1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/CodeGen/Analysis.h" 35 #include "llvm/CodeGen/ISDOpcodes.h" 36 #include "llvm/CodeGen/MachineValueType.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/IR/Argument.h" 43 #include "llvm/IR/Attributes.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/CallSite.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InlineAsm.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/Operator.h" 66 #include "llvm/IR/PatternMatch.h" 67 #include "llvm/IR/Statepoint.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/IR/ValueMap.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/BlockFrequency.h" 76 #include "llvm/Support/BranchProbability.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/MathExtras.h" 83 #include "llvm/Support/raw_ostream.h" 84 #include "llvm/Target/TargetMachine.h" 85 #include "llvm/Target/TargetOptions.h" 86 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 87 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 88 #include "llvm/Transforms/Utils/Local.h" 89 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 90 #include <algorithm> 91 #include <cassert> 92 #include <cstdint> 93 #include <iterator> 94 #include <limits> 95 #include <memory> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 102 #define DEBUG_TYPE "codegenprepare" 103 104 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 105 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 106 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 107 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 108 "sunken Cmps"); 109 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 110 "of sunken Casts"); 111 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 112 "computations were sunk"); 113 STATISTIC(NumMemoryInstsPhiCreated, 114 "Number of phis created when address " 115 "computations were sunk to memory instructions"); 116 STATISTIC(NumMemoryInstsSelectCreated, 117 "Number of select created when address " 118 "computations were sunk to memory instructions"); 119 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 120 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 121 STATISTIC(NumAndsAdded, 122 "Number of and mask instructions added to form ext loads"); 123 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 124 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 125 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 126 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 127 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 128 129 static cl::opt<bool> DisableBranchOpts( 130 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 131 cl::desc("Disable branch optimizations in CodeGenPrepare")); 132 133 static cl::opt<bool> 134 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 135 cl::desc("Disable GC optimizations in CodeGenPrepare")); 136 137 static cl::opt<bool> DisableSelectToBranch( 138 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 139 cl::desc("Disable select to branch conversion.")); 140 141 static cl::opt<bool> AddrSinkUsingGEPs( 142 "addr-sink-using-gep", cl::Hidden, cl::init(true), 143 cl::desc("Address sinking in CGP using GEPs.")); 144 145 static cl::opt<bool> EnableAndCmpSinking( 146 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 147 cl::desc("Enable sinkinig and/cmp into branches.")); 148 149 static cl::opt<bool> DisableStoreExtract( 150 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 151 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 152 153 static cl::opt<bool> StressStoreExtract( 154 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 155 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 156 157 static cl::opt<bool> DisableExtLdPromotion( 158 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 159 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 160 "CodeGenPrepare")); 161 162 static cl::opt<bool> StressExtLdPromotion( 163 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 164 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 165 "optimization in CodeGenPrepare")); 166 167 static cl::opt<bool> DisablePreheaderProtect( 168 "disable-preheader-prot", cl::Hidden, cl::init(false), 169 cl::desc("Disable protection against removing loop preheaders")); 170 171 static cl::opt<bool> ProfileGuidedSectionPrefix( 172 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 173 cl::desc("Use profile info to add section prefix for hot/cold functions")); 174 175 static cl::opt<unsigned> FreqRatioToSkipMerge( 176 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 177 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 178 "(frequency of destination block) is greater than this ratio")); 179 180 static cl::opt<bool> ForceSplitStore( 181 "force-split-store", cl::Hidden, cl::init(false), 182 cl::desc("Force store splitting no matter what the target query says.")); 183 184 static cl::opt<bool> 185 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 186 cl::desc("Enable merging of redundant sexts when one is dominating" 187 " the other."), cl::init(true)); 188 189 static cl::opt<bool> DisableComplexAddrModes( 190 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 191 cl::desc("Disables combining addressing modes with different parts " 192 "in optimizeMemoryInst.")); 193 194 static cl::opt<bool> 195 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 196 cl::desc("Allow creation of Phis in Address sinking.")); 197 198 static cl::opt<bool> 199 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(false), 200 cl::desc("Allow creation of selects in Address sinking.")); 201 202 static cl::opt<bool> AddrSinkCombineBaseReg( 203 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 204 cl::desc("Allow combining of BaseReg field in Address sinking.")); 205 206 static cl::opt<bool> AddrSinkCombineBaseGV( 207 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 208 cl::desc("Allow combining of BaseGV field in Address sinking.")); 209 210 static cl::opt<bool> AddrSinkCombineBaseOffs( 211 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 212 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 213 214 static cl::opt<bool> AddrSinkCombineScaledReg( 215 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 216 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 217 218 namespace { 219 220 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 221 using TypeIsSExt = PointerIntPair<Type *, 1, bool>; 222 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 223 using SExts = SmallVector<Instruction *, 16>; 224 using ValueToSExts = DenseMap<Value *, SExts>; 225 226 class TypePromotionTransaction; 227 228 class CodeGenPrepare : public FunctionPass { 229 const TargetMachine *TM = nullptr; 230 const TargetSubtargetInfo *SubtargetInfo; 231 const TargetLowering *TLI = nullptr; 232 const TargetRegisterInfo *TRI; 233 const TargetTransformInfo *TTI = nullptr; 234 const TargetLibraryInfo *TLInfo; 235 const LoopInfo *LI; 236 std::unique_ptr<BlockFrequencyInfo> BFI; 237 std::unique_ptr<BranchProbabilityInfo> BPI; 238 239 /// As we scan instructions optimizing them, this is the next instruction 240 /// to optimize. Transforms that can invalidate this should update it. 241 BasicBlock::iterator CurInstIterator; 242 243 /// Keeps track of non-local addresses that have been sunk into a block. 244 /// This allows us to avoid inserting duplicate code for blocks with 245 /// multiple load/stores of the same address. The usage of WeakTrackingVH 246 /// enables SunkAddrs to be treated as a cache whose entries can be 247 /// invalidated if a sunken address computation has been erased. 248 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 249 250 /// Keeps track of all instructions inserted for the current function. 251 SetOfInstrs InsertedInsts; 252 253 /// Keeps track of the type of the related instruction before their 254 /// promotion for the current function. 255 InstrToOrigTy PromotedInsts; 256 257 /// Keep track of instructions removed during promotion. 258 SetOfInstrs RemovedInsts; 259 260 /// Keep track of sext chains based on their initial value. 261 DenseMap<Value *, Instruction *> SeenChainsForSExt; 262 263 /// Keep track of SExt promoted. 264 ValueToSExts ValToSExtendedUses; 265 266 /// True if CFG is modified in any way. 267 bool ModifiedDT; 268 269 /// True if optimizing for size. 270 bool OptSize; 271 272 /// DataLayout for the Function being processed. 273 const DataLayout *DL = nullptr; 274 275 public: 276 static char ID; // Pass identification, replacement for typeid 277 278 CodeGenPrepare() : FunctionPass(ID) { 279 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 280 } 281 282 bool runOnFunction(Function &F) override; 283 284 StringRef getPassName() const override { return "CodeGen Prepare"; } 285 286 void getAnalysisUsage(AnalysisUsage &AU) const override { 287 // FIXME: When we can selectively preserve passes, preserve the domtree. 288 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 289 AU.addRequired<TargetLibraryInfoWrapperPass>(); 290 AU.addRequired<TargetTransformInfoWrapperPass>(); 291 AU.addRequired<LoopInfoWrapperPass>(); 292 } 293 294 private: 295 bool eliminateFallThrough(Function &F); 296 bool eliminateMostlyEmptyBlocks(Function &F); 297 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 298 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 299 void eliminateMostlyEmptyBlock(BasicBlock *BB); 300 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 301 bool isPreheader); 302 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 303 bool optimizeInst(Instruction *I, bool &ModifiedDT); 304 bool optimizeMemoryInst(Instruction *I, Value *Addr, 305 Type *AccessTy, unsigned AS); 306 bool optimizeInlineAsmInst(CallInst *CS); 307 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 308 bool optimizeExt(Instruction *&I); 309 bool optimizeExtUses(Instruction *I); 310 bool optimizeLoadExt(LoadInst *I); 311 bool optimizeSelectInst(SelectInst *SI); 312 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); 313 bool optimizeSwitchInst(SwitchInst *CI); 314 bool optimizeExtractElementInst(Instruction *Inst); 315 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 316 bool placeDbgValues(Function &F); 317 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 318 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 319 bool tryToPromoteExts(TypePromotionTransaction &TPT, 320 const SmallVectorImpl<Instruction *> &Exts, 321 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 322 unsigned CreatedInstsCost = 0); 323 bool mergeSExts(Function &F); 324 bool performAddressTypePromotion( 325 Instruction *&Inst, 326 bool AllowPromotionWithoutCommonHeader, 327 bool HasPromoted, TypePromotionTransaction &TPT, 328 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 329 bool splitBranchCondition(Function &F); 330 bool simplifyOffsetableRelocate(Instruction &I); 331 }; 332 333 } // end anonymous namespace 334 335 char CodeGenPrepare::ID = 0; 336 337 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 338 "Optimize for code generation", false, false) 339 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 340 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 341 "Optimize for code generation", false, false) 342 343 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 344 345 bool CodeGenPrepare::runOnFunction(Function &F) { 346 if (skipFunction(F)) 347 return false; 348 349 DL = &F.getParent()->getDataLayout(); 350 351 bool EverMadeChange = false; 352 // Clear per function information. 353 InsertedInsts.clear(); 354 PromotedInsts.clear(); 355 356 ModifiedDT = false; 357 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 358 TM = &TPC->getTM<TargetMachine>(); 359 SubtargetInfo = TM->getSubtargetImpl(F); 360 TLI = SubtargetInfo->getTargetLowering(); 361 TRI = SubtargetInfo->getRegisterInfo(); 362 } 363 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 364 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 365 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 366 BPI.reset(new BranchProbabilityInfo(F, *LI)); 367 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 368 OptSize = F.optForSize(); 369 370 ProfileSummaryInfo *PSI = 371 getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 372 if (ProfileGuidedSectionPrefix) { 373 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 374 F.setSectionPrefix(".hot"); 375 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 376 F.setSectionPrefix(".unlikely"); 377 } 378 379 /// This optimization identifies DIV instructions that can be 380 /// profitably bypassed and carried out with a shorter, faster divide. 381 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI && 382 TLI->isSlowDivBypassed()) { 383 const DenseMap<unsigned int, unsigned int> &BypassWidths = 384 TLI->getBypassSlowDivWidths(); 385 BasicBlock* BB = &*F.begin(); 386 while (BB != nullptr) { 387 // bypassSlowDivision may create new BBs, but we don't want to reapply the 388 // optimization to those blocks. 389 BasicBlock* Next = BB->getNextNode(); 390 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 391 BB = Next; 392 } 393 } 394 395 // Eliminate blocks that contain only PHI nodes and an 396 // unconditional branch. 397 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 398 399 // llvm.dbg.value is far away from the value then iSel may not be able 400 // handle it properly. iSel will drop llvm.dbg.value if it can not 401 // find a node corresponding to the value. 402 EverMadeChange |= placeDbgValues(F); 403 404 if (!DisableBranchOpts) 405 EverMadeChange |= splitBranchCondition(F); 406 407 // Split some critical edges where one of the sources is an indirect branch, 408 // to help generate sane code for PHIs involving such edges. 409 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 410 411 bool MadeChange = true; 412 while (MadeChange) { 413 MadeChange = false; 414 SeenChainsForSExt.clear(); 415 ValToSExtendedUses.clear(); 416 RemovedInsts.clear(); 417 for (Function::iterator I = F.begin(); I != F.end(); ) { 418 BasicBlock *BB = &*I++; 419 bool ModifiedDTOnIteration = false; 420 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 421 422 // Restart BB iteration if the dominator tree of the Function was changed 423 if (ModifiedDTOnIteration) 424 break; 425 } 426 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 427 MadeChange |= mergeSExts(F); 428 429 // Really free removed instructions during promotion. 430 for (Instruction *I : RemovedInsts) 431 I->deleteValue(); 432 433 EverMadeChange |= MadeChange; 434 } 435 436 SunkAddrs.clear(); 437 438 if (!DisableBranchOpts) { 439 MadeChange = false; 440 SmallPtrSet<BasicBlock*, 8> WorkList; 441 for (BasicBlock &BB : F) { 442 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 443 MadeChange |= ConstantFoldTerminator(&BB, true); 444 if (!MadeChange) continue; 445 446 for (SmallVectorImpl<BasicBlock*>::iterator 447 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 448 if (pred_begin(*II) == pred_end(*II)) 449 WorkList.insert(*II); 450 } 451 452 // Delete the dead blocks and any of their dead successors. 453 MadeChange |= !WorkList.empty(); 454 while (!WorkList.empty()) { 455 BasicBlock *BB = *WorkList.begin(); 456 WorkList.erase(BB); 457 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 458 459 DeleteDeadBlock(BB); 460 461 for (SmallVectorImpl<BasicBlock*>::iterator 462 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 463 if (pred_begin(*II) == pred_end(*II)) 464 WorkList.insert(*II); 465 } 466 467 // Merge pairs of basic blocks with unconditional branches, connected by 468 // a single edge. 469 if (EverMadeChange || MadeChange) 470 MadeChange |= eliminateFallThrough(F); 471 472 EverMadeChange |= MadeChange; 473 } 474 475 if (!DisableGCOpts) { 476 SmallVector<Instruction *, 2> Statepoints; 477 for (BasicBlock &BB : F) 478 for (Instruction &I : BB) 479 if (isStatepoint(I)) 480 Statepoints.push_back(&I); 481 for (auto &I : Statepoints) 482 EverMadeChange |= simplifyOffsetableRelocate(*I); 483 } 484 485 return EverMadeChange; 486 } 487 488 /// Merge basic blocks which are connected by a single edge, where one of the 489 /// basic blocks has a single successor pointing to the other basic block, 490 /// which has a single predecessor. 491 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 492 bool Changed = false; 493 // Scan all of the blocks in the function, except for the entry block. 494 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 495 BasicBlock *BB = &*I++; 496 // If the destination block has a single pred, then this is a trivial 497 // edge, just collapse it. 498 BasicBlock *SinglePred = BB->getSinglePredecessor(); 499 500 // Don't merge if BB's address is taken. 501 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 502 503 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 504 if (Term && !Term->isConditional()) { 505 Changed = true; 506 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 507 // Remember if SinglePred was the entry block of the function. 508 // If so, we will need to move BB back to the entry position. 509 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 510 MergeBasicBlockIntoOnlyPred(BB, nullptr); 511 512 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 513 BB->moveBefore(&BB->getParent()->getEntryBlock()); 514 515 // We have erased a block. Update the iterator. 516 I = BB->getIterator(); 517 } 518 } 519 return Changed; 520 } 521 522 /// Find a destination block from BB if BB is mergeable empty block. 523 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 524 // If this block doesn't end with an uncond branch, ignore it. 525 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 526 if (!BI || !BI->isUnconditional()) 527 return nullptr; 528 529 // If the instruction before the branch (skipping debug info) isn't a phi 530 // node, then other stuff is happening here. 531 BasicBlock::iterator BBI = BI->getIterator(); 532 if (BBI != BB->begin()) { 533 --BBI; 534 while (isa<DbgInfoIntrinsic>(BBI)) { 535 if (BBI == BB->begin()) 536 break; 537 --BBI; 538 } 539 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 540 return nullptr; 541 } 542 543 // Do not break infinite loops. 544 BasicBlock *DestBB = BI->getSuccessor(0); 545 if (DestBB == BB) 546 return nullptr; 547 548 if (!canMergeBlocks(BB, DestBB)) 549 DestBB = nullptr; 550 551 return DestBB; 552 } 553 554 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 555 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 556 /// edges in ways that are non-optimal for isel. Start by eliminating these 557 /// blocks so we can split them the way we want them. 558 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 559 SmallPtrSet<BasicBlock *, 16> Preheaders; 560 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 561 while (!LoopList.empty()) { 562 Loop *L = LoopList.pop_back_val(); 563 LoopList.insert(LoopList.end(), L->begin(), L->end()); 564 if (BasicBlock *Preheader = L->getLoopPreheader()) 565 Preheaders.insert(Preheader); 566 } 567 568 bool MadeChange = false; 569 // Note that this intentionally skips the entry block. 570 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 571 BasicBlock *BB = &*I++; 572 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 573 if (!DestBB || 574 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 575 continue; 576 577 eliminateMostlyEmptyBlock(BB); 578 MadeChange = true; 579 } 580 return MadeChange; 581 } 582 583 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 584 BasicBlock *DestBB, 585 bool isPreheader) { 586 // Do not delete loop preheaders if doing so would create a critical edge. 587 // Loop preheaders can be good locations to spill registers. If the 588 // preheader is deleted and we create a critical edge, registers may be 589 // spilled in the loop body instead. 590 if (!DisablePreheaderProtect && isPreheader && 591 !(BB->getSinglePredecessor() && 592 BB->getSinglePredecessor()->getSingleSuccessor())) 593 return false; 594 595 // Try to skip merging if the unique predecessor of BB is terminated by a 596 // switch or indirect branch instruction, and BB is used as an incoming block 597 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 598 // add COPY instructions in the predecessor of BB instead of BB (if it is not 599 // merged). Note that the critical edge created by merging such blocks wont be 600 // split in MachineSink because the jump table is not analyzable. By keeping 601 // such empty block (BB), ISel will place COPY instructions in BB, not in the 602 // predecessor of BB. 603 BasicBlock *Pred = BB->getUniquePredecessor(); 604 if (!Pred || 605 !(isa<SwitchInst>(Pred->getTerminator()) || 606 isa<IndirectBrInst>(Pred->getTerminator()))) 607 return true; 608 609 if (BB->getTerminator() != BB->getFirstNonPHI()) 610 return true; 611 612 // We use a simple cost heuristic which determine skipping merging is 613 // profitable if the cost of skipping merging is less than the cost of 614 // merging : Cost(skipping merging) < Cost(merging BB), where the 615 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 616 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 617 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 618 // Freq(Pred) / Freq(BB) > 2. 619 // Note that if there are multiple empty blocks sharing the same incoming 620 // value for the PHIs in the DestBB, we consider them together. In such 621 // case, Cost(merging BB) will be the sum of their frequencies. 622 623 if (!isa<PHINode>(DestBB->begin())) 624 return true; 625 626 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 627 628 // Find all other incoming blocks from which incoming values of all PHIs in 629 // DestBB are the same as the ones from BB. 630 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 631 ++PI) { 632 BasicBlock *DestBBPred = *PI; 633 if (DestBBPred == BB) 634 continue; 635 636 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 637 return DestPN.getIncomingValueForBlock(BB) == 638 DestPN.getIncomingValueForBlock(DestBBPred); 639 })) 640 SameIncomingValueBBs.insert(DestBBPred); 641 } 642 643 // See if all BB's incoming values are same as the value from Pred. In this 644 // case, no reason to skip merging because COPYs are expected to be place in 645 // Pred already. 646 if (SameIncomingValueBBs.count(Pred)) 647 return true; 648 649 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 650 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 651 652 for (auto SameValueBB : SameIncomingValueBBs) 653 if (SameValueBB->getUniquePredecessor() == Pred && 654 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 655 BBFreq += BFI->getBlockFreq(SameValueBB); 656 657 return PredFreq.getFrequency() <= 658 BBFreq.getFrequency() * FreqRatioToSkipMerge; 659 } 660 661 /// Return true if we can merge BB into DestBB if there is a single 662 /// unconditional branch between them, and BB contains no other non-phi 663 /// instructions. 664 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 665 const BasicBlock *DestBB) const { 666 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 667 // the successor. If there are more complex condition (e.g. preheaders), 668 // don't mess around with them. 669 for (const PHINode &PN : BB->phis()) { 670 for (const User *U : PN.users()) { 671 const Instruction *UI = cast<Instruction>(U); 672 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 673 return false; 674 // If User is inside DestBB block and it is a PHINode then check 675 // incoming value. If incoming value is not from BB then this is 676 // a complex condition (e.g. preheaders) we want to avoid here. 677 if (UI->getParent() == DestBB) { 678 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 679 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 680 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 681 if (Insn && Insn->getParent() == BB && 682 Insn->getParent() != UPN->getIncomingBlock(I)) 683 return false; 684 } 685 } 686 } 687 } 688 689 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 690 // and DestBB may have conflicting incoming values for the block. If so, we 691 // can't merge the block. 692 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 693 if (!DestBBPN) return true; // no conflict. 694 695 // Collect the preds of BB. 696 SmallPtrSet<const BasicBlock*, 16> BBPreds; 697 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 698 // It is faster to get preds from a PHI than with pred_iterator. 699 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 700 BBPreds.insert(BBPN->getIncomingBlock(i)); 701 } else { 702 BBPreds.insert(pred_begin(BB), pred_end(BB)); 703 } 704 705 // Walk the preds of DestBB. 706 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 707 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 708 if (BBPreds.count(Pred)) { // Common predecessor? 709 for (const PHINode &PN : DestBB->phis()) { 710 const Value *V1 = PN.getIncomingValueForBlock(Pred); 711 const Value *V2 = PN.getIncomingValueForBlock(BB); 712 713 // If V2 is a phi node in BB, look up what the mapped value will be. 714 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 715 if (V2PN->getParent() == BB) 716 V2 = V2PN->getIncomingValueForBlock(Pred); 717 718 // If there is a conflict, bail out. 719 if (V1 != V2) return false; 720 } 721 } 722 } 723 724 return true; 725 } 726 727 /// Eliminate a basic block that has only phi's and an unconditional branch in 728 /// it. 729 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 730 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 731 BasicBlock *DestBB = BI->getSuccessor(0); 732 733 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 734 735 // If the destination block has a single pred, then this is a trivial edge, 736 // just collapse it. 737 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 738 if (SinglePred != DestBB) { 739 // Remember if SinglePred was the entry block of the function. If so, we 740 // will need to move BB back to the entry position. 741 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 742 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 743 744 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 745 BB->moveBefore(&BB->getParent()->getEntryBlock()); 746 747 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 748 return; 749 } 750 } 751 752 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 753 // to handle the new incoming edges it is about to have. 754 for (PHINode &PN : DestBB->phis()) { 755 // Remove the incoming value for BB, and remember it. 756 Value *InVal = PN.removeIncomingValue(BB, false); 757 758 // Two options: either the InVal is a phi node defined in BB or it is some 759 // value that dominates BB. 760 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 761 if (InValPhi && InValPhi->getParent() == BB) { 762 // Add all of the input values of the input PHI as inputs of this phi. 763 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 764 PN.addIncoming(InValPhi->getIncomingValue(i), 765 InValPhi->getIncomingBlock(i)); 766 } else { 767 // Otherwise, add one instance of the dominating value for each edge that 768 // we will be adding. 769 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 770 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 771 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 772 } else { 773 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 774 PN.addIncoming(InVal, *PI); 775 } 776 } 777 } 778 779 // The PHIs are now updated, change everything that refers to BB to use 780 // DestBB and remove BB. 781 BB->replaceAllUsesWith(DestBB); 782 BB->eraseFromParent(); 783 ++NumBlocksElim; 784 785 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 786 } 787 788 // Computes a map of base pointer relocation instructions to corresponding 789 // derived pointer relocation instructions given a vector of all relocate calls 790 static void computeBaseDerivedRelocateMap( 791 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 792 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 793 &RelocateInstMap) { 794 // Collect information in two maps: one primarily for locating the base object 795 // while filling the second map; the second map is the final structure holding 796 // a mapping between Base and corresponding Derived relocate calls 797 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 798 for (auto *ThisRelocate : AllRelocateCalls) { 799 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 800 ThisRelocate->getDerivedPtrIndex()); 801 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 802 } 803 for (auto &Item : RelocateIdxMap) { 804 std::pair<unsigned, unsigned> Key = Item.first; 805 if (Key.first == Key.second) 806 // Base relocation: nothing to insert 807 continue; 808 809 GCRelocateInst *I = Item.second; 810 auto BaseKey = std::make_pair(Key.first, Key.first); 811 812 // We're iterating over RelocateIdxMap so we cannot modify it. 813 auto MaybeBase = RelocateIdxMap.find(BaseKey); 814 if (MaybeBase == RelocateIdxMap.end()) 815 // TODO: We might want to insert a new base object relocate and gep off 816 // that, if there are enough derived object relocates. 817 continue; 818 819 RelocateInstMap[MaybeBase->second].push_back(I); 820 } 821 } 822 823 // Accepts a GEP and extracts the operands into a vector provided they're all 824 // small integer constants 825 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 826 SmallVectorImpl<Value *> &OffsetV) { 827 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 828 // Only accept small constant integer operands 829 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 830 if (!Op || Op->getZExtValue() > 20) 831 return false; 832 } 833 834 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 835 OffsetV.push_back(GEP->getOperand(i)); 836 return true; 837 } 838 839 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 840 // replace, computes a replacement, and affects it. 841 static bool 842 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 843 const SmallVectorImpl<GCRelocateInst *> &Targets) { 844 bool MadeChange = false; 845 // We must ensure the relocation of derived pointer is defined after 846 // relocation of base pointer. If we find a relocation corresponding to base 847 // defined earlier than relocation of base then we move relocation of base 848 // right before found relocation. We consider only relocation in the same 849 // basic block as relocation of base. Relocations from other basic block will 850 // be skipped by optimization and we do not care about them. 851 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 852 &*R != RelocatedBase; ++R) 853 if (auto RI = dyn_cast<GCRelocateInst>(R)) 854 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 855 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 856 RelocatedBase->moveBefore(RI); 857 break; 858 } 859 860 for (GCRelocateInst *ToReplace : Targets) { 861 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 862 "Not relocating a derived object of the original base object"); 863 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 864 // A duplicate relocate call. TODO: coalesce duplicates. 865 continue; 866 } 867 868 if (RelocatedBase->getParent() != ToReplace->getParent()) { 869 // Base and derived relocates are in different basic blocks. 870 // In this case transform is only valid when base dominates derived 871 // relocate. However it would be too expensive to check dominance 872 // for each such relocate, so we skip the whole transformation. 873 continue; 874 } 875 876 Value *Base = ToReplace->getBasePtr(); 877 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 878 if (!Derived || Derived->getPointerOperand() != Base) 879 continue; 880 881 SmallVector<Value *, 2> OffsetV; 882 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 883 continue; 884 885 // Create a Builder and replace the target callsite with a gep 886 assert(RelocatedBase->getNextNode() && 887 "Should always have one since it's not a terminator"); 888 889 // Insert after RelocatedBase 890 IRBuilder<> Builder(RelocatedBase->getNextNode()); 891 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 892 893 // If gc_relocate does not match the actual type, cast it to the right type. 894 // In theory, there must be a bitcast after gc_relocate if the type does not 895 // match, and we should reuse it to get the derived pointer. But it could be 896 // cases like this: 897 // bb1: 898 // ... 899 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 900 // br label %merge 901 // 902 // bb2: 903 // ... 904 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 905 // br label %merge 906 // 907 // merge: 908 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 909 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 910 // 911 // In this case, we can not find the bitcast any more. So we insert a new bitcast 912 // no matter there is already one or not. In this way, we can handle all cases, and 913 // the extra bitcast should be optimized away in later passes. 914 Value *ActualRelocatedBase = RelocatedBase; 915 if (RelocatedBase->getType() != Base->getType()) { 916 ActualRelocatedBase = 917 Builder.CreateBitCast(RelocatedBase, Base->getType()); 918 } 919 Value *Replacement = Builder.CreateGEP( 920 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 921 Replacement->takeName(ToReplace); 922 // If the newly generated derived pointer's type does not match the original derived 923 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 924 Value *ActualReplacement = Replacement; 925 if (Replacement->getType() != ToReplace->getType()) { 926 ActualReplacement = 927 Builder.CreateBitCast(Replacement, ToReplace->getType()); 928 } 929 ToReplace->replaceAllUsesWith(ActualReplacement); 930 ToReplace->eraseFromParent(); 931 932 MadeChange = true; 933 } 934 return MadeChange; 935 } 936 937 // Turns this: 938 // 939 // %base = ... 940 // %ptr = gep %base + 15 941 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 942 // %base' = relocate(%tok, i32 4, i32 4) 943 // %ptr' = relocate(%tok, i32 4, i32 5) 944 // %val = load %ptr' 945 // 946 // into this: 947 // 948 // %base = ... 949 // %ptr = gep %base + 15 950 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 951 // %base' = gc.relocate(%tok, i32 4, i32 4) 952 // %ptr' = gep %base' + 15 953 // %val = load %ptr' 954 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 955 bool MadeChange = false; 956 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 957 958 for (auto *U : I.users()) 959 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 960 // Collect all the relocate calls associated with a statepoint 961 AllRelocateCalls.push_back(Relocate); 962 963 // We need atleast one base pointer relocation + one derived pointer 964 // relocation to mangle 965 if (AllRelocateCalls.size() < 2) 966 return false; 967 968 // RelocateInstMap is a mapping from the base relocate instruction to the 969 // corresponding derived relocate instructions 970 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 971 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 972 if (RelocateInstMap.empty()) 973 return false; 974 975 for (auto &Item : RelocateInstMap) 976 // Item.first is the RelocatedBase to offset against 977 // Item.second is the vector of Targets to replace 978 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 979 return MadeChange; 980 } 981 982 /// SinkCast - Sink the specified cast instruction into its user blocks 983 static bool SinkCast(CastInst *CI) { 984 BasicBlock *DefBB = CI->getParent(); 985 986 /// InsertedCasts - Only insert a cast in each block once. 987 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 988 989 bool MadeChange = false; 990 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 991 UI != E; ) { 992 Use &TheUse = UI.getUse(); 993 Instruction *User = cast<Instruction>(*UI); 994 995 // Figure out which BB this cast is used in. For PHI's this is the 996 // appropriate predecessor block. 997 BasicBlock *UserBB = User->getParent(); 998 if (PHINode *PN = dyn_cast<PHINode>(User)) { 999 UserBB = PN->getIncomingBlock(TheUse); 1000 } 1001 1002 // Preincrement use iterator so we don't invalidate it. 1003 ++UI; 1004 1005 // The first insertion point of a block containing an EH pad is after the 1006 // pad. If the pad is the user, we cannot sink the cast past the pad. 1007 if (User->isEHPad()) 1008 continue; 1009 1010 // If the block selected to receive the cast is an EH pad that does not 1011 // allow non-PHI instructions before the terminator, we can't sink the 1012 // cast. 1013 if (UserBB->getTerminator()->isEHPad()) 1014 continue; 1015 1016 // If this user is in the same block as the cast, don't change the cast. 1017 if (UserBB == DefBB) continue; 1018 1019 // If we have already inserted a cast into this block, use it. 1020 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1021 1022 if (!InsertedCast) { 1023 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1024 assert(InsertPt != UserBB->end()); 1025 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1026 CI->getType(), "", &*InsertPt); 1027 } 1028 1029 // Replace a use of the cast with a use of the new cast. 1030 TheUse = InsertedCast; 1031 MadeChange = true; 1032 ++NumCastUses; 1033 } 1034 1035 // If we removed all uses, nuke the cast. 1036 if (CI->use_empty()) { 1037 salvageDebugInfo(*CI); 1038 CI->eraseFromParent(); 1039 MadeChange = true; 1040 } 1041 1042 return MadeChange; 1043 } 1044 1045 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1046 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1047 /// reduce the number of virtual registers that must be created and coalesced. 1048 /// 1049 /// Return true if any changes are made. 1050 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1051 const DataLayout &DL) { 1052 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1053 // than sinking only nop casts, but is helpful on some platforms. 1054 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1055 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), 1056 ASC->getDestAddressSpace())) 1057 return false; 1058 } 1059 1060 // If this is a noop copy, 1061 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1062 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1063 1064 // This is an fp<->int conversion? 1065 if (SrcVT.isInteger() != DstVT.isInteger()) 1066 return false; 1067 1068 // If this is an extension, it will be a zero or sign extension, which 1069 // isn't a noop. 1070 if (SrcVT.bitsLT(DstVT)) return false; 1071 1072 // If these values will be promoted, find out what they will be promoted 1073 // to. This helps us consider truncates on PPC as noop copies when they 1074 // are. 1075 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1076 TargetLowering::TypePromoteInteger) 1077 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1078 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1079 TargetLowering::TypePromoteInteger) 1080 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1081 1082 // If, after promotion, these are the same types, this is a noop copy. 1083 if (SrcVT != DstVT) 1084 return false; 1085 1086 return SinkCast(CI); 1087 } 1088 1089 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 1090 /// possible. 1091 /// 1092 /// Return true if any changes were made. 1093 static bool CombineUAddWithOverflow(CmpInst *CI) { 1094 Value *A, *B; 1095 Instruction *AddI; 1096 if (!match(CI, 1097 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 1098 return false; 1099 1100 Type *Ty = AddI->getType(); 1101 if (!isa<IntegerType>(Ty)) 1102 return false; 1103 1104 // We don't want to move around uses of condition values this late, so we we 1105 // check if it is legal to create the call to the intrinsic in the basic 1106 // block containing the icmp: 1107 1108 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 1109 return false; 1110 1111 #ifndef NDEBUG 1112 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 1113 // for now: 1114 if (AddI->hasOneUse()) 1115 assert(*AddI->user_begin() == CI && "expected!"); 1116 #endif 1117 1118 Module *M = CI->getModule(); 1119 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 1120 1121 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 1122 1123 auto *UAddWithOverflow = 1124 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 1125 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 1126 auto *Overflow = 1127 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 1128 1129 CI->replaceAllUsesWith(Overflow); 1130 AddI->replaceAllUsesWith(UAdd); 1131 CI->eraseFromParent(); 1132 AddI->eraseFromParent(); 1133 return true; 1134 } 1135 1136 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1137 /// registers that must be created and coalesced. This is a clear win except on 1138 /// targets with multiple condition code registers (PowerPC), where it might 1139 /// lose; some adjustment may be wanted there. 1140 /// 1141 /// Return true if any changes are made. 1142 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1143 BasicBlock *DefBB = CI->getParent(); 1144 1145 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1146 if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI)) 1147 return false; 1148 1149 // Only insert a cmp in each block once. 1150 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1151 1152 bool MadeChange = false; 1153 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1154 UI != E; ) { 1155 Use &TheUse = UI.getUse(); 1156 Instruction *User = cast<Instruction>(*UI); 1157 1158 // Preincrement use iterator so we don't invalidate it. 1159 ++UI; 1160 1161 // Don't bother for PHI nodes. 1162 if (isa<PHINode>(User)) 1163 continue; 1164 1165 // Figure out which BB this cmp is used in. 1166 BasicBlock *UserBB = User->getParent(); 1167 1168 // If this user is in the same block as the cmp, don't change the cmp. 1169 if (UserBB == DefBB) continue; 1170 1171 // If we have already inserted a cmp into this block, use it. 1172 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1173 1174 if (!InsertedCmp) { 1175 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1176 assert(InsertPt != UserBB->end()); 1177 InsertedCmp = 1178 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 1179 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 1180 // Propagate the debug info. 1181 InsertedCmp->setDebugLoc(CI->getDebugLoc()); 1182 } 1183 1184 // Replace a use of the cmp with a use of the new cmp. 1185 TheUse = InsertedCmp; 1186 MadeChange = true; 1187 ++NumCmpUses; 1188 } 1189 1190 // If we removed all uses, nuke the cmp. 1191 if (CI->use_empty()) { 1192 CI->eraseFromParent(); 1193 MadeChange = true; 1194 } 1195 1196 return MadeChange; 1197 } 1198 1199 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1200 if (SinkCmpExpression(CI, TLI)) 1201 return true; 1202 1203 if (CombineUAddWithOverflow(CI)) 1204 return true; 1205 1206 return false; 1207 } 1208 1209 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1210 /// used in a compare to allow isel to generate better code for targets where 1211 /// this operation can be combined. 1212 /// 1213 /// Return true if any changes are made. 1214 static bool sinkAndCmp0Expression(Instruction *AndI, 1215 const TargetLowering &TLI, 1216 SetOfInstrs &InsertedInsts) { 1217 // Double-check that we're not trying to optimize an instruction that was 1218 // already optimized by some other part of this pass. 1219 assert(!InsertedInsts.count(AndI) && 1220 "Attempting to optimize already optimized and instruction"); 1221 (void) InsertedInsts; 1222 1223 // Nothing to do for single use in same basic block. 1224 if (AndI->hasOneUse() && 1225 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1226 return false; 1227 1228 // Try to avoid cases where sinking/duplicating is likely to increase register 1229 // pressure. 1230 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1231 !isa<ConstantInt>(AndI->getOperand(1)) && 1232 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1233 return false; 1234 1235 for (auto *U : AndI->users()) { 1236 Instruction *User = cast<Instruction>(U); 1237 1238 // Only sink for and mask feeding icmp with 0. 1239 if (!isa<ICmpInst>(User)) 1240 return false; 1241 1242 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1243 if (!CmpC || !CmpC->isZero()) 1244 return false; 1245 } 1246 1247 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1248 return false; 1249 1250 DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1251 DEBUG(AndI->getParent()->dump()); 1252 1253 // Push the 'and' into the same block as the icmp 0. There should only be 1254 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1255 // others, so we don't need to keep track of which BBs we insert into. 1256 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1257 UI != E; ) { 1258 Use &TheUse = UI.getUse(); 1259 Instruction *User = cast<Instruction>(*UI); 1260 1261 // Preincrement use iterator so we don't invalidate it. 1262 ++UI; 1263 1264 DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1265 1266 // Keep the 'and' in the same place if the use is already in the same block. 1267 Instruction *InsertPt = 1268 User->getParent() == AndI->getParent() ? AndI : User; 1269 Instruction *InsertedAnd = 1270 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1271 AndI->getOperand(1), "", InsertPt); 1272 // Propagate the debug info. 1273 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1274 1275 // Replace a use of the 'and' with a use of the new 'and'. 1276 TheUse = InsertedAnd; 1277 ++NumAndUses; 1278 DEBUG(User->getParent()->dump()); 1279 } 1280 1281 // We removed all uses, nuke the and. 1282 AndI->eraseFromParent(); 1283 return true; 1284 } 1285 1286 /// Check if the candidates could be combined with a shift instruction, which 1287 /// includes: 1288 /// 1. Truncate instruction 1289 /// 2. And instruction and the imm is a mask of the low bits: 1290 /// imm & (imm+1) == 0 1291 static bool isExtractBitsCandidateUse(Instruction *User) { 1292 if (!isa<TruncInst>(User)) { 1293 if (User->getOpcode() != Instruction::And || 1294 !isa<ConstantInt>(User->getOperand(1))) 1295 return false; 1296 1297 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1298 1299 if ((Cimm & (Cimm + 1)).getBoolValue()) 1300 return false; 1301 } 1302 return true; 1303 } 1304 1305 /// Sink both shift and truncate instruction to the use of truncate's BB. 1306 static bool 1307 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1308 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1309 const TargetLowering &TLI, const DataLayout &DL) { 1310 BasicBlock *UserBB = User->getParent(); 1311 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1312 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1313 bool MadeChange = false; 1314 1315 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1316 TruncE = TruncI->user_end(); 1317 TruncUI != TruncE;) { 1318 1319 Use &TruncTheUse = TruncUI.getUse(); 1320 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1321 // Preincrement use iterator so we don't invalidate it. 1322 1323 ++TruncUI; 1324 1325 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1326 if (!ISDOpcode) 1327 continue; 1328 1329 // If the use is actually a legal node, there will not be an 1330 // implicit truncate. 1331 // FIXME: always querying the result type is just an 1332 // approximation; some nodes' legality is determined by the 1333 // operand or other means. There's no good way to find out though. 1334 if (TLI.isOperationLegalOrCustom( 1335 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1336 continue; 1337 1338 // Don't bother for PHI nodes. 1339 if (isa<PHINode>(TruncUser)) 1340 continue; 1341 1342 BasicBlock *TruncUserBB = TruncUser->getParent(); 1343 1344 if (UserBB == TruncUserBB) 1345 continue; 1346 1347 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1348 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1349 1350 if (!InsertedShift && !InsertedTrunc) { 1351 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1352 assert(InsertPt != TruncUserBB->end()); 1353 // Sink the shift 1354 if (ShiftI->getOpcode() == Instruction::AShr) 1355 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1356 "", &*InsertPt); 1357 else 1358 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1359 "", &*InsertPt); 1360 1361 // Sink the trunc 1362 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1363 TruncInsertPt++; 1364 assert(TruncInsertPt != TruncUserBB->end()); 1365 1366 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1367 TruncI->getType(), "", &*TruncInsertPt); 1368 1369 MadeChange = true; 1370 1371 TruncTheUse = InsertedTrunc; 1372 } 1373 } 1374 return MadeChange; 1375 } 1376 1377 /// Sink the shift *right* instruction into user blocks if the uses could 1378 /// potentially be combined with this shift instruction and generate BitExtract 1379 /// instruction. It will only be applied if the architecture supports BitExtract 1380 /// instruction. Here is an example: 1381 /// BB1: 1382 /// %x.extract.shift = lshr i64 %arg1, 32 1383 /// BB2: 1384 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1385 /// ==> 1386 /// 1387 /// BB2: 1388 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1389 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1390 /// 1391 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1392 /// instruction. 1393 /// Return true if any changes are made. 1394 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1395 const TargetLowering &TLI, 1396 const DataLayout &DL) { 1397 BasicBlock *DefBB = ShiftI->getParent(); 1398 1399 /// Only insert instructions in each block once. 1400 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1401 1402 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1403 1404 bool MadeChange = false; 1405 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1406 UI != E;) { 1407 Use &TheUse = UI.getUse(); 1408 Instruction *User = cast<Instruction>(*UI); 1409 // Preincrement use iterator so we don't invalidate it. 1410 ++UI; 1411 1412 // Don't bother for PHI nodes. 1413 if (isa<PHINode>(User)) 1414 continue; 1415 1416 if (!isExtractBitsCandidateUse(User)) 1417 continue; 1418 1419 BasicBlock *UserBB = User->getParent(); 1420 1421 if (UserBB == DefBB) { 1422 // If the shift and truncate instruction are in the same BB. The use of 1423 // the truncate(TruncUse) may still introduce another truncate if not 1424 // legal. In this case, we would like to sink both shift and truncate 1425 // instruction to the BB of TruncUse. 1426 // for example: 1427 // BB1: 1428 // i64 shift.result = lshr i64 opnd, imm 1429 // trunc.result = trunc shift.result to i16 1430 // 1431 // BB2: 1432 // ----> We will have an implicit truncate here if the architecture does 1433 // not have i16 compare. 1434 // cmp i16 trunc.result, opnd2 1435 // 1436 if (isa<TruncInst>(User) && shiftIsLegal 1437 // If the type of the truncate is legal, no trucate will be 1438 // introduced in other basic blocks. 1439 && 1440 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1441 MadeChange = 1442 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1443 1444 continue; 1445 } 1446 // If we have already inserted a shift into this block, use it. 1447 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1448 1449 if (!InsertedShift) { 1450 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1451 assert(InsertPt != UserBB->end()); 1452 1453 if (ShiftI->getOpcode() == Instruction::AShr) 1454 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1455 "", &*InsertPt); 1456 else 1457 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1458 "", &*InsertPt); 1459 1460 MadeChange = true; 1461 } 1462 1463 // Replace a use of the shift with a use of the new shift. 1464 TheUse = InsertedShift; 1465 } 1466 1467 // If we removed all uses, nuke the shift. 1468 if (ShiftI->use_empty()) 1469 ShiftI->eraseFromParent(); 1470 1471 return MadeChange; 1472 } 1473 1474 /// If counting leading or trailing zeros is an expensive operation and a zero 1475 /// input is defined, add a check for zero to avoid calling the intrinsic. 1476 /// 1477 /// We want to transform: 1478 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1479 /// 1480 /// into: 1481 /// entry: 1482 /// %cmpz = icmp eq i64 %A, 0 1483 /// br i1 %cmpz, label %cond.end, label %cond.false 1484 /// cond.false: 1485 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1486 /// br label %cond.end 1487 /// cond.end: 1488 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1489 /// 1490 /// If the transform is performed, return true and set ModifiedDT to true. 1491 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1492 const TargetLowering *TLI, 1493 const DataLayout *DL, 1494 bool &ModifiedDT) { 1495 if (!TLI || !DL) 1496 return false; 1497 1498 // If a zero input is undefined, it doesn't make sense to despeculate that. 1499 if (match(CountZeros->getOperand(1), m_One())) 1500 return false; 1501 1502 // If it's cheap to speculate, there's nothing to do. 1503 auto IntrinsicID = CountZeros->getIntrinsicID(); 1504 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1505 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1506 return false; 1507 1508 // Only handle legal scalar cases. Anything else requires too much work. 1509 Type *Ty = CountZeros->getType(); 1510 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1511 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1512 return false; 1513 1514 // The intrinsic will be sunk behind a compare against zero and branch. 1515 BasicBlock *StartBlock = CountZeros->getParent(); 1516 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1517 1518 // Create another block after the count zero intrinsic. A PHI will be added 1519 // in this block to select the result of the intrinsic or the bit-width 1520 // constant if the input to the intrinsic is zero. 1521 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1522 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1523 1524 // Set up a builder to create a compare, conditional branch, and PHI. 1525 IRBuilder<> Builder(CountZeros->getContext()); 1526 Builder.SetInsertPoint(StartBlock->getTerminator()); 1527 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1528 1529 // Replace the unconditional branch that was created by the first split with 1530 // a compare against zero and a conditional branch. 1531 Value *Zero = Constant::getNullValue(Ty); 1532 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1533 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1534 StartBlock->getTerminator()->eraseFromParent(); 1535 1536 // Create a PHI in the end block to select either the output of the intrinsic 1537 // or the bit width of the operand. 1538 Builder.SetInsertPoint(&EndBlock->front()); 1539 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1540 CountZeros->replaceAllUsesWith(PN); 1541 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1542 PN->addIncoming(BitWidth, StartBlock); 1543 PN->addIncoming(CountZeros, CallBlock); 1544 1545 // We are explicitly handling the zero case, so we can set the intrinsic's 1546 // undefined zero argument to 'true'. This will also prevent reprocessing the 1547 // intrinsic; we only despeculate when a zero input is defined. 1548 CountZeros->setArgOperand(1, Builder.getTrue()); 1549 ModifiedDT = true; 1550 return true; 1551 } 1552 1553 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1554 BasicBlock *BB = CI->getParent(); 1555 1556 // Lower inline assembly if we can. 1557 // If we found an inline asm expession, and if the target knows how to 1558 // lower it to normal LLVM code, do so now. 1559 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1560 if (TLI->ExpandInlineAsm(CI)) { 1561 // Avoid invalidating the iterator. 1562 CurInstIterator = BB->begin(); 1563 // Avoid processing instructions out of order, which could cause 1564 // reuse before a value is defined. 1565 SunkAddrs.clear(); 1566 return true; 1567 } 1568 // Sink address computing for memory operands into the block. 1569 if (optimizeInlineAsmInst(CI)) 1570 return true; 1571 } 1572 1573 // Align the pointer arguments to this call if the target thinks it's a good 1574 // idea 1575 unsigned MinSize, PrefAlign; 1576 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1577 for (auto &Arg : CI->arg_operands()) { 1578 // We want to align both objects whose address is used directly and 1579 // objects whose address is used in casts and GEPs, though it only makes 1580 // sense for GEPs if the offset is a multiple of the desired alignment and 1581 // if size - offset meets the size threshold. 1582 if (!Arg->getType()->isPointerTy()) 1583 continue; 1584 APInt Offset(DL->getPointerSizeInBits( 1585 cast<PointerType>(Arg->getType())->getAddressSpace()), 1586 0); 1587 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1588 uint64_t Offset2 = Offset.getLimitedValue(); 1589 if ((Offset2 & (PrefAlign-1)) != 0) 1590 continue; 1591 AllocaInst *AI; 1592 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1593 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1594 AI->setAlignment(PrefAlign); 1595 // Global variables can only be aligned if they are defined in this 1596 // object (i.e. they are uniquely initialized in this object), and 1597 // over-aligning global variables that have an explicit section is 1598 // forbidden. 1599 GlobalVariable *GV; 1600 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1601 GV->getPointerAlignment(*DL) < PrefAlign && 1602 DL->getTypeAllocSize(GV->getValueType()) >= 1603 MinSize + Offset2) 1604 GV->setAlignment(PrefAlign); 1605 } 1606 // If this is a memcpy (or similar) then we may be able to improve the 1607 // alignment 1608 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1609 unsigned Align = getKnownAlignment(MI->getDest(), *DL); 1610 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 1611 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL)); 1612 if (Align > MI->getAlignment()) 1613 MI->setAlignment(Align); 1614 } 1615 } 1616 1617 // If we have a cold call site, try to sink addressing computation into the 1618 // cold block. This interacts with our handling for loads and stores to 1619 // ensure that we can fold all uses of a potential addressing computation 1620 // into their uses. TODO: generalize this to work over profiling data 1621 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1622 for (auto &Arg : CI->arg_operands()) { 1623 if (!Arg->getType()->isPointerTy()) 1624 continue; 1625 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1626 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1627 } 1628 1629 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1630 if (II) { 1631 switch (II->getIntrinsicID()) { 1632 default: break; 1633 case Intrinsic::objectsize: { 1634 // Lower all uses of llvm.objectsize.* 1635 ConstantInt *RetVal = 1636 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 1637 // Substituting this can cause recursive simplifications, which can 1638 // invalidate our iterator. Use a WeakTrackingVH to hold onto it in case 1639 // this 1640 // happens. 1641 Value *CurValue = &*CurInstIterator; 1642 WeakTrackingVH IterHandle(CurValue); 1643 1644 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1645 1646 // If the iterator instruction was recursively deleted, start over at the 1647 // start of the block. 1648 if (IterHandle != CurValue) { 1649 CurInstIterator = BB->begin(); 1650 SunkAddrs.clear(); 1651 } 1652 return true; 1653 } 1654 case Intrinsic::aarch64_stlxr: 1655 case Intrinsic::aarch64_stxr: { 1656 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1657 if (!ExtVal || !ExtVal->hasOneUse() || 1658 ExtVal->getParent() == CI->getParent()) 1659 return false; 1660 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1661 ExtVal->moveBefore(CI); 1662 // Mark this instruction as "inserted by CGP", so that other 1663 // optimizations don't touch it. 1664 InsertedInsts.insert(ExtVal); 1665 return true; 1666 } 1667 case Intrinsic::invariant_group_barrier: 1668 II->replaceAllUsesWith(II->getArgOperand(0)); 1669 II->eraseFromParent(); 1670 return true; 1671 1672 case Intrinsic::cttz: 1673 case Intrinsic::ctlz: 1674 // If counting zeros is expensive, try to avoid it. 1675 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 1676 } 1677 1678 if (TLI) { 1679 SmallVector<Value*, 2> PtrOps; 1680 Type *AccessTy; 1681 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 1682 while (!PtrOps.empty()) { 1683 Value *PtrVal = PtrOps.pop_back_val(); 1684 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 1685 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 1686 return true; 1687 } 1688 } 1689 } 1690 1691 // From here on out we're working with named functions. 1692 if (!CI->getCalledFunction()) return false; 1693 1694 // Lower all default uses of _chk calls. This is very similar 1695 // to what InstCombineCalls does, but here we are only lowering calls 1696 // to fortified library functions (e.g. __memcpy_chk) that have the default 1697 // "don't know" as the objectsize. Anything else should be left alone. 1698 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1699 if (Value *V = Simplifier.optimizeCall(CI)) { 1700 CI->replaceAllUsesWith(V); 1701 CI->eraseFromParent(); 1702 return true; 1703 } 1704 1705 return false; 1706 } 1707 1708 /// Look for opportunities to duplicate return instructions to the predecessor 1709 /// to enable tail call optimizations. The case it is currently looking for is: 1710 /// @code 1711 /// bb0: 1712 /// %tmp0 = tail call i32 @f0() 1713 /// br label %return 1714 /// bb1: 1715 /// %tmp1 = tail call i32 @f1() 1716 /// br label %return 1717 /// bb2: 1718 /// %tmp2 = tail call i32 @f2() 1719 /// br label %return 1720 /// return: 1721 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1722 /// ret i32 %retval 1723 /// @endcode 1724 /// 1725 /// => 1726 /// 1727 /// @code 1728 /// bb0: 1729 /// %tmp0 = tail call i32 @f0() 1730 /// ret i32 %tmp0 1731 /// bb1: 1732 /// %tmp1 = tail call i32 @f1() 1733 /// ret i32 %tmp1 1734 /// bb2: 1735 /// %tmp2 = tail call i32 @f2() 1736 /// ret i32 %tmp2 1737 /// @endcode 1738 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 1739 if (!TLI) 1740 return false; 1741 1742 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 1743 if (!RetI) 1744 return false; 1745 1746 PHINode *PN = nullptr; 1747 BitCastInst *BCI = nullptr; 1748 Value *V = RetI->getReturnValue(); 1749 if (V) { 1750 BCI = dyn_cast<BitCastInst>(V); 1751 if (BCI) 1752 V = BCI->getOperand(0); 1753 1754 PN = dyn_cast<PHINode>(V); 1755 if (!PN) 1756 return false; 1757 } 1758 1759 if (PN && PN->getParent() != BB) 1760 return false; 1761 1762 // Make sure there are no instructions between the PHI and return, or that the 1763 // return is the first instruction in the block. 1764 if (PN) { 1765 BasicBlock::iterator BI = BB->begin(); 1766 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1767 if (&*BI == BCI) 1768 // Also skip over the bitcast. 1769 ++BI; 1770 if (&*BI != RetI) 1771 return false; 1772 } else { 1773 BasicBlock::iterator BI = BB->begin(); 1774 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1775 if (&*BI != RetI) 1776 return false; 1777 } 1778 1779 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1780 /// call. 1781 const Function *F = BB->getParent(); 1782 SmallVector<CallInst*, 4> TailCalls; 1783 if (PN) { 1784 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 1785 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 1786 // Make sure the phi value is indeed produced by the tail call. 1787 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 1788 TLI->mayBeEmittedAsTailCall(CI) && 1789 attributesPermitTailCall(F, CI, RetI, *TLI)) 1790 TailCalls.push_back(CI); 1791 } 1792 } else { 1793 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 1794 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 1795 if (!VisitedBBs.insert(*PI).second) 1796 continue; 1797 1798 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 1799 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 1800 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 1801 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 1802 if (RI == RE) 1803 continue; 1804 1805 CallInst *CI = dyn_cast<CallInst>(&*RI); 1806 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 1807 attributesPermitTailCall(F, CI, RetI, *TLI)) 1808 TailCalls.push_back(CI); 1809 } 1810 } 1811 1812 bool Changed = false; 1813 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1814 CallInst *CI = TailCalls[i]; 1815 CallSite CS(CI); 1816 1817 // Conservatively require the attributes of the call to match those of the 1818 // return. Ignore noalias because it doesn't affect the call sequence. 1819 AttributeList CalleeAttrs = CS.getAttributes(); 1820 if (AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 1821 .removeAttribute(Attribute::NoAlias) != 1822 AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 1823 .removeAttribute(Attribute::NoAlias)) 1824 continue; 1825 1826 // Make sure the call instruction is followed by an unconditional branch to 1827 // the return block. 1828 BasicBlock *CallBB = CI->getParent(); 1829 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 1830 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 1831 continue; 1832 1833 // Duplicate the return into CallBB. 1834 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 1835 ModifiedDT = Changed = true; 1836 ++NumRetsDup; 1837 } 1838 1839 // If we eliminated all predecessors of the block, delete the block now. 1840 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 1841 BB->eraseFromParent(); 1842 1843 return Changed; 1844 } 1845 1846 //===----------------------------------------------------------------------===// 1847 // Memory Optimization 1848 //===----------------------------------------------------------------------===// 1849 1850 namespace { 1851 1852 /// This is an extended version of TargetLowering::AddrMode 1853 /// which holds actual Value*'s for register values. 1854 struct ExtAddrMode : public TargetLowering::AddrMode { 1855 Value *BaseReg = nullptr; 1856 Value *ScaledReg = nullptr; 1857 Value *OriginalValue = nullptr; 1858 1859 enum FieldName { 1860 NoField = 0x00, 1861 BaseRegField = 0x01, 1862 BaseGVField = 0x02, 1863 BaseOffsField = 0x04, 1864 ScaledRegField = 0x08, 1865 ScaleField = 0x10, 1866 MultipleFields = 0xff 1867 }; 1868 1869 ExtAddrMode() = default; 1870 1871 void print(raw_ostream &OS) const; 1872 void dump() const; 1873 1874 FieldName compare(const ExtAddrMode &other) { 1875 // First check that the types are the same on each field, as differing types 1876 // is something we can't cope with later on. 1877 if (BaseReg && other.BaseReg && 1878 BaseReg->getType() != other.BaseReg->getType()) 1879 return MultipleFields; 1880 if (BaseGV && other.BaseGV && 1881 BaseGV->getType() != other.BaseGV->getType()) 1882 return MultipleFields; 1883 if (ScaledReg && other.ScaledReg && 1884 ScaledReg->getType() != other.ScaledReg->getType()) 1885 return MultipleFields; 1886 1887 // Check each field to see if it differs. 1888 unsigned Result = NoField; 1889 if (BaseReg != other.BaseReg) 1890 Result |= BaseRegField; 1891 if (BaseGV != other.BaseGV) 1892 Result |= BaseGVField; 1893 if (BaseOffs != other.BaseOffs) 1894 Result |= BaseOffsField; 1895 if (ScaledReg != other.ScaledReg) 1896 Result |= ScaledRegField; 1897 // Don't count 0 as being a different scale, because that actually means 1898 // unscaled (which will already be counted by having no ScaledReg). 1899 if (Scale && other.Scale && Scale != other.Scale) 1900 Result |= ScaleField; 1901 1902 if (countPopulation(Result) > 1) 1903 return MultipleFields; 1904 else 1905 return static_cast<FieldName>(Result); 1906 } 1907 1908 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 1909 // with no offset. 1910 bool isTrivial() { 1911 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 1912 // trivial if at most one of these terms is nonzero, except that BaseGV and 1913 // BaseReg both being zero actually means a null pointer value, which we 1914 // consider to be 'non-zero' here. 1915 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 1916 } 1917 1918 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 1919 switch (Field) { 1920 default: 1921 return nullptr; 1922 case BaseRegField: 1923 return BaseReg; 1924 case BaseGVField: 1925 return BaseGV; 1926 case ScaledRegField: 1927 return ScaledReg; 1928 case BaseOffsField: 1929 return ConstantInt::get(IntPtrTy, BaseOffs); 1930 } 1931 } 1932 1933 void SetCombinedField(FieldName Field, Value *V, 1934 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 1935 switch (Field) { 1936 default: 1937 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 1938 break; 1939 case ExtAddrMode::BaseRegField: 1940 BaseReg = V; 1941 break; 1942 case ExtAddrMode::BaseGVField: 1943 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 1944 // in the BaseReg field. 1945 assert(BaseReg == nullptr); 1946 BaseReg = V; 1947 BaseGV = nullptr; 1948 break; 1949 case ExtAddrMode::ScaledRegField: 1950 ScaledReg = V; 1951 // If we have a mix of scaled and unscaled addrmodes then we want scale 1952 // to be the scale and not zero. 1953 if (!Scale) 1954 for (const ExtAddrMode &AM : AddrModes) 1955 if (AM.Scale) { 1956 Scale = AM.Scale; 1957 break; 1958 } 1959 break; 1960 case ExtAddrMode::BaseOffsField: 1961 // The offset is no longer a constant, so it goes in ScaledReg with a 1962 // scale of 1. 1963 assert(ScaledReg == nullptr); 1964 ScaledReg = V; 1965 Scale = 1; 1966 BaseOffs = 0; 1967 break; 1968 } 1969 } 1970 }; 1971 1972 } // end anonymous namespace 1973 1974 #ifndef NDEBUG 1975 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 1976 AM.print(OS); 1977 return OS; 1978 } 1979 #endif 1980 1981 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1982 void ExtAddrMode::print(raw_ostream &OS) const { 1983 bool NeedPlus = false; 1984 OS << "["; 1985 if (BaseGV) { 1986 OS << (NeedPlus ? " + " : "") 1987 << "GV:"; 1988 BaseGV->printAsOperand(OS, /*PrintType=*/false); 1989 NeedPlus = true; 1990 } 1991 1992 if (BaseOffs) { 1993 OS << (NeedPlus ? " + " : "") 1994 << BaseOffs; 1995 NeedPlus = true; 1996 } 1997 1998 if (BaseReg) { 1999 OS << (NeedPlus ? " + " : "") 2000 << "Base:"; 2001 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2002 NeedPlus = true; 2003 } 2004 if (Scale) { 2005 OS << (NeedPlus ? " + " : "") 2006 << Scale << "*"; 2007 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2008 } 2009 2010 OS << ']'; 2011 } 2012 2013 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2014 print(dbgs()); 2015 dbgs() << '\n'; 2016 } 2017 #endif 2018 2019 namespace { 2020 2021 /// \brief This class provides transaction based operation on the IR. 2022 /// Every change made through this class is recorded in the internal state and 2023 /// can be undone (rollback) until commit is called. 2024 class TypePromotionTransaction { 2025 /// \brief This represents the common interface of the individual transaction. 2026 /// Each class implements the logic for doing one specific modification on 2027 /// the IR via the TypePromotionTransaction. 2028 class TypePromotionAction { 2029 protected: 2030 /// The Instruction modified. 2031 Instruction *Inst; 2032 2033 public: 2034 /// \brief Constructor of the action. 2035 /// The constructor performs the related action on the IR. 2036 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2037 2038 virtual ~TypePromotionAction() = default; 2039 2040 /// \brief Undo the modification done by this action. 2041 /// When this method is called, the IR must be in the same state as it was 2042 /// before this action was applied. 2043 /// \pre Undoing the action works if and only if the IR is in the exact same 2044 /// state as it was directly after this action was applied. 2045 virtual void undo() = 0; 2046 2047 /// \brief Advocate every change made by this action. 2048 /// When the results on the IR of the action are to be kept, it is important 2049 /// to call this function, otherwise hidden information may be kept forever. 2050 virtual void commit() { 2051 // Nothing to be done, this action is not doing anything. 2052 } 2053 }; 2054 2055 /// \brief Utility to remember the position of an instruction. 2056 class InsertionHandler { 2057 /// Position of an instruction. 2058 /// Either an instruction: 2059 /// - Is the first in a basic block: BB is used. 2060 /// - Has a previous instructon: PrevInst is used. 2061 union { 2062 Instruction *PrevInst; 2063 BasicBlock *BB; 2064 } Point; 2065 2066 /// Remember whether or not the instruction had a previous instruction. 2067 bool HasPrevInstruction; 2068 2069 public: 2070 /// \brief Record the position of \p Inst. 2071 InsertionHandler(Instruction *Inst) { 2072 BasicBlock::iterator It = Inst->getIterator(); 2073 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2074 if (HasPrevInstruction) 2075 Point.PrevInst = &*--It; 2076 else 2077 Point.BB = Inst->getParent(); 2078 } 2079 2080 /// \brief Insert \p Inst at the recorded position. 2081 void insert(Instruction *Inst) { 2082 if (HasPrevInstruction) { 2083 if (Inst->getParent()) 2084 Inst->removeFromParent(); 2085 Inst->insertAfter(Point.PrevInst); 2086 } else { 2087 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2088 if (Inst->getParent()) 2089 Inst->moveBefore(Position); 2090 else 2091 Inst->insertBefore(Position); 2092 } 2093 } 2094 }; 2095 2096 /// \brief Move an instruction before another. 2097 class InstructionMoveBefore : public TypePromotionAction { 2098 /// Original position of the instruction. 2099 InsertionHandler Position; 2100 2101 public: 2102 /// \brief Move \p Inst before \p Before. 2103 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2104 : TypePromotionAction(Inst), Position(Inst) { 2105 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 2106 Inst->moveBefore(Before); 2107 } 2108 2109 /// \brief Move the instruction back to its original position. 2110 void undo() override { 2111 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2112 Position.insert(Inst); 2113 } 2114 }; 2115 2116 /// \brief Set the operand of an instruction with a new value. 2117 class OperandSetter : public TypePromotionAction { 2118 /// Original operand of the instruction. 2119 Value *Origin; 2120 2121 /// Index of the modified instruction. 2122 unsigned Idx; 2123 2124 public: 2125 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 2126 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2127 : TypePromotionAction(Inst), Idx(Idx) { 2128 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2129 << "for:" << *Inst << "\n" 2130 << "with:" << *NewVal << "\n"); 2131 Origin = Inst->getOperand(Idx); 2132 Inst->setOperand(Idx, NewVal); 2133 } 2134 2135 /// \brief Restore the original value of the instruction. 2136 void undo() override { 2137 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2138 << "for: " << *Inst << "\n" 2139 << "with: " << *Origin << "\n"); 2140 Inst->setOperand(Idx, Origin); 2141 } 2142 }; 2143 2144 /// \brief Hide the operands of an instruction. 2145 /// Do as if this instruction was not using any of its operands. 2146 class OperandsHider : public TypePromotionAction { 2147 /// The list of original operands. 2148 SmallVector<Value *, 4> OriginalValues; 2149 2150 public: 2151 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 2152 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2153 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2154 unsigned NumOpnds = Inst->getNumOperands(); 2155 OriginalValues.reserve(NumOpnds); 2156 for (unsigned It = 0; It < NumOpnds; ++It) { 2157 // Save the current operand. 2158 Value *Val = Inst->getOperand(It); 2159 OriginalValues.push_back(Val); 2160 // Set a dummy one. 2161 // We could use OperandSetter here, but that would imply an overhead 2162 // that we are not willing to pay. 2163 Inst->setOperand(It, UndefValue::get(Val->getType())); 2164 } 2165 } 2166 2167 /// \brief Restore the original list of uses. 2168 void undo() override { 2169 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2170 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2171 Inst->setOperand(It, OriginalValues[It]); 2172 } 2173 }; 2174 2175 /// \brief Build a truncate instruction. 2176 class TruncBuilder : public TypePromotionAction { 2177 Value *Val; 2178 2179 public: 2180 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 2181 /// result. 2182 /// trunc Opnd to Ty. 2183 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2184 IRBuilder<> Builder(Opnd); 2185 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2186 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2187 } 2188 2189 /// \brief Get the built value. 2190 Value *getBuiltValue() { return Val; } 2191 2192 /// \brief Remove the built instruction. 2193 void undo() override { 2194 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2195 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2196 IVal->eraseFromParent(); 2197 } 2198 }; 2199 2200 /// \brief Build a sign extension instruction. 2201 class SExtBuilder : public TypePromotionAction { 2202 Value *Val; 2203 2204 public: 2205 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 2206 /// result. 2207 /// sext Opnd to Ty. 2208 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2209 : TypePromotionAction(InsertPt) { 2210 IRBuilder<> Builder(InsertPt); 2211 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2212 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2213 } 2214 2215 /// \brief Get the built value. 2216 Value *getBuiltValue() { return Val; } 2217 2218 /// \brief Remove the built instruction. 2219 void undo() override { 2220 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2221 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2222 IVal->eraseFromParent(); 2223 } 2224 }; 2225 2226 /// \brief Build a zero extension instruction. 2227 class ZExtBuilder : public TypePromotionAction { 2228 Value *Val; 2229 2230 public: 2231 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 2232 /// result. 2233 /// zext Opnd to Ty. 2234 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2235 : TypePromotionAction(InsertPt) { 2236 IRBuilder<> Builder(InsertPt); 2237 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2238 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2239 } 2240 2241 /// \brief Get the built value. 2242 Value *getBuiltValue() { return Val; } 2243 2244 /// \brief Remove the built instruction. 2245 void undo() override { 2246 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2247 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2248 IVal->eraseFromParent(); 2249 } 2250 }; 2251 2252 /// \brief Mutate an instruction to another type. 2253 class TypeMutator : public TypePromotionAction { 2254 /// Record the original type. 2255 Type *OrigTy; 2256 2257 public: 2258 /// \brief Mutate the type of \p Inst into \p NewTy. 2259 TypeMutator(Instruction *Inst, Type *NewTy) 2260 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2261 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2262 << "\n"); 2263 Inst->mutateType(NewTy); 2264 } 2265 2266 /// \brief Mutate the instruction back to its original type. 2267 void undo() override { 2268 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2269 << "\n"); 2270 Inst->mutateType(OrigTy); 2271 } 2272 }; 2273 2274 /// \brief Replace the uses of an instruction by another instruction. 2275 class UsesReplacer : public TypePromotionAction { 2276 /// Helper structure to keep track of the replaced uses. 2277 struct InstructionAndIdx { 2278 /// The instruction using the instruction. 2279 Instruction *Inst; 2280 2281 /// The index where this instruction is used for Inst. 2282 unsigned Idx; 2283 2284 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2285 : Inst(Inst), Idx(Idx) {} 2286 }; 2287 2288 /// Keep track of the original uses (pair Instruction, Index). 2289 SmallVector<InstructionAndIdx, 4> OriginalUses; 2290 2291 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2292 2293 public: 2294 /// \brief Replace all the use of \p Inst by \p New. 2295 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2296 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2297 << "\n"); 2298 // Record the original uses. 2299 for (Use &U : Inst->uses()) { 2300 Instruction *UserI = cast<Instruction>(U.getUser()); 2301 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2302 } 2303 // Now, we can replace the uses. 2304 Inst->replaceAllUsesWith(New); 2305 } 2306 2307 /// \brief Reassign the original uses of Inst to Inst. 2308 void undo() override { 2309 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2310 for (use_iterator UseIt = OriginalUses.begin(), 2311 EndIt = OriginalUses.end(); 2312 UseIt != EndIt; ++UseIt) { 2313 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2314 } 2315 } 2316 }; 2317 2318 /// \brief Remove an instruction from the IR. 2319 class InstructionRemover : public TypePromotionAction { 2320 /// Original position of the instruction. 2321 InsertionHandler Inserter; 2322 2323 /// Helper structure to hide all the link to the instruction. In other 2324 /// words, this helps to do as if the instruction was removed. 2325 OperandsHider Hider; 2326 2327 /// Keep track of the uses replaced, if any. 2328 UsesReplacer *Replacer = nullptr; 2329 2330 /// Keep track of instructions removed. 2331 SetOfInstrs &RemovedInsts; 2332 2333 public: 2334 /// \brief Remove all reference of \p Inst and optinally replace all its 2335 /// uses with New. 2336 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2337 /// \pre If !Inst->use_empty(), then New != nullptr 2338 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2339 Value *New = nullptr) 2340 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2341 RemovedInsts(RemovedInsts) { 2342 if (New) 2343 Replacer = new UsesReplacer(Inst, New); 2344 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2345 RemovedInsts.insert(Inst); 2346 /// The instructions removed here will be freed after completing 2347 /// optimizeBlock() for all blocks as we need to keep track of the 2348 /// removed instructions during promotion. 2349 Inst->removeFromParent(); 2350 } 2351 2352 ~InstructionRemover() override { delete Replacer; } 2353 2354 /// \brief Resurrect the instruction and reassign it to the proper uses if 2355 /// new value was provided when build this action. 2356 void undo() override { 2357 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2358 Inserter.insert(Inst); 2359 if (Replacer) 2360 Replacer->undo(); 2361 Hider.undo(); 2362 RemovedInsts.erase(Inst); 2363 } 2364 }; 2365 2366 public: 2367 /// Restoration point. 2368 /// The restoration point is a pointer to an action instead of an iterator 2369 /// because the iterator may be invalidated but not the pointer. 2370 using ConstRestorationPt = const TypePromotionAction *; 2371 2372 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2373 : RemovedInsts(RemovedInsts) {} 2374 2375 /// Advocate every changes made in that transaction. 2376 void commit(); 2377 2378 /// Undo all the changes made after the given point. 2379 void rollback(ConstRestorationPt Point); 2380 2381 /// Get the current restoration point. 2382 ConstRestorationPt getRestorationPoint() const; 2383 2384 /// \name API for IR modification with state keeping to support rollback. 2385 /// @{ 2386 /// Same as Instruction::setOperand. 2387 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2388 2389 /// Same as Instruction::eraseFromParent. 2390 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2391 2392 /// Same as Value::replaceAllUsesWith. 2393 void replaceAllUsesWith(Instruction *Inst, Value *New); 2394 2395 /// Same as Value::mutateType. 2396 void mutateType(Instruction *Inst, Type *NewTy); 2397 2398 /// Same as IRBuilder::createTrunc. 2399 Value *createTrunc(Instruction *Opnd, Type *Ty); 2400 2401 /// Same as IRBuilder::createSExt. 2402 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2403 2404 /// Same as IRBuilder::createZExt. 2405 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2406 2407 /// Same as Instruction::moveBefore. 2408 void moveBefore(Instruction *Inst, Instruction *Before); 2409 /// @} 2410 2411 private: 2412 /// The ordered list of actions made so far. 2413 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2414 2415 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2416 2417 SetOfInstrs &RemovedInsts; 2418 }; 2419 2420 } // end anonymous namespace 2421 2422 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2423 Value *NewVal) { 2424 Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>( 2425 Inst, Idx, NewVal)); 2426 } 2427 2428 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2429 Value *NewVal) { 2430 Actions.push_back( 2431 llvm::make_unique<TypePromotionTransaction::InstructionRemover>( 2432 Inst, RemovedInsts, NewVal)); 2433 } 2434 2435 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2436 Value *New) { 2437 Actions.push_back( 2438 llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2439 } 2440 2441 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2442 Actions.push_back( 2443 llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2444 } 2445 2446 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2447 Type *Ty) { 2448 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2449 Value *Val = Ptr->getBuiltValue(); 2450 Actions.push_back(std::move(Ptr)); 2451 return Val; 2452 } 2453 2454 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2455 Value *Opnd, Type *Ty) { 2456 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2457 Value *Val = Ptr->getBuiltValue(); 2458 Actions.push_back(std::move(Ptr)); 2459 return Val; 2460 } 2461 2462 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2463 Value *Opnd, Type *Ty) { 2464 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2465 Value *Val = Ptr->getBuiltValue(); 2466 Actions.push_back(std::move(Ptr)); 2467 return Val; 2468 } 2469 2470 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2471 Instruction *Before) { 2472 Actions.push_back( 2473 llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2474 Inst, Before)); 2475 } 2476 2477 TypePromotionTransaction::ConstRestorationPt 2478 TypePromotionTransaction::getRestorationPoint() const { 2479 return !Actions.empty() ? Actions.back().get() : nullptr; 2480 } 2481 2482 void TypePromotionTransaction::commit() { 2483 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2484 ++It) 2485 (*It)->commit(); 2486 Actions.clear(); 2487 } 2488 2489 void TypePromotionTransaction::rollback( 2490 TypePromotionTransaction::ConstRestorationPt Point) { 2491 while (!Actions.empty() && Point != Actions.back().get()) { 2492 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2493 Curr->undo(); 2494 } 2495 } 2496 2497 namespace { 2498 2499 /// \brief A helper class for matching addressing modes. 2500 /// 2501 /// This encapsulates the logic for matching the target-legal addressing modes. 2502 class AddressingModeMatcher { 2503 SmallVectorImpl<Instruction*> &AddrModeInsts; 2504 const TargetLowering &TLI; 2505 const TargetRegisterInfo &TRI; 2506 const DataLayout &DL; 2507 2508 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2509 /// the memory instruction that we're computing this address for. 2510 Type *AccessTy; 2511 unsigned AddrSpace; 2512 Instruction *MemoryInst; 2513 2514 /// This is the addressing mode that we're building up. This is 2515 /// part of the return value of this addressing mode matching stuff. 2516 ExtAddrMode &AddrMode; 2517 2518 /// The instructions inserted by other CodeGenPrepare optimizations. 2519 const SetOfInstrs &InsertedInsts; 2520 2521 /// A map from the instructions to their type before promotion. 2522 InstrToOrigTy &PromotedInsts; 2523 2524 /// The ongoing transaction where every action should be registered. 2525 TypePromotionTransaction &TPT; 2526 2527 /// This is set to true when we should not do profitability checks. 2528 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2529 bool IgnoreProfitability; 2530 2531 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, 2532 const TargetLowering &TLI, 2533 const TargetRegisterInfo &TRI, 2534 Type *AT, unsigned AS, 2535 Instruction *MI, ExtAddrMode &AM, 2536 const SetOfInstrs &InsertedInsts, 2537 InstrToOrigTy &PromotedInsts, 2538 TypePromotionTransaction &TPT) 2539 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2540 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2541 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2542 PromotedInsts(PromotedInsts), TPT(TPT) { 2543 IgnoreProfitability = false; 2544 } 2545 2546 public: 2547 /// Find the maximal addressing mode that a load/store of V can fold, 2548 /// give an access type of AccessTy. This returns a list of involved 2549 /// instructions in AddrModeInsts. 2550 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2551 /// optimizations. 2552 /// \p PromotedInsts maps the instructions to their type before promotion. 2553 /// \p The ongoing transaction where every action should be registered. 2554 static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, 2555 Instruction *MemoryInst, 2556 SmallVectorImpl<Instruction*> &AddrModeInsts, 2557 const TargetLowering &TLI, 2558 const TargetRegisterInfo &TRI, 2559 const SetOfInstrs &InsertedInsts, 2560 InstrToOrigTy &PromotedInsts, 2561 TypePromotionTransaction &TPT) { 2562 ExtAddrMode Result; 2563 2564 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, 2565 AccessTy, AS, 2566 MemoryInst, Result, InsertedInsts, 2567 PromotedInsts, TPT).matchAddr(V, 0); 2568 (void)Success; assert(Success && "Couldn't select *anything*?"); 2569 return Result; 2570 } 2571 2572 private: 2573 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2574 bool matchAddr(Value *V, unsigned Depth); 2575 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 2576 bool *MovedAway = nullptr); 2577 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2578 ExtAddrMode &AMBefore, 2579 ExtAddrMode &AMAfter); 2580 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2581 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2582 Value *PromotedOperand) const; 2583 }; 2584 2585 /// \brief Keep track of simplification of Phi nodes. 2586 /// Accept the set of all phi nodes and erase phi node from this set 2587 /// if it is simplified. 2588 class SimplificationTracker { 2589 DenseMap<Value *, Value *> Storage; 2590 const SimplifyQuery &SQ; 2591 SmallPtrSetImpl<PHINode *> &AllPhiNodes; 2592 SmallPtrSetImpl<SelectInst *> &AllSelectNodes; 2593 2594 public: 2595 SimplificationTracker(const SimplifyQuery &sq, 2596 SmallPtrSetImpl<PHINode *> &APN, 2597 SmallPtrSetImpl<SelectInst *> &ASN) 2598 : SQ(sq), AllPhiNodes(APN), AllSelectNodes(ASN) {} 2599 2600 Value *Get(Value *V) { 2601 do { 2602 auto SV = Storage.find(V); 2603 if (SV == Storage.end()) 2604 return V; 2605 V = SV->second; 2606 } while (true); 2607 } 2608 2609 Value *Simplify(Value *Val) { 2610 SmallVector<Value *, 32> WorkList; 2611 SmallPtrSet<Value *, 32> Visited; 2612 WorkList.push_back(Val); 2613 while (!WorkList.empty()) { 2614 auto P = WorkList.pop_back_val(); 2615 if (!Visited.insert(P).second) 2616 continue; 2617 if (auto *PI = dyn_cast<Instruction>(P)) 2618 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 2619 for (auto *U : PI->users()) 2620 WorkList.push_back(cast<Value>(U)); 2621 Put(PI, V); 2622 PI->replaceAllUsesWith(V); 2623 if (auto *PHI = dyn_cast<PHINode>(PI)) 2624 AllPhiNodes.erase(PHI); 2625 if (auto *Select = dyn_cast<SelectInst>(PI)) 2626 AllSelectNodes.erase(Select); 2627 PI->eraseFromParent(); 2628 } 2629 } 2630 return Get(Val); 2631 } 2632 2633 void Put(Value *From, Value *To) { 2634 Storage.insert({ From, To }); 2635 } 2636 }; 2637 2638 /// \brief A helper class for combining addressing modes. 2639 class AddressingModeCombiner { 2640 typedef std::pair<Value *, BasicBlock *> ValueInBB; 2641 typedef DenseMap<ValueInBB, Value *> FoldAddrToValueMapping; 2642 typedef std::pair<PHINode *, PHINode *> PHIPair; 2643 2644 private: 2645 /// The addressing modes we've collected. 2646 SmallVector<ExtAddrMode, 16> AddrModes; 2647 2648 /// The field in which the AddrModes differ, when we have more than one. 2649 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 2650 2651 /// Are the AddrModes that we have all just equal to their original values? 2652 bool AllAddrModesTrivial = true; 2653 2654 /// Common Type for all different fields in addressing modes. 2655 Type *CommonType; 2656 2657 /// SimplifyQuery for simplifyInstruction utility. 2658 const SimplifyQuery &SQ; 2659 2660 /// Original Address. 2661 ValueInBB Original; 2662 2663 public: 2664 AddressingModeCombiner(const SimplifyQuery &_SQ, ValueInBB OriginalValue) 2665 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 2666 2667 /// \brief Get the combined AddrMode 2668 const ExtAddrMode &getAddrMode() const { 2669 return AddrModes[0]; 2670 } 2671 2672 /// \brief Add a new AddrMode if it's compatible with the AddrModes we already 2673 /// have. 2674 /// \return True iff we succeeded in doing so. 2675 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 2676 // Take note of if we have any non-trivial AddrModes, as we need to detect 2677 // when all AddrModes are trivial as then we would introduce a phi or select 2678 // which just duplicates what's already there. 2679 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 2680 2681 // If this is the first addrmode then everything is fine. 2682 if (AddrModes.empty()) { 2683 AddrModes.emplace_back(NewAddrMode); 2684 return true; 2685 } 2686 2687 // Figure out how different this is from the other address modes, which we 2688 // can do just by comparing against the first one given that we only care 2689 // about the cumulative difference. 2690 ExtAddrMode::FieldName ThisDifferentField = 2691 AddrModes[0].compare(NewAddrMode); 2692 if (DifferentField == ExtAddrMode::NoField) 2693 DifferentField = ThisDifferentField; 2694 else if (DifferentField != ThisDifferentField) 2695 DifferentField = ExtAddrMode::MultipleFields; 2696 2697 // If NewAddrMode differs in only one dimension, and that dimension isn't 2698 // the amount that ScaledReg is scaled by, then we can handle it by 2699 // inserting a phi/select later on. Even if NewAddMode is the same 2700 // we still need to collect it due to original value is different. 2701 // And later we will need all original values as anchors during 2702 // finding the common Phi node. 2703 // We also must reject the case when base offset is different and 2704 // scale reg is not null, we cannot handle this case due to merge of 2705 // different offsets will be used as ScaleReg. 2706 if (DifferentField != ExtAddrMode::MultipleFields && 2707 DifferentField != ExtAddrMode::ScaleField && 2708 (DifferentField != ExtAddrMode::BaseOffsField || 2709 !NewAddrMode.ScaledReg)) { 2710 AddrModes.emplace_back(NewAddrMode); 2711 return true; 2712 } 2713 2714 // We couldn't combine NewAddrMode with the rest, so return failure. 2715 AddrModes.clear(); 2716 return false; 2717 } 2718 2719 /// \brief Combine the addressing modes we've collected into a single 2720 /// addressing mode. 2721 /// \return True iff we successfully combined them or we only had one so 2722 /// didn't need to combine them anyway. 2723 bool combineAddrModes() { 2724 // If we have no AddrModes then they can't be combined. 2725 if (AddrModes.size() == 0) 2726 return false; 2727 2728 // A single AddrMode can trivially be combined. 2729 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 2730 return true; 2731 2732 // If the AddrModes we collected are all just equal to the value they are 2733 // derived from then combining them wouldn't do anything useful. 2734 if (AllAddrModesTrivial) 2735 return false; 2736 2737 if (!addrModeCombiningAllowed()) 2738 return false; 2739 2740 // Build a map between <original value, basic block where we saw it> to 2741 // value of base register. 2742 // Bail out if there is no common type. 2743 FoldAddrToValueMapping Map; 2744 if (!initializeMap(Map)) 2745 return false; 2746 2747 Value *CommonValue = findCommon(Map); 2748 if (CommonValue) 2749 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 2750 return CommonValue != nullptr; 2751 } 2752 2753 private: 2754 /// \brief Initialize Map with anchor values. For address seen in some BB 2755 /// we set the value of different field saw in this address. 2756 /// If address is not an instruction than basic block is set to null. 2757 /// At the same time we find a common type for different field we will 2758 /// use to create new Phi/Select nodes. Keep it in CommonType field. 2759 /// Return false if there is no common type found. 2760 bool initializeMap(FoldAddrToValueMapping &Map) { 2761 // Keep track of keys where the value is null. We will need to replace it 2762 // with constant null when we know the common type. 2763 SmallVector<ValueInBB, 2> NullValue; 2764 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 2765 for (auto &AM : AddrModes) { 2766 BasicBlock *BB = nullptr; 2767 if (Instruction *I = dyn_cast<Instruction>(AM.OriginalValue)) 2768 BB = I->getParent(); 2769 2770 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 2771 if (DV) { 2772 auto *Type = DV->getType(); 2773 if (CommonType && CommonType != Type) 2774 return false; 2775 CommonType = Type; 2776 Map[{ AM.OriginalValue, BB }] = DV; 2777 } else { 2778 NullValue.push_back({ AM.OriginalValue, BB }); 2779 } 2780 } 2781 assert(CommonType && "At least one non-null value must be!"); 2782 for (auto VIBB : NullValue) 2783 Map[VIBB] = Constant::getNullValue(CommonType); 2784 return true; 2785 } 2786 2787 /// \brief We have mapping between value A and basic block where value A 2788 /// seen to other value B where B was a field in addressing mode represented 2789 /// by A. Also we have an original value C representin an address in some 2790 /// basic block. Traversing from C through phi and selects we ended up with 2791 /// A's in a map. This utility function tries to find a value V which is a 2792 /// field in addressing mode C and traversing through phi nodes and selects 2793 /// we will end up in corresponded values B in a map. 2794 /// The utility will create a new Phi/Selects if needed. 2795 // The simple example looks as follows: 2796 // BB1: 2797 // p1 = b1 + 40 2798 // br cond BB2, BB3 2799 // BB2: 2800 // p2 = b2 + 40 2801 // br BB3 2802 // BB3: 2803 // p = phi [p1, BB1], [p2, BB2] 2804 // v = load p 2805 // Map is 2806 // <p1, BB1> -> b1 2807 // <p2, BB2> -> b2 2808 // Request is 2809 // <p, BB3> -> ? 2810 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3 2811 Value *findCommon(FoldAddrToValueMapping &Map) { 2812 // Tracks newly created Phi nodes. 2813 SmallPtrSet<PHINode *, 32> NewPhiNodes; 2814 // Tracks newly created Select nodes. 2815 SmallPtrSet<SelectInst *, 32> NewSelectNodes; 2816 // Tracks the simplification of newly created phi nodes. The reason we use 2817 // this mapping is because we will add new created Phi nodes in AddrToBase. 2818 // Simplification of Phi nodes is recursive, so some Phi node may 2819 // be simplified after we added it to AddrToBase. 2820 // Using this mapping we can find the current value in AddrToBase. 2821 SimplificationTracker ST(SQ, NewPhiNodes, NewSelectNodes); 2822 2823 // First step, DFS to create PHI nodes for all intermediate blocks. 2824 // Also fill traverse order for the second step. 2825 SmallVector<ValueInBB, 32> TraverseOrder; 2826 InsertPlaceholders(Map, TraverseOrder, NewPhiNodes, NewSelectNodes); 2827 2828 // Second Step, fill new nodes by merged values and simplify if possible. 2829 FillPlaceholders(Map, TraverseOrder, ST); 2830 2831 if (!AddrSinkNewSelects && NewSelectNodes.size() > 0) { 2832 DestroyNodes(NewPhiNodes); 2833 DestroyNodes(NewSelectNodes); 2834 return nullptr; 2835 } 2836 2837 // Now we'd like to match New Phi nodes to existed ones. 2838 unsigned PhiNotMatchedCount = 0; 2839 if (!MatchPhiSet(NewPhiNodes, ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 2840 DestroyNodes(NewPhiNodes); 2841 DestroyNodes(NewSelectNodes); 2842 return nullptr; 2843 } 2844 2845 auto *Result = ST.Get(Map.find(Original)->second); 2846 if (Result) { 2847 NumMemoryInstsPhiCreated += NewPhiNodes.size() + PhiNotMatchedCount; 2848 NumMemoryInstsSelectCreated += NewSelectNodes.size(); 2849 } 2850 return Result; 2851 } 2852 2853 /// \brief Destroy nodes from a set. 2854 template <typename T> void DestroyNodes(SmallPtrSetImpl<T *> &Instructions) { 2855 // For safe erasing, replace the Phi with dummy value first. 2856 auto Dummy = UndefValue::get(CommonType); 2857 for (auto I : Instructions) { 2858 I->replaceAllUsesWith(Dummy); 2859 I->eraseFromParent(); 2860 } 2861 } 2862 2863 /// \brief Try to match PHI node to Candidate. 2864 /// Matcher tracks the matched Phi nodes. 2865 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 2866 DenseSet<PHIPair> &Matcher, 2867 SmallPtrSetImpl<PHINode *> &PhiNodesToMatch) { 2868 SmallVector<PHIPair, 8> WorkList; 2869 Matcher.insert({ PHI, Candidate }); 2870 WorkList.push_back({ PHI, Candidate }); 2871 SmallSet<PHIPair, 8> Visited; 2872 while (!WorkList.empty()) { 2873 auto Item = WorkList.pop_back_val(); 2874 if (!Visited.insert(Item).second) 2875 continue; 2876 // We iterate over all incoming values to Phi to compare them. 2877 // If values are different and both of them Phi and the first one is a 2878 // Phi we added (subject to match) and both of them is in the same basic 2879 // block then we can match our pair if values match. So we state that 2880 // these values match and add it to work list to verify that. 2881 for (auto B : Item.first->blocks()) { 2882 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 2883 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 2884 if (FirstValue == SecondValue) 2885 continue; 2886 2887 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 2888 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 2889 2890 // One of them is not Phi or 2891 // The first one is not Phi node from the set we'd like to match or 2892 // Phi nodes from different basic blocks then 2893 // we will not be able to match. 2894 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 2895 FirstPhi->getParent() != SecondPhi->getParent()) 2896 return false; 2897 2898 // If we already matched them then continue. 2899 if (Matcher.count({ FirstPhi, SecondPhi })) 2900 continue; 2901 // So the values are different and does not match. So we need them to 2902 // match. 2903 Matcher.insert({ FirstPhi, SecondPhi }); 2904 // But me must check it. 2905 WorkList.push_back({ FirstPhi, SecondPhi }); 2906 } 2907 } 2908 return true; 2909 } 2910 2911 /// \brief For the given set of PHI nodes try to find their equivalents. 2912 /// Returns false if this matching fails and creation of new Phi is disabled. 2913 bool MatchPhiSet(SmallPtrSetImpl<PHINode *> &PhiNodesToMatch, 2914 SimplificationTracker &ST, bool AllowNewPhiNodes, 2915 unsigned &PhiNotMatchedCount) { 2916 DenseSet<PHIPair> Matched; 2917 SmallPtrSet<PHINode *, 8> WillNotMatch; 2918 while (PhiNodesToMatch.size()) { 2919 PHINode *PHI = *PhiNodesToMatch.begin(); 2920 2921 // Add us, if no Phi nodes in the basic block we do not match. 2922 WillNotMatch.clear(); 2923 WillNotMatch.insert(PHI); 2924 2925 // Traverse all Phis until we found equivalent or fail to do that. 2926 bool IsMatched = false; 2927 for (auto &P : PHI->getParent()->phis()) { 2928 if (&P == PHI) 2929 continue; 2930 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 2931 break; 2932 // If it does not match, collect all Phi nodes from matcher. 2933 // if we end up with no match, them all these Phi nodes will not match 2934 // later. 2935 for (auto M : Matched) 2936 WillNotMatch.insert(M.first); 2937 Matched.clear(); 2938 } 2939 if (IsMatched) { 2940 // Replace all matched values and erase them. 2941 for (auto MV : Matched) { 2942 MV.first->replaceAllUsesWith(MV.second); 2943 PhiNodesToMatch.erase(MV.first); 2944 ST.Put(MV.first, MV.second); 2945 MV.first->eraseFromParent(); 2946 } 2947 Matched.clear(); 2948 continue; 2949 } 2950 // If we are not allowed to create new nodes then bail out. 2951 if (!AllowNewPhiNodes) 2952 return false; 2953 // Just remove all seen values in matcher. They will not match anything. 2954 PhiNotMatchedCount += WillNotMatch.size(); 2955 for (auto *P : WillNotMatch) 2956 PhiNodesToMatch.erase(P); 2957 } 2958 return true; 2959 } 2960 /// \brief Fill the placeholder with values from predecessors and simplify it. 2961 void FillPlaceholders(FoldAddrToValueMapping &Map, 2962 SmallVectorImpl<ValueInBB> &TraverseOrder, 2963 SimplificationTracker &ST) { 2964 while (!TraverseOrder.empty()) { 2965 auto Current = TraverseOrder.pop_back_val(); 2966 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 2967 Value *CurrentValue = Current.first; 2968 BasicBlock *CurrentBlock = Current.second; 2969 Value *V = Map[Current]; 2970 2971 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 2972 // CurrentValue also must be Select. 2973 auto *CurrentSelect = cast<SelectInst>(CurrentValue); 2974 auto *TrueValue = CurrentSelect->getTrueValue(); 2975 ValueInBB TrueItem = { TrueValue, isa<Instruction>(TrueValue) 2976 ? CurrentBlock 2977 : nullptr }; 2978 assert(Map.find(TrueItem) != Map.end() && "No True Value!"); 2979 Select->setTrueValue(ST.Get(Map[TrueItem])); 2980 auto *FalseValue = CurrentSelect->getFalseValue(); 2981 ValueInBB FalseItem = { FalseValue, isa<Instruction>(FalseValue) 2982 ? CurrentBlock 2983 : nullptr }; 2984 assert(Map.find(FalseItem) != Map.end() && "No False Value!"); 2985 Select->setFalseValue(ST.Get(Map[FalseItem])); 2986 } else { 2987 // Must be a Phi node then. 2988 PHINode *PHI = cast<PHINode>(V); 2989 // Fill the Phi node with values from predecessors. 2990 bool IsDefinedInThisBB = 2991 cast<Instruction>(CurrentValue)->getParent() == CurrentBlock; 2992 auto *CurrentPhi = dyn_cast<PHINode>(CurrentValue); 2993 for (auto B : predecessors(CurrentBlock)) { 2994 Value *PV = IsDefinedInThisBB 2995 ? CurrentPhi->getIncomingValueForBlock(B) 2996 : CurrentValue; 2997 ValueInBB item = { PV, isa<Instruction>(PV) ? B : nullptr }; 2998 assert(Map.find(item) != Map.end() && "No predecessor Value!"); 2999 PHI->addIncoming(ST.Get(Map[item]), B); 3000 } 3001 } 3002 // Simplify if possible. 3003 Map[Current] = ST.Simplify(V); 3004 } 3005 } 3006 3007 /// Starting from value recursively iterates over predecessors up to known 3008 /// ending values represented in a map. For each traversed block inserts 3009 /// a placeholder Phi or Select. 3010 /// Reports all new created Phi/Select nodes by adding them to set. 3011 /// Also reports and order in what basic blocks have been traversed. 3012 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3013 SmallVectorImpl<ValueInBB> &TraverseOrder, 3014 SmallPtrSetImpl<PHINode *> &NewPhiNodes, 3015 SmallPtrSetImpl<SelectInst *> &NewSelectNodes) { 3016 SmallVector<ValueInBB, 32> Worklist; 3017 assert((isa<PHINode>(Original.first) || isa<SelectInst>(Original.first)) && 3018 "Address must be a Phi or Select node"); 3019 auto *Dummy = UndefValue::get(CommonType); 3020 Worklist.push_back(Original); 3021 while (!Worklist.empty()) { 3022 auto Current = Worklist.pop_back_val(); 3023 // If value is not an instruction it is something global, constant, 3024 // parameter and we can say that this value is observable in any block. 3025 // Set block to null to denote it. 3026 // Also please take into account that it is how we build anchors. 3027 if (!isa<Instruction>(Current.first)) 3028 Current.second = nullptr; 3029 // if it is already visited or it is an ending value then skip it. 3030 if (Map.find(Current) != Map.end()) 3031 continue; 3032 TraverseOrder.push_back(Current); 3033 3034 Value *CurrentValue = Current.first; 3035 BasicBlock *CurrentBlock = Current.second; 3036 // CurrentValue must be a Phi node or select. All others must be covered 3037 // by anchors. 3038 Instruction *CurrentI = cast<Instruction>(CurrentValue); 3039 bool IsDefinedInThisBB = CurrentI->getParent() == CurrentBlock; 3040 3041 unsigned PredCount = 3042 std::distance(pred_begin(CurrentBlock), pred_end(CurrentBlock)); 3043 // if Current Value is not defined in this basic block we are interested 3044 // in values in predecessors. 3045 if (!IsDefinedInThisBB) { 3046 assert(PredCount && "Unreachable block?!"); 3047 PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi", 3048 &CurrentBlock->front()); 3049 Map[Current] = PHI; 3050 NewPhiNodes.insert(PHI); 3051 // Add all predecessors in work list. 3052 for (auto B : predecessors(CurrentBlock)) 3053 Worklist.push_back({ CurrentValue, B }); 3054 continue; 3055 } 3056 // Value is defined in this basic block. 3057 if (SelectInst *OrigSelect = dyn_cast<SelectInst>(CurrentI)) { 3058 // Is it OK to get metadata from OrigSelect?! 3059 // Create a Select placeholder with dummy value. 3060 SelectInst *Select = 3061 SelectInst::Create(OrigSelect->getCondition(), Dummy, Dummy, 3062 OrigSelect->getName(), OrigSelect, OrigSelect); 3063 Map[Current] = Select; 3064 NewSelectNodes.insert(Select); 3065 // We are interested in True and False value in this basic block. 3066 Worklist.push_back({ OrigSelect->getTrueValue(), CurrentBlock }); 3067 Worklist.push_back({ OrigSelect->getFalseValue(), CurrentBlock }); 3068 } else { 3069 // It must be a Phi node then. 3070 auto *CurrentPhi = cast<PHINode>(CurrentI); 3071 // Create new Phi node for merge of bases. 3072 assert(PredCount && "Unreachable block?!"); 3073 PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi", 3074 &CurrentBlock->front()); 3075 Map[Current] = PHI; 3076 NewPhiNodes.insert(PHI); 3077 3078 // Add all predecessors in work list. 3079 for (auto B : predecessors(CurrentBlock)) 3080 Worklist.push_back({ CurrentPhi->getIncomingValueForBlock(B), B }); 3081 } 3082 } 3083 } 3084 3085 bool addrModeCombiningAllowed() { 3086 if (DisableComplexAddrModes) 3087 return false; 3088 switch (DifferentField) { 3089 default: 3090 return false; 3091 case ExtAddrMode::BaseRegField: 3092 return AddrSinkCombineBaseReg; 3093 case ExtAddrMode::BaseGVField: 3094 return AddrSinkCombineBaseGV; 3095 case ExtAddrMode::BaseOffsField: 3096 return AddrSinkCombineBaseOffs; 3097 case ExtAddrMode::ScaledRegField: 3098 return AddrSinkCombineScaledReg; 3099 } 3100 } 3101 }; 3102 } // end anonymous namespace 3103 3104 /// Try adding ScaleReg*Scale to the current addressing mode. 3105 /// Return true and update AddrMode if this addr mode is legal for the target, 3106 /// false if not. 3107 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3108 unsigned Depth) { 3109 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3110 // mode. Just process that directly. 3111 if (Scale == 1) 3112 return matchAddr(ScaleReg, Depth); 3113 3114 // If the scale is 0, it takes nothing to add this. 3115 if (Scale == 0) 3116 return true; 3117 3118 // If we already have a scale of this value, we can add to it, otherwise, we 3119 // need an available scale field. 3120 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3121 return false; 3122 3123 ExtAddrMode TestAddrMode = AddrMode; 3124 3125 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3126 // [A+B + A*7] -> [B+A*8]. 3127 TestAddrMode.Scale += Scale; 3128 TestAddrMode.ScaledReg = ScaleReg; 3129 3130 // If the new address isn't legal, bail out. 3131 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3132 return false; 3133 3134 // It was legal, so commit it. 3135 AddrMode = TestAddrMode; 3136 3137 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3138 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3139 // X*Scale + C*Scale to addr mode. 3140 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3141 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3142 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3143 TestAddrMode.ScaledReg = AddLHS; 3144 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3145 3146 // If this addressing mode is legal, commit it and remember that we folded 3147 // this instruction. 3148 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3149 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3150 AddrMode = TestAddrMode; 3151 return true; 3152 } 3153 } 3154 3155 // Otherwise, not (x+c)*scale, just return what we have. 3156 return true; 3157 } 3158 3159 /// This is a little filter, which returns true if an addressing computation 3160 /// involving I might be folded into a load/store accessing it. 3161 /// This doesn't need to be perfect, but needs to accept at least 3162 /// the set of instructions that MatchOperationAddr can. 3163 static bool MightBeFoldableInst(Instruction *I) { 3164 switch (I->getOpcode()) { 3165 case Instruction::BitCast: 3166 case Instruction::AddrSpaceCast: 3167 // Don't touch identity bitcasts. 3168 if (I->getType() == I->getOperand(0)->getType()) 3169 return false; 3170 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 3171 case Instruction::PtrToInt: 3172 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3173 return true; 3174 case Instruction::IntToPtr: 3175 // We know the input is intptr_t, so this is foldable. 3176 return true; 3177 case Instruction::Add: 3178 return true; 3179 case Instruction::Mul: 3180 case Instruction::Shl: 3181 // Can only handle X*C and X << C. 3182 return isa<ConstantInt>(I->getOperand(1)); 3183 case Instruction::GetElementPtr: 3184 return true; 3185 default: 3186 return false; 3187 } 3188 } 3189 3190 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 3191 /// \note \p Val is assumed to be the product of some type promotion. 3192 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3193 /// to be legal, as the non-promoted value would have had the same state. 3194 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3195 const DataLayout &DL, Value *Val) { 3196 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3197 if (!PromotedInst) 3198 return false; 3199 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3200 // If the ISDOpcode is undefined, it was undefined before the promotion. 3201 if (!ISDOpcode) 3202 return true; 3203 // Otherwise, check if the promoted instruction is legal or not. 3204 return TLI.isOperationLegalOrCustom( 3205 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3206 } 3207 3208 namespace { 3209 3210 /// \brief Hepler class to perform type promotion. 3211 class TypePromotionHelper { 3212 /// \brief Utility function to check whether or not a sign or zero extension 3213 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3214 /// either using the operands of \p Inst or promoting \p Inst. 3215 /// The type of the extension is defined by \p IsSExt. 3216 /// In other words, check if: 3217 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3218 /// #1 Promotion applies: 3219 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3220 /// #2 Operand reuses: 3221 /// ext opnd1 to ConsideredExtType. 3222 /// \p PromotedInsts maps the instructions to their type before promotion. 3223 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3224 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3225 3226 /// \brief Utility function to determine if \p OpIdx should be promoted when 3227 /// promoting \p Inst. 3228 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3229 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3230 } 3231 3232 /// \brief Utility function to promote the operand of \p Ext when this 3233 /// operand is a promotable trunc or sext or zext. 3234 /// \p PromotedInsts maps the instructions to their type before promotion. 3235 /// \p CreatedInstsCost[out] contains the cost of all instructions 3236 /// created to promote the operand of Ext. 3237 /// Newly added extensions are inserted in \p Exts. 3238 /// Newly added truncates are inserted in \p Truncs. 3239 /// Should never be called directly. 3240 /// \return The promoted value which is used instead of Ext. 3241 static Value *promoteOperandForTruncAndAnyExt( 3242 Instruction *Ext, TypePromotionTransaction &TPT, 3243 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3244 SmallVectorImpl<Instruction *> *Exts, 3245 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3246 3247 /// \brief Utility function to promote the operand of \p Ext when this 3248 /// operand is promotable and is not a supported trunc or sext. 3249 /// \p PromotedInsts maps the instructions to their type before promotion. 3250 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3251 /// created to promote the operand of Ext. 3252 /// Newly added extensions are inserted in \p Exts. 3253 /// Newly added truncates are inserted in \p Truncs. 3254 /// Should never be called directly. 3255 /// \return The promoted value which is used instead of Ext. 3256 static Value *promoteOperandForOther(Instruction *Ext, 3257 TypePromotionTransaction &TPT, 3258 InstrToOrigTy &PromotedInsts, 3259 unsigned &CreatedInstsCost, 3260 SmallVectorImpl<Instruction *> *Exts, 3261 SmallVectorImpl<Instruction *> *Truncs, 3262 const TargetLowering &TLI, bool IsSExt); 3263 3264 /// \see promoteOperandForOther. 3265 static Value *signExtendOperandForOther( 3266 Instruction *Ext, TypePromotionTransaction &TPT, 3267 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3268 SmallVectorImpl<Instruction *> *Exts, 3269 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3270 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3271 Exts, Truncs, TLI, true); 3272 } 3273 3274 /// \see promoteOperandForOther. 3275 static Value *zeroExtendOperandForOther( 3276 Instruction *Ext, TypePromotionTransaction &TPT, 3277 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3278 SmallVectorImpl<Instruction *> *Exts, 3279 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3280 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3281 Exts, Truncs, TLI, false); 3282 } 3283 3284 public: 3285 /// Type for the utility function that promotes the operand of Ext. 3286 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3287 InstrToOrigTy &PromotedInsts, 3288 unsigned &CreatedInstsCost, 3289 SmallVectorImpl<Instruction *> *Exts, 3290 SmallVectorImpl<Instruction *> *Truncs, 3291 const TargetLowering &TLI); 3292 3293 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 3294 /// action to promote the operand of \p Ext instead of using Ext. 3295 /// \return NULL if no promotable action is possible with the current 3296 /// sign extension. 3297 /// \p InsertedInsts keeps track of all the instructions inserted by the 3298 /// other CodeGenPrepare optimizations. This information is important 3299 /// because we do not want to promote these instructions as CodeGenPrepare 3300 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3301 /// \p PromotedInsts maps the instructions to their type before promotion. 3302 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3303 const TargetLowering &TLI, 3304 const InstrToOrigTy &PromotedInsts); 3305 }; 3306 3307 } // end anonymous namespace 3308 3309 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3310 Type *ConsideredExtType, 3311 const InstrToOrigTy &PromotedInsts, 3312 bool IsSExt) { 3313 // The promotion helper does not know how to deal with vector types yet. 3314 // To be able to fix that, we would need to fix the places where we 3315 // statically extend, e.g., constants and such. 3316 if (Inst->getType()->isVectorTy()) 3317 return false; 3318 3319 // We can always get through zext. 3320 if (isa<ZExtInst>(Inst)) 3321 return true; 3322 3323 // sext(sext) is ok too. 3324 if (IsSExt && isa<SExtInst>(Inst)) 3325 return true; 3326 3327 // We can get through binary operator, if it is legal. In other words, the 3328 // binary operator must have a nuw or nsw flag. 3329 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3330 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3331 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3332 (IsSExt && BinOp->hasNoSignedWrap()))) 3333 return true; 3334 3335 // Check if we can do the following simplification. 3336 // ext(trunc(opnd)) --> ext(opnd) 3337 if (!isa<TruncInst>(Inst)) 3338 return false; 3339 3340 Value *OpndVal = Inst->getOperand(0); 3341 // Check if we can use this operand in the extension. 3342 // If the type is larger than the result type of the extension, we cannot. 3343 if (!OpndVal->getType()->isIntegerTy() || 3344 OpndVal->getType()->getIntegerBitWidth() > 3345 ConsideredExtType->getIntegerBitWidth()) 3346 return false; 3347 3348 // If the operand of the truncate is not an instruction, we will not have 3349 // any information on the dropped bits. 3350 // (Actually we could for constant but it is not worth the extra logic). 3351 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3352 if (!Opnd) 3353 return false; 3354 3355 // Check if the source of the type is narrow enough. 3356 // I.e., check that trunc just drops extended bits of the same kind of 3357 // the extension. 3358 // #1 get the type of the operand and check the kind of the extended bits. 3359 const Type *OpndType; 3360 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3361 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 3362 OpndType = It->second.getPointer(); 3363 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3364 OpndType = Opnd->getOperand(0)->getType(); 3365 else 3366 return false; 3367 3368 // #2 check that the truncate just drops extended bits. 3369 return Inst->getType()->getIntegerBitWidth() >= 3370 OpndType->getIntegerBitWidth(); 3371 } 3372 3373 TypePromotionHelper::Action TypePromotionHelper::getAction( 3374 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3375 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3376 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3377 "Unexpected instruction type"); 3378 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3379 Type *ExtTy = Ext->getType(); 3380 bool IsSExt = isa<SExtInst>(Ext); 3381 // If the operand of the extension is not an instruction, we cannot 3382 // get through. 3383 // If it, check we can get through. 3384 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3385 return nullptr; 3386 3387 // Do not promote if the operand has been added by codegenprepare. 3388 // Otherwise, it means we are undoing an optimization that is likely to be 3389 // redone, thus causing potential infinite loop. 3390 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3391 return nullptr; 3392 3393 // SExt or Trunc instructions. 3394 // Return the related handler. 3395 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3396 isa<ZExtInst>(ExtOpnd)) 3397 return promoteOperandForTruncAndAnyExt; 3398 3399 // Regular instruction. 3400 // Abort early if we will have to insert non-free instructions. 3401 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3402 return nullptr; 3403 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3404 } 3405 3406 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3407 Instruction *SExt, TypePromotionTransaction &TPT, 3408 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3409 SmallVectorImpl<Instruction *> *Exts, 3410 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3411 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3412 // get through it and this method should not be called. 3413 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3414 Value *ExtVal = SExt; 3415 bool HasMergedNonFreeExt = false; 3416 if (isa<ZExtInst>(SExtOpnd)) { 3417 // Replace s|zext(zext(opnd)) 3418 // => zext(opnd). 3419 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3420 Value *ZExt = 3421 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3422 TPT.replaceAllUsesWith(SExt, ZExt); 3423 TPT.eraseInstruction(SExt); 3424 ExtVal = ZExt; 3425 } else { 3426 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3427 // => z|sext(opnd). 3428 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3429 } 3430 CreatedInstsCost = 0; 3431 3432 // Remove dead code. 3433 if (SExtOpnd->use_empty()) 3434 TPT.eraseInstruction(SExtOpnd); 3435 3436 // Check if the extension is still needed. 3437 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3438 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3439 if (ExtInst) { 3440 if (Exts) 3441 Exts->push_back(ExtInst); 3442 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3443 } 3444 return ExtVal; 3445 } 3446 3447 // At this point we have: ext ty opnd to ty. 3448 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3449 Value *NextVal = ExtInst->getOperand(0); 3450 TPT.eraseInstruction(ExtInst, NextVal); 3451 return NextVal; 3452 } 3453 3454 Value *TypePromotionHelper::promoteOperandForOther( 3455 Instruction *Ext, TypePromotionTransaction &TPT, 3456 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3457 SmallVectorImpl<Instruction *> *Exts, 3458 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3459 bool IsSExt) { 3460 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3461 // get through it and this method should not be called. 3462 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3463 CreatedInstsCost = 0; 3464 if (!ExtOpnd->hasOneUse()) { 3465 // ExtOpnd will be promoted. 3466 // All its uses, but Ext, will need to use a truncated value of the 3467 // promoted version. 3468 // Create the truncate now. 3469 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3470 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3471 // Insert it just after the definition. 3472 ITrunc->moveAfter(ExtOpnd); 3473 if (Truncs) 3474 Truncs->push_back(ITrunc); 3475 } 3476 3477 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3478 // Restore the operand of Ext (which has been replaced by the previous call 3479 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3480 TPT.setOperand(Ext, 0, ExtOpnd); 3481 } 3482 3483 // Get through the Instruction: 3484 // 1. Update its type. 3485 // 2. Replace the uses of Ext by Inst. 3486 // 3. Extend each operand that needs to be extended. 3487 3488 // Remember the original type of the instruction before promotion. 3489 // This is useful to know that the high bits are sign extended bits. 3490 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 3491 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 3492 // Step #1. 3493 TPT.mutateType(ExtOpnd, Ext->getType()); 3494 // Step #2. 3495 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3496 // Step #3. 3497 Instruction *ExtForOpnd = Ext; 3498 3499 DEBUG(dbgs() << "Propagate Ext to operands\n"); 3500 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3501 ++OpIdx) { 3502 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3503 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3504 !shouldExtOperand(ExtOpnd, OpIdx)) { 3505 DEBUG(dbgs() << "No need to propagate\n"); 3506 continue; 3507 } 3508 // Check if we can statically extend the operand. 3509 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3510 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3511 DEBUG(dbgs() << "Statically extend\n"); 3512 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3513 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3514 : Cst->getValue().zext(BitWidth); 3515 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3516 continue; 3517 } 3518 // UndefValue are typed, so we have to statically sign extend them. 3519 if (isa<UndefValue>(Opnd)) { 3520 DEBUG(dbgs() << "Statically extend\n"); 3521 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3522 continue; 3523 } 3524 3525 // Otherwise we have to explicity sign extend the operand. 3526 // Check if Ext was reused to extend an operand. 3527 if (!ExtForOpnd) { 3528 // If yes, create a new one. 3529 DEBUG(dbgs() << "More operands to ext\n"); 3530 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3531 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3532 if (!isa<Instruction>(ValForExtOpnd)) { 3533 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3534 continue; 3535 } 3536 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3537 } 3538 if (Exts) 3539 Exts->push_back(ExtForOpnd); 3540 TPT.setOperand(ExtForOpnd, 0, Opnd); 3541 3542 // Move the sign extension before the insertion point. 3543 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3544 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3545 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3546 // If more sext are required, new instructions will have to be created. 3547 ExtForOpnd = nullptr; 3548 } 3549 if (ExtForOpnd == Ext) { 3550 DEBUG(dbgs() << "Extension is useless now\n"); 3551 TPT.eraseInstruction(Ext); 3552 } 3553 return ExtOpnd; 3554 } 3555 3556 /// Check whether or not promoting an instruction to a wider type is profitable. 3557 /// \p NewCost gives the cost of extension instructions created by the 3558 /// promotion. 3559 /// \p OldCost gives the cost of extension instructions before the promotion 3560 /// plus the number of instructions that have been 3561 /// matched in the addressing mode the promotion. 3562 /// \p PromotedOperand is the value that has been promoted. 3563 /// \return True if the promotion is profitable, false otherwise. 3564 bool AddressingModeMatcher::isPromotionProfitable( 3565 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3566 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); 3567 // The cost of the new extensions is greater than the cost of the 3568 // old extension plus what we folded. 3569 // This is not profitable. 3570 if (NewCost > OldCost) 3571 return false; 3572 if (NewCost < OldCost) 3573 return true; 3574 // The promotion is neutral but it may help folding the sign extension in 3575 // loads for instance. 3576 // Check that we did not create an illegal instruction. 3577 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3578 } 3579 3580 /// Given an instruction or constant expr, see if we can fold the operation 3581 /// into the addressing mode. If so, update the addressing mode and return 3582 /// true, otherwise return false without modifying AddrMode. 3583 /// If \p MovedAway is not NULL, it contains the information of whether or 3584 /// not AddrInst has to be folded into the addressing mode on success. 3585 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3586 /// because it has been moved away. 3587 /// Thus AddrInst must not be added in the matched instructions. 3588 /// This state can happen when AddrInst is a sext, since it may be moved away. 3589 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3590 /// not be referenced anymore. 3591 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3592 unsigned Depth, 3593 bool *MovedAway) { 3594 // Avoid exponential behavior on extremely deep expression trees. 3595 if (Depth >= 5) return false; 3596 3597 // By default, all matched instructions stay in place. 3598 if (MovedAway) 3599 *MovedAway = false; 3600 3601 switch (Opcode) { 3602 case Instruction::PtrToInt: 3603 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3604 return matchAddr(AddrInst->getOperand(0), Depth); 3605 case Instruction::IntToPtr: { 3606 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3607 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3608 // This inttoptr is a no-op if the integer type is pointer sized. 3609 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3610 return matchAddr(AddrInst->getOperand(0), Depth); 3611 return false; 3612 } 3613 case Instruction::BitCast: 3614 // BitCast is always a noop, and we can handle it as long as it is 3615 // int->int or pointer->pointer (we don't want int<->fp or something). 3616 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 3617 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 3618 // Don't touch identity bitcasts. These were probably put here by LSR, 3619 // and we don't want to mess around with them. Assume it knows what it 3620 // is doing. 3621 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3622 return matchAddr(AddrInst->getOperand(0), Depth); 3623 return false; 3624 case Instruction::AddrSpaceCast: { 3625 unsigned SrcAS 3626 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3627 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3628 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3629 return matchAddr(AddrInst->getOperand(0), Depth); 3630 return false; 3631 } 3632 case Instruction::Add: { 3633 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3634 ExtAddrMode BackupAddrMode = AddrMode; 3635 unsigned OldSize = AddrModeInsts.size(); 3636 // Start a transaction at this point. 3637 // The LHS may match but not the RHS. 3638 // Therefore, we need a higher level restoration point to undo partially 3639 // matched operation. 3640 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3641 TPT.getRestorationPoint(); 3642 3643 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3644 matchAddr(AddrInst->getOperand(0), Depth+1)) 3645 return true; 3646 3647 // Restore the old addr mode info. 3648 AddrMode = BackupAddrMode; 3649 AddrModeInsts.resize(OldSize); 3650 TPT.rollback(LastKnownGood); 3651 3652 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3653 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3654 matchAddr(AddrInst->getOperand(1), Depth+1)) 3655 return true; 3656 3657 // Otherwise we definitely can't merge the ADD in. 3658 AddrMode = BackupAddrMode; 3659 AddrModeInsts.resize(OldSize); 3660 TPT.rollback(LastKnownGood); 3661 break; 3662 } 3663 //case Instruction::Or: 3664 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3665 //break; 3666 case Instruction::Mul: 3667 case Instruction::Shl: { 3668 // Can only handle X*C and X << C. 3669 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3670 if (!RHS || RHS->getBitWidth() > 64) 3671 return false; 3672 int64_t Scale = RHS->getSExtValue(); 3673 if (Opcode == Instruction::Shl) 3674 Scale = 1LL << Scale; 3675 3676 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3677 } 3678 case Instruction::GetElementPtr: { 3679 // Scan the GEP. We check it if it contains constant offsets and at most 3680 // one variable offset. 3681 int VariableOperand = -1; 3682 unsigned VariableScale = 0; 3683 3684 int64_t ConstantOffset = 0; 3685 gep_type_iterator GTI = gep_type_begin(AddrInst); 3686 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3687 if (StructType *STy = GTI.getStructTypeOrNull()) { 3688 const StructLayout *SL = DL.getStructLayout(STy); 3689 unsigned Idx = 3690 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3691 ConstantOffset += SL->getElementOffset(Idx); 3692 } else { 3693 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3694 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3695 ConstantOffset += CI->getSExtValue() * TypeSize; 3696 } else if (TypeSize) { // Scales of zero don't do anything. 3697 // We only allow one variable index at the moment. 3698 if (VariableOperand != -1) 3699 return false; 3700 3701 // Remember the variable index. 3702 VariableOperand = i; 3703 VariableScale = TypeSize; 3704 } 3705 } 3706 } 3707 3708 // A common case is for the GEP to only do a constant offset. In this case, 3709 // just add it to the disp field and check validity. 3710 if (VariableOperand == -1) { 3711 AddrMode.BaseOffs += ConstantOffset; 3712 if (ConstantOffset == 0 || 3713 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 3714 // Check to see if we can fold the base pointer in too. 3715 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 3716 return true; 3717 } 3718 AddrMode.BaseOffs -= ConstantOffset; 3719 return false; 3720 } 3721 3722 // Save the valid addressing mode in case we can't match. 3723 ExtAddrMode BackupAddrMode = AddrMode; 3724 unsigned OldSize = AddrModeInsts.size(); 3725 3726 // See if the scale and offset amount is valid for this target. 3727 AddrMode.BaseOffs += ConstantOffset; 3728 3729 // Match the base operand of the GEP. 3730 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 3731 // If it couldn't be matched, just stuff the value in a register. 3732 if (AddrMode.HasBaseReg) { 3733 AddrMode = BackupAddrMode; 3734 AddrModeInsts.resize(OldSize); 3735 return false; 3736 } 3737 AddrMode.HasBaseReg = true; 3738 AddrMode.BaseReg = AddrInst->getOperand(0); 3739 } 3740 3741 // Match the remaining variable portion of the GEP. 3742 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 3743 Depth)) { 3744 // If it couldn't be matched, try stuffing the base into a register 3745 // instead of matching it, and retrying the match of the scale. 3746 AddrMode = BackupAddrMode; 3747 AddrModeInsts.resize(OldSize); 3748 if (AddrMode.HasBaseReg) 3749 return false; 3750 AddrMode.HasBaseReg = true; 3751 AddrMode.BaseReg = AddrInst->getOperand(0); 3752 AddrMode.BaseOffs += ConstantOffset; 3753 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 3754 VariableScale, Depth)) { 3755 // If even that didn't work, bail. 3756 AddrMode = BackupAddrMode; 3757 AddrModeInsts.resize(OldSize); 3758 return false; 3759 } 3760 } 3761 3762 return true; 3763 } 3764 case Instruction::SExt: 3765 case Instruction::ZExt: { 3766 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 3767 if (!Ext) 3768 return false; 3769 3770 // Try to move this ext out of the way of the addressing mode. 3771 // Ask for a method for doing so. 3772 TypePromotionHelper::Action TPH = 3773 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 3774 if (!TPH) 3775 return false; 3776 3777 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3778 TPT.getRestorationPoint(); 3779 unsigned CreatedInstsCost = 0; 3780 unsigned ExtCost = !TLI.isExtFree(Ext); 3781 Value *PromotedOperand = 3782 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 3783 // SExt has been moved away. 3784 // Thus either it will be rematched later in the recursive calls or it is 3785 // gone. Anyway, we must not fold it into the addressing mode at this point. 3786 // E.g., 3787 // op = add opnd, 1 3788 // idx = ext op 3789 // addr = gep base, idx 3790 // is now: 3791 // promotedOpnd = ext opnd <- no match here 3792 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 3793 // addr = gep base, op <- match 3794 if (MovedAway) 3795 *MovedAway = true; 3796 3797 assert(PromotedOperand && 3798 "TypePromotionHelper should have filtered out those cases"); 3799 3800 ExtAddrMode BackupAddrMode = AddrMode; 3801 unsigned OldSize = AddrModeInsts.size(); 3802 3803 if (!matchAddr(PromotedOperand, Depth) || 3804 // The total of the new cost is equal to the cost of the created 3805 // instructions. 3806 // The total of the old cost is equal to the cost of the extension plus 3807 // what we have saved in the addressing mode. 3808 !isPromotionProfitable(CreatedInstsCost, 3809 ExtCost + (AddrModeInsts.size() - OldSize), 3810 PromotedOperand)) { 3811 AddrMode = BackupAddrMode; 3812 AddrModeInsts.resize(OldSize); 3813 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 3814 TPT.rollback(LastKnownGood); 3815 return false; 3816 } 3817 return true; 3818 } 3819 } 3820 return false; 3821 } 3822 3823 /// If we can, try to add the value of 'Addr' into the current addressing mode. 3824 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 3825 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 3826 /// for the target. 3827 /// 3828 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 3829 // Start a transaction at this point that we will rollback if the matching 3830 // fails. 3831 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3832 TPT.getRestorationPoint(); 3833 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 3834 // Fold in immediates if legal for the target. 3835 AddrMode.BaseOffs += CI->getSExtValue(); 3836 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3837 return true; 3838 AddrMode.BaseOffs -= CI->getSExtValue(); 3839 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 3840 // If this is a global variable, try to fold it into the addressing mode. 3841 if (!AddrMode.BaseGV) { 3842 AddrMode.BaseGV = GV; 3843 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3844 return true; 3845 AddrMode.BaseGV = nullptr; 3846 } 3847 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 3848 ExtAddrMode BackupAddrMode = AddrMode; 3849 unsigned OldSize = AddrModeInsts.size(); 3850 3851 // Check to see if it is possible to fold this operation. 3852 bool MovedAway = false; 3853 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 3854 // This instruction may have been moved away. If so, there is nothing 3855 // to check here. 3856 if (MovedAway) 3857 return true; 3858 // Okay, it's possible to fold this. Check to see if it is actually 3859 // *profitable* to do so. We use a simple cost model to avoid increasing 3860 // register pressure too much. 3861 if (I->hasOneUse() || 3862 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 3863 AddrModeInsts.push_back(I); 3864 return true; 3865 } 3866 3867 // It isn't profitable to do this, roll back. 3868 //cerr << "NOT FOLDING: " << *I; 3869 AddrMode = BackupAddrMode; 3870 AddrModeInsts.resize(OldSize); 3871 TPT.rollback(LastKnownGood); 3872 } 3873 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 3874 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 3875 return true; 3876 TPT.rollback(LastKnownGood); 3877 } else if (isa<ConstantPointerNull>(Addr)) { 3878 // Null pointer gets folded without affecting the addressing mode. 3879 return true; 3880 } 3881 3882 // Worse case, the target should support [reg] addressing modes. :) 3883 if (!AddrMode.HasBaseReg) { 3884 AddrMode.HasBaseReg = true; 3885 AddrMode.BaseReg = Addr; 3886 // Still check for legality in case the target supports [imm] but not [i+r]. 3887 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3888 return true; 3889 AddrMode.HasBaseReg = false; 3890 AddrMode.BaseReg = nullptr; 3891 } 3892 3893 // If the base register is already taken, see if we can do [r+r]. 3894 if (AddrMode.Scale == 0) { 3895 AddrMode.Scale = 1; 3896 AddrMode.ScaledReg = Addr; 3897 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3898 return true; 3899 AddrMode.Scale = 0; 3900 AddrMode.ScaledReg = nullptr; 3901 } 3902 // Couldn't match. 3903 TPT.rollback(LastKnownGood); 3904 return false; 3905 } 3906 3907 /// Check to see if all uses of OpVal by the specified inline asm call are due 3908 /// to memory operands. If so, return true, otherwise return false. 3909 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 3910 const TargetLowering &TLI, 3911 const TargetRegisterInfo &TRI) { 3912 const Function *F = CI->getFunction(); 3913 TargetLowering::AsmOperandInfoVector TargetConstraints = 3914 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 3915 ImmutableCallSite(CI)); 3916 3917 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3918 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3919 3920 // Compute the constraint code and ConstraintType to use. 3921 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 3922 3923 // If this asm operand is our Value*, and if it isn't an indirect memory 3924 // operand, we can't fold it! 3925 if (OpInfo.CallOperandVal == OpVal && 3926 (OpInfo.ConstraintType != TargetLowering::C_Memory || 3927 !OpInfo.isIndirect)) 3928 return false; 3929 } 3930 3931 return true; 3932 } 3933 3934 // Max number of memory uses to look at before aborting the search to conserve 3935 // compile time. 3936 static constexpr int MaxMemoryUsesToScan = 20; 3937 3938 /// Recursively walk all the uses of I until we find a memory use. 3939 /// If we find an obviously non-foldable instruction, return true. 3940 /// Add the ultimately found memory instructions to MemoryUses. 3941 static bool FindAllMemoryUses( 3942 Instruction *I, 3943 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 3944 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 3945 const TargetRegisterInfo &TRI, int SeenInsts = 0) { 3946 // If we already considered this instruction, we're done. 3947 if (!ConsideredInsts.insert(I).second) 3948 return false; 3949 3950 // If this is an obviously unfoldable instruction, bail out. 3951 if (!MightBeFoldableInst(I)) 3952 return true; 3953 3954 const bool OptSize = I->getFunction()->optForSize(); 3955 3956 // Loop over all the uses, recursively processing them. 3957 for (Use &U : I->uses()) { 3958 // Conservatively return true if we're seeing a large number or a deep chain 3959 // of users. This avoids excessive compilation times in pathological cases. 3960 if (SeenInsts++ >= MaxMemoryUsesToScan) 3961 return true; 3962 3963 Instruction *UserI = cast<Instruction>(U.getUser()); 3964 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 3965 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 3966 continue; 3967 } 3968 3969 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 3970 unsigned opNo = U.getOperandNo(); 3971 if (opNo != StoreInst::getPointerOperandIndex()) 3972 return true; // Storing addr, not into addr. 3973 MemoryUses.push_back(std::make_pair(SI, opNo)); 3974 continue; 3975 } 3976 3977 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 3978 unsigned opNo = U.getOperandNo(); 3979 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 3980 return true; // Storing addr, not into addr. 3981 MemoryUses.push_back(std::make_pair(RMW, opNo)); 3982 continue; 3983 } 3984 3985 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 3986 unsigned opNo = U.getOperandNo(); 3987 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 3988 return true; // Storing addr, not into addr. 3989 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 3990 continue; 3991 } 3992 3993 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 3994 // If this is a cold call, we can sink the addressing calculation into 3995 // the cold path. See optimizeCallInst 3996 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 3997 continue; 3998 3999 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4000 if (!IA) return true; 4001 4002 // If this is a memory operand, we're cool, otherwise bail out. 4003 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4004 return true; 4005 continue; 4006 } 4007 4008 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, 4009 SeenInsts)) 4010 return true; 4011 } 4012 4013 return false; 4014 } 4015 4016 /// Return true if Val is already known to be live at the use site that we're 4017 /// folding it into. If so, there is no cost to include it in the addressing 4018 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4019 /// instruction already. 4020 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4021 Value *KnownLive2) { 4022 // If Val is either of the known-live values, we know it is live! 4023 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4024 return true; 4025 4026 // All values other than instructions and arguments (e.g. constants) are live. 4027 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4028 4029 // If Val is a constant sized alloca in the entry block, it is live, this is 4030 // true because it is just a reference to the stack/frame pointer, which is 4031 // live for the whole function. 4032 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4033 if (AI->isStaticAlloca()) 4034 return true; 4035 4036 // Check to see if this value is already used in the memory instruction's 4037 // block. If so, it's already live into the block at the very least, so we 4038 // can reasonably fold it. 4039 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4040 } 4041 4042 /// It is possible for the addressing mode of the machine to fold the specified 4043 /// instruction into a load or store that ultimately uses it. 4044 /// However, the specified instruction has multiple uses. 4045 /// Given this, it may actually increase register pressure to fold it 4046 /// into the load. For example, consider this code: 4047 /// 4048 /// X = ... 4049 /// Y = X+1 4050 /// use(Y) -> nonload/store 4051 /// Z = Y+1 4052 /// load Z 4053 /// 4054 /// In this case, Y has multiple uses, and can be folded into the load of Z 4055 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4056 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4057 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4058 /// number of computations either. 4059 /// 4060 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4061 /// X was live across 'load Z' for other reasons, we actually *would* want to 4062 /// fold the addressing mode in the Z case. This would make Y die earlier. 4063 bool AddressingModeMatcher:: 4064 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4065 ExtAddrMode &AMAfter) { 4066 if (IgnoreProfitability) return true; 4067 4068 // AMBefore is the addressing mode before this instruction was folded into it, 4069 // and AMAfter is the addressing mode after the instruction was folded. Get 4070 // the set of registers referenced by AMAfter and subtract out those 4071 // referenced by AMBefore: this is the set of values which folding in this 4072 // address extends the lifetime of. 4073 // 4074 // Note that there are only two potential values being referenced here, 4075 // BaseReg and ScaleReg (global addresses are always available, as are any 4076 // folded immediates). 4077 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4078 4079 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4080 // lifetime wasn't extended by adding this instruction. 4081 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4082 BaseReg = nullptr; 4083 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4084 ScaledReg = nullptr; 4085 4086 // If folding this instruction (and it's subexprs) didn't extend any live 4087 // ranges, we're ok with it. 4088 if (!BaseReg && !ScaledReg) 4089 return true; 4090 4091 // If all uses of this instruction can have the address mode sunk into them, 4092 // we can remove the addressing mode and effectively trade one live register 4093 // for another (at worst.) In this context, folding an addressing mode into 4094 // the use is just a particularly nice way of sinking it. 4095 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4096 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4097 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 4098 return false; // Has a non-memory, non-foldable use! 4099 4100 // Now that we know that all uses of this instruction are part of a chain of 4101 // computation involving only operations that could theoretically be folded 4102 // into a memory use, loop over each of these memory operation uses and see 4103 // if they could *actually* fold the instruction. The assumption is that 4104 // addressing modes are cheap and that duplicating the computation involved 4105 // many times is worthwhile, even on a fastpath. For sinking candidates 4106 // (i.e. cold call sites), this serves as a way to prevent excessive code 4107 // growth since most architectures have some reasonable small and fast way to 4108 // compute an effective address. (i.e LEA on x86) 4109 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4110 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4111 Instruction *User = MemoryUses[i].first; 4112 unsigned OpNo = MemoryUses[i].second; 4113 4114 // Get the access type of this use. If the use isn't a pointer, we don't 4115 // know what it accesses. 4116 Value *Address = User->getOperand(OpNo); 4117 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4118 if (!AddrTy) 4119 return false; 4120 Type *AddressAccessTy = AddrTy->getElementType(); 4121 unsigned AS = AddrTy->getAddressSpace(); 4122 4123 // Do a match against the root of this address, ignoring profitability. This 4124 // will tell us if the addressing mode for the memory operation will 4125 // *actually* cover the shared instruction. 4126 ExtAddrMode Result; 4127 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4128 TPT.getRestorationPoint(); 4129 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, 4130 AddressAccessTy, AS, 4131 MemoryInst, Result, InsertedInsts, 4132 PromotedInsts, TPT); 4133 Matcher.IgnoreProfitability = true; 4134 bool Success = Matcher.matchAddr(Address, 0); 4135 (void)Success; assert(Success && "Couldn't select *anything*?"); 4136 4137 // The match was to check the profitability, the changes made are not 4138 // part of the original matcher. Therefore, they should be dropped 4139 // otherwise the original matcher will not present the right state. 4140 TPT.rollback(LastKnownGood); 4141 4142 // If the match didn't cover I, then it won't be shared by it. 4143 if (!is_contained(MatchedAddrModeInsts, I)) 4144 return false; 4145 4146 MatchedAddrModeInsts.clear(); 4147 } 4148 4149 return true; 4150 } 4151 4152 /// Return true if the specified values are defined in a 4153 /// different basic block than BB. 4154 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4155 if (Instruction *I = dyn_cast<Instruction>(V)) 4156 return I->getParent() != BB; 4157 return false; 4158 } 4159 4160 /// Sink addressing mode computation immediate before MemoryInst if doing so 4161 /// can be done without increasing register pressure. The need for the 4162 /// register pressure constraint means this can end up being an all or nothing 4163 /// decision for all uses of the same addressing computation. 4164 /// 4165 /// Load and Store Instructions often have addressing modes that can do 4166 /// significant amounts of computation. As such, instruction selection will try 4167 /// to get the load or store to do as much computation as possible for the 4168 /// program. The problem is that isel can only see within a single block. As 4169 /// such, we sink as much legal addressing mode work into the block as possible. 4170 /// 4171 /// This method is used to optimize both load/store and inline asms with memory 4172 /// operands. It's also used to sink addressing computations feeding into cold 4173 /// call sites into their (cold) basic block. 4174 /// 4175 /// The motivation for handling sinking into cold blocks is that doing so can 4176 /// both enable other address mode sinking (by satisfying the register pressure 4177 /// constraint above), and reduce register pressure globally (by removing the 4178 /// addressing mode computation from the fast path entirely.). 4179 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4180 Type *AccessTy, unsigned AddrSpace) { 4181 Value *Repl = Addr; 4182 4183 // Try to collapse single-value PHI nodes. This is necessary to undo 4184 // unprofitable PRE transformations. 4185 SmallVector<Value*, 8> worklist; 4186 SmallPtrSet<Value*, 16> Visited; 4187 worklist.push_back(Addr); 4188 4189 // Use a worklist to iteratively look through PHI and select nodes, and 4190 // ensure that the addressing mode obtained from the non-PHI/select roots of 4191 // the graph are compatible. 4192 bool PhiOrSelectSeen = false; 4193 SmallVector<Instruction*, 16> AddrModeInsts; 4194 const SimplifyQuery SQ(*DL, TLInfo); 4195 AddressingModeCombiner AddrModes(SQ, { Addr, MemoryInst->getParent() }); 4196 TypePromotionTransaction TPT(RemovedInsts); 4197 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4198 TPT.getRestorationPoint(); 4199 while (!worklist.empty()) { 4200 Value *V = worklist.back(); 4201 worklist.pop_back(); 4202 4203 // We allow traversing cyclic Phi nodes. 4204 // In case of success after this loop we ensure that traversing through 4205 // Phi nodes ends up with all cases to compute address of the form 4206 // BaseGV + Base + Scale * Index + Offset 4207 // where Scale and Offset are constans and BaseGV, Base and Index 4208 // are exactly the same Values in all cases. 4209 // It means that BaseGV, Scale and Offset dominate our memory instruction 4210 // and have the same value as they had in address computation represented 4211 // as Phi. So we can safely sink address computation to memory instruction. 4212 if (!Visited.insert(V).second) 4213 continue; 4214 4215 // For a PHI node, push all of its incoming values. 4216 if (PHINode *P = dyn_cast<PHINode>(V)) { 4217 for (Value *IncValue : P->incoming_values()) 4218 worklist.push_back(IncValue); 4219 PhiOrSelectSeen = true; 4220 continue; 4221 } 4222 // Similar for select. 4223 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4224 worklist.push_back(SI->getFalseValue()); 4225 worklist.push_back(SI->getTrueValue()); 4226 PhiOrSelectSeen = true; 4227 continue; 4228 } 4229 4230 // For non-PHIs, determine the addressing mode being computed. Note that 4231 // the result may differ depending on what other uses our candidate 4232 // addressing instructions might have. 4233 AddrModeInsts.clear(); 4234 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4235 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4236 InsertedInsts, PromotedInsts, TPT); 4237 NewAddrMode.OriginalValue = V; 4238 4239 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4240 break; 4241 } 4242 4243 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4244 // or we have multiple but either couldn't combine them or combining them 4245 // wouldn't do anything useful, bail out now. 4246 if (!AddrModes.combineAddrModes()) { 4247 TPT.rollback(LastKnownGood); 4248 return false; 4249 } 4250 TPT.commit(); 4251 4252 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4253 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4254 4255 // If all the instructions matched are already in this BB, don't do anything. 4256 // If we saw a Phi node then it is not local definitely, and if we saw a select 4257 // then we want to push the address calculation past it even if it's already 4258 // in this BB. 4259 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4260 return IsNonLocalValue(V, MemoryInst->getParent()); 4261 })) { 4262 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 4263 return false; 4264 } 4265 4266 // Insert this computation right after this user. Since our caller is 4267 // scanning from the top of the BB to the bottom, reuse of the expr are 4268 // guaranteed to happen later. 4269 IRBuilder<> Builder(MemoryInst); 4270 4271 // Now that we determined the addressing expression we want to use and know 4272 // that we have to sink it into this block. Check to see if we have already 4273 // done this for some other load/store instr in this block. If so, reuse 4274 // the computation. Before attempting reuse, check if the address is valid 4275 // as it may have been erased. 4276 4277 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4278 4279 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4280 if (SunkAddr) { 4281 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 4282 << *MemoryInst << "\n"); 4283 if (SunkAddr->getType() != Addr->getType()) 4284 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4285 } else if (AddrSinkUsingGEPs || 4286 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 4287 SubtargetInfo->useAA())) { 4288 // By default, we use the GEP-based method when AA is used later. This 4289 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4290 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 4291 << *MemoryInst << "\n"); 4292 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4293 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4294 4295 // First, find the pointer. 4296 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4297 ResultPtr = AddrMode.BaseReg; 4298 AddrMode.BaseReg = nullptr; 4299 } 4300 4301 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4302 // We can't add more than one pointer together, nor can we scale a 4303 // pointer (both of which seem meaningless). 4304 if (ResultPtr || AddrMode.Scale != 1) 4305 return false; 4306 4307 ResultPtr = AddrMode.ScaledReg; 4308 AddrMode.Scale = 0; 4309 } 4310 4311 // It is only safe to sign extend the BaseReg if we know that the math 4312 // required to create it did not overflow before we extend it. Since 4313 // the original IR value was tossed in favor of a constant back when 4314 // the AddrMode was created we need to bail out gracefully if widths 4315 // do not match instead of extending it. 4316 // 4317 // (See below for code to add the scale.) 4318 if (AddrMode.Scale) { 4319 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4320 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4321 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4322 return false; 4323 } 4324 4325 if (AddrMode.BaseGV) { 4326 if (ResultPtr) 4327 return false; 4328 4329 ResultPtr = AddrMode.BaseGV; 4330 } 4331 4332 // If the real base value actually came from an inttoptr, then the matcher 4333 // will look through it and provide only the integer value. In that case, 4334 // use it here. 4335 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4336 if (!ResultPtr && AddrMode.BaseReg) { 4337 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4338 "sunkaddr"); 4339 AddrMode.BaseReg = nullptr; 4340 } else if (!ResultPtr && AddrMode.Scale == 1) { 4341 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4342 "sunkaddr"); 4343 AddrMode.Scale = 0; 4344 } 4345 } 4346 4347 if (!ResultPtr && 4348 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4349 SunkAddr = Constant::getNullValue(Addr->getType()); 4350 } else if (!ResultPtr) { 4351 return false; 4352 } else { 4353 Type *I8PtrTy = 4354 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4355 Type *I8Ty = Builder.getInt8Ty(); 4356 4357 // Start with the base register. Do this first so that subsequent address 4358 // matching finds it last, which will prevent it from trying to match it 4359 // as the scaled value in case it happens to be a mul. That would be 4360 // problematic if we've sunk a different mul for the scale, because then 4361 // we'd end up sinking both muls. 4362 if (AddrMode.BaseReg) { 4363 Value *V = AddrMode.BaseReg; 4364 if (V->getType() != IntPtrTy) 4365 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4366 4367 ResultIndex = V; 4368 } 4369 4370 // Add the scale value. 4371 if (AddrMode.Scale) { 4372 Value *V = AddrMode.ScaledReg; 4373 if (V->getType() == IntPtrTy) { 4374 // done. 4375 } else { 4376 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 4377 cast<IntegerType>(V->getType())->getBitWidth() && 4378 "We can't transform if ScaledReg is too narrow"); 4379 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4380 } 4381 4382 if (AddrMode.Scale != 1) 4383 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4384 "sunkaddr"); 4385 if (ResultIndex) 4386 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4387 else 4388 ResultIndex = V; 4389 } 4390 4391 // Add in the Base Offset if present. 4392 if (AddrMode.BaseOffs) { 4393 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4394 if (ResultIndex) { 4395 // We need to add this separately from the scale above to help with 4396 // SDAG consecutive load/store merging. 4397 if (ResultPtr->getType() != I8PtrTy) 4398 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4399 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4400 } 4401 4402 ResultIndex = V; 4403 } 4404 4405 if (!ResultIndex) { 4406 SunkAddr = ResultPtr; 4407 } else { 4408 if (ResultPtr->getType() != I8PtrTy) 4409 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4410 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4411 } 4412 4413 if (SunkAddr->getType() != Addr->getType()) 4414 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4415 } 4416 } else { 4417 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 4418 // non-integral pointers, so in that case bail out now. 4419 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 4420 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 4421 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 4422 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 4423 if (DL->isNonIntegralPointerType(Addr->getType()) || 4424 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 4425 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 4426 (AddrMode.BaseGV && 4427 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 4428 return false; 4429 4430 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 4431 << *MemoryInst << "\n"); 4432 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4433 Value *Result = nullptr; 4434 4435 // Start with the base register. Do this first so that subsequent address 4436 // matching finds it last, which will prevent it from trying to match it 4437 // as the scaled value in case it happens to be a mul. That would be 4438 // problematic if we've sunk a different mul for the scale, because then 4439 // we'd end up sinking both muls. 4440 if (AddrMode.BaseReg) { 4441 Value *V = AddrMode.BaseReg; 4442 if (V->getType()->isPointerTy()) 4443 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4444 if (V->getType() != IntPtrTy) 4445 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4446 Result = V; 4447 } 4448 4449 // Add the scale value. 4450 if (AddrMode.Scale) { 4451 Value *V = AddrMode.ScaledReg; 4452 if (V->getType() == IntPtrTy) { 4453 // done. 4454 } else if (V->getType()->isPointerTy()) { 4455 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4456 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4457 cast<IntegerType>(V->getType())->getBitWidth()) { 4458 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4459 } else { 4460 // It is only safe to sign extend the BaseReg if we know that the math 4461 // required to create it did not overflow before we extend it. Since 4462 // the original IR value was tossed in favor of a constant back when 4463 // the AddrMode was created we need to bail out gracefully if widths 4464 // do not match instead of extending it. 4465 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4466 if (I && (Result != AddrMode.BaseReg)) 4467 I->eraseFromParent(); 4468 return false; 4469 } 4470 if (AddrMode.Scale != 1) 4471 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4472 "sunkaddr"); 4473 if (Result) 4474 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4475 else 4476 Result = V; 4477 } 4478 4479 // Add in the BaseGV if present. 4480 if (AddrMode.BaseGV) { 4481 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 4482 if (Result) 4483 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4484 else 4485 Result = V; 4486 } 4487 4488 // Add in the Base Offset if present. 4489 if (AddrMode.BaseOffs) { 4490 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4491 if (Result) 4492 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4493 else 4494 Result = V; 4495 } 4496 4497 if (!Result) 4498 SunkAddr = Constant::getNullValue(Addr->getType()); 4499 else 4500 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 4501 } 4502 4503 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 4504 // Store the newly computed address into the cache. In the case we reused a 4505 // value, this should be idempotent. 4506 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 4507 4508 // If we have no uses, recursively delete the value and all dead instructions 4509 // using it. 4510 if (Repl->use_empty()) { 4511 // This can cause recursive deletion, which can invalidate our iterator. 4512 // Use a WeakTrackingVH to hold onto it in case this happens. 4513 Value *CurValue = &*CurInstIterator; 4514 WeakTrackingVH IterHandle(CurValue); 4515 BasicBlock *BB = CurInstIterator->getParent(); 4516 4517 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 4518 4519 if (IterHandle != CurValue) { 4520 // If the iterator instruction was recursively deleted, start over at the 4521 // start of the block. 4522 CurInstIterator = BB->begin(); 4523 SunkAddrs.clear(); 4524 } 4525 } 4526 ++NumMemoryInsts; 4527 return true; 4528 } 4529 4530 /// If there are any memory operands, use OptimizeMemoryInst to sink their 4531 /// address computing into the block when possible / profitable. 4532 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 4533 bool MadeChange = false; 4534 4535 const TargetRegisterInfo *TRI = 4536 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 4537 TargetLowering::AsmOperandInfoVector TargetConstraints = 4538 TLI->ParseConstraints(*DL, TRI, CS); 4539 unsigned ArgNo = 0; 4540 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4541 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4542 4543 // Compute the constraint code and ConstraintType to use. 4544 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 4545 4546 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4547 OpInfo.isIndirect) { 4548 Value *OpVal = CS->getArgOperand(ArgNo++); 4549 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 4550 } else if (OpInfo.Type == InlineAsm::isInput) 4551 ArgNo++; 4552 } 4553 4554 return MadeChange; 4555 } 4556 4557 /// \brief Check if all the uses of \p Val are equivalent (or free) zero or 4558 /// sign extensions. 4559 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 4560 assert(!Val->use_empty() && "Input must have at least one use"); 4561 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 4562 bool IsSExt = isa<SExtInst>(FirstUser); 4563 Type *ExtTy = FirstUser->getType(); 4564 for (const User *U : Val->users()) { 4565 const Instruction *UI = cast<Instruction>(U); 4566 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 4567 return false; 4568 Type *CurTy = UI->getType(); 4569 // Same input and output types: Same instruction after CSE. 4570 if (CurTy == ExtTy) 4571 continue; 4572 4573 // If IsSExt is true, we are in this situation: 4574 // a = Val 4575 // b = sext ty1 a to ty2 4576 // c = sext ty1 a to ty3 4577 // Assuming ty2 is shorter than ty3, this could be turned into: 4578 // a = Val 4579 // b = sext ty1 a to ty2 4580 // c = sext ty2 b to ty3 4581 // However, the last sext is not free. 4582 if (IsSExt) 4583 return false; 4584 4585 // This is a ZExt, maybe this is free to extend from one type to another. 4586 // In that case, we would not account for a different use. 4587 Type *NarrowTy; 4588 Type *LargeTy; 4589 if (ExtTy->getScalarType()->getIntegerBitWidth() > 4590 CurTy->getScalarType()->getIntegerBitWidth()) { 4591 NarrowTy = CurTy; 4592 LargeTy = ExtTy; 4593 } else { 4594 NarrowTy = ExtTy; 4595 LargeTy = CurTy; 4596 } 4597 4598 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 4599 return false; 4600 } 4601 // All uses are the same or can be derived from one another for free. 4602 return true; 4603 } 4604 4605 /// \brief Try to speculatively promote extensions in \p Exts and continue 4606 /// promoting through newly promoted operands recursively as far as doing so is 4607 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 4608 /// When some promotion happened, \p TPT contains the proper state to revert 4609 /// them. 4610 /// 4611 /// \return true if some promotion happened, false otherwise. 4612 bool CodeGenPrepare::tryToPromoteExts( 4613 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 4614 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 4615 unsigned CreatedInstsCost) { 4616 bool Promoted = false; 4617 4618 // Iterate over all the extensions to try to promote them. 4619 for (auto I : Exts) { 4620 // Early check if we directly have ext(load). 4621 if (isa<LoadInst>(I->getOperand(0))) { 4622 ProfitablyMovedExts.push_back(I); 4623 continue; 4624 } 4625 4626 // Check whether or not we want to do any promotion. The reason we have 4627 // this check inside the for loop is to catch the case where an extension 4628 // is directly fed by a load because in such case the extension can be moved 4629 // up without any promotion on its operands. 4630 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4631 return false; 4632 4633 // Get the action to perform the promotion. 4634 TypePromotionHelper::Action TPH = 4635 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 4636 // Check if we can promote. 4637 if (!TPH) { 4638 // Save the current extension as we cannot move up through its operand. 4639 ProfitablyMovedExts.push_back(I); 4640 continue; 4641 } 4642 4643 // Save the current state. 4644 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4645 TPT.getRestorationPoint(); 4646 SmallVector<Instruction *, 4> NewExts; 4647 unsigned NewCreatedInstsCost = 0; 4648 unsigned ExtCost = !TLI->isExtFree(I); 4649 // Promote. 4650 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4651 &NewExts, nullptr, *TLI); 4652 assert(PromotedVal && 4653 "TypePromotionHelper should have filtered out those cases"); 4654 4655 // We would be able to merge only one extension in a load. 4656 // Therefore, if we have more than 1 new extension we heuristically 4657 // cut this search path, because it means we degrade the code quality. 4658 // With exactly 2, the transformation is neutral, because we will merge 4659 // one extension but leave one. However, we optimistically keep going, 4660 // because the new extension may be removed too. 4661 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4662 // FIXME: It would be possible to propagate a negative value instead of 4663 // conservatively ceiling it to 0. 4664 TotalCreatedInstsCost = 4665 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 4666 if (!StressExtLdPromotion && 4667 (TotalCreatedInstsCost > 1 || 4668 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 4669 // This promotion is not profitable, rollback to the previous state, and 4670 // save the current extension in ProfitablyMovedExts as the latest 4671 // speculative promotion turned out to be unprofitable. 4672 TPT.rollback(LastKnownGood); 4673 ProfitablyMovedExts.push_back(I); 4674 continue; 4675 } 4676 // Continue promoting NewExts as far as doing so is profitable. 4677 SmallVector<Instruction *, 2> NewlyMovedExts; 4678 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 4679 bool NewPromoted = false; 4680 for (auto ExtInst : NewlyMovedExts) { 4681 Instruction *MovedExt = cast<Instruction>(ExtInst); 4682 Value *ExtOperand = MovedExt->getOperand(0); 4683 // If we have reached to a load, we need this extra profitability check 4684 // as it could potentially be merged into an ext(load). 4685 if (isa<LoadInst>(ExtOperand) && 4686 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 4687 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 4688 continue; 4689 4690 ProfitablyMovedExts.push_back(MovedExt); 4691 NewPromoted = true; 4692 } 4693 4694 // If none of speculative promotions for NewExts is profitable, rollback 4695 // and save the current extension (I) as the last profitable extension. 4696 if (!NewPromoted) { 4697 TPT.rollback(LastKnownGood); 4698 ProfitablyMovedExts.push_back(I); 4699 continue; 4700 } 4701 // The promotion is profitable. 4702 Promoted = true; 4703 } 4704 return Promoted; 4705 } 4706 4707 /// Merging redundant sexts when one is dominating the other. 4708 bool CodeGenPrepare::mergeSExts(Function &F) { 4709 DominatorTree DT(F); 4710 bool Changed = false; 4711 for (auto &Entry : ValToSExtendedUses) { 4712 SExts &Insts = Entry.second; 4713 SExts CurPts; 4714 for (Instruction *Inst : Insts) { 4715 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 4716 Inst->getOperand(0) != Entry.first) 4717 continue; 4718 bool inserted = false; 4719 for (auto &Pt : CurPts) { 4720 if (DT.dominates(Inst, Pt)) { 4721 Pt->replaceAllUsesWith(Inst); 4722 RemovedInsts.insert(Pt); 4723 Pt->removeFromParent(); 4724 Pt = Inst; 4725 inserted = true; 4726 Changed = true; 4727 break; 4728 } 4729 if (!DT.dominates(Pt, Inst)) 4730 // Give up if we need to merge in a common dominator as the 4731 // expermients show it is not profitable. 4732 continue; 4733 Inst->replaceAllUsesWith(Pt); 4734 RemovedInsts.insert(Inst); 4735 Inst->removeFromParent(); 4736 inserted = true; 4737 Changed = true; 4738 break; 4739 } 4740 if (!inserted) 4741 CurPts.push_back(Inst); 4742 } 4743 } 4744 return Changed; 4745 } 4746 4747 /// Return true, if an ext(load) can be formed from an extension in 4748 /// \p MovedExts. 4749 bool CodeGenPrepare::canFormExtLd( 4750 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 4751 Instruction *&Inst, bool HasPromoted) { 4752 for (auto *MovedExtInst : MovedExts) { 4753 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 4754 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 4755 Inst = MovedExtInst; 4756 break; 4757 } 4758 } 4759 if (!LI) 4760 return false; 4761 4762 // If they're already in the same block, there's nothing to do. 4763 // Make the cheap checks first if we did not promote. 4764 // If we promoted, we need to check if it is indeed profitable. 4765 if (!HasPromoted && LI->getParent() == Inst->getParent()) 4766 return false; 4767 4768 return TLI->isExtLoad(LI, Inst, *DL); 4769 } 4770 4771 /// Move a zext or sext fed by a load into the same basic block as the load, 4772 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 4773 /// extend into the load. 4774 /// 4775 /// E.g., 4776 /// \code 4777 /// %ld = load i32* %addr 4778 /// %add = add nuw i32 %ld, 4 4779 /// %zext = zext i32 %add to i64 4780 // \endcode 4781 /// => 4782 /// \code 4783 /// %ld = load i32* %addr 4784 /// %zext = zext i32 %ld to i64 4785 /// %add = add nuw i64 %zext, 4 4786 /// \encode 4787 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 4788 /// allow us to match zext(load i32*) to i64. 4789 /// 4790 /// Also, try to promote the computations used to obtain a sign extended 4791 /// value used into memory accesses. 4792 /// E.g., 4793 /// \code 4794 /// a = add nsw i32 b, 3 4795 /// d = sext i32 a to i64 4796 /// e = getelementptr ..., i64 d 4797 /// \endcode 4798 /// => 4799 /// \code 4800 /// f = sext i32 b to i64 4801 /// a = add nsw i64 f, 3 4802 /// e = getelementptr ..., i64 a 4803 /// \endcode 4804 /// 4805 /// \p Inst[in/out] the extension may be modified during the process if some 4806 /// promotions apply. 4807 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 4808 // ExtLoad formation and address type promotion infrastructure requires TLI to 4809 // be effective. 4810 if (!TLI) 4811 return false; 4812 4813 bool AllowPromotionWithoutCommonHeader = false; 4814 /// See if it is an interesting sext operations for the address type 4815 /// promotion before trying to promote it, e.g., the ones with the right 4816 /// type and used in memory accesses. 4817 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 4818 *Inst, AllowPromotionWithoutCommonHeader); 4819 TypePromotionTransaction TPT(RemovedInsts); 4820 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4821 TPT.getRestorationPoint(); 4822 SmallVector<Instruction *, 1> Exts; 4823 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 4824 Exts.push_back(Inst); 4825 4826 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 4827 4828 // Look for a load being extended. 4829 LoadInst *LI = nullptr; 4830 Instruction *ExtFedByLoad; 4831 4832 // Try to promote a chain of computation if it allows to form an extended 4833 // load. 4834 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 4835 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 4836 TPT.commit(); 4837 // Move the extend into the same block as the load 4838 ExtFedByLoad->moveAfter(LI); 4839 // CGP does not check if the zext would be speculatively executed when moved 4840 // to the same basic block as the load. Preserving its original location 4841 // would pessimize the debugging experience, as well as negatively impact 4842 // the quality of sample pgo. We don't want to use "line 0" as that has a 4843 // size cost in the line-table section and logically the zext can be seen as 4844 // part of the load. Therefore we conservatively reuse the same debug 4845 // location for the load and the zext. 4846 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 4847 ++NumExtsMoved; 4848 Inst = ExtFedByLoad; 4849 return true; 4850 } 4851 4852 // Continue promoting SExts if known as considerable depending on targets. 4853 if (ATPConsiderable && 4854 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 4855 HasPromoted, TPT, SpeculativelyMovedExts)) 4856 return true; 4857 4858 TPT.rollback(LastKnownGood); 4859 return false; 4860 } 4861 4862 // Perform address type promotion if doing so is profitable. 4863 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 4864 // instructions that sign extended the same initial value. However, if 4865 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 4866 // extension is just profitable. 4867 bool CodeGenPrepare::performAddressTypePromotion( 4868 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 4869 bool HasPromoted, TypePromotionTransaction &TPT, 4870 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 4871 bool Promoted = false; 4872 SmallPtrSet<Instruction *, 1> UnhandledExts; 4873 bool AllSeenFirst = true; 4874 for (auto I : SpeculativelyMovedExts) { 4875 Value *HeadOfChain = I->getOperand(0); 4876 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 4877 SeenChainsForSExt.find(HeadOfChain); 4878 // If there is an unhandled SExt which has the same header, try to promote 4879 // it as well. 4880 if (AlreadySeen != SeenChainsForSExt.end()) { 4881 if (AlreadySeen->second != nullptr) 4882 UnhandledExts.insert(AlreadySeen->second); 4883 AllSeenFirst = false; 4884 } 4885 } 4886 4887 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 4888 SpeculativelyMovedExts.size() == 1)) { 4889 TPT.commit(); 4890 if (HasPromoted) 4891 Promoted = true; 4892 for (auto I : SpeculativelyMovedExts) { 4893 Value *HeadOfChain = I->getOperand(0); 4894 SeenChainsForSExt[HeadOfChain] = nullptr; 4895 ValToSExtendedUses[HeadOfChain].push_back(I); 4896 } 4897 // Update Inst as promotion happen. 4898 Inst = SpeculativelyMovedExts.pop_back_val(); 4899 } else { 4900 // This is the first chain visited from the header, keep the current chain 4901 // as unhandled. Defer to promote this until we encounter another SExt 4902 // chain derived from the same header. 4903 for (auto I : SpeculativelyMovedExts) { 4904 Value *HeadOfChain = I->getOperand(0); 4905 SeenChainsForSExt[HeadOfChain] = Inst; 4906 } 4907 return false; 4908 } 4909 4910 if (!AllSeenFirst && !UnhandledExts.empty()) 4911 for (auto VisitedSExt : UnhandledExts) { 4912 if (RemovedInsts.count(VisitedSExt)) 4913 continue; 4914 TypePromotionTransaction TPT(RemovedInsts); 4915 SmallVector<Instruction *, 1> Exts; 4916 SmallVector<Instruction *, 2> Chains; 4917 Exts.push_back(VisitedSExt); 4918 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 4919 TPT.commit(); 4920 if (HasPromoted) 4921 Promoted = true; 4922 for (auto I : Chains) { 4923 Value *HeadOfChain = I->getOperand(0); 4924 // Mark this as handled. 4925 SeenChainsForSExt[HeadOfChain] = nullptr; 4926 ValToSExtendedUses[HeadOfChain].push_back(I); 4927 } 4928 } 4929 return Promoted; 4930 } 4931 4932 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 4933 BasicBlock *DefBB = I->getParent(); 4934 4935 // If the result of a {s|z}ext and its source are both live out, rewrite all 4936 // other uses of the source with result of extension. 4937 Value *Src = I->getOperand(0); 4938 if (Src->hasOneUse()) 4939 return false; 4940 4941 // Only do this xform if truncating is free. 4942 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 4943 return false; 4944 4945 // Only safe to perform the optimization if the source is also defined in 4946 // this block. 4947 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 4948 return false; 4949 4950 bool DefIsLiveOut = false; 4951 for (User *U : I->users()) { 4952 Instruction *UI = cast<Instruction>(U); 4953 4954 // Figure out which BB this ext is used in. 4955 BasicBlock *UserBB = UI->getParent(); 4956 if (UserBB == DefBB) continue; 4957 DefIsLiveOut = true; 4958 break; 4959 } 4960 if (!DefIsLiveOut) 4961 return false; 4962 4963 // Make sure none of the uses are PHI nodes. 4964 for (User *U : Src->users()) { 4965 Instruction *UI = cast<Instruction>(U); 4966 BasicBlock *UserBB = UI->getParent(); 4967 if (UserBB == DefBB) continue; 4968 // Be conservative. We don't want this xform to end up introducing 4969 // reloads just before load / store instructions. 4970 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 4971 return false; 4972 } 4973 4974 // InsertedTruncs - Only insert one trunc in each block once. 4975 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 4976 4977 bool MadeChange = false; 4978 for (Use &U : Src->uses()) { 4979 Instruction *User = cast<Instruction>(U.getUser()); 4980 4981 // Figure out which BB this ext is used in. 4982 BasicBlock *UserBB = User->getParent(); 4983 if (UserBB == DefBB) continue; 4984 4985 // Both src and def are live in this block. Rewrite the use. 4986 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 4987 4988 if (!InsertedTrunc) { 4989 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 4990 assert(InsertPt != UserBB->end()); 4991 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 4992 InsertedInsts.insert(InsertedTrunc); 4993 } 4994 4995 // Replace a use of the {s|z}ext source with a use of the result. 4996 U = InsertedTrunc; 4997 ++NumExtUses; 4998 MadeChange = true; 4999 } 5000 5001 return MadeChange; 5002 } 5003 5004 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5005 // just after the load if the target can fold this into one extload instruction, 5006 // with the hope of eliminating some of the other later "and" instructions using 5007 // the loaded value. "and"s that are made trivially redundant by the insertion 5008 // of the new "and" are removed by this function, while others (e.g. those whose 5009 // path from the load goes through a phi) are left for isel to potentially 5010 // remove. 5011 // 5012 // For example: 5013 // 5014 // b0: 5015 // x = load i32 5016 // ... 5017 // b1: 5018 // y = and x, 0xff 5019 // z = use y 5020 // 5021 // becomes: 5022 // 5023 // b0: 5024 // x = load i32 5025 // x' = and x, 0xff 5026 // ... 5027 // b1: 5028 // z = use x' 5029 // 5030 // whereas: 5031 // 5032 // b0: 5033 // x1 = load i32 5034 // ... 5035 // b1: 5036 // x2 = load i32 5037 // ... 5038 // b2: 5039 // x = phi x1, x2 5040 // y = and x, 0xff 5041 // 5042 // becomes (after a call to optimizeLoadExt for each load): 5043 // 5044 // b0: 5045 // x1 = load i32 5046 // x1' = and x1, 0xff 5047 // ... 5048 // b1: 5049 // x2 = load i32 5050 // x2' = and x2, 0xff 5051 // ... 5052 // b2: 5053 // x = phi x1', x2' 5054 // y = and x, 0xff 5055 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5056 if (!Load->isSimple() || 5057 !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy())) 5058 return false; 5059 5060 // Skip loads we've already transformed. 5061 if (Load->hasOneUse() && 5062 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5063 return false; 5064 5065 // Look at all uses of Load, looking through phis, to determine how many bits 5066 // of the loaded value are needed. 5067 SmallVector<Instruction *, 8> WorkList; 5068 SmallPtrSet<Instruction *, 16> Visited; 5069 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5070 for (auto *U : Load->users()) 5071 WorkList.push_back(cast<Instruction>(U)); 5072 5073 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5074 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5075 APInt DemandBits(BitWidth, 0); 5076 APInt WidestAndBits(BitWidth, 0); 5077 5078 while (!WorkList.empty()) { 5079 Instruction *I = WorkList.back(); 5080 WorkList.pop_back(); 5081 5082 // Break use-def graph loops. 5083 if (!Visited.insert(I).second) 5084 continue; 5085 5086 // For a PHI node, push all of its users. 5087 if (auto *Phi = dyn_cast<PHINode>(I)) { 5088 for (auto *U : Phi->users()) 5089 WorkList.push_back(cast<Instruction>(U)); 5090 continue; 5091 } 5092 5093 switch (I->getOpcode()) { 5094 case Instruction::And: { 5095 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5096 if (!AndC) 5097 return false; 5098 APInt AndBits = AndC->getValue(); 5099 DemandBits |= AndBits; 5100 // Keep track of the widest and mask we see. 5101 if (AndBits.ugt(WidestAndBits)) 5102 WidestAndBits = AndBits; 5103 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5104 AndsToMaybeRemove.push_back(I); 5105 break; 5106 } 5107 5108 case Instruction::Shl: { 5109 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5110 if (!ShlC) 5111 return false; 5112 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5113 DemandBits.setLowBits(BitWidth - ShiftAmt); 5114 break; 5115 } 5116 5117 case Instruction::Trunc: { 5118 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5119 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5120 DemandBits.setLowBits(TruncBitWidth); 5121 break; 5122 } 5123 5124 default: 5125 return false; 5126 } 5127 } 5128 5129 uint32_t ActiveBits = DemandBits.getActiveBits(); 5130 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5131 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5132 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5133 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5134 // followed by an AND. 5135 // TODO: Look into removing this restriction by fixing backends to either 5136 // return false for isLoadExtLegal for i1 or have them select this pattern to 5137 // a single instruction. 5138 // 5139 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5140 // mask, since these are the only ands that will be removed by isel. 5141 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5142 WidestAndBits != DemandBits) 5143 return false; 5144 5145 LLVMContext &Ctx = Load->getType()->getContext(); 5146 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5147 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5148 5149 // Reject cases that won't be matched as extloads. 5150 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5151 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5152 return false; 5153 5154 IRBuilder<> Builder(Load->getNextNode()); 5155 auto *NewAnd = dyn_cast<Instruction>( 5156 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5157 // Mark this instruction as "inserted by CGP", so that other 5158 // optimizations don't touch it. 5159 InsertedInsts.insert(NewAnd); 5160 5161 // Replace all uses of load with new and (except for the use of load in the 5162 // new and itself). 5163 Load->replaceAllUsesWith(NewAnd); 5164 NewAnd->setOperand(0, Load); 5165 5166 // Remove any and instructions that are now redundant. 5167 for (auto *And : AndsToMaybeRemove) 5168 // Check that the and mask is the same as the one we decided to put on the 5169 // new and. 5170 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5171 And->replaceAllUsesWith(NewAnd); 5172 if (&*CurInstIterator == And) 5173 CurInstIterator = std::next(And->getIterator()); 5174 And->eraseFromParent(); 5175 ++NumAndUses; 5176 } 5177 5178 ++NumAndsAdded; 5179 return true; 5180 } 5181 5182 /// Check if V (an operand of a select instruction) is an expensive instruction 5183 /// that is only used once. 5184 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5185 auto *I = dyn_cast<Instruction>(V); 5186 // If it's safe to speculatively execute, then it should not have side 5187 // effects; therefore, it's safe to sink and possibly *not* execute. 5188 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5189 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5190 } 5191 5192 /// Returns true if a SelectInst should be turned into an explicit branch. 5193 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5194 const TargetLowering *TLI, 5195 SelectInst *SI) { 5196 // If even a predictable select is cheap, then a branch can't be cheaper. 5197 if (!TLI->isPredictableSelectExpensive()) 5198 return false; 5199 5200 // FIXME: This should use the same heuristics as IfConversion to determine 5201 // whether a select is better represented as a branch. 5202 5203 // If metadata tells us that the select condition is obviously predictable, 5204 // then we want to replace the select with a branch. 5205 uint64_t TrueWeight, FalseWeight; 5206 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5207 uint64_t Max = std::max(TrueWeight, FalseWeight); 5208 uint64_t Sum = TrueWeight + FalseWeight; 5209 if (Sum != 0) { 5210 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5211 if (Probability > TLI->getPredictableBranchThreshold()) 5212 return true; 5213 } 5214 } 5215 5216 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5217 5218 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5219 // comparison condition. If the compare has more than one use, there's 5220 // probably another cmov or setcc around, so it's not worth emitting a branch. 5221 if (!Cmp || !Cmp->hasOneUse()) 5222 return false; 5223 5224 // If either operand of the select is expensive and only needed on one side 5225 // of the select, we should form a branch. 5226 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5227 sinkSelectOperand(TTI, SI->getFalseValue())) 5228 return true; 5229 5230 return false; 5231 } 5232 5233 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5234 /// false value of \p SI. If the true/false value of \p SI is defined by any 5235 /// select instructions in \p Selects, look through the defining select 5236 /// instruction until the true/false value is not defined in \p Selects. 5237 static Value *getTrueOrFalseValue( 5238 SelectInst *SI, bool isTrue, 5239 const SmallPtrSet<const Instruction *, 2> &Selects) { 5240 Value *V; 5241 5242 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 5243 DefSI = dyn_cast<SelectInst>(V)) { 5244 assert(DefSI->getCondition() == SI->getCondition() && 5245 "The condition of DefSI does not match with SI"); 5246 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 5247 } 5248 return V; 5249 } 5250 5251 /// If we have a SelectInst that will likely profit from branch prediction, 5252 /// turn it into a branch. 5253 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 5254 // Find all consecutive select instructions that share the same condition. 5255 SmallVector<SelectInst *, 2> ASI; 5256 ASI.push_back(SI); 5257 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 5258 It != SI->getParent()->end(); ++It) { 5259 SelectInst *I = dyn_cast<SelectInst>(&*It); 5260 if (I && SI->getCondition() == I->getCondition()) { 5261 ASI.push_back(I); 5262 } else { 5263 break; 5264 } 5265 } 5266 5267 SelectInst *LastSI = ASI.back(); 5268 // Increment the current iterator to skip all the rest of select instructions 5269 // because they will be either "not lowered" or "all lowered" to branch. 5270 CurInstIterator = std::next(LastSI->getIterator()); 5271 5272 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 5273 5274 // Can we convert the 'select' to CF ? 5275 if (DisableSelectToBranch || OptSize || !TLI || VectorCond || 5276 SI->getMetadata(LLVMContext::MD_unpredictable)) 5277 return false; 5278 5279 TargetLowering::SelectSupportKind SelectKind; 5280 if (VectorCond) 5281 SelectKind = TargetLowering::VectorMaskSelect; 5282 else if (SI->getType()->isVectorTy()) 5283 SelectKind = TargetLowering::ScalarCondVectorVal; 5284 else 5285 SelectKind = TargetLowering::ScalarValSelect; 5286 5287 if (TLI->isSelectSupported(SelectKind) && 5288 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 5289 return false; 5290 5291 ModifiedDT = true; 5292 5293 // Transform a sequence like this: 5294 // start: 5295 // %cmp = cmp uge i32 %a, %b 5296 // %sel = select i1 %cmp, i32 %c, i32 %d 5297 // 5298 // Into: 5299 // start: 5300 // %cmp = cmp uge i32 %a, %b 5301 // br i1 %cmp, label %select.true, label %select.false 5302 // select.true: 5303 // br label %select.end 5304 // select.false: 5305 // br label %select.end 5306 // select.end: 5307 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 5308 // 5309 // In addition, we may sink instructions that produce %c or %d from 5310 // the entry block into the destination(s) of the new branch. 5311 // If the true or false blocks do not contain a sunken instruction, that 5312 // block and its branch may be optimized away. In that case, one side of the 5313 // first branch will point directly to select.end, and the corresponding PHI 5314 // predecessor block will be the start block. 5315 5316 // First, we split the block containing the select into 2 blocks. 5317 BasicBlock *StartBlock = SI->getParent(); 5318 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 5319 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 5320 5321 // Delete the unconditional branch that was just created by the split. 5322 StartBlock->getTerminator()->eraseFromParent(); 5323 5324 // These are the new basic blocks for the conditional branch. 5325 // At least one will become an actual new basic block. 5326 BasicBlock *TrueBlock = nullptr; 5327 BasicBlock *FalseBlock = nullptr; 5328 BranchInst *TrueBranch = nullptr; 5329 BranchInst *FalseBranch = nullptr; 5330 5331 // Sink expensive instructions into the conditional blocks to avoid executing 5332 // them speculatively. 5333 for (SelectInst *SI : ASI) { 5334 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 5335 if (TrueBlock == nullptr) { 5336 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 5337 EndBlock->getParent(), EndBlock); 5338 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 5339 } 5340 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 5341 TrueInst->moveBefore(TrueBranch); 5342 } 5343 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 5344 if (FalseBlock == nullptr) { 5345 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 5346 EndBlock->getParent(), EndBlock); 5347 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 5348 } 5349 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 5350 FalseInst->moveBefore(FalseBranch); 5351 } 5352 } 5353 5354 // If there was nothing to sink, then arbitrarily choose the 'false' side 5355 // for a new input value to the PHI. 5356 if (TrueBlock == FalseBlock) { 5357 assert(TrueBlock == nullptr && 5358 "Unexpected basic block transform while optimizing select"); 5359 5360 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 5361 EndBlock->getParent(), EndBlock); 5362 BranchInst::Create(EndBlock, FalseBlock); 5363 } 5364 5365 // Insert the real conditional branch based on the original condition. 5366 // If we did not create a new block for one of the 'true' or 'false' paths 5367 // of the condition, it means that side of the branch goes to the end block 5368 // directly and the path originates from the start block from the point of 5369 // view of the new PHI. 5370 BasicBlock *TT, *FT; 5371 if (TrueBlock == nullptr) { 5372 TT = EndBlock; 5373 FT = FalseBlock; 5374 TrueBlock = StartBlock; 5375 } else if (FalseBlock == nullptr) { 5376 TT = TrueBlock; 5377 FT = EndBlock; 5378 FalseBlock = StartBlock; 5379 } else { 5380 TT = TrueBlock; 5381 FT = FalseBlock; 5382 } 5383 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 5384 5385 SmallPtrSet<const Instruction *, 2> INS; 5386 INS.insert(ASI.begin(), ASI.end()); 5387 // Use reverse iterator because later select may use the value of the 5388 // earlier select, and we need to propagate value through earlier select 5389 // to get the PHI operand. 5390 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 5391 SelectInst *SI = *It; 5392 // The select itself is replaced with a PHI Node. 5393 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 5394 PN->takeName(SI); 5395 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 5396 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 5397 5398 SI->replaceAllUsesWith(PN); 5399 SI->eraseFromParent(); 5400 INS.erase(SI); 5401 ++NumSelectsExpanded; 5402 } 5403 5404 // Instruct OptimizeBlock to skip to the next block. 5405 CurInstIterator = StartBlock->end(); 5406 return true; 5407 } 5408 5409 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 5410 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 5411 int SplatElem = -1; 5412 for (unsigned i = 0; i < Mask.size(); ++i) { 5413 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 5414 return false; 5415 SplatElem = Mask[i]; 5416 } 5417 5418 return true; 5419 } 5420 5421 /// Some targets have expensive vector shifts if the lanes aren't all the same 5422 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 5423 /// it's often worth sinking a shufflevector splat down to its use so that 5424 /// codegen can spot all lanes are identical. 5425 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 5426 BasicBlock *DefBB = SVI->getParent(); 5427 5428 // Only do this xform if variable vector shifts are particularly expensive. 5429 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 5430 return false; 5431 5432 // We only expect better codegen by sinking a shuffle if we can recognise a 5433 // constant splat. 5434 if (!isBroadcastShuffle(SVI)) 5435 return false; 5436 5437 // InsertedShuffles - Only insert a shuffle in each block once. 5438 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 5439 5440 bool MadeChange = false; 5441 for (User *U : SVI->users()) { 5442 Instruction *UI = cast<Instruction>(U); 5443 5444 // Figure out which BB this ext is used in. 5445 BasicBlock *UserBB = UI->getParent(); 5446 if (UserBB == DefBB) continue; 5447 5448 // For now only apply this when the splat is used by a shift instruction. 5449 if (!UI->isShift()) continue; 5450 5451 // Everything checks out, sink the shuffle if the user's block doesn't 5452 // already have a copy. 5453 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 5454 5455 if (!InsertedShuffle) { 5456 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5457 assert(InsertPt != UserBB->end()); 5458 InsertedShuffle = 5459 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5460 SVI->getOperand(2), "", &*InsertPt); 5461 } 5462 5463 UI->replaceUsesOfWith(SVI, InsertedShuffle); 5464 MadeChange = true; 5465 } 5466 5467 // If we removed all uses, nuke the shuffle. 5468 if (SVI->use_empty()) { 5469 SVI->eraseFromParent(); 5470 MadeChange = true; 5471 } 5472 5473 return MadeChange; 5474 } 5475 5476 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 5477 if (!TLI || !DL) 5478 return false; 5479 5480 Value *Cond = SI->getCondition(); 5481 Type *OldType = Cond->getType(); 5482 LLVMContext &Context = Cond->getContext(); 5483 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 5484 unsigned RegWidth = RegType.getSizeInBits(); 5485 5486 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 5487 return false; 5488 5489 // If the register width is greater than the type width, expand the condition 5490 // of the switch instruction and each case constant to the width of the 5491 // register. By widening the type of the switch condition, subsequent 5492 // comparisons (for case comparisons) will not need to be extended to the 5493 // preferred register width, so we will potentially eliminate N-1 extends, 5494 // where N is the number of cases in the switch. 5495 auto *NewType = Type::getIntNTy(Context, RegWidth); 5496 5497 // Zero-extend the switch condition and case constants unless the switch 5498 // condition is a function argument that is already being sign-extended. 5499 // In that case, we can avoid an unnecessary mask/extension by sign-extending 5500 // everything instead. 5501 Instruction::CastOps ExtType = Instruction::ZExt; 5502 if (auto *Arg = dyn_cast<Argument>(Cond)) 5503 if (Arg->hasSExtAttr()) 5504 ExtType = Instruction::SExt; 5505 5506 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 5507 ExtInst->insertBefore(SI); 5508 SI->setCondition(ExtInst); 5509 for (auto Case : SI->cases()) { 5510 APInt NarrowConst = Case.getCaseValue()->getValue(); 5511 APInt WideConst = (ExtType == Instruction::ZExt) ? 5512 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 5513 Case.setValue(ConstantInt::get(Context, WideConst)); 5514 } 5515 5516 return true; 5517 } 5518 5519 5520 namespace { 5521 5522 /// \brief Helper class to promote a scalar operation to a vector one. 5523 /// This class is used to move downward extractelement transition. 5524 /// E.g., 5525 /// a = vector_op <2 x i32> 5526 /// b = extractelement <2 x i32> a, i32 0 5527 /// c = scalar_op b 5528 /// store c 5529 /// 5530 /// => 5531 /// a = vector_op <2 x i32> 5532 /// c = vector_op a (equivalent to scalar_op on the related lane) 5533 /// * d = extractelement <2 x i32> c, i32 0 5534 /// * store d 5535 /// Assuming both extractelement and store can be combine, we get rid of the 5536 /// transition. 5537 class VectorPromoteHelper { 5538 /// DataLayout associated with the current module. 5539 const DataLayout &DL; 5540 5541 /// Used to perform some checks on the legality of vector operations. 5542 const TargetLowering &TLI; 5543 5544 /// Used to estimated the cost of the promoted chain. 5545 const TargetTransformInfo &TTI; 5546 5547 /// The transition being moved downwards. 5548 Instruction *Transition; 5549 5550 /// The sequence of instructions to be promoted. 5551 SmallVector<Instruction *, 4> InstsToBePromoted; 5552 5553 /// Cost of combining a store and an extract. 5554 unsigned StoreExtractCombineCost; 5555 5556 /// Instruction that will be combined with the transition. 5557 Instruction *CombineInst = nullptr; 5558 5559 /// \brief The instruction that represents the current end of the transition. 5560 /// Since we are faking the promotion until we reach the end of the chain 5561 /// of computation, we need a way to get the current end of the transition. 5562 Instruction *getEndOfTransition() const { 5563 if (InstsToBePromoted.empty()) 5564 return Transition; 5565 return InstsToBePromoted.back(); 5566 } 5567 5568 /// \brief Return the index of the original value in the transition. 5569 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 5570 /// c, is at index 0. 5571 unsigned getTransitionOriginalValueIdx() const { 5572 assert(isa<ExtractElementInst>(Transition) && 5573 "Other kind of transitions are not supported yet"); 5574 return 0; 5575 } 5576 5577 /// \brief Return the index of the index in the transition. 5578 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 5579 /// is at index 1. 5580 unsigned getTransitionIdx() const { 5581 assert(isa<ExtractElementInst>(Transition) && 5582 "Other kind of transitions are not supported yet"); 5583 return 1; 5584 } 5585 5586 /// \brief Get the type of the transition. 5587 /// This is the type of the original value. 5588 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 5589 /// transition is <2 x i32>. 5590 Type *getTransitionType() const { 5591 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 5592 } 5593 5594 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 5595 /// I.e., we have the following sequence: 5596 /// Def = Transition <ty1> a to <ty2> 5597 /// b = ToBePromoted <ty2> Def, ... 5598 /// => 5599 /// b = ToBePromoted <ty1> a, ... 5600 /// Def = Transition <ty1> ToBePromoted to <ty2> 5601 void promoteImpl(Instruction *ToBePromoted); 5602 5603 /// \brief Check whether or not it is profitable to promote all the 5604 /// instructions enqueued to be promoted. 5605 bool isProfitableToPromote() { 5606 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 5607 unsigned Index = isa<ConstantInt>(ValIdx) 5608 ? cast<ConstantInt>(ValIdx)->getZExtValue() 5609 : -1; 5610 Type *PromotedType = getTransitionType(); 5611 5612 StoreInst *ST = cast<StoreInst>(CombineInst); 5613 unsigned AS = ST->getPointerAddressSpace(); 5614 unsigned Align = ST->getAlignment(); 5615 // Check if this store is supported. 5616 if (!TLI.allowsMisalignedMemoryAccesses( 5617 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 5618 Align)) { 5619 // If this is not supported, there is no way we can combine 5620 // the extract with the store. 5621 return false; 5622 } 5623 5624 // The scalar chain of computation has to pay for the transition 5625 // scalar to vector. 5626 // The vector chain has to account for the combining cost. 5627 uint64_t ScalarCost = 5628 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 5629 uint64_t VectorCost = StoreExtractCombineCost; 5630 for (const auto &Inst : InstsToBePromoted) { 5631 // Compute the cost. 5632 // By construction, all instructions being promoted are arithmetic ones. 5633 // Moreover, one argument is a constant that can be viewed as a splat 5634 // constant. 5635 Value *Arg0 = Inst->getOperand(0); 5636 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 5637 isa<ConstantFP>(Arg0); 5638 TargetTransformInfo::OperandValueKind Arg0OVK = 5639 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5640 : TargetTransformInfo::OK_AnyValue; 5641 TargetTransformInfo::OperandValueKind Arg1OVK = 5642 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5643 : TargetTransformInfo::OK_AnyValue; 5644 ScalarCost += TTI.getArithmeticInstrCost( 5645 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 5646 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 5647 Arg0OVK, Arg1OVK); 5648 } 5649 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 5650 << ScalarCost << "\nVector: " << VectorCost << '\n'); 5651 return ScalarCost > VectorCost; 5652 } 5653 5654 /// \brief Generate a constant vector with \p Val with the same 5655 /// number of elements as the transition. 5656 /// \p UseSplat defines whether or not \p Val should be replicated 5657 /// across the whole vector. 5658 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 5659 /// otherwise we generate a vector with as many undef as possible: 5660 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 5661 /// used at the index of the extract. 5662 Value *getConstantVector(Constant *Val, bool UseSplat) const { 5663 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 5664 if (!UseSplat) { 5665 // If we cannot determine where the constant must be, we have to 5666 // use a splat constant. 5667 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 5668 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 5669 ExtractIdx = CstVal->getSExtValue(); 5670 else 5671 UseSplat = true; 5672 } 5673 5674 unsigned End = getTransitionType()->getVectorNumElements(); 5675 if (UseSplat) 5676 return ConstantVector::getSplat(End, Val); 5677 5678 SmallVector<Constant *, 4> ConstVec; 5679 UndefValue *UndefVal = UndefValue::get(Val->getType()); 5680 for (unsigned Idx = 0; Idx != End; ++Idx) { 5681 if (Idx == ExtractIdx) 5682 ConstVec.push_back(Val); 5683 else 5684 ConstVec.push_back(UndefVal); 5685 } 5686 return ConstantVector::get(ConstVec); 5687 } 5688 5689 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 5690 /// in \p Use can trigger undefined behavior. 5691 static bool canCauseUndefinedBehavior(const Instruction *Use, 5692 unsigned OperandIdx) { 5693 // This is not safe to introduce undef when the operand is on 5694 // the right hand side of a division-like instruction. 5695 if (OperandIdx != 1) 5696 return false; 5697 switch (Use->getOpcode()) { 5698 default: 5699 return false; 5700 case Instruction::SDiv: 5701 case Instruction::UDiv: 5702 case Instruction::SRem: 5703 case Instruction::URem: 5704 return true; 5705 case Instruction::FDiv: 5706 case Instruction::FRem: 5707 return !Use->hasNoNaNs(); 5708 } 5709 llvm_unreachable(nullptr); 5710 } 5711 5712 public: 5713 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 5714 const TargetTransformInfo &TTI, Instruction *Transition, 5715 unsigned CombineCost) 5716 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 5717 StoreExtractCombineCost(CombineCost) { 5718 assert(Transition && "Do not know how to promote null"); 5719 } 5720 5721 /// \brief Check if we can promote \p ToBePromoted to \p Type. 5722 bool canPromote(const Instruction *ToBePromoted) const { 5723 // We could support CastInst too. 5724 return isa<BinaryOperator>(ToBePromoted); 5725 } 5726 5727 /// \brief Check if it is profitable to promote \p ToBePromoted 5728 /// by moving downward the transition through. 5729 bool shouldPromote(const Instruction *ToBePromoted) const { 5730 // Promote only if all the operands can be statically expanded. 5731 // Indeed, we do not want to introduce any new kind of transitions. 5732 for (const Use &U : ToBePromoted->operands()) { 5733 const Value *Val = U.get(); 5734 if (Val == getEndOfTransition()) { 5735 // If the use is a division and the transition is on the rhs, 5736 // we cannot promote the operation, otherwise we may create a 5737 // division by zero. 5738 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 5739 return false; 5740 continue; 5741 } 5742 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 5743 !isa<ConstantFP>(Val)) 5744 return false; 5745 } 5746 // Check that the resulting operation is legal. 5747 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 5748 if (!ISDOpcode) 5749 return false; 5750 return StressStoreExtract || 5751 TLI.isOperationLegalOrCustom( 5752 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 5753 } 5754 5755 /// \brief Check whether or not \p Use can be combined 5756 /// with the transition. 5757 /// I.e., is it possible to do Use(Transition) => AnotherUse? 5758 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 5759 5760 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 5761 void enqueueForPromotion(Instruction *ToBePromoted) { 5762 InstsToBePromoted.push_back(ToBePromoted); 5763 } 5764 5765 /// \brief Set the instruction that will be combined with the transition. 5766 void recordCombineInstruction(Instruction *ToBeCombined) { 5767 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 5768 CombineInst = ToBeCombined; 5769 } 5770 5771 /// \brief Promote all the instructions enqueued for promotion if it is 5772 /// is profitable. 5773 /// \return True if the promotion happened, false otherwise. 5774 bool promote() { 5775 // Check if there is something to promote. 5776 // Right now, if we do not have anything to combine with, 5777 // we assume the promotion is not profitable. 5778 if (InstsToBePromoted.empty() || !CombineInst) 5779 return false; 5780 5781 // Check cost. 5782 if (!StressStoreExtract && !isProfitableToPromote()) 5783 return false; 5784 5785 // Promote. 5786 for (auto &ToBePromoted : InstsToBePromoted) 5787 promoteImpl(ToBePromoted); 5788 InstsToBePromoted.clear(); 5789 return true; 5790 } 5791 }; 5792 5793 } // end anonymous namespace 5794 5795 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 5796 // At this point, we know that all the operands of ToBePromoted but Def 5797 // can be statically promoted. 5798 // For Def, we need to use its parameter in ToBePromoted: 5799 // b = ToBePromoted ty1 a 5800 // Def = Transition ty1 b to ty2 5801 // Move the transition down. 5802 // 1. Replace all uses of the promoted operation by the transition. 5803 // = ... b => = ... Def. 5804 assert(ToBePromoted->getType() == Transition->getType() && 5805 "The type of the result of the transition does not match " 5806 "the final type"); 5807 ToBePromoted->replaceAllUsesWith(Transition); 5808 // 2. Update the type of the uses. 5809 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 5810 Type *TransitionTy = getTransitionType(); 5811 ToBePromoted->mutateType(TransitionTy); 5812 // 3. Update all the operands of the promoted operation with promoted 5813 // operands. 5814 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 5815 for (Use &U : ToBePromoted->operands()) { 5816 Value *Val = U.get(); 5817 Value *NewVal = nullptr; 5818 if (Val == Transition) 5819 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 5820 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 5821 isa<ConstantFP>(Val)) { 5822 // Use a splat constant if it is not safe to use undef. 5823 NewVal = getConstantVector( 5824 cast<Constant>(Val), 5825 isa<UndefValue>(Val) || 5826 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 5827 } else 5828 llvm_unreachable("Did you modified shouldPromote and forgot to update " 5829 "this?"); 5830 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 5831 } 5832 Transition->moveAfter(ToBePromoted); 5833 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 5834 } 5835 5836 /// Some targets can do store(extractelement) with one instruction. 5837 /// Try to push the extractelement towards the stores when the target 5838 /// has this feature and this is profitable. 5839 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 5840 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 5841 if (DisableStoreExtract || !TLI || 5842 (!StressStoreExtract && 5843 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 5844 Inst->getOperand(1), CombineCost))) 5845 return false; 5846 5847 // At this point we know that Inst is a vector to scalar transition. 5848 // Try to move it down the def-use chain, until: 5849 // - We can combine the transition with its single use 5850 // => we got rid of the transition. 5851 // - We escape the current basic block 5852 // => we would need to check that we are moving it at a cheaper place and 5853 // we do not do that for now. 5854 BasicBlock *Parent = Inst->getParent(); 5855 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 5856 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 5857 // If the transition has more than one use, assume this is not going to be 5858 // beneficial. 5859 while (Inst->hasOneUse()) { 5860 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 5861 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 5862 5863 if (ToBePromoted->getParent() != Parent) { 5864 DEBUG(dbgs() << "Instruction to promote is in a different block (" 5865 << ToBePromoted->getParent()->getName() 5866 << ") than the transition (" << Parent->getName() << ").\n"); 5867 return false; 5868 } 5869 5870 if (VPH.canCombine(ToBePromoted)) { 5871 DEBUG(dbgs() << "Assume " << *Inst << '\n' 5872 << "will be combined with: " << *ToBePromoted << '\n'); 5873 VPH.recordCombineInstruction(ToBePromoted); 5874 bool Changed = VPH.promote(); 5875 NumStoreExtractExposed += Changed; 5876 return Changed; 5877 } 5878 5879 DEBUG(dbgs() << "Try promoting.\n"); 5880 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 5881 return false; 5882 5883 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 5884 5885 VPH.enqueueForPromotion(ToBePromoted); 5886 Inst = ToBePromoted; 5887 } 5888 return false; 5889 } 5890 5891 /// For the instruction sequence of store below, F and I values 5892 /// are bundled together as an i64 value before being stored into memory. 5893 /// Sometimes it is more efficent to generate separate stores for F and I, 5894 /// which can remove the bitwise instructions or sink them to colder places. 5895 /// 5896 /// (store (or (zext (bitcast F to i32) to i64), 5897 /// (shl (zext I to i64), 32)), addr) --> 5898 /// (store F, addr) and (store I, addr+4) 5899 /// 5900 /// Similarly, splitting for other merged store can also be beneficial, like: 5901 /// For pair of {i32, i32}, i64 store --> two i32 stores. 5902 /// For pair of {i32, i16}, i64 store --> two i32 stores. 5903 /// For pair of {i16, i16}, i32 store --> two i16 stores. 5904 /// For pair of {i16, i8}, i32 store --> two i16 stores. 5905 /// For pair of {i8, i8}, i16 store --> two i8 stores. 5906 /// 5907 /// We allow each target to determine specifically which kind of splitting is 5908 /// supported. 5909 /// 5910 /// The store patterns are commonly seen from the simple code snippet below 5911 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 5912 /// void goo(const std::pair<int, float> &); 5913 /// hoo() { 5914 /// ... 5915 /// goo(std::make_pair(tmp, ftmp)); 5916 /// ... 5917 /// } 5918 /// 5919 /// Although we already have similar splitting in DAG Combine, we duplicate 5920 /// it in CodeGenPrepare to catch the case in which pattern is across 5921 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 5922 /// during code expansion. 5923 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 5924 const TargetLowering &TLI) { 5925 // Handle simple but common cases only. 5926 Type *StoreType = SI.getValueOperand()->getType(); 5927 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || 5928 DL.getTypeSizeInBits(StoreType) == 0) 5929 return false; 5930 5931 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 5932 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 5933 if (DL.getTypeStoreSizeInBits(SplitStoreType) != 5934 DL.getTypeSizeInBits(SplitStoreType)) 5935 return false; 5936 5937 // Match the following patterns: 5938 // (store (or (zext LValue to i64), 5939 // (shl (zext HValue to i64), 32)), HalfValBitSize) 5940 // or 5941 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 5942 // (zext LValue to i64), 5943 // Expect both operands of OR and the first operand of SHL have only 5944 // one use. 5945 Value *LValue, *HValue; 5946 if (!match(SI.getValueOperand(), 5947 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 5948 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 5949 m_SpecificInt(HalfValBitSize)))))) 5950 return false; 5951 5952 // Check LValue and HValue are int with size less or equal than 32. 5953 if (!LValue->getType()->isIntegerTy() || 5954 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 5955 !HValue->getType()->isIntegerTy() || 5956 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 5957 return false; 5958 5959 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 5960 // as the input of target query. 5961 auto *LBC = dyn_cast<BitCastInst>(LValue); 5962 auto *HBC = dyn_cast<BitCastInst>(HValue); 5963 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 5964 : EVT::getEVT(LValue->getType()); 5965 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 5966 : EVT::getEVT(HValue->getType()); 5967 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 5968 return false; 5969 5970 // Start to split store. 5971 IRBuilder<> Builder(SI.getContext()); 5972 Builder.SetInsertPoint(&SI); 5973 5974 // If LValue/HValue is a bitcast in another BB, create a new one in current 5975 // BB so it may be merged with the splitted stores by dag combiner. 5976 if (LBC && LBC->getParent() != SI.getParent()) 5977 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 5978 if (HBC && HBC->getParent() != SI.getParent()) 5979 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 5980 5981 auto CreateSplitStore = [&](Value *V, bool Upper) { 5982 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 5983 Value *Addr = Builder.CreateBitCast( 5984 SI.getOperand(1), 5985 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 5986 if (Upper) 5987 Addr = Builder.CreateGEP( 5988 SplitStoreType, Addr, 5989 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 5990 Builder.CreateAlignedStore( 5991 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 5992 }; 5993 5994 CreateSplitStore(LValue, false); 5995 CreateSplitStore(HValue, true); 5996 5997 // Delete the old store. 5998 SI.eraseFromParent(); 5999 return true; 6000 } 6001 6002 // Return true if the GEP has two operands, the first operand is of a sequential 6003 // type, and the second operand is a constant. 6004 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6005 gep_type_iterator I = gep_type_begin(*GEP); 6006 return GEP->getNumOperands() == 2 && 6007 I.isSequential() && 6008 isa<ConstantInt>(GEP->getOperand(1)); 6009 } 6010 6011 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6012 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6013 // reducing liveness interference across those edges benefits global register 6014 // allocation. Currently handles only certain cases. 6015 // 6016 // For example, unmerge %GEPI and %UGEPI as below. 6017 // 6018 // ---------- BEFORE ---------- 6019 // SrcBlock: 6020 // ... 6021 // %GEPIOp = ... 6022 // ... 6023 // %GEPI = gep %GEPIOp, Idx 6024 // ... 6025 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6026 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6027 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6028 // %UGEPI) 6029 // 6030 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6031 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6032 // ... 6033 // 6034 // DstBi: 6035 // ... 6036 // %UGEPI = gep %GEPIOp, UIdx 6037 // ... 6038 // --------------------------- 6039 // 6040 // ---------- AFTER ---------- 6041 // SrcBlock: 6042 // ... (same as above) 6043 // (* %GEPI is still alive on the indirectbr edges) 6044 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6045 // unmerging) 6046 // ... 6047 // 6048 // DstBi: 6049 // ... 6050 // %UGEPI = gep %GEPI, (UIdx-Idx) 6051 // ... 6052 // --------------------------- 6053 // 6054 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6055 // no longer alive on them. 6056 // 6057 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6058 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6059 // not to disable further simplications and optimizations as a result of GEP 6060 // merging. 6061 // 6062 // Note this unmerging may increase the length of the data flow critical path 6063 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6064 // between the register pressure and the length of data-flow critical 6065 // path. Restricting this to the uncommon IndirectBr case would minimize the 6066 // impact of potentially longer critical path, if any, and the impact on compile 6067 // time. 6068 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6069 const TargetTransformInfo *TTI) { 6070 BasicBlock *SrcBlock = GEPI->getParent(); 6071 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 6072 // (non-IndirectBr) cases exit early here. 6073 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 6074 return false; 6075 // Check that GEPI is a simple gep with a single constant index. 6076 if (!GEPSequentialConstIndexed(GEPI)) 6077 return false; 6078 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 6079 // Check that GEPI is a cheap one. 6080 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 6081 > TargetTransformInfo::TCC_Basic) 6082 return false; 6083 Value *GEPIOp = GEPI->getOperand(0); 6084 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 6085 if (!isa<Instruction>(GEPIOp)) 6086 return false; 6087 auto *GEPIOpI = cast<Instruction>(GEPIOp); 6088 if (GEPIOpI->getParent() != SrcBlock) 6089 return false; 6090 // Check that GEP is used outside the block, meaning it's alive on the 6091 // IndirectBr edge(s). 6092 if (find_if(GEPI->users(), [&](User *Usr) { 6093 if (auto *I = dyn_cast<Instruction>(Usr)) { 6094 if (I->getParent() != SrcBlock) { 6095 return true; 6096 } 6097 } 6098 return false; 6099 }) == GEPI->users().end()) 6100 return false; 6101 // The second elements of the GEP chains to be unmerged. 6102 std::vector<GetElementPtrInst *> UGEPIs; 6103 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 6104 // on IndirectBr edges. 6105 for (User *Usr : GEPIOp->users()) { 6106 if (Usr == GEPI) continue; 6107 // Check if Usr is an Instruction. If not, give up. 6108 if (!isa<Instruction>(Usr)) 6109 return false; 6110 auto *UI = cast<Instruction>(Usr); 6111 // Check if Usr in the same block as GEPIOp, which is fine, skip. 6112 if (UI->getParent() == SrcBlock) 6113 continue; 6114 // Check if Usr is a GEP. If not, give up. 6115 if (!isa<GetElementPtrInst>(Usr)) 6116 return false; 6117 auto *UGEPI = cast<GetElementPtrInst>(Usr); 6118 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 6119 // the pointer operand to it. If so, record it in the vector. If not, give 6120 // up. 6121 if (!GEPSequentialConstIndexed(UGEPI)) 6122 return false; 6123 if (UGEPI->getOperand(0) != GEPIOp) 6124 return false; 6125 if (GEPIIdx->getType() != 6126 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 6127 return false; 6128 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6129 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 6130 > TargetTransformInfo::TCC_Basic) 6131 return false; 6132 UGEPIs.push_back(UGEPI); 6133 } 6134 if (UGEPIs.size() == 0) 6135 return false; 6136 // Check the materializing cost of (Uidx-Idx). 6137 for (GetElementPtrInst *UGEPI : UGEPIs) { 6138 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6139 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 6140 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 6141 if (ImmCost > TargetTransformInfo::TCC_Basic) 6142 return false; 6143 } 6144 // Now unmerge between GEPI and UGEPIs. 6145 for (GetElementPtrInst *UGEPI : UGEPIs) { 6146 UGEPI->setOperand(0, GEPI); 6147 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6148 Constant *NewUGEPIIdx = 6149 ConstantInt::get(GEPIIdx->getType(), 6150 UGEPIIdx->getValue() - GEPIIdx->getValue()); 6151 UGEPI->setOperand(1, NewUGEPIIdx); 6152 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 6153 // inbounds to avoid UB. 6154 if (!GEPI->isInBounds()) { 6155 UGEPI->setIsInBounds(false); 6156 } 6157 } 6158 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 6159 // alive on IndirectBr edges). 6160 assert(find_if(GEPIOp->users(), [&](User *Usr) { 6161 return cast<Instruction>(Usr)->getParent() != SrcBlock; 6162 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 6163 return true; 6164 } 6165 6166 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 6167 // Bail out if we inserted the instruction to prevent optimizations from 6168 // stepping on each other's toes. 6169 if (InsertedInsts.count(I)) 6170 return false; 6171 6172 if (PHINode *P = dyn_cast<PHINode>(I)) { 6173 // It is possible for very late stage optimizations (such as SimplifyCFG) 6174 // to introduce PHI nodes too late to be cleaned up. If we detect such a 6175 // trivial PHI, go ahead and zap it here. 6176 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 6177 P->replaceAllUsesWith(V); 6178 P->eraseFromParent(); 6179 ++NumPHIsElim; 6180 return true; 6181 } 6182 return false; 6183 } 6184 6185 if (CastInst *CI = dyn_cast<CastInst>(I)) { 6186 // If the source of the cast is a constant, then this should have 6187 // already been constant folded. The only reason NOT to constant fold 6188 // it is if something (e.g. LSR) was careful to place the constant 6189 // evaluation in a block other than then one that uses it (e.g. to hoist 6190 // the address of globals out of a loop). If this is the case, we don't 6191 // want to forward-subst the cast. 6192 if (isa<Constant>(CI->getOperand(0))) 6193 return false; 6194 6195 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 6196 return true; 6197 6198 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 6199 /// Sink a zext or sext into its user blocks if the target type doesn't 6200 /// fit in one register 6201 if (TLI && 6202 TLI->getTypeAction(CI->getContext(), 6203 TLI->getValueType(*DL, CI->getType())) == 6204 TargetLowering::TypeExpandInteger) { 6205 return SinkCast(CI); 6206 } else { 6207 bool MadeChange = optimizeExt(I); 6208 return MadeChange | optimizeExtUses(I); 6209 } 6210 } 6211 return false; 6212 } 6213 6214 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 6215 if (!TLI || !TLI->hasMultipleConditionRegisters()) 6216 return OptimizeCmpExpression(CI, TLI); 6217 6218 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6219 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6220 if (TLI) { 6221 bool Modified = optimizeLoadExt(LI); 6222 unsigned AS = LI->getPointerAddressSpace(); 6223 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 6224 return Modified; 6225 } 6226 return false; 6227 } 6228 6229 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 6230 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 6231 return true; 6232 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6233 if (TLI) { 6234 unsigned AS = SI->getPointerAddressSpace(); 6235 return optimizeMemoryInst(I, SI->getOperand(1), 6236 SI->getOperand(0)->getType(), AS); 6237 } 6238 return false; 6239 } 6240 6241 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 6242 unsigned AS = RMW->getPointerAddressSpace(); 6243 return optimizeMemoryInst(I, RMW->getPointerOperand(), 6244 RMW->getType(), AS); 6245 } 6246 6247 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 6248 unsigned AS = CmpX->getPointerAddressSpace(); 6249 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 6250 CmpX->getCompareOperand()->getType(), AS); 6251 } 6252 6253 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 6254 6255 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 6256 EnableAndCmpSinking && TLI) 6257 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 6258 6259 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 6260 BinOp->getOpcode() == Instruction::LShr)) { 6261 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 6262 if (TLI && CI && TLI->hasExtractBitsInsn()) 6263 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 6264 6265 return false; 6266 } 6267 6268 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 6269 if (GEPI->hasAllZeroIndices()) { 6270 /// The GEP operand must be a pointer, so must its result -> BitCast 6271 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 6272 GEPI->getName(), GEPI); 6273 GEPI->replaceAllUsesWith(NC); 6274 GEPI->eraseFromParent(); 6275 ++NumGEPsElim; 6276 optimizeInst(NC, ModifiedDT); 6277 return true; 6278 } 6279 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 6280 return true; 6281 } 6282 return false; 6283 } 6284 6285 if (CallInst *CI = dyn_cast<CallInst>(I)) 6286 return optimizeCallInst(CI, ModifiedDT); 6287 6288 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 6289 return optimizeSelectInst(SI); 6290 6291 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 6292 return optimizeShuffleVectorInst(SVI); 6293 6294 if (auto *Switch = dyn_cast<SwitchInst>(I)) 6295 return optimizeSwitchInst(Switch); 6296 6297 if (isa<ExtractElementInst>(I)) 6298 return optimizeExtractElementInst(I); 6299 6300 return false; 6301 } 6302 6303 /// Given an OR instruction, check to see if this is a bitreverse 6304 /// idiom. If so, insert the new intrinsic and return true. 6305 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 6306 const TargetLowering &TLI) { 6307 if (!I.getType()->isIntegerTy() || 6308 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 6309 TLI.getValueType(DL, I.getType(), true))) 6310 return false; 6311 6312 SmallVector<Instruction*, 4> Insts; 6313 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 6314 return false; 6315 Instruction *LastInst = Insts.back(); 6316 I.replaceAllUsesWith(LastInst); 6317 RecursivelyDeleteTriviallyDeadInstructions(&I); 6318 return true; 6319 } 6320 6321 // In this pass we look for GEP and cast instructions that are used 6322 // across basic blocks and rewrite them to improve basic-block-at-a-time 6323 // selection. 6324 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 6325 SunkAddrs.clear(); 6326 bool MadeChange = false; 6327 6328 CurInstIterator = BB.begin(); 6329 while (CurInstIterator != BB.end()) { 6330 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 6331 if (ModifiedDT) 6332 return true; 6333 } 6334 6335 bool MadeBitReverse = true; 6336 while (TLI && MadeBitReverse) { 6337 MadeBitReverse = false; 6338 for (auto &I : reverse(BB)) { 6339 if (makeBitReverse(I, *DL, *TLI)) { 6340 MadeBitReverse = MadeChange = true; 6341 ModifiedDT = true; 6342 break; 6343 } 6344 } 6345 } 6346 MadeChange |= dupRetToEnableTailCallOpts(&BB); 6347 6348 return MadeChange; 6349 } 6350 6351 // llvm.dbg.value is far away from the value then iSel may not be able 6352 // handle it properly. iSel will drop llvm.dbg.value if it can not 6353 // find a node corresponding to the value. 6354 bool CodeGenPrepare::placeDbgValues(Function &F) { 6355 bool MadeChange = false; 6356 for (BasicBlock &BB : F) { 6357 Instruction *PrevNonDbgInst = nullptr; 6358 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 6359 Instruction *Insn = &*BI++; 6360 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 6361 // Leave dbg.values that refer to an alloca alone. These 6362 // intrinsics describe the address of a variable (= the alloca) 6363 // being taken. They should not be moved next to the alloca 6364 // (and to the beginning of the scope), but rather stay close to 6365 // where said address is used. 6366 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 6367 PrevNonDbgInst = Insn; 6368 continue; 6369 } 6370 6371 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 6372 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 6373 // If VI is a phi in a block with an EHPad terminator, we can't insert 6374 // after it. 6375 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 6376 continue; 6377 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 6378 DVI->removeFromParent(); 6379 if (isa<PHINode>(VI)) 6380 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 6381 else 6382 DVI->insertAfter(VI); 6383 MadeChange = true; 6384 ++NumDbgValueMoved; 6385 } 6386 } 6387 } 6388 return MadeChange; 6389 } 6390 6391 /// \brief Scale down both weights to fit into uint32_t. 6392 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 6393 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 6394 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 6395 NewTrue = NewTrue / Scale; 6396 NewFalse = NewFalse / Scale; 6397 } 6398 6399 /// \brief Some targets prefer to split a conditional branch like: 6400 /// \code 6401 /// %0 = icmp ne i32 %a, 0 6402 /// %1 = icmp ne i32 %b, 0 6403 /// %or.cond = or i1 %0, %1 6404 /// br i1 %or.cond, label %TrueBB, label %FalseBB 6405 /// \endcode 6406 /// into multiple branch instructions like: 6407 /// \code 6408 /// bb1: 6409 /// %0 = icmp ne i32 %a, 0 6410 /// br i1 %0, label %TrueBB, label %bb2 6411 /// bb2: 6412 /// %1 = icmp ne i32 %b, 0 6413 /// br i1 %1, label %TrueBB, label %FalseBB 6414 /// \endcode 6415 /// This usually allows instruction selection to do even further optimizations 6416 /// and combine the compare with the branch instruction. Currently this is 6417 /// applied for targets which have "cheap" jump instructions. 6418 /// 6419 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 6420 /// 6421 bool CodeGenPrepare::splitBranchCondition(Function &F) { 6422 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 6423 return false; 6424 6425 bool MadeChange = false; 6426 for (auto &BB : F) { 6427 // Does this BB end with the following? 6428 // %cond1 = icmp|fcmp|binary instruction ... 6429 // %cond2 = icmp|fcmp|binary instruction ... 6430 // %cond.or = or|and i1 %cond1, cond2 6431 // br i1 %cond.or label %dest1, label %dest2" 6432 BinaryOperator *LogicOp; 6433 BasicBlock *TBB, *FBB; 6434 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 6435 continue; 6436 6437 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 6438 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 6439 continue; 6440 6441 unsigned Opc; 6442 Value *Cond1, *Cond2; 6443 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 6444 m_OneUse(m_Value(Cond2))))) 6445 Opc = Instruction::And; 6446 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 6447 m_OneUse(m_Value(Cond2))))) 6448 Opc = Instruction::Or; 6449 else 6450 continue; 6451 6452 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 6453 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 6454 continue; 6455 6456 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 6457 6458 // Create a new BB. 6459 auto TmpBB = 6460 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 6461 BB.getParent(), BB.getNextNode()); 6462 6463 // Update original basic block by using the first condition directly by the 6464 // branch instruction and removing the no longer needed and/or instruction. 6465 Br1->setCondition(Cond1); 6466 LogicOp->eraseFromParent(); 6467 6468 // Depending on the conditon we have to either replace the true or the false 6469 // successor of the original branch instruction. 6470 if (Opc == Instruction::And) 6471 Br1->setSuccessor(0, TmpBB); 6472 else 6473 Br1->setSuccessor(1, TmpBB); 6474 6475 // Fill in the new basic block. 6476 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 6477 if (auto *I = dyn_cast<Instruction>(Cond2)) { 6478 I->removeFromParent(); 6479 I->insertBefore(Br2); 6480 } 6481 6482 // Update PHI nodes in both successors. The original BB needs to be 6483 // replaced in one successor's PHI nodes, because the branch comes now from 6484 // the newly generated BB (NewBB). In the other successor we need to add one 6485 // incoming edge to the PHI nodes, because both branch instructions target 6486 // now the same successor. Depending on the original branch condition 6487 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 6488 // we perform the correct update for the PHI nodes. 6489 // This doesn't change the successor order of the just created branch 6490 // instruction (or any other instruction). 6491 if (Opc == Instruction::Or) 6492 std::swap(TBB, FBB); 6493 6494 // Replace the old BB with the new BB. 6495 for (PHINode &PN : TBB->phis()) { 6496 int i; 6497 while ((i = PN.getBasicBlockIndex(&BB)) >= 0) 6498 PN.setIncomingBlock(i, TmpBB); 6499 } 6500 6501 // Add another incoming edge form the new BB. 6502 for (PHINode &PN : FBB->phis()) { 6503 auto *Val = PN.getIncomingValueForBlock(&BB); 6504 PN.addIncoming(Val, TmpBB); 6505 } 6506 6507 // Update the branch weights (from SelectionDAGBuilder:: 6508 // FindMergedConditions). 6509 if (Opc == Instruction::Or) { 6510 // Codegen X | Y as: 6511 // BB1: 6512 // jmp_if_X TBB 6513 // jmp TmpBB 6514 // TmpBB: 6515 // jmp_if_Y TBB 6516 // jmp FBB 6517 // 6518 6519 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 6520 // The requirement is that 6521 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 6522 // = TrueProb for orignal BB. 6523 // Assuming the orignal weights are A and B, one choice is to set BB1's 6524 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 6525 // assumes that 6526 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 6527 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 6528 // TmpBB, but the math is more complicated. 6529 uint64_t TrueWeight, FalseWeight; 6530 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6531 uint64_t NewTrueWeight = TrueWeight; 6532 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 6533 scaleWeights(NewTrueWeight, NewFalseWeight); 6534 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6535 .createBranchWeights(TrueWeight, FalseWeight)); 6536 6537 NewTrueWeight = TrueWeight; 6538 NewFalseWeight = 2 * FalseWeight; 6539 scaleWeights(NewTrueWeight, NewFalseWeight); 6540 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6541 .createBranchWeights(TrueWeight, FalseWeight)); 6542 } 6543 } else { 6544 // Codegen X & Y as: 6545 // BB1: 6546 // jmp_if_X TmpBB 6547 // jmp FBB 6548 // TmpBB: 6549 // jmp_if_Y TBB 6550 // jmp FBB 6551 // 6552 // This requires creation of TmpBB after CurBB. 6553 6554 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 6555 // The requirement is that 6556 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 6557 // = FalseProb for orignal BB. 6558 // Assuming the orignal weights are A and B, one choice is to set BB1's 6559 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 6560 // assumes that 6561 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 6562 uint64_t TrueWeight, FalseWeight; 6563 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6564 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 6565 uint64_t NewFalseWeight = FalseWeight; 6566 scaleWeights(NewTrueWeight, NewFalseWeight); 6567 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6568 .createBranchWeights(TrueWeight, FalseWeight)); 6569 6570 NewTrueWeight = 2 * TrueWeight; 6571 NewFalseWeight = FalseWeight; 6572 scaleWeights(NewTrueWeight, NewFalseWeight); 6573 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6574 .createBranchWeights(TrueWeight, FalseWeight)); 6575 } 6576 } 6577 6578 // Note: No point in getting fancy here, since the DT info is never 6579 // available to CodeGenPrepare. 6580 ModifiedDT = true; 6581 6582 MadeChange = true; 6583 6584 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 6585 TmpBB->dump()); 6586 } 6587 return MadeChange; 6588 } 6589