1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass munges the code in the input function to better prepare it for
11 // SelectionDAG-based code generation. This works around limitations in it's
12 // basic-block-at-a-time approach. It should eventually be removed.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/ProfileSummaryInfo.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/CodeGen/Analysis.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/SelectionDAGNodes.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetPassConfig.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Argument.h"
44 #include "llvm/IR/Attributes.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/CallSite.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GetElementPtrTypeIterator.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/GlobalVariable.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InlineAsm.h"
58 #include "llvm/IR/InstrTypes.h"
59 #include "llvm/IR/Instruction.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/Intrinsics.h"
63 #include "llvm/IR/LLVMContext.h"
64 #include "llvm/IR/MDBuilder.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Statepoint.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/IR/ValueHandle.h"
74 #include "llvm/IR/ValueMap.h"
75 #include "llvm/Pass.h"
76 #include "llvm/Support/BlockFrequency.h"
77 #include "llvm/Support/BranchProbability.h"
78 #include "llvm/Support/Casting.h"
79 #include "llvm/Support/CommandLine.h"
80 #include "llvm/Support/Compiler.h"
81 #include "llvm/Support/Debug.h"
82 #include "llvm/Support/ErrorHandling.h"
83 #include "llvm/Support/MachineValueType.h"
84 #include "llvm/Support/MathExtras.h"
85 #include "llvm/Support/raw_ostream.h"
86 #include "llvm/Target/TargetMachine.h"
87 #include "llvm/Target/TargetOptions.h"
88 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
89 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
90 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
91 #include <algorithm>
92 #include <cassert>
93 #include <cstdint>
94 #include <iterator>
95 #include <limits>
96 #include <memory>
97 #include <utility>
98 #include <vector>
99 
100 using namespace llvm;
101 using namespace llvm::PatternMatch;
102 
103 #define DEBUG_TYPE "codegenprepare"
104 
105 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
106 STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
107 STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
108 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
109                       "sunken Cmps");
110 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
111                        "of sunken Casts");
112 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
113                           "computations were sunk");
114 STATISTIC(NumMemoryInstsPhiCreated,
115           "Number of phis created when address "
116           "computations were sunk to memory instructions");
117 STATISTIC(NumMemoryInstsSelectCreated,
118           "Number of select created when address "
119           "computations were sunk to memory instructions");
120 STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
121 STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
122 STATISTIC(NumAndsAdded,
123           "Number of and mask instructions added to form ext loads");
124 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
125 STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
126 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
127 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
128 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
129 
130 static cl::opt<bool> DisableBranchOpts(
131   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
132   cl::desc("Disable branch optimizations in CodeGenPrepare"));
133 
134 static cl::opt<bool>
135     DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
136                   cl::desc("Disable GC optimizations in CodeGenPrepare"));
137 
138 static cl::opt<bool> DisableSelectToBranch(
139   "disable-cgp-select2branch", cl::Hidden, cl::init(false),
140   cl::desc("Disable select to branch conversion."));
141 
142 static cl::opt<bool> AddrSinkUsingGEPs(
143   "addr-sink-using-gep", cl::Hidden, cl::init(true),
144   cl::desc("Address sinking in CGP using GEPs."));
145 
146 static cl::opt<bool> EnableAndCmpSinking(
147    "enable-andcmp-sinking", cl::Hidden, cl::init(true),
148    cl::desc("Enable sinkinig and/cmp into branches."));
149 
150 static cl::opt<bool> DisableStoreExtract(
151     "disable-cgp-store-extract", cl::Hidden, cl::init(false),
152     cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
153 
154 static cl::opt<bool> StressStoreExtract(
155     "stress-cgp-store-extract", cl::Hidden, cl::init(false),
156     cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
157 
158 static cl::opt<bool> DisableExtLdPromotion(
159     "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
160     cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
161              "CodeGenPrepare"));
162 
163 static cl::opt<bool> StressExtLdPromotion(
164     "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
165     cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
166              "optimization in CodeGenPrepare"));
167 
168 static cl::opt<bool> DisablePreheaderProtect(
169     "disable-preheader-prot", cl::Hidden, cl::init(false),
170     cl::desc("Disable protection against removing loop preheaders"));
171 
172 static cl::opt<bool> ProfileGuidedSectionPrefix(
173     "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
174     cl::desc("Use profile info to add section prefix for hot/cold functions"));
175 
176 static cl::opt<unsigned> FreqRatioToSkipMerge(
177     "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
178     cl::desc("Skip merging empty blocks if (frequency of empty block) / "
179              "(frequency of destination block) is greater than this ratio"));
180 
181 static cl::opt<bool> ForceSplitStore(
182     "force-split-store", cl::Hidden, cl::init(false),
183     cl::desc("Force store splitting no matter what the target query says."));
184 
185 static cl::opt<bool>
186 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
187     cl::desc("Enable merging of redundant sexts when one is dominating"
188     " the other."), cl::init(true));
189 
190 static cl::opt<bool> DisableComplexAddrModes(
191     "disable-complex-addr-modes", cl::Hidden, cl::init(false),
192     cl::desc("Disables combining addressing modes with different parts "
193              "in optimizeMemoryInst."));
194 
195 static cl::opt<bool>
196 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
197                 cl::desc("Allow creation of Phis in Address sinking."));
198 
199 static cl::opt<bool>
200 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true),
201                    cl::desc("Allow creation of selects in Address sinking."));
202 
203 static cl::opt<bool> AddrSinkCombineBaseReg(
204     "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
205     cl::desc("Allow combining of BaseReg field in Address sinking."));
206 
207 static cl::opt<bool> AddrSinkCombineBaseGV(
208     "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
209     cl::desc("Allow combining of BaseGV field in Address sinking."));
210 
211 static cl::opt<bool> AddrSinkCombineBaseOffs(
212     "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
213     cl::desc("Allow combining of BaseOffs field in Address sinking."));
214 
215 static cl::opt<bool> AddrSinkCombineScaledReg(
216     "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
217     cl::desc("Allow combining of ScaledReg field in Address sinking."));
218 
219 static cl::opt<bool>
220     EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
221                          cl::init(true),
222                          cl::desc("Enable splitting large offset of GEP."));
223 
224 namespace {
225 
226 enum ExtType {
227   ZeroExtension,   // Zero extension has been seen.
228   SignExtension,   // Sign extension has been seen.
229   BothExtension    // This extension type is used if we saw sext after
230                    // ZeroExtension had been set, or if we saw zext after
231                    // SignExtension had been set. It makes the type
232                    // information of a promoted instruction invalid.
233 };
234 
235 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
236 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>;
237 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
238 using SExts = SmallVector<Instruction *, 16>;
239 using ValueToSExts = DenseMap<Value *, SExts>;
240 
241 class TypePromotionTransaction;
242 
243   class CodeGenPrepare : public FunctionPass {
244     const TargetMachine *TM = nullptr;
245     const TargetSubtargetInfo *SubtargetInfo;
246     const TargetLowering *TLI = nullptr;
247     const TargetRegisterInfo *TRI;
248     const TargetTransformInfo *TTI = nullptr;
249     const TargetLibraryInfo *TLInfo;
250     const LoopInfo *LI;
251     std::unique_ptr<BlockFrequencyInfo> BFI;
252     std::unique_ptr<BranchProbabilityInfo> BPI;
253 
254     /// As we scan instructions optimizing them, this is the next instruction
255     /// to optimize. Transforms that can invalidate this should update it.
256     BasicBlock::iterator CurInstIterator;
257 
258     /// Keeps track of non-local addresses that have been sunk into a block.
259     /// This allows us to avoid inserting duplicate code for blocks with
260     /// multiple load/stores of the same address. The usage of WeakTrackingVH
261     /// enables SunkAddrs to be treated as a cache whose entries can be
262     /// invalidated if a sunken address computation has been erased.
263     ValueMap<Value*, WeakTrackingVH> SunkAddrs;
264 
265     /// Keeps track of all instructions inserted for the current function.
266     SetOfInstrs InsertedInsts;
267 
268     /// Keeps track of the type of the related instruction before their
269     /// promotion for the current function.
270     InstrToOrigTy PromotedInsts;
271 
272     /// Keep track of instructions removed during promotion.
273     SetOfInstrs RemovedInsts;
274 
275     /// Keep track of sext chains based on their initial value.
276     DenseMap<Value *, Instruction *> SeenChainsForSExt;
277 
278     /// Keep track of GEPs accessing the same data structures such as structs or
279     /// arrays that are candidates to be split later because of their large
280     /// size.
281     MapVector<
282         AssertingVH<Value>,
283         SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
284         LargeOffsetGEPMap;
285 
286     /// Keep track of new GEP base after splitting the GEPs having large offset.
287     SmallSet<AssertingVH<Value>, 2> NewGEPBases;
288 
289     /// Map serial numbers to Large offset GEPs.
290     DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;
291 
292     /// Keep track of SExt promoted.
293     ValueToSExts ValToSExtendedUses;
294 
295     /// True if CFG is modified in any way.
296     bool ModifiedDT;
297 
298     /// True if optimizing for size.
299     bool OptSize;
300 
301     /// DataLayout for the Function being processed.
302     const DataLayout *DL = nullptr;
303 
304   public:
305     static char ID; // Pass identification, replacement for typeid
306 
307     CodeGenPrepare() : FunctionPass(ID) {
308       initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
309     }
310 
311     bool runOnFunction(Function &F) override;
312 
313     StringRef getPassName() const override { return "CodeGen Prepare"; }
314 
315     void getAnalysisUsage(AnalysisUsage &AU) const override {
316       // FIXME: When we can selectively preserve passes, preserve the domtree.
317       AU.addRequired<ProfileSummaryInfoWrapperPass>();
318       AU.addRequired<TargetLibraryInfoWrapperPass>();
319       AU.addRequired<TargetTransformInfoWrapperPass>();
320       AU.addRequired<LoopInfoWrapperPass>();
321     }
322 
323   private:
324     bool eliminateFallThrough(Function &F);
325     bool eliminateMostlyEmptyBlocks(Function &F);
326     BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
327     bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
328     void eliminateMostlyEmptyBlock(BasicBlock *BB);
329     bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
330                                        bool isPreheader);
331     bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT);
332     bool optimizeInst(Instruction *I, bool &ModifiedDT);
333     bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
334                             Type *AccessTy, unsigned AddrSpace);
335     bool optimizeInlineAsmInst(CallInst *CS);
336     bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
337     bool optimizeExt(Instruction *&I);
338     bool optimizeExtUses(Instruction *I);
339     bool optimizeLoadExt(LoadInst *Load);
340     bool optimizeSelectInst(SelectInst *SI);
341     bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI);
342     bool optimizeSwitchInst(SwitchInst *SI);
343     bool optimizeExtractElementInst(Instruction *Inst);
344     bool dupRetToEnableTailCallOpts(BasicBlock *BB);
345     bool placeDbgValues(Function &F);
346     bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
347                       LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
348     bool tryToPromoteExts(TypePromotionTransaction &TPT,
349                           const SmallVectorImpl<Instruction *> &Exts,
350                           SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
351                           unsigned CreatedInstsCost = 0);
352     bool mergeSExts(Function &F);
353     bool splitLargeGEPOffsets();
354     bool performAddressTypePromotion(
355         Instruction *&Inst,
356         bool AllowPromotionWithoutCommonHeader,
357         bool HasPromoted, TypePromotionTransaction &TPT,
358         SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
359     bool splitBranchCondition(Function &F);
360     bool simplifyOffsetableRelocate(Instruction &I);
361   };
362 
363 } // end anonymous namespace
364 
365 char CodeGenPrepare::ID = 0;
366 
367 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
368                       "Optimize for code generation", false, false)
369 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
370 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
371                     "Optimize for code generation", false, false)
372 
373 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
374 
375 bool CodeGenPrepare::runOnFunction(Function &F) {
376   if (skipFunction(F))
377     return false;
378 
379   DL = &F.getParent()->getDataLayout();
380 
381   bool EverMadeChange = false;
382   // Clear per function information.
383   InsertedInsts.clear();
384   PromotedInsts.clear();
385 
386   ModifiedDT = false;
387   if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
388     TM = &TPC->getTM<TargetMachine>();
389     SubtargetInfo = TM->getSubtargetImpl(F);
390     TLI = SubtargetInfo->getTargetLowering();
391     TRI = SubtargetInfo->getRegisterInfo();
392   }
393   TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
394   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
395   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
396   BPI.reset(new BranchProbabilityInfo(F, *LI));
397   BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
398   OptSize = F.optForSize();
399 
400   ProfileSummaryInfo *PSI =
401       getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
402   if (ProfileGuidedSectionPrefix) {
403     if (PSI->isFunctionHotInCallGraph(&F, *BFI))
404       F.setSectionPrefix(".hot");
405     else if (PSI->isFunctionColdInCallGraph(&F, *BFI))
406       F.setSectionPrefix(".unlikely");
407   }
408 
409   /// This optimization identifies DIV instructions that can be
410   /// profitably bypassed and carried out with a shorter, faster divide.
411   if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI &&
412       TLI->isSlowDivBypassed()) {
413     const DenseMap<unsigned int, unsigned int> &BypassWidths =
414        TLI->getBypassSlowDivWidths();
415     BasicBlock* BB = &*F.begin();
416     while (BB != nullptr) {
417       // bypassSlowDivision may create new BBs, but we don't want to reapply the
418       // optimization to those blocks.
419       BasicBlock* Next = BB->getNextNode();
420       EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
421       BB = Next;
422     }
423   }
424 
425   // Eliminate blocks that contain only PHI nodes and an
426   // unconditional branch.
427   EverMadeChange |= eliminateMostlyEmptyBlocks(F);
428 
429   if (!DisableBranchOpts)
430     EverMadeChange |= splitBranchCondition(F);
431 
432   // Split some critical edges where one of the sources is an indirect branch,
433   // to help generate sane code for PHIs involving such edges.
434   EverMadeChange |= SplitIndirectBrCriticalEdges(F);
435 
436   bool MadeChange = true;
437   while (MadeChange) {
438     MadeChange = false;
439     for (Function::iterator I = F.begin(); I != F.end(); ) {
440       BasicBlock *BB = &*I++;
441       bool ModifiedDTOnIteration = false;
442       MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
443 
444       // Restart BB iteration if the dominator tree of the Function was changed
445       if (ModifiedDTOnIteration)
446         break;
447     }
448     if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
449       MadeChange |= mergeSExts(F);
450     if (!LargeOffsetGEPMap.empty())
451       MadeChange |= splitLargeGEPOffsets();
452 
453     // Really free removed instructions during promotion.
454     for (Instruction *I : RemovedInsts)
455       I->deleteValue();
456 
457     EverMadeChange |= MadeChange;
458     SeenChainsForSExt.clear();
459     ValToSExtendedUses.clear();
460     RemovedInsts.clear();
461     LargeOffsetGEPMap.clear();
462     LargeOffsetGEPID.clear();
463   }
464 
465   SunkAddrs.clear();
466 
467   if (!DisableBranchOpts) {
468     MadeChange = false;
469     // Use a set vector to get deterministic iteration order. The order the
470     // blocks are removed may affect whether or not PHI nodes in successors
471     // are removed.
472     SmallSetVector<BasicBlock*, 8> WorkList;
473     for (BasicBlock &BB : F) {
474       SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
475       MadeChange |= ConstantFoldTerminator(&BB, true);
476       if (!MadeChange) continue;
477 
478       for (SmallVectorImpl<BasicBlock*>::iterator
479              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
480         if (pred_begin(*II) == pred_end(*II))
481           WorkList.insert(*II);
482     }
483 
484     // Delete the dead blocks and any of their dead successors.
485     MadeChange |= !WorkList.empty();
486     while (!WorkList.empty()) {
487       BasicBlock *BB = WorkList.pop_back_val();
488       SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
489 
490       DeleteDeadBlock(BB);
491 
492       for (SmallVectorImpl<BasicBlock*>::iterator
493              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
494         if (pred_begin(*II) == pred_end(*II))
495           WorkList.insert(*II);
496     }
497 
498     // Merge pairs of basic blocks with unconditional branches, connected by
499     // a single edge.
500     if (EverMadeChange || MadeChange)
501       MadeChange |= eliminateFallThrough(F);
502 
503     EverMadeChange |= MadeChange;
504   }
505 
506   if (!DisableGCOpts) {
507     SmallVector<Instruction *, 2> Statepoints;
508     for (BasicBlock &BB : F)
509       for (Instruction &I : BB)
510         if (isStatepoint(I))
511           Statepoints.push_back(&I);
512     for (auto &I : Statepoints)
513       EverMadeChange |= simplifyOffsetableRelocate(*I);
514   }
515 
516   // Do this last to clean up use-before-def scenarios introduced by other
517   // preparatory transforms.
518   EverMadeChange |= placeDbgValues(F);
519 
520   return EverMadeChange;
521 }
522 
523 /// Merge basic blocks which are connected by a single edge, where one of the
524 /// basic blocks has a single successor pointing to the other basic block,
525 /// which has a single predecessor.
526 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
527   bool Changed = false;
528   // Scan all of the blocks in the function, except for the entry block.
529   // Use a temporary array to avoid iterator being invalidated when
530   // deleting blocks.
531   SmallVector<WeakTrackingVH, 16> Blocks;
532   for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
533     Blocks.push_back(&Block);
534 
535   for (auto &Block : Blocks) {
536     auto *BB = cast_or_null<BasicBlock>(Block);
537     if (!BB)
538       continue;
539     // If the destination block has a single pred, then this is a trivial
540     // edge, just collapse it.
541     BasicBlock *SinglePred = BB->getSinglePredecessor();
542 
543     // Don't merge if BB's address is taken.
544     if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
545 
546     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
547     if (Term && !Term->isConditional()) {
548       Changed = true;
549       LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");
550 
551       // Merge BB into SinglePred and delete it.
552       MergeBlockIntoPredecessor(BB);
553     }
554   }
555   return Changed;
556 }
557 
558 /// Find a destination block from BB if BB is mergeable empty block.
559 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
560   // If this block doesn't end with an uncond branch, ignore it.
561   BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
562   if (!BI || !BI->isUnconditional())
563     return nullptr;
564 
565   // If the instruction before the branch (skipping debug info) isn't a phi
566   // node, then other stuff is happening here.
567   BasicBlock::iterator BBI = BI->getIterator();
568   if (BBI != BB->begin()) {
569     --BBI;
570     while (isa<DbgInfoIntrinsic>(BBI)) {
571       if (BBI == BB->begin())
572         break;
573       --BBI;
574     }
575     if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
576       return nullptr;
577   }
578 
579   // Do not break infinite loops.
580   BasicBlock *DestBB = BI->getSuccessor(0);
581   if (DestBB == BB)
582     return nullptr;
583 
584   if (!canMergeBlocks(BB, DestBB))
585     DestBB = nullptr;
586 
587   return DestBB;
588 }
589 
590 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
591 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
592 /// edges in ways that are non-optimal for isel. Start by eliminating these
593 /// blocks so we can split them the way we want them.
594 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
595   SmallPtrSet<BasicBlock *, 16> Preheaders;
596   SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
597   while (!LoopList.empty()) {
598     Loop *L = LoopList.pop_back_val();
599     LoopList.insert(LoopList.end(), L->begin(), L->end());
600     if (BasicBlock *Preheader = L->getLoopPreheader())
601       Preheaders.insert(Preheader);
602   }
603 
604   bool MadeChange = false;
605   // Copy blocks into a temporary array to avoid iterator invalidation issues
606   // as we remove them.
607   // Note that this intentionally skips the entry block.
608   SmallVector<WeakTrackingVH, 16> Blocks;
609   for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
610     Blocks.push_back(&Block);
611 
612   for (auto &Block : Blocks) {
613     BasicBlock *BB = cast_or_null<BasicBlock>(Block);
614     if (!BB)
615       continue;
616     BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
617     if (!DestBB ||
618         !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
619       continue;
620 
621     eliminateMostlyEmptyBlock(BB);
622     MadeChange = true;
623   }
624   return MadeChange;
625 }
626 
627 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
628                                                    BasicBlock *DestBB,
629                                                    bool isPreheader) {
630   // Do not delete loop preheaders if doing so would create a critical edge.
631   // Loop preheaders can be good locations to spill registers. If the
632   // preheader is deleted and we create a critical edge, registers may be
633   // spilled in the loop body instead.
634   if (!DisablePreheaderProtect && isPreheader &&
635       !(BB->getSinglePredecessor() &&
636         BB->getSinglePredecessor()->getSingleSuccessor()))
637     return false;
638 
639   // Try to skip merging if the unique predecessor of BB is terminated by a
640   // switch or indirect branch instruction, and BB is used as an incoming block
641   // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
642   // add COPY instructions in the predecessor of BB instead of BB (if it is not
643   // merged). Note that the critical edge created by merging such blocks wont be
644   // split in MachineSink because the jump table is not analyzable. By keeping
645   // such empty block (BB), ISel will place COPY instructions in BB, not in the
646   // predecessor of BB.
647   BasicBlock *Pred = BB->getUniquePredecessor();
648   if (!Pred ||
649       !(isa<SwitchInst>(Pred->getTerminator()) ||
650         isa<IndirectBrInst>(Pred->getTerminator())))
651     return true;
652 
653   if (BB->getTerminator() != BB->getFirstNonPHIOrDbg())
654     return true;
655 
656   // We use a simple cost heuristic which determine skipping merging is
657   // profitable if the cost of skipping merging is less than the cost of
658   // merging : Cost(skipping merging) < Cost(merging BB), where the
659   // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
660   // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
661   // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
662   //   Freq(Pred) / Freq(BB) > 2.
663   // Note that if there are multiple empty blocks sharing the same incoming
664   // value for the PHIs in the DestBB, we consider them together. In such
665   // case, Cost(merging BB) will be the sum of their frequencies.
666 
667   if (!isa<PHINode>(DestBB->begin()))
668     return true;
669 
670   SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
671 
672   // Find all other incoming blocks from which incoming values of all PHIs in
673   // DestBB are the same as the ones from BB.
674   for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E;
675        ++PI) {
676     BasicBlock *DestBBPred = *PI;
677     if (DestBBPred == BB)
678       continue;
679 
680     if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
681           return DestPN.getIncomingValueForBlock(BB) ==
682                  DestPN.getIncomingValueForBlock(DestBBPred);
683         }))
684       SameIncomingValueBBs.insert(DestBBPred);
685   }
686 
687   // See if all BB's incoming values are same as the value from Pred. In this
688   // case, no reason to skip merging because COPYs are expected to be place in
689   // Pred already.
690   if (SameIncomingValueBBs.count(Pred))
691     return true;
692 
693   BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
694   BlockFrequency BBFreq = BFI->getBlockFreq(BB);
695 
696   for (auto SameValueBB : SameIncomingValueBBs)
697     if (SameValueBB->getUniquePredecessor() == Pred &&
698         DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
699       BBFreq += BFI->getBlockFreq(SameValueBB);
700 
701   return PredFreq.getFrequency() <=
702          BBFreq.getFrequency() * FreqRatioToSkipMerge;
703 }
704 
705 /// Return true if we can merge BB into DestBB if there is a single
706 /// unconditional branch between them, and BB contains no other non-phi
707 /// instructions.
708 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
709                                     const BasicBlock *DestBB) const {
710   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
711   // the successor.  If there are more complex condition (e.g. preheaders),
712   // don't mess around with them.
713   for (const PHINode &PN : BB->phis()) {
714     for (const User *U : PN.users()) {
715       const Instruction *UI = cast<Instruction>(U);
716       if (UI->getParent() != DestBB || !isa<PHINode>(UI))
717         return false;
718       // If User is inside DestBB block and it is a PHINode then check
719       // incoming value. If incoming value is not from BB then this is
720       // a complex condition (e.g. preheaders) we want to avoid here.
721       if (UI->getParent() == DestBB) {
722         if (const PHINode *UPN = dyn_cast<PHINode>(UI))
723           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
724             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
725             if (Insn && Insn->getParent() == BB &&
726                 Insn->getParent() != UPN->getIncomingBlock(I))
727               return false;
728           }
729       }
730     }
731   }
732 
733   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
734   // and DestBB may have conflicting incoming values for the block.  If so, we
735   // can't merge the block.
736   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
737   if (!DestBBPN) return true;  // no conflict.
738 
739   // Collect the preds of BB.
740   SmallPtrSet<const BasicBlock*, 16> BBPreds;
741   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
742     // It is faster to get preds from a PHI than with pred_iterator.
743     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
744       BBPreds.insert(BBPN->getIncomingBlock(i));
745   } else {
746     BBPreds.insert(pred_begin(BB), pred_end(BB));
747   }
748 
749   // Walk the preds of DestBB.
750   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
751     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
752     if (BBPreds.count(Pred)) {   // Common predecessor?
753       for (const PHINode &PN : DestBB->phis()) {
754         const Value *V1 = PN.getIncomingValueForBlock(Pred);
755         const Value *V2 = PN.getIncomingValueForBlock(BB);
756 
757         // If V2 is a phi node in BB, look up what the mapped value will be.
758         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
759           if (V2PN->getParent() == BB)
760             V2 = V2PN->getIncomingValueForBlock(Pred);
761 
762         // If there is a conflict, bail out.
763         if (V1 != V2) return false;
764       }
765     }
766   }
767 
768   return true;
769 }
770 
771 /// Eliminate a basic block that has only phi's and an unconditional branch in
772 /// it.
773 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
774   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
775   BasicBlock *DestBB = BI->getSuccessor(0);
776 
777   LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
778                     << *BB << *DestBB);
779 
780   // If the destination block has a single pred, then this is a trivial edge,
781   // just collapse it.
782   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
783     if (SinglePred != DestBB) {
784       assert(SinglePred == BB &&
785              "Single predecessor not the same as predecessor");
786       // Merge DestBB into SinglePred/BB and delete it.
787       MergeBlockIntoPredecessor(DestBB);
788       // Note: BB(=SinglePred) will not be deleted on this path.
789       // DestBB(=its single successor) is the one that was deleted.
790       LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
791       return;
792     }
793   }
794 
795   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
796   // to handle the new incoming edges it is about to have.
797   for (PHINode &PN : DestBB->phis()) {
798     // Remove the incoming value for BB, and remember it.
799     Value *InVal = PN.removeIncomingValue(BB, false);
800 
801     // Two options: either the InVal is a phi node defined in BB or it is some
802     // value that dominates BB.
803     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
804     if (InValPhi && InValPhi->getParent() == BB) {
805       // Add all of the input values of the input PHI as inputs of this phi.
806       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
807         PN.addIncoming(InValPhi->getIncomingValue(i),
808                        InValPhi->getIncomingBlock(i));
809     } else {
810       // Otherwise, add one instance of the dominating value for each edge that
811       // we will be adding.
812       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
813         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
814           PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
815       } else {
816         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
817           PN.addIncoming(InVal, *PI);
818       }
819     }
820   }
821 
822   // The PHIs are now updated, change everything that refers to BB to use
823   // DestBB and remove BB.
824   BB->replaceAllUsesWith(DestBB);
825   BB->eraseFromParent();
826   ++NumBlocksElim;
827 
828   LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
829 }
830 
831 // Computes a map of base pointer relocation instructions to corresponding
832 // derived pointer relocation instructions given a vector of all relocate calls
833 static void computeBaseDerivedRelocateMap(
834     const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
835     DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
836         &RelocateInstMap) {
837   // Collect information in two maps: one primarily for locating the base object
838   // while filling the second map; the second map is the final structure holding
839   // a mapping between Base and corresponding Derived relocate calls
840   DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
841   for (auto *ThisRelocate : AllRelocateCalls) {
842     auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
843                             ThisRelocate->getDerivedPtrIndex());
844     RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
845   }
846   for (auto &Item : RelocateIdxMap) {
847     std::pair<unsigned, unsigned> Key = Item.first;
848     if (Key.first == Key.second)
849       // Base relocation: nothing to insert
850       continue;
851 
852     GCRelocateInst *I = Item.second;
853     auto BaseKey = std::make_pair(Key.first, Key.first);
854 
855     // We're iterating over RelocateIdxMap so we cannot modify it.
856     auto MaybeBase = RelocateIdxMap.find(BaseKey);
857     if (MaybeBase == RelocateIdxMap.end())
858       // TODO: We might want to insert a new base object relocate and gep off
859       // that, if there are enough derived object relocates.
860       continue;
861 
862     RelocateInstMap[MaybeBase->second].push_back(I);
863   }
864 }
865 
866 // Accepts a GEP and extracts the operands into a vector provided they're all
867 // small integer constants
868 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
869                                           SmallVectorImpl<Value *> &OffsetV) {
870   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
871     // Only accept small constant integer operands
872     auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
873     if (!Op || Op->getZExtValue() > 20)
874       return false;
875   }
876 
877   for (unsigned i = 1; i < GEP->getNumOperands(); i++)
878     OffsetV.push_back(GEP->getOperand(i));
879   return true;
880 }
881 
882 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
883 // replace, computes a replacement, and affects it.
884 static bool
885 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
886                           const SmallVectorImpl<GCRelocateInst *> &Targets) {
887   bool MadeChange = false;
888   // We must ensure the relocation of derived pointer is defined after
889   // relocation of base pointer. If we find a relocation corresponding to base
890   // defined earlier than relocation of base then we move relocation of base
891   // right before found relocation. We consider only relocation in the same
892   // basic block as relocation of base. Relocations from other basic block will
893   // be skipped by optimization and we do not care about them.
894   for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
895        &*R != RelocatedBase; ++R)
896     if (auto RI = dyn_cast<GCRelocateInst>(R))
897       if (RI->getStatepoint() == RelocatedBase->getStatepoint())
898         if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
899           RelocatedBase->moveBefore(RI);
900           break;
901         }
902 
903   for (GCRelocateInst *ToReplace : Targets) {
904     assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
905            "Not relocating a derived object of the original base object");
906     if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
907       // A duplicate relocate call. TODO: coalesce duplicates.
908       continue;
909     }
910 
911     if (RelocatedBase->getParent() != ToReplace->getParent()) {
912       // Base and derived relocates are in different basic blocks.
913       // In this case transform is only valid when base dominates derived
914       // relocate. However it would be too expensive to check dominance
915       // for each such relocate, so we skip the whole transformation.
916       continue;
917     }
918 
919     Value *Base = ToReplace->getBasePtr();
920     auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
921     if (!Derived || Derived->getPointerOperand() != Base)
922       continue;
923 
924     SmallVector<Value *, 2> OffsetV;
925     if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
926       continue;
927 
928     // Create a Builder and replace the target callsite with a gep
929     assert(RelocatedBase->getNextNode() &&
930            "Should always have one since it's not a terminator");
931 
932     // Insert after RelocatedBase
933     IRBuilder<> Builder(RelocatedBase->getNextNode());
934     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
935 
936     // If gc_relocate does not match the actual type, cast it to the right type.
937     // In theory, there must be a bitcast after gc_relocate if the type does not
938     // match, and we should reuse it to get the derived pointer. But it could be
939     // cases like this:
940     // bb1:
941     //  ...
942     //  %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
943     //  br label %merge
944     //
945     // bb2:
946     //  ...
947     //  %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
948     //  br label %merge
949     //
950     // merge:
951     //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
952     //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
953     //
954     // In this case, we can not find the bitcast any more. So we insert a new bitcast
955     // no matter there is already one or not. In this way, we can handle all cases, and
956     // the extra bitcast should be optimized away in later passes.
957     Value *ActualRelocatedBase = RelocatedBase;
958     if (RelocatedBase->getType() != Base->getType()) {
959       ActualRelocatedBase =
960           Builder.CreateBitCast(RelocatedBase, Base->getType());
961     }
962     Value *Replacement = Builder.CreateGEP(
963         Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
964     Replacement->takeName(ToReplace);
965     // If the newly generated derived pointer's type does not match the original derived
966     // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
967     Value *ActualReplacement = Replacement;
968     if (Replacement->getType() != ToReplace->getType()) {
969       ActualReplacement =
970           Builder.CreateBitCast(Replacement, ToReplace->getType());
971     }
972     ToReplace->replaceAllUsesWith(ActualReplacement);
973     ToReplace->eraseFromParent();
974 
975     MadeChange = true;
976   }
977   return MadeChange;
978 }
979 
980 // Turns this:
981 //
982 // %base = ...
983 // %ptr = gep %base + 15
984 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
985 // %base' = relocate(%tok, i32 4, i32 4)
986 // %ptr' = relocate(%tok, i32 4, i32 5)
987 // %val = load %ptr'
988 //
989 // into this:
990 //
991 // %base = ...
992 // %ptr = gep %base + 15
993 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
994 // %base' = gc.relocate(%tok, i32 4, i32 4)
995 // %ptr' = gep %base' + 15
996 // %val = load %ptr'
997 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
998   bool MadeChange = false;
999   SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1000 
1001   for (auto *U : I.users())
1002     if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1003       // Collect all the relocate calls associated with a statepoint
1004       AllRelocateCalls.push_back(Relocate);
1005 
1006   // We need atleast one base pointer relocation + one derived pointer
1007   // relocation to mangle
1008   if (AllRelocateCalls.size() < 2)
1009     return false;
1010 
1011   // RelocateInstMap is a mapping from the base relocate instruction to the
1012   // corresponding derived relocate instructions
1013   DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
1014   computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1015   if (RelocateInstMap.empty())
1016     return false;
1017 
1018   for (auto &Item : RelocateInstMap)
1019     // Item.first is the RelocatedBase to offset against
1020     // Item.second is the vector of Targets to replace
1021     MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1022   return MadeChange;
1023 }
1024 
1025 /// SinkCast - Sink the specified cast instruction into its user blocks
1026 static bool SinkCast(CastInst *CI) {
1027   BasicBlock *DefBB = CI->getParent();
1028 
1029   /// InsertedCasts - Only insert a cast in each block once.
1030   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
1031 
1032   bool MadeChange = false;
1033   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1034        UI != E; ) {
1035     Use &TheUse = UI.getUse();
1036     Instruction *User = cast<Instruction>(*UI);
1037 
1038     // Figure out which BB this cast is used in.  For PHI's this is the
1039     // appropriate predecessor block.
1040     BasicBlock *UserBB = User->getParent();
1041     if (PHINode *PN = dyn_cast<PHINode>(User)) {
1042       UserBB = PN->getIncomingBlock(TheUse);
1043     }
1044 
1045     // Preincrement use iterator so we don't invalidate it.
1046     ++UI;
1047 
1048     // The first insertion point of a block containing an EH pad is after the
1049     // pad.  If the pad is the user, we cannot sink the cast past the pad.
1050     if (User->isEHPad())
1051       continue;
1052 
1053     // If the block selected to receive the cast is an EH pad that does not
1054     // allow non-PHI instructions before the terminator, we can't sink the
1055     // cast.
1056     if (UserBB->getTerminator()->isEHPad())
1057       continue;
1058 
1059     // If this user is in the same block as the cast, don't change the cast.
1060     if (UserBB == DefBB) continue;
1061 
1062     // If we have already inserted a cast into this block, use it.
1063     CastInst *&InsertedCast = InsertedCasts[UserBB];
1064 
1065     if (!InsertedCast) {
1066       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1067       assert(InsertPt != UserBB->end());
1068       InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1069                                       CI->getType(), "", &*InsertPt);
1070       InsertedCast->setDebugLoc(CI->getDebugLoc());
1071     }
1072 
1073     // Replace a use of the cast with a use of the new cast.
1074     TheUse = InsertedCast;
1075     MadeChange = true;
1076     ++NumCastUses;
1077   }
1078 
1079   // If we removed all uses, nuke the cast.
1080   if (CI->use_empty()) {
1081     salvageDebugInfo(*CI);
1082     CI->eraseFromParent();
1083     MadeChange = true;
1084   }
1085 
1086   return MadeChange;
1087 }
1088 
1089 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1090 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1091 /// reduce the number of virtual registers that must be created and coalesced.
1092 ///
1093 /// Return true if any changes are made.
1094 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1095                                        const DataLayout &DL) {
1096   // Sink only "cheap" (or nop) address-space casts.  This is a weaker condition
1097   // than sinking only nop casts, but is helpful on some platforms.
1098   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1099     if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(),
1100                                   ASC->getDestAddressSpace()))
1101       return false;
1102   }
1103 
1104   // If this is a noop copy,
1105   EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1106   EVT DstVT = TLI.getValueType(DL, CI->getType());
1107 
1108   // This is an fp<->int conversion?
1109   if (SrcVT.isInteger() != DstVT.isInteger())
1110     return false;
1111 
1112   // If this is an extension, it will be a zero or sign extension, which
1113   // isn't a noop.
1114   if (SrcVT.bitsLT(DstVT)) return false;
1115 
1116   // If these values will be promoted, find out what they will be promoted
1117   // to.  This helps us consider truncates on PPC as noop copies when they
1118   // are.
1119   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1120       TargetLowering::TypePromoteInteger)
1121     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1122   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1123       TargetLowering::TypePromoteInteger)
1124     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1125 
1126   // If, after promotion, these are the same types, this is a noop copy.
1127   if (SrcVT != DstVT)
1128     return false;
1129 
1130   return SinkCast(CI);
1131 }
1132 
1133 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if
1134 /// possible.
1135 ///
1136 /// Return true if any changes were made.
1137 static bool CombineUAddWithOverflow(CmpInst *CI) {
1138   Value *A, *B;
1139   Instruction *AddI;
1140   if (!match(CI,
1141              m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI))))
1142     return false;
1143 
1144   Type *Ty = AddI->getType();
1145   if (!isa<IntegerType>(Ty))
1146     return false;
1147 
1148   // We don't want to move around uses of condition values this late, so we we
1149   // check if it is legal to create the call to the intrinsic in the basic
1150   // block containing the icmp:
1151 
1152   if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse())
1153     return false;
1154 
1155 #ifndef NDEBUG
1156   // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption
1157   // for now:
1158   if (AddI->hasOneUse())
1159     assert(*AddI->user_begin() == CI && "expected!");
1160 #endif
1161 
1162   Module *M = CI->getModule();
1163   Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
1164 
1165   auto *InsertPt = AddI->hasOneUse() ? CI : AddI;
1166 
1167   DebugLoc Loc = CI->getDebugLoc();
1168   auto *UAddWithOverflow =
1169       CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt);
1170   UAddWithOverflow->setDebugLoc(Loc);
1171   auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt);
1172   UAdd->setDebugLoc(Loc);
1173   auto *Overflow =
1174       ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt);
1175   Overflow->setDebugLoc(Loc);
1176 
1177   CI->replaceAllUsesWith(Overflow);
1178   AddI->replaceAllUsesWith(UAdd);
1179   CI->eraseFromParent();
1180   AddI->eraseFromParent();
1181   return true;
1182 }
1183 
1184 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1185 /// registers that must be created and coalesced. This is a clear win except on
1186 /// targets with multiple condition code registers (PowerPC), where it might
1187 /// lose; some adjustment may be wanted there.
1188 ///
1189 /// Return true if any changes are made.
1190 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) {
1191   BasicBlock *DefBB = CI->getParent();
1192 
1193   // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1194   if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI))
1195     return false;
1196 
1197   // Only insert a cmp in each block once.
1198   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
1199 
1200   bool MadeChange = false;
1201   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1202        UI != E; ) {
1203     Use &TheUse = UI.getUse();
1204     Instruction *User = cast<Instruction>(*UI);
1205 
1206     // Preincrement use iterator so we don't invalidate it.
1207     ++UI;
1208 
1209     // Don't bother for PHI nodes.
1210     if (isa<PHINode>(User))
1211       continue;
1212 
1213     // Figure out which BB this cmp is used in.
1214     BasicBlock *UserBB = User->getParent();
1215 
1216     // If this user is in the same block as the cmp, don't change the cmp.
1217     if (UserBB == DefBB) continue;
1218 
1219     // If we have already inserted a cmp into this block, use it.
1220     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1221 
1222     if (!InsertedCmp) {
1223       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1224       assert(InsertPt != UserBB->end());
1225       InsertedCmp =
1226           CmpInst::Create(CI->getOpcode(), CI->getPredicate(),
1227                           CI->getOperand(0), CI->getOperand(1), "", &*InsertPt);
1228       // Propagate the debug info.
1229       InsertedCmp->setDebugLoc(CI->getDebugLoc());
1230     }
1231 
1232     // Replace a use of the cmp with a use of the new cmp.
1233     TheUse = InsertedCmp;
1234     MadeChange = true;
1235     ++NumCmpUses;
1236   }
1237 
1238   // If we removed all uses, nuke the cmp.
1239   if (CI->use_empty()) {
1240     CI->eraseFromParent();
1241     MadeChange = true;
1242   }
1243 
1244   return MadeChange;
1245 }
1246 
1247 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) {
1248   if (SinkCmpExpression(CI, TLI))
1249     return true;
1250 
1251   if (CombineUAddWithOverflow(CI))
1252     return true;
1253 
1254   return false;
1255 }
1256 
1257 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1258 /// used in a compare to allow isel to generate better code for targets where
1259 /// this operation can be combined.
1260 ///
1261 /// Return true if any changes are made.
1262 static bool sinkAndCmp0Expression(Instruction *AndI,
1263                                   const TargetLowering &TLI,
1264                                   SetOfInstrs &InsertedInsts) {
1265   // Double-check that we're not trying to optimize an instruction that was
1266   // already optimized by some other part of this pass.
1267   assert(!InsertedInsts.count(AndI) &&
1268          "Attempting to optimize already optimized and instruction");
1269   (void) InsertedInsts;
1270 
1271   // Nothing to do for single use in same basic block.
1272   if (AndI->hasOneUse() &&
1273       AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
1274     return false;
1275 
1276   // Try to avoid cases where sinking/duplicating is likely to increase register
1277   // pressure.
1278   if (!isa<ConstantInt>(AndI->getOperand(0)) &&
1279       !isa<ConstantInt>(AndI->getOperand(1)) &&
1280       AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
1281     return false;
1282 
1283   for (auto *U : AndI->users()) {
1284     Instruction *User = cast<Instruction>(U);
1285 
1286     // Only sink for and mask feeding icmp with 0.
1287     if (!isa<ICmpInst>(User))
1288       return false;
1289 
1290     auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
1291     if (!CmpC || !CmpC->isZero())
1292       return false;
1293   }
1294 
1295   if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
1296     return false;
1297 
1298   LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1299   LLVM_DEBUG(AndI->getParent()->dump());
1300 
1301   // Push the 'and' into the same block as the icmp 0.  There should only be
1302   // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1303   // others, so we don't need to keep track of which BBs we insert into.
1304   for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
1305        UI != E; ) {
1306     Use &TheUse = UI.getUse();
1307     Instruction *User = cast<Instruction>(*UI);
1308 
1309     // Preincrement use iterator so we don't invalidate it.
1310     ++UI;
1311 
1312     LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
1313 
1314     // Keep the 'and' in the same place if the use is already in the same block.
1315     Instruction *InsertPt =
1316         User->getParent() == AndI->getParent() ? AndI : User;
1317     Instruction *InsertedAnd =
1318         BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
1319                                AndI->getOperand(1), "", InsertPt);
1320     // Propagate the debug info.
1321     InsertedAnd->setDebugLoc(AndI->getDebugLoc());
1322 
1323     // Replace a use of the 'and' with a use of the new 'and'.
1324     TheUse = InsertedAnd;
1325     ++NumAndUses;
1326     LLVM_DEBUG(User->getParent()->dump());
1327   }
1328 
1329   // We removed all uses, nuke the and.
1330   AndI->eraseFromParent();
1331   return true;
1332 }
1333 
1334 /// Check if the candidates could be combined with a shift instruction, which
1335 /// includes:
1336 /// 1. Truncate instruction
1337 /// 2. And instruction and the imm is a mask of the low bits:
1338 /// imm & (imm+1) == 0
1339 static bool isExtractBitsCandidateUse(Instruction *User) {
1340   if (!isa<TruncInst>(User)) {
1341     if (User->getOpcode() != Instruction::And ||
1342         !isa<ConstantInt>(User->getOperand(1)))
1343       return false;
1344 
1345     const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
1346 
1347     if ((Cimm & (Cimm + 1)).getBoolValue())
1348       return false;
1349   }
1350   return true;
1351 }
1352 
1353 /// Sink both shift and truncate instruction to the use of truncate's BB.
1354 static bool
1355 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
1356                      DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
1357                      const TargetLowering &TLI, const DataLayout &DL) {
1358   BasicBlock *UserBB = User->getParent();
1359   DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
1360   TruncInst *TruncI = dyn_cast<TruncInst>(User);
1361   bool MadeChange = false;
1362 
1363   for (Value::user_iterator TruncUI = TruncI->user_begin(),
1364                             TruncE = TruncI->user_end();
1365        TruncUI != TruncE;) {
1366 
1367     Use &TruncTheUse = TruncUI.getUse();
1368     Instruction *TruncUser = cast<Instruction>(*TruncUI);
1369     // Preincrement use iterator so we don't invalidate it.
1370 
1371     ++TruncUI;
1372 
1373     int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
1374     if (!ISDOpcode)
1375       continue;
1376 
1377     // If the use is actually a legal node, there will not be an
1378     // implicit truncate.
1379     // FIXME: always querying the result type is just an
1380     // approximation; some nodes' legality is determined by the
1381     // operand or other means. There's no good way to find out though.
1382     if (TLI.isOperationLegalOrCustom(
1383             ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
1384       continue;
1385 
1386     // Don't bother for PHI nodes.
1387     if (isa<PHINode>(TruncUser))
1388       continue;
1389 
1390     BasicBlock *TruncUserBB = TruncUser->getParent();
1391 
1392     if (UserBB == TruncUserBB)
1393       continue;
1394 
1395     BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
1396     CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
1397 
1398     if (!InsertedShift && !InsertedTrunc) {
1399       BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
1400       assert(InsertPt != TruncUserBB->end());
1401       // Sink the shift
1402       if (ShiftI->getOpcode() == Instruction::AShr)
1403         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1404                                                    "", &*InsertPt);
1405       else
1406         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1407                                                    "", &*InsertPt);
1408       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1409 
1410       // Sink the trunc
1411       BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
1412       TruncInsertPt++;
1413       assert(TruncInsertPt != TruncUserBB->end());
1414 
1415       InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
1416                                        TruncI->getType(), "", &*TruncInsertPt);
1417       InsertedTrunc->setDebugLoc(TruncI->getDebugLoc());
1418 
1419       MadeChange = true;
1420 
1421       TruncTheUse = InsertedTrunc;
1422     }
1423   }
1424   return MadeChange;
1425 }
1426 
1427 /// Sink the shift *right* instruction into user blocks if the uses could
1428 /// potentially be combined with this shift instruction and generate BitExtract
1429 /// instruction. It will only be applied if the architecture supports BitExtract
1430 /// instruction. Here is an example:
1431 /// BB1:
1432 ///   %x.extract.shift = lshr i64 %arg1, 32
1433 /// BB2:
1434 ///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
1435 /// ==>
1436 ///
1437 /// BB2:
1438 ///   %x.extract.shift.1 = lshr i64 %arg1, 32
1439 ///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1440 ///
1441 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
1442 /// instruction.
1443 /// Return true if any changes are made.
1444 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1445                                 const TargetLowering &TLI,
1446                                 const DataLayout &DL) {
1447   BasicBlock *DefBB = ShiftI->getParent();
1448 
1449   /// Only insert instructions in each block once.
1450   DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1451 
1452   bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1453 
1454   bool MadeChange = false;
1455   for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1456        UI != E;) {
1457     Use &TheUse = UI.getUse();
1458     Instruction *User = cast<Instruction>(*UI);
1459     // Preincrement use iterator so we don't invalidate it.
1460     ++UI;
1461 
1462     // Don't bother for PHI nodes.
1463     if (isa<PHINode>(User))
1464       continue;
1465 
1466     if (!isExtractBitsCandidateUse(User))
1467       continue;
1468 
1469     BasicBlock *UserBB = User->getParent();
1470 
1471     if (UserBB == DefBB) {
1472       // If the shift and truncate instruction are in the same BB. The use of
1473       // the truncate(TruncUse) may still introduce another truncate if not
1474       // legal. In this case, we would like to sink both shift and truncate
1475       // instruction to the BB of TruncUse.
1476       // for example:
1477       // BB1:
1478       // i64 shift.result = lshr i64 opnd, imm
1479       // trunc.result = trunc shift.result to i16
1480       //
1481       // BB2:
1482       //   ----> We will have an implicit truncate here if the architecture does
1483       //   not have i16 compare.
1484       // cmp i16 trunc.result, opnd2
1485       //
1486       if (isa<TruncInst>(User) && shiftIsLegal
1487           // If the type of the truncate is legal, no truncate will be
1488           // introduced in other basic blocks.
1489           &&
1490           (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1491         MadeChange =
1492             SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1493 
1494       continue;
1495     }
1496     // If we have already inserted a shift into this block, use it.
1497     BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1498 
1499     if (!InsertedShift) {
1500       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1501       assert(InsertPt != UserBB->end());
1502 
1503       if (ShiftI->getOpcode() == Instruction::AShr)
1504         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1505                                                    "", &*InsertPt);
1506       else
1507         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1508                                                    "", &*InsertPt);
1509       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1510 
1511       MadeChange = true;
1512     }
1513 
1514     // Replace a use of the shift with a use of the new shift.
1515     TheUse = InsertedShift;
1516   }
1517 
1518   // If we removed all uses, nuke the shift.
1519   if (ShiftI->use_empty()) {
1520     salvageDebugInfo(*ShiftI);
1521     ShiftI->eraseFromParent();
1522   }
1523 
1524   return MadeChange;
1525 }
1526 
1527 /// If counting leading or trailing zeros is an expensive operation and a zero
1528 /// input is defined, add a check for zero to avoid calling the intrinsic.
1529 ///
1530 /// We want to transform:
1531 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
1532 ///
1533 /// into:
1534 ///   entry:
1535 ///     %cmpz = icmp eq i64 %A, 0
1536 ///     br i1 %cmpz, label %cond.end, label %cond.false
1537 ///   cond.false:
1538 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
1539 ///     br label %cond.end
1540 ///   cond.end:
1541 ///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
1542 ///
1543 /// If the transform is performed, return true and set ModifiedDT to true.
1544 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
1545                                   const TargetLowering *TLI,
1546                                   const DataLayout *DL,
1547                                   bool &ModifiedDT) {
1548   if (!TLI || !DL)
1549     return false;
1550 
1551   // If a zero input is undefined, it doesn't make sense to despeculate that.
1552   if (match(CountZeros->getOperand(1), m_One()))
1553     return false;
1554 
1555   // If it's cheap to speculate, there's nothing to do.
1556   auto IntrinsicID = CountZeros->getIntrinsicID();
1557   if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
1558       (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
1559     return false;
1560 
1561   // Only handle legal scalar cases. Anything else requires too much work.
1562   Type *Ty = CountZeros->getType();
1563   unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
1564   if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
1565     return false;
1566 
1567   // The intrinsic will be sunk behind a compare against zero and branch.
1568   BasicBlock *StartBlock = CountZeros->getParent();
1569   BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
1570 
1571   // Create another block after the count zero intrinsic. A PHI will be added
1572   // in this block to select the result of the intrinsic or the bit-width
1573   // constant if the input to the intrinsic is zero.
1574   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
1575   BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
1576 
1577   // Set up a builder to create a compare, conditional branch, and PHI.
1578   IRBuilder<> Builder(CountZeros->getContext());
1579   Builder.SetInsertPoint(StartBlock->getTerminator());
1580   Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
1581 
1582   // Replace the unconditional branch that was created by the first split with
1583   // a compare against zero and a conditional branch.
1584   Value *Zero = Constant::getNullValue(Ty);
1585   Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
1586   Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
1587   StartBlock->getTerminator()->eraseFromParent();
1588 
1589   // Create a PHI in the end block to select either the output of the intrinsic
1590   // or the bit width of the operand.
1591   Builder.SetInsertPoint(&EndBlock->front());
1592   PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
1593   CountZeros->replaceAllUsesWith(PN);
1594   Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
1595   PN->addIncoming(BitWidth, StartBlock);
1596   PN->addIncoming(CountZeros, CallBlock);
1597 
1598   // We are explicitly handling the zero case, so we can set the intrinsic's
1599   // undefined zero argument to 'true'. This will also prevent reprocessing the
1600   // intrinsic; we only despeculate when a zero input is defined.
1601   CountZeros->setArgOperand(1, Builder.getTrue());
1602   ModifiedDT = true;
1603   return true;
1604 }
1605 
1606 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
1607   BasicBlock *BB = CI->getParent();
1608 
1609   // Lower inline assembly if we can.
1610   // If we found an inline asm expession, and if the target knows how to
1611   // lower it to normal LLVM code, do so now.
1612   if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
1613     if (TLI->ExpandInlineAsm(CI)) {
1614       // Avoid invalidating the iterator.
1615       CurInstIterator = BB->begin();
1616       // Avoid processing instructions out of order, which could cause
1617       // reuse before a value is defined.
1618       SunkAddrs.clear();
1619       return true;
1620     }
1621     // Sink address computing for memory operands into the block.
1622     if (optimizeInlineAsmInst(CI))
1623       return true;
1624   }
1625 
1626   // Align the pointer arguments to this call if the target thinks it's a good
1627   // idea
1628   unsigned MinSize, PrefAlign;
1629   if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
1630     for (auto &Arg : CI->arg_operands()) {
1631       // We want to align both objects whose address is used directly and
1632       // objects whose address is used in casts and GEPs, though it only makes
1633       // sense for GEPs if the offset is a multiple of the desired alignment and
1634       // if size - offset meets the size threshold.
1635       if (!Arg->getType()->isPointerTy())
1636         continue;
1637       APInt Offset(DL->getIndexSizeInBits(
1638                        cast<PointerType>(Arg->getType())->getAddressSpace()),
1639                    0);
1640       Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
1641       uint64_t Offset2 = Offset.getLimitedValue();
1642       if ((Offset2 & (PrefAlign-1)) != 0)
1643         continue;
1644       AllocaInst *AI;
1645       if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
1646           DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
1647         AI->setAlignment(PrefAlign);
1648       // Global variables can only be aligned if they are defined in this
1649       // object (i.e. they are uniquely initialized in this object), and
1650       // over-aligning global variables that have an explicit section is
1651       // forbidden.
1652       GlobalVariable *GV;
1653       if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
1654           GV->getPointerAlignment(*DL) < PrefAlign &&
1655           DL->getTypeAllocSize(GV->getValueType()) >=
1656               MinSize + Offset2)
1657         GV->setAlignment(PrefAlign);
1658     }
1659     // If this is a memcpy (or similar) then we may be able to improve the
1660     // alignment
1661     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
1662       unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL);
1663       if (DestAlign > MI->getDestAlignment())
1664         MI->setDestAlignment(DestAlign);
1665       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
1666         unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
1667         if (SrcAlign > MTI->getSourceAlignment())
1668           MTI->setSourceAlignment(SrcAlign);
1669       }
1670     }
1671   }
1672 
1673   // If we have a cold call site, try to sink addressing computation into the
1674   // cold block.  This interacts with our handling for loads and stores to
1675   // ensure that we can fold all uses of a potential addressing computation
1676   // into their uses.  TODO: generalize this to work over profiling data
1677   if (!OptSize && CI->hasFnAttr(Attribute::Cold))
1678     for (auto &Arg : CI->arg_operands()) {
1679       if (!Arg->getType()->isPointerTy())
1680         continue;
1681       unsigned AS = Arg->getType()->getPointerAddressSpace();
1682       return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
1683     }
1684 
1685   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
1686   if (II) {
1687     switch (II->getIntrinsicID()) {
1688     default: break;
1689     case Intrinsic::objectsize: {
1690       // Lower all uses of llvm.objectsize.*
1691       ConstantInt *RetVal =
1692           lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true);
1693       // Substituting this can cause recursive simplifications, which can
1694       // invalidate our iterator.  Use a WeakTrackingVH to hold onto it in case
1695       // this
1696       // happens.
1697       Value *CurValue = &*CurInstIterator;
1698       WeakTrackingVH IterHandle(CurValue);
1699 
1700       replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
1701 
1702       // If the iterator instruction was recursively deleted, start over at the
1703       // start of the block.
1704       if (IterHandle != CurValue) {
1705         CurInstIterator = BB->begin();
1706         SunkAddrs.clear();
1707       }
1708       return true;
1709     }
1710     case Intrinsic::aarch64_stlxr:
1711     case Intrinsic::aarch64_stxr: {
1712       ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
1713       if (!ExtVal || !ExtVal->hasOneUse() ||
1714           ExtVal->getParent() == CI->getParent())
1715         return false;
1716       // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
1717       ExtVal->moveBefore(CI);
1718       // Mark this instruction as "inserted by CGP", so that other
1719       // optimizations don't touch it.
1720       InsertedInsts.insert(ExtVal);
1721       return true;
1722     }
1723     case Intrinsic::launder_invariant_group:
1724     case Intrinsic::strip_invariant_group: {
1725       Value *ArgVal = II->getArgOperand(0);
1726       auto it = LargeOffsetGEPMap.find(II);
1727       if (it != LargeOffsetGEPMap.end()) {
1728           // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
1729           // Make sure not to have to deal with iterator invalidation
1730           // after possibly adding ArgVal to LargeOffsetGEPMap.
1731           auto GEPs = std::move(it->second);
1732           LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end());
1733           LargeOffsetGEPMap.erase(II);
1734       }
1735 
1736       II->replaceAllUsesWith(ArgVal);
1737       II->eraseFromParent();
1738       return true;
1739     }
1740     case Intrinsic::cttz:
1741     case Intrinsic::ctlz:
1742       // If counting zeros is expensive, try to avoid it.
1743       return despeculateCountZeros(II, TLI, DL, ModifiedDT);
1744     }
1745 
1746     if (TLI) {
1747       SmallVector<Value*, 2> PtrOps;
1748       Type *AccessTy;
1749       if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
1750         while (!PtrOps.empty()) {
1751           Value *PtrVal = PtrOps.pop_back_val();
1752           unsigned AS = PtrVal->getType()->getPointerAddressSpace();
1753           if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
1754             return true;
1755         }
1756     }
1757   }
1758 
1759   // From here on out we're working with named functions.
1760   if (!CI->getCalledFunction()) return false;
1761 
1762   // Lower all default uses of _chk calls.  This is very similar
1763   // to what InstCombineCalls does, but here we are only lowering calls
1764   // to fortified library functions (e.g. __memcpy_chk) that have the default
1765   // "don't know" as the objectsize.  Anything else should be left alone.
1766   FortifiedLibCallSimplifier Simplifier(TLInfo, true);
1767   if (Value *V = Simplifier.optimizeCall(CI)) {
1768     CI->replaceAllUsesWith(V);
1769     CI->eraseFromParent();
1770     return true;
1771   }
1772 
1773   return false;
1774 }
1775 
1776 /// Look for opportunities to duplicate return instructions to the predecessor
1777 /// to enable tail call optimizations. The case it is currently looking for is:
1778 /// @code
1779 /// bb0:
1780 ///   %tmp0 = tail call i32 @f0()
1781 ///   br label %return
1782 /// bb1:
1783 ///   %tmp1 = tail call i32 @f1()
1784 ///   br label %return
1785 /// bb2:
1786 ///   %tmp2 = tail call i32 @f2()
1787 ///   br label %return
1788 /// return:
1789 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
1790 ///   ret i32 %retval
1791 /// @endcode
1792 ///
1793 /// =>
1794 ///
1795 /// @code
1796 /// bb0:
1797 ///   %tmp0 = tail call i32 @f0()
1798 ///   ret i32 %tmp0
1799 /// bb1:
1800 ///   %tmp1 = tail call i32 @f1()
1801 ///   ret i32 %tmp1
1802 /// bb2:
1803 ///   %tmp2 = tail call i32 @f2()
1804 ///   ret i32 %tmp2
1805 /// @endcode
1806 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) {
1807   if (!TLI)
1808     return false;
1809 
1810   ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
1811   if (!RetI)
1812     return false;
1813 
1814   PHINode *PN = nullptr;
1815   BitCastInst *BCI = nullptr;
1816   Value *V = RetI->getReturnValue();
1817   if (V) {
1818     BCI = dyn_cast<BitCastInst>(V);
1819     if (BCI)
1820       V = BCI->getOperand(0);
1821 
1822     PN = dyn_cast<PHINode>(V);
1823     if (!PN)
1824       return false;
1825   }
1826 
1827   if (PN && PN->getParent() != BB)
1828     return false;
1829 
1830   // Make sure there are no instructions between the PHI and return, or that the
1831   // return is the first instruction in the block.
1832   if (PN) {
1833     BasicBlock::iterator BI = BB->begin();
1834     do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
1835     if (&*BI == BCI)
1836       // Also skip over the bitcast.
1837       ++BI;
1838     if (&*BI != RetI)
1839       return false;
1840   } else {
1841     BasicBlock::iterator BI = BB->begin();
1842     while (isa<DbgInfoIntrinsic>(BI)) ++BI;
1843     if (&*BI != RetI)
1844       return false;
1845   }
1846 
1847   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
1848   /// call.
1849   const Function *F = BB->getParent();
1850   SmallVector<CallInst*, 4> TailCalls;
1851   if (PN) {
1852     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
1853       CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
1854       // Make sure the phi value is indeed produced by the tail call.
1855       if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
1856           TLI->mayBeEmittedAsTailCall(CI) &&
1857           attributesPermitTailCall(F, CI, RetI, *TLI))
1858         TailCalls.push_back(CI);
1859     }
1860   } else {
1861     SmallPtrSet<BasicBlock*, 4> VisitedBBs;
1862     for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
1863       if (!VisitedBBs.insert(*PI).second)
1864         continue;
1865 
1866       BasicBlock::InstListType &InstList = (*PI)->getInstList();
1867       BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
1868       BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
1869       do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
1870       if (RI == RE)
1871         continue;
1872 
1873       CallInst *CI = dyn_cast<CallInst>(&*RI);
1874       if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
1875           attributesPermitTailCall(F, CI, RetI, *TLI))
1876         TailCalls.push_back(CI);
1877     }
1878   }
1879 
1880   bool Changed = false;
1881   for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
1882     CallInst *CI = TailCalls[i];
1883     CallSite CS(CI);
1884 
1885     // Make sure the call instruction is followed by an unconditional branch to
1886     // the return block.
1887     BasicBlock *CallBB = CI->getParent();
1888     BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
1889     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
1890       continue;
1891 
1892     // Duplicate the return into CallBB.
1893     (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB);
1894     ModifiedDT = Changed = true;
1895     ++NumRetsDup;
1896   }
1897 
1898   // If we eliminated all predecessors of the block, delete the block now.
1899   if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
1900     BB->eraseFromParent();
1901 
1902   return Changed;
1903 }
1904 
1905 //===----------------------------------------------------------------------===//
1906 // Memory Optimization
1907 //===----------------------------------------------------------------------===//
1908 
1909 namespace {
1910 
1911 /// This is an extended version of TargetLowering::AddrMode
1912 /// which holds actual Value*'s for register values.
1913 struct ExtAddrMode : public TargetLowering::AddrMode {
1914   Value *BaseReg = nullptr;
1915   Value *ScaledReg = nullptr;
1916   Value *OriginalValue = nullptr;
1917 
1918   enum FieldName {
1919     NoField        = 0x00,
1920     BaseRegField   = 0x01,
1921     BaseGVField    = 0x02,
1922     BaseOffsField  = 0x04,
1923     ScaledRegField = 0x08,
1924     ScaleField     = 0x10,
1925     MultipleFields = 0xff
1926   };
1927 
1928   ExtAddrMode() = default;
1929 
1930   void print(raw_ostream &OS) const;
1931   void dump() const;
1932 
1933   FieldName compare(const ExtAddrMode &other) {
1934     // First check that the types are the same on each field, as differing types
1935     // is something we can't cope with later on.
1936     if (BaseReg && other.BaseReg &&
1937         BaseReg->getType() != other.BaseReg->getType())
1938       return MultipleFields;
1939     if (BaseGV && other.BaseGV &&
1940         BaseGV->getType() != other.BaseGV->getType())
1941       return MultipleFields;
1942     if (ScaledReg && other.ScaledReg &&
1943         ScaledReg->getType() != other.ScaledReg->getType())
1944       return MultipleFields;
1945 
1946     // Check each field to see if it differs.
1947     unsigned Result = NoField;
1948     if (BaseReg != other.BaseReg)
1949       Result |= BaseRegField;
1950     if (BaseGV != other.BaseGV)
1951       Result |= BaseGVField;
1952     if (BaseOffs != other.BaseOffs)
1953       Result |= BaseOffsField;
1954     if (ScaledReg != other.ScaledReg)
1955       Result |= ScaledRegField;
1956     // Don't count 0 as being a different scale, because that actually means
1957     // unscaled (which will already be counted by having no ScaledReg).
1958     if (Scale && other.Scale && Scale != other.Scale)
1959       Result |= ScaleField;
1960 
1961     if (countPopulation(Result) > 1)
1962       return MultipleFields;
1963     else
1964       return static_cast<FieldName>(Result);
1965   }
1966 
1967   // An AddrMode is trivial if it involves no calculation i.e. it is just a base
1968   // with no offset.
1969   bool isTrivial() {
1970     // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
1971     // trivial if at most one of these terms is nonzero, except that BaseGV and
1972     // BaseReg both being zero actually means a null pointer value, which we
1973     // consider to be 'non-zero' here.
1974     return !BaseOffs && !Scale && !(BaseGV && BaseReg);
1975   }
1976 
1977   Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
1978     switch (Field) {
1979     default:
1980       return nullptr;
1981     case BaseRegField:
1982       return BaseReg;
1983     case BaseGVField:
1984       return BaseGV;
1985     case ScaledRegField:
1986       return ScaledReg;
1987     case BaseOffsField:
1988       return ConstantInt::get(IntPtrTy, BaseOffs);
1989     }
1990   }
1991 
1992   void SetCombinedField(FieldName Field, Value *V,
1993                         const SmallVectorImpl<ExtAddrMode> &AddrModes) {
1994     switch (Field) {
1995     default:
1996       llvm_unreachable("Unhandled fields are expected to be rejected earlier");
1997       break;
1998     case ExtAddrMode::BaseRegField:
1999       BaseReg = V;
2000       break;
2001     case ExtAddrMode::BaseGVField:
2002       // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
2003       // in the BaseReg field.
2004       assert(BaseReg == nullptr);
2005       BaseReg = V;
2006       BaseGV = nullptr;
2007       break;
2008     case ExtAddrMode::ScaledRegField:
2009       ScaledReg = V;
2010       // If we have a mix of scaled and unscaled addrmodes then we want scale
2011       // to be the scale and not zero.
2012       if (!Scale)
2013         for (const ExtAddrMode &AM : AddrModes)
2014           if (AM.Scale) {
2015             Scale = AM.Scale;
2016             break;
2017           }
2018       break;
2019     case ExtAddrMode::BaseOffsField:
2020       // The offset is no longer a constant, so it goes in ScaledReg with a
2021       // scale of 1.
2022       assert(ScaledReg == nullptr);
2023       ScaledReg = V;
2024       Scale = 1;
2025       BaseOffs = 0;
2026       break;
2027     }
2028   }
2029 };
2030 
2031 } // end anonymous namespace
2032 
2033 #ifndef NDEBUG
2034 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2035   AM.print(OS);
2036   return OS;
2037 }
2038 #endif
2039 
2040 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2041 void ExtAddrMode::print(raw_ostream &OS) const {
2042   bool NeedPlus = false;
2043   OS << "[";
2044   if (BaseGV) {
2045     OS << (NeedPlus ? " + " : "")
2046        << "GV:";
2047     BaseGV->printAsOperand(OS, /*PrintType=*/false);
2048     NeedPlus = true;
2049   }
2050 
2051   if (BaseOffs) {
2052     OS << (NeedPlus ? " + " : "")
2053        << BaseOffs;
2054     NeedPlus = true;
2055   }
2056 
2057   if (BaseReg) {
2058     OS << (NeedPlus ? " + " : "")
2059        << "Base:";
2060     BaseReg->printAsOperand(OS, /*PrintType=*/false);
2061     NeedPlus = true;
2062   }
2063   if (Scale) {
2064     OS << (NeedPlus ? " + " : "")
2065        << Scale << "*";
2066     ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2067   }
2068 
2069   OS << ']';
2070 }
2071 
2072 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2073   print(dbgs());
2074   dbgs() << '\n';
2075 }
2076 #endif
2077 
2078 namespace {
2079 
2080 /// This class provides transaction based operation on the IR.
2081 /// Every change made through this class is recorded in the internal state and
2082 /// can be undone (rollback) until commit is called.
2083 class TypePromotionTransaction {
2084   /// This represents the common interface of the individual transaction.
2085   /// Each class implements the logic for doing one specific modification on
2086   /// the IR via the TypePromotionTransaction.
2087   class TypePromotionAction {
2088   protected:
2089     /// The Instruction modified.
2090     Instruction *Inst;
2091 
2092   public:
2093     /// Constructor of the action.
2094     /// The constructor performs the related action on the IR.
2095     TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2096 
2097     virtual ~TypePromotionAction() = default;
2098 
2099     /// Undo the modification done by this action.
2100     /// When this method is called, the IR must be in the same state as it was
2101     /// before this action was applied.
2102     /// \pre Undoing the action works if and only if the IR is in the exact same
2103     /// state as it was directly after this action was applied.
2104     virtual void undo() = 0;
2105 
2106     /// Advocate every change made by this action.
2107     /// When the results on the IR of the action are to be kept, it is important
2108     /// to call this function, otherwise hidden information may be kept forever.
2109     virtual void commit() {
2110       // Nothing to be done, this action is not doing anything.
2111     }
2112   };
2113 
2114   /// Utility to remember the position of an instruction.
2115   class InsertionHandler {
2116     /// Position of an instruction.
2117     /// Either an instruction:
2118     /// - Is the first in a basic block: BB is used.
2119     /// - Has a previous instruction: PrevInst is used.
2120     union {
2121       Instruction *PrevInst;
2122       BasicBlock *BB;
2123     } Point;
2124 
2125     /// Remember whether or not the instruction had a previous instruction.
2126     bool HasPrevInstruction;
2127 
2128   public:
2129     /// Record the position of \p Inst.
2130     InsertionHandler(Instruction *Inst) {
2131       BasicBlock::iterator It = Inst->getIterator();
2132       HasPrevInstruction = (It != (Inst->getParent()->begin()));
2133       if (HasPrevInstruction)
2134         Point.PrevInst = &*--It;
2135       else
2136         Point.BB = Inst->getParent();
2137     }
2138 
2139     /// Insert \p Inst at the recorded position.
2140     void insert(Instruction *Inst) {
2141       if (HasPrevInstruction) {
2142         if (Inst->getParent())
2143           Inst->removeFromParent();
2144         Inst->insertAfter(Point.PrevInst);
2145       } else {
2146         Instruction *Position = &*Point.BB->getFirstInsertionPt();
2147         if (Inst->getParent())
2148           Inst->moveBefore(Position);
2149         else
2150           Inst->insertBefore(Position);
2151       }
2152     }
2153   };
2154 
2155   /// Move an instruction before another.
2156   class InstructionMoveBefore : public TypePromotionAction {
2157     /// Original position of the instruction.
2158     InsertionHandler Position;
2159 
2160   public:
2161     /// Move \p Inst before \p Before.
2162     InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2163         : TypePromotionAction(Inst), Position(Inst) {
2164       LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
2165                         << "\n");
2166       Inst->moveBefore(Before);
2167     }
2168 
2169     /// Move the instruction back to its original position.
2170     void undo() override {
2171       LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2172       Position.insert(Inst);
2173     }
2174   };
2175 
2176   /// Set the operand of an instruction with a new value.
2177   class OperandSetter : public TypePromotionAction {
2178     /// Original operand of the instruction.
2179     Value *Origin;
2180 
2181     /// Index of the modified instruction.
2182     unsigned Idx;
2183 
2184   public:
2185     /// Set \p Idx operand of \p Inst with \p NewVal.
2186     OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2187         : TypePromotionAction(Inst), Idx(Idx) {
2188       LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2189                         << "for:" << *Inst << "\n"
2190                         << "with:" << *NewVal << "\n");
2191       Origin = Inst->getOperand(Idx);
2192       Inst->setOperand(Idx, NewVal);
2193     }
2194 
2195     /// Restore the original value of the instruction.
2196     void undo() override {
2197       LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2198                         << "for: " << *Inst << "\n"
2199                         << "with: " << *Origin << "\n");
2200       Inst->setOperand(Idx, Origin);
2201     }
2202   };
2203 
2204   /// Hide the operands of an instruction.
2205   /// Do as if this instruction was not using any of its operands.
2206   class OperandsHider : public TypePromotionAction {
2207     /// The list of original operands.
2208     SmallVector<Value *, 4> OriginalValues;
2209 
2210   public:
2211     /// Remove \p Inst from the uses of the operands of \p Inst.
2212     OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2213       LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2214       unsigned NumOpnds = Inst->getNumOperands();
2215       OriginalValues.reserve(NumOpnds);
2216       for (unsigned It = 0; It < NumOpnds; ++It) {
2217         // Save the current operand.
2218         Value *Val = Inst->getOperand(It);
2219         OriginalValues.push_back(Val);
2220         // Set a dummy one.
2221         // We could use OperandSetter here, but that would imply an overhead
2222         // that we are not willing to pay.
2223         Inst->setOperand(It, UndefValue::get(Val->getType()));
2224       }
2225     }
2226 
2227     /// Restore the original list of uses.
2228     void undo() override {
2229       LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2230       for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2231         Inst->setOperand(It, OriginalValues[It]);
2232     }
2233   };
2234 
2235   /// Build a truncate instruction.
2236   class TruncBuilder : public TypePromotionAction {
2237     Value *Val;
2238 
2239   public:
2240     /// Build a truncate instruction of \p Opnd producing a \p Ty
2241     /// result.
2242     /// trunc Opnd to Ty.
2243     TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2244       IRBuilder<> Builder(Opnd);
2245       Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2246       LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2247     }
2248 
2249     /// Get the built value.
2250     Value *getBuiltValue() { return Val; }
2251 
2252     /// Remove the built instruction.
2253     void undo() override {
2254       LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2255       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2256         IVal->eraseFromParent();
2257     }
2258   };
2259 
2260   /// Build a sign extension instruction.
2261   class SExtBuilder : public TypePromotionAction {
2262     Value *Val;
2263 
2264   public:
2265     /// Build a sign extension instruction of \p Opnd producing a \p Ty
2266     /// result.
2267     /// sext Opnd to Ty.
2268     SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2269         : TypePromotionAction(InsertPt) {
2270       IRBuilder<> Builder(InsertPt);
2271       Val = Builder.CreateSExt(Opnd, Ty, "promoted");
2272       LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
2273     }
2274 
2275     /// Get the built value.
2276     Value *getBuiltValue() { return Val; }
2277 
2278     /// Remove the built instruction.
2279     void undo() override {
2280       LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
2281       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2282         IVal->eraseFromParent();
2283     }
2284   };
2285 
2286   /// Build a zero extension instruction.
2287   class ZExtBuilder : public TypePromotionAction {
2288     Value *Val;
2289 
2290   public:
2291     /// Build a zero extension instruction of \p Opnd producing a \p Ty
2292     /// result.
2293     /// zext Opnd to Ty.
2294     ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2295         : TypePromotionAction(InsertPt) {
2296       IRBuilder<> Builder(InsertPt);
2297       Val = Builder.CreateZExt(Opnd, Ty, "promoted");
2298       LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
2299     }
2300 
2301     /// Get the built value.
2302     Value *getBuiltValue() { return Val; }
2303 
2304     /// Remove the built instruction.
2305     void undo() override {
2306       LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
2307       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2308         IVal->eraseFromParent();
2309     }
2310   };
2311 
2312   /// Mutate an instruction to another type.
2313   class TypeMutator : public TypePromotionAction {
2314     /// Record the original type.
2315     Type *OrigTy;
2316 
2317   public:
2318     /// Mutate the type of \p Inst into \p NewTy.
2319     TypeMutator(Instruction *Inst, Type *NewTy)
2320         : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
2321       LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
2322                         << "\n");
2323       Inst->mutateType(NewTy);
2324     }
2325 
2326     /// Mutate the instruction back to its original type.
2327     void undo() override {
2328       LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
2329                         << "\n");
2330       Inst->mutateType(OrigTy);
2331     }
2332   };
2333 
2334   /// Replace the uses of an instruction by another instruction.
2335   class UsesReplacer : public TypePromotionAction {
2336     /// Helper structure to keep track of the replaced uses.
2337     struct InstructionAndIdx {
2338       /// The instruction using the instruction.
2339       Instruction *Inst;
2340 
2341       /// The index where this instruction is used for Inst.
2342       unsigned Idx;
2343 
2344       InstructionAndIdx(Instruction *Inst, unsigned Idx)
2345           : Inst(Inst), Idx(Idx) {}
2346     };
2347 
2348     /// Keep track of the original uses (pair Instruction, Index).
2349     SmallVector<InstructionAndIdx, 4> OriginalUses;
2350 
2351     using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
2352 
2353   public:
2354     /// Replace all the use of \p Inst by \p New.
2355     UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
2356       LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
2357                         << "\n");
2358       // Record the original uses.
2359       for (Use &U : Inst->uses()) {
2360         Instruction *UserI = cast<Instruction>(U.getUser());
2361         OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
2362       }
2363       // Now, we can replace the uses.
2364       Inst->replaceAllUsesWith(New);
2365     }
2366 
2367     /// Reassign the original uses of Inst to Inst.
2368     void undo() override {
2369       LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
2370       for (use_iterator UseIt = OriginalUses.begin(),
2371                         EndIt = OriginalUses.end();
2372            UseIt != EndIt; ++UseIt) {
2373         UseIt->Inst->setOperand(UseIt->Idx, Inst);
2374       }
2375     }
2376   };
2377 
2378   /// Remove an instruction from the IR.
2379   class InstructionRemover : public TypePromotionAction {
2380     /// Original position of the instruction.
2381     InsertionHandler Inserter;
2382 
2383     /// Helper structure to hide all the link to the instruction. In other
2384     /// words, this helps to do as if the instruction was removed.
2385     OperandsHider Hider;
2386 
2387     /// Keep track of the uses replaced, if any.
2388     UsesReplacer *Replacer = nullptr;
2389 
2390     /// Keep track of instructions removed.
2391     SetOfInstrs &RemovedInsts;
2392 
2393   public:
2394     /// Remove all reference of \p Inst and optionally replace all its
2395     /// uses with New.
2396     /// \p RemovedInsts Keep track of the instructions removed by this Action.
2397     /// \pre If !Inst->use_empty(), then New != nullptr
2398     InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
2399                        Value *New = nullptr)
2400         : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
2401           RemovedInsts(RemovedInsts) {
2402       if (New)
2403         Replacer = new UsesReplacer(Inst, New);
2404       LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
2405       RemovedInsts.insert(Inst);
2406       /// The instructions removed here will be freed after completing
2407       /// optimizeBlock() for all blocks as we need to keep track of the
2408       /// removed instructions during promotion.
2409       Inst->removeFromParent();
2410     }
2411 
2412     ~InstructionRemover() override { delete Replacer; }
2413 
2414     /// Resurrect the instruction and reassign it to the proper uses if
2415     /// new value was provided when build this action.
2416     void undo() override {
2417       LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
2418       Inserter.insert(Inst);
2419       if (Replacer)
2420         Replacer->undo();
2421       Hider.undo();
2422       RemovedInsts.erase(Inst);
2423     }
2424   };
2425 
2426 public:
2427   /// Restoration point.
2428   /// The restoration point is a pointer to an action instead of an iterator
2429   /// because the iterator may be invalidated but not the pointer.
2430   using ConstRestorationPt = const TypePromotionAction *;
2431 
2432   TypePromotionTransaction(SetOfInstrs &RemovedInsts)
2433       : RemovedInsts(RemovedInsts) {}
2434 
2435   /// Advocate every changes made in that transaction.
2436   void commit();
2437 
2438   /// Undo all the changes made after the given point.
2439   void rollback(ConstRestorationPt Point);
2440 
2441   /// Get the current restoration point.
2442   ConstRestorationPt getRestorationPoint() const;
2443 
2444   /// \name API for IR modification with state keeping to support rollback.
2445   /// @{
2446   /// Same as Instruction::setOperand.
2447   void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
2448 
2449   /// Same as Instruction::eraseFromParent.
2450   void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
2451 
2452   /// Same as Value::replaceAllUsesWith.
2453   void replaceAllUsesWith(Instruction *Inst, Value *New);
2454 
2455   /// Same as Value::mutateType.
2456   void mutateType(Instruction *Inst, Type *NewTy);
2457 
2458   /// Same as IRBuilder::createTrunc.
2459   Value *createTrunc(Instruction *Opnd, Type *Ty);
2460 
2461   /// Same as IRBuilder::createSExt.
2462   Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
2463 
2464   /// Same as IRBuilder::createZExt.
2465   Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
2466 
2467   /// Same as Instruction::moveBefore.
2468   void moveBefore(Instruction *Inst, Instruction *Before);
2469   /// @}
2470 
2471 private:
2472   /// The ordered list of actions made so far.
2473   SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
2474 
2475   using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
2476 
2477   SetOfInstrs &RemovedInsts;
2478 };
2479 
2480 } // end anonymous namespace
2481 
2482 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
2483                                           Value *NewVal) {
2484   Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>(
2485       Inst, Idx, NewVal));
2486 }
2487 
2488 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
2489                                                 Value *NewVal) {
2490   Actions.push_back(
2491       llvm::make_unique<TypePromotionTransaction::InstructionRemover>(
2492           Inst, RemovedInsts, NewVal));
2493 }
2494 
2495 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
2496                                                   Value *New) {
2497   Actions.push_back(
2498       llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
2499 }
2500 
2501 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
2502   Actions.push_back(
2503       llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
2504 }
2505 
2506 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
2507                                              Type *Ty) {
2508   std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
2509   Value *Val = Ptr->getBuiltValue();
2510   Actions.push_back(std::move(Ptr));
2511   return Val;
2512 }
2513 
2514 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
2515                                             Value *Opnd, Type *Ty) {
2516   std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
2517   Value *Val = Ptr->getBuiltValue();
2518   Actions.push_back(std::move(Ptr));
2519   return Val;
2520 }
2521 
2522 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
2523                                             Value *Opnd, Type *Ty) {
2524   std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
2525   Value *Val = Ptr->getBuiltValue();
2526   Actions.push_back(std::move(Ptr));
2527   return Val;
2528 }
2529 
2530 void TypePromotionTransaction::moveBefore(Instruction *Inst,
2531                                           Instruction *Before) {
2532   Actions.push_back(
2533       llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
2534           Inst, Before));
2535 }
2536 
2537 TypePromotionTransaction::ConstRestorationPt
2538 TypePromotionTransaction::getRestorationPoint() const {
2539   return !Actions.empty() ? Actions.back().get() : nullptr;
2540 }
2541 
2542 void TypePromotionTransaction::commit() {
2543   for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
2544        ++It)
2545     (*It)->commit();
2546   Actions.clear();
2547 }
2548 
2549 void TypePromotionTransaction::rollback(
2550     TypePromotionTransaction::ConstRestorationPt Point) {
2551   while (!Actions.empty() && Point != Actions.back().get()) {
2552     std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
2553     Curr->undo();
2554   }
2555 }
2556 
2557 namespace {
2558 
2559 /// A helper class for matching addressing modes.
2560 ///
2561 /// This encapsulates the logic for matching the target-legal addressing modes.
2562 class AddressingModeMatcher {
2563   SmallVectorImpl<Instruction*> &AddrModeInsts;
2564   const TargetLowering &TLI;
2565   const TargetRegisterInfo &TRI;
2566   const DataLayout &DL;
2567 
2568   /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
2569   /// the memory instruction that we're computing this address for.
2570   Type *AccessTy;
2571   unsigned AddrSpace;
2572   Instruction *MemoryInst;
2573 
2574   /// This is the addressing mode that we're building up. This is
2575   /// part of the return value of this addressing mode matching stuff.
2576   ExtAddrMode &AddrMode;
2577 
2578   /// The instructions inserted by other CodeGenPrepare optimizations.
2579   const SetOfInstrs &InsertedInsts;
2580 
2581   /// A map from the instructions to their type before promotion.
2582   InstrToOrigTy &PromotedInsts;
2583 
2584   /// The ongoing transaction where every action should be registered.
2585   TypePromotionTransaction &TPT;
2586 
2587   // A GEP which has too large offset to be folded into the addressing mode.
2588   std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;
2589 
2590   /// This is set to true when we should not do profitability checks.
2591   /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
2592   bool IgnoreProfitability;
2593 
2594   AddressingModeMatcher(
2595       SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
2596       const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI,
2597       ExtAddrMode &AM, const SetOfInstrs &InsertedInsts,
2598       InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
2599       std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP)
2600       : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
2601         DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
2602         MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
2603         PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) {
2604     IgnoreProfitability = false;
2605   }
2606 
2607 public:
2608   /// Find the maximal addressing mode that a load/store of V can fold,
2609   /// give an access type of AccessTy.  This returns a list of involved
2610   /// instructions in AddrModeInsts.
2611   /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
2612   /// optimizations.
2613   /// \p PromotedInsts maps the instructions to their type before promotion.
2614   /// \p The ongoing transaction where every action should be registered.
2615   static ExtAddrMode
2616   Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
2617         SmallVectorImpl<Instruction *> &AddrModeInsts,
2618         const TargetLowering &TLI, const TargetRegisterInfo &TRI,
2619         const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
2620         TypePromotionTransaction &TPT,
2621         std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) {
2622     ExtAddrMode Result;
2623 
2624     bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS,
2625                                          MemoryInst, Result, InsertedInsts,
2626                                          PromotedInsts, TPT, LargeOffsetGEP)
2627                        .matchAddr(V, 0);
2628     (void)Success; assert(Success && "Couldn't select *anything*?");
2629     return Result;
2630   }
2631 
2632 private:
2633   bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
2634   bool matchAddr(Value *Addr, unsigned Depth);
2635   bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth,
2636                           bool *MovedAway = nullptr);
2637   bool isProfitableToFoldIntoAddressingMode(Instruction *I,
2638                                             ExtAddrMode &AMBefore,
2639                                             ExtAddrMode &AMAfter);
2640   bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
2641   bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
2642                              Value *PromotedOperand) const;
2643 };
2644 
2645 /// Keep track of simplification of Phi nodes.
2646 /// Accept the set of all phi nodes and erase phi node from this set
2647 /// if it is simplified.
2648 class SimplificationTracker {
2649   DenseMap<Value *, Value *> Storage;
2650   const SimplifyQuery &SQ;
2651   // Tracks newly created Phi nodes. We use a SetVector to get deterministic
2652   // order when iterating over the set in MatchPhiSet.
2653   SmallSetVector<PHINode *, 32> AllPhiNodes;
2654   // Tracks newly created Select nodes.
2655   SmallPtrSet<SelectInst *, 32> AllSelectNodes;
2656 
2657 public:
2658   SimplificationTracker(const SimplifyQuery &sq)
2659       : SQ(sq) {}
2660 
2661   Value *Get(Value *V) {
2662     do {
2663       auto SV = Storage.find(V);
2664       if (SV == Storage.end())
2665         return V;
2666       V = SV->second;
2667     } while (true);
2668   }
2669 
2670   Value *Simplify(Value *Val) {
2671     SmallVector<Value *, 32> WorkList;
2672     SmallPtrSet<Value *, 32> Visited;
2673     WorkList.push_back(Val);
2674     while (!WorkList.empty()) {
2675       auto P = WorkList.pop_back_val();
2676       if (!Visited.insert(P).second)
2677         continue;
2678       if (auto *PI = dyn_cast<Instruction>(P))
2679         if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) {
2680           for (auto *U : PI->users())
2681             WorkList.push_back(cast<Value>(U));
2682           Put(PI, V);
2683           PI->replaceAllUsesWith(V);
2684           if (auto *PHI = dyn_cast<PHINode>(PI))
2685             AllPhiNodes.remove(PHI);
2686           if (auto *Select = dyn_cast<SelectInst>(PI))
2687             AllSelectNodes.erase(Select);
2688           PI->eraseFromParent();
2689         }
2690     }
2691     return Get(Val);
2692   }
2693 
2694   void Put(Value *From, Value *To) {
2695     Storage.insert({ From, To });
2696   }
2697 
2698   void ReplacePhi(PHINode *From, PHINode *To) {
2699     Value* OldReplacement = Get(From);
2700     while (OldReplacement != From) {
2701       From = To;
2702       To = dyn_cast<PHINode>(OldReplacement);
2703       OldReplacement = Get(From);
2704     }
2705     assert(Get(To) == To && "Replacement PHI node is already replaced.");
2706     Put(From, To);
2707     From->replaceAllUsesWith(To);
2708     AllPhiNodes.remove(From);
2709     From->eraseFromParent();
2710   }
2711 
2712   SmallSetVector<PHINode *, 32>& newPhiNodes() { return AllPhiNodes; }
2713 
2714   void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }
2715 
2716   void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }
2717 
2718   unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }
2719 
2720   unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }
2721 
2722   void destroyNewNodes(Type *CommonType) {
2723     // For safe erasing, replace the uses with dummy value first.
2724     auto Dummy = UndefValue::get(CommonType);
2725     for (auto I : AllPhiNodes) {
2726       I->replaceAllUsesWith(Dummy);
2727       I->eraseFromParent();
2728     }
2729     AllPhiNodes.clear();
2730     for (auto I : AllSelectNodes) {
2731       I->replaceAllUsesWith(Dummy);
2732       I->eraseFromParent();
2733     }
2734     AllSelectNodes.clear();
2735   }
2736 };
2737 
2738 /// A helper class for combining addressing modes.
2739 class AddressingModeCombiner {
2740   typedef std::pair<Value *, BasicBlock *> ValueInBB;
2741   typedef DenseMap<ValueInBB, Value *> FoldAddrToValueMapping;
2742   typedef std::pair<PHINode *, PHINode *> PHIPair;
2743 
2744 private:
2745   /// The addressing modes we've collected.
2746   SmallVector<ExtAddrMode, 16> AddrModes;
2747 
2748   /// The field in which the AddrModes differ, when we have more than one.
2749   ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
2750 
2751   /// Are the AddrModes that we have all just equal to their original values?
2752   bool AllAddrModesTrivial = true;
2753 
2754   /// Common Type for all different fields in addressing modes.
2755   Type *CommonType;
2756 
2757   /// SimplifyQuery for simplifyInstruction utility.
2758   const SimplifyQuery &SQ;
2759 
2760   /// Original Address.
2761   ValueInBB Original;
2762 
2763 public:
2764   AddressingModeCombiner(const SimplifyQuery &_SQ, ValueInBB OriginalValue)
2765       : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {}
2766 
2767   /// Get the combined AddrMode
2768   const ExtAddrMode &getAddrMode() const {
2769     return AddrModes[0];
2770   }
2771 
2772   /// Add a new AddrMode if it's compatible with the AddrModes we already
2773   /// have.
2774   /// \return True iff we succeeded in doing so.
2775   bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
2776     // Take note of if we have any non-trivial AddrModes, as we need to detect
2777     // when all AddrModes are trivial as then we would introduce a phi or select
2778     // which just duplicates what's already there.
2779     AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
2780 
2781     // If this is the first addrmode then everything is fine.
2782     if (AddrModes.empty()) {
2783       AddrModes.emplace_back(NewAddrMode);
2784       return true;
2785     }
2786 
2787     // Figure out how different this is from the other address modes, which we
2788     // can do just by comparing against the first one given that we only care
2789     // about the cumulative difference.
2790     ExtAddrMode::FieldName ThisDifferentField =
2791       AddrModes[0].compare(NewAddrMode);
2792     if (DifferentField == ExtAddrMode::NoField)
2793       DifferentField = ThisDifferentField;
2794     else if (DifferentField != ThisDifferentField)
2795       DifferentField = ExtAddrMode::MultipleFields;
2796 
2797     // If NewAddrMode differs in more than one dimension we cannot handle it.
2798     bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
2799 
2800     // If Scale Field is different then we reject.
2801     CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
2802 
2803     // We also must reject the case when base offset is different and
2804     // scale reg is not null, we cannot handle this case due to merge of
2805     // different offsets will be used as ScaleReg.
2806     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
2807                               !NewAddrMode.ScaledReg);
2808 
2809     // We also must reject the case when GV is different and BaseReg installed
2810     // due to we want to use base reg as a merge of GV values.
2811     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
2812                               !NewAddrMode.HasBaseReg);
2813 
2814     // Even if NewAddMode is the same we still need to collect it due to
2815     // original value is different. And later we will need all original values
2816     // as anchors during finding the common Phi node.
2817     if (CanHandle)
2818       AddrModes.emplace_back(NewAddrMode);
2819     else
2820       AddrModes.clear();
2821 
2822     return CanHandle;
2823   }
2824 
2825   /// Combine the addressing modes we've collected into a single
2826   /// addressing mode.
2827   /// \return True iff we successfully combined them or we only had one so
2828   /// didn't need to combine them anyway.
2829   bool combineAddrModes() {
2830     // If we have no AddrModes then they can't be combined.
2831     if (AddrModes.size() == 0)
2832       return false;
2833 
2834     // A single AddrMode can trivially be combined.
2835     if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
2836       return true;
2837 
2838     // If the AddrModes we collected are all just equal to the value they are
2839     // derived from then combining them wouldn't do anything useful.
2840     if (AllAddrModesTrivial)
2841       return false;
2842 
2843     if (!addrModeCombiningAllowed())
2844       return false;
2845 
2846     // Build a map between <original value, basic block where we saw it> to
2847     // value of base register.
2848     // Bail out if there is no common type.
2849     FoldAddrToValueMapping Map;
2850     if (!initializeMap(Map))
2851       return false;
2852 
2853     Value *CommonValue = findCommon(Map);
2854     if (CommonValue)
2855       AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
2856     return CommonValue != nullptr;
2857   }
2858 
2859 private:
2860   /// Initialize Map with anchor values. For address seen in some BB
2861   /// we set the value of different field saw in this address.
2862   /// If address is not an instruction than basic block is set to null.
2863   /// At the same time we find a common type for different field we will
2864   /// use to create new Phi/Select nodes. Keep it in CommonType field.
2865   /// Return false if there is no common type found.
2866   bool initializeMap(FoldAddrToValueMapping &Map) {
2867     // Keep track of keys where the value is null. We will need to replace it
2868     // with constant null when we know the common type.
2869     SmallVector<ValueInBB, 2> NullValue;
2870     Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
2871     for (auto &AM : AddrModes) {
2872       BasicBlock *BB = nullptr;
2873       if (Instruction *I = dyn_cast<Instruction>(AM.OriginalValue))
2874         BB = I->getParent();
2875 
2876       Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
2877       if (DV) {
2878         auto *Type = DV->getType();
2879         if (CommonType && CommonType != Type)
2880           return false;
2881         CommonType = Type;
2882         Map[{ AM.OriginalValue, BB }] = DV;
2883       } else {
2884         NullValue.push_back({ AM.OriginalValue, BB });
2885       }
2886     }
2887     assert(CommonType && "At least one non-null value must be!");
2888     for (auto VIBB : NullValue)
2889       Map[VIBB] = Constant::getNullValue(CommonType);
2890     return true;
2891   }
2892 
2893   /// We have mapping between value A and basic block where value A
2894   /// seen to other value B where B was a field in addressing mode represented
2895   /// by A. Also we have an original value C representing an address in some
2896   /// basic block. Traversing from C through phi and selects we ended up with
2897   /// A's in a map. This utility function tries to find a value V which is a
2898   /// field in addressing mode C and traversing through phi nodes and selects
2899   /// we will end up in corresponded values B in a map.
2900   /// The utility will create a new Phi/Selects if needed.
2901   // The simple example looks as follows:
2902   // BB1:
2903   //   p1 = b1 + 40
2904   //   br cond BB2, BB3
2905   // BB2:
2906   //   p2 = b2 + 40
2907   //   br BB3
2908   // BB3:
2909   //   p = phi [p1, BB1], [p2, BB2]
2910   //   v = load p
2911   // Map is
2912   //   <p1, BB1> -> b1
2913   //   <p2, BB2> -> b2
2914   // Request is
2915   //   <p, BB3> -> ?
2916   // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3
2917   Value *findCommon(FoldAddrToValueMapping &Map) {
2918     // Tracks the simplification of newly created phi nodes. The reason we use
2919     // this mapping is because we will add new created Phi nodes in AddrToBase.
2920     // Simplification of Phi nodes is recursive, so some Phi node may
2921     // be simplified after we added it to AddrToBase.
2922     // Using this mapping we can find the current value in AddrToBase.
2923     SimplificationTracker ST(SQ);
2924 
2925     // First step, DFS to create PHI nodes for all intermediate blocks.
2926     // Also fill traverse order for the second step.
2927     SmallVector<ValueInBB, 32> TraverseOrder;
2928     InsertPlaceholders(Map, TraverseOrder, ST);
2929 
2930     // Second Step, fill new nodes by merged values and simplify if possible.
2931     FillPlaceholders(Map, TraverseOrder, ST);
2932 
2933     if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
2934       ST.destroyNewNodes(CommonType);
2935       return nullptr;
2936     }
2937 
2938     // Now we'd like to match New Phi nodes to existed ones.
2939     unsigned PhiNotMatchedCount = 0;
2940     if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
2941       ST.destroyNewNodes(CommonType);
2942       return nullptr;
2943     }
2944 
2945     auto *Result = ST.Get(Map.find(Original)->second);
2946     if (Result) {
2947       NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
2948       NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
2949     }
2950     return Result;
2951   }
2952 
2953   /// Try to match PHI node to Candidate.
2954   /// Matcher tracks the matched Phi nodes.
2955   bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
2956                     SmallSetVector<PHIPair, 8> &Matcher,
2957                     SmallSetVector<PHINode *, 32> &PhiNodesToMatch) {
2958     SmallVector<PHIPair, 8> WorkList;
2959     Matcher.insert({ PHI, Candidate });
2960     WorkList.push_back({ PHI, Candidate });
2961     SmallSet<PHIPair, 8> Visited;
2962     while (!WorkList.empty()) {
2963       auto Item = WorkList.pop_back_val();
2964       if (!Visited.insert(Item).second)
2965         continue;
2966       // We iterate over all incoming values to Phi to compare them.
2967       // If values are different and both of them Phi and the first one is a
2968       // Phi we added (subject to match) and both of them is in the same basic
2969       // block then we can match our pair if values match. So we state that
2970       // these values match and add it to work list to verify that.
2971       for (auto B : Item.first->blocks()) {
2972         Value *FirstValue = Item.first->getIncomingValueForBlock(B);
2973         Value *SecondValue = Item.second->getIncomingValueForBlock(B);
2974         if (FirstValue == SecondValue)
2975           continue;
2976 
2977         PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
2978         PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
2979 
2980         // One of them is not Phi or
2981         // The first one is not Phi node from the set we'd like to match or
2982         // Phi nodes from different basic blocks then
2983         // we will not be able to match.
2984         if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
2985             FirstPhi->getParent() != SecondPhi->getParent())
2986           return false;
2987 
2988         // If we already matched them then continue.
2989         if (Matcher.count({ FirstPhi, SecondPhi }))
2990           continue;
2991         // So the values are different and does not match. So we need them to
2992         // match.
2993         Matcher.insert({ FirstPhi, SecondPhi });
2994         // But me must check it.
2995         WorkList.push_back({ FirstPhi, SecondPhi });
2996       }
2997     }
2998     return true;
2999   }
3000 
3001   /// For the given set of PHI nodes (in the SimplificationTracker) try
3002   /// to find their equivalents.
3003   /// Returns false if this matching fails and creation of new Phi is disabled.
3004   bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
3005                    unsigned &PhiNotMatchedCount) {
3006     // Use a SetVector for Matched to make sure we do replacements (ReplacePhi)
3007     // in a deterministic order below.
3008     SmallSetVector<PHIPair, 8> Matched;
3009     SmallPtrSet<PHINode *, 8> WillNotMatch;
3010     SmallSetVector<PHINode *, 32> &PhiNodesToMatch = ST.newPhiNodes();
3011     while (PhiNodesToMatch.size()) {
3012       PHINode *PHI = *PhiNodesToMatch.begin();
3013 
3014       // Add us, if no Phi nodes in the basic block we do not match.
3015       WillNotMatch.clear();
3016       WillNotMatch.insert(PHI);
3017 
3018       // Traverse all Phis until we found equivalent or fail to do that.
3019       bool IsMatched = false;
3020       for (auto &P : PHI->getParent()->phis()) {
3021         if (&P == PHI)
3022           continue;
3023         if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
3024           break;
3025         // If it does not match, collect all Phi nodes from matcher.
3026         // if we end up with no match, them all these Phi nodes will not match
3027         // later.
3028         for (auto M : Matched)
3029           WillNotMatch.insert(M.first);
3030         Matched.clear();
3031       }
3032       if (IsMatched) {
3033         // Replace all matched values and erase them.
3034         for (auto MV : Matched)
3035           ST.ReplacePhi(MV.first, MV.second);
3036         Matched.clear();
3037         continue;
3038       }
3039       // If we are not allowed to create new nodes then bail out.
3040       if (!AllowNewPhiNodes)
3041         return false;
3042       // Just remove all seen values in matcher. They will not match anything.
3043       PhiNotMatchedCount += WillNotMatch.size();
3044       for (auto *P : WillNotMatch)
3045         PhiNodesToMatch.remove(P);
3046     }
3047     return true;
3048   }
3049   /// Fill the placeholder with values from predecessors and simplify it.
3050   void FillPlaceholders(FoldAddrToValueMapping &Map,
3051                         SmallVectorImpl<ValueInBB> &TraverseOrder,
3052                         SimplificationTracker &ST) {
3053     while (!TraverseOrder.empty()) {
3054       auto Current = TraverseOrder.pop_back_val();
3055       assert(Map.find(Current) != Map.end() && "No node to fill!!!");
3056       Value *CurrentValue = Current.first;
3057       BasicBlock *CurrentBlock = Current.second;
3058       Value *V = Map[Current];
3059 
3060       if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
3061         // CurrentValue also must be Select.
3062         auto *CurrentSelect = cast<SelectInst>(CurrentValue);
3063         auto *TrueValue = CurrentSelect->getTrueValue();
3064         ValueInBB TrueItem = { TrueValue, isa<Instruction>(TrueValue)
3065                                               ? CurrentBlock
3066                                               : nullptr };
3067         assert(Map.find(TrueItem) != Map.end() && "No True Value!");
3068         Select->setTrueValue(ST.Get(Map[TrueItem]));
3069         auto *FalseValue = CurrentSelect->getFalseValue();
3070         ValueInBB FalseItem = { FalseValue, isa<Instruction>(FalseValue)
3071                                                 ? CurrentBlock
3072                                                 : nullptr };
3073         assert(Map.find(FalseItem) != Map.end() && "No False Value!");
3074         Select->setFalseValue(ST.Get(Map[FalseItem]));
3075       } else {
3076         // Must be a Phi node then.
3077         PHINode *PHI = cast<PHINode>(V);
3078         // Fill the Phi node with values from predecessors.
3079         bool IsDefinedInThisBB =
3080             cast<Instruction>(CurrentValue)->getParent() == CurrentBlock;
3081         auto *CurrentPhi = dyn_cast<PHINode>(CurrentValue);
3082         for (auto B : predecessors(CurrentBlock)) {
3083           Value *PV = IsDefinedInThisBB
3084                           ? CurrentPhi->getIncomingValueForBlock(B)
3085                           : CurrentValue;
3086           ValueInBB item = { PV, isa<Instruction>(PV) ? B : nullptr };
3087           assert(Map.find(item) != Map.end() && "No predecessor Value!");
3088           PHI->addIncoming(ST.Get(Map[item]), B);
3089         }
3090       }
3091       // Simplify if possible.
3092       Map[Current] = ST.Simplify(V);
3093     }
3094   }
3095 
3096   /// Starting from value recursively iterates over predecessors up to known
3097   /// ending values represented in a map. For each traversed block inserts
3098   /// a placeholder Phi or Select.
3099   /// Reports all new created Phi/Select nodes by adding them to set.
3100   /// Also reports and order in what basic blocks have been traversed.
3101   void InsertPlaceholders(FoldAddrToValueMapping &Map,
3102                           SmallVectorImpl<ValueInBB> &TraverseOrder,
3103                           SimplificationTracker &ST) {
3104     SmallVector<ValueInBB, 32> Worklist;
3105     assert((isa<PHINode>(Original.first) || isa<SelectInst>(Original.first)) &&
3106            "Address must be a Phi or Select node");
3107     auto *Dummy = UndefValue::get(CommonType);
3108     Worklist.push_back(Original);
3109     while (!Worklist.empty()) {
3110       auto Current = Worklist.pop_back_val();
3111       // If value is not an instruction it is something global, constant,
3112       // parameter and we can say that this value is observable in any block.
3113       // Set block to null to denote it.
3114       // Also please take into account that it is how we build anchors.
3115       if (!isa<Instruction>(Current.first))
3116         Current.second = nullptr;
3117       // if it is already visited or it is an ending value then skip it.
3118       if (Map.find(Current) != Map.end())
3119         continue;
3120       TraverseOrder.push_back(Current);
3121 
3122       Value *CurrentValue = Current.first;
3123       BasicBlock *CurrentBlock = Current.second;
3124       // CurrentValue must be a Phi node or select. All others must be covered
3125       // by anchors.
3126       Instruction *CurrentI = cast<Instruction>(CurrentValue);
3127       bool IsDefinedInThisBB = CurrentI->getParent() == CurrentBlock;
3128 
3129       unsigned PredCount = pred_size(CurrentBlock);
3130       // if Current Value is not defined in this basic block we are interested
3131       // in values in predecessors.
3132       if (!IsDefinedInThisBB) {
3133         assert(PredCount && "Unreachable block?!");
3134         PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi",
3135                                        &CurrentBlock->front());
3136         Map[Current] = PHI;
3137         ST.insertNewPhi(PHI);
3138         // Add all predecessors in work list.
3139         for (auto B : predecessors(CurrentBlock))
3140           Worklist.push_back({ CurrentValue, B });
3141         continue;
3142       }
3143       // Value is defined in this basic block.
3144       if (SelectInst *OrigSelect = dyn_cast<SelectInst>(CurrentI)) {
3145         // Is it OK to get metadata from OrigSelect?!
3146         // Create a Select placeholder with dummy value.
3147         SelectInst *Select =
3148             SelectInst::Create(OrigSelect->getCondition(), Dummy, Dummy,
3149                                OrigSelect->getName(), OrigSelect, OrigSelect);
3150         Map[Current] = Select;
3151         ST.insertNewSelect(Select);
3152         // We are interested in True and False value in this basic block.
3153         Worklist.push_back({ OrigSelect->getTrueValue(), CurrentBlock });
3154         Worklist.push_back({ OrigSelect->getFalseValue(), CurrentBlock });
3155       } else {
3156         // It must be a Phi node then.
3157         auto *CurrentPhi = cast<PHINode>(CurrentI);
3158         // Create new Phi node for merge of bases.
3159         assert(PredCount && "Unreachable block?!");
3160         PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi",
3161                                        &CurrentBlock->front());
3162         Map[Current] = PHI;
3163         ST.insertNewPhi(PHI);
3164 
3165         // Add all predecessors in work list.
3166         for (auto B : predecessors(CurrentBlock))
3167           Worklist.push_back({ CurrentPhi->getIncomingValueForBlock(B), B });
3168       }
3169     }
3170   }
3171 
3172   bool addrModeCombiningAllowed() {
3173     if (DisableComplexAddrModes)
3174       return false;
3175     switch (DifferentField) {
3176     default:
3177       return false;
3178     case ExtAddrMode::BaseRegField:
3179       return AddrSinkCombineBaseReg;
3180     case ExtAddrMode::BaseGVField:
3181       return AddrSinkCombineBaseGV;
3182     case ExtAddrMode::BaseOffsField:
3183       return AddrSinkCombineBaseOffs;
3184     case ExtAddrMode::ScaledRegField:
3185       return AddrSinkCombineScaledReg;
3186     }
3187   }
3188 };
3189 } // end anonymous namespace
3190 
3191 /// Try adding ScaleReg*Scale to the current addressing mode.
3192 /// Return true and update AddrMode if this addr mode is legal for the target,
3193 /// false if not.
3194 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
3195                                              unsigned Depth) {
3196   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3197   // mode.  Just process that directly.
3198   if (Scale == 1)
3199     return matchAddr(ScaleReg, Depth);
3200 
3201   // If the scale is 0, it takes nothing to add this.
3202   if (Scale == 0)
3203     return true;
3204 
3205   // If we already have a scale of this value, we can add to it, otherwise, we
3206   // need an available scale field.
3207   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
3208     return false;
3209 
3210   ExtAddrMode TestAddrMode = AddrMode;
3211 
3212   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
3213   // [A+B + A*7] -> [B+A*8].
3214   TestAddrMode.Scale += Scale;
3215   TestAddrMode.ScaledReg = ScaleReg;
3216 
3217   // If the new address isn't legal, bail out.
3218   if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
3219     return false;
3220 
3221   // It was legal, so commit it.
3222   AddrMode = TestAddrMode;
3223 
3224   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
3225   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
3226   // X*Scale + C*Scale to addr mode.
3227   ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
3228   if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
3229       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
3230     TestAddrMode.ScaledReg = AddLHS;
3231     TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
3232 
3233     // If this addressing mode is legal, commit it and remember that we folded
3234     // this instruction.
3235     if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
3236       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
3237       AddrMode = TestAddrMode;
3238       return true;
3239     }
3240   }
3241 
3242   // Otherwise, not (x+c)*scale, just return what we have.
3243   return true;
3244 }
3245 
3246 /// This is a little filter, which returns true if an addressing computation
3247 /// involving I might be folded into a load/store accessing it.
3248 /// This doesn't need to be perfect, but needs to accept at least
3249 /// the set of instructions that MatchOperationAddr can.
3250 static bool MightBeFoldableInst(Instruction *I) {
3251   switch (I->getOpcode()) {
3252   case Instruction::BitCast:
3253   case Instruction::AddrSpaceCast:
3254     // Don't touch identity bitcasts.
3255     if (I->getType() == I->getOperand(0)->getType())
3256       return false;
3257     return I->getType()->isIntOrPtrTy();
3258   case Instruction::PtrToInt:
3259     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3260     return true;
3261   case Instruction::IntToPtr:
3262     // We know the input is intptr_t, so this is foldable.
3263     return true;
3264   case Instruction::Add:
3265     return true;
3266   case Instruction::Mul:
3267   case Instruction::Shl:
3268     // Can only handle X*C and X << C.
3269     return isa<ConstantInt>(I->getOperand(1));
3270   case Instruction::GetElementPtr:
3271     return true;
3272   default:
3273     return false;
3274   }
3275 }
3276 
3277 /// Check whether or not \p Val is a legal instruction for \p TLI.
3278 /// \note \p Val is assumed to be the product of some type promotion.
3279 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
3280 /// to be legal, as the non-promoted value would have had the same state.
3281 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
3282                                        const DataLayout &DL, Value *Val) {
3283   Instruction *PromotedInst = dyn_cast<Instruction>(Val);
3284   if (!PromotedInst)
3285     return false;
3286   int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
3287   // If the ISDOpcode is undefined, it was undefined before the promotion.
3288   if (!ISDOpcode)
3289     return true;
3290   // Otherwise, check if the promoted instruction is legal or not.
3291   return TLI.isOperationLegalOrCustom(
3292       ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
3293 }
3294 
3295 namespace {
3296 
3297 /// Hepler class to perform type promotion.
3298 class TypePromotionHelper {
3299   /// Utility function to add a promoted instruction \p ExtOpnd to
3300   /// \p PromotedInsts and record the type of extension we have seen.
3301   static void addPromotedInst(InstrToOrigTy &PromotedInsts,
3302                               Instruction *ExtOpnd,
3303                               bool IsSExt) {
3304     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3305     InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd);
3306     if (It != PromotedInsts.end()) {
3307       // If the new extension is same as original, the information in
3308       // PromotedInsts[ExtOpnd] is still correct.
3309       if (It->second.getInt() == ExtTy)
3310         return;
3311 
3312       // Now the new extension is different from old extension, we make
3313       // the type information invalid by setting extension type to
3314       // BothExtension.
3315       ExtTy = BothExtension;
3316     }
3317     PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy);
3318   }
3319 
3320   /// Utility function to query the original type of instruction \p Opnd
3321   /// with a matched extension type. If the extension doesn't match, we
3322   /// cannot use the information we had on the original type.
3323   /// BothExtension doesn't match any extension type.
3324   static const Type *getOrigType(const InstrToOrigTy &PromotedInsts,
3325                                  Instruction *Opnd,
3326                                  bool IsSExt) {
3327     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3328     InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
3329     if (It != PromotedInsts.end() && It->second.getInt() == ExtTy)
3330       return It->second.getPointer();
3331     return nullptr;
3332   }
3333 
3334   /// Utility function to check whether or not a sign or zero extension
3335   /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
3336   /// either using the operands of \p Inst or promoting \p Inst.
3337   /// The type of the extension is defined by \p IsSExt.
3338   /// In other words, check if:
3339   /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
3340   /// #1 Promotion applies:
3341   /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
3342   /// #2 Operand reuses:
3343   /// ext opnd1 to ConsideredExtType.
3344   /// \p PromotedInsts maps the instructions to their type before promotion.
3345   static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
3346                             const InstrToOrigTy &PromotedInsts, bool IsSExt);
3347 
3348   /// Utility function to determine if \p OpIdx should be promoted when
3349   /// promoting \p Inst.
3350   static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
3351     return !(isa<SelectInst>(Inst) && OpIdx == 0);
3352   }
3353 
3354   /// Utility function to promote the operand of \p Ext when this
3355   /// operand is a promotable trunc or sext or zext.
3356   /// \p PromotedInsts maps the instructions to their type before promotion.
3357   /// \p CreatedInstsCost[out] contains the cost of all instructions
3358   /// created to promote the operand of Ext.
3359   /// Newly added extensions are inserted in \p Exts.
3360   /// Newly added truncates are inserted in \p Truncs.
3361   /// Should never be called directly.
3362   /// \return The promoted value which is used instead of Ext.
3363   static Value *promoteOperandForTruncAndAnyExt(
3364       Instruction *Ext, TypePromotionTransaction &TPT,
3365       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3366       SmallVectorImpl<Instruction *> *Exts,
3367       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
3368 
3369   /// Utility function to promote the operand of \p Ext when this
3370   /// operand is promotable and is not a supported trunc or sext.
3371   /// \p PromotedInsts maps the instructions to their type before promotion.
3372   /// \p CreatedInstsCost[out] contains the cost of all the instructions
3373   /// created to promote the operand of Ext.
3374   /// Newly added extensions are inserted in \p Exts.
3375   /// Newly added truncates are inserted in \p Truncs.
3376   /// Should never be called directly.
3377   /// \return The promoted value which is used instead of Ext.
3378   static Value *promoteOperandForOther(Instruction *Ext,
3379                                        TypePromotionTransaction &TPT,
3380                                        InstrToOrigTy &PromotedInsts,
3381                                        unsigned &CreatedInstsCost,
3382                                        SmallVectorImpl<Instruction *> *Exts,
3383                                        SmallVectorImpl<Instruction *> *Truncs,
3384                                        const TargetLowering &TLI, bool IsSExt);
3385 
3386   /// \see promoteOperandForOther.
3387   static Value *signExtendOperandForOther(
3388       Instruction *Ext, TypePromotionTransaction &TPT,
3389       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3390       SmallVectorImpl<Instruction *> *Exts,
3391       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3392     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3393                                   Exts, Truncs, TLI, true);
3394   }
3395 
3396   /// \see promoteOperandForOther.
3397   static Value *zeroExtendOperandForOther(
3398       Instruction *Ext, TypePromotionTransaction &TPT,
3399       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3400       SmallVectorImpl<Instruction *> *Exts,
3401       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3402     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3403                                   Exts, Truncs, TLI, false);
3404   }
3405 
3406 public:
3407   /// Type for the utility function that promotes the operand of Ext.
3408   using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
3409                             InstrToOrigTy &PromotedInsts,
3410                             unsigned &CreatedInstsCost,
3411                             SmallVectorImpl<Instruction *> *Exts,
3412                             SmallVectorImpl<Instruction *> *Truncs,
3413                             const TargetLowering &TLI);
3414 
3415   /// Given a sign/zero extend instruction \p Ext, return the appropriate
3416   /// action to promote the operand of \p Ext instead of using Ext.
3417   /// \return NULL if no promotable action is possible with the current
3418   /// sign extension.
3419   /// \p InsertedInsts keeps track of all the instructions inserted by the
3420   /// other CodeGenPrepare optimizations. This information is important
3421   /// because we do not want to promote these instructions as CodeGenPrepare
3422   /// will reinsert them later. Thus creating an infinite loop: create/remove.
3423   /// \p PromotedInsts maps the instructions to their type before promotion.
3424   static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
3425                           const TargetLowering &TLI,
3426                           const InstrToOrigTy &PromotedInsts);
3427 };
3428 
3429 } // end anonymous namespace
3430 
3431 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
3432                                         Type *ConsideredExtType,
3433                                         const InstrToOrigTy &PromotedInsts,
3434                                         bool IsSExt) {
3435   // The promotion helper does not know how to deal with vector types yet.
3436   // To be able to fix that, we would need to fix the places where we
3437   // statically extend, e.g., constants and such.
3438   if (Inst->getType()->isVectorTy())
3439     return false;
3440 
3441   // We can always get through zext.
3442   if (isa<ZExtInst>(Inst))
3443     return true;
3444 
3445   // sext(sext) is ok too.
3446   if (IsSExt && isa<SExtInst>(Inst))
3447     return true;
3448 
3449   // We can get through binary operator, if it is legal. In other words, the
3450   // binary operator must have a nuw or nsw flag.
3451   const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
3452   if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
3453       ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
3454        (IsSExt && BinOp->hasNoSignedWrap())))
3455     return true;
3456 
3457   // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
3458   if ((Inst->getOpcode() == Instruction::And ||
3459        Inst->getOpcode() == Instruction::Or))
3460     return true;
3461 
3462   // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
3463   if (Inst->getOpcode() == Instruction::Xor) {
3464     const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1));
3465     // Make sure it is not a NOT.
3466     if (Cst && !Cst->getValue().isAllOnesValue())
3467       return true;
3468   }
3469 
3470   // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
3471   // It may change a poisoned value into a regular value, like
3472   //     zext i32 (shrl i8 %val, 12)  -->  shrl i32 (zext i8 %val), 12
3473   //          poisoned value                    regular value
3474   // It should be OK since undef covers valid value.
3475   if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
3476     return true;
3477 
3478   // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
3479   // It may change a poisoned value into a regular value, like
3480   //     zext i32 (shl i8 %val, 12)  -->  shl i32 (zext i8 %val), 12
3481   //          poisoned value                    regular value
3482   // It should be OK since undef covers valid value.
3483   if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
3484     const Instruction *ExtInst =
3485         dyn_cast<const Instruction>(*Inst->user_begin());
3486     if (ExtInst->hasOneUse()) {
3487       const Instruction *AndInst =
3488           dyn_cast<const Instruction>(*ExtInst->user_begin());
3489       if (AndInst && AndInst->getOpcode() == Instruction::And) {
3490         const ConstantInt *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
3491         if (Cst &&
3492             Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
3493           return true;
3494       }
3495     }
3496   }
3497 
3498   // Check if we can do the following simplification.
3499   // ext(trunc(opnd)) --> ext(opnd)
3500   if (!isa<TruncInst>(Inst))
3501     return false;
3502 
3503   Value *OpndVal = Inst->getOperand(0);
3504   // Check if we can use this operand in the extension.
3505   // If the type is larger than the result type of the extension, we cannot.
3506   if (!OpndVal->getType()->isIntegerTy() ||
3507       OpndVal->getType()->getIntegerBitWidth() >
3508           ConsideredExtType->getIntegerBitWidth())
3509     return false;
3510 
3511   // If the operand of the truncate is not an instruction, we will not have
3512   // any information on the dropped bits.
3513   // (Actually we could for constant but it is not worth the extra logic).
3514   Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
3515   if (!Opnd)
3516     return false;
3517 
3518   // Check if the source of the type is narrow enough.
3519   // I.e., check that trunc just drops extended bits of the same kind of
3520   // the extension.
3521   // #1 get the type of the operand and check the kind of the extended bits.
3522   const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt);
3523   if (OpndType)
3524     ;
3525   else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
3526     OpndType = Opnd->getOperand(0)->getType();
3527   else
3528     return false;
3529 
3530   // #2 check that the truncate just drops extended bits.
3531   return Inst->getType()->getIntegerBitWidth() >=
3532          OpndType->getIntegerBitWidth();
3533 }
3534 
3535 TypePromotionHelper::Action TypePromotionHelper::getAction(
3536     Instruction *Ext, const SetOfInstrs &InsertedInsts,
3537     const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
3538   assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3539          "Unexpected instruction type");
3540   Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
3541   Type *ExtTy = Ext->getType();
3542   bool IsSExt = isa<SExtInst>(Ext);
3543   // If the operand of the extension is not an instruction, we cannot
3544   // get through.
3545   // If it, check we can get through.
3546   if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
3547     return nullptr;
3548 
3549   // Do not promote if the operand has been added by codegenprepare.
3550   // Otherwise, it means we are undoing an optimization that is likely to be
3551   // redone, thus causing potential infinite loop.
3552   if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
3553     return nullptr;
3554 
3555   // SExt or Trunc instructions.
3556   // Return the related handler.
3557   if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
3558       isa<ZExtInst>(ExtOpnd))
3559     return promoteOperandForTruncAndAnyExt;
3560 
3561   // Regular instruction.
3562   // Abort early if we will have to insert non-free instructions.
3563   if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
3564     return nullptr;
3565   return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
3566 }
3567 
3568 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
3569     Instruction *SExt, TypePromotionTransaction &TPT,
3570     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3571     SmallVectorImpl<Instruction *> *Exts,
3572     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3573   // By construction, the operand of SExt is an instruction. Otherwise we cannot
3574   // get through it and this method should not be called.
3575   Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
3576   Value *ExtVal = SExt;
3577   bool HasMergedNonFreeExt = false;
3578   if (isa<ZExtInst>(SExtOpnd)) {
3579     // Replace s|zext(zext(opnd))
3580     // => zext(opnd).
3581     HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
3582     Value *ZExt =
3583         TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
3584     TPT.replaceAllUsesWith(SExt, ZExt);
3585     TPT.eraseInstruction(SExt);
3586     ExtVal = ZExt;
3587   } else {
3588     // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
3589     // => z|sext(opnd).
3590     TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
3591   }
3592   CreatedInstsCost = 0;
3593 
3594   // Remove dead code.
3595   if (SExtOpnd->use_empty())
3596     TPT.eraseInstruction(SExtOpnd);
3597 
3598   // Check if the extension is still needed.
3599   Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
3600   if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
3601     if (ExtInst) {
3602       if (Exts)
3603         Exts->push_back(ExtInst);
3604       CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
3605     }
3606     return ExtVal;
3607   }
3608 
3609   // At this point we have: ext ty opnd to ty.
3610   // Reassign the uses of ExtInst to the opnd and remove ExtInst.
3611   Value *NextVal = ExtInst->getOperand(0);
3612   TPT.eraseInstruction(ExtInst, NextVal);
3613   return NextVal;
3614 }
3615 
3616 Value *TypePromotionHelper::promoteOperandForOther(
3617     Instruction *Ext, TypePromotionTransaction &TPT,
3618     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3619     SmallVectorImpl<Instruction *> *Exts,
3620     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
3621     bool IsSExt) {
3622   // By construction, the operand of Ext is an instruction. Otherwise we cannot
3623   // get through it and this method should not be called.
3624   Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
3625   CreatedInstsCost = 0;
3626   if (!ExtOpnd->hasOneUse()) {
3627     // ExtOpnd will be promoted.
3628     // All its uses, but Ext, will need to use a truncated value of the
3629     // promoted version.
3630     // Create the truncate now.
3631     Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
3632     if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
3633       // Insert it just after the definition.
3634       ITrunc->moveAfter(ExtOpnd);
3635       if (Truncs)
3636         Truncs->push_back(ITrunc);
3637     }
3638 
3639     TPT.replaceAllUsesWith(ExtOpnd, Trunc);
3640     // Restore the operand of Ext (which has been replaced by the previous call
3641     // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
3642     TPT.setOperand(Ext, 0, ExtOpnd);
3643   }
3644 
3645   // Get through the Instruction:
3646   // 1. Update its type.
3647   // 2. Replace the uses of Ext by Inst.
3648   // 3. Extend each operand that needs to be extended.
3649 
3650   // Remember the original type of the instruction before promotion.
3651   // This is useful to know that the high bits are sign extended bits.
3652   addPromotedInst(PromotedInsts, ExtOpnd, IsSExt);
3653   // Step #1.
3654   TPT.mutateType(ExtOpnd, Ext->getType());
3655   // Step #2.
3656   TPT.replaceAllUsesWith(Ext, ExtOpnd);
3657   // Step #3.
3658   Instruction *ExtForOpnd = Ext;
3659 
3660   LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
3661   for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
3662        ++OpIdx) {
3663     LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
3664     if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
3665         !shouldExtOperand(ExtOpnd, OpIdx)) {
3666       LLVM_DEBUG(dbgs() << "No need to propagate\n");
3667       continue;
3668     }
3669     // Check if we can statically extend the operand.
3670     Value *Opnd = ExtOpnd->getOperand(OpIdx);
3671     if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
3672       LLVM_DEBUG(dbgs() << "Statically extend\n");
3673       unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
3674       APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
3675                             : Cst->getValue().zext(BitWidth);
3676       TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
3677       continue;
3678     }
3679     // UndefValue are typed, so we have to statically sign extend them.
3680     if (isa<UndefValue>(Opnd)) {
3681       LLVM_DEBUG(dbgs() << "Statically extend\n");
3682       TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
3683       continue;
3684     }
3685 
3686     // Otherwise we have to explicitly sign extend the operand.
3687     // Check if Ext was reused to extend an operand.
3688     if (!ExtForOpnd) {
3689       // If yes, create a new one.
3690       LLVM_DEBUG(dbgs() << "More operands to ext\n");
3691       Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
3692         : TPT.createZExt(Ext, Opnd, Ext->getType());
3693       if (!isa<Instruction>(ValForExtOpnd)) {
3694         TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
3695         continue;
3696       }
3697       ExtForOpnd = cast<Instruction>(ValForExtOpnd);
3698     }
3699     if (Exts)
3700       Exts->push_back(ExtForOpnd);
3701     TPT.setOperand(ExtForOpnd, 0, Opnd);
3702 
3703     // Move the sign extension before the insertion point.
3704     TPT.moveBefore(ExtForOpnd, ExtOpnd);
3705     TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
3706     CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
3707     // If more sext are required, new instructions will have to be created.
3708     ExtForOpnd = nullptr;
3709   }
3710   if (ExtForOpnd == Ext) {
3711     LLVM_DEBUG(dbgs() << "Extension is useless now\n");
3712     TPT.eraseInstruction(Ext);
3713   }
3714   return ExtOpnd;
3715 }
3716 
3717 /// Check whether or not promoting an instruction to a wider type is profitable.
3718 /// \p NewCost gives the cost of extension instructions created by the
3719 /// promotion.
3720 /// \p OldCost gives the cost of extension instructions before the promotion
3721 /// plus the number of instructions that have been
3722 /// matched in the addressing mode the promotion.
3723 /// \p PromotedOperand is the value that has been promoted.
3724 /// \return True if the promotion is profitable, false otherwise.
3725 bool AddressingModeMatcher::isPromotionProfitable(
3726     unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
3727   LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
3728                     << '\n');
3729   // The cost of the new extensions is greater than the cost of the
3730   // old extension plus what we folded.
3731   // This is not profitable.
3732   if (NewCost > OldCost)
3733     return false;
3734   if (NewCost < OldCost)
3735     return true;
3736   // The promotion is neutral but it may help folding the sign extension in
3737   // loads for instance.
3738   // Check that we did not create an illegal instruction.
3739   return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
3740 }
3741 
3742 /// Given an instruction or constant expr, see if we can fold the operation
3743 /// into the addressing mode. If so, update the addressing mode and return
3744 /// true, otherwise return false without modifying AddrMode.
3745 /// If \p MovedAway is not NULL, it contains the information of whether or
3746 /// not AddrInst has to be folded into the addressing mode on success.
3747 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
3748 /// because it has been moved away.
3749 /// Thus AddrInst must not be added in the matched instructions.
3750 /// This state can happen when AddrInst is a sext, since it may be moved away.
3751 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
3752 /// not be referenced anymore.
3753 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
3754                                                unsigned Depth,
3755                                                bool *MovedAway) {
3756   // Avoid exponential behavior on extremely deep expression trees.
3757   if (Depth >= 5) return false;
3758 
3759   // By default, all matched instructions stay in place.
3760   if (MovedAway)
3761     *MovedAway = false;
3762 
3763   switch (Opcode) {
3764   case Instruction::PtrToInt:
3765     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3766     return matchAddr(AddrInst->getOperand(0), Depth);
3767   case Instruction::IntToPtr: {
3768     auto AS = AddrInst->getType()->getPointerAddressSpace();
3769     auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
3770     // This inttoptr is a no-op if the integer type is pointer sized.
3771     if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
3772       return matchAddr(AddrInst->getOperand(0), Depth);
3773     return false;
3774   }
3775   case Instruction::BitCast:
3776     // BitCast is always a noop, and we can handle it as long as it is
3777     // int->int or pointer->pointer (we don't want int<->fp or something).
3778     if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() &&
3779         // Don't touch identity bitcasts.  These were probably put here by LSR,
3780         // and we don't want to mess around with them.  Assume it knows what it
3781         // is doing.
3782         AddrInst->getOperand(0)->getType() != AddrInst->getType())
3783       return matchAddr(AddrInst->getOperand(0), Depth);
3784     return false;
3785   case Instruction::AddrSpaceCast: {
3786     unsigned SrcAS
3787       = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
3788     unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
3789     if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3790       return matchAddr(AddrInst->getOperand(0), Depth);
3791     return false;
3792   }
3793   case Instruction::Add: {
3794     // Check to see if we can merge in the RHS then the LHS.  If so, we win.
3795     ExtAddrMode BackupAddrMode = AddrMode;
3796     unsigned OldSize = AddrModeInsts.size();
3797     // Start a transaction at this point.
3798     // The LHS may match but not the RHS.
3799     // Therefore, we need a higher level restoration point to undo partially
3800     // matched operation.
3801     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3802         TPT.getRestorationPoint();
3803 
3804     if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
3805         matchAddr(AddrInst->getOperand(0), Depth+1))
3806       return true;
3807 
3808     // Restore the old addr mode info.
3809     AddrMode = BackupAddrMode;
3810     AddrModeInsts.resize(OldSize);
3811     TPT.rollback(LastKnownGood);
3812 
3813     // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
3814     if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
3815         matchAddr(AddrInst->getOperand(1), Depth+1))
3816       return true;
3817 
3818     // Otherwise we definitely can't merge the ADD in.
3819     AddrMode = BackupAddrMode;
3820     AddrModeInsts.resize(OldSize);
3821     TPT.rollback(LastKnownGood);
3822     break;
3823   }
3824   //case Instruction::Or:
3825   // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
3826   //break;
3827   case Instruction::Mul:
3828   case Instruction::Shl: {
3829     // Can only handle X*C and X << C.
3830     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
3831     if (!RHS || RHS->getBitWidth() > 64)
3832       return false;
3833     int64_t Scale = RHS->getSExtValue();
3834     if (Opcode == Instruction::Shl)
3835       Scale = 1LL << Scale;
3836 
3837     return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
3838   }
3839   case Instruction::GetElementPtr: {
3840     // Scan the GEP.  We check it if it contains constant offsets and at most
3841     // one variable offset.
3842     int VariableOperand = -1;
3843     unsigned VariableScale = 0;
3844 
3845     int64_t ConstantOffset = 0;
3846     gep_type_iterator GTI = gep_type_begin(AddrInst);
3847     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
3848       if (StructType *STy = GTI.getStructTypeOrNull()) {
3849         const StructLayout *SL = DL.getStructLayout(STy);
3850         unsigned Idx =
3851           cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
3852         ConstantOffset += SL->getElementOffset(Idx);
3853       } else {
3854         uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType());
3855         if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
3856           const APInt &CVal = CI->getValue();
3857           if (CVal.getMinSignedBits() <= 64) {
3858             ConstantOffset += CVal.getSExtValue() * TypeSize;
3859             continue;
3860           }
3861         }
3862         if (TypeSize) {  // Scales of zero don't do anything.
3863           // We only allow one variable index at the moment.
3864           if (VariableOperand != -1)
3865             return false;
3866 
3867           // Remember the variable index.
3868           VariableOperand = i;
3869           VariableScale = TypeSize;
3870         }
3871       }
3872     }
3873 
3874     // A common case is for the GEP to only do a constant offset.  In this case,
3875     // just add it to the disp field and check validity.
3876     if (VariableOperand == -1) {
3877       AddrMode.BaseOffs += ConstantOffset;
3878       if (ConstantOffset == 0 ||
3879           TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
3880         // Check to see if we can fold the base pointer in too.
3881         if (matchAddr(AddrInst->getOperand(0), Depth+1))
3882           return true;
3883       } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
3884                  TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
3885                  ConstantOffset > 0) {
3886         // Record GEPs with non-zero offsets as candidates for splitting in the
3887         // event that the offset cannot fit into the r+i addressing mode.
3888         // Simple and common case that only one GEP is used in calculating the
3889         // address for the memory access.
3890         Value *Base = AddrInst->getOperand(0);
3891         auto *BaseI = dyn_cast<Instruction>(Base);
3892         auto *GEP = cast<GetElementPtrInst>(AddrInst);
3893         if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
3894             (BaseI && !isa<CastInst>(BaseI) &&
3895              !isa<GetElementPtrInst>(BaseI))) {
3896           // If the base is an instruction, make sure the GEP is not in the same
3897           // basic block as the base. If the base is an argument or global
3898           // value, make sure the GEP is not in the entry block.  Otherwise,
3899           // instruction selection can undo the split.  Also make sure the
3900           // parent block allows inserting non-PHI instructions before the
3901           // terminator.
3902           BasicBlock *Parent =
3903               BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock();
3904           if (GEP->getParent() != Parent && !Parent->getTerminator()->isEHPad())
3905             LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
3906         }
3907       }
3908       AddrMode.BaseOffs -= ConstantOffset;
3909       return false;
3910     }
3911 
3912     // Save the valid addressing mode in case we can't match.
3913     ExtAddrMode BackupAddrMode = AddrMode;
3914     unsigned OldSize = AddrModeInsts.size();
3915 
3916     // See if the scale and offset amount is valid for this target.
3917     AddrMode.BaseOffs += ConstantOffset;
3918 
3919     // Match the base operand of the GEP.
3920     if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
3921       // If it couldn't be matched, just stuff the value in a register.
3922       if (AddrMode.HasBaseReg) {
3923         AddrMode = BackupAddrMode;
3924         AddrModeInsts.resize(OldSize);
3925         return false;
3926       }
3927       AddrMode.HasBaseReg = true;
3928       AddrMode.BaseReg = AddrInst->getOperand(0);
3929     }
3930 
3931     // Match the remaining variable portion of the GEP.
3932     if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
3933                           Depth)) {
3934       // If it couldn't be matched, try stuffing the base into a register
3935       // instead of matching it, and retrying the match of the scale.
3936       AddrMode = BackupAddrMode;
3937       AddrModeInsts.resize(OldSize);
3938       if (AddrMode.HasBaseReg)
3939         return false;
3940       AddrMode.HasBaseReg = true;
3941       AddrMode.BaseReg = AddrInst->getOperand(0);
3942       AddrMode.BaseOffs += ConstantOffset;
3943       if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
3944                             VariableScale, Depth)) {
3945         // If even that didn't work, bail.
3946         AddrMode = BackupAddrMode;
3947         AddrModeInsts.resize(OldSize);
3948         return false;
3949       }
3950     }
3951 
3952     return true;
3953   }
3954   case Instruction::SExt:
3955   case Instruction::ZExt: {
3956     Instruction *Ext = dyn_cast<Instruction>(AddrInst);
3957     if (!Ext)
3958       return false;
3959 
3960     // Try to move this ext out of the way of the addressing mode.
3961     // Ask for a method for doing so.
3962     TypePromotionHelper::Action TPH =
3963         TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
3964     if (!TPH)
3965       return false;
3966 
3967     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3968         TPT.getRestorationPoint();
3969     unsigned CreatedInstsCost = 0;
3970     unsigned ExtCost = !TLI.isExtFree(Ext);
3971     Value *PromotedOperand =
3972         TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
3973     // SExt has been moved away.
3974     // Thus either it will be rematched later in the recursive calls or it is
3975     // gone. Anyway, we must not fold it into the addressing mode at this point.
3976     // E.g.,
3977     // op = add opnd, 1
3978     // idx = ext op
3979     // addr = gep base, idx
3980     // is now:
3981     // promotedOpnd = ext opnd            <- no match here
3982     // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
3983     // addr = gep base, op                <- match
3984     if (MovedAway)
3985       *MovedAway = true;
3986 
3987     assert(PromotedOperand &&
3988            "TypePromotionHelper should have filtered out those cases");
3989 
3990     ExtAddrMode BackupAddrMode = AddrMode;
3991     unsigned OldSize = AddrModeInsts.size();
3992 
3993     if (!matchAddr(PromotedOperand, Depth) ||
3994         // The total of the new cost is equal to the cost of the created
3995         // instructions.
3996         // The total of the old cost is equal to the cost of the extension plus
3997         // what we have saved in the addressing mode.
3998         !isPromotionProfitable(CreatedInstsCost,
3999                                ExtCost + (AddrModeInsts.size() - OldSize),
4000                                PromotedOperand)) {
4001       AddrMode = BackupAddrMode;
4002       AddrModeInsts.resize(OldSize);
4003       LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
4004       TPT.rollback(LastKnownGood);
4005       return false;
4006     }
4007     return true;
4008   }
4009   }
4010   return false;
4011 }
4012 
4013 /// If we can, try to add the value of 'Addr' into the current addressing mode.
4014 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4015 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
4016 /// for the target.
4017 ///
4018 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
4019   // Start a transaction at this point that we will rollback if the matching
4020   // fails.
4021   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4022       TPT.getRestorationPoint();
4023   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
4024     // Fold in immediates if legal for the target.
4025     AddrMode.BaseOffs += CI->getSExtValue();
4026     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4027       return true;
4028     AddrMode.BaseOffs -= CI->getSExtValue();
4029   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
4030     // If this is a global variable, try to fold it into the addressing mode.
4031     if (!AddrMode.BaseGV) {
4032       AddrMode.BaseGV = GV;
4033       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4034         return true;
4035       AddrMode.BaseGV = nullptr;
4036     }
4037   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
4038     ExtAddrMode BackupAddrMode = AddrMode;
4039     unsigned OldSize = AddrModeInsts.size();
4040 
4041     // Check to see if it is possible to fold this operation.
4042     bool MovedAway = false;
4043     if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
4044       // This instruction may have been moved away. If so, there is nothing
4045       // to check here.
4046       if (MovedAway)
4047         return true;
4048       // Okay, it's possible to fold this.  Check to see if it is actually
4049       // *profitable* to do so.  We use a simple cost model to avoid increasing
4050       // register pressure too much.
4051       if (I->hasOneUse() ||
4052           isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
4053         AddrModeInsts.push_back(I);
4054         return true;
4055       }
4056 
4057       // It isn't profitable to do this, roll back.
4058       //cerr << "NOT FOLDING: " << *I;
4059       AddrMode = BackupAddrMode;
4060       AddrModeInsts.resize(OldSize);
4061       TPT.rollback(LastKnownGood);
4062     }
4063   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
4064     if (matchOperationAddr(CE, CE->getOpcode(), Depth))
4065       return true;
4066     TPT.rollback(LastKnownGood);
4067   } else if (isa<ConstantPointerNull>(Addr)) {
4068     // Null pointer gets folded without affecting the addressing mode.
4069     return true;
4070   }
4071 
4072   // Worse case, the target should support [reg] addressing modes. :)
4073   if (!AddrMode.HasBaseReg) {
4074     AddrMode.HasBaseReg = true;
4075     AddrMode.BaseReg = Addr;
4076     // Still check for legality in case the target supports [imm] but not [i+r].
4077     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4078       return true;
4079     AddrMode.HasBaseReg = false;
4080     AddrMode.BaseReg = nullptr;
4081   }
4082 
4083   // If the base register is already taken, see if we can do [r+r].
4084   if (AddrMode.Scale == 0) {
4085     AddrMode.Scale = 1;
4086     AddrMode.ScaledReg = Addr;
4087     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4088       return true;
4089     AddrMode.Scale = 0;
4090     AddrMode.ScaledReg = nullptr;
4091   }
4092   // Couldn't match.
4093   TPT.rollback(LastKnownGood);
4094   return false;
4095 }
4096 
4097 /// Check to see if all uses of OpVal by the specified inline asm call are due
4098 /// to memory operands. If so, return true, otherwise return false.
4099 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
4100                                     const TargetLowering &TLI,
4101                                     const TargetRegisterInfo &TRI) {
4102   const Function *F = CI->getFunction();
4103   TargetLowering::AsmOperandInfoVector TargetConstraints =
4104       TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI,
4105                             ImmutableCallSite(CI));
4106 
4107   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4108     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4109 
4110     // Compute the constraint code and ConstraintType to use.
4111     TLI.ComputeConstraintToUse(OpInfo, SDValue());
4112 
4113     // If this asm operand is our Value*, and if it isn't an indirect memory
4114     // operand, we can't fold it!
4115     if (OpInfo.CallOperandVal == OpVal &&
4116         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
4117          !OpInfo.isIndirect))
4118       return false;
4119   }
4120 
4121   return true;
4122 }
4123 
4124 // Max number of memory uses to look at before aborting the search to conserve
4125 // compile time.
4126 static constexpr int MaxMemoryUsesToScan = 20;
4127 
4128 /// Recursively walk all the uses of I until we find a memory use.
4129 /// If we find an obviously non-foldable instruction, return true.
4130 /// Add the ultimately found memory instructions to MemoryUses.
4131 static bool FindAllMemoryUses(
4132     Instruction *I,
4133     SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
4134     SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
4135     const TargetRegisterInfo &TRI, int SeenInsts = 0) {
4136   // If we already considered this instruction, we're done.
4137   if (!ConsideredInsts.insert(I).second)
4138     return false;
4139 
4140   // If this is an obviously unfoldable instruction, bail out.
4141   if (!MightBeFoldableInst(I))
4142     return true;
4143 
4144   const bool OptSize = I->getFunction()->optForSize();
4145 
4146   // Loop over all the uses, recursively processing them.
4147   for (Use &U : I->uses()) {
4148     // Conservatively return true if we're seeing a large number or a deep chain
4149     // of users. This avoids excessive compilation times in pathological cases.
4150     if (SeenInsts++ >= MaxMemoryUsesToScan)
4151       return true;
4152 
4153     Instruction *UserI = cast<Instruction>(U.getUser());
4154     if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
4155       MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
4156       continue;
4157     }
4158 
4159     if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
4160       unsigned opNo = U.getOperandNo();
4161       if (opNo != StoreInst::getPointerOperandIndex())
4162         return true; // Storing addr, not into addr.
4163       MemoryUses.push_back(std::make_pair(SI, opNo));
4164       continue;
4165     }
4166 
4167     if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
4168       unsigned opNo = U.getOperandNo();
4169       if (opNo != AtomicRMWInst::getPointerOperandIndex())
4170         return true; // Storing addr, not into addr.
4171       MemoryUses.push_back(std::make_pair(RMW, opNo));
4172       continue;
4173     }
4174 
4175     if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
4176       unsigned opNo = U.getOperandNo();
4177       if (opNo != AtomicCmpXchgInst::getPointerOperandIndex())
4178         return true; // Storing addr, not into addr.
4179       MemoryUses.push_back(std::make_pair(CmpX, opNo));
4180       continue;
4181     }
4182 
4183     if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
4184       // If this is a cold call, we can sink the addressing calculation into
4185       // the cold path.  See optimizeCallInst
4186       if (!OptSize && CI->hasFnAttr(Attribute::Cold))
4187         continue;
4188 
4189       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
4190       if (!IA) return true;
4191 
4192       // If this is a memory operand, we're cool, otherwise bail out.
4193       if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
4194         return true;
4195       continue;
4196     }
4197 
4198     if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI,
4199                           SeenInsts))
4200       return true;
4201   }
4202 
4203   return false;
4204 }
4205 
4206 /// Return true if Val is already known to be live at the use site that we're
4207 /// folding it into. If so, there is no cost to include it in the addressing
4208 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4209 /// instruction already.
4210 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
4211                                                    Value *KnownLive2) {
4212   // If Val is either of the known-live values, we know it is live!
4213   if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
4214     return true;
4215 
4216   // All values other than instructions and arguments (e.g. constants) are live.
4217   if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
4218 
4219   // If Val is a constant sized alloca in the entry block, it is live, this is
4220   // true because it is just a reference to the stack/frame pointer, which is
4221   // live for the whole function.
4222   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
4223     if (AI->isStaticAlloca())
4224       return true;
4225 
4226   // Check to see if this value is already used in the memory instruction's
4227   // block.  If so, it's already live into the block at the very least, so we
4228   // can reasonably fold it.
4229   return Val->isUsedInBasicBlock(MemoryInst->getParent());
4230 }
4231 
4232 /// It is possible for the addressing mode of the machine to fold the specified
4233 /// instruction into a load or store that ultimately uses it.
4234 /// However, the specified instruction has multiple uses.
4235 /// Given this, it may actually increase register pressure to fold it
4236 /// into the load. For example, consider this code:
4237 ///
4238 ///     X = ...
4239 ///     Y = X+1
4240 ///     use(Y)   -> nonload/store
4241 ///     Z = Y+1
4242 ///     load Z
4243 ///
4244 /// In this case, Y has multiple uses, and can be folded into the load of Z
4245 /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
4246 /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
4247 /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
4248 /// number of computations either.
4249 ///
4250 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
4251 /// X was live across 'load Z' for other reasons, we actually *would* want to
4252 /// fold the addressing mode in the Z case.  This would make Y die earlier.
4253 bool AddressingModeMatcher::
4254 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
4255                                      ExtAddrMode &AMAfter) {
4256   if (IgnoreProfitability) return true;
4257 
4258   // AMBefore is the addressing mode before this instruction was folded into it,
4259   // and AMAfter is the addressing mode after the instruction was folded.  Get
4260   // the set of registers referenced by AMAfter and subtract out those
4261   // referenced by AMBefore: this is the set of values which folding in this
4262   // address extends the lifetime of.
4263   //
4264   // Note that there are only two potential values being referenced here,
4265   // BaseReg and ScaleReg (global addresses are always available, as are any
4266   // folded immediates).
4267   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
4268 
4269   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
4270   // lifetime wasn't extended by adding this instruction.
4271   if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4272     BaseReg = nullptr;
4273   if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4274     ScaledReg = nullptr;
4275 
4276   // If folding this instruction (and it's subexprs) didn't extend any live
4277   // ranges, we're ok with it.
4278   if (!BaseReg && !ScaledReg)
4279     return true;
4280 
4281   // If all uses of this instruction can have the address mode sunk into them,
4282   // we can remove the addressing mode and effectively trade one live register
4283   // for another (at worst.)  In this context, folding an addressing mode into
4284   // the use is just a particularly nice way of sinking it.
4285   SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
4286   SmallPtrSet<Instruction*, 16> ConsideredInsts;
4287   if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI))
4288     return false;  // Has a non-memory, non-foldable use!
4289 
4290   // Now that we know that all uses of this instruction are part of a chain of
4291   // computation involving only operations that could theoretically be folded
4292   // into a memory use, loop over each of these memory operation uses and see
4293   // if they could  *actually* fold the instruction.  The assumption is that
4294   // addressing modes are cheap and that duplicating the computation involved
4295   // many times is worthwhile, even on a fastpath. For sinking candidates
4296   // (i.e. cold call sites), this serves as a way to prevent excessive code
4297   // growth since most architectures have some reasonable small and fast way to
4298   // compute an effective address.  (i.e LEA on x86)
4299   SmallVector<Instruction*, 32> MatchedAddrModeInsts;
4300   for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
4301     Instruction *User = MemoryUses[i].first;
4302     unsigned OpNo = MemoryUses[i].second;
4303 
4304     // Get the access type of this use.  If the use isn't a pointer, we don't
4305     // know what it accesses.
4306     Value *Address = User->getOperand(OpNo);
4307     PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
4308     if (!AddrTy)
4309       return false;
4310     Type *AddressAccessTy = AddrTy->getElementType();
4311     unsigned AS = AddrTy->getAddressSpace();
4312 
4313     // Do a match against the root of this address, ignoring profitability. This
4314     // will tell us if the addressing mode for the memory operation will
4315     // *actually* cover the shared instruction.
4316     ExtAddrMode Result;
4317     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4318                                                                       0);
4319     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4320         TPT.getRestorationPoint();
4321     AddressingModeMatcher Matcher(
4322         MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result,
4323         InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP);
4324     Matcher.IgnoreProfitability = true;
4325     bool Success = Matcher.matchAddr(Address, 0);
4326     (void)Success; assert(Success && "Couldn't select *anything*?");
4327 
4328     // The match was to check the profitability, the changes made are not
4329     // part of the original matcher. Therefore, they should be dropped
4330     // otherwise the original matcher will not present the right state.
4331     TPT.rollback(LastKnownGood);
4332 
4333     // If the match didn't cover I, then it won't be shared by it.
4334     if (!is_contained(MatchedAddrModeInsts, I))
4335       return false;
4336 
4337     MatchedAddrModeInsts.clear();
4338   }
4339 
4340   return true;
4341 }
4342 
4343 /// Return true if the specified values are defined in a
4344 /// different basic block than BB.
4345 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
4346   if (Instruction *I = dyn_cast<Instruction>(V))
4347     return I->getParent() != BB;
4348   return false;
4349 }
4350 
4351 /// Sink addressing mode computation immediate before MemoryInst if doing so
4352 /// can be done without increasing register pressure.  The need for the
4353 /// register pressure constraint means this can end up being an all or nothing
4354 /// decision for all uses of the same addressing computation.
4355 ///
4356 /// Load and Store Instructions often have addressing modes that can do
4357 /// significant amounts of computation. As such, instruction selection will try
4358 /// to get the load or store to do as much computation as possible for the
4359 /// program. The problem is that isel can only see within a single block. As
4360 /// such, we sink as much legal addressing mode work into the block as possible.
4361 ///
4362 /// This method is used to optimize both load/store and inline asms with memory
4363 /// operands.  It's also used to sink addressing computations feeding into cold
4364 /// call sites into their (cold) basic block.
4365 ///
4366 /// The motivation for handling sinking into cold blocks is that doing so can
4367 /// both enable other address mode sinking (by satisfying the register pressure
4368 /// constraint above), and reduce register pressure globally (by removing the
4369 /// addressing mode computation from the fast path entirely.).
4370 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
4371                                         Type *AccessTy, unsigned AddrSpace) {
4372   Value *Repl = Addr;
4373 
4374   // Try to collapse single-value PHI nodes.  This is necessary to undo
4375   // unprofitable PRE transformations.
4376   SmallVector<Value*, 8> worklist;
4377   SmallPtrSet<Value*, 16> Visited;
4378   worklist.push_back(Addr);
4379 
4380   // Use a worklist to iteratively look through PHI and select nodes, and
4381   // ensure that the addressing mode obtained from the non-PHI/select roots of
4382   // the graph are compatible.
4383   bool PhiOrSelectSeen = false;
4384   SmallVector<Instruction*, 16> AddrModeInsts;
4385   const SimplifyQuery SQ(*DL, TLInfo);
4386   AddressingModeCombiner AddrModes(SQ, { Addr, MemoryInst->getParent() });
4387   TypePromotionTransaction TPT(RemovedInsts);
4388   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4389       TPT.getRestorationPoint();
4390   while (!worklist.empty()) {
4391     Value *V = worklist.back();
4392     worklist.pop_back();
4393 
4394     // We allow traversing cyclic Phi nodes.
4395     // In case of success after this loop we ensure that traversing through
4396     // Phi nodes ends up with all cases to compute address of the form
4397     //    BaseGV + Base + Scale * Index + Offset
4398     // where Scale and Offset are constans and BaseGV, Base and Index
4399     // are exactly the same Values in all cases.
4400     // It means that BaseGV, Scale and Offset dominate our memory instruction
4401     // and have the same value as they had in address computation represented
4402     // as Phi. So we can safely sink address computation to memory instruction.
4403     if (!Visited.insert(V).second)
4404       continue;
4405 
4406     // For a PHI node, push all of its incoming values.
4407     if (PHINode *P = dyn_cast<PHINode>(V)) {
4408       for (Value *IncValue : P->incoming_values())
4409         worklist.push_back(IncValue);
4410       PhiOrSelectSeen = true;
4411       continue;
4412     }
4413     // Similar for select.
4414     if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
4415       worklist.push_back(SI->getFalseValue());
4416       worklist.push_back(SI->getTrueValue());
4417       PhiOrSelectSeen = true;
4418       continue;
4419     }
4420 
4421     // For non-PHIs, determine the addressing mode being computed.  Note that
4422     // the result may differ depending on what other uses our candidate
4423     // addressing instructions might have.
4424     AddrModeInsts.clear();
4425     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4426                                                                       0);
4427     ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
4428         V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI,
4429         InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP);
4430 
4431     GetElementPtrInst *GEP = LargeOffsetGEP.first;
4432     if (GEP && GEP->getParent() != MemoryInst->getParent() &&
4433         !NewGEPBases.count(GEP)) {
4434       // If splitting the underlying data structure can reduce the offset of a
4435       // GEP, collect the GEP.  Skip the GEPs that are the new bases of
4436       // previously split data structures.
4437       LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
4438       if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end())
4439         LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size();
4440     }
4441 
4442     NewAddrMode.OriginalValue = V;
4443     if (!AddrModes.addNewAddrMode(NewAddrMode))
4444       break;
4445   }
4446 
4447   // Try to combine the AddrModes we've collected. If we couldn't collect any,
4448   // or we have multiple but either couldn't combine them or combining them
4449   // wouldn't do anything useful, bail out now.
4450   if (!AddrModes.combineAddrModes()) {
4451     TPT.rollback(LastKnownGood);
4452     return false;
4453   }
4454   TPT.commit();
4455 
4456   // Get the combined AddrMode (or the only AddrMode, if we only had one).
4457   ExtAddrMode AddrMode = AddrModes.getAddrMode();
4458 
4459   // If all the instructions matched are already in this BB, don't do anything.
4460   // If we saw a Phi node then it is not local definitely, and if we saw a select
4461   // then we want to push the address calculation past it even if it's already
4462   // in this BB.
4463   if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
4464         return IsNonLocalValue(V, MemoryInst->getParent());
4465                   })) {
4466     LLVM_DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode
4467                       << "\n");
4468     return false;
4469   }
4470 
4471   // Insert this computation right after this user.  Since our caller is
4472   // scanning from the top of the BB to the bottom, reuse of the expr are
4473   // guaranteed to happen later.
4474   IRBuilder<> Builder(MemoryInst);
4475 
4476   // Now that we determined the addressing expression we want to use and know
4477   // that we have to sink it into this block.  Check to see if we have already
4478   // done this for some other load/store instr in this block.  If so, reuse
4479   // the computation.  Before attempting reuse, check if the address is valid
4480   // as it may have been erased.
4481 
4482   WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
4483 
4484   Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
4485   if (SunkAddr) {
4486     LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
4487                       << " for " << *MemoryInst << "\n");
4488     if (SunkAddr->getType() != Addr->getType())
4489       SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4490   } else if (AddrSinkUsingGEPs ||
4491              (!AddrSinkUsingGEPs.getNumOccurrences() && TM && TTI->useAA())) {
4492     // By default, we use the GEP-based method when AA is used later. This
4493     // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
4494     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4495                       << " for " << *MemoryInst << "\n");
4496     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4497     Value *ResultPtr = nullptr, *ResultIndex = nullptr;
4498 
4499     // First, find the pointer.
4500     if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
4501       ResultPtr = AddrMode.BaseReg;
4502       AddrMode.BaseReg = nullptr;
4503     }
4504 
4505     if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
4506       // We can't add more than one pointer together, nor can we scale a
4507       // pointer (both of which seem meaningless).
4508       if (ResultPtr || AddrMode.Scale != 1)
4509         return false;
4510 
4511       ResultPtr = AddrMode.ScaledReg;
4512       AddrMode.Scale = 0;
4513     }
4514 
4515     // It is only safe to sign extend the BaseReg if we know that the math
4516     // required to create it did not overflow before we extend it. Since
4517     // the original IR value was tossed in favor of a constant back when
4518     // the AddrMode was created we need to bail out gracefully if widths
4519     // do not match instead of extending it.
4520     //
4521     // (See below for code to add the scale.)
4522     if (AddrMode.Scale) {
4523       Type *ScaledRegTy = AddrMode.ScaledReg->getType();
4524       if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
4525           cast<IntegerType>(ScaledRegTy)->getBitWidth())
4526         return false;
4527     }
4528 
4529     if (AddrMode.BaseGV) {
4530       if (ResultPtr)
4531         return false;
4532 
4533       ResultPtr = AddrMode.BaseGV;
4534     }
4535 
4536     // If the real base value actually came from an inttoptr, then the matcher
4537     // will look through it and provide only the integer value. In that case,
4538     // use it here.
4539     if (!DL->isNonIntegralPointerType(Addr->getType())) {
4540       if (!ResultPtr && AddrMode.BaseReg) {
4541         ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
4542                                            "sunkaddr");
4543         AddrMode.BaseReg = nullptr;
4544       } else if (!ResultPtr && AddrMode.Scale == 1) {
4545         ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
4546                                            "sunkaddr");
4547         AddrMode.Scale = 0;
4548       }
4549     }
4550 
4551     if (!ResultPtr &&
4552         !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
4553       SunkAddr = Constant::getNullValue(Addr->getType());
4554     } else if (!ResultPtr) {
4555       return false;
4556     } else {
4557       Type *I8PtrTy =
4558           Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
4559       Type *I8Ty = Builder.getInt8Ty();
4560 
4561       // Start with the base register. Do this first so that subsequent address
4562       // matching finds it last, which will prevent it from trying to match it
4563       // as the scaled value in case it happens to be a mul. That would be
4564       // problematic if we've sunk a different mul for the scale, because then
4565       // we'd end up sinking both muls.
4566       if (AddrMode.BaseReg) {
4567         Value *V = AddrMode.BaseReg;
4568         if (V->getType() != IntPtrTy)
4569           V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4570 
4571         ResultIndex = V;
4572       }
4573 
4574       // Add the scale value.
4575       if (AddrMode.Scale) {
4576         Value *V = AddrMode.ScaledReg;
4577         if (V->getType() == IntPtrTy) {
4578           // done.
4579         } else {
4580           assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
4581                  cast<IntegerType>(V->getType())->getBitWidth() &&
4582                  "We can't transform if ScaledReg is too narrow");
4583           V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4584         }
4585 
4586         if (AddrMode.Scale != 1)
4587           V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4588                                 "sunkaddr");
4589         if (ResultIndex)
4590           ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
4591         else
4592           ResultIndex = V;
4593       }
4594 
4595       // Add in the Base Offset if present.
4596       if (AddrMode.BaseOffs) {
4597         Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
4598         if (ResultIndex) {
4599           // We need to add this separately from the scale above to help with
4600           // SDAG consecutive load/store merging.
4601           if (ResultPtr->getType() != I8PtrTy)
4602             ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4603           ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4604         }
4605 
4606         ResultIndex = V;
4607       }
4608 
4609       if (!ResultIndex) {
4610         SunkAddr = ResultPtr;
4611       } else {
4612         if (ResultPtr->getType() != I8PtrTy)
4613           ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4614         SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4615       }
4616 
4617       if (SunkAddr->getType() != Addr->getType())
4618         SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4619     }
4620   } else {
4621     // We'd require a ptrtoint/inttoptr down the line, which we can't do for
4622     // non-integral pointers, so in that case bail out now.
4623     Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
4624     Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
4625     PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
4626     PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
4627     if (DL->isNonIntegralPointerType(Addr->getType()) ||
4628         (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
4629         (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
4630         (AddrMode.BaseGV &&
4631          DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
4632       return false;
4633 
4634     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4635                       << " for " << *MemoryInst << "\n");
4636     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4637     Value *Result = nullptr;
4638 
4639     // Start with the base register. Do this first so that subsequent address
4640     // matching finds it last, which will prevent it from trying to match it
4641     // as the scaled value in case it happens to be a mul. That would be
4642     // problematic if we've sunk a different mul for the scale, because then
4643     // we'd end up sinking both muls.
4644     if (AddrMode.BaseReg) {
4645       Value *V = AddrMode.BaseReg;
4646       if (V->getType()->isPointerTy())
4647         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4648       if (V->getType() != IntPtrTy)
4649         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4650       Result = V;
4651     }
4652 
4653     // Add the scale value.
4654     if (AddrMode.Scale) {
4655       Value *V = AddrMode.ScaledReg;
4656       if (V->getType() == IntPtrTy) {
4657         // done.
4658       } else if (V->getType()->isPointerTy()) {
4659         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4660       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
4661                  cast<IntegerType>(V->getType())->getBitWidth()) {
4662         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4663       } else {
4664         // It is only safe to sign extend the BaseReg if we know that the math
4665         // required to create it did not overflow before we extend it. Since
4666         // the original IR value was tossed in favor of a constant back when
4667         // the AddrMode was created we need to bail out gracefully if widths
4668         // do not match instead of extending it.
4669         Instruction *I = dyn_cast_or_null<Instruction>(Result);
4670         if (I && (Result != AddrMode.BaseReg))
4671           I->eraseFromParent();
4672         return false;
4673       }
4674       if (AddrMode.Scale != 1)
4675         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4676                               "sunkaddr");
4677       if (Result)
4678         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4679       else
4680         Result = V;
4681     }
4682 
4683     // Add in the BaseGV if present.
4684     if (AddrMode.BaseGV) {
4685       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
4686       if (Result)
4687         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4688       else
4689         Result = V;
4690     }
4691 
4692     // Add in the Base Offset if present.
4693     if (AddrMode.BaseOffs) {
4694       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
4695       if (Result)
4696         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4697       else
4698         Result = V;
4699     }
4700 
4701     if (!Result)
4702       SunkAddr = Constant::getNullValue(Addr->getType());
4703     else
4704       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
4705   }
4706 
4707   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
4708   // Store the newly computed address into the cache. In the case we reused a
4709   // value, this should be idempotent.
4710   SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
4711 
4712   // If we have no uses, recursively delete the value and all dead instructions
4713   // using it.
4714   if (Repl->use_empty()) {
4715     // This can cause recursive deletion, which can invalidate our iterator.
4716     // Use a WeakTrackingVH to hold onto it in case this happens.
4717     Value *CurValue = &*CurInstIterator;
4718     WeakTrackingVH IterHandle(CurValue);
4719     BasicBlock *BB = CurInstIterator->getParent();
4720 
4721     RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
4722 
4723     if (IterHandle != CurValue) {
4724       // If the iterator instruction was recursively deleted, start over at the
4725       // start of the block.
4726       CurInstIterator = BB->begin();
4727       SunkAddrs.clear();
4728     }
4729   }
4730   ++NumMemoryInsts;
4731   return true;
4732 }
4733 
4734 /// If there are any memory operands, use OptimizeMemoryInst to sink their
4735 /// address computing into the block when possible / profitable.
4736 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
4737   bool MadeChange = false;
4738 
4739   const TargetRegisterInfo *TRI =
4740       TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
4741   TargetLowering::AsmOperandInfoVector TargetConstraints =
4742       TLI->ParseConstraints(*DL, TRI, CS);
4743   unsigned ArgNo = 0;
4744   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4745     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4746 
4747     // Compute the constraint code and ConstraintType to use.
4748     TLI->ComputeConstraintToUse(OpInfo, SDValue());
4749 
4750     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
4751         OpInfo.isIndirect) {
4752       Value *OpVal = CS->getArgOperand(ArgNo++);
4753       MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
4754     } else if (OpInfo.Type == InlineAsm::isInput)
4755       ArgNo++;
4756   }
4757 
4758   return MadeChange;
4759 }
4760 
4761 /// Check if all the uses of \p Val are equivalent (or free) zero or
4762 /// sign extensions.
4763 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
4764   assert(!Val->use_empty() && "Input must have at least one use");
4765   const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
4766   bool IsSExt = isa<SExtInst>(FirstUser);
4767   Type *ExtTy = FirstUser->getType();
4768   for (const User *U : Val->users()) {
4769     const Instruction *UI = cast<Instruction>(U);
4770     if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
4771       return false;
4772     Type *CurTy = UI->getType();
4773     // Same input and output types: Same instruction after CSE.
4774     if (CurTy == ExtTy)
4775       continue;
4776 
4777     // If IsSExt is true, we are in this situation:
4778     // a = Val
4779     // b = sext ty1 a to ty2
4780     // c = sext ty1 a to ty3
4781     // Assuming ty2 is shorter than ty3, this could be turned into:
4782     // a = Val
4783     // b = sext ty1 a to ty2
4784     // c = sext ty2 b to ty3
4785     // However, the last sext is not free.
4786     if (IsSExt)
4787       return false;
4788 
4789     // This is a ZExt, maybe this is free to extend from one type to another.
4790     // In that case, we would not account for a different use.
4791     Type *NarrowTy;
4792     Type *LargeTy;
4793     if (ExtTy->getScalarType()->getIntegerBitWidth() >
4794         CurTy->getScalarType()->getIntegerBitWidth()) {
4795       NarrowTy = CurTy;
4796       LargeTy = ExtTy;
4797     } else {
4798       NarrowTy = ExtTy;
4799       LargeTy = CurTy;
4800     }
4801 
4802     if (!TLI.isZExtFree(NarrowTy, LargeTy))
4803       return false;
4804   }
4805   // All uses are the same or can be derived from one another for free.
4806   return true;
4807 }
4808 
4809 /// Try to speculatively promote extensions in \p Exts and continue
4810 /// promoting through newly promoted operands recursively as far as doing so is
4811 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
4812 /// When some promotion happened, \p TPT contains the proper state to revert
4813 /// them.
4814 ///
4815 /// \return true if some promotion happened, false otherwise.
4816 bool CodeGenPrepare::tryToPromoteExts(
4817     TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
4818     SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
4819     unsigned CreatedInstsCost) {
4820   bool Promoted = false;
4821 
4822   // Iterate over all the extensions to try to promote them.
4823   for (auto I : Exts) {
4824     // Early check if we directly have ext(load).
4825     if (isa<LoadInst>(I->getOperand(0))) {
4826       ProfitablyMovedExts.push_back(I);
4827       continue;
4828     }
4829 
4830     // Check whether or not we want to do any promotion.  The reason we have
4831     // this check inside the for loop is to catch the case where an extension
4832     // is directly fed by a load because in such case the extension can be moved
4833     // up without any promotion on its operands.
4834     if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion)
4835       return false;
4836 
4837     // Get the action to perform the promotion.
4838     TypePromotionHelper::Action TPH =
4839         TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
4840     // Check if we can promote.
4841     if (!TPH) {
4842       // Save the current extension as we cannot move up through its operand.
4843       ProfitablyMovedExts.push_back(I);
4844       continue;
4845     }
4846 
4847     // Save the current state.
4848     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4849         TPT.getRestorationPoint();
4850     SmallVector<Instruction *, 4> NewExts;
4851     unsigned NewCreatedInstsCost = 0;
4852     unsigned ExtCost = !TLI->isExtFree(I);
4853     // Promote.
4854     Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
4855                              &NewExts, nullptr, *TLI);
4856     assert(PromotedVal &&
4857            "TypePromotionHelper should have filtered out those cases");
4858 
4859     // We would be able to merge only one extension in a load.
4860     // Therefore, if we have more than 1 new extension we heuristically
4861     // cut this search path, because it means we degrade the code quality.
4862     // With exactly 2, the transformation is neutral, because we will merge
4863     // one extension but leave one. However, we optimistically keep going,
4864     // because the new extension may be removed too.
4865     long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
4866     // FIXME: It would be possible to propagate a negative value instead of
4867     // conservatively ceiling it to 0.
4868     TotalCreatedInstsCost =
4869         std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
4870     if (!StressExtLdPromotion &&
4871         (TotalCreatedInstsCost > 1 ||
4872          !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
4873       // This promotion is not profitable, rollback to the previous state, and
4874       // save the current extension in ProfitablyMovedExts as the latest
4875       // speculative promotion turned out to be unprofitable.
4876       TPT.rollback(LastKnownGood);
4877       ProfitablyMovedExts.push_back(I);
4878       continue;
4879     }
4880     // Continue promoting NewExts as far as doing so is profitable.
4881     SmallVector<Instruction *, 2> NewlyMovedExts;
4882     (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
4883     bool NewPromoted = false;
4884     for (auto ExtInst : NewlyMovedExts) {
4885       Instruction *MovedExt = cast<Instruction>(ExtInst);
4886       Value *ExtOperand = MovedExt->getOperand(0);
4887       // If we have reached to a load, we need this extra profitability check
4888       // as it could potentially be merged into an ext(load).
4889       if (isa<LoadInst>(ExtOperand) &&
4890           !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
4891             (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
4892         continue;
4893 
4894       ProfitablyMovedExts.push_back(MovedExt);
4895       NewPromoted = true;
4896     }
4897 
4898     // If none of speculative promotions for NewExts is profitable, rollback
4899     // and save the current extension (I) as the last profitable extension.
4900     if (!NewPromoted) {
4901       TPT.rollback(LastKnownGood);
4902       ProfitablyMovedExts.push_back(I);
4903       continue;
4904     }
4905     // The promotion is profitable.
4906     Promoted = true;
4907   }
4908   return Promoted;
4909 }
4910 
4911 /// Merging redundant sexts when one is dominating the other.
4912 bool CodeGenPrepare::mergeSExts(Function &F) {
4913   DominatorTree DT(F);
4914   bool Changed = false;
4915   for (auto &Entry : ValToSExtendedUses) {
4916     SExts &Insts = Entry.second;
4917     SExts CurPts;
4918     for (Instruction *Inst : Insts) {
4919       if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
4920           Inst->getOperand(0) != Entry.first)
4921         continue;
4922       bool inserted = false;
4923       for (auto &Pt : CurPts) {
4924         if (DT.dominates(Inst, Pt)) {
4925           Pt->replaceAllUsesWith(Inst);
4926           RemovedInsts.insert(Pt);
4927           Pt->removeFromParent();
4928           Pt = Inst;
4929           inserted = true;
4930           Changed = true;
4931           break;
4932         }
4933         if (!DT.dominates(Pt, Inst))
4934           // Give up if we need to merge in a common dominator as the
4935           // experiments show it is not profitable.
4936           continue;
4937         Inst->replaceAllUsesWith(Pt);
4938         RemovedInsts.insert(Inst);
4939         Inst->removeFromParent();
4940         inserted = true;
4941         Changed = true;
4942         break;
4943       }
4944       if (!inserted)
4945         CurPts.push_back(Inst);
4946     }
4947   }
4948   return Changed;
4949 }
4950 
4951 // Spliting large data structures so that the GEPs accessing them can have
4952 // smaller offsets so that they can be sunk to the same blocks as their users.
4953 // For example, a large struct starting from %base is splitted into two parts
4954 // where the second part starts from %new_base.
4955 //
4956 // Before:
4957 // BB0:
4958 //   %base     =
4959 //
4960 // BB1:
4961 //   %gep0     = gep %base, off0
4962 //   %gep1     = gep %base, off1
4963 //   %gep2     = gep %base, off2
4964 //
4965 // BB2:
4966 //   %load1    = load %gep0
4967 //   %load2    = load %gep1
4968 //   %load3    = load %gep2
4969 //
4970 // After:
4971 // BB0:
4972 //   %base     =
4973 //   %new_base = gep %base, off0
4974 //
4975 // BB1:
4976 //   %new_gep0 = %new_base
4977 //   %new_gep1 = gep %new_base, off1 - off0
4978 //   %new_gep2 = gep %new_base, off2 - off0
4979 //
4980 // BB2:
4981 //   %load1    = load i32, i32* %new_gep0
4982 //   %load2    = load i32, i32* %new_gep1
4983 //   %load3    = load i32, i32* %new_gep2
4984 //
4985 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
4986 // their offsets are smaller enough to fit into the addressing mode.
4987 bool CodeGenPrepare::splitLargeGEPOffsets() {
4988   bool Changed = false;
4989   for (auto &Entry : LargeOffsetGEPMap) {
4990     Value *OldBase = Entry.first;
4991     SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
4992         &LargeOffsetGEPs = Entry.second;
4993     auto compareGEPOffset =
4994         [&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
4995             const std::pair<GetElementPtrInst *, int64_t> &RHS) {
4996           if (LHS.first == RHS.first)
4997             return false;
4998           if (LHS.second != RHS.second)
4999             return LHS.second < RHS.second;
5000           return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
5001         };
5002     // Sorting all the GEPs of the same data structures based on the offsets.
5003     llvm::sort(LargeOffsetGEPs, compareGEPOffset);
5004     LargeOffsetGEPs.erase(
5005         std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()),
5006         LargeOffsetGEPs.end());
5007     // Skip if all the GEPs have the same offsets.
5008     if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
5009       continue;
5010     GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
5011     int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
5012     Value *NewBaseGEP = nullptr;
5013 
5014     auto LargeOffsetGEP = LargeOffsetGEPs.begin();
5015     while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
5016       GetElementPtrInst *GEP = LargeOffsetGEP->first;
5017       int64_t Offset = LargeOffsetGEP->second;
5018       if (Offset != BaseOffset) {
5019         TargetLowering::AddrMode AddrMode;
5020         AddrMode.BaseOffs = Offset - BaseOffset;
5021         // The result type of the GEP might not be the type of the memory
5022         // access.
5023         if (!TLI->isLegalAddressingMode(*DL, AddrMode,
5024                                         GEP->getResultElementType(),
5025                                         GEP->getAddressSpace())) {
5026           // We need to create a new base if the offset to the current base is
5027           // too large to fit into the addressing mode. So, a very large struct
5028           // may be splitted into several parts.
5029           BaseGEP = GEP;
5030           BaseOffset = Offset;
5031           NewBaseGEP = nullptr;
5032         }
5033       }
5034 
5035       // Generate a new GEP to replace the current one.
5036       IRBuilder<> Builder(GEP);
5037       Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
5038       Type *I8PtrTy =
5039           Builder.getInt8PtrTy(GEP->getType()->getPointerAddressSpace());
5040       Type *I8Ty = Builder.getInt8Ty();
5041 
5042       if (!NewBaseGEP) {
5043         // Create a new base if we don't have one yet.  Find the insertion
5044         // pointer for the new base first.
5045         BasicBlock::iterator NewBaseInsertPt;
5046         BasicBlock *NewBaseInsertBB;
5047         if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
5048           // If the base of the struct is an instruction, the new base will be
5049           // inserted close to it.
5050           NewBaseInsertBB = BaseI->getParent();
5051           if (isa<PHINode>(BaseI))
5052             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5053           else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
5054             NewBaseInsertBB =
5055                 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest());
5056             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5057           } else
5058             NewBaseInsertPt = std::next(BaseI->getIterator());
5059         } else {
5060           // If the current base is an argument or global value, the new base
5061           // will be inserted to the entry block.
5062           NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
5063           NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5064         }
5065         IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
5066         // Create a new base.
5067         Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset);
5068         NewBaseGEP = OldBase;
5069         if (NewBaseGEP->getType() != I8PtrTy)
5070           NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
5071         NewBaseGEP =
5072             NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep");
5073         NewGEPBases.insert(NewBaseGEP);
5074       }
5075 
5076       Value *NewGEP = NewBaseGEP;
5077       if (Offset == BaseOffset) {
5078         if (GEP->getType() != I8PtrTy)
5079           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5080       } else {
5081         // Calculate the new offset for the new GEP.
5082         Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset);
5083         NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index);
5084 
5085         if (GEP->getType() != I8PtrTy)
5086           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5087       }
5088       GEP->replaceAllUsesWith(NewGEP);
5089       LargeOffsetGEPID.erase(GEP);
5090       LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
5091       GEP->eraseFromParent();
5092       Changed = true;
5093     }
5094   }
5095   return Changed;
5096 }
5097 
5098 /// Return true, if an ext(load) can be formed from an extension in
5099 /// \p MovedExts.
5100 bool CodeGenPrepare::canFormExtLd(
5101     const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
5102     Instruction *&Inst, bool HasPromoted) {
5103   for (auto *MovedExtInst : MovedExts) {
5104     if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
5105       LI = cast<LoadInst>(MovedExtInst->getOperand(0));
5106       Inst = MovedExtInst;
5107       break;
5108     }
5109   }
5110   if (!LI)
5111     return false;
5112 
5113   // If they're already in the same block, there's nothing to do.
5114   // Make the cheap checks first if we did not promote.
5115   // If we promoted, we need to check if it is indeed profitable.
5116   if (!HasPromoted && LI->getParent() == Inst->getParent())
5117     return false;
5118 
5119   return TLI->isExtLoad(LI, Inst, *DL);
5120 }
5121 
5122 /// Move a zext or sext fed by a load into the same basic block as the load,
5123 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
5124 /// extend into the load.
5125 ///
5126 /// E.g.,
5127 /// \code
5128 /// %ld = load i32* %addr
5129 /// %add = add nuw i32 %ld, 4
5130 /// %zext = zext i32 %add to i64
5131 // \endcode
5132 /// =>
5133 /// \code
5134 /// %ld = load i32* %addr
5135 /// %zext = zext i32 %ld to i64
5136 /// %add = add nuw i64 %zext, 4
5137 /// \encode
5138 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
5139 /// allow us to match zext(load i32*) to i64.
5140 ///
5141 /// Also, try to promote the computations used to obtain a sign extended
5142 /// value used into memory accesses.
5143 /// E.g.,
5144 /// \code
5145 /// a = add nsw i32 b, 3
5146 /// d = sext i32 a to i64
5147 /// e = getelementptr ..., i64 d
5148 /// \endcode
5149 /// =>
5150 /// \code
5151 /// f = sext i32 b to i64
5152 /// a = add nsw i64 f, 3
5153 /// e = getelementptr ..., i64 a
5154 /// \endcode
5155 ///
5156 /// \p Inst[in/out] the extension may be modified during the process if some
5157 /// promotions apply.
5158 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
5159   // ExtLoad formation and address type promotion infrastructure requires TLI to
5160   // be effective.
5161   if (!TLI)
5162     return false;
5163 
5164   bool AllowPromotionWithoutCommonHeader = false;
5165   /// See if it is an interesting sext operations for the address type
5166   /// promotion before trying to promote it, e.g., the ones with the right
5167   /// type and used in memory accesses.
5168   bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
5169       *Inst, AllowPromotionWithoutCommonHeader);
5170   TypePromotionTransaction TPT(RemovedInsts);
5171   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5172       TPT.getRestorationPoint();
5173   SmallVector<Instruction *, 1> Exts;
5174   SmallVector<Instruction *, 2> SpeculativelyMovedExts;
5175   Exts.push_back(Inst);
5176 
5177   bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
5178 
5179   // Look for a load being extended.
5180   LoadInst *LI = nullptr;
5181   Instruction *ExtFedByLoad;
5182 
5183   // Try to promote a chain of computation if it allows to form an extended
5184   // load.
5185   if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
5186     assert(LI && ExtFedByLoad && "Expect a valid load and extension");
5187     TPT.commit();
5188     // Move the extend into the same block as the load
5189     ExtFedByLoad->moveAfter(LI);
5190     // CGP does not check if the zext would be speculatively executed when moved
5191     // to the same basic block as the load. Preserving its original location
5192     // would pessimize the debugging experience, as well as negatively impact
5193     // the quality of sample pgo. We don't want to use "line 0" as that has a
5194     // size cost in the line-table section and logically the zext can be seen as
5195     // part of the load. Therefore we conservatively reuse the same debug
5196     // location for the load and the zext.
5197     ExtFedByLoad->setDebugLoc(LI->getDebugLoc());
5198     ++NumExtsMoved;
5199     Inst = ExtFedByLoad;
5200     return true;
5201   }
5202 
5203   // Continue promoting SExts if known as considerable depending on targets.
5204   if (ATPConsiderable &&
5205       performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
5206                                   HasPromoted, TPT, SpeculativelyMovedExts))
5207     return true;
5208 
5209   TPT.rollback(LastKnownGood);
5210   return false;
5211 }
5212 
5213 // Perform address type promotion if doing so is profitable.
5214 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
5215 // instructions that sign extended the same initial value. However, if
5216 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
5217 // extension is just profitable.
5218 bool CodeGenPrepare::performAddressTypePromotion(
5219     Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
5220     bool HasPromoted, TypePromotionTransaction &TPT,
5221     SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
5222   bool Promoted = false;
5223   SmallPtrSet<Instruction *, 1> UnhandledExts;
5224   bool AllSeenFirst = true;
5225   for (auto I : SpeculativelyMovedExts) {
5226     Value *HeadOfChain = I->getOperand(0);
5227     DenseMap<Value *, Instruction *>::iterator AlreadySeen =
5228         SeenChainsForSExt.find(HeadOfChain);
5229     // If there is an unhandled SExt which has the same header, try to promote
5230     // it as well.
5231     if (AlreadySeen != SeenChainsForSExt.end()) {
5232       if (AlreadySeen->second != nullptr)
5233         UnhandledExts.insert(AlreadySeen->second);
5234       AllSeenFirst = false;
5235     }
5236   }
5237 
5238   if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
5239                         SpeculativelyMovedExts.size() == 1)) {
5240     TPT.commit();
5241     if (HasPromoted)
5242       Promoted = true;
5243     for (auto I : SpeculativelyMovedExts) {
5244       Value *HeadOfChain = I->getOperand(0);
5245       SeenChainsForSExt[HeadOfChain] = nullptr;
5246       ValToSExtendedUses[HeadOfChain].push_back(I);
5247     }
5248     // Update Inst as promotion happen.
5249     Inst = SpeculativelyMovedExts.pop_back_val();
5250   } else {
5251     // This is the first chain visited from the header, keep the current chain
5252     // as unhandled. Defer to promote this until we encounter another SExt
5253     // chain derived from the same header.
5254     for (auto I : SpeculativelyMovedExts) {
5255       Value *HeadOfChain = I->getOperand(0);
5256       SeenChainsForSExt[HeadOfChain] = Inst;
5257     }
5258     return false;
5259   }
5260 
5261   if (!AllSeenFirst && !UnhandledExts.empty())
5262     for (auto VisitedSExt : UnhandledExts) {
5263       if (RemovedInsts.count(VisitedSExt))
5264         continue;
5265       TypePromotionTransaction TPT(RemovedInsts);
5266       SmallVector<Instruction *, 1> Exts;
5267       SmallVector<Instruction *, 2> Chains;
5268       Exts.push_back(VisitedSExt);
5269       bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
5270       TPT.commit();
5271       if (HasPromoted)
5272         Promoted = true;
5273       for (auto I : Chains) {
5274         Value *HeadOfChain = I->getOperand(0);
5275         // Mark this as handled.
5276         SeenChainsForSExt[HeadOfChain] = nullptr;
5277         ValToSExtendedUses[HeadOfChain].push_back(I);
5278       }
5279     }
5280   return Promoted;
5281 }
5282 
5283 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
5284   BasicBlock *DefBB = I->getParent();
5285 
5286   // If the result of a {s|z}ext and its source are both live out, rewrite all
5287   // other uses of the source with result of extension.
5288   Value *Src = I->getOperand(0);
5289   if (Src->hasOneUse())
5290     return false;
5291 
5292   // Only do this xform if truncating is free.
5293   if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
5294     return false;
5295 
5296   // Only safe to perform the optimization if the source is also defined in
5297   // this block.
5298   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
5299     return false;
5300 
5301   bool DefIsLiveOut = false;
5302   for (User *U : I->users()) {
5303     Instruction *UI = cast<Instruction>(U);
5304 
5305     // Figure out which BB this ext is used in.
5306     BasicBlock *UserBB = UI->getParent();
5307     if (UserBB == DefBB) continue;
5308     DefIsLiveOut = true;
5309     break;
5310   }
5311   if (!DefIsLiveOut)
5312     return false;
5313 
5314   // Make sure none of the uses are PHI nodes.
5315   for (User *U : Src->users()) {
5316     Instruction *UI = cast<Instruction>(U);
5317     BasicBlock *UserBB = UI->getParent();
5318     if (UserBB == DefBB) continue;
5319     // Be conservative. We don't want this xform to end up introducing
5320     // reloads just before load / store instructions.
5321     if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
5322       return false;
5323   }
5324 
5325   // InsertedTruncs - Only insert one trunc in each block once.
5326   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
5327 
5328   bool MadeChange = false;
5329   for (Use &U : Src->uses()) {
5330     Instruction *User = cast<Instruction>(U.getUser());
5331 
5332     // Figure out which BB this ext is used in.
5333     BasicBlock *UserBB = User->getParent();
5334     if (UserBB == DefBB) continue;
5335 
5336     // Both src and def are live in this block. Rewrite the use.
5337     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
5338 
5339     if (!InsertedTrunc) {
5340       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5341       assert(InsertPt != UserBB->end());
5342       InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
5343       InsertedInsts.insert(InsertedTrunc);
5344     }
5345 
5346     // Replace a use of the {s|z}ext source with a use of the result.
5347     U = InsertedTrunc;
5348     ++NumExtUses;
5349     MadeChange = true;
5350   }
5351 
5352   return MadeChange;
5353 }
5354 
5355 // Find loads whose uses only use some of the loaded value's bits.  Add an "and"
5356 // just after the load if the target can fold this into one extload instruction,
5357 // with the hope of eliminating some of the other later "and" instructions using
5358 // the loaded value.  "and"s that are made trivially redundant by the insertion
5359 // of the new "and" are removed by this function, while others (e.g. those whose
5360 // path from the load goes through a phi) are left for isel to potentially
5361 // remove.
5362 //
5363 // For example:
5364 //
5365 // b0:
5366 //   x = load i32
5367 //   ...
5368 // b1:
5369 //   y = and x, 0xff
5370 //   z = use y
5371 //
5372 // becomes:
5373 //
5374 // b0:
5375 //   x = load i32
5376 //   x' = and x, 0xff
5377 //   ...
5378 // b1:
5379 //   z = use x'
5380 //
5381 // whereas:
5382 //
5383 // b0:
5384 //   x1 = load i32
5385 //   ...
5386 // b1:
5387 //   x2 = load i32
5388 //   ...
5389 // b2:
5390 //   x = phi x1, x2
5391 //   y = and x, 0xff
5392 //
5393 // becomes (after a call to optimizeLoadExt for each load):
5394 //
5395 // b0:
5396 //   x1 = load i32
5397 //   x1' = and x1, 0xff
5398 //   ...
5399 // b1:
5400 //   x2 = load i32
5401 //   x2' = and x2, 0xff
5402 //   ...
5403 // b2:
5404 //   x = phi x1', x2'
5405 //   y = and x, 0xff
5406 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
5407   if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy())
5408     return false;
5409 
5410   // Skip loads we've already transformed.
5411   if (Load->hasOneUse() &&
5412       InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
5413     return false;
5414 
5415   // Look at all uses of Load, looking through phis, to determine how many bits
5416   // of the loaded value are needed.
5417   SmallVector<Instruction *, 8> WorkList;
5418   SmallPtrSet<Instruction *, 16> Visited;
5419   SmallVector<Instruction *, 8> AndsToMaybeRemove;
5420   for (auto *U : Load->users())
5421     WorkList.push_back(cast<Instruction>(U));
5422 
5423   EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
5424   unsigned BitWidth = LoadResultVT.getSizeInBits();
5425   APInt DemandBits(BitWidth, 0);
5426   APInt WidestAndBits(BitWidth, 0);
5427 
5428   while (!WorkList.empty()) {
5429     Instruction *I = WorkList.back();
5430     WorkList.pop_back();
5431 
5432     // Break use-def graph loops.
5433     if (!Visited.insert(I).second)
5434       continue;
5435 
5436     // For a PHI node, push all of its users.
5437     if (auto *Phi = dyn_cast<PHINode>(I)) {
5438       for (auto *U : Phi->users())
5439         WorkList.push_back(cast<Instruction>(U));
5440       continue;
5441     }
5442 
5443     switch (I->getOpcode()) {
5444     case Instruction::And: {
5445       auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
5446       if (!AndC)
5447         return false;
5448       APInt AndBits = AndC->getValue();
5449       DemandBits |= AndBits;
5450       // Keep track of the widest and mask we see.
5451       if (AndBits.ugt(WidestAndBits))
5452         WidestAndBits = AndBits;
5453       if (AndBits == WidestAndBits && I->getOperand(0) == Load)
5454         AndsToMaybeRemove.push_back(I);
5455       break;
5456     }
5457 
5458     case Instruction::Shl: {
5459       auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
5460       if (!ShlC)
5461         return false;
5462       uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
5463       DemandBits.setLowBits(BitWidth - ShiftAmt);
5464       break;
5465     }
5466 
5467     case Instruction::Trunc: {
5468       EVT TruncVT = TLI->getValueType(*DL, I->getType());
5469       unsigned TruncBitWidth = TruncVT.getSizeInBits();
5470       DemandBits.setLowBits(TruncBitWidth);
5471       break;
5472     }
5473 
5474     default:
5475       return false;
5476     }
5477   }
5478 
5479   uint32_t ActiveBits = DemandBits.getActiveBits();
5480   // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
5481   // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
5482   // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
5483   // (and (load x) 1) is not matched as a single instruction, rather as a LDR
5484   // followed by an AND.
5485   // TODO: Look into removing this restriction by fixing backends to either
5486   // return false for isLoadExtLegal for i1 or have them select this pattern to
5487   // a single instruction.
5488   //
5489   // Also avoid hoisting if we didn't see any ands with the exact DemandBits
5490   // mask, since these are the only ands that will be removed by isel.
5491   if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
5492       WidestAndBits != DemandBits)
5493     return false;
5494 
5495   LLVMContext &Ctx = Load->getType()->getContext();
5496   Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
5497   EVT TruncVT = TLI->getValueType(*DL, TruncTy);
5498 
5499   // Reject cases that won't be matched as extloads.
5500   if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
5501       !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
5502     return false;
5503 
5504   IRBuilder<> Builder(Load->getNextNode());
5505   auto *NewAnd = dyn_cast<Instruction>(
5506       Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
5507   // Mark this instruction as "inserted by CGP", so that other
5508   // optimizations don't touch it.
5509   InsertedInsts.insert(NewAnd);
5510 
5511   // Replace all uses of load with new and (except for the use of load in the
5512   // new and itself).
5513   Load->replaceAllUsesWith(NewAnd);
5514   NewAnd->setOperand(0, Load);
5515 
5516   // Remove any and instructions that are now redundant.
5517   for (auto *And : AndsToMaybeRemove)
5518     // Check that the and mask is the same as the one we decided to put on the
5519     // new and.
5520     if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
5521       And->replaceAllUsesWith(NewAnd);
5522       if (&*CurInstIterator == And)
5523         CurInstIterator = std::next(And->getIterator());
5524       And->eraseFromParent();
5525       ++NumAndUses;
5526     }
5527 
5528   ++NumAndsAdded;
5529   return true;
5530 }
5531 
5532 /// Check if V (an operand of a select instruction) is an expensive instruction
5533 /// that is only used once.
5534 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
5535   auto *I = dyn_cast<Instruction>(V);
5536   // If it's safe to speculatively execute, then it should not have side
5537   // effects; therefore, it's safe to sink and possibly *not* execute.
5538   return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
5539          TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive;
5540 }
5541 
5542 /// Returns true if a SelectInst should be turned into an explicit branch.
5543 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
5544                                                 const TargetLowering *TLI,
5545                                                 SelectInst *SI) {
5546   // If even a predictable select is cheap, then a branch can't be cheaper.
5547   if (!TLI->isPredictableSelectExpensive())
5548     return false;
5549 
5550   // FIXME: This should use the same heuristics as IfConversion to determine
5551   // whether a select is better represented as a branch.
5552 
5553   // If metadata tells us that the select condition is obviously predictable,
5554   // then we want to replace the select with a branch.
5555   uint64_t TrueWeight, FalseWeight;
5556   if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
5557     uint64_t Max = std::max(TrueWeight, FalseWeight);
5558     uint64_t Sum = TrueWeight + FalseWeight;
5559     if (Sum != 0) {
5560       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
5561       if (Probability > TLI->getPredictableBranchThreshold())
5562         return true;
5563     }
5564   }
5565 
5566   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
5567 
5568   // If a branch is predictable, an out-of-order CPU can avoid blocking on its
5569   // comparison condition. If the compare has more than one use, there's
5570   // probably another cmov or setcc around, so it's not worth emitting a branch.
5571   if (!Cmp || !Cmp->hasOneUse())
5572     return false;
5573 
5574   // If either operand of the select is expensive and only needed on one side
5575   // of the select, we should form a branch.
5576   if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
5577       sinkSelectOperand(TTI, SI->getFalseValue()))
5578     return true;
5579 
5580   return false;
5581 }
5582 
5583 /// If \p isTrue is true, return the true value of \p SI, otherwise return
5584 /// false value of \p SI. If the true/false value of \p SI is defined by any
5585 /// select instructions in \p Selects, look through the defining select
5586 /// instruction until the true/false value is not defined in \p Selects.
5587 static Value *getTrueOrFalseValue(
5588     SelectInst *SI, bool isTrue,
5589     const SmallPtrSet<const Instruction *, 2> &Selects) {
5590   Value *V;
5591 
5592   for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
5593        DefSI = dyn_cast<SelectInst>(V)) {
5594     assert(DefSI->getCondition() == SI->getCondition() &&
5595            "The condition of DefSI does not match with SI");
5596     V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
5597   }
5598   return V;
5599 }
5600 
5601 /// If we have a SelectInst that will likely profit from branch prediction,
5602 /// turn it into a branch.
5603 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
5604   // If branch conversion isn't desirable, exit early.
5605   if (DisableSelectToBranch || OptSize || !TLI)
5606     return false;
5607 
5608   // Find all consecutive select instructions that share the same condition.
5609   SmallVector<SelectInst *, 2> ASI;
5610   ASI.push_back(SI);
5611   for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
5612        It != SI->getParent()->end(); ++It) {
5613     SelectInst *I = dyn_cast<SelectInst>(&*It);
5614     if (I && SI->getCondition() == I->getCondition()) {
5615       ASI.push_back(I);
5616     } else {
5617       break;
5618     }
5619   }
5620 
5621   SelectInst *LastSI = ASI.back();
5622   // Increment the current iterator to skip all the rest of select instructions
5623   // because they will be either "not lowered" or "all lowered" to branch.
5624   CurInstIterator = std::next(LastSI->getIterator());
5625 
5626   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
5627 
5628   // Can we convert the 'select' to CF ?
5629   if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable))
5630     return false;
5631 
5632   TargetLowering::SelectSupportKind SelectKind;
5633   if (VectorCond)
5634     SelectKind = TargetLowering::VectorMaskSelect;
5635   else if (SI->getType()->isVectorTy())
5636     SelectKind = TargetLowering::ScalarCondVectorVal;
5637   else
5638     SelectKind = TargetLowering::ScalarValSelect;
5639 
5640   if (TLI->isSelectSupported(SelectKind) &&
5641       !isFormingBranchFromSelectProfitable(TTI, TLI, SI))
5642     return false;
5643 
5644   ModifiedDT = true;
5645 
5646   // Transform a sequence like this:
5647   //    start:
5648   //       %cmp = cmp uge i32 %a, %b
5649   //       %sel = select i1 %cmp, i32 %c, i32 %d
5650   //
5651   // Into:
5652   //    start:
5653   //       %cmp = cmp uge i32 %a, %b
5654   //       br i1 %cmp, label %select.true, label %select.false
5655   //    select.true:
5656   //       br label %select.end
5657   //    select.false:
5658   //       br label %select.end
5659   //    select.end:
5660   //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
5661   //
5662   // In addition, we may sink instructions that produce %c or %d from
5663   // the entry block into the destination(s) of the new branch.
5664   // If the true or false blocks do not contain a sunken instruction, that
5665   // block and its branch may be optimized away. In that case, one side of the
5666   // first branch will point directly to select.end, and the corresponding PHI
5667   // predecessor block will be the start block.
5668 
5669   // First, we split the block containing the select into 2 blocks.
5670   BasicBlock *StartBlock = SI->getParent();
5671   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
5672   BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
5673 
5674   // Delete the unconditional branch that was just created by the split.
5675   StartBlock->getTerminator()->eraseFromParent();
5676 
5677   // These are the new basic blocks for the conditional branch.
5678   // At least one will become an actual new basic block.
5679   BasicBlock *TrueBlock = nullptr;
5680   BasicBlock *FalseBlock = nullptr;
5681   BranchInst *TrueBranch = nullptr;
5682   BranchInst *FalseBranch = nullptr;
5683 
5684   // Sink expensive instructions into the conditional blocks to avoid executing
5685   // them speculatively.
5686   for (SelectInst *SI : ASI) {
5687     if (sinkSelectOperand(TTI, SI->getTrueValue())) {
5688       if (TrueBlock == nullptr) {
5689         TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
5690                                        EndBlock->getParent(), EndBlock);
5691         TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
5692         TrueBranch->setDebugLoc(SI->getDebugLoc());
5693       }
5694       auto *TrueInst = cast<Instruction>(SI->getTrueValue());
5695       TrueInst->moveBefore(TrueBranch);
5696     }
5697     if (sinkSelectOperand(TTI, SI->getFalseValue())) {
5698       if (FalseBlock == nullptr) {
5699         FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
5700                                         EndBlock->getParent(), EndBlock);
5701         FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
5702         FalseBranch->setDebugLoc(SI->getDebugLoc());
5703       }
5704       auto *FalseInst = cast<Instruction>(SI->getFalseValue());
5705       FalseInst->moveBefore(FalseBranch);
5706     }
5707   }
5708 
5709   // If there was nothing to sink, then arbitrarily choose the 'false' side
5710   // for a new input value to the PHI.
5711   if (TrueBlock == FalseBlock) {
5712     assert(TrueBlock == nullptr &&
5713            "Unexpected basic block transform while optimizing select");
5714 
5715     FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
5716                                     EndBlock->getParent(), EndBlock);
5717     auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
5718     FalseBranch->setDebugLoc(SI->getDebugLoc());
5719   }
5720 
5721   // Insert the real conditional branch based on the original condition.
5722   // If we did not create a new block for one of the 'true' or 'false' paths
5723   // of the condition, it means that side of the branch goes to the end block
5724   // directly and the path originates from the start block from the point of
5725   // view of the new PHI.
5726   BasicBlock *TT, *FT;
5727   if (TrueBlock == nullptr) {
5728     TT = EndBlock;
5729     FT = FalseBlock;
5730     TrueBlock = StartBlock;
5731   } else if (FalseBlock == nullptr) {
5732     TT = TrueBlock;
5733     FT = EndBlock;
5734     FalseBlock = StartBlock;
5735   } else {
5736     TT = TrueBlock;
5737     FT = FalseBlock;
5738   }
5739   IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI);
5740 
5741   SmallPtrSet<const Instruction *, 2> INS;
5742   INS.insert(ASI.begin(), ASI.end());
5743   // Use reverse iterator because later select may use the value of the
5744   // earlier select, and we need to propagate value through earlier select
5745   // to get the PHI operand.
5746   for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
5747     SelectInst *SI = *It;
5748     // The select itself is replaced with a PHI Node.
5749     PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
5750     PN->takeName(SI);
5751     PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
5752     PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
5753     PN->setDebugLoc(SI->getDebugLoc());
5754 
5755     SI->replaceAllUsesWith(PN);
5756     SI->eraseFromParent();
5757     INS.erase(SI);
5758     ++NumSelectsExpanded;
5759   }
5760 
5761   // Instruct OptimizeBlock to skip to the next block.
5762   CurInstIterator = StartBlock->end();
5763   return true;
5764 }
5765 
5766 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
5767   SmallVector<int, 16> Mask(SVI->getShuffleMask());
5768   int SplatElem = -1;
5769   for (unsigned i = 0; i < Mask.size(); ++i) {
5770     if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
5771       return false;
5772     SplatElem = Mask[i];
5773   }
5774 
5775   return true;
5776 }
5777 
5778 /// Some targets have expensive vector shifts if the lanes aren't all the same
5779 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
5780 /// it's often worth sinking a shufflevector splat down to its use so that
5781 /// codegen can spot all lanes are identical.
5782 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
5783   BasicBlock *DefBB = SVI->getParent();
5784 
5785   // Only do this xform if variable vector shifts are particularly expensive.
5786   if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
5787     return false;
5788 
5789   // We only expect better codegen by sinking a shuffle if we can recognise a
5790   // constant splat.
5791   if (!isBroadcastShuffle(SVI))
5792     return false;
5793 
5794   // InsertedShuffles - Only insert a shuffle in each block once.
5795   DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
5796 
5797   bool MadeChange = false;
5798   for (User *U : SVI->users()) {
5799     Instruction *UI = cast<Instruction>(U);
5800 
5801     // Figure out which BB this ext is used in.
5802     BasicBlock *UserBB = UI->getParent();
5803     if (UserBB == DefBB) continue;
5804 
5805     // For now only apply this when the splat is used by a shift instruction.
5806     if (!UI->isShift()) continue;
5807 
5808     // Everything checks out, sink the shuffle if the user's block doesn't
5809     // already have a copy.
5810     Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
5811 
5812     if (!InsertedShuffle) {
5813       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5814       assert(InsertPt != UserBB->end());
5815       InsertedShuffle =
5816           new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
5817                                 SVI->getOperand(2), "", &*InsertPt);
5818     }
5819 
5820     UI->replaceUsesOfWith(SVI, InsertedShuffle);
5821     MadeChange = true;
5822   }
5823 
5824   // If we removed all uses, nuke the shuffle.
5825   if (SVI->use_empty()) {
5826     SVI->eraseFromParent();
5827     MadeChange = true;
5828   }
5829 
5830   return MadeChange;
5831 }
5832 
5833 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
5834   if (!TLI || !DL)
5835     return false;
5836 
5837   Value *Cond = SI->getCondition();
5838   Type *OldType = Cond->getType();
5839   LLVMContext &Context = Cond->getContext();
5840   MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
5841   unsigned RegWidth = RegType.getSizeInBits();
5842 
5843   if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
5844     return false;
5845 
5846   // If the register width is greater than the type width, expand the condition
5847   // of the switch instruction and each case constant to the width of the
5848   // register. By widening the type of the switch condition, subsequent
5849   // comparisons (for case comparisons) will not need to be extended to the
5850   // preferred register width, so we will potentially eliminate N-1 extends,
5851   // where N is the number of cases in the switch.
5852   auto *NewType = Type::getIntNTy(Context, RegWidth);
5853 
5854   // Zero-extend the switch condition and case constants unless the switch
5855   // condition is a function argument that is already being sign-extended.
5856   // In that case, we can avoid an unnecessary mask/extension by sign-extending
5857   // everything instead.
5858   Instruction::CastOps ExtType = Instruction::ZExt;
5859   if (auto *Arg = dyn_cast<Argument>(Cond))
5860     if (Arg->hasSExtAttr())
5861       ExtType = Instruction::SExt;
5862 
5863   auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
5864   ExtInst->insertBefore(SI);
5865   ExtInst->setDebugLoc(SI->getDebugLoc());
5866   SI->setCondition(ExtInst);
5867   for (auto Case : SI->cases()) {
5868     APInt NarrowConst = Case.getCaseValue()->getValue();
5869     APInt WideConst = (ExtType == Instruction::ZExt) ?
5870                       NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
5871     Case.setValue(ConstantInt::get(Context, WideConst));
5872   }
5873 
5874   return true;
5875 }
5876 
5877 
5878 namespace {
5879 
5880 /// Helper class to promote a scalar operation to a vector one.
5881 /// This class is used to move downward extractelement transition.
5882 /// E.g.,
5883 /// a = vector_op <2 x i32>
5884 /// b = extractelement <2 x i32> a, i32 0
5885 /// c = scalar_op b
5886 /// store c
5887 ///
5888 /// =>
5889 /// a = vector_op <2 x i32>
5890 /// c = vector_op a (equivalent to scalar_op on the related lane)
5891 /// * d = extractelement <2 x i32> c, i32 0
5892 /// * store d
5893 /// Assuming both extractelement and store can be combine, we get rid of the
5894 /// transition.
5895 class VectorPromoteHelper {
5896   /// DataLayout associated with the current module.
5897   const DataLayout &DL;
5898 
5899   /// Used to perform some checks on the legality of vector operations.
5900   const TargetLowering &TLI;
5901 
5902   /// Used to estimated the cost of the promoted chain.
5903   const TargetTransformInfo &TTI;
5904 
5905   /// The transition being moved downwards.
5906   Instruction *Transition;
5907 
5908   /// The sequence of instructions to be promoted.
5909   SmallVector<Instruction *, 4> InstsToBePromoted;
5910 
5911   /// Cost of combining a store and an extract.
5912   unsigned StoreExtractCombineCost;
5913 
5914   /// Instruction that will be combined with the transition.
5915   Instruction *CombineInst = nullptr;
5916 
5917   /// The instruction that represents the current end of the transition.
5918   /// Since we are faking the promotion until we reach the end of the chain
5919   /// of computation, we need a way to get the current end of the transition.
5920   Instruction *getEndOfTransition() const {
5921     if (InstsToBePromoted.empty())
5922       return Transition;
5923     return InstsToBePromoted.back();
5924   }
5925 
5926   /// Return the index of the original value in the transition.
5927   /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
5928   /// c, is at index 0.
5929   unsigned getTransitionOriginalValueIdx() const {
5930     assert(isa<ExtractElementInst>(Transition) &&
5931            "Other kind of transitions are not supported yet");
5932     return 0;
5933   }
5934 
5935   /// Return the index of the index in the transition.
5936   /// E.g., for "extractelement <2 x i32> c, i32 0" the index
5937   /// is at index 1.
5938   unsigned getTransitionIdx() const {
5939     assert(isa<ExtractElementInst>(Transition) &&
5940            "Other kind of transitions are not supported yet");
5941     return 1;
5942   }
5943 
5944   /// Get the type of the transition.
5945   /// This is the type of the original value.
5946   /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
5947   /// transition is <2 x i32>.
5948   Type *getTransitionType() const {
5949     return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
5950   }
5951 
5952   /// Promote \p ToBePromoted by moving \p Def downward through.
5953   /// I.e., we have the following sequence:
5954   /// Def = Transition <ty1> a to <ty2>
5955   /// b = ToBePromoted <ty2> Def, ...
5956   /// =>
5957   /// b = ToBePromoted <ty1> a, ...
5958   /// Def = Transition <ty1> ToBePromoted to <ty2>
5959   void promoteImpl(Instruction *ToBePromoted);
5960 
5961   /// Check whether or not it is profitable to promote all the
5962   /// instructions enqueued to be promoted.
5963   bool isProfitableToPromote() {
5964     Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
5965     unsigned Index = isa<ConstantInt>(ValIdx)
5966                          ? cast<ConstantInt>(ValIdx)->getZExtValue()
5967                          : -1;
5968     Type *PromotedType = getTransitionType();
5969 
5970     StoreInst *ST = cast<StoreInst>(CombineInst);
5971     unsigned AS = ST->getPointerAddressSpace();
5972     unsigned Align = ST->getAlignment();
5973     // Check if this store is supported.
5974     if (!TLI.allowsMisalignedMemoryAccesses(
5975             TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
5976             Align)) {
5977       // If this is not supported, there is no way we can combine
5978       // the extract with the store.
5979       return false;
5980     }
5981 
5982     // The scalar chain of computation has to pay for the transition
5983     // scalar to vector.
5984     // The vector chain has to account for the combining cost.
5985     uint64_t ScalarCost =
5986         TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
5987     uint64_t VectorCost = StoreExtractCombineCost;
5988     for (const auto &Inst : InstsToBePromoted) {
5989       // Compute the cost.
5990       // By construction, all instructions being promoted are arithmetic ones.
5991       // Moreover, one argument is a constant that can be viewed as a splat
5992       // constant.
5993       Value *Arg0 = Inst->getOperand(0);
5994       bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
5995                             isa<ConstantFP>(Arg0);
5996       TargetTransformInfo::OperandValueKind Arg0OVK =
5997           IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
5998                          : TargetTransformInfo::OK_AnyValue;
5999       TargetTransformInfo::OperandValueKind Arg1OVK =
6000           !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6001                           : TargetTransformInfo::OK_AnyValue;
6002       ScalarCost += TTI.getArithmeticInstrCost(
6003           Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
6004       VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
6005                                                Arg0OVK, Arg1OVK);
6006     }
6007     LLVM_DEBUG(
6008         dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
6009                << ScalarCost << "\nVector: " << VectorCost << '\n');
6010     return ScalarCost > VectorCost;
6011   }
6012 
6013   /// Generate a constant vector with \p Val with the same
6014   /// number of elements as the transition.
6015   /// \p UseSplat defines whether or not \p Val should be replicated
6016   /// across the whole vector.
6017   /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
6018   /// otherwise we generate a vector with as many undef as possible:
6019   /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
6020   /// used at the index of the extract.
6021   Value *getConstantVector(Constant *Val, bool UseSplat) const {
6022     unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
6023     if (!UseSplat) {
6024       // If we cannot determine where the constant must be, we have to
6025       // use a splat constant.
6026       Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
6027       if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
6028         ExtractIdx = CstVal->getSExtValue();
6029       else
6030         UseSplat = true;
6031     }
6032 
6033     unsigned End = getTransitionType()->getVectorNumElements();
6034     if (UseSplat)
6035       return ConstantVector::getSplat(End, Val);
6036 
6037     SmallVector<Constant *, 4> ConstVec;
6038     UndefValue *UndefVal = UndefValue::get(Val->getType());
6039     for (unsigned Idx = 0; Idx != End; ++Idx) {
6040       if (Idx == ExtractIdx)
6041         ConstVec.push_back(Val);
6042       else
6043         ConstVec.push_back(UndefVal);
6044     }
6045     return ConstantVector::get(ConstVec);
6046   }
6047 
6048   /// Check if promoting to a vector type an operand at \p OperandIdx
6049   /// in \p Use can trigger undefined behavior.
6050   static bool canCauseUndefinedBehavior(const Instruction *Use,
6051                                         unsigned OperandIdx) {
6052     // This is not safe to introduce undef when the operand is on
6053     // the right hand side of a division-like instruction.
6054     if (OperandIdx != 1)
6055       return false;
6056     switch (Use->getOpcode()) {
6057     default:
6058       return false;
6059     case Instruction::SDiv:
6060     case Instruction::UDiv:
6061     case Instruction::SRem:
6062     case Instruction::URem:
6063       return true;
6064     case Instruction::FDiv:
6065     case Instruction::FRem:
6066       return !Use->hasNoNaNs();
6067     }
6068     llvm_unreachable(nullptr);
6069   }
6070 
6071 public:
6072   VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
6073                       const TargetTransformInfo &TTI, Instruction *Transition,
6074                       unsigned CombineCost)
6075       : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
6076         StoreExtractCombineCost(CombineCost) {
6077     assert(Transition && "Do not know how to promote null");
6078   }
6079 
6080   /// Check if we can promote \p ToBePromoted to \p Type.
6081   bool canPromote(const Instruction *ToBePromoted) const {
6082     // We could support CastInst too.
6083     return isa<BinaryOperator>(ToBePromoted);
6084   }
6085 
6086   /// Check if it is profitable to promote \p ToBePromoted
6087   /// by moving downward the transition through.
6088   bool shouldPromote(const Instruction *ToBePromoted) const {
6089     // Promote only if all the operands can be statically expanded.
6090     // Indeed, we do not want to introduce any new kind of transitions.
6091     for (const Use &U : ToBePromoted->operands()) {
6092       const Value *Val = U.get();
6093       if (Val == getEndOfTransition()) {
6094         // If the use is a division and the transition is on the rhs,
6095         // we cannot promote the operation, otherwise we may create a
6096         // division by zero.
6097         if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
6098           return false;
6099         continue;
6100       }
6101       if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
6102           !isa<ConstantFP>(Val))
6103         return false;
6104     }
6105     // Check that the resulting operation is legal.
6106     int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
6107     if (!ISDOpcode)
6108       return false;
6109     return StressStoreExtract ||
6110            TLI.isOperationLegalOrCustom(
6111                ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
6112   }
6113 
6114   /// Check whether or not \p Use can be combined
6115   /// with the transition.
6116   /// I.e., is it possible to do Use(Transition) => AnotherUse?
6117   bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
6118 
6119   /// Record \p ToBePromoted as part of the chain to be promoted.
6120   void enqueueForPromotion(Instruction *ToBePromoted) {
6121     InstsToBePromoted.push_back(ToBePromoted);
6122   }
6123 
6124   /// Set the instruction that will be combined with the transition.
6125   void recordCombineInstruction(Instruction *ToBeCombined) {
6126     assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
6127     CombineInst = ToBeCombined;
6128   }
6129 
6130   /// Promote all the instructions enqueued for promotion if it is
6131   /// is profitable.
6132   /// \return True if the promotion happened, false otherwise.
6133   bool promote() {
6134     // Check if there is something to promote.
6135     // Right now, if we do not have anything to combine with,
6136     // we assume the promotion is not profitable.
6137     if (InstsToBePromoted.empty() || !CombineInst)
6138       return false;
6139 
6140     // Check cost.
6141     if (!StressStoreExtract && !isProfitableToPromote())
6142       return false;
6143 
6144     // Promote.
6145     for (auto &ToBePromoted : InstsToBePromoted)
6146       promoteImpl(ToBePromoted);
6147     InstsToBePromoted.clear();
6148     return true;
6149   }
6150 };
6151 
6152 } // end anonymous namespace
6153 
6154 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
6155   // At this point, we know that all the operands of ToBePromoted but Def
6156   // can be statically promoted.
6157   // For Def, we need to use its parameter in ToBePromoted:
6158   // b = ToBePromoted ty1 a
6159   // Def = Transition ty1 b to ty2
6160   // Move the transition down.
6161   // 1. Replace all uses of the promoted operation by the transition.
6162   // = ... b => = ... Def.
6163   assert(ToBePromoted->getType() == Transition->getType() &&
6164          "The type of the result of the transition does not match "
6165          "the final type");
6166   ToBePromoted->replaceAllUsesWith(Transition);
6167   // 2. Update the type of the uses.
6168   // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
6169   Type *TransitionTy = getTransitionType();
6170   ToBePromoted->mutateType(TransitionTy);
6171   // 3. Update all the operands of the promoted operation with promoted
6172   // operands.
6173   // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
6174   for (Use &U : ToBePromoted->operands()) {
6175     Value *Val = U.get();
6176     Value *NewVal = nullptr;
6177     if (Val == Transition)
6178       NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
6179     else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
6180              isa<ConstantFP>(Val)) {
6181       // Use a splat constant if it is not safe to use undef.
6182       NewVal = getConstantVector(
6183           cast<Constant>(Val),
6184           isa<UndefValue>(Val) ||
6185               canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
6186     } else
6187       llvm_unreachable("Did you modified shouldPromote and forgot to update "
6188                        "this?");
6189     ToBePromoted->setOperand(U.getOperandNo(), NewVal);
6190   }
6191   Transition->moveAfter(ToBePromoted);
6192   Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
6193 }
6194 
6195 /// Some targets can do store(extractelement) with one instruction.
6196 /// Try to push the extractelement towards the stores when the target
6197 /// has this feature and this is profitable.
6198 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
6199   unsigned CombineCost = std::numeric_limits<unsigned>::max();
6200   if (DisableStoreExtract || !TLI ||
6201       (!StressStoreExtract &&
6202        !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
6203                                        Inst->getOperand(1), CombineCost)))
6204     return false;
6205 
6206   // At this point we know that Inst is a vector to scalar transition.
6207   // Try to move it down the def-use chain, until:
6208   // - We can combine the transition with its single use
6209   //   => we got rid of the transition.
6210   // - We escape the current basic block
6211   //   => we would need to check that we are moving it at a cheaper place and
6212   //      we do not do that for now.
6213   BasicBlock *Parent = Inst->getParent();
6214   LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
6215   VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
6216   // If the transition has more than one use, assume this is not going to be
6217   // beneficial.
6218   while (Inst->hasOneUse()) {
6219     Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
6220     LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
6221 
6222     if (ToBePromoted->getParent() != Parent) {
6223       LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
6224                         << ToBePromoted->getParent()->getName()
6225                         << ") than the transition (" << Parent->getName()
6226                         << ").\n");
6227       return false;
6228     }
6229 
6230     if (VPH.canCombine(ToBePromoted)) {
6231       LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
6232                         << "will be combined with: " << *ToBePromoted << '\n');
6233       VPH.recordCombineInstruction(ToBePromoted);
6234       bool Changed = VPH.promote();
6235       NumStoreExtractExposed += Changed;
6236       return Changed;
6237     }
6238 
6239     LLVM_DEBUG(dbgs() << "Try promoting.\n");
6240     if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
6241       return false;
6242 
6243     LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
6244 
6245     VPH.enqueueForPromotion(ToBePromoted);
6246     Inst = ToBePromoted;
6247   }
6248   return false;
6249 }
6250 
6251 /// For the instruction sequence of store below, F and I values
6252 /// are bundled together as an i64 value before being stored into memory.
6253 /// Sometimes it is more efficient to generate separate stores for F and I,
6254 /// which can remove the bitwise instructions or sink them to colder places.
6255 ///
6256 ///   (store (or (zext (bitcast F to i32) to i64),
6257 ///              (shl (zext I to i64), 32)), addr)  -->
6258 ///   (store F, addr) and (store I, addr+4)
6259 ///
6260 /// Similarly, splitting for other merged store can also be beneficial, like:
6261 /// For pair of {i32, i32}, i64 store --> two i32 stores.
6262 /// For pair of {i32, i16}, i64 store --> two i32 stores.
6263 /// For pair of {i16, i16}, i32 store --> two i16 stores.
6264 /// For pair of {i16, i8},  i32 store --> two i16 stores.
6265 /// For pair of {i8, i8},   i16 store --> two i8 stores.
6266 ///
6267 /// We allow each target to determine specifically which kind of splitting is
6268 /// supported.
6269 ///
6270 /// The store patterns are commonly seen from the simple code snippet below
6271 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
6272 ///   void goo(const std::pair<int, float> &);
6273 ///   hoo() {
6274 ///     ...
6275 ///     goo(std::make_pair(tmp, ftmp));
6276 ///     ...
6277 ///   }
6278 ///
6279 /// Although we already have similar splitting in DAG Combine, we duplicate
6280 /// it in CodeGenPrepare to catch the case in which pattern is across
6281 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
6282 /// during code expansion.
6283 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
6284                                 const TargetLowering &TLI) {
6285   // Handle simple but common cases only.
6286   Type *StoreType = SI.getValueOperand()->getType();
6287   if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) ||
6288       DL.getTypeSizeInBits(StoreType) == 0)
6289     return false;
6290 
6291   unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
6292   Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
6293   if (DL.getTypeStoreSizeInBits(SplitStoreType) !=
6294       DL.getTypeSizeInBits(SplitStoreType))
6295     return false;
6296 
6297   // Match the following patterns:
6298   // (store (or (zext LValue to i64),
6299   //            (shl (zext HValue to i64), 32)), HalfValBitSize)
6300   //  or
6301   // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
6302   //            (zext LValue to i64),
6303   // Expect both operands of OR and the first operand of SHL have only
6304   // one use.
6305   Value *LValue, *HValue;
6306   if (!match(SI.getValueOperand(),
6307              m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
6308                     m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
6309                                    m_SpecificInt(HalfValBitSize))))))
6310     return false;
6311 
6312   // Check LValue and HValue are int with size less or equal than 32.
6313   if (!LValue->getType()->isIntegerTy() ||
6314       DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
6315       !HValue->getType()->isIntegerTy() ||
6316       DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
6317     return false;
6318 
6319   // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
6320   // as the input of target query.
6321   auto *LBC = dyn_cast<BitCastInst>(LValue);
6322   auto *HBC = dyn_cast<BitCastInst>(HValue);
6323   EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
6324                   : EVT::getEVT(LValue->getType());
6325   EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
6326                    : EVT::getEVT(HValue->getType());
6327   if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
6328     return false;
6329 
6330   // Start to split store.
6331   IRBuilder<> Builder(SI.getContext());
6332   Builder.SetInsertPoint(&SI);
6333 
6334   // If LValue/HValue is a bitcast in another BB, create a new one in current
6335   // BB so it may be merged with the splitted stores by dag combiner.
6336   if (LBC && LBC->getParent() != SI.getParent())
6337     LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
6338   if (HBC && HBC->getParent() != SI.getParent())
6339     HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
6340 
6341   bool IsLE = SI.getModule()->getDataLayout().isLittleEndian();
6342   auto CreateSplitStore = [&](Value *V, bool Upper) {
6343     V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
6344     Value *Addr = Builder.CreateBitCast(
6345         SI.getOperand(1),
6346         SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
6347     if ((IsLE && Upper) || (!IsLE && !Upper))
6348       Addr = Builder.CreateGEP(
6349           SplitStoreType, Addr,
6350           ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
6351     Builder.CreateAlignedStore(
6352         V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment());
6353   };
6354 
6355   CreateSplitStore(LValue, false);
6356   CreateSplitStore(HValue, true);
6357 
6358   // Delete the old store.
6359   SI.eraseFromParent();
6360   return true;
6361 }
6362 
6363 // Return true if the GEP has two operands, the first operand is of a sequential
6364 // type, and the second operand is a constant.
6365 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
6366   gep_type_iterator I = gep_type_begin(*GEP);
6367   return GEP->getNumOperands() == 2 &&
6368       I.isSequential() &&
6369       isa<ConstantInt>(GEP->getOperand(1));
6370 }
6371 
6372 // Try unmerging GEPs to reduce liveness interference (register pressure) across
6373 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
6374 // reducing liveness interference across those edges benefits global register
6375 // allocation. Currently handles only certain cases.
6376 //
6377 // For example, unmerge %GEPI and %UGEPI as below.
6378 //
6379 // ---------- BEFORE ----------
6380 // SrcBlock:
6381 //   ...
6382 //   %GEPIOp = ...
6383 //   ...
6384 //   %GEPI = gep %GEPIOp, Idx
6385 //   ...
6386 //   indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
6387 //   (* %GEPI is alive on the indirectbr edges due to other uses ahead)
6388 //   (* %GEPIOp is alive on the indirectbr edges only because of it's used by
6389 //   %UGEPI)
6390 //
6391 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
6392 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
6393 // ...
6394 //
6395 // DstBi:
6396 //   ...
6397 //   %UGEPI = gep %GEPIOp, UIdx
6398 // ...
6399 // ---------------------------
6400 //
6401 // ---------- AFTER ----------
6402 // SrcBlock:
6403 //   ... (same as above)
6404 //    (* %GEPI is still alive on the indirectbr edges)
6405 //    (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
6406 //    unmerging)
6407 // ...
6408 //
6409 // DstBi:
6410 //   ...
6411 //   %UGEPI = gep %GEPI, (UIdx-Idx)
6412 //   ...
6413 // ---------------------------
6414 //
6415 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
6416 // no longer alive on them.
6417 //
6418 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
6419 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
6420 // not to disable further simplications and optimizations as a result of GEP
6421 // merging.
6422 //
6423 // Note this unmerging may increase the length of the data flow critical path
6424 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
6425 // between the register pressure and the length of data-flow critical
6426 // path. Restricting this to the uncommon IndirectBr case would minimize the
6427 // impact of potentially longer critical path, if any, and the impact on compile
6428 // time.
6429 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
6430                                              const TargetTransformInfo *TTI) {
6431   BasicBlock *SrcBlock = GEPI->getParent();
6432   // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
6433   // (non-IndirectBr) cases exit early here.
6434   if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
6435     return false;
6436   // Check that GEPI is a simple gep with a single constant index.
6437   if (!GEPSequentialConstIndexed(GEPI))
6438     return false;
6439   ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
6440   // Check that GEPI is a cheap one.
6441   if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType())
6442       > TargetTransformInfo::TCC_Basic)
6443     return false;
6444   Value *GEPIOp = GEPI->getOperand(0);
6445   // Check that GEPIOp is an instruction that's also defined in SrcBlock.
6446   if (!isa<Instruction>(GEPIOp))
6447     return false;
6448   auto *GEPIOpI = cast<Instruction>(GEPIOp);
6449   if (GEPIOpI->getParent() != SrcBlock)
6450     return false;
6451   // Check that GEP is used outside the block, meaning it's alive on the
6452   // IndirectBr edge(s).
6453   if (find_if(GEPI->users(), [&](User *Usr) {
6454         if (auto *I = dyn_cast<Instruction>(Usr)) {
6455           if (I->getParent() != SrcBlock) {
6456             return true;
6457           }
6458         }
6459         return false;
6460       }) == GEPI->users().end())
6461     return false;
6462   // The second elements of the GEP chains to be unmerged.
6463   std::vector<GetElementPtrInst *> UGEPIs;
6464   // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
6465   // on IndirectBr edges.
6466   for (User *Usr : GEPIOp->users()) {
6467     if (Usr == GEPI) continue;
6468     // Check if Usr is an Instruction. If not, give up.
6469     if (!isa<Instruction>(Usr))
6470       return false;
6471     auto *UI = cast<Instruction>(Usr);
6472     // Check if Usr in the same block as GEPIOp, which is fine, skip.
6473     if (UI->getParent() == SrcBlock)
6474       continue;
6475     // Check if Usr is a GEP. If not, give up.
6476     if (!isa<GetElementPtrInst>(Usr))
6477       return false;
6478     auto *UGEPI = cast<GetElementPtrInst>(Usr);
6479     // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
6480     // the pointer operand to it. If so, record it in the vector. If not, give
6481     // up.
6482     if (!GEPSequentialConstIndexed(UGEPI))
6483       return false;
6484     if (UGEPI->getOperand(0) != GEPIOp)
6485       return false;
6486     if (GEPIIdx->getType() !=
6487         cast<ConstantInt>(UGEPI->getOperand(1))->getType())
6488       return false;
6489     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6490     if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType())
6491         > TargetTransformInfo::TCC_Basic)
6492       return false;
6493     UGEPIs.push_back(UGEPI);
6494   }
6495   if (UGEPIs.size() == 0)
6496     return false;
6497   // Check the materializing cost of (Uidx-Idx).
6498   for (GetElementPtrInst *UGEPI : UGEPIs) {
6499     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6500     APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
6501     unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType());
6502     if (ImmCost > TargetTransformInfo::TCC_Basic)
6503       return false;
6504   }
6505   // Now unmerge between GEPI and UGEPIs.
6506   for (GetElementPtrInst *UGEPI : UGEPIs) {
6507     UGEPI->setOperand(0, GEPI);
6508     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6509     Constant *NewUGEPIIdx =
6510         ConstantInt::get(GEPIIdx->getType(),
6511                          UGEPIIdx->getValue() - GEPIIdx->getValue());
6512     UGEPI->setOperand(1, NewUGEPIIdx);
6513     // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
6514     // inbounds to avoid UB.
6515     if (!GEPI->isInBounds()) {
6516       UGEPI->setIsInBounds(false);
6517     }
6518   }
6519   // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
6520   // alive on IndirectBr edges).
6521   assert(find_if(GEPIOp->users(), [&](User *Usr) {
6522         return cast<Instruction>(Usr)->getParent() != SrcBlock;
6523       }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock");
6524   return true;
6525 }
6526 
6527 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) {
6528   // Bail out if we inserted the instruction to prevent optimizations from
6529   // stepping on each other's toes.
6530   if (InsertedInsts.count(I))
6531     return false;
6532 
6533   if (PHINode *P = dyn_cast<PHINode>(I)) {
6534     // It is possible for very late stage optimizations (such as SimplifyCFG)
6535     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
6536     // trivial PHI, go ahead and zap it here.
6537     if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
6538       P->replaceAllUsesWith(V);
6539       P->eraseFromParent();
6540       ++NumPHIsElim;
6541       return true;
6542     }
6543     return false;
6544   }
6545 
6546   if (CastInst *CI = dyn_cast<CastInst>(I)) {
6547     // If the source of the cast is a constant, then this should have
6548     // already been constant folded.  The only reason NOT to constant fold
6549     // it is if something (e.g. LSR) was careful to place the constant
6550     // evaluation in a block other than then one that uses it (e.g. to hoist
6551     // the address of globals out of a loop).  If this is the case, we don't
6552     // want to forward-subst the cast.
6553     if (isa<Constant>(CI->getOperand(0)))
6554       return false;
6555 
6556     if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL))
6557       return true;
6558 
6559     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
6560       /// Sink a zext or sext into its user blocks if the target type doesn't
6561       /// fit in one register
6562       if (TLI &&
6563           TLI->getTypeAction(CI->getContext(),
6564                              TLI->getValueType(*DL, CI->getType())) ==
6565               TargetLowering::TypeExpandInteger) {
6566         return SinkCast(CI);
6567       } else {
6568         bool MadeChange = optimizeExt(I);
6569         return MadeChange | optimizeExtUses(I);
6570       }
6571     }
6572     return false;
6573   }
6574 
6575   if (CmpInst *CI = dyn_cast<CmpInst>(I))
6576     if (!TLI || !TLI->hasMultipleConditionRegisters())
6577       return OptimizeCmpExpression(CI, TLI);
6578 
6579   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6580     LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6581     if (TLI) {
6582       bool Modified = optimizeLoadExt(LI);
6583       unsigned AS = LI->getPointerAddressSpace();
6584       Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
6585       return Modified;
6586     }
6587     return false;
6588   }
6589 
6590   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
6591     if (TLI && splitMergedValStore(*SI, *DL, *TLI))
6592       return true;
6593     SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6594     if (TLI) {
6595       unsigned AS = SI->getPointerAddressSpace();
6596       return optimizeMemoryInst(I, SI->getOperand(1),
6597                                 SI->getOperand(0)->getType(), AS);
6598     }
6599     return false;
6600   }
6601 
6602   if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
6603       unsigned AS = RMW->getPointerAddressSpace();
6604       return optimizeMemoryInst(I, RMW->getPointerOperand(),
6605                                 RMW->getType(), AS);
6606   }
6607 
6608   if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
6609       unsigned AS = CmpX->getPointerAddressSpace();
6610       return optimizeMemoryInst(I, CmpX->getPointerOperand(),
6611                                 CmpX->getCompareOperand()->getType(), AS);
6612   }
6613 
6614   BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
6615 
6616   if (BinOp && (BinOp->getOpcode() == Instruction::And) &&
6617       EnableAndCmpSinking && TLI)
6618     return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts);
6619 
6620   if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
6621                 BinOp->getOpcode() == Instruction::LShr)) {
6622     ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
6623     if (TLI && CI && TLI->hasExtractBitsInsn())
6624       return OptimizeExtractBits(BinOp, CI, *TLI, *DL);
6625 
6626     return false;
6627   }
6628 
6629   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
6630     if (GEPI->hasAllZeroIndices()) {
6631       /// The GEP operand must be a pointer, so must its result -> BitCast
6632       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
6633                                         GEPI->getName(), GEPI);
6634       NC->setDebugLoc(GEPI->getDebugLoc());
6635       GEPI->replaceAllUsesWith(NC);
6636       GEPI->eraseFromParent();
6637       ++NumGEPsElim;
6638       optimizeInst(NC, ModifiedDT);
6639       return true;
6640     }
6641     if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
6642       return true;
6643     }
6644     return false;
6645   }
6646 
6647   if (CallInst *CI = dyn_cast<CallInst>(I))
6648     return optimizeCallInst(CI, ModifiedDT);
6649 
6650   if (SelectInst *SI = dyn_cast<SelectInst>(I))
6651     return optimizeSelectInst(SI);
6652 
6653   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
6654     return optimizeShuffleVectorInst(SVI);
6655 
6656   if (auto *Switch = dyn_cast<SwitchInst>(I))
6657     return optimizeSwitchInst(Switch);
6658 
6659   if (isa<ExtractElementInst>(I))
6660     return optimizeExtractElementInst(I);
6661 
6662   return false;
6663 }
6664 
6665 /// Given an OR instruction, check to see if this is a bitreverse
6666 /// idiom. If so, insert the new intrinsic and return true.
6667 static bool makeBitReverse(Instruction &I, const DataLayout &DL,
6668                            const TargetLowering &TLI) {
6669   if (!I.getType()->isIntegerTy() ||
6670       !TLI.isOperationLegalOrCustom(ISD::BITREVERSE,
6671                                     TLI.getValueType(DL, I.getType(), true)))
6672     return false;
6673 
6674   SmallVector<Instruction*, 4> Insts;
6675   if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
6676     return false;
6677   Instruction *LastInst = Insts.back();
6678   I.replaceAllUsesWith(LastInst);
6679   RecursivelyDeleteTriviallyDeadInstructions(&I);
6680   return true;
6681 }
6682 
6683 // In this pass we look for GEP and cast instructions that are used
6684 // across basic blocks and rewrite them to improve basic-block-at-a-time
6685 // selection.
6686 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) {
6687   SunkAddrs.clear();
6688   bool MadeChange = false;
6689 
6690   CurInstIterator = BB.begin();
6691   while (CurInstIterator != BB.end()) {
6692     MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
6693     if (ModifiedDT)
6694       return true;
6695   }
6696 
6697   bool MadeBitReverse = true;
6698   while (TLI && MadeBitReverse) {
6699     MadeBitReverse = false;
6700     for (auto &I : reverse(BB)) {
6701       if (makeBitReverse(I, *DL, *TLI)) {
6702         MadeBitReverse = MadeChange = true;
6703         ModifiedDT = true;
6704         break;
6705       }
6706     }
6707   }
6708   MadeChange |= dupRetToEnableTailCallOpts(&BB);
6709 
6710   return MadeChange;
6711 }
6712 
6713 // llvm.dbg.value is far away from the value then iSel may not be able
6714 // handle it properly. iSel will drop llvm.dbg.value if it can not
6715 // find a node corresponding to the value.
6716 bool CodeGenPrepare::placeDbgValues(Function &F) {
6717   bool MadeChange = false;
6718   for (BasicBlock &BB : F) {
6719     Instruction *PrevNonDbgInst = nullptr;
6720     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
6721       Instruction *Insn = &*BI++;
6722       DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
6723       // Leave dbg.values that refer to an alloca alone. These
6724       // intrinsics describe the address of a variable (= the alloca)
6725       // being taken.  They should not be moved next to the alloca
6726       // (and to the beginning of the scope), but rather stay close to
6727       // where said address is used.
6728       if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
6729         PrevNonDbgInst = Insn;
6730         continue;
6731       }
6732 
6733       Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
6734       if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
6735         // If VI is a phi in a block with an EHPad terminator, we can't insert
6736         // after it.
6737         if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
6738           continue;
6739         LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
6740                           << *DVI << ' ' << *VI);
6741         DVI->removeFromParent();
6742         if (isa<PHINode>(VI))
6743           DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
6744         else
6745           DVI->insertAfter(VI);
6746         MadeChange = true;
6747         ++NumDbgValueMoved;
6748       }
6749     }
6750   }
6751   return MadeChange;
6752 }
6753 
6754 /// Scale down both weights to fit into uint32_t.
6755 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
6756   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
6757   uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
6758   NewTrue = NewTrue / Scale;
6759   NewFalse = NewFalse / Scale;
6760 }
6761 
6762 /// Some targets prefer to split a conditional branch like:
6763 /// \code
6764 ///   %0 = icmp ne i32 %a, 0
6765 ///   %1 = icmp ne i32 %b, 0
6766 ///   %or.cond = or i1 %0, %1
6767 ///   br i1 %or.cond, label %TrueBB, label %FalseBB
6768 /// \endcode
6769 /// into multiple branch instructions like:
6770 /// \code
6771 ///   bb1:
6772 ///     %0 = icmp ne i32 %a, 0
6773 ///     br i1 %0, label %TrueBB, label %bb2
6774 ///   bb2:
6775 ///     %1 = icmp ne i32 %b, 0
6776 ///     br i1 %1, label %TrueBB, label %FalseBB
6777 /// \endcode
6778 /// This usually allows instruction selection to do even further optimizations
6779 /// and combine the compare with the branch instruction. Currently this is
6780 /// applied for targets which have "cheap" jump instructions.
6781 ///
6782 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
6783 ///
6784 bool CodeGenPrepare::splitBranchCondition(Function &F) {
6785   if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive())
6786     return false;
6787 
6788   bool MadeChange = false;
6789   for (auto &BB : F) {
6790     // Does this BB end with the following?
6791     //   %cond1 = icmp|fcmp|binary instruction ...
6792     //   %cond2 = icmp|fcmp|binary instruction ...
6793     //   %cond.or = or|and i1 %cond1, cond2
6794     //   br i1 %cond.or label %dest1, label %dest2"
6795     BinaryOperator *LogicOp;
6796     BasicBlock *TBB, *FBB;
6797     if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
6798       continue;
6799 
6800     auto *Br1 = cast<BranchInst>(BB.getTerminator());
6801     if (Br1->getMetadata(LLVMContext::MD_unpredictable))
6802       continue;
6803 
6804     unsigned Opc;
6805     Value *Cond1, *Cond2;
6806     if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
6807                              m_OneUse(m_Value(Cond2)))))
6808       Opc = Instruction::And;
6809     else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
6810                                  m_OneUse(m_Value(Cond2)))))
6811       Opc = Instruction::Or;
6812     else
6813       continue;
6814 
6815     if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
6816         !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp()))   )
6817       continue;
6818 
6819     LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
6820 
6821     // Create a new BB.
6822     auto TmpBB =
6823         BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
6824                            BB.getParent(), BB.getNextNode());
6825 
6826     // Update original basic block by using the first condition directly by the
6827     // branch instruction and removing the no longer needed and/or instruction.
6828     Br1->setCondition(Cond1);
6829     LogicOp->eraseFromParent();
6830 
6831     // Depending on the condition we have to either replace the true or the
6832     // false successor of the original branch instruction.
6833     if (Opc == Instruction::And)
6834       Br1->setSuccessor(0, TmpBB);
6835     else
6836       Br1->setSuccessor(1, TmpBB);
6837 
6838     // Fill in the new basic block.
6839     auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
6840     if (auto *I = dyn_cast<Instruction>(Cond2)) {
6841       I->removeFromParent();
6842       I->insertBefore(Br2);
6843     }
6844 
6845     // Update PHI nodes in both successors. The original BB needs to be
6846     // replaced in one successor's PHI nodes, because the branch comes now from
6847     // the newly generated BB (NewBB). In the other successor we need to add one
6848     // incoming edge to the PHI nodes, because both branch instructions target
6849     // now the same successor. Depending on the original branch condition
6850     // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
6851     // we perform the correct update for the PHI nodes.
6852     // This doesn't change the successor order of the just created branch
6853     // instruction (or any other instruction).
6854     if (Opc == Instruction::Or)
6855       std::swap(TBB, FBB);
6856 
6857     // Replace the old BB with the new BB.
6858     for (PHINode &PN : TBB->phis()) {
6859       int i;
6860       while ((i = PN.getBasicBlockIndex(&BB)) >= 0)
6861         PN.setIncomingBlock(i, TmpBB);
6862     }
6863 
6864     // Add another incoming edge form the new BB.
6865     for (PHINode &PN : FBB->phis()) {
6866       auto *Val = PN.getIncomingValueForBlock(&BB);
6867       PN.addIncoming(Val, TmpBB);
6868     }
6869 
6870     // Update the branch weights (from SelectionDAGBuilder::
6871     // FindMergedConditions).
6872     if (Opc == Instruction::Or) {
6873       // Codegen X | Y as:
6874       // BB1:
6875       //   jmp_if_X TBB
6876       //   jmp TmpBB
6877       // TmpBB:
6878       //   jmp_if_Y TBB
6879       //   jmp FBB
6880       //
6881 
6882       // We have flexibility in setting Prob for BB1 and Prob for NewBB.
6883       // The requirement is that
6884       //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
6885       //     = TrueProb for original BB.
6886       // Assuming the original weights are A and B, one choice is to set BB1's
6887       // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
6888       // assumes that
6889       //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
6890       // Another choice is to assume TrueProb for BB1 equals to TrueProb for
6891       // TmpBB, but the math is more complicated.
6892       uint64_t TrueWeight, FalseWeight;
6893       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
6894         uint64_t NewTrueWeight = TrueWeight;
6895         uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
6896         scaleWeights(NewTrueWeight, NewFalseWeight);
6897         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
6898                          .createBranchWeights(TrueWeight, FalseWeight));
6899 
6900         NewTrueWeight = TrueWeight;
6901         NewFalseWeight = 2 * FalseWeight;
6902         scaleWeights(NewTrueWeight, NewFalseWeight);
6903         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
6904                          .createBranchWeights(TrueWeight, FalseWeight));
6905       }
6906     } else {
6907       // Codegen X & Y as:
6908       // BB1:
6909       //   jmp_if_X TmpBB
6910       //   jmp FBB
6911       // TmpBB:
6912       //   jmp_if_Y TBB
6913       //   jmp FBB
6914       //
6915       //  This requires creation of TmpBB after CurBB.
6916 
6917       // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
6918       // The requirement is that
6919       //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
6920       //     = FalseProb for original BB.
6921       // Assuming the original weights are A and B, one choice is to set BB1's
6922       // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
6923       // assumes that
6924       //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
6925       uint64_t TrueWeight, FalseWeight;
6926       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
6927         uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
6928         uint64_t NewFalseWeight = FalseWeight;
6929         scaleWeights(NewTrueWeight, NewFalseWeight);
6930         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
6931                          .createBranchWeights(TrueWeight, FalseWeight));
6932 
6933         NewTrueWeight = 2 * TrueWeight;
6934         NewFalseWeight = FalseWeight;
6935         scaleWeights(NewTrueWeight, NewFalseWeight);
6936         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
6937                          .createBranchWeights(TrueWeight, FalseWeight));
6938       }
6939     }
6940 
6941     // Note: No point in getting fancy here, since the DT info is never
6942     // available to CodeGenPrepare.
6943     ModifiedDT = true;
6944 
6945     MadeChange = true;
6946 
6947     LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
6948                TmpBB->dump());
6949   }
6950   return MadeChange;
6951 }
6952