1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/PointerIntPair.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/InstructionSimplify.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/TargetLibraryInfo.h" 31 #include "llvm/Analysis/TargetTransformInfo.h" 32 #include "llvm/Transforms/Utils/Local.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/CodeGen/Analysis.h" 35 #include "llvm/CodeGen/ISDOpcodes.h" 36 #include "llvm/CodeGen/SelectionDAGNodes.h" 37 #include "llvm/CodeGen/TargetLowering.h" 38 #include "llvm/CodeGen/TargetPassConfig.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/CodeGen/ValueTypes.h" 41 #include "llvm/Config/llvm-config.h" 42 #include "llvm/IR/Argument.h" 43 #include "llvm/IR/Attributes.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/CallSite.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InlineAsm.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/Operator.h" 66 #include "llvm/IR/PatternMatch.h" 67 #include "llvm/IR/Statepoint.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/IR/ValueMap.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/BlockFrequency.h" 76 #include "llvm/Support/BranchProbability.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/MachineValueType.h" 83 #include "llvm/Support/MathExtras.h" 84 #include "llvm/Support/raw_ostream.h" 85 #include "llvm/Target/TargetMachine.h" 86 #include "llvm/Target/TargetOptions.h" 87 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 88 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 89 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 90 #include <algorithm> 91 #include <cassert> 92 #include <cstdint> 93 #include <iterator> 94 #include <limits> 95 #include <memory> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 102 #define DEBUG_TYPE "codegenprepare" 103 104 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 105 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 106 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 107 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 108 "sunken Cmps"); 109 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 110 "of sunken Casts"); 111 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 112 "computations were sunk"); 113 STATISTIC(NumMemoryInstsPhiCreated, 114 "Number of phis created when address " 115 "computations were sunk to memory instructions"); 116 STATISTIC(NumMemoryInstsSelectCreated, 117 "Number of select created when address " 118 "computations were sunk to memory instructions"); 119 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 120 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 121 STATISTIC(NumAndsAdded, 122 "Number of and mask instructions added to form ext loads"); 123 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 124 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 125 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 126 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 127 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 128 129 static cl::opt<bool> DisableBranchOpts( 130 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 131 cl::desc("Disable branch optimizations in CodeGenPrepare")); 132 133 static cl::opt<bool> 134 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 135 cl::desc("Disable GC optimizations in CodeGenPrepare")); 136 137 static cl::opt<bool> DisableSelectToBranch( 138 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 139 cl::desc("Disable select to branch conversion.")); 140 141 static cl::opt<bool> AddrSinkUsingGEPs( 142 "addr-sink-using-gep", cl::Hidden, cl::init(true), 143 cl::desc("Address sinking in CGP using GEPs.")); 144 145 static cl::opt<bool> EnableAndCmpSinking( 146 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 147 cl::desc("Enable sinkinig and/cmp into branches.")); 148 149 static cl::opt<bool> DisableStoreExtract( 150 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 151 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 152 153 static cl::opt<bool> StressStoreExtract( 154 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 155 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 156 157 static cl::opt<bool> DisableExtLdPromotion( 158 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 159 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 160 "CodeGenPrepare")); 161 162 static cl::opt<bool> StressExtLdPromotion( 163 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 164 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 165 "optimization in CodeGenPrepare")); 166 167 static cl::opt<bool> DisablePreheaderProtect( 168 "disable-preheader-prot", cl::Hidden, cl::init(false), 169 cl::desc("Disable protection against removing loop preheaders")); 170 171 static cl::opt<bool> ProfileGuidedSectionPrefix( 172 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 173 cl::desc("Use profile info to add section prefix for hot/cold functions")); 174 175 static cl::opt<unsigned> FreqRatioToSkipMerge( 176 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 177 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 178 "(frequency of destination block) is greater than this ratio")); 179 180 static cl::opt<bool> ForceSplitStore( 181 "force-split-store", cl::Hidden, cl::init(false), 182 cl::desc("Force store splitting no matter what the target query says.")); 183 184 static cl::opt<bool> 185 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 186 cl::desc("Enable merging of redundant sexts when one is dominating" 187 " the other."), cl::init(true)); 188 189 static cl::opt<bool> DisableComplexAddrModes( 190 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 191 cl::desc("Disables combining addressing modes with different parts " 192 "in optimizeMemoryInst.")); 193 194 static cl::opt<bool> 195 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 196 cl::desc("Allow creation of Phis in Address sinking.")); 197 198 static cl::opt<bool> 199 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 200 cl::desc("Allow creation of selects in Address sinking.")); 201 202 static cl::opt<bool> AddrSinkCombineBaseReg( 203 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 204 cl::desc("Allow combining of BaseReg field in Address sinking.")); 205 206 static cl::opt<bool> AddrSinkCombineBaseGV( 207 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 208 cl::desc("Allow combining of BaseGV field in Address sinking.")); 209 210 static cl::opt<bool> AddrSinkCombineBaseOffs( 211 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 212 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 213 214 static cl::opt<bool> AddrSinkCombineScaledReg( 215 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 216 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 217 218 static cl::opt<bool> 219 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 220 cl::init(true), 221 cl::desc("Enable splitting large offset of GEP.")); 222 223 namespace { 224 225 enum ExtType { 226 ZeroExtension, // Zero extension has been seen. 227 SignExtension, // Sign extension has been seen. 228 BothExtension // This extension type is used if we saw sext after 229 // ZeroExtension had been set, or if we saw zext after 230 // SignExtension had been set. It makes the type 231 // information of a promoted instruction invalid. 232 }; 233 234 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 235 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 236 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 237 using SExts = SmallVector<Instruction *, 16>; 238 using ValueToSExts = DenseMap<Value *, SExts>; 239 240 class TypePromotionTransaction; 241 242 class CodeGenPrepare : public FunctionPass { 243 const TargetMachine *TM = nullptr; 244 const TargetSubtargetInfo *SubtargetInfo; 245 const TargetLowering *TLI = nullptr; 246 const TargetRegisterInfo *TRI; 247 const TargetTransformInfo *TTI = nullptr; 248 const TargetLibraryInfo *TLInfo; 249 const LoopInfo *LI; 250 std::unique_ptr<BlockFrequencyInfo> BFI; 251 std::unique_ptr<BranchProbabilityInfo> BPI; 252 253 /// As we scan instructions optimizing them, this is the next instruction 254 /// to optimize. Transforms that can invalidate this should update it. 255 BasicBlock::iterator CurInstIterator; 256 257 /// Keeps track of non-local addresses that have been sunk into a block. 258 /// This allows us to avoid inserting duplicate code for blocks with 259 /// multiple load/stores of the same address. The usage of WeakTrackingVH 260 /// enables SunkAddrs to be treated as a cache whose entries can be 261 /// invalidated if a sunken address computation has been erased. 262 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 263 264 /// Keeps track of all instructions inserted for the current function. 265 SetOfInstrs InsertedInsts; 266 267 /// Keeps track of the type of the related instruction before their 268 /// promotion for the current function. 269 InstrToOrigTy PromotedInsts; 270 271 /// Keep track of instructions removed during promotion. 272 SetOfInstrs RemovedInsts; 273 274 /// Keep track of sext chains based on their initial value. 275 DenseMap<Value *, Instruction *> SeenChainsForSExt; 276 277 /// Keep track of GEPs accessing the same data structures such as structs or 278 /// arrays that are candidates to be split later because of their large 279 /// size. 280 MapVector< 281 AssertingVH<Value>, 282 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 283 LargeOffsetGEPMap; 284 285 /// Keep track of new GEP base after splitting the GEPs having large offset. 286 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 287 288 /// Map serial numbers to Large offset GEPs. 289 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 290 291 /// Keep track of SExt promoted. 292 ValueToSExts ValToSExtendedUses; 293 294 /// True if CFG is modified in any way. 295 bool ModifiedDT; 296 297 /// True if optimizing for size. 298 bool OptSize; 299 300 /// DataLayout for the Function being processed. 301 const DataLayout *DL = nullptr; 302 303 public: 304 static char ID; // Pass identification, replacement for typeid 305 306 CodeGenPrepare() : FunctionPass(ID) { 307 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 308 } 309 310 bool runOnFunction(Function &F) override; 311 312 StringRef getPassName() const override { return "CodeGen Prepare"; } 313 314 void getAnalysisUsage(AnalysisUsage &AU) const override { 315 // FIXME: When we can selectively preserve passes, preserve the domtree. 316 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 317 AU.addRequired<TargetLibraryInfoWrapperPass>(); 318 AU.addRequired<TargetTransformInfoWrapperPass>(); 319 AU.addRequired<LoopInfoWrapperPass>(); 320 } 321 322 private: 323 template <typename F> 324 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 325 // Substituting can cause recursive simplifications, which can invalidate 326 // our iterator. Use a WeakTrackingVH to hold onto it in case this 327 // happens. 328 Value *CurValue = &*CurInstIterator; 329 WeakTrackingVH IterHandle(CurValue); 330 331 f(); 332 333 // If the iterator instruction was recursively deleted, start over at the 334 // start of the block. 335 if (IterHandle != CurValue) { 336 CurInstIterator = BB->begin(); 337 SunkAddrs.clear(); 338 } 339 } 340 341 bool eliminateFallThrough(Function &F); 342 bool eliminateMostlyEmptyBlocks(Function &F); 343 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 344 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 345 void eliminateMostlyEmptyBlock(BasicBlock *BB); 346 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 347 bool isPreheader); 348 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 349 bool optimizeInst(Instruction *I, bool &ModifiedDT); 350 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 351 Type *AccessTy, unsigned AddrSpace); 352 bool optimizeInlineAsmInst(CallInst *CS); 353 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 354 bool optimizeExt(Instruction *&I); 355 bool optimizeExtUses(Instruction *I); 356 bool optimizeLoadExt(LoadInst *Load); 357 bool optimizeSelectInst(SelectInst *SI); 358 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 359 bool optimizeSwitchInst(SwitchInst *SI); 360 bool optimizeExtractElementInst(Instruction *Inst); 361 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 362 bool placeDbgValues(Function &F); 363 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 364 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 365 bool tryToPromoteExts(TypePromotionTransaction &TPT, 366 const SmallVectorImpl<Instruction *> &Exts, 367 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 368 unsigned CreatedInstsCost = 0); 369 bool mergeSExts(Function &F); 370 bool splitLargeGEPOffsets(); 371 bool performAddressTypePromotion( 372 Instruction *&Inst, 373 bool AllowPromotionWithoutCommonHeader, 374 bool HasPromoted, TypePromotionTransaction &TPT, 375 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 376 bool splitBranchCondition(Function &F); 377 bool simplifyOffsetableRelocate(Instruction &I); 378 379 bool tryToSinkFreeOperands(Instruction *I); 380 }; 381 382 } // end anonymous namespace 383 384 char CodeGenPrepare::ID = 0; 385 386 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 387 "Optimize for code generation", false, false) 388 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 389 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 390 "Optimize for code generation", false, false) 391 392 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 393 394 bool CodeGenPrepare::runOnFunction(Function &F) { 395 if (skipFunction(F)) 396 return false; 397 398 DL = &F.getParent()->getDataLayout(); 399 400 bool EverMadeChange = false; 401 // Clear per function information. 402 InsertedInsts.clear(); 403 PromotedInsts.clear(); 404 405 ModifiedDT = false; 406 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 407 TM = &TPC->getTM<TargetMachine>(); 408 SubtargetInfo = TM->getSubtargetImpl(F); 409 TLI = SubtargetInfo->getTargetLowering(); 410 TRI = SubtargetInfo->getRegisterInfo(); 411 } 412 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 413 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 414 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 415 BPI.reset(new BranchProbabilityInfo(F, *LI)); 416 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 417 OptSize = F.optForSize(); 418 419 ProfileSummaryInfo *PSI = 420 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 421 if (ProfileGuidedSectionPrefix) { 422 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 423 F.setSectionPrefix(".hot"); 424 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 425 F.setSectionPrefix(".unlikely"); 426 } 427 428 /// This optimization identifies DIV instructions that can be 429 /// profitably bypassed and carried out with a shorter, faster divide. 430 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI && 431 TLI->isSlowDivBypassed()) { 432 const DenseMap<unsigned int, unsigned int> &BypassWidths = 433 TLI->getBypassSlowDivWidths(); 434 BasicBlock* BB = &*F.begin(); 435 while (BB != nullptr) { 436 // bypassSlowDivision may create new BBs, but we don't want to reapply the 437 // optimization to those blocks. 438 BasicBlock* Next = BB->getNextNode(); 439 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 440 BB = Next; 441 } 442 } 443 444 // Eliminate blocks that contain only PHI nodes and an 445 // unconditional branch. 446 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 447 448 if (!DisableBranchOpts) 449 EverMadeChange |= splitBranchCondition(F); 450 451 // Split some critical edges where one of the sources is an indirect branch, 452 // to help generate sane code for PHIs involving such edges. 453 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 454 455 bool MadeChange = true; 456 while (MadeChange) { 457 MadeChange = false; 458 for (Function::iterator I = F.begin(); I != F.end(); ) { 459 BasicBlock *BB = &*I++; 460 bool ModifiedDTOnIteration = false; 461 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 462 463 // Restart BB iteration if the dominator tree of the Function was changed 464 if (ModifiedDTOnIteration) 465 break; 466 } 467 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 468 MadeChange |= mergeSExts(F); 469 if (!LargeOffsetGEPMap.empty()) 470 MadeChange |= splitLargeGEPOffsets(); 471 472 // Really free removed instructions during promotion. 473 for (Instruction *I : RemovedInsts) 474 I->deleteValue(); 475 476 EverMadeChange |= MadeChange; 477 SeenChainsForSExt.clear(); 478 ValToSExtendedUses.clear(); 479 RemovedInsts.clear(); 480 LargeOffsetGEPMap.clear(); 481 LargeOffsetGEPID.clear(); 482 } 483 484 SunkAddrs.clear(); 485 486 if (!DisableBranchOpts) { 487 MadeChange = false; 488 // Use a set vector to get deterministic iteration order. The order the 489 // blocks are removed may affect whether or not PHI nodes in successors 490 // are removed. 491 SmallSetVector<BasicBlock*, 8> WorkList; 492 for (BasicBlock &BB : F) { 493 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 494 MadeChange |= ConstantFoldTerminator(&BB, true); 495 if (!MadeChange) continue; 496 497 for (SmallVectorImpl<BasicBlock*>::iterator 498 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 499 if (pred_begin(*II) == pred_end(*II)) 500 WorkList.insert(*II); 501 } 502 503 // Delete the dead blocks and any of their dead successors. 504 MadeChange |= !WorkList.empty(); 505 while (!WorkList.empty()) { 506 BasicBlock *BB = WorkList.pop_back_val(); 507 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 508 509 DeleteDeadBlock(BB); 510 511 for (SmallVectorImpl<BasicBlock*>::iterator 512 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 513 if (pred_begin(*II) == pred_end(*II)) 514 WorkList.insert(*II); 515 } 516 517 // Merge pairs of basic blocks with unconditional branches, connected by 518 // a single edge. 519 if (EverMadeChange || MadeChange) 520 MadeChange |= eliminateFallThrough(F); 521 522 EverMadeChange |= MadeChange; 523 } 524 525 if (!DisableGCOpts) { 526 SmallVector<Instruction *, 2> Statepoints; 527 for (BasicBlock &BB : F) 528 for (Instruction &I : BB) 529 if (isStatepoint(I)) 530 Statepoints.push_back(&I); 531 for (auto &I : Statepoints) 532 EverMadeChange |= simplifyOffsetableRelocate(*I); 533 } 534 535 // Do this last to clean up use-before-def scenarios introduced by other 536 // preparatory transforms. 537 EverMadeChange |= placeDbgValues(F); 538 539 return EverMadeChange; 540 } 541 542 /// Merge basic blocks which are connected by a single edge, where one of the 543 /// basic blocks has a single successor pointing to the other basic block, 544 /// which has a single predecessor. 545 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 546 bool Changed = false; 547 // Scan all of the blocks in the function, except for the entry block. 548 // Use a temporary array to avoid iterator being invalidated when 549 // deleting blocks. 550 SmallVector<WeakTrackingVH, 16> Blocks; 551 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 552 Blocks.push_back(&Block); 553 554 for (auto &Block : Blocks) { 555 auto *BB = cast_or_null<BasicBlock>(Block); 556 if (!BB) 557 continue; 558 // If the destination block has a single pred, then this is a trivial 559 // edge, just collapse it. 560 BasicBlock *SinglePred = BB->getSinglePredecessor(); 561 562 // Don't merge if BB's address is taken. 563 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 564 565 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 566 if (Term && !Term->isConditional()) { 567 Changed = true; 568 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 569 570 // Merge BB into SinglePred and delete it. 571 MergeBlockIntoPredecessor(BB); 572 } 573 } 574 return Changed; 575 } 576 577 /// Find a destination block from BB if BB is mergeable empty block. 578 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 579 // If this block doesn't end with an uncond branch, ignore it. 580 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 581 if (!BI || !BI->isUnconditional()) 582 return nullptr; 583 584 // If the instruction before the branch (skipping debug info) isn't a phi 585 // node, then other stuff is happening here. 586 BasicBlock::iterator BBI = BI->getIterator(); 587 if (BBI != BB->begin()) { 588 --BBI; 589 while (isa<DbgInfoIntrinsic>(BBI)) { 590 if (BBI == BB->begin()) 591 break; 592 --BBI; 593 } 594 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 595 return nullptr; 596 } 597 598 // Do not break infinite loops. 599 BasicBlock *DestBB = BI->getSuccessor(0); 600 if (DestBB == BB) 601 return nullptr; 602 603 if (!canMergeBlocks(BB, DestBB)) 604 DestBB = nullptr; 605 606 return DestBB; 607 } 608 609 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 610 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 611 /// edges in ways that are non-optimal for isel. Start by eliminating these 612 /// blocks so we can split them the way we want them. 613 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 614 SmallPtrSet<BasicBlock *, 16> Preheaders; 615 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 616 while (!LoopList.empty()) { 617 Loop *L = LoopList.pop_back_val(); 618 LoopList.insert(LoopList.end(), L->begin(), L->end()); 619 if (BasicBlock *Preheader = L->getLoopPreheader()) 620 Preheaders.insert(Preheader); 621 } 622 623 bool MadeChange = false; 624 // Copy blocks into a temporary array to avoid iterator invalidation issues 625 // as we remove them. 626 // Note that this intentionally skips the entry block. 627 SmallVector<WeakTrackingVH, 16> Blocks; 628 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 629 Blocks.push_back(&Block); 630 631 for (auto &Block : Blocks) { 632 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 633 if (!BB) 634 continue; 635 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 636 if (!DestBB || 637 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 638 continue; 639 640 eliminateMostlyEmptyBlock(BB); 641 MadeChange = true; 642 } 643 return MadeChange; 644 } 645 646 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 647 BasicBlock *DestBB, 648 bool isPreheader) { 649 // Do not delete loop preheaders if doing so would create a critical edge. 650 // Loop preheaders can be good locations to spill registers. If the 651 // preheader is deleted and we create a critical edge, registers may be 652 // spilled in the loop body instead. 653 if (!DisablePreheaderProtect && isPreheader && 654 !(BB->getSinglePredecessor() && 655 BB->getSinglePredecessor()->getSingleSuccessor())) 656 return false; 657 658 // Skip merging if the block's successor is also a successor to any callbr 659 // that leads to this block. 660 // FIXME: Is this really needed? Is this a correctness issue? 661 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 662 if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator())) 663 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 664 if (DestBB == CBI->getSuccessor(i)) 665 return false; 666 } 667 668 // Try to skip merging if the unique predecessor of BB is terminated by a 669 // switch or indirect branch instruction, and BB is used as an incoming block 670 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 671 // add COPY instructions in the predecessor of BB instead of BB (if it is not 672 // merged). Note that the critical edge created by merging such blocks wont be 673 // split in MachineSink because the jump table is not analyzable. By keeping 674 // such empty block (BB), ISel will place COPY instructions in BB, not in the 675 // predecessor of BB. 676 BasicBlock *Pred = BB->getUniquePredecessor(); 677 if (!Pred || 678 !(isa<SwitchInst>(Pred->getTerminator()) || 679 isa<IndirectBrInst>(Pred->getTerminator()))) 680 return true; 681 682 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 683 return true; 684 685 // We use a simple cost heuristic which determine skipping merging is 686 // profitable if the cost of skipping merging is less than the cost of 687 // merging : Cost(skipping merging) < Cost(merging BB), where the 688 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 689 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 690 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 691 // Freq(Pred) / Freq(BB) > 2. 692 // Note that if there are multiple empty blocks sharing the same incoming 693 // value for the PHIs in the DestBB, we consider them together. In such 694 // case, Cost(merging BB) will be the sum of their frequencies. 695 696 if (!isa<PHINode>(DestBB->begin())) 697 return true; 698 699 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 700 701 // Find all other incoming blocks from which incoming values of all PHIs in 702 // DestBB are the same as the ones from BB. 703 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 704 ++PI) { 705 BasicBlock *DestBBPred = *PI; 706 if (DestBBPred == BB) 707 continue; 708 709 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 710 return DestPN.getIncomingValueForBlock(BB) == 711 DestPN.getIncomingValueForBlock(DestBBPred); 712 })) 713 SameIncomingValueBBs.insert(DestBBPred); 714 } 715 716 // See if all BB's incoming values are same as the value from Pred. In this 717 // case, no reason to skip merging because COPYs are expected to be place in 718 // Pred already. 719 if (SameIncomingValueBBs.count(Pred)) 720 return true; 721 722 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 723 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 724 725 for (auto SameValueBB : SameIncomingValueBBs) 726 if (SameValueBB->getUniquePredecessor() == Pred && 727 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 728 BBFreq += BFI->getBlockFreq(SameValueBB); 729 730 return PredFreq.getFrequency() <= 731 BBFreq.getFrequency() * FreqRatioToSkipMerge; 732 } 733 734 /// Return true if we can merge BB into DestBB if there is a single 735 /// unconditional branch between them, and BB contains no other non-phi 736 /// instructions. 737 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 738 const BasicBlock *DestBB) const { 739 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 740 // the successor. If there are more complex condition (e.g. preheaders), 741 // don't mess around with them. 742 for (const PHINode &PN : BB->phis()) { 743 for (const User *U : PN.users()) { 744 const Instruction *UI = cast<Instruction>(U); 745 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 746 return false; 747 // If User is inside DestBB block and it is a PHINode then check 748 // incoming value. If incoming value is not from BB then this is 749 // a complex condition (e.g. preheaders) we want to avoid here. 750 if (UI->getParent() == DestBB) { 751 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 752 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 753 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 754 if (Insn && Insn->getParent() == BB && 755 Insn->getParent() != UPN->getIncomingBlock(I)) 756 return false; 757 } 758 } 759 } 760 } 761 762 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 763 // and DestBB may have conflicting incoming values for the block. If so, we 764 // can't merge the block. 765 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 766 if (!DestBBPN) return true; // no conflict. 767 768 // Collect the preds of BB. 769 SmallPtrSet<const BasicBlock*, 16> BBPreds; 770 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 771 // It is faster to get preds from a PHI than with pred_iterator. 772 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 773 BBPreds.insert(BBPN->getIncomingBlock(i)); 774 } else { 775 BBPreds.insert(pred_begin(BB), pred_end(BB)); 776 } 777 778 // Walk the preds of DestBB. 779 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 780 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 781 if (BBPreds.count(Pred)) { // Common predecessor? 782 for (const PHINode &PN : DestBB->phis()) { 783 const Value *V1 = PN.getIncomingValueForBlock(Pred); 784 const Value *V2 = PN.getIncomingValueForBlock(BB); 785 786 // If V2 is a phi node in BB, look up what the mapped value will be. 787 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 788 if (V2PN->getParent() == BB) 789 V2 = V2PN->getIncomingValueForBlock(Pred); 790 791 // If there is a conflict, bail out. 792 if (V1 != V2) return false; 793 } 794 } 795 } 796 797 return true; 798 } 799 800 /// Eliminate a basic block that has only phi's and an unconditional branch in 801 /// it. 802 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 803 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 804 BasicBlock *DestBB = BI->getSuccessor(0); 805 806 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 807 << *BB << *DestBB); 808 809 // If the destination block has a single pred, then this is a trivial edge, 810 // just collapse it. 811 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 812 if (SinglePred != DestBB) { 813 assert(SinglePred == BB && 814 "Single predecessor not the same as predecessor"); 815 // Merge DestBB into SinglePred/BB and delete it. 816 MergeBlockIntoPredecessor(DestBB); 817 // Note: BB(=SinglePred) will not be deleted on this path. 818 // DestBB(=its single successor) is the one that was deleted. 819 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 820 return; 821 } 822 } 823 824 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 825 // to handle the new incoming edges it is about to have. 826 for (PHINode &PN : DestBB->phis()) { 827 // Remove the incoming value for BB, and remember it. 828 Value *InVal = PN.removeIncomingValue(BB, false); 829 830 // Two options: either the InVal is a phi node defined in BB or it is some 831 // value that dominates BB. 832 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 833 if (InValPhi && InValPhi->getParent() == BB) { 834 // Add all of the input values of the input PHI as inputs of this phi. 835 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 836 PN.addIncoming(InValPhi->getIncomingValue(i), 837 InValPhi->getIncomingBlock(i)); 838 } else { 839 // Otherwise, add one instance of the dominating value for each edge that 840 // we will be adding. 841 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 842 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 843 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 844 } else { 845 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 846 PN.addIncoming(InVal, *PI); 847 } 848 } 849 } 850 851 // The PHIs are now updated, change everything that refers to BB to use 852 // DestBB and remove BB. 853 BB->replaceAllUsesWith(DestBB); 854 BB->eraseFromParent(); 855 ++NumBlocksElim; 856 857 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 858 } 859 860 // Computes a map of base pointer relocation instructions to corresponding 861 // derived pointer relocation instructions given a vector of all relocate calls 862 static void computeBaseDerivedRelocateMap( 863 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 864 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 865 &RelocateInstMap) { 866 // Collect information in two maps: one primarily for locating the base object 867 // while filling the second map; the second map is the final structure holding 868 // a mapping between Base and corresponding Derived relocate calls 869 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 870 for (auto *ThisRelocate : AllRelocateCalls) { 871 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 872 ThisRelocate->getDerivedPtrIndex()); 873 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 874 } 875 for (auto &Item : RelocateIdxMap) { 876 std::pair<unsigned, unsigned> Key = Item.first; 877 if (Key.first == Key.second) 878 // Base relocation: nothing to insert 879 continue; 880 881 GCRelocateInst *I = Item.second; 882 auto BaseKey = std::make_pair(Key.first, Key.first); 883 884 // We're iterating over RelocateIdxMap so we cannot modify it. 885 auto MaybeBase = RelocateIdxMap.find(BaseKey); 886 if (MaybeBase == RelocateIdxMap.end()) 887 // TODO: We might want to insert a new base object relocate and gep off 888 // that, if there are enough derived object relocates. 889 continue; 890 891 RelocateInstMap[MaybeBase->second].push_back(I); 892 } 893 } 894 895 // Accepts a GEP and extracts the operands into a vector provided they're all 896 // small integer constants 897 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 898 SmallVectorImpl<Value *> &OffsetV) { 899 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 900 // Only accept small constant integer operands 901 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 902 if (!Op || Op->getZExtValue() > 20) 903 return false; 904 } 905 906 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 907 OffsetV.push_back(GEP->getOperand(i)); 908 return true; 909 } 910 911 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 912 // replace, computes a replacement, and affects it. 913 static bool 914 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 915 const SmallVectorImpl<GCRelocateInst *> &Targets) { 916 bool MadeChange = false; 917 // We must ensure the relocation of derived pointer is defined after 918 // relocation of base pointer. If we find a relocation corresponding to base 919 // defined earlier than relocation of base then we move relocation of base 920 // right before found relocation. We consider only relocation in the same 921 // basic block as relocation of base. Relocations from other basic block will 922 // be skipped by optimization and we do not care about them. 923 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 924 &*R != RelocatedBase; ++R) 925 if (auto RI = dyn_cast<GCRelocateInst>(R)) 926 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 927 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 928 RelocatedBase->moveBefore(RI); 929 break; 930 } 931 932 for (GCRelocateInst *ToReplace : Targets) { 933 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 934 "Not relocating a derived object of the original base object"); 935 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 936 // A duplicate relocate call. TODO: coalesce duplicates. 937 continue; 938 } 939 940 if (RelocatedBase->getParent() != ToReplace->getParent()) { 941 // Base and derived relocates are in different basic blocks. 942 // In this case transform is only valid when base dominates derived 943 // relocate. However it would be too expensive to check dominance 944 // for each such relocate, so we skip the whole transformation. 945 continue; 946 } 947 948 Value *Base = ToReplace->getBasePtr(); 949 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 950 if (!Derived || Derived->getPointerOperand() != Base) 951 continue; 952 953 SmallVector<Value *, 2> OffsetV; 954 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 955 continue; 956 957 // Create a Builder and replace the target callsite with a gep 958 assert(RelocatedBase->getNextNode() && 959 "Should always have one since it's not a terminator"); 960 961 // Insert after RelocatedBase 962 IRBuilder<> Builder(RelocatedBase->getNextNode()); 963 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 964 965 // If gc_relocate does not match the actual type, cast it to the right type. 966 // In theory, there must be a bitcast after gc_relocate if the type does not 967 // match, and we should reuse it to get the derived pointer. But it could be 968 // cases like this: 969 // bb1: 970 // ... 971 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 972 // br label %merge 973 // 974 // bb2: 975 // ... 976 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 977 // br label %merge 978 // 979 // merge: 980 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 981 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 982 // 983 // In this case, we can not find the bitcast any more. So we insert a new bitcast 984 // no matter there is already one or not. In this way, we can handle all cases, and 985 // the extra bitcast should be optimized away in later passes. 986 Value *ActualRelocatedBase = RelocatedBase; 987 if (RelocatedBase->getType() != Base->getType()) { 988 ActualRelocatedBase = 989 Builder.CreateBitCast(RelocatedBase, Base->getType()); 990 } 991 Value *Replacement = Builder.CreateGEP( 992 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 993 Replacement->takeName(ToReplace); 994 // If the newly generated derived pointer's type does not match the original derived 995 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 996 Value *ActualReplacement = Replacement; 997 if (Replacement->getType() != ToReplace->getType()) { 998 ActualReplacement = 999 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1000 } 1001 ToReplace->replaceAllUsesWith(ActualReplacement); 1002 ToReplace->eraseFromParent(); 1003 1004 MadeChange = true; 1005 } 1006 return MadeChange; 1007 } 1008 1009 // Turns this: 1010 // 1011 // %base = ... 1012 // %ptr = gep %base + 15 1013 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1014 // %base' = relocate(%tok, i32 4, i32 4) 1015 // %ptr' = relocate(%tok, i32 4, i32 5) 1016 // %val = load %ptr' 1017 // 1018 // into this: 1019 // 1020 // %base = ... 1021 // %ptr = gep %base + 15 1022 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1023 // %base' = gc.relocate(%tok, i32 4, i32 4) 1024 // %ptr' = gep %base' + 15 1025 // %val = load %ptr' 1026 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1027 bool MadeChange = false; 1028 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1029 1030 for (auto *U : I.users()) 1031 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1032 // Collect all the relocate calls associated with a statepoint 1033 AllRelocateCalls.push_back(Relocate); 1034 1035 // We need atleast one base pointer relocation + one derived pointer 1036 // relocation to mangle 1037 if (AllRelocateCalls.size() < 2) 1038 return false; 1039 1040 // RelocateInstMap is a mapping from the base relocate instruction to the 1041 // corresponding derived relocate instructions 1042 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1043 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1044 if (RelocateInstMap.empty()) 1045 return false; 1046 1047 for (auto &Item : RelocateInstMap) 1048 // Item.first is the RelocatedBase to offset against 1049 // Item.second is the vector of Targets to replace 1050 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1051 return MadeChange; 1052 } 1053 1054 /// SinkCast - Sink the specified cast instruction into its user blocks 1055 static bool SinkCast(CastInst *CI) { 1056 BasicBlock *DefBB = CI->getParent(); 1057 1058 /// InsertedCasts - Only insert a cast in each block once. 1059 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1060 1061 bool MadeChange = false; 1062 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1063 UI != E; ) { 1064 Use &TheUse = UI.getUse(); 1065 Instruction *User = cast<Instruction>(*UI); 1066 1067 // Figure out which BB this cast is used in. For PHI's this is the 1068 // appropriate predecessor block. 1069 BasicBlock *UserBB = User->getParent(); 1070 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1071 UserBB = PN->getIncomingBlock(TheUse); 1072 } 1073 1074 // Preincrement use iterator so we don't invalidate it. 1075 ++UI; 1076 1077 // The first insertion point of a block containing an EH pad is after the 1078 // pad. If the pad is the user, we cannot sink the cast past the pad. 1079 if (User->isEHPad()) 1080 continue; 1081 1082 // If the block selected to receive the cast is an EH pad that does not 1083 // allow non-PHI instructions before the terminator, we can't sink the 1084 // cast. 1085 if (UserBB->getTerminator()->isEHPad()) 1086 continue; 1087 1088 // If this user is in the same block as the cast, don't change the cast. 1089 if (UserBB == DefBB) continue; 1090 1091 // If we have already inserted a cast into this block, use it. 1092 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1093 1094 if (!InsertedCast) { 1095 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1096 assert(InsertPt != UserBB->end()); 1097 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1098 CI->getType(), "", &*InsertPt); 1099 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1100 } 1101 1102 // Replace a use of the cast with a use of the new cast. 1103 TheUse = InsertedCast; 1104 MadeChange = true; 1105 ++NumCastUses; 1106 } 1107 1108 // If we removed all uses, nuke the cast. 1109 if (CI->use_empty()) { 1110 salvageDebugInfo(*CI); 1111 CI->eraseFromParent(); 1112 MadeChange = true; 1113 } 1114 1115 return MadeChange; 1116 } 1117 1118 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1119 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1120 /// reduce the number of virtual registers that must be created and coalesced. 1121 /// 1122 /// Return true if any changes are made. 1123 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1124 const DataLayout &DL) { 1125 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1126 // than sinking only nop casts, but is helpful on some platforms. 1127 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1128 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), 1129 ASC->getDestAddressSpace())) 1130 return false; 1131 } 1132 1133 // If this is a noop copy, 1134 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1135 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1136 1137 // This is an fp<->int conversion? 1138 if (SrcVT.isInteger() != DstVT.isInteger()) 1139 return false; 1140 1141 // If this is an extension, it will be a zero or sign extension, which 1142 // isn't a noop. 1143 if (SrcVT.bitsLT(DstVT)) return false; 1144 1145 // If these values will be promoted, find out what they will be promoted 1146 // to. This helps us consider truncates on PPC as noop copies when they 1147 // are. 1148 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1149 TargetLowering::TypePromoteInteger) 1150 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1151 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1152 TargetLowering::TypePromoteInteger) 1153 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1154 1155 // If, after promotion, these are the same types, this is a noop copy. 1156 if (SrcVT != DstVT) 1157 return false; 1158 1159 return SinkCast(CI); 1160 } 1161 1162 static void replaceMathCmpWithIntrinsic(BinaryOperator *BO, CmpInst *Cmp, 1163 Instruction *InsertPt, 1164 Intrinsic::ID IID) { 1165 IRBuilder<> Builder(InsertPt); 1166 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, BO->getOperand(0), 1167 BO->getOperand(1)); 1168 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1169 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1170 BO->replaceAllUsesWith(Math); 1171 Cmp->replaceAllUsesWith(OV); 1172 BO->eraseFromParent(); 1173 Cmp->eraseFromParent(); 1174 } 1175 1176 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1177 /// intrinsic. Return true if any changes were made. 1178 static bool combineToUAddWithOverflow(CmpInst *Cmp, const TargetLowering &TLI, 1179 const DataLayout &DL) { 1180 Value *A, *B; 1181 BinaryOperator *Add; 1182 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) 1183 return false; 1184 1185 // Allow the transform as long as we have an integer type that is not 1186 // obviously illegal and unsupported. 1187 Type *Ty = Add->getType(); 1188 if (!isa<IntegerType>(Ty)) 1189 return false; 1190 EVT CodegenVT = TLI.getValueType(DL, Ty); 1191 if (!CodegenVT.isSimple() && TLI.isOperationExpand(ISD::UADDO, CodegenVT)) 1192 return false; 1193 1194 // We don't want to move around uses of condition values this late, so we 1195 // check if it is legal to create the call to the intrinsic in the basic 1196 // block containing the icmp. 1197 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1198 return false; 1199 1200 #ifndef NDEBUG 1201 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 1202 // for now: 1203 if (Add->hasOneUse()) 1204 assert(*Add->user_begin() == Cmp && "expected!"); 1205 #endif 1206 1207 Instruction *InPt = Add->hasOneUse() ? cast<Instruction>(Cmp) 1208 : cast<Instruction>(Add); 1209 replaceMathCmpWithIntrinsic(Add, Cmp, InPt, Intrinsic::uadd_with_overflow); 1210 return true; 1211 } 1212 1213 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1214 /// registers that must be created and coalesced. This is a clear win except on 1215 /// targets with multiple condition code registers (PowerPC), where it might 1216 /// lose; some adjustment may be wanted there. 1217 /// 1218 /// Return true if any changes are made. 1219 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1220 if (TLI.hasMultipleConditionRegisters()) 1221 return false; 1222 1223 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1224 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1225 return false; 1226 1227 // Only insert a cmp in each block once. 1228 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1229 1230 bool MadeChange = false; 1231 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1232 UI != E; ) { 1233 Use &TheUse = UI.getUse(); 1234 Instruction *User = cast<Instruction>(*UI); 1235 1236 // Preincrement use iterator so we don't invalidate it. 1237 ++UI; 1238 1239 // Don't bother for PHI nodes. 1240 if (isa<PHINode>(User)) 1241 continue; 1242 1243 // Figure out which BB this cmp is used in. 1244 BasicBlock *UserBB = User->getParent(); 1245 BasicBlock *DefBB = Cmp->getParent(); 1246 1247 // If this user is in the same block as the cmp, don't change the cmp. 1248 if (UserBB == DefBB) continue; 1249 1250 // If we have already inserted a cmp into this block, use it. 1251 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1252 1253 if (!InsertedCmp) { 1254 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1255 assert(InsertPt != UserBB->end()); 1256 InsertedCmp = 1257 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1258 Cmp->getOperand(0), Cmp->getOperand(1), "", 1259 &*InsertPt); 1260 // Propagate the debug info. 1261 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1262 } 1263 1264 // Replace a use of the cmp with a use of the new cmp. 1265 TheUse = InsertedCmp; 1266 MadeChange = true; 1267 ++NumCmpUses; 1268 } 1269 1270 // If we removed all uses, nuke the cmp. 1271 if (Cmp->use_empty()) { 1272 Cmp->eraseFromParent(); 1273 MadeChange = true; 1274 } 1275 1276 return MadeChange; 1277 } 1278 1279 static bool optimizeCmpExpression(CmpInst *Cmp, const TargetLowering &TLI, 1280 const DataLayout &DL) { 1281 if (sinkCmpExpression(Cmp, TLI)) 1282 return true; 1283 1284 if (combineToUAddWithOverflow(Cmp, TLI, DL)) 1285 return true; 1286 1287 return false; 1288 } 1289 1290 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1291 /// used in a compare to allow isel to generate better code for targets where 1292 /// this operation can be combined. 1293 /// 1294 /// Return true if any changes are made. 1295 static bool sinkAndCmp0Expression(Instruction *AndI, 1296 const TargetLowering &TLI, 1297 SetOfInstrs &InsertedInsts) { 1298 // Double-check that we're not trying to optimize an instruction that was 1299 // already optimized by some other part of this pass. 1300 assert(!InsertedInsts.count(AndI) && 1301 "Attempting to optimize already optimized and instruction"); 1302 (void) InsertedInsts; 1303 1304 // Nothing to do for single use in same basic block. 1305 if (AndI->hasOneUse() && 1306 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1307 return false; 1308 1309 // Try to avoid cases where sinking/duplicating is likely to increase register 1310 // pressure. 1311 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1312 !isa<ConstantInt>(AndI->getOperand(1)) && 1313 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1314 return false; 1315 1316 for (auto *U : AndI->users()) { 1317 Instruction *User = cast<Instruction>(U); 1318 1319 // Only sink for and mask feeding icmp with 0. 1320 if (!isa<ICmpInst>(User)) 1321 return false; 1322 1323 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1324 if (!CmpC || !CmpC->isZero()) 1325 return false; 1326 } 1327 1328 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1329 return false; 1330 1331 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1332 LLVM_DEBUG(AndI->getParent()->dump()); 1333 1334 // Push the 'and' into the same block as the icmp 0. There should only be 1335 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1336 // others, so we don't need to keep track of which BBs we insert into. 1337 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1338 UI != E; ) { 1339 Use &TheUse = UI.getUse(); 1340 Instruction *User = cast<Instruction>(*UI); 1341 1342 // Preincrement use iterator so we don't invalidate it. 1343 ++UI; 1344 1345 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1346 1347 // Keep the 'and' in the same place if the use is already in the same block. 1348 Instruction *InsertPt = 1349 User->getParent() == AndI->getParent() ? AndI : User; 1350 Instruction *InsertedAnd = 1351 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1352 AndI->getOperand(1), "", InsertPt); 1353 // Propagate the debug info. 1354 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1355 1356 // Replace a use of the 'and' with a use of the new 'and'. 1357 TheUse = InsertedAnd; 1358 ++NumAndUses; 1359 LLVM_DEBUG(User->getParent()->dump()); 1360 } 1361 1362 // We removed all uses, nuke the and. 1363 AndI->eraseFromParent(); 1364 return true; 1365 } 1366 1367 /// Check if the candidates could be combined with a shift instruction, which 1368 /// includes: 1369 /// 1. Truncate instruction 1370 /// 2. And instruction and the imm is a mask of the low bits: 1371 /// imm & (imm+1) == 0 1372 static bool isExtractBitsCandidateUse(Instruction *User) { 1373 if (!isa<TruncInst>(User)) { 1374 if (User->getOpcode() != Instruction::And || 1375 !isa<ConstantInt>(User->getOperand(1))) 1376 return false; 1377 1378 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1379 1380 if ((Cimm & (Cimm + 1)).getBoolValue()) 1381 return false; 1382 } 1383 return true; 1384 } 1385 1386 /// Sink both shift and truncate instruction to the use of truncate's BB. 1387 static bool 1388 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1389 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1390 const TargetLowering &TLI, const DataLayout &DL) { 1391 BasicBlock *UserBB = User->getParent(); 1392 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1393 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1394 bool MadeChange = false; 1395 1396 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1397 TruncE = TruncI->user_end(); 1398 TruncUI != TruncE;) { 1399 1400 Use &TruncTheUse = TruncUI.getUse(); 1401 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1402 // Preincrement use iterator so we don't invalidate it. 1403 1404 ++TruncUI; 1405 1406 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1407 if (!ISDOpcode) 1408 continue; 1409 1410 // If the use is actually a legal node, there will not be an 1411 // implicit truncate. 1412 // FIXME: always querying the result type is just an 1413 // approximation; some nodes' legality is determined by the 1414 // operand or other means. There's no good way to find out though. 1415 if (TLI.isOperationLegalOrCustom( 1416 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1417 continue; 1418 1419 // Don't bother for PHI nodes. 1420 if (isa<PHINode>(TruncUser)) 1421 continue; 1422 1423 BasicBlock *TruncUserBB = TruncUser->getParent(); 1424 1425 if (UserBB == TruncUserBB) 1426 continue; 1427 1428 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1429 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1430 1431 if (!InsertedShift && !InsertedTrunc) { 1432 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1433 assert(InsertPt != TruncUserBB->end()); 1434 // Sink the shift 1435 if (ShiftI->getOpcode() == Instruction::AShr) 1436 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1437 "", &*InsertPt); 1438 else 1439 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1440 "", &*InsertPt); 1441 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1442 1443 // Sink the trunc 1444 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1445 TruncInsertPt++; 1446 assert(TruncInsertPt != TruncUserBB->end()); 1447 1448 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1449 TruncI->getType(), "", &*TruncInsertPt); 1450 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1451 1452 MadeChange = true; 1453 1454 TruncTheUse = InsertedTrunc; 1455 } 1456 } 1457 return MadeChange; 1458 } 1459 1460 /// Sink the shift *right* instruction into user blocks if the uses could 1461 /// potentially be combined with this shift instruction and generate BitExtract 1462 /// instruction. It will only be applied if the architecture supports BitExtract 1463 /// instruction. Here is an example: 1464 /// BB1: 1465 /// %x.extract.shift = lshr i64 %arg1, 32 1466 /// BB2: 1467 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1468 /// ==> 1469 /// 1470 /// BB2: 1471 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1472 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1473 /// 1474 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1475 /// instruction. 1476 /// Return true if any changes are made. 1477 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1478 const TargetLowering &TLI, 1479 const DataLayout &DL) { 1480 BasicBlock *DefBB = ShiftI->getParent(); 1481 1482 /// Only insert instructions in each block once. 1483 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1484 1485 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1486 1487 bool MadeChange = false; 1488 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1489 UI != E;) { 1490 Use &TheUse = UI.getUse(); 1491 Instruction *User = cast<Instruction>(*UI); 1492 // Preincrement use iterator so we don't invalidate it. 1493 ++UI; 1494 1495 // Don't bother for PHI nodes. 1496 if (isa<PHINode>(User)) 1497 continue; 1498 1499 if (!isExtractBitsCandidateUse(User)) 1500 continue; 1501 1502 BasicBlock *UserBB = User->getParent(); 1503 1504 if (UserBB == DefBB) { 1505 // If the shift and truncate instruction are in the same BB. The use of 1506 // the truncate(TruncUse) may still introduce another truncate if not 1507 // legal. In this case, we would like to sink both shift and truncate 1508 // instruction to the BB of TruncUse. 1509 // for example: 1510 // BB1: 1511 // i64 shift.result = lshr i64 opnd, imm 1512 // trunc.result = trunc shift.result to i16 1513 // 1514 // BB2: 1515 // ----> We will have an implicit truncate here if the architecture does 1516 // not have i16 compare. 1517 // cmp i16 trunc.result, opnd2 1518 // 1519 if (isa<TruncInst>(User) && shiftIsLegal 1520 // If the type of the truncate is legal, no truncate will be 1521 // introduced in other basic blocks. 1522 && 1523 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1524 MadeChange = 1525 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1526 1527 continue; 1528 } 1529 // If we have already inserted a shift into this block, use it. 1530 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1531 1532 if (!InsertedShift) { 1533 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1534 assert(InsertPt != UserBB->end()); 1535 1536 if (ShiftI->getOpcode() == Instruction::AShr) 1537 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1538 "", &*InsertPt); 1539 else 1540 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1541 "", &*InsertPt); 1542 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1543 1544 MadeChange = true; 1545 } 1546 1547 // Replace a use of the shift with a use of the new shift. 1548 TheUse = InsertedShift; 1549 } 1550 1551 // If we removed all uses, nuke the shift. 1552 if (ShiftI->use_empty()) { 1553 salvageDebugInfo(*ShiftI); 1554 ShiftI->eraseFromParent(); 1555 } 1556 1557 return MadeChange; 1558 } 1559 1560 /// If counting leading or trailing zeros is an expensive operation and a zero 1561 /// input is defined, add a check for zero to avoid calling the intrinsic. 1562 /// 1563 /// We want to transform: 1564 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1565 /// 1566 /// into: 1567 /// entry: 1568 /// %cmpz = icmp eq i64 %A, 0 1569 /// br i1 %cmpz, label %cond.end, label %cond.false 1570 /// cond.false: 1571 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1572 /// br label %cond.end 1573 /// cond.end: 1574 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1575 /// 1576 /// If the transform is performed, return true and set ModifiedDT to true. 1577 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1578 const TargetLowering *TLI, 1579 const DataLayout *DL, 1580 bool &ModifiedDT) { 1581 if (!TLI || !DL) 1582 return false; 1583 1584 // If a zero input is undefined, it doesn't make sense to despeculate that. 1585 if (match(CountZeros->getOperand(1), m_One())) 1586 return false; 1587 1588 // If it's cheap to speculate, there's nothing to do. 1589 auto IntrinsicID = CountZeros->getIntrinsicID(); 1590 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1591 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1592 return false; 1593 1594 // Only handle legal scalar cases. Anything else requires too much work. 1595 Type *Ty = CountZeros->getType(); 1596 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1597 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1598 return false; 1599 1600 // The intrinsic will be sunk behind a compare against zero and branch. 1601 BasicBlock *StartBlock = CountZeros->getParent(); 1602 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1603 1604 // Create another block after the count zero intrinsic. A PHI will be added 1605 // in this block to select the result of the intrinsic or the bit-width 1606 // constant if the input to the intrinsic is zero. 1607 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1608 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1609 1610 // Set up a builder to create a compare, conditional branch, and PHI. 1611 IRBuilder<> Builder(CountZeros->getContext()); 1612 Builder.SetInsertPoint(StartBlock->getTerminator()); 1613 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1614 1615 // Replace the unconditional branch that was created by the first split with 1616 // a compare against zero and a conditional branch. 1617 Value *Zero = Constant::getNullValue(Ty); 1618 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1619 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1620 StartBlock->getTerminator()->eraseFromParent(); 1621 1622 // Create a PHI in the end block to select either the output of the intrinsic 1623 // or the bit width of the operand. 1624 Builder.SetInsertPoint(&EndBlock->front()); 1625 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1626 CountZeros->replaceAllUsesWith(PN); 1627 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1628 PN->addIncoming(BitWidth, StartBlock); 1629 PN->addIncoming(CountZeros, CallBlock); 1630 1631 // We are explicitly handling the zero case, so we can set the intrinsic's 1632 // undefined zero argument to 'true'. This will also prevent reprocessing the 1633 // intrinsic; we only despeculate when a zero input is defined. 1634 CountZeros->setArgOperand(1, Builder.getTrue()); 1635 ModifiedDT = true; 1636 return true; 1637 } 1638 1639 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1640 BasicBlock *BB = CI->getParent(); 1641 1642 // Lower inline assembly if we can. 1643 // If we found an inline asm expession, and if the target knows how to 1644 // lower it to normal LLVM code, do so now. 1645 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1646 if (TLI->ExpandInlineAsm(CI)) { 1647 // Avoid invalidating the iterator. 1648 CurInstIterator = BB->begin(); 1649 // Avoid processing instructions out of order, which could cause 1650 // reuse before a value is defined. 1651 SunkAddrs.clear(); 1652 return true; 1653 } 1654 // Sink address computing for memory operands into the block. 1655 if (optimizeInlineAsmInst(CI)) 1656 return true; 1657 } 1658 1659 // Align the pointer arguments to this call if the target thinks it's a good 1660 // idea 1661 unsigned MinSize, PrefAlign; 1662 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1663 for (auto &Arg : CI->arg_operands()) { 1664 // We want to align both objects whose address is used directly and 1665 // objects whose address is used in casts and GEPs, though it only makes 1666 // sense for GEPs if the offset is a multiple of the desired alignment and 1667 // if size - offset meets the size threshold. 1668 if (!Arg->getType()->isPointerTy()) 1669 continue; 1670 APInt Offset(DL->getIndexSizeInBits( 1671 cast<PointerType>(Arg->getType())->getAddressSpace()), 1672 0); 1673 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1674 uint64_t Offset2 = Offset.getLimitedValue(); 1675 if ((Offset2 & (PrefAlign-1)) != 0) 1676 continue; 1677 AllocaInst *AI; 1678 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1679 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1680 AI->setAlignment(PrefAlign); 1681 // Global variables can only be aligned if they are defined in this 1682 // object (i.e. they are uniquely initialized in this object), and 1683 // over-aligning global variables that have an explicit section is 1684 // forbidden. 1685 GlobalVariable *GV; 1686 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1687 GV->getPointerAlignment(*DL) < PrefAlign && 1688 DL->getTypeAllocSize(GV->getValueType()) >= 1689 MinSize + Offset2) 1690 GV->setAlignment(PrefAlign); 1691 } 1692 // If this is a memcpy (or similar) then we may be able to improve the 1693 // alignment 1694 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1695 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL); 1696 if (DestAlign > MI->getDestAlignment()) 1697 MI->setDestAlignment(DestAlign); 1698 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 1699 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 1700 if (SrcAlign > MTI->getSourceAlignment()) 1701 MTI->setSourceAlignment(SrcAlign); 1702 } 1703 } 1704 } 1705 1706 // If we have a cold call site, try to sink addressing computation into the 1707 // cold block. This interacts with our handling for loads and stores to 1708 // ensure that we can fold all uses of a potential addressing computation 1709 // into their uses. TODO: generalize this to work over profiling data 1710 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1711 for (auto &Arg : CI->arg_operands()) { 1712 if (!Arg->getType()->isPointerTy()) 1713 continue; 1714 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1715 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1716 } 1717 1718 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1719 if (II) { 1720 switch (II->getIntrinsicID()) { 1721 default: break; 1722 case Intrinsic::experimental_widenable_condition: { 1723 // Give up on future widening oppurtunties so that we can fold away dead 1724 // paths and merge blocks before going into block-local instruction 1725 // selection. 1726 if (II->use_empty()) { 1727 II->eraseFromParent(); 1728 return true; 1729 } 1730 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 1731 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1732 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1733 }); 1734 return true; 1735 } 1736 case Intrinsic::objectsize: { 1737 // Lower all uses of llvm.objectsize.* 1738 Value *RetVal = 1739 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 1740 1741 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1742 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1743 }); 1744 return true; 1745 } 1746 case Intrinsic::is_constant: { 1747 // If is_constant hasn't folded away yet, lower it to false now. 1748 Constant *RetVal = ConstantInt::get(II->getType(), 0); 1749 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1750 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1751 }); 1752 return true; 1753 } 1754 case Intrinsic::aarch64_stlxr: 1755 case Intrinsic::aarch64_stxr: { 1756 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1757 if (!ExtVal || !ExtVal->hasOneUse() || 1758 ExtVal->getParent() == CI->getParent()) 1759 return false; 1760 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1761 ExtVal->moveBefore(CI); 1762 // Mark this instruction as "inserted by CGP", so that other 1763 // optimizations don't touch it. 1764 InsertedInsts.insert(ExtVal); 1765 return true; 1766 } 1767 1768 case Intrinsic::launder_invariant_group: 1769 case Intrinsic::strip_invariant_group: { 1770 Value *ArgVal = II->getArgOperand(0); 1771 auto it = LargeOffsetGEPMap.find(II); 1772 if (it != LargeOffsetGEPMap.end()) { 1773 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 1774 // Make sure not to have to deal with iterator invalidation 1775 // after possibly adding ArgVal to LargeOffsetGEPMap. 1776 auto GEPs = std::move(it->second); 1777 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 1778 LargeOffsetGEPMap.erase(II); 1779 } 1780 1781 II->replaceAllUsesWith(ArgVal); 1782 II->eraseFromParent(); 1783 return true; 1784 } 1785 case Intrinsic::cttz: 1786 case Intrinsic::ctlz: 1787 // If counting zeros is expensive, try to avoid it. 1788 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 1789 } 1790 1791 if (TLI) { 1792 SmallVector<Value*, 2> PtrOps; 1793 Type *AccessTy; 1794 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 1795 while (!PtrOps.empty()) { 1796 Value *PtrVal = PtrOps.pop_back_val(); 1797 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 1798 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 1799 return true; 1800 } 1801 } 1802 } 1803 1804 // From here on out we're working with named functions. 1805 if (!CI->getCalledFunction()) return false; 1806 1807 // Lower all default uses of _chk calls. This is very similar 1808 // to what InstCombineCalls does, but here we are only lowering calls 1809 // to fortified library functions (e.g. __memcpy_chk) that have the default 1810 // "don't know" as the objectsize. Anything else should be left alone. 1811 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1812 if (Value *V = Simplifier.optimizeCall(CI)) { 1813 CI->replaceAllUsesWith(V); 1814 CI->eraseFromParent(); 1815 return true; 1816 } 1817 1818 return false; 1819 } 1820 1821 /// Look for opportunities to duplicate return instructions to the predecessor 1822 /// to enable tail call optimizations. The case it is currently looking for is: 1823 /// @code 1824 /// bb0: 1825 /// %tmp0 = tail call i32 @f0() 1826 /// br label %return 1827 /// bb1: 1828 /// %tmp1 = tail call i32 @f1() 1829 /// br label %return 1830 /// bb2: 1831 /// %tmp2 = tail call i32 @f2() 1832 /// br label %return 1833 /// return: 1834 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1835 /// ret i32 %retval 1836 /// @endcode 1837 /// 1838 /// => 1839 /// 1840 /// @code 1841 /// bb0: 1842 /// %tmp0 = tail call i32 @f0() 1843 /// ret i32 %tmp0 1844 /// bb1: 1845 /// %tmp1 = tail call i32 @f1() 1846 /// ret i32 %tmp1 1847 /// bb2: 1848 /// %tmp2 = tail call i32 @f2() 1849 /// ret i32 %tmp2 1850 /// @endcode 1851 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 1852 if (!TLI) 1853 return false; 1854 1855 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 1856 if (!RetI) 1857 return false; 1858 1859 PHINode *PN = nullptr; 1860 BitCastInst *BCI = nullptr; 1861 Value *V = RetI->getReturnValue(); 1862 if (V) { 1863 BCI = dyn_cast<BitCastInst>(V); 1864 if (BCI) 1865 V = BCI->getOperand(0); 1866 1867 PN = dyn_cast<PHINode>(V); 1868 if (!PN) 1869 return false; 1870 } 1871 1872 if (PN && PN->getParent() != BB) 1873 return false; 1874 1875 // Make sure there are no instructions between the PHI and return, or that the 1876 // return is the first instruction in the block. 1877 if (PN) { 1878 BasicBlock::iterator BI = BB->begin(); 1879 // Skip over debug and the bitcast. 1880 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI); 1881 if (&*BI != RetI) 1882 return false; 1883 } else { 1884 BasicBlock::iterator BI = BB->begin(); 1885 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1886 if (&*BI != RetI) 1887 return false; 1888 } 1889 1890 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1891 /// call. 1892 const Function *F = BB->getParent(); 1893 SmallVector<CallInst*, 4> TailCalls; 1894 if (PN) { 1895 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 1896 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 1897 // Make sure the phi value is indeed produced by the tail call. 1898 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 1899 TLI->mayBeEmittedAsTailCall(CI) && 1900 attributesPermitTailCall(F, CI, RetI, *TLI)) 1901 TailCalls.push_back(CI); 1902 } 1903 } else { 1904 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 1905 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 1906 if (!VisitedBBs.insert(*PI).second) 1907 continue; 1908 1909 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 1910 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 1911 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 1912 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 1913 if (RI == RE) 1914 continue; 1915 1916 CallInst *CI = dyn_cast<CallInst>(&*RI); 1917 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 1918 attributesPermitTailCall(F, CI, RetI, *TLI)) 1919 TailCalls.push_back(CI); 1920 } 1921 } 1922 1923 bool Changed = false; 1924 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1925 CallInst *CI = TailCalls[i]; 1926 CallSite CS(CI); 1927 1928 // Make sure the call instruction is followed by an unconditional branch to 1929 // the return block. 1930 BasicBlock *CallBB = CI->getParent(); 1931 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 1932 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 1933 continue; 1934 1935 // Duplicate the return into CallBB. 1936 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 1937 ModifiedDT = Changed = true; 1938 ++NumRetsDup; 1939 } 1940 1941 // If we eliminated all predecessors of the block, delete the block now. 1942 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 1943 BB->eraseFromParent(); 1944 1945 return Changed; 1946 } 1947 1948 //===----------------------------------------------------------------------===// 1949 // Memory Optimization 1950 //===----------------------------------------------------------------------===// 1951 1952 namespace { 1953 1954 /// This is an extended version of TargetLowering::AddrMode 1955 /// which holds actual Value*'s for register values. 1956 struct ExtAddrMode : public TargetLowering::AddrMode { 1957 Value *BaseReg = nullptr; 1958 Value *ScaledReg = nullptr; 1959 Value *OriginalValue = nullptr; 1960 1961 enum FieldName { 1962 NoField = 0x00, 1963 BaseRegField = 0x01, 1964 BaseGVField = 0x02, 1965 BaseOffsField = 0x04, 1966 ScaledRegField = 0x08, 1967 ScaleField = 0x10, 1968 MultipleFields = 0xff 1969 }; 1970 1971 ExtAddrMode() = default; 1972 1973 void print(raw_ostream &OS) const; 1974 void dump() const; 1975 1976 FieldName compare(const ExtAddrMode &other) { 1977 // First check that the types are the same on each field, as differing types 1978 // is something we can't cope with later on. 1979 if (BaseReg && other.BaseReg && 1980 BaseReg->getType() != other.BaseReg->getType()) 1981 return MultipleFields; 1982 if (BaseGV && other.BaseGV && 1983 BaseGV->getType() != other.BaseGV->getType()) 1984 return MultipleFields; 1985 if (ScaledReg && other.ScaledReg && 1986 ScaledReg->getType() != other.ScaledReg->getType()) 1987 return MultipleFields; 1988 1989 // Check each field to see if it differs. 1990 unsigned Result = NoField; 1991 if (BaseReg != other.BaseReg) 1992 Result |= BaseRegField; 1993 if (BaseGV != other.BaseGV) 1994 Result |= BaseGVField; 1995 if (BaseOffs != other.BaseOffs) 1996 Result |= BaseOffsField; 1997 if (ScaledReg != other.ScaledReg) 1998 Result |= ScaledRegField; 1999 // Don't count 0 as being a different scale, because that actually means 2000 // unscaled (which will already be counted by having no ScaledReg). 2001 if (Scale && other.Scale && Scale != other.Scale) 2002 Result |= ScaleField; 2003 2004 if (countPopulation(Result) > 1) 2005 return MultipleFields; 2006 else 2007 return static_cast<FieldName>(Result); 2008 } 2009 2010 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2011 // with no offset. 2012 bool isTrivial() { 2013 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2014 // trivial if at most one of these terms is nonzero, except that BaseGV and 2015 // BaseReg both being zero actually means a null pointer value, which we 2016 // consider to be 'non-zero' here. 2017 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2018 } 2019 2020 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2021 switch (Field) { 2022 default: 2023 return nullptr; 2024 case BaseRegField: 2025 return BaseReg; 2026 case BaseGVField: 2027 return BaseGV; 2028 case ScaledRegField: 2029 return ScaledReg; 2030 case BaseOffsField: 2031 return ConstantInt::get(IntPtrTy, BaseOffs); 2032 } 2033 } 2034 2035 void SetCombinedField(FieldName Field, Value *V, 2036 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2037 switch (Field) { 2038 default: 2039 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2040 break; 2041 case ExtAddrMode::BaseRegField: 2042 BaseReg = V; 2043 break; 2044 case ExtAddrMode::BaseGVField: 2045 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2046 // in the BaseReg field. 2047 assert(BaseReg == nullptr); 2048 BaseReg = V; 2049 BaseGV = nullptr; 2050 break; 2051 case ExtAddrMode::ScaledRegField: 2052 ScaledReg = V; 2053 // If we have a mix of scaled and unscaled addrmodes then we want scale 2054 // to be the scale and not zero. 2055 if (!Scale) 2056 for (const ExtAddrMode &AM : AddrModes) 2057 if (AM.Scale) { 2058 Scale = AM.Scale; 2059 break; 2060 } 2061 break; 2062 case ExtAddrMode::BaseOffsField: 2063 // The offset is no longer a constant, so it goes in ScaledReg with a 2064 // scale of 1. 2065 assert(ScaledReg == nullptr); 2066 ScaledReg = V; 2067 Scale = 1; 2068 BaseOffs = 0; 2069 break; 2070 } 2071 } 2072 }; 2073 2074 } // end anonymous namespace 2075 2076 #ifndef NDEBUG 2077 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2078 AM.print(OS); 2079 return OS; 2080 } 2081 #endif 2082 2083 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2084 void ExtAddrMode::print(raw_ostream &OS) const { 2085 bool NeedPlus = false; 2086 OS << "["; 2087 if (BaseGV) { 2088 OS << (NeedPlus ? " + " : "") 2089 << "GV:"; 2090 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2091 NeedPlus = true; 2092 } 2093 2094 if (BaseOffs) { 2095 OS << (NeedPlus ? " + " : "") 2096 << BaseOffs; 2097 NeedPlus = true; 2098 } 2099 2100 if (BaseReg) { 2101 OS << (NeedPlus ? " + " : "") 2102 << "Base:"; 2103 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2104 NeedPlus = true; 2105 } 2106 if (Scale) { 2107 OS << (NeedPlus ? " + " : "") 2108 << Scale << "*"; 2109 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2110 } 2111 2112 OS << ']'; 2113 } 2114 2115 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2116 print(dbgs()); 2117 dbgs() << '\n'; 2118 } 2119 #endif 2120 2121 namespace { 2122 2123 /// This class provides transaction based operation on the IR. 2124 /// Every change made through this class is recorded in the internal state and 2125 /// can be undone (rollback) until commit is called. 2126 class TypePromotionTransaction { 2127 /// This represents the common interface of the individual transaction. 2128 /// Each class implements the logic for doing one specific modification on 2129 /// the IR via the TypePromotionTransaction. 2130 class TypePromotionAction { 2131 protected: 2132 /// The Instruction modified. 2133 Instruction *Inst; 2134 2135 public: 2136 /// Constructor of the action. 2137 /// The constructor performs the related action on the IR. 2138 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2139 2140 virtual ~TypePromotionAction() = default; 2141 2142 /// Undo the modification done by this action. 2143 /// When this method is called, the IR must be in the same state as it was 2144 /// before this action was applied. 2145 /// \pre Undoing the action works if and only if the IR is in the exact same 2146 /// state as it was directly after this action was applied. 2147 virtual void undo() = 0; 2148 2149 /// Advocate every change made by this action. 2150 /// When the results on the IR of the action are to be kept, it is important 2151 /// to call this function, otherwise hidden information may be kept forever. 2152 virtual void commit() { 2153 // Nothing to be done, this action is not doing anything. 2154 } 2155 }; 2156 2157 /// Utility to remember the position of an instruction. 2158 class InsertionHandler { 2159 /// Position of an instruction. 2160 /// Either an instruction: 2161 /// - Is the first in a basic block: BB is used. 2162 /// - Has a previous instruction: PrevInst is used. 2163 union { 2164 Instruction *PrevInst; 2165 BasicBlock *BB; 2166 } Point; 2167 2168 /// Remember whether or not the instruction had a previous instruction. 2169 bool HasPrevInstruction; 2170 2171 public: 2172 /// Record the position of \p Inst. 2173 InsertionHandler(Instruction *Inst) { 2174 BasicBlock::iterator It = Inst->getIterator(); 2175 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2176 if (HasPrevInstruction) 2177 Point.PrevInst = &*--It; 2178 else 2179 Point.BB = Inst->getParent(); 2180 } 2181 2182 /// Insert \p Inst at the recorded position. 2183 void insert(Instruction *Inst) { 2184 if (HasPrevInstruction) { 2185 if (Inst->getParent()) 2186 Inst->removeFromParent(); 2187 Inst->insertAfter(Point.PrevInst); 2188 } else { 2189 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2190 if (Inst->getParent()) 2191 Inst->moveBefore(Position); 2192 else 2193 Inst->insertBefore(Position); 2194 } 2195 } 2196 }; 2197 2198 /// Move an instruction before another. 2199 class InstructionMoveBefore : public TypePromotionAction { 2200 /// Original position of the instruction. 2201 InsertionHandler Position; 2202 2203 public: 2204 /// Move \p Inst before \p Before. 2205 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2206 : TypePromotionAction(Inst), Position(Inst) { 2207 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2208 << "\n"); 2209 Inst->moveBefore(Before); 2210 } 2211 2212 /// Move the instruction back to its original position. 2213 void undo() override { 2214 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2215 Position.insert(Inst); 2216 } 2217 }; 2218 2219 /// Set the operand of an instruction with a new value. 2220 class OperandSetter : public TypePromotionAction { 2221 /// Original operand of the instruction. 2222 Value *Origin; 2223 2224 /// Index of the modified instruction. 2225 unsigned Idx; 2226 2227 public: 2228 /// Set \p Idx operand of \p Inst with \p NewVal. 2229 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2230 : TypePromotionAction(Inst), Idx(Idx) { 2231 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2232 << "for:" << *Inst << "\n" 2233 << "with:" << *NewVal << "\n"); 2234 Origin = Inst->getOperand(Idx); 2235 Inst->setOperand(Idx, NewVal); 2236 } 2237 2238 /// Restore the original value of the instruction. 2239 void undo() override { 2240 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2241 << "for: " << *Inst << "\n" 2242 << "with: " << *Origin << "\n"); 2243 Inst->setOperand(Idx, Origin); 2244 } 2245 }; 2246 2247 /// Hide the operands of an instruction. 2248 /// Do as if this instruction was not using any of its operands. 2249 class OperandsHider : public TypePromotionAction { 2250 /// The list of original operands. 2251 SmallVector<Value *, 4> OriginalValues; 2252 2253 public: 2254 /// Remove \p Inst from the uses of the operands of \p Inst. 2255 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2256 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2257 unsigned NumOpnds = Inst->getNumOperands(); 2258 OriginalValues.reserve(NumOpnds); 2259 for (unsigned It = 0; It < NumOpnds; ++It) { 2260 // Save the current operand. 2261 Value *Val = Inst->getOperand(It); 2262 OriginalValues.push_back(Val); 2263 // Set a dummy one. 2264 // We could use OperandSetter here, but that would imply an overhead 2265 // that we are not willing to pay. 2266 Inst->setOperand(It, UndefValue::get(Val->getType())); 2267 } 2268 } 2269 2270 /// Restore the original list of uses. 2271 void undo() override { 2272 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2273 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2274 Inst->setOperand(It, OriginalValues[It]); 2275 } 2276 }; 2277 2278 /// Build a truncate instruction. 2279 class TruncBuilder : public TypePromotionAction { 2280 Value *Val; 2281 2282 public: 2283 /// Build a truncate instruction of \p Opnd producing a \p Ty 2284 /// result. 2285 /// trunc Opnd to Ty. 2286 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2287 IRBuilder<> Builder(Opnd); 2288 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2289 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2290 } 2291 2292 /// Get the built value. 2293 Value *getBuiltValue() { return Val; } 2294 2295 /// Remove the built instruction. 2296 void undo() override { 2297 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2298 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2299 IVal->eraseFromParent(); 2300 } 2301 }; 2302 2303 /// Build a sign extension instruction. 2304 class SExtBuilder : public TypePromotionAction { 2305 Value *Val; 2306 2307 public: 2308 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2309 /// result. 2310 /// sext Opnd to Ty. 2311 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2312 : TypePromotionAction(InsertPt) { 2313 IRBuilder<> Builder(InsertPt); 2314 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2315 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2316 } 2317 2318 /// Get the built value. 2319 Value *getBuiltValue() { return Val; } 2320 2321 /// Remove the built instruction. 2322 void undo() override { 2323 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2324 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2325 IVal->eraseFromParent(); 2326 } 2327 }; 2328 2329 /// Build a zero extension instruction. 2330 class ZExtBuilder : public TypePromotionAction { 2331 Value *Val; 2332 2333 public: 2334 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2335 /// result. 2336 /// zext Opnd to Ty. 2337 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2338 : TypePromotionAction(InsertPt) { 2339 IRBuilder<> Builder(InsertPt); 2340 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2341 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2342 } 2343 2344 /// Get the built value. 2345 Value *getBuiltValue() { return Val; } 2346 2347 /// Remove the built instruction. 2348 void undo() override { 2349 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2350 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2351 IVal->eraseFromParent(); 2352 } 2353 }; 2354 2355 /// Mutate an instruction to another type. 2356 class TypeMutator : public TypePromotionAction { 2357 /// Record the original type. 2358 Type *OrigTy; 2359 2360 public: 2361 /// Mutate the type of \p Inst into \p NewTy. 2362 TypeMutator(Instruction *Inst, Type *NewTy) 2363 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2364 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2365 << "\n"); 2366 Inst->mutateType(NewTy); 2367 } 2368 2369 /// Mutate the instruction back to its original type. 2370 void undo() override { 2371 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2372 << "\n"); 2373 Inst->mutateType(OrigTy); 2374 } 2375 }; 2376 2377 /// Replace the uses of an instruction by another instruction. 2378 class UsesReplacer : public TypePromotionAction { 2379 /// Helper structure to keep track of the replaced uses. 2380 struct InstructionAndIdx { 2381 /// The instruction using the instruction. 2382 Instruction *Inst; 2383 2384 /// The index where this instruction is used for Inst. 2385 unsigned Idx; 2386 2387 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2388 : Inst(Inst), Idx(Idx) {} 2389 }; 2390 2391 /// Keep track of the original uses (pair Instruction, Index). 2392 SmallVector<InstructionAndIdx, 4> OriginalUses; 2393 /// Keep track of the debug users. 2394 SmallVector<DbgValueInst *, 1> DbgValues; 2395 2396 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2397 2398 public: 2399 /// Replace all the use of \p Inst by \p New. 2400 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2401 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2402 << "\n"); 2403 // Record the original uses. 2404 for (Use &U : Inst->uses()) { 2405 Instruction *UserI = cast<Instruction>(U.getUser()); 2406 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2407 } 2408 // Record the debug uses separately. They are not in the instruction's 2409 // use list, but they are replaced by RAUW. 2410 findDbgValues(DbgValues, Inst); 2411 2412 // Now, we can replace the uses. 2413 Inst->replaceAllUsesWith(New); 2414 } 2415 2416 /// Reassign the original uses of Inst to Inst. 2417 void undo() override { 2418 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2419 for (use_iterator UseIt = OriginalUses.begin(), 2420 EndIt = OriginalUses.end(); 2421 UseIt != EndIt; ++UseIt) { 2422 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2423 } 2424 // RAUW has replaced all original uses with references to the new value, 2425 // including the debug uses. Since we are undoing the replacements, 2426 // the original debug uses must also be reinstated to maintain the 2427 // correctness and utility of debug value instructions. 2428 for (auto *DVI: DbgValues) { 2429 LLVMContext &Ctx = Inst->getType()->getContext(); 2430 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); 2431 DVI->setOperand(0, MV); 2432 } 2433 } 2434 }; 2435 2436 /// Remove an instruction from the IR. 2437 class InstructionRemover : public TypePromotionAction { 2438 /// Original position of the instruction. 2439 InsertionHandler Inserter; 2440 2441 /// Helper structure to hide all the link to the instruction. In other 2442 /// words, this helps to do as if the instruction was removed. 2443 OperandsHider Hider; 2444 2445 /// Keep track of the uses replaced, if any. 2446 UsesReplacer *Replacer = nullptr; 2447 2448 /// Keep track of instructions removed. 2449 SetOfInstrs &RemovedInsts; 2450 2451 public: 2452 /// Remove all reference of \p Inst and optionally replace all its 2453 /// uses with New. 2454 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2455 /// \pre If !Inst->use_empty(), then New != nullptr 2456 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2457 Value *New = nullptr) 2458 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2459 RemovedInsts(RemovedInsts) { 2460 if (New) 2461 Replacer = new UsesReplacer(Inst, New); 2462 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2463 RemovedInsts.insert(Inst); 2464 /// The instructions removed here will be freed after completing 2465 /// optimizeBlock() for all blocks as we need to keep track of the 2466 /// removed instructions during promotion. 2467 Inst->removeFromParent(); 2468 } 2469 2470 ~InstructionRemover() override { delete Replacer; } 2471 2472 /// Resurrect the instruction and reassign it to the proper uses if 2473 /// new value was provided when build this action. 2474 void undo() override { 2475 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2476 Inserter.insert(Inst); 2477 if (Replacer) 2478 Replacer->undo(); 2479 Hider.undo(); 2480 RemovedInsts.erase(Inst); 2481 } 2482 }; 2483 2484 public: 2485 /// Restoration point. 2486 /// The restoration point is a pointer to an action instead of an iterator 2487 /// because the iterator may be invalidated but not the pointer. 2488 using ConstRestorationPt = const TypePromotionAction *; 2489 2490 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2491 : RemovedInsts(RemovedInsts) {} 2492 2493 /// Advocate every changes made in that transaction. 2494 void commit(); 2495 2496 /// Undo all the changes made after the given point. 2497 void rollback(ConstRestorationPt Point); 2498 2499 /// Get the current restoration point. 2500 ConstRestorationPt getRestorationPoint() const; 2501 2502 /// \name API for IR modification with state keeping to support rollback. 2503 /// @{ 2504 /// Same as Instruction::setOperand. 2505 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2506 2507 /// Same as Instruction::eraseFromParent. 2508 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2509 2510 /// Same as Value::replaceAllUsesWith. 2511 void replaceAllUsesWith(Instruction *Inst, Value *New); 2512 2513 /// Same as Value::mutateType. 2514 void mutateType(Instruction *Inst, Type *NewTy); 2515 2516 /// Same as IRBuilder::createTrunc. 2517 Value *createTrunc(Instruction *Opnd, Type *Ty); 2518 2519 /// Same as IRBuilder::createSExt. 2520 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2521 2522 /// Same as IRBuilder::createZExt. 2523 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2524 2525 /// Same as Instruction::moveBefore. 2526 void moveBefore(Instruction *Inst, Instruction *Before); 2527 /// @} 2528 2529 private: 2530 /// The ordered list of actions made so far. 2531 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2532 2533 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2534 2535 SetOfInstrs &RemovedInsts; 2536 }; 2537 2538 } // end anonymous namespace 2539 2540 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2541 Value *NewVal) { 2542 Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>( 2543 Inst, Idx, NewVal)); 2544 } 2545 2546 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2547 Value *NewVal) { 2548 Actions.push_back( 2549 llvm::make_unique<TypePromotionTransaction::InstructionRemover>( 2550 Inst, RemovedInsts, NewVal)); 2551 } 2552 2553 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2554 Value *New) { 2555 Actions.push_back( 2556 llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2557 } 2558 2559 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2560 Actions.push_back( 2561 llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2562 } 2563 2564 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2565 Type *Ty) { 2566 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2567 Value *Val = Ptr->getBuiltValue(); 2568 Actions.push_back(std::move(Ptr)); 2569 return Val; 2570 } 2571 2572 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2573 Value *Opnd, Type *Ty) { 2574 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2575 Value *Val = Ptr->getBuiltValue(); 2576 Actions.push_back(std::move(Ptr)); 2577 return Val; 2578 } 2579 2580 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2581 Value *Opnd, Type *Ty) { 2582 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2583 Value *Val = Ptr->getBuiltValue(); 2584 Actions.push_back(std::move(Ptr)); 2585 return Val; 2586 } 2587 2588 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2589 Instruction *Before) { 2590 Actions.push_back( 2591 llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2592 Inst, Before)); 2593 } 2594 2595 TypePromotionTransaction::ConstRestorationPt 2596 TypePromotionTransaction::getRestorationPoint() const { 2597 return !Actions.empty() ? Actions.back().get() : nullptr; 2598 } 2599 2600 void TypePromotionTransaction::commit() { 2601 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2602 ++It) 2603 (*It)->commit(); 2604 Actions.clear(); 2605 } 2606 2607 void TypePromotionTransaction::rollback( 2608 TypePromotionTransaction::ConstRestorationPt Point) { 2609 while (!Actions.empty() && Point != Actions.back().get()) { 2610 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2611 Curr->undo(); 2612 } 2613 } 2614 2615 namespace { 2616 2617 /// A helper class for matching addressing modes. 2618 /// 2619 /// This encapsulates the logic for matching the target-legal addressing modes. 2620 class AddressingModeMatcher { 2621 SmallVectorImpl<Instruction*> &AddrModeInsts; 2622 const TargetLowering &TLI; 2623 const TargetRegisterInfo &TRI; 2624 const DataLayout &DL; 2625 2626 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2627 /// the memory instruction that we're computing this address for. 2628 Type *AccessTy; 2629 unsigned AddrSpace; 2630 Instruction *MemoryInst; 2631 2632 /// This is the addressing mode that we're building up. This is 2633 /// part of the return value of this addressing mode matching stuff. 2634 ExtAddrMode &AddrMode; 2635 2636 /// The instructions inserted by other CodeGenPrepare optimizations. 2637 const SetOfInstrs &InsertedInsts; 2638 2639 /// A map from the instructions to their type before promotion. 2640 InstrToOrigTy &PromotedInsts; 2641 2642 /// The ongoing transaction where every action should be registered. 2643 TypePromotionTransaction &TPT; 2644 2645 // A GEP which has too large offset to be folded into the addressing mode. 2646 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 2647 2648 /// This is set to true when we should not do profitability checks. 2649 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2650 bool IgnoreProfitability; 2651 2652 AddressingModeMatcher( 2653 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 2654 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 2655 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 2656 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 2657 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) 2658 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2659 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2660 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2661 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) { 2662 IgnoreProfitability = false; 2663 } 2664 2665 public: 2666 /// Find the maximal addressing mode that a load/store of V can fold, 2667 /// give an access type of AccessTy. This returns a list of involved 2668 /// instructions in AddrModeInsts. 2669 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2670 /// optimizations. 2671 /// \p PromotedInsts maps the instructions to their type before promotion. 2672 /// \p The ongoing transaction where every action should be registered. 2673 static ExtAddrMode 2674 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 2675 SmallVectorImpl<Instruction *> &AddrModeInsts, 2676 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 2677 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 2678 TypePromotionTransaction &TPT, 2679 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) { 2680 ExtAddrMode Result; 2681 2682 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 2683 MemoryInst, Result, InsertedInsts, 2684 PromotedInsts, TPT, LargeOffsetGEP) 2685 .matchAddr(V, 0); 2686 (void)Success; assert(Success && "Couldn't select *anything*?"); 2687 return Result; 2688 } 2689 2690 private: 2691 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2692 bool matchAddr(Value *Addr, unsigned Depth); 2693 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 2694 bool *MovedAway = nullptr); 2695 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2696 ExtAddrMode &AMBefore, 2697 ExtAddrMode &AMAfter); 2698 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2699 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2700 Value *PromotedOperand) const; 2701 }; 2702 2703 class PhiNodeSet; 2704 2705 /// An iterator for PhiNodeSet. 2706 class PhiNodeSetIterator { 2707 PhiNodeSet * const Set; 2708 size_t CurrentIndex = 0; 2709 2710 public: 2711 /// The constructor. Start should point to either a valid element, or be equal 2712 /// to the size of the underlying SmallVector of the PhiNodeSet. 2713 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 2714 PHINode * operator*() const; 2715 PhiNodeSetIterator& operator++(); 2716 bool operator==(const PhiNodeSetIterator &RHS) const; 2717 bool operator!=(const PhiNodeSetIterator &RHS) const; 2718 }; 2719 2720 /// Keeps a set of PHINodes. 2721 /// 2722 /// This is a minimal set implementation for a specific use case: 2723 /// It is very fast when there are very few elements, but also provides good 2724 /// performance when there are many. It is similar to SmallPtrSet, but also 2725 /// provides iteration by insertion order, which is deterministic and stable 2726 /// across runs. It is also similar to SmallSetVector, but provides removing 2727 /// elements in O(1) time. This is achieved by not actually removing the element 2728 /// from the underlying vector, so comes at the cost of using more memory, but 2729 /// that is fine, since PhiNodeSets are used as short lived objects. 2730 class PhiNodeSet { 2731 friend class PhiNodeSetIterator; 2732 2733 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 2734 using iterator = PhiNodeSetIterator; 2735 2736 /// Keeps the elements in the order of their insertion in the underlying 2737 /// vector. To achieve constant time removal, it never deletes any element. 2738 SmallVector<PHINode *, 32> NodeList; 2739 2740 /// Keeps the elements in the underlying set implementation. This (and not the 2741 /// NodeList defined above) is the source of truth on whether an element 2742 /// is actually in the collection. 2743 MapType NodeMap; 2744 2745 /// Points to the first valid (not deleted) element when the set is not empty 2746 /// and the value is not zero. Equals to the size of the underlying vector 2747 /// when the set is empty. When the value is 0, as in the beginning, the 2748 /// first element may or may not be valid. 2749 size_t FirstValidElement = 0; 2750 2751 public: 2752 /// Inserts a new element to the collection. 2753 /// \returns true if the element is actually added, i.e. was not in the 2754 /// collection before the operation. 2755 bool insert(PHINode *Ptr) { 2756 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 2757 NodeList.push_back(Ptr); 2758 return true; 2759 } 2760 return false; 2761 } 2762 2763 /// Removes the element from the collection. 2764 /// \returns whether the element is actually removed, i.e. was in the 2765 /// collection before the operation. 2766 bool erase(PHINode *Ptr) { 2767 auto it = NodeMap.find(Ptr); 2768 if (it != NodeMap.end()) { 2769 NodeMap.erase(Ptr); 2770 SkipRemovedElements(FirstValidElement); 2771 return true; 2772 } 2773 return false; 2774 } 2775 2776 /// Removes all elements and clears the collection. 2777 void clear() { 2778 NodeMap.clear(); 2779 NodeList.clear(); 2780 FirstValidElement = 0; 2781 } 2782 2783 /// \returns an iterator that will iterate the elements in the order of 2784 /// insertion. 2785 iterator begin() { 2786 if (FirstValidElement == 0) 2787 SkipRemovedElements(FirstValidElement); 2788 return PhiNodeSetIterator(this, FirstValidElement); 2789 } 2790 2791 /// \returns an iterator that points to the end of the collection. 2792 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 2793 2794 /// Returns the number of elements in the collection. 2795 size_t size() const { 2796 return NodeMap.size(); 2797 } 2798 2799 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 2800 size_t count(PHINode *Ptr) const { 2801 return NodeMap.count(Ptr); 2802 } 2803 2804 private: 2805 /// Updates the CurrentIndex so that it will point to a valid element. 2806 /// 2807 /// If the element of NodeList at CurrentIndex is valid, it does not 2808 /// change it. If there are no more valid elements, it updates CurrentIndex 2809 /// to point to the end of the NodeList. 2810 void SkipRemovedElements(size_t &CurrentIndex) { 2811 while (CurrentIndex < NodeList.size()) { 2812 auto it = NodeMap.find(NodeList[CurrentIndex]); 2813 // If the element has been deleted and added again later, NodeMap will 2814 // point to a different index, so CurrentIndex will still be invalid. 2815 if (it != NodeMap.end() && it->second == CurrentIndex) 2816 break; 2817 ++CurrentIndex; 2818 } 2819 } 2820 }; 2821 2822 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 2823 : Set(Set), CurrentIndex(Start) {} 2824 2825 PHINode * PhiNodeSetIterator::operator*() const { 2826 assert(CurrentIndex < Set->NodeList.size() && 2827 "PhiNodeSet access out of range"); 2828 return Set->NodeList[CurrentIndex]; 2829 } 2830 2831 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 2832 assert(CurrentIndex < Set->NodeList.size() && 2833 "PhiNodeSet access out of range"); 2834 ++CurrentIndex; 2835 Set->SkipRemovedElements(CurrentIndex); 2836 return *this; 2837 } 2838 2839 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 2840 return CurrentIndex == RHS.CurrentIndex; 2841 } 2842 2843 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 2844 return !((*this) == RHS); 2845 } 2846 2847 /// Keep track of simplification of Phi nodes. 2848 /// Accept the set of all phi nodes and erase phi node from this set 2849 /// if it is simplified. 2850 class SimplificationTracker { 2851 DenseMap<Value *, Value *> Storage; 2852 const SimplifyQuery &SQ; 2853 // Tracks newly created Phi nodes. The elements are iterated by insertion 2854 // order. 2855 PhiNodeSet AllPhiNodes; 2856 // Tracks newly created Select nodes. 2857 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 2858 2859 public: 2860 SimplificationTracker(const SimplifyQuery &sq) 2861 : SQ(sq) {} 2862 2863 Value *Get(Value *V) { 2864 do { 2865 auto SV = Storage.find(V); 2866 if (SV == Storage.end()) 2867 return V; 2868 V = SV->second; 2869 } while (true); 2870 } 2871 2872 Value *Simplify(Value *Val) { 2873 SmallVector<Value *, 32> WorkList; 2874 SmallPtrSet<Value *, 32> Visited; 2875 WorkList.push_back(Val); 2876 while (!WorkList.empty()) { 2877 auto P = WorkList.pop_back_val(); 2878 if (!Visited.insert(P).second) 2879 continue; 2880 if (auto *PI = dyn_cast<Instruction>(P)) 2881 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 2882 for (auto *U : PI->users()) 2883 WorkList.push_back(cast<Value>(U)); 2884 Put(PI, V); 2885 PI->replaceAllUsesWith(V); 2886 if (auto *PHI = dyn_cast<PHINode>(PI)) 2887 AllPhiNodes.erase(PHI); 2888 if (auto *Select = dyn_cast<SelectInst>(PI)) 2889 AllSelectNodes.erase(Select); 2890 PI->eraseFromParent(); 2891 } 2892 } 2893 return Get(Val); 2894 } 2895 2896 void Put(Value *From, Value *To) { 2897 Storage.insert({ From, To }); 2898 } 2899 2900 void ReplacePhi(PHINode *From, PHINode *To) { 2901 Value* OldReplacement = Get(From); 2902 while (OldReplacement != From) { 2903 From = To; 2904 To = dyn_cast<PHINode>(OldReplacement); 2905 OldReplacement = Get(From); 2906 } 2907 assert(Get(To) == To && "Replacement PHI node is already replaced."); 2908 Put(From, To); 2909 From->replaceAllUsesWith(To); 2910 AllPhiNodes.erase(From); 2911 From->eraseFromParent(); 2912 } 2913 2914 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 2915 2916 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 2917 2918 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 2919 2920 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 2921 2922 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 2923 2924 void destroyNewNodes(Type *CommonType) { 2925 // For safe erasing, replace the uses with dummy value first. 2926 auto Dummy = UndefValue::get(CommonType); 2927 for (auto I : AllPhiNodes) { 2928 I->replaceAllUsesWith(Dummy); 2929 I->eraseFromParent(); 2930 } 2931 AllPhiNodes.clear(); 2932 for (auto I : AllSelectNodes) { 2933 I->replaceAllUsesWith(Dummy); 2934 I->eraseFromParent(); 2935 } 2936 AllSelectNodes.clear(); 2937 } 2938 }; 2939 2940 /// A helper class for combining addressing modes. 2941 class AddressingModeCombiner { 2942 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 2943 typedef std::pair<PHINode *, PHINode *> PHIPair; 2944 2945 private: 2946 /// The addressing modes we've collected. 2947 SmallVector<ExtAddrMode, 16> AddrModes; 2948 2949 /// The field in which the AddrModes differ, when we have more than one. 2950 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 2951 2952 /// Are the AddrModes that we have all just equal to their original values? 2953 bool AllAddrModesTrivial = true; 2954 2955 /// Common Type for all different fields in addressing modes. 2956 Type *CommonType; 2957 2958 /// SimplifyQuery for simplifyInstruction utility. 2959 const SimplifyQuery &SQ; 2960 2961 /// Original Address. 2962 Value *Original; 2963 2964 public: 2965 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 2966 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 2967 2968 /// Get the combined AddrMode 2969 const ExtAddrMode &getAddrMode() const { 2970 return AddrModes[0]; 2971 } 2972 2973 /// Add a new AddrMode if it's compatible with the AddrModes we already 2974 /// have. 2975 /// \return True iff we succeeded in doing so. 2976 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 2977 // Take note of if we have any non-trivial AddrModes, as we need to detect 2978 // when all AddrModes are trivial as then we would introduce a phi or select 2979 // which just duplicates what's already there. 2980 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 2981 2982 // If this is the first addrmode then everything is fine. 2983 if (AddrModes.empty()) { 2984 AddrModes.emplace_back(NewAddrMode); 2985 return true; 2986 } 2987 2988 // Figure out how different this is from the other address modes, which we 2989 // can do just by comparing against the first one given that we only care 2990 // about the cumulative difference. 2991 ExtAddrMode::FieldName ThisDifferentField = 2992 AddrModes[0].compare(NewAddrMode); 2993 if (DifferentField == ExtAddrMode::NoField) 2994 DifferentField = ThisDifferentField; 2995 else if (DifferentField != ThisDifferentField) 2996 DifferentField = ExtAddrMode::MultipleFields; 2997 2998 // If NewAddrMode differs in more than one dimension we cannot handle it. 2999 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3000 3001 // If Scale Field is different then we reject. 3002 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3003 3004 // We also must reject the case when base offset is different and 3005 // scale reg is not null, we cannot handle this case due to merge of 3006 // different offsets will be used as ScaleReg. 3007 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3008 !NewAddrMode.ScaledReg); 3009 3010 // We also must reject the case when GV is different and BaseReg installed 3011 // due to we want to use base reg as a merge of GV values. 3012 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3013 !NewAddrMode.HasBaseReg); 3014 3015 // Even if NewAddMode is the same we still need to collect it due to 3016 // original value is different. And later we will need all original values 3017 // as anchors during finding the common Phi node. 3018 if (CanHandle) 3019 AddrModes.emplace_back(NewAddrMode); 3020 else 3021 AddrModes.clear(); 3022 3023 return CanHandle; 3024 } 3025 3026 /// Combine the addressing modes we've collected into a single 3027 /// addressing mode. 3028 /// \return True iff we successfully combined them or we only had one so 3029 /// didn't need to combine them anyway. 3030 bool combineAddrModes() { 3031 // If we have no AddrModes then they can't be combined. 3032 if (AddrModes.size() == 0) 3033 return false; 3034 3035 // A single AddrMode can trivially be combined. 3036 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3037 return true; 3038 3039 // If the AddrModes we collected are all just equal to the value they are 3040 // derived from then combining them wouldn't do anything useful. 3041 if (AllAddrModesTrivial) 3042 return false; 3043 3044 if (!addrModeCombiningAllowed()) 3045 return false; 3046 3047 // Build a map between <original value, basic block where we saw it> to 3048 // value of base register. 3049 // Bail out if there is no common type. 3050 FoldAddrToValueMapping Map; 3051 if (!initializeMap(Map)) 3052 return false; 3053 3054 Value *CommonValue = findCommon(Map); 3055 if (CommonValue) 3056 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3057 return CommonValue != nullptr; 3058 } 3059 3060 private: 3061 /// Initialize Map with anchor values. For address seen 3062 /// we set the value of different field saw in this address. 3063 /// At the same time we find a common type for different field we will 3064 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3065 /// Return false if there is no common type found. 3066 bool initializeMap(FoldAddrToValueMapping &Map) { 3067 // Keep track of keys where the value is null. We will need to replace it 3068 // with constant null when we know the common type. 3069 SmallVector<Value *, 2> NullValue; 3070 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3071 for (auto &AM : AddrModes) { 3072 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3073 if (DV) { 3074 auto *Type = DV->getType(); 3075 if (CommonType && CommonType != Type) 3076 return false; 3077 CommonType = Type; 3078 Map[AM.OriginalValue] = DV; 3079 } else { 3080 NullValue.push_back(AM.OriginalValue); 3081 } 3082 } 3083 assert(CommonType && "At least one non-null value must be!"); 3084 for (auto *V : NullValue) 3085 Map[V] = Constant::getNullValue(CommonType); 3086 return true; 3087 } 3088 3089 /// We have mapping between value A and other value B where B was a field in 3090 /// addressing mode represented by A. Also we have an original value C 3091 /// representing an address we start with. Traversing from C through phi and 3092 /// selects we ended up with A's in a map. This utility function tries to find 3093 /// a value V which is a field in addressing mode C and traversing through phi 3094 /// nodes and selects we will end up in corresponded values B in a map. 3095 /// The utility will create a new Phi/Selects if needed. 3096 // The simple example looks as follows: 3097 // BB1: 3098 // p1 = b1 + 40 3099 // br cond BB2, BB3 3100 // BB2: 3101 // p2 = b2 + 40 3102 // br BB3 3103 // BB3: 3104 // p = phi [p1, BB1], [p2, BB2] 3105 // v = load p 3106 // Map is 3107 // p1 -> b1 3108 // p2 -> b2 3109 // Request is 3110 // p -> ? 3111 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3112 Value *findCommon(FoldAddrToValueMapping &Map) { 3113 // Tracks the simplification of newly created phi nodes. The reason we use 3114 // this mapping is because we will add new created Phi nodes in AddrToBase. 3115 // Simplification of Phi nodes is recursive, so some Phi node may 3116 // be simplified after we added it to AddrToBase. In reality this 3117 // simplification is possible only if original phi/selects were not 3118 // simplified yet. 3119 // Using this mapping we can find the current value in AddrToBase. 3120 SimplificationTracker ST(SQ); 3121 3122 // First step, DFS to create PHI nodes for all intermediate blocks. 3123 // Also fill traverse order for the second step. 3124 SmallVector<Value *, 32> TraverseOrder; 3125 InsertPlaceholders(Map, TraverseOrder, ST); 3126 3127 // Second Step, fill new nodes by merged values and simplify if possible. 3128 FillPlaceholders(Map, TraverseOrder, ST); 3129 3130 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3131 ST.destroyNewNodes(CommonType); 3132 return nullptr; 3133 } 3134 3135 // Now we'd like to match New Phi nodes to existed ones. 3136 unsigned PhiNotMatchedCount = 0; 3137 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3138 ST.destroyNewNodes(CommonType); 3139 return nullptr; 3140 } 3141 3142 auto *Result = ST.Get(Map.find(Original)->second); 3143 if (Result) { 3144 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3145 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3146 } 3147 return Result; 3148 } 3149 3150 /// Try to match PHI node to Candidate. 3151 /// Matcher tracks the matched Phi nodes. 3152 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3153 SmallSetVector<PHIPair, 8> &Matcher, 3154 PhiNodeSet &PhiNodesToMatch) { 3155 SmallVector<PHIPair, 8> WorkList; 3156 Matcher.insert({ PHI, Candidate }); 3157 WorkList.push_back({ PHI, Candidate }); 3158 SmallSet<PHIPair, 8> Visited; 3159 while (!WorkList.empty()) { 3160 auto Item = WorkList.pop_back_val(); 3161 if (!Visited.insert(Item).second) 3162 continue; 3163 // We iterate over all incoming values to Phi to compare them. 3164 // If values are different and both of them Phi and the first one is a 3165 // Phi we added (subject to match) and both of them is in the same basic 3166 // block then we can match our pair if values match. So we state that 3167 // these values match and add it to work list to verify that. 3168 for (auto B : Item.first->blocks()) { 3169 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3170 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3171 if (FirstValue == SecondValue) 3172 continue; 3173 3174 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3175 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3176 3177 // One of them is not Phi or 3178 // The first one is not Phi node from the set we'd like to match or 3179 // Phi nodes from different basic blocks then 3180 // we will not be able to match. 3181 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3182 FirstPhi->getParent() != SecondPhi->getParent()) 3183 return false; 3184 3185 // If we already matched them then continue. 3186 if (Matcher.count({ FirstPhi, SecondPhi })) 3187 continue; 3188 // So the values are different and does not match. So we need them to 3189 // match. 3190 Matcher.insert({ FirstPhi, SecondPhi }); 3191 // But me must check it. 3192 WorkList.push_back({ FirstPhi, SecondPhi }); 3193 } 3194 } 3195 return true; 3196 } 3197 3198 /// For the given set of PHI nodes (in the SimplificationTracker) try 3199 /// to find their equivalents. 3200 /// Returns false if this matching fails and creation of new Phi is disabled. 3201 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3202 unsigned &PhiNotMatchedCount) { 3203 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3204 // order, so the replacements (ReplacePhi) are also done in a deterministic 3205 // order. 3206 SmallSetVector<PHIPair, 8> Matched; 3207 SmallPtrSet<PHINode *, 8> WillNotMatch; 3208 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3209 while (PhiNodesToMatch.size()) { 3210 PHINode *PHI = *PhiNodesToMatch.begin(); 3211 3212 // Add us, if no Phi nodes in the basic block we do not match. 3213 WillNotMatch.clear(); 3214 WillNotMatch.insert(PHI); 3215 3216 // Traverse all Phis until we found equivalent or fail to do that. 3217 bool IsMatched = false; 3218 for (auto &P : PHI->getParent()->phis()) { 3219 if (&P == PHI) 3220 continue; 3221 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3222 break; 3223 // If it does not match, collect all Phi nodes from matcher. 3224 // if we end up with no match, them all these Phi nodes will not match 3225 // later. 3226 for (auto M : Matched) 3227 WillNotMatch.insert(M.first); 3228 Matched.clear(); 3229 } 3230 if (IsMatched) { 3231 // Replace all matched values and erase them. 3232 for (auto MV : Matched) 3233 ST.ReplacePhi(MV.first, MV.second); 3234 Matched.clear(); 3235 continue; 3236 } 3237 // If we are not allowed to create new nodes then bail out. 3238 if (!AllowNewPhiNodes) 3239 return false; 3240 // Just remove all seen values in matcher. They will not match anything. 3241 PhiNotMatchedCount += WillNotMatch.size(); 3242 for (auto *P : WillNotMatch) 3243 PhiNodesToMatch.erase(P); 3244 } 3245 return true; 3246 } 3247 /// Fill the placeholders with values from predecessors and simplify them. 3248 void FillPlaceholders(FoldAddrToValueMapping &Map, 3249 SmallVectorImpl<Value *> &TraverseOrder, 3250 SimplificationTracker &ST) { 3251 while (!TraverseOrder.empty()) { 3252 Value *Current = TraverseOrder.pop_back_val(); 3253 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3254 Value *V = Map[Current]; 3255 3256 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3257 // CurrentValue also must be Select. 3258 auto *CurrentSelect = cast<SelectInst>(Current); 3259 auto *TrueValue = CurrentSelect->getTrueValue(); 3260 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3261 Select->setTrueValue(ST.Get(Map[TrueValue])); 3262 auto *FalseValue = CurrentSelect->getFalseValue(); 3263 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3264 Select->setFalseValue(ST.Get(Map[FalseValue])); 3265 } else { 3266 // Must be a Phi node then. 3267 PHINode *PHI = cast<PHINode>(V); 3268 auto *CurrentPhi = dyn_cast<PHINode>(Current); 3269 // Fill the Phi node with values from predecessors. 3270 for (auto B : predecessors(PHI->getParent())) { 3271 Value *PV = CurrentPhi->getIncomingValueForBlock(B); 3272 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3273 PHI->addIncoming(ST.Get(Map[PV]), B); 3274 } 3275 } 3276 Map[Current] = ST.Simplify(V); 3277 } 3278 } 3279 3280 /// Starting from original value recursively iterates over def-use chain up to 3281 /// known ending values represented in a map. For each traversed phi/select 3282 /// inserts a placeholder Phi or Select. 3283 /// Reports all new created Phi/Select nodes by adding them to set. 3284 /// Also reports and order in what values have been traversed. 3285 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3286 SmallVectorImpl<Value *> &TraverseOrder, 3287 SimplificationTracker &ST) { 3288 SmallVector<Value *, 32> Worklist; 3289 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3290 "Address must be a Phi or Select node"); 3291 auto *Dummy = UndefValue::get(CommonType); 3292 Worklist.push_back(Original); 3293 while (!Worklist.empty()) { 3294 Value *Current = Worklist.pop_back_val(); 3295 // if it is already visited or it is an ending value then skip it. 3296 if (Map.find(Current) != Map.end()) 3297 continue; 3298 TraverseOrder.push_back(Current); 3299 3300 // CurrentValue must be a Phi node or select. All others must be covered 3301 // by anchors. 3302 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3303 // Is it OK to get metadata from OrigSelect?! 3304 // Create a Select placeholder with dummy value. 3305 SelectInst *Select = SelectInst::Create( 3306 CurrentSelect->getCondition(), Dummy, Dummy, 3307 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3308 Map[Current] = Select; 3309 ST.insertNewSelect(Select); 3310 // We are interested in True and False values. 3311 Worklist.push_back(CurrentSelect->getTrueValue()); 3312 Worklist.push_back(CurrentSelect->getFalseValue()); 3313 } else { 3314 // It must be a Phi node then. 3315 PHINode *CurrentPhi = cast<PHINode>(Current); 3316 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3317 PHINode *PHI = 3318 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3319 Map[Current] = PHI; 3320 ST.insertNewPhi(PHI); 3321 for (Value *P : CurrentPhi->incoming_values()) 3322 Worklist.push_back(P); 3323 } 3324 } 3325 } 3326 3327 bool addrModeCombiningAllowed() { 3328 if (DisableComplexAddrModes) 3329 return false; 3330 switch (DifferentField) { 3331 default: 3332 return false; 3333 case ExtAddrMode::BaseRegField: 3334 return AddrSinkCombineBaseReg; 3335 case ExtAddrMode::BaseGVField: 3336 return AddrSinkCombineBaseGV; 3337 case ExtAddrMode::BaseOffsField: 3338 return AddrSinkCombineBaseOffs; 3339 case ExtAddrMode::ScaledRegField: 3340 return AddrSinkCombineScaledReg; 3341 } 3342 } 3343 }; 3344 } // end anonymous namespace 3345 3346 /// Try adding ScaleReg*Scale to the current addressing mode. 3347 /// Return true and update AddrMode if this addr mode is legal for the target, 3348 /// false if not. 3349 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3350 unsigned Depth) { 3351 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3352 // mode. Just process that directly. 3353 if (Scale == 1) 3354 return matchAddr(ScaleReg, Depth); 3355 3356 // If the scale is 0, it takes nothing to add this. 3357 if (Scale == 0) 3358 return true; 3359 3360 // If we already have a scale of this value, we can add to it, otherwise, we 3361 // need an available scale field. 3362 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3363 return false; 3364 3365 ExtAddrMode TestAddrMode = AddrMode; 3366 3367 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3368 // [A+B + A*7] -> [B+A*8]. 3369 TestAddrMode.Scale += Scale; 3370 TestAddrMode.ScaledReg = ScaleReg; 3371 3372 // If the new address isn't legal, bail out. 3373 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3374 return false; 3375 3376 // It was legal, so commit it. 3377 AddrMode = TestAddrMode; 3378 3379 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3380 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3381 // X*Scale + C*Scale to addr mode. 3382 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3383 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3384 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3385 TestAddrMode.ScaledReg = AddLHS; 3386 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3387 3388 // If this addressing mode is legal, commit it and remember that we folded 3389 // this instruction. 3390 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3391 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3392 AddrMode = TestAddrMode; 3393 return true; 3394 } 3395 } 3396 3397 // Otherwise, not (x+c)*scale, just return what we have. 3398 return true; 3399 } 3400 3401 /// This is a little filter, which returns true if an addressing computation 3402 /// involving I might be folded into a load/store accessing it. 3403 /// This doesn't need to be perfect, but needs to accept at least 3404 /// the set of instructions that MatchOperationAddr can. 3405 static bool MightBeFoldableInst(Instruction *I) { 3406 switch (I->getOpcode()) { 3407 case Instruction::BitCast: 3408 case Instruction::AddrSpaceCast: 3409 // Don't touch identity bitcasts. 3410 if (I->getType() == I->getOperand(0)->getType()) 3411 return false; 3412 return I->getType()->isIntOrPtrTy(); 3413 case Instruction::PtrToInt: 3414 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3415 return true; 3416 case Instruction::IntToPtr: 3417 // We know the input is intptr_t, so this is foldable. 3418 return true; 3419 case Instruction::Add: 3420 return true; 3421 case Instruction::Mul: 3422 case Instruction::Shl: 3423 // Can only handle X*C and X << C. 3424 return isa<ConstantInt>(I->getOperand(1)); 3425 case Instruction::GetElementPtr: 3426 return true; 3427 default: 3428 return false; 3429 } 3430 } 3431 3432 /// Check whether or not \p Val is a legal instruction for \p TLI. 3433 /// \note \p Val is assumed to be the product of some type promotion. 3434 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3435 /// to be legal, as the non-promoted value would have had the same state. 3436 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3437 const DataLayout &DL, Value *Val) { 3438 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3439 if (!PromotedInst) 3440 return false; 3441 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3442 // If the ISDOpcode is undefined, it was undefined before the promotion. 3443 if (!ISDOpcode) 3444 return true; 3445 // Otherwise, check if the promoted instruction is legal or not. 3446 return TLI.isOperationLegalOrCustom( 3447 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3448 } 3449 3450 namespace { 3451 3452 /// Hepler class to perform type promotion. 3453 class TypePromotionHelper { 3454 /// Utility function to add a promoted instruction \p ExtOpnd to 3455 /// \p PromotedInsts and record the type of extension we have seen. 3456 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3457 Instruction *ExtOpnd, 3458 bool IsSExt) { 3459 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3460 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3461 if (It != PromotedInsts.end()) { 3462 // If the new extension is same as original, the information in 3463 // PromotedInsts[ExtOpnd] is still correct. 3464 if (It->second.getInt() == ExtTy) 3465 return; 3466 3467 // Now the new extension is different from old extension, we make 3468 // the type information invalid by setting extension type to 3469 // BothExtension. 3470 ExtTy = BothExtension; 3471 } 3472 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 3473 } 3474 3475 /// Utility function to query the original type of instruction \p Opnd 3476 /// with a matched extension type. If the extension doesn't match, we 3477 /// cannot use the information we had on the original type. 3478 /// BothExtension doesn't match any extension type. 3479 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 3480 Instruction *Opnd, 3481 bool IsSExt) { 3482 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3483 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3484 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 3485 return It->second.getPointer(); 3486 return nullptr; 3487 } 3488 3489 /// Utility function to check whether or not a sign or zero extension 3490 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3491 /// either using the operands of \p Inst or promoting \p Inst. 3492 /// The type of the extension is defined by \p IsSExt. 3493 /// In other words, check if: 3494 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3495 /// #1 Promotion applies: 3496 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3497 /// #2 Operand reuses: 3498 /// ext opnd1 to ConsideredExtType. 3499 /// \p PromotedInsts maps the instructions to their type before promotion. 3500 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3501 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3502 3503 /// Utility function to determine if \p OpIdx should be promoted when 3504 /// promoting \p Inst. 3505 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3506 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3507 } 3508 3509 /// Utility function to promote the operand of \p Ext when this 3510 /// operand is a promotable trunc or sext or zext. 3511 /// \p PromotedInsts maps the instructions to their type before promotion. 3512 /// \p CreatedInstsCost[out] contains the cost of all instructions 3513 /// created to promote the operand of Ext. 3514 /// Newly added extensions are inserted in \p Exts. 3515 /// Newly added truncates are inserted in \p Truncs. 3516 /// Should never be called directly. 3517 /// \return The promoted value which is used instead of Ext. 3518 static Value *promoteOperandForTruncAndAnyExt( 3519 Instruction *Ext, TypePromotionTransaction &TPT, 3520 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3521 SmallVectorImpl<Instruction *> *Exts, 3522 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3523 3524 /// Utility function to promote the operand of \p Ext when this 3525 /// operand is promotable and is not a supported trunc or sext. 3526 /// \p PromotedInsts maps the instructions to their type before promotion. 3527 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3528 /// created to promote the operand of Ext. 3529 /// Newly added extensions are inserted in \p Exts. 3530 /// Newly added truncates are inserted in \p Truncs. 3531 /// Should never be called directly. 3532 /// \return The promoted value which is used instead of Ext. 3533 static Value *promoteOperandForOther(Instruction *Ext, 3534 TypePromotionTransaction &TPT, 3535 InstrToOrigTy &PromotedInsts, 3536 unsigned &CreatedInstsCost, 3537 SmallVectorImpl<Instruction *> *Exts, 3538 SmallVectorImpl<Instruction *> *Truncs, 3539 const TargetLowering &TLI, bool IsSExt); 3540 3541 /// \see promoteOperandForOther. 3542 static Value *signExtendOperandForOther( 3543 Instruction *Ext, TypePromotionTransaction &TPT, 3544 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3545 SmallVectorImpl<Instruction *> *Exts, 3546 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3547 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3548 Exts, Truncs, TLI, true); 3549 } 3550 3551 /// \see promoteOperandForOther. 3552 static Value *zeroExtendOperandForOther( 3553 Instruction *Ext, TypePromotionTransaction &TPT, 3554 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3555 SmallVectorImpl<Instruction *> *Exts, 3556 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3557 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3558 Exts, Truncs, TLI, false); 3559 } 3560 3561 public: 3562 /// Type for the utility function that promotes the operand of Ext. 3563 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3564 InstrToOrigTy &PromotedInsts, 3565 unsigned &CreatedInstsCost, 3566 SmallVectorImpl<Instruction *> *Exts, 3567 SmallVectorImpl<Instruction *> *Truncs, 3568 const TargetLowering &TLI); 3569 3570 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3571 /// action to promote the operand of \p Ext instead of using Ext. 3572 /// \return NULL if no promotable action is possible with the current 3573 /// sign extension. 3574 /// \p InsertedInsts keeps track of all the instructions inserted by the 3575 /// other CodeGenPrepare optimizations. This information is important 3576 /// because we do not want to promote these instructions as CodeGenPrepare 3577 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3578 /// \p PromotedInsts maps the instructions to their type before promotion. 3579 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3580 const TargetLowering &TLI, 3581 const InstrToOrigTy &PromotedInsts); 3582 }; 3583 3584 } // end anonymous namespace 3585 3586 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3587 Type *ConsideredExtType, 3588 const InstrToOrigTy &PromotedInsts, 3589 bool IsSExt) { 3590 // The promotion helper does not know how to deal with vector types yet. 3591 // To be able to fix that, we would need to fix the places where we 3592 // statically extend, e.g., constants and such. 3593 if (Inst->getType()->isVectorTy()) 3594 return false; 3595 3596 // We can always get through zext. 3597 if (isa<ZExtInst>(Inst)) 3598 return true; 3599 3600 // sext(sext) is ok too. 3601 if (IsSExt && isa<SExtInst>(Inst)) 3602 return true; 3603 3604 // We can get through binary operator, if it is legal. In other words, the 3605 // binary operator must have a nuw or nsw flag. 3606 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3607 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3608 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3609 (IsSExt && BinOp->hasNoSignedWrap()))) 3610 return true; 3611 3612 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 3613 if ((Inst->getOpcode() == Instruction::And || 3614 Inst->getOpcode() == Instruction::Or)) 3615 return true; 3616 3617 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 3618 if (Inst->getOpcode() == Instruction::Xor) { 3619 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 3620 // Make sure it is not a NOT. 3621 if (Cst && !Cst->getValue().isAllOnesValue()) 3622 return true; 3623 } 3624 3625 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 3626 // It may change a poisoned value into a regular value, like 3627 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 3628 // poisoned value regular value 3629 // It should be OK since undef covers valid value. 3630 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 3631 return true; 3632 3633 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 3634 // It may change a poisoned value into a regular value, like 3635 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 3636 // poisoned value regular value 3637 // It should be OK since undef covers valid value. 3638 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 3639 const Instruction *ExtInst = 3640 dyn_cast<const Instruction>(*Inst->user_begin()); 3641 if (ExtInst->hasOneUse()) { 3642 const Instruction *AndInst = 3643 dyn_cast<const Instruction>(*ExtInst->user_begin()); 3644 if (AndInst && AndInst->getOpcode() == Instruction::And) { 3645 const ConstantInt *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 3646 if (Cst && 3647 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 3648 return true; 3649 } 3650 } 3651 } 3652 3653 // Check if we can do the following simplification. 3654 // ext(trunc(opnd)) --> ext(opnd) 3655 if (!isa<TruncInst>(Inst)) 3656 return false; 3657 3658 Value *OpndVal = Inst->getOperand(0); 3659 // Check if we can use this operand in the extension. 3660 // If the type is larger than the result type of the extension, we cannot. 3661 if (!OpndVal->getType()->isIntegerTy() || 3662 OpndVal->getType()->getIntegerBitWidth() > 3663 ConsideredExtType->getIntegerBitWidth()) 3664 return false; 3665 3666 // If the operand of the truncate is not an instruction, we will not have 3667 // any information on the dropped bits. 3668 // (Actually we could for constant but it is not worth the extra logic). 3669 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3670 if (!Opnd) 3671 return false; 3672 3673 // Check if the source of the type is narrow enough. 3674 // I.e., check that trunc just drops extended bits of the same kind of 3675 // the extension. 3676 // #1 get the type of the operand and check the kind of the extended bits. 3677 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 3678 if (OpndType) 3679 ; 3680 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3681 OpndType = Opnd->getOperand(0)->getType(); 3682 else 3683 return false; 3684 3685 // #2 check that the truncate just drops extended bits. 3686 return Inst->getType()->getIntegerBitWidth() >= 3687 OpndType->getIntegerBitWidth(); 3688 } 3689 3690 TypePromotionHelper::Action TypePromotionHelper::getAction( 3691 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3692 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3693 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3694 "Unexpected instruction type"); 3695 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3696 Type *ExtTy = Ext->getType(); 3697 bool IsSExt = isa<SExtInst>(Ext); 3698 // If the operand of the extension is not an instruction, we cannot 3699 // get through. 3700 // If it, check we can get through. 3701 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3702 return nullptr; 3703 3704 // Do not promote if the operand has been added by codegenprepare. 3705 // Otherwise, it means we are undoing an optimization that is likely to be 3706 // redone, thus causing potential infinite loop. 3707 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3708 return nullptr; 3709 3710 // SExt or Trunc instructions. 3711 // Return the related handler. 3712 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3713 isa<ZExtInst>(ExtOpnd)) 3714 return promoteOperandForTruncAndAnyExt; 3715 3716 // Regular instruction. 3717 // Abort early if we will have to insert non-free instructions. 3718 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3719 return nullptr; 3720 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3721 } 3722 3723 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3724 Instruction *SExt, TypePromotionTransaction &TPT, 3725 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3726 SmallVectorImpl<Instruction *> *Exts, 3727 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3728 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3729 // get through it and this method should not be called. 3730 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3731 Value *ExtVal = SExt; 3732 bool HasMergedNonFreeExt = false; 3733 if (isa<ZExtInst>(SExtOpnd)) { 3734 // Replace s|zext(zext(opnd)) 3735 // => zext(opnd). 3736 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3737 Value *ZExt = 3738 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3739 TPT.replaceAllUsesWith(SExt, ZExt); 3740 TPT.eraseInstruction(SExt); 3741 ExtVal = ZExt; 3742 } else { 3743 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3744 // => z|sext(opnd). 3745 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3746 } 3747 CreatedInstsCost = 0; 3748 3749 // Remove dead code. 3750 if (SExtOpnd->use_empty()) 3751 TPT.eraseInstruction(SExtOpnd); 3752 3753 // Check if the extension is still needed. 3754 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3755 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3756 if (ExtInst) { 3757 if (Exts) 3758 Exts->push_back(ExtInst); 3759 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3760 } 3761 return ExtVal; 3762 } 3763 3764 // At this point we have: ext ty opnd to ty. 3765 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3766 Value *NextVal = ExtInst->getOperand(0); 3767 TPT.eraseInstruction(ExtInst, NextVal); 3768 return NextVal; 3769 } 3770 3771 Value *TypePromotionHelper::promoteOperandForOther( 3772 Instruction *Ext, TypePromotionTransaction &TPT, 3773 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3774 SmallVectorImpl<Instruction *> *Exts, 3775 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3776 bool IsSExt) { 3777 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3778 // get through it and this method should not be called. 3779 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3780 CreatedInstsCost = 0; 3781 if (!ExtOpnd->hasOneUse()) { 3782 // ExtOpnd will be promoted. 3783 // All its uses, but Ext, will need to use a truncated value of the 3784 // promoted version. 3785 // Create the truncate now. 3786 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3787 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3788 // Insert it just after the definition. 3789 ITrunc->moveAfter(ExtOpnd); 3790 if (Truncs) 3791 Truncs->push_back(ITrunc); 3792 } 3793 3794 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3795 // Restore the operand of Ext (which has been replaced by the previous call 3796 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3797 TPT.setOperand(Ext, 0, ExtOpnd); 3798 } 3799 3800 // Get through the Instruction: 3801 // 1. Update its type. 3802 // 2. Replace the uses of Ext by Inst. 3803 // 3. Extend each operand that needs to be extended. 3804 3805 // Remember the original type of the instruction before promotion. 3806 // This is useful to know that the high bits are sign extended bits. 3807 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 3808 // Step #1. 3809 TPT.mutateType(ExtOpnd, Ext->getType()); 3810 // Step #2. 3811 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3812 // Step #3. 3813 Instruction *ExtForOpnd = Ext; 3814 3815 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 3816 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3817 ++OpIdx) { 3818 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3819 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3820 !shouldExtOperand(ExtOpnd, OpIdx)) { 3821 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 3822 continue; 3823 } 3824 // Check if we can statically extend the operand. 3825 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3826 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3827 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3828 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3829 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3830 : Cst->getValue().zext(BitWidth); 3831 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3832 continue; 3833 } 3834 // UndefValue are typed, so we have to statically sign extend them. 3835 if (isa<UndefValue>(Opnd)) { 3836 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3837 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3838 continue; 3839 } 3840 3841 // Otherwise we have to explicitly sign extend the operand. 3842 // Check if Ext was reused to extend an operand. 3843 if (!ExtForOpnd) { 3844 // If yes, create a new one. 3845 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 3846 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3847 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3848 if (!isa<Instruction>(ValForExtOpnd)) { 3849 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3850 continue; 3851 } 3852 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3853 } 3854 if (Exts) 3855 Exts->push_back(ExtForOpnd); 3856 TPT.setOperand(ExtForOpnd, 0, Opnd); 3857 3858 // Move the sign extension before the insertion point. 3859 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3860 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3861 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3862 // If more sext are required, new instructions will have to be created. 3863 ExtForOpnd = nullptr; 3864 } 3865 if (ExtForOpnd == Ext) { 3866 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 3867 TPT.eraseInstruction(Ext); 3868 } 3869 return ExtOpnd; 3870 } 3871 3872 /// Check whether or not promoting an instruction to a wider type is profitable. 3873 /// \p NewCost gives the cost of extension instructions created by the 3874 /// promotion. 3875 /// \p OldCost gives the cost of extension instructions before the promotion 3876 /// plus the number of instructions that have been 3877 /// matched in the addressing mode the promotion. 3878 /// \p PromotedOperand is the value that has been promoted. 3879 /// \return True if the promotion is profitable, false otherwise. 3880 bool AddressingModeMatcher::isPromotionProfitable( 3881 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3882 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 3883 << '\n'); 3884 // The cost of the new extensions is greater than the cost of the 3885 // old extension plus what we folded. 3886 // This is not profitable. 3887 if (NewCost > OldCost) 3888 return false; 3889 if (NewCost < OldCost) 3890 return true; 3891 // The promotion is neutral but it may help folding the sign extension in 3892 // loads for instance. 3893 // Check that we did not create an illegal instruction. 3894 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3895 } 3896 3897 /// Given an instruction or constant expr, see if we can fold the operation 3898 /// into the addressing mode. If so, update the addressing mode and return 3899 /// true, otherwise return false without modifying AddrMode. 3900 /// If \p MovedAway is not NULL, it contains the information of whether or 3901 /// not AddrInst has to be folded into the addressing mode on success. 3902 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3903 /// because it has been moved away. 3904 /// Thus AddrInst must not be added in the matched instructions. 3905 /// This state can happen when AddrInst is a sext, since it may be moved away. 3906 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3907 /// not be referenced anymore. 3908 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3909 unsigned Depth, 3910 bool *MovedAway) { 3911 // Avoid exponential behavior on extremely deep expression trees. 3912 if (Depth >= 5) return false; 3913 3914 // By default, all matched instructions stay in place. 3915 if (MovedAway) 3916 *MovedAway = false; 3917 3918 switch (Opcode) { 3919 case Instruction::PtrToInt: 3920 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3921 return matchAddr(AddrInst->getOperand(0), Depth); 3922 case Instruction::IntToPtr: { 3923 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3924 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3925 // This inttoptr is a no-op if the integer type is pointer sized. 3926 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3927 return matchAddr(AddrInst->getOperand(0), Depth); 3928 return false; 3929 } 3930 case Instruction::BitCast: 3931 // BitCast is always a noop, and we can handle it as long as it is 3932 // int->int or pointer->pointer (we don't want int<->fp or something). 3933 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 3934 // Don't touch identity bitcasts. These were probably put here by LSR, 3935 // and we don't want to mess around with them. Assume it knows what it 3936 // is doing. 3937 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3938 return matchAddr(AddrInst->getOperand(0), Depth); 3939 return false; 3940 case Instruction::AddrSpaceCast: { 3941 unsigned SrcAS 3942 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3943 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3944 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3945 return matchAddr(AddrInst->getOperand(0), Depth); 3946 return false; 3947 } 3948 case Instruction::Add: { 3949 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3950 ExtAddrMode BackupAddrMode = AddrMode; 3951 unsigned OldSize = AddrModeInsts.size(); 3952 // Start a transaction at this point. 3953 // The LHS may match but not the RHS. 3954 // Therefore, we need a higher level restoration point to undo partially 3955 // matched operation. 3956 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3957 TPT.getRestorationPoint(); 3958 3959 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3960 matchAddr(AddrInst->getOperand(0), Depth+1)) 3961 return true; 3962 3963 // Restore the old addr mode info. 3964 AddrMode = BackupAddrMode; 3965 AddrModeInsts.resize(OldSize); 3966 TPT.rollback(LastKnownGood); 3967 3968 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3969 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3970 matchAddr(AddrInst->getOperand(1), Depth+1)) 3971 return true; 3972 3973 // Otherwise we definitely can't merge the ADD in. 3974 AddrMode = BackupAddrMode; 3975 AddrModeInsts.resize(OldSize); 3976 TPT.rollback(LastKnownGood); 3977 break; 3978 } 3979 //case Instruction::Or: 3980 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3981 //break; 3982 case Instruction::Mul: 3983 case Instruction::Shl: { 3984 // Can only handle X*C and X << C. 3985 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3986 if (!RHS || RHS->getBitWidth() > 64) 3987 return false; 3988 int64_t Scale = RHS->getSExtValue(); 3989 if (Opcode == Instruction::Shl) 3990 Scale = 1LL << Scale; 3991 3992 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3993 } 3994 case Instruction::GetElementPtr: { 3995 // Scan the GEP. We check it if it contains constant offsets and at most 3996 // one variable offset. 3997 int VariableOperand = -1; 3998 unsigned VariableScale = 0; 3999 4000 int64_t ConstantOffset = 0; 4001 gep_type_iterator GTI = gep_type_begin(AddrInst); 4002 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4003 if (StructType *STy = GTI.getStructTypeOrNull()) { 4004 const StructLayout *SL = DL.getStructLayout(STy); 4005 unsigned Idx = 4006 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4007 ConstantOffset += SL->getElementOffset(Idx); 4008 } else { 4009 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 4010 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4011 const APInt &CVal = CI->getValue(); 4012 if (CVal.getMinSignedBits() <= 64) { 4013 ConstantOffset += CVal.getSExtValue() * TypeSize; 4014 continue; 4015 } 4016 } 4017 if (TypeSize) { // Scales of zero don't do anything. 4018 // We only allow one variable index at the moment. 4019 if (VariableOperand != -1) 4020 return false; 4021 4022 // Remember the variable index. 4023 VariableOperand = i; 4024 VariableScale = TypeSize; 4025 } 4026 } 4027 } 4028 4029 // A common case is for the GEP to only do a constant offset. In this case, 4030 // just add it to the disp field and check validity. 4031 if (VariableOperand == -1) { 4032 AddrMode.BaseOffs += ConstantOffset; 4033 if (ConstantOffset == 0 || 4034 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4035 // Check to see if we can fold the base pointer in too. 4036 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 4037 return true; 4038 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4039 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4040 ConstantOffset > 0) { 4041 // Record GEPs with non-zero offsets as candidates for splitting in the 4042 // event that the offset cannot fit into the r+i addressing mode. 4043 // Simple and common case that only one GEP is used in calculating the 4044 // address for the memory access. 4045 Value *Base = AddrInst->getOperand(0); 4046 auto *BaseI = dyn_cast<Instruction>(Base); 4047 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4048 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4049 (BaseI && !isa<CastInst>(BaseI) && 4050 !isa<GetElementPtrInst>(BaseI))) { 4051 // If the base is an instruction, make sure the GEP is not in the same 4052 // basic block as the base. If the base is an argument or global 4053 // value, make sure the GEP is not in the entry block. Otherwise, 4054 // instruction selection can undo the split. Also make sure the 4055 // parent block allows inserting non-PHI instructions before the 4056 // terminator. 4057 BasicBlock *Parent = 4058 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4059 if (GEP->getParent() != Parent && !Parent->getTerminator()->isEHPad()) 4060 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4061 } 4062 } 4063 AddrMode.BaseOffs -= ConstantOffset; 4064 return false; 4065 } 4066 4067 // Save the valid addressing mode in case we can't match. 4068 ExtAddrMode BackupAddrMode = AddrMode; 4069 unsigned OldSize = AddrModeInsts.size(); 4070 4071 // See if the scale and offset amount is valid for this target. 4072 AddrMode.BaseOffs += ConstantOffset; 4073 4074 // Match the base operand of the GEP. 4075 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4076 // If it couldn't be matched, just stuff the value in a register. 4077 if (AddrMode.HasBaseReg) { 4078 AddrMode = BackupAddrMode; 4079 AddrModeInsts.resize(OldSize); 4080 return false; 4081 } 4082 AddrMode.HasBaseReg = true; 4083 AddrMode.BaseReg = AddrInst->getOperand(0); 4084 } 4085 4086 // Match the remaining variable portion of the GEP. 4087 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4088 Depth)) { 4089 // If it couldn't be matched, try stuffing the base into a register 4090 // instead of matching it, and retrying the match of the scale. 4091 AddrMode = BackupAddrMode; 4092 AddrModeInsts.resize(OldSize); 4093 if (AddrMode.HasBaseReg) 4094 return false; 4095 AddrMode.HasBaseReg = true; 4096 AddrMode.BaseReg = AddrInst->getOperand(0); 4097 AddrMode.BaseOffs += ConstantOffset; 4098 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4099 VariableScale, Depth)) { 4100 // If even that didn't work, bail. 4101 AddrMode = BackupAddrMode; 4102 AddrModeInsts.resize(OldSize); 4103 return false; 4104 } 4105 } 4106 4107 return true; 4108 } 4109 case Instruction::SExt: 4110 case Instruction::ZExt: { 4111 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4112 if (!Ext) 4113 return false; 4114 4115 // Try to move this ext out of the way of the addressing mode. 4116 // Ask for a method for doing so. 4117 TypePromotionHelper::Action TPH = 4118 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4119 if (!TPH) 4120 return false; 4121 4122 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4123 TPT.getRestorationPoint(); 4124 unsigned CreatedInstsCost = 0; 4125 unsigned ExtCost = !TLI.isExtFree(Ext); 4126 Value *PromotedOperand = 4127 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4128 // SExt has been moved away. 4129 // Thus either it will be rematched later in the recursive calls or it is 4130 // gone. Anyway, we must not fold it into the addressing mode at this point. 4131 // E.g., 4132 // op = add opnd, 1 4133 // idx = ext op 4134 // addr = gep base, idx 4135 // is now: 4136 // promotedOpnd = ext opnd <- no match here 4137 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4138 // addr = gep base, op <- match 4139 if (MovedAway) 4140 *MovedAway = true; 4141 4142 assert(PromotedOperand && 4143 "TypePromotionHelper should have filtered out those cases"); 4144 4145 ExtAddrMode BackupAddrMode = AddrMode; 4146 unsigned OldSize = AddrModeInsts.size(); 4147 4148 if (!matchAddr(PromotedOperand, Depth) || 4149 // The total of the new cost is equal to the cost of the created 4150 // instructions. 4151 // The total of the old cost is equal to the cost of the extension plus 4152 // what we have saved in the addressing mode. 4153 !isPromotionProfitable(CreatedInstsCost, 4154 ExtCost + (AddrModeInsts.size() - OldSize), 4155 PromotedOperand)) { 4156 AddrMode = BackupAddrMode; 4157 AddrModeInsts.resize(OldSize); 4158 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4159 TPT.rollback(LastKnownGood); 4160 return false; 4161 } 4162 return true; 4163 } 4164 } 4165 return false; 4166 } 4167 4168 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4169 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4170 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4171 /// for the target. 4172 /// 4173 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4174 // Start a transaction at this point that we will rollback if the matching 4175 // fails. 4176 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4177 TPT.getRestorationPoint(); 4178 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4179 // Fold in immediates if legal for the target. 4180 AddrMode.BaseOffs += CI->getSExtValue(); 4181 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4182 return true; 4183 AddrMode.BaseOffs -= CI->getSExtValue(); 4184 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4185 // If this is a global variable, try to fold it into the addressing mode. 4186 if (!AddrMode.BaseGV) { 4187 AddrMode.BaseGV = GV; 4188 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4189 return true; 4190 AddrMode.BaseGV = nullptr; 4191 } 4192 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4193 ExtAddrMode BackupAddrMode = AddrMode; 4194 unsigned OldSize = AddrModeInsts.size(); 4195 4196 // Check to see if it is possible to fold this operation. 4197 bool MovedAway = false; 4198 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4199 // This instruction may have been moved away. If so, there is nothing 4200 // to check here. 4201 if (MovedAway) 4202 return true; 4203 // Okay, it's possible to fold this. Check to see if it is actually 4204 // *profitable* to do so. We use a simple cost model to avoid increasing 4205 // register pressure too much. 4206 if (I->hasOneUse() || 4207 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4208 AddrModeInsts.push_back(I); 4209 return true; 4210 } 4211 4212 // It isn't profitable to do this, roll back. 4213 //cerr << "NOT FOLDING: " << *I; 4214 AddrMode = BackupAddrMode; 4215 AddrModeInsts.resize(OldSize); 4216 TPT.rollback(LastKnownGood); 4217 } 4218 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4219 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4220 return true; 4221 TPT.rollback(LastKnownGood); 4222 } else if (isa<ConstantPointerNull>(Addr)) { 4223 // Null pointer gets folded without affecting the addressing mode. 4224 return true; 4225 } 4226 4227 // Worse case, the target should support [reg] addressing modes. :) 4228 if (!AddrMode.HasBaseReg) { 4229 AddrMode.HasBaseReg = true; 4230 AddrMode.BaseReg = Addr; 4231 // Still check for legality in case the target supports [imm] but not [i+r]. 4232 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4233 return true; 4234 AddrMode.HasBaseReg = false; 4235 AddrMode.BaseReg = nullptr; 4236 } 4237 4238 // If the base register is already taken, see if we can do [r+r]. 4239 if (AddrMode.Scale == 0) { 4240 AddrMode.Scale = 1; 4241 AddrMode.ScaledReg = Addr; 4242 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4243 return true; 4244 AddrMode.Scale = 0; 4245 AddrMode.ScaledReg = nullptr; 4246 } 4247 // Couldn't match. 4248 TPT.rollback(LastKnownGood); 4249 return false; 4250 } 4251 4252 /// Check to see if all uses of OpVal by the specified inline asm call are due 4253 /// to memory operands. If so, return true, otherwise return false. 4254 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4255 const TargetLowering &TLI, 4256 const TargetRegisterInfo &TRI) { 4257 const Function *F = CI->getFunction(); 4258 TargetLowering::AsmOperandInfoVector TargetConstraints = 4259 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 4260 ImmutableCallSite(CI)); 4261 4262 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4263 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4264 4265 // Compute the constraint code and ConstraintType to use. 4266 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4267 4268 // If this asm operand is our Value*, and if it isn't an indirect memory 4269 // operand, we can't fold it! 4270 if (OpInfo.CallOperandVal == OpVal && 4271 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4272 !OpInfo.isIndirect)) 4273 return false; 4274 } 4275 4276 return true; 4277 } 4278 4279 // Max number of memory uses to look at before aborting the search to conserve 4280 // compile time. 4281 static constexpr int MaxMemoryUsesToScan = 20; 4282 4283 /// Recursively walk all the uses of I until we find a memory use. 4284 /// If we find an obviously non-foldable instruction, return true. 4285 /// Add the ultimately found memory instructions to MemoryUses. 4286 static bool FindAllMemoryUses( 4287 Instruction *I, 4288 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4289 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4290 const TargetRegisterInfo &TRI, int SeenInsts = 0) { 4291 // If we already considered this instruction, we're done. 4292 if (!ConsideredInsts.insert(I).second) 4293 return false; 4294 4295 // If this is an obviously unfoldable instruction, bail out. 4296 if (!MightBeFoldableInst(I)) 4297 return true; 4298 4299 const bool OptSize = I->getFunction()->optForSize(); 4300 4301 // Loop over all the uses, recursively processing them. 4302 for (Use &U : I->uses()) { 4303 // Conservatively return true if we're seeing a large number or a deep chain 4304 // of users. This avoids excessive compilation times in pathological cases. 4305 if (SeenInsts++ >= MaxMemoryUsesToScan) 4306 return true; 4307 4308 Instruction *UserI = cast<Instruction>(U.getUser()); 4309 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4310 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4311 continue; 4312 } 4313 4314 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4315 unsigned opNo = U.getOperandNo(); 4316 if (opNo != StoreInst::getPointerOperandIndex()) 4317 return true; // Storing addr, not into addr. 4318 MemoryUses.push_back(std::make_pair(SI, opNo)); 4319 continue; 4320 } 4321 4322 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4323 unsigned opNo = U.getOperandNo(); 4324 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4325 return true; // Storing addr, not into addr. 4326 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4327 continue; 4328 } 4329 4330 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4331 unsigned opNo = U.getOperandNo(); 4332 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4333 return true; // Storing addr, not into addr. 4334 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4335 continue; 4336 } 4337 4338 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4339 // If this is a cold call, we can sink the addressing calculation into 4340 // the cold path. See optimizeCallInst 4341 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 4342 continue; 4343 4344 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4345 if (!IA) return true; 4346 4347 // If this is a memory operand, we're cool, otherwise bail out. 4348 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4349 return true; 4350 continue; 4351 } 4352 4353 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, 4354 SeenInsts)) 4355 return true; 4356 } 4357 4358 return false; 4359 } 4360 4361 /// Return true if Val is already known to be live at the use site that we're 4362 /// folding it into. If so, there is no cost to include it in the addressing 4363 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4364 /// instruction already. 4365 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4366 Value *KnownLive2) { 4367 // If Val is either of the known-live values, we know it is live! 4368 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4369 return true; 4370 4371 // All values other than instructions and arguments (e.g. constants) are live. 4372 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4373 4374 // If Val is a constant sized alloca in the entry block, it is live, this is 4375 // true because it is just a reference to the stack/frame pointer, which is 4376 // live for the whole function. 4377 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4378 if (AI->isStaticAlloca()) 4379 return true; 4380 4381 // Check to see if this value is already used in the memory instruction's 4382 // block. If so, it's already live into the block at the very least, so we 4383 // can reasonably fold it. 4384 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4385 } 4386 4387 /// It is possible for the addressing mode of the machine to fold the specified 4388 /// instruction into a load or store that ultimately uses it. 4389 /// However, the specified instruction has multiple uses. 4390 /// Given this, it may actually increase register pressure to fold it 4391 /// into the load. For example, consider this code: 4392 /// 4393 /// X = ... 4394 /// Y = X+1 4395 /// use(Y) -> nonload/store 4396 /// Z = Y+1 4397 /// load Z 4398 /// 4399 /// In this case, Y has multiple uses, and can be folded into the load of Z 4400 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4401 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4402 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4403 /// number of computations either. 4404 /// 4405 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4406 /// X was live across 'load Z' for other reasons, we actually *would* want to 4407 /// fold the addressing mode in the Z case. This would make Y die earlier. 4408 bool AddressingModeMatcher:: 4409 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4410 ExtAddrMode &AMAfter) { 4411 if (IgnoreProfitability) return true; 4412 4413 // AMBefore is the addressing mode before this instruction was folded into it, 4414 // and AMAfter is the addressing mode after the instruction was folded. Get 4415 // the set of registers referenced by AMAfter and subtract out those 4416 // referenced by AMBefore: this is the set of values which folding in this 4417 // address extends the lifetime of. 4418 // 4419 // Note that there are only two potential values being referenced here, 4420 // BaseReg and ScaleReg (global addresses are always available, as are any 4421 // folded immediates). 4422 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4423 4424 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4425 // lifetime wasn't extended by adding this instruction. 4426 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4427 BaseReg = nullptr; 4428 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4429 ScaledReg = nullptr; 4430 4431 // If folding this instruction (and it's subexprs) didn't extend any live 4432 // ranges, we're ok with it. 4433 if (!BaseReg && !ScaledReg) 4434 return true; 4435 4436 // If all uses of this instruction can have the address mode sunk into them, 4437 // we can remove the addressing mode and effectively trade one live register 4438 // for another (at worst.) In this context, folding an addressing mode into 4439 // the use is just a particularly nice way of sinking it. 4440 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4441 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4442 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 4443 return false; // Has a non-memory, non-foldable use! 4444 4445 // Now that we know that all uses of this instruction are part of a chain of 4446 // computation involving only operations that could theoretically be folded 4447 // into a memory use, loop over each of these memory operation uses and see 4448 // if they could *actually* fold the instruction. The assumption is that 4449 // addressing modes are cheap and that duplicating the computation involved 4450 // many times is worthwhile, even on a fastpath. For sinking candidates 4451 // (i.e. cold call sites), this serves as a way to prevent excessive code 4452 // growth since most architectures have some reasonable small and fast way to 4453 // compute an effective address. (i.e LEA on x86) 4454 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4455 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4456 Instruction *User = MemoryUses[i].first; 4457 unsigned OpNo = MemoryUses[i].second; 4458 4459 // Get the access type of this use. If the use isn't a pointer, we don't 4460 // know what it accesses. 4461 Value *Address = User->getOperand(OpNo); 4462 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4463 if (!AddrTy) 4464 return false; 4465 Type *AddressAccessTy = AddrTy->getElementType(); 4466 unsigned AS = AddrTy->getAddressSpace(); 4467 4468 // Do a match against the root of this address, ignoring profitability. This 4469 // will tell us if the addressing mode for the memory operation will 4470 // *actually* cover the shared instruction. 4471 ExtAddrMode Result; 4472 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4473 0); 4474 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4475 TPT.getRestorationPoint(); 4476 AddressingModeMatcher Matcher( 4477 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4478 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4479 Matcher.IgnoreProfitability = true; 4480 bool Success = Matcher.matchAddr(Address, 0); 4481 (void)Success; assert(Success && "Couldn't select *anything*?"); 4482 4483 // The match was to check the profitability, the changes made are not 4484 // part of the original matcher. Therefore, they should be dropped 4485 // otherwise the original matcher will not present the right state. 4486 TPT.rollback(LastKnownGood); 4487 4488 // If the match didn't cover I, then it won't be shared by it. 4489 if (!is_contained(MatchedAddrModeInsts, I)) 4490 return false; 4491 4492 MatchedAddrModeInsts.clear(); 4493 } 4494 4495 return true; 4496 } 4497 4498 /// Return true if the specified values are defined in a 4499 /// different basic block than BB. 4500 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4501 if (Instruction *I = dyn_cast<Instruction>(V)) 4502 return I->getParent() != BB; 4503 return false; 4504 } 4505 4506 /// Sink addressing mode computation immediate before MemoryInst if doing so 4507 /// can be done without increasing register pressure. The need for the 4508 /// register pressure constraint means this can end up being an all or nothing 4509 /// decision for all uses of the same addressing computation. 4510 /// 4511 /// Load and Store Instructions often have addressing modes that can do 4512 /// significant amounts of computation. As such, instruction selection will try 4513 /// to get the load or store to do as much computation as possible for the 4514 /// program. The problem is that isel can only see within a single block. As 4515 /// such, we sink as much legal addressing mode work into the block as possible. 4516 /// 4517 /// This method is used to optimize both load/store and inline asms with memory 4518 /// operands. It's also used to sink addressing computations feeding into cold 4519 /// call sites into their (cold) basic block. 4520 /// 4521 /// The motivation for handling sinking into cold blocks is that doing so can 4522 /// both enable other address mode sinking (by satisfying the register pressure 4523 /// constraint above), and reduce register pressure globally (by removing the 4524 /// addressing mode computation from the fast path entirely.). 4525 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4526 Type *AccessTy, unsigned AddrSpace) { 4527 Value *Repl = Addr; 4528 4529 // Try to collapse single-value PHI nodes. This is necessary to undo 4530 // unprofitable PRE transformations. 4531 SmallVector<Value*, 8> worklist; 4532 SmallPtrSet<Value*, 16> Visited; 4533 worklist.push_back(Addr); 4534 4535 // Use a worklist to iteratively look through PHI and select nodes, and 4536 // ensure that the addressing mode obtained from the non-PHI/select roots of 4537 // the graph are compatible. 4538 bool PhiOrSelectSeen = false; 4539 SmallVector<Instruction*, 16> AddrModeInsts; 4540 const SimplifyQuery SQ(*DL, TLInfo); 4541 AddressingModeCombiner AddrModes(SQ, Addr); 4542 TypePromotionTransaction TPT(RemovedInsts); 4543 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4544 TPT.getRestorationPoint(); 4545 while (!worklist.empty()) { 4546 Value *V = worklist.back(); 4547 worklist.pop_back(); 4548 4549 // We allow traversing cyclic Phi nodes. 4550 // In case of success after this loop we ensure that traversing through 4551 // Phi nodes ends up with all cases to compute address of the form 4552 // BaseGV + Base + Scale * Index + Offset 4553 // where Scale and Offset are constans and BaseGV, Base and Index 4554 // are exactly the same Values in all cases. 4555 // It means that BaseGV, Scale and Offset dominate our memory instruction 4556 // and have the same value as they had in address computation represented 4557 // as Phi. So we can safely sink address computation to memory instruction. 4558 if (!Visited.insert(V).second) 4559 continue; 4560 4561 // For a PHI node, push all of its incoming values. 4562 if (PHINode *P = dyn_cast<PHINode>(V)) { 4563 for (Value *IncValue : P->incoming_values()) 4564 worklist.push_back(IncValue); 4565 PhiOrSelectSeen = true; 4566 continue; 4567 } 4568 // Similar for select. 4569 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4570 worklist.push_back(SI->getFalseValue()); 4571 worklist.push_back(SI->getTrueValue()); 4572 PhiOrSelectSeen = true; 4573 continue; 4574 } 4575 4576 // For non-PHIs, determine the addressing mode being computed. Note that 4577 // the result may differ depending on what other uses our candidate 4578 // addressing instructions might have. 4579 AddrModeInsts.clear(); 4580 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4581 0); 4582 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4583 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4584 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4585 4586 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4587 if (GEP && GEP->getParent() != MemoryInst->getParent() && 4588 !NewGEPBases.count(GEP)) { 4589 // If splitting the underlying data structure can reduce the offset of a 4590 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4591 // previously split data structures. 4592 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4593 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4594 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4595 } 4596 4597 NewAddrMode.OriginalValue = V; 4598 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4599 break; 4600 } 4601 4602 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4603 // or we have multiple but either couldn't combine them or combining them 4604 // wouldn't do anything useful, bail out now. 4605 if (!AddrModes.combineAddrModes()) { 4606 TPT.rollback(LastKnownGood); 4607 return false; 4608 } 4609 TPT.commit(); 4610 4611 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4612 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4613 4614 // If all the instructions matched are already in this BB, don't do anything. 4615 // If we saw a Phi node then it is not local definitely, and if we saw a select 4616 // then we want to push the address calculation past it even if it's already 4617 // in this BB. 4618 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4619 return IsNonLocalValue(V, MemoryInst->getParent()); 4620 })) { 4621 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 4622 << "\n"); 4623 return false; 4624 } 4625 4626 // Insert this computation right after this user. Since our caller is 4627 // scanning from the top of the BB to the bottom, reuse of the expr are 4628 // guaranteed to happen later. 4629 IRBuilder<> Builder(MemoryInst); 4630 4631 // Now that we determined the addressing expression we want to use and know 4632 // that we have to sink it into this block. Check to see if we have already 4633 // done this for some other load/store instr in this block. If so, reuse 4634 // the computation. Before attempting reuse, check if the address is valid 4635 // as it may have been erased. 4636 4637 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4638 4639 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4640 if (SunkAddr) { 4641 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 4642 << " for " << *MemoryInst << "\n"); 4643 if (SunkAddr->getType() != Addr->getType()) 4644 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4645 } else if (AddrSinkUsingGEPs || 4646 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && TTI->useAA())) { 4647 // By default, we use the GEP-based method when AA is used later. This 4648 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4649 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4650 << " for " << *MemoryInst << "\n"); 4651 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4652 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4653 4654 // First, find the pointer. 4655 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4656 ResultPtr = AddrMode.BaseReg; 4657 AddrMode.BaseReg = nullptr; 4658 } 4659 4660 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4661 // We can't add more than one pointer together, nor can we scale a 4662 // pointer (both of which seem meaningless). 4663 if (ResultPtr || AddrMode.Scale != 1) 4664 return false; 4665 4666 ResultPtr = AddrMode.ScaledReg; 4667 AddrMode.Scale = 0; 4668 } 4669 4670 // It is only safe to sign extend the BaseReg if we know that the math 4671 // required to create it did not overflow before we extend it. Since 4672 // the original IR value was tossed in favor of a constant back when 4673 // the AddrMode was created we need to bail out gracefully if widths 4674 // do not match instead of extending it. 4675 // 4676 // (See below for code to add the scale.) 4677 if (AddrMode.Scale) { 4678 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4679 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4680 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4681 return false; 4682 } 4683 4684 if (AddrMode.BaseGV) { 4685 if (ResultPtr) 4686 return false; 4687 4688 ResultPtr = AddrMode.BaseGV; 4689 } 4690 4691 // If the real base value actually came from an inttoptr, then the matcher 4692 // will look through it and provide only the integer value. In that case, 4693 // use it here. 4694 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4695 if (!ResultPtr && AddrMode.BaseReg) { 4696 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4697 "sunkaddr"); 4698 AddrMode.BaseReg = nullptr; 4699 } else if (!ResultPtr && AddrMode.Scale == 1) { 4700 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4701 "sunkaddr"); 4702 AddrMode.Scale = 0; 4703 } 4704 } 4705 4706 if (!ResultPtr && 4707 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4708 SunkAddr = Constant::getNullValue(Addr->getType()); 4709 } else if (!ResultPtr) { 4710 return false; 4711 } else { 4712 Type *I8PtrTy = 4713 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4714 Type *I8Ty = Builder.getInt8Ty(); 4715 4716 // Start with the base register. Do this first so that subsequent address 4717 // matching finds it last, which will prevent it from trying to match it 4718 // as the scaled value in case it happens to be a mul. That would be 4719 // problematic if we've sunk a different mul for the scale, because then 4720 // we'd end up sinking both muls. 4721 if (AddrMode.BaseReg) { 4722 Value *V = AddrMode.BaseReg; 4723 if (V->getType() != IntPtrTy) 4724 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4725 4726 ResultIndex = V; 4727 } 4728 4729 // Add the scale value. 4730 if (AddrMode.Scale) { 4731 Value *V = AddrMode.ScaledReg; 4732 if (V->getType() == IntPtrTy) { 4733 // done. 4734 } else { 4735 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 4736 cast<IntegerType>(V->getType())->getBitWidth() && 4737 "We can't transform if ScaledReg is too narrow"); 4738 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4739 } 4740 4741 if (AddrMode.Scale != 1) 4742 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4743 "sunkaddr"); 4744 if (ResultIndex) 4745 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4746 else 4747 ResultIndex = V; 4748 } 4749 4750 // Add in the Base Offset if present. 4751 if (AddrMode.BaseOffs) { 4752 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4753 if (ResultIndex) { 4754 // We need to add this separately from the scale above to help with 4755 // SDAG consecutive load/store merging. 4756 if (ResultPtr->getType() != I8PtrTy) 4757 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4758 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4759 } 4760 4761 ResultIndex = V; 4762 } 4763 4764 if (!ResultIndex) { 4765 SunkAddr = ResultPtr; 4766 } else { 4767 if (ResultPtr->getType() != I8PtrTy) 4768 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4769 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4770 } 4771 4772 if (SunkAddr->getType() != Addr->getType()) 4773 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4774 } 4775 } else { 4776 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 4777 // non-integral pointers, so in that case bail out now. 4778 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 4779 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 4780 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 4781 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 4782 if (DL->isNonIntegralPointerType(Addr->getType()) || 4783 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 4784 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 4785 (AddrMode.BaseGV && 4786 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 4787 return false; 4788 4789 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4790 << " for " << *MemoryInst << "\n"); 4791 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4792 Value *Result = nullptr; 4793 4794 // Start with the base register. Do this first so that subsequent address 4795 // matching finds it last, which will prevent it from trying to match it 4796 // as the scaled value in case it happens to be a mul. That would be 4797 // problematic if we've sunk a different mul for the scale, because then 4798 // we'd end up sinking both muls. 4799 if (AddrMode.BaseReg) { 4800 Value *V = AddrMode.BaseReg; 4801 if (V->getType()->isPointerTy()) 4802 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4803 if (V->getType() != IntPtrTy) 4804 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4805 Result = V; 4806 } 4807 4808 // Add the scale value. 4809 if (AddrMode.Scale) { 4810 Value *V = AddrMode.ScaledReg; 4811 if (V->getType() == IntPtrTy) { 4812 // done. 4813 } else if (V->getType()->isPointerTy()) { 4814 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4815 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4816 cast<IntegerType>(V->getType())->getBitWidth()) { 4817 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4818 } else { 4819 // It is only safe to sign extend the BaseReg if we know that the math 4820 // required to create it did not overflow before we extend it. Since 4821 // the original IR value was tossed in favor of a constant back when 4822 // the AddrMode was created we need to bail out gracefully if widths 4823 // do not match instead of extending it. 4824 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4825 if (I && (Result != AddrMode.BaseReg)) 4826 I->eraseFromParent(); 4827 return false; 4828 } 4829 if (AddrMode.Scale != 1) 4830 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4831 "sunkaddr"); 4832 if (Result) 4833 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4834 else 4835 Result = V; 4836 } 4837 4838 // Add in the BaseGV if present. 4839 if (AddrMode.BaseGV) { 4840 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 4841 if (Result) 4842 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4843 else 4844 Result = V; 4845 } 4846 4847 // Add in the Base Offset if present. 4848 if (AddrMode.BaseOffs) { 4849 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4850 if (Result) 4851 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4852 else 4853 Result = V; 4854 } 4855 4856 if (!Result) 4857 SunkAddr = Constant::getNullValue(Addr->getType()); 4858 else 4859 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 4860 } 4861 4862 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 4863 // Store the newly computed address into the cache. In the case we reused a 4864 // value, this should be idempotent. 4865 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 4866 4867 // If we have no uses, recursively delete the value and all dead instructions 4868 // using it. 4869 if (Repl->use_empty()) { 4870 // This can cause recursive deletion, which can invalidate our iterator. 4871 // Use a WeakTrackingVH to hold onto it in case this happens. 4872 Value *CurValue = &*CurInstIterator; 4873 WeakTrackingVH IterHandle(CurValue); 4874 BasicBlock *BB = CurInstIterator->getParent(); 4875 4876 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 4877 4878 if (IterHandle != CurValue) { 4879 // If the iterator instruction was recursively deleted, start over at the 4880 // start of the block. 4881 CurInstIterator = BB->begin(); 4882 SunkAddrs.clear(); 4883 } 4884 } 4885 ++NumMemoryInsts; 4886 return true; 4887 } 4888 4889 /// If there are any memory operands, use OptimizeMemoryInst to sink their 4890 /// address computing into the block when possible / profitable. 4891 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 4892 bool MadeChange = false; 4893 4894 const TargetRegisterInfo *TRI = 4895 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 4896 TargetLowering::AsmOperandInfoVector TargetConstraints = 4897 TLI->ParseConstraints(*DL, TRI, CS); 4898 unsigned ArgNo = 0; 4899 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4900 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4901 4902 // Compute the constraint code and ConstraintType to use. 4903 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 4904 4905 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4906 OpInfo.isIndirect) { 4907 Value *OpVal = CS->getArgOperand(ArgNo++); 4908 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 4909 } else if (OpInfo.Type == InlineAsm::isInput) 4910 ArgNo++; 4911 } 4912 4913 return MadeChange; 4914 } 4915 4916 /// Check if all the uses of \p Val are equivalent (or free) zero or 4917 /// sign extensions. 4918 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 4919 assert(!Val->use_empty() && "Input must have at least one use"); 4920 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 4921 bool IsSExt = isa<SExtInst>(FirstUser); 4922 Type *ExtTy = FirstUser->getType(); 4923 for (const User *U : Val->users()) { 4924 const Instruction *UI = cast<Instruction>(U); 4925 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 4926 return false; 4927 Type *CurTy = UI->getType(); 4928 // Same input and output types: Same instruction after CSE. 4929 if (CurTy == ExtTy) 4930 continue; 4931 4932 // If IsSExt is true, we are in this situation: 4933 // a = Val 4934 // b = sext ty1 a to ty2 4935 // c = sext ty1 a to ty3 4936 // Assuming ty2 is shorter than ty3, this could be turned into: 4937 // a = Val 4938 // b = sext ty1 a to ty2 4939 // c = sext ty2 b to ty3 4940 // However, the last sext is not free. 4941 if (IsSExt) 4942 return false; 4943 4944 // This is a ZExt, maybe this is free to extend from one type to another. 4945 // In that case, we would not account for a different use. 4946 Type *NarrowTy; 4947 Type *LargeTy; 4948 if (ExtTy->getScalarType()->getIntegerBitWidth() > 4949 CurTy->getScalarType()->getIntegerBitWidth()) { 4950 NarrowTy = CurTy; 4951 LargeTy = ExtTy; 4952 } else { 4953 NarrowTy = ExtTy; 4954 LargeTy = CurTy; 4955 } 4956 4957 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 4958 return false; 4959 } 4960 // All uses are the same or can be derived from one another for free. 4961 return true; 4962 } 4963 4964 /// Try to speculatively promote extensions in \p Exts and continue 4965 /// promoting through newly promoted operands recursively as far as doing so is 4966 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 4967 /// When some promotion happened, \p TPT contains the proper state to revert 4968 /// them. 4969 /// 4970 /// \return true if some promotion happened, false otherwise. 4971 bool CodeGenPrepare::tryToPromoteExts( 4972 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 4973 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 4974 unsigned CreatedInstsCost) { 4975 bool Promoted = false; 4976 4977 // Iterate over all the extensions to try to promote them. 4978 for (auto I : Exts) { 4979 // Early check if we directly have ext(load). 4980 if (isa<LoadInst>(I->getOperand(0))) { 4981 ProfitablyMovedExts.push_back(I); 4982 continue; 4983 } 4984 4985 // Check whether or not we want to do any promotion. The reason we have 4986 // this check inside the for loop is to catch the case where an extension 4987 // is directly fed by a load because in such case the extension can be moved 4988 // up without any promotion on its operands. 4989 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4990 return false; 4991 4992 // Get the action to perform the promotion. 4993 TypePromotionHelper::Action TPH = 4994 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 4995 // Check if we can promote. 4996 if (!TPH) { 4997 // Save the current extension as we cannot move up through its operand. 4998 ProfitablyMovedExts.push_back(I); 4999 continue; 5000 } 5001 5002 // Save the current state. 5003 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5004 TPT.getRestorationPoint(); 5005 SmallVector<Instruction *, 4> NewExts; 5006 unsigned NewCreatedInstsCost = 0; 5007 unsigned ExtCost = !TLI->isExtFree(I); 5008 // Promote. 5009 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5010 &NewExts, nullptr, *TLI); 5011 assert(PromotedVal && 5012 "TypePromotionHelper should have filtered out those cases"); 5013 5014 // We would be able to merge only one extension in a load. 5015 // Therefore, if we have more than 1 new extension we heuristically 5016 // cut this search path, because it means we degrade the code quality. 5017 // With exactly 2, the transformation is neutral, because we will merge 5018 // one extension but leave one. However, we optimistically keep going, 5019 // because the new extension may be removed too. 5020 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5021 // FIXME: It would be possible to propagate a negative value instead of 5022 // conservatively ceiling it to 0. 5023 TotalCreatedInstsCost = 5024 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5025 if (!StressExtLdPromotion && 5026 (TotalCreatedInstsCost > 1 || 5027 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5028 // This promotion is not profitable, rollback to the previous state, and 5029 // save the current extension in ProfitablyMovedExts as the latest 5030 // speculative promotion turned out to be unprofitable. 5031 TPT.rollback(LastKnownGood); 5032 ProfitablyMovedExts.push_back(I); 5033 continue; 5034 } 5035 // Continue promoting NewExts as far as doing so is profitable. 5036 SmallVector<Instruction *, 2> NewlyMovedExts; 5037 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5038 bool NewPromoted = false; 5039 for (auto ExtInst : NewlyMovedExts) { 5040 Instruction *MovedExt = cast<Instruction>(ExtInst); 5041 Value *ExtOperand = MovedExt->getOperand(0); 5042 // If we have reached to a load, we need this extra profitability check 5043 // as it could potentially be merged into an ext(load). 5044 if (isa<LoadInst>(ExtOperand) && 5045 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5046 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5047 continue; 5048 5049 ProfitablyMovedExts.push_back(MovedExt); 5050 NewPromoted = true; 5051 } 5052 5053 // If none of speculative promotions for NewExts is profitable, rollback 5054 // and save the current extension (I) as the last profitable extension. 5055 if (!NewPromoted) { 5056 TPT.rollback(LastKnownGood); 5057 ProfitablyMovedExts.push_back(I); 5058 continue; 5059 } 5060 // The promotion is profitable. 5061 Promoted = true; 5062 } 5063 return Promoted; 5064 } 5065 5066 /// Merging redundant sexts when one is dominating the other. 5067 bool CodeGenPrepare::mergeSExts(Function &F) { 5068 DominatorTree DT(F); 5069 bool Changed = false; 5070 for (auto &Entry : ValToSExtendedUses) { 5071 SExts &Insts = Entry.second; 5072 SExts CurPts; 5073 for (Instruction *Inst : Insts) { 5074 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5075 Inst->getOperand(0) != Entry.first) 5076 continue; 5077 bool inserted = false; 5078 for (auto &Pt : CurPts) { 5079 if (DT.dominates(Inst, Pt)) { 5080 Pt->replaceAllUsesWith(Inst); 5081 RemovedInsts.insert(Pt); 5082 Pt->removeFromParent(); 5083 Pt = Inst; 5084 inserted = true; 5085 Changed = true; 5086 break; 5087 } 5088 if (!DT.dominates(Pt, Inst)) 5089 // Give up if we need to merge in a common dominator as the 5090 // experiments show it is not profitable. 5091 continue; 5092 Inst->replaceAllUsesWith(Pt); 5093 RemovedInsts.insert(Inst); 5094 Inst->removeFromParent(); 5095 inserted = true; 5096 Changed = true; 5097 break; 5098 } 5099 if (!inserted) 5100 CurPts.push_back(Inst); 5101 } 5102 } 5103 return Changed; 5104 } 5105 5106 // Spliting large data structures so that the GEPs accessing them can have 5107 // smaller offsets so that they can be sunk to the same blocks as their users. 5108 // For example, a large struct starting from %base is splitted into two parts 5109 // where the second part starts from %new_base. 5110 // 5111 // Before: 5112 // BB0: 5113 // %base = 5114 // 5115 // BB1: 5116 // %gep0 = gep %base, off0 5117 // %gep1 = gep %base, off1 5118 // %gep2 = gep %base, off2 5119 // 5120 // BB2: 5121 // %load1 = load %gep0 5122 // %load2 = load %gep1 5123 // %load3 = load %gep2 5124 // 5125 // After: 5126 // BB0: 5127 // %base = 5128 // %new_base = gep %base, off0 5129 // 5130 // BB1: 5131 // %new_gep0 = %new_base 5132 // %new_gep1 = gep %new_base, off1 - off0 5133 // %new_gep2 = gep %new_base, off2 - off0 5134 // 5135 // BB2: 5136 // %load1 = load i32, i32* %new_gep0 5137 // %load2 = load i32, i32* %new_gep1 5138 // %load3 = load i32, i32* %new_gep2 5139 // 5140 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5141 // their offsets are smaller enough to fit into the addressing mode. 5142 bool CodeGenPrepare::splitLargeGEPOffsets() { 5143 bool Changed = false; 5144 for (auto &Entry : LargeOffsetGEPMap) { 5145 Value *OldBase = Entry.first; 5146 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5147 &LargeOffsetGEPs = Entry.second; 5148 auto compareGEPOffset = 5149 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5150 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5151 if (LHS.first == RHS.first) 5152 return false; 5153 if (LHS.second != RHS.second) 5154 return LHS.second < RHS.second; 5155 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5156 }; 5157 // Sorting all the GEPs of the same data structures based on the offsets. 5158 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5159 LargeOffsetGEPs.erase( 5160 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5161 LargeOffsetGEPs.end()); 5162 // Skip if all the GEPs have the same offsets. 5163 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5164 continue; 5165 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5166 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5167 Value *NewBaseGEP = nullptr; 5168 5169 auto LargeOffsetGEP = LargeOffsetGEPs.begin(); 5170 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5171 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5172 int64_t Offset = LargeOffsetGEP->second; 5173 if (Offset != BaseOffset) { 5174 TargetLowering::AddrMode AddrMode; 5175 AddrMode.BaseOffs = Offset - BaseOffset; 5176 // The result type of the GEP might not be the type of the memory 5177 // access. 5178 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5179 GEP->getResultElementType(), 5180 GEP->getAddressSpace())) { 5181 // We need to create a new base if the offset to the current base is 5182 // too large to fit into the addressing mode. So, a very large struct 5183 // may be splitted into several parts. 5184 BaseGEP = GEP; 5185 BaseOffset = Offset; 5186 NewBaseGEP = nullptr; 5187 } 5188 } 5189 5190 // Generate a new GEP to replace the current one. 5191 LLVMContext &Ctx = GEP->getContext(); 5192 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5193 Type *I8PtrTy = 5194 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5195 Type *I8Ty = Type::getInt8Ty(Ctx); 5196 5197 if (!NewBaseGEP) { 5198 // Create a new base if we don't have one yet. Find the insertion 5199 // pointer for the new base first. 5200 BasicBlock::iterator NewBaseInsertPt; 5201 BasicBlock *NewBaseInsertBB; 5202 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5203 // If the base of the struct is an instruction, the new base will be 5204 // inserted close to it. 5205 NewBaseInsertBB = BaseI->getParent(); 5206 if (isa<PHINode>(BaseI)) 5207 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5208 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5209 NewBaseInsertBB = 5210 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5211 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5212 } else 5213 NewBaseInsertPt = std::next(BaseI->getIterator()); 5214 } else { 5215 // If the current base is an argument or global value, the new base 5216 // will be inserted to the entry block. 5217 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5218 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5219 } 5220 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5221 // Create a new base. 5222 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5223 NewBaseGEP = OldBase; 5224 if (NewBaseGEP->getType() != I8PtrTy) 5225 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5226 NewBaseGEP = 5227 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5228 NewGEPBases.insert(NewBaseGEP); 5229 } 5230 5231 IRBuilder<> Builder(GEP); 5232 Value *NewGEP = NewBaseGEP; 5233 if (Offset == BaseOffset) { 5234 if (GEP->getType() != I8PtrTy) 5235 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5236 } else { 5237 // Calculate the new offset for the new GEP. 5238 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5239 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5240 5241 if (GEP->getType() != I8PtrTy) 5242 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5243 } 5244 GEP->replaceAllUsesWith(NewGEP); 5245 LargeOffsetGEPID.erase(GEP); 5246 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5247 GEP->eraseFromParent(); 5248 Changed = true; 5249 } 5250 } 5251 return Changed; 5252 } 5253 5254 /// Return true, if an ext(load) can be formed from an extension in 5255 /// \p MovedExts. 5256 bool CodeGenPrepare::canFormExtLd( 5257 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5258 Instruction *&Inst, bool HasPromoted) { 5259 for (auto *MovedExtInst : MovedExts) { 5260 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5261 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5262 Inst = MovedExtInst; 5263 break; 5264 } 5265 } 5266 if (!LI) 5267 return false; 5268 5269 // If they're already in the same block, there's nothing to do. 5270 // Make the cheap checks first if we did not promote. 5271 // If we promoted, we need to check if it is indeed profitable. 5272 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5273 return false; 5274 5275 return TLI->isExtLoad(LI, Inst, *DL); 5276 } 5277 5278 /// Move a zext or sext fed by a load into the same basic block as the load, 5279 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5280 /// extend into the load. 5281 /// 5282 /// E.g., 5283 /// \code 5284 /// %ld = load i32* %addr 5285 /// %add = add nuw i32 %ld, 4 5286 /// %zext = zext i32 %add to i64 5287 // \endcode 5288 /// => 5289 /// \code 5290 /// %ld = load i32* %addr 5291 /// %zext = zext i32 %ld to i64 5292 /// %add = add nuw i64 %zext, 4 5293 /// \encode 5294 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5295 /// allow us to match zext(load i32*) to i64. 5296 /// 5297 /// Also, try to promote the computations used to obtain a sign extended 5298 /// value used into memory accesses. 5299 /// E.g., 5300 /// \code 5301 /// a = add nsw i32 b, 3 5302 /// d = sext i32 a to i64 5303 /// e = getelementptr ..., i64 d 5304 /// \endcode 5305 /// => 5306 /// \code 5307 /// f = sext i32 b to i64 5308 /// a = add nsw i64 f, 3 5309 /// e = getelementptr ..., i64 a 5310 /// \endcode 5311 /// 5312 /// \p Inst[in/out] the extension may be modified during the process if some 5313 /// promotions apply. 5314 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 5315 // ExtLoad formation and address type promotion infrastructure requires TLI to 5316 // be effective. 5317 if (!TLI) 5318 return false; 5319 5320 bool AllowPromotionWithoutCommonHeader = false; 5321 /// See if it is an interesting sext operations for the address type 5322 /// promotion before trying to promote it, e.g., the ones with the right 5323 /// type and used in memory accesses. 5324 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 5325 *Inst, AllowPromotionWithoutCommonHeader); 5326 TypePromotionTransaction TPT(RemovedInsts); 5327 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5328 TPT.getRestorationPoint(); 5329 SmallVector<Instruction *, 1> Exts; 5330 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 5331 Exts.push_back(Inst); 5332 5333 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 5334 5335 // Look for a load being extended. 5336 LoadInst *LI = nullptr; 5337 Instruction *ExtFedByLoad; 5338 5339 // Try to promote a chain of computation if it allows to form an extended 5340 // load. 5341 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5342 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5343 TPT.commit(); 5344 // Move the extend into the same block as the load 5345 ExtFedByLoad->moveAfter(LI); 5346 // CGP does not check if the zext would be speculatively executed when moved 5347 // to the same basic block as the load. Preserving its original location 5348 // would pessimize the debugging experience, as well as negatively impact 5349 // the quality of sample pgo. We don't want to use "line 0" as that has a 5350 // size cost in the line-table section and logically the zext can be seen as 5351 // part of the load. Therefore we conservatively reuse the same debug 5352 // location for the load and the zext. 5353 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 5354 ++NumExtsMoved; 5355 Inst = ExtFedByLoad; 5356 return true; 5357 } 5358 5359 // Continue promoting SExts if known as considerable depending on targets. 5360 if (ATPConsiderable && 5361 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5362 HasPromoted, TPT, SpeculativelyMovedExts)) 5363 return true; 5364 5365 TPT.rollback(LastKnownGood); 5366 return false; 5367 } 5368 5369 // Perform address type promotion if doing so is profitable. 5370 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5371 // instructions that sign extended the same initial value. However, if 5372 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5373 // extension is just profitable. 5374 bool CodeGenPrepare::performAddressTypePromotion( 5375 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5376 bool HasPromoted, TypePromotionTransaction &TPT, 5377 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5378 bool Promoted = false; 5379 SmallPtrSet<Instruction *, 1> UnhandledExts; 5380 bool AllSeenFirst = true; 5381 for (auto I : SpeculativelyMovedExts) { 5382 Value *HeadOfChain = I->getOperand(0); 5383 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 5384 SeenChainsForSExt.find(HeadOfChain); 5385 // If there is an unhandled SExt which has the same header, try to promote 5386 // it as well. 5387 if (AlreadySeen != SeenChainsForSExt.end()) { 5388 if (AlreadySeen->second != nullptr) 5389 UnhandledExts.insert(AlreadySeen->second); 5390 AllSeenFirst = false; 5391 } 5392 } 5393 5394 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 5395 SpeculativelyMovedExts.size() == 1)) { 5396 TPT.commit(); 5397 if (HasPromoted) 5398 Promoted = true; 5399 for (auto I : SpeculativelyMovedExts) { 5400 Value *HeadOfChain = I->getOperand(0); 5401 SeenChainsForSExt[HeadOfChain] = nullptr; 5402 ValToSExtendedUses[HeadOfChain].push_back(I); 5403 } 5404 // Update Inst as promotion happen. 5405 Inst = SpeculativelyMovedExts.pop_back_val(); 5406 } else { 5407 // This is the first chain visited from the header, keep the current chain 5408 // as unhandled. Defer to promote this until we encounter another SExt 5409 // chain derived from the same header. 5410 for (auto I : SpeculativelyMovedExts) { 5411 Value *HeadOfChain = I->getOperand(0); 5412 SeenChainsForSExt[HeadOfChain] = Inst; 5413 } 5414 return false; 5415 } 5416 5417 if (!AllSeenFirst && !UnhandledExts.empty()) 5418 for (auto VisitedSExt : UnhandledExts) { 5419 if (RemovedInsts.count(VisitedSExt)) 5420 continue; 5421 TypePromotionTransaction TPT(RemovedInsts); 5422 SmallVector<Instruction *, 1> Exts; 5423 SmallVector<Instruction *, 2> Chains; 5424 Exts.push_back(VisitedSExt); 5425 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 5426 TPT.commit(); 5427 if (HasPromoted) 5428 Promoted = true; 5429 for (auto I : Chains) { 5430 Value *HeadOfChain = I->getOperand(0); 5431 // Mark this as handled. 5432 SeenChainsForSExt[HeadOfChain] = nullptr; 5433 ValToSExtendedUses[HeadOfChain].push_back(I); 5434 } 5435 } 5436 return Promoted; 5437 } 5438 5439 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5440 BasicBlock *DefBB = I->getParent(); 5441 5442 // If the result of a {s|z}ext and its source are both live out, rewrite all 5443 // other uses of the source with result of extension. 5444 Value *Src = I->getOperand(0); 5445 if (Src->hasOneUse()) 5446 return false; 5447 5448 // Only do this xform if truncating is free. 5449 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 5450 return false; 5451 5452 // Only safe to perform the optimization if the source is also defined in 5453 // this block. 5454 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5455 return false; 5456 5457 bool DefIsLiveOut = false; 5458 for (User *U : I->users()) { 5459 Instruction *UI = cast<Instruction>(U); 5460 5461 // Figure out which BB this ext is used in. 5462 BasicBlock *UserBB = UI->getParent(); 5463 if (UserBB == DefBB) continue; 5464 DefIsLiveOut = true; 5465 break; 5466 } 5467 if (!DefIsLiveOut) 5468 return false; 5469 5470 // Make sure none of the uses are PHI nodes. 5471 for (User *U : Src->users()) { 5472 Instruction *UI = cast<Instruction>(U); 5473 BasicBlock *UserBB = UI->getParent(); 5474 if (UserBB == DefBB) continue; 5475 // Be conservative. We don't want this xform to end up introducing 5476 // reloads just before load / store instructions. 5477 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5478 return false; 5479 } 5480 5481 // InsertedTruncs - Only insert one trunc in each block once. 5482 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5483 5484 bool MadeChange = false; 5485 for (Use &U : Src->uses()) { 5486 Instruction *User = cast<Instruction>(U.getUser()); 5487 5488 // Figure out which BB this ext is used in. 5489 BasicBlock *UserBB = User->getParent(); 5490 if (UserBB == DefBB) continue; 5491 5492 // Both src and def are live in this block. Rewrite the use. 5493 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5494 5495 if (!InsertedTrunc) { 5496 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5497 assert(InsertPt != UserBB->end()); 5498 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5499 InsertedInsts.insert(InsertedTrunc); 5500 } 5501 5502 // Replace a use of the {s|z}ext source with a use of the result. 5503 U = InsertedTrunc; 5504 ++NumExtUses; 5505 MadeChange = true; 5506 } 5507 5508 return MadeChange; 5509 } 5510 5511 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5512 // just after the load if the target can fold this into one extload instruction, 5513 // with the hope of eliminating some of the other later "and" instructions using 5514 // the loaded value. "and"s that are made trivially redundant by the insertion 5515 // of the new "and" are removed by this function, while others (e.g. those whose 5516 // path from the load goes through a phi) are left for isel to potentially 5517 // remove. 5518 // 5519 // For example: 5520 // 5521 // b0: 5522 // x = load i32 5523 // ... 5524 // b1: 5525 // y = and x, 0xff 5526 // z = use y 5527 // 5528 // becomes: 5529 // 5530 // b0: 5531 // x = load i32 5532 // x' = and x, 0xff 5533 // ... 5534 // b1: 5535 // z = use x' 5536 // 5537 // whereas: 5538 // 5539 // b0: 5540 // x1 = load i32 5541 // ... 5542 // b1: 5543 // x2 = load i32 5544 // ... 5545 // b2: 5546 // x = phi x1, x2 5547 // y = and x, 0xff 5548 // 5549 // becomes (after a call to optimizeLoadExt for each load): 5550 // 5551 // b0: 5552 // x1 = load i32 5553 // x1' = and x1, 0xff 5554 // ... 5555 // b1: 5556 // x2 = load i32 5557 // x2' = and x2, 0xff 5558 // ... 5559 // b2: 5560 // x = phi x1', x2' 5561 // y = and x, 0xff 5562 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5563 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 5564 return false; 5565 5566 // Skip loads we've already transformed. 5567 if (Load->hasOneUse() && 5568 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5569 return false; 5570 5571 // Look at all uses of Load, looking through phis, to determine how many bits 5572 // of the loaded value are needed. 5573 SmallVector<Instruction *, 8> WorkList; 5574 SmallPtrSet<Instruction *, 16> Visited; 5575 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5576 for (auto *U : Load->users()) 5577 WorkList.push_back(cast<Instruction>(U)); 5578 5579 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5580 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5581 APInt DemandBits(BitWidth, 0); 5582 APInt WidestAndBits(BitWidth, 0); 5583 5584 while (!WorkList.empty()) { 5585 Instruction *I = WorkList.back(); 5586 WorkList.pop_back(); 5587 5588 // Break use-def graph loops. 5589 if (!Visited.insert(I).second) 5590 continue; 5591 5592 // For a PHI node, push all of its users. 5593 if (auto *Phi = dyn_cast<PHINode>(I)) { 5594 for (auto *U : Phi->users()) 5595 WorkList.push_back(cast<Instruction>(U)); 5596 continue; 5597 } 5598 5599 switch (I->getOpcode()) { 5600 case Instruction::And: { 5601 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5602 if (!AndC) 5603 return false; 5604 APInt AndBits = AndC->getValue(); 5605 DemandBits |= AndBits; 5606 // Keep track of the widest and mask we see. 5607 if (AndBits.ugt(WidestAndBits)) 5608 WidestAndBits = AndBits; 5609 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5610 AndsToMaybeRemove.push_back(I); 5611 break; 5612 } 5613 5614 case Instruction::Shl: { 5615 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5616 if (!ShlC) 5617 return false; 5618 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5619 DemandBits.setLowBits(BitWidth - ShiftAmt); 5620 break; 5621 } 5622 5623 case Instruction::Trunc: { 5624 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5625 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5626 DemandBits.setLowBits(TruncBitWidth); 5627 break; 5628 } 5629 5630 default: 5631 return false; 5632 } 5633 } 5634 5635 uint32_t ActiveBits = DemandBits.getActiveBits(); 5636 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5637 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5638 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5639 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5640 // followed by an AND. 5641 // TODO: Look into removing this restriction by fixing backends to either 5642 // return false for isLoadExtLegal for i1 or have them select this pattern to 5643 // a single instruction. 5644 // 5645 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5646 // mask, since these are the only ands that will be removed by isel. 5647 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5648 WidestAndBits != DemandBits) 5649 return false; 5650 5651 LLVMContext &Ctx = Load->getType()->getContext(); 5652 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5653 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5654 5655 // Reject cases that won't be matched as extloads. 5656 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5657 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5658 return false; 5659 5660 IRBuilder<> Builder(Load->getNextNode()); 5661 auto *NewAnd = dyn_cast<Instruction>( 5662 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5663 // Mark this instruction as "inserted by CGP", so that other 5664 // optimizations don't touch it. 5665 InsertedInsts.insert(NewAnd); 5666 5667 // Replace all uses of load with new and (except for the use of load in the 5668 // new and itself). 5669 Load->replaceAllUsesWith(NewAnd); 5670 NewAnd->setOperand(0, Load); 5671 5672 // Remove any and instructions that are now redundant. 5673 for (auto *And : AndsToMaybeRemove) 5674 // Check that the and mask is the same as the one we decided to put on the 5675 // new and. 5676 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5677 And->replaceAllUsesWith(NewAnd); 5678 if (&*CurInstIterator == And) 5679 CurInstIterator = std::next(And->getIterator()); 5680 And->eraseFromParent(); 5681 ++NumAndUses; 5682 } 5683 5684 ++NumAndsAdded; 5685 return true; 5686 } 5687 5688 /// Check if V (an operand of a select instruction) is an expensive instruction 5689 /// that is only used once. 5690 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5691 auto *I = dyn_cast<Instruction>(V); 5692 // If it's safe to speculatively execute, then it should not have side 5693 // effects; therefore, it's safe to sink and possibly *not* execute. 5694 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5695 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5696 } 5697 5698 /// Returns true if a SelectInst should be turned into an explicit branch. 5699 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5700 const TargetLowering *TLI, 5701 SelectInst *SI) { 5702 // If even a predictable select is cheap, then a branch can't be cheaper. 5703 if (!TLI->isPredictableSelectExpensive()) 5704 return false; 5705 5706 // FIXME: This should use the same heuristics as IfConversion to determine 5707 // whether a select is better represented as a branch. 5708 5709 // If metadata tells us that the select condition is obviously predictable, 5710 // then we want to replace the select with a branch. 5711 uint64_t TrueWeight, FalseWeight; 5712 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5713 uint64_t Max = std::max(TrueWeight, FalseWeight); 5714 uint64_t Sum = TrueWeight + FalseWeight; 5715 if (Sum != 0) { 5716 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5717 if (Probability > TLI->getPredictableBranchThreshold()) 5718 return true; 5719 } 5720 } 5721 5722 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5723 5724 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5725 // comparison condition. If the compare has more than one use, there's 5726 // probably another cmov or setcc around, so it's not worth emitting a branch. 5727 if (!Cmp || !Cmp->hasOneUse()) 5728 return false; 5729 5730 // If either operand of the select is expensive and only needed on one side 5731 // of the select, we should form a branch. 5732 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5733 sinkSelectOperand(TTI, SI->getFalseValue())) 5734 return true; 5735 5736 return false; 5737 } 5738 5739 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5740 /// false value of \p SI. If the true/false value of \p SI is defined by any 5741 /// select instructions in \p Selects, look through the defining select 5742 /// instruction until the true/false value is not defined in \p Selects. 5743 static Value *getTrueOrFalseValue( 5744 SelectInst *SI, bool isTrue, 5745 const SmallPtrSet<const Instruction *, 2> &Selects) { 5746 Value *V; 5747 5748 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 5749 DefSI = dyn_cast<SelectInst>(V)) { 5750 assert(DefSI->getCondition() == SI->getCondition() && 5751 "The condition of DefSI does not match with SI"); 5752 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 5753 } 5754 return V; 5755 } 5756 5757 /// If we have a SelectInst that will likely profit from branch prediction, 5758 /// turn it into a branch. 5759 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 5760 // If branch conversion isn't desirable, exit early. 5761 if (DisableSelectToBranch || OptSize || !TLI) 5762 return false; 5763 5764 // Find all consecutive select instructions that share the same condition. 5765 SmallVector<SelectInst *, 2> ASI; 5766 ASI.push_back(SI); 5767 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 5768 It != SI->getParent()->end(); ++It) { 5769 SelectInst *I = dyn_cast<SelectInst>(&*It); 5770 if (I && SI->getCondition() == I->getCondition()) { 5771 ASI.push_back(I); 5772 } else { 5773 break; 5774 } 5775 } 5776 5777 SelectInst *LastSI = ASI.back(); 5778 // Increment the current iterator to skip all the rest of select instructions 5779 // because they will be either "not lowered" or "all lowered" to branch. 5780 CurInstIterator = std::next(LastSI->getIterator()); 5781 5782 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 5783 5784 // Can we convert the 'select' to CF ? 5785 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 5786 return false; 5787 5788 TargetLowering::SelectSupportKind SelectKind; 5789 if (VectorCond) 5790 SelectKind = TargetLowering::VectorMaskSelect; 5791 else if (SI->getType()->isVectorTy()) 5792 SelectKind = TargetLowering::ScalarCondVectorVal; 5793 else 5794 SelectKind = TargetLowering::ScalarValSelect; 5795 5796 if (TLI->isSelectSupported(SelectKind) && 5797 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 5798 return false; 5799 5800 ModifiedDT = true; 5801 5802 // Transform a sequence like this: 5803 // start: 5804 // %cmp = cmp uge i32 %a, %b 5805 // %sel = select i1 %cmp, i32 %c, i32 %d 5806 // 5807 // Into: 5808 // start: 5809 // %cmp = cmp uge i32 %a, %b 5810 // br i1 %cmp, label %select.true, label %select.false 5811 // select.true: 5812 // br label %select.end 5813 // select.false: 5814 // br label %select.end 5815 // select.end: 5816 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 5817 // 5818 // In addition, we may sink instructions that produce %c or %d from 5819 // the entry block into the destination(s) of the new branch. 5820 // If the true or false blocks do not contain a sunken instruction, that 5821 // block and its branch may be optimized away. In that case, one side of the 5822 // first branch will point directly to select.end, and the corresponding PHI 5823 // predecessor block will be the start block. 5824 5825 // First, we split the block containing the select into 2 blocks. 5826 BasicBlock *StartBlock = SI->getParent(); 5827 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 5828 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 5829 5830 // Delete the unconditional branch that was just created by the split. 5831 StartBlock->getTerminator()->eraseFromParent(); 5832 5833 // These are the new basic blocks for the conditional branch. 5834 // At least one will become an actual new basic block. 5835 BasicBlock *TrueBlock = nullptr; 5836 BasicBlock *FalseBlock = nullptr; 5837 BranchInst *TrueBranch = nullptr; 5838 BranchInst *FalseBranch = nullptr; 5839 5840 // Sink expensive instructions into the conditional blocks to avoid executing 5841 // them speculatively. 5842 for (SelectInst *SI : ASI) { 5843 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 5844 if (TrueBlock == nullptr) { 5845 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 5846 EndBlock->getParent(), EndBlock); 5847 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 5848 TrueBranch->setDebugLoc(SI->getDebugLoc()); 5849 } 5850 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 5851 TrueInst->moveBefore(TrueBranch); 5852 } 5853 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 5854 if (FalseBlock == nullptr) { 5855 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 5856 EndBlock->getParent(), EndBlock); 5857 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 5858 FalseBranch->setDebugLoc(SI->getDebugLoc()); 5859 } 5860 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 5861 FalseInst->moveBefore(FalseBranch); 5862 } 5863 } 5864 5865 // If there was nothing to sink, then arbitrarily choose the 'false' side 5866 // for a new input value to the PHI. 5867 if (TrueBlock == FalseBlock) { 5868 assert(TrueBlock == nullptr && 5869 "Unexpected basic block transform while optimizing select"); 5870 5871 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 5872 EndBlock->getParent(), EndBlock); 5873 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 5874 FalseBranch->setDebugLoc(SI->getDebugLoc()); 5875 } 5876 5877 // Insert the real conditional branch based on the original condition. 5878 // If we did not create a new block for one of the 'true' or 'false' paths 5879 // of the condition, it means that side of the branch goes to the end block 5880 // directly and the path originates from the start block from the point of 5881 // view of the new PHI. 5882 BasicBlock *TT, *FT; 5883 if (TrueBlock == nullptr) { 5884 TT = EndBlock; 5885 FT = FalseBlock; 5886 TrueBlock = StartBlock; 5887 } else if (FalseBlock == nullptr) { 5888 TT = TrueBlock; 5889 FT = EndBlock; 5890 FalseBlock = StartBlock; 5891 } else { 5892 TT = TrueBlock; 5893 FT = FalseBlock; 5894 } 5895 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 5896 5897 SmallPtrSet<const Instruction *, 2> INS; 5898 INS.insert(ASI.begin(), ASI.end()); 5899 // Use reverse iterator because later select may use the value of the 5900 // earlier select, and we need to propagate value through earlier select 5901 // to get the PHI operand. 5902 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 5903 SelectInst *SI = *It; 5904 // The select itself is replaced with a PHI Node. 5905 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 5906 PN->takeName(SI); 5907 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 5908 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 5909 PN->setDebugLoc(SI->getDebugLoc()); 5910 5911 SI->replaceAllUsesWith(PN); 5912 SI->eraseFromParent(); 5913 INS.erase(SI); 5914 ++NumSelectsExpanded; 5915 } 5916 5917 // Instruct OptimizeBlock to skip to the next block. 5918 CurInstIterator = StartBlock->end(); 5919 return true; 5920 } 5921 5922 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 5923 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 5924 int SplatElem = -1; 5925 for (unsigned i = 0; i < Mask.size(); ++i) { 5926 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 5927 return false; 5928 SplatElem = Mask[i]; 5929 } 5930 5931 return true; 5932 } 5933 5934 /// Some targets have expensive vector shifts if the lanes aren't all the same 5935 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 5936 /// it's often worth sinking a shufflevector splat down to its use so that 5937 /// codegen can spot all lanes are identical. 5938 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 5939 BasicBlock *DefBB = SVI->getParent(); 5940 5941 // Only do this xform if variable vector shifts are particularly expensive. 5942 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 5943 return false; 5944 5945 // We only expect better codegen by sinking a shuffle if we can recognise a 5946 // constant splat. 5947 if (!isBroadcastShuffle(SVI)) 5948 return false; 5949 5950 // InsertedShuffles - Only insert a shuffle in each block once. 5951 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 5952 5953 bool MadeChange = false; 5954 for (User *U : SVI->users()) { 5955 Instruction *UI = cast<Instruction>(U); 5956 5957 // Figure out which BB this ext is used in. 5958 BasicBlock *UserBB = UI->getParent(); 5959 if (UserBB == DefBB) continue; 5960 5961 // For now only apply this when the splat is used by a shift instruction. 5962 if (!UI->isShift()) continue; 5963 5964 // Everything checks out, sink the shuffle if the user's block doesn't 5965 // already have a copy. 5966 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 5967 5968 if (!InsertedShuffle) { 5969 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5970 assert(InsertPt != UserBB->end()); 5971 InsertedShuffle = 5972 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5973 SVI->getOperand(2), "", &*InsertPt); 5974 } 5975 5976 UI->replaceUsesOfWith(SVI, InsertedShuffle); 5977 MadeChange = true; 5978 } 5979 5980 // If we removed all uses, nuke the shuffle. 5981 if (SVI->use_empty()) { 5982 SVI->eraseFromParent(); 5983 MadeChange = true; 5984 } 5985 5986 return MadeChange; 5987 } 5988 5989 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 5990 // If the operands of I can be folded into a target instruction together with 5991 // I, duplicate and sink them. 5992 SmallVector<Use *, 4> OpsToSink; 5993 if (!TLI || !TLI->shouldSinkOperands(I, OpsToSink)) 5994 return false; 5995 5996 // OpsToSink can contain multiple uses in a use chain (e.g. 5997 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 5998 // uses must come first, which means they are sunk first, temporarily creating 5999 // invalid IR. This will be fixed once their dominated users are sunk and 6000 // updated. 6001 BasicBlock *TargetBB = I->getParent(); 6002 bool Changed = false; 6003 SmallVector<Use *, 4> ToReplace; 6004 for (Use *U : OpsToSink) { 6005 auto *UI = cast<Instruction>(U->get()); 6006 if (UI->getParent() == TargetBB || isa<PHINode>(UI)) 6007 continue; 6008 ToReplace.push_back(U); 6009 } 6010 6011 SmallPtrSet<Instruction *, 4> MaybeDead; 6012 for (Use *U : ToReplace) { 6013 auto *UI = cast<Instruction>(U->get()); 6014 Instruction *NI = UI->clone(); 6015 MaybeDead.insert(UI); 6016 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6017 NI->insertBefore(I); 6018 InsertedInsts.insert(NI); 6019 U->set(NI); 6020 Changed = true; 6021 } 6022 6023 // Remove instructions that are dead after sinking. 6024 for (auto *I : MaybeDead) 6025 if (!I->hasNUsesOrMore(1)) 6026 I->eraseFromParent(); 6027 6028 return Changed; 6029 } 6030 6031 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6032 if (!TLI || !DL) 6033 return false; 6034 6035 Value *Cond = SI->getCondition(); 6036 Type *OldType = Cond->getType(); 6037 LLVMContext &Context = Cond->getContext(); 6038 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 6039 unsigned RegWidth = RegType.getSizeInBits(); 6040 6041 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6042 return false; 6043 6044 // If the register width is greater than the type width, expand the condition 6045 // of the switch instruction and each case constant to the width of the 6046 // register. By widening the type of the switch condition, subsequent 6047 // comparisons (for case comparisons) will not need to be extended to the 6048 // preferred register width, so we will potentially eliminate N-1 extends, 6049 // where N is the number of cases in the switch. 6050 auto *NewType = Type::getIntNTy(Context, RegWidth); 6051 6052 // Zero-extend the switch condition and case constants unless the switch 6053 // condition is a function argument that is already being sign-extended. 6054 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6055 // everything instead. 6056 Instruction::CastOps ExtType = Instruction::ZExt; 6057 if (auto *Arg = dyn_cast<Argument>(Cond)) 6058 if (Arg->hasSExtAttr()) 6059 ExtType = Instruction::SExt; 6060 6061 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 6062 ExtInst->insertBefore(SI); 6063 ExtInst->setDebugLoc(SI->getDebugLoc()); 6064 SI->setCondition(ExtInst); 6065 for (auto Case : SI->cases()) { 6066 APInt NarrowConst = Case.getCaseValue()->getValue(); 6067 APInt WideConst = (ExtType == Instruction::ZExt) ? 6068 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 6069 Case.setValue(ConstantInt::get(Context, WideConst)); 6070 } 6071 6072 return true; 6073 } 6074 6075 6076 namespace { 6077 6078 /// Helper class to promote a scalar operation to a vector one. 6079 /// This class is used to move downward extractelement transition. 6080 /// E.g., 6081 /// a = vector_op <2 x i32> 6082 /// b = extractelement <2 x i32> a, i32 0 6083 /// c = scalar_op b 6084 /// store c 6085 /// 6086 /// => 6087 /// a = vector_op <2 x i32> 6088 /// c = vector_op a (equivalent to scalar_op on the related lane) 6089 /// * d = extractelement <2 x i32> c, i32 0 6090 /// * store d 6091 /// Assuming both extractelement and store can be combine, we get rid of the 6092 /// transition. 6093 class VectorPromoteHelper { 6094 /// DataLayout associated with the current module. 6095 const DataLayout &DL; 6096 6097 /// Used to perform some checks on the legality of vector operations. 6098 const TargetLowering &TLI; 6099 6100 /// Used to estimated the cost of the promoted chain. 6101 const TargetTransformInfo &TTI; 6102 6103 /// The transition being moved downwards. 6104 Instruction *Transition; 6105 6106 /// The sequence of instructions to be promoted. 6107 SmallVector<Instruction *, 4> InstsToBePromoted; 6108 6109 /// Cost of combining a store and an extract. 6110 unsigned StoreExtractCombineCost; 6111 6112 /// Instruction that will be combined with the transition. 6113 Instruction *CombineInst = nullptr; 6114 6115 /// The instruction that represents the current end of the transition. 6116 /// Since we are faking the promotion until we reach the end of the chain 6117 /// of computation, we need a way to get the current end of the transition. 6118 Instruction *getEndOfTransition() const { 6119 if (InstsToBePromoted.empty()) 6120 return Transition; 6121 return InstsToBePromoted.back(); 6122 } 6123 6124 /// Return the index of the original value in the transition. 6125 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 6126 /// c, is at index 0. 6127 unsigned getTransitionOriginalValueIdx() const { 6128 assert(isa<ExtractElementInst>(Transition) && 6129 "Other kind of transitions are not supported yet"); 6130 return 0; 6131 } 6132 6133 /// Return the index of the index in the transition. 6134 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 6135 /// is at index 1. 6136 unsigned getTransitionIdx() const { 6137 assert(isa<ExtractElementInst>(Transition) && 6138 "Other kind of transitions are not supported yet"); 6139 return 1; 6140 } 6141 6142 /// Get the type of the transition. 6143 /// This is the type of the original value. 6144 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 6145 /// transition is <2 x i32>. 6146 Type *getTransitionType() const { 6147 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 6148 } 6149 6150 /// Promote \p ToBePromoted by moving \p Def downward through. 6151 /// I.e., we have the following sequence: 6152 /// Def = Transition <ty1> a to <ty2> 6153 /// b = ToBePromoted <ty2> Def, ... 6154 /// => 6155 /// b = ToBePromoted <ty1> a, ... 6156 /// Def = Transition <ty1> ToBePromoted to <ty2> 6157 void promoteImpl(Instruction *ToBePromoted); 6158 6159 /// Check whether or not it is profitable to promote all the 6160 /// instructions enqueued to be promoted. 6161 bool isProfitableToPromote() { 6162 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 6163 unsigned Index = isa<ConstantInt>(ValIdx) 6164 ? cast<ConstantInt>(ValIdx)->getZExtValue() 6165 : -1; 6166 Type *PromotedType = getTransitionType(); 6167 6168 StoreInst *ST = cast<StoreInst>(CombineInst); 6169 unsigned AS = ST->getPointerAddressSpace(); 6170 unsigned Align = ST->getAlignment(); 6171 // Check if this store is supported. 6172 if (!TLI.allowsMisalignedMemoryAccesses( 6173 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 6174 Align)) { 6175 // If this is not supported, there is no way we can combine 6176 // the extract with the store. 6177 return false; 6178 } 6179 6180 // The scalar chain of computation has to pay for the transition 6181 // scalar to vector. 6182 // The vector chain has to account for the combining cost. 6183 uint64_t ScalarCost = 6184 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 6185 uint64_t VectorCost = StoreExtractCombineCost; 6186 for (const auto &Inst : InstsToBePromoted) { 6187 // Compute the cost. 6188 // By construction, all instructions being promoted are arithmetic ones. 6189 // Moreover, one argument is a constant that can be viewed as a splat 6190 // constant. 6191 Value *Arg0 = Inst->getOperand(0); 6192 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 6193 isa<ConstantFP>(Arg0); 6194 TargetTransformInfo::OperandValueKind Arg0OVK = 6195 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6196 : TargetTransformInfo::OK_AnyValue; 6197 TargetTransformInfo::OperandValueKind Arg1OVK = 6198 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6199 : TargetTransformInfo::OK_AnyValue; 6200 ScalarCost += TTI.getArithmeticInstrCost( 6201 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 6202 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 6203 Arg0OVK, Arg1OVK); 6204 } 6205 LLVM_DEBUG( 6206 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 6207 << ScalarCost << "\nVector: " << VectorCost << '\n'); 6208 return ScalarCost > VectorCost; 6209 } 6210 6211 /// Generate a constant vector with \p Val with the same 6212 /// number of elements as the transition. 6213 /// \p UseSplat defines whether or not \p Val should be replicated 6214 /// across the whole vector. 6215 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 6216 /// otherwise we generate a vector with as many undef as possible: 6217 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 6218 /// used at the index of the extract. 6219 Value *getConstantVector(Constant *Val, bool UseSplat) const { 6220 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 6221 if (!UseSplat) { 6222 // If we cannot determine where the constant must be, we have to 6223 // use a splat constant. 6224 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 6225 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 6226 ExtractIdx = CstVal->getSExtValue(); 6227 else 6228 UseSplat = true; 6229 } 6230 6231 unsigned End = getTransitionType()->getVectorNumElements(); 6232 if (UseSplat) 6233 return ConstantVector::getSplat(End, Val); 6234 6235 SmallVector<Constant *, 4> ConstVec; 6236 UndefValue *UndefVal = UndefValue::get(Val->getType()); 6237 for (unsigned Idx = 0; Idx != End; ++Idx) { 6238 if (Idx == ExtractIdx) 6239 ConstVec.push_back(Val); 6240 else 6241 ConstVec.push_back(UndefVal); 6242 } 6243 return ConstantVector::get(ConstVec); 6244 } 6245 6246 /// Check if promoting to a vector type an operand at \p OperandIdx 6247 /// in \p Use can trigger undefined behavior. 6248 static bool canCauseUndefinedBehavior(const Instruction *Use, 6249 unsigned OperandIdx) { 6250 // This is not safe to introduce undef when the operand is on 6251 // the right hand side of a division-like instruction. 6252 if (OperandIdx != 1) 6253 return false; 6254 switch (Use->getOpcode()) { 6255 default: 6256 return false; 6257 case Instruction::SDiv: 6258 case Instruction::UDiv: 6259 case Instruction::SRem: 6260 case Instruction::URem: 6261 return true; 6262 case Instruction::FDiv: 6263 case Instruction::FRem: 6264 return !Use->hasNoNaNs(); 6265 } 6266 llvm_unreachable(nullptr); 6267 } 6268 6269 public: 6270 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 6271 const TargetTransformInfo &TTI, Instruction *Transition, 6272 unsigned CombineCost) 6273 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 6274 StoreExtractCombineCost(CombineCost) { 6275 assert(Transition && "Do not know how to promote null"); 6276 } 6277 6278 /// Check if we can promote \p ToBePromoted to \p Type. 6279 bool canPromote(const Instruction *ToBePromoted) const { 6280 // We could support CastInst too. 6281 return isa<BinaryOperator>(ToBePromoted); 6282 } 6283 6284 /// Check if it is profitable to promote \p ToBePromoted 6285 /// by moving downward the transition through. 6286 bool shouldPromote(const Instruction *ToBePromoted) const { 6287 // Promote only if all the operands can be statically expanded. 6288 // Indeed, we do not want to introduce any new kind of transitions. 6289 for (const Use &U : ToBePromoted->operands()) { 6290 const Value *Val = U.get(); 6291 if (Val == getEndOfTransition()) { 6292 // If the use is a division and the transition is on the rhs, 6293 // we cannot promote the operation, otherwise we may create a 6294 // division by zero. 6295 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 6296 return false; 6297 continue; 6298 } 6299 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 6300 !isa<ConstantFP>(Val)) 6301 return false; 6302 } 6303 // Check that the resulting operation is legal. 6304 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 6305 if (!ISDOpcode) 6306 return false; 6307 return StressStoreExtract || 6308 TLI.isOperationLegalOrCustom( 6309 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 6310 } 6311 6312 /// Check whether or not \p Use can be combined 6313 /// with the transition. 6314 /// I.e., is it possible to do Use(Transition) => AnotherUse? 6315 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 6316 6317 /// Record \p ToBePromoted as part of the chain to be promoted. 6318 void enqueueForPromotion(Instruction *ToBePromoted) { 6319 InstsToBePromoted.push_back(ToBePromoted); 6320 } 6321 6322 /// Set the instruction that will be combined with the transition. 6323 void recordCombineInstruction(Instruction *ToBeCombined) { 6324 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 6325 CombineInst = ToBeCombined; 6326 } 6327 6328 /// Promote all the instructions enqueued for promotion if it is 6329 /// is profitable. 6330 /// \return True if the promotion happened, false otherwise. 6331 bool promote() { 6332 // Check if there is something to promote. 6333 // Right now, if we do not have anything to combine with, 6334 // we assume the promotion is not profitable. 6335 if (InstsToBePromoted.empty() || !CombineInst) 6336 return false; 6337 6338 // Check cost. 6339 if (!StressStoreExtract && !isProfitableToPromote()) 6340 return false; 6341 6342 // Promote. 6343 for (auto &ToBePromoted : InstsToBePromoted) 6344 promoteImpl(ToBePromoted); 6345 InstsToBePromoted.clear(); 6346 return true; 6347 } 6348 }; 6349 6350 } // end anonymous namespace 6351 6352 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 6353 // At this point, we know that all the operands of ToBePromoted but Def 6354 // can be statically promoted. 6355 // For Def, we need to use its parameter in ToBePromoted: 6356 // b = ToBePromoted ty1 a 6357 // Def = Transition ty1 b to ty2 6358 // Move the transition down. 6359 // 1. Replace all uses of the promoted operation by the transition. 6360 // = ... b => = ... Def. 6361 assert(ToBePromoted->getType() == Transition->getType() && 6362 "The type of the result of the transition does not match " 6363 "the final type"); 6364 ToBePromoted->replaceAllUsesWith(Transition); 6365 // 2. Update the type of the uses. 6366 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 6367 Type *TransitionTy = getTransitionType(); 6368 ToBePromoted->mutateType(TransitionTy); 6369 // 3. Update all the operands of the promoted operation with promoted 6370 // operands. 6371 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 6372 for (Use &U : ToBePromoted->operands()) { 6373 Value *Val = U.get(); 6374 Value *NewVal = nullptr; 6375 if (Val == Transition) 6376 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 6377 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 6378 isa<ConstantFP>(Val)) { 6379 // Use a splat constant if it is not safe to use undef. 6380 NewVal = getConstantVector( 6381 cast<Constant>(Val), 6382 isa<UndefValue>(Val) || 6383 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 6384 } else 6385 llvm_unreachable("Did you modified shouldPromote and forgot to update " 6386 "this?"); 6387 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 6388 } 6389 Transition->moveAfter(ToBePromoted); 6390 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 6391 } 6392 6393 /// Some targets can do store(extractelement) with one instruction. 6394 /// Try to push the extractelement towards the stores when the target 6395 /// has this feature and this is profitable. 6396 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 6397 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 6398 if (DisableStoreExtract || !TLI || 6399 (!StressStoreExtract && 6400 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 6401 Inst->getOperand(1), CombineCost))) 6402 return false; 6403 6404 // At this point we know that Inst is a vector to scalar transition. 6405 // Try to move it down the def-use chain, until: 6406 // - We can combine the transition with its single use 6407 // => we got rid of the transition. 6408 // - We escape the current basic block 6409 // => we would need to check that we are moving it at a cheaper place and 6410 // we do not do that for now. 6411 BasicBlock *Parent = Inst->getParent(); 6412 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 6413 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 6414 // If the transition has more than one use, assume this is not going to be 6415 // beneficial. 6416 while (Inst->hasOneUse()) { 6417 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 6418 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 6419 6420 if (ToBePromoted->getParent() != Parent) { 6421 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 6422 << ToBePromoted->getParent()->getName() 6423 << ") than the transition (" << Parent->getName() 6424 << ").\n"); 6425 return false; 6426 } 6427 6428 if (VPH.canCombine(ToBePromoted)) { 6429 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 6430 << "will be combined with: " << *ToBePromoted << '\n'); 6431 VPH.recordCombineInstruction(ToBePromoted); 6432 bool Changed = VPH.promote(); 6433 NumStoreExtractExposed += Changed; 6434 return Changed; 6435 } 6436 6437 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 6438 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 6439 return false; 6440 6441 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 6442 6443 VPH.enqueueForPromotion(ToBePromoted); 6444 Inst = ToBePromoted; 6445 } 6446 return false; 6447 } 6448 6449 /// For the instruction sequence of store below, F and I values 6450 /// are bundled together as an i64 value before being stored into memory. 6451 /// Sometimes it is more efficient to generate separate stores for F and I, 6452 /// which can remove the bitwise instructions or sink them to colder places. 6453 /// 6454 /// (store (or (zext (bitcast F to i32) to i64), 6455 /// (shl (zext I to i64), 32)), addr) --> 6456 /// (store F, addr) and (store I, addr+4) 6457 /// 6458 /// Similarly, splitting for other merged store can also be beneficial, like: 6459 /// For pair of {i32, i32}, i64 store --> two i32 stores. 6460 /// For pair of {i32, i16}, i64 store --> two i32 stores. 6461 /// For pair of {i16, i16}, i32 store --> two i16 stores. 6462 /// For pair of {i16, i8}, i32 store --> two i16 stores. 6463 /// For pair of {i8, i8}, i16 store --> two i8 stores. 6464 /// 6465 /// We allow each target to determine specifically which kind of splitting is 6466 /// supported. 6467 /// 6468 /// The store patterns are commonly seen from the simple code snippet below 6469 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 6470 /// void goo(const std::pair<int, float> &); 6471 /// hoo() { 6472 /// ... 6473 /// goo(std::make_pair(tmp, ftmp)); 6474 /// ... 6475 /// } 6476 /// 6477 /// Although we already have similar splitting in DAG Combine, we duplicate 6478 /// it in CodeGenPrepare to catch the case in which pattern is across 6479 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6480 /// during code expansion. 6481 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6482 const TargetLowering &TLI) { 6483 // Handle simple but common cases only. 6484 Type *StoreType = SI.getValueOperand()->getType(); 6485 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || 6486 DL.getTypeSizeInBits(StoreType) == 0) 6487 return false; 6488 6489 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6490 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 6491 if (DL.getTypeStoreSizeInBits(SplitStoreType) != 6492 DL.getTypeSizeInBits(SplitStoreType)) 6493 return false; 6494 6495 // Match the following patterns: 6496 // (store (or (zext LValue to i64), 6497 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6498 // or 6499 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6500 // (zext LValue to i64), 6501 // Expect both operands of OR and the first operand of SHL have only 6502 // one use. 6503 Value *LValue, *HValue; 6504 if (!match(SI.getValueOperand(), 6505 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6506 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6507 m_SpecificInt(HalfValBitSize)))))) 6508 return false; 6509 6510 // Check LValue and HValue are int with size less or equal than 32. 6511 if (!LValue->getType()->isIntegerTy() || 6512 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6513 !HValue->getType()->isIntegerTy() || 6514 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6515 return false; 6516 6517 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6518 // as the input of target query. 6519 auto *LBC = dyn_cast<BitCastInst>(LValue); 6520 auto *HBC = dyn_cast<BitCastInst>(HValue); 6521 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6522 : EVT::getEVT(LValue->getType()); 6523 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6524 : EVT::getEVT(HValue->getType()); 6525 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6526 return false; 6527 6528 // Start to split store. 6529 IRBuilder<> Builder(SI.getContext()); 6530 Builder.SetInsertPoint(&SI); 6531 6532 // If LValue/HValue is a bitcast in another BB, create a new one in current 6533 // BB so it may be merged with the splitted stores by dag combiner. 6534 if (LBC && LBC->getParent() != SI.getParent()) 6535 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6536 if (HBC && HBC->getParent() != SI.getParent()) 6537 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6538 6539 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 6540 auto CreateSplitStore = [&](Value *V, bool Upper) { 6541 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6542 Value *Addr = Builder.CreateBitCast( 6543 SI.getOperand(1), 6544 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6545 if ((IsLE && Upper) || (!IsLE && !Upper)) 6546 Addr = Builder.CreateGEP( 6547 SplitStoreType, Addr, 6548 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6549 Builder.CreateAlignedStore( 6550 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 6551 }; 6552 6553 CreateSplitStore(LValue, false); 6554 CreateSplitStore(HValue, true); 6555 6556 // Delete the old store. 6557 SI.eraseFromParent(); 6558 return true; 6559 } 6560 6561 // Return true if the GEP has two operands, the first operand is of a sequential 6562 // type, and the second operand is a constant. 6563 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6564 gep_type_iterator I = gep_type_begin(*GEP); 6565 return GEP->getNumOperands() == 2 && 6566 I.isSequential() && 6567 isa<ConstantInt>(GEP->getOperand(1)); 6568 } 6569 6570 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6571 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6572 // reducing liveness interference across those edges benefits global register 6573 // allocation. Currently handles only certain cases. 6574 // 6575 // For example, unmerge %GEPI and %UGEPI as below. 6576 // 6577 // ---------- BEFORE ---------- 6578 // SrcBlock: 6579 // ... 6580 // %GEPIOp = ... 6581 // ... 6582 // %GEPI = gep %GEPIOp, Idx 6583 // ... 6584 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6585 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6586 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6587 // %UGEPI) 6588 // 6589 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6590 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6591 // ... 6592 // 6593 // DstBi: 6594 // ... 6595 // %UGEPI = gep %GEPIOp, UIdx 6596 // ... 6597 // --------------------------- 6598 // 6599 // ---------- AFTER ---------- 6600 // SrcBlock: 6601 // ... (same as above) 6602 // (* %GEPI is still alive on the indirectbr edges) 6603 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6604 // unmerging) 6605 // ... 6606 // 6607 // DstBi: 6608 // ... 6609 // %UGEPI = gep %GEPI, (UIdx-Idx) 6610 // ... 6611 // --------------------------- 6612 // 6613 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6614 // no longer alive on them. 6615 // 6616 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6617 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6618 // not to disable further simplications and optimizations as a result of GEP 6619 // merging. 6620 // 6621 // Note this unmerging may increase the length of the data flow critical path 6622 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6623 // between the register pressure and the length of data-flow critical 6624 // path. Restricting this to the uncommon IndirectBr case would minimize the 6625 // impact of potentially longer critical path, if any, and the impact on compile 6626 // time. 6627 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6628 const TargetTransformInfo *TTI) { 6629 BasicBlock *SrcBlock = GEPI->getParent(); 6630 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 6631 // (non-IndirectBr) cases exit early here. 6632 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 6633 return false; 6634 // Check that GEPI is a simple gep with a single constant index. 6635 if (!GEPSequentialConstIndexed(GEPI)) 6636 return false; 6637 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 6638 // Check that GEPI is a cheap one. 6639 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 6640 > TargetTransformInfo::TCC_Basic) 6641 return false; 6642 Value *GEPIOp = GEPI->getOperand(0); 6643 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 6644 if (!isa<Instruction>(GEPIOp)) 6645 return false; 6646 auto *GEPIOpI = cast<Instruction>(GEPIOp); 6647 if (GEPIOpI->getParent() != SrcBlock) 6648 return false; 6649 // Check that GEP is used outside the block, meaning it's alive on the 6650 // IndirectBr edge(s). 6651 if (find_if(GEPI->users(), [&](User *Usr) { 6652 if (auto *I = dyn_cast<Instruction>(Usr)) { 6653 if (I->getParent() != SrcBlock) { 6654 return true; 6655 } 6656 } 6657 return false; 6658 }) == GEPI->users().end()) 6659 return false; 6660 // The second elements of the GEP chains to be unmerged. 6661 std::vector<GetElementPtrInst *> UGEPIs; 6662 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 6663 // on IndirectBr edges. 6664 for (User *Usr : GEPIOp->users()) { 6665 if (Usr == GEPI) continue; 6666 // Check if Usr is an Instruction. If not, give up. 6667 if (!isa<Instruction>(Usr)) 6668 return false; 6669 auto *UI = cast<Instruction>(Usr); 6670 // Check if Usr in the same block as GEPIOp, which is fine, skip. 6671 if (UI->getParent() == SrcBlock) 6672 continue; 6673 // Check if Usr is a GEP. If not, give up. 6674 if (!isa<GetElementPtrInst>(Usr)) 6675 return false; 6676 auto *UGEPI = cast<GetElementPtrInst>(Usr); 6677 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 6678 // the pointer operand to it. If so, record it in the vector. If not, give 6679 // up. 6680 if (!GEPSequentialConstIndexed(UGEPI)) 6681 return false; 6682 if (UGEPI->getOperand(0) != GEPIOp) 6683 return false; 6684 if (GEPIIdx->getType() != 6685 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 6686 return false; 6687 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6688 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 6689 > TargetTransformInfo::TCC_Basic) 6690 return false; 6691 UGEPIs.push_back(UGEPI); 6692 } 6693 if (UGEPIs.size() == 0) 6694 return false; 6695 // Check the materializing cost of (Uidx-Idx). 6696 for (GetElementPtrInst *UGEPI : UGEPIs) { 6697 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6698 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 6699 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 6700 if (ImmCost > TargetTransformInfo::TCC_Basic) 6701 return false; 6702 } 6703 // Now unmerge between GEPI and UGEPIs. 6704 for (GetElementPtrInst *UGEPI : UGEPIs) { 6705 UGEPI->setOperand(0, GEPI); 6706 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6707 Constant *NewUGEPIIdx = 6708 ConstantInt::get(GEPIIdx->getType(), 6709 UGEPIIdx->getValue() - GEPIIdx->getValue()); 6710 UGEPI->setOperand(1, NewUGEPIIdx); 6711 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 6712 // inbounds to avoid UB. 6713 if (!GEPI->isInBounds()) { 6714 UGEPI->setIsInBounds(false); 6715 } 6716 } 6717 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 6718 // alive on IndirectBr edges). 6719 assert(find_if(GEPIOp->users(), [&](User *Usr) { 6720 return cast<Instruction>(Usr)->getParent() != SrcBlock; 6721 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 6722 return true; 6723 } 6724 6725 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 6726 // Bail out if we inserted the instruction to prevent optimizations from 6727 // stepping on each other's toes. 6728 if (InsertedInsts.count(I)) 6729 return false; 6730 6731 if (PHINode *P = dyn_cast<PHINode>(I)) { 6732 // It is possible for very late stage optimizations (such as SimplifyCFG) 6733 // to introduce PHI nodes too late to be cleaned up. If we detect such a 6734 // trivial PHI, go ahead and zap it here. 6735 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 6736 P->replaceAllUsesWith(V); 6737 P->eraseFromParent(); 6738 ++NumPHIsElim; 6739 return true; 6740 } 6741 return false; 6742 } 6743 6744 if (CastInst *CI = dyn_cast<CastInst>(I)) { 6745 // If the source of the cast is a constant, then this should have 6746 // already been constant folded. The only reason NOT to constant fold 6747 // it is if something (e.g. LSR) was careful to place the constant 6748 // evaluation in a block other than then one that uses it (e.g. to hoist 6749 // the address of globals out of a loop). If this is the case, we don't 6750 // want to forward-subst the cast. 6751 if (isa<Constant>(CI->getOperand(0))) 6752 return false; 6753 6754 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 6755 return true; 6756 6757 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 6758 /// Sink a zext or sext into its user blocks if the target type doesn't 6759 /// fit in one register 6760 if (TLI && 6761 TLI->getTypeAction(CI->getContext(), 6762 TLI->getValueType(*DL, CI->getType())) == 6763 TargetLowering::TypeExpandInteger) { 6764 return SinkCast(CI); 6765 } else { 6766 bool MadeChange = optimizeExt(I); 6767 return MadeChange | optimizeExtUses(I); 6768 } 6769 } 6770 return false; 6771 } 6772 6773 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 6774 if (TLI && optimizeCmpExpression(CI, *TLI, *DL)) 6775 return true; 6776 6777 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6778 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6779 if (TLI) { 6780 bool Modified = optimizeLoadExt(LI); 6781 unsigned AS = LI->getPointerAddressSpace(); 6782 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 6783 return Modified; 6784 } 6785 return false; 6786 } 6787 6788 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 6789 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 6790 return true; 6791 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6792 if (TLI) { 6793 unsigned AS = SI->getPointerAddressSpace(); 6794 return optimizeMemoryInst(I, SI->getOperand(1), 6795 SI->getOperand(0)->getType(), AS); 6796 } 6797 return false; 6798 } 6799 6800 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 6801 unsigned AS = RMW->getPointerAddressSpace(); 6802 return optimizeMemoryInst(I, RMW->getPointerOperand(), 6803 RMW->getType(), AS); 6804 } 6805 6806 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 6807 unsigned AS = CmpX->getPointerAddressSpace(); 6808 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 6809 CmpX->getCompareOperand()->getType(), AS); 6810 } 6811 6812 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 6813 6814 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 6815 EnableAndCmpSinking && TLI) 6816 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 6817 6818 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 6819 BinOp->getOpcode() == Instruction::LShr)) { 6820 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 6821 if (TLI && CI && TLI->hasExtractBitsInsn()) 6822 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 6823 6824 return false; 6825 } 6826 6827 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 6828 if (GEPI->hasAllZeroIndices()) { 6829 /// The GEP operand must be a pointer, so must its result -> BitCast 6830 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 6831 GEPI->getName(), GEPI); 6832 NC->setDebugLoc(GEPI->getDebugLoc()); 6833 GEPI->replaceAllUsesWith(NC); 6834 GEPI->eraseFromParent(); 6835 ++NumGEPsElim; 6836 optimizeInst(NC, ModifiedDT); 6837 return true; 6838 } 6839 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 6840 return true; 6841 } 6842 return false; 6843 } 6844 6845 if (tryToSinkFreeOperands(I)) 6846 return true; 6847 6848 if (CallInst *CI = dyn_cast<CallInst>(I)) 6849 return optimizeCallInst(CI, ModifiedDT); 6850 6851 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 6852 return optimizeSelectInst(SI); 6853 6854 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 6855 return optimizeShuffleVectorInst(SVI); 6856 6857 if (auto *Switch = dyn_cast<SwitchInst>(I)) 6858 return optimizeSwitchInst(Switch); 6859 6860 if (isa<ExtractElementInst>(I)) 6861 return optimizeExtractElementInst(I); 6862 6863 return false; 6864 } 6865 6866 /// Given an OR instruction, check to see if this is a bitreverse 6867 /// idiom. If so, insert the new intrinsic and return true. 6868 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 6869 const TargetLowering &TLI) { 6870 if (!I.getType()->isIntegerTy() || 6871 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 6872 TLI.getValueType(DL, I.getType(), true))) 6873 return false; 6874 6875 SmallVector<Instruction*, 4> Insts; 6876 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 6877 return false; 6878 Instruction *LastInst = Insts.back(); 6879 I.replaceAllUsesWith(LastInst); 6880 RecursivelyDeleteTriviallyDeadInstructions(&I); 6881 return true; 6882 } 6883 6884 // In this pass we look for GEP and cast instructions that are used 6885 // across basic blocks and rewrite them to improve basic-block-at-a-time 6886 // selection. 6887 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 6888 SunkAddrs.clear(); 6889 bool MadeChange = false; 6890 6891 CurInstIterator = BB.begin(); 6892 while (CurInstIterator != BB.end()) { 6893 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 6894 if (ModifiedDT) 6895 return true; 6896 } 6897 6898 bool MadeBitReverse = true; 6899 while (TLI && MadeBitReverse) { 6900 MadeBitReverse = false; 6901 for (auto &I : reverse(BB)) { 6902 if (makeBitReverse(I, *DL, *TLI)) { 6903 MadeBitReverse = MadeChange = true; 6904 ModifiedDT = true; 6905 break; 6906 } 6907 } 6908 } 6909 MadeChange |= dupRetToEnableTailCallOpts(&BB); 6910 6911 return MadeChange; 6912 } 6913 6914 // llvm.dbg.value is far away from the value then iSel may not be able 6915 // handle it properly. iSel will drop llvm.dbg.value if it can not 6916 // find a node corresponding to the value. 6917 bool CodeGenPrepare::placeDbgValues(Function &F) { 6918 bool MadeChange = false; 6919 for (BasicBlock &BB : F) { 6920 Instruction *PrevNonDbgInst = nullptr; 6921 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 6922 Instruction *Insn = &*BI++; 6923 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 6924 // Leave dbg.values that refer to an alloca alone. These 6925 // intrinsics describe the address of a variable (= the alloca) 6926 // being taken. They should not be moved next to the alloca 6927 // (and to the beginning of the scope), but rather stay close to 6928 // where said address is used. 6929 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 6930 PrevNonDbgInst = Insn; 6931 continue; 6932 } 6933 6934 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 6935 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 6936 // If VI is a phi in a block with an EHPad terminator, we can't insert 6937 // after it. 6938 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 6939 continue; 6940 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 6941 << *DVI << ' ' << *VI); 6942 DVI->removeFromParent(); 6943 if (isa<PHINode>(VI)) 6944 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 6945 else 6946 DVI->insertAfter(VI); 6947 MadeChange = true; 6948 ++NumDbgValueMoved; 6949 } 6950 } 6951 } 6952 return MadeChange; 6953 } 6954 6955 /// Scale down both weights to fit into uint32_t. 6956 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 6957 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 6958 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 6959 NewTrue = NewTrue / Scale; 6960 NewFalse = NewFalse / Scale; 6961 } 6962 6963 /// Some targets prefer to split a conditional branch like: 6964 /// \code 6965 /// %0 = icmp ne i32 %a, 0 6966 /// %1 = icmp ne i32 %b, 0 6967 /// %or.cond = or i1 %0, %1 6968 /// br i1 %or.cond, label %TrueBB, label %FalseBB 6969 /// \endcode 6970 /// into multiple branch instructions like: 6971 /// \code 6972 /// bb1: 6973 /// %0 = icmp ne i32 %a, 0 6974 /// br i1 %0, label %TrueBB, label %bb2 6975 /// bb2: 6976 /// %1 = icmp ne i32 %b, 0 6977 /// br i1 %1, label %TrueBB, label %FalseBB 6978 /// \endcode 6979 /// This usually allows instruction selection to do even further optimizations 6980 /// and combine the compare with the branch instruction. Currently this is 6981 /// applied for targets which have "cheap" jump instructions. 6982 /// 6983 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 6984 /// 6985 bool CodeGenPrepare::splitBranchCondition(Function &F) { 6986 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 6987 return false; 6988 6989 bool MadeChange = false; 6990 for (auto &BB : F) { 6991 // Does this BB end with the following? 6992 // %cond1 = icmp|fcmp|binary instruction ... 6993 // %cond2 = icmp|fcmp|binary instruction ... 6994 // %cond.or = or|and i1 %cond1, cond2 6995 // br i1 %cond.or label %dest1, label %dest2" 6996 BinaryOperator *LogicOp; 6997 BasicBlock *TBB, *FBB; 6998 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 6999 continue; 7000 7001 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 7002 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 7003 continue; 7004 7005 unsigned Opc; 7006 Value *Cond1, *Cond2; 7007 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 7008 m_OneUse(m_Value(Cond2))))) 7009 Opc = Instruction::And; 7010 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 7011 m_OneUse(m_Value(Cond2))))) 7012 Opc = Instruction::Or; 7013 else 7014 continue; 7015 7016 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 7017 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 7018 continue; 7019 7020 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 7021 7022 // Create a new BB. 7023 auto TmpBB = 7024 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 7025 BB.getParent(), BB.getNextNode()); 7026 7027 // Update original basic block by using the first condition directly by the 7028 // branch instruction and removing the no longer needed and/or instruction. 7029 Br1->setCondition(Cond1); 7030 LogicOp->eraseFromParent(); 7031 7032 // Depending on the condition we have to either replace the true or the 7033 // false successor of the original branch instruction. 7034 if (Opc == Instruction::And) 7035 Br1->setSuccessor(0, TmpBB); 7036 else 7037 Br1->setSuccessor(1, TmpBB); 7038 7039 // Fill in the new basic block. 7040 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 7041 if (auto *I = dyn_cast<Instruction>(Cond2)) { 7042 I->removeFromParent(); 7043 I->insertBefore(Br2); 7044 } 7045 7046 // Update PHI nodes in both successors. The original BB needs to be 7047 // replaced in one successor's PHI nodes, because the branch comes now from 7048 // the newly generated BB (NewBB). In the other successor we need to add one 7049 // incoming edge to the PHI nodes, because both branch instructions target 7050 // now the same successor. Depending on the original branch condition 7051 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 7052 // we perform the correct update for the PHI nodes. 7053 // This doesn't change the successor order of the just created branch 7054 // instruction (or any other instruction). 7055 if (Opc == Instruction::Or) 7056 std::swap(TBB, FBB); 7057 7058 // Replace the old BB with the new BB. 7059 for (PHINode &PN : TBB->phis()) { 7060 int i; 7061 while ((i = PN.getBasicBlockIndex(&BB)) >= 0) 7062 PN.setIncomingBlock(i, TmpBB); 7063 } 7064 7065 // Add another incoming edge form the new BB. 7066 for (PHINode &PN : FBB->phis()) { 7067 auto *Val = PN.getIncomingValueForBlock(&BB); 7068 PN.addIncoming(Val, TmpBB); 7069 } 7070 7071 // Update the branch weights (from SelectionDAGBuilder:: 7072 // FindMergedConditions). 7073 if (Opc == Instruction::Or) { 7074 // Codegen X | Y as: 7075 // BB1: 7076 // jmp_if_X TBB 7077 // jmp TmpBB 7078 // TmpBB: 7079 // jmp_if_Y TBB 7080 // jmp FBB 7081 // 7082 7083 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 7084 // The requirement is that 7085 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 7086 // = TrueProb for original BB. 7087 // Assuming the original weights are A and B, one choice is to set BB1's 7088 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 7089 // assumes that 7090 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 7091 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 7092 // TmpBB, but the math is more complicated. 7093 uint64_t TrueWeight, FalseWeight; 7094 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7095 uint64_t NewTrueWeight = TrueWeight; 7096 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 7097 scaleWeights(NewTrueWeight, NewFalseWeight); 7098 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7099 .createBranchWeights(TrueWeight, FalseWeight)); 7100 7101 NewTrueWeight = TrueWeight; 7102 NewFalseWeight = 2 * FalseWeight; 7103 scaleWeights(NewTrueWeight, NewFalseWeight); 7104 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7105 .createBranchWeights(TrueWeight, FalseWeight)); 7106 } 7107 } else { 7108 // Codegen X & Y as: 7109 // BB1: 7110 // jmp_if_X TmpBB 7111 // jmp FBB 7112 // TmpBB: 7113 // jmp_if_Y TBB 7114 // jmp FBB 7115 // 7116 // This requires creation of TmpBB after CurBB. 7117 7118 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 7119 // The requirement is that 7120 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 7121 // = FalseProb for original BB. 7122 // Assuming the original weights are A and B, one choice is to set BB1's 7123 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 7124 // assumes that 7125 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 7126 uint64_t TrueWeight, FalseWeight; 7127 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7128 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 7129 uint64_t NewFalseWeight = FalseWeight; 7130 scaleWeights(NewTrueWeight, NewFalseWeight); 7131 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7132 .createBranchWeights(TrueWeight, FalseWeight)); 7133 7134 NewTrueWeight = 2 * TrueWeight; 7135 NewFalseWeight = FalseWeight; 7136 scaleWeights(NewTrueWeight, NewFalseWeight); 7137 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7138 .createBranchWeights(TrueWeight, FalseWeight)); 7139 } 7140 } 7141 7142 // Note: No point in getting fancy here, since the DT info is never 7143 // available to CodeGenPrepare. 7144 ModifiedDT = true; 7145 7146 MadeChange = true; 7147 7148 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 7149 TmpBB->dump()); 7150 } 7151 return MadeChange; 7152 } 7153