1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass munges the code in the input function to better prepare it for
11 // SelectionDAG-based code generation. This works around limitations in it's
12 // basic-block-at-a-time approach. It should eventually be removed.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/BlockFrequencyInfo.h"
26 #include "llvm/Analysis/BranchProbabilityInfo.h"
27 #include "llvm/Analysis/ConstantFolding.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/LoopInfo.h"
30 #include "llvm/Analysis/MemoryBuiltins.h"
31 #include "llvm/Analysis/ProfileSummaryInfo.h"
32 #include "llvm/Analysis/TargetLibraryInfo.h"
33 #include "llvm/Analysis/TargetTransformInfo.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/CodeGen/Analysis.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/MachineValueType.h"
38 #include "llvm/CodeGen/SelectionDAGNodes.h"
39 #include "llvm/CodeGen/TargetPassConfig.h"
40 #include "llvm/CodeGen/ValueTypes.h"
41 #include "llvm/IR/Argument.h"
42 #include "llvm/IR/Attributes.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/CallSite.h"
45 #include "llvm/IR/Constant.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/Dominators.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/GetElementPtrTypeIterator.h"
52 #include "llvm/IR/GlobalValue.h"
53 #include "llvm/IR/GlobalVariable.h"
54 #include "llvm/IR/IRBuilder.h"
55 #include "llvm/IR/InlineAsm.h"
56 #include "llvm/IR/InstrTypes.h"
57 #include "llvm/IR/Instruction.h"
58 #include "llvm/IR/Instructions.h"
59 #include "llvm/IR/IntrinsicInst.h"
60 #include "llvm/IR/Intrinsics.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/IR/MDBuilder.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/Operator.h"
65 #include "llvm/IR/PatternMatch.h"
66 #include "llvm/IR/Statepoint.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/Use.h"
69 #include "llvm/IR/User.h"
70 #include "llvm/IR/Value.h"
71 #include "llvm/IR/ValueHandle.h"
72 #include "llvm/IR/ValueMap.h"
73 #include "llvm/Pass.h"
74 #include "llvm/Support/BlockFrequency.h"
75 #include "llvm/Support/BranchProbability.h"
76 #include "llvm/Support/Casting.h"
77 #include "llvm/Support/CommandLine.h"
78 #include "llvm/Support/Compiler.h"
79 #include "llvm/Support/Debug.h"
80 #include "llvm/Support/ErrorHandling.h"
81 #include "llvm/Support/MathExtras.h"
82 #include "llvm/Support/raw_ostream.h"
83 #include "llvm/Target/TargetLowering.h"
84 #include "llvm/Target/TargetMachine.h"
85 #include "llvm/Target/TargetOptions.h"
86 #include "llvm/Target/TargetSubtargetInfo.h"
87 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
88 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
89 #include "llvm/Transforms/Utils/Cloning.h"
90 #include "llvm/Transforms/Utils/Local.h"
91 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
92 #include "llvm/Transforms/Utils/ValueMapper.h"
93 #include <algorithm>
94 #include <cassert>
95 #include <cstdint>
96 #include <iterator>
97 #include <limits>
98 #include <memory>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 using namespace llvm::PatternMatch;
104 
105 #define DEBUG_TYPE "codegenprepare"
106 
107 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
108 STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
109 STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
110 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
111                       "sunken Cmps");
112 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
113                        "of sunken Casts");
114 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
115                           "computations were sunk");
116 STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
117 STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
118 STATISTIC(NumAndsAdded,
119           "Number of and mask instructions added to form ext loads");
120 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
121 STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
122 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
123 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
124 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
125 
126 STATISTIC(NumMemCmpCalls, "Number of memcmp calls");
127 STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size");
128 STATISTIC(NumMemCmpGreaterThanMax,
129           "Number of memcmp calls with size greater than max size");
130 STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls");
131 
132 static cl::opt<bool> DisableBranchOpts(
133   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
134   cl::desc("Disable branch optimizations in CodeGenPrepare"));
135 
136 static cl::opt<bool>
137     DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
138                   cl::desc("Disable GC optimizations in CodeGenPrepare"));
139 
140 static cl::opt<bool> DisableSelectToBranch(
141   "disable-cgp-select2branch", cl::Hidden, cl::init(false),
142   cl::desc("Disable select to branch conversion."));
143 
144 static cl::opt<bool> AddrSinkUsingGEPs(
145   "addr-sink-using-gep", cl::Hidden, cl::init(true),
146   cl::desc("Address sinking in CGP using GEPs."));
147 
148 static cl::opt<bool> EnableAndCmpSinking(
149    "enable-andcmp-sinking", cl::Hidden, cl::init(true),
150    cl::desc("Enable sinkinig and/cmp into branches."));
151 
152 static cl::opt<bool> DisableStoreExtract(
153     "disable-cgp-store-extract", cl::Hidden, cl::init(false),
154     cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
155 
156 static cl::opt<bool> StressStoreExtract(
157     "stress-cgp-store-extract", cl::Hidden, cl::init(false),
158     cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
159 
160 static cl::opt<bool> DisableExtLdPromotion(
161     "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
162     cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
163              "CodeGenPrepare"));
164 
165 static cl::opt<bool> StressExtLdPromotion(
166     "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
167     cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
168              "optimization in CodeGenPrepare"));
169 
170 static cl::opt<bool> DisablePreheaderProtect(
171     "disable-preheader-prot", cl::Hidden, cl::init(false),
172     cl::desc("Disable protection against removing loop preheaders"));
173 
174 static cl::opt<bool> ProfileGuidedSectionPrefix(
175     "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
176     cl::desc("Use profile info to add section prefix for hot/cold functions"));
177 
178 static cl::opt<unsigned> FreqRatioToSkipMerge(
179     "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
180     cl::desc("Skip merging empty blocks if (frequency of empty block) / "
181              "(frequency of destination block) is greater than this ratio"));
182 
183 static cl::opt<bool> ForceSplitStore(
184     "force-split-store", cl::Hidden, cl::init(false),
185     cl::desc("Force store splitting no matter what the target query says."));
186 
187 static cl::opt<bool>
188 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
189     cl::desc("Enable merging of redundant sexts when one is dominating"
190     " the other."), cl::init(true));
191 
192 static cl::opt<unsigned> MemCmpNumLoadsPerBlock(
193     "memcmp-num-loads-per-block", cl::Hidden, cl::init(1),
194     cl::desc("The number of loads per basic block for inline expansion of "
195              "memcmp that is only being compared against zero."));
196 
197 namespace {
198 
199 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
200 using TypeIsSExt = PointerIntPair<Type *, 1, bool>;
201 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
202 using SExts = SmallVector<Instruction *, 16>;
203 using ValueToSExts = DenseMap<Value *, SExts>;
204 
205 class TypePromotionTransaction;
206 
207   class CodeGenPrepare : public FunctionPass {
208     const TargetMachine *TM = nullptr;
209     const TargetSubtargetInfo *SubtargetInfo;
210     const TargetLowering *TLI = nullptr;
211     const TargetRegisterInfo *TRI;
212     const TargetTransformInfo *TTI = nullptr;
213     const TargetLibraryInfo *TLInfo;
214     const LoopInfo *LI;
215     std::unique_ptr<BlockFrequencyInfo> BFI;
216     std::unique_ptr<BranchProbabilityInfo> BPI;
217 
218     /// As we scan instructions optimizing them, this is the next instruction
219     /// to optimize. Transforms that can invalidate this should update it.
220     BasicBlock::iterator CurInstIterator;
221 
222     /// Keeps track of non-local addresses that have been sunk into a block.
223     /// This allows us to avoid inserting duplicate code for blocks with
224     /// multiple load/stores of the same address.
225     ValueMap<Value*, Value*> SunkAddrs;
226 
227     /// Keeps track of all instructions inserted for the current function.
228     SetOfInstrs InsertedInsts;
229 
230     /// Keeps track of the type of the related instruction before their
231     /// promotion for the current function.
232     InstrToOrigTy PromotedInsts;
233 
234     /// Keep track of instructions removed during promotion.
235     SetOfInstrs RemovedInsts;
236 
237     /// Keep track of sext chains based on their initial value.
238     DenseMap<Value *, Instruction *> SeenChainsForSExt;
239 
240     /// Keep track of SExt promoted.
241     ValueToSExts ValToSExtendedUses;
242 
243     /// True if CFG is modified in any way.
244     bool ModifiedDT;
245 
246     /// True if optimizing for size.
247     bool OptSize;
248 
249     /// DataLayout for the Function being processed.
250     const DataLayout *DL = nullptr;
251 
252   public:
253     static char ID; // Pass identification, replacement for typeid
254 
255     CodeGenPrepare() : FunctionPass(ID) {
256       initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
257     }
258 
259     bool runOnFunction(Function &F) override;
260 
261     StringRef getPassName() const override { return "CodeGen Prepare"; }
262 
263     void getAnalysisUsage(AnalysisUsage &AU) const override {
264       // FIXME: When we can selectively preserve passes, preserve the domtree.
265       AU.addRequired<ProfileSummaryInfoWrapperPass>();
266       AU.addRequired<TargetLibraryInfoWrapperPass>();
267       AU.addRequired<TargetTransformInfoWrapperPass>();
268       AU.addRequired<LoopInfoWrapperPass>();
269     }
270 
271   private:
272     bool eliminateFallThrough(Function &F);
273     bool eliminateMostlyEmptyBlocks(Function &F);
274     BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
275     bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
276     void eliminateMostlyEmptyBlock(BasicBlock *BB);
277     bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
278                                        bool isPreheader);
279     bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT);
280     bool optimizeInst(Instruction *I, bool &ModifiedDT);
281     bool optimizeMemoryInst(Instruction *I, Value *Addr,
282                             Type *AccessTy, unsigned AS);
283     bool optimizeInlineAsmInst(CallInst *CS);
284     bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
285     bool optimizeExt(Instruction *&I);
286     bool optimizeExtUses(Instruction *I);
287     bool optimizeLoadExt(LoadInst *I);
288     bool optimizeSelectInst(SelectInst *SI);
289     bool optimizeShuffleVectorInst(ShuffleVectorInst *SI);
290     bool optimizeSwitchInst(SwitchInst *CI);
291     bool optimizeExtractElementInst(Instruction *Inst);
292     bool dupRetToEnableTailCallOpts(BasicBlock *BB);
293     bool placeDbgValues(Function &F);
294     bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
295                       LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
296     bool tryToPromoteExts(TypePromotionTransaction &TPT,
297                           const SmallVectorImpl<Instruction *> &Exts,
298                           SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
299                           unsigned CreatedInstsCost = 0);
300     bool mergeSExts(Function &F);
301     bool performAddressTypePromotion(
302         Instruction *&Inst,
303         bool AllowPromotionWithoutCommonHeader,
304         bool HasPromoted, TypePromotionTransaction &TPT,
305         SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
306     bool splitBranchCondition(Function &F);
307     bool simplifyOffsetableRelocate(Instruction &I);
308     bool splitIndirectCriticalEdges(Function &F);
309   };
310 
311 } // end anonymous namespace
312 
313 char CodeGenPrepare::ID = 0;
314 
315 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
316                       "Optimize for code generation", false, false)
317 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
318 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
319                     "Optimize for code generation", false, false)
320 
321 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
322 
323 bool CodeGenPrepare::runOnFunction(Function &F) {
324   if (skipFunction(F))
325     return false;
326 
327   DL = &F.getParent()->getDataLayout();
328 
329   bool EverMadeChange = false;
330   // Clear per function information.
331   InsertedInsts.clear();
332   PromotedInsts.clear();
333   BFI.reset();
334   BPI.reset();
335 
336   ModifiedDT = false;
337   if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
338     TM = &TPC->getTM<TargetMachine>();
339     SubtargetInfo = TM->getSubtargetImpl(F);
340     TLI = SubtargetInfo->getTargetLowering();
341     TRI = SubtargetInfo->getRegisterInfo();
342   }
343   TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
344   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
345   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
346   OptSize = F.optForSize();
347 
348   if (ProfileGuidedSectionPrefix) {
349     ProfileSummaryInfo *PSI =
350         getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
351     if (PSI->isFunctionHotInCallGraph(&F))
352       F.setSectionPrefix(".hot");
353     else if (PSI->isFunctionColdInCallGraph(&F))
354       F.setSectionPrefix(".unlikely");
355   }
356 
357   /// This optimization identifies DIV instructions that can be
358   /// profitably bypassed and carried out with a shorter, faster divide.
359   if (!OptSize && TLI && TLI->isSlowDivBypassed()) {
360     const DenseMap<unsigned int, unsigned int> &BypassWidths =
361        TLI->getBypassSlowDivWidths();
362     BasicBlock* BB = &*F.begin();
363     while (BB != nullptr) {
364       // bypassSlowDivision may create new BBs, but we don't want to reapply the
365       // optimization to those blocks.
366       BasicBlock* Next = BB->getNextNode();
367       EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
368       BB = Next;
369     }
370   }
371 
372   // Eliminate blocks that contain only PHI nodes and an
373   // unconditional branch.
374   EverMadeChange |= eliminateMostlyEmptyBlocks(F);
375 
376   // llvm.dbg.value is far away from the value then iSel may not be able
377   // handle it properly. iSel will drop llvm.dbg.value if it can not
378   // find a node corresponding to the value.
379   EverMadeChange |= placeDbgValues(F);
380 
381   if (!DisableBranchOpts)
382     EverMadeChange |= splitBranchCondition(F);
383 
384   // Split some critical edges where one of the sources is an indirect branch,
385   // to help generate sane code for PHIs involving such edges.
386   EverMadeChange |= splitIndirectCriticalEdges(F);
387 
388   bool MadeChange = true;
389   while (MadeChange) {
390     MadeChange = false;
391     SeenChainsForSExt.clear();
392     ValToSExtendedUses.clear();
393     RemovedInsts.clear();
394     for (Function::iterator I = F.begin(); I != F.end(); ) {
395       BasicBlock *BB = &*I++;
396       bool ModifiedDTOnIteration = false;
397       MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
398 
399       // Restart BB iteration if the dominator tree of the Function was changed
400       if (ModifiedDTOnIteration)
401         break;
402     }
403     if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
404       MadeChange |= mergeSExts(F);
405 
406     // Really free removed instructions during promotion.
407     for (Instruction *I : RemovedInsts)
408       I->deleteValue();
409 
410     EverMadeChange |= MadeChange;
411   }
412 
413   SunkAddrs.clear();
414 
415   if (!DisableBranchOpts) {
416     MadeChange = false;
417     SmallPtrSet<BasicBlock*, 8> WorkList;
418     for (BasicBlock &BB : F) {
419       SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
420       MadeChange |= ConstantFoldTerminator(&BB, true);
421       if (!MadeChange) continue;
422 
423       for (SmallVectorImpl<BasicBlock*>::iterator
424              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
425         if (pred_begin(*II) == pred_end(*II))
426           WorkList.insert(*II);
427     }
428 
429     // Delete the dead blocks and any of their dead successors.
430     MadeChange |= !WorkList.empty();
431     while (!WorkList.empty()) {
432       BasicBlock *BB = *WorkList.begin();
433       WorkList.erase(BB);
434       SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
435 
436       DeleteDeadBlock(BB);
437 
438       for (SmallVectorImpl<BasicBlock*>::iterator
439              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
440         if (pred_begin(*II) == pred_end(*II))
441           WorkList.insert(*II);
442     }
443 
444     // Merge pairs of basic blocks with unconditional branches, connected by
445     // a single edge.
446     if (EverMadeChange || MadeChange)
447       MadeChange |= eliminateFallThrough(F);
448 
449     EverMadeChange |= MadeChange;
450   }
451 
452   if (!DisableGCOpts) {
453     SmallVector<Instruction *, 2> Statepoints;
454     for (BasicBlock &BB : F)
455       for (Instruction &I : BB)
456         if (isStatepoint(I))
457           Statepoints.push_back(&I);
458     for (auto &I : Statepoints)
459       EverMadeChange |= simplifyOffsetableRelocate(*I);
460   }
461 
462   return EverMadeChange;
463 }
464 
465 /// Merge basic blocks which are connected by a single edge, where one of the
466 /// basic blocks has a single successor pointing to the other basic block,
467 /// which has a single predecessor.
468 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
469   bool Changed = false;
470   // Scan all of the blocks in the function, except for the entry block.
471   for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
472     BasicBlock *BB = &*I++;
473     // If the destination block has a single pred, then this is a trivial
474     // edge, just collapse it.
475     BasicBlock *SinglePred = BB->getSinglePredecessor();
476 
477     // Don't merge if BB's address is taken.
478     if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
479 
480     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
481     if (Term && !Term->isConditional()) {
482       Changed = true;
483       DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n");
484       // Remember if SinglePred was the entry block of the function.
485       // If so, we will need to move BB back to the entry position.
486       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
487       MergeBasicBlockIntoOnlyPred(BB, nullptr);
488 
489       if (isEntry && BB != &BB->getParent()->getEntryBlock())
490         BB->moveBefore(&BB->getParent()->getEntryBlock());
491 
492       // We have erased a block. Update the iterator.
493       I = BB->getIterator();
494     }
495   }
496   return Changed;
497 }
498 
499 /// Find a destination block from BB if BB is mergeable empty block.
500 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
501   // If this block doesn't end with an uncond branch, ignore it.
502   BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
503   if (!BI || !BI->isUnconditional())
504     return nullptr;
505 
506   // If the instruction before the branch (skipping debug info) isn't a phi
507   // node, then other stuff is happening here.
508   BasicBlock::iterator BBI = BI->getIterator();
509   if (BBI != BB->begin()) {
510     --BBI;
511     while (isa<DbgInfoIntrinsic>(BBI)) {
512       if (BBI == BB->begin())
513         break;
514       --BBI;
515     }
516     if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
517       return nullptr;
518   }
519 
520   // Do not break infinite loops.
521   BasicBlock *DestBB = BI->getSuccessor(0);
522   if (DestBB == BB)
523     return nullptr;
524 
525   if (!canMergeBlocks(BB, DestBB))
526     DestBB = nullptr;
527 
528   return DestBB;
529 }
530 
531 // Return the unique indirectbr predecessor of a block. This may return null
532 // even if such a predecessor exists, if it's not useful for splitting.
533 // If a predecessor is found, OtherPreds will contain all other (non-indirectbr)
534 // predecessors of BB.
535 static BasicBlock *
536 findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) {
537   // If the block doesn't have any PHIs, we don't care about it, since there's
538   // no point in splitting it.
539   PHINode *PN = dyn_cast<PHINode>(BB->begin());
540   if (!PN)
541     return nullptr;
542 
543   // Verify we have exactly one IBR predecessor.
544   // Conservatively bail out if one of the other predecessors is not a "regular"
545   // terminator (that is, not a switch or a br).
546   BasicBlock *IBB = nullptr;
547   for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) {
548     BasicBlock *PredBB = PN->getIncomingBlock(Pred);
549     TerminatorInst *PredTerm = PredBB->getTerminator();
550     switch (PredTerm->getOpcode()) {
551     case Instruction::IndirectBr:
552       if (IBB)
553         return nullptr;
554       IBB = PredBB;
555       break;
556     case Instruction::Br:
557     case Instruction::Switch:
558       OtherPreds.push_back(PredBB);
559       continue;
560     default:
561       return nullptr;
562     }
563   }
564 
565   return IBB;
566 }
567 
568 // Split critical edges where the source of the edge is an indirectbr
569 // instruction. This isn't always possible, but we can handle some easy cases.
570 // This is useful because MI is unable to split such critical edges,
571 // which means it will not be able to sink instructions along those edges.
572 // This is especially painful for indirect branches with many successors, where
573 // we end up having to prepare all outgoing values in the origin block.
574 //
575 // Our normal algorithm for splitting critical edges requires us to update
576 // the outgoing edges of the edge origin block, but for an indirectbr this
577 // is hard, since it would require finding and updating the block addresses
578 // the indirect branch uses. But if a block only has a single indirectbr
579 // predecessor, with the others being regular branches, we can do it in a
580 // different way.
581 // Say we have A -> D, B -> D, I -> D where only I -> D is an indirectbr.
582 // We can split D into D0 and D1, where D0 contains only the PHIs from D,
583 // and D1 is the D block body. We can then duplicate D0 as D0A and D0B, and
584 // create the following structure:
585 // A -> D0A, B -> D0A, I -> D0B, D0A -> D1, D0B -> D1
586 bool CodeGenPrepare::splitIndirectCriticalEdges(Function &F) {
587   // Check whether the function has any indirectbrs, and collect which blocks
588   // they may jump to. Since most functions don't have indirect branches,
589   // this lowers the common case's overhead to O(Blocks) instead of O(Edges).
590   SmallSetVector<BasicBlock *, 16> Targets;
591   for (auto &BB : F) {
592     auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator());
593     if (!IBI)
594       continue;
595 
596     for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ)
597       Targets.insert(IBI->getSuccessor(Succ));
598   }
599 
600   if (Targets.empty())
601     return false;
602 
603   bool Changed = false;
604   for (BasicBlock *Target : Targets) {
605     SmallVector<BasicBlock *, 16> OtherPreds;
606     BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds);
607     // If we did not found an indirectbr, or the indirectbr is the only
608     // incoming edge, this isn't the kind of edge we're looking for.
609     if (!IBRPred || OtherPreds.empty())
610       continue;
611 
612     // Don't even think about ehpads/landingpads.
613     Instruction *FirstNonPHI = Target->getFirstNonPHI();
614     if (FirstNonPHI->isEHPad() || Target->isLandingPad())
615       continue;
616 
617     BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split");
618     // It's possible Target was its own successor through an indirectbr.
619     // In this case, the indirectbr now comes from BodyBlock.
620     if (IBRPred == Target)
621       IBRPred = BodyBlock;
622 
623     // At this point Target only has PHIs, and BodyBlock has the rest of the
624     // block's body. Create a copy of Target that will be used by the "direct"
625     // preds.
626     ValueToValueMapTy VMap;
627     BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F);
628 
629     for (BasicBlock *Pred : OtherPreds) {
630       // If the target is a loop to itself, then the terminator of the split
631       // block needs to be updated.
632       if (Pred == Target)
633         BodyBlock->getTerminator()->replaceUsesOfWith(Target, DirectSucc);
634       else
635         Pred->getTerminator()->replaceUsesOfWith(Target, DirectSucc);
636     }
637 
638     // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that
639     // they are clones, so the number of PHIs are the same.
640     // (a) Remove the edge coming from IBRPred from the "Direct" PHI
641     // (b) Leave that as the only edge in the "Indirect" PHI.
642     // (c) Merge the two in the body block.
643     BasicBlock::iterator Indirect = Target->begin(),
644                          End = Target->getFirstNonPHI()->getIterator();
645     BasicBlock::iterator Direct = DirectSucc->begin();
646     BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt();
647 
648     assert(&*End == Target->getTerminator() &&
649            "Block was expected to only contain PHIs");
650 
651     while (Indirect != End) {
652       PHINode *DirPHI = cast<PHINode>(Direct);
653       PHINode *IndPHI = cast<PHINode>(Indirect);
654 
655       // Now, clean up - the direct block shouldn't get the indirect value,
656       // and vice versa.
657       DirPHI->removeIncomingValue(IBRPred);
658       Direct++;
659 
660       // Advance the pointer here, to avoid invalidation issues when the old
661       // PHI is erased.
662       Indirect++;
663 
664       PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI);
665       NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred),
666                              IBRPred);
667 
668       // Create a PHI in the body block, to merge the direct and indirect
669       // predecessors.
670       PHINode *MergePHI =
671           PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert);
672       MergePHI->addIncoming(NewIndPHI, Target);
673       MergePHI->addIncoming(DirPHI, DirectSucc);
674 
675       IndPHI->replaceAllUsesWith(MergePHI);
676       IndPHI->eraseFromParent();
677     }
678 
679     Changed = true;
680   }
681 
682   return Changed;
683 }
684 
685 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
686 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
687 /// edges in ways that are non-optimal for isel. Start by eliminating these
688 /// blocks so we can split them the way we want them.
689 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
690   SmallPtrSet<BasicBlock *, 16> Preheaders;
691   SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
692   while (!LoopList.empty()) {
693     Loop *L = LoopList.pop_back_val();
694     LoopList.insert(LoopList.end(), L->begin(), L->end());
695     if (BasicBlock *Preheader = L->getLoopPreheader())
696       Preheaders.insert(Preheader);
697   }
698 
699   bool MadeChange = false;
700   // Note that this intentionally skips the entry block.
701   for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
702     BasicBlock *BB = &*I++;
703     BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
704     if (!DestBB ||
705         !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
706       continue;
707 
708     eliminateMostlyEmptyBlock(BB);
709     MadeChange = true;
710   }
711   return MadeChange;
712 }
713 
714 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
715                                                    BasicBlock *DestBB,
716                                                    bool isPreheader) {
717   // Do not delete loop preheaders if doing so would create a critical edge.
718   // Loop preheaders can be good locations to spill registers. If the
719   // preheader is deleted and we create a critical edge, registers may be
720   // spilled in the loop body instead.
721   if (!DisablePreheaderProtect && isPreheader &&
722       !(BB->getSinglePredecessor() &&
723         BB->getSinglePredecessor()->getSingleSuccessor()))
724     return false;
725 
726   // Try to skip merging if the unique predecessor of BB is terminated by a
727   // switch or indirect branch instruction, and BB is used as an incoming block
728   // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
729   // add COPY instructions in the predecessor of BB instead of BB (if it is not
730   // merged). Note that the critical edge created by merging such blocks wont be
731   // split in MachineSink because the jump table is not analyzable. By keeping
732   // such empty block (BB), ISel will place COPY instructions in BB, not in the
733   // predecessor of BB.
734   BasicBlock *Pred = BB->getUniquePredecessor();
735   if (!Pred ||
736       !(isa<SwitchInst>(Pred->getTerminator()) ||
737         isa<IndirectBrInst>(Pred->getTerminator())))
738     return true;
739 
740   if (BB->getTerminator() != BB->getFirstNonPHI())
741     return true;
742 
743   // We use a simple cost heuristic which determine skipping merging is
744   // profitable if the cost of skipping merging is less than the cost of
745   // merging : Cost(skipping merging) < Cost(merging BB), where the
746   // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
747   // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
748   // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
749   //   Freq(Pred) / Freq(BB) > 2.
750   // Note that if there are multiple empty blocks sharing the same incoming
751   // value for the PHIs in the DestBB, we consider them together. In such
752   // case, Cost(merging BB) will be the sum of their frequencies.
753 
754   if (!isa<PHINode>(DestBB->begin()))
755     return true;
756 
757   SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
758 
759   // Find all other incoming blocks from which incoming values of all PHIs in
760   // DestBB are the same as the ones from BB.
761   for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E;
762        ++PI) {
763     BasicBlock *DestBBPred = *PI;
764     if (DestBBPred == BB)
765       continue;
766 
767     bool HasAllSameValue = true;
768     BasicBlock::const_iterator DestBBI = DestBB->begin();
769     while (const PHINode *DestPN = dyn_cast<PHINode>(DestBBI++)) {
770       if (DestPN->getIncomingValueForBlock(BB) !=
771           DestPN->getIncomingValueForBlock(DestBBPred)) {
772         HasAllSameValue = false;
773         break;
774       }
775     }
776     if (HasAllSameValue)
777       SameIncomingValueBBs.insert(DestBBPred);
778   }
779 
780   // See if all BB's incoming values are same as the value from Pred. In this
781   // case, no reason to skip merging because COPYs are expected to be place in
782   // Pred already.
783   if (SameIncomingValueBBs.count(Pred))
784     return true;
785 
786   if (!BFI) {
787     Function &F = *BB->getParent();
788     LoopInfo LI{DominatorTree(F)};
789     BPI.reset(new BranchProbabilityInfo(F, LI));
790     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
791   }
792 
793   BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
794   BlockFrequency BBFreq = BFI->getBlockFreq(BB);
795 
796   for (auto SameValueBB : SameIncomingValueBBs)
797     if (SameValueBB->getUniquePredecessor() == Pred &&
798         DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
799       BBFreq += BFI->getBlockFreq(SameValueBB);
800 
801   return PredFreq.getFrequency() <=
802          BBFreq.getFrequency() * FreqRatioToSkipMerge;
803 }
804 
805 /// Return true if we can merge BB into DestBB if there is a single
806 /// unconditional branch between them, and BB contains no other non-phi
807 /// instructions.
808 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
809                                     const BasicBlock *DestBB) const {
810   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
811   // the successor.  If there are more complex condition (e.g. preheaders),
812   // don't mess around with them.
813   BasicBlock::const_iterator BBI = BB->begin();
814   while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
815     for (const User *U : PN->users()) {
816       const Instruction *UI = cast<Instruction>(U);
817       if (UI->getParent() != DestBB || !isa<PHINode>(UI))
818         return false;
819       // If User is inside DestBB block and it is a PHINode then check
820       // incoming value. If incoming value is not from BB then this is
821       // a complex condition (e.g. preheaders) we want to avoid here.
822       if (UI->getParent() == DestBB) {
823         if (const PHINode *UPN = dyn_cast<PHINode>(UI))
824           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
825             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
826             if (Insn && Insn->getParent() == BB &&
827                 Insn->getParent() != UPN->getIncomingBlock(I))
828               return false;
829           }
830       }
831     }
832   }
833 
834   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
835   // and DestBB may have conflicting incoming values for the block.  If so, we
836   // can't merge the block.
837   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
838   if (!DestBBPN) return true;  // no conflict.
839 
840   // Collect the preds of BB.
841   SmallPtrSet<const BasicBlock*, 16> BBPreds;
842   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
843     // It is faster to get preds from a PHI than with pred_iterator.
844     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
845       BBPreds.insert(BBPN->getIncomingBlock(i));
846   } else {
847     BBPreds.insert(pred_begin(BB), pred_end(BB));
848   }
849 
850   // Walk the preds of DestBB.
851   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
852     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
853     if (BBPreds.count(Pred)) {   // Common predecessor?
854       BBI = DestBB->begin();
855       while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
856         const Value *V1 = PN->getIncomingValueForBlock(Pred);
857         const Value *V2 = PN->getIncomingValueForBlock(BB);
858 
859         // If V2 is a phi node in BB, look up what the mapped value will be.
860         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
861           if (V2PN->getParent() == BB)
862             V2 = V2PN->getIncomingValueForBlock(Pred);
863 
864         // If there is a conflict, bail out.
865         if (V1 != V2) return false;
866       }
867     }
868   }
869 
870   return true;
871 }
872 
873 /// Eliminate a basic block that has only phi's and an unconditional branch in
874 /// it.
875 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
876   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
877   BasicBlock *DestBB = BI->getSuccessor(0);
878 
879   DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
880 
881   // If the destination block has a single pred, then this is a trivial edge,
882   // just collapse it.
883   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
884     if (SinglePred != DestBB) {
885       // Remember if SinglePred was the entry block of the function.  If so, we
886       // will need to move BB back to the entry position.
887       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
888       MergeBasicBlockIntoOnlyPred(DestBB, nullptr);
889 
890       if (isEntry && BB != &BB->getParent()->getEntryBlock())
891         BB->moveBefore(&BB->getParent()->getEntryBlock());
892 
893       DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
894       return;
895     }
896   }
897 
898   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
899   // to handle the new incoming edges it is about to have.
900   PHINode *PN;
901   for (BasicBlock::iterator BBI = DestBB->begin();
902        (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
903     // Remove the incoming value for BB, and remember it.
904     Value *InVal = PN->removeIncomingValue(BB, false);
905 
906     // Two options: either the InVal is a phi node defined in BB or it is some
907     // value that dominates BB.
908     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
909     if (InValPhi && InValPhi->getParent() == BB) {
910       // Add all of the input values of the input PHI as inputs of this phi.
911       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
912         PN->addIncoming(InValPhi->getIncomingValue(i),
913                         InValPhi->getIncomingBlock(i));
914     } else {
915       // Otherwise, add one instance of the dominating value for each edge that
916       // we will be adding.
917       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
918         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
919           PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
920       } else {
921         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
922           PN->addIncoming(InVal, *PI);
923       }
924     }
925   }
926 
927   // The PHIs are now updated, change everything that refers to BB to use
928   // DestBB and remove BB.
929   BB->replaceAllUsesWith(DestBB);
930   BB->eraseFromParent();
931   ++NumBlocksElim;
932 
933   DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
934 }
935 
936 // Computes a map of base pointer relocation instructions to corresponding
937 // derived pointer relocation instructions given a vector of all relocate calls
938 static void computeBaseDerivedRelocateMap(
939     const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
940     DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
941         &RelocateInstMap) {
942   // Collect information in two maps: one primarily for locating the base object
943   // while filling the second map; the second map is the final structure holding
944   // a mapping between Base and corresponding Derived relocate calls
945   DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
946   for (auto *ThisRelocate : AllRelocateCalls) {
947     auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
948                             ThisRelocate->getDerivedPtrIndex());
949     RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
950   }
951   for (auto &Item : RelocateIdxMap) {
952     std::pair<unsigned, unsigned> Key = Item.first;
953     if (Key.first == Key.second)
954       // Base relocation: nothing to insert
955       continue;
956 
957     GCRelocateInst *I = Item.second;
958     auto BaseKey = std::make_pair(Key.first, Key.first);
959 
960     // We're iterating over RelocateIdxMap so we cannot modify it.
961     auto MaybeBase = RelocateIdxMap.find(BaseKey);
962     if (MaybeBase == RelocateIdxMap.end())
963       // TODO: We might want to insert a new base object relocate and gep off
964       // that, if there are enough derived object relocates.
965       continue;
966 
967     RelocateInstMap[MaybeBase->second].push_back(I);
968   }
969 }
970 
971 // Accepts a GEP and extracts the operands into a vector provided they're all
972 // small integer constants
973 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
974                                           SmallVectorImpl<Value *> &OffsetV) {
975   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
976     // Only accept small constant integer operands
977     auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
978     if (!Op || Op->getZExtValue() > 20)
979       return false;
980   }
981 
982   for (unsigned i = 1; i < GEP->getNumOperands(); i++)
983     OffsetV.push_back(GEP->getOperand(i));
984   return true;
985 }
986 
987 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
988 // replace, computes a replacement, and affects it.
989 static bool
990 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
991                           const SmallVectorImpl<GCRelocateInst *> &Targets) {
992   bool MadeChange = false;
993   // We must ensure the relocation of derived pointer is defined after
994   // relocation of base pointer. If we find a relocation corresponding to base
995   // defined earlier than relocation of base then we move relocation of base
996   // right before found relocation. We consider only relocation in the same
997   // basic block as relocation of base. Relocations from other basic block will
998   // be skipped by optimization and we do not care about them.
999   for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
1000        &*R != RelocatedBase; ++R)
1001     if (auto RI = dyn_cast<GCRelocateInst>(R))
1002       if (RI->getStatepoint() == RelocatedBase->getStatepoint())
1003         if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
1004           RelocatedBase->moveBefore(RI);
1005           break;
1006         }
1007 
1008   for (GCRelocateInst *ToReplace : Targets) {
1009     assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
1010            "Not relocating a derived object of the original base object");
1011     if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
1012       // A duplicate relocate call. TODO: coalesce duplicates.
1013       continue;
1014     }
1015 
1016     if (RelocatedBase->getParent() != ToReplace->getParent()) {
1017       // Base and derived relocates are in different basic blocks.
1018       // In this case transform is only valid when base dominates derived
1019       // relocate. However it would be too expensive to check dominance
1020       // for each such relocate, so we skip the whole transformation.
1021       continue;
1022     }
1023 
1024     Value *Base = ToReplace->getBasePtr();
1025     auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
1026     if (!Derived || Derived->getPointerOperand() != Base)
1027       continue;
1028 
1029     SmallVector<Value *, 2> OffsetV;
1030     if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
1031       continue;
1032 
1033     // Create a Builder and replace the target callsite with a gep
1034     assert(RelocatedBase->getNextNode() &&
1035            "Should always have one since it's not a terminator");
1036 
1037     // Insert after RelocatedBase
1038     IRBuilder<> Builder(RelocatedBase->getNextNode());
1039     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1040 
1041     // If gc_relocate does not match the actual type, cast it to the right type.
1042     // In theory, there must be a bitcast after gc_relocate if the type does not
1043     // match, and we should reuse it to get the derived pointer. But it could be
1044     // cases like this:
1045     // bb1:
1046     //  ...
1047     //  %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
1048     //  br label %merge
1049     //
1050     // bb2:
1051     //  ...
1052     //  %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
1053     //  br label %merge
1054     //
1055     // merge:
1056     //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
1057     //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
1058     //
1059     // In this case, we can not find the bitcast any more. So we insert a new bitcast
1060     // no matter there is already one or not. In this way, we can handle all cases, and
1061     // the extra bitcast should be optimized away in later passes.
1062     Value *ActualRelocatedBase = RelocatedBase;
1063     if (RelocatedBase->getType() != Base->getType()) {
1064       ActualRelocatedBase =
1065           Builder.CreateBitCast(RelocatedBase, Base->getType());
1066     }
1067     Value *Replacement = Builder.CreateGEP(
1068         Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
1069     Replacement->takeName(ToReplace);
1070     // If the newly generated derived pointer's type does not match the original derived
1071     // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
1072     Value *ActualReplacement = Replacement;
1073     if (Replacement->getType() != ToReplace->getType()) {
1074       ActualReplacement =
1075           Builder.CreateBitCast(Replacement, ToReplace->getType());
1076     }
1077     ToReplace->replaceAllUsesWith(ActualReplacement);
1078     ToReplace->eraseFromParent();
1079 
1080     MadeChange = true;
1081   }
1082   return MadeChange;
1083 }
1084 
1085 // Turns this:
1086 //
1087 // %base = ...
1088 // %ptr = gep %base + 15
1089 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1090 // %base' = relocate(%tok, i32 4, i32 4)
1091 // %ptr' = relocate(%tok, i32 4, i32 5)
1092 // %val = load %ptr'
1093 //
1094 // into this:
1095 //
1096 // %base = ...
1097 // %ptr = gep %base + 15
1098 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1099 // %base' = gc.relocate(%tok, i32 4, i32 4)
1100 // %ptr' = gep %base' + 15
1101 // %val = load %ptr'
1102 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
1103   bool MadeChange = false;
1104   SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1105 
1106   for (auto *U : I.users())
1107     if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1108       // Collect all the relocate calls associated with a statepoint
1109       AllRelocateCalls.push_back(Relocate);
1110 
1111   // We need atleast one base pointer relocation + one derived pointer
1112   // relocation to mangle
1113   if (AllRelocateCalls.size() < 2)
1114     return false;
1115 
1116   // RelocateInstMap is a mapping from the base relocate instruction to the
1117   // corresponding derived relocate instructions
1118   DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
1119   computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1120   if (RelocateInstMap.empty())
1121     return false;
1122 
1123   for (auto &Item : RelocateInstMap)
1124     // Item.first is the RelocatedBase to offset against
1125     // Item.second is the vector of Targets to replace
1126     MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1127   return MadeChange;
1128 }
1129 
1130 /// SinkCast - Sink the specified cast instruction into its user blocks
1131 static bool SinkCast(CastInst *CI) {
1132   BasicBlock *DefBB = CI->getParent();
1133 
1134   /// InsertedCasts - Only insert a cast in each block once.
1135   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
1136 
1137   bool MadeChange = false;
1138   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1139        UI != E; ) {
1140     Use &TheUse = UI.getUse();
1141     Instruction *User = cast<Instruction>(*UI);
1142 
1143     // Figure out which BB this cast is used in.  For PHI's this is the
1144     // appropriate predecessor block.
1145     BasicBlock *UserBB = User->getParent();
1146     if (PHINode *PN = dyn_cast<PHINode>(User)) {
1147       UserBB = PN->getIncomingBlock(TheUse);
1148     }
1149 
1150     // Preincrement use iterator so we don't invalidate it.
1151     ++UI;
1152 
1153     // The first insertion point of a block containing an EH pad is after the
1154     // pad.  If the pad is the user, we cannot sink the cast past the pad.
1155     if (User->isEHPad())
1156       continue;
1157 
1158     // If the block selected to receive the cast is an EH pad that does not
1159     // allow non-PHI instructions before the terminator, we can't sink the
1160     // cast.
1161     if (UserBB->getTerminator()->isEHPad())
1162       continue;
1163 
1164     // If this user is in the same block as the cast, don't change the cast.
1165     if (UserBB == DefBB) continue;
1166 
1167     // If we have already inserted a cast into this block, use it.
1168     CastInst *&InsertedCast = InsertedCasts[UserBB];
1169 
1170     if (!InsertedCast) {
1171       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1172       assert(InsertPt != UserBB->end());
1173       InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1174                                       CI->getType(), "", &*InsertPt);
1175     }
1176 
1177     // Replace a use of the cast with a use of the new cast.
1178     TheUse = InsertedCast;
1179     MadeChange = true;
1180     ++NumCastUses;
1181   }
1182 
1183   // If we removed all uses, nuke the cast.
1184   if (CI->use_empty()) {
1185     CI->eraseFromParent();
1186     MadeChange = true;
1187   }
1188 
1189   return MadeChange;
1190 }
1191 
1192 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1193 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1194 /// reduce the number of virtual registers that must be created and coalesced.
1195 ///
1196 /// Return true if any changes are made.
1197 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1198                                        const DataLayout &DL) {
1199   // Sink only "cheap" (or nop) address-space casts.  This is a weaker condition
1200   // than sinking only nop casts, but is helpful on some platforms.
1201   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1202     if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(),
1203                                   ASC->getDestAddressSpace()))
1204       return false;
1205   }
1206 
1207   // If this is a noop copy,
1208   EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1209   EVT DstVT = TLI.getValueType(DL, CI->getType());
1210 
1211   // This is an fp<->int conversion?
1212   if (SrcVT.isInteger() != DstVT.isInteger())
1213     return false;
1214 
1215   // If this is an extension, it will be a zero or sign extension, which
1216   // isn't a noop.
1217   if (SrcVT.bitsLT(DstVT)) return false;
1218 
1219   // If these values will be promoted, find out what they will be promoted
1220   // to.  This helps us consider truncates on PPC as noop copies when they
1221   // are.
1222   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1223       TargetLowering::TypePromoteInteger)
1224     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1225   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1226       TargetLowering::TypePromoteInteger)
1227     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1228 
1229   // If, after promotion, these are the same types, this is a noop copy.
1230   if (SrcVT != DstVT)
1231     return false;
1232 
1233   return SinkCast(CI);
1234 }
1235 
1236 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if
1237 /// possible.
1238 ///
1239 /// Return true if any changes were made.
1240 static bool CombineUAddWithOverflow(CmpInst *CI) {
1241   Value *A, *B;
1242   Instruction *AddI;
1243   if (!match(CI,
1244              m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI))))
1245     return false;
1246 
1247   Type *Ty = AddI->getType();
1248   if (!isa<IntegerType>(Ty))
1249     return false;
1250 
1251   // We don't want to move around uses of condition values this late, so we we
1252   // check if it is legal to create the call to the intrinsic in the basic
1253   // block containing the icmp:
1254 
1255   if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse())
1256     return false;
1257 
1258 #ifndef NDEBUG
1259   // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption
1260   // for now:
1261   if (AddI->hasOneUse())
1262     assert(*AddI->user_begin() == CI && "expected!");
1263 #endif
1264 
1265   Module *M = CI->getModule();
1266   Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
1267 
1268   auto *InsertPt = AddI->hasOneUse() ? CI : AddI;
1269 
1270   auto *UAddWithOverflow =
1271       CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt);
1272   auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt);
1273   auto *Overflow =
1274       ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt);
1275 
1276   CI->replaceAllUsesWith(Overflow);
1277   AddI->replaceAllUsesWith(UAdd);
1278   CI->eraseFromParent();
1279   AddI->eraseFromParent();
1280   return true;
1281 }
1282 
1283 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1284 /// registers that must be created and coalesced. This is a clear win except on
1285 /// targets with multiple condition code registers (PowerPC), where it might
1286 /// lose; some adjustment may be wanted there.
1287 ///
1288 /// Return true if any changes are made.
1289 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) {
1290   BasicBlock *DefBB = CI->getParent();
1291 
1292   // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1293   if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI))
1294     return false;
1295 
1296   // Only insert a cmp in each block once.
1297   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
1298 
1299   bool MadeChange = false;
1300   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1301        UI != E; ) {
1302     Use &TheUse = UI.getUse();
1303     Instruction *User = cast<Instruction>(*UI);
1304 
1305     // Preincrement use iterator so we don't invalidate it.
1306     ++UI;
1307 
1308     // Don't bother for PHI nodes.
1309     if (isa<PHINode>(User))
1310       continue;
1311 
1312     // Figure out which BB this cmp is used in.
1313     BasicBlock *UserBB = User->getParent();
1314 
1315     // If this user is in the same block as the cmp, don't change the cmp.
1316     if (UserBB == DefBB) continue;
1317 
1318     // If we have already inserted a cmp into this block, use it.
1319     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1320 
1321     if (!InsertedCmp) {
1322       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1323       assert(InsertPt != UserBB->end());
1324       InsertedCmp =
1325           CmpInst::Create(CI->getOpcode(), CI->getPredicate(),
1326                           CI->getOperand(0), CI->getOperand(1), "", &*InsertPt);
1327       // Propagate the debug info.
1328       InsertedCmp->setDebugLoc(CI->getDebugLoc());
1329     }
1330 
1331     // Replace a use of the cmp with a use of the new cmp.
1332     TheUse = InsertedCmp;
1333     MadeChange = true;
1334     ++NumCmpUses;
1335   }
1336 
1337   // If we removed all uses, nuke the cmp.
1338   if (CI->use_empty()) {
1339     CI->eraseFromParent();
1340     MadeChange = true;
1341   }
1342 
1343   return MadeChange;
1344 }
1345 
1346 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) {
1347   if (SinkCmpExpression(CI, TLI))
1348     return true;
1349 
1350   if (CombineUAddWithOverflow(CI))
1351     return true;
1352 
1353   return false;
1354 }
1355 
1356 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1357 /// used in a compare to allow isel to generate better code for targets where
1358 /// this operation can be combined.
1359 ///
1360 /// Return true if any changes are made.
1361 static bool sinkAndCmp0Expression(Instruction *AndI,
1362                                   const TargetLowering &TLI,
1363                                   SetOfInstrs &InsertedInsts) {
1364   // Double-check that we're not trying to optimize an instruction that was
1365   // already optimized by some other part of this pass.
1366   assert(!InsertedInsts.count(AndI) &&
1367          "Attempting to optimize already optimized and instruction");
1368   (void) InsertedInsts;
1369 
1370   // Nothing to do for single use in same basic block.
1371   if (AndI->hasOneUse() &&
1372       AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
1373     return false;
1374 
1375   // Try to avoid cases where sinking/duplicating is likely to increase register
1376   // pressure.
1377   if (!isa<ConstantInt>(AndI->getOperand(0)) &&
1378       !isa<ConstantInt>(AndI->getOperand(1)) &&
1379       AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
1380     return false;
1381 
1382   for (auto *U : AndI->users()) {
1383     Instruction *User = cast<Instruction>(U);
1384 
1385     // Only sink for and mask feeding icmp with 0.
1386     if (!isa<ICmpInst>(User))
1387       return false;
1388 
1389     auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
1390     if (!CmpC || !CmpC->isZero())
1391       return false;
1392   }
1393 
1394   if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
1395     return false;
1396 
1397   DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1398   DEBUG(AndI->getParent()->dump());
1399 
1400   // Push the 'and' into the same block as the icmp 0.  There should only be
1401   // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1402   // others, so we don't need to keep track of which BBs we insert into.
1403   for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
1404        UI != E; ) {
1405     Use &TheUse = UI.getUse();
1406     Instruction *User = cast<Instruction>(*UI);
1407 
1408     // Preincrement use iterator so we don't invalidate it.
1409     ++UI;
1410 
1411     DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
1412 
1413     // Keep the 'and' in the same place if the use is already in the same block.
1414     Instruction *InsertPt =
1415         User->getParent() == AndI->getParent() ? AndI : User;
1416     Instruction *InsertedAnd =
1417         BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
1418                                AndI->getOperand(1), "", InsertPt);
1419     // Propagate the debug info.
1420     InsertedAnd->setDebugLoc(AndI->getDebugLoc());
1421 
1422     // Replace a use of the 'and' with a use of the new 'and'.
1423     TheUse = InsertedAnd;
1424     ++NumAndUses;
1425     DEBUG(User->getParent()->dump());
1426   }
1427 
1428   // We removed all uses, nuke the and.
1429   AndI->eraseFromParent();
1430   return true;
1431 }
1432 
1433 /// Check if the candidates could be combined with a shift instruction, which
1434 /// includes:
1435 /// 1. Truncate instruction
1436 /// 2. And instruction and the imm is a mask of the low bits:
1437 /// imm & (imm+1) == 0
1438 static bool isExtractBitsCandidateUse(Instruction *User) {
1439   if (!isa<TruncInst>(User)) {
1440     if (User->getOpcode() != Instruction::And ||
1441         !isa<ConstantInt>(User->getOperand(1)))
1442       return false;
1443 
1444     const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
1445 
1446     if ((Cimm & (Cimm + 1)).getBoolValue())
1447       return false;
1448   }
1449   return true;
1450 }
1451 
1452 /// Sink both shift and truncate instruction to the use of truncate's BB.
1453 static bool
1454 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
1455                      DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
1456                      const TargetLowering &TLI, const DataLayout &DL) {
1457   BasicBlock *UserBB = User->getParent();
1458   DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
1459   TruncInst *TruncI = dyn_cast<TruncInst>(User);
1460   bool MadeChange = false;
1461 
1462   for (Value::user_iterator TruncUI = TruncI->user_begin(),
1463                             TruncE = TruncI->user_end();
1464        TruncUI != TruncE;) {
1465 
1466     Use &TruncTheUse = TruncUI.getUse();
1467     Instruction *TruncUser = cast<Instruction>(*TruncUI);
1468     // Preincrement use iterator so we don't invalidate it.
1469 
1470     ++TruncUI;
1471 
1472     int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
1473     if (!ISDOpcode)
1474       continue;
1475 
1476     // If the use is actually a legal node, there will not be an
1477     // implicit truncate.
1478     // FIXME: always querying the result type is just an
1479     // approximation; some nodes' legality is determined by the
1480     // operand or other means. There's no good way to find out though.
1481     if (TLI.isOperationLegalOrCustom(
1482             ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
1483       continue;
1484 
1485     // Don't bother for PHI nodes.
1486     if (isa<PHINode>(TruncUser))
1487       continue;
1488 
1489     BasicBlock *TruncUserBB = TruncUser->getParent();
1490 
1491     if (UserBB == TruncUserBB)
1492       continue;
1493 
1494     BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
1495     CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
1496 
1497     if (!InsertedShift && !InsertedTrunc) {
1498       BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
1499       assert(InsertPt != TruncUserBB->end());
1500       // Sink the shift
1501       if (ShiftI->getOpcode() == Instruction::AShr)
1502         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1503                                                    "", &*InsertPt);
1504       else
1505         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1506                                                    "", &*InsertPt);
1507 
1508       // Sink the trunc
1509       BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
1510       TruncInsertPt++;
1511       assert(TruncInsertPt != TruncUserBB->end());
1512 
1513       InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
1514                                        TruncI->getType(), "", &*TruncInsertPt);
1515 
1516       MadeChange = true;
1517 
1518       TruncTheUse = InsertedTrunc;
1519     }
1520   }
1521   return MadeChange;
1522 }
1523 
1524 /// Sink the shift *right* instruction into user blocks if the uses could
1525 /// potentially be combined with this shift instruction and generate BitExtract
1526 /// instruction. It will only be applied if the architecture supports BitExtract
1527 /// instruction. Here is an example:
1528 /// BB1:
1529 ///   %x.extract.shift = lshr i64 %arg1, 32
1530 /// BB2:
1531 ///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
1532 /// ==>
1533 ///
1534 /// BB2:
1535 ///   %x.extract.shift.1 = lshr i64 %arg1, 32
1536 ///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1537 ///
1538 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract
1539 /// instruction.
1540 /// Return true if any changes are made.
1541 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1542                                 const TargetLowering &TLI,
1543                                 const DataLayout &DL) {
1544   BasicBlock *DefBB = ShiftI->getParent();
1545 
1546   /// Only insert instructions in each block once.
1547   DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1548 
1549   bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1550 
1551   bool MadeChange = false;
1552   for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1553        UI != E;) {
1554     Use &TheUse = UI.getUse();
1555     Instruction *User = cast<Instruction>(*UI);
1556     // Preincrement use iterator so we don't invalidate it.
1557     ++UI;
1558 
1559     // Don't bother for PHI nodes.
1560     if (isa<PHINode>(User))
1561       continue;
1562 
1563     if (!isExtractBitsCandidateUse(User))
1564       continue;
1565 
1566     BasicBlock *UserBB = User->getParent();
1567 
1568     if (UserBB == DefBB) {
1569       // If the shift and truncate instruction are in the same BB. The use of
1570       // the truncate(TruncUse) may still introduce another truncate if not
1571       // legal. In this case, we would like to sink both shift and truncate
1572       // instruction to the BB of TruncUse.
1573       // for example:
1574       // BB1:
1575       // i64 shift.result = lshr i64 opnd, imm
1576       // trunc.result = trunc shift.result to i16
1577       //
1578       // BB2:
1579       //   ----> We will have an implicit truncate here if the architecture does
1580       //   not have i16 compare.
1581       // cmp i16 trunc.result, opnd2
1582       //
1583       if (isa<TruncInst>(User) && shiftIsLegal
1584           // If the type of the truncate is legal, no trucate will be
1585           // introduced in other basic blocks.
1586           &&
1587           (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1588         MadeChange =
1589             SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1590 
1591       continue;
1592     }
1593     // If we have already inserted a shift into this block, use it.
1594     BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1595 
1596     if (!InsertedShift) {
1597       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1598       assert(InsertPt != UserBB->end());
1599 
1600       if (ShiftI->getOpcode() == Instruction::AShr)
1601         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1602                                                    "", &*InsertPt);
1603       else
1604         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1605                                                    "", &*InsertPt);
1606 
1607       MadeChange = true;
1608     }
1609 
1610     // Replace a use of the shift with a use of the new shift.
1611     TheUse = InsertedShift;
1612   }
1613 
1614   // If we removed all uses, nuke the shift.
1615   if (ShiftI->use_empty())
1616     ShiftI->eraseFromParent();
1617 
1618   return MadeChange;
1619 }
1620 
1621 /// If counting leading or trailing zeros is an expensive operation and a zero
1622 /// input is defined, add a check for zero to avoid calling the intrinsic.
1623 ///
1624 /// We want to transform:
1625 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
1626 ///
1627 /// into:
1628 ///   entry:
1629 ///     %cmpz = icmp eq i64 %A, 0
1630 ///     br i1 %cmpz, label %cond.end, label %cond.false
1631 ///   cond.false:
1632 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
1633 ///     br label %cond.end
1634 ///   cond.end:
1635 ///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
1636 ///
1637 /// If the transform is performed, return true and set ModifiedDT to true.
1638 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
1639                                   const TargetLowering *TLI,
1640                                   const DataLayout *DL,
1641                                   bool &ModifiedDT) {
1642   if (!TLI || !DL)
1643     return false;
1644 
1645   // If a zero input is undefined, it doesn't make sense to despeculate that.
1646   if (match(CountZeros->getOperand(1), m_One()))
1647     return false;
1648 
1649   // If it's cheap to speculate, there's nothing to do.
1650   auto IntrinsicID = CountZeros->getIntrinsicID();
1651   if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
1652       (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
1653     return false;
1654 
1655   // Only handle legal scalar cases. Anything else requires too much work.
1656   Type *Ty = CountZeros->getType();
1657   unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
1658   if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
1659     return false;
1660 
1661   // The intrinsic will be sunk behind a compare against zero and branch.
1662   BasicBlock *StartBlock = CountZeros->getParent();
1663   BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
1664 
1665   // Create another block after the count zero intrinsic. A PHI will be added
1666   // in this block to select the result of the intrinsic or the bit-width
1667   // constant if the input to the intrinsic is zero.
1668   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
1669   BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
1670 
1671   // Set up a builder to create a compare, conditional branch, and PHI.
1672   IRBuilder<> Builder(CountZeros->getContext());
1673   Builder.SetInsertPoint(StartBlock->getTerminator());
1674   Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
1675 
1676   // Replace the unconditional branch that was created by the first split with
1677   // a compare against zero and a conditional branch.
1678   Value *Zero = Constant::getNullValue(Ty);
1679   Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
1680   Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
1681   StartBlock->getTerminator()->eraseFromParent();
1682 
1683   // Create a PHI in the end block to select either the output of the intrinsic
1684   // or the bit width of the operand.
1685   Builder.SetInsertPoint(&EndBlock->front());
1686   PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
1687   CountZeros->replaceAllUsesWith(PN);
1688   Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
1689   PN->addIncoming(BitWidth, StartBlock);
1690   PN->addIncoming(CountZeros, CallBlock);
1691 
1692   // We are explicitly handling the zero case, so we can set the intrinsic's
1693   // undefined zero argument to 'true'. This will also prevent reprocessing the
1694   // intrinsic; we only despeculate when a zero input is defined.
1695   CountZeros->setArgOperand(1, Builder.getTrue());
1696   ModifiedDT = true;
1697   return true;
1698 }
1699 
1700 namespace {
1701 
1702 // This class provides helper functions to expand a memcmp library call into an
1703 // inline expansion.
1704 class MemCmpExpansion {
1705   struct ResultBlock {
1706     BasicBlock *BB = nullptr;
1707     PHINode *PhiSrc1 = nullptr;
1708     PHINode *PhiSrc2 = nullptr;
1709 
1710     ResultBlock() = default;
1711   };
1712 
1713   CallInst *const CI;
1714   ResultBlock ResBlock;
1715   const uint64_t Size;
1716   unsigned MaxLoadSize;
1717   uint64_t NumLoadsNonOneByte;
1718   const uint64_t NumLoadsPerBlock;
1719   std::vector<BasicBlock *> LoadCmpBlocks;
1720   BasicBlock *EndBlock;
1721   PHINode *PhiRes;
1722   const bool IsUsedForZeroCmp;
1723   const DataLayout &DL;
1724   IRBuilder<> Builder;
1725   // Represents the decomposition in blocks of the expansion. For example,
1726   // comparing 33 bytes on X86+sse can be done with 2x16-byte loads and
1727   // 1x1-byte load, which would be represented as [{16, 0}, {16, 16}, {32, 1}.
1728   // TODO(courbet): Involve the target more in this computation. On X86, 7
1729   // bytes can be done more efficiently with two overlaping 4-byte loads than
1730   // covering the interval with [{4, 0},{2, 4},{1, 6}}.
1731   struct LoadEntry {
1732     LoadEntry(unsigned LoadSize, uint64_t Offset)
1733         : LoadSize(LoadSize), Offset(Offset) {
1734       assert(Offset % LoadSize == 0 && "invalid load entry");
1735     }
1736 
1737     uint64_t getGEPIndex() const { return Offset / LoadSize; }
1738 
1739     // The size of the load for this block, in bytes.
1740     const unsigned LoadSize;
1741     // The offset of this load WRT the base pointer, in bytes.
1742     const uint64_t Offset;
1743   };
1744   SmallVector<LoadEntry, 8> LoadSequence;
1745 
1746   void createLoadCmpBlocks();
1747   void createResultBlock();
1748   void setupResultBlockPHINodes();
1749   void setupEndBlockPHINodes();
1750   Value *getCompareLoadPairs(unsigned BlockIndex, unsigned &LoadIndex);
1751   void emitLoadCompareBlock(unsigned BlockIndex);
1752   void emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
1753                                          unsigned &LoadIndex);
1754   void emitLoadCompareByteBlock(unsigned BlockIndex, unsigned GEPIndex);
1755   void emitMemCmpResultBlock();
1756   Value *getMemCmpExpansionZeroCase();
1757   Value *getMemCmpEqZeroOneBlock();
1758   Value *getMemCmpOneBlock();
1759 
1760  public:
1761   MemCmpExpansion(CallInst *CI, uint64_t Size,
1762                   const TargetTransformInfo::MemCmpExpansionOptions &Options,
1763                   unsigned MaxNumLoads, const bool IsUsedForZeroCmp,
1764                   unsigned NumLoadsPerBlock, const DataLayout &DL);
1765 
1766   unsigned getNumBlocks();
1767   uint64_t getNumLoads() const { return LoadSequence.size(); }
1768 
1769   Value *getMemCmpExpansion();
1770 };
1771 
1772 } // end anonymous namespace
1773 
1774 // Initialize the basic block structure required for expansion of memcmp call
1775 // with given maximum load size and memcmp size parameter.
1776 // This structure includes:
1777 // 1. A list of load compare blocks - LoadCmpBlocks.
1778 // 2. An EndBlock, split from original instruction point, which is the block to
1779 // return from.
1780 // 3. ResultBlock, block to branch to for early exit when a
1781 // LoadCmpBlock finds a difference.
1782 MemCmpExpansion::MemCmpExpansion(
1783     CallInst *const CI, uint64_t Size,
1784     const TargetTransformInfo::MemCmpExpansionOptions &Options,
1785     const unsigned MaxNumLoads, const bool IsUsedForZeroCmp,
1786     const unsigned NumLoadsPerBlock, const DataLayout &TheDataLayout)
1787     : CI(CI),
1788       Size(Size),
1789       MaxLoadSize(0),
1790       NumLoadsNonOneByte(0),
1791       NumLoadsPerBlock(NumLoadsPerBlock),
1792       IsUsedForZeroCmp(IsUsedForZeroCmp),
1793       DL(TheDataLayout),
1794       Builder(CI) {
1795   assert(Size > 0 && "zero blocks");
1796   // Scale the max size down if the target can load more bytes than we need.
1797   size_t LoadSizeIndex = 0;
1798   while (LoadSizeIndex < Options.LoadSizes.size() &&
1799          Options.LoadSizes[LoadSizeIndex] > Size) {
1800     ++LoadSizeIndex;
1801   }
1802   this->MaxLoadSize = Options.LoadSizes[LoadSizeIndex];
1803   // Compute the decomposition.
1804   uint64_t CurSize = Size;
1805   uint64_t Offset = 0;
1806   while (CurSize && LoadSizeIndex < Options.LoadSizes.size()) {
1807     const unsigned LoadSize = Options.LoadSizes[LoadSizeIndex];
1808     assert(LoadSize > 0 && "zero load size");
1809     const uint64_t NumLoadsForThisSize = CurSize / LoadSize;
1810     if (LoadSequence.size() + NumLoadsForThisSize > MaxNumLoads) {
1811       // Do not expand if the total number of loads is larger than what the
1812       // target allows. Note that it's important that we exit before completing
1813       // the expansion to avoid using a ton of memory to store the expansion for
1814       // large sizes.
1815       LoadSequence.clear();
1816       return;
1817     }
1818     if (NumLoadsForThisSize > 0) {
1819       for (uint64_t I = 0; I < NumLoadsForThisSize; ++I) {
1820         LoadSequence.push_back({LoadSize, Offset});
1821         Offset += LoadSize;
1822       }
1823       if (LoadSize > 1) {
1824         ++NumLoadsNonOneByte;
1825       }
1826       CurSize = CurSize % LoadSize;
1827     }
1828     ++LoadSizeIndex;
1829   }
1830   assert(LoadSequence.size() <= MaxNumLoads && "broken invariant");
1831 }
1832 
1833 unsigned MemCmpExpansion::getNumBlocks() {
1834   if (IsUsedForZeroCmp)
1835     return getNumLoads() / NumLoadsPerBlock +
1836            (getNumLoads() % NumLoadsPerBlock != 0 ? 1 : 0);
1837   return getNumLoads();
1838 }
1839 
1840 void MemCmpExpansion::createLoadCmpBlocks() {
1841   for (unsigned i = 0; i < getNumBlocks(); i++) {
1842     BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb",
1843                                         EndBlock->getParent(), EndBlock);
1844     LoadCmpBlocks.push_back(BB);
1845   }
1846 }
1847 
1848 void MemCmpExpansion::createResultBlock() {
1849   ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block",
1850                                    EndBlock->getParent(), EndBlock);
1851 }
1852 
1853 // This function creates the IR instructions for loading and comparing 1 byte.
1854 // It loads 1 byte from each source of the memcmp parameters with the given
1855 // GEPIndex. It then subtracts the two loaded values and adds this result to the
1856 // final phi node for selecting the memcmp result.
1857 void MemCmpExpansion::emitLoadCompareByteBlock(unsigned BlockIndex,
1858                                                unsigned GEPIndex) {
1859   Value *Source1 = CI->getArgOperand(0);
1860   Value *Source2 = CI->getArgOperand(1);
1861 
1862   Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
1863   Type *LoadSizeType = Type::getInt8Ty(CI->getContext());
1864   // Cast source to LoadSizeType*.
1865   if (Source1->getType() != LoadSizeType)
1866     Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
1867   if (Source2->getType() != LoadSizeType)
1868     Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
1869 
1870   // Get the base address using the GEPIndex.
1871   if (GEPIndex != 0) {
1872     Source1 = Builder.CreateGEP(LoadSizeType, Source1,
1873                                 ConstantInt::get(LoadSizeType, GEPIndex));
1874     Source2 = Builder.CreateGEP(LoadSizeType, Source2,
1875                                 ConstantInt::get(LoadSizeType, GEPIndex));
1876   }
1877 
1878   Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
1879   Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
1880 
1881   LoadSrc1 = Builder.CreateZExt(LoadSrc1, Type::getInt32Ty(CI->getContext()));
1882   LoadSrc2 = Builder.CreateZExt(LoadSrc2, Type::getInt32Ty(CI->getContext()));
1883   Value *Diff = Builder.CreateSub(LoadSrc1, LoadSrc2);
1884 
1885   PhiRes->addIncoming(Diff, LoadCmpBlocks[BlockIndex]);
1886 
1887   if (BlockIndex < (LoadCmpBlocks.size() - 1)) {
1888     // Early exit branch if difference found to EndBlock. Otherwise, continue to
1889     // next LoadCmpBlock,
1890     Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff,
1891                                     ConstantInt::get(Diff->getType(), 0));
1892     BranchInst *CmpBr =
1893         BranchInst::Create(EndBlock, LoadCmpBlocks[BlockIndex + 1], Cmp);
1894     Builder.Insert(CmpBr);
1895   } else {
1896     // The last block has an unconditional branch to EndBlock.
1897     BranchInst *CmpBr = BranchInst::Create(EndBlock);
1898     Builder.Insert(CmpBr);
1899   }
1900 }
1901 
1902 /// Generate an equality comparison for one or more pairs of loaded values.
1903 /// This is used in the case where the memcmp() call is compared equal or not
1904 /// equal to zero.
1905 Value *MemCmpExpansion::getCompareLoadPairs(unsigned BlockIndex,
1906                                             unsigned &LoadIndex) {
1907   assert(LoadIndex < getNumLoads() &&
1908          "getCompareLoadPairs() called with no remaining loads");
1909   std::vector<Value *> XorList, OrList;
1910   Value *Diff;
1911 
1912   const unsigned NumLoads =
1913       std::min(getNumLoads() - LoadIndex, NumLoadsPerBlock);
1914 
1915   // For a single-block expansion, start inserting before the memcmp call.
1916   if (LoadCmpBlocks.empty())
1917     Builder.SetInsertPoint(CI);
1918   else
1919     Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
1920 
1921   Value *Cmp = nullptr;
1922   // If we have multiple loads per block, we need to generate a composite
1923   // comparison using xor+or. The type for the combinations is the largest load
1924   // type.
1925   IntegerType *const MaxLoadType =
1926       NumLoads == 1 ? nullptr
1927                     : IntegerType::get(CI->getContext(), MaxLoadSize * 8);
1928   for (unsigned i = 0; i < NumLoads; ++i, ++LoadIndex) {
1929     const LoadEntry &CurLoadEntry = LoadSequence[LoadIndex];
1930 
1931     IntegerType *LoadSizeType =
1932         IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);
1933 
1934     Value *Source1 = CI->getArgOperand(0);
1935     Value *Source2 = CI->getArgOperand(1);
1936 
1937     // Cast source to LoadSizeType*.
1938     if (Source1->getType() != LoadSizeType)
1939       Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
1940     if (Source2->getType() != LoadSizeType)
1941       Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
1942 
1943     // Get the base address using a GEP.
1944     if (CurLoadEntry.Offset != 0) {
1945       Source1 = Builder.CreateGEP(
1946           LoadSizeType, Source1,
1947           ConstantInt::get(LoadSizeType, CurLoadEntry.getGEPIndex()));
1948       Source2 = Builder.CreateGEP(
1949           LoadSizeType, Source2,
1950           ConstantInt::get(LoadSizeType, CurLoadEntry.getGEPIndex()));
1951     }
1952 
1953     // Get a constant or load a value for each source address.
1954     Value *LoadSrc1 = nullptr;
1955     if (auto *Source1C = dyn_cast<Constant>(Source1))
1956       LoadSrc1 = ConstantFoldLoadFromConstPtr(Source1C, LoadSizeType, DL);
1957     if (!LoadSrc1)
1958       LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
1959 
1960     Value *LoadSrc2 = nullptr;
1961     if (auto *Source2C = dyn_cast<Constant>(Source2))
1962       LoadSrc2 = ConstantFoldLoadFromConstPtr(Source2C, LoadSizeType, DL);
1963     if (!LoadSrc2)
1964       LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
1965 
1966     if (NumLoads != 1) {
1967       if (LoadSizeType != MaxLoadType) {
1968         LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType);
1969         LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType);
1970       }
1971       // If we have multiple loads per block, we need to generate a composite
1972       // comparison using xor+or.
1973       Diff = Builder.CreateXor(LoadSrc1, LoadSrc2);
1974       Diff = Builder.CreateZExt(Diff, MaxLoadType);
1975       XorList.push_back(Diff);
1976     } else {
1977       // If there's only one load per block, we just compare the loaded values.
1978       Cmp = Builder.CreateICmpNE(LoadSrc1, LoadSrc2);
1979     }
1980   }
1981 
1982   auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> {
1983     std::vector<Value *> OutList;
1984     for (unsigned i = 0; i < InList.size() - 1; i = i + 2) {
1985       Value *Or = Builder.CreateOr(InList[i], InList[i + 1]);
1986       OutList.push_back(Or);
1987     }
1988     if (InList.size() % 2 != 0)
1989       OutList.push_back(InList.back());
1990     return OutList;
1991   };
1992 
1993   if (!Cmp) {
1994     // Pairwise OR the XOR results.
1995     OrList = pairWiseOr(XorList);
1996 
1997     // Pairwise OR the OR results until one result left.
1998     while (OrList.size() != 1) {
1999       OrList = pairWiseOr(OrList);
2000     }
2001     Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0));
2002   }
2003 
2004   return Cmp;
2005 }
2006 
2007 void MemCmpExpansion::emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
2008                                                         unsigned &LoadIndex) {
2009   Value *Cmp = getCompareLoadPairs(BlockIndex, LoadIndex);
2010 
2011   BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
2012                            ? EndBlock
2013                            : LoadCmpBlocks[BlockIndex + 1];
2014   // Early exit branch if difference found to ResultBlock. Otherwise,
2015   // continue to next LoadCmpBlock or EndBlock.
2016   BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp);
2017   Builder.Insert(CmpBr);
2018 
2019   // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
2020   // since early exit to ResultBlock was not taken (no difference was found in
2021   // any of the bytes).
2022   if (BlockIndex == LoadCmpBlocks.size() - 1) {
2023     Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
2024     PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
2025   }
2026 }
2027 
2028 // This function creates the IR intructions for loading and comparing using the
2029 // given LoadSize. It loads the number of bytes specified by LoadSize from each
2030 // source of the memcmp parameters. It then does a subtract to see if there was
2031 // a difference in the loaded values. If a difference is found, it branches
2032 // with an early exit to the ResultBlock for calculating which source was
2033 // larger. Otherwise, it falls through to the either the next LoadCmpBlock or
2034 // the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with
2035 // a special case through emitLoadCompareByteBlock. The special handling can
2036 // simply subtract the loaded values and add it to the result phi node.
2037 void MemCmpExpansion::emitLoadCompareBlock(unsigned BlockIndex) {
2038   // There is one load per block in this case, BlockIndex == LoadIndex.
2039   const LoadEntry &CurLoadEntry = LoadSequence[BlockIndex];
2040 
2041   if (CurLoadEntry.LoadSize == 1) {
2042     MemCmpExpansion::emitLoadCompareByteBlock(BlockIndex,
2043                                               CurLoadEntry.getGEPIndex());
2044     return;
2045   }
2046 
2047   Type *LoadSizeType =
2048       IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);
2049   Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
2050   assert(CurLoadEntry.LoadSize <= MaxLoadSize && "Unexpected load type");
2051 
2052   Value *Source1 = CI->getArgOperand(0);
2053   Value *Source2 = CI->getArgOperand(1);
2054 
2055   Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
2056   // Cast source to LoadSizeType*.
2057   if (Source1->getType() != LoadSizeType)
2058     Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
2059   if (Source2->getType() != LoadSizeType)
2060     Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
2061 
2062   // Get the base address using a GEP.
2063   if (CurLoadEntry.Offset != 0) {
2064     Source1 = Builder.CreateGEP(
2065         LoadSizeType, Source1,
2066         ConstantInt::get(LoadSizeType, CurLoadEntry.getGEPIndex()));
2067     Source2 = Builder.CreateGEP(
2068         LoadSizeType, Source2,
2069         ConstantInt::get(LoadSizeType, CurLoadEntry.getGEPIndex()));
2070   }
2071 
2072   // Load LoadSizeType from the base address.
2073   Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
2074   Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
2075 
2076   if (DL.isLittleEndian()) {
2077     Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
2078                                                 Intrinsic::bswap, LoadSizeType);
2079     LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1);
2080     LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2);
2081   }
2082 
2083   if (LoadSizeType != MaxLoadType) {
2084     LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType);
2085     LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType);
2086   }
2087 
2088   // Add the loaded values to the phi nodes for calculating memcmp result only
2089   // if result is not used in a zero equality.
2090   if (!IsUsedForZeroCmp) {
2091     ResBlock.PhiSrc1->addIncoming(LoadSrc1, LoadCmpBlocks[BlockIndex]);
2092     ResBlock.PhiSrc2->addIncoming(LoadSrc2, LoadCmpBlocks[BlockIndex]);
2093   }
2094 
2095   Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, LoadSrc1, LoadSrc2);
2096   BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
2097                            ? EndBlock
2098                            : LoadCmpBlocks[BlockIndex + 1];
2099   // Early exit branch if difference found to ResultBlock. Otherwise, continue
2100   // to next LoadCmpBlock or EndBlock.
2101   BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp);
2102   Builder.Insert(CmpBr);
2103 
2104   // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
2105   // since early exit to ResultBlock was not taken (no difference was found in
2106   // any of the bytes).
2107   if (BlockIndex == LoadCmpBlocks.size() - 1) {
2108     Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
2109     PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
2110   }
2111 }
2112 
2113 // This function populates the ResultBlock with a sequence to calculate the
2114 // memcmp result. It compares the two loaded source values and returns -1 if
2115 // src1 < src2 and 1 if src1 > src2.
2116 void MemCmpExpansion::emitMemCmpResultBlock() {
2117   // Special case: if memcmp result is used in a zero equality, result does not
2118   // need to be calculated and can simply return 1.
2119   if (IsUsedForZeroCmp) {
2120     BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
2121     Builder.SetInsertPoint(ResBlock.BB, InsertPt);
2122     Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1);
2123     PhiRes->addIncoming(Res, ResBlock.BB);
2124     BranchInst *NewBr = BranchInst::Create(EndBlock);
2125     Builder.Insert(NewBr);
2126     return;
2127   }
2128   BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
2129   Builder.SetInsertPoint(ResBlock.BB, InsertPt);
2130 
2131   Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1,
2132                                   ResBlock.PhiSrc2);
2133 
2134   Value *Res =
2135       Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1),
2136                            ConstantInt::get(Builder.getInt32Ty(), 1));
2137 
2138   BranchInst *NewBr = BranchInst::Create(EndBlock);
2139   Builder.Insert(NewBr);
2140   PhiRes->addIncoming(Res, ResBlock.BB);
2141 }
2142 
2143 void MemCmpExpansion::setupResultBlockPHINodes() {
2144   Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
2145   Builder.SetInsertPoint(ResBlock.BB);
2146   // Note: this assumes one load per block.
2147   ResBlock.PhiSrc1 =
2148       Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src1");
2149   ResBlock.PhiSrc2 =
2150       Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src2");
2151 }
2152 
2153 void MemCmpExpansion::setupEndBlockPHINodes() {
2154   Builder.SetInsertPoint(&EndBlock->front());
2155   PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res");
2156 }
2157 
2158 Value *MemCmpExpansion::getMemCmpExpansionZeroCase() {
2159   unsigned LoadIndex = 0;
2160   // This loop populates each of the LoadCmpBlocks with the IR sequence to
2161   // handle multiple loads per block.
2162   for (unsigned I = 0; I < getNumBlocks(); ++I) {
2163     emitLoadCompareBlockMultipleLoads(I, LoadIndex);
2164   }
2165 
2166   emitMemCmpResultBlock();
2167   return PhiRes;
2168 }
2169 
2170 /// A memcmp expansion that compares equality with 0 and only has one block of
2171 /// load and compare can bypass the compare, branch, and phi IR that is required
2172 /// in the general case.
2173 Value *MemCmpExpansion::getMemCmpEqZeroOneBlock() {
2174   unsigned LoadIndex = 0;
2175   Value *Cmp = getCompareLoadPairs(0, LoadIndex);
2176   assert(LoadIndex == getNumLoads() && "some entries were not consumed");
2177   return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext()));
2178 }
2179 
2180 /// A memcmp expansion that only has one block of load and compare can bypass
2181 /// the compare, branch, and phi IR that is required in the general case.
2182 Value *MemCmpExpansion::getMemCmpOneBlock() {
2183   assert(NumLoadsPerBlock == 1 && "Only handles one load pair per block");
2184 
2185   Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8);
2186   Value *Source1 = CI->getArgOperand(0);
2187   Value *Source2 = CI->getArgOperand(1);
2188 
2189   // Cast source to LoadSizeType*.
2190   if (Source1->getType() != LoadSizeType)
2191     Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
2192   if (Source2->getType() != LoadSizeType)
2193     Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
2194 
2195   // Load LoadSizeType from the base address.
2196   Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
2197   Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
2198 
2199   if (DL.isLittleEndian() && Size != 1) {
2200     Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
2201                                                 Intrinsic::bswap, LoadSizeType);
2202     LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1);
2203     LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2);
2204   }
2205 
2206   if (Size < 4) {
2207     // The i8 and i16 cases don't need compares. We zext the loaded values and
2208     // subtract them to get the suitable negative, zero, or positive i32 result.
2209     LoadSrc1 = Builder.CreateZExt(LoadSrc1, Builder.getInt32Ty());
2210     LoadSrc2 = Builder.CreateZExt(LoadSrc2, Builder.getInt32Ty());
2211     return Builder.CreateSub(LoadSrc1, LoadSrc2);
2212   }
2213 
2214   // The result of memcmp is negative, zero, or positive, so produce that by
2215   // subtracting 2 extended compare bits: sub (ugt, ult).
2216   // If a target prefers to use selects to get -1/0/1, they should be able
2217   // to transform this later. The inverse transform (going from selects to math)
2218   // may not be possible in the DAG because the selects got converted into
2219   // branches before we got there.
2220   Value *CmpUGT = Builder.CreateICmpUGT(LoadSrc1, LoadSrc2);
2221   Value *CmpULT = Builder.CreateICmpULT(LoadSrc1, LoadSrc2);
2222   Value *ZextUGT = Builder.CreateZExt(CmpUGT, Builder.getInt32Ty());
2223   Value *ZextULT = Builder.CreateZExt(CmpULT, Builder.getInt32Ty());
2224   return Builder.CreateSub(ZextUGT, ZextULT);
2225 }
2226 
2227 // This function expands the memcmp call into an inline expansion and returns
2228 // the memcmp result.
2229 Value *MemCmpExpansion::getMemCmpExpansion() {
2230   // A memcmp with zero-comparison with only one block of load and compare does
2231   // not need to set up any extra blocks. This case could be handled in the DAG,
2232   // but since we have all of the machinery to flexibly expand any memcpy here,
2233   // we choose to handle this case too to avoid fragmented lowering.
2234   if ((!IsUsedForZeroCmp && NumLoadsPerBlock != 1) || getNumBlocks() != 1) {
2235     BasicBlock *StartBlock = CI->getParent();
2236     EndBlock = StartBlock->splitBasicBlock(CI, "endblock");
2237     setupEndBlockPHINodes();
2238     createResultBlock();
2239 
2240     // If return value of memcmp is not used in a zero equality, we need to
2241     // calculate which source was larger. The calculation requires the
2242     // two loaded source values of each load compare block.
2243     // These will be saved in the phi nodes created by setupResultBlockPHINodes.
2244     if (!IsUsedForZeroCmp) setupResultBlockPHINodes();
2245 
2246     // Create the number of required load compare basic blocks.
2247     createLoadCmpBlocks();
2248 
2249     // Update the terminator added by splitBasicBlock to branch to the first
2250     // LoadCmpBlock.
2251     StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]);
2252   }
2253 
2254   Builder.SetCurrentDebugLocation(CI->getDebugLoc());
2255 
2256   if (IsUsedForZeroCmp)
2257     return getNumBlocks() == 1 ? getMemCmpEqZeroOneBlock()
2258                                : getMemCmpExpansionZeroCase();
2259 
2260   // TODO: Handle more than one load pair per block in getMemCmpOneBlock().
2261   if (getNumBlocks() == 1 && NumLoadsPerBlock == 1) return getMemCmpOneBlock();
2262 
2263   for (unsigned I = 0; I < getNumBlocks(); ++I) {
2264     emitLoadCompareBlock(I);
2265   }
2266 
2267   emitMemCmpResultBlock();
2268   return PhiRes;
2269 }
2270 
2271 // This function checks to see if an expansion of memcmp can be generated.
2272 // It checks for constant compare size that is less than the max inline size.
2273 // If an expansion cannot occur, returns false to leave as a library call.
2274 // Otherwise, the library call is replaced with a new IR instruction sequence.
2275 /// We want to transform:
2276 /// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15)
2277 /// To:
2278 /// loadbb:
2279 ///  %0 = bitcast i32* %buffer2 to i8*
2280 ///  %1 = bitcast i32* %buffer1 to i8*
2281 ///  %2 = bitcast i8* %1 to i64*
2282 ///  %3 = bitcast i8* %0 to i64*
2283 ///  %4 = load i64, i64* %2
2284 ///  %5 = load i64, i64* %3
2285 ///  %6 = call i64 @llvm.bswap.i64(i64 %4)
2286 ///  %7 = call i64 @llvm.bswap.i64(i64 %5)
2287 ///  %8 = sub i64 %6, %7
2288 ///  %9 = icmp ne i64 %8, 0
2289 ///  br i1 %9, label %res_block, label %loadbb1
2290 /// res_block:                                        ; preds = %loadbb2,
2291 /// %loadbb1, %loadbb
2292 ///  %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ]
2293 ///  %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ]
2294 ///  %10 = icmp ult i64 %phi.src1, %phi.src2
2295 ///  %11 = select i1 %10, i32 -1, i32 1
2296 ///  br label %endblock
2297 /// loadbb1:                                          ; preds = %loadbb
2298 ///  %12 = bitcast i32* %buffer2 to i8*
2299 ///  %13 = bitcast i32* %buffer1 to i8*
2300 ///  %14 = bitcast i8* %13 to i32*
2301 ///  %15 = bitcast i8* %12 to i32*
2302 ///  %16 = getelementptr i32, i32* %14, i32 2
2303 ///  %17 = getelementptr i32, i32* %15, i32 2
2304 ///  %18 = load i32, i32* %16
2305 ///  %19 = load i32, i32* %17
2306 ///  %20 = call i32 @llvm.bswap.i32(i32 %18)
2307 ///  %21 = call i32 @llvm.bswap.i32(i32 %19)
2308 ///  %22 = zext i32 %20 to i64
2309 ///  %23 = zext i32 %21 to i64
2310 ///  %24 = sub i64 %22, %23
2311 ///  %25 = icmp ne i64 %24, 0
2312 ///  br i1 %25, label %res_block, label %loadbb2
2313 /// loadbb2:                                          ; preds = %loadbb1
2314 ///  %26 = bitcast i32* %buffer2 to i8*
2315 ///  %27 = bitcast i32* %buffer1 to i8*
2316 ///  %28 = bitcast i8* %27 to i16*
2317 ///  %29 = bitcast i8* %26 to i16*
2318 ///  %30 = getelementptr i16, i16* %28, i16 6
2319 ///  %31 = getelementptr i16, i16* %29, i16 6
2320 ///  %32 = load i16, i16* %30
2321 ///  %33 = load i16, i16* %31
2322 ///  %34 = call i16 @llvm.bswap.i16(i16 %32)
2323 ///  %35 = call i16 @llvm.bswap.i16(i16 %33)
2324 ///  %36 = zext i16 %34 to i64
2325 ///  %37 = zext i16 %35 to i64
2326 ///  %38 = sub i64 %36, %37
2327 ///  %39 = icmp ne i64 %38, 0
2328 ///  br i1 %39, label %res_block, label %loadbb3
2329 /// loadbb3:                                          ; preds = %loadbb2
2330 ///  %40 = bitcast i32* %buffer2 to i8*
2331 ///  %41 = bitcast i32* %buffer1 to i8*
2332 ///  %42 = getelementptr i8, i8* %41, i8 14
2333 ///  %43 = getelementptr i8, i8* %40, i8 14
2334 ///  %44 = load i8, i8* %42
2335 ///  %45 = load i8, i8* %43
2336 ///  %46 = zext i8 %44 to i32
2337 ///  %47 = zext i8 %45 to i32
2338 ///  %48 = sub i32 %46, %47
2339 ///  br label %endblock
2340 /// endblock:                                         ; preds = %res_block,
2341 /// %loadbb3
2342 ///  %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ]
2343 ///  ret i32 %phi.res
2344 static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI,
2345                          const TargetLowering *TLI, const DataLayout *DL) {
2346   NumMemCmpCalls++;
2347 
2348   // Early exit from expansion if -Oz.
2349   if (CI->getFunction()->optForMinSize())
2350     return false;
2351 
2352   // Early exit from expansion if size is not a constant.
2353   ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2));
2354   if (!SizeCast) {
2355     NumMemCmpNotConstant++;
2356     return false;
2357   }
2358   const uint64_t SizeVal = SizeCast->getZExtValue();
2359 
2360   if (SizeVal == 0) {
2361     return false;
2362   }
2363 
2364   // TTI call to check if target would like to expand memcmp. Also, get the
2365   // available load sizes.
2366   const bool IsUsedForZeroCmp = isOnlyUsedInZeroEqualityComparison(CI);
2367   const auto *const Options = TTI->enableMemCmpExpansion(IsUsedForZeroCmp);
2368   if (!Options) return false;
2369 
2370   const unsigned MaxNumLoads =
2371       TLI->getMaxExpandSizeMemcmp(CI->getFunction()->optForSize());
2372 
2373   MemCmpExpansion Expansion(CI, SizeVal, *Options, MaxNumLoads,
2374                             IsUsedForZeroCmp, MemCmpNumLoadsPerBlock, *DL);
2375 
2376   // Don't expand if this will require more loads than desired by the target.
2377   if (Expansion.getNumLoads() == 0) {
2378     NumMemCmpGreaterThanMax++;
2379     return false;
2380   }
2381 
2382   NumMemCmpInlined++;
2383 
2384   Value *Res = Expansion.getMemCmpExpansion();
2385 
2386   // Replace call with result of expansion and erase call.
2387   CI->replaceAllUsesWith(Res);
2388   CI->eraseFromParent();
2389 
2390   return true;
2391 }
2392 
2393 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
2394   BasicBlock *BB = CI->getParent();
2395 
2396   // Lower inline assembly if we can.
2397   // If we found an inline asm expession, and if the target knows how to
2398   // lower it to normal LLVM code, do so now.
2399   if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
2400     if (TLI->ExpandInlineAsm(CI)) {
2401       // Avoid invalidating the iterator.
2402       CurInstIterator = BB->begin();
2403       // Avoid processing instructions out of order, which could cause
2404       // reuse before a value is defined.
2405       SunkAddrs.clear();
2406       return true;
2407     }
2408     // Sink address computing for memory operands into the block.
2409     if (optimizeInlineAsmInst(CI))
2410       return true;
2411   }
2412 
2413   // Align the pointer arguments to this call if the target thinks it's a good
2414   // idea
2415   unsigned MinSize, PrefAlign;
2416   if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
2417     for (auto &Arg : CI->arg_operands()) {
2418       // We want to align both objects whose address is used directly and
2419       // objects whose address is used in casts and GEPs, though it only makes
2420       // sense for GEPs if the offset is a multiple of the desired alignment and
2421       // if size - offset meets the size threshold.
2422       if (!Arg->getType()->isPointerTy())
2423         continue;
2424       APInt Offset(DL->getPointerSizeInBits(
2425                        cast<PointerType>(Arg->getType())->getAddressSpace()),
2426                    0);
2427       Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
2428       uint64_t Offset2 = Offset.getLimitedValue();
2429       if ((Offset2 & (PrefAlign-1)) != 0)
2430         continue;
2431       AllocaInst *AI;
2432       if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
2433           DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
2434         AI->setAlignment(PrefAlign);
2435       // Global variables can only be aligned if they are defined in this
2436       // object (i.e. they are uniquely initialized in this object), and
2437       // over-aligning global variables that have an explicit section is
2438       // forbidden.
2439       GlobalVariable *GV;
2440       if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
2441           GV->getPointerAlignment(*DL) < PrefAlign &&
2442           DL->getTypeAllocSize(GV->getValueType()) >=
2443               MinSize + Offset2)
2444         GV->setAlignment(PrefAlign);
2445     }
2446     // If this is a memcpy (or similar) then we may be able to improve the
2447     // alignment
2448     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
2449       unsigned Align = getKnownAlignment(MI->getDest(), *DL);
2450       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
2451         Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL));
2452       if (Align > MI->getAlignment())
2453         MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align));
2454     }
2455   }
2456 
2457   // If we have a cold call site, try to sink addressing computation into the
2458   // cold block.  This interacts with our handling for loads and stores to
2459   // ensure that we can fold all uses of a potential addressing computation
2460   // into their uses.  TODO: generalize this to work over profiling data
2461   if (!OptSize && CI->hasFnAttr(Attribute::Cold))
2462     for (auto &Arg : CI->arg_operands()) {
2463       if (!Arg->getType()->isPointerTy())
2464         continue;
2465       unsigned AS = Arg->getType()->getPointerAddressSpace();
2466       return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
2467     }
2468 
2469   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
2470   if (II) {
2471     switch (II->getIntrinsicID()) {
2472     default: break;
2473     case Intrinsic::objectsize: {
2474       // Lower all uses of llvm.objectsize.*
2475       ConstantInt *RetVal =
2476           lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true);
2477       // Substituting this can cause recursive simplifications, which can
2478       // invalidate our iterator.  Use a WeakTrackingVH to hold onto it in case
2479       // this
2480       // happens.
2481       Value *CurValue = &*CurInstIterator;
2482       WeakTrackingVH IterHandle(CurValue);
2483 
2484       replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
2485 
2486       // If the iterator instruction was recursively deleted, start over at the
2487       // start of the block.
2488       if (IterHandle != CurValue) {
2489         CurInstIterator = BB->begin();
2490         SunkAddrs.clear();
2491       }
2492       return true;
2493     }
2494     case Intrinsic::aarch64_stlxr:
2495     case Intrinsic::aarch64_stxr: {
2496       ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
2497       if (!ExtVal || !ExtVal->hasOneUse() ||
2498           ExtVal->getParent() == CI->getParent())
2499         return false;
2500       // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
2501       ExtVal->moveBefore(CI);
2502       // Mark this instruction as "inserted by CGP", so that other
2503       // optimizations don't touch it.
2504       InsertedInsts.insert(ExtVal);
2505       return true;
2506     }
2507     case Intrinsic::invariant_group_barrier:
2508       II->replaceAllUsesWith(II->getArgOperand(0));
2509       II->eraseFromParent();
2510       return true;
2511 
2512     case Intrinsic::cttz:
2513     case Intrinsic::ctlz:
2514       // If counting zeros is expensive, try to avoid it.
2515       return despeculateCountZeros(II, TLI, DL, ModifiedDT);
2516     }
2517 
2518     if (TLI) {
2519       SmallVector<Value*, 2> PtrOps;
2520       Type *AccessTy;
2521       if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
2522         while (!PtrOps.empty()) {
2523           Value *PtrVal = PtrOps.pop_back_val();
2524           unsigned AS = PtrVal->getType()->getPointerAddressSpace();
2525           if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
2526             return true;
2527         }
2528     }
2529   }
2530 
2531   // From here on out we're working with named functions.
2532   if (!CI->getCalledFunction()) return false;
2533 
2534   // Lower all default uses of _chk calls.  This is very similar
2535   // to what InstCombineCalls does, but here we are only lowering calls
2536   // to fortified library functions (e.g. __memcpy_chk) that have the default
2537   // "don't know" as the objectsize.  Anything else should be left alone.
2538   FortifiedLibCallSimplifier Simplifier(TLInfo, true);
2539   if (Value *V = Simplifier.optimizeCall(CI)) {
2540     CI->replaceAllUsesWith(V);
2541     CI->eraseFromParent();
2542     return true;
2543   }
2544 
2545   LibFunc Func;
2546   if (TLInfo->getLibFunc(ImmutableCallSite(CI), Func) &&
2547       Func == LibFunc_memcmp && expandMemCmp(CI, TTI, TLI, DL)) {
2548     ModifiedDT = true;
2549     return true;
2550   }
2551   return false;
2552 }
2553 
2554 /// Look for opportunities to duplicate return instructions to the predecessor
2555 /// to enable tail call optimizations. The case it is currently looking for is:
2556 /// @code
2557 /// bb0:
2558 ///   %tmp0 = tail call i32 @f0()
2559 ///   br label %return
2560 /// bb1:
2561 ///   %tmp1 = tail call i32 @f1()
2562 ///   br label %return
2563 /// bb2:
2564 ///   %tmp2 = tail call i32 @f2()
2565 ///   br label %return
2566 /// return:
2567 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
2568 ///   ret i32 %retval
2569 /// @endcode
2570 ///
2571 /// =>
2572 ///
2573 /// @code
2574 /// bb0:
2575 ///   %tmp0 = tail call i32 @f0()
2576 ///   ret i32 %tmp0
2577 /// bb1:
2578 ///   %tmp1 = tail call i32 @f1()
2579 ///   ret i32 %tmp1
2580 /// bb2:
2581 ///   %tmp2 = tail call i32 @f2()
2582 ///   ret i32 %tmp2
2583 /// @endcode
2584 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) {
2585   if (!TLI)
2586     return false;
2587 
2588   ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
2589   if (!RetI)
2590     return false;
2591 
2592   PHINode *PN = nullptr;
2593   BitCastInst *BCI = nullptr;
2594   Value *V = RetI->getReturnValue();
2595   if (V) {
2596     BCI = dyn_cast<BitCastInst>(V);
2597     if (BCI)
2598       V = BCI->getOperand(0);
2599 
2600     PN = dyn_cast<PHINode>(V);
2601     if (!PN)
2602       return false;
2603   }
2604 
2605   if (PN && PN->getParent() != BB)
2606     return false;
2607 
2608   // Make sure there are no instructions between the PHI and return, or that the
2609   // return is the first instruction in the block.
2610   if (PN) {
2611     BasicBlock::iterator BI = BB->begin();
2612     do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
2613     if (&*BI == BCI)
2614       // Also skip over the bitcast.
2615       ++BI;
2616     if (&*BI != RetI)
2617       return false;
2618   } else {
2619     BasicBlock::iterator BI = BB->begin();
2620     while (isa<DbgInfoIntrinsic>(BI)) ++BI;
2621     if (&*BI != RetI)
2622       return false;
2623   }
2624 
2625   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
2626   /// call.
2627   const Function *F = BB->getParent();
2628   SmallVector<CallInst*, 4> TailCalls;
2629   if (PN) {
2630     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
2631       CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
2632       // Make sure the phi value is indeed produced by the tail call.
2633       if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
2634           TLI->mayBeEmittedAsTailCall(CI) &&
2635           attributesPermitTailCall(F, CI, RetI, *TLI))
2636         TailCalls.push_back(CI);
2637     }
2638   } else {
2639     SmallPtrSet<BasicBlock*, 4> VisitedBBs;
2640     for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
2641       if (!VisitedBBs.insert(*PI).second)
2642         continue;
2643 
2644       BasicBlock::InstListType &InstList = (*PI)->getInstList();
2645       BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
2646       BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
2647       do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
2648       if (RI == RE)
2649         continue;
2650 
2651       CallInst *CI = dyn_cast<CallInst>(&*RI);
2652       if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
2653           attributesPermitTailCall(F, CI, RetI, *TLI))
2654         TailCalls.push_back(CI);
2655     }
2656   }
2657 
2658   bool Changed = false;
2659   for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
2660     CallInst *CI = TailCalls[i];
2661     CallSite CS(CI);
2662 
2663     // Conservatively require the attributes of the call to match those of the
2664     // return. Ignore noalias because it doesn't affect the call sequence.
2665     AttributeList CalleeAttrs = CS.getAttributes();
2666     if (AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex)
2667             .removeAttribute(Attribute::NoAlias) !=
2668         AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex)
2669             .removeAttribute(Attribute::NoAlias))
2670       continue;
2671 
2672     // Make sure the call instruction is followed by an unconditional branch to
2673     // the return block.
2674     BasicBlock *CallBB = CI->getParent();
2675     BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
2676     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
2677       continue;
2678 
2679     // Duplicate the return into CallBB.
2680     (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB);
2681     ModifiedDT = Changed = true;
2682     ++NumRetsDup;
2683   }
2684 
2685   // If we eliminated all predecessors of the block, delete the block now.
2686   if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
2687     BB->eraseFromParent();
2688 
2689   return Changed;
2690 }
2691 
2692 //===----------------------------------------------------------------------===//
2693 // Memory Optimization
2694 //===----------------------------------------------------------------------===//
2695 
2696 namespace {
2697 
2698 /// This is an extended version of TargetLowering::AddrMode
2699 /// which holds actual Value*'s for register values.
2700 struct ExtAddrMode : public TargetLowering::AddrMode {
2701   Value *BaseReg = nullptr;
2702   Value *ScaledReg = nullptr;
2703   Value *OriginalValue = nullptr;
2704 
2705   enum FieldName {
2706     NoField        = 0x00,
2707     BaseRegField   = 0x01,
2708     BaseGVField    = 0x02,
2709     BaseOffsField  = 0x04,
2710     ScaledRegField = 0x08,
2711     ScaleField     = 0x10,
2712     MultipleFields = 0xff
2713   };
2714 
2715   ExtAddrMode() = default;
2716 
2717   void print(raw_ostream &OS) const;
2718   void dump() const;
2719 
2720   FieldName compare(const ExtAddrMode &other) {
2721     // First check that the types are the same on each field, as differing types
2722     // is something we can't cope with later on.
2723     if (BaseReg && other.BaseReg &&
2724         BaseReg->getType() != other.BaseReg->getType())
2725       return MultipleFields;
2726     if (BaseGV && other.BaseGV &&
2727         BaseGV->getType() != other.BaseGV->getType())
2728       return MultipleFields;
2729     if (ScaledReg && other.ScaledReg &&
2730         ScaledReg->getType() != other.ScaledReg->getType())
2731       return MultipleFields;
2732 
2733     // Check each field to see if it differs.
2734     unsigned Result = NoField;
2735     if (BaseReg != other.BaseReg)
2736       Result |= BaseRegField;
2737     if (BaseGV != other.BaseGV)
2738       Result |= BaseGVField;
2739     if (BaseOffs != other.BaseOffs)
2740       Result |= BaseOffsField;
2741     if (ScaledReg != other.ScaledReg)
2742       Result |= ScaledRegField;
2743     // Don't count 0 as being a different scale, because that actually means
2744     // unscaled (which will already be counted by having no ScaledReg).
2745     if (Scale && other.Scale && Scale != other.Scale)
2746       Result |= ScaleField;
2747 
2748     if (countPopulation(Result) > 1)
2749       return MultipleFields;
2750     else
2751       return static_cast<FieldName>(Result);
2752   }
2753 
2754   // AddrModes with a baseReg or gv where the reg/gv is
2755   // the only populated field are trivial.
2756   bool isTrivial() {
2757     if (BaseGV && !BaseOffs && !Scale && !BaseReg)
2758       return true;
2759 
2760     if (!BaseGV && !BaseOffs && !Scale && BaseReg)
2761       return true;
2762 
2763     return false;
2764   }
2765 };
2766 
2767 } // end anonymous namespace
2768 
2769 #ifndef NDEBUG
2770 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2771   AM.print(OS);
2772   return OS;
2773 }
2774 #endif
2775 
2776 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2777 void ExtAddrMode::print(raw_ostream &OS) const {
2778   bool NeedPlus = false;
2779   OS << "[";
2780   if (BaseGV) {
2781     OS << (NeedPlus ? " + " : "")
2782        << "GV:";
2783     BaseGV->printAsOperand(OS, /*PrintType=*/false);
2784     NeedPlus = true;
2785   }
2786 
2787   if (BaseOffs) {
2788     OS << (NeedPlus ? " + " : "")
2789        << BaseOffs;
2790     NeedPlus = true;
2791   }
2792 
2793   if (BaseReg) {
2794     OS << (NeedPlus ? " + " : "")
2795        << "Base:";
2796     BaseReg->printAsOperand(OS, /*PrintType=*/false);
2797     NeedPlus = true;
2798   }
2799   if (Scale) {
2800     OS << (NeedPlus ? " + " : "")
2801        << Scale << "*";
2802     ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2803   }
2804 
2805   OS << ']';
2806 }
2807 
2808 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2809   print(dbgs());
2810   dbgs() << '\n';
2811 }
2812 #endif
2813 
2814 namespace {
2815 
2816 /// \brief This class provides transaction based operation on the IR.
2817 /// Every change made through this class is recorded in the internal state and
2818 /// can be undone (rollback) until commit is called.
2819 class TypePromotionTransaction {
2820   /// \brief This represents the common interface of the individual transaction.
2821   /// Each class implements the logic for doing one specific modification on
2822   /// the IR via the TypePromotionTransaction.
2823   class TypePromotionAction {
2824   protected:
2825     /// The Instruction modified.
2826     Instruction *Inst;
2827 
2828   public:
2829     /// \brief Constructor of the action.
2830     /// The constructor performs the related action on the IR.
2831     TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2832 
2833     virtual ~TypePromotionAction() = default;
2834 
2835     /// \brief Undo the modification done by this action.
2836     /// When this method is called, the IR must be in the same state as it was
2837     /// before this action was applied.
2838     /// \pre Undoing the action works if and only if the IR is in the exact same
2839     /// state as it was directly after this action was applied.
2840     virtual void undo() = 0;
2841 
2842     /// \brief Advocate every change made by this action.
2843     /// When the results on the IR of the action are to be kept, it is important
2844     /// to call this function, otherwise hidden information may be kept forever.
2845     virtual void commit() {
2846       // Nothing to be done, this action is not doing anything.
2847     }
2848   };
2849 
2850   /// \brief Utility to remember the position of an instruction.
2851   class InsertionHandler {
2852     /// Position of an instruction.
2853     /// Either an instruction:
2854     /// - Is the first in a basic block: BB is used.
2855     /// - Has a previous instructon: PrevInst is used.
2856     union {
2857       Instruction *PrevInst;
2858       BasicBlock *BB;
2859     } Point;
2860 
2861     /// Remember whether or not the instruction had a previous instruction.
2862     bool HasPrevInstruction;
2863 
2864   public:
2865     /// \brief Record the position of \p Inst.
2866     InsertionHandler(Instruction *Inst) {
2867       BasicBlock::iterator It = Inst->getIterator();
2868       HasPrevInstruction = (It != (Inst->getParent()->begin()));
2869       if (HasPrevInstruction)
2870         Point.PrevInst = &*--It;
2871       else
2872         Point.BB = Inst->getParent();
2873     }
2874 
2875     /// \brief Insert \p Inst at the recorded position.
2876     void insert(Instruction *Inst) {
2877       if (HasPrevInstruction) {
2878         if (Inst->getParent())
2879           Inst->removeFromParent();
2880         Inst->insertAfter(Point.PrevInst);
2881       } else {
2882         Instruction *Position = &*Point.BB->getFirstInsertionPt();
2883         if (Inst->getParent())
2884           Inst->moveBefore(Position);
2885         else
2886           Inst->insertBefore(Position);
2887       }
2888     }
2889   };
2890 
2891   /// \brief Move an instruction before another.
2892   class InstructionMoveBefore : public TypePromotionAction {
2893     /// Original position of the instruction.
2894     InsertionHandler Position;
2895 
2896   public:
2897     /// \brief Move \p Inst before \p Before.
2898     InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2899         : TypePromotionAction(Inst), Position(Inst) {
2900       DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n");
2901       Inst->moveBefore(Before);
2902     }
2903 
2904     /// \brief Move the instruction back to its original position.
2905     void undo() override {
2906       DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2907       Position.insert(Inst);
2908     }
2909   };
2910 
2911   /// \brief Set the operand of an instruction with a new value.
2912   class OperandSetter : public TypePromotionAction {
2913     /// Original operand of the instruction.
2914     Value *Origin;
2915 
2916     /// Index of the modified instruction.
2917     unsigned Idx;
2918 
2919   public:
2920     /// \brief Set \p Idx operand of \p Inst with \p NewVal.
2921     OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2922         : TypePromotionAction(Inst), Idx(Idx) {
2923       DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2924                    << "for:" << *Inst << "\n"
2925                    << "with:" << *NewVal << "\n");
2926       Origin = Inst->getOperand(Idx);
2927       Inst->setOperand(Idx, NewVal);
2928     }
2929 
2930     /// \brief Restore the original value of the instruction.
2931     void undo() override {
2932       DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2933                    << "for: " << *Inst << "\n"
2934                    << "with: " << *Origin << "\n");
2935       Inst->setOperand(Idx, Origin);
2936     }
2937   };
2938 
2939   /// \brief Hide the operands of an instruction.
2940   /// Do as if this instruction was not using any of its operands.
2941   class OperandsHider : public TypePromotionAction {
2942     /// The list of original operands.
2943     SmallVector<Value *, 4> OriginalValues;
2944 
2945   public:
2946     /// \brief Remove \p Inst from the uses of the operands of \p Inst.
2947     OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2948       DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2949       unsigned NumOpnds = Inst->getNumOperands();
2950       OriginalValues.reserve(NumOpnds);
2951       for (unsigned It = 0; It < NumOpnds; ++It) {
2952         // Save the current operand.
2953         Value *Val = Inst->getOperand(It);
2954         OriginalValues.push_back(Val);
2955         // Set a dummy one.
2956         // We could use OperandSetter here, but that would imply an overhead
2957         // that we are not willing to pay.
2958         Inst->setOperand(It, UndefValue::get(Val->getType()));
2959       }
2960     }
2961 
2962     /// \brief Restore the original list of uses.
2963     void undo() override {
2964       DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2965       for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2966         Inst->setOperand(It, OriginalValues[It]);
2967     }
2968   };
2969 
2970   /// \brief Build a truncate instruction.
2971   class TruncBuilder : public TypePromotionAction {
2972     Value *Val;
2973 
2974   public:
2975     /// \brief Build a truncate instruction of \p Opnd producing a \p Ty
2976     /// result.
2977     /// trunc Opnd to Ty.
2978     TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2979       IRBuilder<> Builder(Opnd);
2980       Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2981       DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2982     }
2983 
2984     /// \brief Get the built value.
2985     Value *getBuiltValue() { return Val; }
2986 
2987     /// \brief Remove the built instruction.
2988     void undo() override {
2989       DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2990       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2991         IVal->eraseFromParent();
2992     }
2993   };
2994 
2995   /// \brief Build a sign extension instruction.
2996   class SExtBuilder : public TypePromotionAction {
2997     Value *Val;
2998 
2999   public:
3000     /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty
3001     /// result.
3002     /// sext Opnd to Ty.
3003     SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
3004         : TypePromotionAction(InsertPt) {
3005       IRBuilder<> Builder(InsertPt);
3006       Val = Builder.CreateSExt(Opnd, Ty, "promoted");
3007       DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
3008     }
3009 
3010     /// \brief Get the built value.
3011     Value *getBuiltValue() { return Val; }
3012 
3013     /// \brief Remove the built instruction.
3014     void undo() override {
3015       DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
3016       if (Instruction *IVal = dyn_cast<Instruction>(Val))
3017         IVal->eraseFromParent();
3018     }
3019   };
3020 
3021   /// \brief Build a zero extension instruction.
3022   class ZExtBuilder : public TypePromotionAction {
3023     Value *Val;
3024 
3025   public:
3026     /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty
3027     /// result.
3028     /// zext Opnd to Ty.
3029     ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
3030         : TypePromotionAction(InsertPt) {
3031       IRBuilder<> Builder(InsertPt);
3032       Val = Builder.CreateZExt(Opnd, Ty, "promoted");
3033       DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
3034     }
3035 
3036     /// \brief Get the built value.
3037     Value *getBuiltValue() { return Val; }
3038 
3039     /// \brief Remove the built instruction.
3040     void undo() override {
3041       DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
3042       if (Instruction *IVal = dyn_cast<Instruction>(Val))
3043         IVal->eraseFromParent();
3044     }
3045   };
3046 
3047   /// \brief Mutate an instruction to another type.
3048   class TypeMutator : public TypePromotionAction {
3049     /// Record the original type.
3050     Type *OrigTy;
3051 
3052   public:
3053     /// \brief Mutate the type of \p Inst into \p NewTy.
3054     TypeMutator(Instruction *Inst, Type *NewTy)
3055         : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
3056       DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
3057                    << "\n");
3058       Inst->mutateType(NewTy);
3059     }
3060 
3061     /// \brief Mutate the instruction back to its original type.
3062     void undo() override {
3063       DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
3064                    << "\n");
3065       Inst->mutateType(OrigTy);
3066     }
3067   };
3068 
3069   /// \brief Replace the uses of an instruction by another instruction.
3070   class UsesReplacer : public TypePromotionAction {
3071     /// Helper structure to keep track of the replaced uses.
3072     struct InstructionAndIdx {
3073       /// The instruction using the instruction.
3074       Instruction *Inst;
3075 
3076       /// The index where this instruction is used for Inst.
3077       unsigned Idx;
3078 
3079       InstructionAndIdx(Instruction *Inst, unsigned Idx)
3080           : Inst(Inst), Idx(Idx) {}
3081     };
3082 
3083     /// Keep track of the original uses (pair Instruction, Index).
3084     SmallVector<InstructionAndIdx, 4> OriginalUses;
3085 
3086     using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
3087 
3088   public:
3089     /// \brief Replace all the use of \p Inst by \p New.
3090     UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
3091       DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
3092                    << "\n");
3093       // Record the original uses.
3094       for (Use &U : Inst->uses()) {
3095         Instruction *UserI = cast<Instruction>(U.getUser());
3096         OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
3097       }
3098       // Now, we can replace the uses.
3099       Inst->replaceAllUsesWith(New);
3100     }
3101 
3102     /// \brief Reassign the original uses of Inst to Inst.
3103     void undo() override {
3104       DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
3105       for (use_iterator UseIt = OriginalUses.begin(),
3106                         EndIt = OriginalUses.end();
3107            UseIt != EndIt; ++UseIt) {
3108         UseIt->Inst->setOperand(UseIt->Idx, Inst);
3109       }
3110     }
3111   };
3112 
3113   /// \brief Remove an instruction from the IR.
3114   class InstructionRemover : public TypePromotionAction {
3115     /// Original position of the instruction.
3116     InsertionHandler Inserter;
3117 
3118     /// Helper structure to hide all the link to the instruction. In other
3119     /// words, this helps to do as if the instruction was removed.
3120     OperandsHider Hider;
3121 
3122     /// Keep track of the uses replaced, if any.
3123     UsesReplacer *Replacer = nullptr;
3124 
3125     /// Keep track of instructions removed.
3126     SetOfInstrs &RemovedInsts;
3127 
3128   public:
3129     /// \brief Remove all reference of \p Inst and optinally replace all its
3130     /// uses with New.
3131     /// \p RemovedInsts Keep track of the instructions removed by this Action.
3132     /// \pre If !Inst->use_empty(), then New != nullptr
3133     InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
3134                        Value *New = nullptr)
3135         : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
3136           RemovedInsts(RemovedInsts) {
3137       if (New)
3138         Replacer = new UsesReplacer(Inst, New);
3139       DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
3140       RemovedInsts.insert(Inst);
3141       /// The instructions removed here will be freed after completing
3142       /// optimizeBlock() for all blocks as we need to keep track of the
3143       /// removed instructions during promotion.
3144       Inst->removeFromParent();
3145     }
3146 
3147     ~InstructionRemover() override { delete Replacer; }
3148 
3149     /// \brief Resurrect the instruction and reassign it to the proper uses if
3150     /// new value was provided when build this action.
3151     void undo() override {
3152       DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
3153       Inserter.insert(Inst);
3154       if (Replacer)
3155         Replacer->undo();
3156       Hider.undo();
3157       RemovedInsts.erase(Inst);
3158     }
3159   };
3160 
3161 public:
3162   /// Restoration point.
3163   /// The restoration point is a pointer to an action instead of an iterator
3164   /// because the iterator may be invalidated but not the pointer.
3165   using ConstRestorationPt = const TypePromotionAction *;
3166 
3167   TypePromotionTransaction(SetOfInstrs &RemovedInsts)
3168       : RemovedInsts(RemovedInsts) {}
3169 
3170   /// Advocate every changes made in that transaction.
3171   void commit();
3172 
3173   /// Undo all the changes made after the given point.
3174   void rollback(ConstRestorationPt Point);
3175 
3176   /// Get the current restoration point.
3177   ConstRestorationPt getRestorationPoint() const;
3178 
3179   /// \name API for IR modification with state keeping to support rollback.
3180   /// @{
3181   /// Same as Instruction::setOperand.
3182   void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
3183 
3184   /// Same as Instruction::eraseFromParent.
3185   void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
3186 
3187   /// Same as Value::replaceAllUsesWith.
3188   void replaceAllUsesWith(Instruction *Inst, Value *New);
3189 
3190   /// Same as Value::mutateType.
3191   void mutateType(Instruction *Inst, Type *NewTy);
3192 
3193   /// Same as IRBuilder::createTrunc.
3194   Value *createTrunc(Instruction *Opnd, Type *Ty);
3195 
3196   /// Same as IRBuilder::createSExt.
3197   Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
3198 
3199   /// Same as IRBuilder::createZExt.
3200   Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
3201 
3202   /// Same as Instruction::moveBefore.
3203   void moveBefore(Instruction *Inst, Instruction *Before);
3204   /// @}
3205 
3206 private:
3207   /// The ordered list of actions made so far.
3208   SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
3209 
3210   using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
3211 
3212   SetOfInstrs &RemovedInsts;
3213 };
3214 
3215 } // end anonymous namespace
3216 
3217 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
3218                                           Value *NewVal) {
3219   Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>(
3220       Inst, Idx, NewVal));
3221 }
3222 
3223 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
3224                                                 Value *NewVal) {
3225   Actions.push_back(
3226       llvm::make_unique<TypePromotionTransaction::InstructionRemover>(
3227           Inst, RemovedInsts, NewVal));
3228 }
3229 
3230 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
3231                                                   Value *New) {
3232   Actions.push_back(
3233       llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
3234 }
3235 
3236 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
3237   Actions.push_back(
3238       llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
3239 }
3240 
3241 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
3242                                              Type *Ty) {
3243   std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
3244   Value *Val = Ptr->getBuiltValue();
3245   Actions.push_back(std::move(Ptr));
3246   return Val;
3247 }
3248 
3249 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
3250                                             Value *Opnd, Type *Ty) {
3251   std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
3252   Value *Val = Ptr->getBuiltValue();
3253   Actions.push_back(std::move(Ptr));
3254   return Val;
3255 }
3256 
3257 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
3258                                             Value *Opnd, Type *Ty) {
3259   std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
3260   Value *Val = Ptr->getBuiltValue();
3261   Actions.push_back(std::move(Ptr));
3262   return Val;
3263 }
3264 
3265 void TypePromotionTransaction::moveBefore(Instruction *Inst,
3266                                           Instruction *Before) {
3267   Actions.push_back(
3268       llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
3269           Inst, Before));
3270 }
3271 
3272 TypePromotionTransaction::ConstRestorationPt
3273 TypePromotionTransaction::getRestorationPoint() const {
3274   return !Actions.empty() ? Actions.back().get() : nullptr;
3275 }
3276 
3277 void TypePromotionTransaction::commit() {
3278   for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
3279        ++It)
3280     (*It)->commit();
3281   Actions.clear();
3282 }
3283 
3284 void TypePromotionTransaction::rollback(
3285     TypePromotionTransaction::ConstRestorationPt Point) {
3286   while (!Actions.empty() && Point != Actions.back().get()) {
3287     std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
3288     Curr->undo();
3289   }
3290 }
3291 
3292 namespace {
3293 
3294 /// \brief A helper class for matching addressing modes.
3295 ///
3296 /// This encapsulates the logic for matching the target-legal addressing modes.
3297 class AddressingModeMatcher {
3298   SmallVectorImpl<Instruction*> &AddrModeInsts;
3299   const TargetLowering &TLI;
3300   const TargetRegisterInfo &TRI;
3301   const DataLayout &DL;
3302 
3303   /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
3304   /// the memory instruction that we're computing this address for.
3305   Type *AccessTy;
3306   unsigned AddrSpace;
3307   Instruction *MemoryInst;
3308 
3309   /// This is the addressing mode that we're building up. This is
3310   /// part of the return value of this addressing mode matching stuff.
3311   ExtAddrMode &AddrMode;
3312 
3313   /// The instructions inserted by other CodeGenPrepare optimizations.
3314   const SetOfInstrs &InsertedInsts;
3315 
3316   /// A map from the instructions to their type before promotion.
3317   InstrToOrigTy &PromotedInsts;
3318 
3319   /// The ongoing transaction where every action should be registered.
3320   TypePromotionTransaction &TPT;
3321 
3322   /// This is set to true when we should not do profitability checks.
3323   /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
3324   bool IgnoreProfitability;
3325 
3326   AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI,
3327                         const TargetLowering &TLI,
3328                         const TargetRegisterInfo &TRI,
3329                         Type *AT, unsigned AS,
3330                         Instruction *MI, ExtAddrMode &AM,
3331                         const SetOfInstrs &InsertedInsts,
3332                         InstrToOrigTy &PromotedInsts,
3333                         TypePromotionTransaction &TPT)
3334       : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
3335         DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
3336         MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
3337         PromotedInsts(PromotedInsts), TPT(TPT) {
3338     IgnoreProfitability = false;
3339   }
3340 
3341 public:
3342   /// Find the maximal addressing mode that a load/store of V can fold,
3343   /// give an access type of AccessTy.  This returns a list of involved
3344   /// instructions in AddrModeInsts.
3345   /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
3346   /// optimizations.
3347   /// \p PromotedInsts maps the instructions to their type before promotion.
3348   /// \p The ongoing transaction where every action should be registered.
3349   static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS,
3350                            Instruction *MemoryInst,
3351                            SmallVectorImpl<Instruction*> &AddrModeInsts,
3352                            const TargetLowering &TLI,
3353                            const TargetRegisterInfo &TRI,
3354                            const SetOfInstrs &InsertedInsts,
3355                            InstrToOrigTy &PromotedInsts,
3356                            TypePromotionTransaction &TPT) {
3357     ExtAddrMode Result;
3358 
3359     bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI,
3360                                          AccessTy, AS,
3361                                          MemoryInst, Result, InsertedInsts,
3362                                          PromotedInsts, TPT).matchAddr(V, 0);
3363     (void)Success; assert(Success && "Couldn't select *anything*?");
3364     return Result;
3365   }
3366 
3367 private:
3368   bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
3369   bool matchAddr(Value *V, unsigned Depth);
3370   bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth,
3371                           bool *MovedAway = nullptr);
3372   bool isProfitableToFoldIntoAddressingMode(Instruction *I,
3373                                             ExtAddrMode &AMBefore,
3374                                             ExtAddrMode &AMAfter);
3375   bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
3376   bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
3377                              Value *PromotedOperand) const;
3378 };
3379 
3380 /// \brief A helper class for combining addressing modes.
3381 class AddressingModeCombiner {
3382 private:
3383   /// The addressing modes we've collected.
3384   SmallVector<ExtAddrMode, 16> AddrModes;
3385 
3386   /// The field in which the AddrModes differ, when we have more than one.
3387   ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
3388 
3389   /// Are the AddrModes that we have all just equal to their original values?
3390   bool AllAddrModesTrivial = true;
3391 
3392 public:
3393   /// \brief Get the combined AddrMode
3394   const ExtAddrMode &getAddrMode() const {
3395     return AddrModes[0];
3396   }
3397 
3398   /// \brief Add a new AddrMode if it's compatible with the AddrModes we already
3399   /// have.
3400   /// \return True iff we succeeded in doing so.
3401   bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
3402     // Take note of if we have any non-trivial AddrModes, as we need to detect
3403     // when all AddrModes are trivial as then we would introduce a phi or select
3404     // which just duplicates what's already there.
3405     AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
3406 
3407     // If this is the first addrmode then everything is fine.
3408     if (AddrModes.empty()) {
3409       AddrModes.emplace_back(NewAddrMode);
3410       return true;
3411     }
3412 
3413     // Figure out how different this is from the other address modes, which we
3414     // can do just by comparing against the first one given that we only care
3415     // about the cumulative difference.
3416     ExtAddrMode::FieldName ThisDifferentField =
3417       AddrModes[0].compare(NewAddrMode);
3418     if (DifferentField == ExtAddrMode::NoField)
3419       DifferentField = ThisDifferentField;
3420     else if (DifferentField != ThisDifferentField)
3421       DifferentField = ExtAddrMode::MultipleFields;
3422 
3423     // If this AddrMode is the same as all the others then everything is fine
3424     // (which should only happen when there is actually only one AddrMode).
3425     if (DifferentField == ExtAddrMode::NoField) {
3426       assert(AddrModes.size() == 1);
3427       return true;
3428     }
3429 
3430     // If NewAddrMode differs in only one dimension then we can handle it by
3431     // inserting a phi/select later on.
3432     if (DifferentField != ExtAddrMode::MultipleFields) {
3433       AddrModes.emplace_back(NewAddrMode);
3434       return true;
3435     }
3436 
3437     // We couldn't combine NewAddrMode with the rest, so return failure.
3438     AddrModes.clear();
3439     return false;
3440   }
3441 
3442   /// \brief Combine the addressing modes we've collected into a single
3443   /// addressing mode.
3444   /// \return True iff we successfully combined them or we only had one so
3445   /// didn't need to combine them anyway.
3446   bool combineAddrModes() {
3447     // If we have no AddrModes then they can't be combined.
3448     if (AddrModes.size() == 0)
3449       return false;
3450 
3451     // A single AddrMode can trivially be combined.
3452     if (AddrModes.size() == 1)
3453       return true;
3454 
3455     // If the AddrModes we collected are all just equal to the value they are
3456     // derived from then combining them wouldn't do anything useful.
3457     if (AllAddrModesTrivial)
3458       return false;
3459 
3460     // TODO: Combine multiple AddrModes by inserting a select or phi for the
3461     // field in which the AddrModes differ.
3462     return false;
3463   }
3464 };
3465 
3466 } // end anonymous namespace
3467 
3468 /// Try adding ScaleReg*Scale to the current addressing mode.
3469 /// Return true and update AddrMode if this addr mode is legal for the target,
3470 /// false if not.
3471 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
3472                                              unsigned Depth) {
3473   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3474   // mode.  Just process that directly.
3475   if (Scale == 1)
3476     return matchAddr(ScaleReg, Depth);
3477 
3478   // If the scale is 0, it takes nothing to add this.
3479   if (Scale == 0)
3480     return true;
3481 
3482   // If we already have a scale of this value, we can add to it, otherwise, we
3483   // need an available scale field.
3484   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
3485     return false;
3486 
3487   ExtAddrMode TestAddrMode = AddrMode;
3488 
3489   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
3490   // [A+B + A*7] -> [B+A*8].
3491   TestAddrMode.Scale += Scale;
3492   TestAddrMode.ScaledReg = ScaleReg;
3493 
3494   // If the new address isn't legal, bail out.
3495   if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
3496     return false;
3497 
3498   // It was legal, so commit it.
3499   AddrMode = TestAddrMode;
3500 
3501   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
3502   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
3503   // X*Scale + C*Scale to addr mode.
3504   ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
3505   if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
3506       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
3507     TestAddrMode.ScaledReg = AddLHS;
3508     TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
3509 
3510     // If this addressing mode is legal, commit it and remember that we folded
3511     // this instruction.
3512     if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
3513       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
3514       AddrMode = TestAddrMode;
3515       return true;
3516     }
3517   }
3518 
3519   // Otherwise, not (x+c)*scale, just return what we have.
3520   return true;
3521 }
3522 
3523 /// This is a little filter, which returns true if an addressing computation
3524 /// involving I might be folded into a load/store accessing it.
3525 /// This doesn't need to be perfect, but needs to accept at least
3526 /// the set of instructions that MatchOperationAddr can.
3527 static bool MightBeFoldableInst(Instruction *I) {
3528   switch (I->getOpcode()) {
3529   case Instruction::BitCast:
3530   case Instruction::AddrSpaceCast:
3531     // Don't touch identity bitcasts.
3532     if (I->getType() == I->getOperand(0)->getType())
3533       return false;
3534     return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
3535   case Instruction::PtrToInt:
3536     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3537     return true;
3538   case Instruction::IntToPtr:
3539     // We know the input is intptr_t, so this is foldable.
3540     return true;
3541   case Instruction::Add:
3542     return true;
3543   case Instruction::Mul:
3544   case Instruction::Shl:
3545     // Can only handle X*C and X << C.
3546     return isa<ConstantInt>(I->getOperand(1));
3547   case Instruction::GetElementPtr:
3548     return true;
3549   default:
3550     return false;
3551   }
3552 }
3553 
3554 /// \brief Check whether or not \p Val is a legal instruction for \p TLI.
3555 /// \note \p Val is assumed to be the product of some type promotion.
3556 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
3557 /// to be legal, as the non-promoted value would have had the same state.
3558 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
3559                                        const DataLayout &DL, Value *Val) {
3560   Instruction *PromotedInst = dyn_cast<Instruction>(Val);
3561   if (!PromotedInst)
3562     return false;
3563   int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
3564   // If the ISDOpcode is undefined, it was undefined before the promotion.
3565   if (!ISDOpcode)
3566     return true;
3567   // Otherwise, check if the promoted instruction is legal or not.
3568   return TLI.isOperationLegalOrCustom(
3569       ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
3570 }
3571 
3572 namespace {
3573 
3574 /// \brief Hepler class to perform type promotion.
3575 class TypePromotionHelper {
3576   /// \brief Utility function to check whether or not a sign or zero extension
3577   /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
3578   /// either using the operands of \p Inst or promoting \p Inst.
3579   /// The type of the extension is defined by \p IsSExt.
3580   /// In other words, check if:
3581   /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
3582   /// #1 Promotion applies:
3583   /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
3584   /// #2 Operand reuses:
3585   /// ext opnd1 to ConsideredExtType.
3586   /// \p PromotedInsts maps the instructions to their type before promotion.
3587   static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
3588                             const InstrToOrigTy &PromotedInsts, bool IsSExt);
3589 
3590   /// \brief Utility function to determine if \p OpIdx should be promoted when
3591   /// promoting \p Inst.
3592   static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
3593     return !(isa<SelectInst>(Inst) && OpIdx == 0);
3594   }
3595 
3596   /// \brief Utility function to promote the operand of \p Ext when this
3597   /// operand is a promotable trunc or sext or zext.
3598   /// \p PromotedInsts maps the instructions to their type before promotion.
3599   /// \p CreatedInstsCost[out] contains the cost of all instructions
3600   /// created to promote the operand of Ext.
3601   /// Newly added extensions are inserted in \p Exts.
3602   /// Newly added truncates are inserted in \p Truncs.
3603   /// Should never be called directly.
3604   /// \return The promoted value which is used instead of Ext.
3605   static Value *promoteOperandForTruncAndAnyExt(
3606       Instruction *Ext, TypePromotionTransaction &TPT,
3607       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3608       SmallVectorImpl<Instruction *> *Exts,
3609       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
3610 
3611   /// \brief Utility function to promote the operand of \p Ext when this
3612   /// operand is promotable and is not a supported trunc or sext.
3613   /// \p PromotedInsts maps the instructions to their type before promotion.
3614   /// \p CreatedInstsCost[out] contains the cost of all the instructions
3615   /// created to promote the operand of Ext.
3616   /// Newly added extensions are inserted in \p Exts.
3617   /// Newly added truncates are inserted in \p Truncs.
3618   /// Should never be called directly.
3619   /// \return The promoted value which is used instead of Ext.
3620   static Value *promoteOperandForOther(Instruction *Ext,
3621                                        TypePromotionTransaction &TPT,
3622                                        InstrToOrigTy &PromotedInsts,
3623                                        unsigned &CreatedInstsCost,
3624                                        SmallVectorImpl<Instruction *> *Exts,
3625                                        SmallVectorImpl<Instruction *> *Truncs,
3626                                        const TargetLowering &TLI, bool IsSExt);
3627 
3628   /// \see promoteOperandForOther.
3629   static Value *signExtendOperandForOther(
3630       Instruction *Ext, TypePromotionTransaction &TPT,
3631       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3632       SmallVectorImpl<Instruction *> *Exts,
3633       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3634     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3635                                   Exts, Truncs, TLI, true);
3636   }
3637 
3638   /// \see promoteOperandForOther.
3639   static Value *zeroExtendOperandForOther(
3640       Instruction *Ext, TypePromotionTransaction &TPT,
3641       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3642       SmallVectorImpl<Instruction *> *Exts,
3643       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3644     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3645                                   Exts, Truncs, TLI, false);
3646   }
3647 
3648 public:
3649   /// Type for the utility function that promotes the operand of Ext.
3650   using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
3651                             InstrToOrigTy &PromotedInsts,
3652                             unsigned &CreatedInstsCost,
3653                             SmallVectorImpl<Instruction *> *Exts,
3654                             SmallVectorImpl<Instruction *> *Truncs,
3655                             const TargetLowering &TLI);
3656 
3657   /// \brief Given a sign/zero extend instruction \p Ext, return the approriate
3658   /// action to promote the operand of \p Ext instead of using Ext.
3659   /// \return NULL if no promotable action is possible with the current
3660   /// sign extension.
3661   /// \p InsertedInsts keeps track of all the instructions inserted by the
3662   /// other CodeGenPrepare optimizations. This information is important
3663   /// because we do not want to promote these instructions as CodeGenPrepare
3664   /// will reinsert them later. Thus creating an infinite loop: create/remove.
3665   /// \p PromotedInsts maps the instructions to their type before promotion.
3666   static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
3667                           const TargetLowering &TLI,
3668                           const InstrToOrigTy &PromotedInsts);
3669 };
3670 
3671 } // end anonymous namespace
3672 
3673 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
3674                                         Type *ConsideredExtType,
3675                                         const InstrToOrigTy &PromotedInsts,
3676                                         bool IsSExt) {
3677   // The promotion helper does not know how to deal with vector types yet.
3678   // To be able to fix that, we would need to fix the places where we
3679   // statically extend, e.g., constants and such.
3680   if (Inst->getType()->isVectorTy())
3681     return false;
3682 
3683   // We can always get through zext.
3684   if (isa<ZExtInst>(Inst))
3685     return true;
3686 
3687   // sext(sext) is ok too.
3688   if (IsSExt && isa<SExtInst>(Inst))
3689     return true;
3690 
3691   // We can get through binary operator, if it is legal. In other words, the
3692   // binary operator must have a nuw or nsw flag.
3693   const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
3694   if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
3695       ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
3696        (IsSExt && BinOp->hasNoSignedWrap())))
3697     return true;
3698 
3699   // Check if we can do the following simplification.
3700   // ext(trunc(opnd)) --> ext(opnd)
3701   if (!isa<TruncInst>(Inst))
3702     return false;
3703 
3704   Value *OpndVal = Inst->getOperand(0);
3705   // Check if we can use this operand in the extension.
3706   // If the type is larger than the result type of the extension, we cannot.
3707   if (!OpndVal->getType()->isIntegerTy() ||
3708       OpndVal->getType()->getIntegerBitWidth() >
3709           ConsideredExtType->getIntegerBitWidth())
3710     return false;
3711 
3712   // If the operand of the truncate is not an instruction, we will not have
3713   // any information on the dropped bits.
3714   // (Actually we could for constant but it is not worth the extra logic).
3715   Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
3716   if (!Opnd)
3717     return false;
3718 
3719   // Check if the source of the type is narrow enough.
3720   // I.e., check that trunc just drops extended bits of the same kind of
3721   // the extension.
3722   // #1 get the type of the operand and check the kind of the extended bits.
3723   const Type *OpndType;
3724   InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
3725   if (It != PromotedInsts.end() && It->second.getInt() == IsSExt)
3726     OpndType = It->second.getPointer();
3727   else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
3728     OpndType = Opnd->getOperand(0)->getType();
3729   else
3730     return false;
3731 
3732   // #2 check that the truncate just drops extended bits.
3733   return Inst->getType()->getIntegerBitWidth() >=
3734          OpndType->getIntegerBitWidth();
3735 }
3736 
3737 TypePromotionHelper::Action TypePromotionHelper::getAction(
3738     Instruction *Ext, const SetOfInstrs &InsertedInsts,
3739     const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
3740   assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3741          "Unexpected instruction type");
3742   Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
3743   Type *ExtTy = Ext->getType();
3744   bool IsSExt = isa<SExtInst>(Ext);
3745   // If the operand of the extension is not an instruction, we cannot
3746   // get through.
3747   // If it, check we can get through.
3748   if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
3749     return nullptr;
3750 
3751   // Do not promote if the operand has been added by codegenprepare.
3752   // Otherwise, it means we are undoing an optimization that is likely to be
3753   // redone, thus causing potential infinite loop.
3754   if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
3755     return nullptr;
3756 
3757   // SExt or Trunc instructions.
3758   // Return the related handler.
3759   if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
3760       isa<ZExtInst>(ExtOpnd))
3761     return promoteOperandForTruncAndAnyExt;
3762 
3763   // Regular instruction.
3764   // Abort early if we will have to insert non-free instructions.
3765   if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
3766     return nullptr;
3767   return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
3768 }
3769 
3770 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
3771     Instruction *SExt, TypePromotionTransaction &TPT,
3772     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3773     SmallVectorImpl<Instruction *> *Exts,
3774     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3775   // By construction, the operand of SExt is an instruction. Otherwise we cannot
3776   // get through it and this method should not be called.
3777   Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
3778   Value *ExtVal = SExt;
3779   bool HasMergedNonFreeExt = false;
3780   if (isa<ZExtInst>(SExtOpnd)) {
3781     // Replace s|zext(zext(opnd))
3782     // => zext(opnd).
3783     HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
3784     Value *ZExt =
3785         TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
3786     TPT.replaceAllUsesWith(SExt, ZExt);
3787     TPT.eraseInstruction(SExt);
3788     ExtVal = ZExt;
3789   } else {
3790     // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
3791     // => z|sext(opnd).
3792     TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
3793   }
3794   CreatedInstsCost = 0;
3795 
3796   // Remove dead code.
3797   if (SExtOpnd->use_empty())
3798     TPT.eraseInstruction(SExtOpnd);
3799 
3800   // Check if the extension is still needed.
3801   Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
3802   if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
3803     if (ExtInst) {
3804       if (Exts)
3805         Exts->push_back(ExtInst);
3806       CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
3807     }
3808     return ExtVal;
3809   }
3810 
3811   // At this point we have: ext ty opnd to ty.
3812   // Reassign the uses of ExtInst to the opnd and remove ExtInst.
3813   Value *NextVal = ExtInst->getOperand(0);
3814   TPT.eraseInstruction(ExtInst, NextVal);
3815   return NextVal;
3816 }
3817 
3818 Value *TypePromotionHelper::promoteOperandForOther(
3819     Instruction *Ext, TypePromotionTransaction &TPT,
3820     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3821     SmallVectorImpl<Instruction *> *Exts,
3822     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
3823     bool IsSExt) {
3824   // By construction, the operand of Ext is an instruction. Otherwise we cannot
3825   // get through it and this method should not be called.
3826   Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
3827   CreatedInstsCost = 0;
3828   if (!ExtOpnd->hasOneUse()) {
3829     // ExtOpnd will be promoted.
3830     // All its uses, but Ext, will need to use a truncated value of the
3831     // promoted version.
3832     // Create the truncate now.
3833     Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
3834     if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
3835       // Insert it just after the definition.
3836       ITrunc->moveAfter(ExtOpnd);
3837       if (Truncs)
3838         Truncs->push_back(ITrunc);
3839     }
3840 
3841     TPT.replaceAllUsesWith(ExtOpnd, Trunc);
3842     // Restore the operand of Ext (which has been replaced by the previous call
3843     // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
3844     TPT.setOperand(Ext, 0, ExtOpnd);
3845   }
3846 
3847   // Get through the Instruction:
3848   // 1. Update its type.
3849   // 2. Replace the uses of Ext by Inst.
3850   // 3. Extend each operand that needs to be extended.
3851 
3852   // Remember the original type of the instruction before promotion.
3853   // This is useful to know that the high bits are sign extended bits.
3854   PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>(
3855       ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt)));
3856   // Step #1.
3857   TPT.mutateType(ExtOpnd, Ext->getType());
3858   // Step #2.
3859   TPT.replaceAllUsesWith(Ext, ExtOpnd);
3860   // Step #3.
3861   Instruction *ExtForOpnd = Ext;
3862 
3863   DEBUG(dbgs() << "Propagate Ext to operands\n");
3864   for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
3865        ++OpIdx) {
3866     DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
3867     if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
3868         !shouldExtOperand(ExtOpnd, OpIdx)) {
3869       DEBUG(dbgs() << "No need to propagate\n");
3870       continue;
3871     }
3872     // Check if we can statically extend the operand.
3873     Value *Opnd = ExtOpnd->getOperand(OpIdx);
3874     if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
3875       DEBUG(dbgs() << "Statically extend\n");
3876       unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
3877       APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
3878                             : Cst->getValue().zext(BitWidth);
3879       TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
3880       continue;
3881     }
3882     // UndefValue are typed, so we have to statically sign extend them.
3883     if (isa<UndefValue>(Opnd)) {
3884       DEBUG(dbgs() << "Statically extend\n");
3885       TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
3886       continue;
3887     }
3888 
3889     // Otherwise we have to explicity sign extend the operand.
3890     // Check if Ext was reused to extend an operand.
3891     if (!ExtForOpnd) {
3892       // If yes, create a new one.
3893       DEBUG(dbgs() << "More operands to ext\n");
3894       Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
3895         : TPT.createZExt(Ext, Opnd, Ext->getType());
3896       if (!isa<Instruction>(ValForExtOpnd)) {
3897         TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
3898         continue;
3899       }
3900       ExtForOpnd = cast<Instruction>(ValForExtOpnd);
3901     }
3902     if (Exts)
3903       Exts->push_back(ExtForOpnd);
3904     TPT.setOperand(ExtForOpnd, 0, Opnd);
3905 
3906     // Move the sign extension before the insertion point.
3907     TPT.moveBefore(ExtForOpnd, ExtOpnd);
3908     TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
3909     CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
3910     // If more sext are required, new instructions will have to be created.
3911     ExtForOpnd = nullptr;
3912   }
3913   if (ExtForOpnd == Ext) {
3914     DEBUG(dbgs() << "Extension is useless now\n");
3915     TPT.eraseInstruction(Ext);
3916   }
3917   return ExtOpnd;
3918 }
3919 
3920 /// Check whether or not promoting an instruction to a wider type is profitable.
3921 /// \p NewCost gives the cost of extension instructions created by the
3922 /// promotion.
3923 /// \p OldCost gives the cost of extension instructions before the promotion
3924 /// plus the number of instructions that have been
3925 /// matched in the addressing mode the promotion.
3926 /// \p PromotedOperand is the value that has been promoted.
3927 /// \return True if the promotion is profitable, false otherwise.
3928 bool AddressingModeMatcher::isPromotionProfitable(
3929     unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
3930   DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n');
3931   // The cost of the new extensions is greater than the cost of the
3932   // old extension plus what we folded.
3933   // This is not profitable.
3934   if (NewCost > OldCost)
3935     return false;
3936   if (NewCost < OldCost)
3937     return true;
3938   // The promotion is neutral but it may help folding the sign extension in
3939   // loads for instance.
3940   // Check that we did not create an illegal instruction.
3941   return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
3942 }
3943 
3944 /// Given an instruction or constant expr, see if we can fold the operation
3945 /// into the addressing mode. If so, update the addressing mode and return
3946 /// true, otherwise return false without modifying AddrMode.
3947 /// If \p MovedAway is not NULL, it contains the information of whether or
3948 /// not AddrInst has to be folded into the addressing mode on success.
3949 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
3950 /// because it has been moved away.
3951 /// Thus AddrInst must not be added in the matched instructions.
3952 /// This state can happen when AddrInst is a sext, since it may be moved away.
3953 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
3954 /// not be referenced anymore.
3955 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
3956                                                unsigned Depth,
3957                                                bool *MovedAway) {
3958   // Avoid exponential behavior on extremely deep expression trees.
3959   if (Depth >= 5) return false;
3960 
3961   // By default, all matched instructions stay in place.
3962   if (MovedAway)
3963     *MovedAway = false;
3964 
3965   switch (Opcode) {
3966   case Instruction::PtrToInt:
3967     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3968     return matchAddr(AddrInst->getOperand(0), Depth);
3969   case Instruction::IntToPtr: {
3970     auto AS = AddrInst->getType()->getPointerAddressSpace();
3971     auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
3972     // This inttoptr is a no-op if the integer type is pointer sized.
3973     if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
3974       return matchAddr(AddrInst->getOperand(0), Depth);
3975     return false;
3976   }
3977   case Instruction::BitCast:
3978     // BitCast is always a noop, and we can handle it as long as it is
3979     // int->int or pointer->pointer (we don't want int<->fp or something).
3980     if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
3981          AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
3982         // Don't touch identity bitcasts.  These were probably put here by LSR,
3983         // and we don't want to mess around with them.  Assume it knows what it
3984         // is doing.
3985         AddrInst->getOperand(0)->getType() != AddrInst->getType())
3986       return matchAddr(AddrInst->getOperand(0), Depth);
3987     return false;
3988   case Instruction::AddrSpaceCast: {
3989     unsigned SrcAS
3990       = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
3991     unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
3992     if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3993       return matchAddr(AddrInst->getOperand(0), Depth);
3994     return false;
3995   }
3996   case Instruction::Add: {
3997     // Check to see if we can merge in the RHS then the LHS.  If so, we win.
3998     ExtAddrMode BackupAddrMode = AddrMode;
3999     unsigned OldSize = AddrModeInsts.size();
4000     // Start a transaction at this point.
4001     // The LHS may match but not the RHS.
4002     // Therefore, we need a higher level restoration point to undo partially
4003     // matched operation.
4004     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4005         TPT.getRestorationPoint();
4006 
4007     if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
4008         matchAddr(AddrInst->getOperand(0), Depth+1))
4009       return true;
4010 
4011     // Restore the old addr mode info.
4012     AddrMode = BackupAddrMode;
4013     AddrModeInsts.resize(OldSize);
4014     TPT.rollback(LastKnownGood);
4015 
4016     // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
4017     if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
4018         matchAddr(AddrInst->getOperand(1), Depth+1))
4019       return true;
4020 
4021     // Otherwise we definitely can't merge the ADD in.
4022     AddrMode = BackupAddrMode;
4023     AddrModeInsts.resize(OldSize);
4024     TPT.rollback(LastKnownGood);
4025     break;
4026   }
4027   //case Instruction::Or:
4028   // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
4029   //break;
4030   case Instruction::Mul:
4031   case Instruction::Shl: {
4032     // Can only handle X*C and X << C.
4033     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
4034     if (!RHS || RHS->getBitWidth() > 64)
4035       return false;
4036     int64_t Scale = RHS->getSExtValue();
4037     if (Opcode == Instruction::Shl)
4038       Scale = 1LL << Scale;
4039 
4040     return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
4041   }
4042   case Instruction::GetElementPtr: {
4043     // Scan the GEP.  We check it if it contains constant offsets and at most
4044     // one variable offset.
4045     int VariableOperand = -1;
4046     unsigned VariableScale = 0;
4047 
4048     int64_t ConstantOffset = 0;
4049     gep_type_iterator GTI = gep_type_begin(AddrInst);
4050     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
4051       if (StructType *STy = GTI.getStructTypeOrNull()) {
4052         const StructLayout *SL = DL.getStructLayout(STy);
4053         unsigned Idx =
4054           cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
4055         ConstantOffset += SL->getElementOffset(Idx);
4056       } else {
4057         uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType());
4058         if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
4059           ConstantOffset += CI->getSExtValue()*TypeSize;
4060         } else if (TypeSize) {  // Scales of zero don't do anything.
4061           // We only allow one variable index at the moment.
4062           if (VariableOperand != -1)
4063             return false;
4064 
4065           // Remember the variable index.
4066           VariableOperand = i;
4067           VariableScale = TypeSize;
4068         }
4069       }
4070     }
4071 
4072     // A common case is for the GEP to only do a constant offset.  In this case,
4073     // just add it to the disp field and check validity.
4074     if (VariableOperand == -1) {
4075       AddrMode.BaseOffs += ConstantOffset;
4076       if (ConstantOffset == 0 ||
4077           TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
4078         // Check to see if we can fold the base pointer in too.
4079         if (matchAddr(AddrInst->getOperand(0), Depth+1))
4080           return true;
4081       }
4082       AddrMode.BaseOffs -= ConstantOffset;
4083       return false;
4084     }
4085 
4086     // Save the valid addressing mode in case we can't match.
4087     ExtAddrMode BackupAddrMode = AddrMode;
4088     unsigned OldSize = AddrModeInsts.size();
4089 
4090     // See if the scale and offset amount is valid for this target.
4091     AddrMode.BaseOffs += ConstantOffset;
4092 
4093     // Match the base operand of the GEP.
4094     if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
4095       // If it couldn't be matched, just stuff the value in a register.
4096       if (AddrMode.HasBaseReg) {
4097         AddrMode = BackupAddrMode;
4098         AddrModeInsts.resize(OldSize);
4099         return false;
4100       }
4101       AddrMode.HasBaseReg = true;
4102       AddrMode.BaseReg = AddrInst->getOperand(0);
4103     }
4104 
4105     // Match the remaining variable portion of the GEP.
4106     if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
4107                           Depth)) {
4108       // If it couldn't be matched, try stuffing the base into a register
4109       // instead of matching it, and retrying the match of the scale.
4110       AddrMode = BackupAddrMode;
4111       AddrModeInsts.resize(OldSize);
4112       if (AddrMode.HasBaseReg)
4113         return false;
4114       AddrMode.HasBaseReg = true;
4115       AddrMode.BaseReg = AddrInst->getOperand(0);
4116       AddrMode.BaseOffs += ConstantOffset;
4117       if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
4118                             VariableScale, Depth)) {
4119         // If even that didn't work, bail.
4120         AddrMode = BackupAddrMode;
4121         AddrModeInsts.resize(OldSize);
4122         return false;
4123       }
4124     }
4125 
4126     return true;
4127   }
4128   case Instruction::SExt:
4129   case Instruction::ZExt: {
4130     Instruction *Ext = dyn_cast<Instruction>(AddrInst);
4131     if (!Ext)
4132       return false;
4133 
4134     // Try to move this ext out of the way of the addressing mode.
4135     // Ask for a method for doing so.
4136     TypePromotionHelper::Action TPH =
4137         TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
4138     if (!TPH)
4139       return false;
4140 
4141     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4142         TPT.getRestorationPoint();
4143     unsigned CreatedInstsCost = 0;
4144     unsigned ExtCost = !TLI.isExtFree(Ext);
4145     Value *PromotedOperand =
4146         TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
4147     // SExt has been moved away.
4148     // Thus either it will be rematched later in the recursive calls or it is
4149     // gone. Anyway, we must not fold it into the addressing mode at this point.
4150     // E.g.,
4151     // op = add opnd, 1
4152     // idx = ext op
4153     // addr = gep base, idx
4154     // is now:
4155     // promotedOpnd = ext opnd            <- no match here
4156     // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
4157     // addr = gep base, op                <- match
4158     if (MovedAway)
4159       *MovedAway = true;
4160 
4161     assert(PromotedOperand &&
4162            "TypePromotionHelper should have filtered out those cases");
4163 
4164     ExtAddrMode BackupAddrMode = AddrMode;
4165     unsigned OldSize = AddrModeInsts.size();
4166 
4167     if (!matchAddr(PromotedOperand, Depth) ||
4168         // The total of the new cost is equal to the cost of the created
4169         // instructions.
4170         // The total of the old cost is equal to the cost of the extension plus
4171         // what we have saved in the addressing mode.
4172         !isPromotionProfitable(CreatedInstsCost,
4173                                ExtCost + (AddrModeInsts.size() - OldSize),
4174                                PromotedOperand)) {
4175       AddrMode = BackupAddrMode;
4176       AddrModeInsts.resize(OldSize);
4177       DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
4178       TPT.rollback(LastKnownGood);
4179       return false;
4180     }
4181     return true;
4182   }
4183   }
4184   return false;
4185 }
4186 
4187 /// If we can, try to add the value of 'Addr' into the current addressing mode.
4188 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4189 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
4190 /// for the target.
4191 ///
4192 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
4193   // Start a transaction at this point that we will rollback if the matching
4194   // fails.
4195   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4196       TPT.getRestorationPoint();
4197   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
4198     // Fold in immediates if legal for the target.
4199     AddrMode.BaseOffs += CI->getSExtValue();
4200     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4201       return true;
4202     AddrMode.BaseOffs -= CI->getSExtValue();
4203   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
4204     // If this is a global variable, try to fold it into the addressing mode.
4205     if (!AddrMode.BaseGV) {
4206       AddrMode.BaseGV = GV;
4207       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4208         return true;
4209       AddrMode.BaseGV = nullptr;
4210     }
4211   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
4212     ExtAddrMode BackupAddrMode = AddrMode;
4213     unsigned OldSize = AddrModeInsts.size();
4214 
4215     // Check to see if it is possible to fold this operation.
4216     bool MovedAway = false;
4217     if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
4218       // This instruction may have been moved away. If so, there is nothing
4219       // to check here.
4220       if (MovedAway)
4221         return true;
4222       // Okay, it's possible to fold this.  Check to see if it is actually
4223       // *profitable* to do so.  We use a simple cost model to avoid increasing
4224       // register pressure too much.
4225       if (I->hasOneUse() ||
4226           isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
4227         AddrModeInsts.push_back(I);
4228         return true;
4229       }
4230 
4231       // It isn't profitable to do this, roll back.
4232       //cerr << "NOT FOLDING: " << *I;
4233       AddrMode = BackupAddrMode;
4234       AddrModeInsts.resize(OldSize);
4235       TPT.rollback(LastKnownGood);
4236     }
4237   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
4238     if (matchOperationAddr(CE, CE->getOpcode(), Depth))
4239       return true;
4240     TPT.rollback(LastKnownGood);
4241   } else if (isa<ConstantPointerNull>(Addr)) {
4242     // Null pointer gets folded without affecting the addressing mode.
4243     return true;
4244   }
4245 
4246   // Worse case, the target should support [reg] addressing modes. :)
4247   if (!AddrMode.HasBaseReg) {
4248     AddrMode.HasBaseReg = true;
4249     AddrMode.BaseReg = Addr;
4250     // Still check for legality in case the target supports [imm] but not [i+r].
4251     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4252       return true;
4253     AddrMode.HasBaseReg = false;
4254     AddrMode.BaseReg = nullptr;
4255   }
4256 
4257   // If the base register is already taken, see if we can do [r+r].
4258   if (AddrMode.Scale == 0) {
4259     AddrMode.Scale = 1;
4260     AddrMode.ScaledReg = Addr;
4261     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4262       return true;
4263     AddrMode.Scale = 0;
4264     AddrMode.ScaledReg = nullptr;
4265   }
4266   // Couldn't match.
4267   TPT.rollback(LastKnownGood);
4268   return false;
4269 }
4270 
4271 /// Check to see if all uses of OpVal by the specified inline asm call are due
4272 /// to memory operands. If so, return true, otherwise return false.
4273 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
4274                                     const TargetLowering &TLI,
4275                                     const TargetRegisterInfo &TRI) {
4276   const Function *F = CI->getFunction();
4277   TargetLowering::AsmOperandInfoVector TargetConstraints =
4278       TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI,
4279                             ImmutableCallSite(CI));
4280 
4281   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4282     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4283 
4284     // Compute the constraint code and ConstraintType to use.
4285     TLI.ComputeConstraintToUse(OpInfo, SDValue());
4286 
4287     // If this asm operand is our Value*, and if it isn't an indirect memory
4288     // operand, we can't fold it!
4289     if (OpInfo.CallOperandVal == OpVal &&
4290         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
4291          !OpInfo.isIndirect))
4292       return false;
4293   }
4294 
4295   return true;
4296 }
4297 
4298 // Max number of memory uses to look at before aborting the search to conserve
4299 // compile time.
4300 static constexpr int MaxMemoryUsesToScan = 20;
4301 
4302 /// Recursively walk all the uses of I until we find a memory use.
4303 /// If we find an obviously non-foldable instruction, return true.
4304 /// Add the ultimately found memory instructions to MemoryUses.
4305 static bool FindAllMemoryUses(
4306     Instruction *I,
4307     SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
4308     SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
4309     const TargetRegisterInfo &TRI, int SeenInsts = 0) {
4310   // If we already considered this instruction, we're done.
4311   if (!ConsideredInsts.insert(I).second)
4312     return false;
4313 
4314   // If this is an obviously unfoldable instruction, bail out.
4315   if (!MightBeFoldableInst(I))
4316     return true;
4317 
4318   const bool OptSize = I->getFunction()->optForSize();
4319 
4320   // Loop over all the uses, recursively processing them.
4321   for (Use &U : I->uses()) {
4322     // Conservatively return true if we're seeing a large number or a deep chain
4323     // of users. This avoids excessive compilation times in pathological cases.
4324     if (SeenInsts++ >= MaxMemoryUsesToScan)
4325       return true;
4326 
4327     Instruction *UserI = cast<Instruction>(U.getUser());
4328     if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
4329       MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
4330       continue;
4331     }
4332 
4333     if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
4334       unsigned opNo = U.getOperandNo();
4335       if (opNo != StoreInst::getPointerOperandIndex())
4336         return true; // Storing addr, not into addr.
4337       MemoryUses.push_back(std::make_pair(SI, opNo));
4338       continue;
4339     }
4340 
4341     if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
4342       unsigned opNo = U.getOperandNo();
4343       if (opNo != AtomicRMWInst::getPointerOperandIndex())
4344         return true; // Storing addr, not into addr.
4345       MemoryUses.push_back(std::make_pair(RMW, opNo));
4346       continue;
4347     }
4348 
4349     if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
4350       unsigned opNo = U.getOperandNo();
4351       if (opNo != AtomicCmpXchgInst::getPointerOperandIndex())
4352         return true; // Storing addr, not into addr.
4353       MemoryUses.push_back(std::make_pair(CmpX, opNo));
4354       continue;
4355     }
4356 
4357     if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
4358       // If this is a cold call, we can sink the addressing calculation into
4359       // the cold path.  See optimizeCallInst
4360       if (!OptSize && CI->hasFnAttr(Attribute::Cold))
4361         continue;
4362 
4363       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
4364       if (!IA) return true;
4365 
4366       // If this is a memory operand, we're cool, otherwise bail out.
4367       if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
4368         return true;
4369       continue;
4370     }
4371 
4372     if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI,
4373                           SeenInsts))
4374       return true;
4375   }
4376 
4377   return false;
4378 }
4379 
4380 /// Return true if Val is already known to be live at the use site that we're
4381 /// folding it into. If so, there is no cost to include it in the addressing
4382 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4383 /// instruction already.
4384 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
4385                                                    Value *KnownLive2) {
4386   // If Val is either of the known-live values, we know it is live!
4387   if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
4388     return true;
4389 
4390   // All values other than instructions and arguments (e.g. constants) are live.
4391   if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
4392 
4393   // If Val is a constant sized alloca in the entry block, it is live, this is
4394   // true because it is just a reference to the stack/frame pointer, which is
4395   // live for the whole function.
4396   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
4397     if (AI->isStaticAlloca())
4398       return true;
4399 
4400   // Check to see if this value is already used in the memory instruction's
4401   // block.  If so, it's already live into the block at the very least, so we
4402   // can reasonably fold it.
4403   return Val->isUsedInBasicBlock(MemoryInst->getParent());
4404 }
4405 
4406 /// It is possible for the addressing mode of the machine to fold the specified
4407 /// instruction into a load or store that ultimately uses it.
4408 /// However, the specified instruction has multiple uses.
4409 /// Given this, it may actually increase register pressure to fold it
4410 /// into the load. For example, consider this code:
4411 ///
4412 ///     X = ...
4413 ///     Y = X+1
4414 ///     use(Y)   -> nonload/store
4415 ///     Z = Y+1
4416 ///     load Z
4417 ///
4418 /// In this case, Y has multiple uses, and can be folded into the load of Z
4419 /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
4420 /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
4421 /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
4422 /// number of computations either.
4423 ///
4424 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
4425 /// X was live across 'load Z' for other reasons, we actually *would* want to
4426 /// fold the addressing mode in the Z case.  This would make Y die earlier.
4427 bool AddressingModeMatcher::
4428 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
4429                                      ExtAddrMode &AMAfter) {
4430   if (IgnoreProfitability) return true;
4431 
4432   // AMBefore is the addressing mode before this instruction was folded into it,
4433   // and AMAfter is the addressing mode after the instruction was folded.  Get
4434   // the set of registers referenced by AMAfter and subtract out those
4435   // referenced by AMBefore: this is the set of values which folding in this
4436   // address extends the lifetime of.
4437   //
4438   // Note that there are only two potential values being referenced here,
4439   // BaseReg and ScaleReg (global addresses are always available, as are any
4440   // folded immediates).
4441   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
4442 
4443   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
4444   // lifetime wasn't extended by adding this instruction.
4445   if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4446     BaseReg = nullptr;
4447   if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4448     ScaledReg = nullptr;
4449 
4450   // If folding this instruction (and it's subexprs) didn't extend any live
4451   // ranges, we're ok with it.
4452   if (!BaseReg && !ScaledReg)
4453     return true;
4454 
4455   // If all uses of this instruction can have the address mode sunk into them,
4456   // we can remove the addressing mode and effectively trade one live register
4457   // for another (at worst.)  In this context, folding an addressing mode into
4458   // the use is just a particularly nice way of sinking it.
4459   SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
4460   SmallPtrSet<Instruction*, 16> ConsideredInsts;
4461   if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI))
4462     return false;  // Has a non-memory, non-foldable use!
4463 
4464   // Now that we know that all uses of this instruction are part of a chain of
4465   // computation involving only operations that could theoretically be folded
4466   // into a memory use, loop over each of these memory operation uses and see
4467   // if they could  *actually* fold the instruction.  The assumption is that
4468   // addressing modes are cheap and that duplicating the computation involved
4469   // many times is worthwhile, even on a fastpath. For sinking candidates
4470   // (i.e. cold call sites), this serves as a way to prevent excessive code
4471   // growth since most architectures have some reasonable small and fast way to
4472   // compute an effective address.  (i.e LEA on x86)
4473   SmallVector<Instruction*, 32> MatchedAddrModeInsts;
4474   for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
4475     Instruction *User = MemoryUses[i].first;
4476     unsigned OpNo = MemoryUses[i].second;
4477 
4478     // Get the access type of this use.  If the use isn't a pointer, we don't
4479     // know what it accesses.
4480     Value *Address = User->getOperand(OpNo);
4481     PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
4482     if (!AddrTy)
4483       return false;
4484     Type *AddressAccessTy = AddrTy->getElementType();
4485     unsigned AS = AddrTy->getAddressSpace();
4486 
4487     // Do a match against the root of this address, ignoring profitability. This
4488     // will tell us if the addressing mode for the memory operation will
4489     // *actually* cover the shared instruction.
4490     ExtAddrMode Result;
4491     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4492         TPT.getRestorationPoint();
4493     AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI,
4494                                   AddressAccessTy, AS,
4495                                   MemoryInst, Result, InsertedInsts,
4496                                   PromotedInsts, TPT);
4497     Matcher.IgnoreProfitability = true;
4498     bool Success = Matcher.matchAddr(Address, 0);
4499     (void)Success; assert(Success && "Couldn't select *anything*?");
4500 
4501     // The match was to check the profitability, the changes made are not
4502     // part of the original matcher. Therefore, they should be dropped
4503     // otherwise the original matcher will not present the right state.
4504     TPT.rollback(LastKnownGood);
4505 
4506     // If the match didn't cover I, then it won't be shared by it.
4507     if (!is_contained(MatchedAddrModeInsts, I))
4508       return false;
4509 
4510     MatchedAddrModeInsts.clear();
4511   }
4512 
4513   return true;
4514 }
4515 
4516 /// Return true if the specified values are defined in a
4517 /// different basic block than BB.
4518 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
4519   if (Instruction *I = dyn_cast<Instruction>(V))
4520     return I->getParent() != BB;
4521   return false;
4522 }
4523 
4524 /// Sink addressing mode computation immediate before MemoryInst if doing so
4525 /// can be done without increasing register pressure.  The need for the
4526 /// register pressure constraint means this can end up being an all or nothing
4527 /// decision for all uses of the same addressing computation.
4528 ///
4529 /// Load and Store Instructions often have addressing modes that can do
4530 /// significant amounts of computation. As such, instruction selection will try
4531 /// to get the load or store to do as much computation as possible for the
4532 /// program. The problem is that isel can only see within a single block. As
4533 /// such, we sink as much legal addressing mode work into the block as possible.
4534 ///
4535 /// This method is used to optimize both load/store and inline asms with memory
4536 /// operands.  It's also used to sink addressing computations feeding into cold
4537 /// call sites into their (cold) basic block.
4538 ///
4539 /// The motivation for handling sinking into cold blocks is that doing so can
4540 /// both enable other address mode sinking (by satisfying the register pressure
4541 /// constraint above), and reduce register pressure globally (by removing the
4542 /// addressing mode computation from the fast path entirely.).
4543 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
4544                                         Type *AccessTy, unsigned AddrSpace) {
4545   Value *Repl = Addr;
4546 
4547   // Try to collapse single-value PHI nodes.  This is necessary to undo
4548   // unprofitable PRE transformations.
4549   SmallVector<Value*, 8> worklist;
4550   SmallPtrSet<Value*, 16> Visited;
4551   worklist.push_back(Addr);
4552 
4553   // Use a worklist to iteratively look through PHI and select nodes, and
4554   // ensure that the addressing mode obtained from the non-PHI/select roots of
4555   // the graph are compatible.
4556   bool PhiOrSelectSeen = false;
4557   SmallVector<Instruction*, 16> AddrModeInsts;
4558   AddressingModeCombiner AddrModes;
4559   TypePromotionTransaction TPT(RemovedInsts);
4560   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4561       TPT.getRestorationPoint();
4562   while (!worklist.empty()) {
4563     Value *V = worklist.back();
4564     worklist.pop_back();
4565 
4566     // We allow traversing cyclic Phi nodes.
4567     // In case of success after this loop we ensure that traversing through
4568     // Phi nodes ends up with all cases to compute address of the form
4569     //    BaseGV + Base + Scale * Index + Offset
4570     // where Scale and Offset are constans and BaseGV, Base and Index
4571     // are exactly the same Values in all cases.
4572     // It means that BaseGV, Scale and Offset dominate our memory instruction
4573     // and have the same value as they had in address computation represented
4574     // as Phi. So we can safely sink address computation to memory instruction.
4575     if (!Visited.insert(V).second)
4576       continue;
4577 
4578     // For a PHI node, push all of its incoming values.
4579     if (PHINode *P = dyn_cast<PHINode>(V)) {
4580       for (Value *IncValue : P->incoming_values())
4581         worklist.push_back(IncValue);
4582       PhiOrSelectSeen = true;
4583       continue;
4584     }
4585     // Similar for select.
4586     if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
4587       worklist.push_back(SI->getFalseValue());
4588       worklist.push_back(SI->getTrueValue());
4589       PhiOrSelectSeen = true;
4590       continue;
4591     }
4592 
4593     // For non-PHIs, determine the addressing mode being computed.  Note that
4594     // the result may differ depending on what other uses our candidate
4595     // addressing instructions might have.
4596     AddrModeInsts.clear();
4597     ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
4598         V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI,
4599         InsertedInsts, PromotedInsts, TPT);
4600     NewAddrMode.OriginalValue = V;
4601 
4602     if (!AddrModes.addNewAddrMode(NewAddrMode))
4603       break;
4604   }
4605 
4606   // Try to combine the AddrModes we've collected. If we couldn't collect any,
4607   // or we have multiple but either couldn't combine them or combining them
4608   // wouldn't do anything useful, bail out now.
4609   if (!AddrModes.combineAddrModes()) {
4610     TPT.rollback(LastKnownGood);
4611     return false;
4612   }
4613   TPT.commit();
4614 
4615   // Get the combined AddrMode (or the only AddrMode, if we only had one).
4616   ExtAddrMode AddrMode = AddrModes.getAddrMode();
4617 
4618   // If all the instructions matched are already in this BB, don't do anything.
4619   // If we saw a Phi node then it is not local definitely, and if we saw a select
4620   // then we want to push the address calculation past it even if it's already
4621   // in this BB.
4622   if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
4623         return IsNonLocalValue(V, MemoryInst->getParent());
4624                   })) {
4625     DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode << "\n");
4626     return false;
4627   }
4628 
4629   // Insert this computation right after this user.  Since our caller is
4630   // scanning from the top of the BB to the bottom, reuse of the expr are
4631   // guaranteed to happen later.
4632   IRBuilder<> Builder(MemoryInst);
4633 
4634   // Now that we determined the addressing expression we want to use and know
4635   // that we have to sink it into this block.  Check to see if we have already
4636   // done this for some other load/store instr in this block.  If so, reuse the
4637   // computation.
4638   Value *&SunkAddr = SunkAddrs[Addr];
4639   if (SunkAddr) {
4640     DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
4641                  << *MemoryInst << "\n");
4642     if (SunkAddr->getType() != Addr->getType())
4643       SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4644   } else if (AddrSinkUsingGEPs ||
4645              (!AddrSinkUsingGEPs.getNumOccurrences() && TM &&
4646               SubtargetInfo->useAA())) {
4647     // By default, we use the GEP-based method when AA is used later. This
4648     // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
4649     DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
4650                  << *MemoryInst << "\n");
4651     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4652     Value *ResultPtr = nullptr, *ResultIndex = nullptr;
4653 
4654     // First, find the pointer.
4655     if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
4656       ResultPtr = AddrMode.BaseReg;
4657       AddrMode.BaseReg = nullptr;
4658     }
4659 
4660     if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
4661       // We can't add more than one pointer together, nor can we scale a
4662       // pointer (both of which seem meaningless).
4663       if (ResultPtr || AddrMode.Scale != 1)
4664         return false;
4665 
4666       ResultPtr = AddrMode.ScaledReg;
4667       AddrMode.Scale = 0;
4668     }
4669 
4670     // It is only safe to sign extend the BaseReg if we know that the math
4671     // required to create it did not overflow before we extend it. Since
4672     // the original IR value was tossed in favor of a constant back when
4673     // the AddrMode was created we need to bail out gracefully if widths
4674     // do not match instead of extending it.
4675     //
4676     // (See below for code to add the scale.)
4677     if (AddrMode.Scale) {
4678       Type *ScaledRegTy = AddrMode.ScaledReg->getType();
4679       if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
4680           cast<IntegerType>(ScaledRegTy)->getBitWidth())
4681         return false;
4682     }
4683 
4684     if (AddrMode.BaseGV) {
4685       if (ResultPtr)
4686         return false;
4687 
4688       ResultPtr = AddrMode.BaseGV;
4689     }
4690 
4691     // If the real base value actually came from an inttoptr, then the matcher
4692     // will look through it and provide only the integer value. In that case,
4693     // use it here.
4694     if (!DL->isNonIntegralPointerType(Addr->getType())) {
4695       if (!ResultPtr && AddrMode.BaseReg) {
4696         ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
4697                                            "sunkaddr");
4698         AddrMode.BaseReg = nullptr;
4699       } else if (!ResultPtr && AddrMode.Scale == 1) {
4700         ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
4701                                            "sunkaddr");
4702         AddrMode.Scale = 0;
4703       }
4704     }
4705 
4706     if (!ResultPtr &&
4707         !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
4708       SunkAddr = Constant::getNullValue(Addr->getType());
4709     } else if (!ResultPtr) {
4710       return false;
4711     } else {
4712       Type *I8PtrTy =
4713           Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
4714       Type *I8Ty = Builder.getInt8Ty();
4715 
4716       // Start with the base register. Do this first so that subsequent address
4717       // matching finds it last, which will prevent it from trying to match it
4718       // as the scaled value in case it happens to be a mul. That would be
4719       // problematic if we've sunk a different mul for the scale, because then
4720       // we'd end up sinking both muls.
4721       if (AddrMode.BaseReg) {
4722         Value *V = AddrMode.BaseReg;
4723         if (V->getType() != IntPtrTy)
4724           V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4725 
4726         ResultIndex = V;
4727       }
4728 
4729       // Add the scale value.
4730       if (AddrMode.Scale) {
4731         Value *V = AddrMode.ScaledReg;
4732         if (V->getType() == IntPtrTy) {
4733           // done.
4734         } else {
4735           assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
4736                  cast<IntegerType>(V->getType())->getBitWidth() &&
4737                  "We can't transform if ScaledReg is too narrow");
4738           V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4739         }
4740 
4741         if (AddrMode.Scale != 1)
4742           V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4743                                 "sunkaddr");
4744         if (ResultIndex)
4745           ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
4746         else
4747           ResultIndex = V;
4748       }
4749 
4750       // Add in the Base Offset if present.
4751       if (AddrMode.BaseOffs) {
4752         Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
4753         if (ResultIndex) {
4754           // We need to add this separately from the scale above to help with
4755           // SDAG consecutive load/store merging.
4756           if (ResultPtr->getType() != I8PtrTy)
4757             ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4758           ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4759         }
4760 
4761         ResultIndex = V;
4762       }
4763 
4764       if (!ResultIndex) {
4765         SunkAddr = ResultPtr;
4766       } else {
4767         if (ResultPtr->getType() != I8PtrTy)
4768           ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4769         SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4770       }
4771 
4772       if (SunkAddr->getType() != Addr->getType())
4773         SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4774     }
4775   } else {
4776     // We'd require a ptrtoint/inttoptr down the line, which we can't do for
4777     // non-integral pointers, so in that case bail out now.
4778     Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
4779     Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
4780     PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
4781     PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
4782     if (DL->isNonIntegralPointerType(Addr->getType()) ||
4783         (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
4784         (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
4785         (AddrMode.BaseGV &&
4786          DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
4787       return false;
4788 
4789     DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
4790                  << *MemoryInst << "\n");
4791     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4792     Value *Result = nullptr;
4793 
4794     // Start with the base register. Do this first so that subsequent address
4795     // matching finds it last, which will prevent it from trying to match it
4796     // as the scaled value in case it happens to be a mul. That would be
4797     // problematic if we've sunk a different mul for the scale, because then
4798     // we'd end up sinking both muls.
4799     if (AddrMode.BaseReg) {
4800       Value *V = AddrMode.BaseReg;
4801       if (V->getType()->isPointerTy())
4802         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4803       if (V->getType() != IntPtrTy)
4804         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4805       Result = V;
4806     }
4807 
4808     // Add the scale value.
4809     if (AddrMode.Scale) {
4810       Value *V = AddrMode.ScaledReg;
4811       if (V->getType() == IntPtrTy) {
4812         // done.
4813       } else if (V->getType()->isPointerTy()) {
4814         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4815       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
4816                  cast<IntegerType>(V->getType())->getBitWidth()) {
4817         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4818       } else {
4819         // It is only safe to sign extend the BaseReg if we know that the math
4820         // required to create it did not overflow before we extend it. Since
4821         // the original IR value was tossed in favor of a constant back when
4822         // the AddrMode was created we need to bail out gracefully if widths
4823         // do not match instead of extending it.
4824         Instruction *I = dyn_cast_or_null<Instruction>(Result);
4825         if (I && (Result != AddrMode.BaseReg))
4826           I->eraseFromParent();
4827         return false;
4828       }
4829       if (AddrMode.Scale != 1)
4830         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4831                               "sunkaddr");
4832       if (Result)
4833         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4834       else
4835         Result = V;
4836     }
4837 
4838     // Add in the BaseGV if present.
4839     if (AddrMode.BaseGV) {
4840       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
4841       if (Result)
4842         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4843       else
4844         Result = V;
4845     }
4846 
4847     // Add in the Base Offset if present.
4848     if (AddrMode.BaseOffs) {
4849       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
4850       if (Result)
4851         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4852       else
4853         Result = V;
4854     }
4855 
4856     if (!Result)
4857       SunkAddr = Constant::getNullValue(Addr->getType());
4858     else
4859       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
4860   }
4861 
4862   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
4863 
4864   // If we have no uses, recursively delete the value and all dead instructions
4865   // using it.
4866   if (Repl->use_empty()) {
4867     // This can cause recursive deletion, which can invalidate our iterator.
4868     // Use a WeakTrackingVH to hold onto it in case this happens.
4869     Value *CurValue = &*CurInstIterator;
4870     WeakTrackingVH IterHandle(CurValue);
4871     BasicBlock *BB = CurInstIterator->getParent();
4872 
4873     RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
4874 
4875     if (IterHandle != CurValue) {
4876       // If the iterator instruction was recursively deleted, start over at the
4877       // start of the block.
4878       CurInstIterator = BB->begin();
4879       SunkAddrs.clear();
4880     }
4881   }
4882   ++NumMemoryInsts;
4883   return true;
4884 }
4885 
4886 /// If there are any memory operands, use OptimizeMemoryInst to sink their
4887 /// address computing into the block when possible / profitable.
4888 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
4889   bool MadeChange = false;
4890 
4891   const TargetRegisterInfo *TRI =
4892       TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
4893   TargetLowering::AsmOperandInfoVector TargetConstraints =
4894       TLI->ParseConstraints(*DL, TRI, CS);
4895   unsigned ArgNo = 0;
4896   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4897     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4898 
4899     // Compute the constraint code and ConstraintType to use.
4900     TLI->ComputeConstraintToUse(OpInfo, SDValue());
4901 
4902     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
4903         OpInfo.isIndirect) {
4904       Value *OpVal = CS->getArgOperand(ArgNo++);
4905       MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
4906     } else if (OpInfo.Type == InlineAsm::isInput)
4907       ArgNo++;
4908   }
4909 
4910   return MadeChange;
4911 }
4912 
4913 /// \brief Check if all the uses of \p Val are equivalent (or free) zero or
4914 /// sign extensions.
4915 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
4916   assert(!Val->use_empty() && "Input must have at least one use");
4917   const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
4918   bool IsSExt = isa<SExtInst>(FirstUser);
4919   Type *ExtTy = FirstUser->getType();
4920   for (const User *U : Val->users()) {
4921     const Instruction *UI = cast<Instruction>(U);
4922     if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
4923       return false;
4924     Type *CurTy = UI->getType();
4925     // Same input and output types: Same instruction after CSE.
4926     if (CurTy == ExtTy)
4927       continue;
4928 
4929     // If IsSExt is true, we are in this situation:
4930     // a = Val
4931     // b = sext ty1 a to ty2
4932     // c = sext ty1 a to ty3
4933     // Assuming ty2 is shorter than ty3, this could be turned into:
4934     // a = Val
4935     // b = sext ty1 a to ty2
4936     // c = sext ty2 b to ty3
4937     // However, the last sext is not free.
4938     if (IsSExt)
4939       return false;
4940 
4941     // This is a ZExt, maybe this is free to extend from one type to another.
4942     // In that case, we would not account for a different use.
4943     Type *NarrowTy;
4944     Type *LargeTy;
4945     if (ExtTy->getScalarType()->getIntegerBitWidth() >
4946         CurTy->getScalarType()->getIntegerBitWidth()) {
4947       NarrowTy = CurTy;
4948       LargeTy = ExtTy;
4949     } else {
4950       NarrowTy = ExtTy;
4951       LargeTy = CurTy;
4952     }
4953 
4954     if (!TLI.isZExtFree(NarrowTy, LargeTy))
4955       return false;
4956   }
4957   // All uses are the same or can be derived from one another for free.
4958   return true;
4959 }
4960 
4961 /// \brief Try to speculatively promote extensions in \p Exts and continue
4962 /// promoting through newly promoted operands recursively as far as doing so is
4963 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
4964 /// When some promotion happened, \p TPT contains the proper state to revert
4965 /// them.
4966 ///
4967 /// \return true if some promotion happened, false otherwise.
4968 bool CodeGenPrepare::tryToPromoteExts(
4969     TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
4970     SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
4971     unsigned CreatedInstsCost) {
4972   bool Promoted = false;
4973 
4974   // Iterate over all the extensions to try to promote them.
4975   for (auto I : Exts) {
4976     // Early check if we directly have ext(load).
4977     if (isa<LoadInst>(I->getOperand(0))) {
4978       ProfitablyMovedExts.push_back(I);
4979       continue;
4980     }
4981 
4982     // Check whether or not we want to do any promotion.  The reason we have
4983     // this check inside the for loop is to catch the case where an extension
4984     // is directly fed by a load because in such case the extension can be moved
4985     // up without any promotion on its operands.
4986     if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion)
4987       return false;
4988 
4989     // Get the action to perform the promotion.
4990     TypePromotionHelper::Action TPH =
4991         TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
4992     // Check if we can promote.
4993     if (!TPH) {
4994       // Save the current extension as we cannot move up through its operand.
4995       ProfitablyMovedExts.push_back(I);
4996       continue;
4997     }
4998 
4999     // Save the current state.
5000     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5001         TPT.getRestorationPoint();
5002     SmallVector<Instruction *, 4> NewExts;
5003     unsigned NewCreatedInstsCost = 0;
5004     unsigned ExtCost = !TLI->isExtFree(I);
5005     // Promote.
5006     Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
5007                              &NewExts, nullptr, *TLI);
5008     assert(PromotedVal &&
5009            "TypePromotionHelper should have filtered out those cases");
5010 
5011     // We would be able to merge only one extension in a load.
5012     // Therefore, if we have more than 1 new extension we heuristically
5013     // cut this search path, because it means we degrade the code quality.
5014     // With exactly 2, the transformation is neutral, because we will merge
5015     // one extension but leave one. However, we optimistically keep going,
5016     // because the new extension may be removed too.
5017     long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
5018     // FIXME: It would be possible to propagate a negative value instead of
5019     // conservatively ceiling it to 0.
5020     TotalCreatedInstsCost =
5021         std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
5022     if (!StressExtLdPromotion &&
5023         (TotalCreatedInstsCost > 1 ||
5024          !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
5025       // This promotion is not profitable, rollback to the previous state, and
5026       // save the current extension in ProfitablyMovedExts as the latest
5027       // speculative promotion turned out to be unprofitable.
5028       TPT.rollback(LastKnownGood);
5029       ProfitablyMovedExts.push_back(I);
5030       continue;
5031     }
5032     // Continue promoting NewExts as far as doing so is profitable.
5033     SmallVector<Instruction *, 2> NewlyMovedExts;
5034     (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
5035     bool NewPromoted = false;
5036     for (auto ExtInst : NewlyMovedExts) {
5037       Instruction *MovedExt = cast<Instruction>(ExtInst);
5038       Value *ExtOperand = MovedExt->getOperand(0);
5039       // If we have reached to a load, we need this extra profitability check
5040       // as it could potentially be merged into an ext(load).
5041       if (isa<LoadInst>(ExtOperand) &&
5042           !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
5043             (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
5044         continue;
5045 
5046       ProfitablyMovedExts.push_back(MovedExt);
5047       NewPromoted = true;
5048     }
5049 
5050     // If none of speculative promotions for NewExts is profitable, rollback
5051     // and save the current extension (I) as the last profitable extension.
5052     if (!NewPromoted) {
5053       TPT.rollback(LastKnownGood);
5054       ProfitablyMovedExts.push_back(I);
5055       continue;
5056     }
5057     // The promotion is profitable.
5058     Promoted = true;
5059   }
5060   return Promoted;
5061 }
5062 
5063 /// Merging redundant sexts when one is dominating the other.
5064 bool CodeGenPrepare::mergeSExts(Function &F) {
5065   DominatorTree DT(F);
5066   bool Changed = false;
5067   for (auto &Entry : ValToSExtendedUses) {
5068     SExts &Insts = Entry.second;
5069     SExts CurPts;
5070     for (Instruction *Inst : Insts) {
5071       if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
5072           Inst->getOperand(0) != Entry.first)
5073         continue;
5074       bool inserted = false;
5075       for (auto &Pt : CurPts) {
5076         if (DT.dominates(Inst, Pt)) {
5077           Pt->replaceAllUsesWith(Inst);
5078           RemovedInsts.insert(Pt);
5079           Pt->removeFromParent();
5080           Pt = Inst;
5081           inserted = true;
5082           Changed = true;
5083           break;
5084         }
5085         if (!DT.dominates(Pt, Inst))
5086           // Give up if we need to merge in a common dominator as the
5087           // expermients show it is not profitable.
5088           continue;
5089         Inst->replaceAllUsesWith(Pt);
5090         RemovedInsts.insert(Inst);
5091         Inst->removeFromParent();
5092         inserted = true;
5093         Changed = true;
5094         break;
5095       }
5096       if (!inserted)
5097         CurPts.push_back(Inst);
5098     }
5099   }
5100   return Changed;
5101 }
5102 
5103 /// Return true, if an ext(load) can be formed from an extension in
5104 /// \p MovedExts.
5105 bool CodeGenPrepare::canFormExtLd(
5106     const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
5107     Instruction *&Inst, bool HasPromoted) {
5108   for (auto *MovedExtInst : MovedExts) {
5109     if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
5110       LI = cast<LoadInst>(MovedExtInst->getOperand(0));
5111       Inst = MovedExtInst;
5112       break;
5113     }
5114   }
5115   if (!LI)
5116     return false;
5117 
5118   // If they're already in the same block, there's nothing to do.
5119   // Make the cheap checks first if we did not promote.
5120   // If we promoted, we need to check if it is indeed profitable.
5121   if (!HasPromoted && LI->getParent() == Inst->getParent())
5122     return false;
5123 
5124   return TLI->isExtLoad(LI, Inst, *DL);
5125 }
5126 
5127 /// Move a zext or sext fed by a load into the same basic block as the load,
5128 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
5129 /// extend into the load.
5130 ///
5131 /// E.g.,
5132 /// \code
5133 /// %ld = load i32* %addr
5134 /// %add = add nuw i32 %ld, 4
5135 /// %zext = zext i32 %add to i64
5136 // \endcode
5137 /// =>
5138 /// \code
5139 /// %ld = load i32* %addr
5140 /// %zext = zext i32 %ld to i64
5141 /// %add = add nuw i64 %zext, 4
5142 /// \encode
5143 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
5144 /// allow us to match zext(load i32*) to i64.
5145 ///
5146 /// Also, try to promote the computations used to obtain a sign extended
5147 /// value used into memory accesses.
5148 /// E.g.,
5149 /// \code
5150 /// a = add nsw i32 b, 3
5151 /// d = sext i32 a to i64
5152 /// e = getelementptr ..., i64 d
5153 /// \endcode
5154 /// =>
5155 /// \code
5156 /// f = sext i32 b to i64
5157 /// a = add nsw i64 f, 3
5158 /// e = getelementptr ..., i64 a
5159 /// \endcode
5160 ///
5161 /// \p Inst[in/out] the extension may be modified during the process if some
5162 /// promotions apply.
5163 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
5164   // ExtLoad formation and address type promotion infrastructure requires TLI to
5165   // be effective.
5166   if (!TLI)
5167     return false;
5168 
5169   bool AllowPromotionWithoutCommonHeader = false;
5170   /// See if it is an interesting sext operations for the address type
5171   /// promotion before trying to promote it, e.g., the ones with the right
5172   /// type and used in memory accesses.
5173   bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
5174       *Inst, AllowPromotionWithoutCommonHeader);
5175   TypePromotionTransaction TPT(RemovedInsts);
5176   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5177       TPT.getRestorationPoint();
5178   SmallVector<Instruction *, 1> Exts;
5179   SmallVector<Instruction *, 2> SpeculativelyMovedExts;
5180   Exts.push_back(Inst);
5181 
5182   bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
5183 
5184   // Look for a load being extended.
5185   LoadInst *LI = nullptr;
5186   Instruction *ExtFedByLoad;
5187 
5188   // Try to promote a chain of computation if it allows to form an extended
5189   // load.
5190   if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
5191     assert(LI && ExtFedByLoad && "Expect a valid load and extension");
5192     TPT.commit();
5193     // Move the extend into the same block as the load
5194     ExtFedByLoad->moveAfter(LI);
5195     // CGP does not check if the zext would be speculatively executed when moved
5196     // to the same basic block as the load. Preserving its original location
5197     // would pessimize the debugging experience, as well as negatively impact
5198     // the quality of sample pgo. We don't want to use "line 0" as that has a
5199     // size cost in the line-table section and logically the zext can be seen as
5200     // part of the load. Therefore we conservatively reuse the same debug
5201     // location for the load and the zext.
5202     ExtFedByLoad->setDebugLoc(LI->getDebugLoc());
5203     ++NumExtsMoved;
5204     Inst = ExtFedByLoad;
5205     return true;
5206   }
5207 
5208   // Continue promoting SExts if known as considerable depending on targets.
5209   if (ATPConsiderable &&
5210       performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
5211                                   HasPromoted, TPT, SpeculativelyMovedExts))
5212     return true;
5213 
5214   TPT.rollback(LastKnownGood);
5215   return false;
5216 }
5217 
5218 // Perform address type promotion if doing so is profitable.
5219 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
5220 // instructions that sign extended the same initial value. However, if
5221 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
5222 // extension is just profitable.
5223 bool CodeGenPrepare::performAddressTypePromotion(
5224     Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
5225     bool HasPromoted, TypePromotionTransaction &TPT,
5226     SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
5227   bool Promoted = false;
5228   SmallPtrSet<Instruction *, 1> UnhandledExts;
5229   bool AllSeenFirst = true;
5230   for (auto I : SpeculativelyMovedExts) {
5231     Value *HeadOfChain = I->getOperand(0);
5232     DenseMap<Value *, Instruction *>::iterator AlreadySeen =
5233         SeenChainsForSExt.find(HeadOfChain);
5234     // If there is an unhandled SExt which has the same header, try to promote
5235     // it as well.
5236     if (AlreadySeen != SeenChainsForSExt.end()) {
5237       if (AlreadySeen->second != nullptr)
5238         UnhandledExts.insert(AlreadySeen->second);
5239       AllSeenFirst = false;
5240     }
5241   }
5242 
5243   if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
5244                         SpeculativelyMovedExts.size() == 1)) {
5245     TPT.commit();
5246     if (HasPromoted)
5247       Promoted = true;
5248     for (auto I : SpeculativelyMovedExts) {
5249       Value *HeadOfChain = I->getOperand(0);
5250       SeenChainsForSExt[HeadOfChain] = nullptr;
5251       ValToSExtendedUses[HeadOfChain].push_back(I);
5252     }
5253     // Update Inst as promotion happen.
5254     Inst = SpeculativelyMovedExts.pop_back_val();
5255   } else {
5256     // This is the first chain visited from the header, keep the current chain
5257     // as unhandled. Defer to promote this until we encounter another SExt
5258     // chain derived from the same header.
5259     for (auto I : SpeculativelyMovedExts) {
5260       Value *HeadOfChain = I->getOperand(0);
5261       SeenChainsForSExt[HeadOfChain] = Inst;
5262     }
5263     return false;
5264   }
5265 
5266   if (!AllSeenFirst && !UnhandledExts.empty())
5267     for (auto VisitedSExt : UnhandledExts) {
5268       if (RemovedInsts.count(VisitedSExt))
5269         continue;
5270       TypePromotionTransaction TPT(RemovedInsts);
5271       SmallVector<Instruction *, 1> Exts;
5272       SmallVector<Instruction *, 2> Chains;
5273       Exts.push_back(VisitedSExt);
5274       bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
5275       TPT.commit();
5276       if (HasPromoted)
5277         Promoted = true;
5278       for (auto I : Chains) {
5279         Value *HeadOfChain = I->getOperand(0);
5280         // Mark this as handled.
5281         SeenChainsForSExt[HeadOfChain] = nullptr;
5282         ValToSExtendedUses[HeadOfChain].push_back(I);
5283       }
5284     }
5285   return Promoted;
5286 }
5287 
5288 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
5289   BasicBlock *DefBB = I->getParent();
5290 
5291   // If the result of a {s|z}ext and its source are both live out, rewrite all
5292   // other uses of the source with result of extension.
5293   Value *Src = I->getOperand(0);
5294   if (Src->hasOneUse())
5295     return false;
5296 
5297   // Only do this xform if truncating is free.
5298   if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
5299     return false;
5300 
5301   // Only safe to perform the optimization if the source is also defined in
5302   // this block.
5303   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
5304     return false;
5305 
5306   bool DefIsLiveOut = false;
5307   for (User *U : I->users()) {
5308     Instruction *UI = cast<Instruction>(U);
5309 
5310     // Figure out which BB this ext is used in.
5311     BasicBlock *UserBB = UI->getParent();
5312     if (UserBB == DefBB) continue;
5313     DefIsLiveOut = true;
5314     break;
5315   }
5316   if (!DefIsLiveOut)
5317     return false;
5318 
5319   // Make sure none of the uses are PHI nodes.
5320   for (User *U : Src->users()) {
5321     Instruction *UI = cast<Instruction>(U);
5322     BasicBlock *UserBB = UI->getParent();
5323     if (UserBB == DefBB) continue;
5324     // Be conservative. We don't want this xform to end up introducing
5325     // reloads just before load / store instructions.
5326     if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
5327       return false;
5328   }
5329 
5330   // InsertedTruncs - Only insert one trunc in each block once.
5331   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
5332 
5333   bool MadeChange = false;
5334   for (Use &U : Src->uses()) {
5335     Instruction *User = cast<Instruction>(U.getUser());
5336 
5337     // Figure out which BB this ext is used in.
5338     BasicBlock *UserBB = User->getParent();
5339     if (UserBB == DefBB) continue;
5340 
5341     // Both src and def are live in this block. Rewrite the use.
5342     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
5343 
5344     if (!InsertedTrunc) {
5345       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5346       assert(InsertPt != UserBB->end());
5347       InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
5348       InsertedInsts.insert(InsertedTrunc);
5349     }
5350 
5351     // Replace a use of the {s|z}ext source with a use of the result.
5352     U = InsertedTrunc;
5353     ++NumExtUses;
5354     MadeChange = true;
5355   }
5356 
5357   return MadeChange;
5358 }
5359 
5360 // Find loads whose uses only use some of the loaded value's bits.  Add an "and"
5361 // just after the load if the target can fold this into one extload instruction,
5362 // with the hope of eliminating some of the other later "and" instructions using
5363 // the loaded value.  "and"s that are made trivially redundant by the insertion
5364 // of the new "and" are removed by this function, while others (e.g. those whose
5365 // path from the load goes through a phi) are left for isel to potentially
5366 // remove.
5367 //
5368 // For example:
5369 //
5370 // b0:
5371 //   x = load i32
5372 //   ...
5373 // b1:
5374 //   y = and x, 0xff
5375 //   z = use y
5376 //
5377 // becomes:
5378 //
5379 // b0:
5380 //   x = load i32
5381 //   x' = and x, 0xff
5382 //   ...
5383 // b1:
5384 //   z = use x'
5385 //
5386 // whereas:
5387 //
5388 // b0:
5389 //   x1 = load i32
5390 //   ...
5391 // b1:
5392 //   x2 = load i32
5393 //   ...
5394 // b2:
5395 //   x = phi x1, x2
5396 //   y = and x, 0xff
5397 //
5398 // becomes (after a call to optimizeLoadExt for each load):
5399 //
5400 // b0:
5401 //   x1 = load i32
5402 //   x1' = and x1, 0xff
5403 //   ...
5404 // b1:
5405 //   x2 = load i32
5406 //   x2' = and x2, 0xff
5407 //   ...
5408 // b2:
5409 //   x = phi x1', x2'
5410 //   y = and x, 0xff
5411 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
5412   if (!Load->isSimple() ||
5413       !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy()))
5414     return false;
5415 
5416   // Skip loads we've already transformed.
5417   if (Load->hasOneUse() &&
5418       InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
5419     return false;
5420 
5421   // Look at all uses of Load, looking through phis, to determine how many bits
5422   // of the loaded value are needed.
5423   SmallVector<Instruction *, 8> WorkList;
5424   SmallPtrSet<Instruction *, 16> Visited;
5425   SmallVector<Instruction *, 8> AndsToMaybeRemove;
5426   for (auto *U : Load->users())
5427     WorkList.push_back(cast<Instruction>(U));
5428 
5429   EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
5430   unsigned BitWidth = LoadResultVT.getSizeInBits();
5431   APInt DemandBits(BitWidth, 0);
5432   APInt WidestAndBits(BitWidth, 0);
5433 
5434   while (!WorkList.empty()) {
5435     Instruction *I = WorkList.back();
5436     WorkList.pop_back();
5437 
5438     // Break use-def graph loops.
5439     if (!Visited.insert(I).second)
5440       continue;
5441 
5442     // For a PHI node, push all of its users.
5443     if (auto *Phi = dyn_cast<PHINode>(I)) {
5444       for (auto *U : Phi->users())
5445         WorkList.push_back(cast<Instruction>(U));
5446       continue;
5447     }
5448 
5449     switch (I->getOpcode()) {
5450     case Instruction::And: {
5451       auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
5452       if (!AndC)
5453         return false;
5454       APInt AndBits = AndC->getValue();
5455       DemandBits |= AndBits;
5456       // Keep track of the widest and mask we see.
5457       if (AndBits.ugt(WidestAndBits))
5458         WidestAndBits = AndBits;
5459       if (AndBits == WidestAndBits && I->getOperand(0) == Load)
5460         AndsToMaybeRemove.push_back(I);
5461       break;
5462     }
5463 
5464     case Instruction::Shl: {
5465       auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
5466       if (!ShlC)
5467         return false;
5468       uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
5469       DemandBits.setLowBits(BitWidth - ShiftAmt);
5470       break;
5471     }
5472 
5473     case Instruction::Trunc: {
5474       EVT TruncVT = TLI->getValueType(*DL, I->getType());
5475       unsigned TruncBitWidth = TruncVT.getSizeInBits();
5476       DemandBits.setLowBits(TruncBitWidth);
5477       break;
5478     }
5479 
5480     default:
5481       return false;
5482     }
5483   }
5484 
5485   uint32_t ActiveBits = DemandBits.getActiveBits();
5486   // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
5487   // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
5488   // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
5489   // (and (load x) 1) is not matched as a single instruction, rather as a LDR
5490   // followed by an AND.
5491   // TODO: Look into removing this restriction by fixing backends to either
5492   // return false for isLoadExtLegal for i1 or have them select this pattern to
5493   // a single instruction.
5494   //
5495   // Also avoid hoisting if we didn't see any ands with the exact DemandBits
5496   // mask, since these are the only ands that will be removed by isel.
5497   if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
5498       WidestAndBits != DemandBits)
5499     return false;
5500 
5501   LLVMContext &Ctx = Load->getType()->getContext();
5502   Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
5503   EVT TruncVT = TLI->getValueType(*DL, TruncTy);
5504 
5505   // Reject cases that won't be matched as extloads.
5506   if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
5507       !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
5508     return false;
5509 
5510   IRBuilder<> Builder(Load->getNextNode());
5511   auto *NewAnd = dyn_cast<Instruction>(
5512       Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
5513   // Mark this instruction as "inserted by CGP", so that other
5514   // optimizations don't touch it.
5515   InsertedInsts.insert(NewAnd);
5516 
5517   // Replace all uses of load with new and (except for the use of load in the
5518   // new and itself).
5519   Load->replaceAllUsesWith(NewAnd);
5520   NewAnd->setOperand(0, Load);
5521 
5522   // Remove any and instructions that are now redundant.
5523   for (auto *And : AndsToMaybeRemove)
5524     // Check that the and mask is the same as the one we decided to put on the
5525     // new and.
5526     if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
5527       And->replaceAllUsesWith(NewAnd);
5528       if (&*CurInstIterator == And)
5529         CurInstIterator = std::next(And->getIterator());
5530       And->eraseFromParent();
5531       ++NumAndUses;
5532     }
5533 
5534   ++NumAndsAdded;
5535   return true;
5536 }
5537 
5538 /// Check if V (an operand of a select instruction) is an expensive instruction
5539 /// that is only used once.
5540 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
5541   auto *I = dyn_cast<Instruction>(V);
5542   // If it's safe to speculatively execute, then it should not have side
5543   // effects; therefore, it's safe to sink and possibly *not* execute.
5544   return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
5545          TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive;
5546 }
5547 
5548 /// Returns true if a SelectInst should be turned into an explicit branch.
5549 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
5550                                                 const TargetLowering *TLI,
5551                                                 SelectInst *SI) {
5552   // If even a predictable select is cheap, then a branch can't be cheaper.
5553   if (!TLI->isPredictableSelectExpensive())
5554     return false;
5555 
5556   // FIXME: This should use the same heuristics as IfConversion to determine
5557   // whether a select is better represented as a branch.
5558 
5559   // If metadata tells us that the select condition is obviously predictable,
5560   // then we want to replace the select with a branch.
5561   uint64_t TrueWeight, FalseWeight;
5562   if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
5563     uint64_t Max = std::max(TrueWeight, FalseWeight);
5564     uint64_t Sum = TrueWeight + FalseWeight;
5565     if (Sum != 0) {
5566       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
5567       if (Probability > TLI->getPredictableBranchThreshold())
5568         return true;
5569     }
5570   }
5571 
5572   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
5573 
5574   // If a branch is predictable, an out-of-order CPU can avoid blocking on its
5575   // comparison condition. If the compare has more than one use, there's
5576   // probably another cmov or setcc around, so it's not worth emitting a branch.
5577   if (!Cmp || !Cmp->hasOneUse())
5578     return false;
5579 
5580   // If either operand of the select is expensive and only needed on one side
5581   // of the select, we should form a branch.
5582   if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
5583       sinkSelectOperand(TTI, SI->getFalseValue()))
5584     return true;
5585 
5586   return false;
5587 }
5588 
5589 /// If \p isTrue is true, return the true value of \p SI, otherwise return
5590 /// false value of \p SI. If the true/false value of \p SI is defined by any
5591 /// select instructions in \p Selects, look through the defining select
5592 /// instruction until the true/false value is not defined in \p Selects.
5593 static Value *getTrueOrFalseValue(
5594     SelectInst *SI, bool isTrue,
5595     const SmallPtrSet<const Instruction *, 2> &Selects) {
5596   Value *V;
5597 
5598   for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
5599        DefSI = dyn_cast<SelectInst>(V)) {
5600     assert(DefSI->getCondition() == SI->getCondition() &&
5601            "The condition of DefSI does not match with SI");
5602     V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
5603   }
5604   return V;
5605 }
5606 
5607 /// If we have a SelectInst that will likely profit from branch prediction,
5608 /// turn it into a branch.
5609 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
5610   // Find all consecutive select instructions that share the same condition.
5611   SmallVector<SelectInst *, 2> ASI;
5612   ASI.push_back(SI);
5613   for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
5614        It != SI->getParent()->end(); ++It) {
5615     SelectInst *I = dyn_cast<SelectInst>(&*It);
5616     if (I && SI->getCondition() == I->getCondition()) {
5617       ASI.push_back(I);
5618     } else {
5619       break;
5620     }
5621   }
5622 
5623   SelectInst *LastSI = ASI.back();
5624   // Increment the current iterator to skip all the rest of select instructions
5625   // because they will be either "not lowered" or "all lowered" to branch.
5626   CurInstIterator = std::next(LastSI->getIterator());
5627 
5628   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
5629 
5630   // Can we convert the 'select' to CF ?
5631   if (DisableSelectToBranch || OptSize || !TLI || VectorCond ||
5632       SI->getMetadata(LLVMContext::MD_unpredictable))
5633     return false;
5634 
5635   TargetLowering::SelectSupportKind SelectKind;
5636   if (VectorCond)
5637     SelectKind = TargetLowering::VectorMaskSelect;
5638   else if (SI->getType()->isVectorTy())
5639     SelectKind = TargetLowering::ScalarCondVectorVal;
5640   else
5641     SelectKind = TargetLowering::ScalarValSelect;
5642 
5643   if (TLI->isSelectSupported(SelectKind) &&
5644       !isFormingBranchFromSelectProfitable(TTI, TLI, SI))
5645     return false;
5646 
5647   ModifiedDT = true;
5648 
5649   // Transform a sequence like this:
5650   //    start:
5651   //       %cmp = cmp uge i32 %a, %b
5652   //       %sel = select i1 %cmp, i32 %c, i32 %d
5653   //
5654   // Into:
5655   //    start:
5656   //       %cmp = cmp uge i32 %a, %b
5657   //       br i1 %cmp, label %select.true, label %select.false
5658   //    select.true:
5659   //       br label %select.end
5660   //    select.false:
5661   //       br label %select.end
5662   //    select.end:
5663   //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
5664   //
5665   // In addition, we may sink instructions that produce %c or %d from
5666   // the entry block into the destination(s) of the new branch.
5667   // If the true or false blocks do not contain a sunken instruction, that
5668   // block and its branch may be optimized away. In that case, one side of the
5669   // first branch will point directly to select.end, and the corresponding PHI
5670   // predecessor block will be the start block.
5671 
5672   // First, we split the block containing the select into 2 blocks.
5673   BasicBlock *StartBlock = SI->getParent();
5674   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
5675   BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
5676 
5677   // Delete the unconditional branch that was just created by the split.
5678   StartBlock->getTerminator()->eraseFromParent();
5679 
5680   // These are the new basic blocks for the conditional branch.
5681   // At least one will become an actual new basic block.
5682   BasicBlock *TrueBlock = nullptr;
5683   BasicBlock *FalseBlock = nullptr;
5684   BranchInst *TrueBranch = nullptr;
5685   BranchInst *FalseBranch = nullptr;
5686 
5687   // Sink expensive instructions into the conditional blocks to avoid executing
5688   // them speculatively.
5689   for (SelectInst *SI : ASI) {
5690     if (sinkSelectOperand(TTI, SI->getTrueValue())) {
5691       if (TrueBlock == nullptr) {
5692         TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
5693                                        EndBlock->getParent(), EndBlock);
5694         TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
5695       }
5696       auto *TrueInst = cast<Instruction>(SI->getTrueValue());
5697       TrueInst->moveBefore(TrueBranch);
5698     }
5699     if (sinkSelectOperand(TTI, SI->getFalseValue())) {
5700       if (FalseBlock == nullptr) {
5701         FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
5702                                         EndBlock->getParent(), EndBlock);
5703         FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
5704       }
5705       auto *FalseInst = cast<Instruction>(SI->getFalseValue());
5706       FalseInst->moveBefore(FalseBranch);
5707     }
5708   }
5709 
5710   // If there was nothing to sink, then arbitrarily choose the 'false' side
5711   // for a new input value to the PHI.
5712   if (TrueBlock == FalseBlock) {
5713     assert(TrueBlock == nullptr &&
5714            "Unexpected basic block transform while optimizing select");
5715 
5716     FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
5717                                     EndBlock->getParent(), EndBlock);
5718     BranchInst::Create(EndBlock, FalseBlock);
5719   }
5720 
5721   // Insert the real conditional branch based on the original condition.
5722   // If we did not create a new block for one of the 'true' or 'false' paths
5723   // of the condition, it means that side of the branch goes to the end block
5724   // directly and the path originates from the start block from the point of
5725   // view of the new PHI.
5726   BasicBlock *TT, *FT;
5727   if (TrueBlock == nullptr) {
5728     TT = EndBlock;
5729     FT = FalseBlock;
5730     TrueBlock = StartBlock;
5731   } else if (FalseBlock == nullptr) {
5732     TT = TrueBlock;
5733     FT = EndBlock;
5734     FalseBlock = StartBlock;
5735   } else {
5736     TT = TrueBlock;
5737     FT = FalseBlock;
5738   }
5739   IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI);
5740 
5741   SmallPtrSet<const Instruction *, 2> INS;
5742   INS.insert(ASI.begin(), ASI.end());
5743   // Use reverse iterator because later select may use the value of the
5744   // earlier select, and we need to propagate value through earlier select
5745   // to get the PHI operand.
5746   for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
5747     SelectInst *SI = *It;
5748     // The select itself is replaced with a PHI Node.
5749     PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
5750     PN->takeName(SI);
5751     PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
5752     PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
5753 
5754     SI->replaceAllUsesWith(PN);
5755     SI->eraseFromParent();
5756     INS.erase(SI);
5757     ++NumSelectsExpanded;
5758   }
5759 
5760   // Instruct OptimizeBlock to skip to the next block.
5761   CurInstIterator = StartBlock->end();
5762   return true;
5763 }
5764 
5765 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
5766   SmallVector<int, 16> Mask(SVI->getShuffleMask());
5767   int SplatElem = -1;
5768   for (unsigned i = 0; i < Mask.size(); ++i) {
5769     if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
5770       return false;
5771     SplatElem = Mask[i];
5772   }
5773 
5774   return true;
5775 }
5776 
5777 /// Some targets have expensive vector shifts if the lanes aren't all the same
5778 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
5779 /// it's often worth sinking a shufflevector splat down to its use so that
5780 /// codegen can spot all lanes are identical.
5781 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
5782   BasicBlock *DefBB = SVI->getParent();
5783 
5784   // Only do this xform if variable vector shifts are particularly expensive.
5785   if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
5786     return false;
5787 
5788   // We only expect better codegen by sinking a shuffle if we can recognise a
5789   // constant splat.
5790   if (!isBroadcastShuffle(SVI))
5791     return false;
5792 
5793   // InsertedShuffles - Only insert a shuffle in each block once.
5794   DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
5795 
5796   bool MadeChange = false;
5797   for (User *U : SVI->users()) {
5798     Instruction *UI = cast<Instruction>(U);
5799 
5800     // Figure out which BB this ext is used in.
5801     BasicBlock *UserBB = UI->getParent();
5802     if (UserBB == DefBB) continue;
5803 
5804     // For now only apply this when the splat is used by a shift instruction.
5805     if (!UI->isShift()) continue;
5806 
5807     // Everything checks out, sink the shuffle if the user's block doesn't
5808     // already have a copy.
5809     Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
5810 
5811     if (!InsertedShuffle) {
5812       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5813       assert(InsertPt != UserBB->end());
5814       InsertedShuffle =
5815           new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
5816                                 SVI->getOperand(2), "", &*InsertPt);
5817     }
5818 
5819     UI->replaceUsesOfWith(SVI, InsertedShuffle);
5820     MadeChange = true;
5821   }
5822 
5823   // If we removed all uses, nuke the shuffle.
5824   if (SVI->use_empty()) {
5825     SVI->eraseFromParent();
5826     MadeChange = true;
5827   }
5828 
5829   return MadeChange;
5830 }
5831 
5832 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
5833   if (!TLI || !DL)
5834     return false;
5835 
5836   Value *Cond = SI->getCondition();
5837   Type *OldType = Cond->getType();
5838   LLVMContext &Context = Cond->getContext();
5839   MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
5840   unsigned RegWidth = RegType.getSizeInBits();
5841 
5842   if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
5843     return false;
5844 
5845   // If the register width is greater than the type width, expand the condition
5846   // of the switch instruction and each case constant to the width of the
5847   // register. By widening the type of the switch condition, subsequent
5848   // comparisons (for case comparisons) will not need to be extended to the
5849   // preferred register width, so we will potentially eliminate N-1 extends,
5850   // where N is the number of cases in the switch.
5851   auto *NewType = Type::getIntNTy(Context, RegWidth);
5852 
5853   // Zero-extend the switch condition and case constants unless the switch
5854   // condition is a function argument that is already being sign-extended.
5855   // In that case, we can avoid an unnecessary mask/extension by sign-extending
5856   // everything instead.
5857   Instruction::CastOps ExtType = Instruction::ZExt;
5858   if (auto *Arg = dyn_cast<Argument>(Cond))
5859     if (Arg->hasSExtAttr())
5860       ExtType = Instruction::SExt;
5861 
5862   auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
5863   ExtInst->insertBefore(SI);
5864   SI->setCondition(ExtInst);
5865   for (auto Case : SI->cases()) {
5866     APInt NarrowConst = Case.getCaseValue()->getValue();
5867     APInt WideConst = (ExtType == Instruction::ZExt) ?
5868                       NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
5869     Case.setValue(ConstantInt::get(Context, WideConst));
5870   }
5871 
5872   return true;
5873 }
5874 
5875 
5876 namespace {
5877 
5878 /// \brief Helper class to promote a scalar operation to a vector one.
5879 /// This class is used to move downward extractelement transition.
5880 /// E.g.,
5881 /// a = vector_op <2 x i32>
5882 /// b = extractelement <2 x i32> a, i32 0
5883 /// c = scalar_op b
5884 /// store c
5885 ///
5886 /// =>
5887 /// a = vector_op <2 x i32>
5888 /// c = vector_op a (equivalent to scalar_op on the related lane)
5889 /// * d = extractelement <2 x i32> c, i32 0
5890 /// * store d
5891 /// Assuming both extractelement and store can be combine, we get rid of the
5892 /// transition.
5893 class VectorPromoteHelper {
5894   /// DataLayout associated with the current module.
5895   const DataLayout &DL;
5896 
5897   /// Used to perform some checks on the legality of vector operations.
5898   const TargetLowering &TLI;
5899 
5900   /// Used to estimated the cost of the promoted chain.
5901   const TargetTransformInfo &TTI;
5902 
5903   /// The transition being moved downwards.
5904   Instruction *Transition;
5905 
5906   /// The sequence of instructions to be promoted.
5907   SmallVector<Instruction *, 4> InstsToBePromoted;
5908 
5909   /// Cost of combining a store and an extract.
5910   unsigned StoreExtractCombineCost;
5911 
5912   /// Instruction that will be combined with the transition.
5913   Instruction *CombineInst = nullptr;
5914 
5915   /// \brief The instruction that represents the current end of the transition.
5916   /// Since we are faking the promotion until we reach the end of the chain
5917   /// of computation, we need a way to get the current end of the transition.
5918   Instruction *getEndOfTransition() const {
5919     if (InstsToBePromoted.empty())
5920       return Transition;
5921     return InstsToBePromoted.back();
5922   }
5923 
5924   /// \brief Return the index of the original value in the transition.
5925   /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
5926   /// c, is at index 0.
5927   unsigned getTransitionOriginalValueIdx() const {
5928     assert(isa<ExtractElementInst>(Transition) &&
5929            "Other kind of transitions are not supported yet");
5930     return 0;
5931   }
5932 
5933   /// \brief Return the index of the index in the transition.
5934   /// E.g., for "extractelement <2 x i32> c, i32 0" the index
5935   /// is at index 1.
5936   unsigned getTransitionIdx() const {
5937     assert(isa<ExtractElementInst>(Transition) &&
5938            "Other kind of transitions are not supported yet");
5939     return 1;
5940   }
5941 
5942   /// \brief Get the type of the transition.
5943   /// This is the type of the original value.
5944   /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
5945   /// transition is <2 x i32>.
5946   Type *getTransitionType() const {
5947     return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
5948   }
5949 
5950   /// \brief Promote \p ToBePromoted by moving \p Def downward through.
5951   /// I.e., we have the following sequence:
5952   /// Def = Transition <ty1> a to <ty2>
5953   /// b = ToBePromoted <ty2> Def, ...
5954   /// =>
5955   /// b = ToBePromoted <ty1> a, ...
5956   /// Def = Transition <ty1> ToBePromoted to <ty2>
5957   void promoteImpl(Instruction *ToBePromoted);
5958 
5959   /// \brief Check whether or not it is profitable to promote all the
5960   /// instructions enqueued to be promoted.
5961   bool isProfitableToPromote() {
5962     Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
5963     unsigned Index = isa<ConstantInt>(ValIdx)
5964                          ? cast<ConstantInt>(ValIdx)->getZExtValue()
5965                          : -1;
5966     Type *PromotedType = getTransitionType();
5967 
5968     StoreInst *ST = cast<StoreInst>(CombineInst);
5969     unsigned AS = ST->getPointerAddressSpace();
5970     unsigned Align = ST->getAlignment();
5971     // Check if this store is supported.
5972     if (!TLI.allowsMisalignedMemoryAccesses(
5973             TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
5974             Align)) {
5975       // If this is not supported, there is no way we can combine
5976       // the extract with the store.
5977       return false;
5978     }
5979 
5980     // The scalar chain of computation has to pay for the transition
5981     // scalar to vector.
5982     // The vector chain has to account for the combining cost.
5983     uint64_t ScalarCost =
5984         TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
5985     uint64_t VectorCost = StoreExtractCombineCost;
5986     for (const auto &Inst : InstsToBePromoted) {
5987       // Compute the cost.
5988       // By construction, all instructions being promoted are arithmetic ones.
5989       // Moreover, one argument is a constant that can be viewed as a splat
5990       // constant.
5991       Value *Arg0 = Inst->getOperand(0);
5992       bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
5993                             isa<ConstantFP>(Arg0);
5994       TargetTransformInfo::OperandValueKind Arg0OVK =
5995           IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
5996                          : TargetTransformInfo::OK_AnyValue;
5997       TargetTransformInfo::OperandValueKind Arg1OVK =
5998           !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
5999                           : TargetTransformInfo::OK_AnyValue;
6000       ScalarCost += TTI.getArithmeticInstrCost(
6001           Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
6002       VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
6003                                                Arg0OVK, Arg1OVK);
6004     }
6005     DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
6006                  << ScalarCost << "\nVector: " << VectorCost << '\n');
6007     return ScalarCost > VectorCost;
6008   }
6009 
6010   /// \brief Generate a constant vector with \p Val with the same
6011   /// number of elements as the transition.
6012   /// \p UseSplat defines whether or not \p Val should be replicated
6013   /// across the whole vector.
6014   /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
6015   /// otherwise we generate a vector with as many undef as possible:
6016   /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
6017   /// used at the index of the extract.
6018   Value *getConstantVector(Constant *Val, bool UseSplat) const {
6019     unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
6020     if (!UseSplat) {
6021       // If we cannot determine where the constant must be, we have to
6022       // use a splat constant.
6023       Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
6024       if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
6025         ExtractIdx = CstVal->getSExtValue();
6026       else
6027         UseSplat = true;
6028     }
6029 
6030     unsigned End = getTransitionType()->getVectorNumElements();
6031     if (UseSplat)
6032       return ConstantVector::getSplat(End, Val);
6033 
6034     SmallVector<Constant *, 4> ConstVec;
6035     UndefValue *UndefVal = UndefValue::get(Val->getType());
6036     for (unsigned Idx = 0; Idx != End; ++Idx) {
6037       if (Idx == ExtractIdx)
6038         ConstVec.push_back(Val);
6039       else
6040         ConstVec.push_back(UndefVal);
6041     }
6042     return ConstantVector::get(ConstVec);
6043   }
6044 
6045   /// \brief Check if promoting to a vector type an operand at \p OperandIdx
6046   /// in \p Use can trigger undefined behavior.
6047   static bool canCauseUndefinedBehavior(const Instruction *Use,
6048                                         unsigned OperandIdx) {
6049     // This is not safe to introduce undef when the operand is on
6050     // the right hand side of a division-like instruction.
6051     if (OperandIdx != 1)
6052       return false;
6053     switch (Use->getOpcode()) {
6054     default:
6055       return false;
6056     case Instruction::SDiv:
6057     case Instruction::UDiv:
6058     case Instruction::SRem:
6059     case Instruction::URem:
6060       return true;
6061     case Instruction::FDiv:
6062     case Instruction::FRem:
6063       return !Use->hasNoNaNs();
6064     }
6065     llvm_unreachable(nullptr);
6066   }
6067 
6068 public:
6069   VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
6070                       const TargetTransformInfo &TTI, Instruction *Transition,
6071                       unsigned CombineCost)
6072       : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
6073         StoreExtractCombineCost(CombineCost) {
6074     assert(Transition && "Do not know how to promote null");
6075   }
6076 
6077   /// \brief Check if we can promote \p ToBePromoted to \p Type.
6078   bool canPromote(const Instruction *ToBePromoted) const {
6079     // We could support CastInst too.
6080     return isa<BinaryOperator>(ToBePromoted);
6081   }
6082 
6083   /// \brief Check if it is profitable to promote \p ToBePromoted
6084   /// by moving downward the transition through.
6085   bool shouldPromote(const Instruction *ToBePromoted) const {
6086     // Promote only if all the operands can be statically expanded.
6087     // Indeed, we do not want to introduce any new kind of transitions.
6088     for (const Use &U : ToBePromoted->operands()) {
6089       const Value *Val = U.get();
6090       if (Val == getEndOfTransition()) {
6091         // If the use is a division and the transition is on the rhs,
6092         // we cannot promote the operation, otherwise we may create a
6093         // division by zero.
6094         if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
6095           return false;
6096         continue;
6097       }
6098       if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
6099           !isa<ConstantFP>(Val))
6100         return false;
6101     }
6102     // Check that the resulting operation is legal.
6103     int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
6104     if (!ISDOpcode)
6105       return false;
6106     return StressStoreExtract ||
6107            TLI.isOperationLegalOrCustom(
6108                ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
6109   }
6110 
6111   /// \brief Check whether or not \p Use can be combined
6112   /// with the transition.
6113   /// I.e., is it possible to do Use(Transition) => AnotherUse?
6114   bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
6115 
6116   /// \brief Record \p ToBePromoted as part of the chain to be promoted.
6117   void enqueueForPromotion(Instruction *ToBePromoted) {
6118     InstsToBePromoted.push_back(ToBePromoted);
6119   }
6120 
6121   /// \brief Set the instruction that will be combined with the transition.
6122   void recordCombineInstruction(Instruction *ToBeCombined) {
6123     assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
6124     CombineInst = ToBeCombined;
6125   }
6126 
6127   /// \brief Promote all the instructions enqueued for promotion if it is
6128   /// is profitable.
6129   /// \return True if the promotion happened, false otherwise.
6130   bool promote() {
6131     // Check if there is something to promote.
6132     // Right now, if we do not have anything to combine with,
6133     // we assume the promotion is not profitable.
6134     if (InstsToBePromoted.empty() || !CombineInst)
6135       return false;
6136 
6137     // Check cost.
6138     if (!StressStoreExtract && !isProfitableToPromote())
6139       return false;
6140 
6141     // Promote.
6142     for (auto &ToBePromoted : InstsToBePromoted)
6143       promoteImpl(ToBePromoted);
6144     InstsToBePromoted.clear();
6145     return true;
6146   }
6147 };
6148 
6149 } // end anonymous namespace
6150 
6151 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
6152   // At this point, we know that all the operands of ToBePromoted but Def
6153   // can be statically promoted.
6154   // For Def, we need to use its parameter in ToBePromoted:
6155   // b = ToBePromoted ty1 a
6156   // Def = Transition ty1 b to ty2
6157   // Move the transition down.
6158   // 1. Replace all uses of the promoted operation by the transition.
6159   // = ... b => = ... Def.
6160   assert(ToBePromoted->getType() == Transition->getType() &&
6161          "The type of the result of the transition does not match "
6162          "the final type");
6163   ToBePromoted->replaceAllUsesWith(Transition);
6164   // 2. Update the type of the uses.
6165   // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
6166   Type *TransitionTy = getTransitionType();
6167   ToBePromoted->mutateType(TransitionTy);
6168   // 3. Update all the operands of the promoted operation with promoted
6169   // operands.
6170   // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
6171   for (Use &U : ToBePromoted->operands()) {
6172     Value *Val = U.get();
6173     Value *NewVal = nullptr;
6174     if (Val == Transition)
6175       NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
6176     else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
6177              isa<ConstantFP>(Val)) {
6178       // Use a splat constant if it is not safe to use undef.
6179       NewVal = getConstantVector(
6180           cast<Constant>(Val),
6181           isa<UndefValue>(Val) ||
6182               canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
6183     } else
6184       llvm_unreachable("Did you modified shouldPromote and forgot to update "
6185                        "this?");
6186     ToBePromoted->setOperand(U.getOperandNo(), NewVal);
6187   }
6188   Transition->moveAfter(ToBePromoted);
6189   Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
6190 }
6191 
6192 /// Some targets can do store(extractelement) with one instruction.
6193 /// Try to push the extractelement towards the stores when the target
6194 /// has this feature and this is profitable.
6195 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
6196   unsigned CombineCost = std::numeric_limits<unsigned>::max();
6197   if (DisableStoreExtract || !TLI ||
6198       (!StressStoreExtract &&
6199        !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
6200                                        Inst->getOperand(1), CombineCost)))
6201     return false;
6202 
6203   // At this point we know that Inst is a vector to scalar transition.
6204   // Try to move it down the def-use chain, until:
6205   // - We can combine the transition with its single use
6206   //   => we got rid of the transition.
6207   // - We escape the current basic block
6208   //   => we would need to check that we are moving it at a cheaper place and
6209   //      we do not do that for now.
6210   BasicBlock *Parent = Inst->getParent();
6211   DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
6212   VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
6213   // If the transition has more than one use, assume this is not going to be
6214   // beneficial.
6215   while (Inst->hasOneUse()) {
6216     Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
6217     DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
6218 
6219     if (ToBePromoted->getParent() != Parent) {
6220       DEBUG(dbgs() << "Instruction to promote is in a different block ("
6221                    << ToBePromoted->getParent()->getName()
6222                    << ") than the transition (" << Parent->getName() << ").\n");
6223       return false;
6224     }
6225 
6226     if (VPH.canCombine(ToBePromoted)) {
6227       DEBUG(dbgs() << "Assume " << *Inst << '\n'
6228                    << "will be combined with: " << *ToBePromoted << '\n');
6229       VPH.recordCombineInstruction(ToBePromoted);
6230       bool Changed = VPH.promote();
6231       NumStoreExtractExposed += Changed;
6232       return Changed;
6233     }
6234 
6235     DEBUG(dbgs() << "Try promoting.\n");
6236     if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
6237       return false;
6238 
6239     DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
6240 
6241     VPH.enqueueForPromotion(ToBePromoted);
6242     Inst = ToBePromoted;
6243   }
6244   return false;
6245 }
6246 
6247 /// For the instruction sequence of store below, F and I values
6248 /// are bundled together as an i64 value before being stored into memory.
6249 /// Sometimes it is more efficent to generate separate stores for F and I,
6250 /// which can remove the bitwise instructions or sink them to colder places.
6251 ///
6252 ///   (store (or (zext (bitcast F to i32) to i64),
6253 ///              (shl (zext I to i64), 32)), addr)  -->
6254 ///   (store F, addr) and (store I, addr+4)
6255 ///
6256 /// Similarly, splitting for other merged store can also be beneficial, like:
6257 /// For pair of {i32, i32}, i64 store --> two i32 stores.
6258 /// For pair of {i32, i16}, i64 store --> two i32 stores.
6259 /// For pair of {i16, i16}, i32 store --> two i16 stores.
6260 /// For pair of {i16, i8},  i32 store --> two i16 stores.
6261 /// For pair of {i8, i8},   i16 store --> two i8 stores.
6262 ///
6263 /// We allow each target to determine specifically which kind of splitting is
6264 /// supported.
6265 ///
6266 /// The store patterns are commonly seen from the simple code snippet below
6267 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
6268 ///   void goo(const std::pair<int, float> &);
6269 ///   hoo() {
6270 ///     ...
6271 ///     goo(std::make_pair(tmp, ftmp));
6272 ///     ...
6273 ///   }
6274 ///
6275 /// Although we already have similar splitting in DAG Combine, we duplicate
6276 /// it in CodeGenPrepare to catch the case in which pattern is across
6277 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
6278 /// during code expansion.
6279 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
6280                                 const TargetLowering &TLI) {
6281   // Handle simple but common cases only.
6282   Type *StoreType = SI.getValueOperand()->getType();
6283   if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) ||
6284       DL.getTypeSizeInBits(StoreType) == 0)
6285     return false;
6286 
6287   unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
6288   Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
6289   if (DL.getTypeStoreSizeInBits(SplitStoreType) !=
6290       DL.getTypeSizeInBits(SplitStoreType))
6291     return false;
6292 
6293   // Match the following patterns:
6294   // (store (or (zext LValue to i64),
6295   //            (shl (zext HValue to i64), 32)), HalfValBitSize)
6296   //  or
6297   // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
6298   //            (zext LValue to i64),
6299   // Expect both operands of OR and the first operand of SHL have only
6300   // one use.
6301   Value *LValue, *HValue;
6302   if (!match(SI.getValueOperand(),
6303              m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
6304                     m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
6305                                    m_SpecificInt(HalfValBitSize))))))
6306     return false;
6307 
6308   // Check LValue and HValue are int with size less or equal than 32.
6309   if (!LValue->getType()->isIntegerTy() ||
6310       DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
6311       !HValue->getType()->isIntegerTy() ||
6312       DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
6313     return false;
6314 
6315   // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
6316   // as the input of target query.
6317   auto *LBC = dyn_cast<BitCastInst>(LValue);
6318   auto *HBC = dyn_cast<BitCastInst>(HValue);
6319   EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
6320                   : EVT::getEVT(LValue->getType());
6321   EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
6322                    : EVT::getEVT(HValue->getType());
6323   if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
6324     return false;
6325 
6326   // Start to split store.
6327   IRBuilder<> Builder(SI.getContext());
6328   Builder.SetInsertPoint(&SI);
6329 
6330   // If LValue/HValue is a bitcast in another BB, create a new one in current
6331   // BB so it may be merged with the splitted stores by dag combiner.
6332   if (LBC && LBC->getParent() != SI.getParent())
6333     LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
6334   if (HBC && HBC->getParent() != SI.getParent())
6335     HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
6336 
6337   auto CreateSplitStore = [&](Value *V, bool Upper) {
6338     V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
6339     Value *Addr = Builder.CreateBitCast(
6340         SI.getOperand(1),
6341         SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
6342     if (Upper)
6343       Addr = Builder.CreateGEP(
6344           SplitStoreType, Addr,
6345           ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
6346     Builder.CreateAlignedStore(
6347         V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment());
6348   };
6349 
6350   CreateSplitStore(LValue, false);
6351   CreateSplitStore(HValue, true);
6352 
6353   // Delete the old store.
6354   SI.eraseFromParent();
6355   return true;
6356 }
6357 
6358 // Return true if the GEP has two operands, the first operand is of a sequential
6359 // type, and the second operand is a constant.
6360 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
6361   gep_type_iterator I = gep_type_begin(*GEP);
6362   return GEP->getNumOperands() == 2 &&
6363       I.isSequential() &&
6364       isa<ConstantInt>(GEP->getOperand(1));
6365 }
6366 
6367 // Try unmerging GEPs to reduce liveness interference (register pressure) across
6368 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
6369 // reducing liveness interference across those edges benefits global register
6370 // allocation. Currently handles only certain cases.
6371 //
6372 // For example, unmerge %GEPI and %UGEPI as below.
6373 //
6374 // ---------- BEFORE ----------
6375 // SrcBlock:
6376 //   ...
6377 //   %GEPIOp = ...
6378 //   ...
6379 //   %GEPI = gep %GEPIOp, Idx
6380 //   ...
6381 //   indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
6382 //   (* %GEPI is alive on the indirectbr edges due to other uses ahead)
6383 //   (* %GEPIOp is alive on the indirectbr edges only because of it's used by
6384 //   %UGEPI)
6385 //
6386 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
6387 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
6388 // ...
6389 //
6390 // DstBi:
6391 //   ...
6392 //   %UGEPI = gep %GEPIOp, UIdx
6393 // ...
6394 // ---------------------------
6395 //
6396 // ---------- AFTER ----------
6397 // SrcBlock:
6398 //   ... (same as above)
6399 //    (* %GEPI is still alive on the indirectbr edges)
6400 //    (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
6401 //    unmerging)
6402 // ...
6403 //
6404 // DstBi:
6405 //   ...
6406 //   %UGEPI = gep %GEPI, (UIdx-Idx)
6407 //   ...
6408 // ---------------------------
6409 //
6410 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
6411 // no longer alive on them.
6412 //
6413 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
6414 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
6415 // not to disable further simplications and optimizations as a result of GEP
6416 // merging.
6417 //
6418 // Note this unmerging may increase the length of the data flow critical path
6419 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
6420 // between the register pressure and the length of data-flow critical
6421 // path. Restricting this to the uncommon IndirectBr case would minimize the
6422 // impact of potentially longer critical path, if any, and the impact on compile
6423 // time.
6424 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
6425                                              const TargetTransformInfo *TTI) {
6426   BasicBlock *SrcBlock = GEPI->getParent();
6427   // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
6428   // (non-IndirectBr) cases exit early here.
6429   if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
6430     return false;
6431   // Check that GEPI is a simple gep with a single constant index.
6432   if (!GEPSequentialConstIndexed(GEPI))
6433     return false;
6434   ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
6435   // Check that GEPI is a cheap one.
6436   if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType())
6437       > TargetTransformInfo::TCC_Basic)
6438     return false;
6439   Value *GEPIOp = GEPI->getOperand(0);
6440   // Check that GEPIOp is an instruction that's also defined in SrcBlock.
6441   if (!isa<Instruction>(GEPIOp))
6442     return false;
6443   auto *GEPIOpI = cast<Instruction>(GEPIOp);
6444   if (GEPIOpI->getParent() != SrcBlock)
6445     return false;
6446   // Check that GEP is used outside the block, meaning it's alive on the
6447   // IndirectBr edge(s).
6448   if (find_if(GEPI->users(), [&](User *Usr) {
6449         if (auto *I = dyn_cast<Instruction>(Usr)) {
6450           if (I->getParent() != SrcBlock) {
6451             return true;
6452           }
6453         }
6454         return false;
6455       }) == GEPI->users().end())
6456     return false;
6457   // The second elements of the GEP chains to be unmerged.
6458   std::vector<GetElementPtrInst *> UGEPIs;
6459   // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
6460   // on IndirectBr edges.
6461   for (User *Usr : GEPIOp->users()) {
6462     if (Usr == GEPI) continue;
6463     // Check if Usr is an Instruction. If not, give up.
6464     if (!isa<Instruction>(Usr))
6465       return false;
6466     auto *UI = cast<Instruction>(Usr);
6467     // Check if Usr in the same block as GEPIOp, which is fine, skip.
6468     if (UI->getParent() == SrcBlock)
6469       continue;
6470     // Check if Usr is a GEP. If not, give up.
6471     if (!isa<GetElementPtrInst>(Usr))
6472       return false;
6473     auto *UGEPI = cast<GetElementPtrInst>(Usr);
6474     // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
6475     // the pointer operand to it. If so, record it in the vector. If not, give
6476     // up.
6477     if (!GEPSequentialConstIndexed(UGEPI))
6478       return false;
6479     if (UGEPI->getOperand(0) != GEPIOp)
6480       return false;
6481     if (GEPIIdx->getType() !=
6482         cast<ConstantInt>(UGEPI->getOperand(1))->getType())
6483       return false;
6484     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6485     if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType())
6486         > TargetTransformInfo::TCC_Basic)
6487       return false;
6488     UGEPIs.push_back(UGEPI);
6489   }
6490   if (UGEPIs.size() == 0)
6491     return false;
6492   // Check the materializing cost of (Uidx-Idx).
6493   for (GetElementPtrInst *UGEPI : UGEPIs) {
6494     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6495     APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
6496     unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType());
6497     if (ImmCost > TargetTransformInfo::TCC_Basic)
6498       return false;
6499   }
6500   // Now unmerge between GEPI and UGEPIs.
6501   for (GetElementPtrInst *UGEPI : UGEPIs) {
6502     UGEPI->setOperand(0, GEPI);
6503     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6504     Constant *NewUGEPIIdx =
6505         ConstantInt::get(GEPIIdx->getType(),
6506                          UGEPIIdx->getValue() - GEPIIdx->getValue());
6507     UGEPI->setOperand(1, NewUGEPIIdx);
6508     // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
6509     // inbounds to avoid UB.
6510     if (!GEPI->isInBounds()) {
6511       UGEPI->setIsInBounds(false);
6512     }
6513   }
6514   // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
6515   // alive on IndirectBr edges).
6516   assert(find_if(GEPIOp->users(), [&](User *Usr) {
6517         return cast<Instruction>(Usr)->getParent() != SrcBlock;
6518       }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock");
6519   return true;
6520 }
6521 
6522 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) {
6523   // Bail out if we inserted the instruction to prevent optimizations from
6524   // stepping on each other's toes.
6525   if (InsertedInsts.count(I))
6526     return false;
6527 
6528   if (PHINode *P = dyn_cast<PHINode>(I)) {
6529     // It is possible for very late stage optimizations (such as SimplifyCFG)
6530     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
6531     // trivial PHI, go ahead and zap it here.
6532     if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
6533       P->replaceAllUsesWith(V);
6534       P->eraseFromParent();
6535       ++NumPHIsElim;
6536       return true;
6537     }
6538     return false;
6539   }
6540 
6541   if (CastInst *CI = dyn_cast<CastInst>(I)) {
6542     // If the source of the cast is a constant, then this should have
6543     // already been constant folded.  The only reason NOT to constant fold
6544     // it is if something (e.g. LSR) was careful to place the constant
6545     // evaluation in a block other than then one that uses it (e.g. to hoist
6546     // the address of globals out of a loop).  If this is the case, we don't
6547     // want to forward-subst the cast.
6548     if (isa<Constant>(CI->getOperand(0)))
6549       return false;
6550 
6551     if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL))
6552       return true;
6553 
6554     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
6555       /// Sink a zext or sext into its user blocks if the target type doesn't
6556       /// fit in one register
6557       if (TLI &&
6558           TLI->getTypeAction(CI->getContext(),
6559                              TLI->getValueType(*DL, CI->getType())) ==
6560               TargetLowering::TypeExpandInteger) {
6561         return SinkCast(CI);
6562       } else {
6563         bool MadeChange = optimizeExt(I);
6564         return MadeChange | optimizeExtUses(I);
6565       }
6566     }
6567     return false;
6568   }
6569 
6570   if (CmpInst *CI = dyn_cast<CmpInst>(I))
6571     if (!TLI || !TLI->hasMultipleConditionRegisters())
6572       return OptimizeCmpExpression(CI, TLI);
6573 
6574   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6575     LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6576     if (TLI) {
6577       bool Modified = optimizeLoadExt(LI);
6578       unsigned AS = LI->getPointerAddressSpace();
6579       Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
6580       return Modified;
6581     }
6582     return false;
6583   }
6584 
6585   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
6586     if (TLI && splitMergedValStore(*SI, *DL, *TLI))
6587       return true;
6588     SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6589     if (TLI) {
6590       unsigned AS = SI->getPointerAddressSpace();
6591       return optimizeMemoryInst(I, SI->getOperand(1),
6592                                 SI->getOperand(0)->getType(), AS);
6593     }
6594     return false;
6595   }
6596 
6597   if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
6598       unsigned AS = RMW->getPointerAddressSpace();
6599       return optimizeMemoryInst(I, RMW->getPointerOperand(),
6600                                 RMW->getType(), AS);
6601   }
6602 
6603   if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
6604       unsigned AS = CmpX->getPointerAddressSpace();
6605       return optimizeMemoryInst(I, CmpX->getPointerOperand(),
6606                                 CmpX->getCompareOperand()->getType(), AS);
6607   }
6608 
6609   BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
6610 
6611   if (BinOp && (BinOp->getOpcode() == Instruction::And) &&
6612       EnableAndCmpSinking && TLI)
6613     return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts);
6614 
6615   if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
6616                 BinOp->getOpcode() == Instruction::LShr)) {
6617     ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
6618     if (TLI && CI && TLI->hasExtractBitsInsn())
6619       return OptimizeExtractBits(BinOp, CI, *TLI, *DL);
6620 
6621     return false;
6622   }
6623 
6624   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
6625     if (GEPI->hasAllZeroIndices()) {
6626       /// The GEP operand must be a pointer, so must its result -> BitCast
6627       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
6628                                         GEPI->getName(), GEPI);
6629       GEPI->replaceAllUsesWith(NC);
6630       GEPI->eraseFromParent();
6631       ++NumGEPsElim;
6632       optimizeInst(NC, ModifiedDT);
6633       return true;
6634     }
6635     if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
6636       return true;
6637     }
6638     return false;
6639   }
6640 
6641   if (CallInst *CI = dyn_cast<CallInst>(I))
6642     return optimizeCallInst(CI, ModifiedDT);
6643 
6644   if (SelectInst *SI = dyn_cast<SelectInst>(I))
6645     return optimizeSelectInst(SI);
6646 
6647   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
6648     return optimizeShuffleVectorInst(SVI);
6649 
6650   if (auto *Switch = dyn_cast<SwitchInst>(I))
6651     return optimizeSwitchInst(Switch);
6652 
6653   if (isa<ExtractElementInst>(I))
6654     return optimizeExtractElementInst(I);
6655 
6656   return false;
6657 }
6658 
6659 /// Given an OR instruction, check to see if this is a bitreverse
6660 /// idiom. If so, insert the new intrinsic and return true.
6661 static bool makeBitReverse(Instruction &I, const DataLayout &DL,
6662                            const TargetLowering &TLI) {
6663   if (!I.getType()->isIntegerTy() ||
6664       !TLI.isOperationLegalOrCustom(ISD::BITREVERSE,
6665                                     TLI.getValueType(DL, I.getType(), true)))
6666     return false;
6667 
6668   SmallVector<Instruction*, 4> Insts;
6669   if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
6670     return false;
6671   Instruction *LastInst = Insts.back();
6672   I.replaceAllUsesWith(LastInst);
6673   RecursivelyDeleteTriviallyDeadInstructions(&I);
6674   return true;
6675 }
6676 
6677 // In this pass we look for GEP and cast instructions that are used
6678 // across basic blocks and rewrite them to improve basic-block-at-a-time
6679 // selection.
6680 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) {
6681   SunkAddrs.clear();
6682   bool MadeChange = false;
6683 
6684   CurInstIterator = BB.begin();
6685   while (CurInstIterator != BB.end()) {
6686     MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
6687     if (ModifiedDT)
6688       return true;
6689   }
6690 
6691   bool MadeBitReverse = true;
6692   while (TLI && MadeBitReverse) {
6693     MadeBitReverse = false;
6694     for (auto &I : reverse(BB)) {
6695       if (makeBitReverse(I, *DL, *TLI)) {
6696         MadeBitReverse = MadeChange = true;
6697         ModifiedDT = true;
6698         break;
6699       }
6700     }
6701   }
6702   MadeChange |= dupRetToEnableTailCallOpts(&BB);
6703 
6704   return MadeChange;
6705 }
6706 
6707 // llvm.dbg.value is far away from the value then iSel may not be able
6708 // handle it properly. iSel will drop llvm.dbg.value if it can not
6709 // find a node corresponding to the value.
6710 bool CodeGenPrepare::placeDbgValues(Function &F) {
6711   bool MadeChange = false;
6712   for (BasicBlock &BB : F) {
6713     Instruction *PrevNonDbgInst = nullptr;
6714     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
6715       Instruction *Insn = &*BI++;
6716       DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
6717       // Leave dbg.values that refer to an alloca alone. These
6718       // instrinsics describe the address of a variable (= the alloca)
6719       // being taken.  They should not be moved next to the alloca
6720       // (and to the beginning of the scope), but rather stay close to
6721       // where said address is used.
6722       if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
6723         PrevNonDbgInst = Insn;
6724         continue;
6725       }
6726 
6727       Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
6728       if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
6729         // If VI is a phi in a block with an EHPad terminator, we can't insert
6730         // after it.
6731         if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
6732           continue;
6733         DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI);
6734         DVI->removeFromParent();
6735         if (isa<PHINode>(VI))
6736           DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
6737         else
6738           DVI->insertAfter(VI);
6739         MadeChange = true;
6740         ++NumDbgValueMoved;
6741       }
6742     }
6743   }
6744   return MadeChange;
6745 }
6746 
6747 /// \brief Scale down both weights to fit into uint32_t.
6748 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
6749   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
6750   uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
6751   NewTrue = NewTrue / Scale;
6752   NewFalse = NewFalse / Scale;
6753 }
6754 
6755 /// \brief Some targets prefer to split a conditional branch like:
6756 /// \code
6757 ///   %0 = icmp ne i32 %a, 0
6758 ///   %1 = icmp ne i32 %b, 0
6759 ///   %or.cond = or i1 %0, %1
6760 ///   br i1 %or.cond, label %TrueBB, label %FalseBB
6761 /// \endcode
6762 /// into multiple branch instructions like:
6763 /// \code
6764 ///   bb1:
6765 ///     %0 = icmp ne i32 %a, 0
6766 ///     br i1 %0, label %TrueBB, label %bb2
6767 ///   bb2:
6768 ///     %1 = icmp ne i32 %b, 0
6769 ///     br i1 %1, label %TrueBB, label %FalseBB
6770 /// \endcode
6771 /// This usually allows instruction selection to do even further optimizations
6772 /// and combine the compare with the branch instruction. Currently this is
6773 /// applied for targets which have "cheap" jump instructions.
6774 ///
6775 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
6776 ///
6777 bool CodeGenPrepare::splitBranchCondition(Function &F) {
6778   if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive())
6779     return false;
6780 
6781   bool MadeChange = false;
6782   for (auto &BB : F) {
6783     // Does this BB end with the following?
6784     //   %cond1 = icmp|fcmp|binary instruction ...
6785     //   %cond2 = icmp|fcmp|binary instruction ...
6786     //   %cond.or = or|and i1 %cond1, cond2
6787     //   br i1 %cond.or label %dest1, label %dest2"
6788     BinaryOperator *LogicOp;
6789     BasicBlock *TBB, *FBB;
6790     if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
6791       continue;
6792 
6793     auto *Br1 = cast<BranchInst>(BB.getTerminator());
6794     if (Br1->getMetadata(LLVMContext::MD_unpredictable))
6795       continue;
6796 
6797     unsigned Opc;
6798     Value *Cond1, *Cond2;
6799     if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
6800                              m_OneUse(m_Value(Cond2)))))
6801       Opc = Instruction::And;
6802     else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
6803                                  m_OneUse(m_Value(Cond2)))))
6804       Opc = Instruction::Or;
6805     else
6806       continue;
6807 
6808     if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
6809         !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp()))   )
6810       continue;
6811 
6812     DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
6813 
6814     // Create a new BB.
6815     auto TmpBB =
6816         BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
6817                            BB.getParent(), BB.getNextNode());
6818 
6819     // Update original basic block by using the first condition directly by the
6820     // branch instruction and removing the no longer needed and/or instruction.
6821     Br1->setCondition(Cond1);
6822     LogicOp->eraseFromParent();
6823 
6824     // Depending on the conditon we have to either replace the true or the false
6825     // successor of the original branch instruction.
6826     if (Opc == Instruction::And)
6827       Br1->setSuccessor(0, TmpBB);
6828     else
6829       Br1->setSuccessor(1, TmpBB);
6830 
6831     // Fill in the new basic block.
6832     auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
6833     if (auto *I = dyn_cast<Instruction>(Cond2)) {
6834       I->removeFromParent();
6835       I->insertBefore(Br2);
6836     }
6837 
6838     // Update PHI nodes in both successors. The original BB needs to be
6839     // replaced in one successor's PHI nodes, because the branch comes now from
6840     // the newly generated BB (NewBB). In the other successor we need to add one
6841     // incoming edge to the PHI nodes, because both branch instructions target
6842     // now the same successor. Depending on the original branch condition
6843     // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
6844     // we perform the correct update for the PHI nodes.
6845     // This doesn't change the successor order of the just created branch
6846     // instruction (or any other instruction).
6847     if (Opc == Instruction::Or)
6848       std::swap(TBB, FBB);
6849 
6850     // Replace the old BB with the new BB.
6851     for (auto &I : *TBB) {
6852       PHINode *PN = dyn_cast<PHINode>(&I);
6853       if (!PN)
6854         break;
6855       int i;
6856       while ((i = PN->getBasicBlockIndex(&BB)) >= 0)
6857         PN->setIncomingBlock(i, TmpBB);
6858     }
6859 
6860     // Add another incoming edge form the new BB.
6861     for (auto &I : *FBB) {
6862       PHINode *PN = dyn_cast<PHINode>(&I);
6863       if (!PN)
6864         break;
6865       auto *Val = PN->getIncomingValueForBlock(&BB);
6866       PN->addIncoming(Val, TmpBB);
6867     }
6868 
6869     // Update the branch weights (from SelectionDAGBuilder::
6870     // FindMergedConditions).
6871     if (Opc == Instruction::Or) {
6872       // Codegen X | Y as:
6873       // BB1:
6874       //   jmp_if_X TBB
6875       //   jmp TmpBB
6876       // TmpBB:
6877       //   jmp_if_Y TBB
6878       //   jmp FBB
6879       //
6880 
6881       // We have flexibility in setting Prob for BB1 and Prob for NewBB.
6882       // The requirement is that
6883       //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
6884       //     = TrueProb for orignal BB.
6885       // Assuming the orignal weights are A and B, one choice is to set BB1's
6886       // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
6887       // assumes that
6888       //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
6889       // Another choice is to assume TrueProb for BB1 equals to TrueProb for
6890       // TmpBB, but the math is more complicated.
6891       uint64_t TrueWeight, FalseWeight;
6892       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
6893         uint64_t NewTrueWeight = TrueWeight;
6894         uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
6895         scaleWeights(NewTrueWeight, NewFalseWeight);
6896         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
6897                          .createBranchWeights(TrueWeight, FalseWeight));
6898 
6899         NewTrueWeight = TrueWeight;
6900         NewFalseWeight = 2 * FalseWeight;
6901         scaleWeights(NewTrueWeight, NewFalseWeight);
6902         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
6903                          .createBranchWeights(TrueWeight, FalseWeight));
6904       }
6905     } else {
6906       // Codegen X & Y as:
6907       // BB1:
6908       //   jmp_if_X TmpBB
6909       //   jmp FBB
6910       // TmpBB:
6911       //   jmp_if_Y TBB
6912       //   jmp FBB
6913       //
6914       //  This requires creation of TmpBB after CurBB.
6915 
6916       // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
6917       // The requirement is that
6918       //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
6919       //     = FalseProb for orignal BB.
6920       // Assuming the orignal weights are A and B, one choice is to set BB1's
6921       // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
6922       // assumes that
6923       //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
6924       uint64_t TrueWeight, FalseWeight;
6925       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
6926         uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
6927         uint64_t NewFalseWeight = FalseWeight;
6928         scaleWeights(NewTrueWeight, NewFalseWeight);
6929         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
6930                          .createBranchWeights(TrueWeight, FalseWeight));
6931 
6932         NewTrueWeight = 2 * TrueWeight;
6933         NewFalseWeight = FalseWeight;
6934         scaleWeights(NewTrueWeight, NewFalseWeight);
6935         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
6936                          .createBranchWeights(TrueWeight, FalseWeight));
6937       }
6938     }
6939 
6940     // Note: No point in getting fancy here, since the DT info is never
6941     // available to CodeGenPrepare.
6942     ModifiedDT = true;
6943 
6944     MadeChange = true;
6945 
6946     DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
6947           TmpBB->dump());
6948   }
6949   return MadeChange;
6950 }
6951