1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/PointerIntPair.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/InstructionSimplify.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/TargetLibraryInfo.h" 31 #include "llvm/Analysis/TargetTransformInfo.h" 32 #include "llvm/Transforms/Utils/Local.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/CodeGen/Analysis.h" 35 #include "llvm/CodeGen/ISDOpcodes.h" 36 #include "llvm/CodeGen/SelectionDAGNodes.h" 37 #include "llvm/CodeGen/TargetLowering.h" 38 #include "llvm/CodeGen/TargetPassConfig.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/CodeGen/ValueTypes.h" 41 #include "llvm/Config/llvm-config.h" 42 #include "llvm/IR/Argument.h" 43 #include "llvm/IR/Attributes.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/CallSite.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InlineAsm.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/Operator.h" 66 #include "llvm/IR/PatternMatch.h" 67 #include "llvm/IR/Statepoint.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/IR/ValueMap.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/BlockFrequency.h" 76 #include "llvm/Support/BranchProbability.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/MachineValueType.h" 83 #include "llvm/Support/MathExtras.h" 84 #include "llvm/Support/raw_ostream.h" 85 #include "llvm/Target/TargetMachine.h" 86 #include "llvm/Target/TargetOptions.h" 87 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 88 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 89 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 90 #include <algorithm> 91 #include <cassert> 92 #include <cstdint> 93 #include <iterator> 94 #include <limits> 95 #include <memory> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 102 #define DEBUG_TYPE "codegenprepare" 103 104 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 105 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 106 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 107 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 108 "sunken Cmps"); 109 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 110 "of sunken Casts"); 111 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 112 "computations were sunk"); 113 STATISTIC(NumMemoryInstsPhiCreated, 114 "Number of phis created when address " 115 "computations were sunk to memory instructions"); 116 STATISTIC(NumMemoryInstsSelectCreated, 117 "Number of select created when address " 118 "computations were sunk to memory instructions"); 119 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 120 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 121 STATISTIC(NumAndsAdded, 122 "Number of and mask instructions added to form ext loads"); 123 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 124 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 125 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 126 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 127 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 128 129 static cl::opt<bool> DisableBranchOpts( 130 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 131 cl::desc("Disable branch optimizations in CodeGenPrepare")); 132 133 static cl::opt<bool> 134 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 135 cl::desc("Disable GC optimizations in CodeGenPrepare")); 136 137 static cl::opt<bool> DisableSelectToBranch( 138 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 139 cl::desc("Disable select to branch conversion.")); 140 141 static cl::opt<bool> AddrSinkUsingGEPs( 142 "addr-sink-using-gep", cl::Hidden, cl::init(true), 143 cl::desc("Address sinking in CGP using GEPs.")); 144 145 static cl::opt<bool> EnableAndCmpSinking( 146 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 147 cl::desc("Enable sinkinig and/cmp into branches.")); 148 149 static cl::opt<bool> DisableStoreExtract( 150 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 151 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 152 153 static cl::opt<bool> StressStoreExtract( 154 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 155 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 156 157 static cl::opt<bool> DisableExtLdPromotion( 158 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 159 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 160 "CodeGenPrepare")); 161 162 static cl::opt<bool> StressExtLdPromotion( 163 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 164 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 165 "optimization in CodeGenPrepare")); 166 167 static cl::opt<bool> DisablePreheaderProtect( 168 "disable-preheader-prot", cl::Hidden, cl::init(false), 169 cl::desc("Disable protection against removing loop preheaders")); 170 171 static cl::opt<bool> ProfileGuidedSectionPrefix( 172 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 173 cl::desc("Use profile info to add section prefix for hot/cold functions")); 174 175 static cl::opt<unsigned> FreqRatioToSkipMerge( 176 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 177 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 178 "(frequency of destination block) is greater than this ratio")); 179 180 static cl::opt<bool> ForceSplitStore( 181 "force-split-store", cl::Hidden, cl::init(false), 182 cl::desc("Force store splitting no matter what the target query says.")); 183 184 static cl::opt<bool> 185 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 186 cl::desc("Enable merging of redundant sexts when one is dominating" 187 " the other."), cl::init(true)); 188 189 static cl::opt<bool> DisableComplexAddrModes( 190 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 191 cl::desc("Disables combining addressing modes with different parts " 192 "in optimizeMemoryInst.")); 193 194 static cl::opt<bool> 195 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 196 cl::desc("Allow creation of Phis in Address sinking.")); 197 198 static cl::opt<bool> 199 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 200 cl::desc("Allow creation of selects in Address sinking.")); 201 202 static cl::opt<bool> AddrSinkCombineBaseReg( 203 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 204 cl::desc("Allow combining of BaseReg field in Address sinking.")); 205 206 static cl::opt<bool> AddrSinkCombineBaseGV( 207 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 208 cl::desc("Allow combining of BaseGV field in Address sinking.")); 209 210 static cl::opt<bool> AddrSinkCombineBaseOffs( 211 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 212 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 213 214 static cl::opt<bool> AddrSinkCombineScaledReg( 215 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 216 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 217 218 static cl::opt<bool> 219 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 220 cl::init(true), 221 cl::desc("Enable splitting large offset of GEP.")); 222 223 namespace { 224 225 enum ExtType { 226 ZeroExtension, // Zero extension has been seen. 227 SignExtension, // Sign extension has been seen. 228 BothExtension // This extension type is used if we saw sext after 229 // ZeroExtension had been set, or if we saw zext after 230 // SignExtension had been set. It makes the type 231 // information of a promoted instruction invalid. 232 }; 233 234 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 235 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 236 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 237 using SExts = SmallVector<Instruction *, 16>; 238 using ValueToSExts = DenseMap<Value *, SExts>; 239 240 class TypePromotionTransaction; 241 242 class CodeGenPrepare : public FunctionPass { 243 const TargetMachine *TM = nullptr; 244 const TargetSubtargetInfo *SubtargetInfo; 245 const TargetLowering *TLI = nullptr; 246 const TargetRegisterInfo *TRI; 247 const TargetTransformInfo *TTI = nullptr; 248 const TargetLibraryInfo *TLInfo; 249 const LoopInfo *LI; 250 std::unique_ptr<BlockFrequencyInfo> BFI; 251 std::unique_ptr<BranchProbabilityInfo> BPI; 252 253 /// As we scan instructions optimizing them, this is the next instruction 254 /// to optimize. Transforms that can invalidate this should update it. 255 BasicBlock::iterator CurInstIterator; 256 257 /// Keeps track of non-local addresses that have been sunk into a block. 258 /// This allows us to avoid inserting duplicate code for blocks with 259 /// multiple load/stores of the same address. The usage of WeakTrackingVH 260 /// enables SunkAddrs to be treated as a cache whose entries can be 261 /// invalidated if a sunken address computation has been erased. 262 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 263 264 /// Keeps track of all instructions inserted for the current function. 265 SetOfInstrs InsertedInsts; 266 267 /// Keeps track of the type of the related instruction before their 268 /// promotion for the current function. 269 InstrToOrigTy PromotedInsts; 270 271 /// Keep track of instructions removed during promotion. 272 SetOfInstrs RemovedInsts; 273 274 /// Keep track of sext chains based on their initial value. 275 DenseMap<Value *, Instruction *> SeenChainsForSExt; 276 277 /// Keep track of GEPs accessing the same data structures such as structs or 278 /// arrays that are candidates to be split later because of their large 279 /// size. 280 MapVector< 281 AssertingVH<Value>, 282 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 283 LargeOffsetGEPMap; 284 285 /// Keep track of new GEP base after splitting the GEPs having large offset. 286 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 287 288 /// Map serial numbers to Large offset GEPs. 289 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 290 291 /// Keep track of SExt promoted. 292 ValueToSExts ValToSExtendedUses; 293 294 /// True if CFG is modified in any way. 295 bool ModifiedDT; 296 297 /// True if optimizing for size. 298 bool OptSize; 299 300 /// DataLayout for the Function being processed. 301 const DataLayout *DL = nullptr; 302 303 public: 304 static char ID; // Pass identification, replacement for typeid 305 306 CodeGenPrepare() : FunctionPass(ID) { 307 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 308 } 309 310 bool runOnFunction(Function &F) override; 311 312 StringRef getPassName() const override { return "CodeGen Prepare"; } 313 314 void getAnalysisUsage(AnalysisUsage &AU) const override { 315 // FIXME: When we can selectively preserve passes, preserve the domtree. 316 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 317 AU.addRequired<TargetLibraryInfoWrapperPass>(); 318 AU.addRequired<TargetTransformInfoWrapperPass>(); 319 AU.addRequired<LoopInfoWrapperPass>(); 320 } 321 322 private: 323 template <typename F> 324 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 325 // Substituting can cause recursive simplifications, which can invalidate 326 // our iterator. Use a WeakTrackingVH to hold onto it in case this 327 // happens. 328 Value *CurValue = &*CurInstIterator; 329 WeakTrackingVH IterHandle(CurValue); 330 331 f(); 332 333 // If the iterator instruction was recursively deleted, start over at the 334 // start of the block. 335 if (IterHandle != CurValue) { 336 CurInstIterator = BB->begin(); 337 SunkAddrs.clear(); 338 } 339 } 340 341 bool eliminateFallThrough(Function &F); 342 bool eliminateMostlyEmptyBlocks(Function &F); 343 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 344 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 345 void eliminateMostlyEmptyBlock(BasicBlock *BB); 346 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 347 bool isPreheader); 348 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 349 bool optimizeInst(Instruction *I, bool &ModifiedDT); 350 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 351 Type *AccessTy, unsigned AddrSpace); 352 bool optimizeInlineAsmInst(CallInst *CS); 353 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 354 bool optimizeExt(Instruction *&I); 355 bool optimizeExtUses(Instruction *I); 356 bool optimizeLoadExt(LoadInst *Load); 357 bool optimizeSelectInst(SelectInst *SI); 358 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 359 bool optimizeSwitchInst(SwitchInst *SI); 360 bool optimizeExtractElementInst(Instruction *Inst); 361 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 362 bool placeDbgValues(Function &F); 363 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 364 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 365 bool tryToPromoteExts(TypePromotionTransaction &TPT, 366 const SmallVectorImpl<Instruction *> &Exts, 367 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 368 unsigned CreatedInstsCost = 0); 369 bool mergeSExts(Function &F); 370 bool splitLargeGEPOffsets(); 371 bool performAddressTypePromotion( 372 Instruction *&Inst, 373 bool AllowPromotionWithoutCommonHeader, 374 bool HasPromoted, TypePromotionTransaction &TPT, 375 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 376 bool splitBranchCondition(Function &F); 377 bool simplifyOffsetableRelocate(Instruction &I); 378 379 bool tryToSinkFreeOperands(Instruction *I); 380 }; 381 382 } // end anonymous namespace 383 384 char CodeGenPrepare::ID = 0; 385 386 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 387 "Optimize for code generation", false, false) 388 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 389 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 390 "Optimize for code generation", false, false) 391 392 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 393 394 bool CodeGenPrepare::runOnFunction(Function &F) { 395 if (skipFunction(F)) 396 return false; 397 398 DL = &F.getParent()->getDataLayout(); 399 400 bool EverMadeChange = false; 401 // Clear per function information. 402 InsertedInsts.clear(); 403 PromotedInsts.clear(); 404 405 ModifiedDT = false; 406 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 407 TM = &TPC->getTM<TargetMachine>(); 408 SubtargetInfo = TM->getSubtargetImpl(F); 409 TLI = SubtargetInfo->getTargetLowering(); 410 TRI = SubtargetInfo->getRegisterInfo(); 411 } 412 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 413 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 414 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 415 BPI.reset(new BranchProbabilityInfo(F, *LI)); 416 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 417 OptSize = F.optForSize(); 418 419 ProfileSummaryInfo *PSI = 420 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 421 if (ProfileGuidedSectionPrefix) { 422 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 423 F.setSectionPrefix(".hot"); 424 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 425 F.setSectionPrefix(".unlikely"); 426 } 427 428 /// This optimization identifies DIV instructions that can be 429 /// profitably bypassed and carried out with a shorter, faster divide. 430 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI && 431 TLI->isSlowDivBypassed()) { 432 const DenseMap<unsigned int, unsigned int> &BypassWidths = 433 TLI->getBypassSlowDivWidths(); 434 BasicBlock* BB = &*F.begin(); 435 while (BB != nullptr) { 436 // bypassSlowDivision may create new BBs, but we don't want to reapply the 437 // optimization to those blocks. 438 BasicBlock* Next = BB->getNextNode(); 439 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 440 BB = Next; 441 } 442 } 443 444 // Eliminate blocks that contain only PHI nodes and an 445 // unconditional branch. 446 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 447 448 if (!DisableBranchOpts) 449 EverMadeChange |= splitBranchCondition(F); 450 451 // Split some critical edges where one of the sources is an indirect branch, 452 // to help generate sane code for PHIs involving such edges. 453 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 454 455 bool MadeChange = true; 456 while (MadeChange) { 457 MadeChange = false; 458 for (Function::iterator I = F.begin(); I != F.end(); ) { 459 BasicBlock *BB = &*I++; 460 bool ModifiedDTOnIteration = false; 461 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 462 463 // Restart BB iteration if the dominator tree of the Function was changed 464 if (ModifiedDTOnIteration) 465 break; 466 } 467 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 468 MadeChange |= mergeSExts(F); 469 if (!LargeOffsetGEPMap.empty()) 470 MadeChange |= splitLargeGEPOffsets(); 471 472 // Really free removed instructions during promotion. 473 for (Instruction *I : RemovedInsts) 474 I->deleteValue(); 475 476 EverMadeChange |= MadeChange; 477 SeenChainsForSExt.clear(); 478 ValToSExtendedUses.clear(); 479 RemovedInsts.clear(); 480 LargeOffsetGEPMap.clear(); 481 LargeOffsetGEPID.clear(); 482 } 483 484 SunkAddrs.clear(); 485 486 if (!DisableBranchOpts) { 487 MadeChange = false; 488 // Use a set vector to get deterministic iteration order. The order the 489 // blocks are removed may affect whether or not PHI nodes in successors 490 // are removed. 491 SmallSetVector<BasicBlock*, 8> WorkList; 492 for (BasicBlock &BB : F) { 493 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 494 MadeChange |= ConstantFoldTerminator(&BB, true); 495 if (!MadeChange) continue; 496 497 for (SmallVectorImpl<BasicBlock*>::iterator 498 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 499 if (pred_begin(*II) == pred_end(*II)) 500 WorkList.insert(*II); 501 } 502 503 // Delete the dead blocks and any of their dead successors. 504 MadeChange |= !WorkList.empty(); 505 while (!WorkList.empty()) { 506 BasicBlock *BB = WorkList.pop_back_val(); 507 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 508 509 DeleteDeadBlock(BB); 510 511 for (SmallVectorImpl<BasicBlock*>::iterator 512 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 513 if (pred_begin(*II) == pred_end(*II)) 514 WorkList.insert(*II); 515 } 516 517 // Merge pairs of basic blocks with unconditional branches, connected by 518 // a single edge. 519 if (EverMadeChange || MadeChange) 520 MadeChange |= eliminateFallThrough(F); 521 522 EverMadeChange |= MadeChange; 523 } 524 525 if (!DisableGCOpts) { 526 SmallVector<Instruction *, 2> Statepoints; 527 for (BasicBlock &BB : F) 528 for (Instruction &I : BB) 529 if (isStatepoint(I)) 530 Statepoints.push_back(&I); 531 for (auto &I : Statepoints) 532 EverMadeChange |= simplifyOffsetableRelocate(*I); 533 } 534 535 // Do this last to clean up use-before-def scenarios introduced by other 536 // preparatory transforms. 537 EverMadeChange |= placeDbgValues(F); 538 539 return EverMadeChange; 540 } 541 542 /// Merge basic blocks which are connected by a single edge, where one of the 543 /// basic blocks has a single successor pointing to the other basic block, 544 /// which has a single predecessor. 545 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 546 bool Changed = false; 547 // Scan all of the blocks in the function, except for the entry block. 548 // Use a temporary array to avoid iterator being invalidated when 549 // deleting blocks. 550 SmallVector<WeakTrackingVH, 16> Blocks; 551 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 552 Blocks.push_back(&Block); 553 554 for (auto &Block : Blocks) { 555 auto *BB = cast_or_null<BasicBlock>(Block); 556 if (!BB) 557 continue; 558 // If the destination block has a single pred, then this is a trivial 559 // edge, just collapse it. 560 BasicBlock *SinglePred = BB->getSinglePredecessor(); 561 562 // Don't merge if BB's address is taken. 563 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 564 565 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 566 if (Term && !Term->isConditional()) { 567 Changed = true; 568 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 569 570 // Merge BB into SinglePred and delete it. 571 MergeBlockIntoPredecessor(BB); 572 } 573 } 574 return Changed; 575 } 576 577 /// Find a destination block from BB if BB is mergeable empty block. 578 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 579 // If this block doesn't end with an uncond branch, ignore it. 580 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 581 if (!BI || !BI->isUnconditional()) 582 return nullptr; 583 584 // If the instruction before the branch (skipping debug info) isn't a phi 585 // node, then other stuff is happening here. 586 BasicBlock::iterator BBI = BI->getIterator(); 587 if (BBI != BB->begin()) { 588 --BBI; 589 while (isa<DbgInfoIntrinsic>(BBI)) { 590 if (BBI == BB->begin()) 591 break; 592 --BBI; 593 } 594 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 595 return nullptr; 596 } 597 598 // Do not break infinite loops. 599 BasicBlock *DestBB = BI->getSuccessor(0); 600 if (DestBB == BB) 601 return nullptr; 602 603 if (!canMergeBlocks(BB, DestBB)) 604 DestBB = nullptr; 605 606 return DestBB; 607 } 608 609 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 610 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 611 /// edges in ways that are non-optimal for isel. Start by eliminating these 612 /// blocks so we can split them the way we want them. 613 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 614 SmallPtrSet<BasicBlock *, 16> Preheaders; 615 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 616 while (!LoopList.empty()) { 617 Loop *L = LoopList.pop_back_val(); 618 LoopList.insert(LoopList.end(), L->begin(), L->end()); 619 if (BasicBlock *Preheader = L->getLoopPreheader()) 620 Preheaders.insert(Preheader); 621 } 622 623 bool MadeChange = false; 624 // Copy blocks into a temporary array to avoid iterator invalidation issues 625 // as we remove them. 626 // Note that this intentionally skips the entry block. 627 SmallVector<WeakTrackingVH, 16> Blocks; 628 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 629 Blocks.push_back(&Block); 630 631 for (auto &Block : Blocks) { 632 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 633 if (!BB) 634 continue; 635 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 636 if (!DestBB || 637 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 638 continue; 639 640 eliminateMostlyEmptyBlock(BB); 641 MadeChange = true; 642 } 643 return MadeChange; 644 } 645 646 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 647 BasicBlock *DestBB, 648 bool isPreheader) { 649 // Do not delete loop preheaders if doing so would create a critical edge. 650 // Loop preheaders can be good locations to spill registers. If the 651 // preheader is deleted and we create a critical edge, registers may be 652 // spilled in the loop body instead. 653 if (!DisablePreheaderProtect && isPreheader && 654 !(BB->getSinglePredecessor() && 655 BB->getSinglePredecessor()->getSingleSuccessor())) 656 return false; 657 658 // Skip merging if the block's successor is also a successor to any callbr 659 // that leads to this block. 660 // FIXME: Is this really needed? Is this a correctness issue? 661 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 662 if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator())) 663 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 664 if (DestBB == CBI->getSuccessor(i)) 665 return false; 666 } 667 668 // Try to skip merging if the unique predecessor of BB is terminated by a 669 // switch or indirect branch instruction, and BB is used as an incoming block 670 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 671 // add COPY instructions in the predecessor of BB instead of BB (if it is not 672 // merged). Note that the critical edge created by merging such blocks wont be 673 // split in MachineSink because the jump table is not analyzable. By keeping 674 // such empty block (BB), ISel will place COPY instructions in BB, not in the 675 // predecessor of BB. 676 BasicBlock *Pred = BB->getUniquePredecessor(); 677 if (!Pred || 678 !(isa<SwitchInst>(Pred->getTerminator()) || 679 isa<IndirectBrInst>(Pred->getTerminator()))) 680 return true; 681 682 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 683 return true; 684 685 // We use a simple cost heuristic which determine skipping merging is 686 // profitable if the cost of skipping merging is less than the cost of 687 // merging : Cost(skipping merging) < Cost(merging BB), where the 688 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 689 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 690 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 691 // Freq(Pred) / Freq(BB) > 2. 692 // Note that if there are multiple empty blocks sharing the same incoming 693 // value for the PHIs in the DestBB, we consider them together. In such 694 // case, Cost(merging BB) will be the sum of their frequencies. 695 696 if (!isa<PHINode>(DestBB->begin())) 697 return true; 698 699 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 700 701 // Find all other incoming blocks from which incoming values of all PHIs in 702 // DestBB are the same as the ones from BB. 703 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 704 ++PI) { 705 BasicBlock *DestBBPred = *PI; 706 if (DestBBPred == BB) 707 continue; 708 709 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 710 return DestPN.getIncomingValueForBlock(BB) == 711 DestPN.getIncomingValueForBlock(DestBBPred); 712 })) 713 SameIncomingValueBBs.insert(DestBBPred); 714 } 715 716 // See if all BB's incoming values are same as the value from Pred. In this 717 // case, no reason to skip merging because COPYs are expected to be place in 718 // Pred already. 719 if (SameIncomingValueBBs.count(Pred)) 720 return true; 721 722 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 723 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 724 725 for (auto SameValueBB : SameIncomingValueBBs) 726 if (SameValueBB->getUniquePredecessor() == Pred && 727 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 728 BBFreq += BFI->getBlockFreq(SameValueBB); 729 730 return PredFreq.getFrequency() <= 731 BBFreq.getFrequency() * FreqRatioToSkipMerge; 732 } 733 734 /// Return true if we can merge BB into DestBB if there is a single 735 /// unconditional branch between them, and BB contains no other non-phi 736 /// instructions. 737 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 738 const BasicBlock *DestBB) const { 739 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 740 // the successor. If there are more complex condition (e.g. preheaders), 741 // don't mess around with them. 742 for (const PHINode &PN : BB->phis()) { 743 for (const User *U : PN.users()) { 744 const Instruction *UI = cast<Instruction>(U); 745 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 746 return false; 747 // If User is inside DestBB block and it is a PHINode then check 748 // incoming value. If incoming value is not from BB then this is 749 // a complex condition (e.g. preheaders) we want to avoid here. 750 if (UI->getParent() == DestBB) { 751 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 752 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 753 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 754 if (Insn && Insn->getParent() == BB && 755 Insn->getParent() != UPN->getIncomingBlock(I)) 756 return false; 757 } 758 } 759 } 760 } 761 762 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 763 // and DestBB may have conflicting incoming values for the block. If so, we 764 // can't merge the block. 765 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 766 if (!DestBBPN) return true; // no conflict. 767 768 // Collect the preds of BB. 769 SmallPtrSet<const BasicBlock*, 16> BBPreds; 770 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 771 // It is faster to get preds from a PHI than with pred_iterator. 772 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 773 BBPreds.insert(BBPN->getIncomingBlock(i)); 774 } else { 775 BBPreds.insert(pred_begin(BB), pred_end(BB)); 776 } 777 778 // Walk the preds of DestBB. 779 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 780 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 781 if (BBPreds.count(Pred)) { // Common predecessor? 782 for (const PHINode &PN : DestBB->phis()) { 783 const Value *V1 = PN.getIncomingValueForBlock(Pred); 784 const Value *V2 = PN.getIncomingValueForBlock(BB); 785 786 // If V2 is a phi node in BB, look up what the mapped value will be. 787 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 788 if (V2PN->getParent() == BB) 789 V2 = V2PN->getIncomingValueForBlock(Pred); 790 791 // If there is a conflict, bail out. 792 if (V1 != V2) return false; 793 } 794 } 795 } 796 797 return true; 798 } 799 800 /// Eliminate a basic block that has only phi's and an unconditional branch in 801 /// it. 802 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 803 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 804 BasicBlock *DestBB = BI->getSuccessor(0); 805 806 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 807 << *BB << *DestBB); 808 809 // If the destination block has a single pred, then this is a trivial edge, 810 // just collapse it. 811 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 812 if (SinglePred != DestBB) { 813 assert(SinglePred == BB && 814 "Single predecessor not the same as predecessor"); 815 // Merge DestBB into SinglePred/BB and delete it. 816 MergeBlockIntoPredecessor(DestBB); 817 // Note: BB(=SinglePred) will not be deleted on this path. 818 // DestBB(=its single successor) is the one that was deleted. 819 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 820 return; 821 } 822 } 823 824 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 825 // to handle the new incoming edges it is about to have. 826 for (PHINode &PN : DestBB->phis()) { 827 // Remove the incoming value for BB, and remember it. 828 Value *InVal = PN.removeIncomingValue(BB, false); 829 830 // Two options: either the InVal is a phi node defined in BB or it is some 831 // value that dominates BB. 832 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 833 if (InValPhi && InValPhi->getParent() == BB) { 834 // Add all of the input values of the input PHI as inputs of this phi. 835 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 836 PN.addIncoming(InValPhi->getIncomingValue(i), 837 InValPhi->getIncomingBlock(i)); 838 } else { 839 // Otherwise, add one instance of the dominating value for each edge that 840 // we will be adding. 841 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 842 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 843 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 844 } else { 845 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 846 PN.addIncoming(InVal, *PI); 847 } 848 } 849 } 850 851 // The PHIs are now updated, change everything that refers to BB to use 852 // DestBB and remove BB. 853 BB->replaceAllUsesWith(DestBB); 854 BB->eraseFromParent(); 855 ++NumBlocksElim; 856 857 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 858 } 859 860 // Computes a map of base pointer relocation instructions to corresponding 861 // derived pointer relocation instructions given a vector of all relocate calls 862 static void computeBaseDerivedRelocateMap( 863 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 864 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 865 &RelocateInstMap) { 866 // Collect information in two maps: one primarily for locating the base object 867 // while filling the second map; the second map is the final structure holding 868 // a mapping between Base and corresponding Derived relocate calls 869 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 870 for (auto *ThisRelocate : AllRelocateCalls) { 871 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 872 ThisRelocate->getDerivedPtrIndex()); 873 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 874 } 875 for (auto &Item : RelocateIdxMap) { 876 std::pair<unsigned, unsigned> Key = Item.first; 877 if (Key.first == Key.second) 878 // Base relocation: nothing to insert 879 continue; 880 881 GCRelocateInst *I = Item.second; 882 auto BaseKey = std::make_pair(Key.first, Key.first); 883 884 // We're iterating over RelocateIdxMap so we cannot modify it. 885 auto MaybeBase = RelocateIdxMap.find(BaseKey); 886 if (MaybeBase == RelocateIdxMap.end()) 887 // TODO: We might want to insert a new base object relocate and gep off 888 // that, if there are enough derived object relocates. 889 continue; 890 891 RelocateInstMap[MaybeBase->second].push_back(I); 892 } 893 } 894 895 // Accepts a GEP and extracts the operands into a vector provided they're all 896 // small integer constants 897 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 898 SmallVectorImpl<Value *> &OffsetV) { 899 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 900 // Only accept small constant integer operands 901 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 902 if (!Op || Op->getZExtValue() > 20) 903 return false; 904 } 905 906 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 907 OffsetV.push_back(GEP->getOperand(i)); 908 return true; 909 } 910 911 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 912 // replace, computes a replacement, and affects it. 913 static bool 914 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 915 const SmallVectorImpl<GCRelocateInst *> &Targets) { 916 bool MadeChange = false; 917 // We must ensure the relocation of derived pointer is defined after 918 // relocation of base pointer. If we find a relocation corresponding to base 919 // defined earlier than relocation of base then we move relocation of base 920 // right before found relocation. We consider only relocation in the same 921 // basic block as relocation of base. Relocations from other basic block will 922 // be skipped by optimization and we do not care about them. 923 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 924 &*R != RelocatedBase; ++R) 925 if (auto RI = dyn_cast<GCRelocateInst>(R)) 926 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 927 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 928 RelocatedBase->moveBefore(RI); 929 break; 930 } 931 932 for (GCRelocateInst *ToReplace : Targets) { 933 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 934 "Not relocating a derived object of the original base object"); 935 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 936 // A duplicate relocate call. TODO: coalesce duplicates. 937 continue; 938 } 939 940 if (RelocatedBase->getParent() != ToReplace->getParent()) { 941 // Base and derived relocates are in different basic blocks. 942 // In this case transform is only valid when base dominates derived 943 // relocate. However it would be too expensive to check dominance 944 // for each such relocate, so we skip the whole transformation. 945 continue; 946 } 947 948 Value *Base = ToReplace->getBasePtr(); 949 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 950 if (!Derived || Derived->getPointerOperand() != Base) 951 continue; 952 953 SmallVector<Value *, 2> OffsetV; 954 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 955 continue; 956 957 // Create a Builder and replace the target callsite with a gep 958 assert(RelocatedBase->getNextNode() && 959 "Should always have one since it's not a terminator"); 960 961 // Insert after RelocatedBase 962 IRBuilder<> Builder(RelocatedBase->getNextNode()); 963 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 964 965 // If gc_relocate does not match the actual type, cast it to the right type. 966 // In theory, there must be a bitcast after gc_relocate if the type does not 967 // match, and we should reuse it to get the derived pointer. But it could be 968 // cases like this: 969 // bb1: 970 // ... 971 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 972 // br label %merge 973 // 974 // bb2: 975 // ... 976 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 977 // br label %merge 978 // 979 // merge: 980 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 981 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 982 // 983 // In this case, we can not find the bitcast any more. So we insert a new bitcast 984 // no matter there is already one or not. In this way, we can handle all cases, and 985 // the extra bitcast should be optimized away in later passes. 986 Value *ActualRelocatedBase = RelocatedBase; 987 if (RelocatedBase->getType() != Base->getType()) { 988 ActualRelocatedBase = 989 Builder.CreateBitCast(RelocatedBase, Base->getType()); 990 } 991 Value *Replacement = Builder.CreateGEP( 992 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 993 Replacement->takeName(ToReplace); 994 // If the newly generated derived pointer's type does not match the original derived 995 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 996 Value *ActualReplacement = Replacement; 997 if (Replacement->getType() != ToReplace->getType()) { 998 ActualReplacement = 999 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1000 } 1001 ToReplace->replaceAllUsesWith(ActualReplacement); 1002 ToReplace->eraseFromParent(); 1003 1004 MadeChange = true; 1005 } 1006 return MadeChange; 1007 } 1008 1009 // Turns this: 1010 // 1011 // %base = ... 1012 // %ptr = gep %base + 15 1013 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1014 // %base' = relocate(%tok, i32 4, i32 4) 1015 // %ptr' = relocate(%tok, i32 4, i32 5) 1016 // %val = load %ptr' 1017 // 1018 // into this: 1019 // 1020 // %base = ... 1021 // %ptr = gep %base + 15 1022 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1023 // %base' = gc.relocate(%tok, i32 4, i32 4) 1024 // %ptr' = gep %base' + 15 1025 // %val = load %ptr' 1026 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1027 bool MadeChange = false; 1028 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1029 1030 for (auto *U : I.users()) 1031 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1032 // Collect all the relocate calls associated with a statepoint 1033 AllRelocateCalls.push_back(Relocate); 1034 1035 // We need atleast one base pointer relocation + one derived pointer 1036 // relocation to mangle 1037 if (AllRelocateCalls.size() < 2) 1038 return false; 1039 1040 // RelocateInstMap is a mapping from the base relocate instruction to the 1041 // corresponding derived relocate instructions 1042 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1043 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1044 if (RelocateInstMap.empty()) 1045 return false; 1046 1047 for (auto &Item : RelocateInstMap) 1048 // Item.first is the RelocatedBase to offset against 1049 // Item.second is the vector of Targets to replace 1050 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1051 return MadeChange; 1052 } 1053 1054 /// SinkCast - Sink the specified cast instruction into its user blocks 1055 static bool SinkCast(CastInst *CI) { 1056 BasicBlock *DefBB = CI->getParent(); 1057 1058 /// InsertedCasts - Only insert a cast in each block once. 1059 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1060 1061 bool MadeChange = false; 1062 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1063 UI != E; ) { 1064 Use &TheUse = UI.getUse(); 1065 Instruction *User = cast<Instruction>(*UI); 1066 1067 // Figure out which BB this cast is used in. For PHI's this is the 1068 // appropriate predecessor block. 1069 BasicBlock *UserBB = User->getParent(); 1070 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1071 UserBB = PN->getIncomingBlock(TheUse); 1072 } 1073 1074 // Preincrement use iterator so we don't invalidate it. 1075 ++UI; 1076 1077 // The first insertion point of a block containing an EH pad is after the 1078 // pad. If the pad is the user, we cannot sink the cast past the pad. 1079 if (User->isEHPad()) 1080 continue; 1081 1082 // If the block selected to receive the cast is an EH pad that does not 1083 // allow non-PHI instructions before the terminator, we can't sink the 1084 // cast. 1085 if (UserBB->getTerminator()->isEHPad()) 1086 continue; 1087 1088 // If this user is in the same block as the cast, don't change the cast. 1089 if (UserBB == DefBB) continue; 1090 1091 // If we have already inserted a cast into this block, use it. 1092 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1093 1094 if (!InsertedCast) { 1095 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1096 assert(InsertPt != UserBB->end()); 1097 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1098 CI->getType(), "", &*InsertPt); 1099 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1100 } 1101 1102 // Replace a use of the cast with a use of the new cast. 1103 TheUse = InsertedCast; 1104 MadeChange = true; 1105 ++NumCastUses; 1106 } 1107 1108 // If we removed all uses, nuke the cast. 1109 if (CI->use_empty()) { 1110 salvageDebugInfo(*CI); 1111 CI->eraseFromParent(); 1112 MadeChange = true; 1113 } 1114 1115 return MadeChange; 1116 } 1117 1118 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1119 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1120 /// reduce the number of virtual registers that must be created and coalesced. 1121 /// 1122 /// Return true if any changes are made. 1123 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1124 const DataLayout &DL) { 1125 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1126 // than sinking only nop casts, but is helpful on some platforms. 1127 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1128 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), 1129 ASC->getDestAddressSpace())) 1130 return false; 1131 } 1132 1133 // If this is a noop copy, 1134 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1135 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1136 1137 // This is an fp<->int conversion? 1138 if (SrcVT.isInteger() != DstVT.isInteger()) 1139 return false; 1140 1141 // If this is an extension, it will be a zero or sign extension, which 1142 // isn't a noop. 1143 if (SrcVT.bitsLT(DstVT)) return false; 1144 1145 // If these values will be promoted, find out what they will be promoted 1146 // to. This helps us consider truncates on PPC as noop copies when they 1147 // are. 1148 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1149 TargetLowering::TypePromoteInteger) 1150 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1151 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1152 TargetLowering::TypePromoteInteger) 1153 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1154 1155 // If, after promotion, these are the same types, this is a noop copy. 1156 if (SrcVT != DstVT) 1157 return false; 1158 1159 return SinkCast(CI); 1160 } 1161 1162 static bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, CmpInst *Cmp, 1163 Intrinsic::ID IID) { 1164 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1165 Value *Arg0 = BO->getOperand(0); 1166 Value *Arg1 = BO->getOperand(1); 1167 if (BO->getOpcode() == Instruction::Add && 1168 IID == Intrinsic::usub_with_overflow) { 1169 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1170 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1171 } 1172 1173 Instruction *InsertPt; 1174 if (BO->hasOneUse() && BO->user_back() == Cmp) { 1175 // If the math is only used by the compare, insert at the compare to keep 1176 // the condition in the same block as its users. (CGP aggressively sinks 1177 // compares to help out SDAG.) 1178 InsertPt = Cmp; 1179 } else { 1180 // The math and compare may be independent instructions. Check dominance to 1181 // determine the insertion point for the intrinsic. 1182 DominatorTree DT(*BO->getFunction()); 1183 bool MathDominates = DT.dominates(BO, Cmp); 1184 if (!MathDominates && !DT.dominates(Cmp, BO)) 1185 return false; 1186 InsertPt = MathDominates ? cast<Instruction>(BO) : cast<Instruction>(Cmp); 1187 } 1188 1189 IRBuilder<> Builder(InsertPt); 1190 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1191 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1192 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1193 BO->replaceAllUsesWith(Math); 1194 Cmp->replaceAllUsesWith(OV); 1195 BO->eraseFromParent(); 1196 Cmp->eraseFromParent(); 1197 return true; 1198 } 1199 1200 /// Match special-case patterns that check for unsigned add overflow. 1201 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1202 BinaryOperator *&Add) { 1203 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1204 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1205 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1206 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1207 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1208 B = ConstantInt::get(B->getType(), 1); 1209 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1210 B = ConstantInt::get(B->getType(), -1); 1211 else 1212 return false; 1213 1214 // Check the users of the variable operand of the compare looking for an add 1215 // with the adjusted constant. 1216 for (User *U : A->users()) { 1217 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1218 Add = cast<BinaryOperator>(U); 1219 return true; 1220 } 1221 } 1222 return false; 1223 } 1224 1225 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1226 /// intrinsic. Return true if any changes were made. 1227 static bool combineToUAddWithOverflow(CmpInst *Cmp, const TargetLowering &TLI, 1228 const DataLayout &DL, bool &ModifiedDT) { 1229 Value *A, *B; 1230 BinaryOperator *Add; 1231 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) 1232 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1233 return false; 1234 1235 if (!TLI.shouldFormOverflowOp(ISD::UADDO, 1236 TLI.getValueType(DL, Add->getType()))) 1237 return false; 1238 1239 // We don't want to move around uses of condition values this late, so we 1240 // check if it is legal to create the call to the intrinsic in the basic 1241 // block containing the icmp. 1242 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1243 return false; 1244 1245 if (!replaceMathCmpWithIntrinsic(Add, Cmp, Intrinsic::uadd_with_overflow)) 1246 return false; 1247 1248 // Reset callers - do not crash by iterating over a dead instruction. 1249 ModifiedDT = true; 1250 return true; 1251 } 1252 1253 static bool combineToUSubWithOverflow(CmpInst *Cmp, const TargetLowering &TLI, 1254 const DataLayout &DL, bool &ModifiedDT) { 1255 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1256 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1257 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1258 if (Pred == ICmpInst::ICMP_UGT) { 1259 std::swap(A, B); 1260 Pred = ICmpInst::ICMP_ULT; 1261 } 1262 // Convert special-case: (A == 0) is the same as (A u< 1). 1263 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1264 B = ConstantInt::get(B->getType(), 1); 1265 Pred = ICmpInst::ICMP_ULT; 1266 } 1267 // Convert special-case: (A != 0) is the same as (0 u< A). 1268 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1269 std::swap(A, B); 1270 Pred = ICmpInst::ICMP_ULT; 1271 } 1272 if (Pred != ICmpInst::ICMP_ULT) 1273 return false; 1274 1275 // Walk the users of a variable operand of a compare looking for a subtract or 1276 // add with that same operand. Also match the 2nd operand of the compare to 1277 // the add/sub, but that may be a negated constant operand of an add. 1278 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1279 BinaryOperator *Sub = nullptr; 1280 for (User *U : CmpVariableOperand->users()) { 1281 // A - B, A u< B --> usubo(A, B) 1282 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1283 Sub = cast<BinaryOperator>(U); 1284 break; 1285 } 1286 1287 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1288 const APInt *CmpC, *AddC; 1289 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1290 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1291 Sub = cast<BinaryOperator>(U); 1292 break; 1293 } 1294 } 1295 if (!Sub) 1296 return false; 1297 1298 if (!TLI.shouldFormOverflowOp(ISD::USUBO, 1299 TLI.getValueType(DL, Sub->getType()))) 1300 return false; 1301 1302 if (!replaceMathCmpWithIntrinsic(Sub, Cmp, Intrinsic::usub_with_overflow)) 1303 return false; 1304 1305 // Reset callers - do not crash by iterating over a dead instruction. 1306 ModifiedDT = true; 1307 return true; 1308 } 1309 1310 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1311 /// registers that must be created and coalesced. This is a clear win except on 1312 /// targets with multiple condition code registers (PowerPC), where it might 1313 /// lose; some adjustment may be wanted there. 1314 /// 1315 /// Return true if any changes are made. 1316 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1317 if (TLI.hasMultipleConditionRegisters()) 1318 return false; 1319 1320 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1321 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1322 return false; 1323 1324 // Only insert a cmp in each block once. 1325 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1326 1327 bool MadeChange = false; 1328 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1329 UI != E; ) { 1330 Use &TheUse = UI.getUse(); 1331 Instruction *User = cast<Instruction>(*UI); 1332 1333 // Preincrement use iterator so we don't invalidate it. 1334 ++UI; 1335 1336 // Don't bother for PHI nodes. 1337 if (isa<PHINode>(User)) 1338 continue; 1339 1340 // Figure out which BB this cmp is used in. 1341 BasicBlock *UserBB = User->getParent(); 1342 BasicBlock *DefBB = Cmp->getParent(); 1343 1344 // If this user is in the same block as the cmp, don't change the cmp. 1345 if (UserBB == DefBB) continue; 1346 1347 // If we have already inserted a cmp into this block, use it. 1348 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1349 1350 if (!InsertedCmp) { 1351 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1352 assert(InsertPt != UserBB->end()); 1353 InsertedCmp = 1354 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1355 Cmp->getOperand(0), Cmp->getOperand(1), "", 1356 &*InsertPt); 1357 // Propagate the debug info. 1358 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1359 } 1360 1361 // Replace a use of the cmp with a use of the new cmp. 1362 TheUse = InsertedCmp; 1363 MadeChange = true; 1364 ++NumCmpUses; 1365 } 1366 1367 // If we removed all uses, nuke the cmp. 1368 if (Cmp->use_empty()) { 1369 Cmp->eraseFromParent(); 1370 MadeChange = true; 1371 } 1372 1373 return MadeChange; 1374 } 1375 1376 static bool optimizeCmp(CmpInst *Cmp, const TargetLowering &TLI, 1377 const DataLayout &DL, bool &ModifiedDT) { 1378 if (sinkCmpExpression(Cmp, TLI)) 1379 return true; 1380 1381 if (combineToUAddWithOverflow(Cmp, TLI, DL, ModifiedDT)) 1382 return true; 1383 1384 if (combineToUSubWithOverflow(Cmp, TLI, DL, ModifiedDT)) 1385 return true; 1386 1387 return false; 1388 } 1389 1390 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1391 /// used in a compare to allow isel to generate better code for targets where 1392 /// this operation can be combined. 1393 /// 1394 /// Return true if any changes are made. 1395 static bool sinkAndCmp0Expression(Instruction *AndI, 1396 const TargetLowering &TLI, 1397 SetOfInstrs &InsertedInsts) { 1398 // Double-check that we're not trying to optimize an instruction that was 1399 // already optimized by some other part of this pass. 1400 assert(!InsertedInsts.count(AndI) && 1401 "Attempting to optimize already optimized and instruction"); 1402 (void) InsertedInsts; 1403 1404 // Nothing to do for single use in same basic block. 1405 if (AndI->hasOneUse() && 1406 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1407 return false; 1408 1409 // Try to avoid cases where sinking/duplicating is likely to increase register 1410 // pressure. 1411 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1412 !isa<ConstantInt>(AndI->getOperand(1)) && 1413 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1414 return false; 1415 1416 for (auto *U : AndI->users()) { 1417 Instruction *User = cast<Instruction>(U); 1418 1419 // Only sink for and mask feeding icmp with 0. 1420 if (!isa<ICmpInst>(User)) 1421 return false; 1422 1423 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1424 if (!CmpC || !CmpC->isZero()) 1425 return false; 1426 } 1427 1428 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1429 return false; 1430 1431 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1432 LLVM_DEBUG(AndI->getParent()->dump()); 1433 1434 // Push the 'and' into the same block as the icmp 0. There should only be 1435 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1436 // others, so we don't need to keep track of which BBs we insert into. 1437 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1438 UI != E; ) { 1439 Use &TheUse = UI.getUse(); 1440 Instruction *User = cast<Instruction>(*UI); 1441 1442 // Preincrement use iterator so we don't invalidate it. 1443 ++UI; 1444 1445 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1446 1447 // Keep the 'and' in the same place if the use is already in the same block. 1448 Instruction *InsertPt = 1449 User->getParent() == AndI->getParent() ? AndI : User; 1450 Instruction *InsertedAnd = 1451 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1452 AndI->getOperand(1), "", InsertPt); 1453 // Propagate the debug info. 1454 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1455 1456 // Replace a use of the 'and' with a use of the new 'and'. 1457 TheUse = InsertedAnd; 1458 ++NumAndUses; 1459 LLVM_DEBUG(User->getParent()->dump()); 1460 } 1461 1462 // We removed all uses, nuke the and. 1463 AndI->eraseFromParent(); 1464 return true; 1465 } 1466 1467 /// Check if the candidates could be combined with a shift instruction, which 1468 /// includes: 1469 /// 1. Truncate instruction 1470 /// 2. And instruction and the imm is a mask of the low bits: 1471 /// imm & (imm+1) == 0 1472 static bool isExtractBitsCandidateUse(Instruction *User) { 1473 if (!isa<TruncInst>(User)) { 1474 if (User->getOpcode() != Instruction::And || 1475 !isa<ConstantInt>(User->getOperand(1))) 1476 return false; 1477 1478 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1479 1480 if ((Cimm & (Cimm + 1)).getBoolValue()) 1481 return false; 1482 } 1483 return true; 1484 } 1485 1486 /// Sink both shift and truncate instruction to the use of truncate's BB. 1487 static bool 1488 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1489 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1490 const TargetLowering &TLI, const DataLayout &DL) { 1491 BasicBlock *UserBB = User->getParent(); 1492 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1493 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1494 bool MadeChange = false; 1495 1496 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1497 TruncE = TruncI->user_end(); 1498 TruncUI != TruncE;) { 1499 1500 Use &TruncTheUse = TruncUI.getUse(); 1501 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1502 // Preincrement use iterator so we don't invalidate it. 1503 1504 ++TruncUI; 1505 1506 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1507 if (!ISDOpcode) 1508 continue; 1509 1510 // If the use is actually a legal node, there will not be an 1511 // implicit truncate. 1512 // FIXME: always querying the result type is just an 1513 // approximation; some nodes' legality is determined by the 1514 // operand or other means. There's no good way to find out though. 1515 if (TLI.isOperationLegalOrCustom( 1516 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1517 continue; 1518 1519 // Don't bother for PHI nodes. 1520 if (isa<PHINode>(TruncUser)) 1521 continue; 1522 1523 BasicBlock *TruncUserBB = TruncUser->getParent(); 1524 1525 if (UserBB == TruncUserBB) 1526 continue; 1527 1528 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1529 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1530 1531 if (!InsertedShift && !InsertedTrunc) { 1532 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1533 assert(InsertPt != TruncUserBB->end()); 1534 // Sink the shift 1535 if (ShiftI->getOpcode() == Instruction::AShr) 1536 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1537 "", &*InsertPt); 1538 else 1539 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1540 "", &*InsertPt); 1541 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1542 1543 // Sink the trunc 1544 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1545 TruncInsertPt++; 1546 assert(TruncInsertPt != TruncUserBB->end()); 1547 1548 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1549 TruncI->getType(), "", &*TruncInsertPt); 1550 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1551 1552 MadeChange = true; 1553 1554 TruncTheUse = InsertedTrunc; 1555 } 1556 } 1557 return MadeChange; 1558 } 1559 1560 /// Sink the shift *right* instruction into user blocks if the uses could 1561 /// potentially be combined with this shift instruction and generate BitExtract 1562 /// instruction. It will only be applied if the architecture supports BitExtract 1563 /// instruction. Here is an example: 1564 /// BB1: 1565 /// %x.extract.shift = lshr i64 %arg1, 32 1566 /// BB2: 1567 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1568 /// ==> 1569 /// 1570 /// BB2: 1571 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1572 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1573 /// 1574 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1575 /// instruction. 1576 /// Return true if any changes are made. 1577 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1578 const TargetLowering &TLI, 1579 const DataLayout &DL) { 1580 BasicBlock *DefBB = ShiftI->getParent(); 1581 1582 /// Only insert instructions in each block once. 1583 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1584 1585 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1586 1587 bool MadeChange = false; 1588 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1589 UI != E;) { 1590 Use &TheUse = UI.getUse(); 1591 Instruction *User = cast<Instruction>(*UI); 1592 // Preincrement use iterator so we don't invalidate it. 1593 ++UI; 1594 1595 // Don't bother for PHI nodes. 1596 if (isa<PHINode>(User)) 1597 continue; 1598 1599 if (!isExtractBitsCandidateUse(User)) 1600 continue; 1601 1602 BasicBlock *UserBB = User->getParent(); 1603 1604 if (UserBB == DefBB) { 1605 // If the shift and truncate instruction are in the same BB. The use of 1606 // the truncate(TruncUse) may still introduce another truncate if not 1607 // legal. In this case, we would like to sink both shift and truncate 1608 // instruction to the BB of TruncUse. 1609 // for example: 1610 // BB1: 1611 // i64 shift.result = lshr i64 opnd, imm 1612 // trunc.result = trunc shift.result to i16 1613 // 1614 // BB2: 1615 // ----> We will have an implicit truncate here if the architecture does 1616 // not have i16 compare. 1617 // cmp i16 trunc.result, opnd2 1618 // 1619 if (isa<TruncInst>(User) && shiftIsLegal 1620 // If the type of the truncate is legal, no truncate will be 1621 // introduced in other basic blocks. 1622 && 1623 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1624 MadeChange = 1625 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1626 1627 continue; 1628 } 1629 // If we have already inserted a shift into this block, use it. 1630 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1631 1632 if (!InsertedShift) { 1633 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1634 assert(InsertPt != UserBB->end()); 1635 1636 if (ShiftI->getOpcode() == Instruction::AShr) 1637 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1638 "", &*InsertPt); 1639 else 1640 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1641 "", &*InsertPt); 1642 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1643 1644 MadeChange = true; 1645 } 1646 1647 // Replace a use of the shift with a use of the new shift. 1648 TheUse = InsertedShift; 1649 } 1650 1651 // If we removed all uses, nuke the shift. 1652 if (ShiftI->use_empty()) { 1653 salvageDebugInfo(*ShiftI); 1654 ShiftI->eraseFromParent(); 1655 } 1656 1657 return MadeChange; 1658 } 1659 1660 /// If counting leading or trailing zeros is an expensive operation and a zero 1661 /// input is defined, add a check for zero to avoid calling the intrinsic. 1662 /// 1663 /// We want to transform: 1664 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1665 /// 1666 /// into: 1667 /// entry: 1668 /// %cmpz = icmp eq i64 %A, 0 1669 /// br i1 %cmpz, label %cond.end, label %cond.false 1670 /// cond.false: 1671 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1672 /// br label %cond.end 1673 /// cond.end: 1674 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1675 /// 1676 /// If the transform is performed, return true and set ModifiedDT to true. 1677 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1678 const TargetLowering *TLI, 1679 const DataLayout *DL, 1680 bool &ModifiedDT) { 1681 if (!TLI || !DL) 1682 return false; 1683 1684 // If a zero input is undefined, it doesn't make sense to despeculate that. 1685 if (match(CountZeros->getOperand(1), m_One())) 1686 return false; 1687 1688 // If it's cheap to speculate, there's nothing to do. 1689 auto IntrinsicID = CountZeros->getIntrinsicID(); 1690 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1691 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1692 return false; 1693 1694 // Only handle legal scalar cases. Anything else requires too much work. 1695 Type *Ty = CountZeros->getType(); 1696 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1697 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1698 return false; 1699 1700 // The intrinsic will be sunk behind a compare against zero and branch. 1701 BasicBlock *StartBlock = CountZeros->getParent(); 1702 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1703 1704 // Create another block after the count zero intrinsic. A PHI will be added 1705 // in this block to select the result of the intrinsic or the bit-width 1706 // constant if the input to the intrinsic is zero. 1707 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1708 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1709 1710 // Set up a builder to create a compare, conditional branch, and PHI. 1711 IRBuilder<> Builder(CountZeros->getContext()); 1712 Builder.SetInsertPoint(StartBlock->getTerminator()); 1713 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1714 1715 // Replace the unconditional branch that was created by the first split with 1716 // a compare against zero and a conditional branch. 1717 Value *Zero = Constant::getNullValue(Ty); 1718 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1719 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1720 StartBlock->getTerminator()->eraseFromParent(); 1721 1722 // Create a PHI in the end block to select either the output of the intrinsic 1723 // or the bit width of the operand. 1724 Builder.SetInsertPoint(&EndBlock->front()); 1725 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1726 CountZeros->replaceAllUsesWith(PN); 1727 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1728 PN->addIncoming(BitWidth, StartBlock); 1729 PN->addIncoming(CountZeros, CallBlock); 1730 1731 // We are explicitly handling the zero case, so we can set the intrinsic's 1732 // undefined zero argument to 'true'. This will also prevent reprocessing the 1733 // intrinsic; we only despeculate when a zero input is defined. 1734 CountZeros->setArgOperand(1, Builder.getTrue()); 1735 ModifiedDT = true; 1736 return true; 1737 } 1738 1739 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1740 BasicBlock *BB = CI->getParent(); 1741 1742 // Lower inline assembly if we can. 1743 // If we found an inline asm expession, and if the target knows how to 1744 // lower it to normal LLVM code, do so now. 1745 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1746 if (TLI->ExpandInlineAsm(CI)) { 1747 // Avoid invalidating the iterator. 1748 CurInstIterator = BB->begin(); 1749 // Avoid processing instructions out of order, which could cause 1750 // reuse before a value is defined. 1751 SunkAddrs.clear(); 1752 return true; 1753 } 1754 // Sink address computing for memory operands into the block. 1755 if (optimizeInlineAsmInst(CI)) 1756 return true; 1757 } 1758 1759 // Align the pointer arguments to this call if the target thinks it's a good 1760 // idea 1761 unsigned MinSize, PrefAlign; 1762 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1763 for (auto &Arg : CI->arg_operands()) { 1764 // We want to align both objects whose address is used directly and 1765 // objects whose address is used in casts and GEPs, though it only makes 1766 // sense for GEPs if the offset is a multiple of the desired alignment and 1767 // if size - offset meets the size threshold. 1768 if (!Arg->getType()->isPointerTy()) 1769 continue; 1770 APInt Offset(DL->getIndexSizeInBits( 1771 cast<PointerType>(Arg->getType())->getAddressSpace()), 1772 0); 1773 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1774 uint64_t Offset2 = Offset.getLimitedValue(); 1775 if ((Offset2 & (PrefAlign-1)) != 0) 1776 continue; 1777 AllocaInst *AI; 1778 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1779 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1780 AI->setAlignment(PrefAlign); 1781 // Global variables can only be aligned if they are defined in this 1782 // object (i.e. they are uniquely initialized in this object), and 1783 // over-aligning global variables that have an explicit section is 1784 // forbidden. 1785 GlobalVariable *GV; 1786 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1787 GV->getPointerAlignment(*DL) < PrefAlign && 1788 DL->getTypeAllocSize(GV->getValueType()) >= 1789 MinSize + Offset2) 1790 GV->setAlignment(PrefAlign); 1791 } 1792 // If this is a memcpy (or similar) then we may be able to improve the 1793 // alignment 1794 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1795 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL); 1796 if (DestAlign > MI->getDestAlignment()) 1797 MI->setDestAlignment(DestAlign); 1798 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 1799 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 1800 if (SrcAlign > MTI->getSourceAlignment()) 1801 MTI->setSourceAlignment(SrcAlign); 1802 } 1803 } 1804 } 1805 1806 // If we have a cold call site, try to sink addressing computation into the 1807 // cold block. This interacts with our handling for loads and stores to 1808 // ensure that we can fold all uses of a potential addressing computation 1809 // into their uses. TODO: generalize this to work over profiling data 1810 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1811 for (auto &Arg : CI->arg_operands()) { 1812 if (!Arg->getType()->isPointerTy()) 1813 continue; 1814 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1815 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1816 } 1817 1818 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1819 if (II) { 1820 switch (II->getIntrinsicID()) { 1821 default: break; 1822 case Intrinsic::experimental_widenable_condition: { 1823 // Give up on future widening oppurtunties so that we can fold away dead 1824 // paths and merge blocks before going into block-local instruction 1825 // selection. 1826 if (II->use_empty()) { 1827 II->eraseFromParent(); 1828 return true; 1829 } 1830 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 1831 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1832 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1833 }); 1834 return true; 1835 } 1836 case Intrinsic::objectsize: { 1837 // Lower all uses of llvm.objectsize.* 1838 Value *RetVal = 1839 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 1840 1841 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1842 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1843 }); 1844 return true; 1845 } 1846 case Intrinsic::is_constant: { 1847 // If is_constant hasn't folded away yet, lower it to false now. 1848 Constant *RetVal = ConstantInt::get(II->getType(), 0); 1849 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1850 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1851 }); 1852 return true; 1853 } 1854 case Intrinsic::aarch64_stlxr: 1855 case Intrinsic::aarch64_stxr: { 1856 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1857 if (!ExtVal || !ExtVal->hasOneUse() || 1858 ExtVal->getParent() == CI->getParent()) 1859 return false; 1860 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1861 ExtVal->moveBefore(CI); 1862 // Mark this instruction as "inserted by CGP", so that other 1863 // optimizations don't touch it. 1864 InsertedInsts.insert(ExtVal); 1865 return true; 1866 } 1867 1868 case Intrinsic::launder_invariant_group: 1869 case Intrinsic::strip_invariant_group: { 1870 Value *ArgVal = II->getArgOperand(0); 1871 auto it = LargeOffsetGEPMap.find(II); 1872 if (it != LargeOffsetGEPMap.end()) { 1873 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 1874 // Make sure not to have to deal with iterator invalidation 1875 // after possibly adding ArgVal to LargeOffsetGEPMap. 1876 auto GEPs = std::move(it->second); 1877 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 1878 LargeOffsetGEPMap.erase(II); 1879 } 1880 1881 II->replaceAllUsesWith(ArgVal); 1882 II->eraseFromParent(); 1883 return true; 1884 } 1885 case Intrinsic::cttz: 1886 case Intrinsic::ctlz: 1887 // If counting zeros is expensive, try to avoid it. 1888 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 1889 } 1890 1891 if (TLI) { 1892 SmallVector<Value*, 2> PtrOps; 1893 Type *AccessTy; 1894 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 1895 while (!PtrOps.empty()) { 1896 Value *PtrVal = PtrOps.pop_back_val(); 1897 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 1898 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 1899 return true; 1900 } 1901 } 1902 } 1903 1904 // From here on out we're working with named functions. 1905 if (!CI->getCalledFunction()) return false; 1906 1907 // Lower all default uses of _chk calls. This is very similar 1908 // to what InstCombineCalls does, but here we are only lowering calls 1909 // to fortified library functions (e.g. __memcpy_chk) that have the default 1910 // "don't know" as the objectsize. Anything else should be left alone. 1911 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1912 if (Value *V = Simplifier.optimizeCall(CI)) { 1913 CI->replaceAllUsesWith(V); 1914 CI->eraseFromParent(); 1915 return true; 1916 } 1917 1918 return false; 1919 } 1920 1921 /// Look for opportunities to duplicate return instructions to the predecessor 1922 /// to enable tail call optimizations. The case it is currently looking for is: 1923 /// @code 1924 /// bb0: 1925 /// %tmp0 = tail call i32 @f0() 1926 /// br label %return 1927 /// bb1: 1928 /// %tmp1 = tail call i32 @f1() 1929 /// br label %return 1930 /// bb2: 1931 /// %tmp2 = tail call i32 @f2() 1932 /// br label %return 1933 /// return: 1934 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1935 /// ret i32 %retval 1936 /// @endcode 1937 /// 1938 /// => 1939 /// 1940 /// @code 1941 /// bb0: 1942 /// %tmp0 = tail call i32 @f0() 1943 /// ret i32 %tmp0 1944 /// bb1: 1945 /// %tmp1 = tail call i32 @f1() 1946 /// ret i32 %tmp1 1947 /// bb2: 1948 /// %tmp2 = tail call i32 @f2() 1949 /// ret i32 %tmp2 1950 /// @endcode 1951 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 1952 if (!TLI) 1953 return false; 1954 1955 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 1956 if (!RetI) 1957 return false; 1958 1959 PHINode *PN = nullptr; 1960 BitCastInst *BCI = nullptr; 1961 Value *V = RetI->getReturnValue(); 1962 if (V) { 1963 BCI = dyn_cast<BitCastInst>(V); 1964 if (BCI) 1965 V = BCI->getOperand(0); 1966 1967 PN = dyn_cast<PHINode>(V); 1968 if (!PN) 1969 return false; 1970 } 1971 1972 if (PN && PN->getParent() != BB) 1973 return false; 1974 1975 // Make sure there are no instructions between the PHI and return, or that the 1976 // return is the first instruction in the block. 1977 if (PN) { 1978 BasicBlock::iterator BI = BB->begin(); 1979 // Skip over debug and the bitcast. 1980 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI); 1981 if (&*BI != RetI) 1982 return false; 1983 } else { 1984 BasicBlock::iterator BI = BB->begin(); 1985 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1986 if (&*BI != RetI) 1987 return false; 1988 } 1989 1990 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1991 /// call. 1992 const Function *F = BB->getParent(); 1993 SmallVector<CallInst*, 4> TailCalls; 1994 if (PN) { 1995 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 1996 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 1997 // Make sure the phi value is indeed produced by the tail call. 1998 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 1999 TLI->mayBeEmittedAsTailCall(CI) && 2000 attributesPermitTailCall(F, CI, RetI, *TLI)) 2001 TailCalls.push_back(CI); 2002 } 2003 } else { 2004 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2005 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2006 if (!VisitedBBs.insert(*PI).second) 2007 continue; 2008 2009 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2010 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2011 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2012 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2013 if (RI == RE) 2014 continue; 2015 2016 CallInst *CI = dyn_cast<CallInst>(&*RI); 2017 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2018 attributesPermitTailCall(F, CI, RetI, *TLI)) 2019 TailCalls.push_back(CI); 2020 } 2021 } 2022 2023 bool Changed = false; 2024 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 2025 CallInst *CI = TailCalls[i]; 2026 CallSite CS(CI); 2027 2028 // Make sure the call instruction is followed by an unconditional branch to 2029 // the return block. 2030 BasicBlock *CallBB = CI->getParent(); 2031 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 2032 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2033 continue; 2034 2035 // Duplicate the return into CallBB. 2036 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 2037 ModifiedDT = Changed = true; 2038 ++NumRetsDup; 2039 } 2040 2041 // If we eliminated all predecessors of the block, delete the block now. 2042 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2043 BB->eraseFromParent(); 2044 2045 return Changed; 2046 } 2047 2048 //===----------------------------------------------------------------------===// 2049 // Memory Optimization 2050 //===----------------------------------------------------------------------===// 2051 2052 namespace { 2053 2054 /// This is an extended version of TargetLowering::AddrMode 2055 /// which holds actual Value*'s for register values. 2056 struct ExtAddrMode : public TargetLowering::AddrMode { 2057 Value *BaseReg = nullptr; 2058 Value *ScaledReg = nullptr; 2059 Value *OriginalValue = nullptr; 2060 2061 enum FieldName { 2062 NoField = 0x00, 2063 BaseRegField = 0x01, 2064 BaseGVField = 0x02, 2065 BaseOffsField = 0x04, 2066 ScaledRegField = 0x08, 2067 ScaleField = 0x10, 2068 MultipleFields = 0xff 2069 }; 2070 2071 ExtAddrMode() = default; 2072 2073 void print(raw_ostream &OS) const; 2074 void dump() const; 2075 2076 FieldName compare(const ExtAddrMode &other) { 2077 // First check that the types are the same on each field, as differing types 2078 // is something we can't cope with later on. 2079 if (BaseReg && other.BaseReg && 2080 BaseReg->getType() != other.BaseReg->getType()) 2081 return MultipleFields; 2082 if (BaseGV && other.BaseGV && 2083 BaseGV->getType() != other.BaseGV->getType()) 2084 return MultipleFields; 2085 if (ScaledReg && other.ScaledReg && 2086 ScaledReg->getType() != other.ScaledReg->getType()) 2087 return MultipleFields; 2088 2089 // Check each field to see if it differs. 2090 unsigned Result = NoField; 2091 if (BaseReg != other.BaseReg) 2092 Result |= BaseRegField; 2093 if (BaseGV != other.BaseGV) 2094 Result |= BaseGVField; 2095 if (BaseOffs != other.BaseOffs) 2096 Result |= BaseOffsField; 2097 if (ScaledReg != other.ScaledReg) 2098 Result |= ScaledRegField; 2099 // Don't count 0 as being a different scale, because that actually means 2100 // unscaled (which will already be counted by having no ScaledReg). 2101 if (Scale && other.Scale && Scale != other.Scale) 2102 Result |= ScaleField; 2103 2104 if (countPopulation(Result) > 1) 2105 return MultipleFields; 2106 else 2107 return static_cast<FieldName>(Result); 2108 } 2109 2110 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2111 // with no offset. 2112 bool isTrivial() { 2113 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2114 // trivial if at most one of these terms is nonzero, except that BaseGV and 2115 // BaseReg both being zero actually means a null pointer value, which we 2116 // consider to be 'non-zero' here. 2117 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2118 } 2119 2120 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2121 switch (Field) { 2122 default: 2123 return nullptr; 2124 case BaseRegField: 2125 return BaseReg; 2126 case BaseGVField: 2127 return BaseGV; 2128 case ScaledRegField: 2129 return ScaledReg; 2130 case BaseOffsField: 2131 return ConstantInt::get(IntPtrTy, BaseOffs); 2132 } 2133 } 2134 2135 void SetCombinedField(FieldName Field, Value *V, 2136 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2137 switch (Field) { 2138 default: 2139 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2140 break; 2141 case ExtAddrMode::BaseRegField: 2142 BaseReg = V; 2143 break; 2144 case ExtAddrMode::BaseGVField: 2145 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2146 // in the BaseReg field. 2147 assert(BaseReg == nullptr); 2148 BaseReg = V; 2149 BaseGV = nullptr; 2150 break; 2151 case ExtAddrMode::ScaledRegField: 2152 ScaledReg = V; 2153 // If we have a mix of scaled and unscaled addrmodes then we want scale 2154 // to be the scale and not zero. 2155 if (!Scale) 2156 for (const ExtAddrMode &AM : AddrModes) 2157 if (AM.Scale) { 2158 Scale = AM.Scale; 2159 break; 2160 } 2161 break; 2162 case ExtAddrMode::BaseOffsField: 2163 // The offset is no longer a constant, so it goes in ScaledReg with a 2164 // scale of 1. 2165 assert(ScaledReg == nullptr); 2166 ScaledReg = V; 2167 Scale = 1; 2168 BaseOffs = 0; 2169 break; 2170 } 2171 } 2172 }; 2173 2174 } // end anonymous namespace 2175 2176 #ifndef NDEBUG 2177 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2178 AM.print(OS); 2179 return OS; 2180 } 2181 #endif 2182 2183 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2184 void ExtAddrMode::print(raw_ostream &OS) const { 2185 bool NeedPlus = false; 2186 OS << "["; 2187 if (BaseGV) { 2188 OS << (NeedPlus ? " + " : "") 2189 << "GV:"; 2190 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2191 NeedPlus = true; 2192 } 2193 2194 if (BaseOffs) { 2195 OS << (NeedPlus ? " + " : "") 2196 << BaseOffs; 2197 NeedPlus = true; 2198 } 2199 2200 if (BaseReg) { 2201 OS << (NeedPlus ? " + " : "") 2202 << "Base:"; 2203 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2204 NeedPlus = true; 2205 } 2206 if (Scale) { 2207 OS << (NeedPlus ? " + " : "") 2208 << Scale << "*"; 2209 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2210 } 2211 2212 OS << ']'; 2213 } 2214 2215 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2216 print(dbgs()); 2217 dbgs() << '\n'; 2218 } 2219 #endif 2220 2221 namespace { 2222 2223 /// This class provides transaction based operation on the IR. 2224 /// Every change made through this class is recorded in the internal state and 2225 /// can be undone (rollback) until commit is called. 2226 class TypePromotionTransaction { 2227 /// This represents the common interface of the individual transaction. 2228 /// Each class implements the logic for doing one specific modification on 2229 /// the IR via the TypePromotionTransaction. 2230 class TypePromotionAction { 2231 protected: 2232 /// The Instruction modified. 2233 Instruction *Inst; 2234 2235 public: 2236 /// Constructor of the action. 2237 /// The constructor performs the related action on the IR. 2238 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2239 2240 virtual ~TypePromotionAction() = default; 2241 2242 /// Undo the modification done by this action. 2243 /// When this method is called, the IR must be in the same state as it was 2244 /// before this action was applied. 2245 /// \pre Undoing the action works if and only if the IR is in the exact same 2246 /// state as it was directly after this action was applied. 2247 virtual void undo() = 0; 2248 2249 /// Advocate every change made by this action. 2250 /// When the results on the IR of the action are to be kept, it is important 2251 /// to call this function, otherwise hidden information may be kept forever. 2252 virtual void commit() { 2253 // Nothing to be done, this action is not doing anything. 2254 } 2255 }; 2256 2257 /// Utility to remember the position of an instruction. 2258 class InsertionHandler { 2259 /// Position of an instruction. 2260 /// Either an instruction: 2261 /// - Is the first in a basic block: BB is used. 2262 /// - Has a previous instruction: PrevInst is used. 2263 union { 2264 Instruction *PrevInst; 2265 BasicBlock *BB; 2266 } Point; 2267 2268 /// Remember whether or not the instruction had a previous instruction. 2269 bool HasPrevInstruction; 2270 2271 public: 2272 /// Record the position of \p Inst. 2273 InsertionHandler(Instruction *Inst) { 2274 BasicBlock::iterator It = Inst->getIterator(); 2275 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2276 if (HasPrevInstruction) 2277 Point.PrevInst = &*--It; 2278 else 2279 Point.BB = Inst->getParent(); 2280 } 2281 2282 /// Insert \p Inst at the recorded position. 2283 void insert(Instruction *Inst) { 2284 if (HasPrevInstruction) { 2285 if (Inst->getParent()) 2286 Inst->removeFromParent(); 2287 Inst->insertAfter(Point.PrevInst); 2288 } else { 2289 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2290 if (Inst->getParent()) 2291 Inst->moveBefore(Position); 2292 else 2293 Inst->insertBefore(Position); 2294 } 2295 } 2296 }; 2297 2298 /// Move an instruction before another. 2299 class InstructionMoveBefore : public TypePromotionAction { 2300 /// Original position of the instruction. 2301 InsertionHandler Position; 2302 2303 public: 2304 /// Move \p Inst before \p Before. 2305 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2306 : TypePromotionAction(Inst), Position(Inst) { 2307 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2308 << "\n"); 2309 Inst->moveBefore(Before); 2310 } 2311 2312 /// Move the instruction back to its original position. 2313 void undo() override { 2314 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2315 Position.insert(Inst); 2316 } 2317 }; 2318 2319 /// Set the operand of an instruction with a new value. 2320 class OperandSetter : public TypePromotionAction { 2321 /// Original operand of the instruction. 2322 Value *Origin; 2323 2324 /// Index of the modified instruction. 2325 unsigned Idx; 2326 2327 public: 2328 /// Set \p Idx operand of \p Inst with \p NewVal. 2329 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2330 : TypePromotionAction(Inst), Idx(Idx) { 2331 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2332 << "for:" << *Inst << "\n" 2333 << "with:" << *NewVal << "\n"); 2334 Origin = Inst->getOperand(Idx); 2335 Inst->setOperand(Idx, NewVal); 2336 } 2337 2338 /// Restore the original value of the instruction. 2339 void undo() override { 2340 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2341 << "for: " << *Inst << "\n" 2342 << "with: " << *Origin << "\n"); 2343 Inst->setOperand(Idx, Origin); 2344 } 2345 }; 2346 2347 /// Hide the operands of an instruction. 2348 /// Do as if this instruction was not using any of its operands. 2349 class OperandsHider : public TypePromotionAction { 2350 /// The list of original operands. 2351 SmallVector<Value *, 4> OriginalValues; 2352 2353 public: 2354 /// Remove \p Inst from the uses of the operands of \p Inst. 2355 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2356 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2357 unsigned NumOpnds = Inst->getNumOperands(); 2358 OriginalValues.reserve(NumOpnds); 2359 for (unsigned It = 0; It < NumOpnds; ++It) { 2360 // Save the current operand. 2361 Value *Val = Inst->getOperand(It); 2362 OriginalValues.push_back(Val); 2363 // Set a dummy one. 2364 // We could use OperandSetter here, but that would imply an overhead 2365 // that we are not willing to pay. 2366 Inst->setOperand(It, UndefValue::get(Val->getType())); 2367 } 2368 } 2369 2370 /// Restore the original list of uses. 2371 void undo() override { 2372 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2373 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2374 Inst->setOperand(It, OriginalValues[It]); 2375 } 2376 }; 2377 2378 /// Build a truncate instruction. 2379 class TruncBuilder : public TypePromotionAction { 2380 Value *Val; 2381 2382 public: 2383 /// Build a truncate instruction of \p Opnd producing a \p Ty 2384 /// result. 2385 /// trunc Opnd to Ty. 2386 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2387 IRBuilder<> Builder(Opnd); 2388 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2389 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2390 } 2391 2392 /// Get the built value. 2393 Value *getBuiltValue() { return Val; } 2394 2395 /// Remove the built instruction. 2396 void undo() override { 2397 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2398 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2399 IVal->eraseFromParent(); 2400 } 2401 }; 2402 2403 /// Build a sign extension instruction. 2404 class SExtBuilder : public TypePromotionAction { 2405 Value *Val; 2406 2407 public: 2408 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2409 /// result. 2410 /// sext Opnd to Ty. 2411 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2412 : TypePromotionAction(InsertPt) { 2413 IRBuilder<> Builder(InsertPt); 2414 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2415 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2416 } 2417 2418 /// Get the built value. 2419 Value *getBuiltValue() { return Val; } 2420 2421 /// Remove the built instruction. 2422 void undo() override { 2423 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2424 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2425 IVal->eraseFromParent(); 2426 } 2427 }; 2428 2429 /// Build a zero extension instruction. 2430 class ZExtBuilder : public TypePromotionAction { 2431 Value *Val; 2432 2433 public: 2434 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2435 /// result. 2436 /// zext Opnd to Ty. 2437 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2438 : TypePromotionAction(InsertPt) { 2439 IRBuilder<> Builder(InsertPt); 2440 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2441 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2442 } 2443 2444 /// Get the built value. 2445 Value *getBuiltValue() { return Val; } 2446 2447 /// Remove the built instruction. 2448 void undo() override { 2449 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2450 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2451 IVal->eraseFromParent(); 2452 } 2453 }; 2454 2455 /// Mutate an instruction to another type. 2456 class TypeMutator : public TypePromotionAction { 2457 /// Record the original type. 2458 Type *OrigTy; 2459 2460 public: 2461 /// Mutate the type of \p Inst into \p NewTy. 2462 TypeMutator(Instruction *Inst, Type *NewTy) 2463 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2464 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2465 << "\n"); 2466 Inst->mutateType(NewTy); 2467 } 2468 2469 /// Mutate the instruction back to its original type. 2470 void undo() override { 2471 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2472 << "\n"); 2473 Inst->mutateType(OrigTy); 2474 } 2475 }; 2476 2477 /// Replace the uses of an instruction by another instruction. 2478 class UsesReplacer : public TypePromotionAction { 2479 /// Helper structure to keep track of the replaced uses. 2480 struct InstructionAndIdx { 2481 /// The instruction using the instruction. 2482 Instruction *Inst; 2483 2484 /// The index where this instruction is used for Inst. 2485 unsigned Idx; 2486 2487 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2488 : Inst(Inst), Idx(Idx) {} 2489 }; 2490 2491 /// Keep track of the original uses (pair Instruction, Index). 2492 SmallVector<InstructionAndIdx, 4> OriginalUses; 2493 /// Keep track of the debug users. 2494 SmallVector<DbgValueInst *, 1> DbgValues; 2495 2496 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2497 2498 public: 2499 /// Replace all the use of \p Inst by \p New. 2500 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2501 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2502 << "\n"); 2503 // Record the original uses. 2504 for (Use &U : Inst->uses()) { 2505 Instruction *UserI = cast<Instruction>(U.getUser()); 2506 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2507 } 2508 // Record the debug uses separately. They are not in the instruction's 2509 // use list, but they are replaced by RAUW. 2510 findDbgValues(DbgValues, Inst); 2511 2512 // Now, we can replace the uses. 2513 Inst->replaceAllUsesWith(New); 2514 } 2515 2516 /// Reassign the original uses of Inst to Inst. 2517 void undo() override { 2518 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2519 for (use_iterator UseIt = OriginalUses.begin(), 2520 EndIt = OriginalUses.end(); 2521 UseIt != EndIt; ++UseIt) { 2522 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2523 } 2524 // RAUW has replaced all original uses with references to the new value, 2525 // including the debug uses. Since we are undoing the replacements, 2526 // the original debug uses must also be reinstated to maintain the 2527 // correctness and utility of debug value instructions. 2528 for (auto *DVI: DbgValues) { 2529 LLVMContext &Ctx = Inst->getType()->getContext(); 2530 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); 2531 DVI->setOperand(0, MV); 2532 } 2533 } 2534 }; 2535 2536 /// Remove an instruction from the IR. 2537 class InstructionRemover : public TypePromotionAction { 2538 /// Original position of the instruction. 2539 InsertionHandler Inserter; 2540 2541 /// Helper structure to hide all the link to the instruction. In other 2542 /// words, this helps to do as if the instruction was removed. 2543 OperandsHider Hider; 2544 2545 /// Keep track of the uses replaced, if any. 2546 UsesReplacer *Replacer = nullptr; 2547 2548 /// Keep track of instructions removed. 2549 SetOfInstrs &RemovedInsts; 2550 2551 public: 2552 /// Remove all reference of \p Inst and optionally replace all its 2553 /// uses with New. 2554 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2555 /// \pre If !Inst->use_empty(), then New != nullptr 2556 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2557 Value *New = nullptr) 2558 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2559 RemovedInsts(RemovedInsts) { 2560 if (New) 2561 Replacer = new UsesReplacer(Inst, New); 2562 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2563 RemovedInsts.insert(Inst); 2564 /// The instructions removed here will be freed after completing 2565 /// optimizeBlock() for all blocks as we need to keep track of the 2566 /// removed instructions during promotion. 2567 Inst->removeFromParent(); 2568 } 2569 2570 ~InstructionRemover() override { delete Replacer; } 2571 2572 /// Resurrect the instruction and reassign it to the proper uses if 2573 /// new value was provided when build this action. 2574 void undo() override { 2575 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2576 Inserter.insert(Inst); 2577 if (Replacer) 2578 Replacer->undo(); 2579 Hider.undo(); 2580 RemovedInsts.erase(Inst); 2581 } 2582 }; 2583 2584 public: 2585 /// Restoration point. 2586 /// The restoration point is a pointer to an action instead of an iterator 2587 /// because the iterator may be invalidated but not the pointer. 2588 using ConstRestorationPt = const TypePromotionAction *; 2589 2590 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2591 : RemovedInsts(RemovedInsts) {} 2592 2593 /// Advocate every changes made in that transaction. 2594 void commit(); 2595 2596 /// Undo all the changes made after the given point. 2597 void rollback(ConstRestorationPt Point); 2598 2599 /// Get the current restoration point. 2600 ConstRestorationPt getRestorationPoint() const; 2601 2602 /// \name API for IR modification with state keeping to support rollback. 2603 /// @{ 2604 /// Same as Instruction::setOperand. 2605 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2606 2607 /// Same as Instruction::eraseFromParent. 2608 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2609 2610 /// Same as Value::replaceAllUsesWith. 2611 void replaceAllUsesWith(Instruction *Inst, Value *New); 2612 2613 /// Same as Value::mutateType. 2614 void mutateType(Instruction *Inst, Type *NewTy); 2615 2616 /// Same as IRBuilder::createTrunc. 2617 Value *createTrunc(Instruction *Opnd, Type *Ty); 2618 2619 /// Same as IRBuilder::createSExt. 2620 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2621 2622 /// Same as IRBuilder::createZExt. 2623 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2624 2625 /// Same as Instruction::moveBefore. 2626 void moveBefore(Instruction *Inst, Instruction *Before); 2627 /// @} 2628 2629 private: 2630 /// The ordered list of actions made so far. 2631 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2632 2633 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2634 2635 SetOfInstrs &RemovedInsts; 2636 }; 2637 2638 } // end anonymous namespace 2639 2640 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2641 Value *NewVal) { 2642 Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>( 2643 Inst, Idx, NewVal)); 2644 } 2645 2646 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2647 Value *NewVal) { 2648 Actions.push_back( 2649 llvm::make_unique<TypePromotionTransaction::InstructionRemover>( 2650 Inst, RemovedInsts, NewVal)); 2651 } 2652 2653 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2654 Value *New) { 2655 Actions.push_back( 2656 llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2657 } 2658 2659 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2660 Actions.push_back( 2661 llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2662 } 2663 2664 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2665 Type *Ty) { 2666 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2667 Value *Val = Ptr->getBuiltValue(); 2668 Actions.push_back(std::move(Ptr)); 2669 return Val; 2670 } 2671 2672 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2673 Value *Opnd, Type *Ty) { 2674 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2675 Value *Val = Ptr->getBuiltValue(); 2676 Actions.push_back(std::move(Ptr)); 2677 return Val; 2678 } 2679 2680 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2681 Value *Opnd, Type *Ty) { 2682 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2683 Value *Val = Ptr->getBuiltValue(); 2684 Actions.push_back(std::move(Ptr)); 2685 return Val; 2686 } 2687 2688 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2689 Instruction *Before) { 2690 Actions.push_back( 2691 llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2692 Inst, Before)); 2693 } 2694 2695 TypePromotionTransaction::ConstRestorationPt 2696 TypePromotionTransaction::getRestorationPoint() const { 2697 return !Actions.empty() ? Actions.back().get() : nullptr; 2698 } 2699 2700 void TypePromotionTransaction::commit() { 2701 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2702 ++It) 2703 (*It)->commit(); 2704 Actions.clear(); 2705 } 2706 2707 void TypePromotionTransaction::rollback( 2708 TypePromotionTransaction::ConstRestorationPt Point) { 2709 while (!Actions.empty() && Point != Actions.back().get()) { 2710 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2711 Curr->undo(); 2712 } 2713 } 2714 2715 namespace { 2716 2717 /// A helper class for matching addressing modes. 2718 /// 2719 /// This encapsulates the logic for matching the target-legal addressing modes. 2720 class AddressingModeMatcher { 2721 SmallVectorImpl<Instruction*> &AddrModeInsts; 2722 const TargetLowering &TLI; 2723 const TargetRegisterInfo &TRI; 2724 const DataLayout &DL; 2725 2726 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2727 /// the memory instruction that we're computing this address for. 2728 Type *AccessTy; 2729 unsigned AddrSpace; 2730 Instruction *MemoryInst; 2731 2732 /// This is the addressing mode that we're building up. This is 2733 /// part of the return value of this addressing mode matching stuff. 2734 ExtAddrMode &AddrMode; 2735 2736 /// The instructions inserted by other CodeGenPrepare optimizations. 2737 const SetOfInstrs &InsertedInsts; 2738 2739 /// A map from the instructions to their type before promotion. 2740 InstrToOrigTy &PromotedInsts; 2741 2742 /// The ongoing transaction where every action should be registered. 2743 TypePromotionTransaction &TPT; 2744 2745 // A GEP which has too large offset to be folded into the addressing mode. 2746 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 2747 2748 /// This is set to true when we should not do profitability checks. 2749 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2750 bool IgnoreProfitability; 2751 2752 AddressingModeMatcher( 2753 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 2754 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 2755 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 2756 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 2757 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) 2758 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2759 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2760 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2761 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) { 2762 IgnoreProfitability = false; 2763 } 2764 2765 public: 2766 /// Find the maximal addressing mode that a load/store of V can fold, 2767 /// give an access type of AccessTy. This returns a list of involved 2768 /// instructions in AddrModeInsts. 2769 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2770 /// optimizations. 2771 /// \p PromotedInsts maps the instructions to their type before promotion. 2772 /// \p The ongoing transaction where every action should be registered. 2773 static ExtAddrMode 2774 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 2775 SmallVectorImpl<Instruction *> &AddrModeInsts, 2776 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 2777 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 2778 TypePromotionTransaction &TPT, 2779 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) { 2780 ExtAddrMode Result; 2781 2782 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 2783 MemoryInst, Result, InsertedInsts, 2784 PromotedInsts, TPT, LargeOffsetGEP) 2785 .matchAddr(V, 0); 2786 (void)Success; assert(Success && "Couldn't select *anything*?"); 2787 return Result; 2788 } 2789 2790 private: 2791 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2792 bool matchAddr(Value *Addr, unsigned Depth); 2793 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 2794 bool *MovedAway = nullptr); 2795 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2796 ExtAddrMode &AMBefore, 2797 ExtAddrMode &AMAfter); 2798 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2799 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2800 Value *PromotedOperand) const; 2801 }; 2802 2803 class PhiNodeSet; 2804 2805 /// An iterator for PhiNodeSet. 2806 class PhiNodeSetIterator { 2807 PhiNodeSet * const Set; 2808 size_t CurrentIndex = 0; 2809 2810 public: 2811 /// The constructor. Start should point to either a valid element, or be equal 2812 /// to the size of the underlying SmallVector of the PhiNodeSet. 2813 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 2814 PHINode * operator*() const; 2815 PhiNodeSetIterator& operator++(); 2816 bool operator==(const PhiNodeSetIterator &RHS) const; 2817 bool operator!=(const PhiNodeSetIterator &RHS) const; 2818 }; 2819 2820 /// Keeps a set of PHINodes. 2821 /// 2822 /// This is a minimal set implementation for a specific use case: 2823 /// It is very fast when there are very few elements, but also provides good 2824 /// performance when there are many. It is similar to SmallPtrSet, but also 2825 /// provides iteration by insertion order, which is deterministic and stable 2826 /// across runs. It is also similar to SmallSetVector, but provides removing 2827 /// elements in O(1) time. This is achieved by not actually removing the element 2828 /// from the underlying vector, so comes at the cost of using more memory, but 2829 /// that is fine, since PhiNodeSets are used as short lived objects. 2830 class PhiNodeSet { 2831 friend class PhiNodeSetIterator; 2832 2833 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 2834 using iterator = PhiNodeSetIterator; 2835 2836 /// Keeps the elements in the order of their insertion in the underlying 2837 /// vector. To achieve constant time removal, it never deletes any element. 2838 SmallVector<PHINode *, 32> NodeList; 2839 2840 /// Keeps the elements in the underlying set implementation. This (and not the 2841 /// NodeList defined above) is the source of truth on whether an element 2842 /// is actually in the collection. 2843 MapType NodeMap; 2844 2845 /// Points to the first valid (not deleted) element when the set is not empty 2846 /// and the value is not zero. Equals to the size of the underlying vector 2847 /// when the set is empty. When the value is 0, as in the beginning, the 2848 /// first element may or may not be valid. 2849 size_t FirstValidElement = 0; 2850 2851 public: 2852 /// Inserts a new element to the collection. 2853 /// \returns true if the element is actually added, i.e. was not in the 2854 /// collection before the operation. 2855 bool insert(PHINode *Ptr) { 2856 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 2857 NodeList.push_back(Ptr); 2858 return true; 2859 } 2860 return false; 2861 } 2862 2863 /// Removes the element from the collection. 2864 /// \returns whether the element is actually removed, i.e. was in the 2865 /// collection before the operation. 2866 bool erase(PHINode *Ptr) { 2867 auto it = NodeMap.find(Ptr); 2868 if (it != NodeMap.end()) { 2869 NodeMap.erase(Ptr); 2870 SkipRemovedElements(FirstValidElement); 2871 return true; 2872 } 2873 return false; 2874 } 2875 2876 /// Removes all elements and clears the collection. 2877 void clear() { 2878 NodeMap.clear(); 2879 NodeList.clear(); 2880 FirstValidElement = 0; 2881 } 2882 2883 /// \returns an iterator that will iterate the elements in the order of 2884 /// insertion. 2885 iterator begin() { 2886 if (FirstValidElement == 0) 2887 SkipRemovedElements(FirstValidElement); 2888 return PhiNodeSetIterator(this, FirstValidElement); 2889 } 2890 2891 /// \returns an iterator that points to the end of the collection. 2892 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 2893 2894 /// Returns the number of elements in the collection. 2895 size_t size() const { 2896 return NodeMap.size(); 2897 } 2898 2899 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 2900 size_t count(PHINode *Ptr) const { 2901 return NodeMap.count(Ptr); 2902 } 2903 2904 private: 2905 /// Updates the CurrentIndex so that it will point to a valid element. 2906 /// 2907 /// If the element of NodeList at CurrentIndex is valid, it does not 2908 /// change it. If there are no more valid elements, it updates CurrentIndex 2909 /// to point to the end of the NodeList. 2910 void SkipRemovedElements(size_t &CurrentIndex) { 2911 while (CurrentIndex < NodeList.size()) { 2912 auto it = NodeMap.find(NodeList[CurrentIndex]); 2913 // If the element has been deleted and added again later, NodeMap will 2914 // point to a different index, so CurrentIndex will still be invalid. 2915 if (it != NodeMap.end() && it->second == CurrentIndex) 2916 break; 2917 ++CurrentIndex; 2918 } 2919 } 2920 }; 2921 2922 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 2923 : Set(Set), CurrentIndex(Start) {} 2924 2925 PHINode * PhiNodeSetIterator::operator*() const { 2926 assert(CurrentIndex < Set->NodeList.size() && 2927 "PhiNodeSet access out of range"); 2928 return Set->NodeList[CurrentIndex]; 2929 } 2930 2931 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 2932 assert(CurrentIndex < Set->NodeList.size() && 2933 "PhiNodeSet access out of range"); 2934 ++CurrentIndex; 2935 Set->SkipRemovedElements(CurrentIndex); 2936 return *this; 2937 } 2938 2939 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 2940 return CurrentIndex == RHS.CurrentIndex; 2941 } 2942 2943 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 2944 return !((*this) == RHS); 2945 } 2946 2947 /// Keep track of simplification of Phi nodes. 2948 /// Accept the set of all phi nodes and erase phi node from this set 2949 /// if it is simplified. 2950 class SimplificationTracker { 2951 DenseMap<Value *, Value *> Storage; 2952 const SimplifyQuery &SQ; 2953 // Tracks newly created Phi nodes. The elements are iterated by insertion 2954 // order. 2955 PhiNodeSet AllPhiNodes; 2956 // Tracks newly created Select nodes. 2957 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 2958 2959 public: 2960 SimplificationTracker(const SimplifyQuery &sq) 2961 : SQ(sq) {} 2962 2963 Value *Get(Value *V) { 2964 do { 2965 auto SV = Storage.find(V); 2966 if (SV == Storage.end()) 2967 return V; 2968 V = SV->second; 2969 } while (true); 2970 } 2971 2972 Value *Simplify(Value *Val) { 2973 SmallVector<Value *, 32> WorkList; 2974 SmallPtrSet<Value *, 32> Visited; 2975 WorkList.push_back(Val); 2976 while (!WorkList.empty()) { 2977 auto P = WorkList.pop_back_val(); 2978 if (!Visited.insert(P).second) 2979 continue; 2980 if (auto *PI = dyn_cast<Instruction>(P)) 2981 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 2982 for (auto *U : PI->users()) 2983 WorkList.push_back(cast<Value>(U)); 2984 Put(PI, V); 2985 PI->replaceAllUsesWith(V); 2986 if (auto *PHI = dyn_cast<PHINode>(PI)) 2987 AllPhiNodes.erase(PHI); 2988 if (auto *Select = dyn_cast<SelectInst>(PI)) 2989 AllSelectNodes.erase(Select); 2990 PI->eraseFromParent(); 2991 } 2992 } 2993 return Get(Val); 2994 } 2995 2996 void Put(Value *From, Value *To) { 2997 Storage.insert({ From, To }); 2998 } 2999 3000 void ReplacePhi(PHINode *From, PHINode *To) { 3001 Value* OldReplacement = Get(From); 3002 while (OldReplacement != From) { 3003 From = To; 3004 To = dyn_cast<PHINode>(OldReplacement); 3005 OldReplacement = Get(From); 3006 } 3007 assert(Get(To) == To && "Replacement PHI node is already replaced."); 3008 Put(From, To); 3009 From->replaceAllUsesWith(To); 3010 AllPhiNodes.erase(From); 3011 From->eraseFromParent(); 3012 } 3013 3014 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3015 3016 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3017 3018 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3019 3020 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3021 3022 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3023 3024 void destroyNewNodes(Type *CommonType) { 3025 // For safe erasing, replace the uses with dummy value first. 3026 auto Dummy = UndefValue::get(CommonType); 3027 for (auto I : AllPhiNodes) { 3028 I->replaceAllUsesWith(Dummy); 3029 I->eraseFromParent(); 3030 } 3031 AllPhiNodes.clear(); 3032 for (auto I : AllSelectNodes) { 3033 I->replaceAllUsesWith(Dummy); 3034 I->eraseFromParent(); 3035 } 3036 AllSelectNodes.clear(); 3037 } 3038 }; 3039 3040 /// A helper class for combining addressing modes. 3041 class AddressingModeCombiner { 3042 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3043 typedef std::pair<PHINode *, PHINode *> PHIPair; 3044 3045 private: 3046 /// The addressing modes we've collected. 3047 SmallVector<ExtAddrMode, 16> AddrModes; 3048 3049 /// The field in which the AddrModes differ, when we have more than one. 3050 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3051 3052 /// Are the AddrModes that we have all just equal to their original values? 3053 bool AllAddrModesTrivial = true; 3054 3055 /// Common Type for all different fields in addressing modes. 3056 Type *CommonType; 3057 3058 /// SimplifyQuery for simplifyInstruction utility. 3059 const SimplifyQuery &SQ; 3060 3061 /// Original Address. 3062 Value *Original; 3063 3064 public: 3065 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3066 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 3067 3068 /// Get the combined AddrMode 3069 const ExtAddrMode &getAddrMode() const { 3070 return AddrModes[0]; 3071 } 3072 3073 /// Add a new AddrMode if it's compatible with the AddrModes we already 3074 /// have. 3075 /// \return True iff we succeeded in doing so. 3076 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3077 // Take note of if we have any non-trivial AddrModes, as we need to detect 3078 // when all AddrModes are trivial as then we would introduce a phi or select 3079 // which just duplicates what's already there. 3080 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3081 3082 // If this is the first addrmode then everything is fine. 3083 if (AddrModes.empty()) { 3084 AddrModes.emplace_back(NewAddrMode); 3085 return true; 3086 } 3087 3088 // Figure out how different this is from the other address modes, which we 3089 // can do just by comparing against the first one given that we only care 3090 // about the cumulative difference. 3091 ExtAddrMode::FieldName ThisDifferentField = 3092 AddrModes[0].compare(NewAddrMode); 3093 if (DifferentField == ExtAddrMode::NoField) 3094 DifferentField = ThisDifferentField; 3095 else if (DifferentField != ThisDifferentField) 3096 DifferentField = ExtAddrMode::MultipleFields; 3097 3098 // If NewAddrMode differs in more than one dimension we cannot handle it. 3099 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3100 3101 // If Scale Field is different then we reject. 3102 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3103 3104 // We also must reject the case when base offset is different and 3105 // scale reg is not null, we cannot handle this case due to merge of 3106 // different offsets will be used as ScaleReg. 3107 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3108 !NewAddrMode.ScaledReg); 3109 3110 // We also must reject the case when GV is different and BaseReg installed 3111 // due to we want to use base reg as a merge of GV values. 3112 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3113 !NewAddrMode.HasBaseReg); 3114 3115 // Even if NewAddMode is the same we still need to collect it due to 3116 // original value is different. And later we will need all original values 3117 // as anchors during finding the common Phi node. 3118 if (CanHandle) 3119 AddrModes.emplace_back(NewAddrMode); 3120 else 3121 AddrModes.clear(); 3122 3123 return CanHandle; 3124 } 3125 3126 /// Combine the addressing modes we've collected into a single 3127 /// addressing mode. 3128 /// \return True iff we successfully combined them or we only had one so 3129 /// didn't need to combine them anyway. 3130 bool combineAddrModes() { 3131 // If we have no AddrModes then they can't be combined. 3132 if (AddrModes.size() == 0) 3133 return false; 3134 3135 // A single AddrMode can trivially be combined. 3136 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3137 return true; 3138 3139 // If the AddrModes we collected are all just equal to the value they are 3140 // derived from then combining them wouldn't do anything useful. 3141 if (AllAddrModesTrivial) 3142 return false; 3143 3144 if (!addrModeCombiningAllowed()) 3145 return false; 3146 3147 // Build a map between <original value, basic block where we saw it> to 3148 // value of base register. 3149 // Bail out if there is no common type. 3150 FoldAddrToValueMapping Map; 3151 if (!initializeMap(Map)) 3152 return false; 3153 3154 Value *CommonValue = findCommon(Map); 3155 if (CommonValue) 3156 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3157 return CommonValue != nullptr; 3158 } 3159 3160 private: 3161 /// Initialize Map with anchor values. For address seen 3162 /// we set the value of different field saw in this address. 3163 /// At the same time we find a common type for different field we will 3164 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3165 /// Return false if there is no common type found. 3166 bool initializeMap(FoldAddrToValueMapping &Map) { 3167 // Keep track of keys where the value is null. We will need to replace it 3168 // with constant null when we know the common type. 3169 SmallVector<Value *, 2> NullValue; 3170 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3171 for (auto &AM : AddrModes) { 3172 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3173 if (DV) { 3174 auto *Type = DV->getType(); 3175 if (CommonType && CommonType != Type) 3176 return false; 3177 CommonType = Type; 3178 Map[AM.OriginalValue] = DV; 3179 } else { 3180 NullValue.push_back(AM.OriginalValue); 3181 } 3182 } 3183 assert(CommonType && "At least one non-null value must be!"); 3184 for (auto *V : NullValue) 3185 Map[V] = Constant::getNullValue(CommonType); 3186 return true; 3187 } 3188 3189 /// We have mapping between value A and other value B where B was a field in 3190 /// addressing mode represented by A. Also we have an original value C 3191 /// representing an address we start with. Traversing from C through phi and 3192 /// selects we ended up with A's in a map. This utility function tries to find 3193 /// a value V which is a field in addressing mode C and traversing through phi 3194 /// nodes and selects we will end up in corresponded values B in a map. 3195 /// The utility will create a new Phi/Selects if needed. 3196 // The simple example looks as follows: 3197 // BB1: 3198 // p1 = b1 + 40 3199 // br cond BB2, BB3 3200 // BB2: 3201 // p2 = b2 + 40 3202 // br BB3 3203 // BB3: 3204 // p = phi [p1, BB1], [p2, BB2] 3205 // v = load p 3206 // Map is 3207 // p1 -> b1 3208 // p2 -> b2 3209 // Request is 3210 // p -> ? 3211 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3212 Value *findCommon(FoldAddrToValueMapping &Map) { 3213 // Tracks the simplification of newly created phi nodes. The reason we use 3214 // this mapping is because we will add new created Phi nodes in AddrToBase. 3215 // Simplification of Phi nodes is recursive, so some Phi node may 3216 // be simplified after we added it to AddrToBase. In reality this 3217 // simplification is possible only if original phi/selects were not 3218 // simplified yet. 3219 // Using this mapping we can find the current value in AddrToBase. 3220 SimplificationTracker ST(SQ); 3221 3222 // First step, DFS to create PHI nodes for all intermediate blocks. 3223 // Also fill traverse order for the second step. 3224 SmallVector<Value *, 32> TraverseOrder; 3225 InsertPlaceholders(Map, TraverseOrder, ST); 3226 3227 // Second Step, fill new nodes by merged values and simplify if possible. 3228 FillPlaceholders(Map, TraverseOrder, ST); 3229 3230 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3231 ST.destroyNewNodes(CommonType); 3232 return nullptr; 3233 } 3234 3235 // Now we'd like to match New Phi nodes to existed ones. 3236 unsigned PhiNotMatchedCount = 0; 3237 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3238 ST.destroyNewNodes(CommonType); 3239 return nullptr; 3240 } 3241 3242 auto *Result = ST.Get(Map.find(Original)->second); 3243 if (Result) { 3244 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3245 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3246 } 3247 return Result; 3248 } 3249 3250 /// Try to match PHI node to Candidate. 3251 /// Matcher tracks the matched Phi nodes. 3252 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3253 SmallSetVector<PHIPair, 8> &Matcher, 3254 PhiNodeSet &PhiNodesToMatch) { 3255 SmallVector<PHIPair, 8> WorkList; 3256 Matcher.insert({ PHI, Candidate }); 3257 WorkList.push_back({ PHI, Candidate }); 3258 SmallSet<PHIPair, 8> Visited; 3259 while (!WorkList.empty()) { 3260 auto Item = WorkList.pop_back_val(); 3261 if (!Visited.insert(Item).second) 3262 continue; 3263 // We iterate over all incoming values to Phi to compare them. 3264 // If values are different and both of them Phi and the first one is a 3265 // Phi we added (subject to match) and both of them is in the same basic 3266 // block then we can match our pair if values match. So we state that 3267 // these values match and add it to work list to verify that. 3268 for (auto B : Item.first->blocks()) { 3269 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3270 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3271 if (FirstValue == SecondValue) 3272 continue; 3273 3274 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3275 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3276 3277 // One of them is not Phi or 3278 // The first one is not Phi node from the set we'd like to match or 3279 // Phi nodes from different basic blocks then 3280 // we will not be able to match. 3281 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3282 FirstPhi->getParent() != SecondPhi->getParent()) 3283 return false; 3284 3285 // If we already matched them then continue. 3286 if (Matcher.count({ FirstPhi, SecondPhi })) 3287 continue; 3288 // So the values are different and does not match. So we need them to 3289 // match. 3290 Matcher.insert({ FirstPhi, SecondPhi }); 3291 // But me must check it. 3292 WorkList.push_back({ FirstPhi, SecondPhi }); 3293 } 3294 } 3295 return true; 3296 } 3297 3298 /// For the given set of PHI nodes (in the SimplificationTracker) try 3299 /// to find their equivalents. 3300 /// Returns false if this matching fails and creation of new Phi is disabled. 3301 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3302 unsigned &PhiNotMatchedCount) { 3303 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3304 // order, so the replacements (ReplacePhi) are also done in a deterministic 3305 // order. 3306 SmallSetVector<PHIPair, 8> Matched; 3307 SmallPtrSet<PHINode *, 8> WillNotMatch; 3308 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3309 while (PhiNodesToMatch.size()) { 3310 PHINode *PHI = *PhiNodesToMatch.begin(); 3311 3312 // Add us, if no Phi nodes in the basic block we do not match. 3313 WillNotMatch.clear(); 3314 WillNotMatch.insert(PHI); 3315 3316 // Traverse all Phis until we found equivalent or fail to do that. 3317 bool IsMatched = false; 3318 for (auto &P : PHI->getParent()->phis()) { 3319 if (&P == PHI) 3320 continue; 3321 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3322 break; 3323 // If it does not match, collect all Phi nodes from matcher. 3324 // if we end up with no match, them all these Phi nodes will not match 3325 // later. 3326 for (auto M : Matched) 3327 WillNotMatch.insert(M.first); 3328 Matched.clear(); 3329 } 3330 if (IsMatched) { 3331 // Replace all matched values and erase them. 3332 for (auto MV : Matched) 3333 ST.ReplacePhi(MV.first, MV.second); 3334 Matched.clear(); 3335 continue; 3336 } 3337 // If we are not allowed to create new nodes then bail out. 3338 if (!AllowNewPhiNodes) 3339 return false; 3340 // Just remove all seen values in matcher. They will not match anything. 3341 PhiNotMatchedCount += WillNotMatch.size(); 3342 for (auto *P : WillNotMatch) 3343 PhiNodesToMatch.erase(P); 3344 } 3345 return true; 3346 } 3347 /// Fill the placeholders with values from predecessors and simplify them. 3348 void FillPlaceholders(FoldAddrToValueMapping &Map, 3349 SmallVectorImpl<Value *> &TraverseOrder, 3350 SimplificationTracker &ST) { 3351 while (!TraverseOrder.empty()) { 3352 Value *Current = TraverseOrder.pop_back_val(); 3353 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3354 Value *V = Map[Current]; 3355 3356 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3357 // CurrentValue also must be Select. 3358 auto *CurrentSelect = cast<SelectInst>(Current); 3359 auto *TrueValue = CurrentSelect->getTrueValue(); 3360 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3361 Select->setTrueValue(ST.Get(Map[TrueValue])); 3362 auto *FalseValue = CurrentSelect->getFalseValue(); 3363 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3364 Select->setFalseValue(ST.Get(Map[FalseValue])); 3365 } else { 3366 // Must be a Phi node then. 3367 PHINode *PHI = cast<PHINode>(V); 3368 auto *CurrentPhi = dyn_cast<PHINode>(Current); 3369 // Fill the Phi node with values from predecessors. 3370 for (auto B : predecessors(PHI->getParent())) { 3371 Value *PV = CurrentPhi->getIncomingValueForBlock(B); 3372 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3373 PHI->addIncoming(ST.Get(Map[PV]), B); 3374 } 3375 } 3376 Map[Current] = ST.Simplify(V); 3377 } 3378 } 3379 3380 /// Starting from original value recursively iterates over def-use chain up to 3381 /// known ending values represented in a map. For each traversed phi/select 3382 /// inserts a placeholder Phi or Select. 3383 /// Reports all new created Phi/Select nodes by adding them to set. 3384 /// Also reports and order in what values have been traversed. 3385 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3386 SmallVectorImpl<Value *> &TraverseOrder, 3387 SimplificationTracker &ST) { 3388 SmallVector<Value *, 32> Worklist; 3389 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3390 "Address must be a Phi or Select node"); 3391 auto *Dummy = UndefValue::get(CommonType); 3392 Worklist.push_back(Original); 3393 while (!Worklist.empty()) { 3394 Value *Current = Worklist.pop_back_val(); 3395 // if it is already visited or it is an ending value then skip it. 3396 if (Map.find(Current) != Map.end()) 3397 continue; 3398 TraverseOrder.push_back(Current); 3399 3400 // CurrentValue must be a Phi node or select. All others must be covered 3401 // by anchors. 3402 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3403 // Is it OK to get metadata from OrigSelect?! 3404 // Create a Select placeholder with dummy value. 3405 SelectInst *Select = SelectInst::Create( 3406 CurrentSelect->getCondition(), Dummy, Dummy, 3407 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3408 Map[Current] = Select; 3409 ST.insertNewSelect(Select); 3410 // We are interested in True and False values. 3411 Worklist.push_back(CurrentSelect->getTrueValue()); 3412 Worklist.push_back(CurrentSelect->getFalseValue()); 3413 } else { 3414 // It must be a Phi node then. 3415 PHINode *CurrentPhi = cast<PHINode>(Current); 3416 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3417 PHINode *PHI = 3418 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3419 Map[Current] = PHI; 3420 ST.insertNewPhi(PHI); 3421 for (Value *P : CurrentPhi->incoming_values()) 3422 Worklist.push_back(P); 3423 } 3424 } 3425 } 3426 3427 bool addrModeCombiningAllowed() { 3428 if (DisableComplexAddrModes) 3429 return false; 3430 switch (DifferentField) { 3431 default: 3432 return false; 3433 case ExtAddrMode::BaseRegField: 3434 return AddrSinkCombineBaseReg; 3435 case ExtAddrMode::BaseGVField: 3436 return AddrSinkCombineBaseGV; 3437 case ExtAddrMode::BaseOffsField: 3438 return AddrSinkCombineBaseOffs; 3439 case ExtAddrMode::ScaledRegField: 3440 return AddrSinkCombineScaledReg; 3441 } 3442 } 3443 }; 3444 } // end anonymous namespace 3445 3446 /// Try adding ScaleReg*Scale to the current addressing mode. 3447 /// Return true and update AddrMode if this addr mode is legal for the target, 3448 /// false if not. 3449 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3450 unsigned Depth) { 3451 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3452 // mode. Just process that directly. 3453 if (Scale == 1) 3454 return matchAddr(ScaleReg, Depth); 3455 3456 // If the scale is 0, it takes nothing to add this. 3457 if (Scale == 0) 3458 return true; 3459 3460 // If we already have a scale of this value, we can add to it, otherwise, we 3461 // need an available scale field. 3462 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3463 return false; 3464 3465 ExtAddrMode TestAddrMode = AddrMode; 3466 3467 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3468 // [A+B + A*7] -> [B+A*8]. 3469 TestAddrMode.Scale += Scale; 3470 TestAddrMode.ScaledReg = ScaleReg; 3471 3472 // If the new address isn't legal, bail out. 3473 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3474 return false; 3475 3476 // It was legal, so commit it. 3477 AddrMode = TestAddrMode; 3478 3479 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3480 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3481 // X*Scale + C*Scale to addr mode. 3482 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3483 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3484 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3485 TestAddrMode.ScaledReg = AddLHS; 3486 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3487 3488 // If this addressing mode is legal, commit it and remember that we folded 3489 // this instruction. 3490 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3491 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3492 AddrMode = TestAddrMode; 3493 return true; 3494 } 3495 } 3496 3497 // Otherwise, not (x+c)*scale, just return what we have. 3498 return true; 3499 } 3500 3501 /// This is a little filter, which returns true if an addressing computation 3502 /// involving I might be folded into a load/store accessing it. 3503 /// This doesn't need to be perfect, but needs to accept at least 3504 /// the set of instructions that MatchOperationAddr can. 3505 static bool MightBeFoldableInst(Instruction *I) { 3506 switch (I->getOpcode()) { 3507 case Instruction::BitCast: 3508 case Instruction::AddrSpaceCast: 3509 // Don't touch identity bitcasts. 3510 if (I->getType() == I->getOperand(0)->getType()) 3511 return false; 3512 return I->getType()->isIntOrPtrTy(); 3513 case Instruction::PtrToInt: 3514 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3515 return true; 3516 case Instruction::IntToPtr: 3517 // We know the input is intptr_t, so this is foldable. 3518 return true; 3519 case Instruction::Add: 3520 return true; 3521 case Instruction::Mul: 3522 case Instruction::Shl: 3523 // Can only handle X*C and X << C. 3524 return isa<ConstantInt>(I->getOperand(1)); 3525 case Instruction::GetElementPtr: 3526 return true; 3527 default: 3528 return false; 3529 } 3530 } 3531 3532 /// Check whether or not \p Val is a legal instruction for \p TLI. 3533 /// \note \p Val is assumed to be the product of some type promotion. 3534 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3535 /// to be legal, as the non-promoted value would have had the same state. 3536 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3537 const DataLayout &DL, Value *Val) { 3538 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3539 if (!PromotedInst) 3540 return false; 3541 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3542 // If the ISDOpcode is undefined, it was undefined before the promotion. 3543 if (!ISDOpcode) 3544 return true; 3545 // Otherwise, check if the promoted instruction is legal or not. 3546 return TLI.isOperationLegalOrCustom( 3547 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3548 } 3549 3550 namespace { 3551 3552 /// Hepler class to perform type promotion. 3553 class TypePromotionHelper { 3554 /// Utility function to add a promoted instruction \p ExtOpnd to 3555 /// \p PromotedInsts and record the type of extension we have seen. 3556 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3557 Instruction *ExtOpnd, 3558 bool IsSExt) { 3559 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3560 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3561 if (It != PromotedInsts.end()) { 3562 // If the new extension is same as original, the information in 3563 // PromotedInsts[ExtOpnd] is still correct. 3564 if (It->second.getInt() == ExtTy) 3565 return; 3566 3567 // Now the new extension is different from old extension, we make 3568 // the type information invalid by setting extension type to 3569 // BothExtension. 3570 ExtTy = BothExtension; 3571 } 3572 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 3573 } 3574 3575 /// Utility function to query the original type of instruction \p Opnd 3576 /// with a matched extension type. If the extension doesn't match, we 3577 /// cannot use the information we had on the original type. 3578 /// BothExtension doesn't match any extension type. 3579 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 3580 Instruction *Opnd, 3581 bool IsSExt) { 3582 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3583 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3584 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 3585 return It->second.getPointer(); 3586 return nullptr; 3587 } 3588 3589 /// Utility function to check whether or not a sign or zero extension 3590 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3591 /// either using the operands of \p Inst or promoting \p Inst. 3592 /// The type of the extension is defined by \p IsSExt. 3593 /// In other words, check if: 3594 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3595 /// #1 Promotion applies: 3596 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3597 /// #2 Operand reuses: 3598 /// ext opnd1 to ConsideredExtType. 3599 /// \p PromotedInsts maps the instructions to their type before promotion. 3600 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3601 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3602 3603 /// Utility function to determine if \p OpIdx should be promoted when 3604 /// promoting \p Inst. 3605 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3606 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3607 } 3608 3609 /// Utility function to promote the operand of \p Ext when this 3610 /// operand is a promotable trunc or sext or zext. 3611 /// \p PromotedInsts maps the instructions to their type before promotion. 3612 /// \p CreatedInstsCost[out] contains the cost of all instructions 3613 /// created to promote the operand of Ext. 3614 /// Newly added extensions are inserted in \p Exts. 3615 /// Newly added truncates are inserted in \p Truncs. 3616 /// Should never be called directly. 3617 /// \return The promoted value which is used instead of Ext. 3618 static Value *promoteOperandForTruncAndAnyExt( 3619 Instruction *Ext, TypePromotionTransaction &TPT, 3620 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3621 SmallVectorImpl<Instruction *> *Exts, 3622 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3623 3624 /// Utility function to promote the operand of \p Ext when this 3625 /// operand is promotable and is not a supported trunc or sext. 3626 /// \p PromotedInsts maps the instructions to their type before promotion. 3627 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3628 /// created to promote the operand of Ext. 3629 /// Newly added extensions are inserted in \p Exts. 3630 /// Newly added truncates are inserted in \p Truncs. 3631 /// Should never be called directly. 3632 /// \return The promoted value which is used instead of Ext. 3633 static Value *promoteOperandForOther(Instruction *Ext, 3634 TypePromotionTransaction &TPT, 3635 InstrToOrigTy &PromotedInsts, 3636 unsigned &CreatedInstsCost, 3637 SmallVectorImpl<Instruction *> *Exts, 3638 SmallVectorImpl<Instruction *> *Truncs, 3639 const TargetLowering &TLI, bool IsSExt); 3640 3641 /// \see promoteOperandForOther. 3642 static Value *signExtendOperandForOther( 3643 Instruction *Ext, TypePromotionTransaction &TPT, 3644 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3645 SmallVectorImpl<Instruction *> *Exts, 3646 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3647 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3648 Exts, Truncs, TLI, true); 3649 } 3650 3651 /// \see promoteOperandForOther. 3652 static Value *zeroExtendOperandForOther( 3653 Instruction *Ext, TypePromotionTransaction &TPT, 3654 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3655 SmallVectorImpl<Instruction *> *Exts, 3656 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3657 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3658 Exts, Truncs, TLI, false); 3659 } 3660 3661 public: 3662 /// Type for the utility function that promotes the operand of Ext. 3663 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3664 InstrToOrigTy &PromotedInsts, 3665 unsigned &CreatedInstsCost, 3666 SmallVectorImpl<Instruction *> *Exts, 3667 SmallVectorImpl<Instruction *> *Truncs, 3668 const TargetLowering &TLI); 3669 3670 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3671 /// action to promote the operand of \p Ext instead of using Ext. 3672 /// \return NULL if no promotable action is possible with the current 3673 /// sign extension. 3674 /// \p InsertedInsts keeps track of all the instructions inserted by the 3675 /// other CodeGenPrepare optimizations. This information is important 3676 /// because we do not want to promote these instructions as CodeGenPrepare 3677 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3678 /// \p PromotedInsts maps the instructions to their type before promotion. 3679 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3680 const TargetLowering &TLI, 3681 const InstrToOrigTy &PromotedInsts); 3682 }; 3683 3684 } // end anonymous namespace 3685 3686 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3687 Type *ConsideredExtType, 3688 const InstrToOrigTy &PromotedInsts, 3689 bool IsSExt) { 3690 // The promotion helper does not know how to deal with vector types yet. 3691 // To be able to fix that, we would need to fix the places where we 3692 // statically extend, e.g., constants and such. 3693 if (Inst->getType()->isVectorTy()) 3694 return false; 3695 3696 // We can always get through zext. 3697 if (isa<ZExtInst>(Inst)) 3698 return true; 3699 3700 // sext(sext) is ok too. 3701 if (IsSExt && isa<SExtInst>(Inst)) 3702 return true; 3703 3704 // We can get through binary operator, if it is legal. In other words, the 3705 // binary operator must have a nuw or nsw flag. 3706 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3707 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3708 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3709 (IsSExt && BinOp->hasNoSignedWrap()))) 3710 return true; 3711 3712 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 3713 if ((Inst->getOpcode() == Instruction::And || 3714 Inst->getOpcode() == Instruction::Or)) 3715 return true; 3716 3717 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 3718 if (Inst->getOpcode() == Instruction::Xor) { 3719 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 3720 // Make sure it is not a NOT. 3721 if (Cst && !Cst->getValue().isAllOnesValue()) 3722 return true; 3723 } 3724 3725 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 3726 // It may change a poisoned value into a regular value, like 3727 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 3728 // poisoned value regular value 3729 // It should be OK since undef covers valid value. 3730 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 3731 return true; 3732 3733 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 3734 // It may change a poisoned value into a regular value, like 3735 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 3736 // poisoned value regular value 3737 // It should be OK since undef covers valid value. 3738 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 3739 const Instruction *ExtInst = 3740 dyn_cast<const Instruction>(*Inst->user_begin()); 3741 if (ExtInst->hasOneUse()) { 3742 const Instruction *AndInst = 3743 dyn_cast<const Instruction>(*ExtInst->user_begin()); 3744 if (AndInst && AndInst->getOpcode() == Instruction::And) { 3745 const ConstantInt *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 3746 if (Cst && 3747 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 3748 return true; 3749 } 3750 } 3751 } 3752 3753 // Check if we can do the following simplification. 3754 // ext(trunc(opnd)) --> ext(opnd) 3755 if (!isa<TruncInst>(Inst)) 3756 return false; 3757 3758 Value *OpndVal = Inst->getOperand(0); 3759 // Check if we can use this operand in the extension. 3760 // If the type is larger than the result type of the extension, we cannot. 3761 if (!OpndVal->getType()->isIntegerTy() || 3762 OpndVal->getType()->getIntegerBitWidth() > 3763 ConsideredExtType->getIntegerBitWidth()) 3764 return false; 3765 3766 // If the operand of the truncate is not an instruction, we will not have 3767 // any information on the dropped bits. 3768 // (Actually we could for constant but it is not worth the extra logic). 3769 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3770 if (!Opnd) 3771 return false; 3772 3773 // Check if the source of the type is narrow enough. 3774 // I.e., check that trunc just drops extended bits of the same kind of 3775 // the extension. 3776 // #1 get the type of the operand and check the kind of the extended bits. 3777 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 3778 if (OpndType) 3779 ; 3780 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3781 OpndType = Opnd->getOperand(0)->getType(); 3782 else 3783 return false; 3784 3785 // #2 check that the truncate just drops extended bits. 3786 return Inst->getType()->getIntegerBitWidth() >= 3787 OpndType->getIntegerBitWidth(); 3788 } 3789 3790 TypePromotionHelper::Action TypePromotionHelper::getAction( 3791 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3792 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3793 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3794 "Unexpected instruction type"); 3795 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3796 Type *ExtTy = Ext->getType(); 3797 bool IsSExt = isa<SExtInst>(Ext); 3798 // If the operand of the extension is not an instruction, we cannot 3799 // get through. 3800 // If it, check we can get through. 3801 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3802 return nullptr; 3803 3804 // Do not promote if the operand has been added by codegenprepare. 3805 // Otherwise, it means we are undoing an optimization that is likely to be 3806 // redone, thus causing potential infinite loop. 3807 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3808 return nullptr; 3809 3810 // SExt or Trunc instructions. 3811 // Return the related handler. 3812 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3813 isa<ZExtInst>(ExtOpnd)) 3814 return promoteOperandForTruncAndAnyExt; 3815 3816 // Regular instruction. 3817 // Abort early if we will have to insert non-free instructions. 3818 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3819 return nullptr; 3820 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3821 } 3822 3823 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3824 Instruction *SExt, TypePromotionTransaction &TPT, 3825 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3826 SmallVectorImpl<Instruction *> *Exts, 3827 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3828 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3829 // get through it and this method should not be called. 3830 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3831 Value *ExtVal = SExt; 3832 bool HasMergedNonFreeExt = false; 3833 if (isa<ZExtInst>(SExtOpnd)) { 3834 // Replace s|zext(zext(opnd)) 3835 // => zext(opnd). 3836 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3837 Value *ZExt = 3838 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3839 TPT.replaceAllUsesWith(SExt, ZExt); 3840 TPT.eraseInstruction(SExt); 3841 ExtVal = ZExt; 3842 } else { 3843 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3844 // => z|sext(opnd). 3845 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3846 } 3847 CreatedInstsCost = 0; 3848 3849 // Remove dead code. 3850 if (SExtOpnd->use_empty()) 3851 TPT.eraseInstruction(SExtOpnd); 3852 3853 // Check if the extension is still needed. 3854 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3855 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3856 if (ExtInst) { 3857 if (Exts) 3858 Exts->push_back(ExtInst); 3859 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3860 } 3861 return ExtVal; 3862 } 3863 3864 // At this point we have: ext ty opnd to ty. 3865 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3866 Value *NextVal = ExtInst->getOperand(0); 3867 TPT.eraseInstruction(ExtInst, NextVal); 3868 return NextVal; 3869 } 3870 3871 Value *TypePromotionHelper::promoteOperandForOther( 3872 Instruction *Ext, TypePromotionTransaction &TPT, 3873 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3874 SmallVectorImpl<Instruction *> *Exts, 3875 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3876 bool IsSExt) { 3877 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3878 // get through it and this method should not be called. 3879 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3880 CreatedInstsCost = 0; 3881 if (!ExtOpnd->hasOneUse()) { 3882 // ExtOpnd will be promoted. 3883 // All its uses, but Ext, will need to use a truncated value of the 3884 // promoted version. 3885 // Create the truncate now. 3886 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3887 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3888 // Insert it just after the definition. 3889 ITrunc->moveAfter(ExtOpnd); 3890 if (Truncs) 3891 Truncs->push_back(ITrunc); 3892 } 3893 3894 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3895 // Restore the operand of Ext (which has been replaced by the previous call 3896 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3897 TPT.setOperand(Ext, 0, ExtOpnd); 3898 } 3899 3900 // Get through the Instruction: 3901 // 1. Update its type. 3902 // 2. Replace the uses of Ext by Inst. 3903 // 3. Extend each operand that needs to be extended. 3904 3905 // Remember the original type of the instruction before promotion. 3906 // This is useful to know that the high bits are sign extended bits. 3907 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 3908 // Step #1. 3909 TPT.mutateType(ExtOpnd, Ext->getType()); 3910 // Step #2. 3911 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3912 // Step #3. 3913 Instruction *ExtForOpnd = Ext; 3914 3915 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 3916 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3917 ++OpIdx) { 3918 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3919 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3920 !shouldExtOperand(ExtOpnd, OpIdx)) { 3921 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 3922 continue; 3923 } 3924 // Check if we can statically extend the operand. 3925 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3926 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3927 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3928 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3929 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3930 : Cst->getValue().zext(BitWidth); 3931 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3932 continue; 3933 } 3934 // UndefValue are typed, so we have to statically sign extend them. 3935 if (isa<UndefValue>(Opnd)) { 3936 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3937 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3938 continue; 3939 } 3940 3941 // Otherwise we have to explicitly sign extend the operand. 3942 // Check if Ext was reused to extend an operand. 3943 if (!ExtForOpnd) { 3944 // If yes, create a new one. 3945 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 3946 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3947 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3948 if (!isa<Instruction>(ValForExtOpnd)) { 3949 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3950 continue; 3951 } 3952 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3953 } 3954 if (Exts) 3955 Exts->push_back(ExtForOpnd); 3956 TPT.setOperand(ExtForOpnd, 0, Opnd); 3957 3958 // Move the sign extension before the insertion point. 3959 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3960 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3961 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3962 // If more sext are required, new instructions will have to be created. 3963 ExtForOpnd = nullptr; 3964 } 3965 if (ExtForOpnd == Ext) { 3966 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 3967 TPT.eraseInstruction(Ext); 3968 } 3969 return ExtOpnd; 3970 } 3971 3972 /// Check whether or not promoting an instruction to a wider type is profitable. 3973 /// \p NewCost gives the cost of extension instructions created by the 3974 /// promotion. 3975 /// \p OldCost gives the cost of extension instructions before the promotion 3976 /// plus the number of instructions that have been 3977 /// matched in the addressing mode the promotion. 3978 /// \p PromotedOperand is the value that has been promoted. 3979 /// \return True if the promotion is profitable, false otherwise. 3980 bool AddressingModeMatcher::isPromotionProfitable( 3981 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3982 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 3983 << '\n'); 3984 // The cost of the new extensions is greater than the cost of the 3985 // old extension plus what we folded. 3986 // This is not profitable. 3987 if (NewCost > OldCost) 3988 return false; 3989 if (NewCost < OldCost) 3990 return true; 3991 // The promotion is neutral but it may help folding the sign extension in 3992 // loads for instance. 3993 // Check that we did not create an illegal instruction. 3994 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3995 } 3996 3997 /// Given an instruction or constant expr, see if we can fold the operation 3998 /// into the addressing mode. If so, update the addressing mode and return 3999 /// true, otherwise return false without modifying AddrMode. 4000 /// If \p MovedAway is not NULL, it contains the information of whether or 4001 /// not AddrInst has to be folded into the addressing mode on success. 4002 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4003 /// because it has been moved away. 4004 /// Thus AddrInst must not be added in the matched instructions. 4005 /// This state can happen when AddrInst is a sext, since it may be moved away. 4006 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4007 /// not be referenced anymore. 4008 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4009 unsigned Depth, 4010 bool *MovedAway) { 4011 // Avoid exponential behavior on extremely deep expression trees. 4012 if (Depth >= 5) return false; 4013 4014 // By default, all matched instructions stay in place. 4015 if (MovedAway) 4016 *MovedAway = false; 4017 4018 switch (Opcode) { 4019 case Instruction::PtrToInt: 4020 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4021 return matchAddr(AddrInst->getOperand(0), Depth); 4022 case Instruction::IntToPtr: { 4023 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4024 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4025 // This inttoptr is a no-op if the integer type is pointer sized. 4026 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4027 return matchAddr(AddrInst->getOperand(0), Depth); 4028 return false; 4029 } 4030 case Instruction::BitCast: 4031 // BitCast is always a noop, and we can handle it as long as it is 4032 // int->int or pointer->pointer (we don't want int<->fp or something). 4033 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4034 // Don't touch identity bitcasts. These were probably put here by LSR, 4035 // and we don't want to mess around with them. Assume it knows what it 4036 // is doing. 4037 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4038 return matchAddr(AddrInst->getOperand(0), Depth); 4039 return false; 4040 case Instruction::AddrSpaceCast: { 4041 unsigned SrcAS 4042 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4043 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4044 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 4045 return matchAddr(AddrInst->getOperand(0), Depth); 4046 return false; 4047 } 4048 case Instruction::Add: { 4049 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4050 ExtAddrMode BackupAddrMode = AddrMode; 4051 unsigned OldSize = AddrModeInsts.size(); 4052 // Start a transaction at this point. 4053 // The LHS may match but not the RHS. 4054 // Therefore, we need a higher level restoration point to undo partially 4055 // matched operation. 4056 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4057 TPT.getRestorationPoint(); 4058 4059 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4060 matchAddr(AddrInst->getOperand(0), Depth+1)) 4061 return true; 4062 4063 // Restore the old addr mode info. 4064 AddrMode = BackupAddrMode; 4065 AddrModeInsts.resize(OldSize); 4066 TPT.rollback(LastKnownGood); 4067 4068 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4069 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4070 matchAddr(AddrInst->getOperand(1), Depth+1)) 4071 return true; 4072 4073 // Otherwise we definitely can't merge the ADD in. 4074 AddrMode = BackupAddrMode; 4075 AddrModeInsts.resize(OldSize); 4076 TPT.rollback(LastKnownGood); 4077 break; 4078 } 4079 //case Instruction::Or: 4080 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4081 //break; 4082 case Instruction::Mul: 4083 case Instruction::Shl: { 4084 // Can only handle X*C and X << C. 4085 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4086 if (!RHS || RHS->getBitWidth() > 64) 4087 return false; 4088 int64_t Scale = RHS->getSExtValue(); 4089 if (Opcode == Instruction::Shl) 4090 Scale = 1LL << Scale; 4091 4092 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4093 } 4094 case Instruction::GetElementPtr: { 4095 // Scan the GEP. We check it if it contains constant offsets and at most 4096 // one variable offset. 4097 int VariableOperand = -1; 4098 unsigned VariableScale = 0; 4099 4100 int64_t ConstantOffset = 0; 4101 gep_type_iterator GTI = gep_type_begin(AddrInst); 4102 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4103 if (StructType *STy = GTI.getStructTypeOrNull()) { 4104 const StructLayout *SL = DL.getStructLayout(STy); 4105 unsigned Idx = 4106 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4107 ConstantOffset += SL->getElementOffset(Idx); 4108 } else { 4109 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 4110 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4111 const APInt &CVal = CI->getValue(); 4112 if (CVal.getMinSignedBits() <= 64) { 4113 ConstantOffset += CVal.getSExtValue() * TypeSize; 4114 continue; 4115 } 4116 } 4117 if (TypeSize) { // Scales of zero don't do anything. 4118 // We only allow one variable index at the moment. 4119 if (VariableOperand != -1) 4120 return false; 4121 4122 // Remember the variable index. 4123 VariableOperand = i; 4124 VariableScale = TypeSize; 4125 } 4126 } 4127 } 4128 4129 // A common case is for the GEP to only do a constant offset. In this case, 4130 // just add it to the disp field and check validity. 4131 if (VariableOperand == -1) { 4132 AddrMode.BaseOffs += ConstantOffset; 4133 if (ConstantOffset == 0 || 4134 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4135 // Check to see if we can fold the base pointer in too. 4136 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 4137 return true; 4138 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4139 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4140 ConstantOffset > 0) { 4141 // Record GEPs with non-zero offsets as candidates for splitting in the 4142 // event that the offset cannot fit into the r+i addressing mode. 4143 // Simple and common case that only one GEP is used in calculating the 4144 // address for the memory access. 4145 Value *Base = AddrInst->getOperand(0); 4146 auto *BaseI = dyn_cast<Instruction>(Base); 4147 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4148 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4149 (BaseI && !isa<CastInst>(BaseI) && 4150 !isa<GetElementPtrInst>(BaseI))) { 4151 // If the base is an instruction, make sure the GEP is not in the same 4152 // basic block as the base. If the base is an argument or global 4153 // value, make sure the GEP is not in the entry block. Otherwise, 4154 // instruction selection can undo the split. Also make sure the 4155 // parent block allows inserting non-PHI instructions before the 4156 // terminator. 4157 BasicBlock *Parent = 4158 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4159 if (GEP->getParent() != Parent && !Parent->getTerminator()->isEHPad()) 4160 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4161 } 4162 } 4163 AddrMode.BaseOffs -= ConstantOffset; 4164 return false; 4165 } 4166 4167 // Save the valid addressing mode in case we can't match. 4168 ExtAddrMode BackupAddrMode = AddrMode; 4169 unsigned OldSize = AddrModeInsts.size(); 4170 4171 // See if the scale and offset amount is valid for this target. 4172 AddrMode.BaseOffs += ConstantOffset; 4173 4174 // Match the base operand of the GEP. 4175 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4176 // If it couldn't be matched, just stuff the value in a register. 4177 if (AddrMode.HasBaseReg) { 4178 AddrMode = BackupAddrMode; 4179 AddrModeInsts.resize(OldSize); 4180 return false; 4181 } 4182 AddrMode.HasBaseReg = true; 4183 AddrMode.BaseReg = AddrInst->getOperand(0); 4184 } 4185 4186 // Match the remaining variable portion of the GEP. 4187 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4188 Depth)) { 4189 // If it couldn't be matched, try stuffing the base into a register 4190 // instead of matching it, and retrying the match of the scale. 4191 AddrMode = BackupAddrMode; 4192 AddrModeInsts.resize(OldSize); 4193 if (AddrMode.HasBaseReg) 4194 return false; 4195 AddrMode.HasBaseReg = true; 4196 AddrMode.BaseReg = AddrInst->getOperand(0); 4197 AddrMode.BaseOffs += ConstantOffset; 4198 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4199 VariableScale, Depth)) { 4200 // If even that didn't work, bail. 4201 AddrMode = BackupAddrMode; 4202 AddrModeInsts.resize(OldSize); 4203 return false; 4204 } 4205 } 4206 4207 return true; 4208 } 4209 case Instruction::SExt: 4210 case Instruction::ZExt: { 4211 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4212 if (!Ext) 4213 return false; 4214 4215 // Try to move this ext out of the way of the addressing mode. 4216 // Ask for a method for doing so. 4217 TypePromotionHelper::Action TPH = 4218 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4219 if (!TPH) 4220 return false; 4221 4222 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4223 TPT.getRestorationPoint(); 4224 unsigned CreatedInstsCost = 0; 4225 unsigned ExtCost = !TLI.isExtFree(Ext); 4226 Value *PromotedOperand = 4227 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4228 // SExt has been moved away. 4229 // Thus either it will be rematched later in the recursive calls or it is 4230 // gone. Anyway, we must not fold it into the addressing mode at this point. 4231 // E.g., 4232 // op = add opnd, 1 4233 // idx = ext op 4234 // addr = gep base, idx 4235 // is now: 4236 // promotedOpnd = ext opnd <- no match here 4237 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4238 // addr = gep base, op <- match 4239 if (MovedAway) 4240 *MovedAway = true; 4241 4242 assert(PromotedOperand && 4243 "TypePromotionHelper should have filtered out those cases"); 4244 4245 ExtAddrMode BackupAddrMode = AddrMode; 4246 unsigned OldSize = AddrModeInsts.size(); 4247 4248 if (!matchAddr(PromotedOperand, Depth) || 4249 // The total of the new cost is equal to the cost of the created 4250 // instructions. 4251 // The total of the old cost is equal to the cost of the extension plus 4252 // what we have saved in the addressing mode. 4253 !isPromotionProfitable(CreatedInstsCost, 4254 ExtCost + (AddrModeInsts.size() - OldSize), 4255 PromotedOperand)) { 4256 AddrMode = BackupAddrMode; 4257 AddrModeInsts.resize(OldSize); 4258 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4259 TPT.rollback(LastKnownGood); 4260 return false; 4261 } 4262 return true; 4263 } 4264 } 4265 return false; 4266 } 4267 4268 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4269 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4270 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4271 /// for the target. 4272 /// 4273 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4274 // Start a transaction at this point that we will rollback if the matching 4275 // fails. 4276 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4277 TPT.getRestorationPoint(); 4278 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4279 // Fold in immediates if legal for the target. 4280 AddrMode.BaseOffs += CI->getSExtValue(); 4281 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4282 return true; 4283 AddrMode.BaseOffs -= CI->getSExtValue(); 4284 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4285 // If this is a global variable, try to fold it into the addressing mode. 4286 if (!AddrMode.BaseGV) { 4287 AddrMode.BaseGV = GV; 4288 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4289 return true; 4290 AddrMode.BaseGV = nullptr; 4291 } 4292 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4293 ExtAddrMode BackupAddrMode = AddrMode; 4294 unsigned OldSize = AddrModeInsts.size(); 4295 4296 // Check to see if it is possible to fold this operation. 4297 bool MovedAway = false; 4298 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4299 // This instruction may have been moved away. If so, there is nothing 4300 // to check here. 4301 if (MovedAway) 4302 return true; 4303 // Okay, it's possible to fold this. Check to see if it is actually 4304 // *profitable* to do so. We use a simple cost model to avoid increasing 4305 // register pressure too much. 4306 if (I->hasOneUse() || 4307 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4308 AddrModeInsts.push_back(I); 4309 return true; 4310 } 4311 4312 // It isn't profitable to do this, roll back. 4313 //cerr << "NOT FOLDING: " << *I; 4314 AddrMode = BackupAddrMode; 4315 AddrModeInsts.resize(OldSize); 4316 TPT.rollback(LastKnownGood); 4317 } 4318 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4319 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4320 return true; 4321 TPT.rollback(LastKnownGood); 4322 } else if (isa<ConstantPointerNull>(Addr)) { 4323 // Null pointer gets folded without affecting the addressing mode. 4324 return true; 4325 } 4326 4327 // Worse case, the target should support [reg] addressing modes. :) 4328 if (!AddrMode.HasBaseReg) { 4329 AddrMode.HasBaseReg = true; 4330 AddrMode.BaseReg = Addr; 4331 // Still check for legality in case the target supports [imm] but not [i+r]. 4332 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4333 return true; 4334 AddrMode.HasBaseReg = false; 4335 AddrMode.BaseReg = nullptr; 4336 } 4337 4338 // If the base register is already taken, see if we can do [r+r]. 4339 if (AddrMode.Scale == 0) { 4340 AddrMode.Scale = 1; 4341 AddrMode.ScaledReg = Addr; 4342 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4343 return true; 4344 AddrMode.Scale = 0; 4345 AddrMode.ScaledReg = nullptr; 4346 } 4347 // Couldn't match. 4348 TPT.rollback(LastKnownGood); 4349 return false; 4350 } 4351 4352 /// Check to see if all uses of OpVal by the specified inline asm call are due 4353 /// to memory operands. If so, return true, otherwise return false. 4354 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4355 const TargetLowering &TLI, 4356 const TargetRegisterInfo &TRI) { 4357 const Function *F = CI->getFunction(); 4358 TargetLowering::AsmOperandInfoVector TargetConstraints = 4359 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 4360 ImmutableCallSite(CI)); 4361 4362 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4363 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4364 4365 // Compute the constraint code and ConstraintType to use. 4366 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4367 4368 // If this asm operand is our Value*, and if it isn't an indirect memory 4369 // operand, we can't fold it! 4370 if (OpInfo.CallOperandVal == OpVal && 4371 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4372 !OpInfo.isIndirect)) 4373 return false; 4374 } 4375 4376 return true; 4377 } 4378 4379 // Max number of memory uses to look at before aborting the search to conserve 4380 // compile time. 4381 static constexpr int MaxMemoryUsesToScan = 20; 4382 4383 /// Recursively walk all the uses of I until we find a memory use. 4384 /// If we find an obviously non-foldable instruction, return true. 4385 /// Add the ultimately found memory instructions to MemoryUses. 4386 static bool FindAllMemoryUses( 4387 Instruction *I, 4388 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4389 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4390 const TargetRegisterInfo &TRI, int SeenInsts = 0) { 4391 // If we already considered this instruction, we're done. 4392 if (!ConsideredInsts.insert(I).second) 4393 return false; 4394 4395 // If this is an obviously unfoldable instruction, bail out. 4396 if (!MightBeFoldableInst(I)) 4397 return true; 4398 4399 const bool OptSize = I->getFunction()->optForSize(); 4400 4401 // Loop over all the uses, recursively processing them. 4402 for (Use &U : I->uses()) { 4403 // Conservatively return true if we're seeing a large number or a deep chain 4404 // of users. This avoids excessive compilation times in pathological cases. 4405 if (SeenInsts++ >= MaxMemoryUsesToScan) 4406 return true; 4407 4408 Instruction *UserI = cast<Instruction>(U.getUser()); 4409 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4410 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4411 continue; 4412 } 4413 4414 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4415 unsigned opNo = U.getOperandNo(); 4416 if (opNo != StoreInst::getPointerOperandIndex()) 4417 return true; // Storing addr, not into addr. 4418 MemoryUses.push_back(std::make_pair(SI, opNo)); 4419 continue; 4420 } 4421 4422 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4423 unsigned opNo = U.getOperandNo(); 4424 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4425 return true; // Storing addr, not into addr. 4426 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4427 continue; 4428 } 4429 4430 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4431 unsigned opNo = U.getOperandNo(); 4432 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4433 return true; // Storing addr, not into addr. 4434 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4435 continue; 4436 } 4437 4438 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4439 // If this is a cold call, we can sink the addressing calculation into 4440 // the cold path. See optimizeCallInst 4441 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 4442 continue; 4443 4444 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4445 if (!IA) return true; 4446 4447 // If this is a memory operand, we're cool, otherwise bail out. 4448 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4449 return true; 4450 continue; 4451 } 4452 4453 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, 4454 SeenInsts)) 4455 return true; 4456 } 4457 4458 return false; 4459 } 4460 4461 /// Return true if Val is already known to be live at the use site that we're 4462 /// folding it into. If so, there is no cost to include it in the addressing 4463 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4464 /// instruction already. 4465 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4466 Value *KnownLive2) { 4467 // If Val is either of the known-live values, we know it is live! 4468 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4469 return true; 4470 4471 // All values other than instructions and arguments (e.g. constants) are live. 4472 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4473 4474 // If Val is a constant sized alloca in the entry block, it is live, this is 4475 // true because it is just a reference to the stack/frame pointer, which is 4476 // live for the whole function. 4477 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4478 if (AI->isStaticAlloca()) 4479 return true; 4480 4481 // Check to see if this value is already used in the memory instruction's 4482 // block. If so, it's already live into the block at the very least, so we 4483 // can reasonably fold it. 4484 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4485 } 4486 4487 /// It is possible for the addressing mode of the machine to fold the specified 4488 /// instruction into a load or store that ultimately uses it. 4489 /// However, the specified instruction has multiple uses. 4490 /// Given this, it may actually increase register pressure to fold it 4491 /// into the load. For example, consider this code: 4492 /// 4493 /// X = ... 4494 /// Y = X+1 4495 /// use(Y) -> nonload/store 4496 /// Z = Y+1 4497 /// load Z 4498 /// 4499 /// In this case, Y has multiple uses, and can be folded into the load of Z 4500 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4501 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4502 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4503 /// number of computations either. 4504 /// 4505 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4506 /// X was live across 'load Z' for other reasons, we actually *would* want to 4507 /// fold the addressing mode in the Z case. This would make Y die earlier. 4508 bool AddressingModeMatcher:: 4509 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4510 ExtAddrMode &AMAfter) { 4511 if (IgnoreProfitability) return true; 4512 4513 // AMBefore is the addressing mode before this instruction was folded into it, 4514 // and AMAfter is the addressing mode after the instruction was folded. Get 4515 // the set of registers referenced by AMAfter and subtract out those 4516 // referenced by AMBefore: this is the set of values which folding in this 4517 // address extends the lifetime of. 4518 // 4519 // Note that there are only two potential values being referenced here, 4520 // BaseReg and ScaleReg (global addresses are always available, as are any 4521 // folded immediates). 4522 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4523 4524 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4525 // lifetime wasn't extended by adding this instruction. 4526 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4527 BaseReg = nullptr; 4528 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4529 ScaledReg = nullptr; 4530 4531 // If folding this instruction (and it's subexprs) didn't extend any live 4532 // ranges, we're ok with it. 4533 if (!BaseReg && !ScaledReg) 4534 return true; 4535 4536 // If all uses of this instruction can have the address mode sunk into them, 4537 // we can remove the addressing mode and effectively trade one live register 4538 // for another (at worst.) In this context, folding an addressing mode into 4539 // the use is just a particularly nice way of sinking it. 4540 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4541 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4542 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 4543 return false; // Has a non-memory, non-foldable use! 4544 4545 // Now that we know that all uses of this instruction are part of a chain of 4546 // computation involving only operations that could theoretically be folded 4547 // into a memory use, loop over each of these memory operation uses and see 4548 // if they could *actually* fold the instruction. The assumption is that 4549 // addressing modes are cheap and that duplicating the computation involved 4550 // many times is worthwhile, even on a fastpath. For sinking candidates 4551 // (i.e. cold call sites), this serves as a way to prevent excessive code 4552 // growth since most architectures have some reasonable small and fast way to 4553 // compute an effective address. (i.e LEA on x86) 4554 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4555 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4556 Instruction *User = MemoryUses[i].first; 4557 unsigned OpNo = MemoryUses[i].second; 4558 4559 // Get the access type of this use. If the use isn't a pointer, we don't 4560 // know what it accesses. 4561 Value *Address = User->getOperand(OpNo); 4562 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4563 if (!AddrTy) 4564 return false; 4565 Type *AddressAccessTy = AddrTy->getElementType(); 4566 unsigned AS = AddrTy->getAddressSpace(); 4567 4568 // Do a match against the root of this address, ignoring profitability. This 4569 // will tell us if the addressing mode for the memory operation will 4570 // *actually* cover the shared instruction. 4571 ExtAddrMode Result; 4572 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4573 0); 4574 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4575 TPT.getRestorationPoint(); 4576 AddressingModeMatcher Matcher( 4577 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4578 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4579 Matcher.IgnoreProfitability = true; 4580 bool Success = Matcher.matchAddr(Address, 0); 4581 (void)Success; assert(Success && "Couldn't select *anything*?"); 4582 4583 // The match was to check the profitability, the changes made are not 4584 // part of the original matcher. Therefore, they should be dropped 4585 // otherwise the original matcher will not present the right state. 4586 TPT.rollback(LastKnownGood); 4587 4588 // If the match didn't cover I, then it won't be shared by it. 4589 if (!is_contained(MatchedAddrModeInsts, I)) 4590 return false; 4591 4592 MatchedAddrModeInsts.clear(); 4593 } 4594 4595 return true; 4596 } 4597 4598 /// Return true if the specified values are defined in a 4599 /// different basic block than BB. 4600 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4601 if (Instruction *I = dyn_cast<Instruction>(V)) 4602 return I->getParent() != BB; 4603 return false; 4604 } 4605 4606 /// Sink addressing mode computation immediate before MemoryInst if doing so 4607 /// can be done without increasing register pressure. The need for the 4608 /// register pressure constraint means this can end up being an all or nothing 4609 /// decision for all uses of the same addressing computation. 4610 /// 4611 /// Load and Store Instructions often have addressing modes that can do 4612 /// significant amounts of computation. As such, instruction selection will try 4613 /// to get the load or store to do as much computation as possible for the 4614 /// program. The problem is that isel can only see within a single block. As 4615 /// such, we sink as much legal addressing mode work into the block as possible. 4616 /// 4617 /// This method is used to optimize both load/store and inline asms with memory 4618 /// operands. It's also used to sink addressing computations feeding into cold 4619 /// call sites into their (cold) basic block. 4620 /// 4621 /// The motivation for handling sinking into cold blocks is that doing so can 4622 /// both enable other address mode sinking (by satisfying the register pressure 4623 /// constraint above), and reduce register pressure globally (by removing the 4624 /// addressing mode computation from the fast path entirely.). 4625 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4626 Type *AccessTy, unsigned AddrSpace) { 4627 Value *Repl = Addr; 4628 4629 // Try to collapse single-value PHI nodes. This is necessary to undo 4630 // unprofitable PRE transformations. 4631 SmallVector<Value*, 8> worklist; 4632 SmallPtrSet<Value*, 16> Visited; 4633 worklist.push_back(Addr); 4634 4635 // Use a worklist to iteratively look through PHI and select nodes, and 4636 // ensure that the addressing mode obtained from the non-PHI/select roots of 4637 // the graph are compatible. 4638 bool PhiOrSelectSeen = false; 4639 SmallVector<Instruction*, 16> AddrModeInsts; 4640 const SimplifyQuery SQ(*DL, TLInfo); 4641 AddressingModeCombiner AddrModes(SQ, Addr); 4642 TypePromotionTransaction TPT(RemovedInsts); 4643 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4644 TPT.getRestorationPoint(); 4645 while (!worklist.empty()) { 4646 Value *V = worklist.back(); 4647 worklist.pop_back(); 4648 4649 // We allow traversing cyclic Phi nodes. 4650 // In case of success after this loop we ensure that traversing through 4651 // Phi nodes ends up with all cases to compute address of the form 4652 // BaseGV + Base + Scale * Index + Offset 4653 // where Scale and Offset are constans and BaseGV, Base and Index 4654 // are exactly the same Values in all cases. 4655 // It means that BaseGV, Scale and Offset dominate our memory instruction 4656 // and have the same value as they had in address computation represented 4657 // as Phi. So we can safely sink address computation to memory instruction. 4658 if (!Visited.insert(V).second) 4659 continue; 4660 4661 // For a PHI node, push all of its incoming values. 4662 if (PHINode *P = dyn_cast<PHINode>(V)) { 4663 for (Value *IncValue : P->incoming_values()) 4664 worklist.push_back(IncValue); 4665 PhiOrSelectSeen = true; 4666 continue; 4667 } 4668 // Similar for select. 4669 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4670 worklist.push_back(SI->getFalseValue()); 4671 worklist.push_back(SI->getTrueValue()); 4672 PhiOrSelectSeen = true; 4673 continue; 4674 } 4675 4676 // For non-PHIs, determine the addressing mode being computed. Note that 4677 // the result may differ depending on what other uses our candidate 4678 // addressing instructions might have. 4679 AddrModeInsts.clear(); 4680 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4681 0); 4682 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4683 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4684 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4685 4686 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4687 if (GEP && GEP->getParent() != MemoryInst->getParent() && 4688 !NewGEPBases.count(GEP)) { 4689 // If splitting the underlying data structure can reduce the offset of a 4690 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4691 // previously split data structures. 4692 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4693 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4694 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4695 } 4696 4697 NewAddrMode.OriginalValue = V; 4698 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4699 break; 4700 } 4701 4702 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4703 // or we have multiple but either couldn't combine them or combining them 4704 // wouldn't do anything useful, bail out now. 4705 if (!AddrModes.combineAddrModes()) { 4706 TPT.rollback(LastKnownGood); 4707 return false; 4708 } 4709 TPT.commit(); 4710 4711 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4712 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4713 4714 // If all the instructions matched are already in this BB, don't do anything. 4715 // If we saw a Phi node then it is not local definitely, and if we saw a select 4716 // then we want to push the address calculation past it even if it's already 4717 // in this BB. 4718 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4719 return IsNonLocalValue(V, MemoryInst->getParent()); 4720 })) { 4721 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 4722 << "\n"); 4723 return false; 4724 } 4725 4726 // Insert this computation right after this user. Since our caller is 4727 // scanning from the top of the BB to the bottom, reuse of the expr are 4728 // guaranteed to happen later. 4729 IRBuilder<> Builder(MemoryInst); 4730 4731 // Now that we determined the addressing expression we want to use and know 4732 // that we have to sink it into this block. Check to see if we have already 4733 // done this for some other load/store instr in this block. If so, reuse 4734 // the computation. Before attempting reuse, check if the address is valid 4735 // as it may have been erased. 4736 4737 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4738 4739 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4740 if (SunkAddr) { 4741 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 4742 << " for " << *MemoryInst << "\n"); 4743 if (SunkAddr->getType() != Addr->getType()) 4744 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4745 } else if (AddrSinkUsingGEPs || 4746 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && TTI->useAA())) { 4747 // By default, we use the GEP-based method when AA is used later. This 4748 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4749 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4750 << " for " << *MemoryInst << "\n"); 4751 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4752 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4753 4754 // First, find the pointer. 4755 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4756 ResultPtr = AddrMode.BaseReg; 4757 AddrMode.BaseReg = nullptr; 4758 } 4759 4760 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4761 // We can't add more than one pointer together, nor can we scale a 4762 // pointer (both of which seem meaningless). 4763 if (ResultPtr || AddrMode.Scale != 1) 4764 return false; 4765 4766 ResultPtr = AddrMode.ScaledReg; 4767 AddrMode.Scale = 0; 4768 } 4769 4770 // It is only safe to sign extend the BaseReg if we know that the math 4771 // required to create it did not overflow before we extend it. Since 4772 // the original IR value was tossed in favor of a constant back when 4773 // the AddrMode was created we need to bail out gracefully if widths 4774 // do not match instead of extending it. 4775 // 4776 // (See below for code to add the scale.) 4777 if (AddrMode.Scale) { 4778 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4779 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4780 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4781 return false; 4782 } 4783 4784 if (AddrMode.BaseGV) { 4785 if (ResultPtr) 4786 return false; 4787 4788 ResultPtr = AddrMode.BaseGV; 4789 } 4790 4791 // If the real base value actually came from an inttoptr, then the matcher 4792 // will look through it and provide only the integer value. In that case, 4793 // use it here. 4794 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4795 if (!ResultPtr && AddrMode.BaseReg) { 4796 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4797 "sunkaddr"); 4798 AddrMode.BaseReg = nullptr; 4799 } else if (!ResultPtr && AddrMode.Scale == 1) { 4800 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4801 "sunkaddr"); 4802 AddrMode.Scale = 0; 4803 } 4804 } 4805 4806 if (!ResultPtr && 4807 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4808 SunkAddr = Constant::getNullValue(Addr->getType()); 4809 } else if (!ResultPtr) { 4810 return false; 4811 } else { 4812 Type *I8PtrTy = 4813 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4814 Type *I8Ty = Builder.getInt8Ty(); 4815 4816 // Start with the base register. Do this first so that subsequent address 4817 // matching finds it last, which will prevent it from trying to match it 4818 // as the scaled value in case it happens to be a mul. That would be 4819 // problematic if we've sunk a different mul for the scale, because then 4820 // we'd end up sinking both muls. 4821 if (AddrMode.BaseReg) { 4822 Value *V = AddrMode.BaseReg; 4823 if (V->getType() != IntPtrTy) 4824 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4825 4826 ResultIndex = V; 4827 } 4828 4829 // Add the scale value. 4830 if (AddrMode.Scale) { 4831 Value *V = AddrMode.ScaledReg; 4832 if (V->getType() == IntPtrTy) { 4833 // done. 4834 } else { 4835 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 4836 cast<IntegerType>(V->getType())->getBitWidth() && 4837 "We can't transform if ScaledReg is too narrow"); 4838 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4839 } 4840 4841 if (AddrMode.Scale != 1) 4842 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4843 "sunkaddr"); 4844 if (ResultIndex) 4845 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4846 else 4847 ResultIndex = V; 4848 } 4849 4850 // Add in the Base Offset if present. 4851 if (AddrMode.BaseOffs) { 4852 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4853 if (ResultIndex) { 4854 // We need to add this separately from the scale above to help with 4855 // SDAG consecutive load/store merging. 4856 if (ResultPtr->getType() != I8PtrTy) 4857 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4858 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4859 } 4860 4861 ResultIndex = V; 4862 } 4863 4864 if (!ResultIndex) { 4865 SunkAddr = ResultPtr; 4866 } else { 4867 if (ResultPtr->getType() != I8PtrTy) 4868 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4869 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4870 } 4871 4872 if (SunkAddr->getType() != Addr->getType()) 4873 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4874 } 4875 } else { 4876 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 4877 // non-integral pointers, so in that case bail out now. 4878 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 4879 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 4880 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 4881 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 4882 if (DL->isNonIntegralPointerType(Addr->getType()) || 4883 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 4884 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 4885 (AddrMode.BaseGV && 4886 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 4887 return false; 4888 4889 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4890 << " for " << *MemoryInst << "\n"); 4891 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4892 Value *Result = nullptr; 4893 4894 // Start with the base register. Do this first so that subsequent address 4895 // matching finds it last, which will prevent it from trying to match it 4896 // as the scaled value in case it happens to be a mul. That would be 4897 // problematic if we've sunk a different mul for the scale, because then 4898 // we'd end up sinking both muls. 4899 if (AddrMode.BaseReg) { 4900 Value *V = AddrMode.BaseReg; 4901 if (V->getType()->isPointerTy()) 4902 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4903 if (V->getType() != IntPtrTy) 4904 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4905 Result = V; 4906 } 4907 4908 // Add the scale value. 4909 if (AddrMode.Scale) { 4910 Value *V = AddrMode.ScaledReg; 4911 if (V->getType() == IntPtrTy) { 4912 // done. 4913 } else if (V->getType()->isPointerTy()) { 4914 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4915 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4916 cast<IntegerType>(V->getType())->getBitWidth()) { 4917 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4918 } else { 4919 // It is only safe to sign extend the BaseReg if we know that the math 4920 // required to create it did not overflow before we extend it. Since 4921 // the original IR value was tossed in favor of a constant back when 4922 // the AddrMode was created we need to bail out gracefully if widths 4923 // do not match instead of extending it. 4924 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4925 if (I && (Result != AddrMode.BaseReg)) 4926 I->eraseFromParent(); 4927 return false; 4928 } 4929 if (AddrMode.Scale != 1) 4930 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4931 "sunkaddr"); 4932 if (Result) 4933 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4934 else 4935 Result = V; 4936 } 4937 4938 // Add in the BaseGV if present. 4939 if (AddrMode.BaseGV) { 4940 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 4941 if (Result) 4942 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4943 else 4944 Result = V; 4945 } 4946 4947 // Add in the Base Offset if present. 4948 if (AddrMode.BaseOffs) { 4949 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4950 if (Result) 4951 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4952 else 4953 Result = V; 4954 } 4955 4956 if (!Result) 4957 SunkAddr = Constant::getNullValue(Addr->getType()); 4958 else 4959 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 4960 } 4961 4962 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 4963 // Store the newly computed address into the cache. In the case we reused a 4964 // value, this should be idempotent. 4965 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 4966 4967 // If we have no uses, recursively delete the value and all dead instructions 4968 // using it. 4969 if (Repl->use_empty()) { 4970 // This can cause recursive deletion, which can invalidate our iterator. 4971 // Use a WeakTrackingVH to hold onto it in case this happens. 4972 Value *CurValue = &*CurInstIterator; 4973 WeakTrackingVH IterHandle(CurValue); 4974 BasicBlock *BB = CurInstIterator->getParent(); 4975 4976 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 4977 4978 if (IterHandle != CurValue) { 4979 // If the iterator instruction was recursively deleted, start over at the 4980 // start of the block. 4981 CurInstIterator = BB->begin(); 4982 SunkAddrs.clear(); 4983 } 4984 } 4985 ++NumMemoryInsts; 4986 return true; 4987 } 4988 4989 /// If there are any memory operands, use OptimizeMemoryInst to sink their 4990 /// address computing into the block when possible / profitable. 4991 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 4992 bool MadeChange = false; 4993 4994 const TargetRegisterInfo *TRI = 4995 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 4996 TargetLowering::AsmOperandInfoVector TargetConstraints = 4997 TLI->ParseConstraints(*DL, TRI, CS); 4998 unsigned ArgNo = 0; 4999 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5000 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5001 5002 // Compute the constraint code and ConstraintType to use. 5003 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5004 5005 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5006 OpInfo.isIndirect) { 5007 Value *OpVal = CS->getArgOperand(ArgNo++); 5008 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5009 } else if (OpInfo.Type == InlineAsm::isInput) 5010 ArgNo++; 5011 } 5012 5013 return MadeChange; 5014 } 5015 5016 /// Check if all the uses of \p Val are equivalent (or free) zero or 5017 /// sign extensions. 5018 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5019 assert(!Val->use_empty() && "Input must have at least one use"); 5020 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5021 bool IsSExt = isa<SExtInst>(FirstUser); 5022 Type *ExtTy = FirstUser->getType(); 5023 for (const User *U : Val->users()) { 5024 const Instruction *UI = cast<Instruction>(U); 5025 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5026 return false; 5027 Type *CurTy = UI->getType(); 5028 // Same input and output types: Same instruction after CSE. 5029 if (CurTy == ExtTy) 5030 continue; 5031 5032 // If IsSExt is true, we are in this situation: 5033 // a = Val 5034 // b = sext ty1 a to ty2 5035 // c = sext ty1 a to ty3 5036 // Assuming ty2 is shorter than ty3, this could be turned into: 5037 // a = Val 5038 // b = sext ty1 a to ty2 5039 // c = sext ty2 b to ty3 5040 // However, the last sext is not free. 5041 if (IsSExt) 5042 return false; 5043 5044 // This is a ZExt, maybe this is free to extend from one type to another. 5045 // In that case, we would not account for a different use. 5046 Type *NarrowTy; 5047 Type *LargeTy; 5048 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5049 CurTy->getScalarType()->getIntegerBitWidth()) { 5050 NarrowTy = CurTy; 5051 LargeTy = ExtTy; 5052 } else { 5053 NarrowTy = ExtTy; 5054 LargeTy = CurTy; 5055 } 5056 5057 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5058 return false; 5059 } 5060 // All uses are the same or can be derived from one another for free. 5061 return true; 5062 } 5063 5064 /// Try to speculatively promote extensions in \p Exts and continue 5065 /// promoting through newly promoted operands recursively as far as doing so is 5066 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5067 /// When some promotion happened, \p TPT contains the proper state to revert 5068 /// them. 5069 /// 5070 /// \return true if some promotion happened, false otherwise. 5071 bool CodeGenPrepare::tryToPromoteExts( 5072 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5073 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5074 unsigned CreatedInstsCost) { 5075 bool Promoted = false; 5076 5077 // Iterate over all the extensions to try to promote them. 5078 for (auto I : Exts) { 5079 // Early check if we directly have ext(load). 5080 if (isa<LoadInst>(I->getOperand(0))) { 5081 ProfitablyMovedExts.push_back(I); 5082 continue; 5083 } 5084 5085 // Check whether or not we want to do any promotion. The reason we have 5086 // this check inside the for loop is to catch the case where an extension 5087 // is directly fed by a load because in such case the extension can be moved 5088 // up without any promotion on its operands. 5089 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5090 return false; 5091 5092 // Get the action to perform the promotion. 5093 TypePromotionHelper::Action TPH = 5094 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5095 // Check if we can promote. 5096 if (!TPH) { 5097 // Save the current extension as we cannot move up through its operand. 5098 ProfitablyMovedExts.push_back(I); 5099 continue; 5100 } 5101 5102 // Save the current state. 5103 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5104 TPT.getRestorationPoint(); 5105 SmallVector<Instruction *, 4> NewExts; 5106 unsigned NewCreatedInstsCost = 0; 5107 unsigned ExtCost = !TLI->isExtFree(I); 5108 // Promote. 5109 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5110 &NewExts, nullptr, *TLI); 5111 assert(PromotedVal && 5112 "TypePromotionHelper should have filtered out those cases"); 5113 5114 // We would be able to merge only one extension in a load. 5115 // Therefore, if we have more than 1 new extension we heuristically 5116 // cut this search path, because it means we degrade the code quality. 5117 // With exactly 2, the transformation is neutral, because we will merge 5118 // one extension but leave one. However, we optimistically keep going, 5119 // because the new extension may be removed too. 5120 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5121 // FIXME: It would be possible to propagate a negative value instead of 5122 // conservatively ceiling it to 0. 5123 TotalCreatedInstsCost = 5124 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5125 if (!StressExtLdPromotion && 5126 (TotalCreatedInstsCost > 1 || 5127 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5128 // This promotion is not profitable, rollback to the previous state, and 5129 // save the current extension in ProfitablyMovedExts as the latest 5130 // speculative promotion turned out to be unprofitable. 5131 TPT.rollback(LastKnownGood); 5132 ProfitablyMovedExts.push_back(I); 5133 continue; 5134 } 5135 // Continue promoting NewExts as far as doing so is profitable. 5136 SmallVector<Instruction *, 2> NewlyMovedExts; 5137 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5138 bool NewPromoted = false; 5139 for (auto ExtInst : NewlyMovedExts) { 5140 Instruction *MovedExt = cast<Instruction>(ExtInst); 5141 Value *ExtOperand = MovedExt->getOperand(0); 5142 // If we have reached to a load, we need this extra profitability check 5143 // as it could potentially be merged into an ext(load). 5144 if (isa<LoadInst>(ExtOperand) && 5145 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5146 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5147 continue; 5148 5149 ProfitablyMovedExts.push_back(MovedExt); 5150 NewPromoted = true; 5151 } 5152 5153 // If none of speculative promotions for NewExts is profitable, rollback 5154 // and save the current extension (I) as the last profitable extension. 5155 if (!NewPromoted) { 5156 TPT.rollback(LastKnownGood); 5157 ProfitablyMovedExts.push_back(I); 5158 continue; 5159 } 5160 // The promotion is profitable. 5161 Promoted = true; 5162 } 5163 return Promoted; 5164 } 5165 5166 /// Merging redundant sexts when one is dominating the other. 5167 bool CodeGenPrepare::mergeSExts(Function &F) { 5168 DominatorTree DT(F); 5169 bool Changed = false; 5170 for (auto &Entry : ValToSExtendedUses) { 5171 SExts &Insts = Entry.second; 5172 SExts CurPts; 5173 for (Instruction *Inst : Insts) { 5174 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5175 Inst->getOperand(0) != Entry.first) 5176 continue; 5177 bool inserted = false; 5178 for (auto &Pt : CurPts) { 5179 if (DT.dominates(Inst, Pt)) { 5180 Pt->replaceAllUsesWith(Inst); 5181 RemovedInsts.insert(Pt); 5182 Pt->removeFromParent(); 5183 Pt = Inst; 5184 inserted = true; 5185 Changed = true; 5186 break; 5187 } 5188 if (!DT.dominates(Pt, Inst)) 5189 // Give up if we need to merge in a common dominator as the 5190 // experiments show it is not profitable. 5191 continue; 5192 Inst->replaceAllUsesWith(Pt); 5193 RemovedInsts.insert(Inst); 5194 Inst->removeFromParent(); 5195 inserted = true; 5196 Changed = true; 5197 break; 5198 } 5199 if (!inserted) 5200 CurPts.push_back(Inst); 5201 } 5202 } 5203 return Changed; 5204 } 5205 5206 // Spliting large data structures so that the GEPs accessing them can have 5207 // smaller offsets so that they can be sunk to the same blocks as their users. 5208 // For example, a large struct starting from %base is splitted into two parts 5209 // where the second part starts from %new_base. 5210 // 5211 // Before: 5212 // BB0: 5213 // %base = 5214 // 5215 // BB1: 5216 // %gep0 = gep %base, off0 5217 // %gep1 = gep %base, off1 5218 // %gep2 = gep %base, off2 5219 // 5220 // BB2: 5221 // %load1 = load %gep0 5222 // %load2 = load %gep1 5223 // %load3 = load %gep2 5224 // 5225 // After: 5226 // BB0: 5227 // %base = 5228 // %new_base = gep %base, off0 5229 // 5230 // BB1: 5231 // %new_gep0 = %new_base 5232 // %new_gep1 = gep %new_base, off1 - off0 5233 // %new_gep2 = gep %new_base, off2 - off0 5234 // 5235 // BB2: 5236 // %load1 = load i32, i32* %new_gep0 5237 // %load2 = load i32, i32* %new_gep1 5238 // %load3 = load i32, i32* %new_gep2 5239 // 5240 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5241 // their offsets are smaller enough to fit into the addressing mode. 5242 bool CodeGenPrepare::splitLargeGEPOffsets() { 5243 bool Changed = false; 5244 for (auto &Entry : LargeOffsetGEPMap) { 5245 Value *OldBase = Entry.first; 5246 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5247 &LargeOffsetGEPs = Entry.second; 5248 auto compareGEPOffset = 5249 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5250 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5251 if (LHS.first == RHS.first) 5252 return false; 5253 if (LHS.second != RHS.second) 5254 return LHS.second < RHS.second; 5255 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5256 }; 5257 // Sorting all the GEPs of the same data structures based on the offsets. 5258 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5259 LargeOffsetGEPs.erase( 5260 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5261 LargeOffsetGEPs.end()); 5262 // Skip if all the GEPs have the same offsets. 5263 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5264 continue; 5265 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5266 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5267 Value *NewBaseGEP = nullptr; 5268 5269 auto LargeOffsetGEP = LargeOffsetGEPs.begin(); 5270 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5271 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5272 int64_t Offset = LargeOffsetGEP->second; 5273 if (Offset != BaseOffset) { 5274 TargetLowering::AddrMode AddrMode; 5275 AddrMode.BaseOffs = Offset - BaseOffset; 5276 // The result type of the GEP might not be the type of the memory 5277 // access. 5278 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5279 GEP->getResultElementType(), 5280 GEP->getAddressSpace())) { 5281 // We need to create a new base if the offset to the current base is 5282 // too large to fit into the addressing mode. So, a very large struct 5283 // may be splitted into several parts. 5284 BaseGEP = GEP; 5285 BaseOffset = Offset; 5286 NewBaseGEP = nullptr; 5287 } 5288 } 5289 5290 // Generate a new GEP to replace the current one. 5291 LLVMContext &Ctx = GEP->getContext(); 5292 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5293 Type *I8PtrTy = 5294 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5295 Type *I8Ty = Type::getInt8Ty(Ctx); 5296 5297 if (!NewBaseGEP) { 5298 // Create a new base if we don't have one yet. Find the insertion 5299 // pointer for the new base first. 5300 BasicBlock::iterator NewBaseInsertPt; 5301 BasicBlock *NewBaseInsertBB; 5302 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5303 // If the base of the struct is an instruction, the new base will be 5304 // inserted close to it. 5305 NewBaseInsertBB = BaseI->getParent(); 5306 if (isa<PHINode>(BaseI)) 5307 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5308 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5309 NewBaseInsertBB = 5310 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5311 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5312 } else 5313 NewBaseInsertPt = std::next(BaseI->getIterator()); 5314 } else { 5315 // If the current base is an argument or global value, the new base 5316 // will be inserted to the entry block. 5317 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5318 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5319 } 5320 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5321 // Create a new base. 5322 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5323 NewBaseGEP = OldBase; 5324 if (NewBaseGEP->getType() != I8PtrTy) 5325 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5326 NewBaseGEP = 5327 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5328 NewGEPBases.insert(NewBaseGEP); 5329 } 5330 5331 IRBuilder<> Builder(GEP); 5332 Value *NewGEP = NewBaseGEP; 5333 if (Offset == BaseOffset) { 5334 if (GEP->getType() != I8PtrTy) 5335 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5336 } else { 5337 // Calculate the new offset for the new GEP. 5338 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5339 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5340 5341 if (GEP->getType() != I8PtrTy) 5342 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5343 } 5344 GEP->replaceAllUsesWith(NewGEP); 5345 LargeOffsetGEPID.erase(GEP); 5346 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5347 GEP->eraseFromParent(); 5348 Changed = true; 5349 } 5350 } 5351 return Changed; 5352 } 5353 5354 /// Return true, if an ext(load) can be formed from an extension in 5355 /// \p MovedExts. 5356 bool CodeGenPrepare::canFormExtLd( 5357 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5358 Instruction *&Inst, bool HasPromoted) { 5359 for (auto *MovedExtInst : MovedExts) { 5360 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5361 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5362 Inst = MovedExtInst; 5363 break; 5364 } 5365 } 5366 if (!LI) 5367 return false; 5368 5369 // If they're already in the same block, there's nothing to do. 5370 // Make the cheap checks first if we did not promote. 5371 // If we promoted, we need to check if it is indeed profitable. 5372 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5373 return false; 5374 5375 return TLI->isExtLoad(LI, Inst, *DL); 5376 } 5377 5378 /// Move a zext or sext fed by a load into the same basic block as the load, 5379 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5380 /// extend into the load. 5381 /// 5382 /// E.g., 5383 /// \code 5384 /// %ld = load i32* %addr 5385 /// %add = add nuw i32 %ld, 4 5386 /// %zext = zext i32 %add to i64 5387 // \endcode 5388 /// => 5389 /// \code 5390 /// %ld = load i32* %addr 5391 /// %zext = zext i32 %ld to i64 5392 /// %add = add nuw i64 %zext, 4 5393 /// \encode 5394 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5395 /// allow us to match zext(load i32*) to i64. 5396 /// 5397 /// Also, try to promote the computations used to obtain a sign extended 5398 /// value used into memory accesses. 5399 /// E.g., 5400 /// \code 5401 /// a = add nsw i32 b, 3 5402 /// d = sext i32 a to i64 5403 /// e = getelementptr ..., i64 d 5404 /// \endcode 5405 /// => 5406 /// \code 5407 /// f = sext i32 b to i64 5408 /// a = add nsw i64 f, 3 5409 /// e = getelementptr ..., i64 a 5410 /// \endcode 5411 /// 5412 /// \p Inst[in/out] the extension may be modified during the process if some 5413 /// promotions apply. 5414 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 5415 // ExtLoad formation and address type promotion infrastructure requires TLI to 5416 // be effective. 5417 if (!TLI) 5418 return false; 5419 5420 bool AllowPromotionWithoutCommonHeader = false; 5421 /// See if it is an interesting sext operations for the address type 5422 /// promotion before trying to promote it, e.g., the ones with the right 5423 /// type and used in memory accesses. 5424 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 5425 *Inst, AllowPromotionWithoutCommonHeader); 5426 TypePromotionTransaction TPT(RemovedInsts); 5427 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5428 TPT.getRestorationPoint(); 5429 SmallVector<Instruction *, 1> Exts; 5430 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 5431 Exts.push_back(Inst); 5432 5433 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 5434 5435 // Look for a load being extended. 5436 LoadInst *LI = nullptr; 5437 Instruction *ExtFedByLoad; 5438 5439 // Try to promote a chain of computation if it allows to form an extended 5440 // load. 5441 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5442 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5443 TPT.commit(); 5444 // Move the extend into the same block as the load 5445 ExtFedByLoad->moveAfter(LI); 5446 // CGP does not check if the zext would be speculatively executed when moved 5447 // to the same basic block as the load. Preserving its original location 5448 // would pessimize the debugging experience, as well as negatively impact 5449 // the quality of sample pgo. We don't want to use "line 0" as that has a 5450 // size cost in the line-table section and logically the zext can be seen as 5451 // part of the load. Therefore we conservatively reuse the same debug 5452 // location for the load and the zext. 5453 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 5454 ++NumExtsMoved; 5455 Inst = ExtFedByLoad; 5456 return true; 5457 } 5458 5459 // Continue promoting SExts if known as considerable depending on targets. 5460 if (ATPConsiderable && 5461 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5462 HasPromoted, TPT, SpeculativelyMovedExts)) 5463 return true; 5464 5465 TPT.rollback(LastKnownGood); 5466 return false; 5467 } 5468 5469 // Perform address type promotion if doing so is profitable. 5470 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5471 // instructions that sign extended the same initial value. However, if 5472 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5473 // extension is just profitable. 5474 bool CodeGenPrepare::performAddressTypePromotion( 5475 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5476 bool HasPromoted, TypePromotionTransaction &TPT, 5477 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5478 bool Promoted = false; 5479 SmallPtrSet<Instruction *, 1> UnhandledExts; 5480 bool AllSeenFirst = true; 5481 for (auto I : SpeculativelyMovedExts) { 5482 Value *HeadOfChain = I->getOperand(0); 5483 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 5484 SeenChainsForSExt.find(HeadOfChain); 5485 // If there is an unhandled SExt which has the same header, try to promote 5486 // it as well. 5487 if (AlreadySeen != SeenChainsForSExt.end()) { 5488 if (AlreadySeen->second != nullptr) 5489 UnhandledExts.insert(AlreadySeen->second); 5490 AllSeenFirst = false; 5491 } 5492 } 5493 5494 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 5495 SpeculativelyMovedExts.size() == 1)) { 5496 TPT.commit(); 5497 if (HasPromoted) 5498 Promoted = true; 5499 for (auto I : SpeculativelyMovedExts) { 5500 Value *HeadOfChain = I->getOperand(0); 5501 SeenChainsForSExt[HeadOfChain] = nullptr; 5502 ValToSExtendedUses[HeadOfChain].push_back(I); 5503 } 5504 // Update Inst as promotion happen. 5505 Inst = SpeculativelyMovedExts.pop_back_val(); 5506 } else { 5507 // This is the first chain visited from the header, keep the current chain 5508 // as unhandled. Defer to promote this until we encounter another SExt 5509 // chain derived from the same header. 5510 for (auto I : SpeculativelyMovedExts) { 5511 Value *HeadOfChain = I->getOperand(0); 5512 SeenChainsForSExt[HeadOfChain] = Inst; 5513 } 5514 return false; 5515 } 5516 5517 if (!AllSeenFirst && !UnhandledExts.empty()) 5518 for (auto VisitedSExt : UnhandledExts) { 5519 if (RemovedInsts.count(VisitedSExt)) 5520 continue; 5521 TypePromotionTransaction TPT(RemovedInsts); 5522 SmallVector<Instruction *, 1> Exts; 5523 SmallVector<Instruction *, 2> Chains; 5524 Exts.push_back(VisitedSExt); 5525 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 5526 TPT.commit(); 5527 if (HasPromoted) 5528 Promoted = true; 5529 for (auto I : Chains) { 5530 Value *HeadOfChain = I->getOperand(0); 5531 // Mark this as handled. 5532 SeenChainsForSExt[HeadOfChain] = nullptr; 5533 ValToSExtendedUses[HeadOfChain].push_back(I); 5534 } 5535 } 5536 return Promoted; 5537 } 5538 5539 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5540 BasicBlock *DefBB = I->getParent(); 5541 5542 // If the result of a {s|z}ext and its source are both live out, rewrite all 5543 // other uses of the source with result of extension. 5544 Value *Src = I->getOperand(0); 5545 if (Src->hasOneUse()) 5546 return false; 5547 5548 // Only do this xform if truncating is free. 5549 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 5550 return false; 5551 5552 // Only safe to perform the optimization if the source is also defined in 5553 // this block. 5554 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5555 return false; 5556 5557 bool DefIsLiveOut = false; 5558 for (User *U : I->users()) { 5559 Instruction *UI = cast<Instruction>(U); 5560 5561 // Figure out which BB this ext is used in. 5562 BasicBlock *UserBB = UI->getParent(); 5563 if (UserBB == DefBB) continue; 5564 DefIsLiveOut = true; 5565 break; 5566 } 5567 if (!DefIsLiveOut) 5568 return false; 5569 5570 // Make sure none of the uses are PHI nodes. 5571 for (User *U : Src->users()) { 5572 Instruction *UI = cast<Instruction>(U); 5573 BasicBlock *UserBB = UI->getParent(); 5574 if (UserBB == DefBB) continue; 5575 // Be conservative. We don't want this xform to end up introducing 5576 // reloads just before load / store instructions. 5577 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5578 return false; 5579 } 5580 5581 // InsertedTruncs - Only insert one trunc in each block once. 5582 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5583 5584 bool MadeChange = false; 5585 for (Use &U : Src->uses()) { 5586 Instruction *User = cast<Instruction>(U.getUser()); 5587 5588 // Figure out which BB this ext is used in. 5589 BasicBlock *UserBB = User->getParent(); 5590 if (UserBB == DefBB) continue; 5591 5592 // Both src and def are live in this block. Rewrite the use. 5593 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5594 5595 if (!InsertedTrunc) { 5596 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5597 assert(InsertPt != UserBB->end()); 5598 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5599 InsertedInsts.insert(InsertedTrunc); 5600 } 5601 5602 // Replace a use of the {s|z}ext source with a use of the result. 5603 U = InsertedTrunc; 5604 ++NumExtUses; 5605 MadeChange = true; 5606 } 5607 5608 return MadeChange; 5609 } 5610 5611 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5612 // just after the load if the target can fold this into one extload instruction, 5613 // with the hope of eliminating some of the other later "and" instructions using 5614 // the loaded value. "and"s that are made trivially redundant by the insertion 5615 // of the new "and" are removed by this function, while others (e.g. those whose 5616 // path from the load goes through a phi) are left for isel to potentially 5617 // remove. 5618 // 5619 // For example: 5620 // 5621 // b0: 5622 // x = load i32 5623 // ... 5624 // b1: 5625 // y = and x, 0xff 5626 // z = use y 5627 // 5628 // becomes: 5629 // 5630 // b0: 5631 // x = load i32 5632 // x' = and x, 0xff 5633 // ... 5634 // b1: 5635 // z = use x' 5636 // 5637 // whereas: 5638 // 5639 // b0: 5640 // x1 = load i32 5641 // ... 5642 // b1: 5643 // x2 = load i32 5644 // ... 5645 // b2: 5646 // x = phi x1, x2 5647 // y = and x, 0xff 5648 // 5649 // becomes (after a call to optimizeLoadExt for each load): 5650 // 5651 // b0: 5652 // x1 = load i32 5653 // x1' = and x1, 0xff 5654 // ... 5655 // b1: 5656 // x2 = load i32 5657 // x2' = and x2, 0xff 5658 // ... 5659 // b2: 5660 // x = phi x1', x2' 5661 // y = and x, 0xff 5662 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5663 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 5664 return false; 5665 5666 // Skip loads we've already transformed. 5667 if (Load->hasOneUse() && 5668 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5669 return false; 5670 5671 // Look at all uses of Load, looking through phis, to determine how many bits 5672 // of the loaded value are needed. 5673 SmallVector<Instruction *, 8> WorkList; 5674 SmallPtrSet<Instruction *, 16> Visited; 5675 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5676 for (auto *U : Load->users()) 5677 WorkList.push_back(cast<Instruction>(U)); 5678 5679 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5680 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5681 APInt DemandBits(BitWidth, 0); 5682 APInt WidestAndBits(BitWidth, 0); 5683 5684 while (!WorkList.empty()) { 5685 Instruction *I = WorkList.back(); 5686 WorkList.pop_back(); 5687 5688 // Break use-def graph loops. 5689 if (!Visited.insert(I).second) 5690 continue; 5691 5692 // For a PHI node, push all of its users. 5693 if (auto *Phi = dyn_cast<PHINode>(I)) { 5694 for (auto *U : Phi->users()) 5695 WorkList.push_back(cast<Instruction>(U)); 5696 continue; 5697 } 5698 5699 switch (I->getOpcode()) { 5700 case Instruction::And: { 5701 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5702 if (!AndC) 5703 return false; 5704 APInt AndBits = AndC->getValue(); 5705 DemandBits |= AndBits; 5706 // Keep track of the widest and mask we see. 5707 if (AndBits.ugt(WidestAndBits)) 5708 WidestAndBits = AndBits; 5709 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5710 AndsToMaybeRemove.push_back(I); 5711 break; 5712 } 5713 5714 case Instruction::Shl: { 5715 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5716 if (!ShlC) 5717 return false; 5718 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5719 DemandBits.setLowBits(BitWidth - ShiftAmt); 5720 break; 5721 } 5722 5723 case Instruction::Trunc: { 5724 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5725 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5726 DemandBits.setLowBits(TruncBitWidth); 5727 break; 5728 } 5729 5730 default: 5731 return false; 5732 } 5733 } 5734 5735 uint32_t ActiveBits = DemandBits.getActiveBits(); 5736 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5737 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5738 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5739 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5740 // followed by an AND. 5741 // TODO: Look into removing this restriction by fixing backends to either 5742 // return false for isLoadExtLegal for i1 or have them select this pattern to 5743 // a single instruction. 5744 // 5745 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5746 // mask, since these are the only ands that will be removed by isel. 5747 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5748 WidestAndBits != DemandBits) 5749 return false; 5750 5751 LLVMContext &Ctx = Load->getType()->getContext(); 5752 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5753 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5754 5755 // Reject cases that won't be matched as extloads. 5756 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5757 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5758 return false; 5759 5760 IRBuilder<> Builder(Load->getNextNode()); 5761 auto *NewAnd = dyn_cast<Instruction>( 5762 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5763 // Mark this instruction as "inserted by CGP", so that other 5764 // optimizations don't touch it. 5765 InsertedInsts.insert(NewAnd); 5766 5767 // Replace all uses of load with new and (except for the use of load in the 5768 // new and itself). 5769 Load->replaceAllUsesWith(NewAnd); 5770 NewAnd->setOperand(0, Load); 5771 5772 // Remove any and instructions that are now redundant. 5773 for (auto *And : AndsToMaybeRemove) 5774 // Check that the and mask is the same as the one we decided to put on the 5775 // new and. 5776 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5777 And->replaceAllUsesWith(NewAnd); 5778 if (&*CurInstIterator == And) 5779 CurInstIterator = std::next(And->getIterator()); 5780 And->eraseFromParent(); 5781 ++NumAndUses; 5782 } 5783 5784 ++NumAndsAdded; 5785 return true; 5786 } 5787 5788 /// Check if V (an operand of a select instruction) is an expensive instruction 5789 /// that is only used once. 5790 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5791 auto *I = dyn_cast<Instruction>(V); 5792 // If it's safe to speculatively execute, then it should not have side 5793 // effects; therefore, it's safe to sink and possibly *not* execute. 5794 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5795 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5796 } 5797 5798 /// Returns true if a SelectInst should be turned into an explicit branch. 5799 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5800 const TargetLowering *TLI, 5801 SelectInst *SI) { 5802 // If even a predictable select is cheap, then a branch can't be cheaper. 5803 if (!TLI->isPredictableSelectExpensive()) 5804 return false; 5805 5806 // FIXME: This should use the same heuristics as IfConversion to determine 5807 // whether a select is better represented as a branch. 5808 5809 // If metadata tells us that the select condition is obviously predictable, 5810 // then we want to replace the select with a branch. 5811 uint64_t TrueWeight, FalseWeight; 5812 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5813 uint64_t Max = std::max(TrueWeight, FalseWeight); 5814 uint64_t Sum = TrueWeight + FalseWeight; 5815 if (Sum != 0) { 5816 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5817 if (Probability > TLI->getPredictableBranchThreshold()) 5818 return true; 5819 } 5820 } 5821 5822 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5823 5824 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5825 // comparison condition. If the compare has more than one use, there's 5826 // probably another cmov or setcc around, so it's not worth emitting a branch. 5827 if (!Cmp || !Cmp->hasOneUse()) 5828 return false; 5829 5830 // If either operand of the select is expensive and only needed on one side 5831 // of the select, we should form a branch. 5832 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5833 sinkSelectOperand(TTI, SI->getFalseValue())) 5834 return true; 5835 5836 return false; 5837 } 5838 5839 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5840 /// false value of \p SI. If the true/false value of \p SI is defined by any 5841 /// select instructions in \p Selects, look through the defining select 5842 /// instruction until the true/false value is not defined in \p Selects. 5843 static Value *getTrueOrFalseValue( 5844 SelectInst *SI, bool isTrue, 5845 const SmallPtrSet<const Instruction *, 2> &Selects) { 5846 Value *V; 5847 5848 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 5849 DefSI = dyn_cast<SelectInst>(V)) { 5850 assert(DefSI->getCondition() == SI->getCondition() && 5851 "The condition of DefSI does not match with SI"); 5852 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 5853 } 5854 return V; 5855 } 5856 5857 /// If we have a SelectInst that will likely profit from branch prediction, 5858 /// turn it into a branch. 5859 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 5860 // If branch conversion isn't desirable, exit early. 5861 if (DisableSelectToBranch || OptSize || !TLI) 5862 return false; 5863 5864 // Find all consecutive select instructions that share the same condition. 5865 SmallVector<SelectInst *, 2> ASI; 5866 ASI.push_back(SI); 5867 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 5868 It != SI->getParent()->end(); ++It) { 5869 SelectInst *I = dyn_cast<SelectInst>(&*It); 5870 if (I && SI->getCondition() == I->getCondition()) { 5871 ASI.push_back(I); 5872 } else { 5873 break; 5874 } 5875 } 5876 5877 SelectInst *LastSI = ASI.back(); 5878 // Increment the current iterator to skip all the rest of select instructions 5879 // because they will be either "not lowered" or "all lowered" to branch. 5880 CurInstIterator = std::next(LastSI->getIterator()); 5881 5882 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 5883 5884 // Can we convert the 'select' to CF ? 5885 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 5886 return false; 5887 5888 TargetLowering::SelectSupportKind SelectKind; 5889 if (VectorCond) 5890 SelectKind = TargetLowering::VectorMaskSelect; 5891 else if (SI->getType()->isVectorTy()) 5892 SelectKind = TargetLowering::ScalarCondVectorVal; 5893 else 5894 SelectKind = TargetLowering::ScalarValSelect; 5895 5896 if (TLI->isSelectSupported(SelectKind) && 5897 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 5898 return false; 5899 5900 ModifiedDT = true; 5901 5902 // Transform a sequence like this: 5903 // start: 5904 // %cmp = cmp uge i32 %a, %b 5905 // %sel = select i1 %cmp, i32 %c, i32 %d 5906 // 5907 // Into: 5908 // start: 5909 // %cmp = cmp uge i32 %a, %b 5910 // br i1 %cmp, label %select.true, label %select.false 5911 // select.true: 5912 // br label %select.end 5913 // select.false: 5914 // br label %select.end 5915 // select.end: 5916 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 5917 // 5918 // In addition, we may sink instructions that produce %c or %d from 5919 // the entry block into the destination(s) of the new branch. 5920 // If the true or false blocks do not contain a sunken instruction, that 5921 // block and its branch may be optimized away. In that case, one side of the 5922 // first branch will point directly to select.end, and the corresponding PHI 5923 // predecessor block will be the start block. 5924 5925 // First, we split the block containing the select into 2 blocks. 5926 BasicBlock *StartBlock = SI->getParent(); 5927 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 5928 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 5929 5930 // Delete the unconditional branch that was just created by the split. 5931 StartBlock->getTerminator()->eraseFromParent(); 5932 5933 // These are the new basic blocks for the conditional branch. 5934 // At least one will become an actual new basic block. 5935 BasicBlock *TrueBlock = nullptr; 5936 BasicBlock *FalseBlock = nullptr; 5937 BranchInst *TrueBranch = nullptr; 5938 BranchInst *FalseBranch = nullptr; 5939 5940 // Sink expensive instructions into the conditional blocks to avoid executing 5941 // them speculatively. 5942 for (SelectInst *SI : ASI) { 5943 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 5944 if (TrueBlock == nullptr) { 5945 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 5946 EndBlock->getParent(), EndBlock); 5947 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 5948 TrueBranch->setDebugLoc(SI->getDebugLoc()); 5949 } 5950 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 5951 TrueInst->moveBefore(TrueBranch); 5952 } 5953 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 5954 if (FalseBlock == nullptr) { 5955 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 5956 EndBlock->getParent(), EndBlock); 5957 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 5958 FalseBranch->setDebugLoc(SI->getDebugLoc()); 5959 } 5960 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 5961 FalseInst->moveBefore(FalseBranch); 5962 } 5963 } 5964 5965 // If there was nothing to sink, then arbitrarily choose the 'false' side 5966 // for a new input value to the PHI. 5967 if (TrueBlock == FalseBlock) { 5968 assert(TrueBlock == nullptr && 5969 "Unexpected basic block transform while optimizing select"); 5970 5971 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 5972 EndBlock->getParent(), EndBlock); 5973 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 5974 FalseBranch->setDebugLoc(SI->getDebugLoc()); 5975 } 5976 5977 // Insert the real conditional branch based on the original condition. 5978 // If we did not create a new block for one of the 'true' or 'false' paths 5979 // of the condition, it means that side of the branch goes to the end block 5980 // directly and the path originates from the start block from the point of 5981 // view of the new PHI. 5982 BasicBlock *TT, *FT; 5983 if (TrueBlock == nullptr) { 5984 TT = EndBlock; 5985 FT = FalseBlock; 5986 TrueBlock = StartBlock; 5987 } else if (FalseBlock == nullptr) { 5988 TT = TrueBlock; 5989 FT = EndBlock; 5990 FalseBlock = StartBlock; 5991 } else { 5992 TT = TrueBlock; 5993 FT = FalseBlock; 5994 } 5995 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 5996 5997 SmallPtrSet<const Instruction *, 2> INS; 5998 INS.insert(ASI.begin(), ASI.end()); 5999 // Use reverse iterator because later select may use the value of the 6000 // earlier select, and we need to propagate value through earlier select 6001 // to get the PHI operand. 6002 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 6003 SelectInst *SI = *It; 6004 // The select itself is replaced with a PHI Node. 6005 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6006 PN->takeName(SI); 6007 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6008 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6009 PN->setDebugLoc(SI->getDebugLoc()); 6010 6011 SI->replaceAllUsesWith(PN); 6012 SI->eraseFromParent(); 6013 INS.erase(SI); 6014 ++NumSelectsExpanded; 6015 } 6016 6017 // Instruct OptimizeBlock to skip to the next block. 6018 CurInstIterator = StartBlock->end(); 6019 return true; 6020 } 6021 6022 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 6023 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 6024 int SplatElem = -1; 6025 for (unsigned i = 0; i < Mask.size(); ++i) { 6026 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 6027 return false; 6028 SplatElem = Mask[i]; 6029 } 6030 6031 return true; 6032 } 6033 6034 /// Some targets have expensive vector shifts if the lanes aren't all the same 6035 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 6036 /// it's often worth sinking a shufflevector splat down to its use so that 6037 /// codegen can spot all lanes are identical. 6038 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6039 BasicBlock *DefBB = SVI->getParent(); 6040 6041 // Only do this xform if variable vector shifts are particularly expensive. 6042 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 6043 return false; 6044 6045 // We only expect better codegen by sinking a shuffle if we can recognise a 6046 // constant splat. 6047 if (!isBroadcastShuffle(SVI)) 6048 return false; 6049 6050 // InsertedShuffles - Only insert a shuffle in each block once. 6051 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 6052 6053 bool MadeChange = false; 6054 for (User *U : SVI->users()) { 6055 Instruction *UI = cast<Instruction>(U); 6056 6057 // Figure out which BB this ext is used in. 6058 BasicBlock *UserBB = UI->getParent(); 6059 if (UserBB == DefBB) continue; 6060 6061 // For now only apply this when the splat is used by a shift instruction. 6062 if (!UI->isShift()) continue; 6063 6064 // Everything checks out, sink the shuffle if the user's block doesn't 6065 // already have a copy. 6066 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 6067 6068 if (!InsertedShuffle) { 6069 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6070 assert(InsertPt != UserBB->end()); 6071 InsertedShuffle = 6072 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 6073 SVI->getOperand(2), "", &*InsertPt); 6074 } 6075 6076 UI->replaceUsesOfWith(SVI, InsertedShuffle); 6077 MadeChange = true; 6078 } 6079 6080 // If we removed all uses, nuke the shuffle. 6081 if (SVI->use_empty()) { 6082 SVI->eraseFromParent(); 6083 MadeChange = true; 6084 } 6085 6086 return MadeChange; 6087 } 6088 6089 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6090 // If the operands of I can be folded into a target instruction together with 6091 // I, duplicate and sink them. 6092 SmallVector<Use *, 4> OpsToSink; 6093 if (!TLI || !TLI->shouldSinkOperands(I, OpsToSink)) 6094 return false; 6095 6096 // OpsToSink can contain multiple uses in a use chain (e.g. 6097 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6098 // uses must come first, which means they are sunk first, temporarily creating 6099 // invalid IR. This will be fixed once their dominated users are sunk and 6100 // updated. 6101 BasicBlock *TargetBB = I->getParent(); 6102 bool Changed = false; 6103 SmallVector<Use *, 4> ToReplace; 6104 for (Use *U : OpsToSink) { 6105 auto *UI = cast<Instruction>(U->get()); 6106 if (UI->getParent() == TargetBB || isa<PHINode>(UI)) 6107 continue; 6108 ToReplace.push_back(U); 6109 } 6110 6111 SmallPtrSet<Instruction *, 4> MaybeDead; 6112 for (Use *U : ToReplace) { 6113 auto *UI = cast<Instruction>(U->get()); 6114 Instruction *NI = UI->clone(); 6115 MaybeDead.insert(UI); 6116 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6117 NI->insertBefore(I); 6118 InsertedInsts.insert(NI); 6119 U->set(NI); 6120 Changed = true; 6121 } 6122 6123 // Remove instructions that are dead after sinking. 6124 for (auto *I : MaybeDead) 6125 if (!I->hasNUsesOrMore(1)) 6126 I->eraseFromParent(); 6127 6128 return Changed; 6129 } 6130 6131 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6132 if (!TLI || !DL) 6133 return false; 6134 6135 Value *Cond = SI->getCondition(); 6136 Type *OldType = Cond->getType(); 6137 LLVMContext &Context = Cond->getContext(); 6138 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 6139 unsigned RegWidth = RegType.getSizeInBits(); 6140 6141 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6142 return false; 6143 6144 // If the register width is greater than the type width, expand the condition 6145 // of the switch instruction and each case constant to the width of the 6146 // register. By widening the type of the switch condition, subsequent 6147 // comparisons (for case comparisons) will not need to be extended to the 6148 // preferred register width, so we will potentially eliminate N-1 extends, 6149 // where N is the number of cases in the switch. 6150 auto *NewType = Type::getIntNTy(Context, RegWidth); 6151 6152 // Zero-extend the switch condition and case constants unless the switch 6153 // condition is a function argument that is already being sign-extended. 6154 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6155 // everything instead. 6156 Instruction::CastOps ExtType = Instruction::ZExt; 6157 if (auto *Arg = dyn_cast<Argument>(Cond)) 6158 if (Arg->hasSExtAttr()) 6159 ExtType = Instruction::SExt; 6160 6161 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 6162 ExtInst->insertBefore(SI); 6163 ExtInst->setDebugLoc(SI->getDebugLoc()); 6164 SI->setCondition(ExtInst); 6165 for (auto Case : SI->cases()) { 6166 APInt NarrowConst = Case.getCaseValue()->getValue(); 6167 APInt WideConst = (ExtType == Instruction::ZExt) ? 6168 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 6169 Case.setValue(ConstantInt::get(Context, WideConst)); 6170 } 6171 6172 return true; 6173 } 6174 6175 6176 namespace { 6177 6178 /// Helper class to promote a scalar operation to a vector one. 6179 /// This class is used to move downward extractelement transition. 6180 /// E.g., 6181 /// a = vector_op <2 x i32> 6182 /// b = extractelement <2 x i32> a, i32 0 6183 /// c = scalar_op b 6184 /// store c 6185 /// 6186 /// => 6187 /// a = vector_op <2 x i32> 6188 /// c = vector_op a (equivalent to scalar_op on the related lane) 6189 /// * d = extractelement <2 x i32> c, i32 0 6190 /// * store d 6191 /// Assuming both extractelement and store can be combine, we get rid of the 6192 /// transition. 6193 class VectorPromoteHelper { 6194 /// DataLayout associated with the current module. 6195 const DataLayout &DL; 6196 6197 /// Used to perform some checks on the legality of vector operations. 6198 const TargetLowering &TLI; 6199 6200 /// Used to estimated the cost of the promoted chain. 6201 const TargetTransformInfo &TTI; 6202 6203 /// The transition being moved downwards. 6204 Instruction *Transition; 6205 6206 /// The sequence of instructions to be promoted. 6207 SmallVector<Instruction *, 4> InstsToBePromoted; 6208 6209 /// Cost of combining a store and an extract. 6210 unsigned StoreExtractCombineCost; 6211 6212 /// Instruction that will be combined with the transition. 6213 Instruction *CombineInst = nullptr; 6214 6215 /// The instruction that represents the current end of the transition. 6216 /// Since we are faking the promotion until we reach the end of the chain 6217 /// of computation, we need a way to get the current end of the transition. 6218 Instruction *getEndOfTransition() const { 6219 if (InstsToBePromoted.empty()) 6220 return Transition; 6221 return InstsToBePromoted.back(); 6222 } 6223 6224 /// Return the index of the original value in the transition. 6225 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 6226 /// c, is at index 0. 6227 unsigned getTransitionOriginalValueIdx() const { 6228 assert(isa<ExtractElementInst>(Transition) && 6229 "Other kind of transitions are not supported yet"); 6230 return 0; 6231 } 6232 6233 /// Return the index of the index in the transition. 6234 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 6235 /// is at index 1. 6236 unsigned getTransitionIdx() const { 6237 assert(isa<ExtractElementInst>(Transition) && 6238 "Other kind of transitions are not supported yet"); 6239 return 1; 6240 } 6241 6242 /// Get the type of the transition. 6243 /// This is the type of the original value. 6244 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 6245 /// transition is <2 x i32>. 6246 Type *getTransitionType() const { 6247 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 6248 } 6249 6250 /// Promote \p ToBePromoted by moving \p Def downward through. 6251 /// I.e., we have the following sequence: 6252 /// Def = Transition <ty1> a to <ty2> 6253 /// b = ToBePromoted <ty2> Def, ... 6254 /// => 6255 /// b = ToBePromoted <ty1> a, ... 6256 /// Def = Transition <ty1> ToBePromoted to <ty2> 6257 void promoteImpl(Instruction *ToBePromoted); 6258 6259 /// Check whether or not it is profitable to promote all the 6260 /// instructions enqueued to be promoted. 6261 bool isProfitableToPromote() { 6262 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 6263 unsigned Index = isa<ConstantInt>(ValIdx) 6264 ? cast<ConstantInt>(ValIdx)->getZExtValue() 6265 : -1; 6266 Type *PromotedType = getTransitionType(); 6267 6268 StoreInst *ST = cast<StoreInst>(CombineInst); 6269 unsigned AS = ST->getPointerAddressSpace(); 6270 unsigned Align = ST->getAlignment(); 6271 // Check if this store is supported. 6272 if (!TLI.allowsMisalignedMemoryAccesses( 6273 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 6274 Align)) { 6275 // If this is not supported, there is no way we can combine 6276 // the extract with the store. 6277 return false; 6278 } 6279 6280 // The scalar chain of computation has to pay for the transition 6281 // scalar to vector. 6282 // The vector chain has to account for the combining cost. 6283 uint64_t ScalarCost = 6284 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 6285 uint64_t VectorCost = StoreExtractCombineCost; 6286 for (const auto &Inst : InstsToBePromoted) { 6287 // Compute the cost. 6288 // By construction, all instructions being promoted are arithmetic ones. 6289 // Moreover, one argument is a constant that can be viewed as a splat 6290 // constant. 6291 Value *Arg0 = Inst->getOperand(0); 6292 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 6293 isa<ConstantFP>(Arg0); 6294 TargetTransformInfo::OperandValueKind Arg0OVK = 6295 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6296 : TargetTransformInfo::OK_AnyValue; 6297 TargetTransformInfo::OperandValueKind Arg1OVK = 6298 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6299 : TargetTransformInfo::OK_AnyValue; 6300 ScalarCost += TTI.getArithmeticInstrCost( 6301 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 6302 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 6303 Arg0OVK, Arg1OVK); 6304 } 6305 LLVM_DEBUG( 6306 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 6307 << ScalarCost << "\nVector: " << VectorCost << '\n'); 6308 return ScalarCost > VectorCost; 6309 } 6310 6311 /// Generate a constant vector with \p Val with the same 6312 /// number of elements as the transition. 6313 /// \p UseSplat defines whether or not \p Val should be replicated 6314 /// across the whole vector. 6315 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 6316 /// otherwise we generate a vector with as many undef as possible: 6317 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 6318 /// used at the index of the extract. 6319 Value *getConstantVector(Constant *Val, bool UseSplat) const { 6320 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 6321 if (!UseSplat) { 6322 // If we cannot determine where the constant must be, we have to 6323 // use a splat constant. 6324 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 6325 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 6326 ExtractIdx = CstVal->getSExtValue(); 6327 else 6328 UseSplat = true; 6329 } 6330 6331 unsigned End = getTransitionType()->getVectorNumElements(); 6332 if (UseSplat) 6333 return ConstantVector::getSplat(End, Val); 6334 6335 SmallVector<Constant *, 4> ConstVec; 6336 UndefValue *UndefVal = UndefValue::get(Val->getType()); 6337 for (unsigned Idx = 0; Idx != End; ++Idx) { 6338 if (Idx == ExtractIdx) 6339 ConstVec.push_back(Val); 6340 else 6341 ConstVec.push_back(UndefVal); 6342 } 6343 return ConstantVector::get(ConstVec); 6344 } 6345 6346 /// Check if promoting to a vector type an operand at \p OperandIdx 6347 /// in \p Use can trigger undefined behavior. 6348 static bool canCauseUndefinedBehavior(const Instruction *Use, 6349 unsigned OperandIdx) { 6350 // This is not safe to introduce undef when the operand is on 6351 // the right hand side of a division-like instruction. 6352 if (OperandIdx != 1) 6353 return false; 6354 switch (Use->getOpcode()) { 6355 default: 6356 return false; 6357 case Instruction::SDiv: 6358 case Instruction::UDiv: 6359 case Instruction::SRem: 6360 case Instruction::URem: 6361 return true; 6362 case Instruction::FDiv: 6363 case Instruction::FRem: 6364 return !Use->hasNoNaNs(); 6365 } 6366 llvm_unreachable(nullptr); 6367 } 6368 6369 public: 6370 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 6371 const TargetTransformInfo &TTI, Instruction *Transition, 6372 unsigned CombineCost) 6373 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 6374 StoreExtractCombineCost(CombineCost) { 6375 assert(Transition && "Do not know how to promote null"); 6376 } 6377 6378 /// Check if we can promote \p ToBePromoted to \p Type. 6379 bool canPromote(const Instruction *ToBePromoted) const { 6380 // We could support CastInst too. 6381 return isa<BinaryOperator>(ToBePromoted); 6382 } 6383 6384 /// Check if it is profitable to promote \p ToBePromoted 6385 /// by moving downward the transition through. 6386 bool shouldPromote(const Instruction *ToBePromoted) const { 6387 // Promote only if all the operands can be statically expanded. 6388 // Indeed, we do not want to introduce any new kind of transitions. 6389 for (const Use &U : ToBePromoted->operands()) { 6390 const Value *Val = U.get(); 6391 if (Val == getEndOfTransition()) { 6392 // If the use is a division and the transition is on the rhs, 6393 // we cannot promote the operation, otherwise we may create a 6394 // division by zero. 6395 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 6396 return false; 6397 continue; 6398 } 6399 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 6400 !isa<ConstantFP>(Val)) 6401 return false; 6402 } 6403 // Check that the resulting operation is legal. 6404 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 6405 if (!ISDOpcode) 6406 return false; 6407 return StressStoreExtract || 6408 TLI.isOperationLegalOrCustom( 6409 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 6410 } 6411 6412 /// Check whether or not \p Use can be combined 6413 /// with the transition. 6414 /// I.e., is it possible to do Use(Transition) => AnotherUse? 6415 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 6416 6417 /// Record \p ToBePromoted as part of the chain to be promoted. 6418 void enqueueForPromotion(Instruction *ToBePromoted) { 6419 InstsToBePromoted.push_back(ToBePromoted); 6420 } 6421 6422 /// Set the instruction that will be combined with the transition. 6423 void recordCombineInstruction(Instruction *ToBeCombined) { 6424 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 6425 CombineInst = ToBeCombined; 6426 } 6427 6428 /// Promote all the instructions enqueued for promotion if it is 6429 /// is profitable. 6430 /// \return True if the promotion happened, false otherwise. 6431 bool promote() { 6432 // Check if there is something to promote. 6433 // Right now, if we do not have anything to combine with, 6434 // we assume the promotion is not profitable. 6435 if (InstsToBePromoted.empty() || !CombineInst) 6436 return false; 6437 6438 // Check cost. 6439 if (!StressStoreExtract && !isProfitableToPromote()) 6440 return false; 6441 6442 // Promote. 6443 for (auto &ToBePromoted : InstsToBePromoted) 6444 promoteImpl(ToBePromoted); 6445 InstsToBePromoted.clear(); 6446 return true; 6447 } 6448 }; 6449 6450 } // end anonymous namespace 6451 6452 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 6453 // At this point, we know that all the operands of ToBePromoted but Def 6454 // can be statically promoted. 6455 // For Def, we need to use its parameter in ToBePromoted: 6456 // b = ToBePromoted ty1 a 6457 // Def = Transition ty1 b to ty2 6458 // Move the transition down. 6459 // 1. Replace all uses of the promoted operation by the transition. 6460 // = ... b => = ... Def. 6461 assert(ToBePromoted->getType() == Transition->getType() && 6462 "The type of the result of the transition does not match " 6463 "the final type"); 6464 ToBePromoted->replaceAllUsesWith(Transition); 6465 // 2. Update the type of the uses. 6466 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 6467 Type *TransitionTy = getTransitionType(); 6468 ToBePromoted->mutateType(TransitionTy); 6469 // 3. Update all the operands of the promoted operation with promoted 6470 // operands. 6471 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 6472 for (Use &U : ToBePromoted->operands()) { 6473 Value *Val = U.get(); 6474 Value *NewVal = nullptr; 6475 if (Val == Transition) 6476 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 6477 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 6478 isa<ConstantFP>(Val)) { 6479 // Use a splat constant if it is not safe to use undef. 6480 NewVal = getConstantVector( 6481 cast<Constant>(Val), 6482 isa<UndefValue>(Val) || 6483 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 6484 } else 6485 llvm_unreachable("Did you modified shouldPromote and forgot to update " 6486 "this?"); 6487 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 6488 } 6489 Transition->moveAfter(ToBePromoted); 6490 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 6491 } 6492 6493 /// Some targets can do store(extractelement) with one instruction. 6494 /// Try to push the extractelement towards the stores when the target 6495 /// has this feature and this is profitable. 6496 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 6497 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 6498 if (DisableStoreExtract || !TLI || 6499 (!StressStoreExtract && 6500 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 6501 Inst->getOperand(1), CombineCost))) 6502 return false; 6503 6504 // At this point we know that Inst is a vector to scalar transition. 6505 // Try to move it down the def-use chain, until: 6506 // - We can combine the transition with its single use 6507 // => we got rid of the transition. 6508 // - We escape the current basic block 6509 // => we would need to check that we are moving it at a cheaper place and 6510 // we do not do that for now. 6511 BasicBlock *Parent = Inst->getParent(); 6512 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 6513 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 6514 // If the transition has more than one use, assume this is not going to be 6515 // beneficial. 6516 while (Inst->hasOneUse()) { 6517 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 6518 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 6519 6520 if (ToBePromoted->getParent() != Parent) { 6521 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 6522 << ToBePromoted->getParent()->getName() 6523 << ") than the transition (" << Parent->getName() 6524 << ").\n"); 6525 return false; 6526 } 6527 6528 if (VPH.canCombine(ToBePromoted)) { 6529 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 6530 << "will be combined with: " << *ToBePromoted << '\n'); 6531 VPH.recordCombineInstruction(ToBePromoted); 6532 bool Changed = VPH.promote(); 6533 NumStoreExtractExposed += Changed; 6534 return Changed; 6535 } 6536 6537 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 6538 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 6539 return false; 6540 6541 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 6542 6543 VPH.enqueueForPromotion(ToBePromoted); 6544 Inst = ToBePromoted; 6545 } 6546 return false; 6547 } 6548 6549 /// For the instruction sequence of store below, F and I values 6550 /// are bundled together as an i64 value before being stored into memory. 6551 /// Sometimes it is more efficient to generate separate stores for F and I, 6552 /// which can remove the bitwise instructions or sink them to colder places. 6553 /// 6554 /// (store (or (zext (bitcast F to i32) to i64), 6555 /// (shl (zext I to i64), 32)), addr) --> 6556 /// (store F, addr) and (store I, addr+4) 6557 /// 6558 /// Similarly, splitting for other merged store can also be beneficial, like: 6559 /// For pair of {i32, i32}, i64 store --> two i32 stores. 6560 /// For pair of {i32, i16}, i64 store --> two i32 stores. 6561 /// For pair of {i16, i16}, i32 store --> two i16 stores. 6562 /// For pair of {i16, i8}, i32 store --> two i16 stores. 6563 /// For pair of {i8, i8}, i16 store --> two i8 stores. 6564 /// 6565 /// We allow each target to determine specifically which kind of splitting is 6566 /// supported. 6567 /// 6568 /// The store patterns are commonly seen from the simple code snippet below 6569 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 6570 /// void goo(const std::pair<int, float> &); 6571 /// hoo() { 6572 /// ... 6573 /// goo(std::make_pair(tmp, ftmp)); 6574 /// ... 6575 /// } 6576 /// 6577 /// Although we already have similar splitting in DAG Combine, we duplicate 6578 /// it in CodeGenPrepare to catch the case in which pattern is across 6579 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6580 /// during code expansion. 6581 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6582 const TargetLowering &TLI) { 6583 // Handle simple but common cases only. 6584 Type *StoreType = SI.getValueOperand()->getType(); 6585 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || 6586 DL.getTypeSizeInBits(StoreType) == 0) 6587 return false; 6588 6589 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6590 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 6591 if (DL.getTypeStoreSizeInBits(SplitStoreType) != 6592 DL.getTypeSizeInBits(SplitStoreType)) 6593 return false; 6594 6595 // Match the following patterns: 6596 // (store (or (zext LValue to i64), 6597 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6598 // or 6599 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6600 // (zext LValue to i64), 6601 // Expect both operands of OR and the first operand of SHL have only 6602 // one use. 6603 Value *LValue, *HValue; 6604 if (!match(SI.getValueOperand(), 6605 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6606 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6607 m_SpecificInt(HalfValBitSize)))))) 6608 return false; 6609 6610 // Check LValue and HValue are int with size less or equal than 32. 6611 if (!LValue->getType()->isIntegerTy() || 6612 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6613 !HValue->getType()->isIntegerTy() || 6614 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6615 return false; 6616 6617 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6618 // as the input of target query. 6619 auto *LBC = dyn_cast<BitCastInst>(LValue); 6620 auto *HBC = dyn_cast<BitCastInst>(HValue); 6621 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6622 : EVT::getEVT(LValue->getType()); 6623 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6624 : EVT::getEVT(HValue->getType()); 6625 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6626 return false; 6627 6628 // Start to split store. 6629 IRBuilder<> Builder(SI.getContext()); 6630 Builder.SetInsertPoint(&SI); 6631 6632 // If LValue/HValue is a bitcast in another BB, create a new one in current 6633 // BB so it may be merged with the splitted stores by dag combiner. 6634 if (LBC && LBC->getParent() != SI.getParent()) 6635 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6636 if (HBC && HBC->getParent() != SI.getParent()) 6637 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6638 6639 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 6640 auto CreateSplitStore = [&](Value *V, bool Upper) { 6641 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6642 Value *Addr = Builder.CreateBitCast( 6643 SI.getOperand(1), 6644 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6645 if ((IsLE && Upper) || (!IsLE && !Upper)) 6646 Addr = Builder.CreateGEP( 6647 SplitStoreType, Addr, 6648 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6649 Builder.CreateAlignedStore( 6650 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 6651 }; 6652 6653 CreateSplitStore(LValue, false); 6654 CreateSplitStore(HValue, true); 6655 6656 // Delete the old store. 6657 SI.eraseFromParent(); 6658 return true; 6659 } 6660 6661 // Return true if the GEP has two operands, the first operand is of a sequential 6662 // type, and the second operand is a constant. 6663 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6664 gep_type_iterator I = gep_type_begin(*GEP); 6665 return GEP->getNumOperands() == 2 && 6666 I.isSequential() && 6667 isa<ConstantInt>(GEP->getOperand(1)); 6668 } 6669 6670 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6671 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6672 // reducing liveness interference across those edges benefits global register 6673 // allocation. Currently handles only certain cases. 6674 // 6675 // For example, unmerge %GEPI and %UGEPI as below. 6676 // 6677 // ---------- BEFORE ---------- 6678 // SrcBlock: 6679 // ... 6680 // %GEPIOp = ... 6681 // ... 6682 // %GEPI = gep %GEPIOp, Idx 6683 // ... 6684 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6685 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6686 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6687 // %UGEPI) 6688 // 6689 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6690 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6691 // ... 6692 // 6693 // DstBi: 6694 // ... 6695 // %UGEPI = gep %GEPIOp, UIdx 6696 // ... 6697 // --------------------------- 6698 // 6699 // ---------- AFTER ---------- 6700 // SrcBlock: 6701 // ... (same as above) 6702 // (* %GEPI is still alive on the indirectbr edges) 6703 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6704 // unmerging) 6705 // ... 6706 // 6707 // DstBi: 6708 // ... 6709 // %UGEPI = gep %GEPI, (UIdx-Idx) 6710 // ... 6711 // --------------------------- 6712 // 6713 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6714 // no longer alive on them. 6715 // 6716 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6717 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6718 // not to disable further simplications and optimizations as a result of GEP 6719 // merging. 6720 // 6721 // Note this unmerging may increase the length of the data flow critical path 6722 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6723 // between the register pressure and the length of data-flow critical 6724 // path. Restricting this to the uncommon IndirectBr case would minimize the 6725 // impact of potentially longer critical path, if any, and the impact on compile 6726 // time. 6727 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6728 const TargetTransformInfo *TTI) { 6729 BasicBlock *SrcBlock = GEPI->getParent(); 6730 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 6731 // (non-IndirectBr) cases exit early here. 6732 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 6733 return false; 6734 // Check that GEPI is a simple gep with a single constant index. 6735 if (!GEPSequentialConstIndexed(GEPI)) 6736 return false; 6737 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 6738 // Check that GEPI is a cheap one. 6739 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 6740 > TargetTransformInfo::TCC_Basic) 6741 return false; 6742 Value *GEPIOp = GEPI->getOperand(0); 6743 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 6744 if (!isa<Instruction>(GEPIOp)) 6745 return false; 6746 auto *GEPIOpI = cast<Instruction>(GEPIOp); 6747 if (GEPIOpI->getParent() != SrcBlock) 6748 return false; 6749 // Check that GEP is used outside the block, meaning it's alive on the 6750 // IndirectBr edge(s). 6751 if (find_if(GEPI->users(), [&](User *Usr) { 6752 if (auto *I = dyn_cast<Instruction>(Usr)) { 6753 if (I->getParent() != SrcBlock) { 6754 return true; 6755 } 6756 } 6757 return false; 6758 }) == GEPI->users().end()) 6759 return false; 6760 // The second elements of the GEP chains to be unmerged. 6761 std::vector<GetElementPtrInst *> UGEPIs; 6762 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 6763 // on IndirectBr edges. 6764 for (User *Usr : GEPIOp->users()) { 6765 if (Usr == GEPI) continue; 6766 // Check if Usr is an Instruction. If not, give up. 6767 if (!isa<Instruction>(Usr)) 6768 return false; 6769 auto *UI = cast<Instruction>(Usr); 6770 // Check if Usr in the same block as GEPIOp, which is fine, skip. 6771 if (UI->getParent() == SrcBlock) 6772 continue; 6773 // Check if Usr is a GEP. If not, give up. 6774 if (!isa<GetElementPtrInst>(Usr)) 6775 return false; 6776 auto *UGEPI = cast<GetElementPtrInst>(Usr); 6777 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 6778 // the pointer operand to it. If so, record it in the vector. If not, give 6779 // up. 6780 if (!GEPSequentialConstIndexed(UGEPI)) 6781 return false; 6782 if (UGEPI->getOperand(0) != GEPIOp) 6783 return false; 6784 if (GEPIIdx->getType() != 6785 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 6786 return false; 6787 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6788 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 6789 > TargetTransformInfo::TCC_Basic) 6790 return false; 6791 UGEPIs.push_back(UGEPI); 6792 } 6793 if (UGEPIs.size() == 0) 6794 return false; 6795 // Check the materializing cost of (Uidx-Idx). 6796 for (GetElementPtrInst *UGEPI : UGEPIs) { 6797 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6798 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 6799 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 6800 if (ImmCost > TargetTransformInfo::TCC_Basic) 6801 return false; 6802 } 6803 // Now unmerge between GEPI and UGEPIs. 6804 for (GetElementPtrInst *UGEPI : UGEPIs) { 6805 UGEPI->setOperand(0, GEPI); 6806 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6807 Constant *NewUGEPIIdx = 6808 ConstantInt::get(GEPIIdx->getType(), 6809 UGEPIIdx->getValue() - GEPIIdx->getValue()); 6810 UGEPI->setOperand(1, NewUGEPIIdx); 6811 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 6812 // inbounds to avoid UB. 6813 if (!GEPI->isInBounds()) { 6814 UGEPI->setIsInBounds(false); 6815 } 6816 } 6817 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 6818 // alive on IndirectBr edges). 6819 assert(find_if(GEPIOp->users(), [&](User *Usr) { 6820 return cast<Instruction>(Usr)->getParent() != SrcBlock; 6821 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 6822 return true; 6823 } 6824 6825 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 6826 // Bail out if we inserted the instruction to prevent optimizations from 6827 // stepping on each other's toes. 6828 if (InsertedInsts.count(I)) 6829 return false; 6830 6831 if (PHINode *P = dyn_cast<PHINode>(I)) { 6832 // It is possible for very late stage optimizations (such as SimplifyCFG) 6833 // to introduce PHI nodes too late to be cleaned up. If we detect such a 6834 // trivial PHI, go ahead and zap it here. 6835 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 6836 P->replaceAllUsesWith(V); 6837 P->eraseFromParent(); 6838 ++NumPHIsElim; 6839 return true; 6840 } 6841 return false; 6842 } 6843 6844 if (CastInst *CI = dyn_cast<CastInst>(I)) { 6845 // If the source of the cast is a constant, then this should have 6846 // already been constant folded. The only reason NOT to constant fold 6847 // it is if something (e.g. LSR) was careful to place the constant 6848 // evaluation in a block other than then one that uses it (e.g. to hoist 6849 // the address of globals out of a loop). If this is the case, we don't 6850 // want to forward-subst the cast. 6851 if (isa<Constant>(CI->getOperand(0))) 6852 return false; 6853 6854 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 6855 return true; 6856 6857 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 6858 /// Sink a zext or sext into its user blocks if the target type doesn't 6859 /// fit in one register 6860 if (TLI && 6861 TLI->getTypeAction(CI->getContext(), 6862 TLI->getValueType(*DL, CI->getType())) == 6863 TargetLowering::TypeExpandInteger) { 6864 return SinkCast(CI); 6865 } else { 6866 bool MadeChange = optimizeExt(I); 6867 return MadeChange | optimizeExtUses(I); 6868 } 6869 } 6870 return false; 6871 } 6872 6873 if (auto *Cmp = dyn_cast<CmpInst>(I)) 6874 if (TLI && optimizeCmp(Cmp, *TLI, *DL, ModifiedDT)) 6875 return true; 6876 6877 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6878 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6879 if (TLI) { 6880 bool Modified = optimizeLoadExt(LI); 6881 unsigned AS = LI->getPointerAddressSpace(); 6882 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 6883 return Modified; 6884 } 6885 return false; 6886 } 6887 6888 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 6889 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 6890 return true; 6891 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6892 if (TLI) { 6893 unsigned AS = SI->getPointerAddressSpace(); 6894 return optimizeMemoryInst(I, SI->getOperand(1), 6895 SI->getOperand(0)->getType(), AS); 6896 } 6897 return false; 6898 } 6899 6900 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 6901 unsigned AS = RMW->getPointerAddressSpace(); 6902 return optimizeMemoryInst(I, RMW->getPointerOperand(), 6903 RMW->getType(), AS); 6904 } 6905 6906 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 6907 unsigned AS = CmpX->getPointerAddressSpace(); 6908 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 6909 CmpX->getCompareOperand()->getType(), AS); 6910 } 6911 6912 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 6913 6914 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 6915 EnableAndCmpSinking && TLI) 6916 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 6917 6918 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 6919 BinOp->getOpcode() == Instruction::LShr)) { 6920 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 6921 if (TLI && CI && TLI->hasExtractBitsInsn()) 6922 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 6923 6924 return false; 6925 } 6926 6927 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 6928 if (GEPI->hasAllZeroIndices()) { 6929 /// The GEP operand must be a pointer, so must its result -> BitCast 6930 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 6931 GEPI->getName(), GEPI); 6932 NC->setDebugLoc(GEPI->getDebugLoc()); 6933 GEPI->replaceAllUsesWith(NC); 6934 GEPI->eraseFromParent(); 6935 ++NumGEPsElim; 6936 optimizeInst(NC, ModifiedDT); 6937 return true; 6938 } 6939 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 6940 return true; 6941 } 6942 return false; 6943 } 6944 6945 if (tryToSinkFreeOperands(I)) 6946 return true; 6947 6948 if (CallInst *CI = dyn_cast<CallInst>(I)) 6949 return optimizeCallInst(CI, ModifiedDT); 6950 6951 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 6952 return optimizeSelectInst(SI); 6953 6954 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 6955 return optimizeShuffleVectorInst(SVI); 6956 6957 if (auto *Switch = dyn_cast<SwitchInst>(I)) 6958 return optimizeSwitchInst(Switch); 6959 6960 if (isa<ExtractElementInst>(I)) 6961 return optimizeExtractElementInst(I); 6962 6963 return false; 6964 } 6965 6966 /// Given an OR instruction, check to see if this is a bitreverse 6967 /// idiom. If so, insert the new intrinsic and return true. 6968 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 6969 const TargetLowering &TLI) { 6970 if (!I.getType()->isIntegerTy() || 6971 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 6972 TLI.getValueType(DL, I.getType(), true))) 6973 return false; 6974 6975 SmallVector<Instruction*, 4> Insts; 6976 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 6977 return false; 6978 Instruction *LastInst = Insts.back(); 6979 I.replaceAllUsesWith(LastInst); 6980 RecursivelyDeleteTriviallyDeadInstructions(&I); 6981 return true; 6982 } 6983 6984 // In this pass we look for GEP and cast instructions that are used 6985 // across basic blocks and rewrite them to improve basic-block-at-a-time 6986 // selection. 6987 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 6988 SunkAddrs.clear(); 6989 bool MadeChange = false; 6990 6991 CurInstIterator = BB.begin(); 6992 while (CurInstIterator != BB.end()) { 6993 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 6994 if (ModifiedDT) 6995 return true; 6996 } 6997 6998 bool MadeBitReverse = true; 6999 while (TLI && MadeBitReverse) { 7000 MadeBitReverse = false; 7001 for (auto &I : reverse(BB)) { 7002 if (makeBitReverse(I, *DL, *TLI)) { 7003 MadeBitReverse = MadeChange = true; 7004 ModifiedDT = true; 7005 break; 7006 } 7007 } 7008 } 7009 MadeChange |= dupRetToEnableTailCallOpts(&BB); 7010 7011 return MadeChange; 7012 } 7013 7014 // llvm.dbg.value is far away from the value then iSel may not be able 7015 // handle it properly. iSel will drop llvm.dbg.value if it can not 7016 // find a node corresponding to the value. 7017 bool CodeGenPrepare::placeDbgValues(Function &F) { 7018 bool MadeChange = false; 7019 for (BasicBlock &BB : F) { 7020 Instruction *PrevNonDbgInst = nullptr; 7021 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 7022 Instruction *Insn = &*BI++; 7023 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 7024 // Leave dbg.values that refer to an alloca alone. These 7025 // intrinsics describe the address of a variable (= the alloca) 7026 // being taken. They should not be moved next to the alloca 7027 // (and to the beginning of the scope), but rather stay close to 7028 // where said address is used. 7029 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 7030 PrevNonDbgInst = Insn; 7031 continue; 7032 } 7033 7034 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 7035 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 7036 // If VI is a phi in a block with an EHPad terminator, we can't insert 7037 // after it. 7038 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 7039 continue; 7040 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 7041 << *DVI << ' ' << *VI); 7042 DVI->removeFromParent(); 7043 if (isa<PHINode>(VI)) 7044 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 7045 else 7046 DVI->insertAfter(VI); 7047 MadeChange = true; 7048 ++NumDbgValueMoved; 7049 } 7050 } 7051 } 7052 return MadeChange; 7053 } 7054 7055 /// Scale down both weights to fit into uint32_t. 7056 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 7057 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 7058 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 7059 NewTrue = NewTrue / Scale; 7060 NewFalse = NewFalse / Scale; 7061 } 7062 7063 /// Some targets prefer to split a conditional branch like: 7064 /// \code 7065 /// %0 = icmp ne i32 %a, 0 7066 /// %1 = icmp ne i32 %b, 0 7067 /// %or.cond = or i1 %0, %1 7068 /// br i1 %or.cond, label %TrueBB, label %FalseBB 7069 /// \endcode 7070 /// into multiple branch instructions like: 7071 /// \code 7072 /// bb1: 7073 /// %0 = icmp ne i32 %a, 0 7074 /// br i1 %0, label %TrueBB, label %bb2 7075 /// bb2: 7076 /// %1 = icmp ne i32 %b, 0 7077 /// br i1 %1, label %TrueBB, label %FalseBB 7078 /// \endcode 7079 /// This usually allows instruction selection to do even further optimizations 7080 /// and combine the compare with the branch instruction. Currently this is 7081 /// applied for targets which have "cheap" jump instructions. 7082 /// 7083 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 7084 /// 7085 bool CodeGenPrepare::splitBranchCondition(Function &F) { 7086 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 7087 return false; 7088 7089 bool MadeChange = false; 7090 for (auto &BB : F) { 7091 // Does this BB end with the following? 7092 // %cond1 = icmp|fcmp|binary instruction ... 7093 // %cond2 = icmp|fcmp|binary instruction ... 7094 // %cond.or = or|and i1 %cond1, cond2 7095 // br i1 %cond.or label %dest1, label %dest2" 7096 BinaryOperator *LogicOp; 7097 BasicBlock *TBB, *FBB; 7098 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 7099 continue; 7100 7101 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 7102 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 7103 continue; 7104 7105 unsigned Opc; 7106 Value *Cond1, *Cond2; 7107 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 7108 m_OneUse(m_Value(Cond2))))) 7109 Opc = Instruction::And; 7110 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 7111 m_OneUse(m_Value(Cond2))))) 7112 Opc = Instruction::Or; 7113 else 7114 continue; 7115 7116 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 7117 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 7118 continue; 7119 7120 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 7121 7122 // Create a new BB. 7123 auto TmpBB = 7124 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 7125 BB.getParent(), BB.getNextNode()); 7126 7127 // Update original basic block by using the first condition directly by the 7128 // branch instruction and removing the no longer needed and/or instruction. 7129 Br1->setCondition(Cond1); 7130 LogicOp->eraseFromParent(); 7131 7132 // Depending on the condition we have to either replace the true or the 7133 // false successor of the original branch instruction. 7134 if (Opc == Instruction::And) 7135 Br1->setSuccessor(0, TmpBB); 7136 else 7137 Br1->setSuccessor(1, TmpBB); 7138 7139 // Fill in the new basic block. 7140 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 7141 if (auto *I = dyn_cast<Instruction>(Cond2)) { 7142 I->removeFromParent(); 7143 I->insertBefore(Br2); 7144 } 7145 7146 // Update PHI nodes in both successors. The original BB needs to be 7147 // replaced in one successor's PHI nodes, because the branch comes now from 7148 // the newly generated BB (NewBB). In the other successor we need to add one 7149 // incoming edge to the PHI nodes, because both branch instructions target 7150 // now the same successor. Depending on the original branch condition 7151 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 7152 // we perform the correct update for the PHI nodes. 7153 // This doesn't change the successor order of the just created branch 7154 // instruction (or any other instruction). 7155 if (Opc == Instruction::Or) 7156 std::swap(TBB, FBB); 7157 7158 // Replace the old BB with the new BB. 7159 for (PHINode &PN : TBB->phis()) { 7160 int i; 7161 while ((i = PN.getBasicBlockIndex(&BB)) >= 0) 7162 PN.setIncomingBlock(i, TmpBB); 7163 } 7164 7165 // Add another incoming edge form the new BB. 7166 for (PHINode &PN : FBB->phis()) { 7167 auto *Val = PN.getIncomingValueForBlock(&BB); 7168 PN.addIncoming(Val, TmpBB); 7169 } 7170 7171 // Update the branch weights (from SelectionDAGBuilder:: 7172 // FindMergedConditions). 7173 if (Opc == Instruction::Or) { 7174 // Codegen X | Y as: 7175 // BB1: 7176 // jmp_if_X TBB 7177 // jmp TmpBB 7178 // TmpBB: 7179 // jmp_if_Y TBB 7180 // jmp FBB 7181 // 7182 7183 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 7184 // The requirement is that 7185 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 7186 // = TrueProb for original BB. 7187 // Assuming the original weights are A and B, one choice is to set BB1's 7188 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 7189 // assumes that 7190 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 7191 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 7192 // TmpBB, but the math is more complicated. 7193 uint64_t TrueWeight, FalseWeight; 7194 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7195 uint64_t NewTrueWeight = TrueWeight; 7196 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 7197 scaleWeights(NewTrueWeight, NewFalseWeight); 7198 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7199 .createBranchWeights(TrueWeight, FalseWeight)); 7200 7201 NewTrueWeight = TrueWeight; 7202 NewFalseWeight = 2 * FalseWeight; 7203 scaleWeights(NewTrueWeight, NewFalseWeight); 7204 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7205 .createBranchWeights(TrueWeight, FalseWeight)); 7206 } 7207 } else { 7208 // Codegen X & Y as: 7209 // BB1: 7210 // jmp_if_X TmpBB 7211 // jmp FBB 7212 // TmpBB: 7213 // jmp_if_Y TBB 7214 // jmp FBB 7215 // 7216 // This requires creation of TmpBB after CurBB. 7217 7218 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 7219 // The requirement is that 7220 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 7221 // = FalseProb for original BB. 7222 // Assuming the original weights are A and B, one choice is to set BB1's 7223 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 7224 // assumes that 7225 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 7226 uint64_t TrueWeight, FalseWeight; 7227 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7228 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 7229 uint64_t NewFalseWeight = FalseWeight; 7230 scaleWeights(NewTrueWeight, NewFalseWeight); 7231 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7232 .createBranchWeights(TrueWeight, FalseWeight)); 7233 7234 NewTrueWeight = 2 * TrueWeight; 7235 NewFalseWeight = FalseWeight; 7236 scaleWeights(NewTrueWeight, NewFalseWeight); 7237 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7238 .createBranchWeights(TrueWeight, FalseWeight)); 7239 } 7240 } 7241 7242 // Note: No point in getting fancy here, since the DT info is never 7243 // available to CodeGenPrepare. 7244 ModifiedDT = true; 7245 7246 MadeChange = true; 7247 7248 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 7249 TmpBB->dump()); 7250 } 7251 return MadeChange; 7252 } 7253