1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/Passes.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/ProfileSummaryInfo.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/CodeGen/Analysis.h" 28 #include "llvm/IR/CallSite.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/GetElementPtrTypeIterator.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/InlineAsm.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/MDBuilder.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/IR/Statepoint.h" 42 #include "llvm/IR/ValueHandle.h" 43 #include "llvm/IR/ValueMap.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/BranchProbability.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Target/TargetLowering.h" 50 #include "llvm/Target/TargetSubtargetInfo.h" 51 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 52 #include "llvm/Transforms/Utils/BuildLibCalls.h" 53 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 54 #include "llvm/Transforms/Utils/Local.h" 55 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 56 using namespace llvm; 57 using namespace llvm::PatternMatch; 58 59 #define DEBUG_TYPE "codegenprepare" 60 61 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 62 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 63 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 64 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 65 "sunken Cmps"); 66 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 67 "of sunken Casts"); 68 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 69 "computations were sunk"); 70 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 71 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 72 STATISTIC(NumAndsAdded, 73 "Number of and mask instructions added to form ext loads"); 74 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 75 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 76 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 77 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 78 STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches"); 79 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 80 81 static cl::opt<bool> DisableBranchOpts( 82 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 83 cl::desc("Disable branch optimizations in CodeGenPrepare")); 84 85 static cl::opt<bool> 86 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 87 cl::desc("Disable GC optimizations in CodeGenPrepare")); 88 89 static cl::opt<bool> DisableSelectToBranch( 90 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 91 cl::desc("Disable select to branch conversion.")); 92 93 static cl::opt<bool> AddrSinkUsingGEPs( 94 "addr-sink-using-gep", cl::Hidden, cl::init(false), 95 cl::desc("Address sinking in CGP using GEPs.")); 96 97 static cl::opt<bool> EnableAndCmpSinking( 98 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 99 cl::desc("Enable sinkinig and/cmp into branches.")); 100 101 static cl::opt<bool> DisableStoreExtract( 102 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 103 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 104 105 static cl::opt<bool> StressStoreExtract( 106 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 107 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 108 109 static cl::opt<bool> DisableExtLdPromotion( 110 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 111 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 112 "CodeGenPrepare")); 113 114 static cl::opt<bool> StressExtLdPromotion( 115 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 116 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 117 "optimization in CodeGenPrepare")); 118 119 static cl::opt<bool> DisablePreheaderProtect( 120 "disable-preheader-prot", cl::Hidden, cl::init(false), 121 cl::desc("Disable protection against removing loop preheaders")); 122 123 static cl::opt<bool> ProfileGuidedSectionPrefix( 124 "profile-guided-section-prefix", cl::Hidden, cl::init(true), 125 cl::desc("Use profile info to add section prefix for hot/cold functions")); 126 127 namespace { 128 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; 129 typedef PointerIntPair<Type *, 1, bool> TypeIsSExt; 130 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy; 131 class TypePromotionTransaction; 132 133 class CodeGenPrepare : public FunctionPass { 134 const TargetMachine *TM; 135 const TargetLowering *TLI; 136 const TargetTransformInfo *TTI; 137 const TargetLibraryInfo *TLInfo; 138 const LoopInfo *LI; 139 140 /// As we scan instructions optimizing them, this is the next instruction 141 /// to optimize. Transforms that can invalidate this should update it. 142 BasicBlock::iterator CurInstIterator; 143 144 /// Keeps track of non-local addresses that have been sunk into a block. 145 /// This allows us to avoid inserting duplicate code for blocks with 146 /// multiple load/stores of the same address. 147 ValueMap<Value*, Value*> SunkAddrs; 148 149 /// Keeps track of all instructions inserted for the current function. 150 SetOfInstrs InsertedInsts; 151 /// Keeps track of the type of the related instruction before their 152 /// promotion for the current function. 153 InstrToOrigTy PromotedInsts; 154 155 /// True if CFG is modified in any way. 156 bool ModifiedDT; 157 158 /// True if optimizing for size. 159 bool OptSize; 160 161 /// DataLayout for the Function being processed. 162 const DataLayout *DL; 163 164 public: 165 static char ID; // Pass identification, replacement for typeid 166 explicit CodeGenPrepare(const TargetMachine *TM = nullptr) 167 : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr), DL(nullptr) { 168 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 169 } 170 bool runOnFunction(Function &F) override; 171 172 StringRef getPassName() const override { return "CodeGen Prepare"; } 173 174 void getAnalysisUsage(AnalysisUsage &AU) const override { 175 // FIXME: When we can selectively preserve passes, preserve the domtree. 176 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 177 AU.addRequired<TargetLibraryInfoWrapperPass>(); 178 AU.addRequired<TargetTransformInfoWrapperPass>(); 179 AU.addRequired<LoopInfoWrapperPass>(); 180 } 181 182 private: 183 bool eliminateFallThrough(Function &F); 184 bool eliminateMostlyEmptyBlocks(Function &F); 185 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 186 void eliminateMostlyEmptyBlock(BasicBlock *BB); 187 bool optimizeBlock(BasicBlock &BB, bool& ModifiedDT); 188 bool optimizeInst(Instruction *I, bool& ModifiedDT); 189 bool optimizeMemoryInst(Instruction *I, Value *Addr, 190 Type *AccessTy, unsigned AS); 191 bool optimizeInlineAsmInst(CallInst *CS); 192 bool optimizeCallInst(CallInst *CI, bool& ModifiedDT); 193 bool moveExtToFormExtLoad(Instruction *&I); 194 bool optimizeExtUses(Instruction *I); 195 bool optimizeLoadExt(LoadInst *I); 196 bool optimizeSelectInst(SelectInst *SI); 197 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); 198 bool optimizeSwitchInst(SwitchInst *CI); 199 bool optimizeExtractElementInst(Instruction *Inst); 200 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 201 bool placeDbgValues(Function &F); 202 bool sinkAndCmp(Function &F); 203 bool extLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI, 204 Instruction *&Inst, 205 const SmallVectorImpl<Instruction *> &Exts, 206 unsigned CreatedInstCost); 207 bool splitBranchCondition(Function &F); 208 bool simplifyOffsetableRelocate(Instruction &I); 209 void stripInvariantGroupMetadata(Instruction &I); 210 }; 211 } 212 213 char CodeGenPrepare::ID = 0; 214 INITIALIZE_TM_PASS_BEGIN(CodeGenPrepare, "codegenprepare", 215 "Optimize for code generation", false, false) 216 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 217 INITIALIZE_TM_PASS_END(CodeGenPrepare, "codegenprepare", 218 "Optimize for code generation", false, false) 219 220 FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) { 221 return new CodeGenPrepare(TM); 222 } 223 224 bool CodeGenPrepare::runOnFunction(Function &F) { 225 if (skipFunction(F)) 226 return false; 227 228 DL = &F.getParent()->getDataLayout(); 229 230 bool EverMadeChange = false; 231 // Clear per function information. 232 InsertedInsts.clear(); 233 PromotedInsts.clear(); 234 235 ModifiedDT = false; 236 if (TM) 237 TLI = TM->getSubtargetImpl(F)->getTargetLowering(); 238 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 239 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 240 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 241 OptSize = F.optForSize(); 242 243 if (ProfileGuidedSectionPrefix) { 244 ProfileSummaryInfo *PSI = 245 getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 246 if (PSI->isFunctionEntryHot(&F)) 247 F.setSectionPrefix(".hot"); 248 else if (PSI->isFunctionEntryCold(&F)) 249 F.setSectionPrefix(".cold"); 250 } 251 252 /// This optimization identifies DIV instructions that can be 253 /// profitably bypassed and carried out with a shorter, faster divide. 254 if (!OptSize && TLI && TLI->isSlowDivBypassed()) { 255 const DenseMap<unsigned int, unsigned int> &BypassWidths = 256 TLI->getBypassSlowDivWidths(); 257 BasicBlock* BB = &*F.begin(); 258 while (BB != nullptr) { 259 // bypassSlowDivision may create new BBs, but we don't want to reapply the 260 // optimization to those blocks. 261 BasicBlock* Next = BB->getNextNode(); 262 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 263 BB = Next; 264 } 265 } 266 267 // Eliminate blocks that contain only PHI nodes and an 268 // unconditional branch. 269 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 270 271 // llvm.dbg.value is far away from the value then iSel may not be able 272 // handle it properly. iSel will drop llvm.dbg.value if it can not 273 // find a node corresponding to the value. 274 EverMadeChange |= placeDbgValues(F); 275 276 // If there is a mask, compare against zero, and branch that can be combined 277 // into a single target instruction, push the mask and compare into branch 278 // users. Do this before OptimizeBlock -> OptimizeInst -> 279 // OptimizeCmpExpression, which perturbs the pattern being searched for. 280 if (!DisableBranchOpts) { 281 EverMadeChange |= sinkAndCmp(F); 282 EverMadeChange |= splitBranchCondition(F); 283 } 284 285 bool MadeChange = true; 286 while (MadeChange) { 287 MadeChange = false; 288 for (Function::iterator I = F.begin(); I != F.end(); ) { 289 BasicBlock *BB = &*I++; 290 bool ModifiedDTOnIteration = false; 291 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 292 293 // Restart BB iteration if the dominator tree of the Function was changed 294 if (ModifiedDTOnIteration) 295 break; 296 } 297 EverMadeChange |= MadeChange; 298 } 299 300 SunkAddrs.clear(); 301 302 if (!DisableBranchOpts) { 303 MadeChange = false; 304 SmallPtrSet<BasicBlock*, 8> WorkList; 305 for (BasicBlock &BB : F) { 306 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 307 MadeChange |= ConstantFoldTerminator(&BB, true); 308 if (!MadeChange) continue; 309 310 for (SmallVectorImpl<BasicBlock*>::iterator 311 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 312 if (pred_begin(*II) == pred_end(*II)) 313 WorkList.insert(*II); 314 } 315 316 // Delete the dead blocks and any of their dead successors. 317 MadeChange |= !WorkList.empty(); 318 while (!WorkList.empty()) { 319 BasicBlock *BB = *WorkList.begin(); 320 WorkList.erase(BB); 321 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 322 323 DeleteDeadBlock(BB); 324 325 for (SmallVectorImpl<BasicBlock*>::iterator 326 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 327 if (pred_begin(*II) == pred_end(*II)) 328 WorkList.insert(*II); 329 } 330 331 // Merge pairs of basic blocks with unconditional branches, connected by 332 // a single edge. 333 if (EverMadeChange || MadeChange) 334 MadeChange |= eliminateFallThrough(F); 335 336 EverMadeChange |= MadeChange; 337 } 338 339 if (!DisableGCOpts) { 340 SmallVector<Instruction *, 2> Statepoints; 341 for (BasicBlock &BB : F) 342 for (Instruction &I : BB) 343 if (isStatepoint(I)) 344 Statepoints.push_back(&I); 345 for (auto &I : Statepoints) 346 EverMadeChange |= simplifyOffsetableRelocate(*I); 347 } 348 349 return EverMadeChange; 350 } 351 352 /// Merge basic blocks which are connected by a single edge, where one of the 353 /// basic blocks has a single successor pointing to the other basic block, 354 /// which has a single predecessor. 355 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 356 bool Changed = false; 357 // Scan all of the blocks in the function, except for the entry block. 358 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 359 BasicBlock *BB = &*I++; 360 // If the destination block has a single pred, then this is a trivial 361 // edge, just collapse it. 362 BasicBlock *SinglePred = BB->getSinglePredecessor(); 363 364 // Don't merge if BB's address is taken. 365 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 366 367 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 368 if (Term && !Term->isConditional()) { 369 Changed = true; 370 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 371 // Remember if SinglePred was the entry block of the function. 372 // If so, we will need to move BB back to the entry position. 373 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 374 MergeBasicBlockIntoOnlyPred(BB, nullptr); 375 376 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 377 BB->moveBefore(&BB->getParent()->getEntryBlock()); 378 379 // We have erased a block. Update the iterator. 380 I = BB->getIterator(); 381 } 382 } 383 return Changed; 384 } 385 386 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 387 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 388 /// edges in ways that are non-optimal for isel. Start by eliminating these 389 /// blocks so we can split them the way we want them. 390 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 391 SmallPtrSet<BasicBlock *, 16> Preheaders; 392 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 393 while (!LoopList.empty()) { 394 Loop *L = LoopList.pop_back_val(); 395 LoopList.insert(LoopList.end(), L->begin(), L->end()); 396 if (BasicBlock *Preheader = L->getLoopPreheader()) 397 Preheaders.insert(Preheader); 398 } 399 400 bool MadeChange = false; 401 // Note that this intentionally skips the entry block. 402 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 403 BasicBlock *BB = &*I++; 404 405 // If this block doesn't end with an uncond branch, ignore it. 406 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 407 if (!BI || !BI->isUnconditional()) 408 continue; 409 410 // If the instruction before the branch (skipping debug info) isn't a phi 411 // node, then other stuff is happening here. 412 BasicBlock::iterator BBI = BI->getIterator(); 413 if (BBI != BB->begin()) { 414 --BBI; 415 while (isa<DbgInfoIntrinsic>(BBI)) { 416 if (BBI == BB->begin()) 417 break; 418 --BBI; 419 } 420 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 421 continue; 422 } 423 424 // Do not break infinite loops. 425 BasicBlock *DestBB = BI->getSuccessor(0); 426 if (DestBB == BB) 427 continue; 428 429 if (!canMergeBlocks(BB, DestBB)) 430 continue; 431 432 // Do not delete loop preheaders if doing so would create a critical edge. 433 // Loop preheaders can be good locations to spill registers. If the 434 // preheader is deleted and we create a critical edge, registers may be 435 // spilled in the loop body instead. 436 if (!DisablePreheaderProtect && Preheaders.count(BB) && 437 !(BB->getSinglePredecessor() && BB->getSinglePredecessor()->getSingleSuccessor())) 438 continue; 439 440 eliminateMostlyEmptyBlock(BB); 441 MadeChange = true; 442 } 443 return MadeChange; 444 } 445 446 /// Return true if we can merge BB into DestBB if there is a single 447 /// unconditional branch between them, and BB contains no other non-phi 448 /// instructions. 449 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 450 const BasicBlock *DestBB) const { 451 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 452 // the successor. If there are more complex condition (e.g. preheaders), 453 // don't mess around with them. 454 BasicBlock::const_iterator BBI = BB->begin(); 455 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 456 for (const User *U : PN->users()) { 457 const Instruction *UI = cast<Instruction>(U); 458 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 459 return false; 460 // If User is inside DestBB block and it is a PHINode then check 461 // incoming value. If incoming value is not from BB then this is 462 // a complex condition (e.g. preheaders) we want to avoid here. 463 if (UI->getParent() == DestBB) { 464 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 465 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 466 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 467 if (Insn && Insn->getParent() == BB && 468 Insn->getParent() != UPN->getIncomingBlock(I)) 469 return false; 470 } 471 } 472 } 473 } 474 475 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 476 // and DestBB may have conflicting incoming values for the block. If so, we 477 // can't merge the block. 478 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 479 if (!DestBBPN) return true; // no conflict. 480 481 // Collect the preds of BB. 482 SmallPtrSet<const BasicBlock*, 16> BBPreds; 483 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 484 // It is faster to get preds from a PHI than with pred_iterator. 485 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 486 BBPreds.insert(BBPN->getIncomingBlock(i)); 487 } else { 488 BBPreds.insert(pred_begin(BB), pred_end(BB)); 489 } 490 491 // Walk the preds of DestBB. 492 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 493 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 494 if (BBPreds.count(Pred)) { // Common predecessor? 495 BBI = DestBB->begin(); 496 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 497 const Value *V1 = PN->getIncomingValueForBlock(Pred); 498 const Value *V2 = PN->getIncomingValueForBlock(BB); 499 500 // If V2 is a phi node in BB, look up what the mapped value will be. 501 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 502 if (V2PN->getParent() == BB) 503 V2 = V2PN->getIncomingValueForBlock(Pred); 504 505 // If there is a conflict, bail out. 506 if (V1 != V2) return false; 507 } 508 } 509 } 510 511 return true; 512 } 513 514 515 /// Eliminate a basic block that has only phi's and an unconditional branch in 516 /// it. 517 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 518 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 519 BasicBlock *DestBB = BI->getSuccessor(0); 520 521 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 522 523 // If the destination block has a single pred, then this is a trivial edge, 524 // just collapse it. 525 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 526 if (SinglePred != DestBB) { 527 // Remember if SinglePred was the entry block of the function. If so, we 528 // will need to move BB back to the entry position. 529 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 530 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 531 532 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 533 BB->moveBefore(&BB->getParent()->getEntryBlock()); 534 535 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 536 return; 537 } 538 } 539 540 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 541 // to handle the new incoming edges it is about to have. 542 PHINode *PN; 543 for (BasicBlock::iterator BBI = DestBB->begin(); 544 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 545 // Remove the incoming value for BB, and remember it. 546 Value *InVal = PN->removeIncomingValue(BB, false); 547 548 // Two options: either the InVal is a phi node defined in BB or it is some 549 // value that dominates BB. 550 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 551 if (InValPhi && InValPhi->getParent() == BB) { 552 // Add all of the input values of the input PHI as inputs of this phi. 553 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 554 PN->addIncoming(InValPhi->getIncomingValue(i), 555 InValPhi->getIncomingBlock(i)); 556 } else { 557 // Otherwise, add one instance of the dominating value for each edge that 558 // we will be adding. 559 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 560 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 561 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 562 } else { 563 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 564 PN->addIncoming(InVal, *PI); 565 } 566 } 567 } 568 569 // The PHIs are now updated, change everything that refers to BB to use 570 // DestBB and remove BB. 571 BB->replaceAllUsesWith(DestBB); 572 BB->eraseFromParent(); 573 ++NumBlocksElim; 574 575 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 576 } 577 578 // Computes a map of base pointer relocation instructions to corresponding 579 // derived pointer relocation instructions given a vector of all relocate calls 580 static void computeBaseDerivedRelocateMap( 581 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 582 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 583 &RelocateInstMap) { 584 // Collect information in two maps: one primarily for locating the base object 585 // while filling the second map; the second map is the final structure holding 586 // a mapping between Base and corresponding Derived relocate calls 587 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 588 for (auto *ThisRelocate : AllRelocateCalls) { 589 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 590 ThisRelocate->getDerivedPtrIndex()); 591 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 592 } 593 for (auto &Item : RelocateIdxMap) { 594 std::pair<unsigned, unsigned> Key = Item.first; 595 if (Key.first == Key.second) 596 // Base relocation: nothing to insert 597 continue; 598 599 GCRelocateInst *I = Item.second; 600 auto BaseKey = std::make_pair(Key.first, Key.first); 601 602 // We're iterating over RelocateIdxMap so we cannot modify it. 603 auto MaybeBase = RelocateIdxMap.find(BaseKey); 604 if (MaybeBase == RelocateIdxMap.end()) 605 // TODO: We might want to insert a new base object relocate and gep off 606 // that, if there are enough derived object relocates. 607 continue; 608 609 RelocateInstMap[MaybeBase->second].push_back(I); 610 } 611 } 612 613 // Accepts a GEP and extracts the operands into a vector provided they're all 614 // small integer constants 615 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 616 SmallVectorImpl<Value *> &OffsetV) { 617 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 618 // Only accept small constant integer operands 619 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 620 if (!Op || Op->getZExtValue() > 20) 621 return false; 622 } 623 624 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 625 OffsetV.push_back(GEP->getOperand(i)); 626 return true; 627 } 628 629 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 630 // replace, computes a replacement, and affects it. 631 static bool 632 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 633 const SmallVectorImpl<GCRelocateInst *> &Targets) { 634 bool MadeChange = false; 635 for (GCRelocateInst *ToReplace : Targets) { 636 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 637 "Not relocating a derived object of the original base object"); 638 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 639 // A duplicate relocate call. TODO: coalesce duplicates. 640 continue; 641 } 642 643 if (RelocatedBase->getParent() != ToReplace->getParent()) { 644 // Base and derived relocates are in different basic blocks. 645 // In this case transform is only valid when base dominates derived 646 // relocate. However it would be too expensive to check dominance 647 // for each such relocate, so we skip the whole transformation. 648 continue; 649 } 650 651 Value *Base = ToReplace->getBasePtr(); 652 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 653 if (!Derived || Derived->getPointerOperand() != Base) 654 continue; 655 656 SmallVector<Value *, 2> OffsetV; 657 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 658 continue; 659 660 // Create a Builder and replace the target callsite with a gep 661 assert(RelocatedBase->getNextNode() && 662 "Should always have one since it's not a terminator"); 663 664 // Insert after RelocatedBase 665 IRBuilder<> Builder(RelocatedBase->getNextNode()); 666 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 667 668 // If gc_relocate does not match the actual type, cast it to the right type. 669 // In theory, there must be a bitcast after gc_relocate if the type does not 670 // match, and we should reuse it to get the derived pointer. But it could be 671 // cases like this: 672 // bb1: 673 // ... 674 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 675 // br label %merge 676 // 677 // bb2: 678 // ... 679 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 680 // br label %merge 681 // 682 // merge: 683 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 684 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 685 // 686 // In this case, we can not find the bitcast any more. So we insert a new bitcast 687 // no matter there is already one or not. In this way, we can handle all cases, and 688 // the extra bitcast should be optimized away in later passes. 689 Value *ActualRelocatedBase = RelocatedBase; 690 if (RelocatedBase->getType() != Base->getType()) { 691 ActualRelocatedBase = 692 Builder.CreateBitCast(RelocatedBase, Base->getType()); 693 } 694 Value *Replacement = Builder.CreateGEP( 695 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 696 Replacement->takeName(ToReplace); 697 // If the newly generated derived pointer's type does not match the original derived 698 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 699 Value *ActualReplacement = Replacement; 700 if (Replacement->getType() != ToReplace->getType()) { 701 ActualReplacement = 702 Builder.CreateBitCast(Replacement, ToReplace->getType()); 703 } 704 ToReplace->replaceAllUsesWith(ActualReplacement); 705 ToReplace->eraseFromParent(); 706 707 MadeChange = true; 708 } 709 return MadeChange; 710 } 711 712 // Turns this: 713 // 714 // %base = ... 715 // %ptr = gep %base + 15 716 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 717 // %base' = relocate(%tok, i32 4, i32 4) 718 // %ptr' = relocate(%tok, i32 4, i32 5) 719 // %val = load %ptr' 720 // 721 // into this: 722 // 723 // %base = ... 724 // %ptr = gep %base + 15 725 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 726 // %base' = gc.relocate(%tok, i32 4, i32 4) 727 // %ptr' = gep %base' + 15 728 // %val = load %ptr' 729 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 730 bool MadeChange = false; 731 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 732 733 for (auto *U : I.users()) 734 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 735 // Collect all the relocate calls associated with a statepoint 736 AllRelocateCalls.push_back(Relocate); 737 738 // We need atleast one base pointer relocation + one derived pointer 739 // relocation to mangle 740 if (AllRelocateCalls.size() < 2) 741 return false; 742 743 // RelocateInstMap is a mapping from the base relocate instruction to the 744 // corresponding derived relocate instructions 745 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 746 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 747 if (RelocateInstMap.empty()) 748 return false; 749 750 for (auto &Item : RelocateInstMap) 751 // Item.first is the RelocatedBase to offset against 752 // Item.second is the vector of Targets to replace 753 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 754 return MadeChange; 755 } 756 757 /// SinkCast - Sink the specified cast instruction into its user blocks 758 static bool SinkCast(CastInst *CI) { 759 BasicBlock *DefBB = CI->getParent(); 760 761 /// InsertedCasts - Only insert a cast in each block once. 762 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 763 764 bool MadeChange = false; 765 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 766 UI != E; ) { 767 Use &TheUse = UI.getUse(); 768 Instruction *User = cast<Instruction>(*UI); 769 770 // Figure out which BB this cast is used in. For PHI's this is the 771 // appropriate predecessor block. 772 BasicBlock *UserBB = User->getParent(); 773 if (PHINode *PN = dyn_cast<PHINode>(User)) { 774 UserBB = PN->getIncomingBlock(TheUse); 775 } 776 777 // Preincrement use iterator so we don't invalidate it. 778 ++UI; 779 780 // The first insertion point of a block containing an EH pad is after the 781 // pad. If the pad is the user, we cannot sink the cast past the pad. 782 if (User->isEHPad()) 783 continue; 784 785 // If the block selected to receive the cast is an EH pad that does not 786 // allow non-PHI instructions before the terminator, we can't sink the 787 // cast. 788 if (UserBB->getTerminator()->isEHPad()) 789 continue; 790 791 // If this user is in the same block as the cast, don't change the cast. 792 if (UserBB == DefBB) continue; 793 794 // If we have already inserted a cast into this block, use it. 795 CastInst *&InsertedCast = InsertedCasts[UserBB]; 796 797 if (!InsertedCast) { 798 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 799 assert(InsertPt != UserBB->end()); 800 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 801 CI->getType(), "", &*InsertPt); 802 } 803 804 // Replace a use of the cast with a use of the new cast. 805 TheUse = InsertedCast; 806 MadeChange = true; 807 ++NumCastUses; 808 } 809 810 // If we removed all uses, nuke the cast. 811 if (CI->use_empty()) { 812 CI->eraseFromParent(); 813 MadeChange = true; 814 } 815 816 return MadeChange; 817 } 818 819 /// If the specified cast instruction is a noop copy (e.g. it's casting from 820 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 821 /// reduce the number of virtual registers that must be created and coalesced. 822 /// 823 /// Return true if any changes are made. 824 /// 825 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 826 const DataLayout &DL) { 827 // If this is a noop copy, 828 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 829 EVT DstVT = TLI.getValueType(DL, CI->getType()); 830 831 // This is an fp<->int conversion? 832 if (SrcVT.isInteger() != DstVT.isInteger()) 833 return false; 834 835 // If this is an extension, it will be a zero or sign extension, which 836 // isn't a noop. 837 if (SrcVT.bitsLT(DstVT)) return false; 838 839 // If these values will be promoted, find out what they will be promoted 840 // to. This helps us consider truncates on PPC as noop copies when they 841 // are. 842 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 843 TargetLowering::TypePromoteInteger) 844 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 845 if (TLI.getTypeAction(CI->getContext(), DstVT) == 846 TargetLowering::TypePromoteInteger) 847 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 848 849 // If, after promotion, these are the same types, this is a noop copy. 850 if (SrcVT != DstVT) 851 return false; 852 853 return SinkCast(CI); 854 } 855 856 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 857 /// possible. 858 /// 859 /// Return true if any changes were made. 860 static bool CombineUAddWithOverflow(CmpInst *CI) { 861 Value *A, *B; 862 Instruction *AddI; 863 if (!match(CI, 864 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 865 return false; 866 867 Type *Ty = AddI->getType(); 868 if (!isa<IntegerType>(Ty)) 869 return false; 870 871 // We don't want to move around uses of condition values this late, so we we 872 // check if it is legal to create the call to the intrinsic in the basic 873 // block containing the icmp: 874 875 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 876 return false; 877 878 #ifndef NDEBUG 879 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 880 // for now: 881 if (AddI->hasOneUse()) 882 assert(*AddI->user_begin() == CI && "expected!"); 883 #endif 884 885 Module *M = CI->getModule(); 886 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 887 888 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 889 890 auto *UAddWithOverflow = 891 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 892 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 893 auto *Overflow = 894 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 895 896 CI->replaceAllUsesWith(Overflow); 897 AddI->replaceAllUsesWith(UAdd); 898 CI->eraseFromParent(); 899 AddI->eraseFromParent(); 900 return true; 901 } 902 903 /// Sink the given CmpInst into user blocks to reduce the number of virtual 904 /// registers that must be created and coalesced. This is a clear win except on 905 /// targets with multiple condition code registers (PowerPC), where it might 906 /// lose; some adjustment may be wanted there. 907 /// 908 /// Return true if any changes are made. 909 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 910 BasicBlock *DefBB = CI->getParent(); 911 912 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 913 if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI)) 914 return false; 915 916 // Only insert a cmp in each block once. 917 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 918 919 bool MadeChange = false; 920 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 921 UI != E; ) { 922 Use &TheUse = UI.getUse(); 923 Instruction *User = cast<Instruction>(*UI); 924 925 // Preincrement use iterator so we don't invalidate it. 926 ++UI; 927 928 // Don't bother for PHI nodes. 929 if (isa<PHINode>(User)) 930 continue; 931 932 // Figure out which BB this cmp is used in. 933 BasicBlock *UserBB = User->getParent(); 934 935 // If this user is in the same block as the cmp, don't change the cmp. 936 if (UserBB == DefBB) continue; 937 938 // If we have already inserted a cmp into this block, use it. 939 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 940 941 if (!InsertedCmp) { 942 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 943 assert(InsertPt != UserBB->end()); 944 InsertedCmp = 945 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 946 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 947 // Propagate the debug info. 948 InsertedCmp->setDebugLoc(CI->getDebugLoc()); 949 } 950 951 // Replace a use of the cmp with a use of the new cmp. 952 TheUse = InsertedCmp; 953 MadeChange = true; 954 ++NumCmpUses; 955 } 956 957 // If we removed all uses, nuke the cmp. 958 if (CI->use_empty()) { 959 CI->eraseFromParent(); 960 MadeChange = true; 961 } 962 963 return MadeChange; 964 } 965 966 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 967 if (SinkCmpExpression(CI, TLI)) 968 return true; 969 970 if (CombineUAddWithOverflow(CI)) 971 return true; 972 973 return false; 974 } 975 976 /// Check if the candidates could be combined with a shift instruction, which 977 /// includes: 978 /// 1. Truncate instruction 979 /// 2. And instruction and the imm is a mask of the low bits: 980 /// imm & (imm+1) == 0 981 static bool isExtractBitsCandidateUse(Instruction *User) { 982 if (!isa<TruncInst>(User)) { 983 if (User->getOpcode() != Instruction::And || 984 !isa<ConstantInt>(User->getOperand(1))) 985 return false; 986 987 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 988 989 if ((Cimm & (Cimm + 1)).getBoolValue()) 990 return false; 991 } 992 return true; 993 } 994 995 /// Sink both shift and truncate instruction to the use of truncate's BB. 996 static bool 997 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 998 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 999 const TargetLowering &TLI, const DataLayout &DL) { 1000 BasicBlock *UserBB = User->getParent(); 1001 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1002 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1003 bool MadeChange = false; 1004 1005 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1006 TruncE = TruncI->user_end(); 1007 TruncUI != TruncE;) { 1008 1009 Use &TruncTheUse = TruncUI.getUse(); 1010 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1011 // Preincrement use iterator so we don't invalidate it. 1012 1013 ++TruncUI; 1014 1015 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1016 if (!ISDOpcode) 1017 continue; 1018 1019 // If the use is actually a legal node, there will not be an 1020 // implicit truncate. 1021 // FIXME: always querying the result type is just an 1022 // approximation; some nodes' legality is determined by the 1023 // operand or other means. There's no good way to find out though. 1024 if (TLI.isOperationLegalOrCustom( 1025 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1026 continue; 1027 1028 // Don't bother for PHI nodes. 1029 if (isa<PHINode>(TruncUser)) 1030 continue; 1031 1032 BasicBlock *TruncUserBB = TruncUser->getParent(); 1033 1034 if (UserBB == TruncUserBB) 1035 continue; 1036 1037 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1038 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1039 1040 if (!InsertedShift && !InsertedTrunc) { 1041 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1042 assert(InsertPt != TruncUserBB->end()); 1043 // Sink the shift 1044 if (ShiftI->getOpcode() == Instruction::AShr) 1045 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1046 "", &*InsertPt); 1047 else 1048 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1049 "", &*InsertPt); 1050 1051 // Sink the trunc 1052 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1053 TruncInsertPt++; 1054 assert(TruncInsertPt != TruncUserBB->end()); 1055 1056 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1057 TruncI->getType(), "", &*TruncInsertPt); 1058 1059 MadeChange = true; 1060 1061 TruncTheUse = InsertedTrunc; 1062 } 1063 } 1064 return MadeChange; 1065 } 1066 1067 /// Sink the shift *right* instruction into user blocks if the uses could 1068 /// potentially be combined with this shift instruction and generate BitExtract 1069 /// instruction. It will only be applied if the architecture supports BitExtract 1070 /// instruction. Here is an example: 1071 /// BB1: 1072 /// %x.extract.shift = lshr i64 %arg1, 32 1073 /// BB2: 1074 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1075 /// ==> 1076 /// 1077 /// BB2: 1078 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1079 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1080 /// 1081 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1082 /// instruction. 1083 /// Return true if any changes are made. 1084 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1085 const TargetLowering &TLI, 1086 const DataLayout &DL) { 1087 BasicBlock *DefBB = ShiftI->getParent(); 1088 1089 /// Only insert instructions in each block once. 1090 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1091 1092 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1093 1094 bool MadeChange = false; 1095 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1096 UI != E;) { 1097 Use &TheUse = UI.getUse(); 1098 Instruction *User = cast<Instruction>(*UI); 1099 // Preincrement use iterator so we don't invalidate it. 1100 ++UI; 1101 1102 // Don't bother for PHI nodes. 1103 if (isa<PHINode>(User)) 1104 continue; 1105 1106 if (!isExtractBitsCandidateUse(User)) 1107 continue; 1108 1109 BasicBlock *UserBB = User->getParent(); 1110 1111 if (UserBB == DefBB) { 1112 // If the shift and truncate instruction are in the same BB. The use of 1113 // the truncate(TruncUse) may still introduce another truncate if not 1114 // legal. In this case, we would like to sink both shift and truncate 1115 // instruction to the BB of TruncUse. 1116 // for example: 1117 // BB1: 1118 // i64 shift.result = lshr i64 opnd, imm 1119 // trunc.result = trunc shift.result to i16 1120 // 1121 // BB2: 1122 // ----> We will have an implicit truncate here if the architecture does 1123 // not have i16 compare. 1124 // cmp i16 trunc.result, opnd2 1125 // 1126 if (isa<TruncInst>(User) && shiftIsLegal 1127 // If the type of the truncate is legal, no trucate will be 1128 // introduced in other basic blocks. 1129 && 1130 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1131 MadeChange = 1132 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1133 1134 continue; 1135 } 1136 // If we have already inserted a shift into this block, use it. 1137 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1138 1139 if (!InsertedShift) { 1140 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1141 assert(InsertPt != UserBB->end()); 1142 1143 if (ShiftI->getOpcode() == Instruction::AShr) 1144 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1145 "", &*InsertPt); 1146 else 1147 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1148 "", &*InsertPt); 1149 1150 MadeChange = true; 1151 } 1152 1153 // Replace a use of the shift with a use of the new shift. 1154 TheUse = InsertedShift; 1155 } 1156 1157 // If we removed all uses, nuke the shift. 1158 if (ShiftI->use_empty()) 1159 ShiftI->eraseFromParent(); 1160 1161 return MadeChange; 1162 } 1163 1164 // Translate a masked load intrinsic like 1165 // <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align, 1166 // <16 x i1> %mask, <16 x i32> %passthru) 1167 // to a chain of basic blocks, with loading element one-by-one if 1168 // the appropriate mask bit is set 1169 // 1170 // %1 = bitcast i8* %addr to i32* 1171 // %2 = extractelement <16 x i1> %mask, i32 0 1172 // %3 = icmp eq i1 %2, true 1173 // br i1 %3, label %cond.load, label %else 1174 // 1175 //cond.load: ; preds = %0 1176 // %4 = getelementptr i32* %1, i32 0 1177 // %5 = load i32* %4 1178 // %6 = insertelement <16 x i32> undef, i32 %5, i32 0 1179 // br label %else 1180 // 1181 //else: ; preds = %0, %cond.load 1182 // %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ] 1183 // %7 = extractelement <16 x i1> %mask, i32 1 1184 // %8 = icmp eq i1 %7, true 1185 // br i1 %8, label %cond.load1, label %else2 1186 // 1187 //cond.load1: ; preds = %else 1188 // %9 = getelementptr i32* %1, i32 1 1189 // %10 = load i32* %9 1190 // %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1 1191 // br label %else2 1192 // 1193 //else2: ; preds = %else, %cond.load1 1194 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1195 // %12 = extractelement <16 x i1> %mask, i32 2 1196 // %13 = icmp eq i1 %12, true 1197 // br i1 %13, label %cond.load4, label %else5 1198 // 1199 static void scalarizeMaskedLoad(CallInst *CI) { 1200 Value *Ptr = CI->getArgOperand(0); 1201 Value *Alignment = CI->getArgOperand(1); 1202 Value *Mask = CI->getArgOperand(2); 1203 Value *Src0 = CI->getArgOperand(3); 1204 1205 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1206 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1207 assert(VecType && "Unexpected return type of masked load intrinsic"); 1208 1209 Type *EltTy = CI->getType()->getVectorElementType(); 1210 1211 IRBuilder<> Builder(CI->getContext()); 1212 Instruction *InsertPt = CI; 1213 BasicBlock *IfBlock = CI->getParent(); 1214 BasicBlock *CondBlock = nullptr; 1215 BasicBlock *PrevIfBlock = CI->getParent(); 1216 1217 Builder.SetInsertPoint(InsertPt); 1218 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1219 1220 // Short-cut if the mask is all-true. 1221 bool IsAllOnesMask = isa<Constant>(Mask) && 1222 cast<Constant>(Mask)->isAllOnesValue(); 1223 1224 if (IsAllOnesMask) { 1225 Value *NewI = Builder.CreateAlignedLoad(Ptr, AlignVal); 1226 CI->replaceAllUsesWith(NewI); 1227 CI->eraseFromParent(); 1228 return; 1229 } 1230 1231 // Adjust alignment for the scalar instruction. 1232 AlignVal = std::min(AlignVal, VecType->getScalarSizeInBits()/8); 1233 // Bitcast %addr fron i8* to EltTy* 1234 Type *NewPtrType = 1235 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1236 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1237 unsigned VectorWidth = VecType->getNumElements(); 1238 1239 Value *UndefVal = UndefValue::get(VecType); 1240 1241 // The result vector 1242 Value *VResult = UndefVal; 1243 1244 if (isa<ConstantVector>(Mask)) { 1245 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1246 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1247 continue; 1248 Value *Gep = 1249 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1250 LoadInst* Load = Builder.CreateAlignedLoad(Gep, AlignVal); 1251 VResult = Builder.CreateInsertElement(VResult, Load, 1252 Builder.getInt32(Idx)); 1253 } 1254 Value *NewI = Builder.CreateSelect(Mask, VResult, Src0); 1255 CI->replaceAllUsesWith(NewI); 1256 CI->eraseFromParent(); 1257 return; 1258 } 1259 1260 PHINode *Phi = nullptr; 1261 Value *PrevPhi = UndefVal; 1262 1263 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1264 1265 // Fill the "else" block, created in the previous iteration 1266 // 1267 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1268 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1269 // %to_load = icmp eq i1 %mask_1, true 1270 // br i1 %to_load, label %cond.load, label %else 1271 // 1272 if (Idx > 0) { 1273 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1274 Phi->addIncoming(VResult, CondBlock); 1275 Phi->addIncoming(PrevPhi, PrevIfBlock); 1276 PrevPhi = Phi; 1277 VResult = Phi; 1278 } 1279 1280 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1281 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1282 ConstantInt::get(Predicate->getType(), 1)); 1283 1284 // Create "cond" block 1285 // 1286 // %EltAddr = getelementptr i32* %1, i32 0 1287 // %Elt = load i32* %EltAddr 1288 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1289 // 1290 CondBlock = IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.load"); 1291 Builder.SetInsertPoint(InsertPt); 1292 1293 Value *Gep = 1294 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1295 LoadInst *Load = Builder.CreateAlignedLoad(Gep, AlignVal); 1296 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx)); 1297 1298 // Create "else" block, fill it in the next iteration 1299 BasicBlock *NewIfBlock = 1300 CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); 1301 Builder.SetInsertPoint(InsertPt); 1302 Instruction *OldBr = IfBlock->getTerminator(); 1303 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1304 OldBr->eraseFromParent(); 1305 PrevIfBlock = IfBlock; 1306 IfBlock = NewIfBlock; 1307 } 1308 1309 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1310 Phi->addIncoming(VResult, CondBlock); 1311 Phi->addIncoming(PrevPhi, PrevIfBlock); 1312 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1313 CI->replaceAllUsesWith(NewI); 1314 CI->eraseFromParent(); 1315 } 1316 1317 // Translate a masked store intrinsic, like 1318 // void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align, 1319 // <16 x i1> %mask) 1320 // to a chain of basic blocks, that stores element one-by-one if 1321 // the appropriate mask bit is set 1322 // 1323 // %1 = bitcast i8* %addr to i32* 1324 // %2 = extractelement <16 x i1> %mask, i32 0 1325 // %3 = icmp eq i1 %2, true 1326 // br i1 %3, label %cond.store, label %else 1327 // 1328 // cond.store: ; preds = %0 1329 // %4 = extractelement <16 x i32> %val, i32 0 1330 // %5 = getelementptr i32* %1, i32 0 1331 // store i32 %4, i32* %5 1332 // br label %else 1333 // 1334 // else: ; preds = %0, %cond.store 1335 // %6 = extractelement <16 x i1> %mask, i32 1 1336 // %7 = icmp eq i1 %6, true 1337 // br i1 %7, label %cond.store1, label %else2 1338 // 1339 // cond.store1: ; preds = %else 1340 // %8 = extractelement <16 x i32> %val, i32 1 1341 // %9 = getelementptr i32* %1, i32 1 1342 // store i32 %8, i32* %9 1343 // br label %else2 1344 // . . . 1345 static void scalarizeMaskedStore(CallInst *CI) { 1346 Value *Src = CI->getArgOperand(0); 1347 Value *Ptr = CI->getArgOperand(1); 1348 Value *Alignment = CI->getArgOperand(2); 1349 Value *Mask = CI->getArgOperand(3); 1350 1351 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1352 VectorType *VecType = dyn_cast<VectorType>(Src->getType()); 1353 assert(VecType && "Unexpected data type in masked store intrinsic"); 1354 1355 Type *EltTy = VecType->getElementType(); 1356 1357 IRBuilder<> Builder(CI->getContext()); 1358 Instruction *InsertPt = CI; 1359 BasicBlock *IfBlock = CI->getParent(); 1360 Builder.SetInsertPoint(InsertPt); 1361 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1362 1363 // Short-cut if the mask is all-true. 1364 bool IsAllOnesMask = isa<Constant>(Mask) && 1365 cast<Constant>(Mask)->isAllOnesValue(); 1366 1367 if (IsAllOnesMask) { 1368 Builder.CreateAlignedStore(Src, Ptr, AlignVal); 1369 CI->eraseFromParent(); 1370 return; 1371 } 1372 1373 // Adjust alignment for the scalar instruction. 1374 AlignVal = std::max(AlignVal, VecType->getScalarSizeInBits()/8); 1375 // Bitcast %addr fron i8* to EltTy* 1376 Type *NewPtrType = 1377 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1378 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1379 unsigned VectorWidth = VecType->getNumElements(); 1380 1381 if (isa<ConstantVector>(Mask)) { 1382 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1383 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1384 continue; 1385 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1386 Value *Gep = 1387 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1388 Builder.CreateAlignedStore(OneElt, Gep, AlignVal); 1389 } 1390 CI->eraseFromParent(); 1391 return; 1392 } 1393 1394 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1395 1396 // Fill the "else" block, created in the previous iteration 1397 // 1398 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1399 // %to_store = icmp eq i1 %mask_1, true 1400 // br i1 %to_store, label %cond.store, label %else 1401 // 1402 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1403 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1404 ConstantInt::get(Predicate->getType(), 1)); 1405 1406 // Create "cond" block 1407 // 1408 // %OneElt = extractelement <16 x i32> %Src, i32 Idx 1409 // %EltAddr = getelementptr i32* %1, i32 0 1410 // %store i32 %OneElt, i32* %EltAddr 1411 // 1412 BasicBlock *CondBlock = 1413 IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.store"); 1414 Builder.SetInsertPoint(InsertPt); 1415 1416 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1417 Value *Gep = 1418 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1419 Builder.CreateAlignedStore(OneElt, Gep, AlignVal); 1420 1421 // Create "else" block, fill it in the next iteration 1422 BasicBlock *NewIfBlock = 1423 CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); 1424 Builder.SetInsertPoint(InsertPt); 1425 Instruction *OldBr = IfBlock->getTerminator(); 1426 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1427 OldBr->eraseFromParent(); 1428 IfBlock = NewIfBlock; 1429 } 1430 CI->eraseFromParent(); 1431 } 1432 1433 // Translate a masked gather intrinsic like 1434 // <16 x i32 > @llvm.masked.gather.v16i32( <16 x i32*> %Ptrs, i32 4, 1435 // <16 x i1> %Mask, <16 x i32> %Src) 1436 // to a chain of basic blocks, with loading element one-by-one if 1437 // the appropriate mask bit is set 1438 // 1439 // % Ptrs = getelementptr i32, i32* %base, <16 x i64> %ind 1440 // % Mask0 = extractelement <16 x i1> %Mask, i32 0 1441 // % ToLoad0 = icmp eq i1 % Mask0, true 1442 // br i1 % ToLoad0, label %cond.load, label %else 1443 // 1444 // cond.load: 1445 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0 1446 // % Load0 = load i32, i32* % Ptr0, align 4 1447 // % Res0 = insertelement <16 x i32> undef, i32 % Load0, i32 0 1448 // br label %else 1449 // 1450 // else: 1451 // %res.phi.else = phi <16 x i32>[% Res0, %cond.load], [undef, % 0] 1452 // % Mask1 = extractelement <16 x i1> %Mask, i32 1 1453 // % ToLoad1 = icmp eq i1 % Mask1, true 1454 // br i1 % ToLoad1, label %cond.load1, label %else2 1455 // 1456 // cond.load1: 1457 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1458 // % Load1 = load i32, i32* % Ptr1, align 4 1459 // % Res1 = insertelement <16 x i32> %res.phi.else, i32 % Load1, i32 1 1460 // br label %else2 1461 // . . . 1462 // % Result = select <16 x i1> %Mask, <16 x i32> %res.phi.select, <16 x i32> %Src 1463 // ret <16 x i32> %Result 1464 static void scalarizeMaskedGather(CallInst *CI) { 1465 Value *Ptrs = CI->getArgOperand(0); 1466 Value *Alignment = CI->getArgOperand(1); 1467 Value *Mask = CI->getArgOperand(2); 1468 Value *Src0 = CI->getArgOperand(3); 1469 1470 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1471 1472 assert(VecType && "Unexpected return type of masked load intrinsic"); 1473 1474 IRBuilder<> Builder(CI->getContext()); 1475 Instruction *InsertPt = CI; 1476 BasicBlock *IfBlock = CI->getParent(); 1477 BasicBlock *CondBlock = nullptr; 1478 BasicBlock *PrevIfBlock = CI->getParent(); 1479 Builder.SetInsertPoint(InsertPt); 1480 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1481 1482 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1483 1484 Value *UndefVal = UndefValue::get(VecType); 1485 1486 // The result vector 1487 Value *VResult = UndefVal; 1488 unsigned VectorWidth = VecType->getNumElements(); 1489 1490 // Shorten the way if the mask is a vector of constants. 1491 bool IsConstMask = isa<ConstantVector>(Mask); 1492 1493 if (IsConstMask) { 1494 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1495 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1496 continue; 1497 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1498 "Ptr" + Twine(Idx)); 1499 LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal, 1500 "Load" + Twine(Idx)); 1501 VResult = Builder.CreateInsertElement(VResult, Load, 1502 Builder.getInt32(Idx), 1503 "Res" + Twine(Idx)); 1504 } 1505 Value *NewI = Builder.CreateSelect(Mask, VResult, Src0); 1506 CI->replaceAllUsesWith(NewI); 1507 CI->eraseFromParent(); 1508 return; 1509 } 1510 1511 PHINode *Phi = nullptr; 1512 Value *PrevPhi = UndefVal; 1513 1514 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1515 1516 // Fill the "else" block, created in the previous iteration 1517 // 1518 // %Mask1 = extractelement <16 x i1> %Mask, i32 1 1519 // %ToLoad1 = icmp eq i1 %Mask1, true 1520 // br i1 %ToLoad1, label %cond.load, label %else 1521 // 1522 if (Idx > 0) { 1523 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1524 Phi->addIncoming(VResult, CondBlock); 1525 Phi->addIncoming(PrevPhi, PrevIfBlock); 1526 PrevPhi = Phi; 1527 VResult = Phi; 1528 } 1529 1530 Value *Predicate = Builder.CreateExtractElement(Mask, 1531 Builder.getInt32(Idx), 1532 "Mask" + Twine(Idx)); 1533 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1534 ConstantInt::get(Predicate->getType(), 1), 1535 "ToLoad" + Twine(Idx)); 1536 1537 // Create "cond" block 1538 // 1539 // %EltAddr = getelementptr i32* %1, i32 0 1540 // %Elt = load i32* %EltAddr 1541 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1542 // 1543 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load"); 1544 Builder.SetInsertPoint(InsertPt); 1545 1546 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1547 "Ptr" + Twine(Idx)); 1548 LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal, 1549 "Load" + Twine(Idx)); 1550 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx), 1551 "Res" + Twine(Idx)); 1552 1553 // Create "else" block, fill it in the next iteration 1554 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1555 Builder.SetInsertPoint(InsertPt); 1556 Instruction *OldBr = IfBlock->getTerminator(); 1557 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1558 OldBr->eraseFromParent(); 1559 PrevIfBlock = IfBlock; 1560 IfBlock = NewIfBlock; 1561 } 1562 1563 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1564 Phi->addIncoming(VResult, CondBlock); 1565 Phi->addIncoming(PrevPhi, PrevIfBlock); 1566 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1567 CI->replaceAllUsesWith(NewI); 1568 CI->eraseFromParent(); 1569 } 1570 1571 // Translate a masked scatter intrinsic, like 1572 // void @llvm.masked.scatter.v16i32(<16 x i32> %Src, <16 x i32*>* %Ptrs, i32 4, 1573 // <16 x i1> %Mask) 1574 // to a chain of basic blocks, that stores element one-by-one if 1575 // the appropriate mask bit is set. 1576 // 1577 // % Ptrs = getelementptr i32, i32* %ptr, <16 x i64> %ind 1578 // % Mask0 = extractelement <16 x i1> % Mask, i32 0 1579 // % ToStore0 = icmp eq i1 % Mask0, true 1580 // br i1 %ToStore0, label %cond.store, label %else 1581 // 1582 // cond.store: 1583 // % Elt0 = extractelement <16 x i32> %Src, i32 0 1584 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0 1585 // store i32 %Elt0, i32* % Ptr0, align 4 1586 // br label %else 1587 // 1588 // else: 1589 // % Mask1 = extractelement <16 x i1> % Mask, i32 1 1590 // % ToStore1 = icmp eq i1 % Mask1, true 1591 // br i1 % ToStore1, label %cond.store1, label %else2 1592 // 1593 // cond.store1: 1594 // % Elt1 = extractelement <16 x i32> %Src, i32 1 1595 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1596 // store i32 % Elt1, i32* % Ptr1, align 4 1597 // br label %else2 1598 // . . . 1599 static void scalarizeMaskedScatter(CallInst *CI) { 1600 Value *Src = CI->getArgOperand(0); 1601 Value *Ptrs = CI->getArgOperand(1); 1602 Value *Alignment = CI->getArgOperand(2); 1603 Value *Mask = CI->getArgOperand(3); 1604 1605 assert(isa<VectorType>(Src->getType()) && 1606 "Unexpected data type in masked scatter intrinsic"); 1607 assert(isa<VectorType>(Ptrs->getType()) && 1608 isa<PointerType>(Ptrs->getType()->getVectorElementType()) && 1609 "Vector of pointers is expected in masked scatter intrinsic"); 1610 1611 IRBuilder<> Builder(CI->getContext()); 1612 Instruction *InsertPt = CI; 1613 BasicBlock *IfBlock = CI->getParent(); 1614 Builder.SetInsertPoint(InsertPt); 1615 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1616 1617 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1618 unsigned VectorWidth = Src->getType()->getVectorNumElements(); 1619 1620 // Shorten the way if the mask is a vector of constants. 1621 bool IsConstMask = isa<ConstantVector>(Mask); 1622 1623 if (IsConstMask) { 1624 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1625 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1626 continue; 1627 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx), 1628 "Elt" + Twine(Idx)); 1629 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1630 "Ptr" + Twine(Idx)); 1631 Builder.CreateAlignedStore(OneElt, Ptr, AlignVal); 1632 } 1633 CI->eraseFromParent(); 1634 return; 1635 } 1636 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1637 // Fill the "else" block, created in the previous iteration 1638 // 1639 // % Mask1 = extractelement <16 x i1> % Mask, i32 Idx 1640 // % ToStore = icmp eq i1 % Mask1, true 1641 // br i1 % ToStore, label %cond.store, label %else 1642 // 1643 Value *Predicate = Builder.CreateExtractElement(Mask, 1644 Builder.getInt32(Idx), 1645 "Mask" + Twine(Idx)); 1646 Value *Cmp = 1647 Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1648 ConstantInt::get(Predicate->getType(), 1), 1649 "ToStore" + Twine(Idx)); 1650 1651 // Create "cond" block 1652 // 1653 // % Elt1 = extractelement <16 x i32> %Src, i32 1 1654 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1655 // %store i32 % Elt1, i32* % Ptr1 1656 // 1657 BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1658 Builder.SetInsertPoint(InsertPt); 1659 1660 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx), 1661 "Elt" + Twine(Idx)); 1662 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1663 "Ptr" + Twine(Idx)); 1664 Builder.CreateAlignedStore(OneElt, Ptr, AlignVal); 1665 1666 // Create "else" block, fill it in the next iteration 1667 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1668 Builder.SetInsertPoint(InsertPt); 1669 Instruction *OldBr = IfBlock->getTerminator(); 1670 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1671 OldBr->eraseFromParent(); 1672 IfBlock = NewIfBlock; 1673 } 1674 CI->eraseFromParent(); 1675 } 1676 1677 /// If counting leading or trailing zeros is an expensive operation and a zero 1678 /// input is defined, add a check for zero to avoid calling the intrinsic. 1679 /// 1680 /// We want to transform: 1681 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1682 /// 1683 /// into: 1684 /// entry: 1685 /// %cmpz = icmp eq i64 %A, 0 1686 /// br i1 %cmpz, label %cond.end, label %cond.false 1687 /// cond.false: 1688 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1689 /// br label %cond.end 1690 /// cond.end: 1691 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1692 /// 1693 /// If the transform is performed, return true and set ModifiedDT to true. 1694 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1695 const TargetLowering *TLI, 1696 const DataLayout *DL, 1697 bool &ModifiedDT) { 1698 if (!TLI || !DL) 1699 return false; 1700 1701 // If a zero input is undefined, it doesn't make sense to despeculate that. 1702 if (match(CountZeros->getOperand(1), m_One())) 1703 return false; 1704 1705 // If it's cheap to speculate, there's nothing to do. 1706 auto IntrinsicID = CountZeros->getIntrinsicID(); 1707 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1708 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1709 return false; 1710 1711 // Only handle legal scalar cases. Anything else requires too much work. 1712 Type *Ty = CountZeros->getType(); 1713 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1714 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1715 return false; 1716 1717 // The intrinsic will be sunk behind a compare against zero and branch. 1718 BasicBlock *StartBlock = CountZeros->getParent(); 1719 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1720 1721 // Create another block after the count zero intrinsic. A PHI will be added 1722 // in this block to select the result of the intrinsic or the bit-width 1723 // constant if the input to the intrinsic is zero. 1724 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1725 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1726 1727 // Set up a builder to create a compare, conditional branch, and PHI. 1728 IRBuilder<> Builder(CountZeros->getContext()); 1729 Builder.SetInsertPoint(StartBlock->getTerminator()); 1730 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1731 1732 // Replace the unconditional branch that was created by the first split with 1733 // a compare against zero and a conditional branch. 1734 Value *Zero = Constant::getNullValue(Ty); 1735 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1736 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1737 StartBlock->getTerminator()->eraseFromParent(); 1738 1739 // Create a PHI in the end block to select either the output of the intrinsic 1740 // or the bit width of the operand. 1741 Builder.SetInsertPoint(&EndBlock->front()); 1742 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1743 CountZeros->replaceAllUsesWith(PN); 1744 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1745 PN->addIncoming(BitWidth, StartBlock); 1746 PN->addIncoming(CountZeros, CallBlock); 1747 1748 // We are explicitly handling the zero case, so we can set the intrinsic's 1749 // undefined zero argument to 'true'. This will also prevent reprocessing the 1750 // intrinsic; we only despeculate when a zero input is defined. 1751 CountZeros->setArgOperand(1, Builder.getTrue()); 1752 ModifiedDT = true; 1753 return true; 1754 } 1755 1756 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool& ModifiedDT) { 1757 BasicBlock *BB = CI->getParent(); 1758 1759 // Lower inline assembly if we can. 1760 // If we found an inline asm expession, and if the target knows how to 1761 // lower it to normal LLVM code, do so now. 1762 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1763 if (TLI->ExpandInlineAsm(CI)) { 1764 // Avoid invalidating the iterator. 1765 CurInstIterator = BB->begin(); 1766 // Avoid processing instructions out of order, which could cause 1767 // reuse before a value is defined. 1768 SunkAddrs.clear(); 1769 return true; 1770 } 1771 // Sink address computing for memory operands into the block. 1772 if (optimizeInlineAsmInst(CI)) 1773 return true; 1774 } 1775 1776 // Align the pointer arguments to this call if the target thinks it's a good 1777 // idea 1778 unsigned MinSize, PrefAlign; 1779 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1780 for (auto &Arg : CI->arg_operands()) { 1781 // We want to align both objects whose address is used directly and 1782 // objects whose address is used in casts and GEPs, though it only makes 1783 // sense for GEPs if the offset is a multiple of the desired alignment and 1784 // if size - offset meets the size threshold. 1785 if (!Arg->getType()->isPointerTy()) 1786 continue; 1787 APInt Offset(DL->getPointerSizeInBits( 1788 cast<PointerType>(Arg->getType())->getAddressSpace()), 1789 0); 1790 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1791 uint64_t Offset2 = Offset.getLimitedValue(); 1792 if ((Offset2 & (PrefAlign-1)) != 0) 1793 continue; 1794 AllocaInst *AI; 1795 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1796 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1797 AI->setAlignment(PrefAlign); 1798 // Global variables can only be aligned if they are defined in this 1799 // object (i.e. they are uniquely initialized in this object), and 1800 // over-aligning global variables that have an explicit section is 1801 // forbidden. 1802 GlobalVariable *GV; 1803 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1804 GV->getPointerAlignment(*DL) < PrefAlign && 1805 DL->getTypeAllocSize(GV->getValueType()) >= 1806 MinSize + Offset2) 1807 GV->setAlignment(PrefAlign); 1808 } 1809 // If this is a memcpy (or similar) then we may be able to improve the 1810 // alignment 1811 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1812 unsigned Align = getKnownAlignment(MI->getDest(), *DL); 1813 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 1814 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL)); 1815 if (Align > MI->getAlignment()) 1816 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align)); 1817 } 1818 } 1819 1820 // If we have a cold call site, try to sink addressing computation into the 1821 // cold block. This interacts with our handling for loads and stores to 1822 // ensure that we can fold all uses of a potential addressing computation 1823 // into their uses. TODO: generalize this to work over profiling data 1824 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1825 for (auto &Arg : CI->arg_operands()) { 1826 if (!Arg->getType()->isPointerTy()) 1827 continue; 1828 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1829 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1830 } 1831 1832 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1833 if (II) { 1834 switch (II->getIntrinsicID()) { 1835 default: break; 1836 case Intrinsic::objectsize: { 1837 // Lower all uses of llvm.objectsize.* 1838 uint64_t Size; 1839 Type *ReturnTy = CI->getType(); 1840 Constant *RetVal = nullptr; 1841 ConstantInt *Op1 = cast<ConstantInt>(II->getArgOperand(1)); 1842 ObjSizeMode Mode = Op1->isZero() ? ObjSizeMode::Max : ObjSizeMode::Min; 1843 if (getObjectSize(II->getArgOperand(0), 1844 Size, *DL, TLInfo, false, Mode)) { 1845 RetVal = ConstantInt::get(ReturnTy, Size); 1846 } else { 1847 RetVal = ConstantInt::get(ReturnTy, 1848 Mode == ObjSizeMode::Min ? 0 : -1ULL); 1849 } 1850 // Substituting this can cause recursive simplifications, which can 1851 // invalidate our iterator. Use a WeakVH to hold onto it in case this 1852 // happens. 1853 Value *CurValue = &*CurInstIterator; 1854 WeakVH IterHandle(CurValue); 1855 1856 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1857 1858 // If the iterator instruction was recursively deleted, start over at the 1859 // start of the block. 1860 if (IterHandle != CurValue) { 1861 CurInstIterator = BB->begin(); 1862 SunkAddrs.clear(); 1863 } 1864 return true; 1865 } 1866 case Intrinsic::masked_load: { 1867 // Scalarize unsupported vector masked load 1868 if (!TTI->isLegalMaskedLoad(CI->getType())) { 1869 scalarizeMaskedLoad(CI); 1870 ModifiedDT = true; 1871 return true; 1872 } 1873 return false; 1874 } 1875 case Intrinsic::masked_store: { 1876 if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType())) { 1877 scalarizeMaskedStore(CI); 1878 ModifiedDT = true; 1879 return true; 1880 } 1881 return false; 1882 } 1883 case Intrinsic::masked_gather: { 1884 if (!TTI->isLegalMaskedGather(CI->getType())) { 1885 scalarizeMaskedGather(CI); 1886 ModifiedDT = true; 1887 return true; 1888 } 1889 return false; 1890 } 1891 case Intrinsic::masked_scatter: { 1892 if (!TTI->isLegalMaskedScatter(CI->getArgOperand(0)->getType())) { 1893 scalarizeMaskedScatter(CI); 1894 ModifiedDT = true; 1895 return true; 1896 } 1897 return false; 1898 } 1899 case Intrinsic::aarch64_stlxr: 1900 case Intrinsic::aarch64_stxr: { 1901 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1902 if (!ExtVal || !ExtVal->hasOneUse() || 1903 ExtVal->getParent() == CI->getParent()) 1904 return false; 1905 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1906 ExtVal->moveBefore(CI); 1907 // Mark this instruction as "inserted by CGP", so that other 1908 // optimizations don't touch it. 1909 InsertedInsts.insert(ExtVal); 1910 return true; 1911 } 1912 case Intrinsic::invariant_group_barrier: 1913 II->replaceAllUsesWith(II->getArgOperand(0)); 1914 II->eraseFromParent(); 1915 return true; 1916 1917 case Intrinsic::cttz: 1918 case Intrinsic::ctlz: 1919 // If counting zeros is expensive, try to avoid it. 1920 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 1921 } 1922 1923 if (TLI) { 1924 // Unknown address space. 1925 // TODO: Target hook to pick which address space the intrinsic cares 1926 // about? 1927 unsigned AddrSpace = ~0u; 1928 SmallVector<Value*, 2> PtrOps; 1929 Type *AccessTy; 1930 if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy, AddrSpace)) 1931 while (!PtrOps.empty()) 1932 if (optimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy, AddrSpace)) 1933 return true; 1934 } 1935 } 1936 1937 // From here on out we're working with named functions. 1938 if (!CI->getCalledFunction()) return false; 1939 1940 // Lower all default uses of _chk calls. This is very similar 1941 // to what InstCombineCalls does, but here we are only lowering calls 1942 // to fortified library functions (e.g. __memcpy_chk) that have the default 1943 // "don't know" as the objectsize. Anything else should be left alone. 1944 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1945 if (Value *V = Simplifier.optimizeCall(CI)) { 1946 CI->replaceAllUsesWith(V); 1947 CI->eraseFromParent(); 1948 return true; 1949 } 1950 return false; 1951 } 1952 1953 /// Look for opportunities to duplicate return instructions to the predecessor 1954 /// to enable tail call optimizations. The case it is currently looking for is: 1955 /// @code 1956 /// bb0: 1957 /// %tmp0 = tail call i32 @f0() 1958 /// br label %return 1959 /// bb1: 1960 /// %tmp1 = tail call i32 @f1() 1961 /// br label %return 1962 /// bb2: 1963 /// %tmp2 = tail call i32 @f2() 1964 /// br label %return 1965 /// return: 1966 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1967 /// ret i32 %retval 1968 /// @endcode 1969 /// 1970 /// => 1971 /// 1972 /// @code 1973 /// bb0: 1974 /// %tmp0 = tail call i32 @f0() 1975 /// ret i32 %tmp0 1976 /// bb1: 1977 /// %tmp1 = tail call i32 @f1() 1978 /// ret i32 %tmp1 1979 /// bb2: 1980 /// %tmp2 = tail call i32 @f2() 1981 /// ret i32 %tmp2 1982 /// @endcode 1983 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 1984 if (!TLI) 1985 return false; 1986 1987 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 1988 if (!RetI) 1989 return false; 1990 1991 PHINode *PN = nullptr; 1992 BitCastInst *BCI = nullptr; 1993 Value *V = RetI->getReturnValue(); 1994 if (V) { 1995 BCI = dyn_cast<BitCastInst>(V); 1996 if (BCI) 1997 V = BCI->getOperand(0); 1998 1999 PN = dyn_cast<PHINode>(V); 2000 if (!PN) 2001 return false; 2002 } 2003 2004 if (PN && PN->getParent() != BB) 2005 return false; 2006 2007 // Make sure there are no instructions between the PHI and return, or that the 2008 // return is the first instruction in the block. 2009 if (PN) { 2010 BasicBlock::iterator BI = BB->begin(); 2011 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 2012 if (&*BI == BCI) 2013 // Also skip over the bitcast. 2014 ++BI; 2015 if (&*BI != RetI) 2016 return false; 2017 } else { 2018 BasicBlock::iterator BI = BB->begin(); 2019 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2020 if (&*BI != RetI) 2021 return false; 2022 } 2023 2024 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2025 /// call. 2026 const Function *F = BB->getParent(); 2027 SmallVector<CallInst*, 4> TailCalls; 2028 if (PN) { 2029 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2030 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 2031 // Make sure the phi value is indeed produced by the tail call. 2032 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 2033 TLI->mayBeEmittedAsTailCall(CI) && 2034 attributesPermitTailCall(F, CI, RetI, *TLI)) 2035 TailCalls.push_back(CI); 2036 } 2037 } else { 2038 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2039 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2040 if (!VisitedBBs.insert(*PI).second) 2041 continue; 2042 2043 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2044 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2045 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2046 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2047 if (RI == RE) 2048 continue; 2049 2050 CallInst *CI = dyn_cast<CallInst>(&*RI); 2051 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2052 attributesPermitTailCall(F, CI, RetI, *TLI)) 2053 TailCalls.push_back(CI); 2054 } 2055 } 2056 2057 bool Changed = false; 2058 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 2059 CallInst *CI = TailCalls[i]; 2060 CallSite CS(CI); 2061 2062 // Conservatively require the attributes of the call to match those of the 2063 // return. Ignore noalias because it doesn't affect the call sequence. 2064 AttributeSet CalleeAttrs = CS.getAttributes(); 2065 if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 2066 removeAttribute(Attribute::NoAlias) != 2067 AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 2068 removeAttribute(Attribute::NoAlias)) 2069 continue; 2070 2071 // Make sure the call instruction is followed by an unconditional branch to 2072 // the return block. 2073 BasicBlock *CallBB = CI->getParent(); 2074 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 2075 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2076 continue; 2077 2078 // Duplicate the return into CallBB. 2079 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 2080 ModifiedDT = Changed = true; 2081 ++NumRetsDup; 2082 } 2083 2084 // If we eliminated all predecessors of the block, delete the block now. 2085 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2086 BB->eraseFromParent(); 2087 2088 return Changed; 2089 } 2090 2091 //===----------------------------------------------------------------------===// 2092 // Memory Optimization 2093 //===----------------------------------------------------------------------===// 2094 2095 namespace { 2096 2097 /// This is an extended version of TargetLowering::AddrMode 2098 /// which holds actual Value*'s for register values. 2099 struct ExtAddrMode : public TargetLowering::AddrMode { 2100 Value *BaseReg; 2101 Value *ScaledReg; 2102 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} 2103 void print(raw_ostream &OS) const; 2104 void dump() const; 2105 2106 bool operator==(const ExtAddrMode& O) const { 2107 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && 2108 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && 2109 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); 2110 } 2111 }; 2112 2113 #ifndef NDEBUG 2114 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2115 AM.print(OS); 2116 return OS; 2117 } 2118 #endif 2119 2120 void ExtAddrMode::print(raw_ostream &OS) const { 2121 bool NeedPlus = false; 2122 OS << "["; 2123 if (BaseGV) { 2124 OS << (NeedPlus ? " + " : "") 2125 << "GV:"; 2126 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2127 NeedPlus = true; 2128 } 2129 2130 if (BaseOffs) { 2131 OS << (NeedPlus ? " + " : "") 2132 << BaseOffs; 2133 NeedPlus = true; 2134 } 2135 2136 if (BaseReg) { 2137 OS << (NeedPlus ? " + " : "") 2138 << "Base:"; 2139 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2140 NeedPlus = true; 2141 } 2142 if (Scale) { 2143 OS << (NeedPlus ? " + " : "") 2144 << Scale << "*"; 2145 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2146 } 2147 2148 OS << ']'; 2149 } 2150 2151 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2152 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2153 print(dbgs()); 2154 dbgs() << '\n'; 2155 } 2156 #endif 2157 2158 /// \brief This class provides transaction based operation on the IR. 2159 /// Every change made through this class is recorded in the internal state and 2160 /// can be undone (rollback) until commit is called. 2161 class TypePromotionTransaction { 2162 2163 /// \brief This represents the common interface of the individual transaction. 2164 /// Each class implements the logic for doing one specific modification on 2165 /// the IR via the TypePromotionTransaction. 2166 class TypePromotionAction { 2167 protected: 2168 /// The Instruction modified. 2169 Instruction *Inst; 2170 2171 public: 2172 /// \brief Constructor of the action. 2173 /// The constructor performs the related action on the IR. 2174 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2175 2176 virtual ~TypePromotionAction() {} 2177 2178 /// \brief Undo the modification done by this action. 2179 /// When this method is called, the IR must be in the same state as it was 2180 /// before this action was applied. 2181 /// \pre Undoing the action works if and only if the IR is in the exact same 2182 /// state as it was directly after this action was applied. 2183 virtual void undo() = 0; 2184 2185 /// \brief Advocate every change made by this action. 2186 /// When the results on the IR of the action are to be kept, it is important 2187 /// to call this function, otherwise hidden information may be kept forever. 2188 virtual void commit() { 2189 // Nothing to be done, this action is not doing anything. 2190 } 2191 }; 2192 2193 /// \brief Utility to remember the position of an instruction. 2194 class InsertionHandler { 2195 /// Position of an instruction. 2196 /// Either an instruction: 2197 /// - Is the first in a basic block: BB is used. 2198 /// - Has a previous instructon: PrevInst is used. 2199 union { 2200 Instruction *PrevInst; 2201 BasicBlock *BB; 2202 } Point; 2203 /// Remember whether or not the instruction had a previous instruction. 2204 bool HasPrevInstruction; 2205 2206 public: 2207 /// \brief Record the position of \p Inst. 2208 InsertionHandler(Instruction *Inst) { 2209 BasicBlock::iterator It = Inst->getIterator(); 2210 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2211 if (HasPrevInstruction) 2212 Point.PrevInst = &*--It; 2213 else 2214 Point.BB = Inst->getParent(); 2215 } 2216 2217 /// \brief Insert \p Inst at the recorded position. 2218 void insert(Instruction *Inst) { 2219 if (HasPrevInstruction) { 2220 if (Inst->getParent()) 2221 Inst->removeFromParent(); 2222 Inst->insertAfter(Point.PrevInst); 2223 } else { 2224 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2225 if (Inst->getParent()) 2226 Inst->moveBefore(Position); 2227 else 2228 Inst->insertBefore(Position); 2229 } 2230 } 2231 }; 2232 2233 /// \brief Move an instruction before another. 2234 class InstructionMoveBefore : public TypePromotionAction { 2235 /// Original position of the instruction. 2236 InsertionHandler Position; 2237 2238 public: 2239 /// \brief Move \p Inst before \p Before. 2240 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2241 : TypePromotionAction(Inst), Position(Inst) { 2242 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 2243 Inst->moveBefore(Before); 2244 } 2245 2246 /// \brief Move the instruction back to its original position. 2247 void undo() override { 2248 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2249 Position.insert(Inst); 2250 } 2251 }; 2252 2253 /// \brief Set the operand of an instruction with a new value. 2254 class OperandSetter : public TypePromotionAction { 2255 /// Original operand of the instruction. 2256 Value *Origin; 2257 /// Index of the modified instruction. 2258 unsigned Idx; 2259 2260 public: 2261 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 2262 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2263 : TypePromotionAction(Inst), Idx(Idx) { 2264 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2265 << "for:" << *Inst << "\n" 2266 << "with:" << *NewVal << "\n"); 2267 Origin = Inst->getOperand(Idx); 2268 Inst->setOperand(Idx, NewVal); 2269 } 2270 2271 /// \brief Restore the original value of the instruction. 2272 void undo() override { 2273 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2274 << "for: " << *Inst << "\n" 2275 << "with: " << *Origin << "\n"); 2276 Inst->setOperand(Idx, Origin); 2277 } 2278 }; 2279 2280 /// \brief Hide the operands of an instruction. 2281 /// Do as if this instruction was not using any of its operands. 2282 class OperandsHider : public TypePromotionAction { 2283 /// The list of original operands. 2284 SmallVector<Value *, 4> OriginalValues; 2285 2286 public: 2287 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 2288 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2289 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2290 unsigned NumOpnds = Inst->getNumOperands(); 2291 OriginalValues.reserve(NumOpnds); 2292 for (unsigned It = 0; It < NumOpnds; ++It) { 2293 // Save the current operand. 2294 Value *Val = Inst->getOperand(It); 2295 OriginalValues.push_back(Val); 2296 // Set a dummy one. 2297 // We could use OperandSetter here, but that would imply an overhead 2298 // that we are not willing to pay. 2299 Inst->setOperand(It, UndefValue::get(Val->getType())); 2300 } 2301 } 2302 2303 /// \brief Restore the original list of uses. 2304 void undo() override { 2305 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2306 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2307 Inst->setOperand(It, OriginalValues[It]); 2308 } 2309 }; 2310 2311 /// \brief Build a truncate instruction. 2312 class TruncBuilder : public TypePromotionAction { 2313 Value *Val; 2314 public: 2315 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 2316 /// result. 2317 /// trunc Opnd to Ty. 2318 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2319 IRBuilder<> Builder(Opnd); 2320 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2321 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2322 } 2323 2324 /// \brief Get the built value. 2325 Value *getBuiltValue() { return Val; } 2326 2327 /// \brief Remove the built instruction. 2328 void undo() override { 2329 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2330 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2331 IVal->eraseFromParent(); 2332 } 2333 }; 2334 2335 /// \brief Build a sign extension instruction. 2336 class SExtBuilder : public TypePromotionAction { 2337 Value *Val; 2338 public: 2339 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 2340 /// result. 2341 /// sext Opnd to Ty. 2342 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2343 : TypePromotionAction(InsertPt) { 2344 IRBuilder<> Builder(InsertPt); 2345 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2346 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2347 } 2348 2349 /// \brief Get the built value. 2350 Value *getBuiltValue() { return Val; } 2351 2352 /// \brief Remove the built instruction. 2353 void undo() override { 2354 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2355 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2356 IVal->eraseFromParent(); 2357 } 2358 }; 2359 2360 /// \brief Build a zero extension instruction. 2361 class ZExtBuilder : public TypePromotionAction { 2362 Value *Val; 2363 public: 2364 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 2365 /// result. 2366 /// zext Opnd to Ty. 2367 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2368 : TypePromotionAction(InsertPt) { 2369 IRBuilder<> Builder(InsertPt); 2370 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2371 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2372 } 2373 2374 /// \brief Get the built value. 2375 Value *getBuiltValue() { return Val; } 2376 2377 /// \brief Remove the built instruction. 2378 void undo() override { 2379 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2380 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2381 IVal->eraseFromParent(); 2382 } 2383 }; 2384 2385 /// \brief Mutate an instruction to another type. 2386 class TypeMutator : public TypePromotionAction { 2387 /// Record the original type. 2388 Type *OrigTy; 2389 2390 public: 2391 /// \brief Mutate the type of \p Inst into \p NewTy. 2392 TypeMutator(Instruction *Inst, Type *NewTy) 2393 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2394 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2395 << "\n"); 2396 Inst->mutateType(NewTy); 2397 } 2398 2399 /// \brief Mutate the instruction back to its original type. 2400 void undo() override { 2401 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2402 << "\n"); 2403 Inst->mutateType(OrigTy); 2404 } 2405 }; 2406 2407 /// \brief Replace the uses of an instruction by another instruction. 2408 class UsesReplacer : public TypePromotionAction { 2409 /// Helper structure to keep track of the replaced uses. 2410 struct InstructionAndIdx { 2411 /// The instruction using the instruction. 2412 Instruction *Inst; 2413 /// The index where this instruction is used for Inst. 2414 unsigned Idx; 2415 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2416 : Inst(Inst), Idx(Idx) {} 2417 }; 2418 2419 /// Keep track of the original uses (pair Instruction, Index). 2420 SmallVector<InstructionAndIdx, 4> OriginalUses; 2421 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator; 2422 2423 public: 2424 /// \brief Replace all the use of \p Inst by \p New. 2425 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2426 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2427 << "\n"); 2428 // Record the original uses. 2429 for (Use &U : Inst->uses()) { 2430 Instruction *UserI = cast<Instruction>(U.getUser()); 2431 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2432 } 2433 // Now, we can replace the uses. 2434 Inst->replaceAllUsesWith(New); 2435 } 2436 2437 /// \brief Reassign the original uses of Inst to Inst. 2438 void undo() override { 2439 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2440 for (use_iterator UseIt = OriginalUses.begin(), 2441 EndIt = OriginalUses.end(); 2442 UseIt != EndIt; ++UseIt) { 2443 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2444 } 2445 } 2446 }; 2447 2448 /// \brief Remove an instruction from the IR. 2449 class InstructionRemover : public TypePromotionAction { 2450 /// Original position of the instruction. 2451 InsertionHandler Inserter; 2452 /// Helper structure to hide all the link to the instruction. In other 2453 /// words, this helps to do as if the instruction was removed. 2454 OperandsHider Hider; 2455 /// Keep track of the uses replaced, if any. 2456 UsesReplacer *Replacer; 2457 2458 public: 2459 /// \brief Remove all reference of \p Inst and optinally replace all its 2460 /// uses with New. 2461 /// \pre If !Inst->use_empty(), then New != nullptr 2462 InstructionRemover(Instruction *Inst, Value *New = nullptr) 2463 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2464 Replacer(nullptr) { 2465 if (New) 2466 Replacer = new UsesReplacer(Inst, New); 2467 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2468 Inst->removeFromParent(); 2469 } 2470 2471 ~InstructionRemover() override { delete Replacer; } 2472 2473 /// \brief Really remove the instruction. 2474 void commit() override { delete Inst; } 2475 2476 /// \brief Resurrect the instruction and reassign it to the proper uses if 2477 /// new value was provided when build this action. 2478 void undo() override { 2479 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2480 Inserter.insert(Inst); 2481 if (Replacer) 2482 Replacer->undo(); 2483 Hider.undo(); 2484 } 2485 }; 2486 2487 public: 2488 /// Restoration point. 2489 /// The restoration point is a pointer to an action instead of an iterator 2490 /// because the iterator may be invalidated but not the pointer. 2491 typedef const TypePromotionAction *ConstRestorationPt; 2492 /// Advocate every changes made in that transaction. 2493 void commit(); 2494 /// Undo all the changes made after the given point. 2495 void rollback(ConstRestorationPt Point); 2496 /// Get the current restoration point. 2497 ConstRestorationPt getRestorationPoint() const; 2498 2499 /// \name API for IR modification with state keeping to support rollback. 2500 /// @{ 2501 /// Same as Instruction::setOperand. 2502 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2503 /// Same as Instruction::eraseFromParent. 2504 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2505 /// Same as Value::replaceAllUsesWith. 2506 void replaceAllUsesWith(Instruction *Inst, Value *New); 2507 /// Same as Value::mutateType. 2508 void mutateType(Instruction *Inst, Type *NewTy); 2509 /// Same as IRBuilder::createTrunc. 2510 Value *createTrunc(Instruction *Opnd, Type *Ty); 2511 /// Same as IRBuilder::createSExt. 2512 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2513 /// Same as IRBuilder::createZExt. 2514 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2515 /// Same as Instruction::moveBefore. 2516 void moveBefore(Instruction *Inst, Instruction *Before); 2517 /// @} 2518 2519 private: 2520 /// The ordered list of actions made so far. 2521 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2522 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt; 2523 }; 2524 2525 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2526 Value *NewVal) { 2527 Actions.push_back( 2528 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal)); 2529 } 2530 2531 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2532 Value *NewVal) { 2533 Actions.push_back( 2534 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal)); 2535 } 2536 2537 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2538 Value *New) { 2539 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2540 } 2541 2542 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2543 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2544 } 2545 2546 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2547 Type *Ty) { 2548 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2549 Value *Val = Ptr->getBuiltValue(); 2550 Actions.push_back(std::move(Ptr)); 2551 return Val; 2552 } 2553 2554 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2555 Value *Opnd, Type *Ty) { 2556 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2557 Value *Val = Ptr->getBuiltValue(); 2558 Actions.push_back(std::move(Ptr)); 2559 return Val; 2560 } 2561 2562 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2563 Value *Opnd, Type *Ty) { 2564 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2565 Value *Val = Ptr->getBuiltValue(); 2566 Actions.push_back(std::move(Ptr)); 2567 return Val; 2568 } 2569 2570 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2571 Instruction *Before) { 2572 Actions.push_back( 2573 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before)); 2574 } 2575 2576 TypePromotionTransaction::ConstRestorationPt 2577 TypePromotionTransaction::getRestorationPoint() const { 2578 return !Actions.empty() ? Actions.back().get() : nullptr; 2579 } 2580 2581 void TypePromotionTransaction::commit() { 2582 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2583 ++It) 2584 (*It)->commit(); 2585 Actions.clear(); 2586 } 2587 2588 void TypePromotionTransaction::rollback( 2589 TypePromotionTransaction::ConstRestorationPt Point) { 2590 while (!Actions.empty() && Point != Actions.back().get()) { 2591 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2592 Curr->undo(); 2593 } 2594 } 2595 2596 /// \brief A helper class for matching addressing modes. 2597 /// 2598 /// This encapsulates the logic for matching the target-legal addressing modes. 2599 class AddressingModeMatcher { 2600 SmallVectorImpl<Instruction*> &AddrModeInsts; 2601 const TargetMachine &TM; 2602 const TargetLowering &TLI; 2603 const DataLayout &DL; 2604 2605 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2606 /// the memory instruction that we're computing this address for. 2607 Type *AccessTy; 2608 unsigned AddrSpace; 2609 Instruction *MemoryInst; 2610 2611 /// This is the addressing mode that we're building up. This is 2612 /// part of the return value of this addressing mode matching stuff. 2613 ExtAddrMode &AddrMode; 2614 2615 /// The instructions inserted by other CodeGenPrepare optimizations. 2616 const SetOfInstrs &InsertedInsts; 2617 /// A map from the instructions to their type before promotion. 2618 InstrToOrigTy &PromotedInsts; 2619 /// The ongoing transaction where every action should be registered. 2620 TypePromotionTransaction &TPT; 2621 2622 /// This is set to true when we should not do profitability checks. 2623 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2624 bool IgnoreProfitability; 2625 2626 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, 2627 const TargetMachine &TM, Type *AT, unsigned AS, 2628 Instruction *MI, ExtAddrMode &AM, 2629 const SetOfInstrs &InsertedInsts, 2630 InstrToOrigTy &PromotedInsts, 2631 TypePromotionTransaction &TPT) 2632 : AddrModeInsts(AMI), TM(TM), 2633 TLI(*TM.getSubtargetImpl(*MI->getParent()->getParent()) 2634 ->getTargetLowering()), 2635 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2636 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2637 PromotedInsts(PromotedInsts), TPT(TPT) { 2638 IgnoreProfitability = false; 2639 } 2640 public: 2641 2642 /// Find the maximal addressing mode that a load/store of V can fold, 2643 /// give an access type of AccessTy. This returns a list of involved 2644 /// instructions in AddrModeInsts. 2645 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2646 /// optimizations. 2647 /// \p PromotedInsts maps the instructions to their type before promotion. 2648 /// \p The ongoing transaction where every action should be registered. 2649 static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, 2650 Instruction *MemoryInst, 2651 SmallVectorImpl<Instruction*> &AddrModeInsts, 2652 const TargetMachine &TM, 2653 const SetOfInstrs &InsertedInsts, 2654 InstrToOrigTy &PromotedInsts, 2655 TypePromotionTransaction &TPT) { 2656 ExtAddrMode Result; 2657 2658 bool Success = AddressingModeMatcher(AddrModeInsts, TM, AccessTy, AS, 2659 MemoryInst, Result, InsertedInsts, 2660 PromotedInsts, TPT).matchAddr(V, 0); 2661 (void)Success; assert(Success && "Couldn't select *anything*?"); 2662 return Result; 2663 } 2664 private: 2665 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2666 bool matchAddr(Value *V, unsigned Depth); 2667 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 2668 bool *MovedAway = nullptr); 2669 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2670 ExtAddrMode &AMBefore, 2671 ExtAddrMode &AMAfter); 2672 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2673 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2674 Value *PromotedOperand) const; 2675 }; 2676 2677 /// Try adding ScaleReg*Scale to the current addressing mode. 2678 /// Return true and update AddrMode if this addr mode is legal for the target, 2679 /// false if not. 2680 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 2681 unsigned Depth) { 2682 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 2683 // mode. Just process that directly. 2684 if (Scale == 1) 2685 return matchAddr(ScaleReg, Depth); 2686 2687 // If the scale is 0, it takes nothing to add this. 2688 if (Scale == 0) 2689 return true; 2690 2691 // If we already have a scale of this value, we can add to it, otherwise, we 2692 // need an available scale field. 2693 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 2694 return false; 2695 2696 ExtAddrMode TestAddrMode = AddrMode; 2697 2698 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 2699 // [A+B + A*7] -> [B+A*8]. 2700 TestAddrMode.Scale += Scale; 2701 TestAddrMode.ScaledReg = ScaleReg; 2702 2703 // If the new address isn't legal, bail out. 2704 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 2705 return false; 2706 2707 // It was legal, so commit it. 2708 AddrMode = TestAddrMode; 2709 2710 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 2711 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 2712 // X*Scale + C*Scale to addr mode. 2713 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 2714 if (isa<Instruction>(ScaleReg) && // not a constant expr. 2715 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 2716 TestAddrMode.ScaledReg = AddLHS; 2717 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 2718 2719 // If this addressing mode is legal, commit it and remember that we folded 2720 // this instruction. 2721 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 2722 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 2723 AddrMode = TestAddrMode; 2724 return true; 2725 } 2726 } 2727 2728 // Otherwise, not (x+c)*scale, just return what we have. 2729 return true; 2730 } 2731 2732 /// This is a little filter, which returns true if an addressing computation 2733 /// involving I might be folded into a load/store accessing it. 2734 /// This doesn't need to be perfect, but needs to accept at least 2735 /// the set of instructions that MatchOperationAddr can. 2736 static bool MightBeFoldableInst(Instruction *I) { 2737 switch (I->getOpcode()) { 2738 case Instruction::BitCast: 2739 case Instruction::AddrSpaceCast: 2740 // Don't touch identity bitcasts. 2741 if (I->getType() == I->getOperand(0)->getType()) 2742 return false; 2743 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 2744 case Instruction::PtrToInt: 2745 // PtrToInt is always a noop, as we know that the int type is pointer sized. 2746 return true; 2747 case Instruction::IntToPtr: 2748 // We know the input is intptr_t, so this is foldable. 2749 return true; 2750 case Instruction::Add: 2751 return true; 2752 case Instruction::Mul: 2753 case Instruction::Shl: 2754 // Can only handle X*C and X << C. 2755 return isa<ConstantInt>(I->getOperand(1)); 2756 case Instruction::GetElementPtr: 2757 return true; 2758 default: 2759 return false; 2760 } 2761 } 2762 2763 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 2764 /// \note \p Val is assumed to be the product of some type promotion. 2765 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 2766 /// to be legal, as the non-promoted value would have had the same state. 2767 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 2768 const DataLayout &DL, Value *Val) { 2769 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 2770 if (!PromotedInst) 2771 return false; 2772 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 2773 // If the ISDOpcode is undefined, it was undefined before the promotion. 2774 if (!ISDOpcode) 2775 return true; 2776 // Otherwise, check if the promoted instruction is legal or not. 2777 return TLI.isOperationLegalOrCustom( 2778 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 2779 } 2780 2781 /// \brief Hepler class to perform type promotion. 2782 class TypePromotionHelper { 2783 /// \brief Utility function to check whether or not a sign or zero extension 2784 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 2785 /// either using the operands of \p Inst or promoting \p Inst. 2786 /// The type of the extension is defined by \p IsSExt. 2787 /// In other words, check if: 2788 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 2789 /// #1 Promotion applies: 2790 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 2791 /// #2 Operand reuses: 2792 /// ext opnd1 to ConsideredExtType. 2793 /// \p PromotedInsts maps the instructions to their type before promotion. 2794 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 2795 const InstrToOrigTy &PromotedInsts, bool IsSExt); 2796 2797 /// \brief Utility function to determine if \p OpIdx should be promoted when 2798 /// promoting \p Inst. 2799 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 2800 return !(isa<SelectInst>(Inst) && OpIdx == 0); 2801 } 2802 2803 /// \brief Utility function to promote the operand of \p Ext when this 2804 /// operand is a promotable trunc or sext or zext. 2805 /// \p PromotedInsts maps the instructions to their type before promotion. 2806 /// \p CreatedInstsCost[out] contains the cost of all instructions 2807 /// created to promote the operand of Ext. 2808 /// Newly added extensions are inserted in \p Exts. 2809 /// Newly added truncates are inserted in \p Truncs. 2810 /// Should never be called directly. 2811 /// \return The promoted value which is used instead of Ext. 2812 static Value *promoteOperandForTruncAndAnyExt( 2813 Instruction *Ext, TypePromotionTransaction &TPT, 2814 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2815 SmallVectorImpl<Instruction *> *Exts, 2816 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 2817 2818 /// \brief Utility function to promote the operand of \p Ext when this 2819 /// operand is promotable and is not a supported trunc or sext. 2820 /// \p PromotedInsts maps the instructions to their type before promotion. 2821 /// \p CreatedInstsCost[out] contains the cost of all the instructions 2822 /// created to promote the operand of Ext. 2823 /// Newly added extensions are inserted in \p Exts. 2824 /// Newly added truncates are inserted in \p Truncs. 2825 /// Should never be called directly. 2826 /// \return The promoted value which is used instead of Ext. 2827 static Value *promoteOperandForOther(Instruction *Ext, 2828 TypePromotionTransaction &TPT, 2829 InstrToOrigTy &PromotedInsts, 2830 unsigned &CreatedInstsCost, 2831 SmallVectorImpl<Instruction *> *Exts, 2832 SmallVectorImpl<Instruction *> *Truncs, 2833 const TargetLowering &TLI, bool IsSExt); 2834 2835 /// \see promoteOperandForOther. 2836 static Value *signExtendOperandForOther( 2837 Instruction *Ext, TypePromotionTransaction &TPT, 2838 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2839 SmallVectorImpl<Instruction *> *Exts, 2840 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2841 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2842 Exts, Truncs, TLI, true); 2843 } 2844 2845 /// \see promoteOperandForOther. 2846 static Value *zeroExtendOperandForOther( 2847 Instruction *Ext, TypePromotionTransaction &TPT, 2848 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2849 SmallVectorImpl<Instruction *> *Exts, 2850 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2851 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2852 Exts, Truncs, TLI, false); 2853 } 2854 2855 public: 2856 /// Type for the utility function that promotes the operand of Ext. 2857 typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT, 2858 InstrToOrigTy &PromotedInsts, 2859 unsigned &CreatedInstsCost, 2860 SmallVectorImpl<Instruction *> *Exts, 2861 SmallVectorImpl<Instruction *> *Truncs, 2862 const TargetLowering &TLI); 2863 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 2864 /// action to promote the operand of \p Ext instead of using Ext. 2865 /// \return NULL if no promotable action is possible with the current 2866 /// sign extension. 2867 /// \p InsertedInsts keeps track of all the instructions inserted by the 2868 /// other CodeGenPrepare optimizations. This information is important 2869 /// because we do not want to promote these instructions as CodeGenPrepare 2870 /// will reinsert them later. Thus creating an infinite loop: create/remove. 2871 /// \p PromotedInsts maps the instructions to their type before promotion. 2872 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 2873 const TargetLowering &TLI, 2874 const InstrToOrigTy &PromotedInsts); 2875 }; 2876 2877 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 2878 Type *ConsideredExtType, 2879 const InstrToOrigTy &PromotedInsts, 2880 bool IsSExt) { 2881 // The promotion helper does not know how to deal with vector types yet. 2882 // To be able to fix that, we would need to fix the places where we 2883 // statically extend, e.g., constants and such. 2884 if (Inst->getType()->isVectorTy()) 2885 return false; 2886 2887 // We can always get through zext. 2888 if (isa<ZExtInst>(Inst)) 2889 return true; 2890 2891 // sext(sext) is ok too. 2892 if (IsSExt && isa<SExtInst>(Inst)) 2893 return true; 2894 2895 // We can get through binary operator, if it is legal. In other words, the 2896 // binary operator must have a nuw or nsw flag. 2897 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 2898 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 2899 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 2900 (IsSExt && BinOp->hasNoSignedWrap()))) 2901 return true; 2902 2903 // Check if we can do the following simplification. 2904 // ext(trunc(opnd)) --> ext(opnd) 2905 if (!isa<TruncInst>(Inst)) 2906 return false; 2907 2908 Value *OpndVal = Inst->getOperand(0); 2909 // Check if we can use this operand in the extension. 2910 // If the type is larger than the result type of the extension, we cannot. 2911 if (!OpndVal->getType()->isIntegerTy() || 2912 OpndVal->getType()->getIntegerBitWidth() > 2913 ConsideredExtType->getIntegerBitWidth()) 2914 return false; 2915 2916 // If the operand of the truncate is not an instruction, we will not have 2917 // any information on the dropped bits. 2918 // (Actually we could for constant but it is not worth the extra logic). 2919 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 2920 if (!Opnd) 2921 return false; 2922 2923 // Check if the source of the type is narrow enough. 2924 // I.e., check that trunc just drops extended bits of the same kind of 2925 // the extension. 2926 // #1 get the type of the operand and check the kind of the extended bits. 2927 const Type *OpndType; 2928 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 2929 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 2930 OpndType = It->second.getPointer(); 2931 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 2932 OpndType = Opnd->getOperand(0)->getType(); 2933 else 2934 return false; 2935 2936 // #2 check that the truncate just drops extended bits. 2937 return Inst->getType()->getIntegerBitWidth() >= 2938 OpndType->getIntegerBitWidth(); 2939 } 2940 2941 TypePromotionHelper::Action TypePromotionHelper::getAction( 2942 Instruction *Ext, const SetOfInstrs &InsertedInsts, 2943 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 2944 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2945 "Unexpected instruction type"); 2946 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 2947 Type *ExtTy = Ext->getType(); 2948 bool IsSExt = isa<SExtInst>(Ext); 2949 // If the operand of the extension is not an instruction, we cannot 2950 // get through. 2951 // If it, check we can get through. 2952 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 2953 return nullptr; 2954 2955 // Do not promote if the operand has been added by codegenprepare. 2956 // Otherwise, it means we are undoing an optimization that is likely to be 2957 // redone, thus causing potential infinite loop. 2958 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 2959 return nullptr; 2960 2961 // SExt or Trunc instructions. 2962 // Return the related handler. 2963 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 2964 isa<ZExtInst>(ExtOpnd)) 2965 return promoteOperandForTruncAndAnyExt; 2966 2967 // Regular instruction. 2968 // Abort early if we will have to insert non-free instructions. 2969 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 2970 return nullptr; 2971 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 2972 } 2973 2974 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 2975 llvm::Instruction *SExt, TypePromotionTransaction &TPT, 2976 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2977 SmallVectorImpl<Instruction *> *Exts, 2978 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2979 // By construction, the operand of SExt is an instruction. Otherwise we cannot 2980 // get through it and this method should not be called. 2981 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 2982 Value *ExtVal = SExt; 2983 bool HasMergedNonFreeExt = false; 2984 if (isa<ZExtInst>(SExtOpnd)) { 2985 // Replace s|zext(zext(opnd)) 2986 // => zext(opnd). 2987 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 2988 Value *ZExt = 2989 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 2990 TPT.replaceAllUsesWith(SExt, ZExt); 2991 TPT.eraseInstruction(SExt); 2992 ExtVal = ZExt; 2993 } else { 2994 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 2995 // => z|sext(opnd). 2996 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 2997 } 2998 CreatedInstsCost = 0; 2999 3000 // Remove dead code. 3001 if (SExtOpnd->use_empty()) 3002 TPT.eraseInstruction(SExtOpnd); 3003 3004 // Check if the extension is still needed. 3005 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3006 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3007 if (ExtInst) { 3008 if (Exts) 3009 Exts->push_back(ExtInst); 3010 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3011 } 3012 return ExtVal; 3013 } 3014 3015 // At this point we have: ext ty opnd to ty. 3016 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3017 Value *NextVal = ExtInst->getOperand(0); 3018 TPT.eraseInstruction(ExtInst, NextVal); 3019 return NextVal; 3020 } 3021 3022 Value *TypePromotionHelper::promoteOperandForOther( 3023 Instruction *Ext, TypePromotionTransaction &TPT, 3024 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3025 SmallVectorImpl<Instruction *> *Exts, 3026 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3027 bool IsSExt) { 3028 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3029 // get through it and this method should not be called. 3030 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3031 CreatedInstsCost = 0; 3032 if (!ExtOpnd->hasOneUse()) { 3033 // ExtOpnd will be promoted. 3034 // All its uses, but Ext, will need to use a truncated value of the 3035 // promoted version. 3036 // Create the truncate now. 3037 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3038 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3039 ITrunc->removeFromParent(); 3040 // Insert it just after the definition. 3041 ITrunc->insertAfter(ExtOpnd); 3042 if (Truncs) 3043 Truncs->push_back(ITrunc); 3044 } 3045 3046 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3047 // Restore the operand of Ext (which has been replaced by the previous call 3048 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3049 TPT.setOperand(Ext, 0, ExtOpnd); 3050 } 3051 3052 // Get through the Instruction: 3053 // 1. Update its type. 3054 // 2. Replace the uses of Ext by Inst. 3055 // 3. Extend each operand that needs to be extended. 3056 3057 // Remember the original type of the instruction before promotion. 3058 // This is useful to know that the high bits are sign extended bits. 3059 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 3060 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 3061 // Step #1. 3062 TPT.mutateType(ExtOpnd, Ext->getType()); 3063 // Step #2. 3064 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3065 // Step #3. 3066 Instruction *ExtForOpnd = Ext; 3067 3068 DEBUG(dbgs() << "Propagate Ext to operands\n"); 3069 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3070 ++OpIdx) { 3071 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3072 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3073 !shouldExtOperand(ExtOpnd, OpIdx)) { 3074 DEBUG(dbgs() << "No need to propagate\n"); 3075 continue; 3076 } 3077 // Check if we can statically extend the operand. 3078 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3079 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3080 DEBUG(dbgs() << "Statically extend\n"); 3081 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3082 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3083 : Cst->getValue().zext(BitWidth); 3084 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3085 continue; 3086 } 3087 // UndefValue are typed, so we have to statically sign extend them. 3088 if (isa<UndefValue>(Opnd)) { 3089 DEBUG(dbgs() << "Statically extend\n"); 3090 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3091 continue; 3092 } 3093 3094 // Otherwise we have to explicity sign extend the operand. 3095 // Check if Ext was reused to extend an operand. 3096 if (!ExtForOpnd) { 3097 // If yes, create a new one. 3098 DEBUG(dbgs() << "More operands to ext\n"); 3099 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3100 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3101 if (!isa<Instruction>(ValForExtOpnd)) { 3102 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3103 continue; 3104 } 3105 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3106 } 3107 if (Exts) 3108 Exts->push_back(ExtForOpnd); 3109 TPT.setOperand(ExtForOpnd, 0, Opnd); 3110 3111 // Move the sign extension before the insertion point. 3112 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3113 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3114 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3115 // If more sext are required, new instructions will have to be created. 3116 ExtForOpnd = nullptr; 3117 } 3118 if (ExtForOpnd == Ext) { 3119 DEBUG(dbgs() << "Extension is useless now\n"); 3120 TPT.eraseInstruction(Ext); 3121 } 3122 return ExtOpnd; 3123 } 3124 3125 /// Check whether or not promoting an instruction to a wider type is profitable. 3126 /// \p NewCost gives the cost of extension instructions created by the 3127 /// promotion. 3128 /// \p OldCost gives the cost of extension instructions before the promotion 3129 /// plus the number of instructions that have been 3130 /// matched in the addressing mode the promotion. 3131 /// \p PromotedOperand is the value that has been promoted. 3132 /// \return True if the promotion is profitable, false otherwise. 3133 bool AddressingModeMatcher::isPromotionProfitable( 3134 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3135 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); 3136 // The cost of the new extensions is greater than the cost of the 3137 // old extension plus what we folded. 3138 // This is not profitable. 3139 if (NewCost > OldCost) 3140 return false; 3141 if (NewCost < OldCost) 3142 return true; 3143 // The promotion is neutral but it may help folding the sign extension in 3144 // loads for instance. 3145 // Check that we did not create an illegal instruction. 3146 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3147 } 3148 3149 /// Given an instruction or constant expr, see if we can fold the operation 3150 /// into the addressing mode. If so, update the addressing mode and return 3151 /// true, otherwise return false without modifying AddrMode. 3152 /// If \p MovedAway is not NULL, it contains the information of whether or 3153 /// not AddrInst has to be folded into the addressing mode on success. 3154 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3155 /// because it has been moved away. 3156 /// Thus AddrInst must not be added in the matched instructions. 3157 /// This state can happen when AddrInst is a sext, since it may be moved away. 3158 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3159 /// not be referenced anymore. 3160 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3161 unsigned Depth, 3162 bool *MovedAway) { 3163 // Avoid exponential behavior on extremely deep expression trees. 3164 if (Depth >= 5) return false; 3165 3166 // By default, all matched instructions stay in place. 3167 if (MovedAway) 3168 *MovedAway = false; 3169 3170 switch (Opcode) { 3171 case Instruction::PtrToInt: 3172 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3173 return matchAddr(AddrInst->getOperand(0), Depth); 3174 case Instruction::IntToPtr: { 3175 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3176 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3177 // This inttoptr is a no-op if the integer type is pointer sized. 3178 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3179 return matchAddr(AddrInst->getOperand(0), Depth); 3180 return false; 3181 } 3182 case Instruction::BitCast: 3183 // BitCast is always a noop, and we can handle it as long as it is 3184 // int->int or pointer->pointer (we don't want int<->fp or something). 3185 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 3186 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 3187 // Don't touch identity bitcasts. These were probably put here by LSR, 3188 // and we don't want to mess around with them. Assume it knows what it 3189 // is doing. 3190 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3191 return matchAddr(AddrInst->getOperand(0), Depth); 3192 return false; 3193 case Instruction::AddrSpaceCast: { 3194 unsigned SrcAS 3195 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3196 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3197 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3198 return matchAddr(AddrInst->getOperand(0), Depth); 3199 return false; 3200 } 3201 case Instruction::Add: { 3202 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3203 ExtAddrMode BackupAddrMode = AddrMode; 3204 unsigned OldSize = AddrModeInsts.size(); 3205 // Start a transaction at this point. 3206 // The LHS may match but not the RHS. 3207 // Therefore, we need a higher level restoration point to undo partially 3208 // matched operation. 3209 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3210 TPT.getRestorationPoint(); 3211 3212 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3213 matchAddr(AddrInst->getOperand(0), Depth+1)) 3214 return true; 3215 3216 // Restore the old addr mode info. 3217 AddrMode = BackupAddrMode; 3218 AddrModeInsts.resize(OldSize); 3219 TPT.rollback(LastKnownGood); 3220 3221 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3222 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3223 matchAddr(AddrInst->getOperand(1), Depth+1)) 3224 return true; 3225 3226 // Otherwise we definitely can't merge the ADD in. 3227 AddrMode = BackupAddrMode; 3228 AddrModeInsts.resize(OldSize); 3229 TPT.rollback(LastKnownGood); 3230 break; 3231 } 3232 //case Instruction::Or: 3233 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3234 //break; 3235 case Instruction::Mul: 3236 case Instruction::Shl: { 3237 // Can only handle X*C and X << C. 3238 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3239 if (!RHS) 3240 return false; 3241 int64_t Scale = RHS->getSExtValue(); 3242 if (Opcode == Instruction::Shl) 3243 Scale = 1LL << Scale; 3244 3245 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3246 } 3247 case Instruction::GetElementPtr: { 3248 // Scan the GEP. We check it if it contains constant offsets and at most 3249 // one variable offset. 3250 int VariableOperand = -1; 3251 unsigned VariableScale = 0; 3252 3253 int64_t ConstantOffset = 0; 3254 gep_type_iterator GTI = gep_type_begin(AddrInst); 3255 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3256 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 3257 const StructLayout *SL = DL.getStructLayout(STy); 3258 unsigned Idx = 3259 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3260 ConstantOffset += SL->getElementOffset(Idx); 3261 } else { 3262 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3263 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3264 ConstantOffset += CI->getSExtValue()*TypeSize; 3265 } else if (TypeSize) { // Scales of zero don't do anything. 3266 // We only allow one variable index at the moment. 3267 if (VariableOperand != -1) 3268 return false; 3269 3270 // Remember the variable index. 3271 VariableOperand = i; 3272 VariableScale = TypeSize; 3273 } 3274 } 3275 } 3276 3277 // A common case is for the GEP to only do a constant offset. In this case, 3278 // just add it to the disp field and check validity. 3279 if (VariableOperand == -1) { 3280 AddrMode.BaseOffs += ConstantOffset; 3281 if (ConstantOffset == 0 || 3282 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 3283 // Check to see if we can fold the base pointer in too. 3284 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 3285 return true; 3286 } 3287 AddrMode.BaseOffs -= ConstantOffset; 3288 return false; 3289 } 3290 3291 // Save the valid addressing mode in case we can't match. 3292 ExtAddrMode BackupAddrMode = AddrMode; 3293 unsigned OldSize = AddrModeInsts.size(); 3294 3295 // See if the scale and offset amount is valid for this target. 3296 AddrMode.BaseOffs += ConstantOffset; 3297 3298 // Match the base operand of the GEP. 3299 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 3300 // If it couldn't be matched, just stuff the value in a register. 3301 if (AddrMode.HasBaseReg) { 3302 AddrMode = BackupAddrMode; 3303 AddrModeInsts.resize(OldSize); 3304 return false; 3305 } 3306 AddrMode.HasBaseReg = true; 3307 AddrMode.BaseReg = AddrInst->getOperand(0); 3308 } 3309 3310 // Match the remaining variable portion of the GEP. 3311 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 3312 Depth)) { 3313 // If it couldn't be matched, try stuffing the base into a register 3314 // instead of matching it, and retrying the match of the scale. 3315 AddrMode = BackupAddrMode; 3316 AddrModeInsts.resize(OldSize); 3317 if (AddrMode.HasBaseReg) 3318 return false; 3319 AddrMode.HasBaseReg = true; 3320 AddrMode.BaseReg = AddrInst->getOperand(0); 3321 AddrMode.BaseOffs += ConstantOffset; 3322 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 3323 VariableScale, Depth)) { 3324 // If even that didn't work, bail. 3325 AddrMode = BackupAddrMode; 3326 AddrModeInsts.resize(OldSize); 3327 return false; 3328 } 3329 } 3330 3331 return true; 3332 } 3333 case Instruction::SExt: 3334 case Instruction::ZExt: { 3335 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 3336 if (!Ext) 3337 return false; 3338 3339 // Try to move this ext out of the way of the addressing mode. 3340 // Ask for a method for doing so. 3341 TypePromotionHelper::Action TPH = 3342 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 3343 if (!TPH) 3344 return false; 3345 3346 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3347 TPT.getRestorationPoint(); 3348 unsigned CreatedInstsCost = 0; 3349 unsigned ExtCost = !TLI.isExtFree(Ext); 3350 Value *PromotedOperand = 3351 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 3352 // SExt has been moved away. 3353 // Thus either it will be rematched later in the recursive calls or it is 3354 // gone. Anyway, we must not fold it into the addressing mode at this point. 3355 // E.g., 3356 // op = add opnd, 1 3357 // idx = ext op 3358 // addr = gep base, idx 3359 // is now: 3360 // promotedOpnd = ext opnd <- no match here 3361 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 3362 // addr = gep base, op <- match 3363 if (MovedAway) 3364 *MovedAway = true; 3365 3366 assert(PromotedOperand && 3367 "TypePromotionHelper should have filtered out those cases"); 3368 3369 ExtAddrMode BackupAddrMode = AddrMode; 3370 unsigned OldSize = AddrModeInsts.size(); 3371 3372 if (!matchAddr(PromotedOperand, Depth) || 3373 // The total of the new cost is equal to the cost of the created 3374 // instructions. 3375 // The total of the old cost is equal to the cost of the extension plus 3376 // what we have saved in the addressing mode. 3377 !isPromotionProfitable(CreatedInstsCost, 3378 ExtCost + (AddrModeInsts.size() - OldSize), 3379 PromotedOperand)) { 3380 AddrMode = BackupAddrMode; 3381 AddrModeInsts.resize(OldSize); 3382 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 3383 TPT.rollback(LastKnownGood); 3384 return false; 3385 } 3386 return true; 3387 } 3388 } 3389 return false; 3390 } 3391 3392 /// If we can, try to add the value of 'Addr' into the current addressing mode. 3393 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 3394 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 3395 /// for the target. 3396 /// 3397 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 3398 // Start a transaction at this point that we will rollback if the matching 3399 // fails. 3400 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3401 TPT.getRestorationPoint(); 3402 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 3403 // Fold in immediates if legal for the target. 3404 AddrMode.BaseOffs += CI->getSExtValue(); 3405 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3406 return true; 3407 AddrMode.BaseOffs -= CI->getSExtValue(); 3408 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 3409 // If this is a global variable, try to fold it into the addressing mode. 3410 if (!AddrMode.BaseGV) { 3411 AddrMode.BaseGV = GV; 3412 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3413 return true; 3414 AddrMode.BaseGV = nullptr; 3415 } 3416 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 3417 ExtAddrMode BackupAddrMode = AddrMode; 3418 unsigned OldSize = AddrModeInsts.size(); 3419 3420 // Check to see if it is possible to fold this operation. 3421 bool MovedAway = false; 3422 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 3423 // This instruction may have been moved away. If so, there is nothing 3424 // to check here. 3425 if (MovedAway) 3426 return true; 3427 // Okay, it's possible to fold this. Check to see if it is actually 3428 // *profitable* to do so. We use a simple cost model to avoid increasing 3429 // register pressure too much. 3430 if (I->hasOneUse() || 3431 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 3432 AddrModeInsts.push_back(I); 3433 return true; 3434 } 3435 3436 // It isn't profitable to do this, roll back. 3437 //cerr << "NOT FOLDING: " << *I; 3438 AddrMode = BackupAddrMode; 3439 AddrModeInsts.resize(OldSize); 3440 TPT.rollback(LastKnownGood); 3441 } 3442 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 3443 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 3444 return true; 3445 TPT.rollback(LastKnownGood); 3446 } else if (isa<ConstantPointerNull>(Addr)) { 3447 // Null pointer gets folded without affecting the addressing mode. 3448 return true; 3449 } 3450 3451 // Worse case, the target should support [reg] addressing modes. :) 3452 if (!AddrMode.HasBaseReg) { 3453 AddrMode.HasBaseReg = true; 3454 AddrMode.BaseReg = Addr; 3455 // Still check for legality in case the target supports [imm] but not [i+r]. 3456 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3457 return true; 3458 AddrMode.HasBaseReg = false; 3459 AddrMode.BaseReg = nullptr; 3460 } 3461 3462 // If the base register is already taken, see if we can do [r+r]. 3463 if (AddrMode.Scale == 0) { 3464 AddrMode.Scale = 1; 3465 AddrMode.ScaledReg = Addr; 3466 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3467 return true; 3468 AddrMode.Scale = 0; 3469 AddrMode.ScaledReg = nullptr; 3470 } 3471 // Couldn't match. 3472 TPT.rollback(LastKnownGood); 3473 return false; 3474 } 3475 3476 /// Check to see if all uses of OpVal by the specified inline asm call are due 3477 /// to memory operands. If so, return true, otherwise return false. 3478 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 3479 const TargetMachine &TM) { 3480 const Function *F = CI->getParent()->getParent(); 3481 const TargetLowering *TLI = TM.getSubtargetImpl(*F)->getTargetLowering(); 3482 const TargetRegisterInfo *TRI = TM.getSubtargetImpl(*F)->getRegisterInfo(); 3483 TargetLowering::AsmOperandInfoVector TargetConstraints = 3484 TLI->ParseConstraints(F->getParent()->getDataLayout(), TRI, 3485 ImmutableCallSite(CI)); 3486 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3487 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3488 3489 // Compute the constraint code and ConstraintType to use. 3490 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 3491 3492 // If this asm operand is our Value*, and if it isn't an indirect memory 3493 // operand, we can't fold it! 3494 if (OpInfo.CallOperandVal == OpVal && 3495 (OpInfo.ConstraintType != TargetLowering::C_Memory || 3496 !OpInfo.isIndirect)) 3497 return false; 3498 } 3499 3500 return true; 3501 } 3502 3503 /// Recursively walk all the uses of I until we find a memory use. 3504 /// If we find an obviously non-foldable instruction, return true. 3505 /// Add the ultimately found memory instructions to MemoryUses. 3506 static bool FindAllMemoryUses( 3507 Instruction *I, 3508 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 3509 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetMachine &TM) { 3510 // If we already considered this instruction, we're done. 3511 if (!ConsideredInsts.insert(I).second) 3512 return false; 3513 3514 // If this is an obviously unfoldable instruction, bail out. 3515 if (!MightBeFoldableInst(I)) 3516 return true; 3517 3518 const bool OptSize = I->getFunction()->optForSize(); 3519 3520 // Loop over all the uses, recursively processing them. 3521 for (Use &U : I->uses()) { 3522 Instruction *UserI = cast<Instruction>(U.getUser()); 3523 3524 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 3525 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 3526 continue; 3527 } 3528 3529 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 3530 unsigned opNo = U.getOperandNo(); 3531 if (opNo == 0) return true; // Storing addr, not into addr. 3532 MemoryUses.push_back(std::make_pair(SI, opNo)); 3533 continue; 3534 } 3535 3536 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 3537 // If this is a cold call, we can sink the addressing calculation into 3538 // the cold path. See optimizeCallInst 3539 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 3540 continue; 3541 3542 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 3543 if (!IA) return true; 3544 3545 // If this is a memory operand, we're cool, otherwise bail out. 3546 if (!IsOperandAMemoryOperand(CI, IA, I, TM)) 3547 return true; 3548 continue; 3549 } 3550 3551 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TM)) 3552 return true; 3553 } 3554 3555 return false; 3556 } 3557 3558 /// Return true if Val is already known to be live at the use site that we're 3559 /// folding it into. If so, there is no cost to include it in the addressing 3560 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 3561 /// instruction already. 3562 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 3563 Value *KnownLive2) { 3564 // If Val is either of the known-live values, we know it is live! 3565 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 3566 return true; 3567 3568 // All values other than instructions and arguments (e.g. constants) are live. 3569 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 3570 3571 // If Val is a constant sized alloca in the entry block, it is live, this is 3572 // true because it is just a reference to the stack/frame pointer, which is 3573 // live for the whole function. 3574 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 3575 if (AI->isStaticAlloca()) 3576 return true; 3577 3578 // Check to see if this value is already used in the memory instruction's 3579 // block. If so, it's already live into the block at the very least, so we 3580 // can reasonably fold it. 3581 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 3582 } 3583 3584 /// It is possible for the addressing mode of the machine to fold the specified 3585 /// instruction into a load or store that ultimately uses it. 3586 /// However, the specified instruction has multiple uses. 3587 /// Given this, it may actually increase register pressure to fold it 3588 /// into the load. For example, consider this code: 3589 /// 3590 /// X = ... 3591 /// Y = X+1 3592 /// use(Y) -> nonload/store 3593 /// Z = Y+1 3594 /// load Z 3595 /// 3596 /// In this case, Y has multiple uses, and can be folded into the load of Z 3597 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 3598 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 3599 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 3600 /// number of computations either. 3601 /// 3602 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 3603 /// X was live across 'load Z' for other reasons, we actually *would* want to 3604 /// fold the addressing mode in the Z case. This would make Y die earlier. 3605 bool AddressingModeMatcher:: 3606 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 3607 ExtAddrMode &AMAfter) { 3608 if (IgnoreProfitability) return true; 3609 3610 // AMBefore is the addressing mode before this instruction was folded into it, 3611 // and AMAfter is the addressing mode after the instruction was folded. Get 3612 // the set of registers referenced by AMAfter and subtract out those 3613 // referenced by AMBefore: this is the set of values which folding in this 3614 // address extends the lifetime of. 3615 // 3616 // Note that there are only two potential values being referenced here, 3617 // BaseReg and ScaleReg (global addresses are always available, as are any 3618 // folded immediates). 3619 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 3620 3621 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 3622 // lifetime wasn't extended by adding this instruction. 3623 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3624 BaseReg = nullptr; 3625 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3626 ScaledReg = nullptr; 3627 3628 // If folding this instruction (and it's subexprs) didn't extend any live 3629 // ranges, we're ok with it. 3630 if (!BaseReg && !ScaledReg) 3631 return true; 3632 3633 // If all uses of this instruction can have the address mode sunk into them, 3634 // we can remove the addressing mode and effectively trade one live register 3635 // for another (at worst.) In this context, folding an addressing mode into 3636 // the use is just a particularly nice way of sinking it. 3637 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 3638 SmallPtrSet<Instruction*, 16> ConsideredInsts; 3639 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TM)) 3640 return false; // Has a non-memory, non-foldable use! 3641 3642 // Now that we know that all uses of this instruction are part of a chain of 3643 // computation involving only operations that could theoretically be folded 3644 // into a memory use, loop over each of these memory operation uses and see 3645 // if they could *actually* fold the instruction. The assumption is that 3646 // addressing modes are cheap and that duplicating the computation involved 3647 // many times is worthwhile, even on a fastpath. For sinking candidates 3648 // (i.e. cold call sites), this serves as a way to prevent excessive code 3649 // growth since most architectures have some reasonable small and fast way to 3650 // compute an effective address. (i.e LEA on x86) 3651 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 3652 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 3653 Instruction *User = MemoryUses[i].first; 3654 unsigned OpNo = MemoryUses[i].second; 3655 3656 // Get the access type of this use. If the use isn't a pointer, we don't 3657 // know what it accesses. 3658 Value *Address = User->getOperand(OpNo); 3659 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 3660 if (!AddrTy) 3661 return false; 3662 Type *AddressAccessTy = AddrTy->getElementType(); 3663 unsigned AS = AddrTy->getAddressSpace(); 3664 3665 // Do a match against the root of this address, ignoring profitability. This 3666 // will tell us if the addressing mode for the memory operation will 3667 // *actually* cover the shared instruction. 3668 ExtAddrMode Result; 3669 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3670 TPT.getRestorationPoint(); 3671 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TM, AddressAccessTy, AS, 3672 MemoryInst, Result, InsertedInsts, 3673 PromotedInsts, TPT); 3674 Matcher.IgnoreProfitability = true; 3675 bool Success = Matcher.matchAddr(Address, 0); 3676 (void)Success; assert(Success && "Couldn't select *anything*?"); 3677 3678 // The match was to check the profitability, the changes made are not 3679 // part of the original matcher. Therefore, they should be dropped 3680 // otherwise the original matcher will not present the right state. 3681 TPT.rollback(LastKnownGood); 3682 3683 // If the match didn't cover I, then it won't be shared by it. 3684 if (!is_contained(MatchedAddrModeInsts, I)) 3685 return false; 3686 3687 MatchedAddrModeInsts.clear(); 3688 } 3689 3690 return true; 3691 } 3692 3693 } // end anonymous namespace 3694 3695 /// Return true if the specified values are defined in a 3696 /// different basic block than BB. 3697 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 3698 if (Instruction *I = dyn_cast<Instruction>(V)) 3699 return I->getParent() != BB; 3700 return false; 3701 } 3702 3703 /// Sink addressing mode computation immediate before MemoryInst if doing so 3704 /// can be done without increasing register pressure. The need for the 3705 /// register pressure constraint means this can end up being an all or nothing 3706 /// decision for all uses of the same addressing computation. 3707 /// 3708 /// Load and Store Instructions often have addressing modes that can do 3709 /// significant amounts of computation. As such, instruction selection will try 3710 /// to get the load or store to do as much computation as possible for the 3711 /// program. The problem is that isel can only see within a single block. As 3712 /// such, we sink as much legal addressing mode work into the block as possible. 3713 /// 3714 /// This method is used to optimize both load/store and inline asms with memory 3715 /// operands. It's also used to sink addressing computations feeding into cold 3716 /// call sites into their (cold) basic block. 3717 /// 3718 /// The motivation for handling sinking into cold blocks is that doing so can 3719 /// both enable other address mode sinking (by satisfying the register pressure 3720 /// constraint above), and reduce register pressure globally (by removing the 3721 /// addressing mode computation from the fast path entirely.). 3722 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 3723 Type *AccessTy, unsigned AddrSpace) { 3724 Value *Repl = Addr; 3725 3726 // Try to collapse single-value PHI nodes. This is necessary to undo 3727 // unprofitable PRE transformations. 3728 SmallVector<Value*, 8> worklist; 3729 SmallPtrSet<Value*, 16> Visited; 3730 worklist.push_back(Addr); 3731 3732 // Use a worklist to iteratively look through PHI nodes, and ensure that 3733 // the addressing mode obtained from the non-PHI roots of the graph 3734 // are equivalent. 3735 Value *Consensus = nullptr; 3736 unsigned NumUsesConsensus = 0; 3737 bool IsNumUsesConsensusValid = false; 3738 SmallVector<Instruction*, 16> AddrModeInsts; 3739 ExtAddrMode AddrMode; 3740 TypePromotionTransaction TPT; 3741 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3742 TPT.getRestorationPoint(); 3743 while (!worklist.empty()) { 3744 Value *V = worklist.back(); 3745 worklist.pop_back(); 3746 3747 // Break use-def graph loops. 3748 if (!Visited.insert(V).second) { 3749 Consensus = nullptr; 3750 break; 3751 } 3752 3753 // For a PHI node, push all of its incoming values. 3754 if (PHINode *P = dyn_cast<PHINode>(V)) { 3755 for (Value *IncValue : P->incoming_values()) 3756 worklist.push_back(IncValue); 3757 continue; 3758 } 3759 3760 // For non-PHIs, determine the addressing mode being computed. Note that 3761 // the result may differ depending on what other uses our candidate 3762 // addressing instructions might have. 3763 SmallVector<Instruction*, 16> NewAddrModeInsts; 3764 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 3765 V, AccessTy, AddrSpace, MemoryInst, NewAddrModeInsts, *TM, 3766 InsertedInsts, PromotedInsts, TPT); 3767 3768 // This check is broken into two cases with very similar code to avoid using 3769 // getNumUses() as much as possible. Some values have a lot of uses, so 3770 // calling getNumUses() unconditionally caused a significant compile-time 3771 // regression. 3772 if (!Consensus) { 3773 Consensus = V; 3774 AddrMode = NewAddrMode; 3775 AddrModeInsts = NewAddrModeInsts; 3776 continue; 3777 } else if (NewAddrMode == AddrMode) { 3778 if (!IsNumUsesConsensusValid) { 3779 NumUsesConsensus = Consensus->getNumUses(); 3780 IsNumUsesConsensusValid = true; 3781 } 3782 3783 // Ensure that the obtained addressing mode is equivalent to that obtained 3784 // for all other roots of the PHI traversal. Also, when choosing one 3785 // such root as representative, select the one with the most uses in order 3786 // to keep the cost modeling heuristics in AddressingModeMatcher 3787 // applicable. 3788 unsigned NumUses = V->getNumUses(); 3789 if (NumUses > NumUsesConsensus) { 3790 Consensus = V; 3791 NumUsesConsensus = NumUses; 3792 AddrModeInsts = NewAddrModeInsts; 3793 } 3794 continue; 3795 } 3796 3797 Consensus = nullptr; 3798 break; 3799 } 3800 3801 // If the addressing mode couldn't be determined, or if multiple different 3802 // ones were determined, bail out now. 3803 if (!Consensus) { 3804 TPT.rollback(LastKnownGood); 3805 return false; 3806 } 3807 TPT.commit(); 3808 3809 // Check to see if any of the instructions supersumed by this addr mode are 3810 // non-local to I's BB. 3811 bool AnyNonLocal = false; 3812 for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) { 3813 if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) { 3814 AnyNonLocal = true; 3815 break; 3816 } 3817 } 3818 3819 // If all the instructions matched are already in this BB, don't do anything. 3820 if (!AnyNonLocal) { 3821 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 3822 return false; 3823 } 3824 3825 // Insert this computation right after this user. Since our caller is 3826 // scanning from the top of the BB to the bottom, reuse of the expr are 3827 // guaranteed to happen later. 3828 IRBuilder<> Builder(MemoryInst); 3829 3830 // Now that we determined the addressing expression we want to use and know 3831 // that we have to sink it into this block. Check to see if we have already 3832 // done this for some other load/store instr in this block. If so, reuse the 3833 // computation. 3834 Value *&SunkAddr = SunkAddrs[Addr]; 3835 if (SunkAddr) { 3836 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 3837 << *MemoryInst << "\n"); 3838 if (SunkAddr->getType() != Addr->getType()) 3839 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3840 } else if (AddrSinkUsingGEPs || 3841 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 3842 TM->getSubtargetImpl(*MemoryInst->getParent()->getParent()) 3843 ->useAA())) { 3844 // By default, we use the GEP-based method when AA is used later. This 3845 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 3846 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3847 << *MemoryInst << "\n"); 3848 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 3849 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 3850 3851 // First, find the pointer. 3852 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 3853 ResultPtr = AddrMode.BaseReg; 3854 AddrMode.BaseReg = nullptr; 3855 } 3856 3857 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 3858 // We can't add more than one pointer together, nor can we scale a 3859 // pointer (both of which seem meaningless). 3860 if (ResultPtr || AddrMode.Scale != 1) 3861 return false; 3862 3863 ResultPtr = AddrMode.ScaledReg; 3864 AddrMode.Scale = 0; 3865 } 3866 3867 if (AddrMode.BaseGV) { 3868 if (ResultPtr) 3869 return false; 3870 3871 ResultPtr = AddrMode.BaseGV; 3872 } 3873 3874 // If the real base value actually came from an inttoptr, then the matcher 3875 // will look through it and provide only the integer value. In that case, 3876 // use it here. 3877 if (!ResultPtr && AddrMode.BaseReg) { 3878 ResultPtr = 3879 Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr"); 3880 AddrMode.BaseReg = nullptr; 3881 } else if (!ResultPtr && AddrMode.Scale == 1) { 3882 ResultPtr = 3883 Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr"); 3884 AddrMode.Scale = 0; 3885 } 3886 3887 if (!ResultPtr && 3888 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 3889 SunkAddr = Constant::getNullValue(Addr->getType()); 3890 } else if (!ResultPtr) { 3891 return false; 3892 } else { 3893 Type *I8PtrTy = 3894 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 3895 Type *I8Ty = Builder.getInt8Ty(); 3896 3897 // Start with the base register. Do this first so that subsequent address 3898 // matching finds it last, which will prevent it from trying to match it 3899 // as the scaled value in case it happens to be a mul. That would be 3900 // problematic if we've sunk a different mul for the scale, because then 3901 // we'd end up sinking both muls. 3902 if (AddrMode.BaseReg) { 3903 Value *V = AddrMode.BaseReg; 3904 if (V->getType() != IntPtrTy) 3905 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3906 3907 ResultIndex = V; 3908 } 3909 3910 // Add the scale value. 3911 if (AddrMode.Scale) { 3912 Value *V = AddrMode.ScaledReg; 3913 if (V->getType() == IntPtrTy) { 3914 // done. 3915 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3916 cast<IntegerType>(V->getType())->getBitWidth()) { 3917 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3918 } else { 3919 // It is only safe to sign extend the BaseReg if we know that the math 3920 // required to create it did not overflow before we extend it. Since 3921 // the original IR value was tossed in favor of a constant back when 3922 // the AddrMode was created we need to bail out gracefully if widths 3923 // do not match instead of extending it. 3924 Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex); 3925 if (I && (ResultIndex != AddrMode.BaseReg)) 3926 I->eraseFromParent(); 3927 return false; 3928 } 3929 3930 if (AddrMode.Scale != 1) 3931 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3932 "sunkaddr"); 3933 if (ResultIndex) 3934 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 3935 else 3936 ResultIndex = V; 3937 } 3938 3939 // Add in the Base Offset if present. 3940 if (AddrMode.BaseOffs) { 3941 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3942 if (ResultIndex) { 3943 // We need to add this separately from the scale above to help with 3944 // SDAG consecutive load/store merging. 3945 if (ResultPtr->getType() != I8PtrTy) 3946 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3947 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 3948 } 3949 3950 ResultIndex = V; 3951 } 3952 3953 if (!ResultIndex) { 3954 SunkAddr = ResultPtr; 3955 } else { 3956 if (ResultPtr->getType() != I8PtrTy) 3957 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3958 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 3959 } 3960 3961 if (SunkAddr->getType() != Addr->getType()) 3962 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3963 } 3964 } else { 3965 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3966 << *MemoryInst << "\n"); 3967 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 3968 Value *Result = nullptr; 3969 3970 // Start with the base register. Do this first so that subsequent address 3971 // matching finds it last, which will prevent it from trying to match it 3972 // as the scaled value in case it happens to be a mul. That would be 3973 // problematic if we've sunk a different mul for the scale, because then 3974 // we'd end up sinking both muls. 3975 if (AddrMode.BaseReg) { 3976 Value *V = AddrMode.BaseReg; 3977 if (V->getType()->isPointerTy()) 3978 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3979 if (V->getType() != IntPtrTy) 3980 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3981 Result = V; 3982 } 3983 3984 // Add the scale value. 3985 if (AddrMode.Scale) { 3986 Value *V = AddrMode.ScaledReg; 3987 if (V->getType() == IntPtrTy) { 3988 // done. 3989 } else if (V->getType()->isPointerTy()) { 3990 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3991 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3992 cast<IntegerType>(V->getType())->getBitWidth()) { 3993 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3994 } else { 3995 // It is only safe to sign extend the BaseReg if we know that the math 3996 // required to create it did not overflow before we extend it. Since 3997 // the original IR value was tossed in favor of a constant back when 3998 // the AddrMode was created we need to bail out gracefully if widths 3999 // do not match instead of extending it. 4000 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4001 if (I && (Result != AddrMode.BaseReg)) 4002 I->eraseFromParent(); 4003 return false; 4004 } 4005 if (AddrMode.Scale != 1) 4006 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4007 "sunkaddr"); 4008 if (Result) 4009 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4010 else 4011 Result = V; 4012 } 4013 4014 // Add in the BaseGV if present. 4015 if (AddrMode.BaseGV) { 4016 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 4017 if (Result) 4018 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4019 else 4020 Result = V; 4021 } 4022 4023 // Add in the Base Offset if present. 4024 if (AddrMode.BaseOffs) { 4025 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4026 if (Result) 4027 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4028 else 4029 Result = V; 4030 } 4031 4032 if (!Result) 4033 SunkAddr = Constant::getNullValue(Addr->getType()); 4034 else 4035 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 4036 } 4037 4038 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 4039 4040 // If we have no uses, recursively delete the value and all dead instructions 4041 // using it. 4042 if (Repl->use_empty()) { 4043 // This can cause recursive deletion, which can invalidate our iterator. 4044 // Use a WeakVH to hold onto it in case this happens. 4045 Value *CurValue = &*CurInstIterator; 4046 WeakVH IterHandle(CurValue); 4047 BasicBlock *BB = CurInstIterator->getParent(); 4048 4049 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 4050 4051 if (IterHandle != CurValue) { 4052 // If the iterator instruction was recursively deleted, start over at the 4053 // start of the block. 4054 CurInstIterator = BB->begin(); 4055 SunkAddrs.clear(); 4056 } 4057 } 4058 ++NumMemoryInsts; 4059 return true; 4060 } 4061 4062 /// If there are any memory operands, use OptimizeMemoryInst to sink their 4063 /// address computing into the block when possible / profitable. 4064 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 4065 bool MadeChange = false; 4066 4067 const TargetRegisterInfo *TRI = 4068 TM->getSubtargetImpl(*CS->getParent()->getParent())->getRegisterInfo(); 4069 TargetLowering::AsmOperandInfoVector TargetConstraints = 4070 TLI->ParseConstraints(*DL, TRI, CS); 4071 unsigned ArgNo = 0; 4072 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4073 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4074 4075 // Compute the constraint code and ConstraintType to use. 4076 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 4077 4078 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4079 OpInfo.isIndirect) { 4080 Value *OpVal = CS->getArgOperand(ArgNo++); 4081 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 4082 } else if (OpInfo.Type == InlineAsm::isInput) 4083 ArgNo++; 4084 } 4085 4086 return MadeChange; 4087 } 4088 4089 /// \brief Check if all the uses of \p Inst are equivalent (or free) zero or 4090 /// sign extensions. 4091 static bool hasSameExtUse(Instruction *Inst, const TargetLowering &TLI) { 4092 assert(!Inst->use_empty() && "Input must have at least one use"); 4093 const Instruction *FirstUser = cast<Instruction>(*Inst->user_begin()); 4094 bool IsSExt = isa<SExtInst>(FirstUser); 4095 Type *ExtTy = FirstUser->getType(); 4096 for (const User *U : Inst->users()) { 4097 const Instruction *UI = cast<Instruction>(U); 4098 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 4099 return false; 4100 Type *CurTy = UI->getType(); 4101 // Same input and output types: Same instruction after CSE. 4102 if (CurTy == ExtTy) 4103 continue; 4104 4105 // If IsSExt is true, we are in this situation: 4106 // a = Inst 4107 // b = sext ty1 a to ty2 4108 // c = sext ty1 a to ty3 4109 // Assuming ty2 is shorter than ty3, this could be turned into: 4110 // a = Inst 4111 // b = sext ty1 a to ty2 4112 // c = sext ty2 b to ty3 4113 // However, the last sext is not free. 4114 if (IsSExt) 4115 return false; 4116 4117 // This is a ZExt, maybe this is free to extend from one type to another. 4118 // In that case, we would not account for a different use. 4119 Type *NarrowTy; 4120 Type *LargeTy; 4121 if (ExtTy->getScalarType()->getIntegerBitWidth() > 4122 CurTy->getScalarType()->getIntegerBitWidth()) { 4123 NarrowTy = CurTy; 4124 LargeTy = ExtTy; 4125 } else { 4126 NarrowTy = ExtTy; 4127 LargeTy = CurTy; 4128 } 4129 4130 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 4131 return false; 4132 } 4133 // All uses are the same or can be derived from one another for free. 4134 return true; 4135 } 4136 4137 /// \brief Try to form ExtLd by promoting \p Exts until they reach a 4138 /// load instruction. 4139 /// If an ext(load) can be formed, it is returned via \p LI for the load 4140 /// and \p Inst for the extension. 4141 /// Otherwise LI == nullptr and Inst == nullptr. 4142 /// When some promotion happened, \p TPT contains the proper state to 4143 /// revert them. 4144 /// 4145 /// \return true when promoting was necessary to expose the ext(load) 4146 /// opportunity, false otherwise. 4147 /// 4148 /// Example: 4149 /// \code 4150 /// %ld = load i32* %addr 4151 /// %add = add nuw i32 %ld, 4 4152 /// %zext = zext i32 %add to i64 4153 /// \endcode 4154 /// => 4155 /// \code 4156 /// %ld = load i32* %addr 4157 /// %zext = zext i32 %ld to i64 4158 /// %add = add nuw i64 %zext, 4 4159 /// \encode 4160 /// Thanks to the promotion, we can match zext(load i32*) to i64. 4161 bool CodeGenPrepare::extLdPromotion(TypePromotionTransaction &TPT, 4162 LoadInst *&LI, Instruction *&Inst, 4163 const SmallVectorImpl<Instruction *> &Exts, 4164 unsigned CreatedInstsCost = 0) { 4165 // Iterate over all the extensions to see if one form an ext(load). 4166 for (auto I : Exts) { 4167 // Check if we directly have ext(load). 4168 if ((LI = dyn_cast<LoadInst>(I->getOperand(0)))) { 4169 Inst = I; 4170 // No promotion happened here. 4171 return false; 4172 } 4173 // Check whether or not we want to do any promotion. 4174 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4175 continue; 4176 // Get the action to perform the promotion. 4177 TypePromotionHelper::Action TPH = TypePromotionHelper::getAction( 4178 I, InsertedInsts, *TLI, PromotedInsts); 4179 // Check if we can promote. 4180 if (!TPH) 4181 continue; 4182 // Save the current state. 4183 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4184 TPT.getRestorationPoint(); 4185 SmallVector<Instruction *, 4> NewExts; 4186 unsigned NewCreatedInstsCost = 0; 4187 unsigned ExtCost = !TLI->isExtFree(I); 4188 // Promote. 4189 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4190 &NewExts, nullptr, *TLI); 4191 assert(PromotedVal && 4192 "TypePromotionHelper should have filtered out those cases"); 4193 4194 // We would be able to merge only one extension in a load. 4195 // Therefore, if we have more than 1 new extension we heuristically 4196 // cut this search path, because it means we degrade the code quality. 4197 // With exactly 2, the transformation is neutral, because we will merge 4198 // one extension but leave one. However, we optimistically keep going, 4199 // because the new extension may be removed too. 4200 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4201 TotalCreatedInstsCost -= ExtCost; 4202 if (!StressExtLdPromotion && 4203 (TotalCreatedInstsCost > 1 || 4204 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 4205 // The promotion is not profitable, rollback to the previous state. 4206 TPT.rollback(LastKnownGood); 4207 continue; 4208 } 4209 // The promotion is profitable. 4210 // Check if it exposes an ext(load). 4211 (void)extLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInstsCost); 4212 if (LI && (StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 4213 // If we have created a new extension, i.e., now we have two 4214 // extensions. We must make sure one of them is merged with 4215 // the load, otherwise we may degrade the code quality. 4216 (LI->hasOneUse() || hasSameExtUse(LI, *TLI)))) 4217 // Promotion happened. 4218 return true; 4219 // If this does not help to expose an ext(load) then, rollback. 4220 TPT.rollback(LastKnownGood); 4221 } 4222 // None of the extension can form an ext(load). 4223 LI = nullptr; 4224 Inst = nullptr; 4225 return false; 4226 } 4227 4228 /// Move a zext or sext fed by a load into the same basic block as the load, 4229 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 4230 /// extend into the load. 4231 /// \p I[in/out] the extension may be modified during the process if some 4232 /// promotions apply. 4233 /// 4234 bool CodeGenPrepare::moveExtToFormExtLoad(Instruction *&I) { 4235 // ExtLoad formation infrastructure requires TLI to be effective. 4236 if (!TLI) 4237 return false; 4238 4239 // Try to promote a chain of computation if it allows to form 4240 // an extended load. 4241 TypePromotionTransaction TPT; 4242 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4243 TPT.getRestorationPoint(); 4244 SmallVector<Instruction *, 1> Exts; 4245 Exts.push_back(I); 4246 // Look for a load being extended. 4247 LoadInst *LI = nullptr; 4248 Instruction *OldExt = I; 4249 bool HasPromoted = extLdPromotion(TPT, LI, I, Exts); 4250 if (!LI || !I) { 4251 assert(!HasPromoted && !LI && "If we did not match any load instruction " 4252 "the code must remain the same"); 4253 I = OldExt; 4254 return false; 4255 } 4256 4257 // If they're already in the same block, there's nothing to do. 4258 // Make the cheap checks first if we did not promote. 4259 // If we promoted, we need to check if it is indeed profitable. 4260 if (!HasPromoted && LI->getParent() == I->getParent()) 4261 return false; 4262 4263 EVT VT = TLI->getValueType(*DL, I->getType()); 4264 EVT LoadVT = TLI->getValueType(*DL, LI->getType()); 4265 4266 // If the load has other users and the truncate is not free, this probably 4267 // isn't worthwhile. 4268 if (!LI->hasOneUse() && 4269 (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) && 4270 !TLI->isTruncateFree(I->getType(), LI->getType())) { 4271 I = OldExt; 4272 TPT.rollback(LastKnownGood); 4273 return false; 4274 } 4275 4276 // Check whether the target supports casts folded into loads. 4277 unsigned LType; 4278 if (isa<ZExtInst>(I)) 4279 LType = ISD::ZEXTLOAD; 4280 else { 4281 assert(isa<SExtInst>(I) && "Unexpected ext type!"); 4282 LType = ISD::SEXTLOAD; 4283 } 4284 if (!TLI->isLoadExtLegal(LType, VT, LoadVT)) { 4285 I = OldExt; 4286 TPT.rollback(LastKnownGood); 4287 return false; 4288 } 4289 4290 // Move the extend into the same block as the load, so that SelectionDAG 4291 // can fold it. 4292 TPT.commit(); 4293 I->removeFromParent(); 4294 I->insertAfter(LI); 4295 // CGP does not check if the zext would be speculatively executed when moved 4296 // to the same basic block as the load. Preserving its original location would 4297 // pessimize the debugging experience, as well as negatively impact the 4298 // quality of sample pgo. We don't want to use "line 0" as that has a 4299 // size cost in the line-table section and logically the zext can be seen as 4300 // part of the load. Therefore we conservatively reuse the same debug location 4301 // for the load and the zext. 4302 I->setDebugLoc(LI->getDebugLoc()); 4303 ++NumExtsMoved; 4304 return true; 4305 } 4306 4307 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 4308 BasicBlock *DefBB = I->getParent(); 4309 4310 // If the result of a {s|z}ext and its source are both live out, rewrite all 4311 // other uses of the source with result of extension. 4312 Value *Src = I->getOperand(0); 4313 if (Src->hasOneUse()) 4314 return false; 4315 4316 // Only do this xform if truncating is free. 4317 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 4318 return false; 4319 4320 // Only safe to perform the optimization if the source is also defined in 4321 // this block. 4322 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 4323 return false; 4324 4325 bool DefIsLiveOut = false; 4326 for (User *U : I->users()) { 4327 Instruction *UI = cast<Instruction>(U); 4328 4329 // Figure out which BB this ext is used in. 4330 BasicBlock *UserBB = UI->getParent(); 4331 if (UserBB == DefBB) continue; 4332 DefIsLiveOut = true; 4333 break; 4334 } 4335 if (!DefIsLiveOut) 4336 return false; 4337 4338 // Make sure none of the uses are PHI nodes. 4339 for (User *U : Src->users()) { 4340 Instruction *UI = cast<Instruction>(U); 4341 BasicBlock *UserBB = UI->getParent(); 4342 if (UserBB == DefBB) continue; 4343 // Be conservative. We don't want this xform to end up introducing 4344 // reloads just before load / store instructions. 4345 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 4346 return false; 4347 } 4348 4349 // InsertedTruncs - Only insert one trunc in each block once. 4350 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 4351 4352 bool MadeChange = false; 4353 for (Use &U : Src->uses()) { 4354 Instruction *User = cast<Instruction>(U.getUser()); 4355 4356 // Figure out which BB this ext is used in. 4357 BasicBlock *UserBB = User->getParent(); 4358 if (UserBB == DefBB) continue; 4359 4360 // Both src and def are live in this block. Rewrite the use. 4361 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 4362 4363 if (!InsertedTrunc) { 4364 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 4365 assert(InsertPt != UserBB->end()); 4366 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 4367 InsertedInsts.insert(InsertedTrunc); 4368 } 4369 4370 // Replace a use of the {s|z}ext source with a use of the result. 4371 U = InsertedTrunc; 4372 ++NumExtUses; 4373 MadeChange = true; 4374 } 4375 4376 return MadeChange; 4377 } 4378 4379 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 4380 // just after the load if the target can fold this into one extload instruction, 4381 // with the hope of eliminating some of the other later "and" instructions using 4382 // the loaded value. "and"s that are made trivially redundant by the insertion 4383 // of the new "and" are removed by this function, while others (e.g. those whose 4384 // path from the load goes through a phi) are left for isel to potentially 4385 // remove. 4386 // 4387 // For example: 4388 // 4389 // b0: 4390 // x = load i32 4391 // ... 4392 // b1: 4393 // y = and x, 0xff 4394 // z = use y 4395 // 4396 // becomes: 4397 // 4398 // b0: 4399 // x = load i32 4400 // x' = and x, 0xff 4401 // ... 4402 // b1: 4403 // z = use x' 4404 // 4405 // whereas: 4406 // 4407 // b0: 4408 // x1 = load i32 4409 // ... 4410 // b1: 4411 // x2 = load i32 4412 // ... 4413 // b2: 4414 // x = phi x1, x2 4415 // y = and x, 0xff 4416 // 4417 // becomes (after a call to optimizeLoadExt for each load): 4418 // 4419 // b0: 4420 // x1 = load i32 4421 // x1' = and x1, 0xff 4422 // ... 4423 // b1: 4424 // x2 = load i32 4425 // x2' = and x2, 0xff 4426 // ... 4427 // b2: 4428 // x = phi x1', x2' 4429 // y = and x, 0xff 4430 // 4431 4432 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 4433 4434 if (!Load->isSimple() || 4435 !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy())) 4436 return false; 4437 4438 // Skip loads we've already transformed or have no reason to transform. 4439 if (Load->hasOneUse()) { 4440 User *LoadUser = *Load->user_begin(); 4441 if (cast<Instruction>(LoadUser)->getParent() == Load->getParent() && 4442 !dyn_cast<PHINode>(LoadUser)) 4443 return false; 4444 } 4445 4446 // Look at all uses of Load, looking through phis, to determine how many bits 4447 // of the loaded value are needed. 4448 SmallVector<Instruction *, 8> WorkList; 4449 SmallPtrSet<Instruction *, 16> Visited; 4450 SmallVector<Instruction *, 8> AndsToMaybeRemove; 4451 for (auto *U : Load->users()) 4452 WorkList.push_back(cast<Instruction>(U)); 4453 4454 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 4455 unsigned BitWidth = LoadResultVT.getSizeInBits(); 4456 APInt DemandBits(BitWidth, 0); 4457 APInt WidestAndBits(BitWidth, 0); 4458 4459 while (!WorkList.empty()) { 4460 Instruction *I = WorkList.back(); 4461 WorkList.pop_back(); 4462 4463 // Break use-def graph loops. 4464 if (!Visited.insert(I).second) 4465 continue; 4466 4467 // For a PHI node, push all of its users. 4468 if (auto *Phi = dyn_cast<PHINode>(I)) { 4469 for (auto *U : Phi->users()) 4470 WorkList.push_back(cast<Instruction>(U)); 4471 continue; 4472 } 4473 4474 switch (I->getOpcode()) { 4475 case llvm::Instruction::And: { 4476 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 4477 if (!AndC) 4478 return false; 4479 APInt AndBits = AndC->getValue(); 4480 DemandBits |= AndBits; 4481 // Keep track of the widest and mask we see. 4482 if (AndBits.ugt(WidestAndBits)) 4483 WidestAndBits = AndBits; 4484 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 4485 AndsToMaybeRemove.push_back(I); 4486 break; 4487 } 4488 4489 case llvm::Instruction::Shl: { 4490 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 4491 if (!ShlC) 4492 return false; 4493 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 4494 auto ShlDemandBits = APInt::getAllOnesValue(BitWidth).lshr(ShiftAmt); 4495 DemandBits |= ShlDemandBits; 4496 break; 4497 } 4498 4499 case llvm::Instruction::Trunc: { 4500 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 4501 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 4502 auto TruncBits = APInt::getAllOnesValue(TruncBitWidth).zext(BitWidth); 4503 DemandBits |= TruncBits; 4504 break; 4505 } 4506 4507 default: 4508 return false; 4509 } 4510 } 4511 4512 uint32_t ActiveBits = DemandBits.getActiveBits(); 4513 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 4514 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 4515 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 4516 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 4517 // followed by an AND. 4518 // TODO: Look into removing this restriction by fixing backends to either 4519 // return false for isLoadExtLegal for i1 or have them select this pattern to 4520 // a single instruction. 4521 // 4522 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 4523 // mask, since these are the only ands that will be removed by isel. 4524 if (ActiveBits <= 1 || !APIntOps::isMask(ActiveBits, DemandBits) || 4525 WidestAndBits != DemandBits) 4526 return false; 4527 4528 LLVMContext &Ctx = Load->getType()->getContext(); 4529 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 4530 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 4531 4532 // Reject cases that won't be matched as extloads. 4533 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 4534 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 4535 return false; 4536 4537 IRBuilder<> Builder(Load->getNextNode()); 4538 auto *NewAnd = dyn_cast<Instruction>( 4539 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 4540 4541 // Replace all uses of load with new and (except for the use of load in the 4542 // new and itself). 4543 Load->replaceAllUsesWith(NewAnd); 4544 NewAnd->setOperand(0, Load); 4545 4546 // Remove any and instructions that are now redundant. 4547 for (auto *And : AndsToMaybeRemove) 4548 // Check that the and mask is the same as the one we decided to put on the 4549 // new and. 4550 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 4551 And->replaceAllUsesWith(NewAnd); 4552 if (&*CurInstIterator == And) 4553 CurInstIterator = std::next(And->getIterator()); 4554 And->eraseFromParent(); 4555 ++NumAndUses; 4556 } 4557 4558 ++NumAndsAdded; 4559 return true; 4560 } 4561 4562 /// Check if V (an operand of a select instruction) is an expensive instruction 4563 /// that is only used once. 4564 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 4565 auto *I = dyn_cast<Instruction>(V); 4566 // If it's safe to speculatively execute, then it should not have side 4567 // effects; therefore, it's safe to sink and possibly *not* execute. 4568 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 4569 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 4570 } 4571 4572 /// Returns true if a SelectInst should be turned into an explicit branch. 4573 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 4574 const TargetLowering *TLI, 4575 SelectInst *SI) { 4576 // If even a predictable select is cheap, then a branch can't be cheaper. 4577 if (!TLI->isPredictableSelectExpensive()) 4578 return false; 4579 4580 // FIXME: This should use the same heuristics as IfConversion to determine 4581 // whether a select is better represented as a branch. 4582 4583 // If metadata tells us that the select condition is obviously predictable, 4584 // then we want to replace the select with a branch. 4585 uint64_t TrueWeight, FalseWeight; 4586 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 4587 uint64_t Max = std::max(TrueWeight, FalseWeight); 4588 uint64_t Sum = TrueWeight + FalseWeight; 4589 if (Sum != 0) { 4590 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 4591 if (Probability > TLI->getPredictableBranchThreshold()) 4592 return true; 4593 } 4594 } 4595 4596 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 4597 4598 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 4599 // comparison condition. If the compare has more than one use, there's 4600 // probably another cmov or setcc around, so it's not worth emitting a branch. 4601 if (!Cmp || !Cmp->hasOneUse()) 4602 return false; 4603 4604 // If either operand of the select is expensive and only needed on one side 4605 // of the select, we should form a branch. 4606 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 4607 sinkSelectOperand(TTI, SI->getFalseValue())) 4608 return true; 4609 4610 return false; 4611 } 4612 4613 /// If \p isTrue is true, return the true value of \p SI, otherwise return 4614 /// false value of \p SI. If the true/false value of \p SI is defined by any 4615 /// select instructions in \p Selects, look through the defining select 4616 /// instruction until the true/false value is not defined in \p Selects. 4617 static Value *getTrueOrFalseValue( 4618 SelectInst *SI, bool isTrue, 4619 const SmallPtrSet<const Instruction *, 2> &Selects) { 4620 Value *V; 4621 4622 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 4623 DefSI = dyn_cast<SelectInst>(V)) { 4624 assert(DefSI->getCondition() == SI->getCondition() && 4625 "The condition of DefSI does not match with SI"); 4626 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 4627 } 4628 return V; 4629 } 4630 4631 /// If we have a SelectInst that will likely profit from branch prediction, 4632 /// turn it into a branch. 4633 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 4634 // Find all consecutive select instructions that share the same condition. 4635 SmallVector<SelectInst *, 2> ASI; 4636 ASI.push_back(SI); 4637 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 4638 It != SI->getParent()->end(); ++It) { 4639 SelectInst *I = dyn_cast<SelectInst>(&*It); 4640 if (I && SI->getCondition() == I->getCondition()) { 4641 ASI.push_back(I); 4642 } else { 4643 break; 4644 } 4645 } 4646 4647 SelectInst *LastSI = ASI.back(); 4648 // Increment the current iterator to skip all the rest of select instructions 4649 // because they will be either "not lowered" or "all lowered" to branch. 4650 CurInstIterator = std::next(LastSI->getIterator()); 4651 4652 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 4653 4654 // Can we convert the 'select' to CF ? 4655 if (DisableSelectToBranch || OptSize || !TLI || VectorCond || 4656 SI->getMetadata(LLVMContext::MD_unpredictable)) 4657 return false; 4658 4659 TargetLowering::SelectSupportKind SelectKind; 4660 if (VectorCond) 4661 SelectKind = TargetLowering::VectorMaskSelect; 4662 else if (SI->getType()->isVectorTy()) 4663 SelectKind = TargetLowering::ScalarCondVectorVal; 4664 else 4665 SelectKind = TargetLowering::ScalarValSelect; 4666 4667 if (TLI->isSelectSupported(SelectKind) && 4668 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 4669 return false; 4670 4671 ModifiedDT = true; 4672 4673 // Transform a sequence like this: 4674 // start: 4675 // %cmp = cmp uge i32 %a, %b 4676 // %sel = select i1 %cmp, i32 %c, i32 %d 4677 // 4678 // Into: 4679 // start: 4680 // %cmp = cmp uge i32 %a, %b 4681 // br i1 %cmp, label %select.true, label %select.false 4682 // select.true: 4683 // br label %select.end 4684 // select.false: 4685 // br label %select.end 4686 // select.end: 4687 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 4688 // 4689 // In addition, we may sink instructions that produce %c or %d from 4690 // the entry block into the destination(s) of the new branch. 4691 // If the true or false blocks do not contain a sunken instruction, that 4692 // block and its branch may be optimized away. In that case, one side of the 4693 // first branch will point directly to select.end, and the corresponding PHI 4694 // predecessor block will be the start block. 4695 4696 // First, we split the block containing the select into 2 blocks. 4697 BasicBlock *StartBlock = SI->getParent(); 4698 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 4699 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 4700 4701 // Delete the unconditional branch that was just created by the split. 4702 StartBlock->getTerminator()->eraseFromParent(); 4703 4704 // These are the new basic blocks for the conditional branch. 4705 // At least one will become an actual new basic block. 4706 BasicBlock *TrueBlock = nullptr; 4707 BasicBlock *FalseBlock = nullptr; 4708 BranchInst *TrueBranch = nullptr; 4709 BranchInst *FalseBranch = nullptr; 4710 4711 // Sink expensive instructions into the conditional blocks to avoid executing 4712 // them speculatively. 4713 for (SelectInst *SI : ASI) { 4714 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 4715 if (TrueBlock == nullptr) { 4716 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 4717 EndBlock->getParent(), EndBlock); 4718 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 4719 } 4720 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 4721 TrueInst->moveBefore(TrueBranch); 4722 } 4723 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 4724 if (FalseBlock == nullptr) { 4725 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 4726 EndBlock->getParent(), EndBlock); 4727 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 4728 } 4729 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 4730 FalseInst->moveBefore(FalseBranch); 4731 } 4732 } 4733 4734 // If there was nothing to sink, then arbitrarily choose the 'false' side 4735 // for a new input value to the PHI. 4736 if (TrueBlock == FalseBlock) { 4737 assert(TrueBlock == nullptr && 4738 "Unexpected basic block transform while optimizing select"); 4739 4740 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 4741 EndBlock->getParent(), EndBlock); 4742 BranchInst::Create(EndBlock, FalseBlock); 4743 } 4744 4745 // Insert the real conditional branch based on the original condition. 4746 // If we did not create a new block for one of the 'true' or 'false' paths 4747 // of the condition, it means that side of the branch goes to the end block 4748 // directly and the path originates from the start block from the point of 4749 // view of the new PHI. 4750 BasicBlock *TT, *FT; 4751 if (TrueBlock == nullptr) { 4752 TT = EndBlock; 4753 FT = FalseBlock; 4754 TrueBlock = StartBlock; 4755 } else if (FalseBlock == nullptr) { 4756 TT = TrueBlock; 4757 FT = EndBlock; 4758 FalseBlock = StartBlock; 4759 } else { 4760 TT = TrueBlock; 4761 FT = FalseBlock; 4762 } 4763 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 4764 4765 SmallPtrSet<const Instruction *, 2> INS; 4766 INS.insert(ASI.begin(), ASI.end()); 4767 // Use reverse iterator because later select may use the value of the 4768 // earlier select, and we need to propagate value through earlier select 4769 // to get the PHI operand. 4770 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 4771 SelectInst *SI = *It; 4772 // The select itself is replaced with a PHI Node. 4773 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 4774 PN->takeName(SI); 4775 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 4776 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 4777 4778 SI->replaceAllUsesWith(PN); 4779 SI->eraseFromParent(); 4780 INS.erase(SI); 4781 ++NumSelectsExpanded; 4782 } 4783 4784 // Instruct OptimizeBlock to skip to the next block. 4785 CurInstIterator = StartBlock->end(); 4786 return true; 4787 } 4788 4789 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 4790 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 4791 int SplatElem = -1; 4792 for (unsigned i = 0; i < Mask.size(); ++i) { 4793 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 4794 return false; 4795 SplatElem = Mask[i]; 4796 } 4797 4798 return true; 4799 } 4800 4801 /// Some targets have expensive vector shifts if the lanes aren't all the same 4802 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 4803 /// it's often worth sinking a shufflevector splat down to its use so that 4804 /// codegen can spot all lanes are identical. 4805 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 4806 BasicBlock *DefBB = SVI->getParent(); 4807 4808 // Only do this xform if variable vector shifts are particularly expensive. 4809 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 4810 return false; 4811 4812 // We only expect better codegen by sinking a shuffle if we can recognise a 4813 // constant splat. 4814 if (!isBroadcastShuffle(SVI)) 4815 return false; 4816 4817 // InsertedShuffles - Only insert a shuffle in each block once. 4818 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 4819 4820 bool MadeChange = false; 4821 for (User *U : SVI->users()) { 4822 Instruction *UI = cast<Instruction>(U); 4823 4824 // Figure out which BB this ext is used in. 4825 BasicBlock *UserBB = UI->getParent(); 4826 if (UserBB == DefBB) continue; 4827 4828 // For now only apply this when the splat is used by a shift instruction. 4829 if (!UI->isShift()) continue; 4830 4831 // Everything checks out, sink the shuffle if the user's block doesn't 4832 // already have a copy. 4833 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 4834 4835 if (!InsertedShuffle) { 4836 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 4837 assert(InsertPt != UserBB->end()); 4838 InsertedShuffle = 4839 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 4840 SVI->getOperand(2), "", &*InsertPt); 4841 } 4842 4843 UI->replaceUsesOfWith(SVI, InsertedShuffle); 4844 MadeChange = true; 4845 } 4846 4847 // If we removed all uses, nuke the shuffle. 4848 if (SVI->use_empty()) { 4849 SVI->eraseFromParent(); 4850 MadeChange = true; 4851 } 4852 4853 return MadeChange; 4854 } 4855 4856 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 4857 if (!TLI || !DL) 4858 return false; 4859 4860 Value *Cond = SI->getCondition(); 4861 Type *OldType = Cond->getType(); 4862 LLVMContext &Context = Cond->getContext(); 4863 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 4864 unsigned RegWidth = RegType.getSizeInBits(); 4865 4866 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 4867 return false; 4868 4869 // If the register width is greater than the type width, expand the condition 4870 // of the switch instruction and each case constant to the width of the 4871 // register. By widening the type of the switch condition, subsequent 4872 // comparisons (for case comparisons) will not need to be extended to the 4873 // preferred register width, so we will potentially eliminate N-1 extends, 4874 // where N is the number of cases in the switch. 4875 auto *NewType = Type::getIntNTy(Context, RegWidth); 4876 4877 // Zero-extend the switch condition and case constants unless the switch 4878 // condition is a function argument that is already being sign-extended. 4879 // In that case, we can avoid an unnecessary mask/extension by sign-extending 4880 // everything instead. 4881 Instruction::CastOps ExtType = Instruction::ZExt; 4882 if (auto *Arg = dyn_cast<Argument>(Cond)) 4883 if (Arg->hasSExtAttr()) 4884 ExtType = Instruction::SExt; 4885 4886 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 4887 ExtInst->insertBefore(SI); 4888 SI->setCondition(ExtInst); 4889 for (SwitchInst::CaseIt Case : SI->cases()) { 4890 APInt NarrowConst = Case.getCaseValue()->getValue(); 4891 APInt WideConst = (ExtType == Instruction::ZExt) ? 4892 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 4893 Case.setValue(ConstantInt::get(Context, WideConst)); 4894 } 4895 4896 return true; 4897 } 4898 4899 namespace { 4900 /// \brief Helper class to promote a scalar operation to a vector one. 4901 /// This class is used to move downward extractelement transition. 4902 /// E.g., 4903 /// a = vector_op <2 x i32> 4904 /// b = extractelement <2 x i32> a, i32 0 4905 /// c = scalar_op b 4906 /// store c 4907 /// 4908 /// => 4909 /// a = vector_op <2 x i32> 4910 /// c = vector_op a (equivalent to scalar_op on the related lane) 4911 /// * d = extractelement <2 x i32> c, i32 0 4912 /// * store d 4913 /// Assuming both extractelement and store can be combine, we get rid of the 4914 /// transition. 4915 class VectorPromoteHelper { 4916 /// DataLayout associated with the current module. 4917 const DataLayout &DL; 4918 4919 /// Used to perform some checks on the legality of vector operations. 4920 const TargetLowering &TLI; 4921 4922 /// Used to estimated the cost of the promoted chain. 4923 const TargetTransformInfo &TTI; 4924 4925 /// The transition being moved downwards. 4926 Instruction *Transition; 4927 /// The sequence of instructions to be promoted. 4928 SmallVector<Instruction *, 4> InstsToBePromoted; 4929 /// Cost of combining a store and an extract. 4930 unsigned StoreExtractCombineCost; 4931 /// Instruction that will be combined with the transition. 4932 Instruction *CombineInst; 4933 4934 /// \brief The instruction that represents the current end of the transition. 4935 /// Since we are faking the promotion until we reach the end of the chain 4936 /// of computation, we need a way to get the current end of the transition. 4937 Instruction *getEndOfTransition() const { 4938 if (InstsToBePromoted.empty()) 4939 return Transition; 4940 return InstsToBePromoted.back(); 4941 } 4942 4943 /// \brief Return the index of the original value in the transition. 4944 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 4945 /// c, is at index 0. 4946 unsigned getTransitionOriginalValueIdx() const { 4947 assert(isa<ExtractElementInst>(Transition) && 4948 "Other kind of transitions are not supported yet"); 4949 return 0; 4950 } 4951 4952 /// \brief Return the index of the index in the transition. 4953 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 4954 /// is at index 1. 4955 unsigned getTransitionIdx() const { 4956 assert(isa<ExtractElementInst>(Transition) && 4957 "Other kind of transitions are not supported yet"); 4958 return 1; 4959 } 4960 4961 /// \brief Get the type of the transition. 4962 /// This is the type of the original value. 4963 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 4964 /// transition is <2 x i32>. 4965 Type *getTransitionType() const { 4966 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 4967 } 4968 4969 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 4970 /// I.e., we have the following sequence: 4971 /// Def = Transition <ty1> a to <ty2> 4972 /// b = ToBePromoted <ty2> Def, ... 4973 /// => 4974 /// b = ToBePromoted <ty1> a, ... 4975 /// Def = Transition <ty1> ToBePromoted to <ty2> 4976 void promoteImpl(Instruction *ToBePromoted); 4977 4978 /// \brief Check whether or not it is profitable to promote all the 4979 /// instructions enqueued to be promoted. 4980 bool isProfitableToPromote() { 4981 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 4982 unsigned Index = isa<ConstantInt>(ValIdx) 4983 ? cast<ConstantInt>(ValIdx)->getZExtValue() 4984 : -1; 4985 Type *PromotedType = getTransitionType(); 4986 4987 StoreInst *ST = cast<StoreInst>(CombineInst); 4988 unsigned AS = ST->getPointerAddressSpace(); 4989 unsigned Align = ST->getAlignment(); 4990 // Check if this store is supported. 4991 if (!TLI.allowsMisalignedMemoryAccesses( 4992 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 4993 Align)) { 4994 // If this is not supported, there is no way we can combine 4995 // the extract with the store. 4996 return false; 4997 } 4998 4999 // The scalar chain of computation has to pay for the transition 5000 // scalar to vector. 5001 // The vector chain has to account for the combining cost. 5002 uint64_t ScalarCost = 5003 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 5004 uint64_t VectorCost = StoreExtractCombineCost; 5005 for (const auto &Inst : InstsToBePromoted) { 5006 // Compute the cost. 5007 // By construction, all instructions being promoted are arithmetic ones. 5008 // Moreover, one argument is a constant that can be viewed as a splat 5009 // constant. 5010 Value *Arg0 = Inst->getOperand(0); 5011 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 5012 isa<ConstantFP>(Arg0); 5013 TargetTransformInfo::OperandValueKind Arg0OVK = 5014 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5015 : TargetTransformInfo::OK_AnyValue; 5016 TargetTransformInfo::OperandValueKind Arg1OVK = 5017 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5018 : TargetTransformInfo::OK_AnyValue; 5019 ScalarCost += TTI.getArithmeticInstrCost( 5020 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 5021 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 5022 Arg0OVK, Arg1OVK); 5023 } 5024 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 5025 << ScalarCost << "\nVector: " << VectorCost << '\n'); 5026 return ScalarCost > VectorCost; 5027 } 5028 5029 /// \brief Generate a constant vector with \p Val with the same 5030 /// number of elements as the transition. 5031 /// \p UseSplat defines whether or not \p Val should be replicated 5032 /// across the whole vector. 5033 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 5034 /// otherwise we generate a vector with as many undef as possible: 5035 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 5036 /// used at the index of the extract. 5037 Value *getConstantVector(Constant *Val, bool UseSplat) const { 5038 unsigned ExtractIdx = UINT_MAX; 5039 if (!UseSplat) { 5040 // If we cannot determine where the constant must be, we have to 5041 // use a splat constant. 5042 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 5043 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 5044 ExtractIdx = CstVal->getSExtValue(); 5045 else 5046 UseSplat = true; 5047 } 5048 5049 unsigned End = getTransitionType()->getVectorNumElements(); 5050 if (UseSplat) 5051 return ConstantVector::getSplat(End, Val); 5052 5053 SmallVector<Constant *, 4> ConstVec; 5054 UndefValue *UndefVal = UndefValue::get(Val->getType()); 5055 for (unsigned Idx = 0; Idx != End; ++Idx) { 5056 if (Idx == ExtractIdx) 5057 ConstVec.push_back(Val); 5058 else 5059 ConstVec.push_back(UndefVal); 5060 } 5061 return ConstantVector::get(ConstVec); 5062 } 5063 5064 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 5065 /// in \p Use can trigger undefined behavior. 5066 static bool canCauseUndefinedBehavior(const Instruction *Use, 5067 unsigned OperandIdx) { 5068 // This is not safe to introduce undef when the operand is on 5069 // the right hand side of a division-like instruction. 5070 if (OperandIdx != 1) 5071 return false; 5072 switch (Use->getOpcode()) { 5073 default: 5074 return false; 5075 case Instruction::SDiv: 5076 case Instruction::UDiv: 5077 case Instruction::SRem: 5078 case Instruction::URem: 5079 return true; 5080 case Instruction::FDiv: 5081 case Instruction::FRem: 5082 return !Use->hasNoNaNs(); 5083 } 5084 llvm_unreachable(nullptr); 5085 } 5086 5087 public: 5088 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 5089 const TargetTransformInfo &TTI, Instruction *Transition, 5090 unsigned CombineCost) 5091 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 5092 StoreExtractCombineCost(CombineCost), CombineInst(nullptr) { 5093 assert(Transition && "Do not know how to promote null"); 5094 } 5095 5096 /// \brief Check if we can promote \p ToBePromoted to \p Type. 5097 bool canPromote(const Instruction *ToBePromoted) const { 5098 // We could support CastInst too. 5099 return isa<BinaryOperator>(ToBePromoted); 5100 } 5101 5102 /// \brief Check if it is profitable to promote \p ToBePromoted 5103 /// by moving downward the transition through. 5104 bool shouldPromote(const Instruction *ToBePromoted) const { 5105 // Promote only if all the operands can be statically expanded. 5106 // Indeed, we do not want to introduce any new kind of transitions. 5107 for (const Use &U : ToBePromoted->operands()) { 5108 const Value *Val = U.get(); 5109 if (Val == getEndOfTransition()) { 5110 // If the use is a division and the transition is on the rhs, 5111 // we cannot promote the operation, otherwise we may create a 5112 // division by zero. 5113 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 5114 return false; 5115 continue; 5116 } 5117 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 5118 !isa<ConstantFP>(Val)) 5119 return false; 5120 } 5121 // Check that the resulting operation is legal. 5122 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 5123 if (!ISDOpcode) 5124 return false; 5125 return StressStoreExtract || 5126 TLI.isOperationLegalOrCustom( 5127 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 5128 } 5129 5130 /// \brief Check whether or not \p Use can be combined 5131 /// with the transition. 5132 /// I.e., is it possible to do Use(Transition) => AnotherUse? 5133 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 5134 5135 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 5136 void enqueueForPromotion(Instruction *ToBePromoted) { 5137 InstsToBePromoted.push_back(ToBePromoted); 5138 } 5139 5140 /// \brief Set the instruction that will be combined with the transition. 5141 void recordCombineInstruction(Instruction *ToBeCombined) { 5142 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 5143 CombineInst = ToBeCombined; 5144 } 5145 5146 /// \brief Promote all the instructions enqueued for promotion if it is 5147 /// is profitable. 5148 /// \return True if the promotion happened, false otherwise. 5149 bool promote() { 5150 // Check if there is something to promote. 5151 // Right now, if we do not have anything to combine with, 5152 // we assume the promotion is not profitable. 5153 if (InstsToBePromoted.empty() || !CombineInst) 5154 return false; 5155 5156 // Check cost. 5157 if (!StressStoreExtract && !isProfitableToPromote()) 5158 return false; 5159 5160 // Promote. 5161 for (auto &ToBePromoted : InstsToBePromoted) 5162 promoteImpl(ToBePromoted); 5163 InstsToBePromoted.clear(); 5164 return true; 5165 } 5166 }; 5167 } // End of anonymous namespace. 5168 5169 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 5170 // At this point, we know that all the operands of ToBePromoted but Def 5171 // can be statically promoted. 5172 // For Def, we need to use its parameter in ToBePromoted: 5173 // b = ToBePromoted ty1 a 5174 // Def = Transition ty1 b to ty2 5175 // Move the transition down. 5176 // 1. Replace all uses of the promoted operation by the transition. 5177 // = ... b => = ... Def. 5178 assert(ToBePromoted->getType() == Transition->getType() && 5179 "The type of the result of the transition does not match " 5180 "the final type"); 5181 ToBePromoted->replaceAllUsesWith(Transition); 5182 // 2. Update the type of the uses. 5183 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 5184 Type *TransitionTy = getTransitionType(); 5185 ToBePromoted->mutateType(TransitionTy); 5186 // 3. Update all the operands of the promoted operation with promoted 5187 // operands. 5188 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 5189 for (Use &U : ToBePromoted->operands()) { 5190 Value *Val = U.get(); 5191 Value *NewVal = nullptr; 5192 if (Val == Transition) 5193 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 5194 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 5195 isa<ConstantFP>(Val)) { 5196 // Use a splat constant if it is not safe to use undef. 5197 NewVal = getConstantVector( 5198 cast<Constant>(Val), 5199 isa<UndefValue>(Val) || 5200 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 5201 } else 5202 llvm_unreachable("Did you modified shouldPromote and forgot to update " 5203 "this?"); 5204 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 5205 } 5206 Transition->removeFromParent(); 5207 Transition->insertAfter(ToBePromoted); 5208 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 5209 } 5210 5211 /// Some targets can do store(extractelement) with one instruction. 5212 /// Try to push the extractelement towards the stores when the target 5213 /// has this feature and this is profitable. 5214 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 5215 unsigned CombineCost = UINT_MAX; 5216 if (DisableStoreExtract || !TLI || 5217 (!StressStoreExtract && 5218 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 5219 Inst->getOperand(1), CombineCost))) 5220 return false; 5221 5222 // At this point we know that Inst is a vector to scalar transition. 5223 // Try to move it down the def-use chain, until: 5224 // - We can combine the transition with its single use 5225 // => we got rid of the transition. 5226 // - We escape the current basic block 5227 // => we would need to check that we are moving it at a cheaper place and 5228 // we do not do that for now. 5229 BasicBlock *Parent = Inst->getParent(); 5230 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 5231 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 5232 // If the transition has more than one use, assume this is not going to be 5233 // beneficial. 5234 while (Inst->hasOneUse()) { 5235 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 5236 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 5237 5238 if (ToBePromoted->getParent() != Parent) { 5239 DEBUG(dbgs() << "Instruction to promote is in a different block (" 5240 << ToBePromoted->getParent()->getName() 5241 << ") than the transition (" << Parent->getName() << ").\n"); 5242 return false; 5243 } 5244 5245 if (VPH.canCombine(ToBePromoted)) { 5246 DEBUG(dbgs() << "Assume " << *Inst << '\n' 5247 << "will be combined with: " << *ToBePromoted << '\n'); 5248 VPH.recordCombineInstruction(ToBePromoted); 5249 bool Changed = VPH.promote(); 5250 NumStoreExtractExposed += Changed; 5251 return Changed; 5252 } 5253 5254 DEBUG(dbgs() << "Try promoting.\n"); 5255 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 5256 return false; 5257 5258 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 5259 5260 VPH.enqueueForPromotion(ToBePromoted); 5261 Inst = ToBePromoted; 5262 } 5263 return false; 5264 } 5265 5266 bool CodeGenPrepare::optimizeInst(Instruction *I, bool& ModifiedDT) { 5267 // Bail out if we inserted the instruction to prevent optimizations from 5268 // stepping on each other's toes. 5269 if (InsertedInsts.count(I)) 5270 return false; 5271 5272 if (PHINode *P = dyn_cast<PHINode>(I)) { 5273 // It is possible for very late stage optimizations (such as SimplifyCFG) 5274 // to introduce PHI nodes too late to be cleaned up. If we detect such a 5275 // trivial PHI, go ahead and zap it here. 5276 if (Value *V = SimplifyInstruction(P, *DL, TLInfo, nullptr)) { 5277 P->replaceAllUsesWith(V); 5278 P->eraseFromParent(); 5279 ++NumPHIsElim; 5280 return true; 5281 } 5282 return false; 5283 } 5284 5285 if (CastInst *CI = dyn_cast<CastInst>(I)) { 5286 // If the source of the cast is a constant, then this should have 5287 // already been constant folded. The only reason NOT to constant fold 5288 // it is if something (e.g. LSR) was careful to place the constant 5289 // evaluation in a block other than then one that uses it (e.g. to hoist 5290 // the address of globals out of a loop). If this is the case, we don't 5291 // want to forward-subst the cast. 5292 if (isa<Constant>(CI->getOperand(0))) 5293 return false; 5294 5295 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 5296 return true; 5297 5298 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 5299 /// Sink a zext or sext into its user blocks if the target type doesn't 5300 /// fit in one register 5301 if (TLI && 5302 TLI->getTypeAction(CI->getContext(), 5303 TLI->getValueType(*DL, CI->getType())) == 5304 TargetLowering::TypeExpandInteger) { 5305 return SinkCast(CI); 5306 } else { 5307 bool MadeChange = moveExtToFormExtLoad(I); 5308 return MadeChange | optimizeExtUses(I); 5309 } 5310 } 5311 return false; 5312 } 5313 5314 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5315 if (!TLI || !TLI->hasMultipleConditionRegisters()) 5316 return OptimizeCmpExpression(CI, TLI); 5317 5318 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5319 stripInvariantGroupMetadata(*LI); 5320 if (TLI) { 5321 bool Modified = optimizeLoadExt(LI); 5322 unsigned AS = LI->getPointerAddressSpace(); 5323 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 5324 return Modified; 5325 } 5326 return false; 5327 } 5328 5329 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 5330 stripInvariantGroupMetadata(*SI); 5331 if (TLI) { 5332 unsigned AS = SI->getPointerAddressSpace(); 5333 return optimizeMemoryInst(I, SI->getOperand(1), 5334 SI->getOperand(0)->getType(), AS); 5335 } 5336 return false; 5337 } 5338 5339 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 5340 5341 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 5342 BinOp->getOpcode() == Instruction::LShr)) { 5343 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 5344 if (TLI && CI && TLI->hasExtractBitsInsn()) 5345 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 5346 5347 return false; 5348 } 5349 5350 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 5351 if (GEPI->hasAllZeroIndices()) { 5352 /// The GEP operand must be a pointer, so must its result -> BitCast 5353 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 5354 GEPI->getName(), GEPI); 5355 GEPI->replaceAllUsesWith(NC); 5356 GEPI->eraseFromParent(); 5357 ++NumGEPsElim; 5358 optimizeInst(NC, ModifiedDT); 5359 return true; 5360 } 5361 return false; 5362 } 5363 5364 if (CallInst *CI = dyn_cast<CallInst>(I)) 5365 return optimizeCallInst(CI, ModifiedDT); 5366 5367 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 5368 return optimizeSelectInst(SI); 5369 5370 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 5371 return optimizeShuffleVectorInst(SVI); 5372 5373 if (auto *Switch = dyn_cast<SwitchInst>(I)) 5374 return optimizeSwitchInst(Switch); 5375 5376 if (isa<ExtractElementInst>(I)) 5377 return optimizeExtractElementInst(I); 5378 5379 return false; 5380 } 5381 5382 /// Given an OR instruction, check to see if this is a bitreverse 5383 /// idiom. If so, insert the new intrinsic and return true. 5384 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 5385 const TargetLowering &TLI) { 5386 if (!I.getType()->isIntegerTy() || 5387 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 5388 TLI.getValueType(DL, I.getType(), true))) 5389 return false; 5390 5391 SmallVector<Instruction*, 4> Insts; 5392 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 5393 return false; 5394 Instruction *LastInst = Insts.back(); 5395 I.replaceAllUsesWith(LastInst); 5396 RecursivelyDeleteTriviallyDeadInstructions(&I); 5397 return true; 5398 } 5399 5400 // In this pass we look for GEP and cast instructions that are used 5401 // across basic blocks and rewrite them to improve basic-block-at-a-time 5402 // selection. 5403 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool& ModifiedDT) { 5404 SunkAddrs.clear(); 5405 bool MadeChange = false; 5406 5407 CurInstIterator = BB.begin(); 5408 while (CurInstIterator != BB.end()) { 5409 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 5410 if (ModifiedDT) 5411 return true; 5412 } 5413 5414 bool MadeBitReverse = true; 5415 while (TLI && MadeBitReverse) { 5416 MadeBitReverse = false; 5417 for (auto &I : reverse(BB)) { 5418 if (makeBitReverse(I, *DL, *TLI)) { 5419 MadeBitReverse = MadeChange = true; 5420 ModifiedDT = true; 5421 break; 5422 } 5423 } 5424 } 5425 MadeChange |= dupRetToEnableTailCallOpts(&BB); 5426 5427 return MadeChange; 5428 } 5429 5430 // llvm.dbg.value is far away from the value then iSel may not be able 5431 // handle it properly. iSel will drop llvm.dbg.value if it can not 5432 // find a node corresponding to the value. 5433 bool CodeGenPrepare::placeDbgValues(Function &F) { 5434 bool MadeChange = false; 5435 for (BasicBlock &BB : F) { 5436 Instruction *PrevNonDbgInst = nullptr; 5437 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 5438 Instruction *Insn = &*BI++; 5439 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 5440 // Leave dbg.values that refer to an alloca alone. These 5441 // instrinsics describe the address of a variable (= the alloca) 5442 // being taken. They should not be moved next to the alloca 5443 // (and to the beginning of the scope), but rather stay close to 5444 // where said address is used. 5445 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 5446 PrevNonDbgInst = Insn; 5447 continue; 5448 } 5449 5450 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 5451 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 5452 // If VI is a phi in a block with an EHPad terminator, we can't insert 5453 // after it. 5454 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 5455 continue; 5456 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 5457 DVI->removeFromParent(); 5458 if (isa<PHINode>(VI)) 5459 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 5460 else 5461 DVI->insertAfter(VI); 5462 MadeChange = true; 5463 ++NumDbgValueMoved; 5464 } 5465 } 5466 } 5467 return MadeChange; 5468 } 5469 5470 // If there is a sequence that branches based on comparing a single bit 5471 // against zero that can be combined into a single instruction, and the 5472 // target supports folding these into a single instruction, sink the 5473 // mask and compare into the branch uses. Do this before OptimizeBlock -> 5474 // OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being 5475 // searched for. 5476 bool CodeGenPrepare::sinkAndCmp(Function &F) { 5477 if (!EnableAndCmpSinking) 5478 return false; 5479 if (!TLI || !TLI->isMaskAndBranchFoldingLegal()) 5480 return false; 5481 bool MadeChange = false; 5482 for (BasicBlock &BB : F) { 5483 // Does this BB end with the following? 5484 // %andVal = and %val, #single-bit-set 5485 // %icmpVal = icmp %andResult, 0 5486 // br i1 %cmpVal label %dest1, label %dest2" 5487 BranchInst *Brcc = dyn_cast<BranchInst>(BB.getTerminator()); 5488 if (!Brcc || !Brcc->isConditional()) 5489 continue; 5490 ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0)); 5491 if (!Cmp || Cmp->getParent() != &BB) 5492 continue; 5493 ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 5494 if (!Zero || !Zero->isZero()) 5495 continue; 5496 Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0)); 5497 if (!And || And->getOpcode() != Instruction::And || And->getParent() != &BB) 5498 continue; 5499 ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1)); 5500 if (!Mask || !Mask->getUniqueInteger().isPowerOf2()) 5501 continue; 5502 DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB.dump()); 5503 5504 // Push the "and; icmp" for any users that are conditional branches. 5505 // Since there can only be one branch use per BB, we don't need to keep 5506 // track of which BBs we insert into. 5507 for (Use &TheUse : Cmp->uses()) { 5508 // Find brcc use. 5509 BranchInst *BrccUser = dyn_cast<BranchInst>(TheUse); 5510 if (!BrccUser || !BrccUser->isConditional()) 5511 continue; 5512 BasicBlock *UserBB = BrccUser->getParent(); 5513 if (UserBB == &BB) continue; 5514 DEBUG(dbgs() << "found Brcc use\n"); 5515 5516 // Sink the "and; icmp" to use. 5517 MadeChange = true; 5518 BinaryOperator *NewAnd = 5519 BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "", 5520 BrccUser); 5521 CmpInst *NewCmp = 5522 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero, 5523 "", BrccUser); 5524 TheUse = NewCmp; 5525 ++NumAndCmpsMoved; 5526 DEBUG(BrccUser->getParent()->dump()); 5527 } 5528 } 5529 return MadeChange; 5530 } 5531 5532 /// \brief Scale down both weights to fit into uint32_t. 5533 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 5534 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 5535 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 5536 NewTrue = NewTrue / Scale; 5537 NewFalse = NewFalse / Scale; 5538 } 5539 5540 /// \brief Some targets prefer to split a conditional branch like: 5541 /// \code 5542 /// %0 = icmp ne i32 %a, 0 5543 /// %1 = icmp ne i32 %b, 0 5544 /// %or.cond = or i1 %0, %1 5545 /// br i1 %or.cond, label %TrueBB, label %FalseBB 5546 /// \endcode 5547 /// into multiple branch instructions like: 5548 /// \code 5549 /// bb1: 5550 /// %0 = icmp ne i32 %a, 0 5551 /// br i1 %0, label %TrueBB, label %bb2 5552 /// bb2: 5553 /// %1 = icmp ne i32 %b, 0 5554 /// br i1 %1, label %TrueBB, label %FalseBB 5555 /// \endcode 5556 /// This usually allows instruction selection to do even further optimizations 5557 /// and combine the compare with the branch instruction. Currently this is 5558 /// applied for targets which have "cheap" jump instructions. 5559 /// 5560 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 5561 /// 5562 bool CodeGenPrepare::splitBranchCondition(Function &F) { 5563 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 5564 return false; 5565 5566 bool MadeChange = false; 5567 for (auto &BB : F) { 5568 // Does this BB end with the following? 5569 // %cond1 = icmp|fcmp|binary instruction ... 5570 // %cond2 = icmp|fcmp|binary instruction ... 5571 // %cond.or = or|and i1 %cond1, cond2 5572 // br i1 %cond.or label %dest1, label %dest2" 5573 BinaryOperator *LogicOp; 5574 BasicBlock *TBB, *FBB; 5575 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 5576 continue; 5577 5578 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 5579 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 5580 continue; 5581 5582 unsigned Opc; 5583 Value *Cond1, *Cond2; 5584 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 5585 m_OneUse(m_Value(Cond2))))) 5586 Opc = Instruction::And; 5587 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 5588 m_OneUse(m_Value(Cond2))))) 5589 Opc = Instruction::Or; 5590 else 5591 continue; 5592 5593 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 5594 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 5595 continue; 5596 5597 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 5598 5599 // Create a new BB. 5600 auto TmpBB = 5601 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 5602 BB.getParent(), BB.getNextNode()); 5603 5604 // Update original basic block by using the first condition directly by the 5605 // branch instruction and removing the no longer needed and/or instruction. 5606 Br1->setCondition(Cond1); 5607 LogicOp->eraseFromParent(); 5608 5609 // Depending on the conditon we have to either replace the true or the false 5610 // successor of the original branch instruction. 5611 if (Opc == Instruction::And) 5612 Br1->setSuccessor(0, TmpBB); 5613 else 5614 Br1->setSuccessor(1, TmpBB); 5615 5616 // Fill in the new basic block. 5617 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 5618 if (auto *I = dyn_cast<Instruction>(Cond2)) { 5619 I->removeFromParent(); 5620 I->insertBefore(Br2); 5621 } 5622 5623 // Update PHI nodes in both successors. The original BB needs to be 5624 // replaced in one succesor's PHI nodes, because the branch comes now from 5625 // the newly generated BB (NewBB). In the other successor we need to add one 5626 // incoming edge to the PHI nodes, because both branch instructions target 5627 // now the same successor. Depending on the original branch condition 5628 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 5629 // we perfrom the correct update for the PHI nodes. 5630 // This doesn't change the successor order of the just created branch 5631 // instruction (or any other instruction). 5632 if (Opc == Instruction::Or) 5633 std::swap(TBB, FBB); 5634 5635 // Replace the old BB with the new BB. 5636 for (auto &I : *TBB) { 5637 PHINode *PN = dyn_cast<PHINode>(&I); 5638 if (!PN) 5639 break; 5640 int i; 5641 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 5642 PN->setIncomingBlock(i, TmpBB); 5643 } 5644 5645 // Add another incoming edge form the new BB. 5646 for (auto &I : *FBB) { 5647 PHINode *PN = dyn_cast<PHINode>(&I); 5648 if (!PN) 5649 break; 5650 auto *Val = PN->getIncomingValueForBlock(&BB); 5651 PN->addIncoming(Val, TmpBB); 5652 } 5653 5654 // Update the branch weights (from SelectionDAGBuilder:: 5655 // FindMergedConditions). 5656 if (Opc == Instruction::Or) { 5657 // Codegen X | Y as: 5658 // BB1: 5659 // jmp_if_X TBB 5660 // jmp TmpBB 5661 // TmpBB: 5662 // jmp_if_Y TBB 5663 // jmp FBB 5664 // 5665 5666 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 5667 // The requirement is that 5668 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 5669 // = TrueProb for orignal BB. 5670 // Assuming the orignal weights are A and B, one choice is to set BB1's 5671 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 5672 // assumes that 5673 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 5674 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 5675 // TmpBB, but the math is more complicated. 5676 uint64_t TrueWeight, FalseWeight; 5677 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 5678 uint64_t NewTrueWeight = TrueWeight; 5679 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 5680 scaleWeights(NewTrueWeight, NewFalseWeight); 5681 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 5682 .createBranchWeights(TrueWeight, FalseWeight)); 5683 5684 NewTrueWeight = TrueWeight; 5685 NewFalseWeight = 2 * FalseWeight; 5686 scaleWeights(NewTrueWeight, NewFalseWeight); 5687 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 5688 .createBranchWeights(TrueWeight, FalseWeight)); 5689 } 5690 } else { 5691 // Codegen X & Y as: 5692 // BB1: 5693 // jmp_if_X TmpBB 5694 // jmp FBB 5695 // TmpBB: 5696 // jmp_if_Y TBB 5697 // jmp FBB 5698 // 5699 // This requires creation of TmpBB after CurBB. 5700 5701 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 5702 // The requirement is that 5703 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 5704 // = FalseProb for orignal BB. 5705 // Assuming the orignal weights are A and B, one choice is to set BB1's 5706 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 5707 // assumes that 5708 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 5709 uint64_t TrueWeight, FalseWeight; 5710 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 5711 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 5712 uint64_t NewFalseWeight = FalseWeight; 5713 scaleWeights(NewTrueWeight, NewFalseWeight); 5714 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 5715 .createBranchWeights(TrueWeight, FalseWeight)); 5716 5717 NewTrueWeight = 2 * TrueWeight; 5718 NewFalseWeight = FalseWeight; 5719 scaleWeights(NewTrueWeight, NewFalseWeight); 5720 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 5721 .createBranchWeights(TrueWeight, FalseWeight)); 5722 } 5723 } 5724 5725 // Note: No point in getting fancy here, since the DT info is never 5726 // available to CodeGenPrepare. 5727 ModifiedDT = true; 5728 5729 MadeChange = true; 5730 5731 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 5732 TmpBB->dump()); 5733 } 5734 return MadeChange; 5735 } 5736 5737 void CodeGenPrepare::stripInvariantGroupMetadata(Instruction &I) { 5738 if (auto *InvariantMD = I.getMetadata(LLVMContext::MD_invariant_group)) 5739 I.dropUnknownNonDebugMetadata(InvariantMD->getMetadataID()); 5740 } 5741