsCost = 0; 5548 unsigned ExtCost = !TLI->isExtFree(I); 5549 // Promote. 5550 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5551 &NewExts, nullptr, *TLI); 5552 assert(PromotedVal && 5553 "TypePromotionHelper should have filtered out those cases"); 5554 5555 // We would be able to merge only one extension in a load. 5556 // Therefore, if we have more than 1 new extension we heuristically 5557 // cut this search path, because it means we degrade the code quality. 5558 // With exactly 2, the transformation is neutral, because we will merge 5559 // one extension but leave one. However, we optimistically keep going, 5560 // because the new extension may be removed too. 5561 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5562 // FIXME: It would be possible to propagate a negative value instead of 5563 // conservatively ceiling it to 0. 5564 TotalCreatedInstsCost = 5565 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5566 if (!StressExtLdPromotion && 5567 (TotalCreatedInstsCost > 1 || 5568 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5569 // This promotion is not profitable, rollback to the previous state, and 5570 // save the current extension in ProfitablyMovedExts as the latest 5571 // speculative promotion turned out to be unprofitable. 5572 TPT.rollback(LastKnownGood); 5573 ProfitablyMovedExts.push_back(I); 5574 continue; 5575 } 5576 // Continue promoting NewExts as far as doing so is profitable. 5577 SmallVector<Instruction *, 2> NewlyMovedExts; 5578 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5579 bool NewPromoted = false; 5580 for (auto *ExtInst : NewlyMovedExts) { 5581 Instruction *MovedExt = cast<Instruction>(ExtInst); 5582 Value *ExtOperand = MovedExt->getOperand(0); 5583 // If we have reached to a load, we need this extra profitability check 5584 // as it could potentially be merged into an ext(load). 5585 if (isa<LoadInst>(ExtOperand) && 5586 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5587 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5588 continue; 5589 5590 ProfitablyMovedExts.push_back(MovedExt); 5591 NewPromoted = true; 5592 } 5593 5594 // If none of speculative promotions for NewExts is profitable, rollback 5595 // and save the current extension (I) as the last profitable extension. 5596 if (!NewPromoted) { 5597 TPT.rollback(LastKnownGood); 5598 ProfitablyMovedExts.push_back(I); 5599 continue; 5600 } 5601 // The promotion is profitable. 5602 Promoted = true; 5603 } 5604 return Promoted; 5605 } 5606 5607 /// Merging redundant sexts when one is dominating the other. 5608 bool CodeGenPrepare::mergeSExts(Function &F) { 5609 bool Changed = false; 5610 for (auto &Entry : ValToSExtendedUses) { 5611 SExts &Insts = Entry.second; 5612 SExts CurPts; 5613 for (Instruction *Inst : Insts) { 5614 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5615 Inst->getOperand(0) != Entry.first) 5616 continue; 5617 bool inserted = false; 5618 for (auto &Pt : CurPts) { 5619 if (getDT(F).dominates(Inst, Pt)) { 5620 Pt->replaceAllUsesWith(Inst); 5621 RemovedInsts.insert(Pt); 5622 Pt->removeFromParent(); 5623 Pt = Inst; 5624 inserted = true; 5625 Changed = true; 5626 break; 5627 } 5628 if (!getDT(F).dominates(Pt, Inst)) 5629 // Give up if we need to merge in a common dominator as the 5630 // experiments show it is not profitable. 5631 continue; 5632 Inst->replaceAllUsesWith(Pt); 5633 RemovedInsts.insert(Inst); 5634 Inst->removeFromParent(); 5635 inserted = true; 5636 Changed = true; 5637 break; 5638 } 5639 if (!inserted) 5640 CurPts.push_back(Inst); 5641 } 5642 } 5643 return Changed; 5644 } 5645 5646 // Splitting large data structures so that the GEPs accessing them can have 5647 // smaller offsets so that they can be sunk to the same blocks as their users. 5648 // For example, a large struct starting from %base is split into two parts 5649 // where the second part starts from %new_base. 5650 // 5651 // Before: 5652 // BB0: 5653 // %base = 5654 // 5655 // BB1: 5656 // %gep0 = gep %base, off0 5657 // %gep1 = gep %base, off1 5658 // %gep2 = gep %base, off2 5659 // 5660 // BB2: 5661 // %load1 = load %gep0 5662 // %load2 = load %gep1 5663 // %load3 = load %gep2 5664 // 5665 // After: 5666 // BB0: 5667 // %base = 5668 // %new_base = gep %base, off0 5669 // 5670 // BB1: 5671 // %new_gep0 = %new_base 5672 // %new_gep1 = gep %new_base, off1 - off0 5673 // %new_gep2 = gep %new_base, off2 - off0 5674 // 5675 // BB2: 5676 // %load1 = load i32, i32* %new_gep0 5677 // %load2 = load i32, i32* %new_gep1 5678 // %load3 = load i32, i32* %new_gep2 5679 // 5680 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5681 // their offsets are smaller enough to fit into the addressing mode. 5682 bool CodeGenPrepare::splitLargeGEPOffsets() { 5683 bool Changed = false; 5684 for (auto &Entry : LargeOffsetGEPMap) { 5685 Value *OldBase = Entry.first; 5686 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5687 &LargeOffsetGEPs = Entry.second; 5688 auto compareGEPOffset = 5689 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5690 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5691 if (LHS.first == RHS.first) 5692 return false; 5693 if (LHS.second != RHS.second) 5694 return LHS.second < RHS.second; 5695 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5696 }; 5697 // Sorting all the GEPs of the same data structures based on the offsets. 5698 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5699 LargeOffsetGEPs.erase( 5700 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5701 LargeOffsetGEPs.end()); 5702 // Skip if all the GEPs have the same offsets. 5703 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5704 continue; 5705 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5706 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5707 Value *NewBaseGEP = nullptr; 5708 5709 auto *LargeOffsetGEP = LargeOffsetGEPs.begin(); 5710 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5711 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5712 int64_t Offset = LargeOffsetGEP->second; 5713 if (Offset != BaseOffset) { 5714 TargetLowering::AddrMode AddrMode; 5715 AddrMode.BaseOffs = Offset - BaseOffset; 5716 // The result type of the GEP might not be the type of the memory 5717 // access. 5718 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5719 GEP->getResultElementType(), 5720 GEP->getAddressSpace())) { 5721 // We need to create a new base if the offset to the current base is 5722 // too large to fit into the addressing mode. So, a very large struct 5723 // may be split into several parts. 5724 BaseGEP = GEP; 5725 BaseOffset = Offset; 5726 NewBaseGEP = nullptr; 5727 } 5728 } 5729 5730 // Generate a new GEP to replace the current one. 5731 LLVMContext &Ctx = GEP->getContext(); 5732 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5733 Type *I8PtrTy = 5734 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5735 Type *I8Ty = Type::getInt8Ty(Ctx); 5736 5737 if (!NewBaseGEP) { 5738 // Create a new base if we don't have one yet. Find the insertion 5739 // pointer for the new base first. 5740 BasicBlock::iterator NewBaseInsertPt; 5741 BasicBlock *NewBaseInsertBB; 5742 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5743 // If the base of the struct is an instruction, the new base will be 5744 // inserted close to it. 5745 NewBaseInsertBB = BaseI->getParent(); 5746 if (isa<PHINode>(BaseI)) 5747 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5748 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5749 NewBaseInsertBB = 5750 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5751 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5752 } else 5753 NewBaseInsertPt = std::next(BaseI->getIterator()); 5754 } else { 5755 // If the current base is an argument or global value, the new base 5756 // will be inserted to the entry block. 5757 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5758 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5759 } 5760 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5761 // Create a new base. 5762 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5763 NewBaseGEP = OldBase; 5764 if (NewBaseGEP->getType() != I8PtrTy) 5765 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5766 NewBaseGEP = 5767 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5768 NewGEPBases.insert(NewBaseGEP); 5769 } 5770 5771 IRBuilder<> Builder(GEP); 5772 Value *NewGEP = NewBaseGEP; 5773 if (Offset == BaseOffset) { 5774 if (GEP->getType() != I8PtrTy) 5775 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5776 } else { 5777 // Calculate the new offset for the new GEP. 5778 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5779 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5780 5781 if (GEP->getType() != I8PtrTy) 5782 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5783 } 5784 GEP->replaceAllUsesWith(NewGEP); 5785 LargeOffsetGEPID.erase(GEP); 5786 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5787 GEP->eraseFromParent(); 5788 Changed = true; 5789 } 5790 } 5791 return Changed; 5792 } 5793 5794 bool CodeGenPrepare::optimizePhiType( 5795 PHINode *I, SmallPtrSetImpl<PHINode *> &Visited, 5796 SmallPtrSetImpl<Instruction *> &DeletedInstrs) { 5797 // We are looking for a collection on interconnected phi nodes that together 5798 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts 5799 // are of the same type. Convert the whole set of nodes to the type of the 5800 // bitcast. 5801 Type *PhiTy = I->getType(); 5802 Type *ConvertTy = nullptr; 5803 if (Visited.count(I) || 5804 (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy())) 5805 return false; 5806 5807 SmallVector<Instruction *, 4> Worklist; 5808 Worklist.push_back(cast<Instruction>(I)); 5809 SmallPtrSet<PHINode *, 4> PhiNodes; 5810 PhiNodes.insert(I); 5811 Visited.insert(I); 5812 SmallPtrSet<Instruction *, 4> Defs; 5813 SmallPtrSet<Instruction *, 4> Uses; 5814 // This works by adding extra bitcasts between load/stores and removing 5815 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi)) 5816 // we can get in the situation where we remove a bitcast in one iteration 5817 // just to add it again in the next. We need to ensure that at least one 5818 // bitcast we remove are anchored to something that will not change back. 5819 bool AnyAnchored = false; 5820 5821 while (!Worklist.empty()) { 5822 Instruction *II = Worklist.pop_back_val(); 5823 5824 if (auto *Phi = dyn_cast<PHINode>(II)) { 5825 // Handle Defs, which might also be PHI's 5826 for (Value *V : Phi->incoming_values()) { 5827 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 5828 if (!PhiNodes.count(OpPhi)) { 5829 if (Visited.count(OpPhi)) 5830 return false; 5831 PhiNodes.insert(OpPhi); 5832 Visited.insert(OpPhi); 5833 Worklist.push_back(OpPhi); 5834 } 5835 } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) { 5836 if (!OpLoad->isSimple()) 5837 return false; 5838 if (!Defs.count(OpLoad)) { 5839 Defs.insert(OpLoad); 5840 Worklist.push_back(OpLoad); 5841 } 5842 } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) { 5843 if (!Defs.count(OpEx)) { 5844 Defs.insert(OpEx); 5845 Worklist.push_back(OpEx); 5846 } 5847 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 5848 if (!ConvertTy) 5849 ConvertTy = OpBC->getOperand(0)->getType(); 5850 if (OpBC->getOperand(0)->getType() != ConvertTy) 5851 return false; 5852 if (!Defs.count(OpBC)) { 5853 Defs.insert(OpBC); 5854 Worklist.push_back(OpBC); 5855 AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) && 5856 !isa<ExtractElementInst>(OpBC->getOperand(0)); 5857 } 5858 } else if (!isa<UndefValue>(V)) { 5859 return false; 5860 } 5861 } 5862 } 5863 5864 // Handle uses which might also be phi's 5865 for (User *V : II->users()) { 5866 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 5867 if (!PhiNodes.count(OpPhi)) { 5868 if (Visited.count(OpPhi)) 5869 return false; 5870 PhiNodes.insert(OpPhi); 5871 Visited.insert(OpPhi); 5872 Worklist.push_back(OpPhi); 5873 } 5874 } else if (auto *OpStore = dyn_cast<StoreInst>(V)) { 5875 if (!OpStore->isSimple() || OpStore->getOperand(0) != II) 5876 return false; 5877 Uses.insert(OpStore); 5878 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 5879 if (!ConvertTy) 5880 ConvertTy = OpBC->getType(); 5881 if (OpBC->getType() != ConvertTy) 5882 return false; 5883 Uses.insert(OpBC); 5884 AnyAnchored |= 5885 any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); }); 5886 } else { 5887 return false; 5888 } 5889 } 5890 } 5891 5892 if (!ConvertTy || !AnyAnchored || !TLI->shouldConvertPhiType(PhiTy, ConvertTy)) 5893 return false; 5894 5895 LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to " 5896 << *ConvertTy << "\n"); 5897 5898 // Create all the new phi nodes of the new type, and bitcast any loads to the 5899 // correct type. 5900 ValueToValueMap ValMap; 5901 ValMap[UndefValue::get(PhiTy)] = UndefValue::get(ConvertTy); 5902 for (Instruction *D : Defs) { 5903 if (isa<BitCastInst>(D)) { 5904 ValMap[D] = D->getOperand(0); 5905 DeletedInstrs.insert(D); 5906 } else { 5907 ValMap[D] = 5908 new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode()); 5909 } 5910 } 5911 for (PHINode *Phi : PhiNodes) 5912 ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(), 5913 Phi->getName() + ".tc", Phi); 5914 // Pipe together all the PhiNodes. 5915 for (PHINode *Phi : PhiNodes) { 5916 PHINode *NewPhi = cast<PHINode>(ValMap[Phi]); 5917 for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++) 5918 NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)], 5919 Phi->getIncomingBlock(i)); 5920 Visited.insert(NewPhi); 5921 } 5922 // And finally pipe up the stores and bitcasts 5923 for (Instruction *U : Uses) { 5924 if (isa<BitCastInst>(U)) { 5925 DeletedInstrs.insert(U); 5926 U->replaceAllUsesWith(ValMap[U->getOperand(0)]); 5927 } else { 5928 U->setOperand(0, 5929 new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U)); 5930 } 5931 } 5932 5933 // Save the removed phis to be deleted later. 5934 for (PHINode *Phi : PhiNodes) 5935 DeletedInstrs.insert(Phi); 5936 return true; 5937 } 5938 5939 bool CodeGenPrepare::optimizePhiTypes(Function &F) { 5940 if (!OptimizePhiTypes) 5941 return false; 5942 5943 bool Changed = false; 5944 SmallPtrSet<PHINode *, 4> Visited; 5945 SmallPtrSet<Instruction *, 4> DeletedInstrs; 5946 5947 // Attempt to optimize all the phis in the functions to the correct type. 5948 for (auto &BB : F) 5949 for (auto &Phi : BB.phis()) 5950 Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs); 5951 5952 // Remove any old phi's that have been converted. 5953 for (auto *I : DeletedInstrs) { 5954 I->replaceAllUsesWith(UndefValue::get(I->getType())); 5955 I->eraseFromParent(); 5956 } 5957 5958 return Changed; 5959 } 5960 5961 /// Return true, if an ext(load) can be formed from an extension in 5962 /// \p MovedExts. 5963 bool CodeGenPrepare::canFormExtLd( 5964 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5965 Instruction *&Inst, bool HasPromoted) { 5966 for (auto *MovedExtInst : MovedExts) { 5967 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5968 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5969 Inst = MovedExtInst; 5970 break; 5971 } 5972 } 5973 if (!LI) 5974 return false; 5975 5976 // If they're already in the same block, there's nothing to do. 5977 // Make the cheap checks first if we did not promote. 5978 // If we promoted, we need to check if it is indeed profitable. 5979 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5980 return false; 5981 5982 return TLI->isExtLoad(LI, Inst, *DL); 5983 } 5984 5985 /// Move a zext or sext fed by a load into the same basic block as the load, 5986 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5987 /// extend into the load. 5988 /// 5989 /// E.g., 5990 /// \code 5991 /// %ld = load i32* %addr 5992 /// %add = add nuw i32 %ld, 4 5993 /// %zext = zext i32 %add to i64 5994 // \endcode 5995 /// => 5996 /// \code 5997 /// %ld = load i32* %addr 5998 /// %zext = zext i32 %ld to i64 5999 /// %add = add nuw i64 %zext, 4 6000 /// \encode 6001 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 6002 /// allow us to match zext(load i32*) to i64. 6003 /// 6004 /// Also, try to promote the computations used to obtain a sign extended 6005 /// value used into memory accesses. 6006 /// E.g., 6007 /// \code 6008 /// a = add nsw i32 b, 3 6009 /// d = sext i32 a to i64 6010 /// e = getelementptr ..., i64 d 6011 /// \endcode 6012 /// => 6013 /// \code 6014 /// f = sext i32 b to i64 6015 /// a = add nsw i64 f, 3 6016 /// e = getelementptr ..., i64 a 6017 /// \endcode 6018 /// 6019 /// \p Inst[in/out] the extension may be modified during the process if some 6020 /// promotions apply. 6021 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 6022 bool AllowPromotionWithoutCommonHeader = false; 6023 /// See if it is an interesting sext operations for the address type 6024 /// promotion before trying to promote it, e.g., the ones with the right 6025 /// type and used in memory accesses. 6026 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 6027 *Inst, AllowPromotionWithoutCommonHeader); 6028 TypePromotionTransaction TPT(RemovedInsts); 6029 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6030 TPT.getRestorationPoint(); 6031 SmallVector<Instruction *, 1> Exts; 6032 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 6033 Exts.push_back(Inst); 6034 6035 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 6036 6037 // Look for a load being extended. 6038 LoadInst *LI = nullptr; 6039 Instruction *ExtFedByLoad; 6040 6041 // Try to promote a chain of computation if it allows to form an extended 6042 // load. 6043 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 6044 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 6045 TPT.commit(); 6046 // Move the extend into the same block as the load. 6047 ExtFedByLoad->moveAfter(LI); 6048 ++NumExtsMoved; 6049 Inst = ExtFedByLoad; 6050 return true; 6051 } 6052 6053 // Continue promoting SExts if known as considerable depending on targets. 6054 if (ATPConsiderable && 6055 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 6056 HasPromoted, TPT, SpeculativelyMovedExts)) 6057 return true; 6058 6059 TPT.rollback(LastKnownGood); 6060 return false; 6061 } 6062 6063 // Perform address type promotion if doing so is profitable. 6064 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 6065 // instructions that sign extended the same initial value. However, if 6066 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 6067 // extension is just profitable. 6068 bool CodeGenPrepare::performAddressTypePromotion( 6069 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 6070 bool HasPromoted, TypePromotionTransaction &TPT, 6071 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 6072 bool Promoted = false; 6073 SmallPtrSet<Instruction *, 1> UnhandledExts; 6074 bool AllSeenFirst = true; 6075 for (auto *I : SpeculativelyMovedExts) { 6076 Value *HeadOfChain = I->getOperand(0); 6077 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 6078 SeenChainsForSExt.find(HeadOfChain); 6079 // If there is an unhandled SExt which has the same header, try to promote 6080 // it as well. 6081 if (AlreadySeen != SeenChainsForSExt.end()) { 6082 if (AlreadySeen->second != nullptr) 6083 UnhandledExts.insert(AlreadySeen->second); 6084 AllSeenFirst = false; 6085 } 6086 } 6087 6088 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 6089 SpeculativelyMovedExts.size() == 1)) { 6090 TPT.commit(); 6091 if (HasPromoted) 6092 Promoted = true; 6093 for (auto *I : SpeculativelyMovedExts) { 6094 Value *HeadOfChain = I->getOperand(0); 6095 SeenChainsForSExt[HeadOfChain] = nullptr; 6096 ValToSExtendedUses[HeadOfChain].push_back(I); 6097 } 6098 // Update Inst as promotion happen. 6099 Inst = SpeculativelyMovedExts.pop_back_val(); 6100 } else { 6101 // This is the first chain visited from the header, keep the current chain 6102 // as unhandled. Defer to promote this until we encounter another SExt 6103 // chain derived from the same header. 6104 for (auto *I : SpeculativelyMovedExts) { 6105 Value *HeadOfChain = I->getOperand(0); 6106 SeenChainsForSExt[HeadOfChain] = Inst; 6107 } 6108 return false; 6109 } 6110 6111 if (!AllSeenFirst && !UnhandledExts.empty()) 6112 for (auto *VisitedSExt : UnhandledExts) { 6113 if (RemovedInsts.count(VisitedSExt)) 6114 continue; 6115 TypePromotionTransaction TPT(RemovedInsts); 6116 SmallVector<Instruction *, 1> Exts; 6117 SmallVector<Instruction *, 2> Chains; 6118 Exts.push_back(VisitedSExt); 6119 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 6120 TPT.commit(); 6121 if (HasPromoted) 6122 Promoted = true; 6123 for (auto *I : Chains) { 6124 Value *HeadOfChain = I->getOperand(0); 6125 // Mark this as handled. 6126 SeenChainsForSExt[HeadOfChain] = nullptr; 6127 ValToSExtendedUses[HeadOfChain].push_back(I); 6128 } 6129 } 6130 return Promoted; 6131 } 6132 6133 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 6134 BasicBlock *DefBB = I->getParent(); 6135 6136 // If the result of a {s|z}ext and its source are both live out, rewrite all 6137 // other uses of the source with result of extension. 6138 Value *Src = I->getOperand(0); 6139 if (Src->hasOneUse()) 6140 return false; 6141 6142 // Only do this xform if truncating is free. 6143 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 6144 return false; 6145 6146 // Only safe to perform the optimization if the source is also defined in 6147 // this block. 6148 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 6149 return false; 6150 6151 bool DefIsLiveOut = false; 6152 for (User *U : I->users()) { 6153 Instruction *UI = cast<Instruction>(U); 6154 6155 // Figure out which BB this ext is used in. 6156 BasicBlock *UserBB = UI->getParent(); 6157 if (UserBB == DefBB) continue; 6158 DefIsLiveOut = true; 6159 break; 6160 } 6161 if (!DefIsLiveOut) 6162 return false; 6163 6164 // Make sure none of the uses are PHI nodes. 6165 for (User *U : Src->users()) { 6166 Instruction *UI = cast<Instruction>(U); 6167 BasicBlock *UserBB = UI->getParent(); 6168 if (UserBB == DefBB) continue; 6169 // Be conservative. We don't want this xform to end up introducing 6170 // reloads just before load / store instructions. 6171 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 6172 return false; 6173 } 6174 6175 // InsertedTruncs - Only insert one trunc in each block once. 6176 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 6177 6178 bool MadeChange = false; 6179 for (Use &U : Src->uses()) { 6180 Instruction *User = cast<Instruction>(U.getUser()); 6181 6182 // Figure out which BB this ext is used in. 6183 BasicBlock *UserBB = User->getParent(); 6184 if (UserBB == DefBB) continue; 6185 6186 // Both src and def are live in this block. Rewrite the use. 6187 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 6188 6189 if (!InsertedTrunc) { 6190 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6191 assert(InsertPt != UserBB->end()); 6192 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 6193 InsertedInsts.insert(InsertedTrunc); 6194 } 6195 6196 // Replace a use of the {s|z}ext source with a use of the result. 6197 U = InsertedTrunc; 6198 ++NumExtUses; 6199 MadeChange = true; 6200 } 6201 6202 return MadeChange; 6203 } 6204 6205 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 6206 // just after the load if the target can fold this into one extload instruction, 6207 // with the hope of eliminating some of the other later "and" instructions using 6208 // the loaded value. "and"s that are made trivially redundant by the insertion 6209 // of the new "and" are removed by this function, while others (e.g. those whose 6210 // path from the load goes through a phi) are left for isel to potentially 6211 // remove. 6212 // 6213 // For example: 6214 // 6215 // b0: 6216 // x = load i32 6217 // ... 6218 // b1: 6219 // y = and x, 0xff 6220 // z = use y 6221 // 6222 // becomes: 6223 // 6224 // b0: 6225 // x = load i32 6226 // x' = and x, 0xff 6227 // ... 6228 // b1: 6229 // z = use x' 6230 // 6231 // whereas: 6232 // 6233 // b0: 6234 // x1 = load i32 6235 // ... 6236 // b1: 6237 // x2 = load i32 6238 // ... 6239 // b2: 6240 // x = phi x1, x2 6241 // y = and x, 0xff 6242 // 6243 // becomes (after a call to optimizeLoadExt for each load): 6244 // 6245 // b0: 6246 // x1 = load i32 6247 // x1' = and x1, 0xff 6248 // ... 6249 // b1: 6250 // x2 = load i32 6251 // x2' = and x2, 0xff 6252 // ... 6253 // b2: 6254 // x = phi x1', x2' 6255 // y = and x, 0xff 6256 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 6257 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 6258 return false; 6259 6260 // Skip loads we've already transformed. 6261 if (Load->hasOneUse() && 6262 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 6263 return false; 6264 6265 // Look at all uses of Load, looking through phis, to determine how many bits 6266 // of the loaded value are needed. 6267 SmallVector<Instruction *, 8> WorkList; 6268 SmallPtrSet<Instruction *, 16> Visited; 6269 SmallVector<Instruction *, 8> AndsToMaybeRemove; 6270 for (auto *U : Load->users()) 6271 WorkList.push_back(cast<Instruction>(U)); 6272 6273 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 6274 unsigned BitWidth = LoadResultVT.getSizeInBits(); 6275 APInt DemandBits(BitWidth, 0); 6276 APInt WidestAndBits(BitWidth, 0); 6277 6278 while (!WorkList.empty()) { 6279 Instruction *I = WorkList.back(); 6280 WorkList.pop_back(); 6281 6282 // Break use-def graph loops. 6283 if (!Visited.insert(I).second) 6284 continue; 6285 6286 // For a PHI node, push all of its users. 6287 if (auto *Phi = dyn_cast<PHINode>(I)) { 6288 for (auto *U : Phi->users()) 6289 WorkList.push_back(cast<Instruction>(U)); 6290 continue; 6291 } 6292 6293 switch (I->getOpcode()) { 6294 case Instruction::And: { 6295 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 6296 if (!AndC) 6297 return false; 6298 APInt AndBits = AndC->getValue(); 6299 DemandBits |= AndBits; 6300 // Keep track of the widest and mask we see. 6301 if (AndBits.ugt(WidestAndBits)) 6302 WidestAndBits = AndBits; 6303 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 6304 AndsToMaybeRemove.push_back(I); 6305 break; 6306 } 6307 6308 case Instruction::Shl: { 6309 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 6310 if (!ShlC) 6311 return false; 6312 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 6313 DemandBits.setLowBits(BitWidth - ShiftAmt); 6314 break; 6315 } 6316 6317 case Instruction::Trunc: { 6318 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 6319 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 6320 DemandBits.setLowBits(TruncBitWidth); 6321 break; 6322 } 6323 6324 default: 6325 return false; 6326 } 6327 } 6328 6329 uint32_t ActiveBits = DemandBits.getActiveBits(); 6330 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 6331 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 6332 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 6333 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 6334 // followed by an AND. 6335 // TODO: Look into removing this restriction by fixing backends to either 6336 // return false for isLoadExtLegal for i1 or have them select this pattern to 6337 // a single instruction. 6338 // 6339 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 6340 // mask, since these are the only ands that will be removed by isel. 6341 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 6342 WidestAndBits != DemandBits) 6343 return false; 6344 6345 LLVMContext &Ctx = Load->getType()->getContext(); 6346 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 6347 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 6348 6349 // Reject cases that won't be matched as extloads. 6350 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 6351 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 6352 return false; 6353 6354 IRBuilder<> Builder(Load->getNextNode()); 6355 auto *NewAnd = cast<Instruction>( 6356 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 6357 // Mark this instruction as "inserted by CGP", so that other 6358 // optimizations don't touch it. 6359 InsertedInsts.insert(NewAnd); 6360 6361 // Replace all uses of load with new and (except for the use of load in the 6362 // new and itself). 6363 Load->replaceAllUsesWith(NewAnd); 6364 NewAnd->setOperand(0, Load); 6365 6366 // Remove any and instructions that are now redundant. 6367 for (auto *And : AndsToMaybeRemove) 6368 // Check that the and mask is the same as the one we decided to put on the 6369 // new and. 6370 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 6371 And->replaceAllUsesWith(NewAnd); 6372 if (&*CurInstIterator == And) 6373 CurInstIterator = std::next(And->getIterator()); 6374 And->eraseFromParent(); 6375 ++NumAndUses; 6376 } 6377 6378 ++NumAndsAdded; 6379 return true; 6380 } 6381 6382 /// Check if V (an operand of a select instruction) is an expensive instruction 6383 /// that is only used once. 6384 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 6385 auto *I = dyn_cast<Instruction>(V); 6386 // If it's safe to speculatively execute, then it should not have side 6387 // effects; therefore, it's safe to sink and possibly *not* execute. 6388 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 6389 TTI->getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency) >= 6390 TargetTransformInfo::TCC_Expensive; 6391 } 6392 6393 /// Returns true if a SelectInst should be turned into an explicit branch. 6394 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 6395 const TargetLowering *TLI, 6396 SelectInst *SI) { 6397 // If even a predictable select is cheap, then a branch can't be cheaper. 6398 if (!TLI->isPredictableSelectExpensive()) 6399 return false; 6400 6401 // FIXME: This should use the same heuristics as IfConversion to determine 6402 // whether a select is better represented as a branch. 6403 6404 // If metadata tells us that the select condition is obviously predictable, 6405 // then we want to replace the select with a branch. 6406 uint64_t TrueWeight, FalseWeight; 6407 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 6408 uint64_t Max = std::max(TrueWeight, FalseWeight); 6409 uint64_t Sum = TrueWeight + FalseWeight; 6410 if (Sum != 0) { 6411 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 6412 if (Probability > TLI->getPredictableBranchThreshold()) 6413 return true; 6414 } 6415 } 6416 6417 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 6418 6419 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 6420 // comparison condition. If the compare has more than one use, there's 6421 // probably another cmov or setcc around, so it's not worth emitting a branch. 6422 if (!Cmp || !Cmp->hasOneUse()) 6423 return false; 6424 6425 // If either operand of the select is expensive and only needed on one side 6426 // of the select, we should form a branch. 6427 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 6428 sinkSelectOperand(TTI, SI->getFalseValue())) 6429 return true; 6430 6431 return false; 6432 } 6433 6434 /// If \p isTrue is true, return the true value of \p SI, otherwise return 6435 /// false value of \p SI. If the true/false value of \p SI is defined by any 6436 /// select instructions in \p Selects, look through the defining select 6437 /// instruction until the true/false value is not defined in \p Selects. 6438 static Value *getTrueOrFalseValue( 6439 SelectInst *SI, bool isTrue, 6440 const SmallPtrSet<const Instruction *, 2> &Selects) { 6441 Value *V = nullptr; 6442 6443 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 6444 DefSI = dyn_cast<SelectInst>(V)) { 6445 assert(DefSI->getCondition() == SI->getCondition() && 6446 "The condition of DefSI does not match with SI"); 6447 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 6448 } 6449 6450 assert(V && "Failed to get select true/false value"); 6451 return V; 6452 } 6453 6454 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 6455 assert(Shift->isShift() && "Expected a shift"); 6456 6457 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 6458 // general vector shifts, and (3) the shift amount is a select-of-splatted 6459 // values, hoist the shifts before the select: 6460 // shift Op0, (select Cond, TVal, FVal) --> 6461 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6462 // 6463 // This is inverting a generic IR transform when we know that the cost of a 6464 // general vector shift is more than the cost of 2 shift-by-scalars. 6465 // We can't do this effectively in SDAG because we may not be able to 6466 // determine if the select operands are splats from within a basic block. 6467 Type *Ty = Shift->getType(); 6468 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6469 return false; 6470 Value *Cond, *TVal, *FVal; 6471 if (!match(Shift->getOperand(1), 6472 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6473 return false; 6474 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6475 return false; 6476 6477 IRBuilder<> Builder(Shift); 6478 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6479 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6480 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6481 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6482 Shift->replaceAllUsesWith(NewSel); 6483 Shift->eraseFromParent(); 6484 return true; 6485 } 6486 6487 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) { 6488 Intrinsic::ID Opcode = Fsh->getIntrinsicID(); 6489 assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && 6490 "Expected a funnel shift"); 6491 6492 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper 6493 // than general vector shifts, and (3) the shift amount is select-of-splatted 6494 // values, hoist the funnel shifts before the select: 6495 // fsh Op0, Op1, (select Cond, TVal, FVal) --> 6496 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal) 6497 // 6498 // This is inverting a generic IR transform when we know that the cost of a 6499 // general vector shift is more than the cost of 2 shift-by-scalars. 6500 // We can't do this effectively in SDAG because we may not be able to 6501 // determine if the select operands are splats from within a basic block. 6502 Type *Ty = Fsh->getType(); 6503 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6504 return false; 6505 Value *Cond, *TVal, *FVal; 6506 if (!match(Fsh->getOperand(2), 6507 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6508 return false; 6509 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6510 return false; 6511 6512 IRBuilder<> Builder(Fsh); 6513 Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1); 6514 Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, TVal }); 6515 Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, FVal }); 6516 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6517 Fsh->replaceAllUsesWith(NewSel); 6518 Fsh->eraseFromParent(); 6519 return true; 6520 } 6521 6522 /// If we have a SelectInst that will likely profit from branch prediction, 6523 /// turn it into a branch. 6524 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6525 if (DisableSelectToBranch) 6526 return false; 6527 6528 // Find all consecutive select instructions that share the same condition. 6529 SmallVector<SelectInst *, 2> ASI; 6530 ASI.push_back(SI); 6531 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 6532 It != SI->getParent()->end(); ++It) { 6533 SelectInst *I = dyn_cast<SelectInst>(&*It); 6534 if (I && SI->getCondition() == I->getCondition()) { 6535 ASI.push_back(I); 6536 } else { 6537 break; 6538 } 6539 } 6540 6541 SelectInst *LastSI = ASI.back(); 6542 // Increment the current iterator to skip all the rest of select instructions 6543 // because they will be either "not lowered" or "all lowered" to branch. 6544 CurInstIterator = std::next(LastSI->getIterator()); 6545 6546 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 6547 6548 // Can we convert the 'select' to CF ? 6549 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 6550 return false; 6551 6552 TargetLowering::SelectSupportKind SelectKind; 6553 if (VectorCond) 6554 SelectKind = TargetLowering::VectorMaskSelect; 6555 else if (SI->getType()->isVectorTy()) 6556 SelectKind = TargetLowering::ScalarCondVectorVal; 6557 else 6558 SelectKind = TargetLowering::ScalarValSelect; 6559 6560 if (TLI->isSelectSupported(SelectKind) && 6561 (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize || 6562 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()))) 6563 return false; 6564 6565 // The DominatorTree needs to be rebuilt by any consumers after this 6566 // transformation. We simply reset here rather than setting the ModifiedDT 6567 // flag to avoid restarting the function walk in runOnFunction for each 6568 // select optimized. 6569 DT.reset(); 6570 6571 // Transform a sequence like this: 6572 // start: 6573 // %cmp = cmp uge i32 %a, %b 6574 // %sel = select i1 %cmp, i32 %c, i32 %d 6575 // 6576 // Into: 6577 // start: 6578 // %cmp = cmp uge i32 %a, %b 6579 // %cmp.frozen = freeze %cmp 6580 // br i1 %cmp.frozen, label %select.true, label %select.false 6581 // select.true: 6582 // br label %select.end 6583 // select.false: 6584 // br label %select.end 6585 // select.end: 6586 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6587 // 6588 // %cmp should be frozen, otherwise it may introduce undefined behavior. 6589 // In addition, we may sink instructions that produce %c or %d from 6590 // the entry block into the destination(s) of the new branch. 6591 // If the true or false blocks do not contain a sunken instruction, that 6592 // block and its branch may be optimized away. In that case, one side of the 6593 // first branch will point directly to select.end, and the corresponding PHI 6594 // predecessor block will be the start block. 6595 6596 // First, we split the block containing the select into 2 blocks. 6597 BasicBlock *StartBlock = SI->getParent(); 6598 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6599 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6600 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); 6601 6602 // Delete the unconditional branch that was just created by the split. 6603 StartBlock->getTerminator()->eraseFromParent(); 6604 6605 // These are the new basic blocks for the conditional branch. 6606 // At least one will become an actual new basic block. 6607 BasicBlock *TrueBlock = nullptr; 6608 BasicBlock *FalseBlock = nullptr; 6609 BranchInst *TrueBranch = nullptr; 6610 BranchInst *FalseBranch = nullptr; 6611 6612 // Sink expensive instructions into the conditional blocks to avoid executing 6613 // them speculatively. 6614 for (SelectInst *SI : ASI) { 6615 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6616 if (TrueBlock == nullptr) { 6617 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6618 EndBlock->getParent(), EndBlock); 6619 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6620 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6621 } 6622 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6623 TrueInst->moveBefore(TrueBranch); 6624 } 6625 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6626 if (FalseBlock == nullptr) { 6627 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6628 EndBlock->getParent(), EndBlock); 6629 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6630 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6631 } 6632 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6633 FalseInst->moveBefore(FalseBranch); 6634 } 6635 } 6636 6637 // If there was nothing to sink, then arbitrarily choose the 'false' side 6638 // for a new input value to the PHI. 6639 if (TrueBlock == FalseBlock) { 6640 assert(TrueBlock == nullptr && 6641 "Unexpected basic block transform while optimizing select"); 6642 6643 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6644 EndBlock->getParent(), EndBlock); 6645 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6646 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6647 } 6648 6649 // Insert the real conditional branch based on the original condition. 6650 // If we did not create a new block for one of the 'true' or 'false' paths 6651 // of the condition, it means that side of the branch goes to the end block 6652 // directly and the path originates from the start block from the point of 6653 // view of the new PHI. 6654 BasicBlock *TT, *FT; 6655 if (TrueBlock == nullptr) { 6656 TT = EndBlock; 6657 FT = FalseBlock; 6658 TrueBlock = StartBlock; 6659 } else if (FalseBlock == nullptr) { 6660 TT = TrueBlock; 6661 FT = EndBlock; 6662 FalseBlock = StartBlock; 6663 } else { 6664 TT = TrueBlock; 6665 FT = FalseBlock; 6666 } 6667 IRBuilder<> IB(SI); 6668 auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 6669 IB.CreateCondBr(CondFr, TT, FT, SI); 6670 6671 SmallPtrSet<const Instruction *, 2> INS; 6672 INS.insert(ASI.begin(), ASI.end()); 6673 // Use reverse iterator because later select may use the value of the 6674 // earlier select, and we need to propagate value through earlier select 6675 // to get the PHI operand. 6676 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 6677 SelectInst *SI = *It; 6678 // The select itself is replaced with a PHI Node. 6679 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6680 PN->takeName(SI); 6681 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6682 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6683 PN->setDebugLoc(SI->getDebugLoc()); 6684 6685 SI->replaceAllUsesWith(PN); 6686 SI->eraseFromParent(); 6687 INS.erase(SI); 6688 ++NumSelectsExpanded; 6689 } 6690 6691 // Instruct OptimizeBlock to skip to the next block. 6692 CurInstIterator = StartBlock->end(); 6693 return true; 6694 } 6695 6696 /// Some targets only accept certain types for splat inputs. For example a VDUP 6697 /// in MVE takes a GPR (integer) register, and the instruction that incorporate 6698 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register. 6699 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6700 if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 6701 m_Undef(), m_ZeroMask()))) 6702 return false; 6703 Type *NewType = TLI->shouldConvertSplatType(SVI); 6704 if (!NewType) 6705 return false; 6706 6707 auto *SVIVecType = cast<FixedVectorType>(SVI->getType()); 6708 assert(!NewType->isVectorTy() && "Expected a scalar type!"); 6709 assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && 6710 "Expected a type of the same size!"); 6711 auto *NewVecType = 6712 FixedVectorType::get(NewType, SVIVecType->getNumElements()); 6713 6714 // Create a bitcast (shuffle (insert (bitcast(..)))) 6715 IRBuilder<> Builder(SVI->getContext()); 6716 Builder.SetInsertPoint(SVI); 6717 Value *BC1 = Builder.CreateBitCast( 6718 cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType); 6719 Value *Insert = Builder.CreateInsertElement(UndefValue::get(NewVecType), BC1, 6720 (uint64_t)0); 6721 Value *Shuffle = Builder.CreateShuffleVector( 6722 Insert, UndefValue::get(NewVecType), SVI->getShuffleMask()); 6723 Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType); 6724 6725 SVI->replaceAllUsesWith(BC2); 6726 RecursivelyDeleteTriviallyDeadInstructions( 6727 SVI, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); 6728 6729 // Also hoist the bitcast up to its operand if it they are not in the same 6730 // block. 6731 if (auto *BCI = dyn_cast<Instruction>(BC1)) 6732 if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0))) 6733 if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) && 6734 !Op->isTerminator() && !Op->isEHPad()) 6735 BCI->moveAfter(Op); 6736 6737 return true; 6738 } 6739 6740 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6741 // If the operands of I can be folded into a target instruction together with 6742 // I, duplicate and sink them. 6743 SmallVector<Use *, 4> OpsToSink; 6744 if (!TLI->shouldSinkOperands(I, OpsToSink)) 6745 return false; 6746 6747 // OpsToSink can contain multiple uses in a use chain (e.g. 6748 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6749 // uses must come first, so we process the ops in reverse order so as to not 6750 // create invalid IR. 6751 BasicBlock *TargetBB = I->getParent(); 6752 bool Changed = false; 6753 SmallVector<Use *, 4> ToReplace; 6754 for (Use *U : reverse(OpsToSink)) { 6755 auto *UI = cast<Instruction>(U->get()); 6756 if (UI->getParent() == TargetBB || isa<PHINode>(UI)) 6757 continue; 6758 ToReplace.push_back(U); 6759 } 6760 6761 SetVector<Instruction *> MaybeDead; 6762 DenseMap<Instruction *, Instruction *> NewInstructions; 6763 Instruction *InsertPoint = I; 6764 for (Use *U : ToReplace) { 6765 auto *UI = cast<Instruction>(U->get()); 6766 Instruction *NI = UI->clone(); 6767 NewInstructions[UI] = NI; 6768 MaybeDead.insert(UI); 6769 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6770 NI->insertBefore(InsertPoint); 6771 InsertPoint = NI; 6772 InsertedInsts.insert(NI); 6773 6774 // Update the use for the new instruction, making sure that we update the 6775 // sunk instruction uses, if it is part of a chain that has already been 6776 // sunk. 6777 Instruction *OldI = cast<Instruction>(U->getUser()); 6778 if (NewInstructions.count(OldI)) 6779 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 6780 else 6781 U->set(NI); 6782 Changed = true; 6783 } 6784 6785 // Remove instructions that are dead after sinking. 6786 for (auto *I : MaybeDead) { 6787 if (!I->hasNUsesOrMore(1)) { 6788 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 6789 I->eraseFromParent(); 6790 } 6791 } 6792 6793 return Changed; 6794 } 6795 6796 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6797 Value *Cond = SI->getCondition(); 6798 Type *OldType = Cond->getType(); 6799 LLVMContext &Context = Cond->getContext(); 6800 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 6801 unsigned RegWidth = RegType.getSizeInBits(); 6802 6803 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6804 return false; 6805 6806 // If the register width is greater than the type width, expand the condition 6807 // of the switch instruction and each case constant to the width of the 6808 // register. By widening the type of the switch condition, subsequent 6809 // comparisons (for case comparisons) will not need to be extended to the 6810 // preferred register width, so we will potentially eliminate N-1 extends, 6811 // where N is the number of cases in the switch. 6812 auto *NewType = Type::getIntNTy(Context, RegWidth); 6813 6814 // Zero-extend the switch condition and case constants unless the switch 6815 // condition is a function argument that is already being sign-extended. 6816 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6817 // everything instead. 6818 Instruction::CastOps ExtType = Instruction::ZExt; 6819 if (auto *Arg = dyn_cast<Argument>(Cond)) 6820 if (Arg->hasSExtAttr()) 6821 ExtType = Instruction::SExt; 6822 6823 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 6824 ExtInst->insertBefore(SI); 6825 ExtInst->setDebugLoc(SI->getDebugLoc()); 6826 SI->setCondition(ExtInst); 6827 for (auto Case : SI->cases()) { 6828 APInt NarrowConst = Case.getCaseValue()->getValue(); 6829 APInt WideConst = (ExtType == Instruction::ZExt) ? 6830 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 6831 Case.setValue(ConstantInt::get(Context, WideConst)); 6832 } 6833 6834 return true; 6835 } 6836 6837 6838 namespace { 6839 6840 /// Helper class to promote a scalar operation to a vector one. 6841 /// This class is used to move downward extractelement transition. 6842 /// E.g., 6843 /// a = vector_op <2 x i32> 6844 /// b = extractelement <2 x i32> a, i32 0 6845 /// c = scalar_op b 6846 /// store c 6847 /// 6848 /// => 6849 /// a = vector_op <2 x i32> 6850 /// c = vector_op a (equivalent to scalar_op on the related lane) 6851 /// * d = extractelement <2 x i32> c, i32 0 6852 /// * store d 6853 /// Assuming both extractelement and store can be combine, we get rid of the 6854 /// transition. 6855 class VectorPromoteHelper { 6856 /// DataLayout associated with the current module. 6857 const DataLayout &DL; 6858 6859 /// Used to perform some checks on the legality of vector operations. 6860 const TargetLowering &TLI; 6861 6862 /// Used to estimated the cost of the promoted chain. 6863 const TargetTransformInfo &TTI; 6864 6865 /// The transition being moved downwards. 6866 Instruction *Transition; 6867 6868 /// The sequence of instructions to be promoted. 6869 SmallVector<Instruction *, 4> InstsToBePromoted; 6870 6871 /// Cost of combining a store and an extract. 6872 unsigned StoreExtractCombineCost; 6873 6874 /// Instruction that will be combined with the transition. 6875 Instruction *CombineInst = nullptr; 6876 6877 /// The instruction that represents the current end of the transition. 6878 /// Since we are faking the promotion until we reach the end of the chain 6879 /// of computation, we need a way to get the current end of the transition. 6880 Instruction *getEndOfTransition() const { 6881 if (InstsToBePromoted.empty()) 6882 return Transition; 6883 return InstsToBePromoted.back(); 6884 } 6885 6886 /// Return the index of the original value in the transition. 6887 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 6888 /// c, is at index 0. 6889 unsigned getTransitionOriginalValueIdx() const { 6890 assert(isa<ExtractElementInst>(Transition) && 6891 "Other kind of transitions are not supported yet"); 6892 return 0; 6893 } 6894 6895 /// Return the index of the index in the transition. 6896 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 6897 /// is at index 1. 6898 unsigned getTransitionIdx() const { 6899 assert(isa<ExtractElementInst>(Transition) && 6900 "Other kind of transitions are not supported yet"); 6901 return 1; 6902 } 6903 6904 /// Get the type of the transition. 6905 /// This is the type of the original value. 6906 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 6907 /// transition is <2 x i32>. 6908 Type *getTransitionType() const { 6909 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 6910 } 6911 6912 /// Promote \p ToBePromoted by moving \p Def downward through. 6913 /// I.e., we have the following sequence: 6914 /// Def = Transition <ty1> a to <ty2> 6915 /// b = ToBePromoted <ty2> Def, ... 6916 /// => 6917 /// b = ToBePromoted <ty1> a, ... 6918 /// Def = Transition <ty1> ToBePromoted to <ty2> 6919 void promoteImpl(Instruction *ToBePromoted); 6920 6921 /// Check whether or not it is profitable to promote all the 6922 /// instructions enqueued to be promoted. 6923 bool isProfitableToPromote() { 6924 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 6925 unsigned Index = isa<ConstantInt>(ValIdx) 6926 ? cast<ConstantInt>(ValIdx)->getZExtValue() 6927 : -1; 6928 Type *PromotedType = getTransitionType(); 6929 6930 StoreInst *ST = cast<StoreInst>(CombineInst); 6931 unsigned AS = ST->getPointerAddressSpace(); 6932 unsigned Align = ST->getAlignment(); 6933 // Check if this store is supported. 6934 if (!TLI.allowsMisalignedMemoryAccesses( 6935 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 6936 Align)) { 6937 // If this is not supported, there is no way we can combine 6938 // the extract with the store. 6939 return false; 6940 } 6941 6942 // The scalar chain of computation has to pay for the transition 6943 // scalar to vector. 6944 // The vector chain has to account for the combining cost. 6945 uint64_t ScalarCost = 6946 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 6947 uint64_t VectorCost = StoreExtractCombineCost; 6948 enum TargetTransformInfo::TargetCostKind CostKind = 6949 TargetTransformInfo::TCK_RecipThroughput; 6950 for (const auto &Inst : InstsToBePromoted) { 6951 // Compute the cost. 6952 // By construction, all instructions being promoted are arithmetic ones. 6953 // Moreover, one argument is a constant that can be viewed as a splat 6954 // constant. 6955 Value *Arg0 = Inst->getOperand(0); 6956 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 6957 isa<ConstantFP>(Arg0); 6958 TargetTransformInfo::OperandValueKind Arg0OVK = 6959 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6960 : TargetTransformInfo::OK_AnyValue; 6961 TargetTransformInfo::OperandValueKind Arg1OVK = 6962 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6963 : TargetTransformInfo::OK_AnyValue; 6964 ScalarCost += TTI.getArithmeticInstrCost( 6965 Inst->getOpcode(), Inst->getType(), CostKind, Arg0OVK, Arg1OVK); 6966 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 6967 CostKind, 6968 Arg0OVK, Arg1OVK); 6969 } 6970 LLVM_DEBUG( 6971 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 6972 << ScalarCost << "\nVector: " << VectorCost << '\n'); 6973 return ScalarCost > VectorCost; 6974 } 6975 6976 /// Generate a constant vector with \p Val with the same 6977 /// number of elements as the transition. 6978 /// \p UseSplat defines whether or not \p Val should be replicated 6979 /// across the whole vector. 6980 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 6981 /// otherwise we generate a vector with as many undef as possible: 6982 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 6983 /// used at the index of the extract. 6984 Value *getConstantVector(Constant *Val, bool UseSplat) const { 6985 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 6986 if (!UseSplat) { 6987 // If we cannot determine where the constant must be, we have to 6988 // use a splat constant. 6989 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 6990 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 6991 ExtractIdx = CstVal->getSExtValue(); 6992 else 6993 UseSplat = true; 6994 } 6995 6996 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); 6997 if (UseSplat) 6998 return ConstantVector::getSplat(EC, Val); 6999 7000 if (!EC.isScalable()) { 7001 SmallVector<Constant *, 4> ConstVec; 7002 UndefValue *UndefVal = UndefValue::get(Val->getType()); 7003 for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) { 7004 if (Idx == ExtractIdx) 7005 ConstVec.push_back(Val); 7006 else 7007 ConstVec.push_back(UndefVal); 7008 } 7009 return ConstantVector::get(ConstVec); 7010 } else 7011 llvm_unreachable( 7012 "Generate scalable vector for non-splat is unimplemented"); 7013 } 7014 7015 /// Check if promoting to a vector type an operand at \p OperandIdx 7016 /// in \p Use can trigger undefined behavior. 7017 static bool canCauseUndefinedBehavior(const Instruction *Use, 7018 unsigned OperandIdx) { 7019 // This is not safe to introduce undef when the operand is on 7020 // the right hand side of a division-like instruction. 7021 if (OperandIdx != 1) 7022 return false; 7023 switch (Use->getOpcode()) { 7024 default: 7025 return false; 7026 case Instruction::SDiv: 7027 case Instruction::UDiv: 7028 case Instruction::SRem: 7029 case Instruction::URem: 7030 return true; 7031 case Instruction::FDiv: 7032 case Instruction::FRem: 7033 return !Use->hasNoNaNs(); 7034 } 7035 llvm_unreachable(nullptr); 7036 } 7037 7038 public: 7039 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 7040 const TargetTransformInfo &TTI, Instruction *Transition, 7041 unsigned CombineCost) 7042 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 7043 StoreExtractCombineCost(CombineCost) { 7044 assert(Transition && "Do not know how to promote null"); 7045 } 7046 7047 /// Check if we can promote \p ToBePromoted to \p Type. 7048 bool canPromote(const Instruction *ToBePromoted) const { 7049 // We could support CastInst too. 7050 return isa<BinaryOperator>(ToBePromoted); 7051 } 7052 7053 /// Check if it is profitable to promote \p ToBePromoted 7054 /// by moving downward the transition through. 7055 bool shouldPromote(const Instruction *ToBePromoted) const { 7056 // Promote only if all the operands can be statically expanded. 7057 // Indeed, we do not want to introduce any new kind of transitions. 7058 for (const Use &U : ToBePromoted->operands()) { 7059 const Value *Val = U.get(); 7060 if (Val == getEndOfTransition()) { 7061 // If the use is a division and the transition is on the rhs, 7062 // we cannot promote the operation, otherwise we may create a 7063 // division by zero. 7064 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 7065 return false; 7066 continue; 7067 } 7068 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 7069 !isa<ConstantFP>(Val)) 7070 return false; 7071 } 7072 // Check that the resulting operation is legal. 7073 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 7074 if (!ISDOpcode) 7075 return false; 7076 return StressStoreExtract || 7077 TLI.isOperationLegalOrCustom( 7078 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 7079 } 7080 7081 /// Check whether or not \p Use can be combined 7082 /// with the transition. 7083 /// I.e., is it possible to do Use(Transition) => AnotherUse? 7084 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 7085 7086 /// Record \p ToBePromoted as part of the chain to be promoted. 7087 void enqueueForPromotion(Instruction *ToBePromoted) { 7088 InstsToBePromoted.push_back(ToBePromoted); 7089 } 7090 7091 /// Set the instruction that will be combined with the transition. 7092 void recordCombineInstruction(Instruction *ToBeCombined) { 7093 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 7094 CombineInst = ToBeCombined; 7095 } 7096 7097 /// Promote all the instructions enqueued for promotion if it is 7098 /// is profitable. 7099 /// \return True if the promotion happened, false otherwise. 7100 bool promote() { 7101 // Check if there is something to promote. 7102 // Right now, if we do not have anything to combine with, 7103 // we assume the promotion is not profitable. 7104 if (InstsToBePromoted.empty() || !CombineInst) 7105 return false; 7106 7107 // Check cost. 7108 if (!StressStoreExtract && !isProfitableToPromote()) 7109 return false; 7110 7111 // Promote. 7112 for (auto &ToBePromoted : InstsToBePromoted) 7113 promoteImpl(ToBePromoted); 7114 InstsToBePromoted.clear(); 7115 return true; 7116 } 7117 }; 7118 7119 } // end anonymous namespace 7120 7121 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 7122 // At this point, we know that all the operands of ToBePromoted but Def 7123 // can be statically promoted. 7124 // For Def, we need to use its parameter in ToBePromoted: 7125 // b = ToBePromoted ty1 a 7126 // Def = Transition ty1 b to ty2 7127 // Move the transition down. 7128 // 1. Replace all uses of the promoted operation by the transition. 7129 // = ... b => = ... Def. 7130 assert(ToBePromoted->getType() == Transition->getType() && 7131 "The type of the result of the transition does not match " 7132 "the final type"); 7133 ToBePromoted->replaceAllUsesWith(Transition); 7134 // 2. Update the type of the uses. 7135 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 7136 Type *TransitionTy = getTransitionType(); 7137 ToBePromoted->mutateType(TransitionTy); 7138 // 3. Update all the operands of the promoted operation with promoted 7139 // operands. 7140 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 7141 for (Use &U : ToBePromoted->operands()) { 7142 Value *Val = U.get(); 7143 Value *NewVal = nullptr; 7144 if (Val == Transition) 7145 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 7146 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 7147 isa<ConstantFP>(Val)) { 7148 // Use a splat constant if it is not safe to use undef. 7149 NewVal = getConstantVector( 7150 cast<Constant>(Val), 7151 isa<UndefValue>(Val) || 7152 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 7153 } else 7154 llvm_unreachable("Did you modified shouldPromote and forgot to update " 7155 "this?"); 7156 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 7157 } 7158 Transition->moveAfter(ToBePromoted); 7159 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 7160 } 7161 7162 /// Some targets can do store(extractelement) with one instruction. 7163 /// Try to push the extractelement towards the stores when the target 7164 /// has this feature and this is profitable. 7165 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 7166 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 7167 if (DisableStoreExtract || 7168 (!StressStoreExtract && 7169 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 7170 Inst->getOperand(1), CombineCost))) 7171 return false; 7172 7173 // At this point we know that Inst is a vector to scalar transition. 7174 // Try to move it down the def-use chain, until: 7175 // - We can combine the transition with its single use 7176 // => we got rid of the transition. 7177 // - We escape the current basic block 7178 // => we would need to check that we are moving it at a cheaper place and 7179 // we do not do that for now. 7180 BasicBlock *Parent = Inst->getParent(); 7181 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 7182 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 7183 // If the transition has more than one use, assume this is not going to be 7184 // beneficial. 7185 while (Inst->hasOneUse()) { 7186 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 7187 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 7188 7189 if (ToBePromoted->getParent() != Parent) { 7190 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 7191 << ToBePromoted->getParent()->getName() 7192 << ") than the transition (" << Parent->getName() 7193 << ").\n"); 7194 return false; 7195 } 7196 7197 if (VPH.canCombine(ToBePromoted)) { 7198 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 7199 << "will be combined with: " << *ToBePromoted << '\n'); 7200 VPH.recordCombineInstruction(ToBePromoted); 7201 bool Changed = VPH.promote(); 7202 NumStoreExtractExposed += Changed; 7203 return Changed; 7204 } 7205 7206 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 7207 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 7208 return false; 7209 7210 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 7211 7212 VPH.enqueueForPromotion(ToBePromoted); 7213 Inst = ToBePromoted; 7214 } 7215 return false; 7216 } 7217 7218 /// For the instruction sequence of store below, F and I values 7219 /// are bundled together as an i64 value before being stored into memory. 7220 /// Sometimes it is more efficient to generate separate stores for F and I, 7221 /// which can remove the bitwise instructions or sink them to colder places. 7222 /// 7223 /// (store (or (zext (bitcast F to i32) to i64), 7224 /// (shl (zext I to i64), 32)), addr) --> 7225 /// (store F, addr) and (store I, addr+4) 7226 /// 7227 /// Similarly, splitting for other merged store can also be beneficial, like: 7228 /// For pair of {i32, i32}, i64 store --> two i32 stores. 7229 /// For pair of {i32, i16}, i64 store --> two i32 stores. 7230 /// For pair of {i16, i16}, i32 store --> two i16 stores. 7231 /// For pair of {i16, i8}, i32 store --> two i16 stores. 7232 /// For pair of {i8, i8}, i16 store --> two i8 stores. 7233 /// 7234 /// We allow each target to determine specifically which kind of splitting is 7235 /// supported. 7236 /// 7237 /// The store patterns are commonly seen from the simple code snippet below 7238 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 7239 /// void goo(const std::pair<int, float> &); 7240 /// hoo() { 7241 /// ... 7242 /// goo(std::make_pair(tmp, ftmp)); 7243 /// ... 7244 /// } 7245 /// 7246 /// Although we already have similar splitting in DAG Combine, we duplicate 7247 /// it in CodeGenPrepare to catch the case in which pattern is across 7248 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 7249 /// during code expansion. 7250 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 7251 const TargetLowering &TLI) { 7252 // Handle simple but common cases only. 7253 Type *StoreType = SI.getValueOperand()->getType(); 7254 7255 // The code below assumes shifting a value by <number of bits>, 7256 // whereas scalable vectors would have to be shifted by 7257 // <2log(vscale) + number of bits> in order to store the 7258 // low/high parts. Bailing out for now. 7259 if (isa<ScalableVectorType>(StoreType)) 7260 return false; 7261 7262 if (!DL.typeSizeEqualsStoreSize(StoreType) || 7263 DL.getTypeSizeInBits(StoreType) == 0) 7264 return false; 7265 7266 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 7267 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 7268 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 7269 return false; 7270 7271 // Don't split the store if it is volatile. 7272 if (SI.isVolatile()) 7273 return false; 7274 7275 // Match the following patterns: 7276 // (store (or (zext LValue to i64), 7277 // (shl (zext HValue to i64), 32)), HalfValBitSize) 7278 // or 7279 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 7280 // (zext LValue to i64), 7281 // Expect both operands of OR and the first operand of SHL have only 7282 // one use. 7283 Value *LValue, *HValue; 7284 if (!match(SI.getValueOperand(), 7285 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 7286 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 7287 m_SpecificInt(HalfValBitSize)))))) 7288 return false; 7289 7290 // Check LValue and HValue are int with size less or equal than 32. 7291 if (!LValue->getType()->isIntegerTy() || 7292 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 7293 !HValue->getType()->isIntegerTy() || 7294 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 7295 return false; 7296 7297 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 7298 // as the input of target query. 7299 auto *LBC = dyn_cast<BitCastInst>(LValue); 7300 auto *HBC = dyn_cast<BitCastInst>(HValue); 7301 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 7302 : EVT::getEVT(LValue->getType()); 7303 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 7304 : EVT::getEVT(HValue->getType()); 7305 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 7306 return false; 7307 7308 // Start to split store. 7309 IRBuilder<> Builder(SI.getContext()); 7310 Builder.SetInsertPoint(&SI); 7311 7312 // If LValue/HValue is a bitcast in another BB, create a new one in current 7313 // BB so it may be merged with the splitted stores by dag combiner. 7314 if (LBC && LBC->getParent() != SI.getParent()) 7315 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 7316 if (HBC && HBC->getParent() != SI.getParent()) 7317 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 7318 7319 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 7320 auto CreateSplitStore = [&](Value *V, bool Upper) { 7321 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 7322 Value *Addr = Builder.CreateBitCast( 7323 SI.getOperand(1), 7324 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 7325 Align Alignment = SI.getAlign(); 7326 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 7327 if (IsOffsetStore) { 7328 Addr = Builder.CreateGEP( 7329 SplitStoreType, Addr, 7330 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 7331 7332 // When splitting the store in half, naturally one half will retain the 7333 // alignment of the original wider store, regardless of whether it was 7334 // over-aligned or not, while the other will require adjustment. 7335 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 7336 } 7337 Builder.CreateAlignedStore(V, Addr, Alignment); 7338 }; 7339 7340 CreateSplitStore(LValue, false); 7341 CreateSplitStore(HValue, true); 7342 7343 // Delete the old store. 7344 SI.eraseFromParent(); 7345 return true; 7346 } 7347 7348 // Return true if the GEP has two operands, the first operand is of a sequential 7349 // type, and the second operand is a constant. 7350 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 7351 gep_type_iterator I = gep_type_begin(*GEP); 7352 return GEP->getNumOperands() == 2 && 7353 I.isSequential() && 7354 isa<ConstantInt>(GEP->getOperand(1)); 7355 } 7356 7357 // Try unmerging GEPs to reduce liveness interference (register pressure) across 7358 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 7359 // reducing liveness interference across those edges benefits global register 7360 // allocation. Currently handles only certain cases. 7361 // 7362 // For example, unmerge %GEPI and %UGEPI as below. 7363 // 7364 // ---------- BEFORE ---------- 7365 // SrcBlock: 7366 // ... 7367 // %GEPIOp = ... 7368 // ... 7369 // %GEPI = gep %GEPIOp, Idx 7370 // ... 7371 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 7372 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 7373 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 7374 // %UGEPI) 7375 // 7376 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 7377 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 7378 // ... 7379 // 7380 // DstBi: 7381 // ... 7382 // %UGEPI = gep %GEPIOp, UIdx 7383 // ... 7384 // --------------------------- 7385 // 7386 // ---------- AFTER ---------- 7387 // SrcBlock: 7388 // ... (same as above) 7389 // (* %GEPI is still alive on the indirectbr edges) 7390 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 7391 // unmerging) 7392 // ... 7393 // 7394 // DstBi: 7395 // ... 7396 // %UGEPI = gep %GEPI, (UIdx-Idx) 7397 // ... 7398 // --------------------------- 7399 // 7400 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 7401 // no longer alive on them. 7402 // 7403 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 7404 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 7405 // not to disable further simplications and optimizations as a result of GEP 7406 // merging. 7407 // 7408 // Note this unmerging may increase the length of the data flow critical path 7409 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 7410 // between the register pressure and the length of data-flow critical 7411 // path. Restricting this to the uncommon IndirectBr case would minimize the 7412 // impact of potentially longer critical path, if any, and the impact on compile 7413 // time. 7414 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 7415 const TargetTransformInfo *TTI) { 7416 BasicBlock *SrcBlock = GEPI->getParent(); 7417 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 7418 // (non-IndirectBr) cases exit early here. 7419 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 7420 return false; 7421 // Check that GEPI is a simple gep with a single constant index. 7422 if (!GEPSequentialConstIndexed(GEPI)) 7423 return false; 7424 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 7425 // Check that GEPI is a cheap one. 7426 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), 7427 TargetTransformInfo::TCK_SizeAndLatency) 7428 > TargetTransformInfo::TCC_Basic) 7429 return false; 7430 Value *GEPIOp = GEPI->getOperand(0); 7431 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 7432 if (!isa<Instruction>(GEPIOp)) 7433 return false; 7434 auto *GEPIOpI = cast<Instruction>(GEPIOp); 7435 if (GEPIOpI->getParent() != SrcBlock) 7436 return false; 7437 // Check that GEP is used outside the block, meaning it's alive on the 7438 // IndirectBr edge(s). 7439 if (find_if(GEPI->users(), [&](User *Usr) { 7440 if (auto *I = dyn_cast<Instruction>(Usr)) { 7441 if (I->getParent() != SrcBlock) { 7442 return true; 7443 } 7444 } 7445 return false; 7446 }) == GEPI->users().end()) 7447 return false; 7448 // The second elements of the GEP chains to be unmerged. 7449 std::vector<GetElementPtrInst *> UGEPIs; 7450 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 7451 // on IndirectBr edges. 7452 for (User *Usr : GEPIOp->users()) { 7453 if (Usr == GEPI) continue; 7454 // Check if Usr is an Instruction. If not, give up. 7455 if (!isa<Instruction>(Usr)) 7456 return false; 7457 auto *UI = cast<Instruction>(Usr); 7458 // Check if Usr in the same block as GEPIOp, which is fine, skip. 7459 if (UI->getParent() == SrcBlock) 7460 continue; 7461 // Check if Usr is a GEP. If not, give up. 7462 if (!isa<GetElementPtrInst>(Usr)) 7463 return false; 7464 auto *UGEPI = cast<GetElementPtrInst>(Usr); 7465 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 7466 // the pointer operand to it. If so, record it in the vector. If not, give 7467 // up. 7468 if (!GEPSequentialConstIndexed(UGEPI)) 7469 return false; 7470 if (UGEPI->getOperand(0) != GEPIOp) 7471 return false; 7472 if (GEPIIdx->getType() != 7473 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 7474 return false; 7475 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7476 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), 7477 TargetTransformInfo::TCK_SizeAndLatency) 7478 > TargetTransformInfo::TCC_Basic) 7479 return false; 7480 UGEPIs.push_back(UGEPI); 7481 } 7482 if (UGEPIs.size() == 0) 7483 return false; 7484 // Check the materializing cost of (Uidx-Idx). 7485 for (GetElementPtrInst *UGEPI : UGEPIs) { 7486 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7487 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 7488 unsigned ImmCost = 7489 TTI->getIntImmCost(NewIdx, GEPIIdx->getType(), 7490 TargetTransformInfo::TCK_SizeAndLatency); 7491 if (ImmCost > TargetTransformInfo::TCC_Basic) 7492 return false; 7493 } 7494 // Now unmerge between GEPI and UGEPIs. 7495 for (GetElementPtrInst *UGEPI : UGEPIs) { 7496 UGEPI->setOperand(0, GEPI); 7497 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7498 Constant *NewUGEPIIdx = 7499 ConstantInt::get(GEPIIdx->getType(), 7500 UGEPIIdx->getValue() - GEPIIdx->getValue()); 7501 UGEPI->setOperand(1, NewUGEPIIdx); 7502 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 7503 // inbounds to avoid UB. 7504 if (!GEPI->isInBounds()) { 7505 UGEPI->setIsInBounds(false); 7506 } 7507 } 7508 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 7509 // alive on IndirectBr edges). 7510 assert(find_if(GEPIOp->users(), [&](User *Usr) { 7511 return cast<Instruction>(Usr)->getParent() != SrcBlock; 7512 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 7513 return true; 7514 } 7515 7516 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 7517 // Bail out if we inserted the instruction to prevent optimizations from 7518 // stepping on each other's toes. 7519 if (InsertedInsts.count(I)) 7520 return false; 7521 7522 // TODO: Move into the switch on opcode below here. 7523 if (PHINode *P = dyn_cast<PHINode>(I)) { 7524 // It is possible for very late stage optimizations (such as SimplifyCFG) 7525 // to introduce PHI nodes too late to be cleaned up. If we detect such a 7526 // trivial PHI, go ahead and zap it here. 7527 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 7528 LargeOffsetGEPMap.erase(P); 7529 P->replaceAllUsesWith(V); 7530 P->eraseFromParent(); 7531 ++NumPHIsElim; 7532 return true; 7533 } 7534 return false; 7535 } 7536 7537 if (CastInst *CI = dyn_cast<CastInst>(I)) { 7538 // If the source of the cast is a constant, then this should have 7539 // already been constant folded. The only reason NOT to constant fold 7540 // it is if something (e.g. LSR) was careful to place the constant 7541 // evaluation in a block other than then one that uses it (e.g. to hoist 7542 // the address of globals out of a loop). If this is the case, we don't 7543 // want to forward-subst the cast. 7544 if (isa<Constant>(CI->getOperand(0))) 7545 return false; 7546 7547 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 7548 return true; 7549 7550 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 7551 /// Sink a zext or sext into its user blocks if the target type doesn't 7552 /// fit in one register 7553 if (TLI->getTypeAction(CI->getContext(), 7554 TLI->getValueType(*DL, CI->getType())) == 7555 TargetLowering::TypeExpandInteger) { 7556 return SinkCast(CI); 7557 } else { 7558 bool MadeChange = optimizeExt(I); 7559 return MadeChange | optimizeExtUses(I); 7560 } 7561 } 7562 return false; 7563 } 7564 7565 if (auto *Cmp = dyn_cast<CmpInst>(I)) 7566 if (optimizeCmp(Cmp, ModifiedDT)) 7567 return true; 7568 7569 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7570 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7571 bool Modified = optimizeLoadExt(LI); 7572 unsigned AS = LI->getPointerAddressSpace(); 7573 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 7574 return Modified; 7575 } 7576 7577 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 7578 if (splitMergedValStore(*SI, *DL, *TLI)) 7579 return true; 7580 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7581 unsigned AS = SI->getPointerAddressSpace(); 7582 return optimizeMemoryInst(I, SI->getOperand(1), 7583 SI->getOperand(0)->getType(), AS); 7584 } 7585 7586 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 7587 unsigned AS = RMW->getPointerAddressSpace(); 7588 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7589 RMW->getType(), AS); 7590 } 7591 7592 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7593 unsigned AS = CmpX->getPointerAddressSpace(); 7594 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7595 CmpX->getCompareOperand()->getType(), AS); 7596 } 7597 7598 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7599 7600 if (BinOp && (BinOp->getOpcode() == Instruction::And) && EnableAndCmpSinking) 7601 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 7602 7603 // TODO: Move this into the switch on opcode - it handles shifts already. 7604 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7605 BinOp->getOpcode() == Instruction::LShr)) { 7606 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7607 if (CI && TLI->hasExtractBitsInsn()) 7608 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7609 return true; 7610 } 7611 7612 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7613 if (GEPI->hasAllZeroIndices()) { 7614 /// The GEP operand must be a pointer, so must its result -> BitCast 7615 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7616 GEPI->getName(), GEPI); 7617 NC->setDebugLoc(GEPI->getDebugLoc()); 7618 GEPI->replaceAllUsesWith(NC); 7619 GEPI->eraseFromParent(); 7620 ++NumGEPsElim; 7621 optimizeInst(NC, ModifiedDT); 7622 return true; 7623 } 7624 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7625 return true; 7626 } 7627 return false; 7628 } 7629 7630 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 7631 // freeze(icmp a, const)) -> icmp (freeze a), const 7632 // This helps generate efficient conditional jumps. 7633 Instruction *CmpI = nullptr; 7634 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 7635 CmpI = II; 7636 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 7637 CmpI = F->getFastMathFlags().none() ? F : nullptr; 7638 7639 if (CmpI && CmpI->hasOneUse()) { 7640 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 7641 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 7642 isa<ConstantPointerNull>(Op0); 7643 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 7644 isa<ConstantPointerNull>(Op1); 7645 if (Const0 || Const1) { 7646 if (!Const0 || !Const1) { 7647 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI); 7648 F->takeName(FI); 7649 CmpI->setOperand(Const0 ? 1 : 0, F); 7650 } 7651 FI->replaceAllUsesWith(CmpI); 7652 FI->eraseFromParent(); 7653 return true; 7654 } 7655 } 7656 return false; 7657 } 7658 7659 if (tryToSinkFreeOperands(I)) 7660 return true; 7661 7662 switch (I->getOpcode()) { 7663 case Instruction::Shl: 7664 case Instruction::LShr: 7665 case Instruction::AShr: 7666 return optimizeShiftInst(cast<BinaryOperator>(I)); 7667 case Instruction::Call: 7668 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7669 case Instruction::Select: 7670 return optimizeSelectInst(cast<SelectInst>(I)); 7671 case Instruction::ShuffleVector: 7672 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7673 case Instruction::Switch: 7674 return optimizeSwitchInst(cast<SwitchInst>(I)); 7675 case Instruction::ExtractElement: 7676 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7677 } 7678 7679 return false; 7680 } 7681 7682 /// Given an OR instruction, check to see if this is a bitreverse 7683 /// idiom. If so, insert the new intrinsic and return true. 7684 bool CodeGenPrepare::makeBitReverse(Instruction &I) { 7685 if (!I.getType()->isIntegerTy() || 7686 !TLI->isOperationLegalOrCustom(ISD::BITREVERSE, 7687 TLI->getValueType(*DL, I.getType(), true))) 7688 return false; 7689 7690 SmallVector<Instruction*, 4> Insts; 7691 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7692 return false; 7693 Instruction *LastInst = Insts.back(); 7694 I.replaceAllUsesWith(LastInst); 7695 RecursivelyDeleteTriviallyDeadInstructions( 7696 &I, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); 7697 return true; 7698 } 7699 7700 // In this pass we look for GEP and cast instructions that are used 7701 // across basic blocks and rewrite them to improve basic-block-at-a-time 7702 // selection. 7703 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 7704 SunkAddrs.clear(); 7705 bool MadeChange = false; 7706 7707 CurInstIterator = BB.begin(); 7708 while (CurInstIterator != BB.end()) { 7709 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 7710 if (ModifiedDT) 7711 return true; 7712 } 7713 7714 bool MadeBitReverse = true; 7715 while (MadeBitReverse) { 7716 MadeBitReverse = false; 7717 for (auto &I : reverse(BB)) { 7718 if (makeBitReverse(I)) { 7719 MadeBitReverse = MadeChange = true; 7720 break; 7721 } 7722 } 7723 } 7724 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7725 7726 return MadeChange; 7727 } 7728 7729 // Some CGP optimizations may move or alter what's computed in a block. Check 7730 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 7731 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 7732 assert(isa<DbgValueInst>(I)); 7733 DbgValueInst &DVI = *cast<DbgValueInst>(I); 7734 7735 // Does this dbg.value refer to a sunk address calculation? 7736 Value *Location = DVI.getVariableLocation(); 7737 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 7738 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 7739 if (SunkAddr) { 7740 // Point dbg.value at locally computed address, which should give the best 7741 // opportunity to be accurately lowered. This update may change the type of 7742 // pointer being referred to; however this makes no difference to debugging 7743 // information, and we can't generate bitcasts that may affect codegen. 7744 DVI.setOperand(0, MetadataAsValue::get(DVI.getContext(), 7745 ValueAsMetadata::get(SunkAddr))); 7746 return true; 7747 } 7748 return false; 7749 } 7750 7751 // A llvm.dbg.value may be using a value before its definition, due to 7752 // optimizations in this pass and others. Scan for such dbg.values, and rescue 7753 // them by moving the dbg.value to immediately after the value definition. 7754 // FIXME: Ideally this should never be necessary, and this has the potential 7755 // to re-order dbg.value intrinsics. 7756 bool CodeGenPrepare::placeDbgValues(Function &F) { 7757 bool MadeChange = false; 7758 DominatorTree DT(F); 7759 7760 for (BasicBlock &BB : F) { 7761 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 7762 Instruction *Insn = &*BI++; 7763 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 7764 if (!DVI) 7765 continue; 7766 7767 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 7768 7769 if (!VI || VI->isTerminator()) 7770 continue; 7771 7772 // If VI is a phi in a block with an EHPad terminator, we can't insert 7773 // after it. 7774 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 7775 continue; 7776 7777 // If the defining instruction dominates the dbg.value, we do not need 7778 // to move the dbg.value. 7779 if (DT.dominates(VI, DVI)) 7780 continue; 7781 7782 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 7783 << *DVI << ' ' << *VI); 7784 DVI->removeFromParent(); 7785 if (isa<PHINode>(VI)) 7786 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 7787 else 7788 DVI->insertAfter(VI); 7789 MadeChange = true; 7790 ++NumDbgValueMoved; 7791 } 7792 } 7793 return MadeChange; 7794 } 7795 7796 /// Scale down both weights to fit into uint32_t. 7797 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 7798 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 7799 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 7800 NewTrue = NewTrue / Scale; 7801 NewFalse = NewFalse / Scale; 7802 } 7803 7804 /// Some targets prefer to split a conditional branch like: 7805 /// \code 7806 /// %0 = icmp ne i32 %a, 0 7807 /// %1 = icmp ne i32 %b, 0 7808 /// %or.cond = or i1 %0, %1 7809 /// br i1 %or.cond, label %TrueBB, label %FalseBB 7810 /// \endcode 7811 /// into multiple branch instructions like: 7812 /// \code 7813 /// bb1: 7814 /// %0 = icmp ne i32 %a, 0 7815 /// br i1 %0, label %TrueBB, label %bb2 7816 /// bb2: 7817 /// %1 = icmp ne i32 %b, 0 7818 /// br i1 %1, label %TrueBB, label %FalseBB 7819 /// \endcode 7820 /// This usually allows instruction selection to do even further optimizations 7821 /// and combine the compare with the branch instruction. Currently this is 7822 /// applied for targets which have "cheap" jump instructions. 7823 /// 7824 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 7825 /// 7826 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 7827 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 7828 return false; 7829 7830 bool MadeChange = false; 7831 for (auto &BB : F) { 7832 // Does this BB end with the following? 7833 // %cond1 = icmp|fcmp|binary instruction ... 7834 // %cond2 = icmp|fcmp|binary instruction ... 7835 // %cond.or = or|and i1 %cond1, cond2 7836 // br i1 %cond.or label %dest1, label %dest2" 7837 BinaryOperator *LogicOp; 7838 BasicBlock *TBB, *FBB; 7839 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 7840 continue; 7841 7842 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 7843 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 7844 continue; 7845 7846 // The merging of mostly empty BB can cause a degenerate branch. 7847 if (TBB == FBB) 7848 continue; 7849 7850 unsigned Opc; 7851 Value *Cond1, *Cond2; 7852 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 7853 m_OneUse(m_Value(Cond2))))) 7854 Opc = Instruction::And; 7855 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 7856 m_OneUse(m_Value(Cond2))))) 7857 Opc = Instruction::Or; 7858 else 7859 continue; 7860 7861 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 7862 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 7863 continue; 7864 7865 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 7866 7867 // Create a new BB. 7868 auto *TmpBB = 7869 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 7870 BB.getParent(), BB.getNextNode()); 7871 7872 // Update original basic block by using the first condition directly by the 7873 // branch instruction and removing the no longer needed and/or instruction. 7874 Br1->setCondition(Cond1); 7875 LogicOp->eraseFromParent(); 7876 7877 // Depending on the condition we have to either replace the true or the 7878 // false successor of the original branch instruction. 7879 if (Opc == Instruction::And) 7880 Br1->setSuccessor(0, TmpBB); 7881 else 7882 Br1->setSuccessor(1, TmpBB); 7883 7884 // Fill in the new basic block. 7885 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 7886 if (auto *I = dyn_cast<Instruction>(Cond2)) { 7887 I->removeFromParent(); 7888 I->insertBefore(Br2); 7889 } 7890 7891 // Update PHI nodes in both successors. The original BB needs to be 7892 // replaced in one successor's PHI nodes, because the branch comes now from 7893 // the newly generated BB (NewBB). In the other successor we need to add one 7894 // incoming edge to the PHI nodes, because both branch instructions target 7895 // now the same successor. Depending on the original branch condition 7896 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 7897 // we perform the correct update for the PHI nodes. 7898 // This doesn't change the successor order of the just created branch 7899 // instruction (or any other instruction). 7900 if (Opc == Instruction::Or) 7901 std::swap(TBB, FBB); 7902 7903 // Replace the old BB with the new BB. 7904 TBB->replacePhiUsesWith(&BB, TmpBB); 7905 7906 // Add another incoming edge form the new BB. 7907 for (PHINode &PN : FBB->phis()) { 7908 auto *Val = PN.getIncomingValueForBlock(&BB); 7909 PN.addIncoming(Val, TmpBB); 7910 } 7911 7912 // Update the branch weights (from SelectionDAGBuilder:: 7913 // FindMergedConditions). 7914 if (Opc == Instruction::Or) { 7915 // Codegen X | Y as: 7916 // BB1: 7917 // jmp_if_X TBB 7918 // jmp TmpBB 7919 // TmpBB: 7920 // jmp_if_Y TBB 7921 // jmp FBB 7922 // 7923 7924 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 7925 // The requirement is that 7926 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 7927 // = TrueProb for original BB. 7928 // Assuming the original weights are A and B, one choice is to set BB1's 7929 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 7930 // assumes that 7931 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 7932 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 7933 // TmpBB, but the math is more complicated. 7934 uint64_t TrueWeight, FalseWeight; 7935 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7936 uint64_t NewTrueWeight = TrueWeight; 7937 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 7938 scaleWeights(NewTrueWeight, NewFalseWeight); 7939 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7940 .createBranchWeights(TrueWeight, FalseWeight)); 7941 7942 NewTrueWeight = TrueWeight; 7943 NewFalseWeight = 2 * FalseWeight; 7944 scaleWeights(NewTrueWeight, NewFalseWeight); 7945 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7946 .createBranchWeights(TrueWeight, FalseWeight)); 7947 } 7948 } else { 7949 // Codegen X & Y as: 7950 // BB1: 7951 // jmp_if_X TmpBB 7952 // jmp FBB 7953 // TmpBB: 7954 // jmp_if_Y TBB 7955 // jmp FBB 7956 // 7957 // This requires creation of TmpBB after CurBB. 7958 7959 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 7960 // The requirement is that 7961 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 7962 // = FalseProb for original BB. 7963 // Assuming the original weights are A and B, one choice is to set BB1's 7964 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 7965 // assumes that 7966 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 7967 uint64_t TrueWeight, FalseWeight; 7968 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7969 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 7970 uint64_t NewFalseWeight = FalseWeight; 7971 scaleWeights(NewTrueWeight, NewFalseWeight); 7972 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7973 .createBranchWeights(TrueWeight, FalseWeight)); 7974 7975 NewTrueWeight = 2 * TrueWeight; 7976 NewFalseWeight = FalseWeight; 7977 scaleWeights(NewTrueWeight, NewFalseWeight); 7978 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7979 .createBranchWeights(TrueWeight, FalseWeight)); 7980 } 7981 } 7982 7983 ModifiedDT = true; 7984 MadeChange = true; 7985 7986 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 7987 TmpBB->dump()); 7988 } 7989 return MadeChange; 7990 } 7991