1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/GlobalVariable.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InlineAsm.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/MDBuilder.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Statepoint.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/ValueMap.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/BlockFrequency.h" 77 #include "llvm/Support/BranchProbability.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/MachineValueType.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Target/TargetMachine.h" 87 #include "llvm/Target/TargetOptions.h" 88 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 89 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 90 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 91 #include <algorithm> 92 #include <cassert> 93 #include <cstdint> 94 #include <iterator> 95 #include <limits> 96 #include <memory> 97 #include <utility> 98 #include <vector> 99 100 using namespace llvm; 101 using namespace llvm::PatternMatch; 102 103 #define DEBUG_TYPE "codegenprepare" 104 105 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 106 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 107 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 108 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 109 "sunken Cmps"); 110 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 111 "of sunken Casts"); 112 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 113 "computations were sunk"); 114 STATISTIC(NumMemoryInstsPhiCreated, 115 "Number of phis created when address " 116 "computations were sunk to memory instructions"); 117 STATISTIC(NumMemoryInstsSelectCreated, 118 "Number of select created when address " 119 "computations were sunk to memory instructions"); 120 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 121 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 122 STATISTIC(NumAndsAdded, 123 "Number of and mask instructions added to form ext loads"); 124 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 125 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 126 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 127 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 128 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 129 130 static cl::opt<bool> DisableBranchOpts( 131 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 132 cl::desc("Disable branch optimizations in CodeGenPrepare")); 133 134 static cl::opt<bool> 135 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 136 cl::desc("Disable GC optimizations in CodeGenPrepare")); 137 138 static cl::opt<bool> DisableSelectToBranch( 139 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 140 cl::desc("Disable select to branch conversion.")); 141 142 static cl::opt<bool> AddrSinkUsingGEPs( 143 "addr-sink-using-gep", cl::Hidden, cl::init(true), 144 cl::desc("Address sinking in CGP using GEPs.")); 145 146 static cl::opt<bool> EnableAndCmpSinking( 147 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 148 cl::desc("Enable sinkinig and/cmp into branches.")); 149 150 static cl::opt<bool> DisableStoreExtract( 151 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 152 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 153 154 static cl::opt<bool> StressStoreExtract( 155 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 156 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 157 158 static cl::opt<bool> DisableExtLdPromotion( 159 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 160 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 161 "CodeGenPrepare")); 162 163 static cl::opt<bool> StressExtLdPromotion( 164 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 165 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 166 "optimization in CodeGenPrepare")); 167 168 static cl::opt<bool> DisablePreheaderProtect( 169 "disable-preheader-prot", cl::Hidden, cl::init(false), 170 cl::desc("Disable protection against removing loop preheaders")); 171 172 static cl::opt<bool> ProfileGuidedSectionPrefix( 173 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 174 cl::desc("Use profile info to add section prefix for hot/cold functions")); 175 176 static cl::opt<unsigned> FreqRatioToSkipMerge( 177 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 178 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 179 "(frequency of destination block) is greater than this ratio")); 180 181 static cl::opt<bool> ForceSplitStore( 182 "force-split-store", cl::Hidden, cl::init(false), 183 cl::desc("Force store splitting no matter what the target query says.")); 184 185 static cl::opt<bool> 186 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 187 cl::desc("Enable merging of redundant sexts when one is dominating" 188 " the other."), cl::init(true)); 189 190 static cl::opt<bool> DisableComplexAddrModes( 191 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 192 cl::desc("Disables combining addressing modes with different parts " 193 "in optimizeMemoryInst.")); 194 195 static cl::opt<bool> 196 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 197 cl::desc("Allow creation of Phis in Address sinking.")); 198 199 static cl::opt<bool> 200 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 201 cl::desc("Allow creation of selects in Address sinking.")); 202 203 static cl::opt<bool> AddrSinkCombineBaseReg( 204 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 205 cl::desc("Allow combining of BaseReg field in Address sinking.")); 206 207 static cl::opt<bool> AddrSinkCombineBaseGV( 208 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 209 cl::desc("Allow combining of BaseGV field in Address sinking.")); 210 211 static cl::opt<bool> AddrSinkCombineBaseOffs( 212 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 213 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 214 215 static cl::opt<bool> AddrSinkCombineScaledReg( 216 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 217 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 218 219 static cl::opt<bool> 220 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 221 cl::init(true), 222 cl::desc("Enable splitting large offset of GEP.")); 223 224 namespace { 225 226 enum ExtType { 227 ZeroExtension, // Zero extension has been seen. 228 SignExtension, // Sign extension has been seen. 229 BothExtension // This extension type is used if we saw sext after 230 // ZeroExtension had been set, or if we saw zext after 231 // SignExtension had been set. It makes the type 232 // information of a promoted instruction invalid. 233 }; 234 235 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 236 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 237 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 238 using SExts = SmallVector<Instruction *, 16>; 239 using ValueToSExts = DenseMap<Value *, SExts>; 240 241 class TypePromotionTransaction; 242 243 class CodeGenPrepare : public FunctionPass { 244 const TargetMachine *TM = nullptr; 245 const TargetSubtargetInfo *SubtargetInfo; 246 const TargetLowering *TLI = nullptr; 247 const TargetRegisterInfo *TRI; 248 const TargetTransformInfo *TTI = nullptr; 249 const TargetLibraryInfo *TLInfo; 250 const LoopInfo *LI; 251 std::unique_ptr<BlockFrequencyInfo> BFI; 252 std::unique_ptr<BranchProbabilityInfo> BPI; 253 254 /// As we scan instructions optimizing them, this is the next instruction 255 /// to optimize. Transforms that can invalidate this should update it. 256 BasicBlock::iterator CurInstIterator; 257 258 /// Keeps track of non-local addresses that have been sunk into a block. 259 /// This allows us to avoid inserting duplicate code for blocks with 260 /// multiple load/stores of the same address. The usage of WeakTrackingVH 261 /// enables SunkAddrs to be treated as a cache whose entries can be 262 /// invalidated if a sunken address computation has been erased. 263 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 264 265 /// Keeps track of all instructions inserted for the current function. 266 SetOfInstrs InsertedInsts; 267 268 /// Keeps track of the type of the related instruction before their 269 /// promotion for the current function. 270 InstrToOrigTy PromotedInsts; 271 272 /// Keep track of instructions removed during promotion. 273 SetOfInstrs RemovedInsts; 274 275 /// Keep track of sext chains based on their initial value. 276 DenseMap<Value *, Instruction *> SeenChainsForSExt; 277 278 /// Keep track of GEPs accessing the same data structures such as structs or 279 /// arrays that are candidates to be split later because of their large 280 /// size. 281 MapVector< 282 AssertingVH<Value>, 283 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 284 LargeOffsetGEPMap; 285 286 /// Keep track of new GEP base after splitting the GEPs having large offset. 287 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 288 289 /// Map serial numbers to Large offset GEPs. 290 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 291 292 /// Keep track of SExt promoted. 293 ValueToSExts ValToSExtendedUses; 294 295 /// True if CFG is modified in any way. 296 bool ModifiedDT; 297 298 /// True if optimizing for size. 299 bool OptSize; 300 301 /// DataLayout for the Function being processed. 302 const DataLayout *DL = nullptr; 303 304 public: 305 static char ID; // Pass identification, replacement for typeid 306 307 CodeGenPrepare() : FunctionPass(ID) { 308 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 309 } 310 311 bool runOnFunction(Function &F) override; 312 313 StringRef getPassName() const override { return "CodeGen Prepare"; } 314 315 void getAnalysisUsage(AnalysisUsage &AU) const override { 316 // FIXME: When we can selectively preserve passes, preserve the domtree. 317 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 318 AU.addRequired<TargetLibraryInfoWrapperPass>(); 319 AU.addRequired<TargetTransformInfoWrapperPass>(); 320 AU.addRequired<LoopInfoWrapperPass>(); 321 } 322 323 private: 324 bool eliminateFallThrough(Function &F); 325 bool eliminateMostlyEmptyBlocks(Function &F); 326 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 327 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 328 void eliminateMostlyEmptyBlock(BasicBlock *BB); 329 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 330 bool isPreheader); 331 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 332 bool optimizeInst(Instruction *I, bool &ModifiedDT); 333 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 334 Type *AccessTy, unsigned AddrSpace); 335 bool optimizeInlineAsmInst(CallInst *CS); 336 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 337 bool optimizeExt(Instruction *&I); 338 bool optimizeExtUses(Instruction *I); 339 bool optimizeLoadExt(LoadInst *Load); 340 bool optimizeSelectInst(SelectInst *SI); 341 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 342 bool optimizeSwitchInst(SwitchInst *SI); 343 bool optimizeExtractElementInst(Instruction *Inst); 344 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 345 bool placeDbgValues(Function &F); 346 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 347 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 348 bool tryToPromoteExts(TypePromotionTransaction &TPT, 349 const SmallVectorImpl<Instruction *> &Exts, 350 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 351 unsigned CreatedInstsCost = 0); 352 bool mergeSExts(Function &F); 353 bool splitLargeGEPOffsets(); 354 bool performAddressTypePromotion( 355 Instruction *&Inst, 356 bool AllowPromotionWithoutCommonHeader, 357 bool HasPromoted, TypePromotionTransaction &TPT, 358 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 359 bool splitBranchCondition(Function &F); 360 bool simplifyOffsetableRelocate(Instruction &I); 361 }; 362 363 } // end anonymous namespace 364 365 char CodeGenPrepare::ID = 0; 366 367 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 368 "Optimize for code generation", false, false) 369 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 370 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 371 "Optimize for code generation", false, false) 372 373 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 374 375 bool CodeGenPrepare::runOnFunction(Function &F) { 376 if (skipFunction(F)) 377 return false; 378 379 DL = &F.getParent()->getDataLayout(); 380 381 bool EverMadeChange = false; 382 // Clear per function information. 383 InsertedInsts.clear(); 384 PromotedInsts.clear(); 385 386 ModifiedDT = false; 387 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 388 TM = &TPC->getTM<TargetMachine>(); 389 SubtargetInfo = TM->getSubtargetImpl(F); 390 TLI = SubtargetInfo->getTargetLowering(); 391 TRI = SubtargetInfo->getRegisterInfo(); 392 } 393 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 394 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 395 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 396 BPI.reset(new BranchProbabilityInfo(F, *LI)); 397 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 398 OptSize = F.optForSize(); 399 400 ProfileSummaryInfo *PSI = 401 getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 402 if (ProfileGuidedSectionPrefix) { 403 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 404 F.setSectionPrefix(".hot"); 405 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 406 F.setSectionPrefix(".unlikely"); 407 } 408 409 /// This optimization identifies DIV instructions that can be 410 /// profitably bypassed and carried out with a shorter, faster divide. 411 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI && 412 TLI->isSlowDivBypassed()) { 413 const DenseMap<unsigned int, unsigned int> &BypassWidths = 414 TLI->getBypassSlowDivWidths(); 415 BasicBlock* BB = &*F.begin(); 416 while (BB != nullptr) { 417 // bypassSlowDivision may create new BBs, but we don't want to reapply the 418 // optimization to those blocks. 419 BasicBlock* Next = BB->getNextNode(); 420 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 421 BB = Next; 422 } 423 } 424 425 // Eliminate blocks that contain only PHI nodes and an 426 // unconditional branch. 427 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 428 429 if (!DisableBranchOpts) 430 EverMadeChange |= splitBranchCondition(F); 431 432 // Split some critical edges where one of the sources is an indirect branch, 433 // to help generate sane code for PHIs involving such edges. 434 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 435 436 bool MadeChange = true; 437 while (MadeChange) { 438 MadeChange = false; 439 for (Function::iterator I = F.begin(); I != F.end(); ) { 440 BasicBlock *BB = &*I++; 441 bool ModifiedDTOnIteration = false; 442 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 443 444 // Restart BB iteration if the dominator tree of the Function was changed 445 if (ModifiedDTOnIteration) 446 break; 447 } 448 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 449 MadeChange |= mergeSExts(F); 450 if (!LargeOffsetGEPMap.empty()) 451 MadeChange |= splitLargeGEPOffsets(); 452 453 // Really free removed instructions during promotion. 454 for (Instruction *I : RemovedInsts) 455 I->deleteValue(); 456 457 EverMadeChange |= MadeChange; 458 SeenChainsForSExt.clear(); 459 ValToSExtendedUses.clear(); 460 RemovedInsts.clear(); 461 LargeOffsetGEPMap.clear(); 462 LargeOffsetGEPID.clear(); 463 } 464 465 SunkAddrs.clear(); 466 467 if (!DisableBranchOpts) { 468 MadeChange = false; 469 // Use a set vector to get deterministic iteration order. The order the 470 // blocks are removed may affect whether or not PHI nodes in successors 471 // are removed. 472 SmallSetVector<BasicBlock*, 8> WorkList; 473 for (BasicBlock &BB : F) { 474 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 475 MadeChange |= ConstantFoldTerminator(&BB, true); 476 if (!MadeChange) continue; 477 478 for (SmallVectorImpl<BasicBlock*>::iterator 479 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 480 if (pred_begin(*II) == pred_end(*II)) 481 WorkList.insert(*II); 482 } 483 484 // Delete the dead blocks and any of their dead successors. 485 MadeChange |= !WorkList.empty(); 486 while (!WorkList.empty()) { 487 BasicBlock *BB = WorkList.pop_back_val(); 488 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 489 490 DeleteDeadBlock(BB); 491 492 for (SmallVectorImpl<BasicBlock*>::iterator 493 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 494 if (pred_begin(*II) == pred_end(*II)) 495 WorkList.insert(*II); 496 } 497 498 // Merge pairs of basic blocks with unconditional branches, connected by 499 // a single edge. 500 if (EverMadeChange || MadeChange) 501 MadeChange |= eliminateFallThrough(F); 502 503 EverMadeChange |= MadeChange; 504 } 505 506 if (!DisableGCOpts) { 507 SmallVector<Instruction *, 2> Statepoints; 508 for (BasicBlock &BB : F) 509 for (Instruction &I : BB) 510 if (isStatepoint(I)) 511 Statepoints.push_back(&I); 512 for (auto &I : Statepoints) 513 EverMadeChange |= simplifyOffsetableRelocate(*I); 514 } 515 516 // Do this last to clean up use-before-def scenarios introduced by other 517 // preparatory transforms. 518 EverMadeChange |= placeDbgValues(F); 519 520 return EverMadeChange; 521 } 522 523 /// Merge basic blocks which are connected by a single edge, where one of the 524 /// basic blocks has a single successor pointing to the other basic block, 525 /// which has a single predecessor. 526 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 527 bool Changed = false; 528 // Scan all of the blocks in the function, except for the entry block. 529 // Use a temporary array to avoid iterator being invalidated when 530 // deleting blocks. 531 SmallVector<WeakTrackingVH, 16> Blocks; 532 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 533 Blocks.push_back(&Block); 534 535 for (auto &Block : Blocks) { 536 auto *BB = cast_or_null<BasicBlock>(Block); 537 if (!BB) 538 continue; 539 // If the destination block has a single pred, then this is a trivial 540 // edge, just collapse it. 541 BasicBlock *SinglePred = BB->getSinglePredecessor(); 542 543 // Don't merge if BB's address is taken. 544 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 545 546 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 547 if (Term && !Term->isConditional()) { 548 Changed = true; 549 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 550 551 // Merge BB into SinglePred and delete it. 552 MergeBlockIntoPredecessor(BB); 553 } 554 } 555 return Changed; 556 } 557 558 /// Find a destination block from BB if BB is mergeable empty block. 559 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 560 // If this block doesn't end with an uncond branch, ignore it. 561 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 562 if (!BI || !BI->isUnconditional()) 563 return nullptr; 564 565 // If the instruction before the branch (skipping debug info) isn't a phi 566 // node, then other stuff is happening here. 567 BasicBlock::iterator BBI = BI->getIterator(); 568 if (BBI != BB->begin()) { 569 --BBI; 570 while (isa<DbgInfoIntrinsic>(BBI)) { 571 if (BBI == BB->begin()) 572 break; 573 --BBI; 574 } 575 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 576 return nullptr; 577 } 578 579 // Do not break infinite loops. 580 BasicBlock *DestBB = BI->getSuccessor(0); 581 if (DestBB == BB) 582 return nullptr; 583 584 if (!canMergeBlocks(BB, DestBB)) 585 DestBB = nullptr; 586 587 return DestBB; 588 } 589 590 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 591 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 592 /// edges in ways that are non-optimal for isel. Start by eliminating these 593 /// blocks so we can split them the way we want them. 594 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 595 SmallPtrSet<BasicBlock *, 16> Preheaders; 596 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 597 while (!LoopList.empty()) { 598 Loop *L = LoopList.pop_back_val(); 599 LoopList.insert(LoopList.end(), L->begin(), L->end()); 600 if (BasicBlock *Preheader = L->getLoopPreheader()) 601 Preheaders.insert(Preheader); 602 } 603 604 bool MadeChange = false; 605 // Copy blocks into a temporary array to avoid iterator invalidation issues 606 // as we remove them. 607 // Note that this intentionally skips the entry block. 608 SmallVector<WeakTrackingVH, 16> Blocks; 609 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 610 Blocks.push_back(&Block); 611 612 for (auto &Block : Blocks) { 613 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 614 if (!BB) 615 continue; 616 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 617 if (!DestBB || 618 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 619 continue; 620 621 eliminateMostlyEmptyBlock(BB); 622 MadeChange = true; 623 } 624 return MadeChange; 625 } 626 627 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 628 BasicBlock *DestBB, 629 bool isPreheader) { 630 // Do not delete loop preheaders if doing so would create a critical edge. 631 // Loop preheaders can be good locations to spill registers. If the 632 // preheader is deleted and we create a critical edge, registers may be 633 // spilled in the loop body instead. 634 if (!DisablePreheaderProtect && isPreheader && 635 !(BB->getSinglePredecessor() && 636 BB->getSinglePredecessor()->getSingleSuccessor())) 637 return false; 638 639 // Try to skip merging if the unique predecessor of BB is terminated by a 640 // switch or indirect branch instruction, and BB is used as an incoming block 641 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 642 // add COPY instructions in the predecessor of BB instead of BB (if it is not 643 // merged). Note that the critical edge created by merging such blocks wont be 644 // split in MachineSink because the jump table is not analyzable. By keeping 645 // such empty block (BB), ISel will place COPY instructions in BB, not in the 646 // predecessor of BB. 647 BasicBlock *Pred = BB->getUniquePredecessor(); 648 if (!Pred || 649 !(isa<SwitchInst>(Pred->getTerminator()) || 650 isa<IndirectBrInst>(Pred->getTerminator()))) 651 return true; 652 653 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 654 return true; 655 656 // We use a simple cost heuristic which determine skipping merging is 657 // profitable if the cost of skipping merging is less than the cost of 658 // merging : Cost(skipping merging) < Cost(merging BB), where the 659 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 660 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 661 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 662 // Freq(Pred) / Freq(BB) > 2. 663 // Note that if there are multiple empty blocks sharing the same incoming 664 // value for the PHIs in the DestBB, we consider them together. In such 665 // case, Cost(merging BB) will be the sum of their frequencies. 666 667 if (!isa<PHINode>(DestBB->begin())) 668 return true; 669 670 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 671 672 // Find all other incoming blocks from which incoming values of all PHIs in 673 // DestBB are the same as the ones from BB. 674 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 675 ++PI) { 676 BasicBlock *DestBBPred = *PI; 677 if (DestBBPred == BB) 678 continue; 679 680 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 681 return DestPN.getIncomingValueForBlock(BB) == 682 DestPN.getIncomingValueForBlock(DestBBPred); 683 })) 684 SameIncomingValueBBs.insert(DestBBPred); 685 } 686 687 // See if all BB's incoming values are same as the value from Pred. In this 688 // case, no reason to skip merging because COPYs are expected to be place in 689 // Pred already. 690 if (SameIncomingValueBBs.count(Pred)) 691 return true; 692 693 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 694 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 695 696 for (auto SameValueBB : SameIncomingValueBBs) 697 if (SameValueBB->getUniquePredecessor() == Pred && 698 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 699 BBFreq += BFI->getBlockFreq(SameValueBB); 700 701 return PredFreq.getFrequency() <= 702 BBFreq.getFrequency() * FreqRatioToSkipMerge; 703 } 704 705 /// Return true if we can merge BB into DestBB if there is a single 706 /// unconditional branch between them, and BB contains no other non-phi 707 /// instructions. 708 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 709 const BasicBlock *DestBB) const { 710 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 711 // the successor. If there are more complex condition (e.g. preheaders), 712 // don't mess around with them. 713 for (const PHINode &PN : BB->phis()) { 714 for (const User *U : PN.users()) { 715 const Instruction *UI = cast<Instruction>(U); 716 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 717 return false; 718 // If User is inside DestBB block and it is a PHINode then check 719 // incoming value. If incoming value is not from BB then this is 720 // a complex condition (e.g. preheaders) we want to avoid here. 721 if (UI->getParent() == DestBB) { 722 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 723 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 724 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 725 if (Insn && Insn->getParent() == BB && 726 Insn->getParent() != UPN->getIncomingBlock(I)) 727 return false; 728 } 729 } 730 } 731 } 732 733 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 734 // and DestBB may have conflicting incoming values for the block. If so, we 735 // can't merge the block. 736 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 737 if (!DestBBPN) return true; // no conflict. 738 739 // Collect the preds of BB. 740 SmallPtrSet<const BasicBlock*, 16> BBPreds; 741 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 742 // It is faster to get preds from a PHI than with pred_iterator. 743 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 744 BBPreds.insert(BBPN->getIncomingBlock(i)); 745 } else { 746 BBPreds.insert(pred_begin(BB), pred_end(BB)); 747 } 748 749 // Walk the preds of DestBB. 750 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 751 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 752 if (BBPreds.count(Pred)) { // Common predecessor? 753 for (const PHINode &PN : DestBB->phis()) { 754 const Value *V1 = PN.getIncomingValueForBlock(Pred); 755 const Value *V2 = PN.getIncomingValueForBlock(BB); 756 757 // If V2 is a phi node in BB, look up what the mapped value will be. 758 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 759 if (V2PN->getParent() == BB) 760 V2 = V2PN->getIncomingValueForBlock(Pred); 761 762 // If there is a conflict, bail out. 763 if (V1 != V2) return false; 764 } 765 } 766 } 767 768 return true; 769 } 770 771 /// Eliminate a basic block that has only phi's and an unconditional branch in 772 /// it. 773 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 774 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 775 BasicBlock *DestBB = BI->getSuccessor(0); 776 777 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 778 << *BB << *DestBB); 779 780 // If the destination block has a single pred, then this is a trivial edge, 781 // just collapse it. 782 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 783 if (SinglePred != DestBB) { 784 assert(SinglePred == BB && 785 "Single predecessor not the same as predecessor"); 786 // Merge DestBB into SinglePred/BB and delete it. 787 MergeBlockIntoPredecessor(DestBB); 788 // Note: BB(=SinglePred) will not be deleted on this path. 789 // DestBB(=its single successor) is the one that was deleted. 790 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 791 return; 792 } 793 } 794 795 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 796 // to handle the new incoming edges it is about to have. 797 for (PHINode &PN : DestBB->phis()) { 798 // Remove the incoming value for BB, and remember it. 799 Value *InVal = PN.removeIncomingValue(BB, false); 800 801 // Two options: either the InVal is a phi node defined in BB or it is some 802 // value that dominates BB. 803 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 804 if (InValPhi && InValPhi->getParent() == BB) { 805 // Add all of the input values of the input PHI as inputs of this phi. 806 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 807 PN.addIncoming(InValPhi->getIncomingValue(i), 808 InValPhi->getIncomingBlock(i)); 809 } else { 810 // Otherwise, add one instance of the dominating value for each edge that 811 // we will be adding. 812 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 813 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 814 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 815 } else { 816 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 817 PN.addIncoming(InVal, *PI); 818 } 819 } 820 } 821 822 // The PHIs are now updated, change everything that refers to BB to use 823 // DestBB and remove BB. 824 BB->replaceAllUsesWith(DestBB); 825 BB->eraseFromParent(); 826 ++NumBlocksElim; 827 828 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 829 } 830 831 // Computes a map of base pointer relocation instructions to corresponding 832 // derived pointer relocation instructions given a vector of all relocate calls 833 static void computeBaseDerivedRelocateMap( 834 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 835 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 836 &RelocateInstMap) { 837 // Collect information in two maps: one primarily for locating the base object 838 // while filling the second map; the second map is the final structure holding 839 // a mapping between Base and corresponding Derived relocate calls 840 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 841 for (auto *ThisRelocate : AllRelocateCalls) { 842 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 843 ThisRelocate->getDerivedPtrIndex()); 844 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 845 } 846 for (auto &Item : RelocateIdxMap) { 847 std::pair<unsigned, unsigned> Key = Item.first; 848 if (Key.first == Key.second) 849 // Base relocation: nothing to insert 850 continue; 851 852 GCRelocateInst *I = Item.second; 853 auto BaseKey = std::make_pair(Key.first, Key.first); 854 855 // We're iterating over RelocateIdxMap so we cannot modify it. 856 auto MaybeBase = RelocateIdxMap.find(BaseKey); 857 if (MaybeBase == RelocateIdxMap.end()) 858 // TODO: We might want to insert a new base object relocate and gep off 859 // that, if there are enough derived object relocates. 860 continue; 861 862 RelocateInstMap[MaybeBase->second].push_back(I); 863 } 864 } 865 866 // Accepts a GEP and extracts the operands into a vector provided they're all 867 // small integer constants 868 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 869 SmallVectorImpl<Value *> &OffsetV) { 870 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 871 // Only accept small constant integer operands 872 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 873 if (!Op || Op->getZExtValue() > 20) 874 return false; 875 } 876 877 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 878 OffsetV.push_back(GEP->getOperand(i)); 879 return true; 880 } 881 882 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 883 // replace, computes a replacement, and affects it. 884 static bool 885 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 886 const SmallVectorImpl<GCRelocateInst *> &Targets) { 887 bool MadeChange = false; 888 // We must ensure the relocation of derived pointer is defined after 889 // relocation of base pointer. If we find a relocation corresponding to base 890 // defined earlier than relocation of base then we move relocation of base 891 // right before found relocation. We consider only relocation in the same 892 // basic block as relocation of base. Relocations from other basic block will 893 // be skipped by optimization and we do not care about them. 894 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 895 &*R != RelocatedBase; ++R) 896 if (auto RI = dyn_cast<GCRelocateInst>(R)) 897 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 898 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 899 RelocatedBase->moveBefore(RI); 900 break; 901 } 902 903 for (GCRelocateInst *ToReplace : Targets) { 904 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 905 "Not relocating a derived object of the original base object"); 906 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 907 // A duplicate relocate call. TODO: coalesce duplicates. 908 continue; 909 } 910 911 if (RelocatedBase->getParent() != ToReplace->getParent()) { 912 // Base and derived relocates are in different basic blocks. 913 // In this case transform is only valid when base dominates derived 914 // relocate. However it would be too expensive to check dominance 915 // for each such relocate, so we skip the whole transformation. 916 continue; 917 } 918 919 Value *Base = ToReplace->getBasePtr(); 920 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 921 if (!Derived || Derived->getPointerOperand() != Base) 922 continue; 923 924 SmallVector<Value *, 2> OffsetV; 925 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 926 continue; 927 928 // Create a Builder and replace the target callsite with a gep 929 assert(RelocatedBase->getNextNode() && 930 "Should always have one since it's not a terminator"); 931 932 // Insert after RelocatedBase 933 IRBuilder<> Builder(RelocatedBase->getNextNode()); 934 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 935 936 // If gc_relocate does not match the actual type, cast it to the right type. 937 // In theory, there must be a bitcast after gc_relocate if the type does not 938 // match, and we should reuse it to get the derived pointer. But it could be 939 // cases like this: 940 // bb1: 941 // ... 942 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 943 // br label %merge 944 // 945 // bb2: 946 // ... 947 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 948 // br label %merge 949 // 950 // merge: 951 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 952 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 953 // 954 // In this case, we can not find the bitcast any more. So we insert a new bitcast 955 // no matter there is already one or not. In this way, we can handle all cases, and 956 // the extra bitcast should be optimized away in later passes. 957 Value *ActualRelocatedBase = RelocatedBase; 958 if (RelocatedBase->getType() != Base->getType()) { 959 ActualRelocatedBase = 960 Builder.CreateBitCast(RelocatedBase, Base->getType()); 961 } 962 Value *Replacement = Builder.CreateGEP( 963 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 964 Replacement->takeName(ToReplace); 965 // If the newly generated derived pointer's type does not match the original derived 966 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 967 Value *ActualReplacement = Replacement; 968 if (Replacement->getType() != ToReplace->getType()) { 969 ActualReplacement = 970 Builder.CreateBitCast(Replacement, ToReplace->getType()); 971 } 972 ToReplace->replaceAllUsesWith(ActualReplacement); 973 ToReplace->eraseFromParent(); 974 975 MadeChange = true; 976 } 977 return MadeChange; 978 } 979 980 // Turns this: 981 // 982 // %base = ... 983 // %ptr = gep %base + 15 984 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 985 // %base' = relocate(%tok, i32 4, i32 4) 986 // %ptr' = relocate(%tok, i32 4, i32 5) 987 // %val = load %ptr' 988 // 989 // into this: 990 // 991 // %base = ... 992 // %ptr = gep %base + 15 993 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 994 // %base' = gc.relocate(%tok, i32 4, i32 4) 995 // %ptr' = gep %base' + 15 996 // %val = load %ptr' 997 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 998 bool MadeChange = false; 999 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1000 1001 for (auto *U : I.users()) 1002 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1003 // Collect all the relocate calls associated with a statepoint 1004 AllRelocateCalls.push_back(Relocate); 1005 1006 // We need atleast one base pointer relocation + one derived pointer 1007 // relocation to mangle 1008 if (AllRelocateCalls.size() < 2) 1009 return false; 1010 1011 // RelocateInstMap is a mapping from the base relocate instruction to the 1012 // corresponding derived relocate instructions 1013 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1014 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1015 if (RelocateInstMap.empty()) 1016 return false; 1017 1018 for (auto &Item : RelocateInstMap) 1019 // Item.first is the RelocatedBase to offset against 1020 // Item.second is the vector of Targets to replace 1021 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1022 return MadeChange; 1023 } 1024 1025 /// SinkCast - Sink the specified cast instruction into its user blocks 1026 static bool SinkCast(CastInst *CI) { 1027 BasicBlock *DefBB = CI->getParent(); 1028 1029 /// InsertedCasts - Only insert a cast in each block once. 1030 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1031 1032 bool MadeChange = false; 1033 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1034 UI != E; ) { 1035 Use &TheUse = UI.getUse(); 1036 Instruction *User = cast<Instruction>(*UI); 1037 1038 // Figure out which BB this cast is used in. For PHI's this is the 1039 // appropriate predecessor block. 1040 BasicBlock *UserBB = User->getParent(); 1041 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1042 UserBB = PN->getIncomingBlock(TheUse); 1043 } 1044 1045 // Preincrement use iterator so we don't invalidate it. 1046 ++UI; 1047 1048 // The first insertion point of a block containing an EH pad is after the 1049 // pad. If the pad is the user, we cannot sink the cast past the pad. 1050 if (User->isEHPad()) 1051 continue; 1052 1053 // If the block selected to receive the cast is an EH pad that does not 1054 // allow non-PHI instructions before the terminator, we can't sink the 1055 // cast. 1056 if (UserBB->getTerminator()->isEHPad()) 1057 continue; 1058 1059 // If this user is in the same block as the cast, don't change the cast. 1060 if (UserBB == DefBB) continue; 1061 1062 // If we have already inserted a cast into this block, use it. 1063 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1064 1065 if (!InsertedCast) { 1066 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1067 assert(InsertPt != UserBB->end()); 1068 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1069 CI->getType(), "", &*InsertPt); 1070 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1071 } 1072 1073 // Replace a use of the cast with a use of the new cast. 1074 TheUse = InsertedCast; 1075 MadeChange = true; 1076 ++NumCastUses; 1077 } 1078 1079 // If we removed all uses, nuke the cast. 1080 if (CI->use_empty()) { 1081 salvageDebugInfo(*CI); 1082 CI->eraseFromParent(); 1083 MadeChange = true; 1084 } 1085 1086 return MadeChange; 1087 } 1088 1089 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1090 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1091 /// reduce the number of virtual registers that must be created and coalesced. 1092 /// 1093 /// Return true if any changes are made. 1094 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1095 const DataLayout &DL) { 1096 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1097 // than sinking only nop casts, but is helpful on some platforms. 1098 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1099 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), 1100 ASC->getDestAddressSpace())) 1101 return false; 1102 } 1103 1104 // If this is a noop copy, 1105 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1106 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1107 1108 // This is an fp<->int conversion? 1109 if (SrcVT.isInteger() != DstVT.isInteger()) 1110 return false; 1111 1112 // If this is an extension, it will be a zero or sign extension, which 1113 // isn't a noop. 1114 if (SrcVT.bitsLT(DstVT)) return false; 1115 1116 // If these values will be promoted, find out what they will be promoted 1117 // to. This helps us consider truncates on PPC as noop copies when they 1118 // are. 1119 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1120 TargetLowering::TypePromoteInteger) 1121 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1122 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1123 TargetLowering::TypePromoteInteger) 1124 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1125 1126 // If, after promotion, these are the same types, this is a noop copy. 1127 if (SrcVT != DstVT) 1128 return false; 1129 1130 return SinkCast(CI); 1131 } 1132 1133 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 1134 /// possible. 1135 /// 1136 /// Return true if any changes were made. 1137 static bool CombineUAddWithOverflow(CmpInst *CI) { 1138 Value *A, *B; 1139 Instruction *AddI; 1140 if (!match(CI, 1141 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 1142 return false; 1143 1144 Type *Ty = AddI->getType(); 1145 if (!isa<IntegerType>(Ty)) 1146 return false; 1147 1148 // We don't want to move around uses of condition values this late, so we we 1149 // check if it is legal to create the call to the intrinsic in the basic 1150 // block containing the icmp: 1151 1152 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 1153 return false; 1154 1155 #ifndef NDEBUG 1156 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 1157 // for now: 1158 if (AddI->hasOneUse()) 1159 assert(*AddI->user_begin() == CI && "expected!"); 1160 #endif 1161 1162 Module *M = CI->getModule(); 1163 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 1164 1165 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 1166 1167 DebugLoc Loc = CI->getDebugLoc(); 1168 auto *UAddWithOverflow = 1169 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 1170 UAddWithOverflow->setDebugLoc(Loc); 1171 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 1172 UAdd->setDebugLoc(Loc); 1173 auto *Overflow = 1174 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 1175 Overflow->setDebugLoc(Loc); 1176 1177 CI->replaceAllUsesWith(Overflow); 1178 AddI->replaceAllUsesWith(UAdd); 1179 CI->eraseFromParent(); 1180 AddI->eraseFromParent(); 1181 return true; 1182 } 1183 1184 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1185 /// registers that must be created and coalesced. This is a clear win except on 1186 /// targets with multiple condition code registers (PowerPC), where it might 1187 /// lose; some adjustment may be wanted there. 1188 /// 1189 /// Return true if any changes are made. 1190 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1191 BasicBlock *DefBB = CI->getParent(); 1192 1193 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1194 if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI)) 1195 return false; 1196 1197 // Only insert a cmp in each block once. 1198 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1199 1200 bool MadeChange = false; 1201 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1202 UI != E; ) { 1203 Use &TheUse = UI.getUse(); 1204 Instruction *User = cast<Instruction>(*UI); 1205 1206 // Preincrement use iterator so we don't invalidate it. 1207 ++UI; 1208 1209 // Don't bother for PHI nodes. 1210 if (isa<PHINode>(User)) 1211 continue; 1212 1213 // Figure out which BB this cmp is used in. 1214 BasicBlock *UserBB = User->getParent(); 1215 1216 // If this user is in the same block as the cmp, don't change the cmp. 1217 if (UserBB == DefBB) continue; 1218 1219 // If we have already inserted a cmp into this block, use it. 1220 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1221 1222 if (!InsertedCmp) { 1223 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1224 assert(InsertPt != UserBB->end()); 1225 InsertedCmp = 1226 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 1227 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 1228 // Propagate the debug info. 1229 InsertedCmp->setDebugLoc(CI->getDebugLoc()); 1230 } 1231 1232 // Replace a use of the cmp with a use of the new cmp. 1233 TheUse = InsertedCmp; 1234 MadeChange = true; 1235 ++NumCmpUses; 1236 } 1237 1238 // If we removed all uses, nuke the cmp. 1239 if (CI->use_empty()) { 1240 CI->eraseFromParent(); 1241 MadeChange = true; 1242 } 1243 1244 return MadeChange; 1245 } 1246 1247 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1248 if (SinkCmpExpression(CI, TLI)) 1249 return true; 1250 1251 if (CombineUAddWithOverflow(CI)) 1252 return true; 1253 1254 return false; 1255 } 1256 1257 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1258 /// used in a compare to allow isel to generate better code for targets where 1259 /// this operation can be combined. 1260 /// 1261 /// Return true if any changes are made. 1262 static bool sinkAndCmp0Expression(Instruction *AndI, 1263 const TargetLowering &TLI, 1264 SetOfInstrs &InsertedInsts) { 1265 // Double-check that we're not trying to optimize an instruction that was 1266 // already optimized by some other part of this pass. 1267 assert(!InsertedInsts.count(AndI) && 1268 "Attempting to optimize already optimized and instruction"); 1269 (void) InsertedInsts; 1270 1271 // Nothing to do for single use in same basic block. 1272 if (AndI->hasOneUse() && 1273 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1274 return false; 1275 1276 // Try to avoid cases where sinking/duplicating is likely to increase register 1277 // pressure. 1278 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1279 !isa<ConstantInt>(AndI->getOperand(1)) && 1280 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1281 return false; 1282 1283 for (auto *U : AndI->users()) { 1284 Instruction *User = cast<Instruction>(U); 1285 1286 // Only sink for and mask feeding icmp with 0. 1287 if (!isa<ICmpInst>(User)) 1288 return false; 1289 1290 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1291 if (!CmpC || !CmpC->isZero()) 1292 return false; 1293 } 1294 1295 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1296 return false; 1297 1298 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1299 LLVM_DEBUG(AndI->getParent()->dump()); 1300 1301 // Push the 'and' into the same block as the icmp 0. There should only be 1302 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1303 // others, so we don't need to keep track of which BBs we insert into. 1304 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1305 UI != E; ) { 1306 Use &TheUse = UI.getUse(); 1307 Instruction *User = cast<Instruction>(*UI); 1308 1309 // Preincrement use iterator so we don't invalidate it. 1310 ++UI; 1311 1312 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1313 1314 // Keep the 'and' in the same place if the use is already in the same block. 1315 Instruction *InsertPt = 1316 User->getParent() == AndI->getParent() ? AndI : User; 1317 Instruction *InsertedAnd = 1318 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1319 AndI->getOperand(1), "", InsertPt); 1320 // Propagate the debug info. 1321 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1322 1323 // Replace a use of the 'and' with a use of the new 'and'. 1324 TheUse = InsertedAnd; 1325 ++NumAndUses; 1326 LLVM_DEBUG(User->getParent()->dump()); 1327 } 1328 1329 // We removed all uses, nuke the and. 1330 AndI->eraseFromParent(); 1331 return true; 1332 } 1333 1334 /// Check if the candidates could be combined with a shift instruction, which 1335 /// includes: 1336 /// 1. Truncate instruction 1337 /// 2. And instruction and the imm is a mask of the low bits: 1338 /// imm & (imm+1) == 0 1339 static bool isExtractBitsCandidateUse(Instruction *User) { 1340 if (!isa<TruncInst>(User)) { 1341 if (User->getOpcode() != Instruction::And || 1342 !isa<ConstantInt>(User->getOperand(1))) 1343 return false; 1344 1345 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1346 1347 if ((Cimm & (Cimm + 1)).getBoolValue()) 1348 return false; 1349 } 1350 return true; 1351 } 1352 1353 /// Sink both shift and truncate instruction to the use of truncate's BB. 1354 static bool 1355 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1356 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1357 const TargetLowering &TLI, const DataLayout &DL) { 1358 BasicBlock *UserBB = User->getParent(); 1359 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1360 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1361 bool MadeChange = false; 1362 1363 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1364 TruncE = TruncI->user_end(); 1365 TruncUI != TruncE;) { 1366 1367 Use &TruncTheUse = TruncUI.getUse(); 1368 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1369 // Preincrement use iterator so we don't invalidate it. 1370 1371 ++TruncUI; 1372 1373 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1374 if (!ISDOpcode) 1375 continue; 1376 1377 // If the use is actually a legal node, there will not be an 1378 // implicit truncate. 1379 // FIXME: always querying the result type is just an 1380 // approximation; some nodes' legality is determined by the 1381 // operand or other means. There's no good way to find out though. 1382 if (TLI.isOperationLegalOrCustom( 1383 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1384 continue; 1385 1386 // Don't bother for PHI nodes. 1387 if (isa<PHINode>(TruncUser)) 1388 continue; 1389 1390 BasicBlock *TruncUserBB = TruncUser->getParent(); 1391 1392 if (UserBB == TruncUserBB) 1393 continue; 1394 1395 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1396 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1397 1398 if (!InsertedShift && !InsertedTrunc) { 1399 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1400 assert(InsertPt != TruncUserBB->end()); 1401 // Sink the shift 1402 if (ShiftI->getOpcode() == Instruction::AShr) 1403 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1404 "", &*InsertPt); 1405 else 1406 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1407 "", &*InsertPt); 1408 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1409 1410 // Sink the trunc 1411 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1412 TruncInsertPt++; 1413 assert(TruncInsertPt != TruncUserBB->end()); 1414 1415 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1416 TruncI->getType(), "", &*TruncInsertPt); 1417 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1418 1419 MadeChange = true; 1420 1421 TruncTheUse = InsertedTrunc; 1422 } 1423 } 1424 return MadeChange; 1425 } 1426 1427 /// Sink the shift *right* instruction into user blocks if the uses could 1428 /// potentially be combined with this shift instruction and generate BitExtract 1429 /// instruction. It will only be applied if the architecture supports BitExtract 1430 /// instruction. Here is an example: 1431 /// BB1: 1432 /// %x.extract.shift = lshr i64 %arg1, 32 1433 /// BB2: 1434 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1435 /// ==> 1436 /// 1437 /// BB2: 1438 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1439 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1440 /// 1441 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1442 /// instruction. 1443 /// Return true if any changes are made. 1444 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1445 const TargetLowering &TLI, 1446 const DataLayout &DL) { 1447 BasicBlock *DefBB = ShiftI->getParent(); 1448 1449 /// Only insert instructions in each block once. 1450 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1451 1452 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1453 1454 bool MadeChange = false; 1455 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1456 UI != E;) { 1457 Use &TheUse = UI.getUse(); 1458 Instruction *User = cast<Instruction>(*UI); 1459 // Preincrement use iterator so we don't invalidate it. 1460 ++UI; 1461 1462 // Don't bother for PHI nodes. 1463 if (isa<PHINode>(User)) 1464 continue; 1465 1466 if (!isExtractBitsCandidateUse(User)) 1467 continue; 1468 1469 BasicBlock *UserBB = User->getParent(); 1470 1471 if (UserBB == DefBB) { 1472 // If the shift and truncate instruction are in the same BB. The use of 1473 // the truncate(TruncUse) may still introduce another truncate if not 1474 // legal. In this case, we would like to sink both shift and truncate 1475 // instruction to the BB of TruncUse. 1476 // for example: 1477 // BB1: 1478 // i64 shift.result = lshr i64 opnd, imm 1479 // trunc.result = trunc shift.result to i16 1480 // 1481 // BB2: 1482 // ----> We will have an implicit truncate here if the architecture does 1483 // not have i16 compare. 1484 // cmp i16 trunc.result, opnd2 1485 // 1486 if (isa<TruncInst>(User) && shiftIsLegal 1487 // If the type of the truncate is legal, no truncate will be 1488 // introduced in other basic blocks. 1489 && 1490 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1491 MadeChange = 1492 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1493 1494 continue; 1495 } 1496 // If we have already inserted a shift into this block, use it. 1497 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1498 1499 if (!InsertedShift) { 1500 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1501 assert(InsertPt != UserBB->end()); 1502 1503 if (ShiftI->getOpcode() == Instruction::AShr) 1504 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1505 "", &*InsertPt); 1506 else 1507 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1508 "", &*InsertPt); 1509 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1510 1511 MadeChange = true; 1512 } 1513 1514 // Replace a use of the shift with a use of the new shift. 1515 TheUse = InsertedShift; 1516 } 1517 1518 // If we removed all uses, nuke the shift. 1519 if (ShiftI->use_empty()) { 1520 salvageDebugInfo(*ShiftI); 1521 ShiftI->eraseFromParent(); 1522 } 1523 1524 return MadeChange; 1525 } 1526 1527 /// If counting leading or trailing zeros is an expensive operation and a zero 1528 /// input is defined, add a check for zero to avoid calling the intrinsic. 1529 /// 1530 /// We want to transform: 1531 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1532 /// 1533 /// into: 1534 /// entry: 1535 /// %cmpz = icmp eq i64 %A, 0 1536 /// br i1 %cmpz, label %cond.end, label %cond.false 1537 /// cond.false: 1538 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1539 /// br label %cond.end 1540 /// cond.end: 1541 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1542 /// 1543 /// If the transform is performed, return true and set ModifiedDT to true. 1544 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1545 const TargetLowering *TLI, 1546 const DataLayout *DL, 1547 bool &ModifiedDT) { 1548 if (!TLI || !DL) 1549 return false; 1550 1551 // If a zero input is undefined, it doesn't make sense to despeculate that. 1552 if (match(CountZeros->getOperand(1), m_One())) 1553 return false; 1554 1555 // If it's cheap to speculate, there's nothing to do. 1556 auto IntrinsicID = CountZeros->getIntrinsicID(); 1557 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1558 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1559 return false; 1560 1561 // Only handle legal scalar cases. Anything else requires too much work. 1562 Type *Ty = CountZeros->getType(); 1563 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1564 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1565 return false; 1566 1567 // The intrinsic will be sunk behind a compare against zero and branch. 1568 BasicBlock *StartBlock = CountZeros->getParent(); 1569 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1570 1571 // Create another block after the count zero intrinsic. A PHI will be added 1572 // in this block to select the result of the intrinsic or the bit-width 1573 // constant if the input to the intrinsic is zero. 1574 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1575 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1576 1577 // Set up a builder to create a compare, conditional branch, and PHI. 1578 IRBuilder<> Builder(CountZeros->getContext()); 1579 Builder.SetInsertPoint(StartBlock->getTerminator()); 1580 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1581 1582 // Replace the unconditional branch that was created by the first split with 1583 // a compare against zero and a conditional branch. 1584 Value *Zero = Constant::getNullValue(Ty); 1585 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1586 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1587 StartBlock->getTerminator()->eraseFromParent(); 1588 1589 // Create a PHI in the end block to select either the output of the intrinsic 1590 // or the bit width of the operand. 1591 Builder.SetInsertPoint(&EndBlock->front()); 1592 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1593 CountZeros->replaceAllUsesWith(PN); 1594 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1595 PN->addIncoming(BitWidth, StartBlock); 1596 PN->addIncoming(CountZeros, CallBlock); 1597 1598 // We are explicitly handling the zero case, so we can set the intrinsic's 1599 // undefined zero argument to 'true'. This will also prevent reprocessing the 1600 // intrinsic; we only despeculate when a zero input is defined. 1601 CountZeros->setArgOperand(1, Builder.getTrue()); 1602 ModifiedDT = true; 1603 return true; 1604 } 1605 1606 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1607 BasicBlock *BB = CI->getParent(); 1608 1609 // Lower inline assembly if we can. 1610 // If we found an inline asm expession, and if the target knows how to 1611 // lower it to normal LLVM code, do so now. 1612 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1613 if (TLI->ExpandInlineAsm(CI)) { 1614 // Avoid invalidating the iterator. 1615 CurInstIterator = BB->begin(); 1616 // Avoid processing instructions out of order, which could cause 1617 // reuse before a value is defined. 1618 SunkAddrs.clear(); 1619 return true; 1620 } 1621 // Sink address computing for memory operands into the block. 1622 if (optimizeInlineAsmInst(CI)) 1623 return true; 1624 } 1625 1626 // Align the pointer arguments to this call if the target thinks it's a good 1627 // idea 1628 unsigned MinSize, PrefAlign; 1629 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1630 for (auto &Arg : CI->arg_operands()) { 1631 // We want to align both objects whose address is used directly and 1632 // objects whose address is used in casts and GEPs, though it only makes 1633 // sense for GEPs if the offset is a multiple of the desired alignment and 1634 // if size - offset meets the size threshold. 1635 if (!Arg->getType()->isPointerTy()) 1636 continue; 1637 APInt Offset(DL->getIndexSizeInBits( 1638 cast<PointerType>(Arg->getType())->getAddressSpace()), 1639 0); 1640 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1641 uint64_t Offset2 = Offset.getLimitedValue(); 1642 if ((Offset2 & (PrefAlign-1)) != 0) 1643 continue; 1644 AllocaInst *AI; 1645 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1646 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1647 AI->setAlignment(PrefAlign); 1648 // Global variables can only be aligned if they are defined in this 1649 // object (i.e. they are uniquely initialized in this object), and 1650 // over-aligning global variables that have an explicit section is 1651 // forbidden. 1652 GlobalVariable *GV; 1653 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1654 GV->getPointerAlignment(*DL) < PrefAlign && 1655 DL->getTypeAllocSize(GV->getValueType()) >= 1656 MinSize + Offset2) 1657 GV->setAlignment(PrefAlign); 1658 } 1659 // If this is a memcpy (or similar) then we may be able to improve the 1660 // alignment 1661 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1662 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL); 1663 if (DestAlign > MI->getDestAlignment()) 1664 MI->setDestAlignment(DestAlign); 1665 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 1666 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 1667 if (SrcAlign > MTI->getSourceAlignment()) 1668 MTI->setSourceAlignment(SrcAlign); 1669 } 1670 } 1671 } 1672 1673 // If we have a cold call site, try to sink addressing computation into the 1674 // cold block. This interacts with our handling for loads and stores to 1675 // ensure that we can fold all uses of a potential addressing computation 1676 // into their uses. TODO: generalize this to work over profiling data 1677 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1678 for (auto &Arg : CI->arg_operands()) { 1679 if (!Arg->getType()->isPointerTy()) 1680 continue; 1681 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1682 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1683 } 1684 1685 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1686 if (II) { 1687 switch (II->getIntrinsicID()) { 1688 default: break; 1689 case Intrinsic::objectsize: { 1690 // Lower all uses of llvm.objectsize.* 1691 ConstantInt *RetVal = 1692 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 1693 // Substituting this can cause recursive simplifications, which can 1694 // invalidate our iterator. Use a WeakTrackingVH to hold onto it in case 1695 // this 1696 // happens. 1697 Value *CurValue = &*CurInstIterator; 1698 WeakTrackingVH IterHandle(CurValue); 1699 1700 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1701 1702 // If the iterator instruction was recursively deleted, start over at the 1703 // start of the block. 1704 if (IterHandle != CurValue) { 1705 CurInstIterator = BB->begin(); 1706 SunkAddrs.clear(); 1707 } 1708 return true; 1709 } 1710 case Intrinsic::aarch64_stlxr: 1711 case Intrinsic::aarch64_stxr: { 1712 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1713 if (!ExtVal || !ExtVal->hasOneUse() || 1714 ExtVal->getParent() == CI->getParent()) 1715 return false; 1716 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1717 ExtVal->moveBefore(CI); 1718 // Mark this instruction as "inserted by CGP", so that other 1719 // optimizations don't touch it. 1720 InsertedInsts.insert(ExtVal); 1721 return true; 1722 } 1723 case Intrinsic::launder_invariant_group: 1724 case Intrinsic::strip_invariant_group: { 1725 Value *ArgVal = II->getArgOperand(0); 1726 auto it = LargeOffsetGEPMap.find(II); 1727 if (it != LargeOffsetGEPMap.end()) { 1728 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 1729 // Make sure not to have to deal with iterator invalidation 1730 // after possibly adding ArgVal to LargeOffsetGEPMap. 1731 auto GEPs = std::move(it->second); 1732 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 1733 LargeOffsetGEPMap.erase(II); 1734 } 1735 1736 II->replaceAllUsesWith(ArgVal); 1737 II->eraseFromParent(); 1738 return true; 1739 } 1740 case Intrinsic::cttz: 1741 case Intrinsic::ctlz: 1742 // If counting zeros is expensive, try to avoid it. 1743 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 1744 } 1745 1746 if (TLI) { 1747 SmallVector<Value*, 2> PtrOps; 1748 Type *AccessTy; 1749 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 1750 while (!PtrOps.empty()) { 1751 Value *PtrVal = PtrOps.pop_back_val(); 1752 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 1753 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 1754 return true; 1755 } 1756 } 1757 } 1758 1759 // From here on out we're working with named functions. 1760 if (!CI->getCalledFunction()) return false; 1761 1762 // Lower all default uses of _chk calls. This is very similar 1763 // to what InstCombineCalls does, but here we are only lowering calls 1764 // to fortified library functions (e.g. __memcpy_chk) that have the default 1765 // "don't know" as the objectsize. Anything else should be left alone. 1766 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1767 if (Value *V = Simplifier.optimizeCall(CI)) { 1768 CI->replaceAllUsesWith(V); 1769 CI->eraseFromParent(); 1770 return true; 1771 } 1772 1773 return false; 1774 } 1775 1776 /// Look for opportunities to duplicate return instructions to the predecessor 1777 /// to enable tail call optimizations. The case it is currently looking for is: 1778 /// @code 1779 /// bb0: 1780 /// %tmp0 = tail call i32 @f0() 1781 /// br label %return 1782 /// bb1: 1783 /// %tmp1 = tail call i32 @f1() 1784 /// br label %return 1785 /// bb2: 1786 /// %tmp2 = tail call i32 @f2() 1787 /// br label %return 1788 /// return: 1789 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1790 /// ret i32 %retval 1791 /// @endcode 1792 /// 1793 /// => 1794 /// 1795 /// @code 1796 /// bb0: 1797 /// %tmp0 = tail call i32 @f0() 1798 /// ret i32 %tmp0 1799 /// bb1: 1800 /// %tmp1 = tail call i32 @f1() 1801 /// ret i32 %tmp1 1802 /// bb2: 1803 /// %tmp2 = tail call i32 @f2() 1804 /// ret i32 %tmp2 1805 /// @endcode 1806 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 1807 if (!TLI) 1808 return false; 1809 1810 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 1811 if (!RetI) 1812 return false; 1813 1814 PHINode *PN = nullptr; 1815 BitCastInst *BCI = nullptr; 1816 Value *V = RetI->getReturnValue(); 1817 if (V) { 1818 BCI = dyn_cast<BitCastInst>(V); 1819 if (BCI) 1820 V = BCI->getOperand(0); 1821 1822 PN = dyn_cast<PHINode>(V); 1823 if (!PN) 1824 return false; 1825 } 1826 1827 if (PN && PN->getParent() != BB) 1828 return false; 1829 1830 // Make sure there are no instructions between the PHI and return, or that the 1831 // return is the first instruction in the block. 1832 if (PN) { 1833 BasicBlock::iterator BI = BB->begin(); 1834 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1835 if (&*BI == BCI) 1836 // Also skip over the bitcast. 1837 ++BI; 1838 if (&*BI != RetI) 1839 return false; 1840 } else { 1841 BasicBlock::iterator BI = BB->begin(); 1842 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1843 if (&*BI != RetI) 1844 return false; 1845 } 1846 1847 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1848 /// call. 1849 const Function *F = BB->getParent(); 1850 SmallVector<CallInst*, 4> TailCalls; 1851 if (PN) { 1852 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 1853 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 1854 // Make sure the phi value is indeed produced by the tail call. 1855 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 1856 TLI->mayBeEmittedAsTailCall(CI) && 1857 attributesPermitTailCall(F, CI, RetI, *TLI)) 1858 TailCalls.push_back(CI); 1859 } 1860 } else { 1861 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 1862 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 1863 if (!VisitedBBs.insert(*PI).second) 1864 continue; 1865 1866 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 1867 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 1868 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 1869 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 1870 if (RI == RE) 1871 continue; 1872 1873 CallInst *CI = dyn_cast<CallInst>(&*RI); 1874 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 1875 attributesPermitTailCall(F, CI, RetI, *TLI)) 1876 TailCalls.push_back(CI); 1877 } 1878 } 1879 1880 bool Changed = false; 1881 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1882 CallInst *CI = TailCalls[i]; 1883 CallSite CS(CI); 1884 1885 // Make sure the call instruction is followed by an unconditional branch to 1886 // the return block. 1887 BasicBlock *CallBB = CI->getParent(); 1888 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 1889 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 1890 continue; 1891 1892 // Duplicate the return into CallBB. 1893 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 1894 ModifiedDT = Changed = true; 1895 ++NumRetsDup; 1896 } 1897 1898 // If we eliminated all predecessors of the block, delete the block now. 1899 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 1900 BB->eraseFromParent(); 1901 1902 return Changed; 1903 } 1904 1905 //===----------------------------------------------------------------------===// 1906 // Memory Optimization 1907 //===----------------------------------------------------------------------===// 1908 1909 namespace { 1910 1911 /// This is an extended version of TargetLowering::AddrMode 1912 /// which holds actual Value*'s for register values. 1913 struct ExtAddrMode : public TargetLowering::AddrMode { 1914 Value *BaseReg = nullptr; 1915 Value *ScaledReg = nullptr; 1916 Value *OriginalValue = nullptr; 1917 1918 enum FieldName { 1919 NoField = 0x00, 1920 BaseRegField = 0x01, 1921 BaseGVField = 0x02, 1922 BaseOffsField = 0x04, 1923 ScaledRegField = 0x08, 1924 ScaleField = 0x10, 1925 MultipleFields = 0xff 1926 }; 1927 1928 ExtAddrMode() = default; 1929 1930 void print(raw_ostream &OS) const; 1931 void dump() const; 1932 1933 FieldName compare(const ExtAddrMode &other) { 1934 // First check that the types are the same on each field, as differing types 1935 // is something we can't cope with later on. 1936 if (BaseReg && other.BaseReg && 1937 BaseReg->getType() != other.BaseReg->getType()) 1938 return MultipleFields; 1939 if (BaseGV && other.BaseGV && 1940 BaseGV->getType() != other.BaseGV->getType()) 1941 return MultipleFields; 1942 if (ScaledReg && other.ScaledReg && 1943 ScaledReg->getType() != other.ScaledReg->getType()) 1944 return MultipleFields; 1945 1946 // Check each field to see if it differs. 1947 unsigned Result = NoField; 1948 if (BaseReg != other.BaseReg) 1949 Result |= BaseRegField; 1950 if (BaseGV != other.BaseGV) 1951 Result |= BaseGVField; 1952 if (BaseOffs != other.BaseOffs) 1953 Result |= BaseOffsField; 1954 if (ScaledReg != other.ScaledReg) 1955 Result |= ScaledRegField; 1956 // Don't count 0 as being a different scale, because that actually means 1957 // unscaled (which will already be counted by having no ScaledReg). 1958 if (Scale && other.Scale && Scale != other.Scale) 1959 Result |= ScaleField; 1960 1961 if (countPopulation(Result) > 1) 1962 return MultipleFields; 1963 else 1964 return static_cast<FieldName>(Result); 1965 } 1966 1967 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 1968 // with no offset. 1969 bool isTrivial() { 1970 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 1971 // trivial if at most one of these terms is nonzero, except that BaseGV and 1972 // BaseReg both being zero actually means a null pointer value, which we 1973 // consider to be 'non-zero' here. 1974 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 1975 } 1976 1977 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 1978 switch (Field) { 1979 default: 1980 return nullptr; 1981 case BaseRegField: 1982 return BaseReg; 1983 case BaseGVField: 1984 return BaseGV; 1985 case ScaledRegField: 1986 return ScaledReg; 1987 case BaseOffsField: 1988 return ConstantInt::get(IntPtrTy, BaseOffs); 1989 } 1990 } 1991 1992 void SetCombinedField(FieldName Field, Value *V, 1993 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 1994 switch (Field) { 1995 default: 1996 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 1997 break; 1998 case ExtAddrMode::BaseRegField: 1999 BaseReg = V; 2000 break; 2001 case ExtAddrMode::BaseGVField: 2002 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2003 // in the BaseReg field. 2004 assert(BaseReg == nullptr); 2005 BaseReg = V; 2006 BaseGV = nullptr; 2007 break; 2008 case ExtAddrMode::ScaledRegField: 2009 ScaledReg = V; 2010 // If we have a mix of scaled and unscaled addrmodes then we want scale 2011 // to be the scale and not zero. 2012 if (!Scale) 2013 for (const ExtAddrMode &AM : AddrModes) 2014 if (AM.Scale) { 2015 Scale = AM.Scale; 2016 break; 2017 } 2018 break; 2019 case ExtAddrMode::BaseOffsField: 2020 // The offset is no longer a constant, so it goes in ScaledReg with a 2021 // scale of 1. 2022 assert(ScaledReg == nullptr); 2023 ScaledReg = V; 2024 Scale = 1; 2025 BaseOffs = 0; 2026 break; 2027 } 2028 } 2029 }; 2030 2031 } // end anonymous namespace 2032 2033 #ifndef NDEBUG 2034 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2035 AM.print(OS); 2036 return OS; 2037 } 2038 #endif 2039 2040 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2041 void ExtAddrMode::print(raw_ostream &OS) const { 2042 bool NeedPlus = false; 2043 OS << "["; 2044 if (BaseGV) { 2045 OS << (NeedPlus ? " + " : "") 2046 << "GV:"; 2047 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2048 NeedPlus = true; 2049 } 2050 2051 if (BaseOffs) { 2052 OS << (NeedPlus ? " + " : "") 2053 << BaseOffs; 2054 NeedPlus = true; 2055 } 2056 2057 if (BaseReg) { 2058 OS << (NeedPlus ? " + " : "") 2059 << "Base:"; 2060 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2061 NeedPlus = true; 2062 } 2063 if (Scale) { 2064 OS << (NeedPlus ? " + " : "") 2065 << Scale << "*"; 2066 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2067 } 2068 2069 OS << ']'; 2070 } 2071 2072 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2073 print(dbgs()); 2074 dbgs() << '\n'; 2075 } 2076 #endif 2077 2078 namespace { 2079 2080 /// This class provides transaction based operation on the IR. 2081 /// Every change made through this class is recorded in the internal state and 2082 /// can be undone (rollback) until commit is called. 2083 class TypePromotionTransaction { 2084 /// This represents the common interface of the individual transaction. 2085 /// Each class implements the logic for doing one specific modification on 2086 /// the IR via the TypePromotionTransaction. 2087 class TypePromotionAction { 2088 protected: 2089 /// The Instruction modified. 2090 Instruction *Inst; 2091 2092 public: 2093 /// Constructor of the action. 2094 /// The constructor performs the related action on the IR. 2095 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2096 2097 virtual ~TypePromotionAction() = default; 2098 2099 /// Undo the modification done by this action. 2100 /// When this method is called, the IR must be in the same state as it was 2101 /// before this action was applied. 2102 /// \pre Undoing the action works if and only if the IR is in the exact same 2103 /// state as it was directly after this action was applied. 2104 virtual void undo() = 0; 2105 2106 /// Advocate every change made by this action. 2107 /// When the results on the IR of the action are to be kept, it is important 2108 /// to call this function, otherwise hidden information may be kept forever. 2109 virtual void commit() { 2110 // Nothing to be done, this action is not doing anything. 2111 } 2112 }; 2113 2114 /// Utility to remember the position of an instruction. 2115 class InsertionHandler { 2116 /// Position of an instruction. 2117 /// Either an instruction: 2118 /// - Is the first in a basic block: BB is used. 2119 /// - Has a previous instruction: PrevInst is used. 2120 union { 2121 Instruction *PrevInst; 2122 BasicBlock *BB; 2123 } Point; 2124 2125 /// Remember whether or not the instruction had a previous instruction. 2126 bool HasPrevInstruction; 2127 2128 public: 2129 /// Record the position of \p Inst. 2130 InsertionHandler(Instruction *Inst) { 2131 BasicBlock::iterator It = Inst->getIterator(); 2132 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2133 if (HasPrevInstruction) 2134 Point.PrevInst = &*--It; 2135 else 2136 Point.BB = Inst->getParent(); 2137 } 2138 2139 /// Insert \p Inst at the recorded position. 2140 void insert(Instruction *Inst) { 2141 if (HasPrevInstruction) { 2142 if (Inst->getParent()) 2143 Inst->removeFromParent(); 2144 Inst->insertAfter(Point.PrevInst); 2145 } else { 2146 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2147 if (Inst->getParent()) 2148 Inst->moveBefore(Position); 2149 else 2150 Inst->insertBefore(Position); 2151 } 2152 } 2153 }; 2154 2155 /// Move an instruction before another. 2156 class InstructionMoveBefore : public TypePromotionAction { 2157 /// Original position of the instruction. 2158 InsertionHandler Position; 2159 2160 public: 2161 /// Move \p Inst before \p Before. 2162 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2163 : TypePromotionAction(Inst), Position(Inst) { 2164 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2165 << "\n"); 2166 Inst->moveBefore(Before); 2167 } 2168 2169 /// Move the instruction back to its original position. 2170 void undo() override { 2171 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2172 Position.insert(Inst); 2173 } 2174 }; 2175 2176 /// Set the operand of an instruction with a new value. 2177 class OperandSetter : public TypePromotionAction { 2178 /// Original operand of the instruction. 2179 Value *Origin; 2180 2181 /// Index of the modified instruction. 2182 unsigned Idx; 2183 2184 public: 2185 /// Set \p Idx operand of \p Inst with \p NewVal. 2186 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2187 : TypePromotionAction(Inst), Idx(Idx) { 2188 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2189 << "for:" << *Inst << "\n" 2190 << "with:" << *NewVal << "\n"); 2191 Origin = Inst->getOperand(Idx); 2192 Inst->setOperand(Idx, NewVal); 2193 } 2194 2195 /// Restore the original value of the instruction. 2196 void undo() override { 2197 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2198 << "for: " << *Inst << "\n" 2199 << "with: " << *Origin << "\n"); 2200 Inst->setOperand(Idx, Origin); 2201 } 2202 }; 2203 2204 /// Hide the operands of an instruction. 2205 /// Do as if this instruction was not using any of its operands. 2206 class OperandsHider : public TypePromotionAction { 2207 /// The list of original operands. 2208 SmallVector<Value *, 4> OriginalValues; 2209 2210 public: 2211 /// Remove \p Inst from the uses of the operands of \p Inst. 2212 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2213 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2214 unsigned NumOpnds = Inst->getNumOperands(); 2215 OriginalValues.reserve(NumOpnds); 2216 for (unsigned It = 0; It < NumOpnds; ++It) { 2217 // Save the current operand. 2218 Value *Val = Inst->getOperand(It); 2219 OriginalValues.push_back(Val); 2220 // Set a dummy one. 2221 // We could use OperandSetter here, but that would imply an overhead 2222 // that we are not willing to pay. 2223 Inst->setOperand(It, UndefValue::get(Val->getType())); 2224 } 2225 } 2226 2227 /// Restore the original list of uses. 2228 void undo() override { 2229 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2230 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2231 Inst->setOperand(It, OriginalValues[It]); 2232 } 2233 }; 2234 2235 /// Build a truncate instruction. 2236 class TruncBuilder : public TypePromotionAction { 2237 Value *Val; 2238 2239 public: 2240 /// Build a truncate instruction of \p Opnd producing a \p Ty 2241 /// result. 2242 /// trunc Opnd to Ty. 2243 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2244 IRBuilder<> Builder(Opnd); 2245 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2246 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2247 } 2248 2249 /// Get the built value. 2250 Value *getBuiltValue() { return Val; } 2251 2252 /// Remove the built instruction. 2253 void undo() override { 2254 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2255 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2256 IVal->eraseFromParent(); 2257 } 2258 }; 2259 2260 /// Build a sign extension instruction. 2261 class SExtBuilder : public TypePromotionAction { 2262 Value *Val; 2263 2264 public: 2265 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2266 /// result. 2267 /// sext Opnd to Ty. 2268 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2269 : TypePromotionAction(InsertPt) { 2270 IRBuilder<> Builder(InsertPt); 2271 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2272 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2273 } 2274 2275 /// Get the built value. 2276 Value *getBuiltValue() { return Val; } 2277 2278 /// Remove the built instruction. 2279 void undo() override { 2280 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2281 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2282 IVal->eraseFromParent(); 2283 } 2284 }; 2285 2286 /// Build a zero extension instruction. 2287 class ZExtBuilder : public TypePromotionAction { 2288 Value *Val; 2289 2290 public: 2291 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2292 /// result. 2293 /// zext Opnd to Ty. 2294 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2295 : TypePromotionAction(InsertPt) { 2296 IRBuilder<> Builder(InsertPt); 2297 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2298 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2299 } 2300 2301 /// Get the built value. 2302 Value *getBuiltValue() { return Val; } 2303 2304 /// Remove the built instruction. 2305 void undo() override { 2306 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2307 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2308 IVal->eraseFromParent(); 2309 } 2310 }; 2311 2312 /// Mutate an instruction to another type. 2313 class TypeMutator : public TypePromotionAction { 2314 /// Record the original type. 2315 Type *OrigTy; 2316 2317 public: 2318 /// Mutate the type of \p Inst into \p NewTy. 2319 TypeMutator(Instruction *Inst, Type *NewTy) 2320 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2321 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2322 << "\n"); 2323 Inst->mutateType(NewTy); 2324 } 2325 2326 /// Mutate the instruction back to its original type. 2327 void undo() override { 2328 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2329 << "\n"); 2330 Inst->mutateType(OrigTy); 2331 } 2332 }; 2333 2334 /// Replace the uses of an instruction by another instruction. 2335 class UsesReplacer : public TypePromotionAction { 2336 /// Helper structure to keep track of the replaced uses. 2337 struct InstructionAndIdx { 2338 /// The instruction using the instruction. 2339 Instruction *Inst; 2340 2341 /// The index where this instruction is used for Inst. 2342 unsigned Idx; 2343 2344 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2345 : Inst(Inst), Idx(Idx) {} 2346 }; 2347 2348 /// Keep track of the original uses (pair Instruction, Index). 2349 SmallVector<InstructionAndIdx, 4> OriginalUses; 2350 2351 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2352 2353 public: 2354 /// Replace all the use of \p Inst by \p New. 2355 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2356 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2357 << "\n"); 2358 // Record the original uses. 2359 for (Use &U : Inst->uses()) { 2360 Instruction *UserI = cast<Instruction>(U.getUser()); 2361 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2362 } 2363 // Now, we can replace the uses. 2364 Inst->replaceAllUsesWith(New); 2365 } 2366 2367 /// Reassign the original uses of Inst to Inst. 2368 void undo() override { 2369 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2370 for (use_iterator UseIt = OriginalUses.begin(), 2371 EndIt = OriginalUses.end(); 2372 UseIt != EndIt; ++UseIt) { 2373 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2374 } 2375 } 2376 }; 2377 2378 /// Remove an instruction from the IR. 2379 class InstructionRemover : public TypePromotionAction { 2380 /// Original position of the instruction. 2381 InsertionHandler Inserter; 2382 2383 /// Helper structure to hide all the link to the instruction. In other 2384 /// words, this helps to do as if the instruction was removed. 2385 OperandsHider Hider; 2386 2387 /// Keep track of the uses replaced, if any. 2388 UsesReplacer *Replacer = nullptr; 2389 2390 /// Keep track of instructions removed. 2391 SetOfInstrs &RemovedInsts; 2392 2393 public: 2394 /// Remove all reference of \p Inst and optionally replace all its 2395 /// uses with New. 2396 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2397 /// \pre If !Inst->use_empty(), then New != nullptr 2398 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2399 Value *New = nullptr) 2400 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2401 RemovedInsts(RemovedInsts) { 2402 if (New) 2403 Replacer = new UsesReplacer(Inst, New); 2404 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2405 RemovedInsts.insert(Inst); 2406 /// The instructions removed here will be freed after completing 2407 /// optimizeBlock() for all blocks as we need to keep track of the 2408 /// removed instructions during promotion. 2409 Inst->removeFromParent(); 2410 } 2411 2412 ~InstructionRemover() override { delete Replacer; } 2413 2414 /// Resurrect the instruction and reassign it to the proper uses if 2415 /// new value was provided when build this action. 2416 void undo() override { 2417 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2418 Inserter.insert(Inst); 2419 if (Replacer) 2420 Replacer->undo(); 2421 Hider.undo(); 2422 RemovedInsts.erase(Inst); 2423 } 2424 }; 2425 2426 public: 2427 /// Restoration point. 2428 /// The restoration point is a pointer to an action instead of an iterator 2429 /// because the iterator may be invalidated but not the pointer. 2430 using ConstRestorationPt = const TypePromotionAction *; 2431 2432 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2433 : RemovedInsts(RemovedInsts) {} 2434 2435 /// Advocate every changes made in that transaction. 2436 void commit(); 2437 2438 /// Undo all the changes made after the given point. 2439 void rollback(ConstRestorationPt Point); 2440 2441 /// Get the current restoration point. 2442 ConstRestorationPt getRestorationPoint() const; 2443 2444 /// \name API for IR modification with state keeping to support rollback. 2445 /// @{ 2446 /// Same as Instruction::setOperand. 2447 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2448 2449 /// Same as Instruction::eraseFromParent. 2450 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2451 2452 /// Same as Value::replaceAllUsesWith. 2453 void replaceAllUsesWith(Instruction *Inst, Value *New); 2454 2455 /// Same as Value::mutateType. 2456 void mutateType(Instruction *Inst, Type *NewTy); 2457 2458 /// Same as IRBuilder::createTrunc. 2459 Value *createTrunc(Instruction *Opnd, Type *Ty); 2460 2461 /// Same as IRBuilder::createSExt. 2462 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2463 2464 /// Same as IRBuilder::createZExt. 2465 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2466 2467 /// Same as Instruction::moveBefore. 2468 void moveBefore(Instruction *Inst, Instruction *Before); 2469 /// @} 2470 2471 private: 2472 /// The ordered list of actions made so far. 2473 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2474 2475 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2476 2477 SetOfInstrs &RemovedInsts; 2478 }; 2479 2480 } // end anonymous namespace 2481 2482 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2483 Value *NewVal) { 2484 Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>( 2485 Inst, Idx, NewVal)); 2486 } 2487 2488 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2489 Value *NewVal) { 2490 Actions.push_back( 2491 llvm::make_unique<TypePromotionTransaction::InstructionRemover>( 2492 Inst, RemovedInsts, NewVal)); 2493 } 2494 2495 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2496 Value *New) { 2497 Actions.push_back( 2498 llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2499 } 2500 2501 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2502 Actions.push_back( 2503 llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2504 } 2505 2506 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2507 Type *Ty) { 2508 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2509 Value *Val = Ptr->getBuiltValue(); 2510 Actions.push_back(std::move(Ptr)); 2511 return Val; 2512 } 2513 2514 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2515 Value *Opnd, Type *Ty) { 2516 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2517 Value *Val = Ptr->getBuiltValue(); 2518 Actions.push_back(std::move(Ptr)); 2519 return Val; 2520 } 2521 2522 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2523 Value *Opnd, Type *Ty) { 2524 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2525 Value *Val = Ptr->getBuiltValue(); 2526 Actions.push_back(std::move(Ptr)); 2527 return Val; 2528 } 2529 2530 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2531 Instruction *Before) { 2532 Actions.push_back( 2533 llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2534 Inst, Before)); 2535 } 2536 2537 TypePromotionTransaction::ConstRestorationPt 2538 TypePromotionTransaction::getRestorationPoint() const { 2539 return !Actions.empty() ? Actions.back().get() : nullptr; 2540 } 2541 2542 void TypePromotionTransaction::commit() { 2543 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2544 ++It) 2545 (*It)->commit(); 2546 Actions.clear(); 2547 } 2548 2549 void TypePromotionTransaction::rollback( 2550 TypePromotionTransaction::ConstRestorationPt Point) { 2551 while (!Actions.empty() && Point != Actions.back().get()) { 2552 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2553 Curr->undo(); 2554 } 2555 } 2556 2557 namespace { 2558 2559 /// A helper class for matching addressing modes. 2560 /// 2561 /// This encapsulates the logic for matching the target-legal addressing modes. 2562 class AddressingModeMatcher { 2563 SmallVectorImpl<Instruction*> &AddrModeInsts; 2564 const TargetLowering &TLI; 2565 const TargetRegisterInfo &TRI; 2566 const DataLayout &DL; 2567 2568 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2569 /// the memory instruction that we're computing this address for. 2570 Type *AccessTy; 2571 unsigned AddrSpace; 2572 Instruction *MemoryInst; 2573 2574 /// This is the addressing mode that we're building up. This is 2575 /// part of the return value of this addressing mode matching stuff. 2576 ExtAddrMode &AddrMode; 2577 2578 /// The instructions inserted by other CodeGenPrepare optimizations. 2579 const SetOfInstrs &InsertedInsts; 2580 2581 /// A map from the instructions to their type before promotion. 2582 InstrToOrigTy &PromotedInsts; 2583 2584 /// The ongoing transaction where every action should be registered. 2585 TypePromotionTransaction &TPT; 2586 2587 // A GEP which has too large offset to be folded into the addressing mode. 2588 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 2589 2590 /// This is set to true when we should not do profitability checks. 2591 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2592 bool IgnoreProfitability; 2593 2594 AddressingModeMatcher( 2595 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 2596 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 2597 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 2598 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 2599 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) 2600 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2601 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2602 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2603 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) { 2604 IgnoreProfitability = false; 2605 } 2606 2607 public: 2608 /// Find the maximal addressing mode that a load/store of V can fold, 2609 /// give an access type of AccessTy. This returns a list of involved 2610 /// instructions in AddrModeInsts. 2611 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2612 /// optimizations. 2613 /// \p PromotedInsts maps the instructions to their type before promotion. 2614 /// \p The ongoing transaction where every action should be registered. 2615 static ExtAddrMode 2616 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 2617 SmallVectorImpl<Instruction *> &AddrModeInsts, 2618 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 2619 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 2620 TypePromotionTransaction &TPT, 2621 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) { 2622 ExtAddrMode Result; 2623 2624 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 2625 MemoryInst, Result, InsertedInsts, 2626 PromotedInsts, TPT, LargeOffsetGEP) 2627 .matchAddr(V, 0); 2628 (void)Success; assert(Success && "Couldn't select *anything*?"); 2629 return Result; 2630 } 2631 2632 private: 2633 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2634 bool matchAddr(Value *Addr, unsigned Depth); 2635 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 2636 bool *MovedAway = nullptr); 2637 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2638 ExtAddrMode &AMBefore, 2639 ExtAddrMode &AMAfter); 2640 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2641 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2642 Value *PromotedOperand) const; 2643 }; 2644 2645 /// Keep track of simplification of Phi nodes. 2646 /// Accept the set of all phi nodes and erase phi node from this set 2647 /// if it is simplified. 2648 class SimplificationTracker { 2649 DenseMap<Value *, Value *> Storage; 2650 const SimplifyQuery &SQ; 2651 // Tracks newly created Phi nodes. We use a SetVector to get deterministic 2652 // order when iterating over the set in MatchPhiSet. 2653 SmallSetVector<PHINode *, 32> AllPhiNodes; 2654 // Tracks newly created Select nodes. 2655 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 2656 2657 public: 2658 SimplificationTracker(const SimplifyQuery &sq) 2659 : SQ(sq) {} 2660 2661 Value *Get(Value *V) { 2662 do { 2663 auto SV = Storage.find(V); 2664 if (SV == Storage.end()) 2665 return V; 2666 V = SV->second; 2667 } while (true); 2668 } 2669 2670 Value *Simplify(Value *Val) { 2671 SmallVector<Value *, 32> WorkList; 2672 SmallPtrSet<Value *, 32> Visited; 2673 WorkList.push_back(Val); 2674 while (!WorkList.empty()) { 2675 auto P = WorkList.pop_back_val(); 2676 if (!Visited.insert(P).second) 2677 continue; 2678 if (auto *PI = dyn_cast<Instruction>(P)) 2679 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 2680 for (auto *U : PI->users()) 2681 WorkList.push_back(cast<Value>(U)); 2682 Put(PI, V); 2683 PI->replaceAllUsesWith(V); 2684 if (auto *PHI = dyn_cast<PHINode>(PI)) 2685 AllPhiNodes.remove(PHI); 2686 if (auto *Select = dyn_cast<SelectInst>(PI)) 2687 AllSelectNodes.erase(Select); 2688 PI->eraseFromParent(); 2689 } 2690 } 2691 return Get(Val); 2692 } 2693 2694 void Put(Value *From, Value *To) { 2695 Storage.insert({ From, To }); 2696 } 2697 2698 void ReplacePhi(PHINode *From, PHINode *To) { 2699 Value* OldReplacement = Get(From); 2700 while (OldReplacement != From) { 2701 From = To; 2702 To = dyn_cast<PHINode>(OldReplacement); 2703 OldReplacement = Get(From); 2704 } 2705 assert(Get(To) == To && "Replacement PHI node is already replaced."); 2706 Put(From, To); 2707 From->replaceAllUsesWith(To); 2708 AllPhiNodes.remove(From); 2709 From->eraseFromParent(); 2710 } 2711 2712 SmallSetVector<PHINode *, 32>& newPhiNodes() { return AllPhiNodes; } 2713 2714 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 2715 2716 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 2717 2718 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 2719 2720 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 2721 2722 void destroyNewNodes(Type *CommonType) { 2723 // For safe erasing, replace the uses with dummy value first. 2724 auto Dummy = UndefValue::get(CommonType); 2725 for (auto I : AllPhiNodes) { 2726 I->replaceAllUsesWith(Dummy); 2727 I->eraseFromParent(); 2728 } 2729 AllPhiNodes.clear(); 2730 for (auto I : AllSelectNodes) { 2731 I->replaceAllUsesWith(Dummy); 2732 I->eraseFromParent(); 2733 } 2734 AllSelectNodes.clear(); 2735 } 2736 }; 2737 2738 /// A helper class for combining addressing modes. 2739 class AddressingModeCombiner { 2740 typedef std::pair<Value *, BasicBlock *> ValueInBB; 2741 typedef DenseMap<ValueInBB, Value *> FoldAddrToValueMapping; 2742 typedef std::pair<PHINode *, PHINode *> PHIPair; 2743 2744 private: 2745 /// The addressing modes we've collected. 2746 SmallVector<ExtAddrMode, 16> AddrModes; 2747 2748 /// The field in which the AddrModes differ, when we have more than one. 2749 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 2750 2751 /// Are the AddrModes that we have all just equal to their original values? 2752 bool AllAddrModesTrivial = true; 2753 2754 /// Common Type for all different fields in addressing modes. 2755 Type *CommonType; 2756 2757 /// SimplifyQuery for simplifyInstruction utility. 2758 const SimplifyQuery &SQ; 2759 2760 /// Original Address. 2761 ValueInBB Original; 2762 2763 public: 2764 AddressingModeCombiner(const SimplifyQuery &_SQ, ValueInBB OriginalValue) 2765 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 2766 2767 /// Get the combined AddrMode 2768 const ExtAddrMode &getAddrMode() const { 2769 return AddrModes[0]; 2770 } 2771 2772 /// Add a new AddrMode if it's compatible with the AddrModes we already 2773 /// have. 2774 /// \return True iff we succeeded in doing so. 2775 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 2776 // Take note of if we have any non-trivial AddrModes, as we need to detect 2777 // when all AddrModes are trivial as then we would introduce a phi or select 2778 // which just duplicates what's already there. 2779 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 2780 2781 // If this is the first addrmode then everything is fine. 2782 if (AddrModes.empty()) { 2783 AddrModes.emplace_back(NewAddrMode); 2784 return true; 2785 } 2786 2787 // Figure out how different this is from the other address modes, which we 2788 // can do just by comparing against the first one given that we only care 2789 // about the cumulative difference. 2790 ExtAddrMode::FieldName ThisDifferentField = 2791 AddrModes[0].compare(NewAddrMode); 2792 if (DifferentField == ExtAddrMode::NoField) 2793 DifferentField = ThisDifferentField; 2794 else if (DifferentField != ThisDifferentField) 2795 DifferentField = ExtAddrMode::MultipleFields; 2796 2797 // If NewAddrMode differs in more than one dimension we cannot handle it. 2798 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 2799 2800 // If Scale Field is different then we reject. 2801 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 2802 2803 // We also must reject the case when base offset is different and 2804 // scale reg is not null, we cannot handle this case due to merge of 2805 // different offsets will be used as ScaleReg. 2806 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 2807 !NewAddrMode.ScaledReg); 2808 2809 // We also must reject the case when GV is different and BaseReg installed 2810 // due to we want to use base reg as a merge of GV values. 2811 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 2812 !NewAddrMode.HasBaseReg); 2813 2814 // Even if NewAddMode is the same we still need to collect it due to 2815 // original value is different. And later we will need all original values 2816 // as anchors during finding the common Phi node. 2817 if (CanHandle) 2818 AddrModes.emplace_back(NewAddrMode); 2819 else 2820 AddrModes.clear(); 2821 2822 return CanHandle; 2823 } 2824 2825 /// Combine the addressing modes we've collected into a single 2826 /// addressing mode. 2827 /// \return True iff we successfully combined them or we only had one so 2828 /// didn't need to combine them anyway. 2829 bool combineAddrModes() { 2830 // If we have no AddrModes then they can't be combined. 2831 if (AddrModes.size() == 0) 2832 return false; 2833 2834 // A single AddrMode can trivially be combined. 2835 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 2836 return true; 2837 2838 // If the AddrModes we collected are all just equal to the value they are 2839 // derived from then combining them wouldn't do anything useful. 2840 if (AllAddrModesTrivial) 2841 return false; 2842 2843 if (!addrModeCombiningAllowed()) 2844 return false; 2845 2846 // Build a map between <original value, basic block where we saw it> to 2847 // value of base register. 2848 // Bail out if there is no common type. 2849 FoldAddrToValueMapping Map; 2850 if (!initializeMap(Map)) 2851 return false; 2852 2853 Value *CommonValue = findCommon(Map); 2854 if (CommonValue) 2855 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 2856 return CommonValue != nullptr; 2857 } 2858 2859 private: 2860 /// Initialize Map with anchor values. For address seen in some BB 2861 /// we set the value of different field saw in this address. 2862 /// If address is not an instruction than basic block is set to null. 2863 /// At the same time we find a common type for different field we will 2864 /// use to create new Phi/Select nodes. Keep it in CommonType field. 2865 /// Return false if there is no common type found. 2866 bool initializeMap(FoldAddrToValueMapping &Map) { 2867 // Keep track of keys where the value is null. We will need to replace it 2868 // with constant null when we know the common type. 2869 SmallVector<ValueInBB, 2> NullValue; 2870 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 2871 for (auto &AM : AddrModes) { 2872 BasicBlock *BB = nullptr; 2873 if (Instruction *I = dyn_cast<Instruction>(AM.OriginalValue)) 2874 BB = I->getParent(); 2875 2876 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 2877 if (DV) { 2878 auto *Type = DV->getType(); 2879 if (CommonType && CommonType != Type) 2880 return false; 2881 CommonType = Type; 2882 Map[{ AM.OriginalValue, BB }] = DV; 2883 } else { 2884 NullValue.push_back({ AM.OriginalValue, BB }); 2885 } 2886 } 2887 assert(CommonType && "At least one non-null value must be!"); 2888 for (auto VIBB : NullValue) 2889 Map[VIBB] = Constant::getNullValue(CommonType); 2890 return true; 2891 } 2892 2893 /// We have mapping between value A and basic block where value A 2894 /// seen to other value B where B was a field in addressing mode represented 2895 /// by A. Also we have an original value C representing an address in some 2896 /// basic block. Traversing from C through phi and selects we ended up with 2897 /// A's in a map. This utility function tries to find a value V which is a 2898 /// field in addressing mode C and traversing through phi nodes and selects 2899 /// we will end up in corresponded values B in a map. 2900 /// The utility will create a new Phi/Selects if needed. 2901 // The simple example looks as follows: 2902 // BB1: 2903 // p1 = b1 + 40 2904 // br cond BB2, BB3 2905 // BB2: 2906 // p2 = b2 + 40 2907 // br BB3 2908 // BB3: 2909 // p = phi [p1, BB1], [p2, BB2] 2910 // v = load p 2911 // Map is 2912 // <p1, BB1> -> b1 2913 // <p2, BB2> -> b2 2914 // Request is 2915 // <p, BB3> -> ? 2916 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3 2917 Value *findCommon(FoldAddrToValueMapping &Map) { 2918 // Tracks the simplification of newly created phi nodes. The reason we use 2919 // this mapping is because we will add new created Phi nodes in AddrToBase. 2920 // Simplification of Phi nodes is recursive, so some Phi node may 2921 // be simplified after we added it to AddrToBase. 2922 // Using this mapping we can find the current value in AddrToBase. 2923 SimplificationTracker ST(SQ); 2924 2925 // First step, DFS to create PHI nodes for all intermediate blocks. 2926 // Also fill traverse order for the second step. 2927 SmallVector<ValueInBB, 32> TraverseOrder; 2928 InsertPlaceholders(Map, TraverseOrder, ST); 2929 2930 // Second Step, fill new nodes by merged values and simplify if possible. 2931 FillPlaceholders(Map, TraverseOrder, ST); 2932 2933 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 2934 ST.destroyNewNodes(CommonType); 2935 return nullptr; 2936 } 2937 2938 // Now we'd like to match New Phi nodes to existed ones. 2939 unsigned PhiNotMatchedCount = 0; 2940 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 2941 ST.destroyNewNodes(CommonType); 2942 return nullptr; 2943 } 2944 2945 auto *Result = ST.Get(Map.find(Original)->second); 2946 if (Result) { 2947 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 2948 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 2949 } 2950 return Result; 2951 } 2952 2953 /// Try to match PHI node to Candidate. 2954 /// Matcher tracks the matched Phi nodes. 2955 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 2956 SmallSetVector<PHIPair, 8> &Matcher, 2957 SmallSetVector<PHINode *, 32> &PhiNodesToMatch) { 2958 SmallVector<PHIPair, 8> WorkList; 2959 Matcher.insert({ PHI, Candidate }); 2960 WorkList.push_back({ PHI, Candidate }); 2961 SmallSet<PHIPair, 8> Visited; 2962 while (!WorkList.empty()) { 2963 auto Item = WorkList.pop_back_val(); 2964 if (!Visited.insert(Item).second) 2965 continue; 2966 // We iterate over all incoming values to Phi to compare them. 2967 // If values are different and both of them Phi and the first one is a 2968 // Phi we added (subject to match) and both of them is in the same basic 2969 // block then we can match our pair if values match. So we state that 2970 // these values match and add it to work list to verify that. 2971 for (auto B : Item.first->blocks()) { 2972 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 2973 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 2974 if (FirstValue == SecondValue) 2975 continue; 2976 2977 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 2978 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 2979 2980 // One of them is not Phi or 2981 // The first one is not Phi node from the set we'd like to match or 2982 // Phi nodes from different basic blocks then 2983 // we will not be able to match. 2984 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 2985 FirstPhi->getParent() != SecondPhi->getParent()) 2986 return false; 2987 2988 // If we already matched them then continue. 2989 if (Matcher.count({ FirstPhi, SecondPhi })) 2990 continue; 2991 // So the values are different and does not match. So we need them to 2992 // match. 2993 Matcher.insert({ FirstPhi, SecondPhi }); 2994 // But me must check it. 2995 WorkList.push_back({ FirstPhi, SecondPhi }); 2996 } 2997 } 2998 return true; 2999 } 3000 3001 /// For the given set of PHI nodes (in the SimplificationTracker) try 3002 /// to find their equivalents. 3003 /// Returns false if this matching fails and creation of new Phi is disabled. 3004 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3005 unsigned &PhiNotMatchedCount) { 3006 // Use a SetVector for Matched to make sure we do replacements (ReplacePhi) 3007 // in a deterministic order below. 3008 SmallSetVector<PHIPair, 8> Matched; 3009 SmallPtrSet<PHINode *, 8> WillNotMatch; 3010 SmallSetVector<PHINode *, 32> &PhiNodesToMatch = ST.newPhiNodes(); 3011 while (PhiNodesToMatch.size()) { 3012 PHINode *PHI = *PhiNodesToMatch.begin(); 3013 3014 // Add us, if no Phi nodes in the basic block we do not match. 3015 WillNotMatch.clear(); 3016 WillNotMatch.insert(PHI); 3017 3018 // Traverse all Phis until we found equivalent or fail to do that. 3019 bool IsMatched = false; 3020 for (auto &P : PHI->getParent()->phis()) { 3021 if (&P == PHI) 3022 continue; 3023 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3024 break; 3025 // If it does not match, collect all Phi nodes from matcher. 3026 // if we end up with no match, them all these Phi nodes will not match 3027 // later. 3028 for (auto M : Matched) 3029 WillNotMatch.insert(M.first); 3030 Matched.clear(); 3031 } 3032 if (IsMatched) { 3033 // Replace all matched values and erase them. 3034 for (auto MV : Matched) 3035 ST.ReplacePhi(MV.first, MV.second); 3036 Matched.clear(); 3037 continue; 3038 } 3039 // If we are not allowed to create new nodes then bail out. 3040 if (!AllowNewPhiNodes) 3041 return false; 3042 // Just remove all seen values in matcher. They will not match anything. 3043 PhiNotMatchedCount += WillNotMatch.size(); 3044 for (auto *P : WillNotMatch) 3045 PhiNodesToMatch.remove(P); 3046 } 3047 return true; 3048 } 3049 /// Fill the placeholder with values from predecessors and simplify it. 3050 void FillPlaceholders(FoldAddrToValueMapping &Map, 3051 SmallVectorImpl<ValueInBB> &TraverseOrder, 3052 SimplificationTracker &ST) { 3053 while (!TraverseOrder.empty()) { 3054 auto Current = TraverseOrder.pop_back_val(); 3055 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3056 Value *CurrentValue = Current.first; 3057 BasicBlock *CurrentBlock = Current.second; 3058 Value *V = Map[Current]; 3059 3060 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3061 // CurrentValue also must be Select. 3062 auto *CurrentSelect = cast<SelectInst>(CurrentValue); 3063 auto *TrueValue = CurrentSelect->getTrueValue(); 3064 ValueInBB TrueItem = { TrueValue, isa<Instruction>(TrueValue) 3065 ? CurrentBlock 3066 : nullptr }; 3067 assert(Map.find(TrueItem) != Map.end() && "No True Value!"); 3068 Select->setTrueValue(ST.Get(Map[TrueItem])); 3069 auto *FalseValue = CurrentSelect->getFalseValue(); 3070 ValueInBB FalseItem = { FalseValue, isa<Instruction>(FalseValue) 3071 ? CurrentBlock 3072 : nullptr }; 3073 assert(Map.find(FalseItem) != Map.end() && "No False Value!"); 3074 Select->setFalseValue(ST.Get(Map[FalseItem])); 3075 } else { 3076 // Must be a Phi node then. 3077 PHINode *PHI = cast<PHINode>(V); 3078 // Fill the Phi node with values from predecessors. 3079 bool IsDefinedInThisBB = 3080 cast<Instruction>(CurrentValue)->getParent() == CurrentBlock; 3081 auto *CurrentPhi = dyn_cast<PHINode>(CurrentValue); 3082 for (auto B : predecessors(CurrentBlock)) { 3083 Value *PV = IsDefinedInThisBB 3084 ? CurrentPhi->getIncomingValueForBlock(B) 3085 : CurrentValue; 3086 ValueInBB item = { PV, isa<Instruction>(PV) ? B : nullptr }; 3087 assert(Map.find(item) != Map.end() && "No predecessor Value!"); 3088 PHI->addIncoming(ST.Get(Map[item]), B); 3089 } 3090 } 3091 // Simplify if possible. 3092 Map[Current] = ST.Simplify(V); 3093 } 3094 } 3095 3096 /// Starting from value recursively iterates over predecessors up to known 3097 /// ending values represented in a map. For each traversed block inserts 3098 /// a placeholder Phi or Select. 3099 /// Reports all new created Phi/Select nodes by adding them to set. 3100 /// Also reports and order in what basic blocks have been traversed. 3101 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3102 SmallVectorImpl<ValueInBB> &TraverseOrder, 3103 SimplificationTracker &ST) { 3104 SmallVector<ValueInBB, 32> Worklist; 3105 assert((isa<PHINode>(Original.first) || isa<SelectInst>(Original.first)) && 3106 "Address must be a Phi or Select node"); 3107 auto *Dummy = UndefValue::get(CommonType); 3108 Worklist.push_back(Original); 3109 while (!Worklist.empty()) { 3110 auto Current = Worklist.pop_back_val(); 3111 // If value is not an instruction it is something global, constant, 3112 // parameter and we can say that this value is observable in any block. 3113 // Set block to null to denote it. 3114 // Also please take into account that it is how we build anchors. 3115 if (!isa<Instruction>(Current.first)) 3116 Current.second = nullptr; 3117 // if it is already visited or it is an ending value then skip it. 3118 if (Map.find(Current) != Map.end()) 3119 continue; 3120 TraverseOrder.push_back(Current); 3121 3122 Value *CurrentValue = Current.first; 3123 BasicBlock *CurrentBlock = Current.second; 3124 // CurrentValue must be a Phi node or select. All others must be covered 3125 // by anchors. 3126 Instruction *CurrentI = cast<Instruction>(CurrentValue); 3127 bool IsDefinedInThisBB = CurrentI->getParent() == CurrentBlock; 3128 3129 unsigned PredCount = pred_size(CurrentBlock); 3130 // if Current Value is not defined in this basic block we are interested 3131 // in values in predecessors. 3132 if (!IsDefinedInThisBB) { 3133 assert(PredCount && "Unreachable block?!"); 3134 PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi", 3135 &CurrentBlock->front()); 3136 Map[Current] = PHI; 3137 ST.insertNewPhi(PHI); 3138 // Add all predecessors in work list. 3139 for (auto B : predecessors(CurrentBlock)) 3140 Worklist.push_back({ CurrentValue, B }); 3141 continue; 3142 } 3143 // Value is defined in this basic block. 3144 if (SelectInst *OrigSelect = dyn_cast<SelectInst>(CurrentI)) { 3145 // Is it OK to get metadata from OrigSelect?! 3146 // Create a Select placeholder with dummy value. 3147 SelectInst *Select = 3148 SelectInst::Create(OrigSelect->getCondition(), Dummy, Dummy, 3149 OrigSelect->getName(), OrigSelect, OrigSelect); 3150 Map[Current] = Select; 3151 ST.insertNewSelect(Select); 3152 // We are interested in True and False value in this basic block. 3153 Worklist.push_back({ OrigSelect->getTrueValue(), CurrentBlock }); 3154 Worklist.push_back({ OrigSelect->getFalseValue(), CurrentBlock }); 3155 } else { 3156 // It must be a Phi node then. 3157 auto *CurrentPhi = cast<PHINode>(CurrentI); 3158 // Create new Phi node for merge of bases. 3159 assert(PredCount && "Unreachable block?!"); 3160 PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi", 3161 &CurrentBlock->front()); 3162 Map[Current] = PHI; 3163 ST.insertNewPhi(PHI); 3164 3165 // Add all predecessors in work list. 3166 for (auto B : predecessors(CurrentBlock)) 3167 Worklist.push_back({ CurrentPhi->getIncomingValueForBlock(B), B }); 3168 } 3169 } 3170 } 3171 3172 bool addrModeCombiningAllowed() { 3173 if (DisableComplexAddrModes) 3174 return false; 3175 switch (DifferentField) { 3176 default: 3177 return false; 3178 case ExtAddrMode::BaseRegField: 3179 return AddrSinkCombineBaseReg; 3180 case ExtAddrMode::BaseGVField: 3181 return AddrSinkCombineBaseGV; 3182 case ExtAddrMode::BaseOffsField: 3183 return AddrSinkCombineBaseOffs; 3184 case ExtAddrMode::ScaledRegField: 3185 return AddrSinkCombineScaledReg; 3186 } 3187 } 3188 }; 3189 } // end anonymous namespace 3190 3191 /// Try adding ScaleReg*Scale to the current addressing mode. 3192 /// Return true and update AddrMode if this addr mode is legal for the target, 3193 /// false if not. 3194 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3195 unsigned Depth) { 3196 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3197 // mode. Just process that directly. 3198 if (Scale == 1) 3199 return matchAddr(ScaleReg, Depth); 3200 3201 // If the scale is 0, it takes nothing to add this. 3202 if (Scale == 0) 3203 return true; 3204 3205 // If we already have a scale of this value, we can add to it, otherwise, we 3206 // need an available scale field. 3207 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3208 return false; 3209 3210 ExtAddrMode TestAddrMode = AddrMode; 3211 3212 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3213 // [A+B + A*7] -> [B+A*8]. 3214 TestAddrMode.Scale += Scale; 3215 TestAddrMode.ScaledReg = ScaleReg; 3216 3217 // If the new address isn't legal, bail out. 3218 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3219 return false; 3220 3221 // It was legal, so commit it. 3222 AddrMode = TestAddrMode; 3223 3224 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3225 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3226 // X*Scale + C*Scale to addr mode. 3227 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3228 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3229 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3230 TestAddrMode.ScaledReg = AddLHS; 3231 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3232 3233 // If this addressing mode is legal, commit it and remember that we folded 3234 // this instruction. 3235 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3236 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3237 AddrMode = TestAddrMode; 3238 return true; 3239 } 3240 } 3241 3242 // Otherwise, not (x+c)*scale, just return what we have. 3243 return true; 3244 } 3245 3246 /// This is a little filter, which returns true if an addressing computation 3247 /// involving I might be folded into a load/store accessing it. 3248 /// This doesn't need to be perfect, but needs to accept at least 3249 /// the set of instructions that MatchOperationAddr can. 3250 static bool MightBeFoldableInst(Instruction *I) { 3251 switch (I->getOpcode()) { 3252 case Instruction::BitCast: 3253 case Instruction::AddrSpaceCast: 3254 // Don't touch identity bitcasts. 3255 if (I->getType() == I->getOperand(0)->getType()) 3256 return false; 3257 return I->getType()->isIntOrPtrTy(); 3258 case Instruction::PtrToInt: 3259 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3260 return true; 3261 case Instruction::IntToPtr: 3262 // We know the input is intptr_t, so this is foldable. 3263 return true; 3264 case Instruction::Add: 3265 return true; 3266 case Instruction::Mul: 3267 case Instruction::Shl: 3268 // Can only handle X*C and X << C. 3269 return isa<ConstantInt>(I->getOperand(1)); 3270 case Instruction::GetElementPtr: 3271 return true; 3272 default: 3273 return false; 3274 } 3275 } 3276 3277 /// Check whether or not \p Val is a legal instruction for \p TLI. 3278 /// \note \p Val is assumed to be the product of some type promotion. 3279 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3280 /// to be legal, as the non-promoted value would have had the same state. 3281 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3282 const DataLayout &DL, Value *Val) { 3283 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3284 if (!PromotedInst) 3285 return false; 3286 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3287 // If the ISDOpcode is undefined, it was undefined before the promotion. 3288 if (!ISDOpcode) 3289 return true; 3290 // Otherwise, check if the promoted instruction is legal or not. 3291 return TLI.isOperationLegalOrCustom( 3292 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3293 } 3294 3295 namespace { 3296 3297 /// Hepler class to perform type promotion. 3298 class TypePromotionHelper { 3299 /// Utility function to add a promoted instruction \p ExtOpnd to 3300 /// \p PromotedInsts and record the type of extension we have seen. 3301 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3302 Instruction *ExtOpnd, 3303 bool IsSExt) { 3304 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3305 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3306 if (It != PromotedInsts.end()) { 3307 // If the new extension is same as original, the information in 3308 // PromotedInsts[ExtOpnd] is still correct. 3309 if (It->second.getInt() == ExtTy) 3310 return; 3311 3312 // Now the new extension is different from old extension, we make 3313 // the type information invalid by setting extension type to 3314 // BothExtension. 3315 ExtTy = BothExtension; 3316 } 3317 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 3318 } 3319 3320 /// Utility function to query the original type of instruction \p Opnd 3321 /// with a matched extension type. If the extension doesn't match, we 3322 /// cannot use the information we had on the original type. 3323 /// BothExtension doesn't match any extension type. 3324 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 3325 Instruction *Opnd, 3326 bool IsSExt) { 3327 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3328 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3329 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 3330 return It->second.getPointer(); 3331 return nullptr; 3332 } 3333 3334 /// Utility function to check whether or not a sign or zero extension 3335 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3336 /// either using the operands of \p Inst or promoting \p Inst. 3337 /// The type of the extension is defined by \p IsSExt. 3338 /// In other words, check if: 3339 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3340 /// #1 Promotion applies: 3341 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3342 /// #2 Operand reuses: 3343 /// ext opnd1 to ConsideredExtType. 3344 /// \p PromotedInsts maps the instructions to their type before promotion. 3345 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3346 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3347 3348 /// Utility function to determine if \p OpIdx should be promoted when 3349 /// promoting \p Inst. 3350 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3351 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3352 } 3353 3354 /// Utility function to promote the operand of \p Ext when this 3355 /// operand is a promotable trunc or sext or zext. 3356 /// \p PromotedInsts maps the instructions to their type before promotion. 3357 /// \p CreatedInstsCost[out] contains the cost of all instructions 3358 /// created to promote the operand of Ext. 3359 /// Newly added extensions are inserted in \p Exts. 3360 /// Newly added truncates are inserted in \p Truncs. 3361 /// Should never be called directly. 3362 /// \return The promoted value which is used instead of Ext. 3363 static Value *promoteOperandForTruncAndAnyExt( 3364 Instruction *Ext, TypePromotionTransaction &TPT, 3365 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3366 SmallVectorImpl<Instruction *> *Exts, 3367 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3368 3369 /// Utility function to promote the operand of \p Ext when this 3370 /// operand is promotable and is not a supported trunc or sext. 3371 /// \p PromotedInsts maps the instructions to their type before promotion. 3372 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3373 /// created to promote the operand of Ext. 3374 /// Newly added extensions are inserted in \p Exts. 3375 /// Newly added truncates are inserted in \p Truncs. 3376 /// Should never be called directly. 3377 /// \return The promoted value which is used instead of Ext. 3378 static Value *promoteOperandForOther(Instruction *Ext, 3379 TypePromotionTransaction &TPT, 3380 InstrToOrigTy &PromotedInsts, 3381 unsigned &CreatedInstsCost, 3382 SmallVectorImpl<Instruction *> *Exts, 3383 SmallVectorImpl<Instruction *> *Truncs, 3384 const TargetLowering &TLI, bool IsSExt); 3385 3386 /// \see promoteOperandForOther. 3387 static Value *signExtendOperandForOther( 3388 Instruction *Ext, TypePromotionTransaction &TPT, 3389 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3390 SmallVectorImpl<Instruction *> *Exts, 3391 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3392 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3393 Exts, Truncs, TLI, true); 3394 } 3395 3396 /// \see promoteOperandForOther. 3397 static Value *zeroExtendOperandForOther( 3398 Instruction *Ext, TypePromotionTransaction &TPT, 3399 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3400 SmallVectorImpl<Instruction *> *Exts, 3401 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3402 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3403 Exts, Truncs, TLI, false); 3404 } 3405 3406 public: 3407 /// Type for the utility function that promotes the operand of Ext. 3408 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3409 InstrToOrigTy &PromotedInsts, 3410 unsigned &CreatedInstsCost, 3411 SmallVectorImpl<Instruction *> *Exts, 3412 SmallVectorImpl<Instruction *> *Truncs, 3413 const TargetLowering &TLI); 3414 3415 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3416 /// action to promote the operand of \p Ext instead of using Ext. 3417 /// \return NULL if no promotable action is possible with the current 3418 /// sign extension. 3419 /// \p InsertedInsts keeps track of all the instructions inserted by the 3420 /// other CodeGenPrepare optimizations. This information is important 3421 /// because we do not want to promote these instructions as CodeGenPrepare 3422 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3423 /// \p PromotedInsts maps the instructions to their type before promotion. 3424 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3425 const TargetLowering &TLI, 3426 const InstrToOrigTy &PromotedInsts); 3427 }; 3428 3429 } // end anonymous namespace 3430 3431 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3432 Type *ConsideredExtType, 3433 const InstrToOrigTy &PromotedInsts, 3434 bool IsSExt) { 3435 // The promotion helper does not know how to deal with vector types yet. 3436 // To be able to fix that, we would need to fix the places where we 3437 // statically extend, e.g., constants and such. 3438 if (Inst->getType()->isVectorTy()) 3439 return false; 3440 3441 // We can always get through zext. 3442 if (isa<ZExtInst>(Inst)) 3443 return true; 3444 3445 // sext(sext) is ok too. 3446 if (IsSExt && isa<SExtInst>(Inst)) 3447 return true; 3448 3449 // We can get through binary operator, if it is legal. In other words, the 3450 // binary operator must have a nuw or nsw flag. 3451 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3452 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3453 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3454 (IsSExt && BinOp->hasNoSignedWrap()))) 3455 return true; 3456 3457 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 3458 if ((Inst->getOpcode() == Instruction::And || 3459 Inst->getOpcode() == Instruction::Or)) 3460 return true; 3461 3462 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 3463 if (Inst->getOpcode() == Instruction::Xor) { 3464 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 3465 // Make sure it is not a NOT. 3466 if (Cst && !Cst->getValue().isAllOnesValue()) 3467 return true; 3468 } 3469 3470 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 3471 // It may change a poisoned value into a regular value, like 3472 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 3473 // poisoned value regular value 3474 // It should be OK since undef covers valid value. 3475 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 3476 return true; 3477 3478 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 3479 // It may change a poisoned value into a regular value, like 3480 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 3481 // poisoned value regular value 3482 // It should be OK since undef covers valid value. 3483 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 3484 const Instruction *ExtInst = 3485 dyn_cast<const Instruction>(*Inst->user_begin()); 3486 if (ExtInst->hasOneUse()) { 3487 const Instruction *AndInst = 3488 dyn_cast<const Instruction>(*ExtInst->user_begin()); 3489 if (AndInst && AndInst->getOpcode() == Instruction::And) { 3490 const ConstantInt *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 3491 if (Cst && 3492 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 3493 return true; 3494 } 3495 } 3496 } 3497 3498 // Check if we can do the following simplification. 3499 // ext(trunc(opnd)) --> ext(opnd) 3500 if (!isa<TruncInst>(Inst)) 3501 return false; 3502 3503 Value *OpndVal = Inst->getOperand(0); 3504 // Check if we can use this operand in the extension. 3505 // If the type is larger than the result type of the extension, we cannot. 3506 if (!OpndVal->getType()->isIntegerTy() || 3507 OpndVal->getType()->getIntegerBitWidth() > 3508 ConsideredExtType->getIntegerBitWidth()) 3509 return false; 3510 3511 // If the operand of the truncate is not an instruction, we will not have 3512 // any information on the dropped bits. 3513 // (Actually we could for constant but it is not worth the extra logic). 3514 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3515 if (!Opnd) 3516 return false; 3517 3518 // Check if the source of the type is narrow enough. 3519 // I.e., check that trunc just drops extended bits of the same kind of 3520 // the extension. 3521 // #1 get the type of the operand and check the kind of the extended bits. 3522 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 3523 if (OpndType) 3524 ; 3525 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3526 OpndType = Opnd->getOperand(0)->getType(); 3527 else 3528 return false; 3529 3530 // #2 check that the truncate just drops extended bits. 3531 return Inst->getType()->getIntegerBitWidth() >= 3532 OpndType->getIntegerBitWidth(); 3533 } 3534 3535 TypePromotionHelper::Action TypePromotionHelper::getAction( 3536 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3537 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3538 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3539 "Unexpected instruction type"); 3540 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3541 Type *ExtTy = Ext->getType(); 3542 bool IsSExt = isa<SExtInst>(Ext); 3543 // If the operand of the extension is not an instruction, we cannot 3544 // get through. 3545 // If it, check we can get through. 3546 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3547 return nullptr; 3548 3549 // Do not promote if the operand has been added by codegenprepare. 3550 // Otherwise, it means we are undoing an optimization that is likely to be 3551 // redone, thus causing potential infinite loop. 3552 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3553 return nullptr; 3554 3555 // SExt or Trunc instructions. 3556 // Return the related handler. 3557 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3558 isa<ZExtInst>(ExtOpnd)) 3559 return promoteOperandForTruncAndAnyExt; 3560 3561 // Regular instruction. 3562 // Abort early if we will have to insert non-free instructions. 3563 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3564 return nullptr; 3565 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3566 } 3567 3568 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3569 Instruction *SExt, TypePromotionTransaction &TPT, 3570 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3571 SmallVectorImpl<Instruction *> *Exts, 3572 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3573 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3574 // get through it and this method should not be called. 3575 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3576 Value *ExtVal = SExt; 3577 bool HasMergedNonFreeExt = false; 3578 if (isa<ZExtInst>(SExtOpnd)) { 3579 // Replace s|zext(zext(opnd)) 3580 // => zext(opnd). 3581 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3582 Value *ZExt = 3583 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3584 TPT.replaceAllUsesWith(SExt, ZExt); 3585 TPT.eraseInstruction(SExt); 3586 ExtVal = ZExt; 3587 } else { 3588 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3589 // => z|sext(opnd). 3590 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3591 } 3592 CreatedInstsCost = 0; 3593 3594 // Remove dead code. 3595 if (SExtOpnd->use_empty()) 3596 TPT.eraseInstruction(SExtOpnd); 3597 3598 // Check if the extension is still needed. 3599 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3600 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3601 if (ExtInst) { 3602 if (Exts) 3603 Exts->push_back(ExtInst); 3604 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3605 } 3606 return ExtVal; 3607 } 3608 3609 // At this point we have: ext ty opnd to ty. 3610 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3611 Value *NextVal = ExtInst->getOperand(0); 3612 TPT.eraseInstruction(ExtInst, NextVal); 3613 return NextVal; 3614 } 3615 3616 Value *TypePromotionHelper::promoteOperandForOther( 3617 Instruction *Ext, TypePromotionTransaction &TPT, 3618 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3619 SmallVectorImpl<Instruction *> *Exts, 3620 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3621 bool IsSExt) { 3622 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3623 // get through it and this method should not be called. 3624 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3625 CreatedInstsCost = 0; 3626 if (!ExtOpnd->hasOneUse()) { 3627 // ExtOpnd will be promoted. 3628 // All its uses, but Ext, will need to use a truncated value of the 3629 // promoted version. 3630 // Create the truncate now. 3631 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3632 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3633 // Insert it just after the definition. 3634 ITrunc->moveAfter(ExtOpnd); 3635 if (Truncs) 3636 Truncs->push_back(ITrunc); 3637 } 3638 3639 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3640 // Restore the operand of Ext (which has been replaced by the previous call 3641 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3642 TPT.setOperand(Ext, 0, ExtOpnd); 3643 } 3644 3645 // Get through the Instruction: 3646 // 1. Update its type. 3647 // 2. Replace the uses of Ext by Inst. 3648 // 3. Extend each operand that needs to be extended. 3649 3650 // Remember the original type of the instruction before promotion. 3651 // This is useful to know that the high bits are sign extended bits. 3652 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 3653 // Step #1. 3654 TPT.mutateType(ExtOpnd, Ext->getType()); 3655 // Step #2. 3656 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3657 // Step #3. 3658 Instruction *ExtForOpnd = Ext; 3659 3660 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 3661 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3662 ++OpIdx) { 3663 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3664 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3665 !shouldExtOperand(ExtOpnd, OpIdx)) { 3666 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 3667 continue; 3668 } 3669 // Check if we can statically extend the operand. 3670 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3671 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3672 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3673 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3674 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3675 : Cst->getValue().zext(BitWidth); 3676 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3677 continue; 3678 } 3679 // UndefValue are typed, so we have to statically sign extend them. 3680 if (isa<UndefValue>(Opnd)) { 3681 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3682 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3683 continue; 3684 } 3685 3686 // Otherwise we have to explicitly sign extend the operand. 3687 // Check if Ext was reused to extend an operand. 3688 if (!ExtForOpnd) { 3689 // If yes, create a new one. 3690 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 3691 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3692 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3693 if (!isa<Instruction>(ValForExtOpnd)) { 3694 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3695 continue; 3696 } 3697 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3698 } 3699 if (Exts) 3700 Exts->push_back(ExtForOpnd); 3701 TPT.setOperand(ExtForOpnd, 0, Opnd); 3702 3703 // Move the sign extension before the insertion point. 3704 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3705 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3706 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3707 // If more sext are required, new instructions will have to be created. 3708 ExtForOpnd = nullptr; 3709 } 3710 if (ExtForOpnd == Ext) { 3711 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 3712 TPT.eraseInstruction(Ext); 3713 } 3714 return ExtOpnd; 3715 } 3716 3717 /// Check whether or not promoting an instruction to a wider type is profitable. 3718 /// \p NewCost gives the cost of extension instructions created by the 3719 /// promotion. 3720 /// \p OldCost gives the cost of extension instructions before the promotion 3721 /// plus the number of instructions that have been 3722 /// matched in the addressing mode the promotion. 3723 /// \p PromotedOperand is the value that has been promoted. 3724 /// \return True if the promotion is profitable, false otherwise. 3725 bool AddressingModeMatcher::isPromotionProfitable( 3726 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3727 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 3728 << '\n'); 3729 // The cost of the new extensions is greater than the cost of the 3730 // old extension plus what we folded. 3731 // This is not profitable. 3732 if (NewCost > OldCost) 3733 return false; 3734 if (NewCost < OldCost) 3735 return true; 3736 // The promotion is neutral but it may help folding the sign extension in 3737 // loads for instance. 3738 // Check that we did not create an illegal instruction. 3739 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3740 } 3741 3742 /// Given an instruction or constant expr, see if we can fold the operation 3743 /// into the addressing mode. If so, update the addressing mode and return 3744 /// true, otherwise return false without modifying AddrMode. 3745 /// If \p MovedAway is not NULL, it contains the information of whether or 3746 /// not AddrInst has to be folded into the addressing mode on success. 3747 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3748 /// because it has been moved away. 3749 /// Thus AddrInst must not be added in the matched instructions. 3750 /// This state can happen when AddrInst is a sext, since it may be moved away. 3751 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3752 /// not be referenced anymore. 3753 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3754 unsigned Depth, 3755 bool *MovedAway) { 3756 // Avoid exponential behavior on extremely deep expression trees. 3757 if (Depth >= 5) return false; 3758 3759 // By default, all matched instructions stay in place. 3760 if (MovedAway) 3761 *MovedAway = false; 3762 3763 switch (Opcode) { 3764 case Instruction::PtrToInt: 3765 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3766 return matchAddr(AddrInst->getOperand(0), Depth); 3767 case Instruction::IntToPtr: { 3768 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3769 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3770 // This inttoptr is a no-op if the integer type is pointer sized. 3771 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3772 return matchAddr(AddrInst->getOperand(0), Depth); 3773 return false; 3774 } 3775 case Instruction::BitCast: 3776 // BitCast is always a noop, and we can handle it as long as it is 3777 // int->int or pointer->pointer (we don't want int<->fp or something). 3778 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 3779 // Don't touch identity bitcasts. These were probably put here by LSR, 3780 // and we don't want to mess around with them. Assume it knows what it 3781 // is doing. 3782 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3783 return matchAddr(AddrInst->getOperand(0), Depth); 3784 return false; 3785 case Instruction::AddrSpaceCast: { 3786 unsigned SrcAS 3787 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3788 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3789 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3790 return matchAddr(AddrInst->getOperand(0), Depth); 3791 return false; 3792 } 3793 case Instruction::Add: { 3794 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3795 ExtAddrMode BackupAddrMode = AddrMode; 3796 unsigned OldSize = AddrModeInsts.size(); 3797 // Start a transaction at this point. 3798 // The LHS may match but not the RHS. 3799 // Therefore, we need a higher level restoration point to undo partially 3800 // matched operation. 3801 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3802 TPT.getRestorationPoint(); 3803 3804 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3805 matchAddr(AddrInst->getOperand(0), Depth+1)) 3806 return true; 3807 3808 // Restore the old addr mode info. 3809 AddrMode = BackupAddrMode; 3810 AddrModeInsts.resize(OldSize); 3811 TPT.rollback(LastKnownGood); 3812 3813 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3814 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3815 matchAddr(AddrInst->getOperand(1), Depth+1)) 3816 return true; 3817 3818 // Otherwise we definitely can't merge the ADD in. 3819 AddrMode = BackupAddrMode; 3820 AddrModeInsts.resize(OldSize); 3821 TPT.rollback(LastKnownGood); 3822 break; 3823 } 3824 //case Instruction::Or: 3825 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3826 //break; 3827 case Instruction::Mul: 3828 case Instruction::Shl: { 3829 // Can only handle X*C and X << C. 3830 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3831 if (!RHS || RHS->getBitWidth() > 64) 3832 return false; 3833 int64_t Scale = RHS->getSExtValue(); 3834 if (Opcode == Instruction::Shl) 3835 Scale = 1LL << Scale; 3836 3837 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3838 } 3839 case Instruction::GetElementPtr: { 3840 // Scan the GEP. We check it if it contains constant offsets and at most 3841 // one variable offset. 3842 int VariableOperand = -1; 3843 unsigned VariableScale = 0; 3844 3845 int64_t ConstantOffset = 0; 3846 gep_type_iterator GTI = gep_type_begin(AddrInst); 3847 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3848 if (StructType *STy = GTI.getStructTypeOrNull()) { 3849 const StructLayout *SL = DL.getStructLayout(STy); 3850 unsigned Idx = 3851 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3852 ConstantOffset += SL->getElementOffset(Idx); 3853 } else { 3854 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3855 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3856 const APInt &CVal = CI->getValue(); 3857 if (CVal.getMinSignedBits() <= 64) { 3858 ConstantOffset += CVal.getSExtValue() * TypeSize; 3859 continue; 3860 } 3861 } 3862 if (TypeSize) { // Scales of zero don't do anything. 3863 // We only allow one variable index at the moment. 3864 if (VariableOperand != -1) 3865 return false; 3866 3867 // Remember the variable index. 3868 VariableOperand = i; 3869 VariableScale = TypeSize; 3870 } 3871 } 3872 } 3873 3874 // A common case is for the GEP to only do a constant offset. In this case, 3875 // just add it to the disp field and check validity. 3876 if (VariableOperand == -1) { 3877 AddrMode.BaseOffs += ConstantOffset; 3878 if (ConstantOffset == 0 || 3879 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 3880 // Check to see if we can fold the base pointer in too. 3881 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 3882 return true; 3883 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 3884 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 3885 ConstantOffset > 0) { 3886 // Record GEPs with non-zero offsets as candidates for splitting in the 3887 // event that the offset cannot fit into the r+i addressing mode. 3888 // Simple and common case that only one GEP is used in calculating the 3889 // address for the memory access. 3890 Value *Base = AddrInst->getOperand(0); 3891 auto *BaseI = dyn_cast<Instruction>(Base); 3892 auto *GEP = cast<GetElementPtrInst>(AddrInst); 3893 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 3894 (BaseI && !isa<CastInst>(BaseI) && 3895 !isa<GetElementPtrInst>(BaseI))) { 3896 // If the base is an instruction, make sure the GEP is not in the same 3897 // basic block as the base. If the base is an argument or global 3898 // value, make sure the GEP is not in the entry block. Otherwise, 3899 // instruction selection can undo the split. Also make sure the 3900 // parent block allows inserting non-PHI instructions before the 3901 // terminator. 3902 BasicBlock *Parent = 3903 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 3904 if (GEP->getParent() != Parent && !Parent->getTerminator()->isEHPad()) 3905 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 3906 } 3907 } 3908 AddrMode.BaseOffs -= ConstantOffset; 3909 return false; 3910 } 3911 3912 // Save the valid addressing mode in case we can't match. 3913 ExtAddrMode BackupAddrMode = AddrMode; 3914 unsigned OldSize = AddrModeInsts.size(); 3915 3916 // See if the scale and offset amount is valid for this target. 3917 AddrMode.BaseOffs += ConstantOffset; 3918 3919 // Match the base operand of the GEP. 3920 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 3921 // If it couldn't be matched, just stuff the value in a register. 3922 if (AddrMode.HasBaseReg) { 3923 AddrMode = BackupAddrMode; 3924 AddrModeInsts.resize(OldSize); 3925 return false; 3926 } 3927 AddrMode.HasBaseReg = true; 3928 AddrMode.BaseReg = AddrInst->getOperand(0); 3929 } 3930 3931 // Match the remaining variable portion of the GEP. 3932 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 3933 Depth)) { 3934 // If it couldn't be matched, try stuffing the base into a register 3935 // instead of matching it, and retrying the match of the scale. 3936 AddrMode = BackupAddrMode; 3937 AddrModeInsts.resize(OldSize); 3938 if (AddrMode.HasBaseReg) 3939 return false; 3940 AddrMode.HasBaseReg = true; 3941 AddrMode.BaseReg = AddrInst->getOperand(0); 3942 AddrMode.BaseOffs += ConstantOffset; 3943 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 3944 VariableScale, Depth)) { 3945 // If even that didn't work, bail. 3946 AddrMode = BackupAddrMode; 3947 AddrModeInsts.resize(OldSize); 3948 return false; 3949 } 3950 } 3951 3952 return true; 3953 } 3954 case Instruction::SExt: 3955 case Instruction::ZExt: { 3956 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 3957 if (!Ext) 3958 return false; 3959 3960 // Try to move this ext out of the way of the addressing mode. 3961 // Ask for a method for doing so. 3962 TypePromotionHelper::Action TPH = 3963 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 3964 if (!TPH) 3965 return false; 3966 3967 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3968 TPT.getRestorationPoint(); 3969 unsigned CreatedInstsCost = 0; 3970 unsigned ExtCost = !TLI.isExtFree(Ext); 3971 Value *PromotedOperand = 3972 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 3973 // SExt has been moved away. 3974 // Thus either it will be rematched later in the recursive calls or it is 3975 // gone. Anyway, we must not fold it into the addressing mode at this point. 3976 // E.g., 3977 // op = add opnd, 1 3978 // idx = ext op 3979 // addr = gep base, idx 3980 // is now: 3981 // promotedOpnd = ext opnd <- no match here 3982 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 3983 // addr = gep base, op <- match 3984 if (MovedAway) 3985 *MovedAway = true; 3986 3987 assert(PromotedOperand && 3988 "TypePromotionHelper should have filtered out those cases"); 3989 3990 ExtAddrMode BackupAddrMode = AddrMode; 3991 unsigned OldSize = AddrModeInsts.size(); 3992 3993 if (!matchAddr(PromotedOperand, Depth) || 3994 // The total of the new cost is equal to the cost of the created 3995 // instructions. 3996 // The total of the old cost is equal to the cost of the extension plus 3997 // what we have saved in the addressing mode. 3998 !isPromotionProfitable(CreatedInstsCost, 3999 ExtCost + (AddrModeInsts.size() - OldSize), 4000 PromotedOperand)) { 4001 AddrMode = BackupAddrMode; 4002 AddrModeInsts.resize(OldSize); 4003 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4004 TPT.rollback(LastKnownGood); 4005 return false; 4006 } 4007 return true; 4008 } 4009 } 4010 return false; 4011 } 4012 4013 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4014 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4015 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4016 /// for the target. 4017 /// 4018 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4019 // Start a transaction at this point that we will rollback if the matching 4020 // fails. 4021 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4022 TPT.getRestorationPoint(); 4023 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4024 // Fold in immediates if legal for the target. 4025 AddrMode.BaseOffs += CI->getSExtValue(); 4026 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4027 return true; 4028 AddrMode.BaseOffs -= CI->getSExtValue(); 4029 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4030 // If this is a global variable, try to fold it into the addressing mode. 4031 if (!AddrMode.BaseGV) { 4032 AddrMode.BaseGV = GV; 4033 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4034 return true; 4035 AddrMode.BaseGV = nullptr; 4036 } 4037 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4038 ExtAddrMode BackupAddrMode = AddrMode; 4039 unsigned OldSize = AddrModeInsts.size(); 4040 4041 // Check to see if it is possible to fold this operation. 4042 bool MovedAway = false; 4043 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4044 // This instruction may have been moved away. If so, there is nothing 4045 // to check here. 4046 if (MovedAway) 4047 return true; 4048 // Okay, it's possible to fold this. Check to see if it is actually 4049 // *profitable* to do so. We use a simple cost model to avoid increasing 4050 // register pressure too much. 4051 if (I->hasOneUse() || 4052 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4053 AddrModeInsts.push_back(I); 4054 return true; 4055 } 4056 4057 // It isn't profitable to do this, roll back. 4058 //cerr << "NOT FOLDING: " << *I; 4059 AddrMode = BackupAddrMode; 4060 AddrModeInsts.resize(OldSize); 4061 TPT.rollback(LastKnownGood); 4062 } 4063 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4064 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4065 return true; 4066 TPT.rollback(LastKnownGood); 4067 } else if (isa<ConstantPointerNull>(Addr)) { 4068 // Null pointer gets folded without affecting the addressing mode. 4069 return true; 4070 } 4071 4072 // Worse case, the target should support [reg] addressing modes. :) 4073 if (!AddrMode.HasBaseReg) { 4074 AddrMode.HasBaseReg = true; 4075 AddrMode.BaseReg = Addr; 4076 // Still check for legality in case the target supports [imm] but not [i+r]. 4077 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4078 return true; 4079 AddrMode.HasBaseReg = false; 4080 AddrMode.BaseReg = nullptr; 4081 } 4082 4083 // If the base register is already taken, see if we can do [r+r]. 4084 if (AddrMode.Scale == 0) { 4085 AddrMode.Scale = 1; 4086 AddrMode.ScaledReg = Addr; 4087 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4088 return true; 4089 AddrMode.Scale = 0; 4090 AddrMode.ScaledReg = nullptr; 4091 } 4092 // Couldn't match. 4093 TPT.rollback(LastKnownGood); 4094 return false; 4095 } 4096 4097 /// Check to see if all uses of OpVal by the specified inline asm call are due 4098 /// to memory operands. If so, return true, otherwise return false. 4099 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4100 const TargetLowering &TLI, 4101 const TargetRegisterInfo &TRI) { 4102 const Function *F = CI->getFunction(); 4103 TargetLowering::AsmOperandInfoVector TargetConstraints = 4104 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 4105 ImmutableCallSite(CI)); 4106 4107 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4108 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4109 4110 // Compute the constraint code and ConstraintType to use. 4111 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4112 4113 // If this asm operand is our Value*, and if it isn't an indirect memory 4114 // operand, we can't fold it! 4115 if (OpInfo.CallOperandVal == OpVal && 4116 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4117 !OpInfo.isIndirect)) 4118 return false; 4119 } 4120 4121 return true; 4122 } 4123 4124 // Max number of memory uses to look at before aborting the search to conserve 4125 // compile time. 4126 static constexpr int MaxMemoryUsesToScan = 20; 4127 4128 /// Recursively walk all the uses of I until we find a memory use. 4129 /// If we find an obviously non-foldable instruction, return true. 4130 /// Add the ultimately found memory instructions to MemoryUses. 4131 static bool FindAllMemoryUses( 4132 Instruction *I, 4133 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4134 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4135 const TargetRegisterInfo &TRI, int SeenInsts = 0) { 4136 // If we already considered this instruction, we're done. 4137 if (!ConsideredInsts.insert(I).second) 4138 return false; 4139 4140 // If this is an obviously unfoldable instruction, bail out. 4141 if (!MightBeFoldableInst(I)) 4142 return true; 4143 4144 const bool OptSize = I->getFunction()->optForSize(); 4145 4146 // Loop over all the uses, recursively processing them. 4147 for (Use &U : I->uses()) { 4148 // Conservatively return true if we're seeing a large number or a deep chain 4149 // of users. This avoids excessive compilation times in pathological cases. 4150 if (SeenInsts++ >= MaxMemoryUsesToScan) 4151 return true; 4152 4153 Instruction *UserI = cast<Instruction>(U.getUser()); 4154 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4155 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4156 continue; 4157 } 4158 4159 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4160 unsigned opNo = U.getOperandNo(); 4161 if (opNo != StoreInst::getPointerOperandIndex()) 4162 return true; // Storing addr, not into addr. 4163 MemoryUses.push_back(std::make_pair(SI, opNo)); 4164 continue; 4165 } 4166 4167 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4168 unsigned opNo = U.getOperandNo(); 4169 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4170 return true; // Storing addr, not into addr. 4171 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4172 continue; 4173 } 4174 4175 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4176 unsigned opNo = U.getOperandNo(); 4177 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4178 return true; // Storing addr, not into addr. 4179 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4180 continue; 4181 } 4182 4183 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4184 // If this is a cold call, we can sink the addressing calculation into 4185 // the cold path. See optimizeCallInst 4186 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 4187 continue; 4188 4189 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4190 if (!IA) return true; 4191 4192 // If this is a memory operand, we're cool, otherwise bail out. 4193 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4194 return true; 4195 continue; 4196 } 4197 4198 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, 4199 SeenInsts)) 4200 return true; 4201 } 4202 4203 return false; 4204 } 4205 4206 /// Return true if Val is already known to be live at the use site that we're 4207 /// folding it into. If so, there is no cost to include it in the addressing 4208 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4209 /// instruction already. 4210 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4211 Value *KnownLive2) { 4212 // If Val is either of the known-live values, we know it is live! 4213 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4214 return true; 4215 4216 // All values other than instructions and arguments (e.g. constants) are live. 4217 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4218 4219 // If Val is a constant sized alloca in the entry block, it is live, this is 4220 // true because it is just a reference to the stack/frame pointer, which is 4221 // live for the whole function. 4222 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4223 if (AI->isStaticAlloca()) 4224 return true; 4225 4226 // Check to see if this value is already used in the memory instruction's 4227 // block. If so, it's already live into the block at the very least, so we 4228 // can reasonably fold it. 4229 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4230 } 4231 4232 /// It is possible for the addressing mode of the machine to fold the specified 4233 /// instruction into a load or store that ultimately uses it. 4234 /// However, the specified instruction has multiple uses. 4235 /// Given this, it may actually increase register pressure to fold it 4236 /// into the load. For example, consider this code: 4237 /// 4238 /// X = ... 4239 /// Y = X+1 4240 /// use(Y) -> nonload/store 4241 /// Z = Y+1 4242 /// load Z 4243 /// 4244 /// In this case, Y has multiple uses, and can be folded into the load of Z 4245 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4246 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4247 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4248 /// number of computations either. 4249 /// 4250 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4251 /// X was live across 'load Z' for other reasons, we actually *would* want to 4252 /// fold the addressing mode in the Z case. This would make Y die earlier. 4253 bool AddressingModeMatcher:: 4254 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4255 ExtAddrMode &AMAfter) { 4256 if (IgnoreProfitability) return true; 4257 4258 // AMBefore is the addressing mode before this instruction was folded into it, 4259 // and AMAfter is the addressing mode after the instruction was folded. Get 4260 // the set of registers referenced by AMAfter and subtract out those 4261 // referenced by AMBefore: this is the set of values which folding in this 4262 // address extends the lifetime of. 4263 // 4264 // Note that there are only two potential values being referenced here, 4265 // BaseReg and ScaleReg (global addresses are always available, as are any 4266 // folded immediates). 4267 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4268 4269 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4270 // lifetime wasn't extended by adding this instruction. 4271 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4272 BaseReg = nullptr; 4273 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4274 ScaledReg = nullptr; 4275 4276 // If folding this instruction (and it's subexprs) didn't extend any live 4277 // ranges, we're ok with it. 4278 if (!BaseReg && !ScaledReg) 4279 return true; 4280 4281 // If all uses of this instruction can have the address mode sunk into them, 4282 // we can remove the addressing mode and effectively trade one live register 4283 // for another (at worst.) In this context, folding an addressing mode into 4284 // the use is just a particularly nice way of sinking it. 4285 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4286 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4287 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 4288 return false; // Has a non-memory, non-foldable use! 4289 4290 // Now that we know that all uses of this instruction are part of a chain of 4291 // computation involving only operations that could theoretically be folded 4292 // into a memory use, loop over each of these memory operation uses and see 4293 // if they could *actually* fold the instruction. The assumption is that 4294 // addressing modes are cheap and that duplicating the computation involved 4295 // many times is worthwhile, even on a fastpath. For sinking candidates 4296 // (i.e. cold call sites), this serves as a way to prevent excessive code 4297 // growth since most architectures have some reasonable small and fast way to 4298 // compute an effective address. (i.e LEA on x86) 4299 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4300 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4301 Instruction *User = MemoryUses[i].first; 4302 unsigned OpNo = MemoryUses[i].second; 4303 4304 // Get the access type of this use. If the use isn't a pointer, we don't 4305 // know what it accesses. 4306 Value *Address = User->getOperand(OpNo); 4307 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4308 if (!AddrTy) 4309 return false; 4310 Type *AddressAccessTy = AddrTy->getElementType(); 4311 unsigned AS = AddrTy->getAddressSpace(); 4312 4313 // Do a match against the root of this address, ignoring profitability. This 4314 // will tell us if the addressing mode for the memory operation will 4315 // *actually* cover the shared instruction. 4316 ExtAddrMode Result; 4317 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4318 0); 4319 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4320 TPT.getRestorationPoint(); 4321 AddressingModeMatcher Matcher( 4322 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4323 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4324 Matcher.IgnoreProfitability = true; 4325 bool Success = Matcher.matchAddr(Address, 0); 4326 (void)Success; assert(Success && "Couldn't select *anything*?"); 4327 4328 // The match was to check the profitability, the changes made are not 4329 // part of the original matcher. Therefore, they should be dropped 4330 // otherwise the original matcher will not present the right state. 4331 TPT.rollback(LastKnownGood); 4332 4333 // If the match didn't cover I, then it won't be shared by it. 4334 if (!is_contained(MatchedAddrModeInsts, I)) 4335 return false; 4336 4337 MatchedAddrModeInsts.clear(); 4338 } 4339 4340 return true; 4341 } 4342 4343 /// Return true if the specified values are defined in a 4344 /// different basic block than BB. 4345 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4346 if (Instruction *I = dyn_cast<Instruction>(V)) 4347 return I->getParent() != BB; 4348 return false; 4349 } 4350 4351 /// Sink addressing mode computation immediate before MemoryInst if doing so 4352 /// can be done without increasing register pressure. The need for the 4353 /// register pressure constraint means this can end up being an all or nothing 4354 /// decision for all uses of the same addressing computation. 4355 /// 4356 /// Load and Store Instructions often have addressing modes that can do 4357 /// significant amounts of computation. As such, instruction selection will try 4358 /// to get the load or store to do as much computation as possible for the 4359 /// program. The problem is that isel can only see within a single block. As 4360 /// such, we sink as much legal addressing mode work into the block as possible. 4361 /// 4362 /// This method is used to optimize both load/store and inline asms with memory 4363 /// operands. It's also used to sink addressing computations feeding into cold 4364 /// call sites into their (cold) basic block. 4365 /// 4366 /// The motivation for handling sinking into cold blocks is that doing so can 4367 /// both enable other address mode sinking (by satisfying the register pressure 4368 /// constraint above), and reduce register pressure globally (by removing the 4369 /// addressing mode computation from the fast path entirely.). 4370 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4371 Type *AccessTy, unsigned AddrSpace) { 4372 Value *Repl = Addr; 4373 4374 // Try to collapse single-value PHI nodes. This is necessary to undo 4375 // unprofitable PRE transformations. 4376 SmallVector<Value*, 8> worklist; 4377 SmallPtrSet<Value*, 16> Visited; 4378 worklist.push_back(Addr); 4379 4380 // Use a worklist to iteratively look through PHI and select nodes, and 4381 // ensure that the addressing mode obtained from the non-PHI/select roots of 4382 // the graph are compatible. 4383 bool PhiOrSelectSeen = false; 4384 SmallVector<Instruction*, 16> AddrModeInsts; 4385 const SimplifyQuery SQ(*DL, TLInfo); 4386 AddressingModeCombiner AddrModes(SQ, { Addr, MemoryInst->getParent() }); 4387 TypePromotionTransaction TPT(RemovedInsts); 4388 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4389 TPT.getRestorationPoint(); 4390 while (!worklist.empty()) { 4391 Value *V = worklist.back(); 4392 worklist.pop_back(); 4393 4394 // We allow traversing cyclic Phi nodes. 4395 // In case of success after this loop we ensure that traversing through 4396 // Phi nodes ends up with all cases to compute address of the form 4397 // BaseGV + Base + Scale * Index + Offset 4398 // where Scale and Offset are constans and BaseGV, Base and Index 4399 // are exactly the same Values in all cases. 4400 // It means that BaseGV, Scale and Offset dominate our memory instruction 4401 // and have the same value as they had in address computation represented 4402 // as Phi. So we can safely sink address computation to memory instruction. 4403 if (!Visited.insert(V).second) 4404 continue; 4405 4406 // For a PHI node, push all of its incoming values. 4407 if (PHINode *P = dyn_cast<PHINode>(V)) { 4408 for (Value *IncValue : P->incoming_values()) 4409 worklist.push_back(IncValue); 4410 PhiOrSelectSeen = true; 4411 continue; 4412 } 4413 // Similar for select. 4414 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4415 worklist.push_back(SI->getFalseValue()); 4416 worklist.push_back(SI->getTrueValue()); 4417 PhiOrSelectSeen = true; 4418 continue; 4419 } 4420 4421 // For non-PHIs, determine the addressing mode being computed. Note that 4422 // the result may differ depending on what other uses our candidate 4423 // addressing instructions might have. 4424 AddrModeInsts.clear(); 4425 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4426 0); 4427 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4428 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4429 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4430 4431 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4432 if (GEP && GEP->getParent() != MemoryInst->getParent() && 4433 !NewGEPBases.count(GEP)) { 4434 // If splitting the underlying data structure can reduce the offset of a 4435 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4436 // previously split data structures. 4437 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4438 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4439 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4440 } 4441 4442 NewAddrMode.OriginalValue = V; 4443 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4444 break; 4445 } 4446 4447 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4448 // or we have multiple but either couldn't combine them or combining them 4449 // wouldn't do anything useful, bail out now. 4450 if (!AddrModes.combineAddrModes()) { 4451 TPT.rollback(LastKnownGood); 4452 return false; 4453 } 4454 TPT.commit(); 4455 4456 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4457 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4458 4459 // If all the instructions matched are already in this BB, don't do anything. 4460 // If we saw a Phi node then it is not local definitely, and if we saw a select 4461 // then we want to push the address calculation past it even if it's already 4462 // in this BB. 4463 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4464 return IsNonLocalValue(V, MemoryInst->getParent()); 4465 })) { 4466 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 4467 << "\n"); 4468 return false; 4469 } 4470 4471 // Insert this computation right after this user. Since our caller is 4472 // scanning from the top of the BB to the bottom, reuse of the expr are 4473 // guaranteed to happen later. 4474 IRBuilder<> Builder(MemoryInst); 4475 4476 // Now that we determined the addressing expression we want to use and know 4477 // that we have to sink it into this block. Check to see if we have already 4478 // done this for some other load/store instr in this block. If so, reuse 4479 // the computation. Before attempting reuse, check if the address is valid 4480 // as it may have been erased. 4481 4482 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4483 4484 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4485 if (SunkAddr) { 4486 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 4487 << " for " << *MemoryInst << "\n"); 4488 if (SunkAddr->getType() != Addr->getType()) 4489 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4490 } else if (AddrSinkUsingGEPs || 4491 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && TTI->useAA())) { 4492 // By default, we use the GEP-based method when AA is used later. This 4493 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4494 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4495 << " for " << *MemoryInst << "\n"); 4496 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4497 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4498 4499 // First, find the pointer. 4500 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4501 ResultPtr = AddrMode.BaseReg; 4502 AddrMode.BaseReg = nullptr; 4503 } 4504 4505 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4506 // We can't add more than one pointer together, nor can we scale a 4507 // pointer (both of which seem meaningless). 4508 if (ResultPtr || AddrMode.Scale != 1) 4509 return false; 4510 4511 ResultPtr = AddrMode.ScaledReg; 4512 AddrMode.Scale = 0; 4513 } 4514 4515 // It is only safe to sign extend the BaseReg if we know that the math 4516 // required to create it did not overflow before we extend it. Since 4517 // the original IR value was tossed in favor of a constant back when 4518 // the AddrMode was created we need to bail out gracefully if widths 4519 // do not match instead of extending it. 4520 // 4521 // (See below for code to add the scale.) 4522 if (AddrMode.Scale) { 4523 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4524 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4525 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4526 return false; 4527 } 4528 4529 if (AddrMode.BaseGV) { 4530 if (ResultPtr) 4531 return false; 4532 4533 ResultPtr = AddrMode.BaseGV; 4534 } 4535 4536 // If the real base value actually came from an inttoptr, then the matcher 4537 // will look through it and provide only the integer value. In that case, 4538 // use it here. 4539 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4540 if (!ResultPtr && AddrMode.BaseReg) { 4541 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4542 "sunkaddr"); 4543 AddrMode.BaseReg = nullptr; 4544 } else if (!ResultPtr && AddrMode.Scale == 1) { 4545 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4546 "sunkaddr"); 4547 AddrMode.Scale = 0; 4548 } 4549 } 4550 4551 if (!ResultPtr && 4552 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4553 SunkAddr = Constant::getNullValue(Addr->getType()); 4554 } else if (!ResultPtr) { 4555 return false; 4556 } else { 4557 Type *I8PtrTy = 4558 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4559 Type *I8Ty = Builder.getInt8Ty(); 4560 4561 // Start with the base register. Do this first so that subsequent address 4562 // matching finds it last, which will prevent it from trying to match it 4563 // as the scaled value in case it happens to be a mul. That would be 4564 // problematic if we've sunk a different mul for the scale, because then 4565 // we'd end up sinking both muls. 4566 if (AddrMode.BaseReg) { 4567 Value *V = AddrMode.BaseReg; 4568 if (V->getType() != IntPtrTy) 4569 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4570 4571 ResultIndex = V; 4572 } 4573 4574 // Add the scale value. 4575 if (AddrMode.Scale) { 4576 Value *V = AddrMode.ScaledReg; 4577 if (V->getType() == IntPtrTy) { 4578 // done. 4579 } else { 4580 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 4581 cast<IntegerType>(V->getType())->getBitWidth() && 4582 "We can't transform if ScaledReg is too narrow"); 4583 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4584 } 4585 4586 if (AddrMode.Scale != 1) 4587 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4588 "sunkaddr"); 4589 if (ResultIndex) 4590 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4591 else 4592 ResultIndex = V; 4593 } 4594 4595 // Add in the Base Offset if present. 4596 if (AddrMode.BaseOffs) { 4597 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4598 if (ResultIndex) { 4599 // We need to add this separately from the scale above to help with 4600 // SDAG consecutive load/store merging. 4601 if (ResultPtr->getType() != I8PtrTy) 4602 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4603 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4604 } 4605 4606 ResultIndex = V; 4607 } 4608 4609 if (!ResultIndex) { 4610 SunkAddr = ResultPtr; 4611 } else { 4612 if (ResultPtr->getType() != I8PtrTy) 4613 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4614 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4615 } 4616 4617 if (SunkAddr->getType() != Addr->getType()) 4618 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4619 } 4620 } else { 4621 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 4622 // non-integral pointers, so in that case bail out now. 4623 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 4624 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 4625 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 4626 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 4627 if (DL->isNonIntegralPointerType(Addr->getType()) || 4628 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 4629 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 4630 (AddrMode.BaseGV && 4631 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 4632 return false; 4633 4634 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4635 << " for " << *MemoryInst << "\n"); 4636 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4637 Value *Result = nullptr; 4638 4639 // Start with the base register. Do this first so that subsequent address 4640 // matching finds it last, which will prevent it from trying to match it 4641 // as the scaled value in case it happens to be a mul. That would be 4642 // problematic if we've sunk a different mul for the scale, because then 4643 // we'd end up sinking both muls. 4644 if (AddrMode.BaseReg) { 4645 Value *V = AddrMode.BaseReg; 4646 if (V->getType()->isPointerTy()) 4647 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4648 if (V->getType() != IntPtrTy) 4649 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4650 Result = V; 4651 } 4652 4653 // Add the scale value. 4654 if (AddrMode.Scale) { 4655 Value *V = AddrMode.ScaledReg; 4656 if (V->getType() == IntPtrTy) { 4657 // done. 4658 } else if (V->getType()->isPointerTy()) { 4659 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4660 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4661 cast<IntegerType>(V->getType())->getBitWidth()) { 4662 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4663 } else { 4664 // It is only safe to sign extend the BaseReg if we know that the math 4665 // required to create it did not overflow before we extend it. Since 4666 // the original IR value was tossed in favor of a constant back when 4667 // the AddrMode was created we need to bail out gracefully if widths 4668 // do not match instead of extending it. 4669 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4670 if (I && (Result != AddrMode.BaseReg)) 4671 I->eraseFromParent(); 4672 return false; 4673 } 4674 if (AddrMode.Scale != 1) 4675 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4676 "sunkaddr"); 4677 if (Result) 4678 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4679 else 4680 Result = V; 4681 } 4682 4683 // Add in the BaseGV if present. 4684 if (AddrMode.BaseGV) { 4685 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 4686 if (Result) 4687 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4688 else 4689 Result = V; 4690 } 4691 4692 // Add in the Base Offset if present. 4693 if (AddrMode.BaseOffs) { 4694 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4695 if (Result) 4696 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4697 else 4698 Result = V; 4699 } 4700 4701 if (!Result) 4702 SunkAddr = Constant::getNullValue(Addr->getType()); 4703 else 4704 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 4705 } 4706 4707 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 4708 // Store the newly computed address into the cache. In the case we reused a 4709 // value, this should be idempotent. 4710 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 4711 4712 // If we have no uses, recursively delete the value and all dead instructions 4713 // using it. 4714 if (Repl->use_empty()) { 4715 // This can cause recursive deletion, which can invalidate our iterator. 4716 // Use a WeakTrackingVH to hold onto it in case this happens. 4717 Value *CurValue = &*CurInstIterator; 4718 WeakTrackingVH IterHandle(CurValue); 4719 BasicBlock *BB = CurInstIterator->getParent(); 4720 4721 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 4722 4723 if (IterHandle != CurValue) { 4724 // If the iterator instruction was recursively deleted, start over at the 4725 // start of the block. 4726 CurInstIterator = BB->begin(); 4727 SunkAddrs.clear(); 4728 } 4729 } 4730 ++NumMemoryInsts; 4731 return true; 4732 } 4733 4734 /// If there are any memory operands, use OptimizeMemoryInst to sink their 4735 /// address computing into the block when possible / profitable. 4736 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 4737 bool MadeChange = false; 4738 4739 const TargetRegisterInfo *TRI = 4740 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 4741 TargetLowering::AsmOperandInfoVector TargetConstraints = 4742 TLI->ParseConstraints(*DL, TRI, CS); 4743 unsigned ArgNo = 0; 4744 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4745 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4746 4747 // Compute the constraint code and ConstraintType to use. 4748 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 4749 4750 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4751 OpInfo.isIndirect) { 4752 Value *OpVal = CS->getArgOperand(ArgNo++); 4753 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 4754 } else if (OpInfo.Type == InlineAsm::isInput) 4755 ArgNo++; 4756 } 4757 4758 return MadeChange; 4759 } 4760 4761 /// Check if all the uses of \p Val are equivalent (or free) zero or 4762 /// sign extensions. 4763 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 4764 assert(!Val->use_empty() && "Input must have at least one use"); 4765 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 4766 bool IsSExt = isa<SExtInst>(FirstUser); 4767 Type *ExtTy = FirstUser->getType(); 4768 for (const User *U : Val->users()) { 4769 const Instruction *UI = cast<Instruction>(U); 4770 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 4771 return false; 4772 Type *CurTy = UI->getType(); 4773 // Same input and output types: Same instruction after CSE. 4774 if (CurTy == ExtTy) 4775 continue; 4776 4777 // If IsSExt is true, we are in this situation: 4778 // a = Val 4779 // b = sext ty1 a to ty2 4780 // c = sext ty1 a to ty3 4781 // Assuming ty2 is shorter than ty3, this could be turned into: 4782 // a = Val 4783 // b = sext ty1 a to ty2 4784 // c = sext ty2 b to ty3 4785 // However, the last sext is not free. 4786 if (IsSExt) 4787 return false; 4788 4789 // This is a ZExt, maybe this is free to extend from one type to another. 4790 // In that case, we would not account for a different use. 4791 Type *NarrowTy; 4792 Type *LargeTy; 4793 if (ExtTy->getScalarType()->getIntegerBitWidth() > 4794 CurTy->getScalarType()->getIntegerBitWidth()) { 4795 NarrowTy = CurTy; 4796 LargeTy = ExtTy; 4797 } else { 4798 NarrowTy = ExtTy; 4799 LargeTy = CurTy; 4800 } 4801 4802 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 4803 return false; 4804 } 4805 // All uses are the same or can be derived from one another for free. 4806 return true; 4807 } 4808 4809 /// Try to speculatively promote extensions in \p Exts and continue 4810 /// promoting through newly promoted operands recursively as far as doing so is 4811 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 4812 /// When some promotion happened, \p TPT contains the proper state to revert 4813 /// them. 4814 /// 4815 /// \return true if some promotion happened, false otherwise. 4816 bool CodeGenPrepare::tryToPromoteExts( 4817 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 4818 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 4819 unsigned CreatedInstsCost) { 4820 bool Promoted = false; 4821 4822 // Iterate over all the extensions to try to promote them. 4823 for (auto I : Exts) { 4824 // Early check if we directly have ext(load). 4825 if (isa<LoadInst>(I->getOperand(0))) { 4826 ProfitablyMovedExts.push_back(I); 4827 continue; 4828 } 4829 4830 // Check whether or not we want to do any promotion. The reason we have 4831 // this check inside the for loop is to catch the case where an extension 4832 // is directly fed by a load because in such case the extension can be moved 4833 // up without any promotion on its operands. 4834 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4835 return false; 4836 4837 // Get the action to perform the promotion. 4838 TypePromotionHelper::Action TPH = 4839 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 4840 // Check if we can promote. 4841 if (!TPH) { 4842 // Save the current extension as we cannot move up through its operand. 4843 ProfitablyMovedExts.push_back(I); 4844 continue; 4845 } 4846 4847 // Save the current state. 4848 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4849 TPT.getRestorationPoint(); 4850 SmallVector<Instruction *, 4> NewExts; 4851 unsigned NewCreatedInstsCost = 0; 4852 unsigned ExtCost = !TLI->isExtFree(I); 4853 // Promote. 4854 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4855 &NewExts, nullptr, *TLI); 4856 assert(PromotedVal && 4857 "TypePromotionHelper should have filtered out those cases"); 4858 4859 // We would be able to merge only one extension in a load. 4860 // Therefore, if we have more than 1 new extension we heuristically 4861 // cut this search path, because it means we degrade the code quality. 4862 // With exactly 2, the transformation is neutral, because we will merge 4863 // one extension but leave one. However, we optimistically keep going, 4864 // because the new extension may be removed too. 4865 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4866 // FIXME: It would be possible to propagate a negative value instead of 4867 // conservatively ceiling it to 0. 4868 TotalCreatedInstsCost = 4869 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 4870 if (!StressExtLdPromotion && 4871 (TotalCreatedInstsCost > 1 || 4872 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 4873 // This promotion is not profitable, rollback to the previous state, and 4874 // save the current extension in ProfitablyMovedExts as the latest 4875 // speculative promotion turned out to be unprofitable. 4876 TPT.rollback(LastKnownGood); 4877 ProfitablyMovedExts.push_back(I); 4878 continue; 4879 } 4880 // Continue promoting NewExts as far as doing so is profitable. 4881 SmallVector<Instruction *, 2> NewlyMovedExts; 4882 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 4883 bool NewPromoted = false; 4884 for (auto ExtInst : NewlyMovedExts) { 4885 Instruction *MovedExt = cast<Instruction>(ExtInst); 4886 Value *ExtOperand = MovedExt->getOperand(0); 4887 // If we have reached to a load, we need this extra profitability check 4888 // as it could potentially be merged into an ext(load). 4889 if (isa<LoadInst>(ExtOperand) && 4890 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 4891 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 4892 continue; 4893 4894 ProfitablyMovedExts.push_back(MovedExt); 4895 NewPromoted = true; 4896 } 4897 4898 // If none of speculative promotions for NewExts is profitable, rollback 4899 // and save the current extension (I) as the last profitable extension. 4900 if (!NewPromoted) { 4901 TPT.rollback(LastKnownGood); 4902 ProfitablyMovedExts.push_back(I); 4903 continue; 4904 } 4905 // The promotion is profitable. 4906 Promoted = true; 4907 } 4908 return Promoted; 4909 } 4910 4911 /// Merging redundant sexts when one is dominating the other. 4912 bool CodeGenPrepare::mergeSExts(Function &F) { 4913 DominatorTree DT(F); 4914 bool Changed = false; 4915 for (auto &Entry : ValToSExtendedUses) { 4916 SExts &Insts = Entry.second; 4917 SExts CurPts; 4918 for (Instruction *Inst : Insts) { 4919 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 4920 Inst->getOperand(0) != Entry.first) 4921 continue; 4922 bool inserted = false; 4923 for (auto &Pt : CurPts) { 4924 if (DT.dominates(Inst, Pt)) { 4925 Pt->replaceAllUsesWith(Inst); 4926 RemovedInsts.insert(Pt); 4927 Pt->removeFromParent(); 4928 Pt = Inst; 4929 inserted = true; 4930 Changed = true; 4931 break; 4932 } 4933 if (!DT.dominates(Pt, Inst)) 4934 // Give up if we need to merge in a common dominator as the 4935 // experiments show it is not profitable. 4936 continue; 4937 Inst->replaceAllUsesWith(Pt); 4938 RemovedInsts.insert(Inst); 4939 Inst->removeFromParent(); 4940 inserted = true; 4941 Changed = true; 4942 break; 4943 } 4944 if (!inserted) 4945 CurPts.push_back(Inst); 4946 } 4947 } 4948 return Changed; 4949 } 4950 4951 // Spliting large data structures so that the GEPs accessing them can have 4952 // smaller offsets so that they can be sunk to the same blocks as their users. 4953 // For example, a large struct starting from %base is splitted into two parts 4954 // where the second part starts from %new_base. 4955 // 4956 // Before: 4957 // BB0: 4958 // %base = 4959 // 4960 // BB1: 4961 // %gep0 = gep %base, off0 4962 // %gep1 = gep %base, off1 4963 // %gep2 = gep %base, off2 4964 // 4965 // BB2: 4966 // %load1 = load %gep0 4967 // %load2 = load %gep1 4968 // %load3 = load %gep2 4969 // 4970 // After: 4971 // BB0: 4972 // %base = 4973 // %new_base = gep %base, off0 4974 // 4975 // BB1: 4976 // %new_gep0 = %new_base 4977 // %new_gep1 = gep %new_base, off1 - off0 4978 // %new_gep2 = gep %new_base, off2 - off0 4979 // 4980 // BB2: 4981 // %load1 = load i32, i32* %new_gep0 4982 // %load2 = load i32, i32* %new_gep1 4983 // %load3 = load i32, i32* %new_gep2 4984 // 4985 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 4986 // their offsets are smaller enough to fit into the addressing mode. 4987 bool CodeGenPrepare::splitLargeGEPOffsets() { 4988 bool Changed = false; 4989 for (auto &Entry : LargeOffsetGEPMap) { 4990 Value *OldBase = Entry.first; 4991 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 4992 &LargeOffsetGEPs = Entry.second; 4993 auto compareGEPOffset = 4994 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 4995 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 4996 if (LHS.first == RHS.first) 4997 return false; 4998 if (LHS.second != RHS.second) 4999 return LHS.second < RHS.second; 5000 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5001 }; 5002 // Sorting all the GEPs of the same data structures based on the offsets. 5003 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5004 LargeOffsetGEPs.erase( 5005 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5006 LargeOffsetGEPs.end()); 5007 // Skip if all the GEPs have the same offsets. 5008 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5009 continue; 5010 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5011 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5012 Value *NewBaseGEP = nullptr; 5013 5014 auto LargeOffsetGEP = LargeOffsetGEPs.begin(); 5015 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5016 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5017 int64_t Offset = LargeOffsetGEP->second; 5018 if (Offset != BaseOffset) { 5019 TargetLowering::AddrMode AddrMode; 5020 AddrMode.BaseOffs = Offset - BaseOffset; 5021 // The result type of the GEP might not be the type of the memory 5022 // access. 5023 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5024 GEP->getResultElementType(), 5025 GEP->getAddressSpace())) { 5026 // We need to create a new base if the offset to the current base is 5027 // too large to fit into the addressing mode. So, a very large struct 5028 // may be splitted into several parts. 5029 BaseGEP = GEP; 5030 BaseOffset = Offset; 5031 NewBaseGEP = nullptr; 5032 } 5033 } 5034 5035 // Generate a new GEP to replace the current one. 5036 IRBuilder<> Builder(GEP); 5037 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5038 Type *I8PtrTy = 5039 Builder.getInt8PtrTy(GEP->getType()->getPointerAddressSpace()); 5040 Type *I8Ty = Builder.getInt8Ty(); 5041 5042 if (!NewBaseGEP) { 5043 // Create a new base if we don't have one yet. Find the insertion 5044 // pointer for the new base first. 5045 BasicBlock::iterator NewBaseInsertPt; 5046 BasicBlock *NewBaseInsertBB; 5047 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5048 // If the base of the struct is an instruction, the new base will be 5049 // inserted close to it. 5050 NewBaseInsertBB = BaseI->getParent(); 5051 if (isa<PHINode>(BaseI)) 5052 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5053 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5054 NewBaseInsertBB = 5055 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5056 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5057 } else 5058 NewBaseInsertPt = std::next(BaseI->getIterator()); 5059 } else { 5060 // If the current base is an argument or global value, the new base 5061 // will be inserted to the entry block. 5062 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5063 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5064 } 5065 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5066 // Create a new base. 5067 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5068 NewBaseGEP = OldBase; 5069 if (NewBaseGEP->getType() != I8PtrTy) 5070 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5071 NewBaseGEP = 5072 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5073 NewGEPBases.insert(NewBaseGEP); 5074 } 5075 5076 Value *NewGEP = NewBaseGEP; 5077 if (Offset == BaseOffset) { 5078 if (GEP->getType() != I8PtrTy) 5079 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5080 } else { 5081 // Calculate the new offset for the new GEP. 5082 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5083 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5084 5085 if (GEP->getType() != I8PtrTy) 5086 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5087 } 5088 GEP->replaceAllUsesWith(NewGEP); 5089 LargeOffsetGEPID.erase(GEP); 5090 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5091 GEP->eraseFromParent(); 5092 Changed = true; 5093 } 5094 } 5095 return Changed; 5096 } 5097 5098 /// Return true, if an ext(load) can be formed from an extension in 5099 /// \p MovedExts. 5100 bool CodeGenPrepare::canFormExtLd( 5101 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5102 Instruction *&Inst, bool HasPromoted) { 5103 for (auto *MovedExtInst : MovedExts) { 5104 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5105 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5106 Inst = MovedExtInst; 5107 break; 5108 } 5109 } 5110 if (!LI) 5111 return false; 5112 5113 // If they're already in the same block, there's nothing to do. 5114 // Make the cheap checks first if we did not promote. 5115 // If we promoted, we need to check if it is indeed profitable. 5116 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5117 return false; 5118 5119 return TLI->isExtLoad(LI, Inst, *DL); 5120 } 5121 5122 /// Move a zext or sext fed by a load into the same basic block as the load, 5123 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5124 /// extend into the load. 5125 /// 5126 /// E.g., 5127 /// \code 5128 /// %ld = load i32* %addr 5129 /// %add = add nuw i32 %ld, 4 5130 /// %zext = zext i32 %add to i64 5131 // \endcode 5132 /// => 5133 /// \code 5134 /// %ld = load i32* %addr 5135 /// %zext = zext i32 %ld to i64 5136 /// %add = add nuw i64 %zext, 4 5137 /// \encode 5138 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5139 /// allow us to match zext(load i32*) to i64. 5140 /// 5141 /// Also, try to promote the computations used to obtain a sign extended 5142 /// value used into memory accesses. 5143 /// E.g., 5144 /// \code 5145 /// a = add nsw i32 b, 3 5146 /// d = sext i32 a to i64 5147 /// e = getelementptr ..., i64 d 5148 /// \endcode 5149 /// => 5150 /// \code 5151 /// f = sext i32 b to i64 5152 /// a = add nsw i64 f, 3 5153 /// e = getelementptr ..., i64 a 5154 /// \endcode 5155 /// 5156 /// \p Inst[in/out] the extension may be modified during the process if some 5157 /// promotions apply. 5158 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 5159 // ExtLoad formation and address type promotion infrastructure requires TLI to 5160 // be effective. 5161 if (!TLI) 5162 return false; 5163 5164 bool AllowPromotionWithoutCommonHeader = false; 5165 /// See if it is an interesting sext operations for the address type 5166 /// promotion before trying to promote it, e.g., the ones with the right 5167 /// type and used in memory accesses. 5168 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 5169 *Inst, AllowPromotionWithoutCommonHeader); 5170 TypePromotionTransaction TPT(RemovedInsts); 5171 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5172 TPT.getRestorationPoint(); 5173 SmallVector<Instruction *, 1> Exts; 5174 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 5175 Exts.push_back(Inst); 5176 5177 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 5178 5179 // Look for a load being extended. 5180 LoadInst *LI = nullptr; 5181 Instruction *ExtFedByLoad; 5182 5183 // Try to promote a chain of computation if it allows to form an extended 5184 // load. 5185 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5186 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5187 TPT.commit(); 5188 // Move the extend into the same block as the load 5189 ExtFedByLoad->moveAfter(LI); 5190 // CGP does not check if the zext would be speculatively executed when moved 5191 // to the same basic block as the load. Preserving its original location 5192 // would pessimize the debugging experience, as well as negatively impact 5193 // the quality of sample pgo. We don't want to use "line 0" as that has a 5194 // size cost in the line-table section and logically the zext can be seen as 5195 // part of the load. Therefore we conservatively reuse the same debug 5196 // location for the load and the zext. 5197 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 5198 ++NumExtsMoved; 5199 Inst = ExtFedByLoad; 5200 return true; 5201 } 5202 5203 // Continue promoting SExts if known as considerable depending on targets. 5204 if (ATPConsiderable && 5205 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5206 HasPromoted, TPT, SpeculativelyMovedExts)) 5207 return true; 5208 5209 TPT.rollback(LastKnownGood); 5210 return false; 5211 } 5212 5213 // Perform address type promotion if doing so is profitable. 5214 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5215 // instructions that sign extended the same initial value. However, if 5216 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5217 // extension is just profitable. 5218 bool CodeGenPrepare::performAddressTypePromotion( 5219 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5220 bool HasPromoted, TypePromotionTransaction &TPT, 5221 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5222 bool Promoted = false; 5223 SmallPtrSet<Instruction *, 1> UnhandledExts; 5224 bool AllSeenFirst = true; 5225 for (auto I : SpeculativelyMovedExts) { 5226 Value *HeadOfChain = I->getOperand(0); 5227 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 5228 SeenChainsForSExt.find(HeadOfChain); 5229 // If there is an unhandled SExt which has the same header, try to promote 5230 // it as well. 5231 if (AlreadySeen != SeenChainsForSExt.end()) { 5232 if (AlreadySeen->second != nullptr) 5233 UnhandledExts.insert(AlreadySeen->second); 5234 AllSeenFirst = false; 5235 } 5236 } 5237 5238 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 5239 SpeculativelyMovedExts.size() == 1)) { 5240 TPT.commit(); 5241 if (HasPromoted) 5242 Promoted = true; 5243 for (auto I : SpeculativelyMovedExts) { 5244 Value *HeadOfChain = I->getOperand(0); 5245 SeenChainsForSExt[HeadOfChain] = nullptr; 5246 ValToSExtendedUses[HeadOfChain].push_back(I); 5247 } 5248 // Update Inst as promotion happen. 5249 Inst = SpeculativelyMovedExts.pop_back_val(); 5250 } else { 5251 // This is the first chain visited from the header, keep the current chain 5252 // as unhandled. Defer to promote this until we encounter another SExt 5253 // chain derived from the same header. 5254 for (auto I : SpeculativelyMovedExts) { 5255 Value *HeadOfChain = I->getOperand(0); 5256 SeenChainsForSExt[HeadOfChain] = Inst; 5257 } 5258 return false; 5259 } 5260 5261 if (!AllSeenFirst && !UnhandledExts.empty()) 5262 for (auto VisitedSExt : UnhandledExts) { 5263 if (RemovedInsts.count(VisitedSExt)) 5264 continue; 5265 TypePromotionTransaction TPT(RemovedInsts); 5266 SmallVector<Instruction *, 1> Exts; 5267 SmallVector<Instruction *, 2> Chains; 5268 Exts.push_back(VisitedSExt); 5269 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 5270 TPT.commit(); 5271 if (HasPromoted) 5272 Promoted = true; 5273 for (auto I : Chains) { 5274 Value *HeadOfChain = I->getOperand(0); 5275 // Mark this as handled. 5276 SeenChainsForSExt[HeadOfChain] = nullptr; 5277 ValToSExtendedUses[HeadOfChain].push_back(I); 5278 } 5279 } 5280 return Promoted; 5281 } 5282 5283 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5284 BasicBlock *DefBB = I->getParent(); 5285 5286 // If the result of a {s|z}ext and its source are both live out, rewrite all 5287 // other uses of the source with result of extension. 5288 Value *Src = I->getOperand(0); 5289 if (Src->hasOneUse()) 5290 return false; 5291 5292 // Only do this xform if truncating is free. 5293 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 5294 return false; 5295 5296 // Only safe to perform the optimization if the source is also defined in 5297 // this block. 5298 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5299 return false; 5300 5301 bool DefIsLiveOut = false; 5302 for (User *U : I->users()) { 5303 Instruction *UI = cast<Instruction>(U); 5304 5305 // Figure out which BB this ext is used in. 5306 BasicBlock *UserBB = UI->getParent(); 5307 if (UserBB == DefBB) continue; 5308 DefIsLiveOut = true; 5309 break; 5310 } 5311 if (!DefIsLiveOut) 5312 return false; 5313 5314 // Make sure none of the uses are PHI nodes. 5315 for (User *U : Src->users()) { 5316 Instruction *UI = cast<Instruction>(U); 5317 BasicBlock *UserBB = UI->getParent(); 5318 if (UserBB == DefBB) continue; 5319 // Be conservative. We don't want this xform to end up introducing 5320 // reloads just before load / store instructions. 5321 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5322 return false; 5323 } 5324 5325 // InsertedTruncs - Only insert one trunc in each block once. 5326 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5327 5328 bool MadeChange = false; 5329 for (Use &U : Src->uses()) { 5330 Instruction *User = cast<Instruction>(U.getUser()); 5331 5332 // Figure out which BB this ext is used in. 5333 BasicBlock *UserBB = User->getParent(); 5334 if (UserBB == DefBB) continue; 5335 5336 // Both src and def are live in this block. Rewrite the use. 5337 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5338 5339 if (!InsertedTrunc) { 5340 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5341 assert(InsertPt != UserBB->end()); 5342 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5343 InsertedInsts.insert(InsertedTrunc); 5344 } 5345 5346 // Replace a use of the {s|z}ext source with a use of the result. 5347 U = InsertedTrunc; 5348 ++NumExtUses; 5349 MadeChange = true; 5350 } 5351 5352 return MadeChange; 5353 } 5354 5355 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5356 // just after the load if the target can fold this into one extload instruction, 5357 // with the hope of eliminating some of the other later "and" instructions using 5358 // the loaded value. "and"s that are made trivially redundant by the insertion 5359 // of the new "and" are removed by this function, while others (e.g. those whose 5360 // path from the load goes through a phi) are left for isel to potentially 5361 // remove. 5362 // 5363 // For example: 5364 // 5365 // b0: 5366 // x = load i32 5367 // ... 5368 // b1: 5369 // y = and x, 0xff 5370 // z = use y 5371 // 5372 // becomes: 5373 // 5374 // b0: 5375 // x = load i32 5376 // x' = and x, 0xff 5377 // ... 5378 // b1: 5379 // z = use x' 5380 // 5381 // whereas: 5382 // 5383 // b0: 5384 // x1 = load i32 5385 // ... 5386 // b1: 5387 // x2 = load i32 5388 // ... 5389 // b2: 5390 // x = phi x1, x2 5391 // y = and x, 0xff 5392 // 5393 // becomes (after a call to optimizeLoadExt for each load): 5394 // 5395 // b0: 5396 // x1 = load i32 5397 // x1' = and x1, 0xff 5398 // ... 5399 // b1: 5400 // x2 = load i32 5401 // x2' = and x2, 0xff 5402 // ... 5403 // b2: 5404 // x = phi x1', x2' 5405 // y = and x, 0xff 5406 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5407 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 5408 return false; 5409 5410 // Skip loads we've already transformed. 5411 if (Load->hasOneUse() && 5412 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5413 return false; 5414 5415 // Look at all uses of Load, looking through phis, to determine how many bits 5416 // of the loaded value are needed. 5417 SmallVector<Instruction *, 8> WorkList; 5418 SmallPtrSet<Instruction *, 16> Visited; 5419 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5420 for (auto *U : Load->users()) 5421 WorkList.push_back(cast<Instruction>(U)); 5422 5423 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5424 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5425 APInt DemandBits(BitWidth, 0); 5426 APInt WidestAndBits(BitWidth, 0); 5427 5428 while (!WorkList.empty()) { 5429 Instruction *I = WorkList.back(); 5430 WorkList.pop_back(); 5431 5432 // Break use-def graph loops. 5433 if (!Visited.insert(I).second) 5434 continue; 5435 5436 // For a PHI node, push all of its users. 5437 if (auto *Phi = dyn_cast<PHINode>(I)) { 5438 for (auto *U : Phi->users()) 5439 WorkList.push_back(cast<Instruction>(U)); 5440 continue; 5441 } 5442 5443 switch (I->getOpcode()) { 5444 case Instruction::And: { 5445 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5446 if (!AndC) 5447 return false; 5448 APInt AndBits = AndC->getValue(); 5449 DemandBits |= AndBits; 5450 // Keep track of the widest and mask we see. 5451 if (AndBits.ugt(WidestAndBits)) 5452 WidestAndBits = AndBits; 5453 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5454 AndsToMaybeRemove.push_back(I); 5455 break; 5456 } 5457 5458 case Instruction::Shl: { 5459 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5460 if (!ShlC) 5461 return false; 5462 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5463 DemandBits.setLowBits(BitWidth - ShiftAmt); 5464 break; 5465 } 5466 5467 case Instruction::Trunc: { 5468 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5469 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5470 DemandBits.setLowBits(TruncBitWidth); 5471 break; 5472 } 5473 5474 default: 5475 return false; 5476 } 5477 } 5478 5479 uint32_t ActiveBits = DemandBits.getActiveBits(); 5480 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5481 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5482 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5483 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5484 // followed by an AND. 5485 // TODO: Look into removing this restriction by fixing backends to either 5486 // return false for isLoadExtLegal for i1 or have them select this pattern to 5487 // a single instruction. 5488 // 5489 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5490 // mask, since these are the only ands that will be removed by isel. 5491 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5492 WidestAndBits != DemandBits) 5493 return false; 5494 5495 LLVMContext &Ctx = Load->getType()->getContext(); 5496 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5497 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5498 5499 // Reject cases that won't be matched as extloads. 5500 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5501 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5502 return false; 5503 5504 IRBuilder<> Builder(Load->getNextNode()); 5505 auto *NewAnd = dyn_cast<Instruction>( 5506 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5507 // Mark this instruction as "inserted by CGP", so that other 5508 // optimizations don't touch it. 5509 InsertedInsts.insert(NewAnd); 5510 5511 // Replace all uses of load with new and (except for the use of load in the 5512 // new and itself). 5513 Load->replaceAllUsesWith(NewAnd); 5514 NewAnd->setOperand(0, Load); 5515 5516 // Remove any and instructions that are now redundant. 5517 for (auto *And : AndsToMaybeRemove) 5518 // Check that the and mask is the same as the one we decided to put on the 5519 // new and. 5520 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5521 And->replaceAllUsesWith(NewAnd); 5522 if (&*CurInstIterator == And) 5523 CurInstIterator = std::next(And->getIterator()); 5524 And->eraseFromParent(); 5525 ++NumAndUses; 5526 } 5527 5528 ++NumAndsAdded; 5529 return true; 5530 } 5531 5532 /// Check if V (an operand of a select instruction) is an expensive instruction 5533 /// that is only used once. 5534 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5535 auto *I = dyn_cast<Instruction>(V); 5536 // If it's safe to speculatively execute, then it should not have side 5537 // effects; therefore, it's safe to sink and possibly *not* execute. 5538 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5539 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5540 } 5541 5542 /// Returns true if a SelectInst should be turned into an explicit branch. 5543 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5544 const TargetLowering *TLI, 5545 SelectInst *SI) { 5546 // If even a predictable select is cheap, then a branch can't be cheaper. 5547 if (!TLI->isPredictableSelectExpensive()) 5548 return false; 5549 5550 // FIXME: This should use the same heuristics as IfConversion to determine 5551 // whether a select is better represented as a branch. 5552 5553 // If metadata tells us that the select condition is obviously predictable, 5554 // then we want to replace the select with a branch. 5555 uint64_t TrueWeight, FalseWeight; 5556 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5557 uint64_t Max = std::max(TrueWeight, FalseWeight); 5558 uint64_t Sum = TrueWeight + FalseWeight; 5559 if (Sum != 0) { 5560 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5561 if (Probability > TLI->getPredictableBranchThreshold()) 5562 return true; 5563 } 5564 } 5565 5566 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5567 5568 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5569 // comparison condition. If the compare has more than one use, there's 5570 // probably another cmov or setcc around, so it's not worth emitting a branch. 5571 if (!Cmp || !Cmp->hasOneUse()) 5572 return false; 5573 5574 // If either operand of the select is expensive and only needed on one side 5575 // of the select, we should form a branch. 5576 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5577 sinkSelectOperand(TTI, SI->getFalseValue())) 5578 return true; 5579 5580 return false; 5581 } 5582 5583 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5584 /// false value of \p SI. If the true/false value of \p SI is defined by any 5585 /// select instructions in \p Selects, look through the defining select 5586 /// instruction until the true/false value is not defined in \p Selects. 5587 static Value *getTrueOrFalseValue( 5588 SelectInst *SI, bool isTrue, 5589 const SmallPtrSet<const Instruction *, 2> &Selects) { 5590 Value *V; 5591 5592 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 5593 DefSI = dyn_cast<SelectInst>(V)) { 5594 assert(DefSI->getCondition() == SI->getCondition() && 5595 "The condition of DefSI does not match with SI"); 5596 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 5597 } 5598 return V; 5599 } 5600 5601 /// If we have a SelectInst that will likely profit from branch prediction, 5602 /// turn it into a branch. 5603 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 5604 // If branch conversion isn't desirable, exit early. 5605 if (DisableSelectToBranch || OptSize || !TLI) 5606 return false; 5607 5608 // Find all consecutive select instructions that share the same condition. 5609 SmallVector<SelectInst *, 2> ASI; 5610 ASI.push_back(SI); 5611 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 5612 It != SI->getParent()->end(); ++It) { 5613 SelectInst *I = dyn_cast<SelectInst>(&*It); 5614 if (I && SI->getCondition() == I->getCondition()) { 5615 ASI.push_back(I); 5616 } else { 5617 break; 5618 } 5619 } 5620 5621 SelectInst *LastSI = ASI.back(); 5622 // Increment the current iterator to skip all the rest of select instructions 5623 // because they will be either "not lowered" or "all lowered" to branch. 5624 CurInstIterator = std::next(LastSI->getIterator()); 5625 5626 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 5627 5628 // Can we convert the 'select' to CF ? 5629 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 5630 return false; 5631 5632 TargetLowering::SelectSupportKind SelectKind; 5633 if (VectorCond) 5634 SelectKind = TargetLowering::VectorMaskSelect; 5635 else if (SI->getType()->isVectorTy()) 5636 SelectKind = TargetLowering::ScalarCondVectorVal; 5637 else 5638 SelectKind = TargetLowering::ScalarValSelect; 5639 5640 if (TLI->isSelectSupported(SelectKind) && 5641 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 5642 return false; 5643 5644 ModifiedDT = true; 5645 5646 // Transform a sequence like this: 5647 // start: 5648 // %cmp = cmp uge i32 %a, %b 5649 // %sel = select i1 %cmp, i32 %c, i32 %d 5650 // 5651 // Into: 5652 // start: 5653 // %cmp = cmp uge i32 %a, %b 5654 // br i1 %cmp, label %select.true, label %select.false 5655 // select.true: 5656 // br label %select.end 5657 // select.false: 5658 // br label %select.end 5659 // select.end: 5660 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 5661 // 5662 // In addition, we may sink instructions that produce %c or %d from 5663 // the entry block into the destination(s) of the new branch. 5664 // If the true or false blocks do not contain a sunken instruction, that 5665 // block and its branch may be optimized away. In that case, one side of the 5666 // first branch will point directly to select.end, and the corresponding PHI 5667 // predecessor block will be the start block. 5668 5669 // First, we split the block containing the select into 2 blocks. 5670 BasicBlock *StartBlock = SI->getParent(); 5671 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 5672 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 5673 5674 // Delete the unconditional branch that was just created by the split. 5675 StartBlock->getTerminator()->eraseFromParent(); 5676 5677 // These are the new basic blocks for the conditional branch. 5678 // At least one will become an actual new basic block. 5679 BasicBlock *TrueBlock = nullptr; 5680 BasicBlock *FalseBlock = nullptr; 5681 BranchInst *TrueBranch = nullptr; 5682 BranchInst *FalseBranch = nullptr; 5683 5684 // Sink expensive instructions into the conditional blocks to avoid executing 5685 // them speculatively. 5686 for (SelectInst *SI : ASI) { 5687 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 5688 if (TrueBlock == nullptr) { 5689 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 5690 EndBlock->getParent(), EndBlock); 5691 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 5692 TrueBranch->setDebugLoc(SI->getDebugLoc()); 5693 } 5694 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 5695 TrueInst->moveBefore(TrueBranch); 5696 } 5697 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 5698 if (FalseBlock == nullptr) { 5699 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 5700 EndBlock->getParent(), EndBlock); 5701 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 5702 FalseBranch->setDebugLoc(SI->getDebugLoc()); 5703 } 5704 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 5705 FalseInst->moveBefore(FalseBranch); 5706 } 5707 } 5708 5709 // If there was nothing to sink, then arbitrarily choose the 'false' side 5710 // for a new input value to the PHI. 5711 if (TrueBlock == FalseBlock) { 5712 assert(TrueBlock == nullptr && 5713 "Unexpected basic block transform while optimizing select"); 5714 5715 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 5716 EndBlock->getParent(), EndBlock); 5717 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 5718 FalseBranch->setDebugLoc(SI->getDebugLoc()); 5719 } 5720 5721 // Insert the real conditional branch based on the original condition. 5722 // If we did not create a new block for one of the 'true' or 'false' paths 5723 // of the condition, it means that side of the branch goes to the end block 5724 // directly and the path originates from the start block from the point of 5725 // view of the new PHI. 5726 BasicBlock *TT, *FT; 5727 if (TrueBlock == nullptr) { 5728 TT = EndBlock; 5729 FT = FalseBlock; 5730 TrueBlock = StartBlock; 5731 } else if (FalseBlock == nullptr) { 5732 TT = TrueBlock; 5733 FT = EndBlock; 5734 FalseBlock = StartBlock; 5735 } else { 5736 TT = TrueBlock; 5737 FT = FalseBlock; 5738 } 5739 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 5740 5741 SmallPtrSet<const Instruction *, 2> INS; 5742 INS.insert(ASI.begin(), ASI.end()); 5743 // Use reverse iterator because later select may use the value of the 5744 // earlier select, and we need to propagate value through earlier select 5745 // to get the PHI operand. 5746 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 5747 SelectInst *SI = *It; 5748 // The select itself is replaced with a PHI Node. 5749 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 5750 PN->takeName(SI); 5751 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 5752 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 5753 PN->setDebugLoc(SI->getDebugLoc()); 5754 5755 SI->replaceAllUsesWith(PN); 5756 SI->eraseFromParent(); 5757 INS.erase(SI); 5758 ++NumSelectsExpanded; 5759 } 5760 5761 // Instruct OptimizeBlock to skip to the next block. 5762 CurInstIterator = StartBlock->end(); 5763 return true; 5764 } 5765 5766 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 5767 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 5768 int SplatElem = -1; 5769 for (unsigned i = 0; i < Mask.size(); ++i) { 5770 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 5771 return false; 5772 SplatElem = Mask[i]; 5773 } 5774 5775 return true; 5776 } 5777 5778 /// Some targets have expensive vector shifts if the lanes aren't all the same 5779 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 5780 /// it's often worth sinking a shufflevector splat down to its use so that 5781 /// codegen can spot all lanes are identical. 5782 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 5783 BasicBlock *DefBB = SVI->getParent(); 5784 5785 // Only do this xform if variable vector shifts are particularly expensive. 5786 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 5787 return false; 5788 5789 // We only expect better codegen by sinking a shuffle if we can recognise a 5790 // constant splat. 5791 if (!isBroadcastShuffle(SVI)) 5792 return false; 5793 5794 // InsertedShuffles - Only insert a shuffle in each block once. 5795 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 5796 5797 bool MadeChange = false; 5798 for (User *U : SVI->users()) { 5799 Instruction *UI = cast<Instruction>(U); 5800 5801 // Figure out which BB this ext is used in. 5802 BasicBlock *UserBB = UI->getParent(); 5803 if (UserBB == DefBB) continue; 5804 5805 // For now only apply this when the splat is used by a shift instruction. 5806 if (!UI->isShift()) continue; 5807 5808 // Everything checks out, sink the shuffle if the user's block doesn't 5809 // already have a copy. 5810 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 5811 5812 if (!InsertedShuffle) { 5813 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5814 assert(InsertPt != UserBB->end()); 5815 InsertedShuffle = 5816 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5817 SVI->getOperand(2), "", &*InsertPt); 5818 } 5819 5820 UI->replaceUsesOfWith(SVI, InsertedShuffle); 5821 MadeChange = true; 5822 } 5823 5824 // If we removed all uses, nuke the shuffle. 5825 if (SVI->use_empty()) { 5826 SVI->eraseFromParent(); 5827 MadeChange = true; 5828 } 5829 5830 return MadeChange; 5831 } 5832 5833 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 5834 if (!TLI || !DL) 5835 return false; 5836 5837 Value *Cond = SI->getCondition(); 5838 Type *OldType = Cond->getType(); 5839 LLVMContext &Context = Cond->getContext(); 5840 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 5841 unsigned RegWidth = RegType.getSizeInBits(); 5842 5843 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 5844 return false; 5845 5846 // If the register width is greater than the type width, expand the condition 5847 // of the switch instruction and each case constant to the width of the 5848 // register. By widening the type of the switch condition, subsequent 5849 // comparisons (for case comparisons) will not need to be extended to the 5850 // preferred register width, so we will potentially eliminate N-1 extends, 5851 // where N is the number of cases in the switch. 5852 auto *NewType = Type::getIntNTy(Context, RegWidth); 5853 5854 // Zero-extend the switch condition and case constants unless the switch 5855 // condition is a function argument that is already being sign-extended. 5856 // In that case, we can avoid an unnecessary mask/extension by sign-extending 5857 // everything instead. 5858 Instruction::CastOps ExtType = Instruction::ZExt; 5859 if (auto *Arg = dyn_cast<Argument>(Cond)) 5860 if (Arg->hasSExtAttr()) 5861 ExtType = Instruction::SExt; 5862 5863 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 5864 ExtInst->insertBefore(SI); 5865 ExtInst->setDebugLoc(SI->getDebugLoc()); 5866 SI->setCondition(ExtInst); 5867 for (auto Case : SI->cases()) { 5868 APInt NarrowConst = Case.getCaseValue()->getValue(); 5869 APInt WideConst = (ExtType == Instruction::ZExt) ? 5870 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 5871 Case.setValue(ConstantInt::get(Context, WideConst)); 5872 } 5873 5874 return true; 5875 } 5876 5877 5878 namespace { 5879 5880 /// Helper class to promote a scalar operation to a vector one. 5881 /// This class is used to move downward extractelement transition. 5882 /// E.g., 5883 /// a = vector_op <2 x i32> 5884 /// b = extractelement <2 x i32> a, i32 0 5885 /// c = scalar_op b 5886 /// store c 5887 /// 5888 /// => 5889 /// a = vector_op <2 x i32> 5890 /// c = vector_op a (equivalent to scalar_op on the related lane) 5891 /// * d = extractelement <2 x i32> c, i32 0 5892 /// * store d 5893 /// Assuming both extractelement and store can be combine, we get rid of the 5894 /// transition. 5895 class VectorPromoteHelper { 5896 /// DataLayout associated with the current module. 5897 const DataLayout &DL; 5898 5899 /// Used to perform some checks on the legality of vector operations. 5900 const TargetLowering &TLI; 5901 5902 /// Used to estimated the cost of the promoted chain. 5903 const TargetTransformInfo &TTI; 5904 5905 /// The transition being moved downwards. 5906 Instruction *Transition; 5907 5908 /// The sequence of instructions to be promoted. 5909 SmallVector<Instruction *, 4> InstsToBePromoted; 5910 5911 /// Cost of combining a store and an extract. 5912 unsigned StoreExtractCombineCost; 5913 5914 /// Instruction that will be combined with the transition. 5915 Instruction *CombineInst = nullptr; 5916 5917 /// The instruction that represents the current end of the transition. 5918 /// Since we are faking the promotion until we reach the end of the chain 5919 /// of computation, we need a way to get the current end of the transition. 5920 Instruction *getEndOfTransition() const { 5921 if (InstsToBePromoted.empty()) 5922 return Transition; 5923 return InstsToBePromoted.back(); 5924 } 5925 5926 /// Return the index of the original value in the transition. 5927 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 5928 /// c, is at index 0. 5929 unsigned getTransitionOriginalValueIdx() const { 5930 assert(isa<ExtractElementInst>(Transition) && 5931 "Other kind of transitions are not supported yet"); 5932 return 0; 5933 } 5934 5935 /// Return the index of the index in the transition. 5936 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 5937 /// is at index 1. 5938 unsigned getTransitionIdx() const { 5939 assert(isa<ExtractElementInst>(Transition) && 5940 "Other kind of transitions are not supported yet"); 5941 return 1; 5942 } 5943 5944 /// Get the type of the transition. 5945 /// This is the type of the original value. 5946 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 5947 /// transition is <2 x i32>. 5948 Type *getTransitionType() const { 5949 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 5950 } 5951 5952 /// Promote \p ToBePromoted by moving \p Def downward through. 5953 /// I.e., we have the following sequence: 5954 /// Def = Transition <ty1> a to <ty2> 5955 /// b = ToBePromoted <ty2> Def, ... 5956 /// => 5957 /// b = ToBePromoted <ty1> a, ... 5958 /// Def = Transition <ty1> ToBePromoted to <ty2> 5959 void promoteImpl(Instruction *ToBePromoted); 5960 5961 /// Check whether or not it is profitable to promote all the 5962 /// instructions enqueued to be promoted. 5963 bool isProfitableToPromote() { 5964 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 5965 unsigned Index = isa<ConstantInt>(ValIdx) 5966 ? cast<ConstantInt>(ValIdx)->getZExtValue() 5967 : -1; 5968 Type *PromotedType = getTransitionType(); 5969 5970 StoreInst *ST = cast<StoreInst>(CombineInst); 5971 unsigned AS = ST->getPointerAddressSpace(); 5972 unsigned Align = ST->getAlignment(); 5973 // Check if this store is supported. 5974 if (!TLI.allowsMisalignedMemoryAccesses( 5975 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 5976 Align)) { 5977 // If this is not supported, there is no way we can combine 5978 // the extract with the store. 5979 return false; 5980 } 5981 5982 // The scalar chain of computation has to pay for the transition 5983 // scalar to vector. 5984 // The vector chain has to account for the combining cost. 5985 uint64_t ScalarCost = 5986 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 5987 uint64_t VectorCost = StoreExtractCombineCost; 5988 for (const auto &Inst : InstsToBePromoted) { 5989 // Compute the cost. 5990 // By construction, all instructions being promoted are arithmetic ones. 5991 // Moreover, one argument is a constant that can be viewed as a splat 5992 // constant. 5993 Value *Arg0 = Inst->getOperand(0); 5994 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 5995 isa<ConstantFP>(Arg0); 5996 TargetTransformInfo::OperandValueKind Arg0OVK = 5997 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5998 : TargetTransformInfo::OK_AnyValue; 5999 TargetTransformInfo::OperandValueKind Arg1OVK = 6000 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6001 : TargetTransformInfo::OK_AnyValue; 6002 ScalarCost += TTI.getArithmeticInstrCost( 6003 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 6004 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 6005 Arg0OVK, Arg1OVK); 6006 } 6007 LLVM_DEBUG( 6008 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 6009 << ScalarCost << "\nVector: " << VectorCost << '\n'); 6010 return ScalarCost > VectorCost; 6011 } 6012 6013 /// Generate a constant vector with \p Val with the same 6014 /// number of elements as the transition. 6015 /// \p UseSplat defines whether or not \p Val should be replicated 6016 /// across the whole vector. 6017 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 6018 /// otherwise we generate a vector with as many undef as possible: 6019 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 6020 /// used at the index of the extract. 6021 Value *getConstantVector(Constant *Val, bool UseSplat) const { 6022 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 6023 if (!UseSplat) { 6024 // If we cannot determine where the constant must be, we have to 6025 // use a splat constant. 6026 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 6027 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 6028 ExtractIdx = CstVal->getSExtValue(); 6029 else 6030 UseSplat = true; 6031 } 6032 6033 unsigned End = getTransitionType()->getVectorNumElements(); 6034 if (UseSplat) 6035 return ConstantVector::getSplat(End, Val); 6036 6037 SmallVector<Constant *, 4> ConstVec; 6038 UndefValue *UndefVal = UndefValue::get(Val->getType()); 6039 for (unsigned Idx = 0; Idx != End; ++Idx) { 6040 if (Idx == ExtractIdx) 6041 ConstVec.push_back(Val); 6042 else 6043 ConstVec.push_back(UndefVal); 6044 } 6045 return ConstantVector::get(ConstVec); 6046 } 6047 6048 /// Check if promoting to a vector type an operand at \p OperandIdx 6049 /// in \p Use can trigger undefined behavior. 6050 static bool canCauseUndefinedBehavior(const Instruction *Use, 6051 unsigned OperandIdx) { 6052 // This is not safe to introduce undef when the operand is on 6053 // the right hand side of a division-like instruction. 6054 if (OperandIdx != 1) 6055 return false; 6056 switch (Use->getOpcode()) { 6057 default: 6058 return false; 6059 case Instruction::SDiv: 6060 case Instruction::UDiv: 6061 case Instruction::SRem: 6062 case Instruction::URem: 6063 return true; 6064 case Instruction::FDiv: 6065 case Instruction::FRem: 6066 return !Use->hasNoNaNs(); 6067 } 6068 llvm_unreachable(nullptr); 6069 } 6070 6071 public: 6072 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 6073 const TargetTransformInfo &TTI, Instruction *Transition, 6074 unsigned CombineCost) 6075 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 6076 StoreExtractCombineCost(CombineCost) { 6077 assert(Transition && "Do not know how to promote null"); 6078 } 6079 6080 /// Check if we can promote \p ToBePromoted to \p Type. 6081 bool canPromote(const Instruction *ToBePromoted) const { 6082 // We could support CastInst too. 6083 return isa<BinaryOperator>(ToBePromoted); 6084 } 6085 6086 /// Check if it is profitable to promote \p ToBePromoted 6087 /// by moving downward the transition through. 6088 bool shouldPromote(const Instruction *ToBePromoted) const { 6089 // Promote only if all the operands can be statically expanded. 6090 // Indeed, we do not want to introduce any new kind of transitions. 6091 for (const Use &U : ToBePromoted->operands()) { 6092 const Value *Val = U.get(); 6093 if (Val == getEndOfTransition()) { 6094 // If the use is a division and the transition is on the rhs, 6095 // we cannot promote the operation, otherwise we may create a 6096 // division by zero. 6097 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 6098 return false; 6099 continue; 6100 } 6101 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 6102 !isa<ConstantFP>(Val)) 6103 return false; 6104 } 6105 // Check that the resulting operation is legal. 6106 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 6107 if (!ISDOpcode) 6108 return false; 6109 return StressStoreExtract || 6110 TLI.isOperationLegalOrCustom( 6111 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 6112 } 6113 6114 /// Check whether or not \p Use can be combined 6115 /// with the transition. 6116 /// I.e., is it possible to do Use(Transition) => AnotherUse? 6117 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 6118 6119 /// Record \p ToBePromoted as part of the chain to be promoted. 6120 void enqueueForPromotion(Instruction *ToBePromoted) { 6121 InstsToBePromoted.push_back(ToBePromoted); 6122 } 6123 6124 /// Set the instruction that will be combined with the transition. 6125 void recordCombineInstruction(Instruction *ToBeCombined) { 6126 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 6127 CombineInst = ToBeCombined; 6128 } 6129 6130 /// Promote all the instructions enqueued for promotion if it is 6131 /// is profitable. 6132 /// \return True if the promotion happened, false otherwise. 6133 bool promote() { 6134 // Check if there is something to promote. 6135 // Right now, if we do not have anything to combine with, 6136 // we assume the promotion is not profitable. 6137 if (InstsToBePromoted.empty() || !CombineInst) 6138 return false; 6139 6140 // Check cost. 6141 if (!StressStoreExtract && !isProfitableToPromote()) 6142 return false; 6143 6144 // Promote. 6145 for (auto &ToBePromoted : InstsToBePromoted) 6146 promoteImpl(ToBePromoted); 6147 InstsToBePromoted.clear(); 6148 return true; 6149 } 6150 }; 6151 6152 } // end anonymous namespace 6153 6154 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 6155 // At this point, we know that all the operands of ToBePromoted but Def 6156 // can be statically promoted. 6157 // For Def, we need to use its parameter in ToBePromoted: 6158 // b = ToBePromoted ty1 a 6159 // Def = Transition ty1 b to ty2 6160 // Move the transition down. 6161 // 1. Replace all uses of the promoted operation by the transition. 6162 // = ... b => = ... Def. 6163 assert(ToBePromoted->getType() == Transition->getType() && 6164 "The type of the result of the transition does not match " 6165 "the final type"); 6166 ToBePromoted->replaceAllUsesWith(Transition); 6167 // 2. Update the type of the uses. 6168 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 6169 Type *TransitionTy = getTransitionType(); 6170 ToBePromoted->mutateType(TransitionTy); 6171 // 3. Update all the operands of the promoted operation with promoted 6172 // operands. 6173 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 6174 for (Use &U : ToBePromoted->operands()) { 6175 Value *Val = U.get(); 6176 Value *NewVal = nullptr; 6177 if (Val == Transition) 6178 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 6179 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 6180 isa<ConstantFP>(Val)) { 6181 // Use a splat constant if it is not safe to use undef. 6182 NewVal = getConstantVector( 6183 cast<Constant>(Val), 6184 isa<UndefValue>(Val) || 6185 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 6186 } else 6187 llvm_unreachable("Did you modified shouldPromote and forgot to update " 6188 "this?"); 6189 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 6190 } 6191 Transition->moveAfter(ToBePromoted); 6192 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 6193 } 6194 6195 /// Some targets can do store(extractelement) with one instruction. 6196 /// Try to push the extractelement towards the stores when the target 6197 /// has this feature and this is profitable. 6198 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 6199 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 6200 if (DisableStoreExtract || !TLI || 6201 (!StressStoreExtract && 6202 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 6203 Inst->getOperand(1), CombineCost))) 6204 return false; 6205 6206 // At this point we know that Inst is a vector to scalar transition. 6207 // Try to move it down the def-use chain, until: 6208 // - We can combine the transition with its single use 6209 // => we got rid of the transition. 6210 // - We escape the current basic block 6211 // => we would need to check that we are moving it at a cheaper place and 6212 // we do not do that for now. 6213 BasicBlock *Parent = Inst->getParent(); 6214 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 6215 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 6216 // If the transition has more than one use, assume this is not going to be 6217 // beneficial. 6218 while (Inst->hasOneUse()) { 6219 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 6220 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 6221 6222 if (ToBePromoted->getParent() != Parent) { 6223 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 6224 << ToBePromoted->getParent()->getName() 6225 << ") than the transition (" << Parent->getName() 6226 << ").\n"); 6227 return false; 6228 } 6229 6230 if (VPH.canCombine(ToBePromoted)) { 6231 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 6232 << "will be combined with: " << *ToBePromoted << '\n'); 6233 VPH.recordCombineInstruction(ToBePromoted); 6234 bool Changed = VPH.promote(); 6235 NumStoreExtractExposed += Changed; 6236 return Changed; 6237 } 6238 6239 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 6240 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 6241 return false; 6242 6243 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 6244 6245 VPH.enqueueForPromotion(ToBePromoted); 6246 Inst = ToBePromoted; 6247 } 6248 return false; 6249 } 6250 6251 /// For the instruction sequence of store below, F and I values 6252 /// are bundled together as an i64 value before being stored into memory. 6253 /// Sometimes it is more efficient to generate separate stores for F and I, 6254 /// which can remove the bitwise instructions or sink them to colder places. 6255 /// 6256 /// (store (or (zext (bitcast F to i32) to i64), 6257 /// (shl (zext I to i64), 32)), addr) --> 6258 /// (store F, addr) and (store I, addr+4) 6259 /// 6260 /// Similarly, splitting for other merged store can also be beneficial, like: 6261 /// For pair of {i32, i32}, i64 store --> two i32 stores. 6262 /// For pair of {i32, i16}, i64 store --> two i32 stores. 6263 /// For pair of {i16, i16}, i32 store --> two i16 stores. 6264 /// For pair of {i16, i8}, i32 store --> two i16 stores. 6265 /// For pair of {i8, i8}, i16 store --> two i8 stores. 6266 /// 6267 /// We allow each target to determine specifically which kind of splitting is 6268 /// supported. 6269 /// 6270 /// The store patterns are commonly seen from the simple code snippet below 6271 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 6272 /// void goo(const std::pair<int, float> &); 6273 /// hoo() { 6274 /// ... 6275 /// goo(std::make_pair(tmp, ftmp)); 6276 /// ... 6277 /// } 6278 /// 6279 /// Although we already have similar splitting in DAG Combine, we duplicate 6280 /// it in CodeGenPrepare to catch the case in which pattern is across 6281 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6282 /// during code expansion. 6283 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6284 const TargetLowering &TLI) { 6285 // Handle simple but common cases only. 6286 Type *StoreType = SI.getValueOperand()->getType(); 6287 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || 6288 DL.getTypeSizeInBits(StoreType) == 0) 6289 return false; 6290 6291 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6292 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 6293 if (DL.getTypeStoreSizeInBits(SplitStoreType) != 6294 DL.getTypeSizeInBits(SplitStoreType)) 6295 return false; 6296 6297 // Match the following patterns: 6298 // (store (or (zext LValue to i64), 6299 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6300 // or 6301 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6302 // (zext LValue to i64), 6303 // Expect both operands of OR and the first operand of SHL have only 6304 // one use. 6305 Value *LValue, *HValue; 6306 if (!match(SI.getValueOperand(), 6307 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6308 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6309 m_SpecificInt(HalfValBitSize)))))) 6310 return false; 6311 6312 // Check LValue and HValue are int with size less or equal than 32. 6313 if (!LValue->getType()->isIntegerTy() || 6314 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6315 !HValue->getType()->isIntegerTy() || 6316 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6317 return false; 6318 6319 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6320 // as the input of target query. 6321 auto *LBC = dyn_cast<BitCastInst>(LValue); 6322 auto *HBC = dyn_cast<BitCastInst>(HValue); 6323 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6324 : EVT::getEVT(LValue->getType()); 6325 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6326 : EVT::getEVT(HValue->getType()); 6327 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6328 return false; 6329 6330 // Start to split store. 6331 IRBuilder<> Builder(SI.getContext()); 6332 Builder.SetInsertPoint(&SI); 6333 6334 // If LValue/HValue is a bitcast in another BB, create a new one in current 6335 // BB so it may be merged with the splitted stores by dag combiner. 6336 if (LBC && LBC->getParent() != SI.getParent()) 6337 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6338 if (HBC && HBC->getParent() != SI.getParent()) 6339 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6340 6341 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 6342 auto CreateSplitStore = [&](Value *V, bool Upper) { 6343 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6344 Value *Addr = Builder.CreateBitCast( 6345 SI.getOperand(1), 6346 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6347 if ((IsLE && Upper) || (!IsLE && !Upper)) 6348 Addr = Builder.CreateGEP( 6349 SplitStoreType, Addr, 6350 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6351 Builder.CreateAlignedStore( 6352 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 6353 }; 6354 6355 CreateSplitStore(LValue, false); 6356 CreateSplitStore(HValue, true); 6357 6358 // Delete the old store. 6359 SI.eraseFromParent(); 6360 return true; 6361 } 6362 6363 // Return true if the GEP has two operands, the first operand is of a sequential 6364 // type, and the second operand is a constant. 6365 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6366 gep_type_iterator I = gep_type_begin(*GEP); 6367 return GEP->getNumOperands() == 2 && 6368 I.isSequential() && 6369 isa<ConstantInt>(GEP->getOperand(1)); 6370 } 6371 6372 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6373 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6374 // reducing liveness interference across those edges benefits global register 6375 // allocation. Currently handles only certain cases. 6376 // 6377 // For example, unmerge %GEPI and %UGEPI as below. 6378 // 6379 // ---------- BEFORE ---------- 6380 // SrcBlock: 6381 // ... 6382 // %GEPIOp = ... 6383 // ... 6384 // %GEPI = gep %GEPIOp, Idx 6385 // ... 6386 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6387 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6388 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6389 // %UGEPI) 6390 // 6391 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6392 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6393 // ... 6394 // 6395 // DstBi: 6396 // ... 6397 // %UGEPI = gep %GEPIOp, UIdx 6398 // ... 6399 // --------------------------- 6400 // 6401 // ---------- AFTER ---------- 6402 // SrcBlock: 6403 // ... (same as above) 6404 // (* %GEPI is still alive on the indirectbr edges) 6405 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6406 // unmerging) 6407 // ... 6408 // 6409 // DstBi: 6410 // ... 6411 // %UGEPI = gep %GEPI, (UIdx-Idx) 6412 // ... 6413 // --------------------------- 6414 // 6415 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6416 // no longer alive on them. 6417 // 6418 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6419 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6420 // not to disable further simplications and optimizations as a result of GEP 6421 // merging. 6422 // 6423 // Note this unmerging may increase the length of the data flow critical path 6424 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6425 // between the register pressure and the length of data-flow critical 6426 // path. Restricting this to the uncommon IndirectBr case would minimize the 6427 // impact of potentially longer critical path, if any, and the impact on compile 6428 // time. 6429 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6430 const TargetTransformInfo *TTI) { 6431 BasicBlock *SrcBlock = GEPI->getParent(); 6432 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 6433 // (non-IndirectBr) cases exit early here. 6434 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 6435 return false; 6436 // Check that GEPI is a simple gep with a single constant index. 6437 if (!GEPSequentialConstIndexed(GEPI)) 6438 return false; 6439 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 6440 // Check that GEPI is a cheap one. 6441 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 6442 > TargetTransformInfo::TCC_Basic) 6443 return false; 6444 Value *GEPIOp = GEPI->getOperand(0); 6445 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 6446 if (!isa<Instruction>(GEPIOp)) 6447 return false; 6448 auto *GEPIOpI = cast<Instruction>(GEPIOp); 6449 if (GEPIOpI->getParent() != SrcBlock) 6450 return false; 6451 // Check that GEP is used outside the block, meaning it's alive on the 6452 // IndirectBr edge(s). 6453 if (find_if(GEPI->users(), [&](User *Usr) { 6454 if (auto *I = dyn_cast<Instruction>(Usr)) { 6455 if (I->getParent() != SrcBlock) { 6456 return true; 6457 } 6458 } 6459 return false; 6460 }) == GEPI->users().end()) 6461 return false; 6462 // The second elements of the GEP chains to be unmerged. 6463 std::vector<GetElementPtrInst *> UGEPIs; 6464 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 6465 // on IndirectBr edges. 6466 for (User *Usr : GEPIOp->users()) { 6467 if (Usr == GEPI) continue; 6468 // Check if Usr is an Instruction. If not, give up. 6469 if (!isa<Instruction>(Usr)) 6470 return false; 6471 auto *UI = cast<Instruction>(Usr); 6472 // Check if Usr in the same block as GEPIOp, which is fine, skip. 6473 if (UI->getParent() == SrcBlock) 6474 continue; 6475 // Check if Usr is a GEP. If not, give up. 6476 if (!isa<GetElementPtrInst>(Usr)) 6477 return false; 6478 auto *UGEPI = cast<GetElementPtrInst>(Usr); 6479 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 6480 // the pointer operand to it. If so, record it in the vector. If not, give 6481 // up. 6482 if (!GEPSequentialConstIndexed(UGEPI)) 6483 return false; 6484 if (UGEPI->getOperand(0) != GEPIOp) 6485 return false; 6486 if (GEPIIdx->getType() != 6487 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 6488 return false; 6489 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6490 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 6491 > TargetTransformInfo::TCC_Basic) 6492 return false; 6493 UGEPIs.push_back(UGEPI); 6494 } 6495 if (UGEPIs.size() == 0) 6496 return false; 6497 // Check the materializing cost of (Uidx-Idx). 6498 for (GetElementPtrInst *UGEPI : UGEPIs) { 6499 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6500 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 6501 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 6502 if (ImmCost > TargetTransformInfo::TCC_Basic) 6503 return false; 6504 } 6505 // Now unmerge between GEPI and UGEPIs. 6506 for (GetElementPtrInst *UGEPI : UGEPIs) { 6507 UGEPI->setOperand(0, GEPI); 6508 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6509 Constant *NewUGEPIIdx = 6510 ConstantInt::get(GEPIIdx->getType(), 6511 UGEPIIdx->getValue() - GEPIIdx->getValue()); 6512 UGEPI->setOperand(1, NewUGEPIIdx); 6513 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 6514 // inbounds to avoid UB. 6515 if (!GEPI->isInBounds()) { 6516 UGEPI->setIsInBounds(false); 6517 } 6518 } 6519 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 6520 // alive on IndirectBr edges). 6521 assert(find_if(GEPIOp->users(), [&](User *Usr) { 6522 return cast<Instruction>(Usr)->getParent() != SrcBlock; 6523 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 6524 return true; 6525 } 6526 6527 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 6528 // Bail out if we inserted the instruction to prevent optimizations from 6529 // stepping on each other's toes. 6530 if (InsertedInsts.count(I)) 6531 return false; 6532 6533 if (PHINode *P = dyn_cast<PHINode>(I)) { 6534 // It is possible for very late stage optimizations (such as SimplifyCFG) 6535 // to introduce PHI nodes too late to be cleaned up. If we detect such a 6536 // trivial PHI, go ahead and zap it here. 6537 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 6538 P->replaceAllUsesWith(V); 6539 P->eraseFromParent(); 6540 ++NumPHIsElim; 6541 return true; 6542 } 6543 return false; 6544 } 6545 6546 if (CastInst *CI = dyn_cast<CastInst>(I)) { 6547 // If the source of the cast is a constant, then this should have 6548 // already been constant folded. The only reason NOT to constant fold 6549 // it is if something (e.g. LSR) was careful to place the constant 6550 // evaluation in a block other than then one that uses it (e.g. to hoist 6551 // the address of globals out of a loop). If this is the case, we don't 6552 // want to forward-subst the cast. 6553 if (isa<Constant>(CI->getOperand(0))) 6554 return false; 6555 6556 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 6557 return true; 6558 6559 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 6560 /// Sink a zext or sext into its user blocks if the target type doesn't 6561 /// fit in one register 6562 if (TLI && 6563 TLI->getTypeAction(CI->getContext(), 6564 TLI->getValueType(*DL, CI->getType())) == 6565 TargetLowering::TypeExpandInteger) { 6566 return SinkCast(CI); 6567 } else { 6568 bool MadeChange = optimizeExt(I); 6569 return MadeChange | optimizeExtUses(I); 6570 } 6571 } 6572 return false; 6573 } 6574 6575 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 6576 if (!TLI || !TLI->hasMultipleConditionRegisters()) 6577 return OptimizeCmpExpression(CI, TLI); 6578 6579 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6580 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6581 if (TLI) { 6582 bool Modified = optimizeLoadExt(LI); 6583 unsigned AS = LI->getPointerAddressSpace(); 6584 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 6585 return Modified; 6586 } 6587 return false; 6588 } 6589 6590 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 6591 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 6592 return true; 6593 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6594 if (TLI) { 6595 unsigned AS = SI->getPointerAddressSpace(); 6596 return optimizeMemoryInst(I, SI->getOperand(1), 6597 SI->getOperand(0)->getType(), AS); 6598 } 6599 return false; 6600 } 6601 6602 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 6603 unsigned AS = RMW->getPointerAddressSpace(); 6604 return optimizeMemoryInst(I, RMW->getPointerOperand(), 6605 RMW->getType(), AS); 6606 } 6607 6608 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 6609 unsigned AS = CmpX->getPointerAddressSpace(); 6610 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 6611 CmpX->getCompareOperand()->getType(), AS); 6612 } 6613 6614 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 6615 6616 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 6617 EnableAndCmpSinking && TLI) 6618 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 6619 6620 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 6621 BinOp->getOpcode() == Instruction::LShr)) { 6622 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 6623 if (TLI && CI && TLI->hasExtractBitsInsn()) 6624 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 6625 6626 return false; 6627 } 6628 6629 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 6630 if (GEPI->hasAllZeroIndices()) { 6631 /// The GEP operand must be a pointer, so must its result -> BitCast 6632 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 6633 GEPI->getName(), GEPI); 6634 NC->setDebugLoc(GEPI->getDebugLoc()); 6635 GEPI->replaceAllUsesWith(NC); 6636 GEPI->eraseFromParent(); 6637 ++NumGEPsElim; 6638 optimizeInst(NC, ModifiedDT); 6639 return true; 6640 } 6641 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 6642 return true; 6643 } 6644 return false; 6645 } 6646 6647 if (CallInst *CI = dyn_cast<CallInst>(I)) 6648 return optimizeCallInst(CI, ModifiedDT); 6649 6650 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 6651 return optimizeSelectInst(SI); 6652 6653 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 6654 return optimizeShuffleVectorInst(SVI); 6655 6656 if (auto *Switch = dyn_cast<SwitchInst>(I)) 6657 return optimizeSwitchInst(Switch); 6658 6659 if (isa<ExtractElementInst>(I)) 6660 return optimizeExtractElementInst(I); 6661 6662 return false; 6663 } 6664 6665 /// Given an OR instruction, check to see if this is a bitreverse 6666 /// idiom. If so, insert the new intrinsic and return true. 6667 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 6668 const TargetLowering &TLI) { 6669 if (!I.getType()->isIntegerTy() || 6670 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 6671 TLI.getValueType(DL, I.getType(), true))) 6672 return false; 6673 6674 SmallVector<Instruction*, 4> Insts; 6675 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 6676 return false; 6677 Instruction *LastInst = Insts.back(); 6678 I.replaceAllUsesWith(LastInst); 6679 RecursivelyDeleteTriviallyDeadInstructions(&I); 6680 return true; 6681 } 6682 6683 // In this pass we look for GEP and cast instructions that are used 6684 // across basic blocks and rewrite them to improve basic-block-at-a-time 6685 // selection. 6686 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 6687 SunkAddrs.clear(); 6688 bool MadeChange = false; 6689 6690 CurInstIterator = BB.begin(); 6691 while (CurInstIterator != BB.end()) { 6692 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 6693 if (ModifiedDT) 6694 return true; 6695 } 6696 6697 bool MadeBitReverse = true; 6698 while (TLI && MadeBitReverse) { 6699 MadeBitReverse = false; 6700 for (auto &I : reverse(BB)) { 6701 if (makeBitReverse(I, *DL, *TLI)) { 6702 MadeBitReverse = MadeChange = true; 6703 ModifiedDT = true; 6704 break; 6705 } 6706 } 6707 } 6708 MadeChange |= dupRetToEnableTailCallOpts(&BB); 6709 6710 return MadeChange; 6711 } 6712 6713 // llvm.dbg.value is far away from the value then iSel may not be able 6714 // handle it properly. iSel will drop llvm.dbg.value if it can not 6715 // find a node corresponding to the value. 6716 bool CodeGenPrepare::placeDbgValues(Function &F) { 6717 bool MadeChange = false; 6718 for (BasicBlock &BB : F) { 6719 Instruction *PrevNonDbgInst = nullptr; 6720 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 6721 Instruction *Insn = &*BI++; 6722 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 6723 // Leave dbg.values that refer to an alloca alone. These 6724 // intrinsics describe the address of a variable (= the alloca) 6725 // being taken. They should not be moved next to the alloca 6726 // (and to the beginning of the scope), but rather stay close to 6727 // where said address is used. 6728 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 6729 PrevNonDbgInst = Insn; 6730 continue; 6731 } 6732 6733 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 6734 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 6735 // If VI is a phi in a block with an EHPad terminator, we can't insert 6736 // after it. 6737 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 6738 continue; 6739 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 6740 << *DVI << ' ' << *VI); 6741 DVI->removeFromParent(); 6742 if (isa<PHINode>(VI)) 6743 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 6744 else 6745 DVI->insertAfter(VI); 6746 MadeChange = true; 6747 ++NumDbgValueMoved; 6748 } 6749 } 6750 } 6751 return MadeChange; 6752 } 6753 6754 /// Scale down both weights to fit into uint32_t. 6755 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 6756 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 6757 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 6758 NewTrue = NewTrue / Scale; 6759 NewFalse = NewFalse / Scale; 6760 } 6761 6762 /// Some targets prefer to split a conditional branch like: 6763 /// \code 6764 /// %0 = icmp ne i32 %a, 0 6765 /// %1 = icmp ne i32 %b, 0 6766 /// %or.cond = or i1 %0, %1 6767 /// br i1 %or.cond, label %TrueBB, label %FalseBB 6768 /// \endcode 6769 /// into multiple branch instructions like: 6770 /// \code 6771 /// bb1: 6772 /// %0 = icmp ne i32 %a, 0 6773 /// br i1 %0, label %TrueBB, label %bb2 6774 /// bb2: 6775 /// %1 = icmp ne i32 %b, 0 6776 /// br i1 %1, label %TrueBB, label %FalseBB 6777 /// \endcode 6778 /// This usually allows instruction selection to do even further optimizations 6779 /// and combine the compare with the branch instruction. Currently this is 6780 /// applied for targets which have "cheap" jump instructions. 6781 /// 6782 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 6783 /// 6784 bool CodeGenPrepare::splitBranchCondition(Function &F) { 6785 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 6786 return false; 6787 6788 bool MadeChange = false; 6789 for (auto &BB : F) { 6790 // Does this BB end with the following? 6791 // %cond1 = icmp|fcmp|binary instruction ... 6792 // %cond2 = icmp|fcmp|binary instruction ... 6793 // %cond.or = or|and i1 %cond1, cond2 6794 // br i1 %cond.or label %dest1, label %dest2" 6795 BinaryOperator *LogicOp; 6796 BasicBlock *TBB, *FBB; 6797 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 6798 continue; 6799 6800 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 6801 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 6802 continue; 6803 6804 unsigned Opc; 6805 Value *Cond1, *Cond2; 6806 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 6807 m_OneUse(m_Value(Cond2))))) 6808 Opc = Instruction::And; 6809 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 6810 m_OneUse(m_Value(Cond2))))) 6811 Opc = Instruction::Or; 6812 else 6813 continue; 6814 6815 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 6816 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 6817 continue; 6818 6819 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 6820 6821 // Create a new BB. 6822 auto TmpBB = 6823 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 6824 BB.getParent(), BB.getNextNode()); 6825 6826 // Update original basic block by using the first condition directly by the 6827 // branch instruction and removing the no longer needed and/or instruction. 6828 Br1->setCondition(Cond1); 6829 LogicOp->eraseFromParent(); 6830 6831 // Depending on the condition we have to either replace the true or the 6832 // false successor of the original branch instruction. 6833 if (Opc == Instruction::And) 6834 Br1->setSuccessor(0, TmpBB); 6835 else 6836 Br1->setSuccessor(1, TmpBB); 6837 6838 // Fill in the new basic block. 6839 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 6840 if (auto *I = dyn_cast<Instruction>(Cond2)) { 6841 I->removeFromParent(); 6842 I->insertBefore(Br2); 6843 } 6844 6845 // Update PHI nodes in both successors. The original BB needs to be 6846 // replaced in one successor's PHI nodes, because the branch comes now from 6847 // the newly generated BB (NewBB). In the other successor we need to add one 6848 // incoming edge to the PHI nodes, because both branch instructions target 6849 // now the same successor. Depending on the original branch condition 6850 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 6851 // we perform the correct update for the PHI nodes. 6852 // This doesn't change the successor order of the just created branch 6853 // instruction (or any other instruction). 6854 if (Opc == Instruction::Or) 6855 std::swap(TBB, FBB); 6856 6857 // Replace the old BB with the new BB. 6858 for (PHINode &PN : TBB->phis()) { 6859 int i; 6860 while ((i = PN.getBasicBlockIndex(&BB)) >= 0) 6861 PN.setIncomingBlock(i, TmpBB); 6862 } 6863 6864 // Add another incoming edge form the new BB. 6865 for (PHINode &PN : FBB->phis()) { 6866 auto *Val = PN.getIncomingValueForBlock(&BB); 6867 PN.addIncoming(Val, TmpBB); 6868 } 6869 6870 // Update the branch weights (from SelectionDAGBuilder:: 6871 // FindMergedConditions). 6872 if (Opc == Instruction::Or) { 6873 // Codegen X | Y as: 6874 // BB1: 6875 // jmp_if_X TBB 6876 // jmp TmpBB 6877 // TmpBB: 6878 // jmp_if_Y TBB 6879 // jmp FBB 6880 // 6881 6882 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 6883 // The requirement is that 6884 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 6885 // = TrueProb for original BB. 6886 // Assuming the original weights are A and B, one choice is to set BB1's 6887 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 6888 // assumes that 6889 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 6890 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 6891 // TmpBB, but the math is more complicated. 6892 uint64_t TrueWeight, FalseWeight; 6893 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6894 uint64_t NewTrueWeight = TrueWeight; 6895 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 6896 scaleWeights(NewTrueWeight, NewFalseWeight); 6897 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6898 .createBranchWeights(TrueWeight, FalseWeight)); 6899 6900 NewTrueWeight = TrueWeight; 6901 NewFalseWeight = 2 * FalseWeight; 6902 scaleWeights(NewTrueWeight, NewFalseWeight); 6903 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6904 .createBranchWeights(TrueWeight, FalseWeight)); 6905 } 6906 } else { 6907 // Codegen X & Y as: 6908 // BB1: 6909 // jmp_if_X TmpBB 6910 // jmp FBB 6911 // TmpBB: 6912 // jmp_if_Y TBB 6913 // jmp FBB 6914 // 6915 // This requires creation of TmpBB after CurBB. 6916 6917 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 6918 // The requirement is that 6919 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 6920 // = FalseProb for original BB. 6921 // Assuming the original weights are A and B, one choice is to set BB1's 6922 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 6923 // assumes that 6924 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 6925 uint64_t TrueWeight, FalseWeight; 6926 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6927 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 6928 uint64_t NewFalseWeight = FalseWeight; 6929 scaleWeights(NewTrueWeight, NewFalseWeight); 6930 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6931 .createBranchWeights(TrueWeight, FalseWeight)); 6932 6933 NewTrueWeight = 2 * TrueWeight; 6934 NewFalseWeight = FalseWeight; 6935 scaleWeights(NewTrueWeight, NewFalseWeight); 6936 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6937 .createBranchWeights(TrueWeight, FalseWeight)); 6938 } 6939 } 6940 6941 // Note: No point in getting fancy here, since the DT info is never 6942 // available to CodeGenPrepare. 6943 ModifiedDT = true; 6944 6945 MadeChange = true; 6946 6947 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 6948 TmpBB->dump()); 6949 } 6950 return MadeChange; 6951 } 6952