1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InlineAsm.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/IntrinsicsAArch64.h" 63 #include "llvm/IR/IntrinsicsX86.h" 64 #include "llvm/IR/LLVMContext.h" 65 #include "llvm/IR/MDBuilder.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Statepoint.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/ValueMap.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/BlockFrequency.h" 79 #include "llvm/Support/BranchProbability.h" 80 #include "llvm/Support/Casting.h" 81 #include "llvm/Support/CommandLine.h" 82 #include "llvm/Support/Compiler.h" 83 #include "llvm/Support/Debug.h" 84 #include "llvm/Support/ErrorHandling.h" 85 #include "llvm/Support/MachineValueType.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Target/TargetMachine.h" 89 #include "llvm/Target/TargetOptions.h" 90 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 91 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 92 #include "llvm/Transforms/Utils/Local.h" 93 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 94 #include "llvm/Transforms/Utils/SizeOpts.h" 95 #include <algorithm> 96 #include <cassert> 97 #include <cstdint> 98 #include <iterator> 99 #include <limits> 100 #include <memory> 101 #include <utility> 102 #include <vector> 103 104 using namespace llvm; 105 using namespace llvm::PatternMatch; 106 107 #define DEBUG_TYPE "codegenprepare" 108 109 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 110 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 111 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 112 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 113 "sunken Cmps"); 114 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 115 "of sunken Casts"); 116 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 117 "computations were sunk"); 118 STATISTIC(NumMemoryInstsPhiCreated, 119 "Number of phis created when address " 120 "computations were sunk to memory instructions"); 121 STATISTIC(NumMemoryInstsSelectCreated, 122 "Number of select created when address " 123 "computations were sunk to memory instructions"); 124 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 125 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 126 STATISTIC(NumAndsAdded, 127 "Number of and mask instructions added to form ext loads"); 128 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 129 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 130 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 131 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 132 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 133 134 static cl::opt<bool> DisableBranchOpts( 135 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 136 cl::desc("Disable branch optimizations in CodeGenPrepare")); 137 138 static cl::opt<bool> 139 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 140 cl::desc("Disable GC optimizations in CodeGenPrepare")); 141 142 static cl::opt<bool> DisableSelectToBranch( 143 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 144 cl::desc("Disable select to branch conversion.")); 145 146 static cl::opt<bool> AddrSinkUsingGEPs( 147 "addr-sink-using-gep", cl::Hidden, cl::init(true), 148 cl::desc("Address sinking in CGP using GEPs.")); 149 150 static cl::opt<bool> EnableAndCmpSinking( 151 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 152 cl::desc("Enable sinkinig and/cmp into branches.")); 153 154 static cl::opt<bool> DisableStoreExtract( 155 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 156 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 157 158 static cl::opt<bool> StressStoreExtract( 159 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 160 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 161 162 static cl::opt<bool> DisableExtLdPromotion( 163 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 164 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 165 "CodeGenPrepare")); 166 167 static cl::opt<bool> StressExtLdPromotion( 168 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 169 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 170 "optimization in CodeGenPrepare")); 171 172 static cl::opt<bool> DisablePreheaderProtect( 173 "disable-preheader-prot", cl::Hidden, cl::init(false), 174 cl::desc("Disable protection against removing loop preheaders")); 175 176 static cl::opt<bool> ProfileGuidedSectionPrefix( 177 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 178 cl::desc("Use profile info to add section prefix for hot/cold functions")); 179 180 static cl::opt<unsigned> FreqRatioToSkipMerge( 181 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 182 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 183 "(frequency of destination block) is greater than this ratio")); 184 185 static cl::opt<bool> ForceSplitStore( 186 "force-split-store", cl::Hidden, cl::init(false), 187 cl::desc("Force store splitting no matter what the target query says.")); 188 189 static cl::opt<bool> 190 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 191 cl::desc("Enable merging of redundant sexts when one is dominating" 192 " the other."), cl::init(true)); 193 194 static cl::opt<bool> DisableComplexAddrModes( 195 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 196 cl::desc("Disables combining addressing modes with different parts " 197 "in optimizeMemoryInst.")); 198 199 static cl::opt<bool> 200 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 201 cl::desc("Allow creation of Phis in Address sinking.")); 202 203 static cl::opt<bool> 204 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 205 cl::desc("Allow creation of selects in Address sinking.")); 206 207 static cl::opt<bool> AddrSinkCombineBaseReg( 208 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 209 cl::desc("Allow combining of BaseReg field in Address sinking.")); 210 211 static cl::opt<bool> AddrSinkCombineBaseGV( 212 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 213 cl::desc("Allow combining of BaseGV field in Address sinking.")); 214 215 static cl::opt<bool> AddrSinkCombineBaseOffs( 216 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 217 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 218 219 static cl::opt<bool> AddrSinkCombineScaledReg( 220 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 221 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 222 223 static cl::opt<bool> 224 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 225 cl::init(true), 226 cl::desc("Enable splitting large offset of GEP.")); 227 228 static cl::opt<bool> EnableICMP_EQToICMP_ST( 229 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 230 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 231 232 static cl::opt<bool> 233 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), 234 cl::desc("Enable BFI update verification for " 235 "CodeGenPrepare.")); 236 237 namespace { 238 239 enum ExtType { 240 ZeroExtension, // Zero extension has been seen. 241 SignExtension, // Sign extension has been seen. 242 BothExtension // This extension type is used if we saw sext after 243 // ZeroExtension had been set, or if we saw zext after 244 // SignExtension had been set. It makes the type 245 // information of a promoted instruction invalid. 246 }; 247 248 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 249 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 250 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 251 using SExts = SmallVector<Instruction *, 16>; 252 using ValueToSExts = DenseMap<Value *, SExts>; 253 254 class TypePromotionTransaction; 255 256 class CodeGenPrepare : public FunctionPass { 257 const TargetMachine *TM = nullptr; 258 const TargetSubtargetInfo *SubtargetInfo; 259 const TargetLowering *TLI = nullptr; 260 const TargetRegisterInfo *TRI; 261 const TargetTransformInfo *TTI = nullptr; 262 const TargetLibraryInfo *TLInfo; 263 const LoopInfo *LI; 264 std::unique_ptr<BlockFrequencyInfo> BFI; 265 std::unique_ptr<BranchProbabilityInfo> BPI; 266 ProfileSummaryInfo *PSI; 267 268 /// As we scan instructions optimizing them, this is the next instruction 269 /// to optimize. Transforms that can invalidate this should update it. 270 BasicBlock::iterator CurInstIterator; 271 272 /// Keeps track of non-local addresses that have been sunk into a block. 273 /// This allows us to avoid inserting duplicate code for blocks with 274 /// multiple load/stores of the same address. The usage of WeakTrackingVH 275 /// enables SunkAddrs to be treated as a cache whose entries can be 276 /// invalidated if a sunken address computation has been erased. 277 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 278 279 /// Keeps track of all instructions inserted for the current function. 280 SetOfInstrs InsertedInsts; 281 282 /// Keeps track of the type of the related instruction before their 283 /// promotion for the current function. 284 InstrToOrigTy PromotedInsts; 285 286 /// Keep track of instructions removed during promotion. 287 SetOfInstrs RemovedInsts; 288 289 /// Keep track of sext chains based on their initial value. 290 DenseMap<Value *, Instruction *> SeenChainsForSExt; 291 292 /// Keep track of GEPs accessing the same data structures such as structs or 293 /// arrays that are candidates to be split later because of their large 294 /// size. 295 MapVector< 296 AssertingVH<Value>, 297 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 298 LargeOffsetGEPMap; 299 300 /// Keep track of new GEP base after splitting the GEPs having large offset. 301 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 302 303 /// Map serial numbers to Large offset GEPs. 304 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 305 306 /// Keep track of SExt promoted. 307 ValueToSExts ValToSExtendedUses; 308 309 /// True if the function has the OptSize attribute. 310 bool OptSize; 311 312 /// DataLayout for the Function being processed. 313 const DataLayout *DL = nullptr; 314 315 /// Building the dominator tree can be expensive, so we only build it 316 /// lazily and update it when required. 317 std::unique_ptr<DominatorTree> DT; 318 319 public: 320 static char ID; // Pass identification, replacement for typeid 321 322 CodeGenPrepare() : FunctionPass(ID) { 323 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 324 } 325 326 bool runOnFunction(Function &F) override; 327 328 StringRef getPassName() const override { return "CodeGen Prepare"; } 329 330 void getAnalysisUsage(AnalysisUsage &AU) const override { 331 // FIXME: When we can selectively preserve passes, preserve the domtree. 332 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 333 AU.addRequired<TargetLibraryInfoWrapperPass>(); 334 AU.addRequired<TargetPassConfig>(); 335 AU.addRequired<TargetTransformInfoWrapperPass>(); 336 AU.addRequired<LoopInfoWrapperPass>(); 337 } 338 339 private: 340 template <typename F> 341 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 342 // Substituting can cause recursive simplifications, which can invalidate 343 // our iterator. Use a WeakTrackingVH to hold onto it in case this 344 // happens. 345 Value *CurValue = &*CurInstIterator; 346 WeakTrackingVH IterHandle(CurValue); 347 348 f(); 349 350 // If the iterator instruction was recursively deleted, start over at the 351 // start of the block. 352 if (IterHandle != CurValue) { 353 CurInstIterator = BB->begin(); 354 SunkAddrs.clear(); 355 } 356 } 357 358 // Get the DominatorTree, building if necessary. 359 DominatorTree &getDT(Function &F) { 360 if (!DT) 361 DT = std::make_unique<DominatorTree>(F); 362 return *DT; 363 } 364 365 bool eliminateFallThrough(Function &F); 366 bool eliminateMostlyEmptyBlocks(Function &F); 367 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 368 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 369 void eliminateMostlyEmptyBlock(BasicBlock *BB); 370 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 371 bool isPreheader); 372 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 373 bool optimizeInst(Instruction *I, bool &ModifiedDT); 374 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 375 Type *AccessTy, unsigned AddrSpace); 376 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); 377 bool optimizeInlineAsmInst(CallInst *CS); 378 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 379 bool optimizeExt(Instruction *&I); 380 bool optimizeExtUses(Instruction *I); 381 bool optimizeLoadExt(LoadInst *Load); 382 bool optimizeShiftInst(BinaryOperator *BO); 383 bool optimizeSelectInst(SelectInst *SI); 384 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 385 bool optimizeSwitchInst(SwitchInst *SI); 386 bool optimizeExtractElementInst(Instruction *Inst); 387 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 388 bool fixupDbgValue(Instruction *I); 389 bool placeDbgValues(Function &F); 390 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 391 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 392 bool tryToPromoteExts(TypePromotionTransaction &TPT, 393 const SmallVectorImpl<Instruction *> &Exts, 394 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 395 unsigned CreatedInstsCost = 0); 396 bool mergeSExts(Function &F); 397 bool splitLargeGEPOffsets(); 398 bool performAddressTypePromotion( 399 Instruction *&Inst, 400 bool AllowPromotionWithoutCommonHeader, 401 bool HasPromoted, TypePromotionTransaction &TPT, 402 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 403 bool splitBranchCondition(Function &F, bool &ModifiedDT); 404 bool simplifyOffsetableRelocate(Instruction &I); 405 406 bool tryToSinkFreeOperands(Instruction *I); 407 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, 408 Value *Arg1, CmpInst *Cmp, 409 Intrinsic::ID IID); 410 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 411 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 412 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 413 void verifyBFIUpdates(Function &F); 414 }; 415 416 } // end anonymous namespace 417 418 char CodeGenPrepare::ID = 0; 419 420 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 421 "Optimize for code generation", false, false) 422 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 423 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 424 "Optimize for code generation", false, false) 425 426 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 427 428 bool CodeGenPrepare::runOnFunction(Function &F) { 429 if (skipFunction(F)) 430 return false; 431 432 DL = &F.getParent()->getDataLayout(); 433 434 bool EverMadeChange = false; 435 // Clear per function information. 436 InsertedInsts.clear(); 437 PromotedInsts.clear(); 438 439 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 440 SubtargetInfo = TM->getSubtargetImpl(F); 441 TLI = SubtargetInfo->getTargetLowering(); 442 TRI = SubtargetInfo->getRegisterInfo(); 443 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 444 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 445 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 446 BPI.reset(new BranchProbabilityInfo(F, *LI)); 447 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 448 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 449 OptSize = F.hasOptSize(); 450 if (ProfileGuidedSectionPrefix) { 451 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 452 F.setSectionPrefix(".hot"); 453 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 454 F.setSectionPrefix(".unlikely"); 455 } 456 457 /// This optimization identifies DIV instructions that can be 458 /// profitably bypassed and carried out with a shorter, faster divide. 459 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 460 const DenseMap<unsigned int, unsigned int> &BypassWidths = 461 TLI->getBypassSlowDivWidths(); 462 BasicBlock* BB = &*F.begin(); 463 while (BB != nullptr) { 464 // bypassSlowDivision may create new BBs, but we don't want to reapply the 465 // optimization to those blocks. 466 BasicBlock* Next = BB->getNextNode(); 467 // F.hasOptSize is already checked in the outer if statement. 468 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 469 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 470 BB = Next; 471 } 472 } 473 474 // Eliminate blocks that contain only PHI nodes and an 475 // unconditional branch. 476 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 477 478 bool ModifiedDT = false; 479 if (!DisableBranchOpts) 480 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 481 482 // Split some critical edges where one of the sources is an indirect branch, 483 // to help generate sane code for PHIs involving such edges. 484 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 485 486 bool MadeChange = true; 487 while (MadeChange) { 488 MadeChange = false; 489 DT.reset(); 490 for (Function::iterator I = F.begin(); I != F.end(); ) { 491 BasicBlock *BB = &*I++; 492 bool ModifiedDTOnIteration = false; 493 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 494 495 // Restart BB iteration if the dominator tree of the Function was changed 496 if (ModifiedDTOnIteration) 497 break; 498 } 499 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 500 MadeChange |= mergeSExts(F); 501 if (!LargeOffsetGEPMap.empty()) 502 MadeChange |= splitLargeGEPOffsets(); 503 504 if (MadeChange) 505 eliminateFallThrough(F); 506 507 // Really free removed instructions during promotion. 508 for (Instruction *I : RemovedInsts) 509 I->deleteValue(); 510 511 EverMadeChange |= MadeChange; 512 SeenChainsForSExt.clear(); 513 ValToSExtendedUses.clear(); 514 RemovedInsts.clear(); 515 LargeOffsetGEPMap.clear(); 516 LargeOffsetGEPID.clear(); 517 } 518 519 SunkAddrs.clear(); 520 521 if (!DisableBranchOpts) { 522 MadeChange = false; 523 // Use a set vector to get deterministic iteration order. The order the 524 // blocks are removed may affect whether or not PHI nodes in successors 525 // are removed. 526 SmallSetVector<BasicBlock*, 8> WorkList; 527 for (BasicBlock &BB : F) { 528 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 529 MadeChange |= ConstantFoldTerminator(&BB, true); 530 if (!MadeChange) continue; 531 532 for (SmallVectorImpl<BasicBlock*>::iterator 533 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 534 if (pred_begin(*II) == pred_end(*II)) 535 WorkList.insert(*II); 536 } 537 538 // Delete the dead blocks and any of their dead successors. 539 MadeChange |= !WorkList.empty(); 540 while (!WorkList.empty()) { 541 BasicBlock *BB = WorkList.pop_back_val(); 542 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 543 544 DeleteDeadBlock(BB); 545 546 for (SmallVectorImpl<BasicBlock*>::iterator 547 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 548 if (pred_begin(*II) == pred_end(*II)) 549 WorkList.insert(*II); 550 } 551 552 // Merge pairs of basic blocks with unconditional branches, connected by 553 // a single edge. 554 if (EverMadeChange || MadeChange) 555 MadeChange |= eliminateFallThrough(F); 556 557 EverMadeChange |= MadeChange; 558 } 559 560 if (!DisableGCOpts) { 561 SmallVector<Instruction *, 2> Statepoints; 562 for (BasicBlock &BB : F) 563 for (Instruction &I : BB) 564 if (isStatepoint(I)) 565 Statepoints.push_back(&I); 566 for (auto &I : Statepoints) 567 EverMadeChange |= simplifyOffsetableRelocate(*I); 568 } 569 570 // Do this last to clean up use-before-def scenarios introduced by other 571 // preparatory transforms. 572 EverMadeChange |= placeDbgValues(F); 573 574 #ifndef NDEBUG 575 if (VerifyBFIUpdates) 576 verifyBFIUpdates(F); 577 #endif 578 579 return EverMadeChange; 580 } 581 582 // Verify BFI has been updated correctly by recomputing BFI and comparing them. 583 void CodeGenPrepare::verifyBFIUpdates(Function &F) { 584 DominatorTree NewDT(F); 585 LoopInfo NewLI(NewDT); 586 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); 587 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); 588 NewBFI.verifyMatch(*BFI); 589 } 590 591 /// Merge basic blocks which are connected by a single edge, where one of the 592 /// basic blocks has a single successor pointing to the other basic block, 593 /// which has a single predecessor. 594 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 595 bool Changed = false; 596 // Scan all of the blocks in the function, except for the entry block. 597 // Use a temporary array to avoid iterator being invalidated when 598 // deleting blocks. 599 SmallVector<WeakTrackingVH, 16> Blocks; 600 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 601 Blocks.push_back(&Block); 602 603 for (auto &Block : Blocks) { 604 auto *BB = cast_or_null<BasicBlock>(Block); 605 if (!BB) 606 continue; 607 // If the destination block has a single pred, then this is a trivial 608 // edge, just collapse it. 609 BasicBlock *SinglePred = BB->getSinglePredecessor(); 610 611 // Don't merge if BB's address is taken. 612 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 613 614 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 615 if (Term && !Term->isConditional()) { 616 Changed = true; 617 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 618 619 // Merge BB into SinglePred and delete it. 620 MergeBlockIntoPredecessor(BB); 621 } 622 } 623 return Changed; 624 } 625 626 /// Find a destination block from BB if BB is mergeable empty block. 627 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 628 // If this block doesn't end with an uncond branch, ignore it. 629 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 630 if (!BI || !BI->isUnconditional()) 631 return nullptr; 632 633 // If the instruction before the branch (skipping debug info) isn't a phi 634 // node, then other stuff is happening here. 635 BasicBlock::iterator BBI = BI->getIterator(); 636 if (BBI != BB->begin()) { 637 --BBI; 638 while (isa<DbgInfoIntrinsic>(BBI)) { 639 if (BBI == BB->begin()) 640 break; 641 --BBI; 642 } 643 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 644 return nullptr; 645 } 646 647 // Do not break infinite loops. 648 BasicBlock *DestBB = BI->getSuccessor(0); 649 if (DestBB == BB) 650 return nullptr; 651 652 if (!canMergeBlocks(BB, DestBB)) 653 DestBB = nullptr; 654 655 return DestBB; 656 } 657 658 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 659 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 660 /// edges in ways that are non-optimal for isel. Start by eliminating these 661 /// blocks so we can split them the way we want them. 662 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 663 SmallPtrSet<BasicBlock *, 16> Preheaders; 664 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 665 while (!LoopList.empty()) { 666 Loop *L = LoopList.pop_back_val(); 667 LoopList.insert(LoopList.end(), L->begin(), L->end()); 668 if (BasicBlock *Preheader = L->getLoopPreheader()) 669 Preheaders.insert(Preheader); 670 } 671 672 bool MadeChange = false; 673 // Copy blocks into a temporary array to avoid iterator invalidation issues 674 // as we remove them. 675 // Note that this intentionally skips the entry block. 676 SmallVector<WeakTrackingVH, 16> Blocks; 677 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 678 Blocks.push_back(&Block); 679 680 for (auto &Block : Blocks) { 681 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 682 if (!BB) 683 continue; 684 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 685 if (!DestBB || 686 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 687 continue; 688 689 eliminateMostlyEmptyBlock(BB); 690 MadeChange = true; 691 } 692 return MadeChange; 693 } 694 695 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 696 BasicBlock *DestBB, 697 bool isPreheader) { 698 // Do not delete loop preheaders if doing so would create a critical edge. 699 // Loop preheaders can be good locations to spill registers. If the 700 // preheader is deleted and we create a critical edge, registers may be 701 // spilled in the loop body instead. 702 if (!DisablePreheaderProtect && isPreheader && 703 !(BB->getSinglePredecessor() && 704 BB->getSinglePredecessor()->getSingleSuccessor())) 705 return false; 706 707 // Skip merging if the block's successor is also a successor to any callbr 708 // that leads to this block. 709 // FIXME: Is this really needed? Is this a correctness issue? 710 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 711 if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator())) 712 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 713 if (DestBB == CBI->getSuccessor(i)) 714 return false; 715 } 716 717 // Try to skip merging if the unique predecessor of BB is terminated by a 718 // switch or indirect branch instruction, and BB is used as an incoming block 719 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 720 // add COPY instructions in the predecessor of BB instead of BB (if it is not 721 // merged). Note that the critical edge created by merging such blocks wont be 722 // split in MachineSink because the jump table is not analyzable. By keeping 723 // such empty block (BB), ISel will place COPY instructions in BB, not in the 724 // predecessor of BB. 725 BasicBlock *Pred = BB->getUniquePredecessor(); 726 if (!Pred || 727 !(isa<SwitchInst>(Pred->getTerminator()) || 728 isa<IndirectBrInst>(Pred->getTerminator()))) 729 return true; 730 731 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 732 return true; 733 734 // We use a simple cost heuristic which determine skipping merging is 735 // profitable if the cost of skipping merging is less than the cost of 736 // merging : Cost(skipping merging) < Cost(merging BB), where the 737 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 738 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 739 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 740 // Freq(Pred) / Freq(BB) > 2. 741 // Note that if there are multiple empty blocks sharing the same incoming 742 // value for the PHIs in the DestBB, we consider them together. In such 743 // case, Cost(merging BB) will be the sum of their frequencies. 744 745 if (!isa<PHINode>(DestBB->begin())) 746 return true; 747 748 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 749 750 // Find all other incoming blocks from which incoming values of all PHIs in 751 // DestBB are the same as the ones from BB. 752 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 753 ++PI) { 754 BasicBlock *DestBBPred = *PI; 755 if (DestBBPred == BB) 756 continue; 757 758 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 759 return DestPN.getIncomingValueForBlock(BB) == 760 DestPN.getIncomingValueForBlock(DestBBPred); 761 })) 762 SameIncomingValueBBs.insert(DestBBPred); 763 } 764 765 // See if all BB's incoming values are same as the value from Pred. In this 766 // case, no reason to skip merging because COPYs are expected to be place in 767 // Pred already. 768 if (SameIncomingValueBBs.count(Pred)) 769 return true; 770 771 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 772 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 773 774 for (auto SameValueBB : SameIncomingValueBBs) 775 if (SameValueBB->getUniquePredecessor() == Pred && 776 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 777 BBFreq += BFI->getBlockFreq(SameValueBB); 778 779 return PredFreq.getFrequency() <= 780 BBFreq.getFrequency() * FreqRatioToSkipMerge; 781 } 782 783 /// Return true if we can merge BB into DestBB if there is a single 784 /// unconditional branch between them, and BB contains no other non-phi 785 /// instructions. 786 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 787 const BasicBlock *DestBB) const { 788 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 789 // the successor. If there are more complex condition (e.g. preheaders), 790 // don't mess around with them. 791 for (const PHINode &PN : BB->phis()) { 792 for (const User *U : PN.users()) { 793 const Instruction *UI = cast<Instruction>(U); 794 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 795 return false; 796 // If User is inside DestBB block and it is a PHINode then check 797 // incoming value. If incoming value is not from BB then this is 798 // a complex condition (e.g. preheaders) we want to avoid here. 799 if (UI->getParent() == DestBB) { 800 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 801 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 802 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 803 if (Insn && Insn->getParent() == BB && 804 Insn->getParent() != UPN->getIncomingBlock(I)) 805 return false; 806 } 807 } 808 } 809 } 810 811 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 812 // and DestBB may have conflicting incoming values for the block. If so, we 813 // can't merge the block. 814 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 815 if (!DestBBPN) return true; // no conflict. 816 817 // Collect the preds of BB. 818 SmallPtrSet<const BasicBlock*, 16> BBPreds; 819 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 820 // It is faster to get preds from a PHI than with pred_iterator. 821 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 822 BBPreds.insert(BBPN->getIncomingBlock(i)); 823 } else { 824 BBPreds.insert(pred_begin(BB), pred_end(BB)); 825 } 826 827 // Walk the preds of DestBB. 828 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 829 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 830 if (BBPreds.count(Pred)) { // Common predecessor? 831 for (const PHINode &PN : DestBB->phis()) { 832 const Value *V1 = PN.getIncomingValueForBlock(Pred); 833 const Value *V2 = PN.getIncomingValueForBlock(BB); 834 835 // If V2 is a phi node in BB, look up what the mapped value will be. 836 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 837 if (V2PN->getParent() == BB) 838 V2 = V2PN->getIncomingValueForBlock(Pred); 839 840 // If there is a conflict, bail out. 841 if (V1 != V2) return false; 842 } 843 } 844 } 845 846 return true; 847 } 848 849 /// Eliminate a basic block that has only phi's and an unconditional branch in 850 /// it. 851 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 852 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 853 BasicBlock *DestBB = BI->getSuccessor(0); 854 855 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 856 << *BB << *DestBB); 857 858 // If the destination block has a single pred, then this is a trivial edge, 859 // just collapse it. 860 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 861 if (SinglePred != DestBB) { 862 assert(SinglePred == BB && 863 "Single predecessor not the same as predecessor"); 864 // Merge DestBB into SinglePred/BB and delete it. 865 MergeBlockIntoPredecessor(DestBB); 866 // Note: BB(=SinglePred) will not be deleted on this path. 867 // DestBB(=its single successor) is the one that was deleted. 868 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 869 return; 870 } 871 } 872 873 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 874 // to handle the new incoming edges it is about to have. 875 for (PHINode &PN : DestBB->phis()) { 876 // Remove the incoming value for BB, and remember it. 877 Value *InVal = PN.removeIncomingValue(BB, false); 878 879 // Two options: either the InVal is a phi node defined in BB or it is some 880 // value that dominates BB. 881 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 882 if (InValPhi && InValPhi->getParent() == BB) { 883 // Add all of the input values of the input PHI as inputs of this phi. 884 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 885 PN.addIncoming(InValPhi->getIncomingValue(i), 886 InValPhi->getIncomingBlock(i)); 887 } else { 888 // Otherwise, add one instance of the dominating value for each edge that 889 // we will be adding. 890 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 891 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 892 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 893 } else { 894 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 895 PN.addIncoming(InVal, *PI); 896 } 897 } 898 } 899 900 // The PHIs are now updated, change everything that refers to BB to use 901 // DestBB and remove BB. 902 BB->replaceAllUsesWith(DestBB); 903 BB->eraseFromParent(); 904 ++NumBlocksElim; 905 906 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 907 } 908 909 // Computes a map of base pointer relocation instructions to corresponding 910 // derived pointer relocation instructions given a vector of all relocate calls 911 static void computeBaseDerivedRelocateMap( 912 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 913 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 914 &RelocateInstMap) { 915 // Collect information in two maps: one primarily for locating the base object 916 // while filling the second map; the second map is the final structure holding 917 // a mapping between Base and corresponding Derived relocate calls 918 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 919 for (auto *ThisRelocate : AllRelocateCalls) { 920 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 921 ThisRelocate->getDerivedPtrIndex()); 922 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 923 } 924 for (auto &Item : RelocateIdxMap) { 925 std::pair<unsigned, unsigned> Key = Item.first; 926 if (Key.first == Key.second) 927 // Base relocation: nothing to insert 928 continue; 929 930 GCRelocateInst *I = Item.second; 931 auto BaseKey = std::make_pair(Key.first, Key.first); 932 933 // We're iterating over RelocateIdxMap so we cannot modify it. 934 auto MaybeBase = RelocateIdxMap.find(BaseKey); 935 if (MaybeBase == RelocateIdxMap.end()) 936 // TODO: We might want to insert a new base object relocate and gep off 937 // that, if there are enough derived object relocates. 938 continue; 939 940 RelocateInstMap[MaybeBase->second].push_back(I); 941 } 942 } 943 944 // Accepts a GEP and extracts the operands into a vector provided they're all 945 // small integer constants 946 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 947 SmallVectorImpl<Value *> &OffsetV) { 948 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 949 // Only accept small constant integer operands 950 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 951 if (!Op || Op->getZExtValue() > 20) 952 return false; 953 } 954 955 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 956 OffsetV.push_back(GEP->getOperand(i)); 957 return true; 958 } 959 960 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 961 // replace, computes a replacement, and affects it. 962 static bool 963 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 964 const SmallVectorImpl<GCRelocateInst *> &Targets) { 965 bool MadeChange = false; 966 // We must ensure the relocation of derived pointer is defined after 967 // relocation of base pointer. If we find a relocation corresponding to base 968 // defined earlier than relocation of base then we move relocation of base 969 // right before found relocation. We consider only relocation in the same 970 // basic block as relocation of base. Relocations from other basic block will 971 // be skipped by optimization and we do not care about them. 972 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 973 &*R != RelocatedBase; ++R) 974 if (auto RI = dyn_cast<GCRelocateInst>(R)) 975 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 976 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 977 RelocatedBase->moveBefore(RI); 978 break; 979 } 980 981 for (GCRelocateInst *ToReplace : Targets) { 982 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 983 "Not relocating a derived object of the original base object"); 984 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 985 // A duplicate relocate call. TODO: coalesce duplicates. 986 continue; 987 } 988 989 if (RelocatedBase->getParent() != ToReplace->getParent()) { 990 // Base and derived relocates are in different basic blocks. 991 // In this case transform is only valid when base dominates derived 992 // relocate. However it would be too expensive to check dominance 993 // for each such relocate, so we skip the whole transformation. 994 continue; 995 } 996 997 Value *Base = ToReplace->getBasePtr(); 998 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 999 if (!Derived || Derived->getPointerOperand() != Base) 1000 continue; 1001 1002 SmallVector<Value *, 2> OffsetV; 1003 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 1004 continue; 1005 1006 // Create a Builder and replace the target callsite with a gep 1007 assert(RelocatedBase->getNextNode() && 1008 "Should always have one since it's not a terminator"); 1009 1010 // Insert after RelocatedBase 1011 IRBuilder<> Builder(RelocatedBase->getNextNode()); 1012 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1013 1014 // If gc_relocate does not match the actual type, cast it to the right type. 1015 // In theory, there must be a bitcast after gc_relocate if the type does not 1016 // match, and we should reuse it to get the derived pointer. But it could be 1017 // cases like this: 1018 // bb1: 1019 // ... 1020 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1021 // br label %merge 1022 // 1023 // bb2: 1024 // ... 1025 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1026 // br label %merge 1027 // 1028 // merge: 1029 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1030 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1031 // 1032 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1033 // no matter there is already one or not. In this way, we can handle all cases, and 1034 // the extra bitcast should be optimized away in later passes. 1035 Value *ActualRelocatedBase = RelocatedBase; 1036 if (RelocatedBase->getType() != Base->getType()) { 1037 ActualRelocatedBase = 1038 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1039 } 1040 Value *Replacement = Builder.CreateGEP( 1041 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1042 Replacement->takeName(ToReplace); 1043 // If the newly generated derived pointer's type does not match the original derived 1044 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1045 Value *ActualReplacement = Replacement; 1046 if (Replacement->getType() != ToReplace->getType()) { 1047 ActualReplacement = 1048 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1049 } 1050 ToReplace->replaceAllUsesWith(ActualReplacement); 1051 ToReplace->eraseFromParent(); 1052 1053 MadeChange = true; 1054 } 1055 return MadeChange; 1056 } 1057 1058 // Turns this: 1059 // 1060 // %base = ... 1061 // %ptr = gep %base + 15 1062 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1063 // %base' = relocate(%tok, i32 4, i32 4) 1064 // %ptr' = relocate(%tok, i32 4, i32 5) 1065 // %val = load %ptr' 1066 // 1067 // into this: 1068 // 1069 // %base = ... 1070 // %ptr = gep %base + 15 1071 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1072 // %base' = gc.relocate(%tok, i32 4, i32 4) 1073 // %ptr' = gep %base' + 15 1074 // %val = load %ptr' 1075 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1076 bool MadeChange = false; 1077 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1078 1079 for (auto *U : I.users()) 1080 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1081 // Collect all the relocate calls associated with a statepoint 1082 AllRelocateCalls.push_back(Relocate); 1083 1084 // We need at least one base pointer relocation + one derived pointer 1085 // relocation to mangle 1086 if (AllRelocateCalls.size() < 2) 1087 return false; 1088 1089 // RelocateInstMap is a mapping from the base relocate instruction to the 1090 // corresponding derived relocate instructions 1091 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1092 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1093 if (RelocateInstMap.empty()) 1094 return false; 1095 1096 for (auto &Item : RelocateInstMap) 1097 // Item.first is the RelocatedBase to offset against 1098 // Item.second is the vector of Targets to replace 1099 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1100 return MadeChange; 1101 } 1102 1103 /// Sink the specified cast instruction into its user blocks. 1104 static bool SinkCast(CastInst *CI) { 1105 BasicBlock *DefBB = CI->getParent(); 1106 1107 /// InsertedCasts - Only insert a cast in each block once. 1108 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1109 1110 bool MadeChange = false; 1111 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1112 UI != E; ) { 1113 Use &TheUse = UI.getUse(); 1114 Instruction *User = cast<Instruction>(*UI); 1115 1116 // Figure out which BB this cast is used in. For PHI's this is the 1117 // appropriate predecessor block. 1118 BasicBlock *UserBB = User->getParent(); 1119 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1120 UserBB = PN->getIncomingBlock(TheUse); 1121 } 1122 1123 // Preincrement use iterator so we don't invalidate it. 1124 ++UI; 1125 1126 // The first insertion point of a block containing an EH pad is after the 1127 // pad. If the pad is the user, we cannot sink the cast past the pad. 1128 if (User->isEHPad()) 1129 continue; 1130 1131 // If the block selected to receive the cast is an EH pad that does not 1132 // allow non-PHI instructions before the terminator, we can't sink the 1133 // cast. 1134 if (UserBB->getTerminator()->isEHPad()) 1135 continue; 1136 1137 // If this user is in the same block as the cast, don't change the cast. 1138 if (UserBB == DefBB) continue; 1139 1140 // If we have already inserted a cast into this block, use it. 1141 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1142 1143 if (!InsertedCast) { 1144 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1145 assert(InsertPt != UserBB->end()); 1146 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1147 CI->getType(), "", &*InsertPt); 1148 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1149 } 1150 1151 // Replace a use of the cast with a use of the new cast. 1152 TheUse = InsertedCast; 1153 MadeChange = true; 1154 ++NumCastUses; 1155 } 1156 1157 // If we removed all uses, nuke the cast. 1158 if (CI->use_empty()) { 1159 salvageDebugInfo(*CI); 1160 CI->eraseFromParent(); 1161 MadeChange = true; 1162 } 1163 1164 return MadeChange; 1165 } 1166 1167 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1168 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1169 /// reduce the number of virtual registers that must be created and coalesced. 1170 /// 1171 /// Return true if any changes are made. 1172 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1173 const DataLayout &DL) { 1174 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1175 // than sinking only nop casts, but is helpful on some platforms. 1176 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1177 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1178 ASC->getDestAddressSpace())) 1179 return false; 1180 } 1181 1182 // If this is a noop copy, 1183 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1184 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1185 1186 // This is an fp<->int conversion? 1187 if (SrcVT.isInteger() != DstVT.isInteger()) 1188 return false; 1189 1190 // If this is an extension, it will be a zero or sign extension, which 1191 // isn't a noop. 1192 if (SrcVT.bitsLT(DstVT)) return false; 1193 1194 // If these values will be promoted, find out what they will be promoted 1195 // to. This helps us consider truncates on PPC as noop copies when they 1196 // are. 1197 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1198 TargetLowering::TypePromoteInteger) 1199 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1200 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1201 TargetLowering::TypePromoteInteger) 1202 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1203 1204 // If, after promotion, these are the same types, this is a noop copy. 1205 if (SrcVT != DstVT) 1206 return false; 1207 1208 return SinkCast(CI); 1209 } 1210 1211 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1212 Value *Arg0, Value *Arg1, 1213 CmpInst *Cmp, 1214 Intrinsic::ID IID) { 1215 if (BO->getParent() != Cmp->getParent()) { 1216 // We used to use a dominator tree here to allow multi-block optimization. 1217 // But that was problematic because: 1218 // 1. It could cause a perf regression by hoisting the math op into the 1219 // critical path. 1220 // 2. It could cause a perf regression by creating a value that was live 1221 // across multiple blocks and increasing register pressure. 1222 // 3. Use of a dominator tree could cause large compile-time regression. 1223 // This is because we recompute the DT on every change in the main CGP 1224 // run-loop. The recomputing is probably unnecessary in many cases, so if 1225 // that was fixed, using a DT here would be ok. 1226 return false; 1227 } 1228 1229 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1230 if (BO->getOpcode() == Instruction::Add && 1231 IID == Intrinsic::usub_with_overflow) { 1232 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1233 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1234 } 1235 1236 // Insert at the first instruction of the pair. 1237 Instruction *InsertPt = nullptr; 1238 for (Instruction &Iter : *Cmp->getParent()) { 1239 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1240 // the overflow intrinsic are defined. 1241 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1242 InsertPt = &Iter; 1243 break; 1244 } 1245 } 1246 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1247 1248 IRBuilder<> Builder(InsertPt); 1249 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1250 if (BO->getOpcode() != Instruction::Xor) { 1251 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1252 BO->replaceAllUsesWith(Math); 1253 } else 1254 assert(BO->hasOneUse() && 1255 "Patterns with XOr should use the BO only in the compare"); 1256 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1257 Cmp->replaceAllUsesWith(OV); 1258 Cmp->eraseFromParent(); 1259 BO->eraseFromParent(); 1260 return true; 1261 } 1262 1263 /// Match special-case patterns that check for unsigned add overflow. 1264 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1265 BinaryOperator *&Add) { 1266 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1267 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1268 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1269 1270 // We are not expecting non-canonical/degenerate code. Just bail out. 1271 if (isa<Constant>(A)) 1272 return false; 1273 1274 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1275 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1276 B = ConstantInt::get(B->getType(), 1); 1277 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1278 B = ConstantInt::get(B->getType(), -1); 1279 else 1280 return false; 1281 1282 // Check the users of the variable operand of the compare looking for an add 1283 // with the adjusted constant. 1284 for (User *U : A->users()) { 1285 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1286 Add = cast<BinaryOperator>(U); 1287 return true; 1288 } 1289 } 1290 return false; 1291 } 1292 1293 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1294 /// intrinsic. Return true if any changes were made. 1295 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1296 bool &ModifiedDT) { 1297 Value *A, *B; 1298 BinaryOperator *Add; 1299 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1300 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1301 return false; 1302 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1303 A = Add->getOperand(0); 1304 B = Add->getOperand(1); 1305 } 1306 1307 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1308 TLI->getValueType(*DL, Add->getType()), 1309 Add->hasNUsesOrMore(2))) 1310 return false; 1311 1312 // We don't want to move around uses of condition values this late, so we 1313 // check if it is legal to create the call to the intrinsic in the basic 1314 // block containing the icmp. 1315 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1316 return false; 1317 1318 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1319 Intrinsic::uadd_with_overflow)) 1320 return false; 1321 1322 // Reset callers - do not crash by iterating over a dead instruction. 1323 ModifiedDT = true; 1324 return true; 1325 } 1326 1327 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1328 bool &ModifiedDT) { 1329 // We are not expecting non-canonical/degenerate code. Just bail out. 1330 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1331 if (isa<Constant>(A) && isa<Constant>(B)) 1332 return false; 1333 1334 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1335 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1336 if (Pred == ICmpInst::ICMP_UGT) { 1337 std::swap(A, B); 1338 Pred = ICmpInst::ICMP_ULT; 1339 } 1340 // Convert special-case: (A == 0) is the same as (A u< 1). 1341 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1342 B = ConstantInt::get(B->getType(), 1); 1343 Pred = ICmpInst::ICMP_ULT; 1344 } 1345 // Convert special-case: (A != 0) is the same as (0 u< A). 1346 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1347 std::swap(A, B); 1348 Pred = ICmpInst::ICMP_ULT; 1349 } 1350 if (Pred != ICmpInst::ICMP_ULT) 1351 return false; 1352 1353 // Walk the users of a variable operand of a compare looking for a subtract or 1354 // add with that same operand. Also match the 2nd operand of the compare to 1355 // the add/sub, but that may be a negated constant operand of an add. 1356 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1357 BinaryOperator *Sub = nullptr; 1358 for (User *U : CmpVariableOperand->users()) { 1359 // A - B, A u< B --> usubo(A, B) 1360 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1361 Sub = cast<BinaryOperator>(U); 1362 break; 1363 } 1364 1365 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1366 const APInt *CmpC, *AddC; 1367 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1368 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1369 Sub = cast<BinaryOperator>(U); 1370 break; 1371 } 1372 } 1373 if (!Sub) 1374 return false; 1375 1376 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1377 TLI->getValueType(*DL, Sub->getType()), 1378 Sub->hasNUsesOrMore(2))) 1379 return false; 1380 1381 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1382 Cmp, Intrinsic::usub_with_overflow)) 1383 return false; 1384 1385 // Reset callers - do not crash by iterating over a dead instruction. 1386 ModifiedDT = true; 1387 return true; 1388 } 1389 1390 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1391 /// registers that must be created and coalesced. This is a clear win except on 1392 /// targets with multiple condition code registers (PowerPC), where it might 1393 /// lose; some adjustment may be wanted there. 1394 /// 1395 /// Return true if any changes are made. 1396 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1397 if (TLI.hasMultipleConditionRegisters()) 1398 return false; 1399 1400 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1401 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1402 return false; 1403 1404 // Only insert a cmp in each block once. 1405 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1406 1407 bool MadeChange = false; 1408 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1409 UI != E; ) { 1410 Use &TheUse = UI.getUse(); 1411 Instruction *User = cast<Instruction>(*UI); 1412 1413 // Preincrement use iterator so we don't invalidate it. 1414 ++UI; 1415 1416 // Don't bother for PHI nodes. 1417 if (isa<PHINode>(User)) 1418 continue; 1419 1420 // Figure out which BB this cmp is used in. 1421 BasicBlock *UserBB = User->getParent(); 1422 BasicBlock *DefBB = Cmp->getParent(); 1423 1424 // If this user is in the same block as the cmp, don't change the cmp. 1425 if (UserBB == DefBB) continue; 1426 1427 // If we have already inserted a cmp into this block, use it. 1428 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1429 1430 if (!InsertedCmp) { 1431 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1432 assert(InsertPt != UserBB->end()); 1433 InsertedCmp = 1434 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1435 Cmp->getOperand(0), Cmp->getOperand(1), "", 1436 &*InsertPt); 1437 // Propagate the debug info. 1438 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1439 } 1440 1441 // Replace a use of the cmp with a use of the new cmp. 1442 TheUse = InsertedCmp; 1443 MadeChange = true; 1444 ++NumCmpUses; 1445 } 1446 1447 // If we removed all uses, nuke the cmp. 1448 if (Cmp->use_empty()) { 1449 Cmp->eraseFromParent(); 1450 MadeChange = true; 1451 } 1452 1453 return MadeChange; 1454 } 1455 1456 /// For pattern like: 1457 /// 1458 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1459 /// ... 1460 /// DomBB: 1461 /// ... 1462 /// br DomCond, TrueBB, CmpBB 1463 /// CmpBB: (with DomBB being the single predecessor) 1464 /// ... 1465 /// Cmp = icmp eq CmpOp0, CmpOp1 1466 /// ... 1467 /// 1468 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1469 /// different from lowering of icmp eq (PowerPC). This function try to convert 1470 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1471 /// After that, DomCond and Cmp can use the same comparison so reduce one 1472 /// comparison. 1473 /// 1474 /// Return true if any changes are made. 1475 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1476 const TargetLowering &TLI) { 1477 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1478 return false; 1479 1480 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1481 if (Pred != ICmpInst::ICMP_EQ) 1482 return false; 1483 1484 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1485 // icmp slt/sgt would introduce more redundant LLVM IR. 1486 for (User *U : Cmp->users()) { 1487 if (isa<BranchInst>(U)) 1488 continue; 1489 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1490 continue; 1491 return false; 1492 } 1493 1494 // This is a cheap/incomplete check for dominance - just match a single 1495 // predecessor with a conditional branch. 1496 BasicBlock *CmpBB = Cmp->getParent(); 1497 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1498 if (!DomBB) 1499 return false; 1500 1501 // We want to ensure that the only way control gets to the comparison of 1502 // interest is that a less/greater than comparison on the same operands is 1503 // false. 1504 Value *DomCond; 1505 BasicBlock *TrueBB, *FalseBB; 1506 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1507 return false; 1508 if (CmpBB != FalseBB) 1509 return false; 1510 1511 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1512 ICmpInst::Predicate DomPred; 1513 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1514 return false; 1515 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1516 return false; 1517 1518 // Convert the equality comparison to the opposite of the dominating 1519 // comparison and swap the direction for all branch/select users. 1520 // We have conceptually converted: 1521 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1522 // to 1523 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1524 // And similarly for branches. 1525 for (User *U : Cmp->users()) { 1526 if (auto *BI = dyn_cast<BranchInst>(U)) { 1527 assert(BI->isConditional() && "Must be conditional"); 1528 BI->swapSuccessors(); 1529 continue; 1530 } 1531 if (auto *SI = dyn_cast<SelectInst>(U)) { 1532 // Swap operands 1533 SI->swapValues(); 1534 SI->swapProfMetadata(); 1535 continue; 1536 } 1537 llvm_unreachable("Must be a branch or a select"); 1538 } 1539 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1540 return true; 1541 } 1542 1543 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1544 if (sinkCmpExpression(Cmp, *TLI)) 1545 return true; 1546 1547 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1548 return true; 1549 1550 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1551 return true; 1552 1553 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1554 return true; 1555 1556 return false; 1557 } 1558 1559 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1560 /// used in a compare to allow isel to generate better code for targets where 1561 /// this operation can be combined. 1562 /// 1563 /// Return true if any changes are made. 1564 static bool sinkAndCmp0Expression(Instruction *AndI, 1565 const TargetLowering &TLI, 1566 SetOfInstrs &InsertedInsts) { 1567 // Double-check that we're not trying to optimize an instruction that was 1568 // already optimized by some other part of this pass. 1569 assert(!InsertedInsts.count(AndI) && 1570 "Attempting to optimize already optimized and instruction"); 1571 (void) InsertedInsts; 1572 1573 // Nothing to do for single use in same basic block. 1574 if (AndI->hasOneUse() && 1575 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1576 return false; 1577 1578 // Try to avoid cases where sinking/duplicating is likely to increase register 1579 // pressure. 1580 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1581 !isa<ConstantInt>(AndI->getOperand(1)) && 1582 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1583 return false; 1584 1585 for (auto *U : AndI->users()) { 1586 Instruction *User = cast<Instruction>(U); 1587 1588 // Only sink 'and' feeding icmp with 0. 1589 if (!isa<ICmpInst>(User)) 1590 return false; 1591 1592 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1593 if (!CmpC || !CmpC->isZero()) 1594 return false; 1595 } 1596 1597 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1598 return false; 1599 1600 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1601 LLVM_DEBUG(AndI->getParent()->dump()); 1602 1603 // Push the 'and' into the same block as the icmp 0. There should only be 1604 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1605 // others, so we don't need to keep track of which BBs we insert into. 1606 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1607 UI != E; ) { 1608 Use &TheUse = UI.getUse(); 1609 Instruction *User = cast<Instruction>(*UI); 1610 1611 // Preincrement use iterator so we don't invalidate it. 1612 ++UI; 1613 1614 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1615 1616 // Keep the 'and' in the same place if the use is already in the same block. 1617 Instruction *InsertPt = 1618 User->getParent() == AndI->getParent() ? AndI : User; 1619 Instruction *InsertedAnd = 1620 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1621 AndI->getOperand(1), "", InsertPt); 1622 // Propagate the debug info. 1623 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1624 1625 // Replace a use of the 'and' with a use of the new 'and'. 1626 TheUse = InsertedAnd; 1627 ++NumAndUses; 1628 LLVM_DEBUG(User->getParent()->dump()); 1629 } 1630 1631 // We removed all uses, nuke the and. 1632 AndI->eraseFromParent(); 1633 return true; 1634 } 1635 1636 /// Check if the candidates could be combined with a shift instruction, which 1637 /// includes: 1638 /// 1. Truncate instruction 1639 /// 2. And instruction and the imm is a mask of the low bits: 1640 /// imm & (imm+1) == 0 1641 static bool isExtractBitsCandidateUse(Instruction *User) { 1642 if (!isa<TruncInst>(User)) { 1643 if (User->getOpcode() != Instruction::And || 1644 !isa<ConstantInt>(User->getOperand(1))) 1645 return false; 1646 1647 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1648 1649 if ((Cimm & (Cimm + 1)).getBoolValue()) 1650 return false; 1651 } 1652 return true; 1653 } 1654 1655 /// Sink both shift and truncate instruction to the use of truncate's BB. 1656 static bool 1657 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1658 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1659 const TargetLowering &TLI, const DataLayout &DL) { 1660 BasicBlock *UserBB = User->getParent(); 1661 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1662 auto *TruncI = cast<TruncInst>(User); 1663 bool MadeChange = false; 1664 1665 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1666 TruncE = TruncI->user_end(); 1667 TruncUI != TruncE;) { 1668 1669 Use &TruncTheUse = TruncUI.getUse(); 1670 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1671 // Preincrement use iterator so we don't invalidate it. 1672 1673 ++TruncUI; 1674 1675 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1676 if (!ISDOpcode) 1677 continue; 1678 1679 // If the use is actually a legal node, there will not be an 1680 // implicit truncate. 1681 // FIXME: always querying the result type is just an 1682 // approximation; some nodes' legality is determined by the 1683 // operand or other means. There's no good way to find out though. 1684 if (TLI.isOperationLegalOrCustom( 1685 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1686 continue; 1687 1688 // Don't bother for PHI nodes. 1689 if (isa<PHINode>(TruncUser)) 1690 continue; 1691 1692 BasicBlock *TruncUserBB = TruncUser->getParent(); 1693 1694 if (UserBB == TruncUserBB) 1695 continue; 1696 1697 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1698 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1699 1700 if (!InsertedShift && !InsertedTrunc) { 1701 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1702 assert(InsertPt != TruncUserBB->end()); 1703 // Sink the shift 1704 if (ShiftI->getOpcode() == Instruction::AShr) 1705 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1706 "", &*InsertPt); 1707 else 1708 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1709 "", &*InsertPt); 1710 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1711 1712 // Sink the trunc 1713 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1714 TruncInsertPt++; 1715 assert(TruncInsertPt != TruncUserBB->end()); 1716 1717 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1718 TruncI->getType(), "", &*TruncInsertPt); 1719 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1720 1721 MadeChange = true; 1722 1723 TruncTheUse = InsertedTrunc; 1724 } 1725 } 1726 return MadeChange; 1727 } 1728 1729 /// Sink the shift *right* instruction into user blocks if the uses could 1730 /// potentially be combined with this shift instruction and generate BitExtract 1731 /// instruction. It will only be applied if the architecture supports BitExtract 1732 /// instruction. Here is an example: 1733 /// BB1: 1734 /// %x.extract.shift = lshr i64 %arg1, 32 1735 /// BB2: 1736 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1737 /// ==> 1738 /// 1739 /// BB2: 1740 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1741 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1742 /// 1743 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1744 /// instruction. 1745 /// Return true if any changes are made. 1746 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1747 const TargetLowering &TLI, 1748 const DataLayout &DL) { 1749 BasicBlock *DefBB = ShiftI->getParent(); 1750 1751 /// Only insert instructions in each block once. 1752 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1753 1754 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1755 1756 bool MadeChange = false; 1757 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1758 UI != E;) { 1759 Use &TheUse = UI.getUse(); 1760 Instruction *User = cast<Instruction>(*UI); 1761 // Preincrement use iterator so we don't invalidate it. 1762 ++UI; 1763 1764 // Don't bother for PHI nodes. 1765 if (isa<PHINode>(User)) 1766 continue; 1767 1768 if (!isExtractBitsCandidateUse(User)) 1769 continue; 1770 1771 BasicBlock *UserBB = User->getParent(); 1772 1773 if (UserBB == DefBB) { 1774 // If the shift and truncate instruction are in the same BB. The use of 1775 // the truncate(TruncUse) may still introduce another truncate if not 1776 // legal. In this case, we would like to sink both shift and truncate 1777 // instruction to the BB of TruncUse. 1778 // for example: 1779 // BB1: 1780 // i64 shift.result = lshr i64 opnd, imm 1781 // trunc.result = trunc shift.result to i16 1782 // 1783 // BB2: 1784 // ----> We will have an implicit truncate here if the architecture does 1785 // not have i16 compare. 1786 // cmp i16 trunc.result, opnd2 1787 // 1788 if (isa<TruncInst>(User) && shiftIsLegal 1789 // If the type of the truncate is legal, no truncate will be 1790 // introduced in other basic blocks. 1791 && 1792 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1793 MadeChange = 1794 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1795 1796 continue; 1797 } 1798 // If we have already inserted a shift into this block, use it. 1799 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1800 1801 if (!InsertedShift) { 1802 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1803 assert(InsertPt != UserBB->end()); 1804 1805 if (ShiftI->getOpcode() == Instruction::AShr) 1806 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1807 "", &*InsertPt); 1808 else 1809 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1810 "", &*InsertPt); 1811 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1812 1813 MadeChange = true; 1814 } 1815 1816 // Replace a use of the shift with a use of the new shift. 1817 TheUse = InsertedShift; 1818 } 1819 1820 // If we removed all uses, or there are none, nuke the shift. 1821 if (ShiftI->use_empty()) { 1822 salvageDebugInfo(*ShiftI); 1823 ShiftI->eraseFromParent(); 1824 MadeChange = true; 1825 } 1826 1827 return MadeChange; 1828 } 1829 1830 /// If counting leading or trailing zeros is an expensive operation and a zero 1831 /// input is defined, add a check for zero to avoid calling the intrinsic. 1832 /// 1833 /// We want to transform: 1834 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1835 /// 1836 /// into: 1837 /// entry: 1838 /// %cmpz = icmp eq i64 %A, 0 1839 /// br i1 %cmpz, label %cond.end, label %cond.false 1840 /// cond.false: 1841 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1842 /// br label %cond.end 1843 /// cond.end: 1844 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1845 /// 1846 /// If the transform is performed, return true and set ModifiedDT to true. 1847 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1848 const TargetLowering *TLI, 1849 const DataLayout *DL, 1850 bool &ModifiedDT) { 1851 // If a zero input is undefined, it doesn't make sense to despeculate that. 1852 if (match(CountZeros->getOperand(1), m_One())) 1853 return false; 1854 1855 // If it's cheap to speculate, there's nothing to do. 1856 auto IntrinsicID = CountZeros->getIntrinsicID(); 1857 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1858 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1859 return false; 1860 1861 // Only handle legal scalar cases. Anything else requires too much work. 1862 Type *Ty = CountZeros->getType(); 1863 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1864 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1865 return false; 1866 1867 // The intrinsic will be sunk behind a compare against zero and branch. 1868 BasicBlock *StartBlock = CountZeros->getParent(); 1869 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1870 1871 // Create another block after the count zero intrinsic. A PHI will be added 1872 // in this block to select the result of the intrinsic or the bit-width 1873 // constant if the input to the intrinsic is zero. 1874 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1875 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1876 1877 // Set up a builder to create a compare, conditional branch, and PHI. 1878 IRBuilder<> Builder(CountZeros->getContext()); 1879 Builder.SetInsertPoint(StartBlock->getTerminator()); 1880 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1881 1882 // Replace the unconditional branch that was created by the first split with 1883 // a compare against zero and a conditional branch. 1884 Value *Zero = Constant::getNullValue(Ty); 1885 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1886 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1887 StartBlock->getTerminator()->eraseFromParent(); 1888 1889 // Create a PHI in the end block to select either the output of the intrinsic 1890 // or the bit width of the operand. 1891 Builder.SetInsertPoint(&EndBlock->front()); 1892 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1893 CountZeros->replaceAllUsesWith(PN); 1894 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1895 PN->addIncoming(BitWidth, StartBlock); 1896 PN->addIncoming(CountZeros, CallBlock); 1897 1898 // We are explicitly handling the zero case, so we can set the intrinsic's 1899 // undefined zero argument to 'true'. This will also prevent reprocessing the 1900 // intrinsic; we only despeculate when a zero input is defined. 1901 CountZeros->setArgOperand(1, Builder.getTrue()); 1902 ModifiedDT = true; 1903 return true; 1904 } 1905 1906 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1907 BasicBlock *BB = CI->getParent(); 1908 1909 // Lower inline assembly if we can. 1910 // If we found an inline asm expession, and if the target knows how to 1911 // lower it to normal LLVM code, do so now. 1912 if (CI->isInlineAsm()) { 1913 if (TLI->ExpandInlineAsm(CI)) { 1914 // Avoid invalidating the iterator. 1915 CurInstIterator = BB->begin(); 1916 // Avoid processing instructions out of order, which could cause 1917 // reuse before a value is defined. 1918 SunkAddrs.clear(); 1919 return true; 1920 } 1921 // Sink address computing for memory operands into the block. 1922 if (optimizeInlineAsmInst(CI)) 1923 return true; 1924 } 1925 1926 // Align the pointer arguments to this call if the target thinks it's a good 1927 // idea 1928 unsigned MinSize, PrefAlign; 1929 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1930 for (auto &Arg : CI->arg_operands()) { 1931 // We want to align both objects whose address is used directly and 1932 // objects whose address is used in casts and GEPs, though it only makes 1933 // sense for GEPs if the offset is a multiple of the desired alignment and 1934 // if size - offset meets the size threshold. 1935 if (!Arg->getType()->isPointerTy()) 1936 continue; 1937 APInt Offset(DL->getIndexSizeInBits( 1938 cast<PointerType>(Arg->getType())->getAddressSpace()), 1939 0); 1940 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1941 uint64_t Offset2 = Offset.getLimitedValue(); 1942 if ((Offset2 & (PrefAlign-1)) != 0) 1943 continue; 1944 AllocaInst *AI; 1945 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1946 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1947 AI->setAlignment(MaybeAlign(PrefAlign)); 1948 // Global variables can only be aligned if they are defined in this 1949 // object (i.e. they are uniquely initialized in this object), and 1950 // over-aligning global variables that have an explicit section is 1951 // forbidden. 1952 GlobalVariable *GV; 1953 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1954 GV->getPointerAlignment(*DL) < PrefAlign && 1955 DL->getTypeAllocSize(GV->getValueType()) >= 1956 MinSize + Offset2) 1957 GV->setAlignment(MaybeAlign(PrefAlign)); 1958 } 1959 // If this is a memcpy (or similar) then we may be able to improve the 1960 // alignment 1961 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1962 Align DestAlign = getKnownAlignment(MI->getDest(), *DL); 1963 MaybeAlign MIDestAlign = MI->getDestAlign(); 1964 if (!MIDestAlign || DestAlign > *MIDestAlign) 1965 MI->setDestAlignment(DestAlign); 1966 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 1967 MaybeAlign MTISrcAlign = MTI->getSourceAlign(); 1968 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 1969 if (!MTISrcAlign || SrcAlign > *MTISrcAlign) 1970 MTI->setSourceAlignment(SrcAlign); 1971 } 1972 } 1973 } 1974 1975 // If we have a cold call site, try to sink addressing computation into the 1976 // cold block. This interacts with our handling for loads and stores to 1977 // ensure that we can fold all uses of a potential addressing computation 1978 // into their uses. TODO: generalize this to work over profiling data 1979 if (CI->hasFnAttr(Attribute::Cold) && 1980 !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 1981 for (auto &Arg : CI->arg_operands()) { 1982 if (!Arg->getType()->isPointerTy()) 1983 continue; 1984 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1985 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1986 } 1987 1988 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1989 if (II) { 1990 switch (II->getIntrinsicID()) { 1991 default: break; 1992 case Intrinsic::assume: { 1993 II->eraseFromParent(); 1994 return true; 1995 } 1996 1997 case Intrinsic::experimental_widenable_condition: { 1998 // Give up on future widening oppurtunties so that we can fold away dead 1999 // paths and merge blocks before going into block-local instruction 2000 // selection. 2001 if (II->use_empty()) { 2002 II->eraseFromParent(); 2003 return true; 2004 } 2005 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 2006 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2007 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2008 }); 2009 return true; 2010 } 2011 case Intrinsic::objectsize: 2012 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2013 case Intrinsic::is_constant: 2014 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2015 case Intrinsic::aarch64_stlxr: 2016 case Intrinsic::aarch64_stxr: { 2017 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2018 if (!ExtVal || !ExtVal->hasOneUse() || 2019 ExtVal->getParent() == CI->getParent()) 2020 return false; 2021 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2022 ExtVal->moveBefore(CI); 2023 // Mark this instruction as "inserted by CGP", so that other 2024 // optimizations don't touch it. 2025 InsertedInsts.insert(ExtVal); 2026 return true; 2027 } 2028 2029 case Intrinsic::launder_invariant_group: 2030 case Intrinsic::strip_invariant_group: { 2031 Value *ArgVal = II->getArgOperand(0); 2032 auto it = LargeOffsetGEPMap.find(II); 2033 if (it != LargeOffsetGEPMap.end()) { 2034 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2035 // Make sure not to have to deal with iterator invalidation 2036 // after possibly adding ArgVal to LargeOffsetGEPMap. 2037 auto GEPs = std::move(it->second); 2038 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2039 LargeOffsetGEPMap.erase(II); 2040 } 2041 2042 II->replaceAllUsesWith(ArgVal); 2043 II->eraseFromParent(); 2044 return true; 2045 } 2046 case Intrinsic::cttz: 2047 case Intrinsic::ctlz: 2048 // If counting zeros is expensive, try to avoid it. 2049 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2050 case Intrinsic::dbg_value: 2051 return fixupDbgValue(II); 2052 case Intrinsic::vscale: { 2053 // If datalayout has no special restrictions on vector data layout, 2054 // replace `llvm.vscale` by an equivalent constant expression 2055 // to benefit from cheap constant propagation. 2056 Type *ScalableVectorTy = 2057 VectorType::get(Type::getInt8Ty(II->getContext()), 1, true); 2058 if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) { 2059 auto Null = Constant::getNullValue(ScalableVectorTy->getPointerTo()); 2060 auto One = ConstantInt::getSigned(II->getType(), 1); 2061 auto *CGep = 2062 ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One); 2063 II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType())); 2064 II->eraseFromParent(); 2065 return true; 2066 } 2067 break; 2068 } 2069 case Intrinsic::masked_gather: 2070 return optimizeGatherScatterInst(II, II->getArgOperand(0)); 2071 case Intrinsic::masked_scatter: 2072 return optimizeGatherScatterInst(II, II->getArgOperand(1)); 2073 } 2074 2075 SmallVector<Value *, 2> PtrOps; 2076 Type *AccessTy; 2077 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2078 while (!PtrOps.empty()) { 2079 Value *PtrVal = PtrOps.pop_back_val(); 2080 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2081 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2082 return true; 2083 } 2084 } 2085 2086 // From here on out we're working with named functions. 2087 if (!CI->getCalledFunction()) return false; 2088 2089 // Lower all default uses of _chk calls. This is very similar 2090 // to what InstCombineCalls does, but here we are only lowering calls 2091 // to fortified library functions (e.g. __memcpy_chk) that have the default 2092 // "don't know" as the objectsize. Anything else should be left alone. 2093 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2094 IRBuilder<> Builder(CI); 2095 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2096 CI->replaceAllUsesWith(V); 2097 CI->eraseFromParent(); 2098 return true; 2099 } 2100 2101 return false; 2102 } 2103 2104 /// Look for opportunities to duplicate return instructions to the predecessor 2105 /// to enable tail call optimizations. The case it is currently looking for is: 2106 /// @code 2107 /// bb0: 2108 /// %tmp0 = tail call i32 @f0() 2109 /// br label %return 2110 /// bb1: 2111 /// %tmp1 = tail call i32 @f1() 2112 /// br label %return 2113 /// bb2: 2114 /// %tmp2 = tail call i32 @f2() 2115 /// br label %return 2116 /// return: 2117 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2118 /// ret i32 %retval 2119 /// @endcode 2120 /// 2121 /// => 2122 /// 2123 /// @code 2124 /// bb0: 2125 /// %tmp0 = tail call i32 @f0() 2126 /// ret i32 %tmp0 2127 /// bb1: 2128 /// %tmp1 = tail call i32 @f1() 2129 /// ret i32 %tmp1 2130 /// bb2: 2131 /// %tmp2 = tail call i32 @f2() 2132 /// ret i32 %tmp2 2133 /// @endcode 2134 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 2135 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2136 if (!RetI) 2137 return false; 2138 2139 PHINode *PN = nullptr; 2140 ExtractValueInst *EVI = nullptr; 2141 BitCastInst *BCI = nullptr; 2142 Value *V = RetI->getReturnValue(); 2143 if (V) { 2144 BCI = dyn_cast<BitCastInst>(V); 2145 if (BCI) 2146 V = BCI->getOperand(0); 2147 2148 EVI = dyn_cast<ExtractValueInst>(V); 2149 if (EVI) { 2150 V = EVI->getOperand(0); 2151 if (!std::all_of(EVI->idx_begin(), EVI->idx_end(), 2152 [](unsigned idx) { return idx == 0; })) 2153 return false; 2154 } 2155 2156 PN = dyn_cast<PHINode>(V); 2157 if (!PN) 2158 return false; 2159 } 2160 2161 if (PN && PN->getParent() != BB) 2162 return false; 2163 2164 // Make sure there are no instructions between the PHI and return, or that the 2165 // return is the first instruction in the block. 2166 if (PN) { 2167 BasicBlock::iterator BI = BB->begin(); 2168 // Skip over debug and the bitcast. 2169 do { 2170 ++BI; 2171 } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI || &*BI == EVI); 2172 if (&*BI != RetI) 2173 return false; 2174 } else { 2175 BasicBlock::iterator BI = BB->begin(); 2176 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2177 if (&*BI != RetI) 2178 return false; 2179 } 2180 2181 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2182 /// call. 2183 const Function *F = BB->getParent(); 2184 SmallVector<BasicBlock*, 4> TailCallBBs; 2185 if (PN) { 2186 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2187 // Look through bitcasts. 2188 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2189 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2190 BasicBlock *PredBB = PN->getIncomingBlock(I); 2191 // Make sure the phi value is indeed produced by the tail call. 2192 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2193 TLI->mayBeEmittedAsTailCall(CI) && 2194 attributesPermitTailCall(F, CI, RetI, *TLI)) 2195 TailCallBBs.push_back(PredBB); 2196 } 2197 } else { 2198 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2199 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2200 if (!VisitedBBs.insert(*PI).second) 2201 continue; 2202 2203 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2204 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2205 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2206 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2207 if (RI == RE) 2208 continue; 2209 2210 CallInst *CI = dyn_cast<CallInst>(&*RI); 2211 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2212 attributesPermitTailCall(F, CI, RetI, *TLI)) 2213 TailCallBBs.push_back(*PI); 2214 } 2215 } 2216 2217 bool Changed = false; 2218 for (auto const &TailCallBB : TailCallBBs) { 2219 // Make sure the call instruction is followed by an unconditional branch to 2220 // the return block. 2221 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2222 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2223 continue; 2224 2225 // Duplicate the return into TailCallBB. 2226 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2227 assert(!VerifyBFIUpdates || 2228 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); 2229 BFI->setBlockFreq( 2230 BB, 2231 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency()); 2232 ModifiedDT = Changed = true; 2233 ++NumRetsDup; 2234 } 2235 2236 // If we eliminated all predecessors of the block, delete the block now. 2237 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2238 BB->eraseFromParent(); 2239 2240 return Changed; 2241 } 2242 2243 //===----------------------------------------------------------------------===// 2244 // Memory Optimization 2245 //===----------------------------------------------------------------------===// 2246 2247 namespace { 2248 2249 /// This is an extended version of TargetLowering::AddrMode 2250 /// which holds actual Value*'s for register values. 2251 struct ExtAddrMode : public TargetLowering::AddrMode { 2252 Value *BaseReg = nullptr; 2253 Value *ScaledReg = nullptr; 2254 Value *OriginalValue = nullptr; 2255 bool InBounds = true; 2256 2257 enum FieldName { 2258 NoField = 0x00, 2259 BaseRegField = 0x01, 2260 BaseGVField = 0x02, 2261 BaseOffsField = 0x04, 2262 ScaledRegField = 0x08, 2263 ScaleField = 0x10, 2264 MultipleFields = 0xff 2265 }; 2266 2267 2268 ExtAddrMode() = default; 2269 2270 void print(raw_ostream &OS) const; 2271 void dump() const; 2272 2273 FieldName compare(const ExtAddrMode &other) { 2274 // First check that the types are the same on each field, as differing types 2275 // is something we can't cope with later on. 2276 if (BaseReg && other.BaseReg && 2277 BaseReg->getType() != other.BaseReg->getType()) 2278 return MultipleFields; 2279 if (BaseGV && other.BaseGV && 2280 BaseGV->getType() != other.BaseGV->getType()) 2281 return MultipleFields; 2282 if (ScaledReg && other.ScaledReg && 2283 ScaledReg->getType() != other.ScaledReg->getType()) 2284 return MultipleFields; 2285 2286 // Conservatively reject 'inbounds' mismatches. 2287 if (InBounds != other.InBounds) 2288 return MultipleFields; 2289 2290 // Check each field to see if it differs. 2291 unsigned Result = NoField; 2292 if (BaseReg != other.BaseReg) 2293 Result |= BaseRegField; 2294 if (BaseGV != other.BaseGV) 2295 Result |= BaseGVField; 2296 if (BaseOffs != other.BaseOffs) 2297 Result |= BaseOffsField; 2298 if (ScaledReg != other.ScaledReg) 2299 Result |= ScaledRegField; 2300 // Don't count 0 as being a different scale, because that actually means 2301 // unscaled (which will already be counted by having no ScaledReg). 2302 if (Scale && other.Scale && Scale != other.Scale) 2303 Result |= ScaleField; 2304 2305 if (countPopulation(Result) > 1) 2306 return MultipleFields; 2307 else 2308 return static_cast<FieldName>(Result); 2309 } 2310 2311 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2312 // with no offset. 2313 bool isTrivial() { 2314 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2315 // trivial if at most one of these terms is nonzero, except that BaseGV and 2316 // BaseReg both being zero actually means a null pointer value, which we 2317 // consider to be 'non-zero' here. 2318 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2319 } 2320 2321 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2322 switch (Field) { 2323 default: 2324 return nullptr; 2325 case BaseRegField: 2326 return BaseReg; 2327 case BaseGVField: 2328 return BaseGV; 2329 case ScaledRegField: 2330 return ScaledReg; 2331 case BaseOffsField: 2332 return ConstantInt::get(IntPtrTy, BaseOffs); 2333 } 2334 } 2335 2336 void SetCombinedField(FieldName Field, Value *V, 2337 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2338 switch (Field) { 2339 default: 2340 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2341 break; 2342 case ExtAddrMode::BaseRegField: 2343 BaseReg = V; 2344 break; 2345 case ExtAddrMode::BaseGVField: 2346 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2347 // in the BaseReg field. 2348 assert(BaseReg == nullptr); 2349 BaseReg = V; 2350 BaseGV = nullptr; 2351 break; 2352 case ExtAddrMode::ScaledRegField: 2353 ScaledReg = V; 2354 // If we have a mix of scaled and unscaled addrmodes then we want scale 2355 // to be the scale and not zero. 2356 if (!Scale) 2357 for (const ExtAddrMode &AM : AddrModes) 2358 if (AM.Scale) { 2359 Scale = AM.Scale; 2360 break; 2361 } 2362 break; 2363 case ExtAddrMode::BaseOffsField: 2364 // The offset is no longer a constant, so it goes in ScaledReg with a 2365 // scale of 1. 2366 assert(ScaledReg == nullptr); 2367 ScaledReg = V; 2368 Scale = 1; 2369 BaseOffs = 0; 2370 break; 2371 } 2372 } 2373 }; 2374 2375 } // end anonymous namespace 2376 2377 #ifndef NDEBUG 2378 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2379 AM.print(OS); 2380 return OS; 2381 } 2382 #endif 2383 2384 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2385 void ExtAddrMode::print(raw_ostream &OS) const { 2386 bool NeedPlus = false; 2387 OS << "["; 2388 if (InBounds) 2389 OS << "inbounds "; 2390 if (BaseGV) { 2391 OS << (NeedPlus ? " + " : "") 2392 << "GV:"; 2393 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2394 NeedPlus = true; 2395 } 2396 2397 if (BaseOffs) { 2398 OS << (NeedPlus ? " + " : "") 2399 << BaseOffs; 2400 NeedPlus = true; 2401 } 2402 2403 if (BaseReg) { 2404 OS << (NeedPlus ? " + " : "") 2405 << "Base:"; 2406 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2407 NeedPlus = true; 2408 } 2409 if (Scale) { 2410 OS << (NeedPlus ? " + " : "") 2411 << Scale << "*"; 2412 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2413 } 2414 2415 OS << ']'; 2416 } 2417 2418 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2419 print(dbgs()); 2420 dbgs() << '\n'; 2421 } 2422 #endif 2423 2424 namespace { 2425 2426 /// This class provides transaction based operation on the IR. 2427 /// Every change made through this class is recorded in the internal state and 2428 /// can be undone (rollback) until commit is called. 2429 class TypePromotionTransaction { 2430 /// This represents the common interface of the individual transaction. 2431 /// Each class implements the logic for doing one specific modification on 2432 /// the IR via the TypePromotionTransaction. 2433 class TypePromotionAction { 2434 protected: 2435 /// The Instruction modified. 2436 Instruction *Inst; 2437 2438 public: 2439 /// Constructor of the action. 2440 /// The constructor performs the related action on the IR. 2441 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2442 2443 virtual ~TypePromotionAction() = default; 2444 2445 /// Undo the modification done by this action. 2446 /// When this method is called, the IR must be in the same state as it was 2447 /// before this action was applied. 2448 /// \pre Undoing the action works if and only if the IR is in the exact same 2449 /// state as it was directly after this action was applied. 2450 virtual void undo() = 0; 2451 2452 /// Advocate every change made by this action. 2453 /// When the results on the IR of the action are to be kept, it is important 2454 /// to call this function, otherwise hidden information may be kept forever. 2455 virtual void commit() { 2456 // Nothing to be done, this action is not doing anything. 2457 } 2458 }; 2459 2460 /// Utility to remember the position of an instruction. 2461 class InsertionHandler { 2462 /// Position of an instruction. 2463 /// Either an instruction: 2464 /// - Is the first in a basic block: BB is used. 2465 /// - Has a previous instruction: PrevInst is used. 2466 union { 2467 Instruction *PrevInst; 2468 BasicBlock *BB; 2469 } Point; 2470 2471 /// Remember whether or not the instruction had a previous instruction. 2472 bool HasPrevInstruction; 2473 2474 public: 2475 /// Record the position of \p Inst. 2476 InsertionHandler(Instruction *Inst) { 2477 BasicBlock::iterator It = Inst->getIterator(); 2478 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2479 if (HasPrevInstruction) 2480 Point.PrevInst = &*--It; 2481 else 2482 Point.BB = Inst->getParent(); 2483 } 2484 2485 /// Insert \p Inst at the recorded position. 2486 void insert(Instruction *Inst) { 2487 if (HasPrevInstruction) { 2488 if (Inst->getParent()) 2489 Inst->removeFromParent(); 2490 Inst->insertAfter(Point.PrevInst); 2491 } else { 2492 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2493 if (Inst->getParent()) 2494 Inst->moveBefore(Position); 2495 else 2496 Inst->insertBefore(Position); 2497 } 2498 } 2499 }; 2500 2501 /// Move an instruction before another. 2502 class InstructionMoveBefore : public TypePromotionAction { 2503 /// Original position of the instruction. 2504 InsertionHandler Position; 2505 2506 public: 2507 /// Move \p Inst before \p Before. 2508 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2509 : TypePromotionAction(Inst), Position(Inst) { 2510 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2511 << "\n"); 2512 Inst->moveBefore(Before); 2513 } 2514 2515 /// Move the instruction back to its original position. 2516 void undo() override { 2517 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2518 Position.insert(Inst); 2519 } 2520 }; 2521 2522 /// Set the operand of an instruction with a new value. 2523 class OperandSetter : public TypePromotionAction { 2524 /// Original operand of the instruction. 2525 Value *Origin; 2526 2527 /// Index of the modified instruction. 2528 unsigned Idx; 2529 2530 public: 2531 /// Set \p Idx operand of \p Inst with \p NewVal. 2532 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2533 : TypePromotionAction(Inst), Idx(Idx) { 2534 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2535 << "for:" << *Inst << "\n" 2536 << "with:" << *NewVal << "\n"); 2537 Origin = Inst->getOperand(Idx); 2538 Inst->setOperand(Idx, NewVal); 2539 } 2540 2541 /// Restore the original value of the instruction. 2542 void undo() override { 2543 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2544 << "for: " << *Inst << "\n" 2545 << "with: " << *Origin << "\n"); 2546 Inst->setOperand(Idx, Origin); 2547 } 2548 }; 2549 2550 /// Hide the operands of an instruction. 2551 /// Do as if this instruction was not using any of its operands. 2552 class OperandsHider : public TypePromotionAction { 2553 /// The list of original operands. 2554 SmallVector<Value *, 4> OriginalValues; 2555 2556 public: 2557 /// Remove \p Inst from the uses of the operands of \p Inst. 2558 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2559 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2560 unsigned NumOpnds = Inst->getNumOperands(); 2561 OriginalValues.reserve(NumOpnds); 2562 for (unsigned It = 0; It < NumOpnds; ++It) { 2563 // Save the current operand. 2564 Value *Val = Inst->getOperand(It); 2565 OriginalValues.push_back(Val); 2566 // Set a dummy one. 2567 // We could use OperandSetter here, but that would imply an overhead 2568 // that we are not willing to pay. 2569 Inst->setOperand(It, UndefValue::get(Val->getType())); 2570 } 2571 } 2572 2573 /// Restore the original list of uses. 2574 void undo() override { 2575 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2576 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2577 Inst->setOperand(It, OriginalValues[It]); 2578 } 2579 }; 2580 2581 /// Build a truncate instruction. 2582 class TruncBuilder : public TypePromotionAction { 2583 Value *Val; 2584 2585 public: 2586 /// Build a truncate instruction of \p Opnd producing a \p Ty 2587 /// result. 2588 /// trunc Opnd to Ty. 2589 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2590 IRBuilder<> Builder(Opnd); 2591 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2592 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2593 } 2594 2595 /// Get the built value. 2596 Value *getBuiltValue() { return Val; } 2597 2598 /// Remove the built instruction. 2599 void undo() override { 2600 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2601 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2602 IVal->eraseFromParent(); 2603 } 2604 }; 2605 2606 /// Build a sign extension instruction. 2607 class SExtBuilder : public TypePromotionAction { 2608 Value *Val; 2609 2610 public: 2611 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2612 /// result. 2613 /// sext Opnd to Ty. 2614 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2615 : TypePromotionAction(InsertPt) { 2616 IRBuilder<> Builder(InsertPt); 2617 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2618 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2619 } 2620 2621 /// Get the built value. 2622 Value *getBuiltValue() { return Val; } 2623 2624 /// Remove the built instruction. 2625 void undo() override { 2626 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2627 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2628 IVal->eraseFromParent(); 2629 } 2630 }; 2631 2632 /// Build a zero extension instruction. 2633 class ZExtBuilder : public TypePromotionAction { 2634 Value *Val; 2635 2636 public: 2637 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2638 /// result. 2639 /// zext Opnd to Ty. 2640 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2641 : TypePromotionAction(InsertPt) { 2642 IRBuilder<> Builder(InsertPt); 2643 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2644 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2645 } 2646 2647 /// Get the built value. 2648 Value *getBuiltValue() { return Val; } 2649 2650 /// Remove the built instruction. 2651 void undo() override { 2652 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2653 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2654 IVal->eraseFromParent(); 2655 } 2656 }; 2657 2658 /// Mutate an instruction to another type. 2659 class TypeMutator : public TypePromotionAction { 2660 /// Record the original type. 2661 Type *OrigTy; 2662 2663 public: 2664 /// Mutate the type of \p Inst into \p NewTy. 2665 TypeMutator(Instruction *Inst, Type *NewTy) 2666 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2667 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2668 << "\n"); 2669 Inst->mutateType(NewTy); 2670 } 2671 2672 /// Mutate the instruction back to its original type. 2673 void undo() override { 2674 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2675 << "\n"); 2676 Inst->mutateType(OrigTy); 2677 } 2678 }; 2679 2680 /// Replace the uses of an instruction by another instruction. 2681 class UsesReplacer : public TypePromotionAction { 2682 /// Helper structure to keep track of the replaced uses. 2683 struct InstructionAndIdx { 2684 /// The instruction using the instruction. 2685 Instruction *Inst; 2686 2687 /// The index where this instruction is used for Inst. 2688 unsigned Idx; 2689 2690 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2691 : Inst(Inst), Idx(Idx) {} 2692 }; 2693 2694 /// Keep track of the original uses (pair Instruction, Index). 2695 SmallVector<InstructionAndIdx, 4> OriginalUses; 2696 /// Keep track of the debug users. 2697 SmallVector<DbgValueInst *, 1> DbgValues; 2698 2699 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2700 2701 public: 2702 /// Replace all the use of \p Inst by \p New. 2703 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2704 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2705 << "\n"); 2706 // Record the original uses. 2707 for (Use &U : Inst->uses()) { 2708 Instruction *UserI = cast<Instruction>(U.getUser()); 2709 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2710 } 2711 // Record the debug uses separately. They are not in the instruction's 2712 // use list, but they are replaced by RAUW. 2713 findDbgValues(DbgValues, Inst); 2714 2715 // Now, we can replace the uses. 2716 Inst->replaceAllUsesWith(New); 2717 } 2718 2719 /// Reassign the original uses of Inst to Inst. 2720 void undo() override { 2721 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2722 for (use_iterator UseIt = OriginalUses.begin(), 2723 EndIt = OriginalUses.end(); 2724 UseIt != EndIt; ++UseIt) { 2725 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2726 } 2727 // RAUW has replaced all original uses with references to the new value, 2728 // including the debug uses. Since we are undoing the replacements, 2729 // the original debug uses must also be reinstated to maintain the 2730 // correctness and utility of debug value instructions. 2731 for (auto *DVI: DbgValues) { 2732 LLVMContext &Ctx = Inst->getType()->getContext(); 2733 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); 2734 DVI->setOperand(0, MV); 2735 } 2736 } 2737 }; 2738 2739 /// Remove an instruction from the IR. 2740 class InstructionRemover : public TypePromotionAction { 2741 /// Original position of the instruction. 2742 InsertionHandler Inserter; 2743 2744 /// Helper structure to hide all the link to the instruction. In other 2745 /// words, this helps to do as if the instruction was removed. 2746 OperandsHider Hider; 2747 2748 /// Keep track of the uses replaced, if any. 2749 UsesReplacer *Replacer = nullptr; 2750 2751 /// Keep track of instructions removed. 2752 SetOfInstrs &RemovedInsts; 2753 2754 public: 2755 /// Remove all reference of \p Inst and optionally replace all its 2756 /// uses with New. 2757 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2758 /// \pre If !Inst->use_empty(), then New != nullptr 2759 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2760 Value *New = nullptr) 2761 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2762 RemovedInsts(RemovedInsts) { 2763 if (New) 2764 Replacer = new UsesReplacer(Inst, New); 2765 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2766 RemovedInsts.insert(Inst); 2767 /// The instructions removed here will be freed after completing 2768 /// optimizeBlock() for all blocks as we need to keep track of the 2769 /// removed instructions during promotion. 2770 Inst->removeFromParent(); 2771 } 2772 2773 ~InstructionRemover() override { delete Replacer; } 2774 2775 /// Resurrect the instruction and reassign it to the proper uses if 2776 /// new value was provided when build this action. 2777 void undo() override { 2778 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2779 Inserter.insert(Inst); 2780 if (Replacer) 2781 Replacer->undo(); 2782 Hider.undo(); 2783 RemovedInsts.erase(Inst); 2784 } 2785 }; 2786 2787 public: 2788 /// Restoration point. 2789 /// The restoration point is a pointer to an action instead of an iterator 2790 /// because the iterator may be invalidated but not the pointer. 2791 using ConstRestorationPt = const TypePromotionAction *; 2792 2793 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2794 : RemovedInsts(RemovedInsts) {} 2795 2796 /// Advocate every changes made in that transaction. 2797 void commit(); 2798 2799 /// Undo all the changes made after the given point. 2800 void rollback(ConstRestorationPt Point); 2801 2802 /// Get the current restoration point. 2803 ConstRestorationPt getRestorationPoint() const; 2804 2805 /// \name API for IR modification with state keeping to support rollback. 2806 /// @{ 2807 /// Same as Instruction::setOperand. 2808 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2809 2810 /// Same as Instruction::eraseFromParent. 2811 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2812 2813 /// Same as Value::replaceAllUsesWith. 2814 void replaceAllUsesWith(Instruction *Inst, Value *New); 2815 2816 /// Same as Value::mutateType. 2817 void mutateType(Instruction *Inst, Type *NewTy); 2818 2819 /// Same as IRBuilder::createTrunc. 2820 Value *createTrunc(Instruction *Opnd, Type *Ty); 2821 2822 /// Same as IRBuilder::createSExt. 2823 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2824 2825 /// Same as IRBuilder::createZExt. 2826 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2827 2828 /// Same as Instruction::moveBefore. 2829 void moveBefore(Instruction *Inst, Instruction *Before); 2830 /// @} 2831 2832 private: 2833 /// The ordered list of actions made so far. 2834 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2835 2836 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2837 2838 SetOfInstrs &RemovedInsts; 2839 }; 2840 2841 } // end anonymous namespace 2842 2843 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2844 Value *NewVal) { 2845 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 2846 Inst, Idx, NewVal)); 2847 } 2848 2849 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2850 Value *NewVal) { 2851 Actions.push_back( 2852 std::make_unique<TypePromotionTransaction::InstructionRemover>( 2853 Inst, RemovedInsts, NewVal)); 2854 } 2855 2856 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2857 Value *New) { 2858 Actions.push_back( 2859 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2860 } 2861 2862 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2863 Actions.push_back( 2864 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2865 } 2866 2867 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2868 Type *Ty) { 2869 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2870 Value *Val = Ptr->getBuiltValue(); 2871 Actions.push_back(std::move(Ptr)); 2872 return Val; 2873 } 2874 2875 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2876 Value *Opnd, Type *Ty) { 2877 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2878 Value *Val = Ptr->getBuiltValue(); 2879 Actions.push_back(std::move(Ptr)); 2880 return Val; 2881 } 2882 2883 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2884 Value *Opnd, Type *Ty) { 2885 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2886 Value *Val = Ptr->getBuiltValue(); 2887 Actions.push_back(std::move(Ptr)); 2888 return Val; 2889 } 2890 2891 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2892 Instruction *Before) { 2893 Actions.push_back( 2894 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2895 Inst, Before)); 2896 } 2897 2898 TypePromotionTransaction::ConstRestorationPt 2899 TypePromotionTransaction::getRestorationPoint() const { 2900 return !Actions.empty() ? Actions.back().get() : nullptr; 2901 } 2902 2903 void TypePromotionTransaction::commit() { 2904 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2905 ++It) 2906 (*It)->commit(); 2907 Actions.clear(); 2908 } 2909 2910 void TypePromotionTransaction::rollback( 2911 TypePromotionTransaction::ConstRestorationPt Point) { 2912 while (!Actions.empty() && Point != Actions.back().get()) { 2913 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2914 Curr->undo(); 2915 } 2916 } 2917 2918 namespace { 2919 2920 /// A helper class for matching addressing modes. 2921 /// 2922 /// This encapsulates the logic for matching the target-legal addressing modes. 2923 class AddressingModeMatcher { 2924 SmallVectorImpl<Instruction*> &AddrModeInsts; 2925 const TargetLowering &TLI; 2926 const TargetRegisterInfo &TRI; 2927 const DataLayout &DL; 2928 2929 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2930 /// the memory instruction that we're computing this address for. 2931 Type *AccessTy; 2932 unsigned AddrSpace; 2933 Instruction *MemoryInst; 2934 2935 /// This is the addressing mode that we're building up. This is 2936 /// part of the return value of this addressing mode matching stuff. 2937 ExtAddrMode &AddrMode; 2938 2939 /// The instructions inserted by other CodeGenPrepare optimizations. 2940 const SetOfInstrs &InsertedInsts; 2941 2942 /// A map from the instructions to their type before promotion. 2943 InstrToOrigTy &PromotedInsts; 2944 2945 /// The ongoing transaction where every action should be registered. 2946 TypePromotionTransaction &TPT; 2947 2948 // A GEP which has too large offset to be folded into the addressing mode. 2949 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 2950 2951 /// This is set to true when we should not do profitability checks. 2952 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2953 bool IgnoreProfitability; 2954 2955 /// True if we are optimizing for size. 2956 bool OptSize; 2957 2958 ProfileSummaryInfo *PSI; 2959 BlockFrequencyInfo *BFI; 2960 2961 AddressingModeMatcher( 2962 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 2963 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 2964 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 2965 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 2966 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 2967 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 2968 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2969 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2970 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2971 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP), 2972 OptSize(OptSize), PSI(PSI), BFI(BFI) { 2973 IgnoreProfitability = false; 2974 } 2975 2976 public: 2977 /// Find the maximal addressing mode that a load/store of V can fold, 2978 /// give an access type of AccessTy. This returns a list of involved 2979 /// instructions in AddrModeInsts. 2980 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2981 /// optimizations. 2982 /// \p PromotedInsts maps the instructions to their type before promotion. 2983 /// \p The ongoing transaction where every action should be registered. 2984 static ExtAddrMode 2985 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 2986 SmallVectorImpl<Instruction *> &AddrModeInsts, 2987 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 2988 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 2989 TypePromotionTransaction &TPT, 2990 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 2991 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 2992 ExtAddrMode Result; 2993 2994 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 2995 MemoryInst, Result, InsertedInsts, 2996 PromotedInsts, TPT, LargeOffsetGEP, 2997 OptSize, PSI, BFI) 2998 .matchAddr(V, 0); 2999 (void)Success; assert(Success && "Couldn't select *anything*?"); 3000 return Result; 3001 } 3002 3003 private: 3004 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3005 bool matchAddr(Value *Addr, unsigned Depth); 3006 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 3007 bool *MovedAway = nullptr); 3008 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3009 ExtAddrMode &AMBefore, 3010 ExtAddrMode &AMAfter); 3011 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3012 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3013 Value *PromotedOperand) const; 3014 }; 3015 3016 class PhiNodeSet; 3017 3018 /// An iterator for PhiNodeSet. 3019 class PhiNodeSetIterator { 3020 PhiNodeSet * const Set; 3021 size_t CurrentIndex = 0; 3022 3023 public: 3024 /// The constructor. Start should point to either a valid element, or be equal 3025 /// to the size of the underlying SmallVector of the PhiNodeSet. 3026 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 3027 PHINode * operator*() const; 3028 PhiNodeSetIterator& operator++(); 3029 bool operator==(const PhiNodeSetIterator &RHS) const; 3030 bool operator!=(const PhiNodeSetIterator &RHS) const; 3031 }; 3032 3033 /// Keeps a set of PHINodes. 3034 /// 3035 /// This is a minimal set implementation for a specific use case: 3036 /// It is very fast when there are very few elements, but also provides good 3037 /// performance when there are many. It is similar to SmallPtrSet, but also 3038 /// provides iteration by insertion order, which is deterministic and stable 3039 /// across runs. It is also similar to SmallSetVector, but provides removing 3040 /// elements in O(1) time. This is achieved by not actually removing the element 3041 /// from the underlying vector, so comes at the cost of using more memory, but 3042 /// that is fine, since PhiNodeSets are used as short lived objects. 3043 class PhiNodeSet { 3044 friend class PhiNodeSetIterator; 3045 3046 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3047 using iterator = PhiNodeSetIterator; 3048 3049 /// Keeps the elements in the order of their insertion in the underlying 3050 /// vector. To achieve constant time removal, it never deletes any element. 3051 SmallVector<PHINode *, 32> NodeList; 3052 3053 /// Keeps the elements in the underlying set implementation. This (and not the 3054 /// NodeList defined above) is the source of truth on whether an element 3055 /// is actually in the collection. 3056 MapType NodeMap; 3057 3058 /// Points to the first valid (not deleted) element when the set is not empty 3059 /// and the value is not zero. Equals to the size of the underlying vector 3060 /// when the set is empty. When the value is 0, as in the beginning, the 3061 /// first element may or may not be valid. 3062 size_t FirstValidElement = 0; 3063 3064 public: 3065 /// Inserts a new element to the collection. 3066 /// \returns true if the element is actually added, i.e. was not in the 3067 /// collection before the operation. 3068 bool insert(PHINode *Ptr) { 3069 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3070 NodeList.push_back(Ptr); 3071 return true; 3072 } 3073 return false; 3074 } 3075 3076 /// Removes the element from the collection. 3077 /// \returns whether the element is actually removed, i.e. was in the 3078 /// collection before the operation. 3079 bool erase(PHINode *Ptr) { 3080 auto it = NodeMap.find(Ptr); 3081 if (it != NodeMap.end()) { 3082 NodeMap.erase(Ptr); 3083 SkipRemovedElements(FirstValidElement); 3084 return true; 3085 } 3086 return false; 3087 } 3088 3089 /// Removes all elements and clears the collection. 3090 void clear() { 3091 NodeMap.clear(); 3092 NodeList.clear(); 3093 FirstValidElement = 0; 3094 } 3095 3096 /// \returns an iterator that will iterate the elements in the order of 3097 /// insertion. 3098 iterator begin() { 3099 if (FirstValidElement == 0) 3100 SkipRemovedElements(FirstValidElement); 3101 return PhiNodeSetIterator(this, FirstValidElement); 3102 } 3103 3104 /// \returns an iterator that points to the end of the collection. 3105 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3106 3107 /// Returns the number of elements in the collection. 3108 size_t size() const { 3109 return NodeMap.size(); 3110 } 3111 3112 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3113 size_t count(PHINode *Ptr) const { 3114 return NodeMap.count(Ptr); 3115 } 3116 3117 private: 3118 /// Updates the CurrentIndex so that it will point to a valid element. 3119 /// 3120 /// If the element of NodeList at CurrentIndex is valid, it does not 3121 /// change it. If there are no more valid elements, it updates CurrentIndex 3122 /// to point to the end of the NodeList. 3123 void SkipRemovedElements(size_t &CurrentIndex) { 3124 while (CurrentIndex < NodeList.size()) { 3125 auto it = NodeMap.find(NodeList[CurrentIndex]); 3126 // If the element has been deleted and added again later, NodeMap will 3127 // point to a different index, so CurrentIndex will still be invalid. 3128 if (it != NodeMap.end() && it->second == CurrentIndex) 3129 break; 3130 ++CurrentIndex; 3131 } 3132 } 3133 }; 3134 3135 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3136 : Set(Set), CurrentIndex(Start) {} 3137 3138 PHINode * PhiNodeSetIterator::operator*() const { 3139 assert(CurrentIndex < Set->NodeList.size() && 3140 "PhiNodeSet access out of range"); 3141 return Set->NodeList[CurrentIndex]; 3142 } 3143 3144 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 3145 assert(CurrentIndex < Set->NodeList.size() && 3146 "PhiNodeSet access out of range"); 3147 ++CurrentIndex; 3148 Set->SkipRemovedElements(CurrentIndex); 3149 return *this; 3150 } 3151 3152 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3153 return CurrentIndex == RHS.CurrentIndex; 3154 } 3155 3156 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3157 return !((*this) == RHS); 3158 } 3159 3160 /// Keep track of simplification of Phi nodes. 3161 /// Accept the set of all phi nodes and erase phi node from this set 3162 /// if it is simplified. 3163 class SimplificationTracker { 3164 DenseMap<Value *, Value *> Storage; 3165 const SimplifyQuery &SQ; 3166 // Tracks newly created Phi nodes. The elements are iterated by insertion 3167 // order. 3168 PhiNodeSet AllPhiNodes; 3169 // Tracks newly created Select nodes. 3170 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3171 3172 public: 3173 SimplificationTracker(const SimplifyQuery &sq) 3174 : SQ(sq) {} 3175 3176 Value *Get(Value *V) { 3177 do { 3178 auto SV = Storage.find(V); 3179 if (SV == Storage.end()) 3180 return V; 3181 V = SV->second; 3182 } while (true); 3183 } 3184 3185 Value *Simplify(Value *Val) { 3186 SmallVector<Value *, 32> WorkList; 3187 SmallPtrSet<Value *, 32> Visited; 3188 WorkList.push_back(Val); 3189 while (!WorkList.empty()) { 3190 auto P = WorkList.pop_back_val(); 3191 if (!Visited.insert(P).second) 3192 continue; 3193 if (auto *PI = dyn_cast<Instruction>(P)) 3194 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3195 for (auto *U : PI->users()) 3196 WorkList.push_back(cast<Value>(U)); 3197 Put(PI, V); 3198 PI->replaceAllUsesWith(V); 3199 if (auto *PHI = dyn_cast<PHINode>(PI)) 3200 AllPhiNodes.erase(PHI); 3201 if (auto *Select = dyn_cast<SelectInst>(PI)) 3202 AllSelectNodes.erase(Select); 3203 PI->eraseFromParent(); 3204 } 3205 } 3206 return Get(Val); 3207 } 3208 3209 void Put(Value *From, Value *To) { 3210 Storage.insert({ From, To }); 3211 } 3212 3213 void ReplacePhi(PHINode *From, PHINode *To) { 3214 Value* OldReplacement = Get(From); 3215 while (OldReplacement != From) { 3216 From = To; 3217 To = dyn_cast<PHINode>(OldReplacement); 3218 OldReplacement = Get(From); 3219 } 3220 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3221 Put(From, To); 3222 From->replaceAllUsesWith(To); 3223 AllPhiNodes.erase(From); 3224 From->eraseFromParent(); 3225 } 3226 3227 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3228 3229 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3230 3231 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3232 3233 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3234 3235 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3236 3237 void destroyNewNodes(Type *CommonType) { 3238 // For safe erasing, replace the uses with dummy value first. 3239 auto Dummy = UndefValue::get(CommonType); 3240 for (auto I : AllPhiNodes) { 3241 I->replaceAllUsesWith(Dummy); 3242 I->eraseFromParent(); 3243 } 3244 AllPhiNodes.clear(); 3245 for (auto I : AllSelectNodes) { 3246 I->replaceAllUsesWith(Dummy); 3247 I->eraseFromParent(); 3248 } 3249 AllSelectNodes.clear(); 3250 } 3251 }; 3252 3253 /// A helper class for combining addressing modes. 3254 class AddressingModeCombiner { 3255 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3256 typedef std::pair<PHINode *, PHINode *> PHIPair; 3257 3258 private: 3259 /// The addressing modes we've collected. 3260 SmallVector<ExtAddrMode, 16> AddrModes; 3261 3262 /// The field in which the AddrModes differ, when we have more than one. 3263 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3264 3265 /// Are the AddrModes that we have all just equal to their original values? 3266 bool AllAddrModesTrivial = true; 3267 3268 /// Common Type for all different fields in addressing modes. 3269 Type *CommonType; 3270 3271 /// SimplifyQuery for simplifyInstruction utility. 3272 const SimplifyQuery &SQ; 3273 3274 /// Original Address. 3275 Value *Original; 3276 3277 public: 3278 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3279 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 3280 3281 /// Get the combined AddrMode 3282 const ExtAddrMode &getAddrMode() const { 3283 return AddrModes[0]; 3284 } 3285 3286 /// Add a new AddrMode if it's compatible with the AddrModes we already 3287 /// have. 3288 /// \return True iff we succeeded in doing so. 3289 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3290 // Take note of if we have any non-trivial AddrModes, as we need to detect 3291 // when all AddrModes are trivial as then we would introduce a phi or select 3292 // which just duplicates what's already there. 3293 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3294 3295 // If this is the first addrmode then everything is fine. 3296 if (AddrModes.empty()) { 3297 AddrModes.emplace_back(NewAddrMode); 3298 return true; 3299 } 3300 3301 // Figure out how different this is from the other address modes, which we 3302 // can do just by comparing against the first one given that we only care 3303 // about the cumulative difference. 3304 ExtAddrMode::FieldName ThisDifferentField = 3305 AddrModes[0].compare(NewAddrMode); 3306 if (DifferentField == ExtAddrMode::NoField) 3307 DifferentField = ThisDifferentField; 3308 else if (DifferentField != ThisDifferentField) 3309 DifferentField = ExtAddrMode::MultipleFields; 3310 3311 // If NewAddrMode differs in more than one dimension we cannot handle it. 3312 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3313 3314 // If Scale Field is different then we reject. 3315 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3316 3317 // We also must reject the case when base offset is different and 3318 // scale reg is not null, we cannot handle this case due to merge of 3319 // different offsets will be used as ScaleReg. 3320 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3321 !NewAddrMode.ScaledReg); 3322 3323 // We also must reject the case when GV is different and BaseReg installed 3324 // due to we want to use base reg as a merge of GV values. 3325 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3326 !NewAddrMode.HasBaseReg); 3327 3328 // Even if NewAddMode is the same we still need to collect it due to 3329 // original value is different. And later we will need all original values 3330 // as anchors during finding the common Phi node. 3331 if (CanHandle) 3332 AddrModes.emplace_back(NewAddrMode); 3333 else 3334 AddrModes.clear(); 3335 3336 return CanHandle; 3337 } 3338 3339 /// Combine the addressing modes we've collected into a single 3340 /// addressing mode. 3341 /// \return True iff we successfully combined them or we only had one so 3342 /// didn't need to combine them anyway. 3343 bool combineAddrModes() { 3344 // If we have no AddrModes then they can't be combined. 3345 if (AddrModes.size() == 0) 3346 return false; 3347 3348 // A single AddrMode can trivially be combined. 3349 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3350 return true; 3351 3352 // If the AddrModes we collected are all just equal to the value they are 3353 // derived from then combining them wouldn't do anything useful. 3354 if (AllAddrModesTrivial) 3355 return false; 3356 3357 if (!addrModeCombiningAllowed()) 3358 return false; 3359 3360 // Build a map between <original value, basic block where we saw it> to 3361 // value of base register. 3362 // Bail out if there is no common type. 3363 FoldAddrToValueMapping Map; 3364 if (!initializeMap(Map)) 3365 return false; 3366 3367 Value *CommonValue = findCommon(Map); 3368 if (CommonValue) 3369 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3370 return CommonValue != nullptr; 3371 } 3372 3373 private: 3374 /// Initialize Map with anchor values. For address seen 3375 /// we set the value of different field saw in this address. 3376 /// At the same time we find a common type for different field we will 3377 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3378 /// Return false if there is no common type found. 3379 bool initializeMap(FoldAddrToValueMapping &Map) { 3380 // Keep track of keys where the value is null. We will need to replace it 3381 // with constant null when we know the common type. 3382 SmallVector<Value *, 2> NullValue; 3383 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3384 for (auto &AM : AddrModes) { 3385 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3386 if (DV) { 3387 auto *Type = DV->getType(); 3388 if (CommonType && CommonType != Type) 3389 return false; 3390 CommonType = Type; 3391 Map[AM.OriginalValue] = DV; 3392 } else { 3393 NullValue.push_back(AM.OriginalValue); 3394 } 3395 } 3396 assert(CommonType && "At least one non-null value must be!"); 3397 for (auto *V : NullValue) 3398 Map[V] = Constant::getNullValue(CommonType); 3399 return true; 3400 } 3401 3402 /// We have mapping between value A and other value B where B was a field in 3403 /// addressing mode represented by A. Also we have an original value C 3404 /// representing an address we start with. Traversing from C through phi and 3405 /// selects we ended up with A's in a map. This utility function tries to find 3406 /// a value V which is a field in addressing mode C and traversing through phi 3407 /// nodes and selects we will end up in corresponded values B in a map. 3408 /// The utility will create a new Phi/Selects if needed. 3409 // The simple example looks as follows: 3410 // BB1: 3411 // p1 = b1 + 40 3412 // br cond BB2, BB3 3413 // BB2: 3414 // p2 = b2 + 40 3415 // br BB3 3416 // BB3: 3417 // p = phi [p1, BB1], [p2, BB2] 3418 // v = load p 3419 // Map is 3420 // p1 -> b1 3421 // p2 -> b2 3422 // Request is 3423 // p -> ? 3424 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3425 Value *findCommon(FoldAddrToValueMapping &Map) { 3426 // Tracks the simplification of newly created phi nodes. The reason we use 3427 // this mapping is because we will add new created Phi nodes in AddrToBase. 3428 // Simplification of Phi nodes is recursive, so some Phi node may 3429 // be simplified after we added it to AddrToBase. In reality this 3430 // simplification is possible only if original phi/selects were not 3431 // simplified yet. 3432 // Using this mapping we can find the current value in AddrToBase. 3433 SimplificationTracker ST(SQ); 3434 3435 // First step, DFS to create PHI nodes for all intermediate blocks. 3436 // Also fill traverse order for the second step. 3437 SmallVector<Value *, 32> TraverseOrder; 3438 InsertPlaceholders(Map, TraverseOrder, ST); 3439 3440 // Second Step, fill new nodes by merged values and simplify if possible. 3441 FillPlaceholders(Map, TraverseOrder, ST); 3442 3443 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3444 ST.destroyNewNodes(CommonType); 3445 return nullptr; 3446 } 3447 3448 // Now we'd like to match New Phi nodes to existed ones. 3449 unsigned PhiNotMatchedCount = 0; 3450 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3451 ST.destroyNewNodes(CommonType); 3452 return nullptr; 3453 } 3454 3455 auto *Result = ST.Get(Map.find(Original)->second); 3456 if (Result) { 3457 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3458 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3459 } 3460 return Result; 3461 } 3462 3463 /// Try to match PHI node to Candidate. 3464 /// Matcher tracks the matched Phi nodes. 3465 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3466 SmallSetVector<PHIPair, 8> &Matcher, 3467 PhiNodeSet &PhiNodesToMatch) { 3468 SmallVector<PHIPair, 8> WorkList; 3469 Matcher.insert({ PHI, Candidate }); 3470 SmallSet<PHINode *, 8> MatchedPHIs; 3471 MatchedPHIs.insert(PHI); 3472 WorkList.push_back({ PHI, Candidate }); 3473 SmallSet<PHIPair, 8> Visited; 3474 while (!WorkList.empty()) { 3475 auto Item = WorkList.pop_back_val(); 3476 if (!Visited.insert(Item).second) 3477 continue; 3478 // We iterate over all incoming values to Phi to compare them. 3479 // If values are different and both of them Phi and the first one is a 3480 // Phi we added (subject to match) and both of them is in the same basic 3481 // block then we can match our pair if values match. So we state that 3482 // these values match and add it to work list to verify that. 3483 for (auto B : Item.first->blocks()) { 3484 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3485 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3486 if (FirstValue == SecondValue) 3487 continue; 3488 3489 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3490 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3491 3492 // One of them is not Phi or 3493 // The first one is not Phi node from the set we'd like to match or 3494 // Phi nodes from different basic blocks then 3495 // we will not be able to match. 3496 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3497 FirstPhi->getParent() != SecondPhi->getParent()) 3498 return false; 3499 3500 // If we already matched them then continue. 3501 if (Matcher.count({ FirstPhi, SecondPhi })) 3502 continue; 3503 // So the values are different and does not match. So we need them to 3504 // match. (But we register no more than one match per PHI node, so that 3505 // we won't later try to replace them twice.) 3506 if (MatchedPHIs.insert(FirstPhi).second) 3507 Matcher.insert({ FirstPhi, SecondPhi }); 3508 // But me must check it. 3509 WorkList.push_back({ FirstPhi, SecondPhi }); 3510 } 3511 } 3512 return true; 3513 } 3514 3515 /// For the given set of PHI nodes (in the SimplificationTracker) try 3516 /// to find their equivalents. 3517 /// Returns false if this matching fails and creation of new Phi is disabled. 3518 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3519 unsigned &PhiNotMatchedCount) { 3520 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3521 // order, so the replacements (ReplacePhi) are also done in a deterministic 3522 // order. 3523 SmallSetVector<PHIPair, 8> Matched; 3524 SmallPtrSet<PHINode *, 8> WillNotMatch; 3525 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3526 while (PhiNodesToMatch.size()) { 3527 PHINode *PHI = *PhiNodesToMatch.begin(); 3528 3529 // Add us, if no Phi nodes in the basic block we do not match. 3530 WillNotMatch.clear(); 3531 WillNotMatch.insert(PHI); 3532 3533 // Traverse all Phis until we found equivalent or fail to do that. 3534 bool IsMatched = false; 3535 for (auto &P : PHI->getParent()->phis()) { 3536 if (&P == PHI) 3537 continue; 3538 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3539 break; 3540 // If it does not match, collect all Phi nodes from matcher. 3541 // if we end up with no match, them all these Phi nodes will not match 3542 // later. 3543 for (auto M : Matched) 3544 WillNotMatch.insert(M.first); 3545 Matched.clear(); 3546 } 3547 if (IsMatched) { 3548 // Replace all matched values and erase them. 3549 for (auto MV : Matched) 3550 ST.ReplacePhi(MV.first, MV.second); 3551 Matched.clear(); 3552 continue; 3553 } 3554 // If we are not allowed to create new nodes then bail out. 3555 if (!AllowNewPhiNodes) 3556 return false; 3557 // Just remove all seen values in matcher. They will not match anything. 3558 PhiNotMatchedCount += WillNotMatch.size(); 3559 for (auto *P : WillNotMatch) 3560 PhiNodesToMatch.erase(P); 3561 } 3562 return true; 3563 } 3564 /// Fill the placeholders with values from predecessors and simplify them. 3565 void FillPlaceholders(FoldAddrToValueMapping &Map, 3566 SmallVectorImpl<Value *> &TraverseOrder, 3567 SimplificationTracker &ST) { 3568 while (!TraverseOrder.empty()) { 3569 Value *Current = TraverseOrder.pop_back_val(); 3570 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3571 Value *V = Map[Current]; 3572 3573 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3574 // CurrentValue also must be Select. 3575 auto *CurrentSelect = cast<SelectInst>(Current); 3576 auto *TrueValue = CurrentSelect->getTrueValue(); 3577 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3578 Select->setTrueValue(ST.Get(Map[TrueValue])); 3579 auto *FalseValue = CurrentSelect->getFalseValue(); 3580 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3581 Select->setFalseValue(ST.Get(Map[FalseValue])); 3582 } else { 3583 // Must be a Phi node then. 3584 auto *PHI = cast<PHINode>(V); 3585 // Fill the Phi node with values from predecessors. 3586 for (auto B : predecessors(PHI->getParent())) { 3587 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3588 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3589 PHI->addIncoming(ST.Get(Map[PV]), B); 3590 } 3591 } 3592 Map[Current] = ST.Simplify(V); 3593 } 3594 } 3595 3596 /// Starting from original value recursively iterates over def-use chain up to 3597 /// known ending values represented in a map. For each traversed phi/select 3598 /// inserts a placeholder Phi or Select. 3599 /// Reports all new created Phi/Select nodes by adding them to set. 3600 /// Also reports and order in what values have been traversed. 3601 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3602 SmallVectorImpl<Value *> &TraverseOrder, 3603 SimplificationTracker &ST) { 3604 SmallVector<Value *, 32> Worklist; 3605 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3606 "Address must be a Phi or Select node"); 3607 auto *Dummy = UndefValue::get(CommonType); 3608 Worklist.push_back(Original); 3609 while (!Worklist.empty()) { 3610 Value *Current = Worklist.pop_back_val(); 3611 // if it is already visited or it is an ending value then skip it. 3612 if (Map.find(Current) != Map.end()) 3613 continue; 3614 TraverseOrder.push_back(Current); 3615 3616 // CurrentValue must be a Phi node or select. All others must be covered 3617 // by anchors. 3618 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3619 // Is it OK to get metadata from OrigSelect?! 3620 // Create a Select placeholder with dummy value. 3621 SelectInst *Select = SelectInst::Create( 3622 CurrentSelect->getCondition(), Dummy, Dummy, 3623 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3624 Map[Current] = Select; 3625 ST.insertNewSelect(Select); 3626 // We are interested in True and False values. 3627 Worklist.push_back(CurrentSelect->getTrueValue()); 3628 Worklist.push_back(CurrentSelect->getFalseValue()); 3629 } else { 3630 // It must be a Phi node then. 3631 PHINode *CurrentPhi = cast<PHINode>(Current); 3632 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3633 PHINode *PHI = 3634 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3635 Map[Current] = PHI; 3636 ST.insertNewPhi(PHI); 3637 for (Value *P : CurrentPhi->incoming_values()) 3638 Worklist.push_back(P); 3639 } 3640 } 3641 } 3642 3643 bool addrModeCombiningAllowed() { 3644 if (DisableComplexAddrModes) 3645 return false; 3646 switch (DifferentField) { 3647 default: 3648 return false; 3649 case ExtAddrMode::BaseRegField: 3650 return AddrSinkCombineBaseReg; 3651 case ExtAddrMode::BaseGVField: 3652 return AddrSinkCombineBaseGV; 3653 case ExtAddrMode::BaseOffsField: 3654 return AddrSinkCombineBaseOffs; 3655 case ExtAddrMode::ScaledRegField: 3656 return AddrSinkCombineScaledReg; 3657 } 3658 } 3659 }; 3660 } // end anonymous namespace 3661 3662 /// Try adding ScaleReg*Scale to the current addressing mode. 3663 /// Return true and update AddrMode if this addr mode is legal for the target, 3664 /// false if not. 3665 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3666 unsigned Depth) { 3667 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3668 // mode. Just process that directly. 3669 if (Scale == 1) 3670 return matchAddr(ScaleReg, Depth); 3671 3672 // If the scale is 0, it takes nothing to add this. 3673 if (Scale == 0) 3674 return true; 3675 3676 // If we already have a scale of this value, we can add to it, otherwise, we 3677 // need an available scale field. 3678 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3679 return false; 3680 3681 ExtAddrMode TestAddrMode = AddrMode; 3682 3683 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3684 // [A+B + A*7] -> [B+A*8]. 3685 TestAddrMode.Scale += Scale; 3686 TestAddrMode.ScaledReg = ScaleReg; 3687 3688 // If the new address isn't legal, bail out. 3689 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3690 return false; 3691 3692 // It was legal, so commit it. 3693 AddrMode = TestAddrMode; 3694 3695 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3696 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3697 // X*Scale + C*Scale to addr mode. 3698 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3699 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3700 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3701 TestAddrMode.InBounds = false; 3702 TestAddrMode.ScaledReg = AddLHS; 3703 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3704 3705 // If this addressing mode is legal, commit it and remember that we folded 3706 // this instruction. 3707 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3708 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3709 AddrMode = TestAddrMode; 3710 return true; 3711 } 3712 } 3713 3714 // Otherwise, not (x+c)*scale, just return what we have. 3715 return true; 3716 } 3717 3718 /// This is a little filter, which returns true if an addressing computation 3719 /// involving I might be folded into a load/store accessing it. 3720 /// This doesn't need to be perfect, but needs to accept at least 3721 /// the set of instructions that MatchOperationAddr can. 3722 static bool MightBeFoldableInst(Instruction *I) { 3723 switch (I->getOpcode()) { 3724 case Instruction::BitCast: 3725 case Instruction::AddrSpaceCast: 3726 // Don't touch identity bitcasts. 3727 if (I->getType() == I->getOperand(0)->getType()) 3728 return false; 3729 return I->getType()->isIntOrPtrTy(); 3730 case Instruction::PtrToInt: 3731 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3732 return true; 3733 case Instruction::IntToPtr: 3734 // We know the input is intptr_t, so this is foldable. 3735 return true; 3736 case Instruction::Add: 3737 return true; 3738 case Instruction::Mul: 3739 case Instruction::Shl: 3740 // Can only handle X*C and X << C. 3741 return isa<ConstantInt>(I->getOperand(1)); 3742 case Instruction::GetElementPtr: 3743 return true; 3744 default: 3745 return false; 3746 } 3747 } 3748 3749 /// Check whether or not \p Val is a legal instruction for \p TLI. 3750 /// \note \p Val is assumed to be the product of some type promotion. 3751 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3752 /// to be legal, as the non-promoted value would have had the same state. 3753 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3754 const DataLayout &DL, Value *Val) { 3755 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3756 if (!PromotedInst) 3757 return false; 3758 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3759 // If the ISDOpcode is undefined, it was undefined before the promotion. 3760 if (!ISDOpcode) 3761 return true; 3762 // Otherwise, check if the promoted instruction is legal or not. 3763 return TLI.isOperationLegalOrCustom( 3764 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3765 } 3766 3767 namespace { 3768 3769 /// Hepler class to perform type promotion. 3770 class TypePromotionHelper { 3771 /// Utility function to add a promoted instruction \p ExtOpnd to 3772 /// \p PromotedInsts and record the type of extension we have seen. 3773 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3774 Instruction *ExtOpnd, 3775 bool IsSExt) { 3776 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3777 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3778 if (It != PromotedInsts.end()) { 3779 // If the new extension is same as original, the information in 3780 // PromotedInsts[ExtOpnd] is still correct. 3781 if (It->second.getInt() == ExtTy) 3782 return; 3783 3784 // Now the new extension is different from old extension, we make 3785 // the type information invalid by setting extension type to 3786 // BothExtension. 3787 ExtTy = BothExtension; 3788 } 3789 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 3790 } 3791 3792 /// Utility function to query the original type of instruction \p Opnd 3793 /// with a matched extension type. If the extension doesn't match, we 3794 /// cannot use the information we had on the original type. 3795 /// BothExtension doesn't match any extension type. 3796 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 3797 Instruction *Opnd, 3798 bool IsSExt) { 3799 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3800 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3801 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 3802 return It->second.getPointer(); 3803 return nullptr; 3804 } 3805 3806 /// Utility function to check whether or not a sign or zero extension 3807 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3808 /// either using the operands of \p Inst or promoting \p Inst. 3809 /// The type of the extension is defined by \p IsSExt. 3810 /// In other words, check if: 3811 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3812 /// #1 Promotion applies: 3813 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3814 /// #2 Operand reuses: 3815 /// ext opnd1 to ConsideredExtType. 3816 /// \p PromotedInsts maps the instructions to their type before promotion. 3817 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3818 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3819 3820 /// Utility function to determine if \p OpIdx should be promoted when 3821 /// promoting \p Inst. 3822 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3823 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3824 } 3825 3826 /// Utility function to promote the operand of \p Ext when this 3827 /// operand is a promotable trunc or sext or zext. 3828 /// \p PromotedInsts maps the instructions to their type before promotion. 3829 /// \p CreatedInstsCost[out] contains the cost of all instructions 3830 /// created to promote the operand of Ext. 3831 /// Newly added extensions are inserted in \p Exts. 3832 /// Newly added truncates are inserted in \p Truncs. 3833 /// Should never be called directly. 3834 /// \return The promoted value which is used instead of Ext. 3835 static Value *promoteOperandForTruncAndAnyExt( 3836 Instruction *Ext, TypePromotionTransaction &TPT, 3837 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3838 SmallVectorImpl<Instruction *> *Exts, 3839 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3840 3841 /// Utility function to promote the operand of \p Ext when this 3842 /// operand is promotable and is not a supported trunc or sext. 3843 /// \p PromotedInsts maps the instructions to their type before promotion. 3844 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3845 /// created to promote the operand of Ext. 3846 /// Newly added extensions are inserted in \p Exts. 3847 /// Newly added truncates are inserted in \p Truncs. 3848 /// Should never be called directly. 3849 /// \return The promoted value which is used instead of Ext. 3850 static Value *promoteOperandForOther(Instruction *Ext, 3851 TypePromotionTransaction &TPT, 3852 InstrToOrigTy &PromotedInsts, 3853 unsigned &CreatedInstsCost, 3854 SmallVectorImpl<Instruction *> *Exts, 3855 SmallVectorImpl<Instruction *> *Truncs, 3856 const TargetLowering &TLI, bool IsSExt); 3857 3858 /// \see promoteOperandForOther. 3859 static Value *signExtendOperandForOther( 3860 Instruction *Ext, TypePromotionTransaction &TPT, 3861 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3862 SmallVectorImpl<Instruction *> *Exts, 3863 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3864 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3865 Exts, Truncs, TLI, true); 3866 } 3867 3868 /// \see promoteOperandForOther. 3869 static Value *zeroExtendOperandForOther( 3870 Instruction *Ext, TypePromotionTransaction &TPT, 3871 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3872 SmallVectorImpl<Instruction *> *Exts, 3873 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3874 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3875 Exts, Truncs, TLI, false); 3876 } 3877 3878 public: 3879 /// Type for the utility function that promotes the operand of Ext. 3880 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3881 InstrToOrigTy &PromotedInsts, 3882 unsigned &CreatedInstsCost, 3883 SmallVectorImpl<Instruction *> *Exts, 3884 SmallVectorImpl<Instruction *> *Truncs, 3885 const TargetLowering &TLI); 3886 3887 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3888 /// action to promote the operand of \p Ext instead of using Ext. 3889 /// \return NULL if no promotable action is possible with the current 3890 /// sign extension. 3891 /// \p InsertedInsts keeps track of all the instructions inserted by the 3892 /// other CodeGenPrepare optimizations. This information is important 3893 /// because we do not want to promote these instructions as CodeGenPrepare 3894 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3895 /// \p PromotedInsts maps the instructions to their type before promotion. 3896 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3897 const TargetLowering &TLI, 3898 const InstrToOrigTy &PromotedInsts); 3899 }; 3900 3901 } // end anonymous namespace 3902 3903 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3904 Type *ConsideredExtType, 3905 const InstrToOrigTy &PromotedInsts, 3906 bool IsSExt) { 3907 // The promotion helper does not know how to deal with vector types yet. 3908 // To be able to fix that, we would need to fix the places where we 3909 // statically extend, e.g., constants and such. 3910 if (Inst->getType()->isVectorTy()) 3911 return false; 3912 3913 // We can always get through zext. 3914 if (isa<ZExtInst>(Inst)) 3915 return true; 3916 3917 // sext(sext) is ok too. 3918 if (IsSExt && isa<SExtInst>(Inst)) 3919 return true; 3920 3921 // We can get through binary operator, if it is legal. In other words, the 3922 // binary operator must have a nuw or nsw flag. 3923 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3924 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3925 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3926 (IsSExt && BinOp->hasNoSignedWrap()))) 3927 return true; 3928 3929 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 3930 if ((Inst->getOpcode() == Instruction::And || 3931 Inst->getOpcode() == Instruction::Or)) 3932 return true; 3933 3934 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 3935 if (Inst->getOpcode() == Instruction::Xor) { 3936 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 3937 // Make sure it is not a NOT. 3938 if (Cst && !Cst->getValue().isAllOnesValue()) 3939 return true; 3940 } 3941 3942 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 3943 // It may change a poisoned value into a regular value, like 3944 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 3945 // poisoned value regular value 3946 // It should be OK since undef covers valid value. 3947 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 3948 return true; 3949 3950 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 3951 // It may change a poisoned value into a regular value, like 3952 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 3953 // poisoned value regular value 3954 // It should be OK since undef covers valid value. 3955 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 3956 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 3957 if (ExtInst->hasOneUse()) { 3958 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 3959 if (AndInst && AndInst->getOpcode() == Instruction::And) { 3960 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 3961 if (Cst && 3962 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 3963 return true; 3964 } 3965 } 3966 } 3967 3968 // Check if we can do the following simplification. 3969 // ext(trunc(opnd)) --> ext(opnd) 3970 if (!isa<TruncInst>(Inst)) 3971 return false; 3972 3973 Value *OpndVal = Inst->getOperand(0); 3974 // Check if we can use this operand in the extension. 3975 // If the type is larger than the result type of the extension, we cannot. 3976 if (!OpndVal->getType()->isIntegerTy() || 3977 OpndVal->getType()->getIntegerBitWidth() > 3978 ConsideredExtType->getIntegerBitWidth()) 3979 return false; 3980 3981 // If the operand of the truncate is not an instruction, we will not have 3982 // any information on the dropped bits. 3983 // (Actually we could for constant but it is not worth the extra logic). 3984 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3985 if (!Opnd) 3986 return false; 3987 3988 // Check if the source of the type is narrow enough. 3989 // I.e., check that trunc just drops extended bits of the same kind of 3990 // the extension. 3991 // #1 get the type of the operand and check the kind of the extended bits. 3992 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 3993 if (OpndType) 3994 ; 3995 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3996 OpndType = Opnd->getOperand(0)->getType(); 3997 else 3998 return false; 3999 4000 // #2 check that the truncate just drops extended bits. 4001 return Inst->getType()->getIntegerBitWidth() >= 4002 OpndType->getIntegerBitWidth(); 4003 } 4004 4005 TypePromotionHelper::Action TypePromotionHelper::getAction( 4006 Instruction *Ext, const SetOfInstrs &InsertedInsts, 4007 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 4008 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4009 "Unexpected instruction type"); 4010 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 4011 Type *ExtTy = Ext->getType(); 4012 bool IsSExt = isa<SExtInst>(Ext); 4013 // If the operand of the extension is not an instruction, we cannot 4014 // get through. 4015 // If it, check we can get through. 4016 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 4017 return nullptr; 4018 4019 // Do not promote if the operand has been added by codegenprepare. 4020 // Otherwise, it means we are undoing an optimization that is likely to be 4021 // redone, thus causing potential infinite loop. 4022 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 4023 return nullptr; 4024 4025 // SExt or Trunc instructions. 4026 // Return the related handler. 4027 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 4028 isa<ZExtInst>(ExtOpnd)) 4029 return promoteOperandForTruncAndAnyExt; 4030 4031 // Regular instruction. 4032 // Abort early if we will have to insert non-free instructions. 4033 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 4034 return nullptr; 4035 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 4036 } 4037 4038 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 4039 Instruction *SExt, TypePromotionTransaction &TPT, 4040 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4041 SmallVectorImpl<Instruction *> *Exts, 4042 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4043 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4044 // get through it and this method should not be called. 4045 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4046 Value *ExtVal = SExt; 4047 bool HasMergedNonFreeExt = false; 4048 if (isa<ZExtInst>(SExtOpnd)) { 4049 // Replace s|zext(zext(opnd)) 4050 // => zext(opnd). 4051 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4052 Value *ZExt = 4053 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4054 TPT.replaceAllUsesWith(SExt, ZExt); 4055 TPT.eraseInstruction(SExt); 4056 ExtVal = ZExt; 4057 } else { 4058 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4059 // => z|sext(opnd). 4060 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4061 } 4062 CreatedInstsCost = 0; 4063 4064 // Remove dead code. 4065 if (SExtOpnd->use_empty()) 4066 TPT.eraseInstruction(SExtOpnd); 4067 4068 // Check if the extension is still needed. 4069 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4070 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4071 if (ExtInst) { 4072 if (Exts) 4073 Exts->push_back(ExtInst); 4074 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4075 } 4076 return ExtVal; 4077 } 4078 4079 // At this point we have: ext ty opnd to ty. 4080 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4081 Value *NextVal = ExtInst->getOperand(0); 4082 TPT.eraseInstruction(ExtInst, NextVal); 4083 return NextVal; 4084 } 4085 4086 Value *TypePromotionHelper::promoteOperandForOther( 4087 Instruction *Ext, TypePromotionTransaction &TPT, 4088 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4089 SmallVectorImpl<Instruction *> *Exts, 4090 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4091 bool IsSExt) { 4092 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4093 // get through it and this method should not be called. 4094 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4095 CreatedInstsCost = 0; 4096 if (!ExtOpnd->hasOneUse()) { 4097 // ExtOpnd will be promoted. 4098 // All its uses, but Ext, will need to use a truncated value of the 4099 // promoted version. 4100 // Create the truncate now. 4101 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4102 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4103 // Insert it just after the definition. 4104 ITrunc->moveAfter(ExtOpnd); 4105 if (Truncs) 4106 Truncs->push_back(ITrunc); 4107 } 4108 4109 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4110 // Restore the operand of Ext (which has been replaced by the previous call 4111 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4112 TPT.setOperand(Ext, 0, ExtOpnd); 4113 } 4114 4115 // Get through the Instruction: 4116 // 1. Update its type. 4117 // 2. Replace the uses of Ext by Inst. 4118 // 3. Extend each operand that needs to be extended. 4119 4120 // Remember the original type of the instruction before promotion. 4121 // This is useful to know that the high bits are sign extended bits. 4122 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4123 // Step #1. 4124 TPT.mutateType(ExtOpnd, Ext->getType()); 4125 // Step #2. 4126 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4127 // Step #3. 4128 Instruction *ExtForOpnd = Ext; 4129 4130 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4131 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4132 ++OpIdx) { 4133 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4134 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4135 !shouldExtOperand(ExtOpnd, OpIdx)) { 4136 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4137 continue; 4138 } 4139 // Check if we can statically extend the operand. 4140 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4141 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4142 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4143 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4144 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4145 : Cst->getValue().zext(BitWidth); 4146 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4147 continue; 4148 } 4149 // UndefValue are typed, so we have to statically sign extend them. 4150 if (isa<UndefValue>(Opnd)) { 4151 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4152 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4153 continue; 4154 } 4155 4156 // Otherwise we have to explicitly sign extend the operand. 4157 // Check if Ext was reused to extend an operand. 4158 if (!ExtForOpnd) { 4159 // If yes, create a new one. 4160 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 4161 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 4162 : TPT.createZExt(Ext, Opnd, Ext->getType()); 4163 if (!isa<Instruction>(ValForExtOpnd)) { 4164 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4165 continue; 4166 } 4167 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4168 } 4169 if (Exts) 4170 Exts->push_back(ExtForOpnd); 4171 TPT.setOperand(ExtForOpnd, 0, Opnd); 4172 4173 // Move the sign extension before the insertion point. 4174 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4175 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4176 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4177 // If more sext are required, new instructions will have to be created. 4178 ExtForOpnd = nullptr; 4179 } 4180 if (ExtForOpnd == Ext) { 4181 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4182 TPT.eraseInstruction(Ext); 4183 } 4184 return ExtOpnd; 4185 } 4186 4187 /// Check whether or not promoting an instruction to a wider type is profitable. 4188 /// \p NewCost gives the cost of extension instructions created by the 4189 /// promotion. 4190 /// \p OldCost gives the cost of extension instructions before the promotion 4191 /// plus the number of instructions that have been 4192 /// matched in the addressing mode the promotion. 4193 /// \p PromotedOperand is the value that has been promoted. 4194 /// \return True if the promotion is profitable, false otherwise. 4195 bool AddressingModeMatcher::isPromotionProfitable( 4196 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4197 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4198 << '\n'); 4199 // The cost of the new extensions is greater than the cost of the 4200 // old extension plus what we folded. 4201 // This is not profitable. 4202 if (NewCost > OldCost) 4203 return false; 4204 if (NewCost < OldCost) 4205 return true; 4206 // The promotion is neutral but it may help folding the sign extension in 4207 // loads for instance. 4208 // Check that we did not create an illegal instruction. 4209 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4210 } 4211 4212 /// Given an instruction or constant expr, see if we can fold the operation 4213 /// into the addressing mode. If so, update the addressing mode and return 4214 /// true, otherwise return false without modifying AddrMode. 4215 /// If \p MovedAway is not NULL, it contains the information of whether or 4216 /// not AddrInst has to be folded into the addressing mode on success. 4217 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4218 /// because it has been moved away. 4219 /// Thus AddrInst must not be added in the matched instructions. 4220 /// This state can happen when AddrInst is a sext, since it may be moved away. 4221 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4222 /// not be referenced anymore. 4223 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4224 unsigned Depth, 4225 bool *MovedAway) { 4226 // Avoid exponential behavior on extremely deep expression trees. 4227 if (Depth >= 5) return false; 4228 4229 // By default, all matched instructions stay in place. 4230 if (MovedAway) 4231 *MovedAway = false; 4232 4233 switch (Opcode) { 4234 case Instruction::PtrToInt: 4235 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4236 return matchAddr(AddrInst->getOperand(0), Depth); 4237 case Instruction::IntToPtr: { 4238 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4239 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4240 // This inttoptr is a no-op if the integer type is pointer sized. 4241 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4242 return matchAddr(AddrInst->getOperand(0), Depth); 4243 return false; 4244 } 4245 case Instruction::BitCast: 4246 // BitCast is always a noop, and we can handle it as long as it is 4247 // int->int or pointer->pointer (we don't want int<->fp or something). 4248 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4249 // Don't touch identity bitcasts. These were probably put here by LSR, 4250 // and we don't want to mess around with them. Assume it knows what it 4251 // is doing. 4252 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4253 return matchAddr(AddrInst->getOperand(0), Depth); 4254 return false; 4255 case Instruction::AddrSpaceCast: { 4256 unsigned SrcAS 4257 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4258 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4259 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 4260 return matchAddr(AddrInst->getOperand(0), Depth); 4261 return false; 4262 } 4263 case Instruction::Add: { 4264 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4265 ExtAddrMode BackupAddrMode = AddrMode; 4266 unsigned OldSize = AddrModeInsts.size(); 4267 // Start a transaction at this point. 4268 // The LHS may match but not the RHS. 4269 // Therefore, we need a higher level restoration point to undo partially 4270 // matched operation. 4271 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4272 TPT.getRestorationPoint(); 4273 4274 AddrMode.InBounds = false; 4275 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4276 matchAddr(AddrInst->getOperand(0), Depth+1)) 4277 return true; 4278 4279 // Restore the old addr mode info. 4280 AddrMode = BackupAddrMode; 4281 AddrModeInsts.resize(OldSize); 4282 TPT.rollback(LastKnownGood); 4283 4284 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4285 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4286 matchAddr(AddrInst->getOperand(1), Depth+1)) 4287 return true; 4288 4289 // Otherwise we definitely can't merge the ADD in. 4290 AddrMode = BackupAddrMode; 4291 AddrModeInsts.resize(OldSize); 4292 TPT.rollback(LastKnownGood); 4293 break; 4294 } 4295 //case Instruction::Or: 4296 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4297 //break; 4298 case Instruction::Mul: 4299 case Instruction::Shl: { 4300 // Can only handle X*C and X << C. 4301 AddrMode.InBounds = false; 4302 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4303 if (!RHS || RHS->getBitWidth() > 64) 4304 return false; 4305 int64_t Scale = RHS->getSExtValue(); 4306 if (Opcode == Instruction::Shl) 4307 Scale = 1LL << Scale; 4308 4309 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4310 } 4311 case Instruction::GetElementPtr: { 4312 // Scan the GEP. We check it if it contains constant offsets and at most 4313 // one variable offset. 4314 int VariableOperand = -1; 4315 unsigned VariableScale = 0; 4316 4317 int64_t ConstantOffset = 0; 4318 gep_type_iterator GTI = gep_type_begin(AddrInst); 4319 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4320 if (StructType *STy = GTI.getStructTypeOrNull()) { 4321 const StructLayout *SL = DL.getStructLayout(STy); 4322 unsigned Idx = 4323 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4324 ConstantOffset += SL->getElementOffset(Idx); 4325 } else { 4326 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 4327 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4328 const APInt &CVal = CI->getValue(); 4329 if (CVal.getMinSignedBits() <= 64) { 4330 ConstantOffset += CVal.getSExtValue() * TypeSize; 4331 continue; 4332 } 4333 } 4334 if (TypeSize) { // Scales of zero don't do anything. 4335 // We only allow one variable index at the moment. 4336 if (VariableOperand != -1) 4337 return false; 4338 4339 // Remember the variable index. 4340 VariableOperand = i; 4341 VariableScale = TypeSize; 4342 } 4343 } 4344 } 4345 4346 // A common case is for the GEP to only do a constant offset. In this case, 4347 // just add it to the disp field and check validity. 4348 if (VariableOperand == -1) { 4349 AddrMode.BaseOffs += ConstantOffset; 4350 if (ConstantOffset == 0 || 4351 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4352 // Check to see if we can fold the base pointer in too. 4353 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4354 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4355 AddrMode.InBounds = false; 4356 return true; 4357 } 4358 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4359 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4360 ConstantOffset > 0) { 4361 // Record GEPs with non-zero offsets as candidates for splitting in the 4362 // event that the offset cannot fit into the r+i addressing mode. 4363 // Simple and common case that only one GEP is used in calculating the 4364 // address for the memory access. 4365 Value *Base = AddrInst->getOperand(0); 4366 auto *BaseI = dyn_cast<Instruction>(Base); 4367 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4368 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4369 (BaseI && !isa<CastInst>(BaseI) && 4370 !isa<GetElementPtrInst>(BaseI))) { 4371 // Make sure the parent block allows inserting non-PHI instructions 4372 // before the terminator. 4373 BasicBlock *Parent = 4374 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4375 if (!Parent->getTerminator()->isEHPad()) 4376 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4377 } 4378 } 4379 AddrMode.BaseOffs -= ConstantOffset; 4380 return false; 4381 } 4382 4383 // Save the valid addressing mode in case we can't match. 4384 ExtAddrMode BackupAddrMode = AddrMode; 4385 unsigned OldSize = AddrModeInsts.size(); 4386 4387 // See if the scale and offset amount is valid for this target. 4388 AddrMode.BaseOffs += ConstantOffset; 4389 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4390 AddrMode.InBounds = false; 4391 4392 // Match the base operand of the GEP. 4393 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4394 // If it couldn't be matched, just stuff the value in a register. 4395 if (AddrMode.HasBaseReg) { 4396 AddrMode = BackupAddrMode; 4397 AddrModeInsts.resize(OldSize); 4398 return false; 4399 } 4400 AddrMode.HasBaseReg = true; 4401 AddrMode.BaseReg = AddrInst->getOperand(0); 4402 } 4403 4404 // Match the remaining variable portion of the GEP. 4405 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4406 Depth)) { 4407 // If it couldn't be matched, try stuffing the base into a register 4408 // instead of matching it, and retrying the match of the scale. 4409 AddrMode = BackupAddrMode; 4410 AddrModeInsts.resize(OldSize); 4411 if (AddrMode.HasBaseReg) 4412 return false; 4413 AddrMode.HasBaseReg = true; 4414 AddrMode.BaseReg = AddrInst->getOperand(0); 4415 AddrMode.BaseOffs += ConstantOffset; 4416 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4417 VariableScale, Depth)) { 4418 // If even that didn't work, bail. 4419 AddrMode = BackupAddrMode; 4420 AddrModeInsts.resize(OldSize); 4421 return false; 4422 } 4423 } 4424 4425 return true; 4426 } 4427 case Instruction::SExt: 4428 case Instruction::ZExt: { 4429 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4430 if (!Ext) 4431 return false; 4432 4433 // Try to move this ext out of the way of the addressing mode. 4434 // Ask for a method for doing so. 4435 TypePromotionHelper::Action TPH = 4436 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4437 if (!TPH) 4438 return false; 4439 4440 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4441 TPT.getRestorationPoint(); 4442 unsigned CreatedInstsCost = 0; 4443 unsigned ExtCost = !TLI.isExtFree(Ext); 4444 Value *PromotedOperand = 4445 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4446 // SExt has been moved away. 4447 // Thus either it will be rematched later in the recursive calls or it is 4448 // gone. Anyway, we must not fold it into the addressing mode at this point. 4449 // E.g., 4450 // op = add opnd, 1 4451 // idx = ext op 4452 // addr = gep base, idx 4453 // is now: 4454 // promotedOpnd = ext opnd <- no match here 4455 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4456 // addr = gep base, op <- match 4457 if (MovedAway) 4458 *MovedAway = true; 4459 4460 assert(PromotedOperand && 4461 "TypePromotionHelper should have filtered out those cases"); 4462 4463 ExtAddrMode BackupAddrMode = AddrMode; 4464 unsigned OldSize = AddrModeInsts.size(); 4465 4466 if (!matchAddr(PromotedOperand, Depth) || 4467 // The total of the new cost is equal to the cost of the created 4468 // instructions. 4469 // The total of the old cost is equal to the cost of the extension plus 4470 // what we have saved in the addressing mode. 4471 !isPromotionProfitable(CreatedInstsCost, 4472 ExtCost + (AddrModeInsts.size() - OldSize), 4473 PromotedOperand)) { 4474 AddrMode = BackupAddrMode; 4475 AddrModeInsts.resize(OldSize); 4476 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4477 TPT.rollback(LastKnownGood); 4478 return false; 4479 } 4480 return true; 4481 } 4482 } 4483 return false; 4484 } 4485 4486 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4487 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4488 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4489 /// for the target. 4490 /// 4491 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4492 // Start a transaction at this point that we will rollback if the matching 4493 // fails. 4494 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4495 TPT.getRestorationPoint(); 4496 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4497 // Fold in immediates if legal for the target. 4498 AddrMode.BaseOffs += CI->getSExtValue(); 4499 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4500 return true; 4501 AddrMode.BaseOffs -= CI->getSExtValue(); 4502 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4503 // If this is a global variable, try to fold it into the addressing mode. 4504 if (!AddrMode.BaseGV) { 4505 AddrMode.BaseGV = GV; 4506 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4507 return true; 4508 AddrMode.BaseGV = nullptr; 4509 } 4510 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4511 ExtAddrMode BackupAddrMode = AddrMode; 4512 unsigned OldSize = AddrModeInsts.size(); 4513 4514 // Check to see if it is possible to fold this operation. 4515 bool MovedAway = false; 4516 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4517 // This instruction may have been moved away. If so, there is nothing 4518 // to check here. 4519 if (MovedAway) 4520 return true; 4521 // Okay, it's possible to fold this. Check to see if it is actually 4522 // *profitable* to do so. We use a simple cost model to avoid increasing 4523 // register pressure too much. 4524 if (I->hasOneUse() || 4525 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4526 AddrModeInsts.push_back(I); 4527 return true; 4528 } 4529 4530 // It isn't profitable to do this, roll back. 4531 //cerr << "NOT FOLDING: " << *I; 4532 AddrMode = BackupAddrMode; 4533 AddrModeInsts.resize(OldSize); 4534 TPT.rollback(LastKnownGood); 4535 } 4536 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4537 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4538 return true; 4539 TPT.rollback(LastKnownGood); 4540 } else if (isa<ConstantPointerNull>(Addr)) { 4541 // Null pointer gets folded without affecting the addressing mode. 4542 return true; 4543 } 4544 4545 // Worse case, the target should support [reg] addressing modes. :) 4546 if (!AddrMode.HasBaseReg) { 4547 AddrMode.HasBaseReg = true; 4548 AddrMode.BaseReg = Addr; 4549 // Still check for legality in case the target supports [imm] but not [i+r]. 4550 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4551 return true; 4552 AddrMode.HasBaseReg = false; 4553 AddrMode.BaseReg = nullptr; 4554 } 4555 4556 // If the base register is already taken, see if we can do [r+r]. 4557 if (AddrMode.Scale == 0) { 4558 AddrMode.Scale = 1; 4559 AddrMode.ScaledReg = Addr; 4560 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4561 return true; 4562 AddrMode.Scale = 0; 4563 AddrMode.ScaledReg = nullptr; 4564 } 4565 // Couldn't match. 4566 TPT.rollback(LastKnownGood); 4567 return false; 4568 } 4569 4570 /// Check to see if all uses of OpVal by the specified inline asm call are due 4571 /// to memory operands. If so, return true, otherwise return false. 4572 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4573 const TargetLowering &TLI, 4574 const TargetRegisterInfo &TRI) { 4575 const Function *F = CI->getFunction(); 4576 TargetLowering::AsmOperandInfoVector TargetConstraints = 4577 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI); 4578 4579 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4580 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4581 4582 // Compute the constraint code and ConstraintType to use. 4583 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4584 4585 // If this asm operand is our Value*, and if it isn't an indirect memory 4586 // operand, we can't fold it! 4587 if (OpInfo.CallOperandVal == OpVal && 4588 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4589 !OpInfo.isIndirect)) 4590 return false; 4591 } 4592 4593 return true; 4594 } 4595 4596 // Max number of memory uses to look at before aborting the search to conserve 4597 // compile time. 4598 static constexpr int MaxMemoryUsesToScan = 20; 4599 4600 /// Recursively walk all the uses of I until we find a memory use. 4601 /// If we find an obviously non-foldable instruction, return true. 4602 /// Add the ultimately found memory instructions to MemoryUses. 4603 static bool FindAllMemoryUses( 4604 Instruction *I, 4605 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4606 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4607 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 4608 BlockFrequencyInfo *BFI, int SeenInsts = 0) { 4609 // If we already considered this instruction, we're done. 4610 if (!ConsideredInsts.insert(I).second) 4611 return false; 4612 4613 // If this is an obviously unfoldable instruction, bail out. 4614 if (!MightBeFoldableInst(I)) 4615 return true; 4616 4617 // Loop over all the uses, recursively processing them. 4618 for (Use &U : I->uses()) { 4619 // Conservatively return true if we're seeing a large number or a deep chain 4620 // of users. This avoids excessive compilation times in pathological cases. 4621 if (SeenInsts++ >= MaxMemoryUsesToScan) 4622 return true; 4623 4624 Instruction *UserI = cast<Instruction>(U.getUser()); 4625 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4626 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4627 continue; 4628 } 4629 4630 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4631 unsigned opNo = U.getOperandNo(); 4632 if (opNo != StoreInst::getPointerOperandIndex()) 4633 return true; // Storing addr, not into addr. 4634 MemoryUses.push_back(std::make_pair(SI, opNo)); 4635 continue; 4636 } 4637 4638 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4639 unsigned opNo = U.getOperandNo(); 4640 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4641 return true; // Storing addr, not into addr. 4642 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4643 continue; 4644 } 4645 4646 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4647 unsigned opNo = U.getOperandNo(); 4648 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4649 return true; // Storing addr, not into addr. 4650 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4651 continue; 4652 } 4653 4654 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4655 if (CI->hasFnAttr(Attribute::Cold)) { 4656 // If this is a cold call, we can sink the addressing calculation into 4657 // the cold path. See optimizeCallInst 4658 bool OptForSize = OptSize || 4659 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 4660 if (!OptForSize) 4661 continue; 4662 } 4663 4664 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); 4665 if (!IA) return true; 4666 4667 // If this is a memory operand, we're cool, otherwise bail out. 4668 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4669 return true; 4670 continue; 4671 } 4672 4673 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4674 PSI, BFI, SeenInsts)) 4675 return true; 4676 } 4677 4678 return false; 4679 } 4680 4681 /// Return true if Val is already known to be live at the use site that we're 4682 /// folding it into. If so, there is no cost to include it in the addressing 4683 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4684 /// instruction already. 4685 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4686 Value *KnownLive2) { 4687 // If Val is either of the known-live values, we know it is live! 4688 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4689 return true; 4690 4691 // All values other than instructions and arguments (e.g. constants) are live. 4692 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4693 4694 // If Val is a constant sized alloca in the entry block, it is live, this is 4695 // true because it is just a reference to the stack/frame pointer, which is 4696 // live for the whole function. 4697 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4698 if (AI->isStaticAlloca()) 4699 return true; 4700 4701 // Check to see if this value is already used in the memory instruction's 4702 // block. If so, it's already live into the block at the very least, so we 4703 // can reasonably fold it. 4704 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4705 } 4706 4707 /// It is possible for the addressing mode of the machine to fold the specified 4708 /// instruction into a load or store that ultimately uses it. 4709 /// However, the specified instruction has multiple uses. 4710 /// Given this, it may actually increase register pressure to fold it 4711 /// into the load. For example, consider this code: 4712 /// 4713 /// X = ... 4714 /// Y = X+1 4715 /// use(Y) -> nonload/store 4716 /// Z = Y+1 4717 /// load Z 4718 /// 4719 /// In this case, Y has multiple uses, and can be folded into the load of Z 4720 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4721 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4722 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4723 /// number of computations either. 4724 /// 4725 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4726 /// X was live across 'load Z' for other reasons, we actually *would* want to 4727 /// fold the addressing mode in the Z case. This would make Y die earlier. 4728 bool AddressingModeMatcher:: 4729 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4730 ExtAddrMode &AMAfter) { 4731 if (IgnoreProfitability) return true; 4732 4733 // AMBefore is the addressing mode before this instruction was folded into it, 4734 // and AMAfter is the addressing mode after the instruction was folded. Get 4735 // the set of registers referenced by AMAfter and subtract out those 4736 // referenced by AMBefore: this is the set of values which folding in this 4737 // address extends the lifetime of. 4738 // 4739 // Note that there are only two potential values being referenced here, 4740 // BaseReg and ScaleReg (global addresses are always available, as are any 4741 // folded immediates). 4742 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4743 4744 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4745 // lifetime wasn't extended by adding this instruction. 4746 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4747 BaseReg = nullptr; 4748 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4749 ScaledReg = nullptr; 4750 4751 // If folding this instruction (and it's subexprs) didn't extend any live 4752 // ranges, we're ok with it. 4753 if (!BaseReg && !ScaledReg) 4754 return true; 4755 4756 // If all uses of this instruction can have the address mode sunk into them, 4757 // we can remove the addressing mode and effectively trade one live register 4758 // for another (at worst.) In this context, folding an addressing mode into 4759 // the use is just a particularly nice way of sinking it. 4760 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4761 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4762 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4763 PSI, BFI)) 4764 return false; // Has a non-memory, non-foldable use! 4765 4766 // Now that we know that all uses of this instruction are part of a chain of 4767 // computation involving only operations that could theoretically be folded 4768 // into a memory use, loop over each of these memory operation uses and see 4769 // if they could *actually* fold the instruction. The assumption is that 4770 // addressing modes are cheap and that duplicating the computation involved 4771 // many times is worthwhile, even on a fastpath. For sinking candidates 4772 // (i.e. cold call sites), this serves as a way to prevent excessive code 4773 // growth since most architectures have some reasonable small and fast way to 4774 // compute an effective address. (i.e LEA on x86) 4775 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4776 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4777 Instruction *User = MemoryUses[i].first; 4778 unsigned OpNo = MemoryUses[i].second; 4779 4780 // Get the access type of this use. If the use isn't a pointer, we don't 4781 // know what it accesses. 4782 Value *Address = User->getOperand(OpNo); 4783 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4784 if (!AddrTy) 4785 return false; 4786 Type *AddressAccessTy = AddrTy->getElementType(); 4787 unsigned AS = AddrTy->getAddressSpace(); 4788 4789 // Do a match against the root of this address, ignoring profitability. This 4790 // will tell us if the addressing mode for the memory operation will 4791 // *actually* cover the shared instruction. 4792 ExtAddrMode Result; 4793 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4794 0); 4795 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4796 TPT.getRestorationPoint(); 4797 AddressingModeMatcher Matcher( 4798 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4799 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, BFI); 4800 Matcher.IgnoreProfitability = true; 4801 bool Success = Matcher.matchAddr(Address, 0); 4802 (void)Success; assert(Success && "Couldn't select *anything*?"); 4803 4804 // The match was to check the profitability, the changes made are not 4805 // part of the original matcher. Therefore, they should be dropped 4806 // otherwise the original matcher will not present the right state. 4807 TPT.rollback(LastKnownGood); 4808 4809 // If the match didn't cover I, then it won't be shared by it. 4810 if (!is_contained(MatchedAddrModeInsts, I)) 4811 return false; 4812 4813 MatchedAddrModeInsts.clear(); 4814 } 4815 4816 return true; 4817 } 4818 4819 /// Return true if the specified values are defined in a 4820 /// different basic block than BB. 4821 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4822 if (Instruction *I = dyn_cast<Instruction>(V)) 4823 return I->getParent() != BB; 4824 return false; 4825 } 4826 4827 /// Sink addressing mode computation immediate before MemoryInst if doing so 4828 /// can be done without increasing register pressure. The need for the 4829 /// register pressure constraint means this can end up being an all or nothing 4830 /// decision for all uses of the same addressing computation. 4831 /// 4832 /// Load and Store Instructions often have addressing modes that can do 4833 /// significant amounts of computation. As such, instruction selection will try 4834 /// to get the load or store to do as much computation as possible for the 4835 /// program. The problem is that isel can only see within a single block. As 4836 /// such, we sink as much legal addressing mode work into the block as possible. 4837 /// 4838 /// This method is used to optimize both load/store and inline asms with memory 4839 /// operands. It's also used to sink addressing computations feeding into cold 4840 /// call sites into their (cold) basic block. 4841 /// 4842 /// The motivation for handling sinking into cold blocks is that doing so can 4843 /// both enable other address mode sinking (by satisfying the register pressure 4844 /// constraint above), and reduce register pressure globally (by removing the 4845 /// addressing mode computation from the fast path entirely.). 4846 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4847 Type *AccessTy, unsigned AddrSpace) { 4848 Value *Repl = Addr; 4849 4850 // Try to collapse single-value PHI nodes. This is necessary to undo 4851 // unprofitable PRE transformations. 4852 SmallVector<Value*, 8> worklist; 4853 SmallPtrSet<Value*, 16> Visited; 4854 worklist.push_back(Addr); 4855 4856 // Use a worklist to iteratively look through PHI and select nodes, and 4857 // ensure that the addressing mode obtained from the non-PHI/select roots of 4858 // the graph are compatible. 4859 bool PhiOrSelectSeen = false; 4860 SmallVector<Instruction*, 16> AddrModeInsts; 4861 const SimplifyQuery SQ(*DL, TLInfo); 4862 AddressingModeCombiner AddrModes(SQ, Addr); 4863 TypePromotionTransaction TPT(RemovedInsts); 4864 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4865 TPT.getRestorationPoint(); 4866 while (!worklist.empty()) { 4867 Value *V = worklist.back(); 4868 worklist.pop_back(); 4869 4870 // We allow traversing cyclic Phi nodes. 4871 // In case of success after this loop we ensure that traversing through 4872 // Phi nodes ends up with all cases to compute address of the form 4873 // BaseGV + Base + Scale * Index + Offset 4874 // where Scale and Offset are constans and BaseGV, Base and Index 4875 // are exactly the same Values in all cases. 4876 // It means that BaseGV, Scale and Offset dominate our memory instruction 4877 // and have the same value as they had in address computation represented 4878 // as Phi. So we can safely sink address computation to memory instruction. 4879 if (!Visited.insert(V).second) 4880 continue; 4881 4882 // For a PHI node, push all of its incoming values. 4883 if (PHINode *P = dyn_cast<PHINode>(V)) { 4884 for (Value *IncValue : P->incoming_values()) 4885 worklist.push_back(IncValue); 4886 PhiOrSelectSeen = true; 4887 continue; 4888 } 4889 // Similar for select. 4890 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4891 worklist.push_back(SI->getFalseValue()); 4892 worklist.push_back(SI->getTrueValue()); 4893 PhiOrSelectSeen = true; 4894 continue; 4895 } 4896 4897 // For non-PHIs, determine the addressing mode being computed. Note that 4898 // the result may differ depending on what other uses our candidate 4899 // addressing instructions might have. 4900 AddrModeInsts.clear(); 4901 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4902 0); 4903 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4904 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4905 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 4906 BFI.get()); 4907 4908 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4909 if (GEP && !NewGEPBases.count(GEP)) { 4910 // If splitting the underlying data structure can reduce the offset of a 4911 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4912 // previously split data structures. 4913 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4914 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4915 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4916 } 4917 4918 NewAddrMode.OriginalValue = V; 4919 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4920 break; 4921 } 4922 4923 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4924 // or we have multiple but either couldn't combine them or combining them 4925 // wouldn't do anything useful, bail out now. 4926 if (!AddrModes.combineAddrModes()) { 4927 TPT.rollback(LastKnownGood); 4928 return false; 4929 } 4930 TPT.commit(); 4931 4932 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4933 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4934 4935 // If all the instructions matched are already in this BB, don't do anything. 4936 // If we saw a Phi node then it is not local definitely, and if we saw a select 4937 // then we want to push the address calculation past it even if it's already 4938 // in this BB. 4939 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4940 return IsNonLocalValue(V, MemoryInst->getParent()); 4941 })) { 4942 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 4943 << "\n"); 4944 return false; 4945 } 4946 4947 // Insert this computation right after this user. Since our caller is 4948 // scanning from the top of the BB to the bottom, reuse of the expr are 4949 // guaranteed to happen later. 4950 IRBuilder<> Builder(MemoryInst); 4951 4952 // Now that we determined the addressing expression we want to use and know 4953 // that we have to sink it into this block. Check to see if we have already 4954 // done this for some other load/store instr in this block. If so, reuse 4955 // the computation. Before attempting reuse, check if the address is valid 4956 // as it may have been erased. 4957 4958 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4959 4960 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4961 if (SunkAddr) { 4962 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 4963 << " for " << *MemoryInst << "\n"); 4964 if (SunkAddr->getType() != Addr->getType()) 4965 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4966 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 4967 SubtargetInfo->addrSinkUsingGEPs())) { 4968 // By default, we use the GEP-based method when AA is used later. This 4969 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4970 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4971 << " for " << *MemoryInst << "\n"); 4972 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4973 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4974 4975 // First, find the pointer. 4976 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4977 ResultPtr = AddrMode.BaseReg; 4978 AddrMode.BaseReg = nullptr; 4979 } 4980 4981 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4982 // We can't add more than one pointer together, nor can we scale a 4983 // pointer (both of which seem meaningless). 4984 if (ResultPtr || AddrMode.Scale != 1) 4985 return false; 4986 4987 ResultPtr = AddrMode.ScaledReg; 4988 AddrMode.Scale = 0; 4989 } 4990 4991 // It is only safe to sign extend the BaseReg if we know that the math 4992 // required to create it did not overflow before we extend it. Since 4993 // the original IR value was tossed in favor of a constant back when 4994 // the AddrMode was created we need to bail out gracefully if widths 4995 // do not match instead of extending it. 4996 // 4997 // (See below for code to add the scale.) 4998 if (AddrMode.Scale) { 4999 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 5000 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 5001 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 5002 return false; 5003 } 5004 5005 if (AddrMode.BaseGV) { 5006 if (ResultPtr) 5007 return false; 5008 5009 ResultPtr = AddrMode.BaseGV; 5010 } 5011 5012 // If the real base value actually came from an inttoptr, then the matcher 5013 // will look through it and provide only the integer value. In that case, 5014 // use it here. 5015 if (!DL->isNonIntegralPointerType(Addr->getType())) { 5016 if (!ResultPtr && AddrMode.BaseReg) { 5017 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 5018 "sunkaddr"); 5019 AddrMode.BaseReg = nullptr; 5020 } else if (!ResultPtr && AddrMode.Scale == 1) { 5021 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 5022 "sunkaddr"); 5023 AddrMode.Scale = 0; 5024 } 5025 } 5026 5027 if (!ResultPtr && 5028 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 5029 SunkAddr = Constant::getNullValue(Addr->getType()); 5030 } else if (!ResultPtr) { 5031 return false; 5032 } else { 5033 Type *I8PtrTy = 5034 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 5035 Type *I8Ty = Builder.getInt8Ty(); 5036 5037 // Start with the base register. Do this first so that subsequent address 5038 // matching finds it last, which will prevent it from trying to match it 5039 // as the scaled value in case it happens to be a mul. That would be 5040 // problematic if we've sunk a different mul for the scale, because then 5041 // we'd end up sinking both muls. 5042 if (AddrMode.BaseReg) { 5043 Value *V = AddrMode.BaseReg; 5044 if (V->getType() != IntPtrTy) 5045 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5046 5047 ResultIndex = V; 5048 } 5049 5050 // Add the scale value. 5051 if (AddrMode.Scale) { 5052 Value *V = AddrMode.ScaledReg; 5053 if (V->getType() == IntPtrTy) { 5054 // done. 5055 } else { 5056 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5057 cast<IntegerType>(V->getType())->getBitWidth() && 5058 "We can't transform if ScaledReg is too narrow"); 5059 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5060 } 5061 5062 if (AddrMode.Scale != 1) 5063 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5064 "sunkaddr"); 5065 if (ResultIndex) 5066 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5067 else 5068 ResultIndex = V; 5069 } 5070 5071 // Add in the Base Offset if present. 5072 if (AddrMode.BaseOffs) { 5073 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5074 if (ResultIndex) { 5075 // We need to add this separately from the scale above to help with 5076 // SDAG consecutive load/store merging. 5077 if (ResultPtr->getType() != I8PtrTy) 5078 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5079 ResultPtr = 5080 AddrMode.InBounds 5081 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5082 "sunkaddr") 5083 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5084 } 5085 5086 ResultIndex = V; 5087 } 5088 5089 if (!ResultIndex) { 5090 SunkAddr = ResultPtr; 5091 } else { 5092 if (ResultPtr->getType() != I8PtrTy) 5093 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5094 SunkAddr = 5095 AddrMode.InBounds 5096 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5097 "sunkaddr") 5098 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5099 } 5100 5101 if (SunkAddr->getType() != Addr->getType()) 5102 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5103 } 5104 } else { 5105 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5106 // non-integral pointers, so in that case bail out now. 5107 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5108 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5109 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5110 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5111 if (DL->isNonIntegralPointerType(Addr->getType()) || 5112 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5113 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5114 (AddrMode.BaseGV && 5115 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5116 return false; 5117 5118 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5119 << " for " << *MemoryInst << "\n"); 5120 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5121 Value *Result = nullptr; 5122 5123 // Start with the base register. Do this first so that subsequent address 5124 // matching finds it last, which will prevent it from trying to match it 5125 // as the scaled value in case it happens to be a mul. That would be 5126 // problematic if we've sunk a different mul for the scale, because then 5127 // we'd end up sinking both muls. 5128 if (AddrMode.BaseReg) { 5129 Value *V = AddrMode.BaseReg; 5130 if (V->getType()->isPointerTy()) 5131 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5132 if (V->getType() != IntPtrTy) 5133 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5134 Result = V; 5135 } 5136 5137 // Add the scale value. 5138 if (AddrMode.Scale) { 5139 Value *V = AddrMode.ScaledReg; 5140 if (V->getType() == IntPtrTy) { 5141 // done. 5142 } else if (V->getType()->isPointerTy()) { 5143 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5144 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5145 cast<IntegerType>(V->getType())->getBitWidth()) { 5146 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5147 } else { 5148 // It is only safe to sign extend the BaseReg if we know that the math 5149 // required to create it did not overflow before we extend it. Since 5150 // the original IR value was tossed in favor of a constant back when 5151 // the AddrMode was created we need to bail out gracefully if widths 5152 // do not match instead of extending it. 5153 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5154 if (I && (Result != AddrMode.BaseReg)) 5155 I->eraseFromParent(); 5156 return false; 5157 } 5158 if (AddrMode.Scale != 1) 5159 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5160 "sunkaddr"); 5161 if (Result) 5162 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5163 else 5164 Result = V; 5165 } 5166 5167 // Add in the BaseGV if present. 5168 if (AddrMode.BaseGV) { 5169 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5170 if (Result) 5171 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5172 else 5173 Result = V; 5174 } 5175 5176 // Add in the Base Offset if present. 5177 if (AddrMode.BaseOffs) { 5178 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5179 if (Result) 5180 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5181 else 5182 Result = V; 5183 } 5184 5185 if (!Result) 5186 SunkAddr = Constant::getNullValue(Addr->getType()); 5187 else 5188 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5189 } 5190 5191 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5192 // Store the newly computed address into the cache. In the case we reused a 5193 // value, this should be idempotent. 5194 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5195 5196 // If we have no uses, recursively delete the value and all dead instructions 5197 // using it. 5198 if (Repl->use_empty()) { 5199 // This can cause recursive deletion, which can invalidate our iterator. 5200 // Use a WeakTrackingVH to hold onto it in case this happens. 5201 Value *CurValue = &*CurInstIterator; 5202 WeakTrackingVH IterHandle(CurValue); 5203 BasicBlock *BB = CurInstIterator->getParent(); 5204 5205 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 5206 5207 if (IterHandle != CurValue) { 5208 // If the iterator instruction was recursively deleted, start over at the 5209 // start of the block. 5210 CurInstIterator = BB->begin(); 5211 SunkAddrs.clear(); 5212 } 5213 } 5214 ++NumMemoryInsts; 5215 return true; 5216 } 5217 5218 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find 5219 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can 5220 /// only handle a 2 operand GEP in the same basic block or a splat constant 5221 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector 5222 /// index. 5223 /// 5224 /// If the existing GEP has a vector base pointer that is splat, we can look 5225 /// through the splat to find the scalar pointer. If we can't find a scalar 5226 /// pointer there's nothing we can do. 5227 /// 5228 /// If we have a GEP with more than 2 indices where the middle indices are all 5229 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. 5230 /// 5231 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP 5232 /// followed by a GEP with an all zeroes vector index. This will enable 5233 /// SelectionDAGBuilder to use a the scalar GEP as the uniform base and have a 5234 /// zero index. 5235 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, 5236 Value *Ptr) { 5237 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 5238 if (!GEP || !GEP->hasIndices()) 5239 return false; 5240 5241 // If the GEP and the gather/scatter aren't in the same BB, don't optimize. 5242 // FIXME: We should support this by sinking the GEP. 5243 if (MemoryInst->getParent() != GEP->getParent()) 5244 return false; 5245 5246 SmallVector<Value *, 2> Ops(GEP->op_begin(), GEP->op_end()); 5247 5248 bool RewriteGEP = false; 5249 5250 if (Ops[0]->getType()->isVectorTy()) { 5251 Ops[0] = const_cast<Value *>(getSplatValue(Ops[0])); 5252 if (!Ops[0]) 5253 return false; 5254 RewriteGEP = true; 5255 } 5256 5257 unsigned FinalIndex = Ops.size() - 1; 5258 5259 // Ensure all but the last index is 0. 5260 // FIXME: This isn't strictly required. All that's required is that they are 5261 // all scalars or splats. 5262 for (unsigned i = 1; i < FinalIndex; ++i) { 5263 auto *C = dyn_cast<Constant>(Ops[i]); 5264 if (!C) 5265 return false; 5266 if (isa<VectorType>(C->getType())) 5267 C = C->getSplatValue(); 5268 auto *CI = dyn_cast_or_null<ConstantInt>(C); 5269 if (!CI || !CI->isZero()) 5270 return false; 5271 // Scalarize the index if needed. 5272 Ops[i] = CI; 5273 } 5274 5275 // Try to scalarize the final index. 5276 if (Ops[FinalIndex]->getType()->isVectorTy()) { 5277 if (Value *V = const_cast<Value *>(getSplatValue(Ops[FinalIndex]))) { 5278 auto *C = dyn_cast<ConstantInt>(V); 5279 // Don't scalarize all zeros vector. 5280 if (!C || !C->isZero()) { 5281 Ops[FinalIndex] = V; 5282 RewriteGEP = true; 5283 } 5284 } 5285 } 5286 5287 // If we made any changes or the we have extra operands, we need to generate 5288 // new instructions. 5289 if (!RewriteGEP && Ops.size() == 2) 5290 return false; 5291 5292 unsigned NumElts = cast<VectorType>(Ptr->getType())->getNumElements(); 5293 5294 IRBuilder<> Builder(MemoryInst); 5295 5296 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); 5297 5298 Value *NewAddr; 5299 5300 // If the final index isn't a vector, emit a scalar GEP containing all ops 5301 // and a vector GEP with all zeroes final index. 5302 if (!Ops[FinalIndex]->getType()->isVectorTy()) { 5303 NewAddr = Builder.CreateGEP(Ops[0], makeArrayRef(Ops).drop_front()); 5304 Type *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5305 NewAddr = Builder.CreateGEP(NewAddr, Constant::getNullValue(IndexTy)); 5306 } else { 5307 Value *Base = Ops[0]; 5308 Value *Index = Ops[FinalIndex]; 5309 5310 // Create a scalar GEP if there are more than 2 operands. 5311 if (Ops.size() != 2) { 5312 // Replace the last index with 0. 5313 Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy); 5314 Base = Builder.CreateGEP(Base, makeArrayRef(Ops).drop_front()); 5315 } 5316 5317 // Now create the GEP with scalar pointer and vector index. 5318 NewAddr = Builder.CreateGEP(Base, Index); 5319 } 5320 5321 MemoryInst->replaceUsesOfWith(Ptr, NewAddr); 5322 5323 // If we have no uses, recursively delete the value and all dead instructions 5324 // using it. 5325 if (Ptr->use_empty()) 5326 RecursivelyDeleteTriviallyDeadInstructions(Ptr, TLInfo); 5327 5328 return true; 5329 } 5330 5331 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5332 /// address computing into the block when possible / profitable. 5333 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5334 bool MadeChange = false; 5335 5336 const TargetRegisterInfo *TRI = 5337 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5338 TargetLowering::AsmOperandInfoVector TargetConstraints = 5339 TLI->ParseConstraints(*DL, TRI, *CS); 5340 unsigned ArgNo = 0; 5341 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5342 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5343 5344 // Compute the constraint code and ConstraintType to use. 5345 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5346 5347 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5348 OpInfo.isIndirect) { 5349 Value *OpVal = CS->getArgOperand(ArgNo++); 5350 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5351 } else if (OpInfo.Type == InlineAsm::isInput) 5352 ArgNo++; 5353 } 5354 5355 return MadeChange; 5356 } 5357 5358 /// Check if all the uses of \p Val are equivalent (or free) zero or 5359 /// sign extensions. 5360 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5361 assert(!Val->use_empty() && "Input must have at least one use"); 5362 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5363 bool IsSExt = isa<SExtInst>(FirstUser); 5364 Type *ExtTy = FirstUser->getType(); 5365 for (const User *U : Val->users()) { 5366 const Instruction *UI = cast<Instruction>(U); 5367 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5368 return false; 5369 Type *CurTy = UI->getType(); 5370 // Same input and output types: Same instruction after CSE. 5371 if (CurTy == ExtTy) 5372 continue; 5373 5374 // If IsSExt is true, we are in this situation: 5375 // a = Val 5376 // b = sext ty1 a to ty2 5377 // c = sext ty1 a to ty3 5378 // Assuming ty2 is shorter than ty3, this could be turned into: 5379 // a = Val 5380 // b = sext ty1 a to ty2 5381 // c = sext ty2 b to ty3 5382 // However, the last sext is not free. 5383 if (IsSExt) 5384 return false; 5385 5386 // This is a ZExt, maybe this is free to extend from one type to another. 5387 // In that case, we would not account for a different use. 5388 Type *NarrowTy; 5389 Type *LargeTy; 5390 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5391 CurTy->getScalarType()->getIntegerBitWidth()) { 5392 NarrowTy = CurTy; 5393 LargeTy = ExtTy; 5394 } else { 5395 NarrowTy = ExtTy; 5396 LargeTy = CurTy; 5397 } 5398 5399 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5400 return false; 5401 } 5402 // All uses are the same or can be derived from one another for free. 5403 return true; 5404 } 5405 5406 /// Try to speculatively promote extensions in \p Exts and continue 5407 /// promoting through newly promoted operands recursively as far as doing so is 5408 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5409 /// When some promotion happened, \p TPT contains the proper state to revert 5410 /// them. 5411 /// 5412 /// \return true if some promotion happened, false otherwise. 5413 bool CodeGenPrepare::tryToPromoteExts( 5414 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5415 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5416 unsigned CreatedInstsCost) { 5417 bool Promoted = false; 5418 5419 // Iterate over all the extensions to try to promote them. 5420 for (auto I : Exts) { 5421 // Early check if we directly have ext(load). 5422 if (isa<LoadInst>(I->getOperand(0))) { 5423 ProfitablyMovedExts.push_back(I); 5424 continue; 5425 } 5426 5427 // Check whether or not we want to do any promotion. The reason we have 5428 // this check inside the for loop is to catch the case where an extension 5429 // is directly fed by a load because in such case the extension can be moved 5430 // up without any promotion on its operands. 5431 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5432 return false; 5433 5434 // Get the action to perform the promotion. 5435 TypePromotionHelper::Action TPH = 5436 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5437 // Check if we can promote. 5438 if (!TPH) { 5439 // Save the current extension as we cannot move up through its operand. 5440 ProfitablyMovedExts.push_back(I); 5441 continue; 5442 } 5443 5444 // Save the current state. 5445 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5446 TPT.getRestorationPoint(); 5447 SmallVector<Instruction *, 4> NewExts; 5448 unsigned NewCreatedInstsCost = 0; 5449 unsigned ExtCost = !TLI->isExtFree(I); 5450 // Promote. 5451 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5452 &NewExts, nullptr, *TLI); 5453 assert(PromotedVal && 5454 "TypePromotionHelper should have filtered out those cases"); 5455 5456 // We would be able to merge only one extension in a load. 5457 // Therefore, if we have more than 1 new extension we heuristically 5458 // cut this search path, because it means we degrade the code quality. 5459 // With exactly 2, the transformation is neutral, because we will merge 5460 // one extension but leave one. However, we optimistically keep going, 5461 // because the new extension may be removed too. 5462 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5463 // FIXME: It would be possible to propagate a negative value instead of 5464 // conservatively ceiling it to 0. 5465 TotalCreatedInstsCost = 5466 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5467 if (!StressExtLdPromotion && 5468 (TotalCreatedInstsCost > 1 || 5469 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5470 // This promotion is not profitable, rollback to the previous state, and 5471 // save the current extension in ProfitablyMovedExts as the latest 5472 // speculative promotion turned out to be unprofitable. 5473 TPT.rollback(LastKnownGood); 5474 ProfitablyMovedExts.push_back(I); 5475 continue; 5476 } 5477 // Continue promoting NewExts as far as doing so is profitable. 5478 SmallVector<Instruction *, 2> NewlyMovedExts; 5479 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5480 bool NewPromoted = false; 5481 for (auto ExtInst : NewlyMovedExts) { 5482 Instruction *MovedExt = cast<Instruction>(ExtInst); 5483 Value *ExtOperand = MovedExt->getOperand(0); 5484 // If we have reached to a load, we need this extra profitability check 5485 // as it could potentially be merged into an ext(load). 5486 if (isa<LoadInst>(ExtOperand) && 5487 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5488 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5489 continue; 5490 5491 ProfitablyMovedExts.push_back(MovedExt); 5492 NewPromoted = true; 5493 } 5494 5495 // If none of speculative promotions for NewExts is profitable, rollback 5496 // and save the current extension (I) as the last profitable extension. 5497 if (!NewPromoted) { 5498 TPT.rollback(LastKnownGood); 5499 ProfitablyMovedExts.push_back(I); 5500 continue; 5501 } 5502 // The promotion is profitable. 5503 Promoted = true; 5504 } 5505 return Promoted; 5506 } 5507 5508 /// Merging redundant sexts when one is dominating the other. 5509 bool CodeGenPrepare::mergeSExts(Function &F) { 5510 bool Changed = false; 5511 for (auto &Entry : ValToSExtendedUses) { 5512 SExts &Insts = Entry.second; 5513 SExts CurPts; 5514 for (Instruction *Inst : Insts) { 5515 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5516 Inst->getOperand(0) != Entry.first) 5517 continue; 5518 bool inserted = false; 5519 for (auto &Pt : CurPts) { 5520 if (getDT(F).dominates(Inst, Pt)) { 5521 Pt->replaceAllUsesWith(Inst); 5522 RemovedInsts.insert(Pt); 5523 Pt->removeFromParent(); 5524 Pt = Inst; 5525 inserted = true; 5526 Changed = true; 5527 break; 5528 } 5529 if (!getDT(F).dominates(Pt, Inst)) 5530 // Give up if we need to merge in a common dominator as the 5531 // experiments show it is not profitable. 5532 continue; 5533 Inst->replaceAllUsesWith(Pt); 5534 RemovedInsts.insert(Inst); 5535 Inst->removeFromParent(); 5536 inserted = true; 5537 Changed = true; 5538 break; 5539 } 5540 if (!inserted) 5541 CurPts.push_back(Inst); 5542 } 5543 } 5544 return Changed; 5545 } 5546 5547 // Spliting large data structures so that the GEPs accessing them can have 5548 // smaller offsets so that they can be sunk to the same blocks as their users. 5549 // For example, a large struct starting from %base is splitted into two parts 5550 // where the second part starts from %new_base. 5551 // 5552 // Before: 5553 // BB0: 5554 // %base = 5555 // 5556 // BB1: 5557 // %gep0 = gep %base, off0 5558 // %gep1 = gep %base, off1 5559 // %gep2 = gep %base, off2 5560 // 5561 // BB2: 5562 // %load1 = load %gep0 5563 // %load2 = load %gep1 5564 // %load3 = load %gep2 5565 // 5566 // After: 5567 // BB0: 5568 // %base = 5569 // %new_base = gep %base, off0 5570 // 5571 // BB1: 5572 // %new_gep0 = %new_base 5573 // %new_gep1 = gep %new_base, off1 - off0 5574 // %new_gep2 = gep %new_base, off2 - off0 5575 // 5576 // BB2: 5577 // %load1 = load i32, i32* %new_gep0 5578 // %load2 = load i32, i32* %new_gep1 5579 // %load3 = load i32, i32* %new_gep2 5580 // 5581 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5582 // their offsets are smaller enough to fit into the addressing mode. 5583 bool CodeGenPrepare::splitLargeGEPOffsets() { 5584 bool Changed = false; 5585 for (auto &Entry : LargeOffsetGEPMap) { 5586 Value *OldBase = Entry.first; 5587 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5588 &LargeOffsetGEPs = Entry.second; 5589 auto compareGEPOffset = 5590 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5591 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5592 if (LHS.first == RHS.first) 5593 return false; 5594 if (LHS.second != RHS.second) 5595 return LHS.second < RHS.second; 5596 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5597 }; 5598 // Sorting all the GEPs of the same data structures based on the offsets. 5599 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5600 LargeOffsetGEPs.erase( 5601 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5602 LargeOffsetGEPs.end()); 5603 // Skip if all the GEPs have the same offsets. 5604 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5605 continue; 5606 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5607 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5608 Value *NewBaseGEP = nullptr; 5609 5610 auto LargeOffsetGEP = LargeOffsetGEPs.begin(); 5611 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5612 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5613 int64_t Offset = LargeOffsetGEP->second; 5614 if (Offset != BaseOffset) { 5615 TargetLowering::AddrMode AddrMode; 5616 AddrMode.BaseOffs = Offset - BaseOffset; 5617 // The result type of the GEP might not be the type of the memory 5618 // access. 5619 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5620 GEP->getResultElementType(), 5621 GEP->getAddressSpace())) { 5622 // We need to create a new base if the offset to the current base is 5623 // too large to fit into the addressing mode. So, a very large struct 5624 // may be splitted into several parts. 5625 BaseGEP = GEP; 5626 BaseOffset = Offset; 5627 NewBaseGEP = nullptr; 5628 } 5629 } 5630 5631 // Generate a new GEP to replace the current one. 5632 LLVMContext &Ctx = GEP->getContext(); 5633 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5634 Type *I8PtrTy = 5635 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5636 Type *I8Ty = Type::getInt8Ty(Ctx); 5637 5638 if (!NewBaseGEP) { 5639 // Create a new base if we don't have one yet. Find the insertion 5640 // pointer for the new base first. 5641 BasicBlock::iterator NewBaseInsertPt; 5642 BasicBlock *NewBaseInsertBB; 5643 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5644 // If the base of the struct is an instruction, the new base will be 5645 // inserted close to it. 5646 NewBaseInsertBB = BaseI->getParent(); 5647 if (isa<PHINode>(BaseI)) 5648 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5649 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5650 NewBaseInsertBB = 5651 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5652 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5653 } else 5654 NewBaseInsertPt = std::next(BaseI->getIterator()); 5655 } else { 5656 // If the current base is an argument or global value, the new base 5657 // will be inserted to the entry block. 5658 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5659 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5660 } 5661 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5662 // Create a new base. 5663 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5664 NewBaseGEP = OldBase; 5665 if (NewBaseGEP->getType() != I8PtrTy) 5666 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5667 NewBaseGEP = 5668 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5669 NewGEPBases.insert(NewBaseGEP); 5670 } 5671 5672 IRBuilder<> Builder(GEP); 5673 Value *NewGEP = NewBaseGEP; 5674 if (Offset == BaseOffset) { 5675 if (GEP->getType() != I8PtrTy) 5676 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5677 } else { 5678 // Calculate the new offset for the new GEP. 5679 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5680 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5681 5682 if (GEP->getType() != I8PtrTy) 5683 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5684 } 5685 GEP->replaceAllUsesWith(NewGEP); 5686 LargeOffsetGEPID.erase(GEP); 5687 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5688 GEP->eraseFromParent(); 5689 Changed = true; 5690 } 5691 } 5692 return Changed; 5693 } 5694 5695 /// Return true, if an ext(load) can be formed from an extension in 5696 /// \p MovedExts. 5697 bool CodeGenPrepare::canFormExtLd( 5698 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5699 Instruction *&Inst, bool HasPromoted) { 5700 for (auto *MovedExtInst : MovedExts) { 5701 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5702 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5703 Inst = MovedExtInst; 5704 break; 5705 } 5706 } 5707 if (!LI) 5708 return false; 5709 5710 // If they're already in the same block, there's nothing to do. 5711 // Make the cheap checks first if we did not promote. 5712 // If we promoted, we need to check if it is indeed profitable. 5713 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5714 return false; 5715 5716 return TLI->isExtLoad(LI, Inst, *DL); 5717 } 5718 5719 /// Move a zext or sext fed by a load into the same basic block as the load, 5720 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5721 /// extend into the load. 5722 /// 5723 /// E.g., 5724 /// \code 5725 /// %ld = load i32* %addr 5726 /// %add = add nuw i32 %ld, 4 5727 /// %zext = zext i32 %add to i64 5728 // \endcode 5729 /// => 5730 /// \code 5731 /// %ld = load i32* %addr 5732 /// %zext = zext i32 %ld to i64 5733 /// %add = add nuw i64 %zext, 4 5734 /// \encode 5735 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5736 /// allow us to match zext(load i32*) to i64. 5737 /// 5738 /// Also, try to promote the computations used to obtain a sign extended 5739 /// value used into memory accesses. 5740 /// E.g., 5741 /// \code 5742 /// a = add nsw i32 b, 3 5743 /// d = sext i32 a to i64 5744 /// e = getelementptr ..., i64 d 5745 /// \endcode 5746 /// => 5747 /// \code 5748 /// f = sext i32 b to i64 5749 /// a = add nsw i64 f, 3 5750 /// e = getelementptr ..., i64 a 5751 /// \endcode 5752 /// 5753 /// \p Inst[in/out] the extension may be modified during the process if some 5754 /// promotions apply. 5755 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 5756 bool AllowPromotionWithoutCommonHeader = false; 5757 /// See if it is an interesting sext operations for the address type 5758 /// promotion before trying to promote it, e.g., the ones with the right 5759 /// type and used in memory accesses. 5760 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 5761 *Inst, AllowPromotionWithoutCommonHeader); 5762 TypePromotionTransaction TPT(RemovedInsts); 5763 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5764 TPT.getRestorationPoint(); 5765 SmallVector<Instruction *, 1> Exts; 5766 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 5767 Exts.push_back(Inst); 5768 5769 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 5770 5771 // Look for a load being extended. 5772 LoadInst *LI = nullptr; 5773 Instruction *ExtFedByLoad; 5774 5775 // Try to promote a chain of computation if it allows to form an extended 5776 // load. 5777 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5778 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5779 TPT.commit(); 5780 // Move the extend into the same block as the load 5781 ExtFedByLoad->moveAfter(LI); 5782 // CGP does not check if the zext would be speculatively executed when moved 5783 // to the same basic block as the load. Preserving its original location 5784 // would pessimize the debugging experience, as well as negatively impact 5785 // the quality of sample pgo. We don't want to use "line 0" as that has a 5786 // size cost in the line-table section and logically the zext can be seen as 5787 // part of the load. Therefore we conservatively reuse the same debug 5788 // location for the load and the zext. 5789 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 5790 ++NumExtsMoved; 5791 Inst = ExtFedByLoad; 5792 return true; 5793 } 5794 5795 // Continue promoting SExts if known as considerable depending on targets. 5796 if (ATPConsiderable && 5797 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5798 HasPromoted, TPT, SpeculativelyMovedExts)) 5799 return true; 5800 5801 TPT.rollback(LastKnownGood); 5802 return false; 5803 } 5804 5805 // Perform address type promotion if doing so is profitable. 5806 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5807 // instructions that sign extended the same initial value. However, if 5808 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5809 // extension is just profitable. 5810 bool CodeGenPrepare::performAddressTypePromotion( 5811 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5812 bool HasPromoted, TypePromotionTransaction &TPT, 5813 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5814 bool Promoted = false; 5815 SmallPtrSet<Instruction *, 1> UnhandledExts; 5816 bool AllSeenFirst = true; 5817 for (auto I : SpeculativelyMovedExts) { 5818 Value *HeadOfChain = I->getOperand(0); 5819 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 5820 SeenChainsForSExt.find(HeadOfChain); 5821 // If there is an unhandled SExt which has the same header, try to promote 5822 // it as well. 5823 if (AlreadySeen != SeenChainsForSExt.end()) { 5824 if (AlreadySeen->second != nullptr) 5825 UnhandledExts.insert(AlreadySeen->second); 5826 AllSeenFirst = false; 5827 } 5828 } 5829 5830 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 5831 SpeculativelyMovedExts.size() == 1)) { 5832 TPT.commit(); 5833 if (HasPromoted) 5834 Promoted = true; 5835 for (auto I : SpeculativelyMovedExts) { 5836 Value *HeadOfChain = I->getOperand(0); 5837 SeenChainsForSExt[HeadOfChain] = nullptr; 5838 ValToSExtendedUses[HeadOfChain].push_back(I); 5839 } 5840 // Update Inst as promotion happen. 5841 Inst = SpeculativelyMovedExts.pop_back_val(); 5842 } else { 5843 // This is the first chain visited from the header, keep the current chain 5844 // as unhandled. Defer to promote this until we encounter another SExt 5845 // chain derived from the same header. 5846 for (auto I : SpeculativelyMovedExts) { 5847 Value *HeadOfChain = I->getOperand(0); 5848 SeenChainsForSExt[HeadOfChain] = Inst; 5849 } 5850 return false; 5851 } 5852 5853 if (!AllSeenFirst && !UnhandledExts.empty()) 5854 for (auto VisitedSExt : UnhandledExts) { 5855 if (RemovedInsts.count(VisitedSExt)) 5856 continue; 5857 TypePromotionTransaction TPT(RemovedInsts); 5858 SmallVector<Instruction *, 1> Exts; 5859 SmallVector<Instruction *, 2> Chains; 5860 Exts.push_back(VisitedSExt); 5861 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 5862 TPT.commit(); 5863 if (HasPromoted) 5864 Promoted = true; 5865 for (auto I : Chains) { 5866 Value *HeadOfChain = I->getOperand(0); 5867 // Mark this as handled. 5868 SeenChainsForSExt[HeadOfChain] = nullptr; 5869 ValToSExtendedUses[HeadOfChain].push_back(I); 5870 } 5871 } 5872 return Promoted; 5873 } 5874 5875 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5876 BasicBlock *DefBB = I->getParent(); 5877 5878 // If the result of a {s|z}ext and its source are both live out, rewrite all 5879 // other uses of the source with result of extension. 5880 Value *Src = I->getOperand(0); 5881 if (Src->hasOneUse()) 5882 return false; 5883 5884 // Only do this xform if truncating is free. 5885 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 5886 return false; 5887 5888 // Only safe to perform the optimization if the source is also defined in 5889 // this block. 5890 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5891 return false; 5892 5893 bool DefIsLiveOut = false; 5894 for (User *U : I->users()) { 5895 Instruction *UI = cast<Instruction>(U); 5896 5897 // Figure out which BB this ext is used in. 5898 BasicBlock *UserBB = UI->getParent(); 5899 if (UserBB == DefBB) continue; 5900 DefIsLiveOut = true; 5901 break; 5902 } 5903 if (!DefIsLiveOut) 5904 return false; 5905 5906 // Make sure none of the uses are PHI nodes. 5907 for (User *U : Src->users()) { 5908 Instruction *UI = cast<Instruction>(U); 5909 BasicBlock *UserBB = UI->getParent(); 5910 if (UserBB == DefBB) continue; 5911 // Be conservative. We don't want this xform to end up introducing 5912 // reloads just before load / store instructions. 5913 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5914 return false; 5915 } 5916 5917 // InsertedTruncs - Only insert one trunc in each block once. 5918 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5919 5920 bool MadeChange = false; 5921 for (Use &U : Src->uses()) { 5922 Instruction *User = cast<Instruction>(U.getUser()); 5923 5924 // Figure out which BB this ext is used in. 5925 BasicBlock *UserBB = User->getParent(); 5926 if (UserBB == DefBB) continue; 5927 5928 // Both src and def are live in this block. Rewrite the use. 5929 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5930 5931 if (!InsertedTrunc) { 5932 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5933 assert(InsertPt != UserBB->end()); 5934 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5935 InsertedInsts.insert(InsertedTrunc); 5936 } 5937 5938 // Replace a use of the {s|z}ext source with a use of the result. 5939 U = InsertedTrunc; 5940 ++NumExtUses; 5941 MadeChange = true; 5942 } 5943 5944 return MadeChange; 5945 } 5946 5947 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5948 // just after the load if the target can fold this into one extload instruction, 5949 // with the hope of eliminating some of the other later "and" instructions using 5950 // the loaded value. "and"s that are made trivially redundant by the insertion 5951 // of the new "and" are removed by this function, while others (e.g. those whose 5952 // path from the load goes through a phi) are left for isel to potentially 5953 // remove. 5954 // 5955 // For example: 5956 // 5957 // b0: 5958 // x = load i32 5959 // ... 5960 // b1: 5961 // y = and x, 0xff 5962 // z = use y 5963 // 5964 // becomes: 5965 // 5966 // b0: 5967 // x = load i32 5968 // x' = and x, 0xff 5969 // ... 5970 // b1: 5971 // z = use x' 5972 // 5973 // whereas: 5974 // 5975 // b0: 5976 // x1 = load i32 5977 // ... 5978 // b1: 5979 // x2 = load i32 5980 // ... 5981 // b2: 5982 // x = phi x1, x2 5983 // y = and x, 0xff 5984 // 5985 // becomes (after a call to optimizeLoadExt for each load): 5986 // 5987 // b0: 5988 // x1 = load i32 5989 // x1' = and x1, 0xff 5990 // ... 5991 // b1: 5992 // x2 = load i32 5993 // x2' = and x2, 0xff 5994 // ... 5995 // b2: 5996 // x = phi x1', x2' 5997 // y = and x, 0xff 5998 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5999 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 6000 return false; 6001 6002 // Skip loads we've already transformed. 6003 if (Load->hasOneUse() && 6004 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 6005 return false; 6006 6007 // Look at all uses of Load, looking through phis, to determine how many bits 6008 // of the loaded value are needed. 6009 SmallVector<Instruction *, 8> WorkList; 6010 SmallPtrSet<Instruction *, 16> Visited; 6011 SmallVector<Instruction *, 8> AndsToMaybeRemove; 6012 for (auto *U : Load->users()) 6013 WorkList.push_back(cast<Instruction>(U)); 6014 6015 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 6016 unsigned BitWidth = LoadResultVT.getSizeInBits(); 6017 APInt DemandBits(BitWidth, 0); 6018 APInt WidestAndBits(BitWidth, 0); 6019 6020 while (!WorkList.empty()) { 6021 Instruction *I = WorkList.back(); 6022 WorkList.pop_back(); 6023 6024 // Break use-def graph loops. 6025 if (!Visited.insert(I).second) 6026 continue; 6027 6028 // For a PHI node, push all of its users. 6029 if (auto *Phi = dyn_cast<PHINode>(I)) { 6030 for (auto *U : Phi->users()) 6031 WorkList.push_back(cast<Instruction>(U)); 6032 continue; 6033 } 6034 6035 switch (I->getOpcode()) { 6036 case Instruction::And: { 6037 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 6038 if (!AndC) 6039 return false; 6040 APInt AndBits = AndC->getValue(); 6041 DemandBits |= AndBits; 6042 // Keep track of the widest and mask we see. 6043 if (AndBits.ugt(WidestAndBits)) 6044 WidestAndBits = AndBits; 6045 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 6046 AndsToMaybeRemove.push_back(I); 6047 break; 6048 } 6049 6050 case Instruction::Shl: { 6051 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 6052 if (!ShlC) 6053 return false; 6054 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 6055 DemandBits.setLowBits(BitWidth - ShiftAmt); 6056 break; 6057 } 6058 6059 case Instruction::Trunc: { 6060 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 6061 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 6062 DemandBits.setLowBits(TruncBitWidth); 6063 break; 6064 } 6065 6066 default: 6067 return false; 6068 } 6069 } 6070 6071 uint32_t ActiveBits = DemandBits.getActiveBits(); 6072 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 6073 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 6074 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 6075 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 6076 // followed by an AND. 6077 // TODO: Look into removing this restriction by fixing backends to either 6078 // return false for isLoadExtLegal for i1 or have them select this pattern to 6079 // a single instruction. 6080 // 6081 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 6082 // mask, since these are the only ands that will be removed by isel. 6083 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 6084 WidestAndBits != DemandBits) 6085 return false; 6086 6087 LLVMContext &Ctx = Load->getType()->getContext(); 6088 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 6089 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 6090 6091 // Reject cases that won't be matched as extloads. 6092 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 6093 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 6094 return false; 6095 6096 IRBuilder<> Builder(Load->getNextNode()); 6097 auto *NewAnd = cast<Instruction>( 6098 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 6099 // Mark this instruction as "inserted by CGP", so that other 6100 // optimizations don't touch it. 6101 InsertedInsts.insert(NewAnd); 6102 6103 // Replace all uses of load with new and (except for the use of load in the 6104 // new and itself). 6105 Load->replaceAllUsesWith(NewAnd); 6106 NewAnd->setOperand(0, Load); 6107 6108 // Remove any and instructions that are now redundant. 6109 for (auto *And : AndsToMaybeRemove) 6110 // Check that the and mask is the same as the one we decided to put on the 6111 // new and. 6112 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 6113 And->replaceAllUsesWith(NewAnd); 6114 if (&*CurInstIterator == And) 6115 CurInstIterator = std::next(And->getIterator()); 6116 And->eraseFromParent(); 6117 ++NumAndUses; 6118 } 6119 6120 ++NumAndsAdded; 6121 return true; 6122 } 6123 6124 /// Check if V (an operand of a select instruction) is an expensive instruction 6125 /// that is only used once. 6126 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 6127 auto *I = dyn_cast<Instruction>(V); 6128 // If it's safe to speculatively execute, then it should not have side 6129 // effects; therefore, it's safe to sink and possibly *not* execute. 6130 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 6131 TTI->getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency) >= 6132 TargetTransformInfo::TCC_Expensive; 6133 } 6134 6135 /// Returns true if a SelectInst should be turned into an explicit branch. 6136 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 6137 const TargetLowering *TLI, 6138 SelectInst *SI) { 6139 // If even a predictable select is cheap, then a branch can't be cheaper. 6140 if (!TLI->isPredictableSelectExpensive()) 6141 return false; 6142 6143 // FIXME: This should use the same heuristics as IfConversion to determine 6144 // whether a select is better represented as a branch. 6145 6146 // If metadata tells us that the select condition is obviously predictable, 6147 // then we want to replace the select with a branch. 6148 uint64_t TrueWeight, FalseWeight; 6149 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 6150 uint64_t Max = std::max(TrueWeight, FalseWeight); 6151 uint64_t Sum = TrueWeight + FalseWeight; 6152 if (Sum != 0) { 6153 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 6154 if (Probability > TLI->getPredictableBranchThreshold()) 6155 return true; 6156 } 6157 } 6158 6159 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 6160 6161 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 6162 // comparison condition. If the compare has more than one use, there's 6163 // probably another cmov or setcc around, so it's not worth emitting a branch. 6164 if (!Cmp || !Cmp->hasOneUse()) 6165 return false; 6166 6167 // If either operand of the select is expensive and only needed on one side 6168 // of the select, we should form a branch. 6169 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 6170 sinkSelectOperand(TTI, SI->getFalseValue())) 6171 return true; 6172 6173 return false; 6174 } 6175 6176 /// If \p isTrue is true, return the true value of \p SI, otherwise return 6177 /// false value of \p SI. If the true/false value of \p SI is defined by any 6178 /// select instructions in \p Selects, look through the defining select 6179 /// instruction until the true/false value is not defined in \p Selects. 6180 static Value *getTrueOrFalseValue( 6181 SelectInst *SI, bool isTrue, 6182 const SmallPtrSet<const Instruction *, 2> &Selects) { 6183 Value *V = nullptr; 6184 6185 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 6186 DefSI = dyn_cast<SelectInst>(V)) { 6187 assert(DefSI->getCondition() == SI->getCondition() && 6188 "The condition of DefSI does not match with SI"); 6189 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 6190 } 6191 6192 assert(V && "Failed to get select true/false value"); 6193 return V; 6194 } 6195 6196 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 6197 assert(Shift->isShift() && "Expected a shift"); 6198 6199 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 6200 // general vector shifts, and (3) the shift amount is a select-of-splatted 6201 // values, hoist the shifts before the select: 6202 // shift Op0, (select Cond, TVal, FVal) --> 6203 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6204 // 6205 // This is inverting a generic IR transform when we know that the cost of a 6206 // general vector shift is more than the cost of 2 shift-by-scalars. 6207 // We can't do this effectively in SDAG because we may not be able to 6208 // determine if the select operands are splats from within a basic block. 6209 Type *Ty = Shift->getType(); 6210 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6211 return false; 6212 Value *Cond, *TVal, *FVal; 6213 if (!match(Shift->getOperand(1), 6214 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6215 return false; 6216 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6217 return false; 6218 6219 IRBuilder<> Builder(Shift); 6220 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6221 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6222 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6223 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6224 Shift->replaceAllUsesWith(NewSel); 6225 Shift->eraseFromParent(); 6226 return true; 6227 } 6228 6229 /// If we have a SelectInst that will likely profit from branch prediction, 6230 /// turn it into a branch. 6231 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6232 // If branch conversion isn't desirable, exit early. 6233 if (DisableSelectToBranch || OptSize || 6234 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get())) 6235 return false; 6236 6237 // Find all consecutive select instructions that share the same condition. 6238 SmallVector<SelectInst *, 2> ASI; 6239 ASI.push_back(SI); 6240 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 6241 It != SI->getParent()->end(); ++It) { 6242 SelectInst *I = dyn_cast<SelectInst>(&*It); 6243 if (I && SI->getCondition() == I->getCondition()) { 6244 ASI.push_back(I); 6245 } else { 6246 break; 6247 } 6248 } 6249 6250 SelectInst *LastSI = ASI.back(); 6251 // Increment the current iterator to skip all the rest of select instructions 6252 // because they will be either "not lowered" or "all lowered" to branch. 6253 CurInstIterator = std::next(LastSI->getIterator()); 6254 6255 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 6256 6257 // Can we convert the 'select' to CF ? 6258 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 6259 return false; 6260 6261 TargetLowering::SelectSupportKind SelectKind; 6262 if (VectorCond) 6263 SelectKind = TargetLowering::VectorMaskSelect; 6264 else if (SI->getType()->isVectorTy()) 6265 SelectKind = TargetLowering::ScalarCondVectorVal; 6266 else 6267 SelectKind = TargetLowering::ScalarValSelect; 6268 6269 if (TLI->isSelectSupported(SelectKind) && 6270 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 6271 return false; 6272 6273 // The DominatorTree needs to be rebuilt by any consumers after this 6274 // transformation. We simply reset here rather than setting the ModifiedDT 6275 // flag to avoid restarting the function walk in runOnFunction for each 6276 // select optimized. 6277 DT.reset(); 6278 6279 // Transform a sequence like this: 6280 // start: 6281 // %cmp = cmp uge i32 %a, %b 6282 // %sel = select i1 %cmp, i32 %c, i32 %d 6283 // 6284 // Into: 6285 // start: 6286 // %cmp = cmp uge i32 %a, %b 6287 // %cmp.frozen = freeze %cmp 6288 // br i1 %cmp.frozen, label %select.true, label %select.false 6289 // select.true: 6290 // br label %select.end 6291 // select.false: 6292 // br label %select.end 6293 // select.end: 6294 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6295 // 6296 // %cmp should be frozen, otherwise it may introduce undefined behavior. 6297 // In addition, we may sink instructions that produce %c or %d from 6298 // the entry block into the destination(s) of the new branch. 6299 // If the true or false blocks do not contain a sunken instruction, that 6300 // block and its branch may be optimized away. In that case, one side of the 6301 // first branch will point directly to select.end, and the corresponding PHI 6302 // predecessor block will be the start block. 6303 6304 // First, we split the block containing the select into 2 blocks. 6305 BasicBlock *StartBlock = SI->getParent(); 6306 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6307 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6308 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); 6309 6310 // Delete the unconditional branch that was just created by the split. 6311 StartBlock->getTerminator()->eraseFromParent(); 6312 6313 // These are the new basic blocks for the conditional branch. 6314 // At least one will become an actual new basic block. 6315 BasicBlock *TrueBlock = nullptr; 6316 BasicBlock *FalseBlock = nullptr; 6317 BranchInst *TrueBranch = nullptr; 6318 BranchInst *FalseBranch = nullptr; 6319 6320 // Sink expensive instructions into the conditional blocks to avoid executing 6321 // them speculatively. 6322 for (SelectInst *SI : ASI) { 6323 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6324 if (TrueBlock == nullptr) { 6325 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6326 EndBlock->getParent(), EndBlock); 6327 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6328 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6329 } 6330 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6331 TrueInst->moveBefore(TrueBranch); 6332 } 6333 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6334 if (FalseBlock == nullptr) { 6335 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6336 EndBlock->getParent(), EndBlock); 6337 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6338 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6339 } 6340 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6341 FalseInst->moveBefore(FalseBranch); 6342 } 6343 } 6344 6345 // If there was nothing to sink, then arbitrarily choose the 'false' side 6346 // for a new input value to the PHI. 6347 if (TrueBlock == FalseBlock) { 6348 assert(TrueBlock == nullptr && 6349 "Unexpected basic block transform while optimizing select"); 6350 6351 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6352 EndBlock->getParent(), EndBlock); 6353 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6354 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6355 } 6356 6357 // Insert the real conditional branch based on the original condition. 6358 // If we did not create a new block for one of the 'true' or 'false' paths 6359 // of the condition, it means that side of the branch goes to the end block 6360 // directly and the path originates from the start block from the point of 6361 // view of the new PHI. 6362 BasicBlock *TT, *FT; 6363 if (TrueBlock == nullptr) { 6364 TT = EndBlock; 6365 FT = FalseBlock; 6366 TrueBlock = StartBlock; 6367 } else if (FalseBlock == nullptr) { 6368 TT = TrueBlock; 6369 FT = EndBlock; 6370 FalseBlock = StartBlock; 6371 } else { 6372 TT = TrueBlock; 6373 FT = FalseBlock; 6374 } 6375 IRBuilder<> IB(SI); 6376 auto CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 6377 IB.CreateCondBr(CondFr, TT, FT, SI); 6378 6379 SmallPtrSet<const Instruction *, 2> INS; 6380 INS.insert(ASI.begin(), ASI.end()); 6381 // Use reverse iterator because later select may use the value of the 6382 // earlier select, and we need to propagate value through earlier select 6383 // to get the PHI operand. 6384 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 6385 SelectInst *SI = *It; 6386 // The select itself is replaced with a PHI Node. 6387 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6388 PN->takeName(SI); 6389 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6390 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6391 PN->setDebugLoc(SI->getDebugLoc()); 6392 6393 SI->replaceAllUsesWith(PN); 6394 SI->eraseFromParent(); 6395 INS.erase(SI); 6396 ++NumSelectsExpanded; 6397 } 6398 6399 // Instruct OptimizeBlock to skip to the next block. 6400 CurInstIterator = StartBlock->end(); 6401 return true; 6402 } 6403 6404 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 6405 ArrayRef<int> Mask(SVI->getShuffleMask()); 6406 int SplatElem = -1; 6407 for (unsigned i = 0; i < Mask.size(); ++i) { 6408 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 6409 return false; 6410 SplatElem = Mask[i]; 6411 } 6412 6413 return true; 6414 } 6415 6416 /// Some targets have expensive vector shifts if the lanes aren't all the same 6417 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 6418 /// it's often worth sinking a shufflevector splat down to its use so that 6419 /// codegen can spot all lanes are identical. 6420 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6421 BasicBlock *DefBB = SVI->getParent(); 6422 6423 // Only do this xform if variable vector shifts are particularly expensive. 6424 if (!TLI->isVectorShiftByScalarCheap(SVI->getType())) 6425 return false; 6426 6427 // We only expect better codegen by sinking a shuffle if we can recognise a 6428 // constant splat. 6429 if (!isBroadcastShuffle(SVI)) 6430 return false; 6431 6432 // InsertedShuffles - Only insert a shuffle in each block once. 6433 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 6434 6435 bool MadeChange = false; 6436 for (User *U : SVI->users()) { 6437 Instruction *UI = cast<Instruction>(U); 6438 6439 // Figure out which BB this ext is used in. 6440 BasicBlock *UserBB = UI->getParent(); 6441 if (UserBB == DefBB) continue; 6442 6443 // For now only apply this when the splat is used by a shift instruction. 6444 if (!UI->isShift()) continue; 6445 6446 // Everything checks out, sink the shuffle if the user's block doesn't 6447 // already have a copy. 6448 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 6449 6450 if (!InsertedShuffle) { 6451 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6452 assert(InsertPt != UserBB->end()); 6453 InsertedShuffle = 6454 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 6455 SVI->getShuffleMask(), "", &*InsertPt); 6456 InsertedShuffle->setDebugLoc(SVI->getDebugLoc()); 6457 } 6458 6459 UI->replaceUsesOfWith(SVI, InsertedShuffle); 6460 MadeChange = true; 6461 } 6462 6463 // If we removed all uses, nuke the shuffle. 6464 if (SVI->use_empty()) { 6465 SVI->eraseFromParent(); 6466 MadeChange = true; 6467 } 6468 6469 return MadeChange; 6470 } 6471 6472 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6473 // If the operands of I can be folded into a target instruction together with 6474 // I, duplicate and sink them. 6475 SmallVector<Use *, 4> OpsToSink; 6476 if (!TLI->shouldSinkOperands(I, OpsToSink)) 6477 return false; 6478 6479 // OpsToSink can contain multiple uses in a use chain (e.g. 6480 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6481 // uses must come first, so we process the ops in reverse order so as to not 6482 // create invalid IR. 6483 BasicBlock *TargetBB = I->getParent(); 6484 bool Changed = false; 6485 SmallVector<Use *, 4> ToReplace; 6486 for (Use *U : reverse(OpsToSink)) { 6487 auto *UI = cast<Instruction>(U->get()); 6488 if (UI->getParent() == TargetBB || isa<PHINode>(UI)) 6489 continue; 6490 ToReplace.push_back(U); 6491 } 6492 6493 SetVector<Instruction *> MaybeDead; 6494 DenseMap<Instruction *, Instruction *> NewInstructions; 6495 Instruction *InsertPoint = I; 6496 for (Use *U : ToReplace) { 6497 auto *UI = cast<Instruction>(U->get()); 6498 Instruction *NI = UI->clone(); 6499 NewInstructions[UI] = NI; 6500 MaybeDead.insert(UI); 6501 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6502 NI->insertBefore(InsertPoint); 6503 InsertPoint = NI; 6504 InsertedInsts.insert(NI); 6505 6506 // Update the use for the new instruction, making sure that we update the 6507 // sunk instruction uses, if it is part of a chain that has already been 6508 // sunk. 6509 Instruction *OldI = cast<Instruction>(U->getUser()); 6510 if (NewInstructions.count(OldI)) 6511 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 6512 else 6513 U->set(NI); 6514 Changed = true; 6515 } 6516 6517 // Remove instructions that are dead after sinking. 6518 for (auto *I : MaybeDead) { 6519 if (!I->hasNUsesOrMore(1)) { 6520 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 6521 I->eraseFromParent(); 6522 } 6523 } 6524 6525 return Changed; 6526 } 6527 6528 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6529 Value *Cond = SI->getCondition(); 6530 Type *OldType = Cond->getType(); 6531 LLVMContext &Context = Cond->getContext(); 6532 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 6533 unsigned RegWidth = RegType.getSizeInBits(); 6534 6535 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6536 return false; 6537 6538 // If the register width is greater than the type width, expand the condition 6539 // of the switch instruction and each case constant to the width of the 6540 // register. By widening the type of the switch condition, subsequent 6541 // comparisons (for case comparisons) will not need to be extended to the 6542 // preferred register width, so we will potentially eliminate N-1 extends, 6543 // where N is the number of cases in the switch. 6544 auto *NewType = Type::getIntNTy(Context, RegWidth); 6545 6546 // Zero-extend the switch condition and case constants unless the switch 6547 // condition is a function argument that is already being sign-extended. 6548 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6549 // everything instead. 6550 Instruction::CastOps ExtType = Instruction::ZExt; 6551 if (auto *Arg = dyn_cast<Argument>(Cond)) 6552 if (Arg->hasSExtAttr()) 6553 ExtType = Instruction::SExt; 6554 6555 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 6556 ExtInst->insertBefore(SI); 6557 ExtInst->setDebugLoc(SI->getDebugLoc()); 6558 SI->setCondition(ExtInst); 6559 for (auto Case : SI->cases()) { 6560 APInt NarrowConst = Case.getCaseValue()->getValue(); 6561 APInt WideConst = (ExtType == Instruction::ZExt) ? 6562 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 6563 Case.setValue(ConstantInt::get(Context, WideConst)); 6564 } 6565 6566 return true; 6567 } 6568 6569 6570 namespace { 6571 6572 /// Helper class to promote a scalar operation to a vector one. 6573 /// This class is used to move downward extractelement transition. 6574 /// E.g., 6575 /// a = vector_op <2 x i32> 6576 /// b = extractelement <2 x i32> a, i32 0 6577 /// c = scalar_op b 6578 /// store c 6579 /// 6580 /// => 6581 /// a = vector_op <2 x i32> 6582 /// c = vector_op a (equivalent to scalar_op on the related lane) 6583 /// * d = extractelement <2 x i32> c, i32 0 6584 /// * store d 6585 /// Assuming both extractelement and store can be combine, we get rid of the 6586 /// transition. 6587 class VectorPromoteHelper { 6588 /// DataLayout associated with the current module. 6589 const DataLayout &DL; 6590 6591 /// Used to perform some checks on the legality of vector operations. 6592 const TargetLowering &TLI; 6593 6594 /// Used to estimated the cost of the promoted chain. 6595 const TargetTransformInfo &TTI; 6596 6597 /// The transition being moved downwards. 6598 Instruction *Transition; 6599 6600 /// The sequence of instructions to be promoted. 6601 SmallVector<Instruction *, 4> InstsToBePromoted; 6602 6603 /// Cost of combining a store and an extract. 6604 unsigned StoreExtractCombineCost; 6605 6606 /// Instruction that will be combined with the transition. 6607 Instruction *CombineInst = nullptr; 6608 6609 /// The instruction that represents the current end of the transition. 6610 /// Since we are faking the promotion until we reach the end of the chain 6611 /// of computation, we need a way to get the current end of the transition. 6612 Instruction *getEndOfTransition() const { 6613 if (InstsToBePromoted.empty()) 6614 return Transition; 6615 return InstsToBePromoted.back(); 6616 } 6617 6618 /// Return the index of the original value in the transition. 6619 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 6620 /// c, is at index 0. 6621 unsigned getTransitionOriginalValueIdx() const { 6622 assert(isa<ExtractElementInst>(Transition) && 6623 "Other kind of transitions are not supported yet"); 6624 return 0; 6625 } 6626 6627 /// Return the index of the index in the transition. 6628 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 6629 /// is at index 1. 6630 unsigned getTransitionIdx() const { 6631 assert(isa<ExtractElementInst>(Transition) && 6632 "Other kind of transitions are not supported yet"); 6633 return 1; 6634 } 6635 6636 /// Get the type of the transition. 6637 /// This is the type of the original value. 6638 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 6639 /// transition is <2 x i32>. 6640 Type *getTransitionType() const { 6641 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 6642 } 6643 6644 /// Promote \p ToBePromoted by moving \p Def downward through. 6645 /// I.e., we have the following sequence: 6646 /// Def = Transition <ty1> a to <ty2> 6647 /// b = ToBePromoted <ty2> Def, ... 6648 /// => 6649 /// b = ToBePromoted <ty1> a, ... 6650 /// Def = Transition <ty1> ToBePromoted to <ty2> 6651 void promoteImpl(Instruction *ToBePromoted); 6652 6653 /// Check whether or not it is profitable to promote all the 6654 /// instructions enqueued to be promoted. 6655 bool isProfitableToPromote() { 6656 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 6657 unsigned Index = isa<ConstantInt>(ValIdx) 6658 ? cast<ConstantInt>(ValIdx)->getZExtValue() 6659 : -1; 6660 Type *PromotedType = getTransitionType(); 6661 6662 StoreInst *ST = cast<StoreInst>(CombineInst); 6663 unsigned AS = ST->getPointerAddressSpace(); 6664 unsigned Align = ST->getAlignment(); 6665 // Check if this store is supported. 6666 if (!TLI.allowsMisalignedMemoryAccesses( 6667 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 6668 Align)) { 6669 // If this is not supported, there is no way we can combine 6670 // the extract with the store. 6671 return false; 6672 } 6673 6674 // The scalar chain of computation has to pay for the transition 6675 // scalar to vector. 6676 // The vector chain has to account for the combining cost. 6677 uint64_t ScalarCost = 6678 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 6679 uint64_t VectorCost = StoreExtractCombineCost; 6680 enum TargetTransformInfo::TargetCostKind CostKind = 6681 TargetTransformInfo::TCK_RecipThroughput; 6682 for (const auto &Inst : InstsToBePromoted) { 6683 // Compute the cost. 6684 // By construction, all instructions being promoted are arithmetic ones. 6685 // Moreover, one argument is a constant that can be viewed as a splat 6686 // constant. 6687 Value *Arg0 = Inst->getOperand(0); 6688 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 6689 isa<ConstantFP>(Arg0); 6690 TargetTransformInfo::OperandValueKind Arg0OVK = 6691 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6692 : TargetTransformInfo::OK_AnyValue; 6693 TargetTransformInfo::OperandValueKind Arg1OVK = 6694 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6695 : TargetTransformInfo::OK_AnyValue; 6696 ScalarCost += TTI.getArithmeticInstrCost( 6697 Inst->getOpcode(), Inst->getType(), CostKind, Arg0OVK, Arg1OVK); 6698 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 6699 CostKind, 6700 Arg0OVK, Arg1OVK); 6701 } 6702 LLVM_DEBUG( 6703 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 6704 << ScalarCost << "\nVector: " << VectorCost << '\n'); 6705 return ScalarCost > VectorCost; 6706 } 6707 6708 /// Generate a constant vector with \p Val with the same 6709 /// number of elements as the transition. 6710 /// \p UseSplat defines whether or not \p Val should be replicated 6711 /// across the whole vector. 6712 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 6713 /// otherwise we generate a vector with as many undef as possible: 6714 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 6715 /// used at the index of the extract. 6716 Value *getConstantVector(Constant *Val, bool UseSplat) const { 6717 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 6718 if (!UseSplat) { 6719 // If we cannot determine where the constant must be, we have to 6720 // use a splat constant. 6721 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 6722 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 6723 ExtractIdx = CstVal->getSExtValue(); 6724 else 6725 UseSplat = true; 6726 } 6727 6728 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); 6729 if (UseSplat) 6730 return ConstantVector::getSplat(EC, Val); 6731 6732 if (!EC.Scalable) { 6733 SmallVector<Constant *, 4> ConstVec; 6734 UndefValue *UndefVal = UndefValue::get(Val->getType()); 6735 for (unsigned Idx = 0; Idx != EC.Min; ++Idx) { 6736 if (Idx == ExtractIdx) 6737 ConstVec.push_back(Val); 6738 else 6739 ConstVec.push_back(UndefVal); 6740 } 6741 return ConstantVector::get(ConstVec); 6742 } else 6743 llvm_unreachable( 6744 "Generate scalable vector for non-splat is unimplemented"); 6745 } 6746 6747 /// Check if promoting to a vector type an operand at \p OperandIdx 6748 /// in \p Use can trigger undefined behavior. 6749 static bool canCauseUndefinedBehavior(const Instruction *Use, 6750 unsigned OperandIdx) { 6751 // This is not safe to introduce undef when the operand is on 6752 // the right hand side of a division-like instruction. 6753 if (OperandIdx != 1) 6754 return false; 6755 switch (Use->getOpcode()) { 6756 default: 6757 return false; 6758 case Instruction::SDiv: 6759 case Instruction::UDiv: 6760 case Instruction::SRem: 6761 case Instruction::URem: 6762 return true; 6763 case Instruction::FDiv: 6764 case Instruction::FRem: 6765 return !Use->hasNoNaNs(); 6766 } 6767 llvm_unreachable(nullptr); 6768 } 6769 6770 public: 6771 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 6772 const TargetTransformInfo &TTI, Instruction *Transition, 6773 unsigned CombineCost) 6774 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 6775 StoreExtractCombineCost(CombineCost) { 6776 assert(Transition && "Do not know how to promote null"); 6777 } 6778 6779 /// Check if we can promote \p ToBePromoted to \p Type. 6780 bool canPromote(const Instruction *ToBePromoted) const { 6781 // We could support CastInst too. 6782 return isa<BinaryOperator>(ToBePromoted); 6783 } 6784 6785 /// Check if it is profitable to promote \p ToBePromoted 6786 /// by moving downward the transition through. 6787 bool shouldPromote(const Instruction *ToBePromoted) const { 6788 // Promote only if all the operands can be statically expanded. 6789 // Indeed, we do not want to introduce any new kind of transitions. 6790 for (const Use &U : ToBePromoted->operands()) { 6791 const Value *Val = U.get(); 6792 if (Val == getEndOfTransition()) { 6793 // If the use is a division and the transition is on the rhs, 6794 // we cannot promote the operation, otherwise we may create a 6795 // division by zero. 6796 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 6797 return false; 6798 continue; 6799 } 6800 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 6801 !isa<ConstantFP>(Val)) 6802 return false; 6803 } 6804 // Check that the resulting operation is legal. 6805 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 6806 if (!ISDOpcode) 6807 return false; 6808 return StressStoreExtract || 6809 TLI.isOperationLegalOrCustom( 6810 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 6811 } 6812 6813 /// Check whether or not \p Use can be combined 6814 /// with the transition. 6815 /// I.e., is it possible to do Use(Transition) => AnotherUse? 6816 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 6817 6818 /// Record \p ToBePromoted as part of the chain to be promoted. 6819 void enqueueForPromotion(Instruction *ToBePromoted) { 6820 InstsToBePromoted.push_back(ToBePromoted); 6821 } 6822 6823 /// Set the instruction that will be combined with the transition. 6824 void recordCombineInstruction(Instruction *ToBeCombined) { 6825 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 6826 CombineInst = ToBeCombined; 6827 } 6828 6829 /// Promote all the instructions enqueued for promotion if it is 6830 /// is profitable. 6831 /// \return True if the promotion happened, false otherwise. 6832 bool promote() { 6833 // Check if there is something to promote. 6834 // Right now, if we do not have anything to combine with, 6835 // we assume the promotion is not profitable. 6836 if (InstsToBePromoted.empty() || !CombineInst) 6837 return false; 6838 6839 // Check cost. 6840 if (!StressStoreExtract && !isProfitableToPromote()) 6841 return false; 6842 6843 // Promote. 6844 for (auto &ToBePromoted : InstsToBePromoted) 6845 promoteImpl(ToBePromoted); 6846 InstsToBePromoted.clear(); 6847 return true; 6848 } 6849 }; 6850 6851 } // end anonymous namespace 6852 6853 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 6854 // At this point, we know that all the operands of ToBePromoted but Def 6855 // can be statically promoted. 6856 // For Def, we need to use its parameter in ToBePromoted: 6857 // b = ToBePromoted ty1 a 6858 // Def = Transition ty1 b to ty2 6859 // Move the transition down. 6860 // 1. Replace all uses of the promoted operation by the transition. 6861 // = ... b => = ... Def. 6862 assert(ToBePromoted->getType() == Transition->getType() && 6863 "The type of the result of the transition does not match " 6864 "the final type"); 6865 ToBePromoted->replaceAllUsesWith(Transition); 6866 // 2. Update the type of the uses. 6867 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 6868 Type *TransitionTy = getTransitionType(); 6869 ToBePromoted->mutateType(TransitionTy); 6870 // 3. Update all the operands of the promoted operation with promoted 6871 // operands. 6872 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 6873 for (Use &U : ToBePromoted->operands()) { 6874 Value *Val = U.get(); 6875 Value *NewVal = nullptr; 6876 if (Val == Transition) 6877 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 6878 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 6879 isa<ConstantFP>(Val)) { 6880 // Use a splat constant if it is not safe to use undef. 6881 NewVal = getConstantVector( 6882 cast<Constant>(Val), 6883 isa<UndefValue>(Val) || 6884 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 6885 } else 6886 llvm_unreachable("Did you modified shouldPromote and forgot to update " 6887 "this?"); 6888 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 6889 } 6890 Transition->moveAfter(ToBePromoted); 6891 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 6892 } 6893 6894 /// Some targets can do store(extractelement) with one instruction. 6895 /// Try to push the extractelement towards the stores when the target 6896 /// has this feature and this is profitable. 6897 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 6898 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 6899 if (DisableStoreExtract || 6900 (!StressStoreExtract && 6901 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 6902 Inst->getOperand(1), CombineCost))) 6903 return false; 6904 6905 // At this point we know that Inst is a vector to scalar transition. 6906 // Try to move it down the def-use chain, until: 6907 // - We can combine the transition with its single use 6908 // => we got rid of the transition. 6909 // - We escape the current basic block 6910 // => we would need to check that we are moving it at a cheaper place and 6911 // we do not do that for now. 6912 BasicBlock *Parent = Inst->getParent(); 6913 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 6914 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 6915 // If the transition has more than one use, assume this is not going to be 6916 // beneficial. 6917 while (Inst->hasOneUse()) { 6918 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 6919 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 6920 6921 if (ToBePromoted->getParent() != Parent) { 6922 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 6923 << ToBePromoted->getParent()->getName() 6924 << ") than the transition (" << Parent->getName() 6925 << ").\n"); 6926 return false; 6927 } 6928 6929 if (VPH.canCombine(ToBePromoted)) { 6930 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 6931 << "will be combined with: " << *ToBePromoted << '\n'); 6932 VPH.recordCombineInstruction(ToBePromoted); 6933 bool Changed = VPH.promote(); 6934 NumStoreExtractExposed += Changed; 6935 return Changed; 6936 } 6937 6938 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 6939 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 6940 return false; 6941 6942 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 6943 6944 VPH.enqueueForPromotion(ToBePromoted); 6945 Inst = ToBePromoted; 6946 } 6947 return false; 6948 } 6949 6950 /// For the instruction sequence of store below, F and I values 6951 /// are bundled together as an i64 value before being stored into memory. 6952 /// Sometimes it is more efficient to generate separate stores for F and I, 6953 /// which can remove the bitwise instructions or sink them to colder places. 6954 /// 6955 /// (store (or (zext (bitcast F to i32) to i64), 6956 /// (shl (zext I to i64), 32)), addr) --> 6957 /// (store F, addr) and (store I, addr+4) 6958 /// 6959 /// Similarly, splitting for other merged store can also be beneficial, like: 6960 /// For pair of {i32, i32}, i64 store --> two i32 stores. 6961 /// For pair of {i32, i16}, i64 store --> two i32 stores. 6962 /// For pair of {i16, i16}, i32 store --> two i16 stores. 6963 /// For pair of {i16, i8}, i32 store --> two i16 stores. 6964 /// For pair of {i8, i8}, i16 store --> two i8 stores. 6965 /// 6966 /// We allow each target to determine specifically which kind of splitting is 6967 /// supported. 6968 /// 6969 /// The store patterns are commonly seen from the simple code snippet below 6970 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 6971 /// void goo(const std::pair<int, float> &); 6972 /// hoo() { 6973 /// ... 6974 /// goo(std::make_pair(tmp, ftmp)); 6975 /// ... 6976 /// } 6977 /// 6978 /// Although we already have similar splitting in DAG Combine, we duplicate 6979 /// it in CodeGenPrepare to catch the case in which pattern is across 6980 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6981 /// during code expansion. 6982 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6983 const TargetLowering &TLI) { 6984 // Handle simple but common cases only. 6985 Type *StoreType = SI.getValueOperand()->getType(); 6986 6987 // The code below assumes shifting a value by <number of bits>, 6988 // whereas scalable vectors would have to be shifted by 6989 // <2log(vscale) + number of bits> in order to store the 6990 // low/high parts. Bailing out for now. 6991 if (isa<ScalableVectorType>(StoreType)) 6992 return false; 6993 6994 if (!DL.typeSizeEqualsStoreSize(StoreType) || 6995 DL.getTypeSizeInBits(StoreType) == 0) 6996 return false; 6997 6998 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6999 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 7000 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 7001 return false; 7002 7003 // Don't split the store if it is volatile. 7004 if (SI.isVolatile()) 7005 return false; 7006 7007 // Match the following patterns: 7008 // (store (or (zext LValue to i64), 7009 // (shl (zext HValue to i64), 32)), HalfValBitSize) 7010 // or 7011 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 7012 // (zext LValue to i64), 7013 // Expect both operands of OR and the first operand of SHL have only 7014 // one use. 7015 Value *LValue, *HValue; 7016 if (!match(SI.getValueOperand(), 7017 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 7018 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 7019 m_SpecificInt(HalfValBitSize)))))) 7020 return false; 7021 7022 // Check LValue and HValue are int with size less or equal than 32. 7023 if (!LValue->getType()->isIntegerTy() || 7024 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 7025 !HValue->getType()->isIntegerTy() || 7026 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 7027 return false; 7028 7029 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 7030 // as the input of target query. 7031 auto *LBC = dyn_cast<BitCastInst>(LValue); 7032 auto *HBC = dyn_cast<BitCastInst>(HValue); 7033 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 7034 : EVT::getEVT(LValue->getType()); 7035 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 7036 : EVT::getEVT(HValue->getType()); 7037 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 7038 return false; 7039 7040 // Start to split store. 7041 IRBuilder<> Builder(SI.getContext()); 7042 Builder.SetInsertPoint(&SI); 7043 7044 // If LValue/HValue is a bitcast in another BB, create a new one in current 7045 // BB so it may be merged with the splitted stores by dag combiner. 7046 if (LBC && LBC->getParent() != SI.getParent()) 7047 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 7048 if (HBC && HBC->getParent() != SI.getParent()) 7049 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 7050 7051 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 7052 auto CreateSplitStore = [&](Value *V, bool Upper) { 7053 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 7054 Value *Addr = Builder.CreateBitCast( 7055 SI.getOperand(1), 7056 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 7057 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 7058 if (IsOffsetStore) 7059 Addr = Builder.CreateGEP( 7060 SplitStoreType, Addr, 7061 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 7062 MaybeAlign Alignment = SI.getAlign(); 7063 if (IsOffsetStore && Alignment) { 7064 // When splitting the store in half, naturally one half will retain the 7065 // alignment of the original wider store, regardless of whether it was 7066 // over-aligned or not, while the other will require adjustment. 7067 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 7068 } 7069 Builder.CreateAlignedStore(V, Addr, Alignment); 7070 }; 7071 7072 CreateSplitStore(LValue, false); 7073 CreateSplitStore(HValue, true); 7074 7075 // Delete the old store. 7076 SI.eraseFromParent(); 7077 return true; 7078 } 7079 7080 // Return true if the GEP has two operands, the first operand is of a sequential 7081 // type, and the second operand is a constant. 7082 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 7083 gep_type_iterator I = gep_type_begin(*GEP); 7084 return GEP->getNumOperands() == 2 && 7085 I.isSequential() && 7086 isa<ConstantInt>(GEP->getOperand(1)); 7087 } 7088 7089 // Try unmerging GEPs to reduce liveness interference (register pressure) across 7090 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 7091 // reducing liveness interference across those edges benefits global register 7092 // allocation. Currently handles only certain cases. 7093 // 7094 // For example, unmerge %GEPI and %UGEPI as below. 7095 // 7096 // ---------- BEFORE ---------- 7097 // SrcBlock: 7098 // ... 7099 // %GEPIOp = ... 7100 // ... 7101 // %GEPI = gep %GEPIOp, Idx 7102 // ... 7103 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 7104 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 7105 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 7106 // %UGEPI) 7107 // 7108 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 7109 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 7110 // ... 7111 // 7112 // DstBi: 7113 // ... 7114 // %UGEPI = gep %GEPIOp, UIdx 7115 // ... 7116 // --------------------------- 7117 // 7118 // ---------- AFTER ---------- 7119 // SrcBlock: 7120 // ... (same as above) 7121 // (* %GEPI is still alive on the indirectbr edges) 7122 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 7123 // unmerging) 7124 // ... 7125 // 7126 // DstBi: 7127 // ... 7128 // %UGEPI = gep %GEPI, (UIdx-Idx) 7129 // ... 7130 // --------------------------- 7131 // 7132 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 7133 // no longer alive on them. 7134 // 7135 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 7136 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 7137 // not to disable further simplications and optimizations as a result of GEP 7138 // merging. 7139 // 7140 // Note this unmerging may increase the length of the data flow critical path 7141 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 7142 // between the register pressure and the length of data-flow critical 7143 // path. Restricting this to the uncommon IndirectBr case would minimize the 7144 // impact of potentially longer critical path, if any, and the impact on compile 7145 // time. 7146 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 7147 const TargetTransformInfo *TTI) { 7148 BasicBlock *SrcBlock = GEPI->getParent(); 7149 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 7150 // (non-IndirectBr) cases exit early here. 7151 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 7152 return false; 7153 // Check that GEPI is a simple gep with a single constant index. 7154 if (!GEPSequentialConstIndexed(GEPI)) 7155 return false; 7156 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 7157 // Check that GEPI is a cheap one. 7158 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), 7159 TargetTransformInfo::TCK_SizeAndLatency) 7160 > TargetTransformInfo::TCC_Basic) 7161 return false; 7162 Value *GEPIOp = GEPI->getOperand(0); 7163 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 7164 if (!isa<Instruction>(GEPIOp)) 7165 return false; 7166 auto *GEPIOpI = cast<Instruction>(GEPIOp); 7167 if (GEPIOpI->getParent() != SrcBlock) 7168 return false; 7169 // Check that GEP is used outside the block, meaning it's alive on the 7170 // IndirectBr edge(s). 7171 if (find_if(GEPI->users(), [&](User *Usr) { 7172 if (auto *I = dyn_cast<Instruction>(Usr)) { 7173 if (I->getParent() != SrcBlock) { 7174 return true; 7175 } 7176 } 7177 return false; 7178 }) == GEPI->users().end()) 7179 return false; 7180 // The second elements of the GEP chains to be unmerged. 7181 std::vector<GetElementPtrInst *> UGEPIs; 7182 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 7183 // on IndirectBr edges. 7184 for (User *Usr : GEPIOp->users()) { 7185 if (Usr == GEPI) continue; 7186 // Check if Usr is an Instruction. If not, give up. 7187 if (!isa<Instruction>(Usr)) 7188 return false; 7189 auto *UI = cast<Instruction>(Usr); 7190 // Check if Usr in the same block as GEPIOp, which is fine, skip. 7191 if (UI->getParent() == SrcBlock) 7192 continue; 7193 // Check if Usr is a GEP. If not, give up. 7194 if (!isa<GetElementPtrInst>(Usr)) 7195 return false; 7196 auto *UGEPI = cast<GetElementPtrInst>(Usr); 7197 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 7198 // the pointer operand to it. If so, record it in the vector. If not, give 7199 // up. 7200 if (!GEPSequentialConstIndexed(UGEPI)) 7201 return false; 7202 if (UGEPI->getOperand(0) != GEPIOp) 7203 return false; 7204 if (GEPIIdx->getType() != 7205 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 7206 return false; 7207 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7208 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), 7209 TargetTransformInfo::TCK_SizeAndLatency) 7210 > TargetTransformInfo::TCC_Basic) 7211 return false; 7212 UGEPIs.push_back(UGEPI); 7213 } 7214 if (UGEPIs.size() == 0) 7215 return false; 7216 // Check the materializing cost of (Uidx-Idx). 7217 for (GetElementPtrInst *UGEPI : UGEPIs) { 7218 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7219 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 7220 unsigned ImmCost = 7221 TTI->getIntImmCost(NewIdx, GEPIIdx->getType(), 7222 TargetTransformInfo::TCK_SizeAndLatency); 7223 if (ImmCost > TargetTransformInfo::TCC_Basic) 7224 return false; 7225 } 7226 // Now unmerge between GEPI and UGEPIs. 7227 for (GetElementPtrInst *UGEPI : UGEPIs) { 7228 UGEPI->setOperand(0, GEPI); 7229 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7230 Constant *NewUGEPIIdx = 7231 ConstantInt::get(GEPIIdx->getType(), 7232 UGEPIIdx->getValue() - GEPIIdx->getValue()); 7233 UGEPI->setOperand(1, NewUGEPIIdx); 7234 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 7235 // inbounds to avoid UB. 7236 if (!GEPI->isInBounds()) { 7237 UGEPI->setIsInBounds(false); 7238 } 7239 } 7240 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 7241 // alive on IndirectBr edges). 7242 assert(find_if(GEPIOp->users(), [&](User *Usr) { 7243 return cast<Instruction>(Usr)->getParent() != SrcBlock; 7244 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 7245 return true; 7246 } 7247 7248 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 7249 // Bail out if we inserted the instruction to prevent optimizations from 7250 // stepping on each other's toes. 7251 if (InsertedInsts.count(I)) 7252 return false; 7253 7254 // TODO: Move into the switch on opcode below here. 7255 if (PHINode *P = dyn_cast<PHINode>(I)) { 7256 // It is possible for very late stage optimizations (such as SimplifyCFG) 7257 // to introduce PHI nodes too late to be cleaned up. If we detect such a 7258 // trivial PHI, go ahead and zap it here. 7259 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 7260 LargeOffsetGEPMap.erase(P); 7261 P->replaceAllUsesWith(V); 7262 P->eraseFromParent(); 7263 ++NumPHIsElim; 7264 return true; 7265 } 7266 return false; 7267 } 7268 7269 if (CastInst *CI = dyn_cast<CastInst>(I)) { 7270 // If the source of the cast is a constant, then this should have 7271 // already been constant folded. The only reason NOT to constant fold 7272 // it is if something (e.g. LSR) was careful to place the constant 7273 // evaluation in a block other than then one that uses it (e.g. to hoist 7274 // the address of globals out of a loop). If this is the case, we don't 7275 // want to forward-subst the cast. 7276 if (isa<Constant>(CI->getOperand(0))) 7277 return false; 7278 7279 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 7280 return true; 7281 7282 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 7283 /// Sink a zext or sext into its user blocks if the target type doesn't 7284 /// fit in one register 7285 if (TLI->getTypeAction(CI->getContext(), 7286 TLI->getValueType(*DL, CI->getType())) == 7287 TargetLowering::TypeExpandInteger) { 7288 return SinkCast(CI); 7289 } else { 7290 bool MadeChange = optimizeExt(I); 7291 return MadeChange | optimizeExtUses(I); 7292 } 7293 } 7294 return false; 7295 } 7296 7297 if (auto *Cmp = dyn_cast<CmpInst>(I)) 7298 if (optimizeCmp(Cmp, ModifiedDT)) 7299 return true; 7300 7301 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7302 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7303 bool Modified = optimizeLoadExt(LI); 7304 unsigned AS = LI->getPointerAddressSpace(); 7305 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 7306 return Modified; 7307 } 7308 7309 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 7310 if (splitMergedValStore(*SI, *DL, *TLI)) 7311 return true; 7312 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7313 unsigned AS = SI->getPointerAddressSpace(); 7314 return optimizeMemoryInst(I, SI->getOperand(1), 7315 SI->getOperand(0)->getType(), AS); 7316 } 7317 7318 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 7319 unsigned AS = RMW->getPointerAddressSpace(); 7320 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7321 RMW->getType(), AS); 7322 } 7323 7324 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7325 unsigned AS = CmpX->getPointerAddressSpace(); 7326 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7327 CmpX->getCompareOperand()->getType(), AS); 7328 } 7329 7330 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7331 7332 if (BinOp && (BinOp->getOpcode() == Instruction::And) && EnableAndCmpSinking) 7333 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 7334 7335 // TODO: Move this into the switch on opcode - it handles shifts already. 7336 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7337 BinOp->getOpcode() == Instruction::LShr)) { 7338 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7339 if (CI && TLI->hasExtractBitsInsn()) 7340 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7341 return true; 7342 } 7343 7344 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7345 if (GEPI->hasAllZeroIndices()) { 7346 /// The GEP operand must be a pointer, so must its result -> BitCast 7347 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7348 GEPI->getName(), GEPI); 7349 NC->setDebugLoc(GEPI->getDebugLoc()); 7350 GEPI->replaceAllUsesWith(NC); 7351 GEPI->eraseFromParent(); 7352 ++NumGEPsElim; 7353 optimizeInst(NC, ModifiedDT); 7354 return true; 7355 } 7356 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7357 return true; 7358 } 7359 return false; 7360 } 7361 7362 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 7363 // freeze(icmp a, const)) -> icmp (freeze a), const 7364 // This helps generate efficient conditional jumps. 7365 Instruction *CmpI = nullptr; 7366 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 7367 CmpI = II; 7368 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 7369 CmpI = F->getFastMathFlags().none() ? F : nullptr; 7370 7371 if (CmpI && CmpI->hasOneUse()) { 7372 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 7373 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 7374 isa<ConstantPointerNull>(Op0); 7375 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 7376 isa<ConstantPointerNull>(Op1); 7377 if (Const0 || Const1) { 7378 if (!Const0 || !Const1) { 7379 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI); 7380 F->takeName(FI); 7381 CmpI->setOperand(Const0 ? 1 : 0, F); 7382 } 7383 FI->replaceAllUsesWith(CmpI); 7384 FI->eraseFromParent(); 7385 return true; 7386 } 7387 } 7388 return false; 7389 } 7390 7391 if (tryToSinkFreeOperands(I)) 7392 return true; 7393 7394 switch (I->getOpcode()) { 7395 case Instruction::Shl: 7396 case Instruction::LShr: 7397 case Instruction::AShr: 7398 return optimizeShiftInst(cast<BinaryOperator>(I)); 7399 case Instruction::Call: 7400 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7401 case Instruction::Select: 7402 return optimizeSelectInst(cast<SelectInst>(I)); 7403 case Instruction::ShuffleVector: 7404 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7405 case Instruction::Switch: 7406 return optimizeSwitchInst(cast<SwitchInst>(I)); 7407 case Instruction::ExtractElement: 7408 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7409 } 7410 7411 return false; 7412 } 7413 7414 /// Given an OR instruction, check to see if this is a bitreverse 7415 /// idiom. If so, insert the new intrinsic and return true. 7416 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 7417 const TargetLowering &TLI) { 7418 if (!I.getType()->isIntegerTy() || 7419 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 7420 TLI.getValueType(DL, I.getType(), true))) 7421 return false; 7422 7423 SmallVector<Instruction*, 4> Insts; 7424 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7425 return false; 7426 Instruction *LastInst = Insts.back(); 7427 I.replaceAllUsesWith(LastInst); 7428 RecursivelyDeleteTriviallyDeadInstructions(&I); 7429 return true; 7430 } 7431 7432 // In this pass we look for GEP and cast instructions that are used 7433 // across basic blocks and rewrite them to improve basic-block-at-a-time 7434 // selection. 7435 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 7436 SunkAddrs.clear(); 7437 bool MadeChange = false; 7438 7439 CurInstIterator = BB.begin(); 7440 while (CurInstIterator != BB.end()) { 7441 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 7442 if (ModifiedDT) 7443 return true; 7444 } 7445 7446 bool MadeBitReverse = true; 7447 while (MadeBitReverse) { 7448 MadeBitReverse = false; 7449 for (auto &I : reverse(BB)) { 7450 if (makeBitReverse(I, *DL, *TLI)) { 7451 MadeBitReverse = MadeChange = true; 7452 break; 7453 } 7454 } 7455 } 7456 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7457 7458 return MadeChange; 7459 } 7460 7461 // Some CGP optimizations may move or alter what's computed in a block. Check 7462 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 7463 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 7464 assert(isa<DbgValueInst>(I)); 7465 DbgValueInst &DVI = *cast<DbgValueInst>(I); 7466 7467 // Does this dbg.value refer to a sunk address calculation? 7468 Value *Location = DVI.getVariableLocation(); 7469 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 7470 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 7471 if (SunkAddr) { 7472 // Point dbg.value at locally computed address, which should give the best 7473 // opportunity to be accurately lowered. This update may change the type of 7474 // pointer being referred to; however this makes no difference to debugging 7475 // information, and we can't generate bitcasts that may affect codegen. 7476 DVI.setOperand(0, MetadataAsValue::get(DVI.getContext(), 7477 ValueAsMetadata::get(SunkAddr))); 7478 return true; 7479 } 7480 return false; 7481 } 7482 7483 // A llvm.dbg.value may be using a value before its definition, due to 7484 // optimizations in this pass and others. Scan for such dbg.values, and rescue 7485 // them by moving the dbg.value to immediately after the value definition. 7486 // FIXME: Ideally this should never be necessary, and this has the potential 7487 // to re-order dbg.value intrinsics. 7488 bool CodeGenPrepare::placeDbgValues(Function &F) { 7489 bool MadeChange = false; 7490 DominatorTree DT(F); 7491 7492 for (BasicBlock &BB : F) { 7493 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 7494 Instruction *Insn = &*BI++; 7495 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 7496 if (!DVI) 7497 continue; 7498 7499 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 7500 7501 if (!VI || VI->isTerminator()) 7502 continue; 7503 7504 // If VI is a phi in a block with an EHPad terminator, we can't insert 7505 // after it. 7506 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 7507 continue; 7508 7509 // If the defining instruction dominates the dbg.value, we do not need 7510 // to move the dbg.value. 7511 if (DT.dominates(VI, DVI)) 7512 continue; 7513 7514 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 7515 << *DVI << ' ' << *VI); 7516 DVI->removeFromParent(); 7517 if (isa<PHINode>(VI)) 7518 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 7519 else 7520 DVI->insertAfter(VI); 7521 MadeChange = true; 7522 ++NumDbgValueMoved; 7523 } 7524 } 7525 return MadeChange; 7526 } 7527 7528 /// Scale down both weights to fit into uint32_t. 7529 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 7530 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 7531 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 7532 NewTrue = NewTrue / Scale; 7533 NewFalse = NewFalse / Scale; 7534 } 7535 7536 /// Some targets prefer to split a conditional branch like: 7537 /// \code 7538 /// %0 = icmp ne i32 %a, 0 7539 /// %1 = icmp ne i32 %b, 0 7540 /// %or.cond = or i1 %0, %1 7541 /// br i1 %or.cond, label %TrueBB, label %FalseBB 7542 /// \endcode 7543 /// into multiple branch instructions like: 7544 /// \code 7545 /// bb1: 7546 /// %0 = icmp ne i32 %a, 0 7547 /// br i1 %0, label %TrueBB, label %bb2 7548 /// bb2: 7549 /// %1 = icmp ne i32 %b, 0 7550 /// br i1 %1, label %TrueBB, label %FalseBB 7551 /// \endcode 7552 /// This usually allows instruction selection to do even further optimizations 7553 /// and combine the compare with the branch instruction. Currently this is 7554 /// applied for targets which have "cheap" jump instructions. 7555 /// 7556 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 7557 /// 7558 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 7559 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 7560 return false; 7561 7562 bool MadeChange = false; 7563 for (auto &BB : F) { 7564 // Does this BB end with the following? 7565 // %cond1 = icmp|fcmp|binary instruction ... 7566 // %cond2 = icmp|fcmp|binary instruction ... 7567 // %cond.or = or|and i1 %cond1, cond2 7568 // br i1 %cond.or label %dest1, label %dest2" 7569 BinaryOperator *LogicOp; 7570 BasicBlock *TBB, *FBB; 7571 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 7572 continue; 7573 7574 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 7575 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 7576 continue; 7577 7578 // The merging of mostly empty BB can cause a degenerate branch. 7579 if (TBB == FBB) 7580 continue; 7581 7582 unsigned Opc; 7583 Value *Cond1, *Cond2; 7584 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 7585 m_OneUse(m_Value(Cond2))))) 7586 Opc = Instruction::And; 7587 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 7588 m_OneUse(m_Value(Cond2))))) 7589 Opc = Instruction::Or; 7590 else 7591 continue; 7592 7593 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 7594 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 7595 continue; 7596 7597 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 7598 7599 // Create a new BB. 7600 auto TmpBB = 7601 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 7602 BB.getParent(), BB.getNextNode()); 7603 7604 // Update original basic block by using the first condition directly by the 7605 // branch instruction and removing the no longer needed and/or instruction. 7606 Br1->setCondition(Cond1); 7607 LogicOp->eraseFromParent(); 7608 7609 // Depending on the condition we have to either replace the true or the 7610 // false successor of the original branch instruction. 7611 if (Opc == Instruction::And) 7612 Br1->setSuccessor(0, TmpBB); 7613 else 7614 Br1->setSuccessor(1, TmpBB); 7615 7616 // Fill in the new basic block. 7617 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 7618 if (auto *I = dyn_cast<Instruction>(Cond2)) { 7619 I->removeFromParent(); 7620 I->insertBefore(Br2); 7621 } 7622 7623 // Update PHI nodes in both successors. The original BB needs to be 7624 // replaced in one successor's PHI nodes, because the branch comes now from 7625 // the newly generated BB (NewBB). In the other successor we need to add one 7626 // incoming edge to the PHI nodes, because both branch instructions target 7627 // now the same successor. Depending on the original branch condition 7628 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 7629 // we perform the correct update for the PHI nodes. 7630 // This doesn't change the successor order of the just created branch 7631 // instruction (or any other instruction). 7632 if (Opc == Instruction::Or) 7633 std::swap(TBB, FBB); 7634 7635 // Replace the old BB with the new BB. 7636 TBB->replacePhiUsesWith(&BB, TmpBB); 7637 7638 // Add another incoming edge form the new BB. 7639 for (PHINode &PN : FBB->phis()) { 7640 auto *Val = PN.getIncomingValueForBlock(&BB); 7641 PN.addIncoming(Val, TmpBB); 7642 } 7643 7644 // Update the branch weights (from SelectionDAGBuilder:: 7645 // FindMergedConditions). 7646 if (Opc == Instruction::Or) { 7647 // Codegen X | Y as: 7648 // BB1: 7649 // jmp_if_X TBB 7650 // jmp TmpBB 7651 // TmpBB: 7652 // jmp_if_Y TBB 7653 // jmp FBB 7654 // 7655 7656 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 7657 // The requirement is that 7658 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 7659 // = TrueProb for original BB. 7660 // Assuming the original weights are A and B, one choice is to set BB1's 7661 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 7662 // assumes that 7663 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 7664 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 7665 // TmpBB, but the math is more complicated. 7666 uint64_t TrueWeight, FalseWeight; 7667 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7668 uint64_t NewTrueWeight = TrueWeight; 7669 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 7670 scaleWeights(NewTrueWeight, NewFalseWeight); 7671 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7672 .createBranchWeights(TrueWeight, FalseWeight)); 7673 7674 NewTrueWeight = TrueWeight; 7675 NewFalseWeight = 2 * FalseWeight; 7676 scaleWeights(NewTrueWeight, NewFalseWeight); 7677 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7678 .createBranchWeights(TrueWeight, FalseWeight)); 7679 } 7680 } else { 7681 // Codegen X & Y as: 7682 // BB1: 7683 // jmp_if_X TmpBB 7684 // jmp FBB 7685 // TmpBB: 7686 // jmp_if_Y TBB 7687 // jmp FBB 7688 // 7689 // This requires creation of TmpBB after CurBB. 7690 7691 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 7692 // The requirement is that 7693 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 7694 // = FalseProb for original BB. 7695 // Assuming the original weights are A and B, one choice is to set BB1's 7696 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 7697 // assumes that 7698 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 7699 uint64_t TrueWeight, FalseWeight; 7700 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7701 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 7702 uint64_t NewFalseWeight = FalseWeight; 7703 scaleWeights(NewTrueWeight, NewFalseWeight); 7704 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7705 .createBranchWeights(TrueWeight, FalseWeight)); 7706 7707 NewTrueWeight = 2 * TrueWeight; 7708 NewFalseWeight = FalseWeight; 7709 scaleWeights(NewTrueWeight, NewFalseWeight); 7710 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7711 .createBranchWeights(TrueWeight, FalseWeight)); 7712 } 7713 } 7714 7715 ModifiedDT = true; 7716 MadeChange = true; 7717 7718 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 7719 TmpBB->dump()); 7720 } 7721 return MadeChange; 7722 } 7723