1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass munges the code in the input function to better prepare it for
10 // SelectionDAG-based code generation. This works around limitations in it's
11 // basic-block-at-a-time approach. It should eventually be removed.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/ProfileSummaryInfo.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/CodeGen/Analysis.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/SelectionDAGNodes.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetPassConfig.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Argument.h"
44 #include "llvm/IR/Attributes.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/CallSite.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GetElementPtrTypeIterator.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/GlobalVariable.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InlineAsm.h"
58 #include "llvm/IR/InstrTypes.h"
59 #include "llvm/IR/Instruction.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/Intrinsics.h"
63 #include "llvm/IR/IntrinsicsAArch64.h"
64 #include "llvm/IR/IntrinsicsX86.h"
65 #include "llvm/IR/LLVMContext.h"
66 #include "llvm/IR/MDBuilder.h"
67 #include "llvm/IR/Module.h"
68 #include "llvm/IR/Operator.h"
69 #include "llvm/IR/PatternMatch.h"
70 #include "llvm/IR/Statepoint.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/User.h"
74 #include "llvm/IR/Value.h"
75 #include "llvm/IR/ValueHandle.h"
76 #include "llvm/IR/ValueMap.h"
77 #include "llvm/InitializePasses.h"
78 #include "llvm/Pass.h"
79 #include "llvm/Support/BlockFrequency.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CommandLine.h"
83 #include "llvm/Support/Compiler.h"
84 #include "llvm/Support/Debug.h"
85 #include "llvm/Support/ErrorHandling.h"
86 #include "llvm/Support/MachineValueType.h"
87 #include "llvm/Support/MathExtras.h"
88 #include "llvm/Support/raw_ostream.h"
89 #include "llvm/Target/TargetMachine.h"
90 #include "llvm/Target/TargetOptions.h"
91 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
92 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
93 #include "llvm/Transforms/Utils/Local.h"
94 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
95 #include "llvm/Transforms/Utils/SizeOpts.h"
96 #include <algorithm>
97 #include <cassert>
98 #include <cstdint>
99 #include <iterator>
100 #include <limits>
101 #include <memory>
102 #include <utility>
103 #include <vector>
104 
105 using namespace llvm;
106 using namespace llvm::PatternMatch;
107 
108 #define DEBUG_TYPE "codegenprepare"
109 
110 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
111 STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
112 STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
113 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
114                       "sunken Cmps");
115 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
116                        "of sunken Casts");
117 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
118                           "computations were sunk");
119 STATISTIC(NumMemoryInstsPhiCreated,
120           "Number of phis created when address "
121           "computations were sunk to memory instructions");
122 STATISTIC(NumMemoryInstsSelectCreated,
123           "Number of select created when address "
124           "computations were sunk to memory instructions");
125 STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
126 STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
127 STATISTIC(NumAndsAdded,
128           "Number of and mask instructions added to form ext loads");
129 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
130 STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
131 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
132 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
133 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
134 
135 static cl::opt<bool> DisableBranchOpts(
136   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
137   cl::desc("Disable branch optimizations in CodeGenPrepare"));
138 
139 static cl::opt<bool>
140     DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
141                   cl::desc("Disable GC optimizations in CodeGenPrepare"));
142 
143 static cl::opt<bool> DisableSelectToBranch(
144   "disable-cgp-select2branch", cl::Hidden, cl::init(false),
145   cl::desc("Disable select to branch conversion."));
146 
147 static cl::opt<bool> AddrSinkUsingGEPs(
148   "addr-sink-using-gep", cl::Hidden, cl::init(true),
149   cl::desc("Address sinking in CGP using GEPs."));
150 
151 static cl::opt<bool> EnableAndCmpSinking(
152    "enable-andcmp-sinking", cl::Hidden, cl::init(true),
153    cl::desc("Enable sinkinig and/cmp into branches."));
154 
155 static cl::opt<bool> DisableStoreExtract(
156     "disable-cgp-store-extract", cl::Hidden, cl::init(false),
157     cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
158 
159 static cl::opt<bool> StressStoreExtract(
160     "stress-cgp-store-extract", cl::Hidden, cl::init(false),
161     cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
162 
163 static cl::opt<bool> DisableExtLdPromotion(
164     "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
165     cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
166              "CodeGenPrepare"));
167 
168 static cl::opt<bool> StressExtLdPromotion(
169     "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
170     cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
171              "optimization in CodeGenPrepare"));
172 
173 static cl::opt<bool> DisablePreheaderProtect(
174     "disable-preheader-prot", cl::Hidden, cl::init(false),
175     cl::desc("Disable protection against removing loop preheaders"));
176 
177 static cl::opt<bool> ProfileGuidedSectionPrefix(
178     "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
179     cl::desc("Use profile info to add section prefix for hot/cold functions"));
180 
181 static cl::opt<unsigned> FreqRatioToSkipMerge(
182     "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
183     cl::desc("Skip merging empty blocks if (frequency of empty block) / "
184              "(frequency of destination block) is greater than this ratio"));
185 
186 static cl::opt<bool> ForceSplitStore(
187     "force-split-store", cl::Hidden, cl::init(false),
188     cl::desc("Force store splitting no matter what the target query says."));
189 
190 static cl::opt<bool>
191 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
192     cl::desc("Enable merging of redundant sexts when one is dominating"
193     " the other."), cl::init(true));
194 
195 static cl::opt<bool> DisableComplexAddrModes(
196     "disable-complex-addr-modes", cl::Hidden, cl::init(false),
197     cl::desc("Disables combining addressing modes with different parts "
198              "in optimizeMemoryInst."));
199 
200 static cl::opt<bool>
201 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
202                 cl::desc("Allow creation of Phis in Address sinking."));
203 
204 static cl::opt<bool>
205 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true),
206                    cl::desc("Allow creation of selects in Address sinking."));
207 
208 static cl::opt<bool> AddrSinkCombineBaseReg(
209     "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
210     cl::desc("Allow combining of BaseReg field in Address sinking."));
211 
212 static cl::opt<bool> AddrSinkCombineBaseGV(
213     "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
214     cl::desc("Allow combining of BaseGV field in Address sinking."));
215 
216 static cl::opt<bool> AddrSinkCombineBaseOffs(
217     "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
218     cl::desc("Allow combining of BaseOffs field in Address sinking."));
219 
220 static cl::opt<bool> AddrSinkCombineScaledReg(
221     "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
222     cl::desc("Allow combining of ScaledReg field in Address sinking."));
223 
224 static cl::opt<bool>
225     EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
226                          cl::init(true),
227                          cl::desc("Enable splitting large offset of GEP."));
228 
229 static cl::opt<bool> EnableICMP_EQToICMP_ST(
230     "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false),
231     cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion."));
232 
233 namespace {
234 
235 enum ExtType {
236   ZeroExtension,   // Zero extension has been seen.
237   SignExtension,   // Sign extension has been seen.
238   BothExtension    // This extension type is used if we saw sext after
239                    // ZeroExtension had been set, or if we saw zext after
240                    // SignExtension had been set. It makes the type
241                    // information of a promoted instruction invalid.
242 };
243 
244 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
245 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>;
246 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
247 using SExts = SmallVector<Instruction *, 16>;
248 using ValueToSExts = DenseMap<Value *, SExts>;
249 
250 class TypePromotionTransaction;
251 
252   class CodeGenPrepare : public FunctionPass {
253     const TargetMachine *TM = nullptr;
254     const TargetSubtargetInfo *SubtargetInfo;
255     const TargetLowering *TLI = nullptr;
256     const TargetRegisterInfo *TRI;
257     const TargetTransformInfo *TTI = nullptr;
258     const TargetLibraryInfo *TLInfo;
259     const LoopInfo *LI;
260     std::unique_ptr<BlockFrequencyInfo> BFI;
261     std::unique_ptr<BranchProbabilityInfo> BPI;
262     ProfileSummaryInfo *PSI;
263 
264     /// As we scan instructions optimizing them, this is the next instruction
265     /// to optimize. Transforms that can invalidate this should update it.
266     BasicBlock::iterator CurInstIterator;
267 
268     /// Keeps track of non-local addresses that have been sunk into a block.
269     /// This allows us to avoid inserting duplicate code for blocks with
270     /// multiple load/stores of the same address. The usage of WeakTrackingVH
271     /// enables SunkAddrs to be treated as a cache whose entries can be
272     /// invalidated if a sunken address computation has been erased.
273     ValueMap<Value*, WeakTrackingVH> SunkAddrs;
274 
275     /// Keeps track of all instructions inserted for the current function.
276     SetOfInstrs InsertedInsts;
277 
278     /// Keeps track of the type of the related instruction before their
279     /// promotion for the current function.
280     InstrToOrigTy PromotedInsts;
281 
282     /// Keep track of instructions removed during promotion.
283     SetOfInstrs RemovedInsts;
284 
285     /// Keep track of sext chains based on their initial value.
286     DenseMap<Value *, Instruction *> SeenChainsForSExt;
287 
288     /// Keep track of GEPs accessing the same data structures such as structs or
289     /// arrays that are candidates to be split later because of their large
290     /// size.
291     MapVector<
292         AssertingVH<Value>,
293         SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
294         LargeOffsetGEPMap;
295 
296     /// Keep track of new GEP base after splitting the GEPs having large offset.
297     SmallSet<AssertingVH<Value>, 2> NewGEPBases;
298 
299     /// Map serial numbers to Large offset GEPs.
300     DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;
301 
302     /// Keep track of SExt promoted.
303     ValueToSExts ValToSExtendedUses;
304 
305     /// True if the function has the OptSize attribute.
306     bool OptSize;
307 
308     /// DataLayout for the Function being processed.
309     const DataLayout *DL = nullptr;
310 
311     /// Building the dominator tree can be expensive, so we only build it
312     /// lazily and update it when required.
313     std::unique_ptr<DominatorTree> DT;
314 
315   public:
316     static char ID; // Pass identification, replacement for typeid
317 
318     CodeGenPrepare() : FunctionPass(ID) {
319       initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
320     }
321 
322     bool runOnFunction(Function &F) override;
323 
324     StringRef getPassName() const override { return "CodeGen Prepare"; }
325 
326     void getAnalysisUsage(AnalysisUsage &AU) const override {
327       // FIXME: When we can selectively preserve passes, preserve the domtree.
328       AU.addRequired<ProfileSummaryInfoWrapperPass>();
329       AU.addRequired<TargetLibraryInfoWrapperPass>();
330       AU.addRequired<TargetPassConfig>();
331       AU.addRequired<TargetTransformInfoWrapperPass>();
332       AU.addRequired<LoopInfoWrapperPass>();
333     }
334 
335   private:
336     template <typename F>
337     void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) {
338       // Substituting can cause recursive simplifications, which can invalidate
339       // our iterator.  Use a WeakTrackingVH to hold onto it in case this
340       // happens.
341       Value *CurValue = &*CurInstIterator;
342       WeakTrackingVH IterHandle(CurValue);
343 
344       f();
345 
346       // If the iterator instruction was recursively deleted, start over at the
347       // start of the block.
348       if (IterHandle != CurValue) {
349         CurInstIterator = BB->begin();
350         SunkAddrs.clear();
351       }
352     }
353 
354     // Get the DominatorTree, building if necessary.
355     DominatorTree &getDT(Function &F) {
356       if (!DT)
357         DT = std::make_unique<DominatorTree>(F);
358       return *DT;
359     }
360 
361     bool eliminateFallThrough(Function &F);
362     bool eliminateMostlyEmptyBlocks(Function &F);
363     BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
364     bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
365     void eliminateMostlyEmptyBlock(BasicBlock *BB);
366     bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
367                                        bool isPreheader);
368     bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT);
369     bool optimizeInst(Instruction *I, bool &ModifiedDT);
370     bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
371                             Type *AccessTy, unsigned AddrSpace);
372     bool optimizeInlineAsmInst(CallInst *CS);
373     bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
374     bool optimizeExt(Instruction *&I);
375     bool optimizeExtUses(Instruction *I);
376     bool optimizeLoadExt(LoadInst *Load);
377     bool optimizeShiftInst(BinaryOperator *BO);
378     bool optimizeSelectInst(SelectInst *SI);
379     bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI);
380     bool optimizeSwitchInst(SwitchInst *SI);
381     bool optimizeExtractElementInst(Instruction *Inst);
382     bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT);
383     bool fixupDbgValue(Instruction *I);
384     bool placeDbgValues(Function &F);
385     bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
386                       LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
387     bool tryToPromoteExts(TypePromotionTransaction &TPT,
388                           const SmallVectorImpl<Instruction *> &Exts,
389                           SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
390                           unsigned CreatedInstsCost = 0);
391     bool mergeSExts(Function &F);
392     bool splitLargeGEPOffsets();
393     bool performAddressTypePromotion(
394         Instruction *&Inst,
395         bool AllowPromotionWithoutCommonHeader,
396         bool HasPromoted, TypePromotionTransaction &TPT,
397         SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
398     bool splitBranchCondition(Function &F, bool &ModifiedDT);
399     bool simplifyOffsetableRelocate(Instruction &I);
400 
401     bool tryToSinkFreeOperands(Instruction *I);
402     bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0,
403                                      Value *Arg1, CmpInst *Cmp,
404                                      Intrinsic::ID IID);
405     bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT);
406     bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
407     bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
408   };
409 
410 } // end anonymous namespace
411 
412 char CodeGenPrepare::ID = 0;
413 
414 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
415                       "Optimize for code generation", false, false)
416 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
417 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
418                     "Optimize for code generation", false, false)
419 
420 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
421 
422 bool CodeGenPrepare::runOnFunction(Function &F) {
423   if (skipFunction(F))
424     return false;
425 
426   DL = &F.getParent()->getDataLayout();
427 
428   bool EverMadeChange = false;
429   // Clear per function information.
430   InsertedInsts.clear();
431   PromotedInsts.clear();
432 
433   TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
434   SubtargetInfo = TM->getSubtargetImpl(F);
435   TLI = SubtargetInfo->getTargetLowering();
436   TRI = SubtargetInfo->getRegisterInfo();
437   TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
438   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
439   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
440   BPI.reset(new BranchProbabilityInfo(F, *LI));
441   BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
442   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
443   OptSize = F.hasOptSize();
444   if (ProfileGuidedSectionPrefix) {
445     if (PSI->isFunctionHotInCallGraph(&F, *BFI))
446       F.setSectionPrefix(".hot");
447     else if (PSI->isFunctionColdInCallGraph(&F, *BFI))
448       F.setSectionPrefix(".unlikely");
449   }
450 
451   /// This optimization identifies DIV instructions that can be
452   /// profitably bypassed and carried out with a shorter, faster divide.
453   if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) {
454     const DenseMap<unsigned int, unsigned int> &BypassWidths =
455         TLI->getBypassSlowDivWidths();
456     BasicBlock* BB = &*F.begin();
457     while (BB != nullptr) {
458       // bypassSlowDivision may create new BBs, but we don't want to reapply the
459       // optimization to those blocks.
460       BasicBlock* Next = BB->getNextNode();
461       // F.hasOptSize is already checked in the outer if statement.
462       if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
463         EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
464       BB = Next;
465     }
466   }
467 
468   // Eliminate blocks that contain only PHI nodes and an
469   // unconditional branch.
470   EverMadeChange |= eliminateMostlyEmptyBlocks(F);
471 
472   bool ModifiedDT = false;
473   if (!DisableBranchOpts)
474     EverMadeChange |= splitBranchCondition(F, ModifiedDT);
475 
476   // Split some critical edges where one of the sources is an indirect branch,
477   // to help generate sane code for PHIs involving such edges.
478   EverMadeChange |= SplitIndirectBrCriticalEdges(F);
479 
480   bool MadeChange = true;
481   while (MadeChange) {
482     MadeChange = false;
483     DT.reset();
484     for (Function::iterator I = F.begin(); I != F.end(); ) {
485       BasicBlock *BB = &*I++;
486       bool ModifiedDTOnIteration = false;
487       MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
488 
489       // Restart BB iteration if the dominator tree of the Function was changed
490       if (ModifiedDTOnIteration)
491         break;
492     }
493     if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
494       MadeChange |= mergeSExts(F);
495     if (!LargeOffsetGEPMap.empty())
496       MadeChange |= splitLargeGEPOffsets();
497 
498     if (MadeChange)
499       eliminateFallThrough(F);
500 
501     // Really free removed instructions during promotion.
502     for (Instruction *I : RemovedInsts)
503       I->deleteValue();
504 
505     EverMadeChange |= MadeChange;
506     SeenChainsForSExt.clear();
507     ValToSExtendedUses.clear();
508     RemovedInsts.clear();
509     LargeOffsetGEPMap.clear();
510     LargeOffsetGEPID.clear();
511   }
512 
513   SunkAddrs.clear();
514 
515   if (!DisableBranchOpts) {
516     MadeChange = false;
517     // Use a set vector to get deterministic iteration order. The order the
518     // blocks are removed may affect whether or not PHI nodes in successors
519     // are removed.
520     SmallSetVector<BasicBlock*, 8> WorkList;
521     for (BasicBlock &BB : F) {
522       SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
523       MadeChange |= ConstantFoldTerminator(&BB, true);
524       if (!MadeChange) continue;
525 
526       for (SmallVectorImpl<BasicBlock*>::iterator
527              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
528         if (pred_begin(*II) == pred_end(*II))
529           WorkList.insert(*II);
530     }
531 
532     // Delete the dead blocks and any of their dead successors.
533     MadeChange |= !WorkList.empty();
534     while (!WorkList.empty()) {
535       BasicBlock *BB = WorkList.pop_back_val();
536       SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
537 
538       DeleteDeadBlock(BB);
539 
540       for (SmallVectorImpl<BasicBlock*>::iterator
541              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
542         if (pred_begin(*II) == pred_end(*II))
543           WorkList.insert(*II);
544     }
545 
546     // Merge pairs of basic blocks with unconditional branches, connected by
547     // a single edge.
548     if (EverMadeChange || MadeChange)
549       MadeChange |= eliminateFallThrough(F);
550 
551     EverMadeChange |= MadeChange;
552   }
553 
554   if (!DisableGCOpts) {
555     SmallVector<Instruction *, 2> Statepoints;
556     for (BasicBlock &BB : F)
557       for (Instruction &I : BB)
558         if (isStatepoint(I))
559           Statepoints.push_back(&I);
560     for (auto &I : Statepoints)
561       EverMadeChange |= simplifyOffsetableRelocate(*I);
562   }
563 
564   // Do this last to clean up use-before-def scenarios introduced by other
565   // preparatory transforms.
566   EverMadeChange |= placeDbgValues(F);
567 
568   return EverMadeChange;
569 }
570 
571 /// Merge basic blocks which are connected by a single edge, where one of the
572 /// basic blocks has a single successor pointing to the other basic block,
573 /// which has a single predecessor.
574 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
575   bool Changed = false;
576   // Scan all of the blocks in the function, except for the entry block.
577   // Use a temporary array to avoid iterator being invalidated when
578   // deleting blocks.
579   SmallVector<WeakTrackingVH, 16> Blocks;
580   for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
581     Blocks.push_back(&Block);
582 
583   for (auto &Block : Blocks) {
584     auto *BB = cast_or_null<BasicBlock>(Block);
585     if (!BB)
586       continue;
587     // If the destination block has a single pred, then this is a trivial
588     // edge, just collapse it.
589     BasicBlock *SinglePred = BB->getSinglePredecessor();
590 
591     // Don't merge if BB's address is taken.
592     if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
593 
594     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
595     if (Term && !Term->isConditional()) {
596       Changed = true;
597       LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");
598 
599       // Merge BB into SinglePred and delete it.
600       MergeBlockIntoPredecessor(BB);
601     }
602   }
603   return Changed;
604 }
605 
606 /// Find a destination block from BB if BB is mergeable empty block.
607 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
608   // If this block doesn't end with an uncond branch, ignore it.
609   BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
610   if (!BI || !BI->isUnconditional())
611     return nullptr;
612 
613   // If the instruction before the branch (skipping debug info) isn't a phi
614   // node, then other stuff is happening here.
615   BasicBlock::iterator BBI = BI->getIterator();
616   if (BBI != BB->begin()) {
617     --BBI;
618     while (isa<DbgInfoIntrinsic>(BBI)) {
619       if (BBI == BB->begin())
620         break;
621       --BBI;
622     }
623     if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
624       return nullptr;
625   }
626 
627   // Do not break infinite loops.
628   BasicBlock *DestBB = BI->getSuccessor(0);
629   if (DestBB == BB)
630     return nullptr;
631 
632   if (!canMergeBlocks(BB, DestBB))
633     DestBB = nullptr;
634 
635   return DestBB;
636 }
637 
638 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
639 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
640 /// edges in ways that are non-optimal for isel. Start by eliminating these
641 /// blocks so we can split them the way we want them.
642 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
643   SmallPtrSet<BasicBlock *, 16> Preheaders;
644   SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
645   while (!LoopList.empty()) {
646     Loop *L = LoopList.pop_back_val();
647     LoopList.insert(LoopList.end(), L->begin(), L->end());
648     if (BasicBlock *Preheader = L->getLoopPreheader())
649       Preheaders.insert(Preheader);
650   }
651 
652   bool MadeChange = false;
653   // Copy blocks into a temporary array to avoid iterator invalidation issues
654   // as we remove them.
655   // Note that this intentionally skips the entry block.
656   SmallVector<WeakTrackingVH, 16> Blocks;
657   for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
658     Blocks.push_back(&Block);
659 
660   for (auto &Block : Blocks) {
661     BasicBlock *BB = cast_or_null<BasicBlock>(Block);
662     if (!BB)
663       continue;
664     BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
665     if (!DestBB ||
666         !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
667       continue;
668 
669     eliminateMostlyEmptyBlock(BB);
670     MadeChange = true;
671   }
672   return MadeChange;
673 }
674 
675 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
676                                                    BasicBlock *DestBB,
677                                                    bool isPreheader) {
678   // Do not delete loop preheaders if doing so would create a critical edge.
679   // Loop preheaders can be good locations to spill registers. If the
680   // preheader is deleted and we create a critical edge, registers may be
681   // spilled in the loop body instead.
682   if (!DisablePreheaderProtect && isPreheader &&
683       !(BB->getSinglePredecessor() &&
684         BB->getSinglePredecessor()->getSingleSuccessor()))
685     return false;
686 
687   // Skip merging if the block's successor is also a successor to any callbr
688   // that leads to this block.
689   // FIXME: Is this really needed? Is this a correctness issue?
690   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
691     if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator()))
692       for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i)
693         if (DestBB == CBI->getSuccessor(i))
694           return false;
695   }
696 
697   // Try to skip merging if the unique predecessor of BB is terminated by a
698   // switch or indirect branch instruction, and BB is used as an incoming block
699   // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
700   // add COPY instructions in the predecessor of BB instead of BB (if it is not
701   // merged). Note that the critical edge created by merging such blocks wont be
702   // split in MachineSink because the jump table is not analyzable. By keeping
703   // such empty block (BB), ISel will place COPY instructions in BB, not in the
704   // predecessor of BB.
705   BasicBlock *Pred = BB->getUniquePredecessor();
706   if (!Pred ||
707       !(isa<SwitchInst>(Pred->getTerminator()) ||
708         isa<IndirectBrInst>(Pred->getTerminator())))
709     return true;
710 
711   if (BB->getTerminator() != BB->getFirstNonPHIOrDbg())
712     return true;
713 
714   // We use a simple cost heuristic which determine skipping merging is
715   // profitable if the cost of skipping merging is less than the cost of
716   // merging : Cost(skipping merging) < Cost(merging BB), where the
717   // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
718   // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
719   // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
720   //   Freq(Pred) / Freq(BB) > 2.
721   // Note that if there are multiple empty blocks sharing the same incoming
722   // value for the PHIs in the DestBB, we consider them together. In such
723   // case, Cost(merging BB) will be the sum of their frequencies.
724 
725   if (!isa<PHINode>(DestBB->begin()))
726     return true;
727 
728   SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
729 
730   // Find all other incoming blocks from which incoming values of all PHIs in
731   // DestBB are the same as the ones from BB.
732   for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E;
733        ++PI) {
734     BasicBlock *DestBBPred = *PI;
735     if (DestBBPred == BB)
736       continue;
737 
738     if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
739           return DestPN.getIncomingValueForBlock(BB) ==
740                  DestPN.getIncomingValueForBlock(DestBBPred);
741         }))
742       SameIncomingValueBBs.insert(DestBBPred);
743   }
744 
745   // See if all BB's incoming values are same as the value from Pred. In this
746   // case, no reason to skip merging because COPYs are expected to be place in
747   // Pred already.
748   if (SameIncomingValueBBs.count(Pred))
749     return true;
750 
751   BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
752   BlockFrequency BBFreq = BFI->getBlockFreq(BB);
753 
754   for (auto SameValueBB : SameIncomingValueBBs)
755     if (SameValueBB->getUniquePredecessor() == Pred &&
756         DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
757       BBFreq += BFI->getBlockFreq(SameValueBB);
758 
759   return PredFreq.getFrequency() <=
760          BBFreq.getFrequency() * FreqRatioToSkipMerge;
761 }
762 
763 /// Return true if we can merge BB into DestBB if there is a single
764 /// unconditional branch between them, and BB contains no other non-phi
765 /// instructions.
766 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
767                                     const BasicBlock *DestBB) const {
768   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
769   // the successor.  If there are more complex condition (e.g. preheaders),
770   // don't mess around with them.
771   for (const PHINode &PN : BB->phis()) {
772     for (const User *U : PN.users()) {
773       const Instruction *UI = cast<Instruction>(U);
774       if (UI->getParent() != DestBB || !isa<PHINode>(UI))
775         return false;
776       // If User is inside DestBB block and it is a PHINode then check
777       // incoming value. If incoming value is not from BB then this is
778       // a complex condition (e.g. preheaders) we want to avoid here.
779       if (UI->getParent() == DestBB) {
780         if (const PHINode *UPN = dyn_cast<PHINode>(UI))
781           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
782             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
783             if (Insn && Insn->getParent() == BB &&
784                 Insn->getParent() != UPN->getIncomingBlock(I))
785               return false;
786           }
787       }
788     }
789   }
790 
791   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
792   // and DestBB may have conflicting incoming values for the block.  If so, we
793   // can't merge the block.
794   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
795   if (!DestBBPN) return true;  // no conflict.
796 
797   // Collect the preds of BB.
798   SmallPtrSet<const BasicBlock*, 16> BBPreds;
799   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
800     // It is faster to get preds from a PHI than with pred_iterator.
801     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
802       BBPreds.insert(BBPN->getIncomingBlock(i));
803   } else {
804     BBPreds.insert(pred_begin(BB), pred_end(BB));
805   }
806 
807   // Walk the preds of DestBB.
808   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
809     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
810     if (BBPreds.count(Pred)) {   // Common predecessor?
811       for (const PHINode &PN : DestBB->phis()) {
812         const Value *V1 = PN.getIncomingValueForBlock(Pred);
813         const Value *V2 = PN.getIncomingValueForBlock(BB);
814 
815         // If V2 is a phi node in BB, look up what the mapped value will be.
816         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
817           if (V2PN->getParent() == BB)
818             V2 = V2PN->getIncomingValueForBlock(Pred);
819 
820         // If there is a conflict, bail out.
821         if (V1 != V2) return false;
822       }
823     }
824   }
825 
826   return true;
827 }
828 
829 /// Eliminate a basic block that has only phi's and an unconditional branch in
830 /// it.
831 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
832   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
833   BasicBlock *DestBB = BI->getSuccessor(0);
834 
835   LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
836                     << *BB << *DestBB);
837 
838   // If the destination block has a single pred, then this is a trivial edge,
839   // just collapse it.
840   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
841     if (SinglePred != DestBB) {
842       assert(SinglePred == BB &&
843              "Single predecessor not the same as predecessor");
844       // Merge DestBB into SinglePred/BB and delete it.
845       MergeBlockIntoPredecessor(DestBB);
846       // Note: BB(=SinglePred) will not be deleted on this path.
847       // DestBB(=its single successor) is the one that was deleted.
848       LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
849       return;
850     }
851   }
852 
853   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
854   // to handle the new incoming edges it is about to have.
855   for (PHINode &PN : DestBB->phis()) {
856     // Remove the incoming value for BB, and remember it.
857     Value *InVal = PN.removeIncomingValue(BB, false);
858 
859     // Two options: either the InVal is a phi node defined in BB or it is some
860     // value that dominates BB.
861     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
862     if (InValPhi && InValPhi->getParent() == BB) {
863       // Add all of the input values of the input PHI as inputs of this phi.
864       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
865         PN.addIncoming(InValPhi->getIncomingValue(i),
866                        InValPhi->getIncomingBlock(i));
867     } else {
868       // Otherwise, add one instance of the dominating value for each edge that
869       // we will be adding.
870       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
871         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
872           PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
873       } else {
874         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
875           PN.addIncoming(InVal, *PI);
876       }
877     }
878   }
879 
880   // The PHIs are now updated, change everything that refers to BB to use
881   // DestBB and remove BB.
882   BB->replaceAllUsesWith(DestBB);
883   BB->eraseFromParent();
884   ++NumBlocksElim;
885 
886   LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
887 }
888 
889 // Computes a map of base pointer relocation instructions to corresponding
890 // derived pointer relocation instructions given a vector of all relocate calls
891 static void computeBaseDerivedRelocateMap(
892     const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
893     DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
894         &RelocateInstMap) {
895   // Collect information in two maps: one primarily for locating the base object
896   // while filling the second map; the second map is the final structure holding
897   // a mapping between Base and corresponding Derived relocate calls
898   DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
899   for (auto *ThisRelocate : AllRelocateCalls) {
900     auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
901                             ThisRelocate->getDerivedPtrIndex());
902     RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
903   }
904   for (auto &Item : RelocateIdxMap) {
905     std::pair<unsigned, unsigned> Key = Item.first;
906     if (Key.first == Key.second)
907       // Base relocation: nothing to insert
908       continue;
909 
910     GCRelocateInst *I = Item.second;
911     auto BaseKey = std::make_pair(Key.first, Key.first);
912 
913     // We're iterating over RelocateIdxMap so we cannot modify it.
914     auto MaybeBase = RelocateIdxMap.find(BaseKey);
915     if (MaybeBase == RelocateIdxMap.end())
916       // TODO: We might want to insert a new base object relocate and gep off
917       // that, if there are enough derived object relocates.
918       continue;
919 
920     RelocateInstMap[MaybeBase->second].push_back(I);
921   }
922 }
923 
924 // Accepts a GEP and extracts the operands into a vector provided they're all
925 // small integer constants
926 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
927                                           SmallVectorImpl<Value *> &OffsetV) {
928   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
929     // Only accept small constant integer operands
930     auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
931     if (!Op || Op->getZExtValue() > 20)
932       return false;
933   }
934 
935   for (unsigned i = 1; i < GEP->getNumOperands(); i++)
936     OffsetV.push_back(GEP->getOperand(i));
937   return true;
938 }
939 
940 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
941 // replace, computes a replacement, and affects it.
942 static bool
943 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
944                           const SmallVectorImpl<GCRelocateInst *> &Targets) {
945   bool MadeChange = false;
946   // We must ensure the relocation of derived pointer is defined after
947   // relocation of base pointer. If we find a relocation corresponding to base
948   // defined earlier than relocation of base then we move relocation of base
949   // right before found relocation. We consider only relocation in the same
950   // basic block as relocation of base. Relocations from other basic block will
951   // be skipped by optimization and we do not care about them.
952   for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
953        &*R != RelocatedBase; ++R)
954     if (auto RI = dyn_cast<GCRelocateInst>(R))
955       if (RI->getStatepoint() == RelocatedBase->getStatepoint())
956         if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
957           RelocatedBase->moveBefore(RI);
958           break;
959         }
960 
961   for (GCRelocateInst *ToReplace : Targets) {
962     assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
963            "Not relocating a derived object of the original base object");
964     if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
965       // A duplicate relocate call. TODO: coalesce duplicates.
966       continue;
967     }
968 
969     if (RelocatedBase->getParent() != ToReplace->getParent()) {
970       // Base and derived relocates are in different basic blocks.
971       // In this case transform is only valid when base dominates derived
972       // relocate. However it would be too expensive to check dominance
973       // for each such relocate, so we skip the whole transformation.
974       continue;
975     }
976 
977     Value *Base = ToReplace->getBasePtr();
978     auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
979     if (!Derived || Derived->getPointerOperand() != Base)
980       continue;
981 
982     SmallVector<Value *, 2> OffsetV;
983     if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
984       continue;
985 
986     // Create a Builder and replace the target callsite with a gep
987     assert(RelocatedBase->getNextNode() &&
988            "Should always have one since it's not a terminator");
989 
990     // Insert after RelocatedBase
991     IRBuilder<> Builder(RelocatedBase->getNextNode());
992     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
993 
994     // If gc_relocate does not match the actual type, cast it to the right type.
995     // In theory, there must be a bitcast after gc_relocate if the type does not
996     // match, and we should reuse it to get the derived pointer. But it could be
997     // cases like this:
998     // bb1:
999     //  ...
1000     //  %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
1001     //  br label %merge
1002     //
1003     // bb2:
1004     //  ...
1005     //  %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
1006     //  br label %merge
1007     //
1008     // merge:
1009     //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
1010     //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
1011     //
1012     // In this case, we can not find the bitcast any more. So we insert a new bitcast
1013     // no matter there is already one or not. In this way, we can handle all cases, and
1014     // the extra bitcast should be optimized away in later passes.
1015     Value *ActualRelocatedBase = RelocatedBase;
1016     if (RelocatedBase->getType() != Base->getType()) {
1017       ActualRelocatedBase =
1018           Builder.CreateBitCast(RelocatedBase, Base->getType());
1019     }
1020     Value *Replacement = Builder.CreateGEP(
1021         Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
1022     Replacement->takeName(ToReplace);
1023     // If the newly generated derived pointer's type does not match the original derived
1024     // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
1025     Value *ActualReplacement = Replacement;
1026     if (Replacement->getType() != ToReplace->getType()) {
1027       ActualReplacement =
1028           Builder.CreateBitCast(Replacement, ToReplace->getType());
1029     }
1030     ToReplace->replaceAllUsesWith(ActualReplacement);
1031     ToReplace->eraseFromParent();
1032 
1033     MadeChange = true;
1034   }
1035   return MadeChange;
1036 }
1037 
1038 // Turns this:
1039 //
1040 // %base = ...
1041 // %ptr = gep %base + 15
1042 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1043 // %base' = relocate(%tok, i32 4, i32 4)
1044 // %ptr' = relocate(%tok, i32 4, i32 5)
1045 // %val = load %ptr'
1046 //
1047 // into this:
1048 //
1049 // %base = ...
1050 // %ptr = gep %base + 15
1051 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1052 // %base' = gc.relocate(%tok, i32 4, i32 4)
1053 // %ptr' = gep %base' + 15
1054 // %val = load %ptr'
1055 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
1056   bool MadeChange = false;
1057   SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1058 
1059   for (auto *U : I.users())
1060     if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1061       // Collect all the relocate calls associated with a statepoint
1062       AllRelocateCalls.push_back(Relocate);
1063 
1064   // We need at least one base pointer relocation + one derived pointer
1065   // relocation to mangle
1066   if (AllRelocateCalls.size() < 2)
1067     return false;
1068 
1069   // RelocateInstMap is a mapping from the base relocate instruction to the
1070   // corresponding derived relocate instructions
1071   DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
1072   computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1073   if (RelocateInstMap.empty())
1074     return false;
1075 
1076   for (auto &Item : RelocateInstMap)
1077     // Item.first is the RelocatedBase to offset against
1078     // Item.second is the vector of Targets to replace
1079     MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1080   return MadeChange;
1081 }
1082 
1083 /// Sink the specified cast instruction into its user blocks.
1084 static bool SinkCast(CastInst *CI) {
1085   BasicBlock *DefBB = CI->getParent();
1086 
1087   /// InsertedCasts - Only insert a cast in each block once.
1088   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
1089 
1090   bool MadeChange = false;
1091   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1092        UI != E; ) {
1093     Use &TheUse = UI.getUse();
1094     Instruction *User = cast<Instruction>(*UI);
1095 
1096     // Figure out which BB this cast is used in.  For PHI's this is the
1097     // appropriate predecessor block.
1098     BasicBlock *UserBB = User->getParent();
1099     if (PHINode *PN = dyn_cast<PHINode>(User)) {
1100       UserBB = PN->getIncomingBlock(TheUse);
1101     }
1102 
1103     // Preincrement use iterator so we don't invalidate it.
1104     ++UI;
1105 
1106     // The first insertion point of a block containing an EH pad is after the
1107     // pad.  If the pad is the user, we cannot sink the cast past the pad.
1108     if (User->isEHPad())
1109       continue;
1110 
1111     // If the block selected to receive the cast is an EH pad that does not
1112     // allow non-PHI instructions before the terminator, we can't sink the
1113     // cast.
1114     if (UserBB->getTerminator()->isEHPad())
1115       continue;
1116 
1117     // If this user is in the same block as the cast, don't change the cast.
1118     if (UserBB == DefBB) continue;
1119 
1120     // If we have already inserted a cast into this block, use it.
1121     CastInst *&InsertedCast = InsertedCasts[UserBB];
1122 
1123     if (!InsertedCast) {
1124       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1125       assert(InsertPt != UserBB->end());
1126       InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1127                                       CI->getType(), "", &*InsertPt);
1128       InsertedCast->setDebugLoc(CI->getDebugLoc());
1129     }
1130 
1131     // Replace a use of the cast with a use of the new cast.
1132     TheUse = InsertedCast;
1133     MadeChange = true;
1134     ++NumCastUses;
1135   }
1136 
1137   // If we removed all uses, nuke the cast.
1138   if (CI->use_empty()) {
1139     salvageDebugInfo(*CI);
1140     CI->eraseFromParent();
1141     MadeChange = true;
1142   }
1143 
1144   return MadeChange;
1145 }
1146 
1147 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1148 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1149 /// reduce the number of virtual registers that must be created and coalesced.
1150 ///
1151 /// Return true if any changes are made.
1152 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1153                                        const DataLayout &DL) {
1154   // Sink only "cheap" (or nop) address-space casts.  This is a weaker condition
1155   // than sinking only nop casts, but is helpful on some platforms.
1156   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1157     if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(),
1158                                  ASC->getDestAddressSpace()))
1159       return false;
1160   }
1161 
1162   // If this is a noop copy,
1163   EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1164   EVT DstVT = TLI.getValueType(DL, CI->getType());
1165 
1166   // This is an fp<->int conversion?
1167   if (SrcVT.isInteger() != DstVT.isInteger())
1168     return false;
1169 
1170   // If this is an extension, it will be a zero or sign extension, which
1171   // isn't a noop.
1172   if (SrcVT.bitsLT(DstVT)) return false;
1173 
1174   // If these values will be promoted, find out what they will be promoted
1175   // to.  This helps us consider truncates on PPC as noop copies when they
1176   // are.
1177   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1178       TargetLowering::TypePromoteInteger)
1179     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1180   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1181       TargetLowering::TypePromoteInteger)
1182     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1183 
1184   // If, after promotion, these are the same types, this is a noop copy.
1185   if (SrcVT != DstVT)
1186     return false;
1187 
1188   return SinkCast(CI);
1189 }
1190 
1191 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO,
1192                                                  Value *Arg0, Value *Arg1,
1193                                                  CmpInst *Cmp,
1194                                                  Intrinsic::ID IID) {
1195   if (BO->getParent() != Cmp->getParent()) {
1196     // We used to use a dominator tree here to allow multi-block optimization.
1197     // But that was problematic because:
1198     // 1. It could cause a perf regression by hoisting the math op into the
1199     //    critical path.
1200     // 2. It could cause a perf regression by creating a value that was live
1201     //    across multiple blocks and increasing register pressure.
1202     // 3. Use of a dominator tree could cause large compile-time regression.
1203     //    This is because we recompute the DT on every change in the main CGP
1204     //    run-loop. The recomputing is probably unnecessary in many cases, so if
1205     //    that was fixed, using a DT here would be ok.
1206     return false;
1207   }
1208 
1209   // We allow matching the canonical IR (add X, C) back to (usubo X, -C).
1210   if (BO->getOpcode() == Instruction::Add &&
1211       IID == Intrinsic::usub_with_overflow) {
1212     assert(isa<Constant>(Arg1) && "Unexpected input for usubo");
1213     Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1));
1214   }
1215 
1216   // Insert at the first instruction of the pair.
1217   Instruction *InsertPt = nullptr;
1218   for (Instruction &Iter : *Cmp->getParent()) {
1219     // If BO is an XOR, it is not guaranteed that it comes after both inputs to
1220     // the overflow intrinsic are defined.
1221     if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) {
1222       InsertPt = &Iter;
1223       break;
1224     }
1225   }
1226   assert(InsertPt != nullptr && "Parent block did not contain cmp or binop");
1227 
1228   IRBuilder<> Builder(InsertPt);
1229   Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1);
1230   if (BO->getOpcode() != Instruction::Xor) {
1231     Value *Math = Builder.CreateExtractValue(MathOV, 0, "math");
1232     BO->replaceAllUsesWith(Math);
1233   } else
1234     assert(BO->hasOneUse() &&
1235            "Patterns with XOr should use the BO only in the compare");
1236   Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov");
1237   Cmp->replaceAllUsesWith(OV);
1238   Cmp->eraseFromParent();
1239   BO->eraseFromParent();
1240   return true;
1241 }
1242 
1243 /// Match special-case patterns that check for unsigned add overflow.
1244 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp,
1245                                                    BinaryOperator *&Add) {
1246   // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val)
1247   // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero)
1248   Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1249 
1250   // We are not expecting non-canonical/degenerate code. Just bail out.
1251   if (isa<Constant>(A))
1252     return false;
1253 
1254   ICmpInst::Predicate Pred = Cmp->getPredicate();
1255   if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes()))
1256     B = ConstantInt::get(B->getType(), 1);
1257   else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt()))
1258     B = ConstantInt::get(B->getType(), -1);
1259   else
1260     return false;
1261 
1262   // Check the users of the variable operand of the compare looking for an add
1263   // with the adjusted constant.
1264   for (User *U : A->users()) {
1265     if (match(U, m_Add(m_Specific(A), m_Specific(B)))) {
1266       Add = cast<BinaryOperator>(U);
1267       return true;
1268     }
1269   }
1270   return false;
1271 }
1272 
1273 /// Try to combine the compare into a call to the llvm.uadd.with.overflow
1274 /// intrinsic. Return true if any changes were made.
1275 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp,
1276                                                bool &ModifiedDT) {
1277   Value *A, *B;
1278   BinaryOperator *Add;
1279   if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) {
1280     if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add))
1281       return false;
1282     // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases.
1283     A = Add->getOperand(0);
1284     B = Add->getOperand(1);
1285   }
1286 
1287   if (!TLI->shouldFormOverflowOp(ISD::UADDO,
1288                                  TLI->getValueType(*DL, Add->getType()),
1289                                  Add->hasNUsesOrMore(2)))
1290     return false;
1291 
1292   // We don't want to move around uses of condition values this late, so we
1293   // check if it is legal to create the call to the intrinsic in the basic
1294   // block containing the icmp.
1295   if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse())
1296     return false;
1297 
1298   if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp,
1299                                    Intrinsic::uadd_with_overflow))
1300     return false;
1301 
1302   // Reset callers - do not crash by iterating over a dead instruction.
1303   ModifiedDT = true;
1304   return true;
1305 }
1306 
1307 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp,
1308                                                bool &ModifiedDT) {
1309   // We are not expecting non-canonical/degenerate code. Just bail out.
1310   Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1311   if (isa<Constant>(A) && isa<Constant>(B))
1312     return false;
1313 
1314   // Convert (A u> B) to (A u< B) to simplify pattern matching.
1315   ICmpInst::Predicate Pred = Cmp->getPredicate();
1316   if (Pred == ICmpInst::ICMP_UGT) {
1317     std::swap(A, B);
1318     Pred = ICmpInst::ICMP_ULT;
1319   }
1320   // Convert special-case: (A == 0) is the same as (A u< 1).
1321   if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) {
1322     B = ConstantInt::get(B->getType(), 1);
1323     Pred = ICmpInst::ICMP_ULT;
1324   }
1325   // Convert special-case: (A != 0) is the same as (0 u< A).
1326   if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) {
1327     std::swap(A, B);
1328     Pred = ICmpInst::ICMP_ULT;
1329   }
1330   if (Pred != ICmpInst::ICMP_ULT)
1331     return false;
1332 
1333   // Walk the users of a variable operand of a compare looking for a subtract or
1334   // add with that same operand. Also match the 2nd operand of the compare to
1335   // the add/sub, but that may be a negated constant operand of an add.
1336   Value *CmpVariableOperand = isa<Constant>(A) ? B : A;
1337   BinaryOperator *Sub = nullptr;
1338   for (User *U : CmpVariableOperand->users()) {
1339     // A - B, A u< B --> usubo(A, B)
1340     if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) {
1341       Sub = cast<BinaryOperator>(U);
1342       break;
1343     }
1344 
1345     // A + (-C), A u< C (canonicalized form of (sub A, C))
1346     const APInt *CmpC, *AddC;
1347     if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) &&
1348         match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) {
1349       Sub = cast<BinaryOperator>(U);
1350       break;
1351     }
1352   }
1353   if (!Sub)
1354     return false;
1355 
1356   if (!TLI->shouldFormOverflowOp(ISD::USUBO,
1357                                  TLI->getValueType(*DL, Sub->getType()),
1358                                  Sub->hasNUsesOrMore(2)))
1359     return false;
1360 
1361   if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1),
1362                                    Cmp, Intrinsic::usub_with_overflow))
1363     return false;
1364 
1365   // Reset callers - do not crash by iterating over a dead instruction.
1366   ModifiedDT = true;
1367   return true;
1368 }
1369 
1370 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1371 /// registers that must be created and coalesced. This is a clear win except on
1372 /// targets with multiple condition code registers (PowerPC), where it might
1373 /// lose; some adjustment may be wanted there.
1374 ///
1375 /// Return true if any changes are made.
1376 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) {
1377   if (TLI.hasMultipleConditionRegisters())
1378     return false;
1379 
1380   // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1381   if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp))
1382     return false;
1383 
1384   // Only insert a cmp in each block once.
1385   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
1386 
1387   bool MadeChange = false;
1388   for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end();
1389        UI != E; ) {
1390     Use &TheUse = UI.getUse();
1391     Instruction *User = cast<Instruction>(*UI);
1392 
1393     // Preincrement use iterator so we don't invalidate it.
1394     ++UI;
1395 
1396     // Don't bother for PHI nodes.
1397     if (isa<PHINode>(User))
1398       continue;
1399 
1400     // Figure out which BB this cmp is used in.
1401     BasicBlock *UserBB = User->getParent();
1402     BasicBlock *DefBB = Cmp->getParent();
1403 
1404     // If this user is in the same block as the cmp, don't change the cmp.
1405     if (UserBB == DefBB) continue;
1406 
1407     // If we have already inserted a cmp into this block, use it.
1408     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1409 
1410     if (!InsertedCmp) {
1411       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1412       assert(InsertPt != UserBB->end());
1413       InsertedCmp =
1414           CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(),
1415                           Cmp->getOperand(0), Cmp->getOperand(1), "",
1416                           &*InsertPt);
1417       // Propagate the debug info.
1418       InsertedCmp->setDebugLoc(Cmp->getDebugLoc());
1419     }
1420 
1421     // Replace a use of the cmp with a use of the new cmp.
1422     TheUse = InsertedCmp;
1423     MadeChange = true;
1424     ++NumCmpUses;
1425   }
1426 
1427   // If we removed all uses, nuke the cmp.
1428   if (Cmp->use_empty()) {
1429     Cmp->eraseFromParent();
1430     MadeChange = true;
1431   }
1432 
1433   return MadeChange;
1434 }
1435 
1436 /// For pattern like:
1437 ///
1438 ///   DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB)
1439 ///   ...
1440 /// DomBB:
1441 ///   ...
1442 ///   br DomCond, TrueBB, CmpBB
1443 /// CmpBB: (with DomBB being the single predecessor)
1444 ///   ...
1445 ///   Cmp = icmp eq CmpOp0, CmpOp1
1446 ///   ...
1447 ///
1448 /// It would use two comparison on targets that lowering of icmp sgt/slt is
1449 /// different from lowering of icmp eq (PowerPC). This function try to convert
1450 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'.
1451 /// After that, DomCond and Cmp can use the same comparison so reduce one
1452 /// comparison.
1453 ///
1454 /// Return true if any changes are made.
1455 static bool foldICmpWithDominatingICmp(CmpInst *Cmp,
1456                                        const TargetLowering &TLI) {
1457   if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp())
1458     return false;
1459 
1460   ICmpInst::Predicate Pred = Cmp->getPredicate();
1461   if (Pred != ICmpInst::ICMP_EQ)
1462     return false;
1463 
1464   // If icmp eq has users other than BranchInst and SelectInst, converting it to
1465   // icmp slt/sgt would introduce more redundant LLVM IR.
1466   for (User *U : Cmp->users()) {
1467     if (isa<BranchInst>(U))
1468       continue;
1469     if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp)
1470       continue;
1471     return false;
1472   }
1473 
1474   // This is a cheap/incomplete check for dominance - just match a single
1475   // predecessor with a conditional branch.
1476   BasicBlock *CmpBB = Cmp->getParent();
1477   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1478   if (!DomBB)
1479     return false;
1480 
1481   // We want to ensure that the only way control gets to the comparison of
1482   // interest is that a less/greater than comparison on the same operands is
1483   // false.
1484   Value *DomCond;
1485   BasicBlock *TrueBB, *FalseBB;
1486   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1487     return false;
1488   if (CmpBB != FalseBB)
1489     return false;
1490 
1491   Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1);
1492   ICmpInst::Predicate DomPred;
1493   if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1))))
1494     return false;
1495   if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT)
1496     return false;
1497 
1498   // Convert the equality comparison to the opposite of the dominating
1499   // comparison and swap the direction for all branch/select users.
1500   // We have conceptually converted:
1501   // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>;
1502   // to
1503   // Res = (a < b) ? <LT_RES> : (a > b)  ? <GT_RES> : <EQ_RES>;
1504   // And similarly for branches.
1505   for (User *U : Cmp->users()) {
1506     if (auto *BI = dyn_cast<BranchInst>(U)) {
1507       assert(BI->isConditional() && "Must be conditional");
1508       BI->swapSuccessors();
1509       continue;
1510     }
1511     if (auto *SI = dyn_cast<SelectInst>(U)) {
1512       // Swap operands
1513       SI->swapValues();
1514       SI->swapProfMetadata();
1515       continue;
1516     }
1517     llvm_unreachable("Must be a branch or a select");
1518   }
1519   Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred));
1520   return true;
1521 }
1522 
1523 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) {
1524   if (sinkCmpExpression(Cmp, *TLI))
1525     return true;
1526 
1527   if (combineToUAddWithOverflow(Cmp, ModifiedDT))
1528     return true;
1529 
1530   if (combineToUSubWithOverflow(Cmp, ModifiedDT))
1531     return true;
1532 
1533   if (foldICmpWithDominatingICmp(Cmp, *TLI))
1534     return true;
1535 
1536   return false;
1537 }
1538 
1539 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1540 /// used in a compare to allow isel to generate better code for targets where
1541 /// this operation can be combined.
1542 ///
1543 /// Return true if any changes are made.
1544 static bool sinkAndCmp0Expression(Instruction *AndI,
1545                                   const TargetLowering &TLI,
1546                                   SetOfInstrs &InsertedInsts) {
1547   // Double-check that we're not trying to optimize an instruction that was
1548   // already optimized by some other part of this pass.
1549   assert(!InsertedInsts.count(AndI) &&
1550          "Attempting to optimize already optimized and instruction");
1551   (void) InsertedInsts;
1552 
1553   // Nothing to do for single use in same basic block.
1554   if (AndI->hasOneUse() &&
1555       AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
1556     return false;
1557 
1558   // Try to avoid cases where sinking/duplicating is likely to increase register
1559   // pressure.
1560   if (!isa<ConstantInt>(AndI->getOperand(0)) &&
1561       !isa<ConstantInt>(AndI->getOperand(1)) &&
1562       AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
1563     return false;
1564 
1565   for (auto *U : AndI->users()) {
1566     Instruction *User = cast<Instruction>(U);
1567 
1568     // Only sink 'and' feeding icmp with 0.
1569     if (!isa<ICmpInst>(User))
1570       return false;
1571 
1572     auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
1573     if (!CmpC || !CmpC->isZero())
1574       return false;
1575   }
1576 
1577   if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
1578     return false;
1579 
1580   LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1581   LLVM_DEBUG(AndI->getParent()->dump());
1582 
1583   // Push the 'and' into the same block as the icmp 0.  There should only be
1584   // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1585   // others, so we don't need to keep track of which BBs we insert into.
1586   for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
1587        UI != E; ) {
1588     Use &TheUse = UI.getUse();
1589     Instruction *User = cast<Instruction>(*UI);
1590 
1591     // Preincrement use iterator so we don't invalidate it.
1592     ++UI;
1593 
1594     LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
1595 
1596     // Keep the 'and' in the same place if the use is already in the same block.
1597     Instruction *InsertPt =
1598         User->getParent() == AndI->getParent() ? AndI : User;
1599     Instruction *InsertedAnd =
1600         BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
1601                                AndI->getOperand(1), "", InsertPt);
1602     // Propagate the debug info.
1603     InsertedAnd->setDebugLoc(AndI->getDebugLoc());
1604 
1605     // Replace a use of the 'and' with a use of the new 'and'.
1606     TheUse = InsertedAnd;
1607     ++NumAndUses;
1608     LLVM_DEBUG(User->getParent()->dump());
1609   }
1610 
1611   // We removed all uses, nuke the and.
1612   AndI->eraseFromParent();
1613   return true;
1614 }
1615 
1616 /// Check if the candidates could be combined with a shift instruction, which
1617 /// includes:
1618 /// 1. Truncate instruction
1619 /// 2. And instruction and the imm is a mask of the low bits:
1620 /// imm & (imm+1) == 0
1621 static bool isExtractBitsCandidateUse(Instruction *User) {
1622   if (!isa<TruncInst>(User)) {
1623     if (User->getOpcode() != Instruction::And ||
1624         !isa<ConstantInt>(User->getOperand(1)))
1625       return false;
1626 
1627     const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
1628 
1629     if ((Cimm & (Cimm + 1)).getBoolValue())
1630       return false;
1631   }
1632   return true;
1633 }
1634 
1635 /// Sink both shift and truncate instruction to the use of truncate's BB.
1636 static bool
1637 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
1638                      DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
1639                      const TargetLowering &TLI, const DataLayout &DL) {
1640   BasicBlock *UserBB = User->getParent();
1641   DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
1642   auto *TruncI = cast<TruncInst>(User);
1643   bool MadeChange = false;
1644 
1645   for (Value::user_iterator TruncUI = TruncI->user_begin(),
1646                             TruncE = TruncI->user_end();
1647        TruncUI != TruncE;) {
1648 
1649     Use &TruncTheUse = TruncUI.getUse();
1650     Instruction *TruncUser = cast<Instruction>(*TruncUI);
1651     // Preincrement use iterator so we don't invalidate it.
1652 
1653     ++TruncUI;
1654 
1655     int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
1656     if (!ISDOpcode)
1657       continue;
1658 
1659     // If the use is actually a legal node, there will not be an
1660     // implicit truncate.
1661     // FIXME: always querying the result type is just an
1662     // approximation; some nodes' legality is determined by the
1663     // operand or other means. There's no good way to find out though.
1664     if (TLI.isOperationLegalOrCustom(
1665             ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
1666       continue;
1667 
1668     // Don't bother for PHI nodes.
1669     if (isa<PHINode>(TruncUser))
1670       continue;
1671 
1672     BasicBlock *TruncUserBB = TruncUser->getParent();
1673 
1674     if (UserBB == TruncUserBB)
1675       continue;
1676 
1677     BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
1678     CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
1679 
1680     if (!InsertedShift && !InsertedTrunc) {
1681       BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
1682       assert(InsertPt != TruncUserBB->end());
1683       // Sink the shift
1684       if (ShiftI->getOpcode() == Instruction::AShr)
1685         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1686                                                    "", &*InsertPt);
1687       else
1688         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1689                                                    "", &*InsertPt);
1690       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1691 
1692       // Sink the trunc
1693       BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
1694       TruncInsertPt++;
1695       assert(TruncInsertPt != TruncUserBB->end());
1696 
1697       InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
1698                                        TruncI->getType(), "", &*TruncInsertPt);
1699       InsertedTrunc->setDebugLoc(TruncI->getDebugLoc());
1700 
1701       MadeChange = true;
1702 
1703       TruncTheUse = InsertedTrunc;
1704     }
1705   }
1706   return MadeChange;
1707 }
1708 
1709 /// Sink the shift *right* instruction into user blocks if the uses could
1710 /// potentially be combined with this shift instruction and generate BitExtract
1711 /// instruction. It will only be applied if the architecture supports BitExtract
1712 /// instruction. Here is an example:
1713 /// BB1:
1714 ///   %x.extract.shift = lshr i64 %arg1, 32
1715 /// BB2:
1716 ///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
1717 /// ==>
1718 ///
1719 /// BB2:
1720 ///   %x.extract.shift.1 = lshr i64 %arg1, 32
1721 ///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1722 ///
1723 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
1724 /// instruction.
1725 /// Return true if any changes are made.
1726 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1727                                 const TargetLowering &TLI,
1728                                 const DataLayout &DL) {
1729   BasicBlock *DefBB = ShiftI->getParent();
1730 
1731   /// Only insert instructions in each block once.
1732   DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1733 
1734   bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1735 
1736   bool MadeChange = false;
1737   for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1738        UI != E;) {
1739     Use &TheUse = UI.getUse();
1740     Instruction *User = cast<Instruction>(*UI);
1741     // Preincrement use iterator so we don't invalidate it.
1742     ++UI;
1743 
1744     // Don't bother for PHI nodes.
1745     if (isa<PHINode>(User))
1746       continue;
1747 
1748     if (!isExtractBitsCandidateUse(User))
1749       continue;
1750 
1751     BasicBlock *UserBB = User->getParent();
1752 
1753     if (UserBB == DefBB) {
1754       // If the shift and truncate instruction are in the same BB. The use of
1755       // the truncate(TruncUse) may still introduce another truncate if not
1756       // legal. In this case, we would like to sink both shift and truncate
1757       // instruction to the BB of TruncUse.
1758       // for example:
1759       // BB1:
1760       // i64 shift.result = lshr i64 opnd, imm
1761       // trunc.result = trunc shift.result to i16
1762       //
1763       // BB2:
1764       //   ----> We will have an implicit truncate here if the architecture does
1765       //   not have i16 compare.
1766       // cmp i16 trunc.result, opnd2
1767       //
1768       if (isa<TruncInst>(User) && shiftIsLegal
1769           // If the type of the truncate is legal, no truncate will be
1770           // introduced in other basic blocks.
1771           &&
1772           (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1773         MadeChange =
1774             SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1775 
1776       continue;
1777     }
1778     // If we have already inserted a shift into this block, use it.
1779     BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1780 
1781     if (!InsertedShift) {
1782       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1783       assert(InsertPt != UserBB->end());
1784 
1785       if (ShiftI->getOpcode() == Instruction::AShr)
1786         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1787                                                    "", &*InsertPt);
1788       else
1789         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1790                                                    "", &*InsertPt);
1791       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1792 
1793       MadeChange = true;
1794     }
1795 
1796     // Replace a use of the shift with a use of the new shift.
1797     TheUse = InsertedShift;
1798   }
1799 
1800   // If we removed all uses, or there are none, nuke the shift.
1801   if (ShiftI->use_empty()) {
1802     salvageDebugInfo(*ShiftI);
1803     ShiftI->eraseFromParent();
1804     MadeChange = true;
1805   }
1806 
1807   return MadeChange;
1808 }
1809 
1810 /// If counting leading or trailing zeros is an expensive operation and a zero
1811 /// input is defined, add a check for zero to avoid calling the intrinsic.
1812 ///
1813 /// We want to transform:
1814 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
1815 ///
1816 /// into:
1817 ///   entry:
1818 ///     %cmpz = icmp eq i64 %A, 0
1819 ///     br i1 %cmpz, label %cond.end, label %cond.false
1820 ///   cond.false:
1821 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
1822 ///     br label %cond.end
1823 ///   cond.end:
1824 ///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
1825 ///
1826 /// If the transform is performed, return true and set ModifiedDT to true.
1827 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
1828                                   const TargetLowering *TLI,
1829                                   const DataLayout *DL,
1830                                   bool &ModifiedDT) {
1831   // If a zero input is undefined, it doesn't make sense to despeculate that.
1832   if (match(CountZeros->getOperand(1), m_One()))
1833     return false;
1834 
1835   // If it's cheap to speculate, there's nothing to do.
1836   auto IntrinsicID = CountZeros->getIntrinsicID();
1837   if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
1838       (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
1839     return false;
1840 
1841   // Only handle legal scalar cases. Anything else requires too much work.
1842   Type *Ty = CountZeros->getType();
1843   unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
1844   if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
1845     return false;
1846 
1847   // The intrinsic will be sunk behind a compare against zero and branch.
1848   BasicBlock *StartBlock = CountZeros->getParent();
1849   BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
1850 
1851   // Create another block after the count zero intrinsic. A PHI will be added
1852   // in this block to select the result of the intrinsic or the bit-width
1853   // constant if the input to the intrinsic is zero.
1854   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
1855   BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
1856 
1857   // Set up a builder to create a compare, conditional branch, and PHI.
1858   IRBuilder<> Builder(CountZeros->getContext());
1859   Builder.SetInsertPoint(StartBlock->getTerminator());
1860   Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
1861 
1862   // Replace the unconditional branch that was created by the first split with
1863   // a compare against zero and a conditional branch.
1864   Value *Zero = Constant::getNullValue(Ty);
1865   Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
1866   Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
1867   StartBlock->getTerminator()->eraseFromParent();
1868 
1869   // Create a PHI in the end block to select either the output of the intrinsic
1870   // or the bit width of the operand.
1871   Builder.SetInsertPoint(&EndBlock->front());
1872   PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
1873   CountZeros->replaceAllUsesWith(PN);
1874   Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
1875   PN->addIncoming(BitWidth, StartBlock);
1876   PN->addIncoming(CountZeros, CallBlock);
1877 
1878   // We are explicitly handling the zero case, so we can set the intrinsic's
1879   // undefined zero argument to 'true'. This will also prevent reprocessing the
1880   // intrinsic; we only despeculate when a zero input is defined.
1881   CountZeros->setArgOperand(1, Builder.getTrue());
1882   ModifiedDT = true;
1883   return true;
1884 }
1885 
1886 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
1887   BasicBlock *BB = CI->getParent();
1888 
1889   // Lower inline assembly if we can.
1890   // If we found an inline asm expession, and if the target knows how to
1891   // lower it to normal LLVM code, do so now.
1892   if (isa<InlineAsm>(CI->getCalledValue())) {
1893     if (TLI->ExpandInlineAsm(CI)) {
1894       // Avoid invalidating the iterator.
1895       CurInstIterator = BB->begin();
1896       // Avoid processing instructions out of order, which could cause
1897       // reuse before a value is defined.
1898       SunkAddrs.clear();
1899       return true;
1900     }
1901     // Sink address computing for memory operands into the block.
1902     if (optimizeInlineAsmInst(CI))
1903       return true;
1904   }
1905 
1906   // Align the pointer arguments to this call if the target thinks it's a good
1907   // idea
1908   unsigned MinSize, PrefAlign;
1909   if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
1910     for (auto &Arg : CI->arg_operands()) {
1911       // We want to align both objects whose address is used directly and
1912       // objects whose address is used in casts and GEPs, though it only makes
1913       // sense for GEPs if the offset is a multiple of the desired alignment and
1914       // if size - offset meets the size threshold.
1915       if (!Arg->getType()->isPointerTy())
1916         continue;
1917       APInt Offset(DL->getIndexSizeInBits(
1918                        cast<PointerType>(Arg->getType())->getAddressSpace()),
1919                    0);
1920       Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
1921       uint64_t Offset2 = Offset.getLimitedValue();
1922       if ((Offset2 & (PrefAlign-1)) != 0)
1923         continue;
1924       AllocaInst *AI;
1925       if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
1926           DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
1927         AI->setAlignment(MaybeAlign(PrefAlign));
1928       // Global variables can only be aligned if they are defined in this
1929       // object (i.e. they are uniquely initialized in this object), and
1930       // over-aligning global variables that have an explicit section is
1931       // forbidden.
1932       GlobalVariable *GV;
1933       if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
1934           GV->getPointerAlignment(*DL) < PrefAlign &&
1935           DL->getTypeAllocSize(GV->getValueType()) >=
1936               MinSize + Offset2)
1937         GV->setAlignment(MaybeAlign(PrefAlign));
1938     }
1939     // If this is a memcpy (or similar) then we may be able to improve the
1940     // alignment
1941     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
1942       unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL);
1943       if (DestAlign > MI->getDestAlignment())
1944         MI->setDestAlignment(DestAlign);
1945       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
1946         unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
1947         if (SrcAlign > MTI->getSourceAlignment())
1948           MTI->setSourceAlignment(SrcAlign);
1949       }
1950     }
1951   }
1952 
1953   // If we have a cold call site, try to sink addressing computation into the
1954   // cold block.  This interacts with our handling for loads and stores to
1955   // ensure that we can fold all uses of a potential addressing computation
1956   // into their uses.  TODO: generalize this to work over profiling data
1957   if (CI->hasFnAttr(Attribute::Cold) &&
1958       !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
1959     for (auto &Arg : CI->arg_operands()) {
1960       if (!Arg->getType()->isPointerTy())
1961         continue;
1962       unsigned AS = Arg->getType()->getPointerAddressSpace();
1963       return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
1964     }
1965 
1966   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
1967   if (II) {
1968     switch (II->getIntrinsicID()) {
1969     default: break;
1970     case Intrinsic::assume: {
1971       II->eraseFromParent();
1972       return true;
1973     }
1974 
1975     case Intrinsic::experimental_widenable_condition: {
1976       // Give up on future widening oppurtunties so that we can fold away dead
1977       // paths and merge blocks before going into block-local instruction
1978       // selection.
1979       if (II->use_empty()) {
1980         II->eraseFromParent();
1981         return true;
1982       }
1983       Constant *RetVal = ConstantInt::getTrue(II->getContext());
1984       resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
1985         replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
1986       });
1987       return true;
1988     }
1989     case Intrinsic::objectsize:
1990       llvm_unreachable("llvm.objectsize.* should have been lowered already");
1991     case Intrinsic::is_constant:
1992       llvm_unreachable("llvm.is.constant.* should have been lowered already");
1993     case Intrinsic::aarch64_stlxr:
1994     case Intrinsic::aarch64_stxr: {
1995       ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
1996       if (!ExtVal || !ExtVal->hasOneUse() ||
1997           ExtVal->getParent() == CI->getParent())
1998         return false;
1999       // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
2000       ExtVal->moveBefore(CI);
2001       // Mark this instruction as "inserted by CGP", so that other
2002       // optimizations don't touch it.
2003       InsertedInsts.insert(ExtVal);
2004       return true;
2005     }
2006 
2007     case Intrinsic::launder_invariant_group:
2008     case Intrinsic::strip_invariant_group: {
2009       Value *ArgVal = II->getArgOperand(0);
2010       auto it = LargeOffsetGEPMap.find(II);
2011       if (it != LargeOffsetGEPMap.end()) {
2012           // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
2013           // Make sure not to have to deal with iterator invalidation
2014           // after possibly adding ArgVal to LargeOffsetGEPMap.
2015           auto GEPs = std::move(it->second);
2016           LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end());
2017           LargeOffsetGEPMap.erase(II);
2018       }
2019 
2020       II->replaceAllUsesWith(ArgVal);
2021       II->eraseFromParent();
2022       return true;
2023     }
2024     case Intrinsic::cttz:
2025     case Intrinsic::ctlz:
2026       // If counting zeros is expensive, try to avoid it.
2027       return despeculateCountZeros(II, TLI, DL, ModifiedDT);
2028     case Intrinsic::dbg_value:
2029       return fixupDbgValue(II);
2030     case Intrinsic::vscale: {
2031       // If datalayout has no special restrictions on vector data layout,
2032       // replace `llvm.vscale` by an equivalent constant expression
2033       // to benefit from cheap constant propagation.
2034       Type *ScalableVectorTy =
2035           VectorType::get(Type::getInt8Ty(II->getContext()), 1, true);
2036       if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) {
2037         auto Null = Constant::getNullValue(ScalableVectorTy->getPointerTo());
2038         auto One = ConstantInt::getSigned(II->getType(), 1);
2039         auto *CGep =
2040             ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One);
2041         II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType()));
2042         II->eraseFromParent();
2043         return true;
2044       }
2045     }
2046     }
2047 
2048     SmallVector<Value *, 2> PtrOps;
2049     Type *AccessTy;
2050     if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
2051       while (!PtrOps.empty()) {
2052         Value *PtrVal = PtrOps.pop_back_val();
2053         unsigned AS = PtrVal->getType()->getPointerAddressSpace();
2054         if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
2055           return true;
2056       }
2057   }
2058 
2059   // From here on out we're working with named functions.
2060   if (!CI->getCalledFunction()) return false;
2061 
2062   // Lower all default uses of _chk calls.  This is very similar
2063   // to what InstCombineCalls does, but here we are only lowering calls
2064   // to fortified library functions (e.g. __memcpy_chk) that have the default
2065   // "don't know" as the objectsize.  Anything else should be left alone.
2066   FortifiedLibCallSimplifier Simplifier(TLInfo, true);
2067   IRBuilder<> Builder(CI);
2068   if (Value *V = Simplifier.optimizeCall(CI, Builder)) {
2069     CI->replaceAllUsesWith(V);
2070     CI->eraseFromParent();
2071     return true;
2072   }
2073 
2074   return false;
2075 }
2076 
2077 /// Look for opportunities to duplicate return instructions to the predecessor
2078 /// to enable tail call optimizations. The case it is currently looking for is:
2079 /// @code
2080 /// bb0:
2081 ///   %tmp0 = tail call i32 @f0()
2082 ///   br label %return
2083 /// bb1:
2084 ///   %tmp1 = tail call i32 @f1()
2085 ///   br label %return
2086 /// bb2:
2087 ///   %tmp2 = tail call i32 @f2()
2088 ///   br label %return
2089 /// return:
2090 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
2091 ///   ret i32 %retval
2092 /// @endcode
2093 ///
2094 /// =>
2095 ///
2096 /// @code
2097 /// bb0:
2098 ///   %tmp0 = tail call i32 @f0()
2099 ///   ret i32 %tmp0
2100 /// bb1:
2101 ///   %tmp1 = tail call i32 @f1()
2102 ///   ret i32 %tmp1
2103 /// bb2:
2104 ///   %tmp2 = tail call i32 @f2()
2105 ///   ret i32 %tmp2
2106 /// @endcode
2107 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) {
2108   ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
2109   if (!RetI)
2110     return false;
2111 
2112   PHINode *PN = nullptr;
2113   ExtractValueInst *EVI = nullptr;
2114   BitCastInst *BCI = nullptr;
2115   Value *V = RetI->getReturnValue();
2116   if (V) {
2117     BCI = dyn_cast<BitCastInst>(V);
2118     if (BCI)
2119       V = BCI->getOperand(0);
2120 
2121     EVI = dyn_cast<ExtractValueInst>(V);
2122     if (EVI) {
2123       V = EVI->getOperand(0);
2124       if (!std::all_of(EVI->idx_begin(), EVI->idx_end(),
2125                        [](unsigned idx) { return idx == 0; }))
2126         return false;
2127     }
2128 
2129     PN = dyn_cast<PHINode>(V);
2130     if (!PN)
2131       return false;
2132   }
2133 
2134   if (PN && PN->getParent() != BB)
2135     return false;
2136 
2137   // Make sure there are no instructions between the PHI and return, or that the
2138   // return is the first instruction in the block.
2139   if (PN) {
2140     BasicBlock::iterator BI = BB->begin();
2141     // Skip over debug and the bitcast.
2142     do {
2143       ++BI;
2144     } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI || &*BI == EVI);
2145     if (&*BI != RetI)
2146       return false;
2147   } else {
2148     BasicBlock::iterator BI = BB->begin();
2149     while (isa<DbgInfoIntrinsic>(BI)) ++BI;
2150     if (&*BI != RetI)
2151       return false;
2152   }
2153 
2154   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
2155   /// call.
2156   const Function *F = BB->getParent();
2157   SmallVector<BasicBlock*, 4> TailCallBBs;
2158   if (PN) {
2159     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
2160       // Look through bitcasts.
2161       Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts();
2162       CallInst *CI = dyn_cast<CallInst>(IncomingVal);
2163       BasicBlock *PredBB = PN->getIncomingBlock(I);
2164       // Make sure the phi value is indeed produced by the tail call.
2165       if (CI && CI->hasOneUse() && CI->getParent() == PredBB &&
2166           TLI->mayBeEmittedAsTailCall(CI) &&
2167           attributesPermitTailCall(F, CI, RetI, *TLI))
2168         TailCallBBs.push_back(PredBB);
2169     }
2170   } else {
2171     SmallPtrSet<BasicBlock*, 4> VisitedBBs;
2172     for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
2173       if (!VisitedBBs.insert(*PI).second)
2174         continue;
2175 
2176       BasicBlock::InstListType &InstList = (*PI)->getInstList();
2177       BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
2178       BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
2179       do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
2180       if (RI == RE)
2181         continue;
2182 
2183       CallInst *CI = dyn_cast<CallInst>(&*RI);
2184       if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
2185           attributesPermitTailCall(F, CI, RetI, *TLI))
2186         TailCallBBs.push_back(*PI);
2187     }
2188   }
2189 
2190   bool Changed = false;
2191   for (auto const &TailCallBB : TailCallBBs) {
2192     // Make sure the call instruction is followed by an unconditional branch to
2193     // the return block.
2194     BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator());
2195     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
2196       continue;
2197 
2198     // Duplicate the return into TailCallBB.
2199     (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB);
2200     ModifiedDT = Changed = true;
2201     ++NumRetsDup;
2202   }
2203 
2204   // If we eliminated all predecessors of the block, delete the block now.
2205   if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
2206     BB->eraseFromParent();
2207 
2208   return Changed;
2209 }
2210 
2211 //===----------------------------------------------------------------------===//
2212 // Memory Optimization
2213 //===----------------------------------------------------------------------===//
2214 
2215 namespace {
2216 
2217 /// This is an extended version of TargetLowering::AddrMode
2218 /// which holds actual Value*'s for register values.
2219 struct ExtAddrMode : public TargetLowering::AddrMode {
2220   Value *BaseReg = nullptr;
2221   Value *ScaledReg = nullptr;
2222   Value *OriginalValue = nullptr;
2223   bool InBounds = true;
2224 
2225   enum FieldName {
2226     NoField        = 0x00,
2227     BaseRegField   = 0x01,
2228     BaseGVField    = 0x02,
2229     BaseOffsField  = 0x04,
2230     ScaledRegField = 0x08,
2231     ScaleField     = 0x10,
2232     MultipleFields = 0xff
2233   };
2234 
2235 
2236   ExtAddrMode() = default;
2237 
2238   void print(raw_ostream &OS) const;
2239   void dump() const;
2240 
2241   FieldName compare(const ExtAddrMode &other) {
2242     // First check that the types are the same on each field, as differing types
2243     // is something we can't cope with later on.
2244     if (BaseReg && other.BaseReg &&
2245         BaseReg->getType() != other.BaseReg->getType())
2246       return MultipleFields;
2247     if (BaseGV && other.BaseGV &&
2248         BaseGV->getType() != other.BaseGV->getType())
2249       return MultipleFields;
2250     if (ScaledReg && other.ScaledReg &&
2251         ScaledReg->getType() != other.ScaledReg->getType())
2252       return MultipleFields;
2253 
2254     // Conservatively reject 'inbounds' mismatches.
2255     if (InBounds != other.InBounds)
2256       return MultipleFields;
2257 
2258     // Check each field to see if it differs.
2259     unsigned Result = NoField;
2260     if (BaseReg != other.BaseReg)
2261       Result |= BaseRegField;
2262     if (BaseGV != other.BaseGV)
2263       Result |= BaseGVField;
2264     if (BaseOffs != other.BaseOffs)
2265       Result |= BaseOffsField;
2266     if (ScaledReg != other.ScaledReg)
2267       Result |= ScaledRegField;
2268     // Don't count 0 as being a different scale, because that actually means
2269     // unscaled (which will already be counted by having no ScaledReg).
2270     if (Scale && other.Scale && Scale != other.Scale)
2271       Result |= ScaleField;
2272 
2273     if (countPopulation(Result) > 1)
2274       return MultipleFields;
2275     else
2276       return static_cast<FieldName>(Result);
2277   }
2278 
2279   // An AddrMode is trivial if it involves no calculation i.e. it is just a base
2280   // with no offset.
2281   bool isTrivial() {
2282     // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
2283     // trivial if at most one of these terms is nonzero, except that BaseGV and
2284     // BaseReg both being zero actually means a null pointer value, which we
2285     // consider to be 'non-zero' here.
2286     return !BaseOffs && !Scale && !(BaseGV && BaseReg);
2287   }
2288 
2289   Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
2290     switch (Field) {
2291     default:
2292       return nullptr;
2293     case BaseRegField:
2294       return BaseReg;
2295     case BaseGVField:
2296       return BaseGV;
2297     case ScaledRegField:
2298       return ScaledReg;
2299     case BaseOffsField:
2300       return ConstantInt::get(IntPtrTy, BaseOffs);
2301     }
2302   }
2303 
2304   void SetCombinedField(FieldName Field, Value *V,
2305                         const SmallVectorImpl<ExtAddrMode> &AddrModes) {
2306     switch (Field) {
2307     default:
2308       llvm_unreachable("Unhandled fields are expected to be rejected earlier");
2309       break;
2310     case ExtAddrMode::BaseRegField:
2311       BaseReg = V;
2312       break;
2313     case ExtAddrMode::BaseGVField:
2314       // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
2315       // in the BaseReg field.
2316       assert(BaseReg == nullptr);
2317       BaseReg = V;
2318       BaseGV = nullptr;
2319       break;
2320     case ExtAddrMode::ScaledRegField:
2321       ScaledReg = V;
2322       // If we have a mix of scaled and unscaled addrmodes then we want scale
2323       // to be the scale and not zero.
2324       if (!Scale)
2325         for (const ExtAddrMode &AM : AddrModes)
2326           if (AM.Scale) {
2327             Scale = AM.Scale;
2328             break;
2329           }
2330       break;
2331     case ExtAddrMode::BaseOffsField:
2332       // The offset is no longer a constant, so it goes in ScaledReg with a
2333       // scale of 1.
2334       assert(ScaledReg == nullptr);
2335       ScaledReg = V;
2336       Scale = 1;
2337       BaseOffs = 0;
2338       break;
2339     }
2340   }
2341 };
2342 
2343 } // end anonymous namespace
2344 
2345 #ifndef NDEBUG
2346 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2347   AM.print(OS);
2348   return OS;
2349 }
2350 #endif
2351 
2352 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2353 void ExtAddrMode::print(raw_ostream &OS) const {
2354   bool NeedPlus = false;
2355   OS << "[";
2356   if (InBounds)
2357     OS << "inbounds ";
2358   if (BaseGV) {
2359     OS << (NeedPlus ? " + " : "")
2360        << "GV:";
2361     BaseGV->printAsOperand(OS, /*PrintType=*/false);
2362     NeedPlus = true;
2363   }
2364 
2365   if (BaseOffs) {
2366     OS << (NeedPlus ? " + " : "")
2367        << BaseOffs;
2368     NeedPlus = true;
2369   }
2370 
2371   if (BaseReg) {
2372     OS << (NeedPlus ? " + " : "")
2373        << "Base:";
2374     BaseReg->printAsOperand(OS, /*PrintType=*/false);
2375     NeedPlus = true;
2376   }
2377   if (Scale) {
2378     OS << (NeedPlus ? " + " : "")
2379        << Scale << "*";
2380     ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2381   }
2382 
2383   OS << ']';
2384 }
2385 
2386 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2387   print(dbgs());
2388   dbgs() << '\n';
2389 }
2390 #endif
2391 
2392 namespace {
2393 
2394 /// This class provides transaction based operation on the IR.
2395 /// Every change made through this class is recorded in the internal state and
2396 /// can be undone (rollback) until commit is called.
2397 class TypePromotionTransaction {
2398   /// This represents the common interface of the individual transaction.
2399   /// Each class implements the logic for doing one specific modification on
2400   /// the IR via the TypePromotionTransaction.
2401   class TypePromotionAction {
2402   protected:
2403     /// The Instruction modified.
2404     Instruction *Inst;
2405 
2406   public:
2407     /// Constructor of the action.
2408     /// The constructor performs the related action on the IR.
2409     TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2410 
2411     virtual ~TypePromotionAction() = default;
2412 
2413     /// Undo the modification done by this action.
2414     /// When this method is called, the IR must be in the same state as it was
2415     /// before this action was applied.
2416     /// \pre Undoing the action works if and only if the IR is in the exact same
2417     /// state as it was directly after this action was applied.
2418     virtual void undo() = 0;
2419 
2420     /// Advocate every change made by this action.
2421     /// When the results on the IR of the action are to be kept, it is important
2422     /// to call this function, otherwise hidden information may be kept forever.
2423     virtual void commit() {
2424       // Nothing to be done, this action is not doing anything.
2425     }
2426   };
2427 
2428   /// Utility to remember the position of an instruction.
2429   class InsertionHandler {
2430     /// Position of an instruction.
2431     /// Either an instruction:
2432     /// - Is the first in a basic block: BB is used.
2433     /// - Has a previous instruction: PrevInst is used.
2434     union {
2435       Instruction *PrevInst;
2436       BasicBlock *BB;
2437     } Point;
2438 
2439     /// Remember whether or not the instruction had a previous instruction.
2440     bool HasPrevInstruction;
2441 
2442   public:
2443     /// Record the position of \p Inst.
2444     InsertionHandler(Instruction *Inst) {
2445       BasicBlock::iterator It = Inst->getIterator();
2446       HasPrevInstruction = (It != (Inst->getParent()->begin()));
2447       if (HasPrevInstruction)
2448         Point.PrevInst = &*--It;
2449       else
2450         Point.BB = Inst->getParent();
2451     }
2452 
2453     /// Insert \p Inst at the recorded position.
2454     void insert(Instruction *Inst) {
2455       if (HasPrevInstruction) {
2456         if (Inst->getParent())
2457           Inst->removeFromParent();
2458         Inst->insertAfter(Point.PrevInst);
2459       } else {
2460         Instruction *Position = &*Point.BB->getFirstInsertionPt();
2461         if (Inst->getParent())
2462           Inst->moveBefore(Position);
2463         else
2464           Inst->insertBefore(Position);
2465       }
2466     }
2467   };
2468 
2469   /// Move an instruction before another.
2470   class InstructionMoveBefore : public TypePromotionAction {
2471     /// Original position of the instruction.
2472     InsertionHandler Position;
2473 
2474   public:
2475     /// Move \p Inst before \p Before.
2476     InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2477         : TypePromotionAction(Inst), Position(Inst) {
2478       LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
2479                         << "\n");
2480       Inst->moveBefore(Before);
2481     }
2482 
2483     /// Move the instruction back to its original position.
2484     void undo() override {
2485       LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2486       Position.insert(Inst);
2487     }
2488   };
2489 
2490   /// Set the operand of an instruction with a new value.
2491   class OperandSetter : public TypePromotionAction {
2492     /// Original operand of the instruction.
2493     Value *Origin;
2494 
2495     /// Index of the modified instruction.
2496     unsigned Idx;
2497 
2498   public:
2499     /// Set \p Idx operand of \p Inst with \p NewVal.
2500     OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2501         : TypePromotionAction(Inst), Idx(Idx) {
2502       LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2503                         << "for:" << *Inst << "\n"
2504                         << "with:" << *NewVal << "\n");
2505       Origin = Inst->getOperand(Idx);
2506       Inst->setOperand(Idx, NewVal);
2507     }
2508 
2509     /// Restore the original value of the instruction.
2510     void undo() override {
2511       LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2512                         << "for: " << *Inst << "\n"
2513                         << "with: " << *Origin << "\n");
2514       Inst->setOperand(Idx, Origin);
2515     }
2516   };
2517 
2518   /// Hide the operands of an instruction.
2519   /// Do as if this instruction was not using any of its operands.
2520   class OperandsHider : public TypePromotionAction {
2521     /// The list of original operands.
2522     SmallVector<Value *, 4> OriginalValues;
2523 
2524   public:
2525     /// Remove \p Inst from the uses of the operands of \p Inst.
2526     OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2527       LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2528       unsigned NumOpnds = Inst->getNumOperands();
2529       OriginalValues.reserve(NumOpnds);
2530       for (unsigned It = 0; It < NumOpnds; ++It) {
2531         // Save the current operand.
2532         Value *Val = Inst->getOperand(It);
2533         OriginalValues.push_back(Val);
2534         // Set a dummy one.
2535         // We could use OperandSetter here, but that would imply an overhead
2536         // that we are not willing to pay.
2537         Inst->setOperand(It, UndefValue::get(Val->getType()));
2538       }
2539     }
2540 
2541     /// Restore the original list of uses.
2542     void undo() override {
2543       LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2544       for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2545         Inst->setOperand(It, OriginalValues[It]);
2546     }
2547   };
2548 
2549   /// Build a truncate instruction.
2550   class TruncBuilder : public TypePromotionAction {
2551     Value *Val;
2552 
2553   public:
2554     /// Build a truncate instruction of \p Opnd producing a \p Ty
2555     /// result.
2556     /// trunc Opnd to Ty.
2557     TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2558       IRBuilder<> Builder(Opnd);
2559       Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2560       LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2561     }
2562 
2563     /// Get the built value.
2564     Value *getBuiltValue() { return Val; }
2565 
2566     /// Remove the built instruction.
2567     void undo() override {
2568       LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2569       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2570         IVal->eraseFromParent();
2571     }
2572   };
2573 
2574   /// Build a sign extension instruction.
2575   class SExtBuilder : public TypePromotionAction {
2576     Value *Val;
2577 
2578   public:
2579     /// Build a sign extension instruction of \p Opnd producing a \p Ty
2580     /// result.
2581     /// sext Opnd to Ty.
2582     SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2583         : TypePromotionAction(InsertPt) {
2584       IRBuilder<> Builder(InsertPt);
2585       Val = Builder.CreateSExt(Opnd, Ty, "promoted");
2586       LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
2587     }
2588 
2589     /// Get the built value.
2590     Value *getBuiltValue() { return Val; }
2591 
2592     /// Remove the built instruction.
2593     void undo() override {
2594       LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
2595       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2596         IVal->eraseFromParent();
2597     }
2598   };
2599 
2600   /// Build a zero extension instruction.
2601   class ZExtBuilder : public TypePromotionAction {
2602     Value *Val;
2603 
2604   public:
2605     /// Build a zero extension instruction of \p Opnd producing a \p Ty
2606     /// result.
2607     /// zext Opnd to Ty.
2608     ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2609         : TypePromotionAction(InsertPt) {
2610       IRBuilder<> Builder(InsertPt);
2611       Val = Builder.CreateZExt(Opnd, Ty, "promoted");
2612       LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
2613     }
2614 
2615     /// Get the built value.
2616     Value *getBuiltValue() { return Val; }
2617 
2618     /// Remove the built instruction.
2619     void undo() override {
2620       LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
2621       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2622         IVal->eraseFromParent();
2623     }
2624   };
2625 
2626   /// Mutate an instruction to another type.
2627   class TypeMutator : public TypePromotionAction {
2628     /// Record the original type.
2629     Type *OrigTy;
2630 
2631   public:
2632     /// Mutate the type of \p Inst into \p NewTy.
2633     TypeMutator(Instruction *Inst, Type *NewTy)
2634         : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
2635       LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
2636                         << "\n");
2637       Inst->mutateType(NewTy);
2638     }
2639 
2640     /// Mutate the instruction back to its original type.
2641     void undo() override {
2642       LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
2643                         << "\n");
2644       Inst->mutateType(OrigTy);
2645     }
2646   };
2647 
2648   /// Replace the uses of an instruction by another instruction.
2649   class UsesReplacer : public TypePromotionAction {
2650     /// Helper structure to keep track of the replaced uses.
2651     struct InstructionAndIdx {
2652       /// The instruction using the instruction.
2653       Instruction *Inst;
2654 
2655       /// The index where this instruction is used for Inst.
2656       unsigned Idx;
2657 
2658       InstructionAndIdx(Instruction *Inst, unsigned Idx)
2659           : Inst(Inst), Idx(Idx) {}
2660     };
2661 
2662     /// Keep track of the original uses (pair Instruction, Index).
2663     SmallVector<InstructionAndIdx, 4> OriginalUses;
2664     /// Keep track of the debug users.
2665     SmallVector<DbgValueInst *, 1> DbgValues;
2666 
2667     using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
2668 
2669   public:
2670     /// Replace all the use of \p Inst by \p New.
2671     UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
2672       LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
2673                         << "\n");
2674       // Record the original uses.
2675       for (Use &U : Inst->uses()) {
2676         Instruction *UserI = cast<Instruction>(U.getUser());
2677         OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
2678       }
2679       // Record the debug uses separately. They are not in the instruction's
2680       // use list, but they are replaced by RAUW.
2681       findDbgValues(DbgValues, Inst);
2682 
2683       // Now, we can replace the uses.
2684       Inst->replaceAllUsesWith(New);
2685     }
2686 
2687     /// Reassign the original uses of Inst to Inst.
2688     void undo() override {
2689       LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
2690       for (use_iterator UseIt = OriginalUses.begin(),
2691                         EndIt = OriginalUses.end();
2692            UseIt != EndIt; ++UseIt) {
2693         UseIt->Inst->setOperand(UseIt->Idx, Inst);
2694       }
2695       // RAUW has replaced all original uses with references to the new value,
2696       // including the debug uses. Since we are undoing the replacements,
2697       // the original debug uses must also be reinstated to maintain the
2698       // correctness and utility of debug value instructions.
2699       for (auto *DVI: DbgValues) {
2700         LLVMContext &Ctx = Inst->getType()->getContext();
2701         auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst));
2702         DVI->setOperand(0, MV);
2703       }
2704     }
2705   };
2706 
2707   /// Remove an instruction from the IR.
2708   class InstructionRemover : public TypePromotionAction {
2709     /// Original position of the instruction.
2710     InsertionHandler Inserter;
2711 
2712     /// Helper structure to hide all the link to the instruction. In other
2713     /// words, this helps to do as if the instruction was removed.
2714     OperandsHider Hider;
2715 
2716     /// Keep track of the uses replaced, if any.
2717     UsesReplacer *Replacer = nullptr;
2718 
2719     /// Keep track of instructions removed.
2720     SetOfInstrs &RemovedInsts;
2721 
2722   public:
2723     /// Remove all reference of \p Inst and optionally replace all its
2724     /// uses with New.
2725     /// \p RemovedInsts Keep track of the instructions removed by this Action.
2726     /// \pre If !Inst->use_empty(), then New != nullptr
2727     InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
2728                        Value *New = nullptr)
2729         : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
2730           RemovedInsts(RemovedInsts) {
2731       if (New)
2732         Replacer = new UsesReplacer(Inst, New);
2733       LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
2734       RemovedInsts.insert(Inst);
2735       /// The instructions removed here will be freed after completing
2736       /// optimizeBlock() for all blocks as we need to keep track of the
2737       /// removed instructions during promotion.
2738       Inst->removeFromParent();
2739     }
2740 
2741     ~InstructionRemover() override { delete Replacer; }
2742 
2743     /// Resurrect the instruction and reassign it to the proper uses if
2744     /// new value was provided when build this action.
2745     void undo() override {
2746       LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
2747       Inserter.insert(Inst);
2748       if (Replacer)
2749         Replacer->undo();
2750       Hider.undo();
2751       RemovedInsts.erase(Inst);
2752     }
2753   };
2754 
2755 public:
2756   /// Restoration point.
2757   /// The restoration point is a pointer to an action instead of an iterator
2758   /// because the iterator may be invalidated but not the pointer.
2759   using ConstRestorationPt = const TypePromotionAction *;
2760 
2761   TypePromotionTransaction(SetOfInstrs &RemovedInsts)
2762       : RemovedInsts(RemovedInsts) {}
2763 
2764   /// Advocate every changes made in that transaction.
2765   void commit();
2766 
2767   /// Undo all the changes made after the given point.
2768   void rollback(ConstRestorationPt Point);
2769 
2770   /// Get the current restoration point.
2771   ConstRestorationPt getRestorationPoint() const;
2772 
2773   /// \name API for IR modification with state keeping to support rollback.
2774   /// @{
2775   /// Same as Instruction::setOperand.
2776   void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
2777 
2778   /// Same as Instruction::eraseFromParent.
2779   void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
2780 
2781   /// Same as Value::replaceAllUsesWith.
2782   void replaceAllUsesWith(Instruction *Inst, Value *New);
2783 
2784   /// Same as Value::mutateType.
2785   void mutateType(Instruction *Inst, Type *NewTy);
2786 
2787   /// Same as IRBuilder::createTrunc.
2788   Value *createTrunc(Instruction *Opnd, Type *Ty);
2789 
2790   /// Same as IRBuilder::createSExt.
2791   Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
2792 
2793   /// Same as IRBuilder::createZExt.
2794   Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
2795 
2796   /// Same as Instruction::moveBefore.
2797   void moveBefore(Instruction *Inst, Instruction *Before);
2798   /// @}
2799 
2800 private:
2801   /// The ordered list of actions made so far.
2802   SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
2803 
2804   using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
2805 
2806   SetOfInstrs &RemovedInsts;
2807 };
2808 
2809 } // end anonymous namespace
2810 
2811 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
2812                                           Value *NewVal) {
2813   Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>(
2814       Inst, Idx, NewVal));
2815 }
2816 
2817 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
2818                                                 Value *NewVal) {
2819   Actions.push_back(
2820       std::make_unique<TypePromotionTransaction::InstructionRemover>(
2821           Inst, RemovedInsts, NewVal));
2822 }
2823 
2824 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
2825                                                   Value *New) {
2826   Actions.push_back(
2827       std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
2828 }
2829 
2830 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
2831   Actions.push_back(
2832       std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
2833 }
2834 
2835 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
2836                                              Type *Ty) {
2837   std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
2838   Value *Val = Ptr->getBuiltValue();
2839   Actions.push_back(std::move(Ptr));
2840   return Val;
2841 }
2842 
2843 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
2844                                             Value *Opnd, Type *Ty) {
2845   std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
2846   Value *Val = Ptr->getBuiltValue();
2847   Actions.push_back(std::move(Ptr));
2848   return Val;
2849 }
2850 
2851 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
2852                                             Value *Opnd, Type *Ty) {
2853   std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
2854   Value *Val = Ptr->getBuiltValue();
2855   Actions.push_back(std::move(Ptr));
2856   return Val;
2857 }
2858 
2859 void TypePromotionTransaction::moveBefore(Instruction *Inst,
2860                                           Instruction *Before) {
2861   Actions.push_back(
2862       std::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
2863           Inst, Before));
2864 }
2865 
2866 TypePromotionTransaction::ConstRestorationPt
2867 TypePromotionTransaction::getRestorationPoint() const {
2868   return !Actions.empty() ? Actions.back().get() : nullptr;
2869 }
2870 
2871 void TypePromotionTransaction::commit() {
2872   for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
2873        ++It)
2874     (*It)->commit();
2875   Actions.clear();
2876 }
2877 
2878 void TypePromotionTransaction::rollback(
2879     TypePromotionTransaction::ConstRestorationPt Point) {
2880   while (!Actions.empty() && Point != Actions.back().get()) {
2881     std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
2882     Curr->undo();
2883   }
2884 }
2885 
2886 namespace {
2887 
2888 /// A helper class for matching addressing modes.
2889 ///
2890 /// This encapsulates the logic for matching the target-legal addressing modes.
2891 class AddressingModeMatcher {
2892   SmallVectorImpl<Instruction*> &AddrModeInsts;
2893   const TargetLowering &TLI;
2894   const TargetRegisterInfo &TRI;
2895   const DataLayout &DL;
2896 
2897   /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
2898   /// the memory instruction that we're computing this address for.
2899   Type *AccessTy;
2900   unsigned AddrSpace;
2901   Instruction *MemoryInst;
2902 
2903   /// This is the addressing mode that we're building up. This is
2904   /// part of the return value of this addressing mode matching stuff.
2905   ExtAddrMode &AddrMode;
2906 
2907   /// The instructions inserted by other CodeGenPrepare optimizations.
2908   const SetOfInstrs &InsertedInsts;
2909 
2910   /// A map from the instructions to their type before promotion.
2911   InstrToOrigTy &PromotedInsts;
2912 
2913   /// The ongoing transaction where every action should be registered.
2914   TypePromotionTransaction &TPT;
2915 
2916   // A GEP which has too large offset to be folded into the addressing mode.
2917   std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;
2918 
2919   /// This is set to true when we should not do profitability checks.
2920   /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
2921   bool IgnoreProfitability;
2922 
2923   /// True if we are optimizing for size.
2924   bool OptSize;
2925 
2926   ProfileSummaryInfo *PSI;
2927   BlockFrequencyInfo *BFI;
2928 
2929   AddressingModeMatcher(
2930       SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
2931       const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI,
2932       ExtAddrMode &AM, const SetOfInstrs &InsertedInsts,
2933       InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
2934       std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
2935       bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
2936       : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
2937         DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
2938         MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
2939         PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP),
2940         OptSize(OptSize), PSI(PSI), BFI(BFI) {
2941     IgnoreProfitability = false;
2942   }
2943 
2944 public:
2945   /// Find the maximal addressing mode that a load/store of V can fold,
2946   /// give an access type of AccessTy.  This returns a list of involved
2947   /// instructions in AddrModeInsts.
2948   /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
2949   /// optimizations.
2950   /// \p PromotedInsts maps the instructions to their type before promotion.
2951   /// \p The ongoing transaction where every action should be registered.
2952   static ExtAddrMode
2953   Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
2954         SmallVectorImpl<Instruction *> &AddrModeInsts,
2955         const TargetLowering &TLI, const TargetRegisterInfo &TRI,
2956         const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
2957         TypePromotionTransaction &TPT,
2958         std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
2959         bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
2960     ExtAddrMode Result;
2961 
2962     bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS,
2963                                          MemoryInst, Result, InsertedInsts,
2964                                          PromotedInsts, TPT, LargeOffsetGEP,
2965                                          OptSize, PSI, BFI)
2966                        .matchAddr(V, 0);
2967     (void)Success; assert(Success && "Couldn't select *anything*?");
2968     return Result;
2969   }
2970 
2971 private:
2972   bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
2973   bool matchAddr(Value *Addr, unsigned Depth);
2974   bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth,
2975                           bool *MovedAway = nullptr);
2976   bool isProfitableToFoldIntoAddressingMode(Instruction *I,
2977                                             ExtAddrMode &AMBefore,
2978                                             ExtAddrMode &AMAfter);
2979   bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
2980   bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
2981                              Value *PromotedOperand) const;
2982 };
2983 
2984 class PhiNodeSet;
2985 
2986 /// An iterator for PhiNodeSet.
2987 class PhiNodeSetIterator {
2988   PhiNodeSet * const Set;
2989   size_t CurrentIndex = 0;
2990 
2991 public:
2992   /// The constructor. Start should point to either a valid element, or be equal
2993   /// to the size of the underlying SmallVector of the PhiNodeSet.
2994   PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start);
2995   PHINode * operator*() const;
2996   PhiNodeSetIterator& operator++();
2997   bool operator==(const PhiNodeSetIterator &RHS) const;
2998   bool operator!=(const PhiNodeSetIterator &RHS) const;
2999 };
3000 
3001 /// Keeps a set of PHINodes.
3002 ///
3003 /// This is a minimal set implementation for a specific use case:
3004 /// It is very fast when there are very few elements, but also provides good
3005 /// performance when there are many. It is similar to SmallPtrSet, but also
3006 /// provides iteration by insertion order, which is deterministic and stable
3007 /// across runs. It is also similar to SmallSetVector, but provides removing
3008 /// elements in O(1) time. This is achieved by not actually removing the element
3009 /// from the underlying vector, so comes at the cost of using more memory, but
3010 /// that is fine, since PhiNodeSets are used as short lived objects.
3011 class PhiNodeSet {
3012   friend class PhiNodeSetIterator;
3013 
3014   using MapType = SmallDenseMap<PHINode *, size_t, 32>;
3015   using iterator =  PhiNodeSetIterator;
3016 
3017   /// Keeps the elements in the order of their insertion in the underlying
3018   /// vector. To achieve constant time removal, it never deletes any element.
3019   SmallVector<PHINode *, 32> NodeList;
3020 
3021   /// Keeps the elements in the underlying set implementation. This (and not the
3022   /// NodeList defined above) is the source of truth on whether an element
3023   /// is actually in the collection.
3024   MapType NodeMap;
3025 
3026   /// Points to the first valid (not deleted) element when the set is not empty
3027   /// and the value is not zero. Equals to the size of the underlying vector
3028   /// when the set is empty. When the value is 0, as in the beginning, the
3029   /// first element may or may not be valid.
3030   size_t FirstValidElement = 0;
3031 
3032 public:
3033   /// Inserts a new element to the collection.
3034   /// \returns true if the element is actually added, i.e. was not in the
3035   /// collection before the operation.
3036   bool insert(PHINode *Ptr) {
3037     if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) {
3038       NodeList.push_back(Ptr);
3039       return true;
3040     }
3041     return false;
3042   }
3043 
3044   /// Removes the element from the collection.
3045   /// \returns whether the element is actually removed, i.e. was in the
3046   /// collection before the operation.
3047   bool erase(PHINode *Ptr) {
3048     auto it = NodeMap.find(Ptr);
3049     if (it != NodeMap.end()) {
3050       NodeMap.erase(Ptr);
3051       SkipRemovedElements(FirstValidElement);
3052       return true;
3053     }
3054     return false;
3055   }
3056 
3057   /// Removes all elements and clears the collection.
3058   void clear() {
3059     NodeMap.clear();
3060     NodeList.clear();
3061     FirstValidElement = 0;
3062   }
3063 
3064   /// \returns an iterator that will iterate the elements in the order of
3065   /// insertion.
3066   iterator begin() {
3067     if (FirstValidElement == 0)
3068       SkipRemovedElements(FirstValidElement);
3069     return PhiNodeSetIterator(this, FirstValidElement);
3070   }
3071 
3072   /// \returns an iterator that points to the end of the collection.
3073   iterator end() { return PhiNodeSetIterator(this, NodeList.size()); }
3074 
3075   /// Returns the number of elements in the collection.
3076   size_t size() const {
3077     return NodeMap.size();
3078   }
3079 
3080   /// \returns 1 if the given element is in the collection, and 0 if otherwise.
3081   size_t count(PHINode *Ptr) const {
3082     return NodeMap.count(Ptr);
3083   }
3084 
3085 private:
3086   /// Updates the CurrentIndex so that it will point to a valid element.
3087   ///
3088   /// If the element of NodeList at CurrentIndex is valid, it does not
3089   /// change it. If there are no more valid elements, it updates CurrentIndex
3090   /// to point to the end of the NodeList.
3091   void SkipRemovedElements(size_t &CurrentIndex) {
3092     while (CurrentIndex < NodeList.size()) {
3093       auto it = NodeMap.find(NodeList[CurrentIndex]);
3094       // If the element has been deleted and added again later, NodeMap will
3095       // point to a different index, so CurrentIndex will still be invalid.
3096       if (it != NodeMap.end() && it->second == CurrentIndex)
3097         break;
3098       ++CurrentIndex;
3099     }
3100   }
3101 };
3102 
3103 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start)
3104     : Set(Set), CurrentIndex(Start) {}
3105 
3106 PHINode * PhiNodeSetIterator::operator*() const {
3107   assert(CurrentIndex < Set->NodeList.size() &&
3108          "PhiNodeSet access out of range");
3109   return Set->NodeList[CurrentIndex];
3110 }
3111 
3112 PhiNodeSetIterator& PhiNodeSetIterator::operator++() {
3113   assert(CurrentIndex < Set->NodeList.size() &&
3114          "PhiNodeSet access out of range");
3115   ++CurrentIndex;
3116   Set->SkipRemovedElements(CurrentIndex);
3117   return *this;
3118 }
3119 
3120 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const {
3121   return CurrentIndex == RHS.CurrentIndex;
3122 }
3123 
3124 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const {
3125   return !((*this) == RHS);
3126 }
3127 
3128 /// Keep track of simplification of Phi nodes.
3129 /// Accept the set of all phi nodes and erase phi node from this set
3130 /// if it is simplified.
3131 class SimplificationTracker {
3132   DenseMap<Value *, Value *> Storage;
3133   const SimplifyQuery &SQ;
3134   // Tracks newly created Phi nodes. The elements are iterated by insertion
3135   // order.
3136   PhiNodeSet AllPhiNodes;
3137   // Tracks newly created Select nodes.
3138   SmallPtrSet<SelectInst *, 32> AllSelectNodes;
3139 
3140 public:
3141   SimplificationTracker(const SimplifyQuery &sq)
3142       : SQ(sq) {}
3143 
3144   Value *Get(Value *V) {
3145     do {
3146       auto SV = Storage.find(V);
3147       if (SV == Storage.end())
3148         return V;
3149       V = SV->second;
3150     } while (true);
3151   }
3152 
3153   Value *Simplify(Value *Val) {
3154     SmallVector<Value *, 32> WorkList;
3155     SmallPtrSet<Value *, 32> Visited;
3156     WorkList.push_back(Val);
3157     while (!WorkList.empty()) {
3158       auto P = WorkList.pop_back_val();
3159       if (!Visited.insert(P).second)
3160         continue;
3161       if (auto *PI = dyn_cast<Instruction>(P))
3162         if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) {
3163           for (auto *U : PI->users())
3164             WorkList.push_back(cast<Value>(U));
3165           Put(PI, V);
3166           PI->replaceAllUsesWith(V);
3167           if (auto *PHI = dyn_cast<PHINode>(PI))
3168             AllPhiNodes.erase(PHI);
3169           if (auto *Select = dyn_cast<SelectInst>(PI))
3170             AllSelectNodes.erase(Select);
3171           PI->eraseFromParent();
3172         }
3173     }
3174     return Get(Val);
3175   }
3176 
3177   void Put(Value *From, Value *To) {
3178     Storage.insert({ From, To });
3179   }
3180 
3181   void ReplacePhi(PHINode *From, PHINode *To) {
3182     Value* OldReplacement = Get(From);
3183     while (OldReplacement != From) {
3184       From = To;
3185       To = dyn_cast<PHINode>(OldReplacement);
3186       OldReplacement = Get(From);
3187     }
3188     assert(To && Get(To) == To && "Replacement PHI node is already replaced.");
3189     Put(From, To);
3190     From->replaceAllUsesWith(To);
3191     AllPhiNodes.erase(From);
3192     From->eraseFromParent();
3193   }
3194 
3195   PhiNodeSet& newPhiNodes() { return AllPhiNodes; }
3196 
3197   void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }
3198 
3199   void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }
3200 
3201   unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }
3202 
3203   unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }
3204 
3205   void destroyNewNodes(Type *CommonType) {
3206     // For safe erasing, replace the uses with dummy value first.
3207     auto Dummy = UndefValue::get(CommonType);
3208     for (auto I : AllPhiNodes) {
3209       I->replaceAllUsesWith(Dummy);
3210       I->eraseFromParent();
3211     }
3212     AllPhiNodes.clear();
3213     for (auto I : AllSelectNodes) {
3214       I->replaceAllUsesWith(Dummy);
3215       I->eraseFromParent();
3216     }
3217     AllSelectNodes.clear();
3218   }
3219 };
3220 
3221 /// A helper class for combining addressing modes.
3222 class AddressingModeCombiner {
3223   typedef DenseMap<Value *, Value *> FoldAddrToValueMapping;
3224   typedef std::pair<PHINode *, PHINode *> PHIPair;
3225 
3226 private:
3227   /// The addressing modes we've collected.
3228   SmallVector<ExtAddrMode, 16> AddrModes;
3229 
3230   /// The field in which the AddrModes differ, when we have more than one.
3231   ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
3232 
3233   /// Are the AddrModes that we have all just equal to their original values?
3234   bool AllAddrModesTrivial = true;
3235 
3236   /// Common Type for all different fields in addressing modes.
3237   Type *CommonType;
3238 
3239   /// SimplifyQuery for simplifyInstruction utility.
3240   const SimplifyQuery &SQ;
3241 
3242   /// Original Address.
3243   Value *Original;
3244 
3245 public:
3246   AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue)
3247       : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {}
3248 
3249   /// Get the combined AddrMode
3250   const ExtAddrMode &getAddrMode() const {
3251     return AddrModes[0];
3252   }
3253 
3254   /// Add a new AddrMode if it's compatible with the AddrModes we already
3255   /// have.
3256   /// \return True iff we succeeded in doing so.
3257   bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
3258     // Take note of if we have any non-trivial AddrModes, as we need to detect
3259     // when all AddrModes are trivial as then we would introduce a phi or select
3260     // which just duplicates what's already there.
3261     AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
3262 
3263     // If this is the first addrmode then everything is fine.
3264     if (AddrModes.empty()) {
3265       AddrModes.emplace_back(NewAddrMode);
3266       return true;
3267     }
3268 
3269     // Figure out how different this is from the other address modes, which we
3270     // can do just by comparing against the first one given that we only care
3271     // about the cumulative difference.
3272     ExtAddrMode::FieldName ThisDifferentField =
3273       AddrModes[0].compare(NewAddrMode);
3274     if (DifferentField == ExtAddrMode::NoField)
3275       DifferentField = ThisDifferentField;
3276     else if (DifferentField != ThisDifferentField)
3277       DifferentField = ExtAddrMode::MultipleFields;
3278 
3279     // If NewAddrMode differs in more than one dimension we cannot handle it.
3280     bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
3281 
3282     // If Scale Field is different then we reject.
3283     CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
3284 
3285     // We also must reject the case when base offset is different and
3286     // scale reg is not null, we cannot handle this case due to merge of
3287     // different offsets will be used as ScaleReg.
3288     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
3289                               !NewAddrMode.ScaledReg);
3290 
3291     // We also must reject the case when GV is different and BaseReg installed
3292     // due to we want to use base reg as a merge of GV values.
3293     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
3294                               !NewAddrMode.HasBaseReg);
3295 
3296     // Even if NewAddMode is the same we still need to collect it due to
3297     // original value is different. And later we will need all original values
3298     // as anchors during finding the common Phi node.
3299     if (CanHandle)
3300       AddrModes.emplace_back(NewAddrMode);
3301     else
3302       AddrModes.clear();
3303 
3304     return CanHandle;
3305   }
3306 
3307   /// Combine the addressing modes we've collected into a single
3308   /// addressing mode.
3309   /// \return True iff we successfully combined them or we only had one so
3310   /// didn't need to combine them anyway.
3311   bool combineAddrModes() {
3312     // If we have no AddrModes then they can't be combined.
3313     if (AddrModes.size() == 0)
3314       return false;
3315 
3316     // A single AddrMode can trivially be combined.
3317     if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
3318       return true;
3319 
3320     // If the AddrModes we collected are all just equal to the value they are
3321     // derived from then combining them wouldn't do anything useful.
3322     if (AllAddrModesTrivial)
3323       return false;
3324 
3325     if (!addrModeCombiningAllowed())
3326       return false;
3327 
3328     // Build a map between <original value, basic block where we saw it> to
3329     // value of base register.
3330     // Bail out if there is no common type.
3331     FoldAddrToValueMapping Map;
3332     if (!initializeMap(Map))
3333       return false;
3334 
3335     Value *CommonValue = findCommon(Map);
3336     if (CommonValue)
3337       AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
3338     return CommonValue != nullptr;
3339   }
3340 
3341 private:
3342   /// Initialize Map with anchor values. For address seen
3343   /// we set the value of different field saw in this address.
3344   /// At the same time we find a common type for different field we will
3345   /// use to create new Phi/Select nodes. Keep it in CommonType field.
3346   /// Return false if there is no common type found.
3347   bool initializeMap(FoldAddrToValueMapping &Map) {
3348     // Keep track of keys where the value is null. We will need to replace it
3349     // with constant null when we know the common type.
3350     SmallVector<Value *, 2> NullValue;
3351     Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
3352     for (auto &AM : AddrModes) {
3353       Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
3354       if (DV) {
3355         auto *Type = DV->getType();
3356         if (CommonType && CommonType != Type)
3357           return false;
3358         CommonType = Type;
3359         Map[AM.OriginalValue] = DV;
3360       } else {
3361         NullValue.push_back(AM.OriginalValue);
3362       }
3363     }
3364     assert(CommonType && "At least one non-null value must be!");
3365     for (auto *V : NullValue)
3366       Map[V] = Constant::getNullValue(CommonType);
3367     return true;
3368   }
3369 
3370   /// We have mapping between value A and other value B where B was a field in
3371   /// addressing mode represented by A. Also we have an original value C
3372   /// representing an address we start with. Traversing from C through phi and
3373   /// selects we ended up with A's in a map. This utility function tries to find
3374   /// a value V which is a field in addressing mode C and traversing through phi
3375   /// nodes and selects we will end up in corresponded values B in a map.
3376   /// The utility will create a new Phi/Selects if needed.
3377   // The simple example looks as follows:
3378   // BB1:
3379   //   p1 = b1 + 40
3380   //   br cond BB2, BB3
3381   // BB2:
3382   //   p2 = b2 + 40
3383   //   br BB3
3384   // BB3:
3385   //   p = phi [p1, BB1], [p2, BB2]
3386   //   v = load p
3387   // Map is
3388   //   p1 -> b1
3389   //   p2 -> b2
3390   // Request is
3391   //   p -> ?
3392   // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
3393   Value *findCommon(FoldAddrToValueMapping &Map) {
3394     // Tracks the simplification of newly created phi nodes. The reason we use
3395     // this mapping is because we will add new created Phi nodes in AddrToBase.
3396     // Simplification of Phi nodes is recursive, so some Phi node may
3397     // be simplified after we added it to AddrToBase. In reality this
3398     // simplification is possible only if original phi/selects were not
3399     // simplified yet.
3400     // Using this mapping we can find the current value in AddrToBase.
3401     SimplificationTracker ST(SQ);
3402 
3403     // First step, DFS to create PHI nodes for all intermediate blocks.
3404     // Also fill traverse order for the second step.
3405     SmallVector<Value *, 32> TraverseOrder;
3406     InsertPlaceholders(Map, TraverseOrder, ST);
3407 
3408     // Second Step, fill new nodes by merged values and simplify if possible.
3409     FillPlaceholders(Map, TraverseOrder, ST);
3410 
3411     if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
3412       ST.destroyNewNodes(CommonType);
3413       return nullptr;
3414     }
3415 
3416     // Now we'd like to match New Phi nodes to existed ones.
3417     unsigned PhiNotMatchedCount = 0;
3418     if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
3419       ST.destroyNewNodes(CommonType);
3420       return nullptr;
3421     }
3422 
3423     auto *Result = ST.Get(Map.find(Original)->second);
3424     if (Result) {
3425       NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
3426       NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
3427     }
3428     return Result;
3429   }
3430 
3431   /// Try to match PHI node to Candidate.
3432   /// Matcher tracks the matched Phi nodes.
3433   bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
3434                     SmallSetVector<PHIPair, 8> &Matcher,
3435                     PhiNodeSet &PhiNodesToMatch) {
3436     SmallVector<PHIPair, 8> WorkList;
3437     Matcher.insert({ PHI, Candidate });
3438     SmallSet<PHINode *, 8> MatchedPHIs;
3439     MatchedPHIs.insert(PHI);
3440     WorkList.push_back({ PHI, Candidate });
3441     SmallSet<PHIPair, 8> Visited;
3442     while (!WorkList.empty()) {
3443       auto Item = WorkList.pop_back_val();
3444       if (!Visited.insert(Item).second)
3445         continue;
3446       // We iterate over all incoming values to Phi to compare them.
3447       // If values are different and both of them Phi and the first one is a
3448       // Phi we added (subject to match) and both of them is in the same basic
3449       // block then we can match our pair if values match. So we state that
3450       // these values match and add it to work list to verify that.
3451       for (auto B : Item.first->blocks()) {
3452         Value *FirstValue = Item.first->getIncomingValueForBlock(B);
3453         Value *SecondValue = Item.second->getIncomingValueForBlock(B);
3454         if (FirstValue == SecondValue)
3455           continue;
3456 
3457         PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
3458         PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
3459 
3460         // One of them is not Phi or
3461         // The first one is not Phi node from the set we'd like to match or
3462         // Phi nodes from different basic blocks then
3463         // we will not be able to match.
3464         if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
3465             FirstPhi->getParent() != SecondPhi->getParent())
3466           return false;
3467 
3468         // If we already matched them then continue.
3469         if (Matcher.count({ FirstPhi, SecondPhi }))
3470           continue;
3471         // So the values are different and does not match. So we need them to
3472         // match. (But we register no more than one match per PHI node, so that
3473         // we won't later try to replace them twice.)
3474         if (MatchedPHIs.insert(FirstPhi).second)
3475           Matcher.insert({ FirstPhi, SecondPhi });
3476         // But me must check it.
3477         WorkList.push_back({ FirstPhi, SecondPhi });
3478       }
3479     }
3480     return true;
3481   }
3482 
3483   /// For the given set of PHI nodes (in the SimplificationTracker) try
3484   /// to find their equivalents.
3485   /// Returns false if this matching fails and creation of new Phi is disabled.
3486   bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
3487                    unsigned &PhiNotMatchedCount) {
3488     // Matched and PhiNodesToMatch iterate their elements in a deterministic
3489     // order, so the replacements (ReplacePhi) are also done in a deterministic
3490     // order.
3491     SmallSetVector<PHIPair, 8> Matched;
3492     SmallPtrSet<PHINode *, 8> WillNotMatch;
3493     PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes();
3494     while (PhiNodesToMatch.size()) {
3495       PHINode *PHI = *PhiNodesToMatch.begin();
3496 
3497       // Add us, if no Phi nodes in the basic block we do not match.
3498       WillNotMatch.clear();
3499       WillNotMatch.insert(PHI);
3500 
3501       // Traverse all Phis until we found equivalent or fail to do that.
3502       bool IsMatched = false;
3503       for (auto &P : PHI->getParent()->phis()) {
3504         if (&P == PHI)
3505           continue;
3506         if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
3507           break;
3508         // If it does not match, collect all Phi nodes from matcher.
3509         // if we end up with no match, them all these Phi nodes will not match
3510         // later.
3511         for (auto M : Matched)
3512           WillNotMatch.insert(M.first);
3513         Matched.clear();
3514       }
3515       if (IsMatched) {
3516         // Replace all matched values and erase them.
3517         for (auto MV : Matched)
3518           ST.ReplacePhi(MV.first, MV.second);
3519         Matched.clear();
3520         continue;
3521       }
3522       // If we are not allowed to create new nodes then bail out.
3523       if (!AllowNewPhiNodes)
3524         return false;
3525       // Just remove all seen values in matcher. They will not match anything.
3526       PhiNotMatchedCount += WillNotMatch.size();
3527       for (auto *P : WillNotMatch)
3528         PhiNodesToMatch.erase(P);
3529     }
3530     return true;
3531   }
3532   /// Fill the placeholders with values from predecessors and simplify them.
3533   void FillPlaceholders(FoldAddrToValueMapping &Map,
3534                         SmallVectorImpl<Value *> &TraverseOrder,
3535                         SimplificationTracker &ST) {
3536     while (!TraverseOrder.empty()) {
3537       Value *Current = TraverseOrder.pop_back_val();
3538       assert(Map.find(Current) != Map.end() && "No node to fill!!!");
3539       Value *V = Map[Current];
3540 
3541       if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
3542         // CurrentValue also must be Select.
3543         auto *CurrentSelect = cast<SelectInst>(Current);
3544         auto *TrueValue = CurrentSelect->getTrueValue();
3545         assert(Map.find(TrueValue) != Map.end() && "No True Value!");
3546         Select->setTrueValue(ST.Get(Map[TrueValue]));
3547         auto *FalseValue = CurrentSelect->getFalseValue();
3548         assert(Map.find(FalseValue) != Map.end() && "No False Value!");
3549         Select->setFalseValue(ST.Get(Map[FalseValue]));
3550       } else {
3551         // Must be a Phi node then.
3552         auto *PHI = cast<PHINode>(V);
3553         // Fill the Phi node with values from predecessors.
3554         for (auto B : predecessors(PHI->getParent())) {
3555           Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B);
3556           assert(Map.find(PV) != Map.end() && "No predecessor Value!");
3557           PHI->addIncoming(ST.Get(Map[PV]), B);
3558         }
3559       }
3560       Map[Current] = ST.Simplify(V);
3561     }
3562   }
3563 
3564   /// Starting from original value recursively iterates over def-use chain up to
3565   /// known ending values represented in a map. For each traversed phi/select
3566   /// inserts a placeholder Phi or Select.
3567   /// Reports all new created Phi/Select nodes by adding them to set.
3568   /// Also reports and order in what values have been traversed.
3569   void InsertPlaceholders(FoldAddrToValueMapping &Map,
3570                           SmallVectorImpl<Value *> &TraverseOrder,
3571                           SimplificationTracker &ST) {
3572     SmallVector<Value *, 32> Worklist;
3573     assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&
3574            "Address must be a Phi or Select node");
3575     auto *Dummy = UndefValue::get(CommonType);
3576     Worklist.push_back(Original);
3577     while (!Worklist.empty()) {
3578       Value *Current = Worklist.pop_back_val();
3579       // if it is already visited or it is an ending value then skip it.
3580       if (Map.find(Current) != Map.end())
3581         continue;
3582       TraverseOrder.push_back(Current);
3583 
3584       // CurrentValue must be a Phi node or select. All others must be covered
3585       // by anchors.
3586       if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) {
3587         // Is it OK to get metadata from OrigSelect?!
3588         // Create a Select placeholder with dummy value.
3589         SelectInst *Select = SelectInst::Create(
3590             CurrentSelect->getCondition(), Dummy, Dummy,
3591             CurrentSelect->getName(), CurrentSelect, CurrentSelect);
3592         Map[Current] = Select;
3593         ST.insertNewSelect(Select);
3594         // We are interested in True and False values.
3595         Worklist.push_back(CurrentSelect->getTrueValue());
3596         Worklist.push_back(CurrentSelect->getFalseValue());
3597       } else {
3598         // It must be a Phi node then.
3599         PHINode *CurrentPhi = cast<PHINode>(Current);
3600         unsigned PredCount = CurrentPhi->getNumIncomingValues();
3601         PHINode *PHI =
3602             PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi);
3603         Map[Current] = PHI;
3604         ST.insertNewPhi(PHI);
3605         for (Value *P : CurrentPhi->incoming_values())
3606           Worklist.push_back(P);
3607       }
3608     }
3609   }
3610 
3611   bool addrModeCombiningAllowed() {
3612     if (DisableComplexAddrModes)
3613       return false;
3614     switch (DifferentField) {
3615     default:
3616       return false;
3617     case ExtAddrMode::BaseRegField:
3618       return AddrSinkCombineBaseReg;
3619     case ExtAddrMode::BaseGVField:
3620       return AddrSinkCombineBaseGV;
3621     case ExtAddrMode::BaseOffsField:
3622       return AddrSinkCombineBaseOffs;
3623     case ExtAddrMode::ScaledRegField:
3624       return AddrSinkCombineScaledReg;
3625     }
3626   }
3627 };
3628 } // end anonymous namespace
3629 
3630 /// Try adding ScaleReg*Scale to the current addressing mode.
3631 /// Return true and update AddrMode if this addr mode is legal for the target,
3632 /// false if not.
3633 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
3634                                              unsigned Depth) {
3635   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3636   // mode.  Just process that directly.
3637   if (Scale == 1)
3638     return matchAddr(ScaleReg, Depth);
3639 
3640   // If the scale is 0, it takes nothing to add this.
3641   if (Scale == 0)
3642     return true;
3643 
3644   // If we already have a scale of this value, we can add to it, otherwise, we
3645   // need an available scale field.
3646   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
3647     return false;
3648 
3649   ExtAddrMode TestAddrMode = AddrMode;
3650 
3651   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
3652   // [A+B + A*7] -> [B+A*8].
3653   TestAddrMode.Scale += Scale;
3654   TestAddrMode.ScaledReg = ScaleReg;
3655 
3656   // If the new address isn't legal, bail out.
3657   if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
3658     return false;
3659 
3660   // It was legal, so commit it.
3661   AddrMode = TestAddrMode;
3662 
3663   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
3664   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
3665   // X*Scale + C*Scale to addr mode.
3666   ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
3667   if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
3668       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
3669     TestAddrMode.InBounds = false;
3670     TestAddrMode.ScaledReg = AddLHS;
3671     TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
3672 
3673     // If this addressing mode is legal, commit it and remember that we folded
3674     // this instruction.
3675     if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
3676       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
3677       AddrMode = TestAddrMode;
3678       return true;
3679     }
3680   }
3681 
3682   // Otherwise, not (x+c)*scale, just return what we have.
3683   return true;
3684 }
3685 
3686 /// This is a little filter, which returns true if an addressing computation
3687 /// involving I might be folded into a load/store accessing it.
3688 /// This doesn't need to be perfect, but needs to accept at least
3689 /// the set of instructions that MatchOperationAddr can.
3690 static bool MightBeFoldableInst(Instruction *I) {
3691   switch (I->getOpcode()) {
3692   case Instruction::BitCast:
3693   case Instruction::AddrSpaceCast:
3694     // Don't touch identity bitcasts.
3695     if (I->getType() == I->getOperand(0)->getType())
3696       return false;
3697     return I->getType()->isIntOrPtrTy();
3698   case Instruction::PtrToInt:
3699     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3700     return true;
3701   case Instruction::IntToPtr:
3702     // We know the input is intptr_t, so this is foldable.
3703     return true;
3704   case Instruction::Add:
3705     return true;
3706   case Instruction::Mul:
3707   case Instruction::Shl:
3708     // Can only handle X*C and X << C.
3709     return isa<ConstantInt>(I->getOperand(1));
3710   case Instruction::GetElementPtr:
3711     return true;
3712   default:
3713     return false;
3714   }
3715 }
3716 
3717 /// Check whether or not \p Val is a legal instruction for \p TLI.
3718 /// \note \p Val is assumed to be the product of some type promotion.
3719 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
3720 /// to be legal, as the non-promoted value would have had the same state.
3721 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
3722                                        const DataLayout &DL, Value *Val) {
3723   Instruction *PromotedInst = dyn_cast<Instruction>(Val);
3724   if (!PromotedInst)
3725     return false;
3726   int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
3727   // If the ISDOpcode is undefined, it was undefined before the promotion.
3728   if (!ISDOpcode)
3729     return true;
3730   // Otherwise, check if the promoted instruction is legal or not.
3731   return TLI.isOperationLegalOrCustom(
3732       ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
3733 }
3734 
3735 namespace {
3736 
3737 /// Hepler class to perform type promotion.
3738 class TypePromotionHelper {
3739   /// Utility function to add a promoted instruction \p ExtOpnd to
3740   /// \p PromotedInsts and record the type of extension we have seen.
3741   static void addPromotedInst(InstrToOrigTy &PromotedInsts,
3742                               Instruction *ExtOpnd,
3743                               bool IsSExt) {
3744     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3745     InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd);
3746     if (It != PromotedInsts.end()) {
3747       // If the new extension is same as original, the information in
3748       // PromotedInsts[ExtOpnd] is still correct.
3749       if (It->second.getInt() == ExtTy)
3750         return;
3751 
3752       // Now the new extension is different from old extension, we make
3753       // the type information invalid by setting extension type to
3754       // BothExtension.
3755       ExtTy = BothExtension;
3756     }
3757     PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy);
3758   }
3759 
3760   /// Utility function to query the original type of instruction \p Opnd
3761   /// with a matched extension type. If the extension doesn't match, we
3762   /// cannot use the information we had on the original type.
3763   /// BothExtension doesn't match any extension type.
3764   static const Type *getOrigType(const InstrToOrigTy &PromotedInsts,
3765                                  Instruction *Opnd,
3766                                  bool IsSExt) {
3767     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3768     InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
3769     if (It != PromotedInsts.end() && It->second.getInt() == ExtTy)
3770       return It->second.getPointer();
3771     return nullptr;
3772   }
3773 
3774   /// Utility function to check whether or not a sign or zero extension
3775   /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
3776   /// either using the operands of \p Inst or promoting \p Inst.
3777   /// The type of the extension is defined by \p IsSExt.
3778   /// In other words, check if:
3779   /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
3780   /// #1 Promotion applies:
3781   /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
3782   /// #2 Operand reuses:
3783   /// ext opnd1 to ConsideredExtType.
3784   /// \p PromotedInsts maps the instructions to their type before promotion.
3785   static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
3786                             const InstrToOrigTy &PromotedInsts, bool IsSExt);
3787 
3788   /// Utility function to determine if \p OpIdx should be promoted when
3789   /// promoting \p Inst.
3790   static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
3791     return !(isa<SelectInst>(Inst) && OpIdx == 0);
3792   }
3793 
3794   /// Utility function to promote the operand of \p Ext when this
3795   /// operand is a promotable trunc or sext or zext.
3796   /// \p PromotedInsts maps the instructions to their type before promotion.
3797   /// \p CreatedInstsCost[out] contains the cost of all instructions
3798   /// created to promote the operand of Ext.
3799   /// Newly added extensions are inserted in \p Exts.
3800   /// Newly added truncates are inserted in \p Truncs.
3801   /// Should never be called directly.
3802   /// \return The promoted value which is used instead of Ext.
3803   static Value *promoteOperandForTruncAndAnyExt(
3804       Instruction *Ext, TypePromotionTransaction &TPT,
3805       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3806       SmallVectorImpl<Instruction *> *Exts,
3807       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
3808 
3809   /// Utility function to promote the operand of \p Ext when this
3810   /// operand is promotable and is not a supported trunc or sext.
3811   /// \p PromotedInsts maps the instructions to their type before promotion.
3812   /// \p CreatedInstsCost[out] contains the cost of all the instructions
3813   /// created to promote the operand of Ext.
3814   /// Newly added extensions are inserted in \p Exts.
3815   /// Newly added truncates are inserted in \p Truncs.
3816   /// Should never be called directly.
3817   /// \return The promoted value which is used instead of Ext.
3818   static Value *promoteOperandForOther(Instruction *Ext,
3819                                        TypePromotionTransaction &TPT,
3820                                        InstrToOrigTy &PromotedInsts,
3821                                        unsigned &CreatedInstsCost,
3822                                        SmallVectorImpl<Instruction *> *Exts,
3823                                        SmallVectorImpl<Instruction *> *Truncs,
3824                                        const TargetLowering &TLI, bool IsSExt);
3825 
3826   /// \see promoteOperandForOther.
3827   static Value *signExtendOperandForOther(
3828       Instruction *Ext, TypePromotionTransaction &TPT,
3829       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3830       SmallVectorImpl<Instruction *> *Exts,
3831       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3832     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3833                                   Exts, Truncs, TLI, true);
3834   }
3835 
3836   /// \see promoteOperandForOther.
3837   static Value *zeroExtendOperandForOther(
3838       Instruction *Ext, TypePromotionTransaction &TPT,
3839       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3840       SmallVectorImpl<Instruction *> *Exts,
3841       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3842     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3843                                   Exts, Truncs, TLI, false);
3844   }
3845 
3846 public:
3847   /// Type for the utility function that promotes the operand of Ext.
3848   using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
3849                             InstrToOrigTy &PromotedInsts,
3850                             unsigned &CreatedInstsCost,
3851                             SmallVectorImpl<Instruction *> *Exts,
3852                             SmallVectorImpl<Instruction *> *Truncs,
3853                             const TargetLowering &TLI);
3854 
3855   /// Given a sign/zero extend instruction \p Ext, return the appropriate
3856   /// action to promote the operand of \p Ext instead of using Ext.
3857   /// \return NULL if no promotable action is possible with the current
3858   /// sign extension.
3859   /// \p InsertedInsts keeps track of all the instructions inserted by the
3860   /// other CodeGenPrepare optimizations. This information is important
3861   /// because we do not want to promote these instructions as CodeGenPrepare
3862   /// will reinsert them later. Thus creating an infinite loop: create/remove.
3863   /// \p PromotedInsts maps the instructions to their type before promotion.
3864   static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
3865                           const TargetLowering &TLI,
3866                           const InstrToOrigTy &PromotedInsts);
3867 };
3868 
3869 } // end anonymous namespace
3870 
3871 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
3872                                         Type *ConsideredExtType,
3873                                         const InstrToOrigTy &PromotedInsts,
3874                                         bool IsSExt) {
3875   // The promotion helper does not know how to deal with vector types yet.
3876   // To be able to fix that, we would need to fix the places where we
3877   // statically extend, e.g., constants and such.
3878   if (Inst->getType()->isVectorTy())
3879     return false;
3880 
3881   // We can always get through zext.
3882   if (isa<ZExtInst>(Inst))
3883     return true;
3884 
3885   // sext(sext) is ok too.
3886   if (IsSExt && isa<SExtInst>(Inst))
3887     return true;
3888 
3889   // We can get through binary operator, if it is legal. In other words, the
3890   // binary operator must have a nuw or nsw flag.
3891   const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
3892   if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
3893       ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
3894        (IsSExt && BinOp->hasNoSignedWrap())))
3895     return true;
3896 
3897   // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
3898   if ((Inst->getOpcode() == Instruction::And ||
3899        Inst->getOpcode() == Instruction::Or))
3900     return true;
3901 
3902   // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
3903   if (Inst->getOpcode() == Instruction::Xor) {
3904     const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1));
3905     // Make sure it is not a NOT.
3906     if (Cst && !Cst->getValue().isAllOnesValue())
3907       return true;
3908   }
3909 
3910   // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
3911   // It may change a poisoned value into a regular value, like
3912   //     zext i32 (shrl i8 %val, 12)  -->  shrl i32 (zext i8 %val), 12
3913   //          poisoned value                    regular value
3914   // It should be OK since undef covers valid value.
3915   if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
3916     return true;
3917 
3918   // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
3919   // It may change a poisoned value into a regular value, like
3920   //     zext i32 (shl i8 %val, 12)  -->  shl i32 (zext i8 %val), 12
3921   //          poisoned value                    regular value
3922   // It should be OK since undef covers valid value.
3923   if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
3924     const auto *ExtInst = cast<const Instruction>(*Inst->user_begin());
3925     if (ExtInst->hasOneUse()) {
3926       const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin());
3927       if (AndInst && AndInst->getOpcode() == Instruction::And) {
3928         const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
3929         if (Cst &&
3930             Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
3931           return true;
3932       }
3933     }
3934   }
3935 
3936   // Check if we can do the following simplification.
3937   // ext(trunc(opnd)) --> ext(opnd)
3938   if (!isa<TruncInst>(Inst))
3939     return false;
3940 
3941   Value *OpndVal = Inst->getOperand(0);
3942   // Check if we can use this operand in the extension.
3943   // If the type is larger than the result type of the extension, we cannot.
3944   if (!OpndVal->getType()->isIntegerTy() ||
3945       OpndVal->getType()->getIntegerBitWidth() >
3946           ConsideredExtType->getIntegerBitWidth())
3947     return false;
3948 
3949   // If the operand of the truncate is not an instruction, we will not have
3950   // any information on the dropped bits.
3951   // (Actually we could for constant but it is not worth the extra logic).
3952   Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
3953   if (!Opnd)
3954     return false;
3955 
3956   // Check if the source of the type is narrow enough.
3957   // I.e., check that trunc just drops extended bits of the same kind of
3958   // the extension.
3959   // #1 get the type of the operand and check the kind of the extended bits.
3960   const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt);
3961   if (OpndType)
3962     ;
3963   else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
3964     OpndType = Opnd->getOperand(0)->getType();
3965   else
3966     return false;
3967 
3968   // #2 check that the truncate just drops extended bits.
3969   return Inst->getType()->getIntegerBitWidth() >=
3970          OpndType->getIntegerBitWidth();
3971 }
3972 
3973 TypePromotionHelper::Action TypePromotionHelper::getAction(
3974     Instruction *Ext, const SetOfInstrs &InsertedInsts,
3975     const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
3976   assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3977          "Unexpected instruction type");
3978   Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
3979   Type *ExtTy = Ext->getType();
3980   bool IsSExt = isa<SExtInst>(Ext);
3981   // If the operand of the extension is not an instruction, we cannot
3982   // get through.
3983   // If it, check we can get through.
3984   if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
3985     return nullptr;
3986 
3987   // Do not promote if the operand has been added by codegenprepare.
3988   // Otherwise, it means we are undoing an optimization that is likely to be
3989   // redone, thus causing potential infinite loop.
3990   if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
3991     return nullptr;
3992 
3993   // SExt or Trunc instructions.
3994   // Return the related handler.
3995   if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
3996       isa<ZExtInst>(ExtOpnd))
3997     return promoteOperandForTruncAndAnyExt;
3998 
3999   // Regular instruction.
4000   // Abort early if we will have to insert non-free instructions.
4001   if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
4002     return nullptr;
4003   return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
4004 }
4005 
4006 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
4007     Instruction *SExt, TypePromotionTransaction &TPT,
4008     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4009     SmallVectorImpl<Instruction *> *Exts,
4010     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4011   // By construction, the operand of SExt is an instruction. Otherwise we cannot
4012   // get through it and this method should not be called.
4013   Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
4014   Value *ExtVal = SExt;
4015   bool HasMergedNonFreeExt = false;
4016   if (isa<ZExtInst>(SExtOpnd)) {
4017     // Replace s|zext(zext(opnd))
4018     // => zext(opnd).
4019     HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
4020     Value *ZExt =
4021         TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
4022     TPT.replaceAllUsesWith(SExt, ZExt);
4023     TPT.eraseInstruction(SExt);
4024     ExtVal = ZExt;
4025   } else {
4026     // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
4027     // => z|sext(opnd).
4028     TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
4029   }
4030   CreatedInstsCost = 0;
4031 
4032   // Remove dead code.
4033   if (SExtOpnd->use_empty())
4034     TPT.eraseInstruction(SExtOpnd);
4035 
4036   // Check if the extension is still needed.
4037   Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
4038   if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
4039     if (ExtInst) {
4040       if (Exts)
4041         Exts->push_back(ExtInst);
4042       CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
4043     }
4044     return ExtVal;
4045   }
4046 
4047   // At this point we have: ext ty opnd to ty.
4048   // Reassign the uses of ExtInst to the opnd and remove ExtInst.
4049   Value *NextVal = ExtInst->getOperand(0);
4050   TPT.eraseInstruction(ExtInst, NextVal);
4051   return NextVal;
4052 }
4053 
4054 Value *TypePromotionHelper::promoteOperandForOther(
4055     Instruction *Ext, TypePromotionTransaction &TPT,
4056     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4057     SmallVectorImpl<Instruction *> *Exts,
4058     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
4059     bool IsSExt) {
4060   // By construction, the operand of Ext is an instruction. Otherwise we cannot
4061   // get through it and this method should not be called.
4062   Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
4063   CreatedInstsCost = 0;
4064   if (!ExtOpnd->hasOneUse()) {
4065     // ExtOpnd will be promoted.
4066     // All its uses, but Ext, will need to use a truncated value of the
4067     // promoted version.
4068     // Create the truncate now.
4069     Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
4070     if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
4071       // Insert it just after the definition.
4072       ITrunc->moveAfter(ExtOpnd);
4073       if (Truncs)
4074         Truncs->push_back(ITrunc);
4075     }
4076 
4077     TPT.replaceAllUsesWith(ExtOpnd, Trunc);
4078     // Restore the operand of Ext (which has been replaced by the previous call
4079     // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
4080     TPT.setOperand(Ext, 0, ExtOpnd);
4081   }
4082 
4083   // Get through the Instruction:
4084   // 1. Update its type.
4085   // 2. Replace the uses of Ext by Inst.
4086   // 3. Extend each operand that needs to be extended.
4087 
4088   // Remember the original type of the instruction before promotion.
4089   // This is useful to know that the high bits are sign extended bits.
4090   addPromotedInst(PromotedInsts, ExtOpnd, IsSExt);
4091   // Step #1.
4092   TPT.mutateType(ExtOpnd, Ext->getType());
4093   // Step #2.
4094   TPT.replaceAllUsesWith(Ext, ExtOpnd);
4095   // Step #3.
4096   Instruction *ExtForOpnd = Ext;
4097 
4098   LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
4099   for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
4100        ++OpIdx) {
4101     LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
4102     if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
4103         !shouldExtOperand(ExtOpnd, OpIdx)) {
4104       LLVM_DEBUG(dbgs() << "No need to propagate\n");
4105       continue;
4106     }
4107     // Check if we can statically extend the operand.
4108     Value *Opnd = ExtOpnd->getOperand(OpIdx);
4109     if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
4110       LLVM_DEBUG(dbgs() << "Statically extend\n");
4111       unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
4112       APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
4113                             : Cst->getValue().zext(BitWidth);
4114       TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
4115       continue;
4116     }
4117     // UndefValue are typed, so we have to statically sign extend them.
4118     if (isa<UndefValue>(Opnd)) {
4119       LLVM_DEBUG(dbgs() << "Statically extend\n");
4120       TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
4121       continue;
4122     }
4123 
4124     // Otherwise we have to explicitly sign extend the operand.
4125     // Check if Ext was reused to extend an operand.
4126     if (!ExtForOpnd) {
4127       // If yes, create a new one.
4128       LLVM_DEBUG(dbgs() << "More operands to ext\n");
4129       Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
4130         : TPT.createZExt(Ext, Opnd, Ext->getType());
4131       if (!isa<Instruction>(ValForExtOpnd)) {
4132         TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
4133         continue;
4134       }
4135       ExtForOpnd = cast<Instruction>(ValForExtOpnd);
4136     }
4137     if (Exts)
4138       Exts->push_back(ExtForOpnd);
4139     TPT.setOperand(ExtForOpnd, 0, Opnd);
4140 
4141     // Move the sign extension before the insertion point.
4142     TPT.moveBefore(ExtForOpnd, ExtOpnd);
4143     TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
4144     CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
4145     // If more sext are required, new instructions will have to be created.
4146     ExtForOpnd = nullptr;
4147   }
4148   if (ExtForOpnd == Ext) {
4149     LLVM_DEBUG(dbgs() << "Extension is useless now\n");
4150     TPT.eraseInstruction(Ext);
4151   }
4152   return ExtOpnd;
4153 }
4154 
4155 /// Check whether or not promoting an instruction to a wider type is profitable.
4156 /// \p NewCost gives the cost of extension instructions created by the
4157 /// promotion.
4158 /// \p OldCost gives the cost of extension instructions before the promotion
4159 /// plus the number of instructions that have been
4160 /// matched in the addressing mode the promotion.
4161 /// \p PromotedOperand is the value that has been promoted.
4162 /// \return True if the promotion is profitable, false otherwise.
4163 bool AddressingModeMatcher::isPromotionProfitable(
4164     unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
4165   LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
4166                     << '\n');
4167   // The cost of the new extensions is greater than the cost of the
4168   // old extension plus what we folded.
4169   // This is not profitable.
4170   if (NewCost > OldCost)
4171     return false;
4172   if (NewCost < OldCost)
4173     return true;
4174   // The promotion is neutral but it may help folding the sign extension in
4175   // loads for instance.
4176   // Check that we did not create an illegal instruction.
4177   return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
4178 }
4179 
4180 /// Given an instruction or constant expr, see if we can fold the operation
4181 /// into the addressing mode. If so, update the addressing mode and return
4182 /// true, otherwise return false without modifying AddrMode.
4183 /// If \p MovedAway is not NULL, it contains the information of whether or
4184 /// not AddrInst has to be folded into the addressing mode on success.
4185 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
4186 /// because it has been moved away.
4187 /// Thus AddrInst must not be added in the matched instructions.
4188 /// This state can happen when AddrInst is a sext, since it may be moved away.
4189 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
4190 /// not be referenced anymore.
4191 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
4192                                                unsigned Depth,
4193                                                bool *MovedAway) {
4194   // Avoid exponential behavior on extremely deep expression trees.
4195   if (Depth >= 5) return false;
4196 
4197   // By default, all matched instructions stay in place.
4198   if (MovedAway)
4199     *MovedAway = false;
4200 
4201   switch (Opcode) {
4202   case Instruction::PtrToInt:
4203     // PtrToInt is always a noop, as we know that the int type is pointer sized.
4204     return matchAddr(AddrInst->getOperand(0), Depth);
4205   case Instruction::IntToPtr: {
4206     auto AS = AddrInst->getType()->getPointerAddressSpace();
4207     auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
4208     // This inttoptr is a no-op if the integer type is pointer sized.
4209     if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
4210       return matchAddr(AddrInst->getOperand(0), Depth);
4211     return false;
4212   }
4213   case Instruction::BitCast:
4214     // BitCast is always a noop, and we can handle it as long as it is
4215     // int->int or pointer->pointer (we don't want int<->fp or something).
4216     if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() &&
4217         // Don't touch identity bitcasts.  These were probably put here by LSR,
4218         // and we don't want to mess around with them.  Assume it knows what it
4219         // is doing.
4220         AddrInst->getOperand(0)->getType() != AddrInst->getType())
4221       return matchAddr(AddrInst->getOperand(0), Depth);
4222     return false;
4223   case Instruction::AddrSpaceCast: {
4224     unsigned SrcAS
4225       = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
4226     unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
4227     if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
4228       return matchAddr(AddrInst->getOperand(0), Depth);
4229     return false;
4230   }
4231   case Instruction::Add: {
4232     // Check to see if we can merge in the RHS then the LHS.  If so, we win.
4233     ExtAddrMode BackupAddrMode = AddrMode;
4234     unsigned OldSize = AddrModeInsts.size();
4235     // Start a transaction at this point.
4236     // The LHS may match but not the RHS.
4237     // Therefore, we need a higher level restoration point to undo partially
4238     // matched operation.
4239     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4240         TPT.getRestorationPoint();
4241 
4242     AddrMode.InBounds = false;
4243     if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
4244         matchAddr(AddrInst->getOperand(0), Depth+1))
4245       return true;
4246 
4247     // Restore the old addr mode info.
4248     AddrMode = BackupAddrMode;
4249     AddrModeInsts.resize(OldSize);
4250     TPT.rollback(LastKnownGood);
4251 
4252     // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
4253     if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
4254         matchAddr(AddrInst->getOperand(1), Depth+1))
4255       return true;
4256 
4257     // Otherwise we definitely can't merge the ADD in.
4258     AddrMode = BackupAddrMode;
4259     AddrModeInsts.resize(OldSize);
4260     TPT.rollback(LastKnownGood);
4261     break;
4262   }
4263   //case Instruction::Or:
4264   // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
4265   //break;
4266   case Instruction::Mul:
4267   case Instruction::Shl: {
4268     // Can only handle X*C and X << C.
4269     AddrMode.InBounds = false;
4270     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
4271     if (!RHS || RHS->getBitWidth() > 64)
4272       return false;
4273     int64_t Scale = RHS->getSExtValue();
4274     if (Opcode == Instruction::Shl)
4275       Scale = 1LL << Scale;
4276 
4277     return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
4278   }
4279   case Instruction::GetElementPtr: {
4280     // Scan the GEP.  We check it if it contains constant offsets and at most
4281     // one variable offset.
4282     int VariableOperand = -1;
4283     unsigned VariableScale = 0;
4284 
4285     int64_t ConstantOffset = 0;
4286     gep_type_iterator GTI = gep_type_begin(AddrInst);
4287     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
4288       if (StructType *STy = GTI.getStructTypeOrNull()) {
4289         const StructLayout *SL = DL.getStructLayout(STy);
4290         unsigned Idx =
4291           cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
4292         ConstantOffset += SL->getElementOffset(Idx);
4293       } else {
4294         uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType());
4295         if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
4296           const APInt &CVal = CI->getValue();
4297           if (CVal.getMinSignedBits() <= 64) {
4298             ConstantOffset += CVal.getSExtValue() * TypeSize;
4299             continue;
4300           }
4301         }
4302         if (TypeSize) {  // Scales of zero don't do anything.
4303           // We only allow one variable index at the moment.
4304           if (VariableOperand != -1)
4305             return false;
4306 
4307           // Remember the variable index.
4308           VariableOperand = i;
4309           VariableScale = TypeSize;
4310         }
4311       }
4312     }
4313 
4314     // A common case is for the GEP to only do a constant offset.  In this case,
4315     // just add it to the disp field and check validity.
4316     if (VariableOperand == -1) {
4317       AddrMode.BaseOffs += ConstantOffset;
4318       if (ConstantOffset == 0 ||
4319           TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
4320         // Check to see if we can fold the base pointer in too.
4321         if (matchAddr(AddrInst->getOperand(0), Depth+1)) {
4322           if (!cast<GEPOperator>(AddrInst)->isInBounds())
4323             AddrMode.InBounds = false;
4324           return true;
4325         }
4326       } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
4327                  TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
4328                  ConstantOffset > 0) {
4329         // Record GEPs with non-zero offsets as candidates for splitting in the
4330         // event that the offset cannot fit into the r+i addressing mode.
4331         // Simple and common case that only one GEP is used in calculating the
4332         // address for the memory access.
4333         Value *Base = AddrInst->getOperand(0);
4334         auto *BaseI = dyn_cast<Instruction>(Base);
4335         auto *GEP = cast<GetElementPtrInst>(AddrInst);
4336         if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
4337             (BaseI && !isa<CastInst>(BaseI) &&
4338              !isa<GetElementPtrInst>(BaseI))) {
4339           // Make sure the parent block allows inserting non-PHI instructions
4340           // before the terminator.
4341           BasicBlock *Parent =
4342               BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock();
4343           if (!Parent->getTerminator()->isEHPad())
4344             LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
4345         }
4346       }
4347       AddrMode.BaseOffs -= ConstantOffset;
4348       return false;
4349     }
4350 
4351     // Save the valid addressing mode in case we can't match.
4352     ExtAddrMode BackupAddrMode = AddrMode;
4353     unsigned OldSize = AddrModeInsts.size();
4354 
4355     // See if the scale and offset amount is valid for this target.
4356     AddrMode.BaseOffs += ConstantOffset;
4357     if (!cast<GEPOperator>(AddrInst)->isInBounds())
4358       AddrMode.InBounds = false;
4359 
4360     // Match the base operand of the GEP.
4361     if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
4362       // If it couldn't be matched, just stuff the value in a register.
4363       if (AddrMode.HasBaseReg) {
4364         AddrMode = BackupAddrMode;
4365         AddrModeInsts.resize(OldSize);
4366         return false;
4367       }
4368       AddrMode.HasBaseReg = true;
4369       AddrMode.BaseReg = AddrInst->getOperand(0);
4370     }
4371 
4372     // Match the remaining variable portion of the GEP.
4373     if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
4374                           Depth)) {
4375       // If it couldn't be matched, try stuffing the base into a register
4376       // instead of matching it, and retrying the match of the scale.
4377       AddrMode = BackupAddrMode;
4378       AddrModeInsts.resize(OldSize);
4379       if (AddrMode.HasBaseReg)
4380         return false;
4381       AddrMode.HasBaseReg = true;
4382       AddrMode.BaseReg = AddrInst->getOperand(0);
4383       AddrMode.BaseOffs += ConstantOffset;
4384       if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
4385                             VariableScale, Depth)) {
4386         // If even that didn't work, bail.
4387         AddrMode = BackupAddrMode;
4388         AddrModeInsts.resize(OldSize);
4389         return false;
4390       }
4391     }
4392 
4393     return true;
4394   }
4395   case Instruction::SExt:
4396   case Instruction::ZExt: {
4397     Instruction *Ext = dyn_cast<Instruction>(AddrInst);
4398     if (!Ext)
4399       return false;
4400 
4401     // Try to move this ext out of the way of the addressing mode.
4402     // Ask for a method for doing so.
4403     TypePromotionHelper::Action TPH =
4404         TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
4405     if (!TPH)
4406       return false;
4407 
4408     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4409         TPT.getRestorationPoint();
4410     unsigned CreatedInstsCost = 0;
4411     unsigned ExtCost = !TLI.isExtFree(Ext);
4412     Value *PromotedOperand =
4413         TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
4414     // SExt has been moved away.
4415     // Thus either it will be rematched later in the recursive calls or it is
4416     // gone. Anyway, we must not fold it into the addressing mode at this point.
4417     // E.g.,
4418     // op = add opnd, 1
4419     // idx = ext op
4420     // addr = gep base, idx
4421     // is now:
4422     // promotedOpnd = ext opnd            <- no match here
4423     // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
4424     // addr = gep base, op                <- match
4425     if (MovedAway)
4426       *MovedAway = true;
4427 
4428     assert(PromotedOperand &&
4429            "TypePromotionHelper should have filtered out those cases");
4430 
4431     ExtAddrMode BackupAddrMode = AddrMode;
4432     unsigned OldSize = AddrModeInsts.size();
4433 
4434     if (!matchAddr(PromotedOperand, Depth) ||
4435         // The total of the new cost is equal to the cost of the created
4436         // instructions.
4437         // The total of the old cost is equal to the cost of the extension plus
4438         // what we have saved in the addressing mode.
4439         !isPromotionProfitable(CreatedInstsCost,
4440                                ExtCost + (AddrModeInsts.size() - OldSize),
4441                                PromotedOperand)) {
4442       AddrMode = BackupAddrMode;
4443       AddrModeInsts.resize(OldSize);
4444       LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
4445       TPT.rollback(LastKnownGood);
4446       return false;
4447     }
4448     return true;
4449   }
4450   }
4451   return false;
4452 }
4453 
4454 /// If we can, try to add the value of 'Addr' into the current addressing mode.
4455 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4456 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
4457 /// for the target.
4458 ///
4459 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
4460   // Start a transaction at this point that we will rollback if the matching
4461   // fails.
4462   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4463       TPT.getRestorationPoint();
4464   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
4465     // Fold in immediates if legal for the target.
4466     AddrMode.BaseOffs += CI->getSExtValue();
4467     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4468       return true;
4469     AddrMode.BaseOffs -= CI->getSExtValue();
4470   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
4471     // If this is a global variable, try to fold it into the addressing mode.
4472     if (!AddrMode.BaseGV) {
4473       AddrMode.BaseGV = GV;
4474       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4475         return true;
4476       AddrMode.BaseGV = nullptr;
4477     }
4478   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
4479     ExtAddrMode BackupAddrMode = AddrMode;
4480     unsigned OldSize = AddrModeInsts.size();
4481 
4482     // Check to see if it is possible to fold this operation.
4483     bool MovedAway = false;
4484     if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
4485       // This instruction may have been moved away. If so, there is nothing
4486       // to check here.
4487       if (MovedAway)
4488         return true;
4489       // Okay, it's possible to fold this.  Check to see if it is actually
4490       // *profitable* to do so.  We use a simple cost model to avoid increasing
4491       // register pressure too much.
4492       if (I->hasOneUse() ||
4493           isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
4494         AddrModeInsts.push_back(I);
4495         return true;
4496       }
4497 
4498       // It isn't profitable to do this, roll back.
4499       //cerr << "NOT FOLDING: " << *I;
4500       AddrMode = BackupAddrMode;
4501       AddrModeInsts.resize(OldSize);
4502       TPT.rollback(LastKnownGood);
4503     }
4504   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
4505     if (matchOperationAddr(CE, CE->getOpcode(), Depth))
4506       return true;
4507     TPT.rollback(LastKnownGood);
4508   } else if (isa<ConstantPointerNull>(Addr)) {
4509     // Null pointer gets folded without affecting the addressing mode.
4510     return true;
4511   }
4512 
4513   // Worse case, the target should support [reg] addressing modes. :)
4514   if (!AddrMode.HasBaseReg) {
4515     AddrMode.HasBaseReg = true;
4516     AddrMode.BaseReg = Addr;
4517     // Still check for legality in case the target supports [imm] but not [i+r].
4518     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4519       return true;
4520     AddrMode.HasBaseReg = false;
4521     AddrMode.BaseReg = nullptr;
4522   }
4523 
4524   // If the base register is already taken, see if we can do [r+r].
4525   if (AddrMode.Scale == 0) {
4526     AddrMode.Scale = 1;
4527     AddrMode.ScaledReg = Addr;
4528     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4529       return true;
4530     AddrMode.Scale = 0;
4531     AddrMode.ScaledReg = nullptr;
4532   }
4533   // Couldn't match.
4534   TPT.rollback(LastKnownGood);
4535   return false;
4536 }
4537 
4538 /// Check to see if all uses of OpVal by the specified inline asm call are due
4539 /// to memory operands. If so, return true, otherwise return false.
4540 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
4541                                     const TargetLowering &TLI,
4542                                     const TargetRegisterInfo &TRI) {
4543   const Function *F = CI->getFunction();
4544   TargetLowering::AsmOperandInfoVector TargetConstraints =
4545       TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI,
4546                             ImmutableCallSite(CI));
4547 
4548   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4549     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4550 
4551     // Compute the constraint code and ConstraintType to use.
4552     TLI.ComputeConstraintToUse(OpInfo, SDValue());
4553 
4554     // If this asm operand is our Value*, and if it isn't an indirect memory
4555     // operand, we can't fold it!
4556     if (OpInfo.CallOperandVal == OpVal &&
4557         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
4558          !OpInfo.isIndirect))
4559       return false;
4560   }
4561 
4562   return true;
4563 }
4564 
4565 // Max number of memory uses to look at before aborting the search to conserve
4566 // compile time.
4567 static constexpr int MaxMemoryUsesToScan = 20;
4568 
4569 /// Recursively walk all the uses of I until we find a memory use.
4570 /// If we find an obviously non-foldable instruction, return true.
4571 /// Add the ultimately found memory instructions to MemoryUses.
4572 static bool FindAllMemoryUses(
4573     Instruction *I,
4574     SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
4575     SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
4576     const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI,
4577     BlockFrequencyInfo *BFI, int SeenInsts = 0) {
4578   // If we already considered this instruction, we're done.
4579   if (!ConsideredInsts.insert(I).second)
4580     return false;
4581 
4582   // If this is an obviously unfoldable instruction, bail out.
4583   if (!MightBeFoldableInst(I))
4584     return true;
4585 
4586   // Loop over all the uses, recursively processing them.
4587   for (Use &U : I->uses()) {
4588     // Conservatively return true if we're seeing a large number or a deep chain
4589     // of users. This avoids excessive compilation times in pathological cases.
4590     if (SeenInsts++ >= MaxMemoryUsesToScan)
4591       return true;
4592 
4593     Instruction *UserI = cast<Instruction>(U.getUser());
4594     if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
4595       MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
4596       continue;
4597     }
4598 
4599     if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
4600       unsigned opNo = U.getOperandNo();
4601       if (opNo != StoreInst::getPointerOperandIndex())
4602         return true; // Storing addr, not into addr.
4603       MemoryUses.push_back(std::make_pair(SI, opNo));
4604       continue;
4605     }
4606 
4607     if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
4608       unsigned opNo = U.getOperandNo();
4609       if (opNo != AtomicRMWInst::getPointerOperandIndex())
4610         return true; // Storing addr, not into addr.
4611       MemoryUses.push_back(std::make_pair(RMW, opNo));
4612       continue;
4613     }
4614 
4615     if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
4616       unsigned opNo = U.getOperandNo();
4617       if (opNo != AtomicCmpXchgInst::getPointerOperandIndex())
4618         return true; // Storing addr, not into addr.
4619       MemoryUses.push_back(std::make_pair(CmpX, opNo));
4620       continue;
4621     }
4622 
4623     if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
4624       if (CI->hasFnAttr(Attribute::Cold)) {
4625         // If this is a cold call, we can sink the addressing calculation into
4626         // the cold path.  See optimizeCallInst
4627         bool OptForSize = OptSize ||
4628           llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
4629         if (!OptForSize)
4630           continue;
4631       }
4632 
4633       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
4634       if (!IA) return true;
4635 
4636       // If this is a memory operand, we're cool, otherwise bail out.
4637       if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
4638         return true;
4639       continue;
4640     }
4641 
4642     if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
4643                           PSI, BFI, SeenInsts))
4644       return true;
4645   }
4646 
4647   return false;
4648 }
4649 
4650 /// Return true if Val is already known to be live at the use site that we're
4651 /// folding it into. If so, there is no cost to include it in the addressing
4652 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4653 /// instruction already.
4654 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
4655                                                    Value *KnownLive2) {
4656   // If Val is either of the known-live values, we know it is live!
4657   if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
4658     return true;
4659 
4660   // All values other than instructions and arguments (e.g. constants) are live.
4661   if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
4662 
4663   // If Val is a constant sized alloca in the entry block, it is live, this is
4664   // true because it is just a reference to the stack/frame pointer, which is
4665   // live for the whole function.
4666   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
4667     if (AI->isStaticAlloca())
4668       return true;
4669 
4670   // Check to see if this value is already used in the memory instruction's
4671   // block.  If so, it's already live into the block at the very least, so we
4672   // can reasonably fold it.
4673   return Val->isUsedInBasicBlock(MemoryInst->getParent());
4674 }
4675 
4676 /// It is possible for the addressing mode of the machine to fold the specified
4677 /// instruction into a load or store that ultimately uses it.
4678 /// However, the specified instruction has multiple uses.
4679 /// Given this, it may actually increase register pressure to fold it
4680 /// into the load. For example, consider this code:
4681 ///
4682 ///     X = ...
4683 ///     Y = X+1
4684 ///     use(Y)   -> nonload/store
4685 ///     Z = Y+1
4686 ///     load Z
4687 ///
4688 /// In this case, Y has multiple uses, and can be folded into the load of Z
4689 /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
4690 /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
4691 /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
4692 /// number of computations either.
4693 ///
4694 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
4695 /// X was live across 'load Z' for other reasons, we actually *would* want to
4696 /// fold the addressing mode in the Z case.  This would make Y die earlier.
4697 bool AddressingModeMatcher::
4698 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
4699                                      ExtAddrMode &AMAfter) {
4700   if (IgnoreProfitability) return true;
4701 
4702   // AMBefore is the addressing mode before this instruction was folded into it,
4703   // and AMAfter is the addressing mode after the instruction was folded.  Get
4704   // the set of registers referenced by AMAfter and subtract out those
4705   // referenced by AMBefore: this is the set of values which folding in this
4706   // address extends the lifetime of.
4707   //
4708   // Note that there are only two potential values being referenced here,
4709   // BaseReg and ScaleReg (global addresses are always available, as are any
4710   // folded immediates).
4711   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
4712 
4713   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
4714   // lifetime wasn't extended by adding this instruction.
4715   if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4716     BaseReg = nullptr;
4717   if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4718     ScaledReg = nullptr;
4719 
4720   // If folding this instruction (and it's subexprs) didn't extend any live
4721   // ranges, we're ok with it.
4722   if (!BaseReg && !ScaledReg)
4723     return true;
4724 
4725   // If all uses of this instruction can have the address mode sunk into them,
4726   // we can remove the addressing mode and effectively trade one live register
4727   // for another (at worst.)  In this context, folding an addressing mode into
4728   // the use is just a particularly nice way of sinking it.
4729   SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
4730   SmallPtrSet<Instruction*, 16> ConsideredInsts;
4731   if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
4732                         PSI, BFI))
4733     return false;  // Has a non-memory, non-foldable use!
4734 
4735   // Now that we know that all uses of this instruction are part of a chain of
4736   // computation involving only operations that could theoretically be folded
4737   // into a memory use, loop over each of these memory operation uses and see
4738   // if they could  *actually* fold the instruction.  The assumption is that
4739   // addressing modes are cheap and that duplicating the computation involved
4740   // many times is worthwhile, even on a fastpath. For sinking candidates
4741   // (i.e. cold call sites), this serves as a way to prevent excessive code
4742   // growth since most architectures have some reasonable small and fast way to
4743   // compute an effective address.  (i.e LEA on x86)
4744   SmallVector<Instruction*, 32> MatchedAddrModeInsts;
4745   for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
4746     Instruction *User = MemoryUses[i].first;
4747     unsigned OpNo = MemoryUses[i].second;
4748 
4749     // Get the access type of this use.  If the use isn't a pointer, we don't
4750     // know what it accesses.
4751     Value *Address = User->getOperand(OpNo);
4752     PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
4753     if (!AddrTy)
4754       return false;
4755     Type *AddressAccessTy = AddrTy->getElementType();
4756     unsigned AS = AddrTy->getAddressSpace();
4757 
4758     // Do a match against the root of this address, ignoring profitability. This
4759     // will tell us if the addressing mode for the memory operation will
4760     // *actually* cover the shared instruction.
4761     ExtAddrMode Result;
4762     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4763                                                                       0);
4764     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4765         TPT.getRestorationPoint();
4766     AddressingModeMatcher Matcher(
4767         MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result,
4768         InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, BFI);
4769     Matcher.IgnoreProfitability = true;
4770     bool Success = Matcher.matchAddr(Address, 0);
4771     (void)Success; assert(Success && "Couldn't select *anything*?");
4772 
4773     // The match was to check the profitability, the changes made are not
4774     // part of the original matcher. Therefore, they should be dropped
4775     // otherwise the original matcher will not present the right state.
4776     TPT.rollback(LastKnownGood);
4777 
4778     // If the match didn't cover I, then it won't be shared by it.
4779     if (!is_contained(MatchedAddrModeInsts, I))
4780       return false;
4781 
4782     MatchedAddrModeInsts.clear();
4783   }
4784 
4785   return true;
4786 }
4787 
4788 /// Return true if the specified values are defined in a
4789 /// different basic block than BB.
4790 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
4791   if (Instruction *I = dyn_cast<Instruction>(V))
4792     return I->getParent() != BB;
4793   return false;
4794 }
4795 
4796 /// Sink addressing mode computation immediate before MemoryInst if doing so
4797 /// can be done without increasing register pressure.  The need for the
4798 /// register pressure constraint means this can end up being an all or nothing
4799 /// decision for all uses of the same addressing computation.
4800 ///
4801 /// Load and Store Instructions often have addressing modes that can do
4802 /// significant amounts of computation. As such, instruction selection will try
4803 /// to get the load or store to do as much computation as possible for the
4804 /// program. The problem is that isel can only see within a single block. As
4805 /// such, we sink as much legal addressing mode work into the block as possible.
4806 ///
4807 /// This method is used to optimize both load/store and inline asms with memory
4808 /// operands.  It's also used to sink addressing computations feeding into cold
4809 /// call sites into their (cold) basic block.
4810 ///
4811 /// The motivation for handling sinking into cold blocks is that doing so can
4812 /// both enable other address mode sinking (by satisfying the register pressure
4813 /// constraint above), and reduce register pressure globally (by removing the
4814 /// addressing mode computation from the fast path entirely.).
4815 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
4816                                         Type *AccessTy, unsigned AddrSpace) {
4817   Value *Repl = Addr;
4818 
4819   // Try to collapse single-value PHI nodes.  This is necessary to undo
4820   // unprofitable PRE transformations.
4821   SmallVector<Value*, 8> worklist;
4822   SmallPtrSet<Value*, 16> Visited;
4823   worklist.push_back(Addr);
4824 
4825   // Use a worklist to iteratively look through PHI and select nodes, and
4826   // ensure that the addressing mode obtained from the non-PHI/select roots of
4827   // the graph are compatible.
4828   bool PhiOrSelectSeen = false;
4829   SmallVector<Instruction*, 16> AddrModeInsts;
4830   const SimplifyQuery SQ(*DL, TLInfo);
4831   AddressingModeCombiner AddrModes(SQ, Addr);
4832   TypePromotionTransaction TPT(RemovedInsts);
4833   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4834       TPT.getRestorationPoint();
4835   while (!worklist.empty()) {
4836     Value *V = worklist.back();
4837     worklist.pop_back();
4838 
4839     // We allow traversing cyclic Phi nodes.
4840     // In case of success after this loop we ensure that traversing through
4841     // Phi nodes ends up with all cases to compute address of the form
4842     //    BaseGV + Base + Scale * Index + Offset
4843     // where Scale and Offset are constans and BaseGV, Base and Index
4844     // are exactly the same Values in all cases.
4845     // It means that BaseGV, Scale and Offset dominate our memory instruction
4846     // and have the same value as they had in address computation represented
4847     // as Phi. So we can safely sink address computation to memory instruction.
4848     if (!Visited.insert(V).second)
4849       continue;
4850 
4851     // For a PHI node, push all of its incoming values.
4852     if (PHINode *P = dyn_cast<PHINode>(V)) {
4853       for (Value *IncValue : P->incoming_values())
4854         worklist.push_back(IncValue);
4855       PhiOrSelectSeen = true;
4856       continue;
4857     }
4858     // Similar for select.
4859     if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
4860       worklist.push_back(SI->getFalseValue());
4861       worklist.push_back(SI->getTrueValue());
4862       PhiOrSelectSeen = true;
4863       continue;
4864     }
4865 
4866     // For non-PHIs, determine the addressing mode being computed.  Note that
4867     // the result may differ depending on what other uses our candidate
4868     // addressing instructions might have.
4869     AddrModeInsts.clear();
4870     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4871                                                                       0);
4872     ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
4873         V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI,
4874         InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI,
4875         BFI.get());
4876 
4877     GetElementPtrInst *GEP = LargeOffsetGEP.first;
4878     if (GEP && !NewGEPBases.count(GEP)) {
4879       // If splitting the underlying data structure can reduce the offset of a
4880       // GEP, collect the GEP.  Skip the GEPs that are the new bases of
4881       // previously split data structures.
4882       LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
4883       if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end())
4884         LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size();
4885     }
4886 
4887     NewAddrMode.OriginalValue = V;
4888     if (!AddrModes.addNewAddrMode(NewAddrMode))
4889       break;
4890   }
4891 
4892   // Try to combine the AddrModes we've collected. If we couldn't collect any,
4893   // or we have multiple but either couldn't combine them or combining them
4894   // wouldn't do anything useful, bail out now.
4895   if (!AddrModes.combineAddrModes()) {
4896     TPT.rollback(LastKnownGood);
4897     return false;
4898   }
4899   TPT.commit();
4900 
4901   // Get the combined AddrMode (or the only AddrMode, if we only had one).
4902   ExtAddrMode AddrMode = AddrModes.getAddrMode();
4903 
4904   // If all the instructions matched are already in this BB, don't do anything.
4905   // If we saw a Phi node then it is not local definitely, and if we saw a select
4906   // then we want to push the address calculation past it even if it's already
4907   // in this BB.
4908   if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
4909         return IsNonLocalValue(V, MemoryInst->getParent());
4910                   })) {
4911     LLVM_DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode
4912                       << "\n");
4913     return false;
4914   }
4915 
4916   // Insert this computation right after this user.  Since our caller is
4917   // scanning from the top of the BB to the bottom, reuse of the expr are
4918   // guaranteed to happen later.
4919   IRBuilder<> Builder(MemoryInst);
4920 
4921   // Now that we determined the addressing expression we want to use and know
4922   // that we have to sink it into this block.  Check to see if we have already
4923   // done this for some other load/store instr in this block.  If so, reuse
4924   // the computation.  Before attempting reuse, check if the address is valid
4925   // as it may have been erased.
4926 
4927   WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
4928 
4929   Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
4930   if (SunkAddr) {
4931     LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
4932                       << " for " << *MemoryInst << "\n");
4933     if (SunkAddr->getType() != Addr->getType())
4934       SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4935   } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() &&
4936                                    SubtargetInfo->addrSinkUsingGEPs())) {
4937     // By default, we use the GEP-based method when AA is used later. This
4938     // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
4939     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4940                       << " for " << *MemoryInst << "\n");
4941     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4942     Value *ResultPtr = nullptr, *ResultIndex = nullptr;
4943 
4944     // First, find the pointer.
4945     if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
4946       ResultPtr = AddrMode.BaseReg;
4947       AddrMode.BaseReg = nullptr;
4948     }
4949 
4950     if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
4951       // We can't add more than one pointer together, nor can we scale a
4952       // pointer (both of which seem meaningless).
4953       if (ResultPtr || AddrMode.Scale != 1)
4954         return false;
4955 
4956       ResultPtr = AddrMode.ScaledReg;
4957       AddrMode.Scale = 0;
4958     }
4959 
4960     // It is only safe to sign extend the BaseReg if we know that the math
4961     // required to create it did not overflow before we extend it. Since
4962     // the original IR value was tossed in favor of a constant back when
4963     // the AddrMode was created we need to bail out gracefully if widths
4964     // do not match instead of extending it.
4965     //
4966     // (See below for code to add the scale.)
4967     if (AddrMode.Scale) {
4968       Type *ScaledRegTy = AddrMode.ScaledReg->getType();
4969       if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
4970           cast<IntegerType>(ScaledRegTy)->getBitWidth())
4971         return false;
4972     }
4973 
4974     if (AddrMode.BaseGV) {
4975       if (ResultPtr)
4976         return false;
4977 
4978       ResultPtr = AddrMode.BaseGV;
4979     }
4980 
4981     // If the real base value actually came from an inttoptr, then the matcher
4982     // will look through it and provide only the integer value. In that case,
4983     // use it here.
4984     if (!DL->isNonIntegralPointerType(Addr->getType())) {
4985       if (!ResultPtr && AddrMode.BaseReg) {
4986         ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
4987                                            "sunkaddr");
4988         AddrMode.BaseReg = nullptr;
4989       } else if (!ResultPtr && AddrMode.Scale == 1) {
4990         ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
4991                                            "sunkaddr");
4992         AddrMode.Scale = 0;
4993       }
4994     }
4995 
4996     if (!ResultPtr &&
4997         !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
4998       SunkAddr = Constant::getNullValue(Addr->getType());
4999     } else if (!ResultPtr) {
5000       return false;
5001     } else {
5002       Type *I8PtrTy =
5003           Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
5004       Type *I8Ty = Builder.getInt8Ty();
5005 
5006       // Start with the base register. Do this first so that subsequent address
5007       // matching finds it last, which will prevent it from trying to match it
5008       // as the scaled value in case it happens to be a mul. That would be
5009       // problematic if we've sunk a different mul for the scale, because then
5010       // we'd end up sinking both muls.
5011       if (AddrMode.BaseReg) {
5012         Value *V = AddrMode.BaseReg;
5013         if (V->getType() != IntPtrTy)
5014           V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
5015 
5016         ResultIndex = V;
5017       }
5018 
5019       // Add the scale value.
5020       if (AddrMode.Scale) {
5021         Value *V = AddrMode.ScaledReg;
5022         if (V->getType() == IntPtrTy) {
5023           // done.
5024         } else {
5025           assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
5026                  cast<IntegerType>(V->getType())->getBitWidth() &&
5027                  "We can't transform if ScaledReg is too narrow");
5028           V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
5029         }
5030 
5031         if (AddrMode.Scale != 1)
5032           V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
5033                                 "sunkaddr");
5034         if (ResultIndex)
5035           ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
5036         else
5037           ResultIndex = V;
5038       }
5039 
5040       // Add in the Base Offset if present.
5041       if (AddrMode.BaseOffs) {
5042         Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5043         if (ResultIndex) {
5044           // We need to add this separately from the scale above to help with
5045           // SDAG consecutive load/store merging.
5046           if (ResultPtr->getType() != I8PtrTy)
5047             ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5048           ResultPtr =
5049               AddrMode.InBounds
5050                   ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
5051                                               "sunkaddr")
5052                   : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
5053         }
5054 
5055         ResultIndex = V;
5056       }
5057 
5058       if (!ResultIndex) {
5059         SunkAddr = ResultPtr;
5060       } else {
5061         if (ResultPtr->getType() != I8PtrTy)
5062           ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5063         SunkAddr =
5064             AddrMode.InBounds
5065                 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
5066                                             "sunkaddr")
5067                 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
5068       }
5069 
5070       if (SunkAddr->getType() != Addr->getType())
5071         SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
5072     }
5073   } else {
5074     // We'd require a ptrtoint/inttoptr down the line, which we can't do for
5075     // non-integral pointers, so in that case bail out now.
5076     Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
5077     Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
5078     PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
5079     PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
5080     if (DL->isNonIntegralPointerType(Addr->getType()) ||
5081         (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
5082         (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
5083         (AddrMode.BaseGV &&
5084          DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
5085       return false;
5086 
5087     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5088                       << " for " << *MemoryInst << "\n");
5089     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
5090     Value *Result = nullptr;
5091 
5092     // Start with the base register. Do this first so that subsequent address
5093     // matching finds it last, which will prevent it from trying to match it
5094     // as the scaled value in case it happens to be a mul. That would be
5095     // problematic if we've sunk a different mul for the scale, because then
5096     // we'd end up sinking both muls.
5097     if (AddrMode.BaseReg) {
5098       Value *V = AddrMode.BaseReg;
5099       if (V->getType()->isPointerTy())
5100         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5101       if (V->getType() != IntPtrTy)
5102         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
5103       Result = V;
5104     }
5105 
5106     // Add the scale value.
5107     if (AddrMode.Scale) {
5108       Value *V = AddrMode.ScaledReg;
5109       if (V->getType() == IntPtrTy) {
5110         // done.
5111       } else if (V->getType()->isPointerTy()) {
5112         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5113       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
5114                  cast<IntegerType>(V->getType())->getBitWidth()) {
5115         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
5116       } else {
5117         // It is only safe to sign extend the BaseReg if we know that the math
5118         // required to create it did not overflow before we extend it. Since
5119         // the original IR value was tossed in favor of a constant back when
5120         // the AddrMode was created we need to bail out gracefully if widths
5121         // do not match instead of extending it.
5122         Instruction *I = dyn_cast_or_null<Instruction>(Result);
5123         if (I && (Result != AddrMode.BaseReg))
5124           I->eraseFromParent();
5125         return false;
5126       }
5127       if (AddrMode.Scale != 1)
5128         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
5129                               "sunkaddr");
5130       if (Result)
5131         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5132       else
5133         Result = V;
5134     }
5135 
5136     // Add in the BaseGV if present.
5137     if (AddrMode.BaseGV) {
5138       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
5139       if (Result)
5140         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5141       else
5142         Result = V;
5143     }
5144 
5145     // Add in the Base Offset if present.
5146     if (AddrMode.BaseOffs) {
5147       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5148       if (Result)
5149         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5150       else
5151         Result = V;
5152     }
5153 
5154     if (!Result)
5155       SunkAddr = Constant::getNullValue(Addr->getType());
5156     else
5157       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
5158   }
5159 
5160   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
5161   // Store the newly computed address into the cache. In the case we reused a
5162   // value, this should be idempotent.
5163   SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
5164 
5165   // If we have no uses, recursively delete the value and all dead instructions
5166   // using it.
5167   if (Repl->use_empty()) {
5168     // This can cause recursive deletion, which can invalidate our iterator.
5169     // Use a WeakTrackingVH to hold onto it in case this happens.
5170     Value *CurValue = &*CurInstIterator;
5171     WeakTrackingVH IterHandle(CurValue);
5172     BasicBlock *BB = CurInstIterator->getParent();
5173 
5174     RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
5175 
5176     if (IterHandle != CurValue) {
5177       // If the iterator instruction was recursively deleted, start over at the
5178       // start of the block.
5179       CurInstIterator = BB->begin();
5180       SunkAddrs.clear();
5181     }
5182   }
5183   ++NumMemoryInsts;
5184   return true;
5185 }
5186 
5187 /// If there are any memory operands, use OptimizeMemoryInst to sink their
5188 /// address computing into the block when possible / profitable.
5189 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
5190   bool MadeChange = false;
5191 
5192   const TargetRegisterInfo *TRI =
5193       TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
5194   TargetLowering::AsmOperandInfoVector TargetConstraints =
5195       TLI->ParseConstraints(*DL, TRI, CS);
5196   unsigned ArgNo = 0;
5197   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5198     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
5199 
5200     // Compute the constraint code and ConstraintType to use.
5201     TLI->ComputeConstraintToUse(OpInfo, SDValue());
5202 
5203     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5204         OpInfo.isIndirect) {
5205       Value *OpVal = CS->getArgOperand(ArgNo++);
5206       MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
5207     } else if (OpInfo.Type == InlineAsm::isInput)
5208       ArgNo++;
5209   }
5210 
5211   return MadeChange;
5212 }
5213 
5214 /// Check if all the uses of \p Val are equivalent (or free) zero or
5215 /// sign extensions.
5216 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
5217   assert(!Val->use_empty() && "Input must have at least one use");
5218   const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
5219   bool IsSExt = isa<SExtInst>(FirstUser);
5220   Type *ExtTy = FirstUser->getType();
5221   for (const User *U : Val->users()) {
5222     const Instruction *UI = cast<Instruction>(U);
5223     if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
5224       return false;
5225     Type *CurTy = UI->getType();
5226     // Same input and output types: Same instruction after CSE.
5227     if (CurTy == ExtTy)
5228       continue;
5229 
5230     // If IsSExt is true, we are in this situation:
5231     // a = Val
5232     // b = sext ty1 a to ty2
5233     // c = sext ty1 a to ty3
5234     // Assuming ty2 is shorter than ty3, this could be turned into:
5235     // a = Val
5236     // b = sext ty1 a to ty2
5237     // c = sext ty2 b to ty3
5238     // However, the last sext is not free.
5239     if (IsSExt)
5240       return false;
5241 
5242     // This is a ZExt, maybe this is free to extend from one type to another.
5243     // In that case, we would not account for a different use.
5244     Type *NarrowTy;
5245     Type *LargeTy;
5246     if (ExtTy->getScalarType()->getIntegerBitWidth() >
5247         CurTy->getScalarType()->getIntegerBitWidth()) {
5248       NarrowTy = CurTy;
5249       LargeTy = ExtTy;
5250     } else {
5251       NarrowTy = ExtTy;
5252       LargeTy = CurTy;
5253     }
5254 
5255     if (!TLI.isZExtFree(NarrowTy, LargeTy))
5256       return false;
5257   }
5258   // All uses are the same or can be derived from one another for free.
5259   return true;
5260 }
5261 
5262 /// Try to speculatively promote extensions in \p Exts and continue
5263 /// promoting through newly promoted operands recursively as far as doing so is
5264 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
5265 /// When some promotion happened, \p TPT contains the proper state to revert
5266 /// them.
5267 ///
5268 /// \return true if some promotion happened, false otherwise.
5269 bool CodeGenPrepare::tryToPromoteExts(
5270     TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
5271     SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
5272     unsigned CreatedInstsCost) {
5273   bool Promoted = false;
5274 
5275   // Iterate over all the extensions to try to promote them.
5276   for (auto I : Exts) {
5277     // Early check if we directly have ext(load).
5278     if (isa<LoadInst>(I->getOperand(0))) {
5279       ProfitablyMovedExts.push_back(I);
5280       continue;
5281     }
5282 
5283     // Check whether or not we want to do any promotion.  The reason we have
5284     // this check inside the for loop is to catch the case where an extension
5285     // is directly fed by a load because in such case the extension can be moved
5286     // up without any promotion on its operands.
5287     if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion)
5288       return false;
5289 
5290     // Get the action to perform the promotion.
5291     TypePromotionHelper::Action TPH =
5292         TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
5293     // Check if we can promote.
5294     if (!TPH) {
5295       // Save the current extension as we cannot move up through its operand.
5296       ProfitablyMovedExts.push_back(I);
5297       continue;
5298     }
5299 
5300     // Save the current state.
5301     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5302         TPT.getRestorationPoint();
5303     SmallVector<Instruction *, 4> NewExts;
5304     unsigned NewCreatedInstsCost = 0;
5305     unsigned ExtCost = !TLI->isExtFree(I);
5306     // Promote.
5307     Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
5308                              &NewExts, nullptr, *TLI);
5309     assert(PromotedVal &&
5310            "TypePromotionHelper should have filtered out those cases");
5311 
5312     // We would be able to merge only one extension in a load.
5313     // Therefore, if we have more than 1 new extension we heuristically
5314     // cut this search path, because it means we degrade the code quality.
5315     // With exactly 2, the transformation is neutral, because we will merge
5316     // one extension but leave one. However, we optimistically keep going,
5317     // because the new extension may be removed too.
5318     long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
5319     // FIXME: It would be possible to propagate a negative value instead of
5320     // conservatively ceiling it to 0.
5321     TotalCreatedInstsCost =
5322         std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
5323     if (!StressExtLdPromotion &&
5324         (TotalCreatedInstsCost > 1 ||
5325          !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
5326       // This promotion is not profitable, rollback to the previous state, and
5327       // save the current extension in ProfitablyMovedExts as the latest
5328       // speculative promotion turned out to be unprofitable.
5329       TPT.rollback(LastKnownGood);
5330       ProfitablyMovedExts.push_back(I);
5331       continue;
5332     }
5333     // Continue promoting NewExts as far as doing so is profitable.
5334     SmallVector<Instruction *, 2> NewlyMovedExts;
5335     (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
5336     bool NewPromoted = false;
5337     for (auto ExtInst : NewlyMovedExts) {
5338       Instruction *MovedExt = cast<Instruction>(ExtInst);
5339       Value *ExtOperand = MovedExt->getOperand(0);
5340       // If we have reached to a load, we need this extra profitability check
5341       // as it could potentially be merged into an ext(load).
5342       if (isa<LoadInst>(ExtOperand) &&
5343           !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
5344             (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
5345         continue;
5346 
5347       ProfitablyMovedExts.push_back(MovedExt);
5348       NewPromoted = true;
5349     }
5350 
5351     // If none of speculative promotions for NewExts is profitable, rollback
5352     // and save the current extension (I) as the last profitable extension.
5353     if (!NewPromoted) {
5354       TPT.rollback(LastKnownGood);
5355       ProfitablyMovedExts.push_back(I);
5356       continue;
5357     }
5358     // The promotion is profitable.
5359     Promoted = true;
5360   }
5361   return Promoted;
5362 }
5363 
5364 /// Merging redundant sexts when one is dominating the other.
5365 bool CodeGenPrepare::mergeSExts(Function &F) {
5366   bool Changed = false;
5367   for (auto &Entry : ValToSExtendedUses) {
5368     SExts &Insts = Entry.second;
5369     SExts CurPts;
5370     for (Instruction *Inst : Insts) {
5371       if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
5372           Inst->getOperand(0) != Entry.first)
5373         continue;
5374       bool inserted = false;
5375       for (auto &Pt : CurPts) {
5376         if (getDT(F).dominates(Inst, Pt)) {
5377           Pt->replaceAllUsesWith(Inst);
5378           RemovedInsts.insert(Pt);
5379           Pt->removeFromParent();
5380           Pt = Inst;
5381           inserted = true;
5382           Changed = true;
5383           break;
5384         }
5385         if (!getDT(F).dominates(Pt, Inst))
5386           // Give up if we need to merge in a common dominator as the
5387           // experiments show it is not profitable.
5388           continue;
5389         Inst->replaceAllUsesWith(Pt);
5390         RemovedInsts.insert(Inst);
5391         Inst->removeFromParent();
5392         inserted = true;
5393         Changed = true;
5394         break;
5395       }
5396       if (!inserted)
5397         CurPts.push_back(Inst);
5398     }
5399   }
5400   return Changed;
5401 }
5402 
5403 // Spliting large data structures so that the GEPs accessing them can have
5404 // smaller offsets so that they can be sunk to the same blocks as their users.
5405 // For example, a large struct starting from %base is splitted into two parts
5406 // where the second part starts from %new_base.
5407 //
5408 // Before:
5409 // BB0:
5410 //   %base     =
5411 //
5412 // BB1:
5413 //   %gep0     = gep %base, off0
5414 //   %gep1     = gep %base, off1
5415 //   %gep2     = gep %base, off2
5416 //
5417 // BB2:
5418 //   %load1    = load %gep0
5419 //   %load2    = load %gep1
5420 //   %load3    = load %gep2
5421 //
5422 // After:
5423 // BB0:
5424 //   %base     =
5425 //   %new_base = gep %base, off0
5426 //
5427 // BB1:
5428 //   %new_gep0 = %new_base
5429 //   %new_gep1 = gep %new_base, off1 - off0
5430 //   %new_gep2 = gep %new_base, off2 - off0
5431 //
5432 // BB2:
5433 //   %load1    = load i32, i32* %new_gep0
5434 //   %load2    = load i32, i32* %new_gep1
5435 //   %load3    = load i32, i32* %new_gep2
5436 //
5437 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
5438 // their offsets are smaller enough to fit into the addressing mode.
5439 bool CodeGenPrepare::splitLargeGEPOffsets() {
5440   bool Changed = false;
5441   for (auto &Entry : LargeOffsetGEPMap) {
5442     Value *OldBase = Entry.first;
5443     SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
5444         &LargeOffsetGEPs = Entry.second;
5445     auto compareGEPOffset =
5446         [&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
5447             const std::pair<GetElementPtrInst *, int64_t> &RHS) {
5448           if (LHS.first == RHS.first)
5449             return false;
5450           if (LHS.second != RHS.second)
5451             return LHS.second < RHS.second;
5452           return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
5453         };
5454     // Sorting all the GEPs of the same data structures based on the offsets.
5455     llvm::sort(LargeOffsetGEPs, compareGEPOffset);
5456     LargeOffsetGEPs.erase(
5457         std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()),
5458         LargeOffsetGEPs.end());
5459     // Skip if all the GEPs have the same offsets.
5460     if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
5461       continue;
5462     GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
5463     int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
5464     Value *NewBaseGEP = nullptr;
5465 
5466     auto LargeOffsetGEP = LargeOffsetGEPs.begin();
5467     while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
5468       GetElementPtrInst *GEP = LargeOffsetGEP->first;
5469       int64_t Offset = LargeOffsetGEP->second;
5470       if (Offset != BaseOffset) {
5471         TargetLowering::AddrMode AddrMode;
5472         AddrMode.BaseOffs = Offset - BaseOffset;
5473         // The result type of the GEP might not be the type of the memory
5474         // access.
5475         if (!TLI->isLegalAddressingMode(*DL, AddrMode,
5476                                         GEP->getResultElementType(),
5477                                         GEP->getAddressSpace())) {
5478           // We need to create a new base if the offset to the current base is
5479           // too large to fit into the addressing mode. So, a very large struct
5480           // may be splitted into several parts.
5481           BaseGEP = GEP;
5482           BaseOffset = Offset;
5483           NewBaseGEP = nullptr;
5484         }
5485       }
5486 
5487       // Generate a new GEP to replace the current one.
5488       LLVMContext &Ctx = GEP->getContext();
5489       Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
5490       Type *I8PtrTy =
5491           Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace());
5492       Type *I8Ty = Type::getInt8Ty(Ctx);
5493 
5494       if (!NewBaseGEP) {
5495         // Create a new base if we don't have one yet.  Find the insertion
5496         // pointer for the new base first.
5497         BasicBlock::iterator NewBaseInsertPt;
5498         BasicBlock *NewBaseInsertBB;
5499         if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
5500           // If the base of the struct is an instruction, the new base will be
5501           // inserted close to it.
5502           NewBaseInsertBB = BaseI->getParent();
5503           if (isa<PHINode>(BaseI))
5504             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5505           else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
5506             NewBaseInsertBB =
5507                 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest());
5508             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5509           } else
5510             NewBaseInsertPt = std::next(BaseI->getIterator());
5511         } else {
5512           // If the current base is an argument or global value, the new base
5513           // will be inserted to the entry block.
5514           NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
5515           NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5516         }
5517         IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
5518         // Create a new base.
5519         Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset);
5520         NewBaseGEP = OldBase;
5521         if (NewBaseGEP->getType() != I8PtrTy)
5522           NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
5523         NewBaseGEP =
5524             NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep");
5525         NewGEPBases.insert(NewBaseGEP);
5526       }
5527 
5528       IRBuilder<> Builder(GEP);
5529       Value *NewGEP = NewBaseGEP;
5530       if (Offset == BaseOffset) {
5531         if (GEP->getType() != I8PtrTy)
5532           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5533       } else {
5534         // Calculate the new offset for the new GEP.
5535         Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset);
5536         NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index);
5537 
5538         if (GEP->getType() != I8PtrTy)
5539           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5540       }
5541       GEP->replaceAllUsesWith(NewGEP);
5542       LargeOffsetGEPID.erase(GEP);
5543       LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
5544       GEP->eraseFromParent();
5545       Changed = true;
5546     }
5547   }
5548   return Changed;
5549 }
5550 
5551 /// Return true, if an ext(load) can be formed from an extension in
5552 /// \p MovedExts.
5553 bool CodeGenPrepare::canFormExtLd(
5554     const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
5555     Instruction *&Inst, bool HasPromoted) {
5556   for (auto *MovedExtInst : MovedExts) {
5557     if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
5558       LI = cast<LoadInst>(MovedExtInst->getOperand(0));
5559       Inst = MovedExtInst;
5560       break;
5561     }
5562   }
5563   if (!LI)
5564     return false;
5565 
5566   // If they're already in the same block, there's nothing to do.
5567   // Make the cheap checks first if we did not promote.
5568   // If we promoted, we need to check if it is indeed profitable.
5569   if (!HasPromoted && LI->getParent() == Inst->getParent())
5570     return false;
5571 
5572   return TLI->isExtLoad(LI, Inst, *DL);
5573 }
5574 
5575 /// Move a zext or sext fed by a load into the same basic block as the load,
5576 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
5577 /// extend into the load.
5578 ///
5579 /// E.g.,
5580 /// \code
5581 /// %ld = load i32* %addr
5582 /// %add = add nuw i32 %ld, 4
5583 /// %zext = zext i32 %add to i64
5584 // \endcode
5585 /// =>
5586 /// \code
5587 /// %ld = load i32* %addr
5588 /// %zext = zext i32 %ld to i64
5589 /// %add = add nuw i64 %zext, 4
5590 /// \encode
5591 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
5592 /// allow us to match zext(load i32*) to i64.
5593 ///
5594 /// Also, try to promote the computations used to obtain a sign extended
5595 /// value used into memory accesses.
5596 /// E.g.,
5597 /// \code
5598 /// a = add nsw i32 b, 3
5599 /// d = sext i32 a to i64
5600 /// e = getelementptr ..., i64 d
5601 /// \endcode
5602 /// =>
5603 /// \code
5604 /// f = sext i32 b to i64
5605 /// a = add nsw i64 f, 3
5606 /// e = getelementptr ..., i64 a
5607 /// \endcode
5608 ///
5609 /// \p Inst[in/out] the extension may be modified during the process if some
5610 /// promotions apply.
5611 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
5612   bool AllowPromotionWithoutCommonHeader = false;
5613   /// See if it is an interesting sext operations for the address type
5614   /// promotion before trying to promote it, e.g., the ones with the right
5615   /// type and used in memory accesses.
5616   bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
5617       *Inst, AllowPromotionWithoutCommonHeader);
5618   TypePromotionTransaction TPT(RemovedInsts);
5619   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5620       TPT.getRestorationPoint();
5621   SmallVector<Instruction *, 1> Exts;
5622   SmallVector<Instruction *, 2> SpeculativelyMovedExts;
5623   Exts.push_back(Inst);
5624 
5625   bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
5626 
5627   // Look for a load being extended.
5628   LoadInst *LI = nullptr;
5629   Instruction *ExtFedByLoad;
5630 
5631   // Try to promote a chain of computation if it allows to form an extended
5632   // load.
5633   if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
5634     assert(LI && ExtFedByLoad && "Expect a valid load and extension");
5635     TPT.commit();
5636     // Move the extend into the same block as the load
5637     ExtFedByLoad->moveAfter(LI);
5638     // CGP does not check if the zext would be speculatively executed when moved
5639     // to the same basic block as the load. Preserving its original location
5640     // would pessimize the debugging experience, as well as negatively impact
5641     // the quality of sample pgo. We don't want to use "line 0" as that has a
5642     // size cost in the line-table section and logically the zext can be seen as
5643     // part of the load. Therefore we conservatively reuse the same debug
5644     // location for the load and the zext.
5645     ExtFedByLoad->setDebugLoc(LI->getDebugLoc());
5646     ++NumExtsMoved;
5647     Inst = ExtFedByLoad;
5648     return true;
5649   }
5650 
5651   // Continue promoting SExts if known as considerable depending on targets.
5652   if (ATPConsiderable &&
5653       performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
5654                                   HasPromoted, TPT, SpeculativelyMovedExts))
5655     return true;
5656 
5657   TPT.rollback(LastKnownGood);
5658   return false;
5659 }
5660 
5661 // Perform address type promotion if doing so is profitable.
5662 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
5663 // instructions that sign extended the same initial value. However, if
5664 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
5665 // extension is just profitable.
5666 bool CodeGenPrepare::performAddressTypePromotion(
5667     Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
5668     bool HasPromoted, TypePromotionTransaction &TPT,
5669     SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
5670   bool Promoted = false;
5671   SmallPtrSet<Instruction *, 1> UnhandledExts;
5672   bool AllSeenFirst = true;
5673   for (auto I : SpeculativelyMovedExts) {
5674     Value *HeadOfChain = I->getOperand(0);
5675     DenseMap<Value *, Instruction *>::iterator AlreadySeen =
5676         SeenChainsForSExt.find(HeadOfChain);
5677     // If there is an unhandled SExt which has the same header, try to promote
5678     // it as well.
5679     if (AlreadySeen != SeenChainsForSExt.end()) {
5680       if (AlreadySeen->second != nullptr)
5681         UnhandledExts.insert(AlreadySeen->second);
5682       AllSeenFirst = false;
5683     }
5684   }
5685 
5686   if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
5687                         SpeculativelyMovedExts.size() == 1)) {
5688     TPT.commit();
5689     if (HasPromoted)
5690       Promoted = true;
5691     for (auto I : SpeculativelyMovedExts) {
5692       Value *HeadOfChain = I->getOperand(0);
5693       SeenChainsForSExt[HeadOfChain] = nullptr;
5694       ValToSExtendedUses[HeadOfChain].push_back(I);
5695     }
5696     // Update Inst as promotion happen.
5697     Inst = SpeculativelyMovedExts.pop_back_val();
5698   } else {
5699     // This is the first chain visited from the header, keep the current chain
5700     // as unhandled. Defer to promote this until we encounter another SExt
5701     // chain derived from the same header.
5702     for (auto I : SpeculativelyMovedExts) {
5703       Value *HeadOfChain = I->getOperand(0);
5704       SeenChainsForSExt[HeadOfChain] = Inst;
5705     }
5706     return false;
5707   }
5708 
5709   if (!AllSeenFirst && !UnhandledExts.empty())
5710     for (auto VisitedSExt : UnhandledExts) {
5711       if (RemovedInsts.count(VisitedSExt))
5712         continue;
5713       TypePromotionTransaction TPT(RemovedInsts);
5714       SmallVector<Instruction *, 1> Exts;
5715       SmallVector<Instruction *, 2> Chains;
5716       Exts.push_back(VisitedSExt);
5717       bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
5718       TPT.commit();
5719       if (HasPromoted)
5720         Promoted = true;
5721       for (auto I : Chains) {
5722         Value *HeadOfChain = I->getOperand(0);
5723         // Mark this as handled.
5724         SeenChainsForSExt[HeadOfChain] = nullptr;
5725         ValToSExtendedUses[HeadOfChain].push_back(I);
5726       }
5727     }
5728   return Promoted;
5729 }
5730 
5731 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
5732   BasicBlock *DefBB = I->getParent();
5733 
5734   // If the result of a {s|z}ext and its source are both live out, rewrite all
5735   // other uses of the source with result of extension.
5736   Value *Src = I->getOperand(0);
5737   if (Src->hasOneUse())
5738     return false;
5739 
5740   // Only do this xform if truncating is free.
5741   if (!TLI->isTruncateFree(I->getType(), Src->getType()))
5742     return false;
5743 
5744   // Only safe to perform the optimization if the source is also defined in
5745   // this block.
5746   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
5747     return false;
5748 
5749   bool DefIsLiveOut = false;
5750   for (User *U : I->users()) {
5751     Instruction *UI = cast<Instruction>(U);
5752 
5753     // Figure out which BB this ext is used in.
5754     BasicBlock *UserBB = UI->getParent();
5755     if (UserBB == DefBB) continue;
5756     DefIsLiveOut = true;
5757     break;
5758   }
5759   if (!DefIsLiveOut)
5760     return false;
5761 
5762   // Make sure none of the uses are PHI nodes.
5763   for (User *U : Src->users()) {
5764     Instruction *UI = cast<Instruction>(U);
5765     BasicBlock *UserBB = UI->getParent();
5766     if (UserBB == DefBB) continue;
5767     // Be conservative. We don't want this xform to end up introducing
5768     // reloads just before load / store instructions.
5769     if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
5770       return false;
5771   }
5772 
5773   // InsertedTruncs - Only insert one trunc in each block once.
5774   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
5775 
5776   bool MadeChange = false;
5777   for (Use &U : Src->uses()) {
5778     Instruction *User = cast<Instruction>(U.getUser());
5779 
5780     // Figure out which BB this ext is used in.
5781     BasicBlock *UserBB = User->getParent();
5782     if (UserBB == DefBB) continue;
5783 
5784     // Both src and def are live in this block. Rewrite the use.
5785     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
5786 
5787     if (!InsertedTrunc) {
5788       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5789       assert(InsertPt != UserBB->end());
5790       InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
5791       InsertedInsts.insert(InsertedTrunc);
5792     }
5793 
5794     // Replace a use of the {s|z}ext source with a use of the result.
5795     U = InsertedTrunc;
5796     ++NumExtUses;
5797     MadeChange = true;
5798   }
5799 
5800   return MadeChange;
5801 }
5802 
5803 // Find loads whose uses only use some of the loaded value's bits.  Add an "and"
5804 // just after the load if the target can fold this into one extload instruction,
5805 // with the hope of eliminating some of the other later "and" instructions using
5806 // the loaded value.  "and"s that are made trivially redundant by the insertion
5807 // of the new "and" are removed by this function, while others (e.g. those whose
5808 // path from the load goes through a phi) are left for isel to potentially
5809 // remove.
5810 //
5811 // For example:
5812 //
5813 // b0:
5814 //   x = load i32
5815 //   ...
5816 // b1:
5817 //   y = and x, 0xff
5818 //   z = use y
5819 //
5820 // becomes:
5821 //
5822 // b0:
5823 //   x = load i32
5824 //   x' = and x, 0xff
5825 //   ...
5826 // b1:
5827 //   z = use x'
5828 //
5829 // whereas:
5830 //
5831 // b0:
5832 //   x1 = load i32
5833 //   ...
5834 // b1:
5835 //   x2 = load i32
5836 //   ...
5837 // b2:
5838 //   x = phi x1, x2
5839 //   y = and x, 0xff
5840 //
5841 // becomes (after a call to optimizeLoadExt for each load):
5842 //
5843 // b0:
5844 //   x1 = load i32
5845 //   x1' = and x1, 0xff
5846 //   ...
5847 // b1:
5848 //   x2 = load i32
5849 //   x2' = and x2, 0xff
5850 //   ...
5851 // b2:
5852 //   x = phi x1', x2'
5853 //   y = and x, 0xff
5854 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
5855   if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy())
5856     return false;
5857 
5858   // Skip loads we've already transformed.
5859   if (Load->hasOneUse() &&
5860       InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
5861     return false;
5862 
5863   // Look at all uses of Load, looking through phis, to determine how many bits
5864   // of the loaded value are needed.
5865   SmallVector<Instruction *, 8> WorkList;
5866   SmallPtrSet<Instruction *, 16> Visited;
5867   SmallVector<Instruction *, 8> AndsToMaybeRemove;
5868   for (auto *U : Load->users())
5869     WorkList.push_back(cast<Instruction>(U));
5870 
5871   EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
5872   unsigned BitWidth = LoadResultVT.getSizeInBits();
5873   APInt DemandBits(BitWidth, 0);
5874   APInt WidestAndBits(BitWidth, 0);
5875 
5876   while (!WorkList.empty()) {
5877     Instruction *I = WorkList.back();
5878     WorkList.pop_back();
5879 
5880     // Break use-def graph loops.
5881     if (!Visited.insert(I).second)
5882       continue;
5883 
5884     // For a PHI node, push all of its users.
5885     if (auto *Phi = dyn_cast<PHINode>(I)) {
5886       for (auto *U : Phi->users())
5887         WorkList.push_back(cast<Instruction>(U));
5888       continue;
5889     }
5890 
5891     switch (I->getOpcode()) {
5892     case Instruction::And: {
5893       auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
5894       if (!AndC)
5895         return false;
5896       APInt AndBits = AndC->getValue();
5897       DemandBits |= AndBits;
5898       // Keep track of the widest and mask we see.
5899       if (AndBits.ugt(WidestAndBits))
5900         WidestAndBits = AndBits;
5901       if (AndBits == WidestAndBits && I->getOperand(0) == Load)
5902         AndsToMaybeRemove.push_back(I);
5903       break;
5904     }
5905 
5906     case Instruction::Shl: {
5907       auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
5908       if (!ShlC)
5909         return false;
5910       uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
5911       DemandBits.setLowBits(BitWidth - ShiftAmt);
5912       break;
5913     }
5914 
5915     case Instruction::Trunc: {
5916       EVT TruncVT = TLI->getValueType(*DL, I->getType());
5917       unsigned TruncBitWidth = TruncVT.getSizeInBits();
5918       DemandBits.setLowBits(TruncBitWidth);
5919       break;
5920     }
5921 
5922     default:
5923       return false;
5924     }
5925   }
5926 
5927   uint32_t ActiveBits = DemandBits.getActiveBits();
5928   // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
5929   // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
5930   // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
5931   // (and (load x) 1) is not matched as a single instruction, rather as a LDR
5932   // followed by an AND.
5933   // TODO: Look into removing this restriction by fixing backends to either
5934   // return false for isLoadExtLegal for i1 or have them select this pattern to
5935   // a single instruction.
5936   //
5937   // Also avoid hoisting if we didn't see any ands with the exact DemandBits
5938   // mask, since these are the only ands that will be removed by isel.
5939   if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
5940       WidestAndBits != DemandBits)
5941     return false;
5942 
5943   LLVMContext &Ctx = Load->getType()->getContext();
5944   Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
5945   EVT TruncVT = TLI->getValueType(*DL, TruncTy);
5946 
5947   // Reject cases that won't be matched as extloads.
5948   if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
5949       !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
5950     return false;
5951 
5952   IRBuilder<> Builder(Load->getNextNode());
5953   auto *NewAnd = cast<Instruction>(
5954       Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
5955   // Mark this instruction as "inserted by CGP", so that other
5956   // optimizations don't touch it.
5957   InsertedInsts.insert(NewAnd);
5958 
5959   // Replace all uses of load with new and (except for the use of load in the
5960   // new and itself).
5961   Load->replaceAllUsesWith(NewAnd);
5962   NewAnd->setOperand(0, Load);
5963 
5964   // Remove any and instructions that are now redundant.
5965   for (auto *And : AndsToMaybeRemove)
5966     // Check that the and mask is the same as the one we decided to put on the
5967     // new and.
5968     if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
5969       And->replaceAllUsesWith(NewAnd);
5970       if (&*CurInstIterator == And)
5971         CurInstIterator = std::next(And->getIterator());
5972       And->eraseFromParent();
5973       ++NumAndUses;
5974     }
5975 
5976   ++NumAndsAdded;
5977   return true;
5978 }
5979 
5980 /// Check if V (an operand of a select instruction) is an expensive instruction
5981 /// that is only used once.
5982 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
5983   auto *I = dyn_cast<Instruction>(V);
5984   // If it's safe to speculatively execute, then it should not have side
5985   // effects; therefore, it's safe to sink and possibly *not* execute.
5986   return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
5987          TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive;
5988 }
5989 
5990 /// Returns true if a SelectInst should be turned into an explicit branch.
5991 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
5992                                                 const TargetLowering *TLI,
5993                                                 SelectInst *SI) {
5994   // If even a predictable select is cheap, then a branch can't be cheaper.
5995   if (!TLI->isPredictableSelectExpensive())
5996     return false;
5997 
5998   // FIXME: This should use the same heuristics as IfConversion to determine
5999   // whether a select is better represented as a branch.
6000 
6001   // If metadata tells us that the select condition is obviously predictable,
6002   // then we want to replace the select with a branch.
6003   uint64_t TrueWeight, FalseWeight;
6004   if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
6005     uint64_t Max = std::max(TrueWeight, FalseWeight);
6006     uint64_t Sum = TrueWeight + FalseWeight;
6007     if (Sum != 0) {
6008       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
6009       if (Probability > TLI->getPredictableBranchThreshold())
6010         return true;
6011     }
6012   }
6013 
6014   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
6015 
6016   // If a branch is predictable, an out-of-order CPU can avoid blocking on its
6017   // comparison condition. If the compare has more than one use, there's
6018   // probably another cmov or setcc around, so it's not worth emitting a branch.
6019   if (!Cmp || !Cmp->hasOneUse())
6020     return false;
6021 
6022   // If either operand of the select is expensive and only needed on one side
6023   // of the select, we should form a branch.
6024   if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
6025       sinkSelectOperand(TTI, SI->getFalseValue()))
6026     return true;
6027 
6028   return false;
6029 }
6030 
6031 /// If \p isTrue is true, return the true value of \p SI, otherwise return
6032 /// false value of \p SI. If the true/false value of \p SI is defined by any
6033 /// select instructions in \p Selects, look through the defining select
6034 /// instruction until the true/false value is not defined in \p Selects.
6035 static Value *getTrueOrFalseValue(
6036     SelectInst *SI, bool isTrue,
6037     const SmallPtrSet<const Instruction *, 2> &Selects) {
6038   Value *V = nullptr;
6039 
6040   for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
6041        DefSI = dyn_cast<SelectInst>(V)) {
6042     assert(DefSI->getCondition() == SI->getCondition() &&
6043            "The condition of DefSI does not match with SI");
6044     V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
6045   }
6046 
6047   assert(V && "Failed to get select true/false value");
6048   return V;
6049 }
6050 
6051 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) {
6052   assert(Shift->isShift() && "Expected a shift");
6053 
6054   // If this is (1) a vector shift, (2) shifts by scalars are cheaper than
6055   // general vector shifts, and (3) the shift amount is a select-of-splatted
6056   // values, hoist the shifts before the select:
6057   //   shift Op0, (select Cond, TVal, FVal) -->
6058   //   select Cond, (shift Op0, TVal), (shift Op0, FVal)
6059   //
6060   // This is inverting a generic IR transform when we know that the cost of a
6061   // general vector shift is more than the cost of 2 shift-by-scalars.
6062   // We can't do this effectively in SDAG because we may not be able to
6063   // determine if the select operands are splats from within a basic block.
6064   Type *Ty = Shift->getType();
6065   if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
6066     return false;
6067   Value *Cond, *TVal, *FVal;
6068   if (!match(Shift->getOperand(1),
6069              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
6070     return false;
6071   if (!isSplatValue(TVal) || !isSplatValue(FVal))
6072     return false;
6073 
6074   IRBuilder<> Builder(Shift);
6075   BinaryOperator::BinaryOps Opcode = Shift->getOpcode();
6076   Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal);
6077   Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal);
6078   Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
6079   Shift->replaceAllUsesWith(NewSel);
6080   Shift->eraseFromParent();
6081   return true;
6082 }
6083 
6084 /// If we have a SelectInst that will likely profit from branch prediction,
6085 /// turn it into a branch.
6086 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
6087   // If branch conversion isn't desirable, exit early.
6088   if (DisableSelectToBranch || OptSize ||
6089       llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()))
6090     return false;
6091 
6092   // Find all consecutive select instructions that share the same condition.
6093   SmallVector<SelectInst *, 2> ASI;
6094   ASI.push_back(SI);
6095   for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
6096        It != SI->getParent()->end(); ++It) {
6097     SelectInst *I = dyn_cast<SelectInst>(&*It);
6098     if (I && SI->getCondition() == I->getCondition()) {
6099       ASI.push_back(I);
6100     } else {
6101       break;
6102     }
6103   }
6104 
6105   SelectInst *LastSI = ASI.back();
6106   // Increment the current iterator to skip all the rest of select instructions
6107   // because they will be either "not lowered" or "all lowered" to branch.
6108   CurInstIterator = std::next(LastSI->getIterator());
6109 
6110   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
6111 
6112   // Can we convert the 'select' to CF ?
6113   if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable))
6114     return false;
6115 
6116   TargetLowering::SelectSupportKind SelectKind;
6117   if (VectorCond)
6118     SelectKind = TargetLowering::VectorMaskSelect;
6119   else if (SI->getType()->isVectorTy())
6120     SelectKind = TargetLowering::ScalarCondVectorVal;
6121   else
6122     SelectKind = TargetLowering::ScalarValSelect;
6123 
6124   if (TLI->isSelectSupported(SelectKind) &&
6125       !isFormingBranchFromSelectProfitable(TTI, TLI, SI))
6126     return false;
6127 
6128   // The DominatorTree needs to be rebuilt by any consumers after this
6129   // transformation. We simply reset here rather than setting the ModifiedDT
6130   // flag to avoid restarting the function walk in runOnFunction for each
6131   // select optimized.
6132   DT.reset();
6133 
6134   // Transform a sequence like this:
6135   //    start:
6136   //       %cmp = cmp uge i32 %a, %b
6137   //       %sel = select i1 %cmp, i32 %c, i32 %d
6138   //
6139   // Into:
6140   //    start:
6141   //       %cmp = cmp uge i32 %a, %b
6142   //       %cmp.frozen = freeze %cmp
6143   //       br i1 %cmp.frozen, label %select.true, label %select.false
6144   //    select.true:
6145   //       br label %select.end
6146   //    select.false:
6147   //       br label %select.end
6148   //    select.end:
6149   //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
6150   //
6151   // %cmp should be frozen, otherwise it may introduce undefined behavior.
6152   // In addition, we may sink instructions that produce %c or %d from
6153   // the entry block into the destination(s) of the new branch.
6154   // If the true or false blocks do not contain a sunken instruction, that
6155   // block and its branch may be optimized away. In that case, one side of the
6156   // first branch will point directly to select.end, and the corresponding PHI
6157   // predecessor block will be the start block.
6158 
6159   // First, we split the block containing the select into 2 blocks.
6160   BasicBlock *StartBlock = SI->getParent();
6161   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
6162   BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
6163   BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency());
6164 
6165   // Delete the unconditional branch that was just created by the split.
6166   StartBlock->getTerminator()->eraseFromParent();
6167 
6168   // These are the new basic blocks for the conditional branch.
6169   // At least one will become an actual new basic block.
6170   BasicBlock *TrueBlock = nullptr;
6171   BasicBlock *FalseBlock = nullptr;
6172   BranchInst *TrueBranch = nullptr;
6173   BranchInst *FalseBranch = nullptr;
6174 
6175   // Sink expensive instructions into the conditional blocks to avoid executing
6176   // them speculatively.
6177   for (SelectInst *SI : ASI) {
6178     if (sinkSelectOperand(TTI, SI->getTrueValue())) {
6179       if (TrueBlock == nullptr) {
6180         TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
6181                                        EndBlock->getParent(), EndBlock);
6182         TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
6183         TrueBranch->setDebugLoc(SI->getDebugLoc());
6184       }
6185       auto *TrueInst = cast<Instruction>(SI->getTrueValue());
6186       TrueInst->moveBefore(TrueBranch);
6187     }
6188     if (sinkSelectOperand(TTI, SI->getFalseValue())) {
6189       if (FalseBlock == nullptr) {
6190         FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
6191                                         EndBlock->getParent(), EndBlock);
6192         FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6193         FalseBranch->setDebugLoc(SI->getDebugLoc());
6194       }
6195       auto *FalseInst = cast<Instruction>(SI->getFalseValue());
6196       FalseInst->moveBefore(FalseBranch);
6197     }
6198   }
6199 
6200   // If there was nothing to sink, then arbitrarily choose the 'false' side
6201   // for a new input value to the PHI.
6202   if (TrueBlock == FalseBlock) {
6203     assert(TrueBlock == nullptr &&
6204            "Unexpected basic block transform while optimizing select");
6205 
6206     FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
6207                                     EndBlock->getParent(), EndBlock);
6208     auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6209     FalseBranch->setDebugLoc(SI->getDebugLoc());
6210   }
6211 
6212   // Insert the real conditional branch based on the original condition.
6213   // If we did not create a new block for one of the 'true' or 'false' paths
6214   // of the condition, it means that side of the branch goes to the end block
6215   // directly and the path originates from the start block from the point of
6216   // view of the new PHI.
6217   BasicBlock *TT, *FT;
6218   if (TrueBlock == nullptr) {
6219     TT = EndBlock;
6220     FT = FalseBlock;
6221     TrueBlock = StartBlock;
6222   } else if (FalseBlock == nullptr) {
6223     TT = TrueBlock;
6224     FT = EndBlock;
6225     FalseBlock = StartBlock;
6226   } else {
6227     TT = TrueBlock;
6228     FT = FalseBlock;
6229   }
6230   IRBuilder<> IB(SI);
6231   auto CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen");
6232   IB.CreateCondBr(CondFr, TT, FT, SI);
6233 
6234   SmallPtrSet<const Instruction *, 2> INS;
6235   INS.insert(ASI.begin(), ASI.end());
6236   // Use reverse iterator because later select may use the value of the
6237   // earlier select, and we need to propagate value through earlier select
6238   // to get the PHI operand.
6239   for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
6240     SelectInst *SI = *It;
6241     // The select itself is replaced with a PHI Node.
6242     PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
6243     PN->takeName(SI);
6244     PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
6245     PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
6246     PN->setDebugLoc(SI->getDebugLoc());
6247 
6248     SI->replaceAllUsesWith(PN);
6249     SI->eraseFromParent();
6250     INS.erase(SI);
6251     ++NumSelectsExpanded;
6252   }
6253 
6254   // Instruct OptimizeBlock to skip to the next block.
6255   CurInstIterator = StartBlock->end();
6256   return true;
6257 }
6258 
6259 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
6260   ArrayRef<int> Mask(SVI->getShuffleMask());
6261   int SplatElem = -1;
6262   for (unsigned i = 0; i < Mask.size(); ++i) {
6263     if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
6264       return false;
6265     SplatElem = Mask[i];
6266   }
6267 
6268   return true;
6269 }
6270 
6271 /// Some targets have expensive vector shifts if the lanes aren't all the same
6272 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
6273 /// it's often worth sinking a shufflevector splat down to its use so that
6274 /// codegen can spot all lanes are identical.
6275 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
6276   BasicBlock *DefBB = SVI->getParent();
6277 
6278   // Only do this xform if variable vector shifts are particularly expensive.
6279   if (!TLI->isVectorShiftByScalarCheap(SVI->getType()))
6280     return false;
6281 
6282   // We only expect better codegen by sinking a shuffle if we can recognise a
6283   // constant splat.
6284   if (!isBroadcastShuffle(SVI))
6285     return false;
6286 
6287   // InsertedShuffles - Only insert a shuffle in each block once.
6288   DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
6289 
6290   bool MadeChange = false;
6291   for (User *U : SVI->users()) {
6292     Instruction *UI = cast<Instruction>(U);
6293 
6294     // Figure out which BB this ext is used in.
6295     BasicBlock *UserBB = UI->getParent();
6296     if (UserBB == DefBB) continue;
6297 
6298     // For now only apply this when the splat is used by a shift instruction.
6299     if (!UI->isShift()) continue;
6300 
6301     // Everything checks out, sink the shuffle if the user's block doesn't
6302     // already have a copy.
6303     Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
6304 
6305     if (!InsertedShuffle) {
6306       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
6307       assert(InsertPt != UserBB->end());
6308       InsertedShuffle =
6309           new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
6310                                 SVI->getShuffleMask(), "", &*InsertPt);
6311       InsertedShuffle->setDebugLoc(SVI->getDebugLoc());
6312     }
6313 
6314     UI->replaceUsesOfWith(SVI, InsertedShuffle);
6315     MadeChange = true;
6316   }
6317 
6318   // If we removed all uses, nuke the shuffle.
6319   if (SVI->use_empty()) {
6320     SVI->eraseFromParent();
6321     MadeChange = true;
6322   }
6323 
6324   return MadeChange;
6325 }
6326 
6327 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) {
6328   // If the operands of I can be folded into a target instruction together with
6329   // I, duplicate and sink them.
6330   SmallVector<Use *, 4> OpsToSink;
6331   if (!TLI->shouldSinkOperands(I, OpsToSink))
6332     return false;
6333 
6334   // OpsToSink can contain multiple uses in a use chain (e.g.
6335   // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
6336   // uses must come first, so we process the ops in reverse order so as to not
6337   // create invalid IR.
6338   BasicBlock *TargetBB = I->getParent();
6339   bool Changed = false;
6340   SmallVector<Use *, 4> ToReplace;
6341   for (Use *U : reverse(OpsToSink)) {
6342     auto *UI = cast<Instruction>(U->get());
6343     if (UI->getParent() == TargetBB || isa<PHINode>(UI))
6344       continue;
6345     ToReplace.push_back(U);
6346   }
6347 
6348   SetVector<Instruction *> MaybeDead;
6349   DenseMap<Instruction *, Instruction *> NewInstructions;
6350   Instruction *InsertPoint = I;
6351   for (Use *U : ToReplace) {
6352     auto *UI = cast<Instruction>(U->get());
6353     Instruction *NI = UI->clone();
6354     NewInstructions[UI] = NI;
6355     MaybeDead.insert(UI);
6356     LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n");
6357     NI->insertBefore(InsertPoint);
6358     InsertPoint = NI;
6359     InsertedInsts.insert(NI);
6360 
6361     // Update the use for the new instruction, making sure that we update the
6362     // sunk instruction uses, if it is part of a chain that has already been
6363     // sunk.
6364     Instruction *OldI = cast<Instruction>(U->getUser());
6365     if (NewInstructions.count(OldI))
6366       NewInstructions[OldI]->setOperand(U->getOperandNo(), NI);
6367     else
6368       U->set(NI);
6369     Changed = true;
6370   }
6371 
6372   // Remove instructions that are dead after sinking.
6373   for (auto *I : MaybeDead) {
6374     if (!I->hasNUsesOrMore(1)) {
6375       LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n");
6376       I->eraseFromParent();
6377     }
6378   }
6379 
6380   return Changed;
6381 }
6382 
6383 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
6384   Value *Cond = SI->getCondition();
6385   Type *OldType = Cond->getType();
6386   LLVMContext &Context = Cond->getContext();
6387   MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
6388   unsigned RegWidth = RegType.getSizeInBits();
6389 
6390   if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
6391     return false;
6392 
6393   // If the register width is greater than the type width, expand the condition
6394   // of the switch instruction and each case constant to the width of the
6395   // register. By widening the type of the switch condition, subsequent
6396   // comparisons (for case comparisons) will not need to be extended to the
6397   // preferred register width, so we will potentially eliminate N-1 extends,
6398   // where N is the number of cases in the switch.
6399   auto *NewType = Type::getIntNTy(Context, RegWidth);
6400 
6401   // Zero-extend the switch condition and case constants unless the switch
6402   // condition is a function argument that is already being sign-extended.
6403   // In that case, we can avoid an unnecessary mask/extension by sign-extending
6404   // everything instead.
6405   Instruction::CastOps ExtType = Instruction::ZExt;
6406   if (auto *Arg = dyn_cast<Argument>(Cond))
6407     if (Arg->hasSExtAttr())
6408       ExtType = Instruction::SExt;
6409 
6410   auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
6411   ExtInst->insertBefore(SI);
6412   ExtInst->setDebugLoc(SI->getDebugLoc());
6413   SI->setCondition(ExtInst);
6414   for (auto Case : SI->cases()) {
6415     APInt NarrowConst = Case.getCaseValue()->getValue();
6416     APInt WideConst = (ExtType == Instruction::ZExt) ?
6417                       NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
6418     Case.setValue(ConstantInt::get(Context, WideConst));
6419   }
6420 
6421   return true;
6422 }
6423 
6424 
6425 namespace {
6426 
6427 /// Helper class to promote a scalar operation to a vector one.
6428 /// This class is used to move downward extractelement transition.
6429 /// E.g.,
6430 /// a = vector_op <2 x i32>
6431 /// b = extractelement <2 x i32> a, i32 0
6432 /// c = scalar_op b
6433 /// store c
6434 ///
6435 /// =>
6436 /// a = vector_op <2 x i32>
6437 /// c = vector_op a (equivalent to scalar_op on the related lane)
6438 /// * d = extractelement <2 x i32> c, i32 0
6439 /// * store d
6440 /// Assuming both extractelement and store can be combine, we get rid of the
6441 /// transition.
6442 class VectorPromoteHelper {
6443   /// DataLayout associated with the current module.
6444   const DataLayout &DL;
6445 
6446   /// Used to perform some checks on the legality of vector operations.
6447   const TargetLowering &TLI;
6448 
6449   /// Used to estimated the cost of the promoted chain.
6450   const TargetTransformInfo &TTI;
6451 
6452   /// The transition being moved downwards.
6453   Instruction *Transition;
6454 
6455   /// The sequence of instructions to be promoted.
6456   SmallVector<Instruction *, 4> InstsToBePromoted;
6457 
6458   /// Cost of combining a store and an extract.
6459   unsigned StoreExtractCombineCost;
6460 
6461   /// Instruction that will be combined with the transition.
6462   Instruction *CombineInst = nullptr;
6463 
6464   /// The instruction that represents the current end of the transition.
6465   /// Since we are faking the promotion until we reach the end of the chain
6466   /// of computation, we need a way to get the current end of the transition.
6467   Instruction *getEndOfTransition() const {
6468     if (InstsToBePromoted.empty())
6469       return Transition;
6470     return InstsToBePromoted.back();
6471   }
6472 
6473   /// Return the index of the original value in the transition.
6474   /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
6475   /// c, is at index 0.
6476   unsigned getTransitionOriginalValueIdx() const {
6477     assert(isa<ExtractElementInst>(Transition) &&
6478            "Other kind of transitions are not supported yet");
6479     return 0;
6480   }
6481 
6482   /// Return the index of the index in the transition.
6483   /// E.g., for "extractelement <2 x i32> c, i32 0" the index
6484   /// is at index 1.
6485   unsigned getTransitionIdx() const {
6486     assert(isa<ExtractElementInst>(Transition) &&
6487            "Other kind of transitions are not supported yet");
6488     return 1;
6489   }
6490 
6491   /// Get the type of the transition.
6492   /// This is the type of the original value.
6493   /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
6494   /// transition is <2 x i32>.
6495   Type *getTransitionType() const {
6496     return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
6497   }
6498 
6499   /// Promote \p ToBePromoted by moving \p Def downward through.
6500   /// I.e., we have the following sequence:
6501   /// Def = Transition <ty1> a to <ty2>
6502   /// b = ToBePromoted <ty2> Def, ...
6503   /// =>
6504   /// b = ToBePromoted <ty1> a, ...
6505   /// Def = Transition <ty1> ToBePromoted to <ty2>
6506   void promoteImpl(Instruction *ToBePromoted);
6507 
6508   /// Check whether or not it is profitable to promote all the
6509   /// instructions enqueued to be promoted.
6510   bool isProfitableToPromote() {
6511     Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
6512     unsigned Index = isa<ConstantInt>(ValIdx)
6513                          ? cast<ConstantInt>(ValIdx)->getZExtValue()
6514                          : -1;
6515     Type *PromotedType = getTransitionType();
6516 
6517     StoreInst *ST = cast<StoreInst>(CombineInst);
6518     unsigned AS = ST->getPointerAddressSpace();
6519     unsigned Align = ST->getAlignment();
6520     // Check if this store is supported.
6521     if (!TLI.allowsMisalignedMemoryAccesses(
6522             TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
6523             Align)) {
6524       // If this is not supported, there is no way we can combine
6525       // the extract with the store.
6526       return false;
6527     }
6528 
6529     // The scalar chain of computation has to pay for the transition
6530     // scalar to vector.
6531     // The vector chain has to account for the combining cost.
6532     uint64_t ScalarCost =
6533         TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
6534     uint64_t VectorCost = StoreExtractCombineCost;
6535     for (const auto &Inst : InstsToBePromoted) {
6536       // Compute the cost.
6537       // By construction, all instructions being promoted are arithmetic ones.
6538       // Moreover, one argument is a constant that can be viewed as a splat
6539       // constant.
6540       Value *Arg0 = Inst->getOperand(0);
6541       bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
6542                             isa<ConstantFP>(Arg0);
6543       TargetTransformInfo::OperandValueKind Arg0OVK =
6544           IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6545                          : TargetTransformInfo::OK_AnyValue;
6546       TargetTransformInfo::OperandValueKind Arg1OVK =
6547           !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6548                           : TargetTransformInfo::OK_AnyValue;
6549       ScalarCost += TTI.getArithmeticInstrCost(
6550           Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
6551       VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
6552                                                Arg0OVK, Arg1OVK);
6553     }
6554     LLVM_DEBUG(
6555         dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
6556                << ScalarCost << "\nVector: " << VectorCost << '\n');
6557     return ScalarCost > VectorCost;
6558   }
6559 
6560   /// Generate a constant vector with \p Val with the same
6561   /// number of elements as the transition.
6562   /// \p UseSplat defines whether or not \p Val should be replicated
6563   /// across the whole vector.
6564   /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
6565   /// otherwise we generate a vector with as many undef as possible:
6566   /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
6567   /// used at the index of the extract.
6568   Value *getConstantVector(Constant *Val, bool UseSplat) const {
6569     unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
6570     if (!UseSplat) {
6571       // If we cannot determine where the constant must be, we have to
6572       // use a splat constant.
6573       Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
6574       if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
6575         ExtractIdx = CstVal->getSExtValue();
6576       else
6577         UseSplat = true;
6578     }
6579 
6580     ElementCount EC = getTransitionType()->getVectorElementCount();
6581     if (UseSplat)
6582       return ConstantVector::getSplat(EC, Val);
6583 
6584     if (!EC.Scalable) {
6585       SmallVector<Constant *, 4> ConstVec;
6586       UndefValue *UndefVal = UndefValue::get(Val->getType());
6587       for (unsigned Idx = 0; Idx != EC.Min; ++Idx) {
6588         if (Idx == ExtractIdx)
6589           ConstVec.push_back(Val);
6590         else
6591           ConstVec.push_back(UndefVal);
6592       }
6593       return ConstantVector::get(ConstVec);
6594     } else
6595       llvm_unreachable(
6596           "Generate scalable vector for non-splat is unimplemented");
6597   }
6598 
6599   /// Check if promoting to a vector type an operand at \p OperandIdx
6600   /// in \p Use can trigger undefined behavior.
6601   static bool canCauseUndefinedBehavior(const Instruction *Use,
6602                                         unsigned OperandIdx) {
6603     // This is not safe to introduce undef when the operand is on
6604     // the right hand side of a division-like instruction.
6605     if (OperandIdx != 1)
6606       return false;
6607     switch (Use->getOpcode()) {
6608     default:
6609       return false;
6610     case Instruction::SDiv:
6611     case Instruction::UDiv:
6612     case Instruction::SRem:
6613     case Instruction::URem:
6614       return true;
6615     case Instruction::FDiv:
6616     case Instruction::FRem:
6617       return !Use->hasNoNaNs();
6618     }
6619     llvm_unreachable(nullptr);
6620   }
6621 
6622 public:
6623   VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
6624                       const TargetTransformInfo &TTI, Instruction *Transition,
6625                       unsigned CombineCost)
6626       : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
6627         StoreExtractCombineCost(CombineCost) {
6628     assert(Transition && "Do not know how to promote null");
6629   }
6630 
6631   /// Check if we can promote \p ToBePromoted to \p Type.
6632   bool canPromote(const Instruction *ToBePromoted) const {
6633     // We could support CastInst too.
6634     return isa<BinaryOperator>(ToBePromoted);
6635   }
6636 
6637   /// Check if it is profitable to promote \p ToBePromoted
6638   /// by moving downward the transition through.
6639   bool shouldPromote(const Instruction *ToBePromoted) const {
6640     // Promote only if all the operands can be statically expanded.
6641     // Indeed, we do not want to introduce any new kind of transitions.
6642     for (const Use &U : ToBePromoted->operands()) {
6643       const Value *Val = U.get();
6644       if (Val == getEndOfTransition()) {
6645         // If the use is a division and the transition is on the rhs,
6646         // we cannot promote the operation, otherwise we may create a
6647         // division by zero.
6648         if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
6649           return false;
6650         continue;
6651       }
6652       if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
6653           !isa<ConstantFP>(Val))
6654         return false;
6655     }
6656     // Check that the resulting operation is legal.
6657     int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
6658     if (!ISDOpcode)
6659       return false;
6660     return StressStoreExtract ||
6661            TLI.isOperationLegalOrCustom(
6662                ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
6663   }
6664 
6665   /// Check whether or not \p Use can be combined
6666   /// with the transition.
6667   /// I.e., is it possible to do Use(Transition) => AnotherUse?
6668   bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
6669 
6670   /// Record \p ToBePromoted as part of the chain to be promoted.
6671   void enqueueForPromotion(Instruction *ToBePromoted) {
6672     InstsToBePromoted.push_back(ToBePromoted);
6673   }
6674 
6675   /// Set the instruction that will be combined with the transition.
6676   void recordCombineInstruction(Instruction *ToBeCombined) {
6677     assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
6678     CombineInst = ToBeCombined;
6679   }
6680 
6681   /// Promote all the instructions enqueued for promotion if it is
6682   /// is profitable.
6683   /// \return True if the promotion happened, false otherwise.
6684   bool promote() {
6685     // Check if there is something to promote.
6686     // Right now, if we do not have anything to combine with,
6687     // we assume the promotion is not profitable.
6688     if (InstsToBePromoted.empty() || !CombineInst)
6689       return false;
6690 
6691     // Check cost.
6692     if (!StressStoreExtract && !isProfitableToPromote())
6693       return false;
6694 
6695     // Promote.
6696     for (auto &ToBePromoted : InstsToBePromoted)
6697       promoteImpl(ToBePromoted);
6698     InstsToBePromoted.clear();
6699     return true;
6700   }
6701 };
6702 
6703 } // end anonymous namespace
6704 
6705 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
6706   // At this point, we know that all the operands of ToBePromoted but Def
6707   // can be statically promoted.
6708   // For Def, we need to use its parameter in ToBePromoted:
6709   // b = ToBePromoted ty1 a
6710   // Def = Transition ty1 b to ty2
6711   // Move the transition down.
6712   // 1. Replace all uses of the promoted operation by the transition.
6713   // = ... b => = ... Def.
6714   assert(ToBePromoted->getType() == Transition->getType() &&
6715          "The type of the result of the transition does not match "
6716          "the final type");
6717   ToBePromoted->replaceAllUsesWith(Transition);
6718   // 2. Update the type of the uses.
6719   // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
6720   Type *TransitionTy = getTransitionType();
6721   ToBePromoted->mutateType(TransitionTy);
6722   // 3. Update all the operands of the promoted operation with promoted
6723   // operands.
6724   // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
6725   for (Use &U : ToBePromoted->operands()) {
6726     Value *Val = U.get();
6727     Value *NewVal = nullptr;
6728     if (Val == Transition)
6729       NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
6730     else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
6731              isa<ConstantFP>(Val)) {
6732       // Use a splat constant if it is not safe to use undef.
6733       NewVal = getConstantVector(
6734           cast<Constant>(Val),
6735           isa<UndefValue>(Val) ||
6736               canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
6737     } else
6738       llvm_unreachable("Did you modified shouldPromote and forgot to update "
6739                        "this?");
6740     ToBePromoted->setOperand(U.getOperandNo(), NewVal);
6741   }
6742   Transition->moveAfter(ToBePromoted);
6743   Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
6744 }
6745 
6746 /// Some targets can do store(extractelement) with one instruction.
6747 /// Try to push the extractelement towards the stores when the target
6748 /// has this feature and this is profitable.
6749 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
6750   unsigned CombineCost = std::numeric_limits<unsigned>::max();
6751   if (DisableStoreExtract ||
6752       (!StressStoreExtract &&
6753        !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
6754                                        Inst->getOperand(1), CombineCost)))
6755     return false;
6756 
6757   // At this point we know that Inst is a vector to scalar transition.
6758   // Try to move it down the def-use chain, until:
6759   // - We can combine the transition with its single use
6760   //   => we got rid of the transition.
6761   // - We escape the current basic block
6762   //   => we would need to check that we are moving it at a cheaper place and
6763   //      we do not do that for now.
6764   BasicBlock *Parent = Inst->getParent();
6765   LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
6766   VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
6767   // If the transition has more than one use, assume this is not going to be
6768   // beneficial.
6769   while (Inst->hasOneUse()) {
6770     Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
6771     LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
6772 
6773     if (ToBePromoted->getParent() != Parent) {
6774       LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
6775                         << ToBePromoted->getParent()->getName()
6776                         << ") than the transition (" << Parent->getName()
6777                         << ").\n");
6778       return false;
6779     }
6780 
6781     if (VPH.canCombine(ToBePromoted)) {
6782       LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
6783                         << "will be combined with: " << *ToBePromoted << '\n');
6784       VPH.recordCombineInstruction(ToBePromoted);
6785       bool Changed = VPH.promote();
6786       NumStoreExtractExposed += Changed;
6787       return Changed;
6788     }
6789 
6790     LLVM_DEBUG(dbgs() << "Try promoting.\n");
6791     if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
6792       return false;
6793 
6794     LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
6795 
6796     VPH.enqueueForPromotion(ToBePromoted);
6797     Inst = ToBePromoted;
6798   }
6799   return false;
6800 }
6801 
6802 /// For the instruction sequence of store below, F and I values
6803 /// are bundled together as an i64 value before being stored into memory.
6804 /// Sometimes it is more efficient to generate separate stores for F and I,
6805 /// which can remove the bitwise instructions or sink them to colder places.
6806 ///
6807 ///   (store (or (zext (bitcast F to i32) to i64),
6808 ///              (shl (zext I to i64), 32)), addr)  -->
6809 ///   (store F, addr) and (store I, addr+4)
6810 ///
6811 /// Similarly, splitting for other merged store can also be beneficial, like:
6812 /// For pair of {i32, i32}, i64 store --> two i32 stores.
6813 /// For pair of {i32, i16}, i64 store --> two i32 stores.
6814 /// For pair of {i16, i16}, i32 store --> two i16 stores.
6815 /// For pair of {i16, i8},  i32 store --> two i16 stores.
6816 /// For pair of {i8, i8},   i16 store --> two i8 stores.
6817 ///
6818 /// We allow each target to determine specifically which kind of splitting is
6819 /// supported.
6820 ///
6821 /// The store patterns are commonly seen from the simple code snippet below
6822 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
6823 ///   void goo(const std::pair<int, float> &);
6824 ///   hoo() {
6825 ///     ...
6826 ///     goo(std::make_pair(tmp, ftmp));
6827 ///     ...
6828 ///   }
6829 ///
6830 /// Although we already have similar splitting in DAG Combine, we duplicate
6831 /// it in CodeGenPrepare to catch the case in which pattern is across
6832 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
6833 /// during code expansion.
6834 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
6835                                 const TargetLowering &TLI) {
6836   // Handle simple but common cases only.
6837   Type *StoreType = SI.getValueOperand()->getType();
6838 
6839   // The code below assumes shifting a value by <number of bits>,
6840   // whereas scalable vectors would have to be shifted by
6841   // <2log(vscale) + number of bits> in order to store the
6842   // low/high parts. Bailing out for now.
6843   if (StoreType->isVectorTy() && StoreType->getVectorIsScalable())
6844     return false;
6845 
6846   if (!DL.typeSizeEqualsStoreSize(StoreType) ||
6847       DL.getTypeSizeInBits(StoreType) == 0)
6848     return false;
6849 
6850   unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
6851   Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
6852   if (!DL.typeSizeEqualsStoreSize(SplitStoreType))
6853     return false;
6854 
6855   // Don't split the store if it is volatile.
6856   if (SI.isVolatile())
6857     return false;
6858 
6859   // Match the following patterns:
6860   // (store (or (zext LValue to i64),
6861   //            (shl (zext HValue to i64), 32)), HalfValBitSize)
6862   //  or
6863   // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
6864   //            (zext LValue to i64),
6865   // Expect both operands of OR and the first operand of SHL have only
6866   // one use.
6867   Value *LValue, *HValue;
6868   if (!match(SI.getValueOperand(),
6869              m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
6870                     m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
6871                                    m_SpecificInt(HalfValBitSize))))))
6872     return false;
6873 
6874   // Check LValue and HValue are int with size less or equal than 32.
6875   if (!LValue->getType()->isIntegerTy() ||
6876       DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
6877       !HValue->getType()->isIntegerTy() ||
6878       DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
6879     return false;
6880 
6881   // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
6882   // as the input of target query.
6883   auto *LBC = dyn_cast<BitCastInst>(LValue);
6884   auto *HBC = dyn_cast<BitCastInst>(HValue);
6885   EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
6886                   : EVT::getEVT(LValue->getType());
6887   EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
6888                    : EVT::getEVT(HValue->getType());
6889   if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
6890     return false;
6891 
6892   // Start to split store.
6893   IRBuilder<> Builder(SI.getContext());
6894   Builder.SetInsertPoint(&SI);
6895 
6896   // If LValue/HValue is a bitcast in another BB, create a new one in current
6897   // BB so it may be merged with the splitted stores by dag combiner.
6898   if (LBC && LBC->getParent() != SI.getParent())
6899     LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
6900   if (HBC && HBC->getParent() != SI.getParent())
6901     HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
6902 
6903   bool IsLE = SI.getModule()->getDataLayout().isLittleEndian();
6904   auto CreateSplitStore = [&](Value *V, bool Upper) {
6905     V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
6906     Value *Addr = Builder.CreateBitCast(
6907         SI.getOperand(1),
6908         SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
6909     const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper);
6910     if (IsOffsetStore)
6911       Addr = Builder.CreateGEP(
6912           SplitStoreType, Addr,
6913           ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
6914     MaybeAlign Alignment = SI.getAlign();
6915     if (IsOffsetStore && Alignment) {
6916       // When splitting the store in half, naturally one half will retain the
6917       // alignment of the original wider store, regardless of whether it was
6918       // over-aligned or not, while the other will require adjustment.
6919       Alignment = commonAlignment(Alignment, HalfValBitSize / 8);
6920     }
6921     Builder.CreateAlignedStore(V, Addr, Alignment);
6922   };
6923 
6924   CreateSplitStore(LValue, false);
6925   CreateSplitStore(HValue, true);
6926 
6927   // Delete the old store.
6928   SI.eraseFromParent();
6929   return true;
6930 }
6931 
6932 // Return true if the GEP has two operands, the first operand is of a sequential
6933 // type, and the second operand is a constant.
6934 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
6935   gep_type_iterator I = gep_type_begin(*GEP);
6936   return GEP->getNumOperands() == 2 &&
6937       I.isSequential() &&
6938       isa<ConstantInt>(GEP->getOperand(1));
6939 }
6940 
6941 // Try unmerging GEPs to reduce liveness interference (register pressure) across
6942 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
6943 // reducing liveness interference across those edges benefits global register
6944 // allocation. Currently handles only certain cases.
6945 //
6946 // For example, unmerge %GEPI and %UGEPI as below.
6947 //
6948 // ---------- BEFORE ----------
6949 // SrcBlock:
6950 //   ...
6951 //   %GEPIOp = ...
6952 //   ...
6953 //   %GEPI = gep %GEPIOp, Idx
6954 //   ...
6955 //   indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
6956 //   (* %GEPI is alive on the indirectbr edges due to other uses ahead)
6957 //   (* %GEPIOp is alive on the indirectbr edges only because of it's used by
6958 //   %UGEPI)
6959 //
6960 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
6961 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
6962 // ...
6963 //
6964 // DstBi:
6965 //   ...
6966 //   %UGEPI = gep %GEPIOp, UIdx
6967 // ...
6968 // ---------------------------
6969 //
6970 // ---------- AFTER ----------
6971 // SrcBlock:
6972 //   ... (same as above)
6973 //    (* %GEPI is still alive on the indirectbr edges)
6974 //    (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
6975 //    unmerging)
6976 // ...
6977 //
6978 // DstBi:
6979 //   ...
6980 //   %UGEPI = gep %GEPI, (UIdx-Idx)
6981 //   ...
6982 // ---------------------------
6983 //
6984 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
6985 // no longer alive on them.
6986 //
6987 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
6988 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
6989 // not to disable further simplications and optimizations as a result of GEP
6990 // merging.
6991 //
6992 // Note this unmerging may increase the length of the data flow critical path
6993 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
6994 // between the register pressure and the length of data-flow critical
6995 // path. Restricting this to the uncommon IndirectBr case would minimize the
6996 // impact of potentially longer critical path, if any, and the impact on compile
6997 // time.
6998 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
6999                                              const TargetTransformInfo *TTI) {
7000   BasicBlock *SrcBlock = GEPI->getParent();
7001   // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
7002   // (non-IndirectBr) cases exit early here.
7003   if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
7004     return false;
7005   // Check that GEPI is a simple gep with a single constant index.
7006   if (!GEPSequentialConstIndexed(GEPI))
7007     return false;
7008   ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
7009   // Check that GEPI is a cheap one.
7010   if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType())
7011       > TargetTransformInfo::TCC_Basic)
7012     return false;
7013   Value *GEPIOp = GEPI->getOperand(0);
7014   // Check that GEPIOp is an instruction that's also defined in SrcBlock.
7015   if (!isa<Instruction>(GEPIOp))
7016     return false;
7017   auto *GEPIOpI = cast<Instruction>(GEPIOp);
7018   if (GEPIOpI->getParent() != SrcBlock)
7019     return false;
7020   // Check that GEP is used outside the block, meaning it's alive on the
7021   // IndirectBr edge(s).
7022   if (find_if(GEPI->users(), [&](User *Usr) {
7023         if (auto *I = dyn_cast<Instruction>(Usr)) {
7024           if (I->getParent() != SrcBlock) {
7025             return true;
7026           }
7027         }
7028         return false;
7029       }) == GEPI->users().end())
7030     return false;
7031   // The second elements of the GEP chains to be unmerged.
7032   std::vector<GetElementPtrInst *> UGEPIs;
7033   // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
7034   // on IndirectBr edges.
7035   for (User *Usr : GEPIOp->users()) {
7036     if (Usr == GEPI) continue;
7037     // Check if Usr is an Instruction. If not, give up.
7038     if (!isa<Instruction>(Usr))
7039       return false;
7040     auto *UI = cast<Instruction>(Usr);
7041     // Check if Usr in the same block as GEPIOp, which is fine, skip.
7042     if (UI->getParent() == SrcBlock)
7043       continue;
7044     // Check if Usr is a GEP. If not, give up.
7045     if (!isa<GetElementPtrInst>(Usr))
7046       return false;
7047     auto *UGEPI = cast<GetElementPtrInst>(Usr);
7048     // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
7049     // the pointer operand to it. If so, record it in the vector. If not, give
7050     // up.
7051     if (!GEPSequentialConstIndexed(UGEPI))
7052       return false;
7053     if (UGEPI->getOperand(0) != GEPIOp)
7054       return false;
7055     if (GEPIIdx->getType() !=
7056         cast<ConstantInt>(UGEPI->getOperand(1))->getType())
7057       return false;
7058     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7059     if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType())
7060         > TargetTransformInfo::TCC_Basic)
7061       return false;
7062     UGEPIs.push_back(UGEPI);
7063   }
7064   if (UGEPIs.size() == 0)
7065     return false;
7066   // Check the materializing cost of (Uidx-Idx).
7067   for (GetElementPtrInst *UGEPI : UGEPIs) {
7068     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7069     APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
7070     unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType());
7071     if (ImmCost > TargetTransformInfo::TCC_Basic)
7072       return false;
7073   }
7074   // Now unmerge between GEPI and UGEPIs.
7075   for (GetElementPtrInst *UGEPI : UGEPIs) {
7076     UGEPI->setOperand(0, GEPI);
7077     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7078     Constant *NewUGEPIIdx =
7079         ConstantInt::get(GEPIIdx->getType(),
7080                          UGEPIIdx->getValue() - GEPIIdx->getValue());
7081     UGEPI->setOperand(1, NewUGEPIIdx);
7082     // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
7083     // inbounds to avoid UB.
7084     if (!GEPI->isInBounds()) {
7085       UGEPI->setIsInBounds(false);
7086     }
7087   }
7088   // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
7089   // alive on IndirectBr edges).
7090   assert(find_if(GEPIOp->users(), [&](User *Usr) {
7091         return cast<Instruction>(Usr)->getParent() != SrcBlock;
7092       }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock");
7093   return true;
7094 }
7095 
7096 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) {
7097   // Bail out if we inserted the instruction to prevent optimizations from
7098   // stepping on each other's toes.
7099   if (InsertedInsts.count(I))
7100     return false;
7101 
7102   // TODO: Move into the switch on opcode below here.
7103   if (PHINode *P = dyn_cast<PHINode>(I)) {
7104     // It is possible for very late stage optimizations (such as SimplifyCFG)
7105     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
7106     // trivial PHI, go ahead and zap it here.
7107     if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
7108       LargeOffsetGEPMap.erase(P);
7109       P->replaceAllUsesWith(V);
7110       P->eraseFromParent();
7111       ++NumPHIsElim;
7112       return true;
7113     }
7114     return false;
7115   }
7116 
7117   if (CastInst *CI = dyn_cast<CastInst>(I)) {
7118     // If the source of the cast is a constant, then this should have
7119     // already been constant folded.  The only reason NOT to constant fold
7120     // it is if something (e.g. LSR) was careful to place the constant
7121     // evaluation in a block other than then one that uses it (e.g. to hoist
7122     // the address of globals out of a loop).  If this is the case, we don't
7123     // want to forward-subst the cast.
7124     if (isa<Constant>(CI->getOperand(0)))
7125       return false;
7126 
7127     if (OptimizeNoopCopyExpression(CI, *TLI, *DL))
7128       return true;
7129 
7130     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
7131       /// Sink a zext or sext into its user blocks if the target type doesn't
7132       /// fit in one register
7133       if (TLI->getTypeAction(CI->getContext(),
7134                              TLI->getValueType(*DL, CI->getType())) ==
7135           TargetLowering::TypeExpandInteger) {
7136         return SinkCast(CI);
7137       } else {
7138         bool MadeChange = optimizeExt(I);
7139         return MadeChange | optimizeExtUses(I);
7140       }
7141     }
7142     return false;
7143   }
7144 
7145   if (auto *Cmp = dyn_cast<CmpInst>(I))
7146     if (optimizeCmp(Cmp, ModifiedDT))
7147       return true;
7148 
7149   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
7150     LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
7151     bool Modified = optimizeLoadExt(LI);
7152     unsigned AS = LI->getPointerAddressSpace();
7153     Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
7154     return Modified;
7155   }
7156 
7157   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
7158     if (splitMergedValStore(*SI, *DL, *TLI))
7159       return true;
7160     SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
7161     unsigned AS = SI->getPointerAddressSpace();
7162     return optimizeMemoryInst(I, SI->getOperand(1),
7163                               SI->getOperand(0)->getType(), AS);
7164   }
7165 
7166   if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
7167       unsigned AS = RMW->getPointerAddressSpace();
7168       return optimizeMemoryInst(I, RMW->getPointerOperand(),
7169                                 RMW->getType(), AS);
7170   }
7171 
7172   if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
7173       unsigned AS = CmpX->getPointerAddressSpace();
7174       return optimizeMemoryInst(I, CmpX->getPointerOperand(),
7175                                 CmpX->getCompareOperand()->getType(), AS);
7176   }
7177 
7178   BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
7179 
7180   if (BinOp && (BinOp->getOpcode() == Instruction::And) && EnableAndCmpSinking)
7181     return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts);
7182 
7183   // TODO: Move this into the switch on opcode - it handles shifts already.
7184   if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
7185                 BinOp->getOpcode() == Instruction::LShr)) {
7186     ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
7187     if (CI && TLI->hasExtractBitsInsn())
7188       if (OptimizeExtractBits(BinOp, CI, *TLI, *DL))
7189         return true;
7190   }
7191 
7192   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
7193     if (GEPI->hasAllZeroIndices()) {
7194       /// The GEP operand must be a pointer, so must its result -> BitCast
7195       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
7196                                         GEPI->getName(), GEPI);
7197       NC->setDebugLoc(GEPI->getDebugLoc());
7198       GEPI->replaceAllUsesWith(NC);
7199       GEPI->eraseFromParent();
7200       ++NumGEPsElim;
7201       optimizeInst(NC, ModifiedDT);
7202       return true;
7203     }
7204     if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
7205       return true;
7206     }
7207     return false;
7208   }
7209 
7210   if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
7211     // freeze(icmp a, const)) -> icmp (freeze a), const
7212     // This helps generate efficient conditional jumps.
7213     Instruction *CmpI = nullptr;
7214     if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0)))
7215       CmpI = II;
7216     else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0)))
7217       CmpI = F->getFastMathFlags().none() ? F : nullptr;
7218 
7219     if (CmpI && CmpI->hasOneUse()) {
7220       auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1);
7221       bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) ||
7222                     isa<ConstantPointerNull>(Op0);
7223       bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) ||
7224                     isa<ConstantPointerNull>(Op1);
7225       if (Const0 || Const1) {
7226         if (!Const0 || !Const1) {
7227           auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI);
7228           F->takeName(FI);
7229           CmpI->setOperand(Const0 ? 1 : 0, F);
7230         }
7231         FI->replaceAllUsesWith(CmpI);
7232         FI->eraseFromParent();
7233         return true;
7234       }
7235     }
7236     return false;
7237   }
7238 
7239   if (tryToSinkFreeOperands(I))
7240     return true;
7241 
7242   switch (I->getOpcode()) {
7243   case Instruction::Shl:
7244   case Instruction::LShr:
7245   case Instruction::AShr:
7246     return optimizeShiftInst(cast<BinaryOperator>(I));
7247   case Instruction::Call:
7248     return optimizeCallInst(cast<CallInst>(I), ModifiedDT);
7249   case Instruction::Select:
7250     return optimizeSelectInst(cast<SelectInst>(I));
7251   case Instruction::ShuffleVector:
7252     return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I));
7253   case Instruction::Switch:
7254     return optimizeSwitchInst(cast<SwitchInst>(I));
7255   case Instruction::ExtractElement:
7256     return optimizeExtractElementInst(cast<ExtractElementInst>(I));
7257   }
7258 
7259   return false;
7260 }
7261 
7262 /// Given an OR instruction, check to see if this is a bitreverse
7263 /// idiom. If so, insert the new intrinsic and return true.
7264 static bool makeBitReverse(Instruction &I, const DataLayout &DL,
7265                            const TargetLowering &TLI) {
7266   if (!I.getType()->isIntegerTy() ||
7267       !TLI.isOperationLegalOrCustom(ISD::BITREVERSE,
7268                                     TLI.getValueType(DL, I.getType(), true)))
7269     return false;
7270 
7271   SmallVector<Instruction*, 4> Insts;
7272   if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
7273     return false;
7274   Instruction *LastInst = Insts.back();
7275   I.replaceAllUsesWith(LastInst);
7276   RecursivelyDeleteTriviallyDeadInstructions(&I);
7277   return true;
7278 }
7279 
7280 // In this pass we look for GEP and cast instructions that are used
7281 // across basic blocks and rewrite them to improve basic-block-at-a-time
7282 // selection.
7283 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) {
7284   SunkAddrs.clear();
7285   bool MadeChange = false;
7286 
7287   CurInstIterator = BB.begin();
7288   while (CurInstIterator != BB.end()) {
7289     MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
7290     if (ModifiedDT)
7291       return true;
7292   }
7293 
7294   bool MadeBitReverse = true;
7295   while (MadeBitReverse) {
7296     MadeBitReverse = false;
7297     for (auto &I : reverse(BB)) {
7298       if (makeBitReverse(I, *DL, *TLI)) {
7299         MadeBitReverse = MadeChange = true;
7300         break;
7301       }
7302     }
7303   }
7304   MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT);
7305 
7306   return MadeChange;
7307 }
7308 
7309 // Some CGP optimizations may move or alter what's computed in a block. Check
7310 // whether a dbg.value intrinsic could be pointed at a more appropriate operand.
7311 bool CodeGenPrepare::fixupDbgValue(Instruction *I) {
7312   assert(isa<DbgValueInst>(I));
7313   DbgValueInst &DVI = *cast<DbgValueInst>(I);
7314 
7315   // Does this dbg.value refer to a sunk address calculation?
7316   Value *Location = DVI.getVariableLocation();
7317   WeakTrackingVH SunkAddrVH = SunkAddrs[Location];
7318   Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
7319   if (SunkAddr) {
7320     // Point dbg.value at locally computed address, which should give the best
7321     // opportunity to be accurately lowered. This update may change the type of
7322     // pointer being referred to; however this makes no difference to debugging
7323     // information, and we can't generate bitcasts that may affect codegen.
7324     DVI.setOperand(0, MetadataAsValue::get(DVI.getContext(),
7325                                            ValueAsMetadata::get(SunkAddr)));
7326     return true;
7327   }
7328   return false;
7329 }
7330 
7331 // A llvm.dbg.value may be using a value before its definition, due to
7332 // optimizations in this pass and others. Scan for such dbg.values, and rescue
7333 // them by moving the dbg.value to immediately after the value definition.
7334 // FIXME: Ideally this should never be necessary, and this has the potential
7335 // to re-order dbg.value intrinsics.
7336 bool CodeGenPrepare::placeDbgValues(Function &F) {
7337   bool MadeChange = false;
7338   DominatorTree DT(F);
7339 
7340   for (BasicBlock &BB : F) {
7341     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
7342       Instruction *Insn = &*BI++;
7343       DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
7344       if (!DVI)
7345         continue;
7346 
7347       Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
7348 
7349       if (!VI || VI->isTerminator())
7350         continue;
7351 
7352       // If VI is a phi in a block with an EHPad terminator, we can't insert
7353       // after it.
7354       if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
7355         continue;
7356 
7357       // If the defining instruction dominates the dbg.value, we do not need
7358       // to move the dbg.value.
7359       if (DT.dominates(VI, DVI))
7360         continue;
7361 
7362       LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
7363                         << *DVI << ' ' << *VI);
7364       DVI->removeFromParent();
7365       if (isa<PHINode>(VI))
7366         DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
7367       else
7368         DVI->insertAfter(VI);
7369       MadeChange = true;
7370       ++NumDbgValueMoved;
7371     }
7372   }
7373   return MadeChange;
7374 }
7375 
7376 /// Scale down both weights to fit into uint32_t.
7377 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
7378   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
7379   uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
7380   NewTrue = NewTrue / Scale;
7381   NewFalse = NewFalse / Scale;
7382 }
7383 
7384 /// Some targets prefer to split a conditional branch like:
7385 /// \code
7386 ///   %0 = icmp ne i32 %a, 0
7387 ///   %1 = icmp ne i32 %b, 0
7388 ///   %or.cond = or i1 %0, %1
7389 ///   br i1 %or.cond, label %TrueBB, label %FalseBB
7390 /// \endcode
7391 /// into multiple branch instructions like:
7392 /// \code
7393 ///   bb1:
7394 ///     %0 = icmp ne i32 %a, 0
7395 ///     br i1 %0, label %TrueBB, label %bb2
7396 ///   bb2:
7397 ///     %1 = icmp ne i32 %b, 0
7398 ///     br i1 %1, label %TrueBB, label %FalseBB
7399 /// \endcode
7400 /// This usually allows instruction selection to do even further optimizations
7401 /// and combine the compare with the branch instruction. Currently this is
7402 /// applied for targets which have "cheap" jump instructions.
7403 ///
7404 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
7405 ///
7406 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) {
7407   if (!TM->Options.EnableFastISel || TLI->isJumpExpensive())
7408     return false;
7409 
7410   bool MadeChange = false;
7411   for (auto &BB : F) {
7412     // Does this BB end with the following?
7413     //   %cond1 = icmp|fcmp|binary instruction ...
7414     //   %cond2 = icmp|fcmp|binary instruction ...
7415     //   %cond.or = or|and i1 %cond1, cond2
7416     //   br i1 %cond.or label %dest1, label %dest2"
7417     BinaryOperator *LogicOp;
7418     BasicBlock *TBB, *FBB;
7419     if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
7420       continue;
7421 
7422     auto *Br1 = cast<BranchInst>(BB.getTerminator());
7423     if (Br1->getMetadata(LLVMContext::MD_unpredictable))
7424       continue;
7425 
7426     // The merging of mostly empty BB can cause a degenerate branch.
7427     if (TBB == FBB)
7428       continue;
7429 
7430     unsigned Opc;
7431     Value *Cond1, *Cond2;
7432     if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
7433                              m_OneUse(m_Value(Cond2)))))
7434       Opc = Instruction::And;
7435     else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
7436                                  m_OneUse(m_Value(Cond2)))))
7437       Opc = Instruction::Or;
7438     else
7439       continue;
7440 
7441     if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
7442         !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp()))   )
7443       continue;
7444 
7445     LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
7446 
7447     // Create a new BB.
7448     auto TmpBB =
7449         BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
7450                            BB.getParent(), BB.getNextNode());
7451 
7452     // Update original basic block by using the first condition directly by the
7453     // branch instruction and removing the no longer needed and/or instruction.
7454     Br1->setCondition(Cond1);
7455     LogicOp->eraseFromParent();
7456 
7457     // Depending on the condition we have to either replace the true or the
7458     // false successor of the original branch instruction.
7459     if (Opc == Instruction::And)
7460       Br1->setSuccessor(0, TmpBB);
7461     else
7462       Br1->setSuccessor(1, TmpBB);
7463 
7464     // Fill in the new basic block.
7465     auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
7466     if (auto *I = dyn_cast<Instruction>(Cond2)) {
7467       I->removeFromParent();
7468       I->insertBefore(Br2);
7469     }
7470 
7471     // Update PHI nodes in both successors. The original BB needs to be
7472     // replaced in one successor's PHI nodes, because the branch comes now from
7473     // the newly generated BB (NewBB). In the other successor we need to add one
7474     // incoming edge to the PHI nodes, because both branch instructions target
7475     // now the same successor. Depending on the original branch condition
7476     // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
7477     // we perform the correct update for the PHI nodes.
7478     // This doesn't change the successor order of the just created branch
7479     // instruction (or any other instruction).
7480     if (Opc == Instruction::Or)
7481       std::swap(TBB, FBB);
7482 
7483     // Replace the old BB with the new BB.
7484     TBB->replacePhiUsesWith(&BB, TmpBB);
7485 
7486     // Add another incoming edge form the new BB.
7487     for (PHINode &PN : FBB->phis()) {
7488       auto *Val = PN.getIncomingValueForBlock(&BB);
7489       PN.addIncoming(Val, TmpBB);
7490     }
7491 
7492     // Update the branch weights (from SelectionDAGBuilder::
7493     // FindMergedConditions).
7494     if (Opc == Instruction::Or) {
7495       // Codegen X | Y as:
7496       // BB1:
7497       //   jmp_if_X TBB
7498       //   jmp TmpBB
7499       // TmpBB:
7500       //   jmp_if_Y TBB
7501       //   jmp FBB
7502       //
7503 
7504       // We have flexibility in setting Prob for BB1 and Prob for NewBB.
7505       // The requirement is that
7506       //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
7507       //     = TrueProb for original BB.
7508       // Assuming the original weights are A and B, one choice is to set BB1's
7509       // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
7510       // assumes that
7511       //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
7512       // Another choice is to assume TrueProb for BB1 equals to TrueProb for
7513       // TmpBB, but the math is more complicated.
7514       uint64_t TrueWeight, FalseWeight;
7515       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7516         uint64_t NewTrueWeight = TrueWeight;
7517         uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
7518         scaleWeights(NewTrueWeight, NewFalseWeight);
7519         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7520                          .createBranchWeights(TrueWeight, FalseWeight));
7521 
7522         NewTrueWeight = TrueWeight;
7523         NewFalseWeight = 2 * FalseWeight;
7524         scaleWeights(NewTrueWeight, NewFalseWeight);
7525         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7526                          .createBranchWeights(TrueWeight, FalseWeight));
7527       }
7528     } else {
7529       // Codegen X & Y as:
7530       // BB1:
7531       //   jmp_if_X TmpBB
7532       //   jmp FBB
7533       // TmpBB:
7534       //   jmp_if_Y TBB
7535       //   jmp FBB
7536       //
7537       //  This requires creation of TmpBB after CurBB.
7538 
7539       // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
7540       // The requirement is that
7541       //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
7542       //     = FalseProb for original BB.
7543       // Assuming the original weights are A and B, one choice is to set BB1's
7544       // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
7545       // assumes that
7546       //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
7547       uint64_t TrueWeight, FalseWeight;
7548       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7549         uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
7550         uint64_t NewFalseWeight = FalseWeight;
7551         scaleWeights(NewTrueWeight, NewFalseWeight);
7552         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7553                          .createBranchWeights(TrueWeight, FalseWeight));
7554 
7555         NewTrueWeight = 2 * TrueWeight;
7556         NewFalseWeight = FalseWeight;
7557         scaleWeights(NewTrueWeight, NewFalseWeight);
7558         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7559                          .createBranchWeights(TrueWeight, FalseWeight));
7560       }
7561     }
7562 
7563     ModifiedDT = true;
7564     MadeChange = true;
7565 
7566     LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
7567                TmpBB->dump());
7568   }
7569   return MadeChange;
7570 }
7571