1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/InstructionSimplify.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/ProfileSummaryInfo.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/Analysis/VectorUtils.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/ISDOpcodes.h" 35 #include "llvm/CodeGen/SelectionDAGNodes.h" 36 #include "llvm/CodeGen/TargetLowering.h" 37 #include "llvm/CodeGen/TargetPassConfig.h" 38 #include "llvm/CodeGen/TargetSubtargetInfo.h" 39 #include "llvm/CodeGen/ValueTypes.h" 40 #include "llvm/Config/llvm-config.h" 41 #include "llvm/IR/Argument.h" 42 #include "llvm/IR/Attributes.h" 43 #include "llvm/IR/BasicBlock.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfo.h" 48 #include "llvm/IR/DerivedTypes.h" 49 #include "llvm/IR/Dominators.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/GetElementPtrTypeIterator.h" 52 #include "llvm/IR/GlobalValue.h" 53 #include "llvm/IR/GlobalVariable.h" 54 #include "llvm/IR/IRBuilder.h" 55 #include "llvm/IR/InlineAsm.h" 56 #include "llvm/IR/InstrTypes.h" 57 #include "llvm/IR/Instruction.h" 58 #include "llvm/IR/Instructions.h" 59 #include "llvm/IR/IntrinsicInst.h" 60 #include "llvm/IR/Intrinsics.h" 61 #include "llvm/IR/IntrinsicsAArch64.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/Operator.h" 66 #include "llvm/IR/PatternMatch.h" 67 #include "llvm/IR/Statepoint.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/IR/ValueMap.h" 74 #include "llvm/InitializePasses.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/BlockFrequency.h" 77 #include "llvm/Support/BranchProbability.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/MachineValueType.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Target/TargetMachine.h" 87 #include "llvm/Target/TargetOptions.h" 88 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 89 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 90 #include "llvm/Transforms/Utils/Local.h" 91 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 92 #include "llvm/Transforms/Utils/SizeOpts.h" 93 #include <algorithm> 94 #include <cassert> 95 #include <cstdint> 96 #include <iterator> 97 #include <limits> 98 #include <memory> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 using namespace llvm::PatternMatch; 104 105 #define DEBUG_TYPE "codegenprepare" 106 107 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 108 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 109 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 110 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 111 "sunken Cmps"); 112 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 113 "of sunken Casts"); 114 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 115 "computations were sunk"); 116 STATISTIC(NumMemoryInstsPhiCreated, 117 "Number of phis created when address " 118 "computations were sunk to memory instructions"); 119 STATISTIC(NumMemoryInstsSelectCreated, 120 "Number of select created when address " 121 "computations were sunk to memory instructions"); 122 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 123 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 124 STATISTIC(NumAndsAdded, 125 "Number of and mask instructions added to form ext loads"); 126 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 127 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 128 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 129 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 130 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 131 132 static cl::opt<bool> DisableBranchOpts( 133 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 134 cl::desc("Disable branch optimizations in CodeGenPrepare")); 135 136 static cl::opt<bool> 137 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 138 cl::desc("Disable GC optimizations in CodeGenPrepare")); 139 140 static cl::opt<bool> DisableSelectToBranch( 141 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 142 cl::desc("Disable select to branch conversion.")); 143 144 static cl::opt<bool> AddrSinkUsingGEPs( 145 "addr-sink-using-gep", cl::Hidden, cl::init(true), 146 cl::desc("Address sinking in CGP using GEPs.")); 147 148 static cl::opt<bool> EnableAndCmpSinking( 149 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 150 cl::desc("Enable sinkinig and/cmp into branches.")); 151 152 static cl::opt<bool> DisableStoreExtract( 153 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 154 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 155 156 static cl::opt<bool> StressStoreExtract( 157 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 158 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 159 160 static cl::opt<bool> DisableExtLdPromotion( 161 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 162 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 163 "CodeGenPrepare")); 164 165 static cl::opt<bool> StressExtLdPromotion( 166 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 167 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 168 "optimization in CodeGenPrepare")); 169 170 static cl::opt<bool> DisablePreheaderProtect( 171 "disable-preheader-prot", cl::Hidden, cl::init(false), 172 cl::desc("Disable protection against removing loop preheaders")); 173 174 static cl::opt<bool> ProfileGuidedSectionPrefix( 175 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 176 cl::desc("Use profile info to add section prefix for hot/cold functions")); 177 178 static cl::opt<bool> ProfileUnknownInSpecialSection( 179 "profile-unknown-in-special-section", cl::Hidden, cl::init(false), 180 cl::ZeroOrMore, 181 cl::desc("In profiling mode like sampleFDO, if a function doesn't have " 182 "profile, we cannot tell the function is cold for sure because " 183 "it may be a function newly added without ever being sampled. " 184 "With the flag enabled, compiler can put such profile unknown " 185 "functions into a special section, so runtime system can choose " 186 "to handle it in a different way than .text section, to save " 187 "RAM for example. ")); 188 189 static cl::opt<unsigned> FreqRatioToSkipMerge( 190 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 191 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 192 "(frequency of destination block) is greater than this ratio")); 193 194 static cl::opt<bool> ForceSplitStore( 195 "force-split-store", cl::Hidden, cl::init(false), 196 cl::desc("Force store splitting no matter what the target query says.")); 197 198 static cl::opt<bool> 199 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 200 cl::desc("Enable merging of redundant sexts when one is dominating" 201 " the other."), cl::init(true)); 202 203 static cl::opt<bool> DisableComplexAddrModes( 204 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 205 cl::desc("Disables combining addressing modes with different parts " 206 "in optimizeMemoryInst.")); 207 208 static cl::opt<bool> 209 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 210 cl::desc("Allow creation of Phis in Address sinking.")); 211 212 static cl::opt<bool> 213 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 214 cl::desc("Allow creation of selects in Address sinking.")); 215 216 static cl::opt<bool> AddrSinkCombineBaseReg( 217 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 218 cl::desc("Allow combining of BaseReg field in Address sinking.")); 219 220 static cl::opt<bool> AddrSinkCombineBaseGV( 221 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 222 cl::desc("Allow combining of BaseGV field in Address sinking.")); 223 224 static cl::opt<bool> AddrSinkCombineBaseOffs( 225 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 226 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 227 228 static cl::opt<bool> AddrSinkCombineScaledReg( 229 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 230 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 231 232 static cl::opt<bool> 233 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 234 cl::init(true), 235 cl::desc("Enable splitting large offset of GEP.")); 236 237 static cl::opt<bool> EnableICMP_EQToICMP_ST( 238 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 239 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 240 241 static cl::opt<bool> 242 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), 243 cl::desc("Enable BFI update verification for " 244 "CodeGenPrepare.")); 245 246 static cl::opt<bool> OptimizePhiTypes( 247 "cgp-optimize-phi-types", cl::Hidden, cl::init(false), 248 cl::desc("Enable converting phi types in CodeGenPrepare")); 249 250 namespace { 251 252 enum ExtType { 253 ZeroExtension, // Zero extension has been seen. 254 SignExtension, // Sign extension has been seen. 255 BothExtension // This extension type is used if we saw sext after 256 // ZeroExtension had been set, or if we saw zext after 257 // SignExtension had been set. It makes the type 258 // information of a promoted instruction invalid. 259 }; 260 261 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 262 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 263 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 264 using SExts = SmallVector<Instruction *, 16>; 265 using ValueToSExts = DenseMap<Value *, SExts>; 266 267 class TypePromotionTransaction; 268 269 class CodeGenPrepare : public FunctionPass { 270 const TargetMachine *TM = nullptr; 271 const TargetSubtargetInfo *SubtargetInfo; 272 const TargetLowering *TLI = nullptr; 273 const TargetRegisterInfo *TRI; 274 const TargetTransformInfo *TTI = nullptr; 275 const TargetLibraryInfo *TLInfo; 276 const LoopInfo *LI; 277 std::unique_ptr<BlockFrequencyInfo> BFI; 278 std::unique_ptr<BranchProbabilityInfo> BPI; 279 ProfileSummaryInfo *PSI; 280 281 /// As we scan instructions optimizing them, this is the next instruction 282 /// to optimize. Transforms that can invalidate this should update it. 283 BasicBlock::iterator CurInstIterator; 284 285 /// Keeps track of non-local addresses that have been sunk into a block. 286 /// This allows us to avoid inserting duplicate code for blocks with 287 /// multiple load/stores of the same address. The usage of WeakTrackingVH 288 /// enables SunkAddrs to be treated as a cache whose entries can be 289 /// invalidated if a sunken address computation has been erased. 290 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 291 292 /// Keeps track of all instructions inserted for the current function. 293 SetOfInstrs InsertedInsts; 294 295 /// Keeps track of the type of the related instruction before their 296 /// promotion for the current function. 297 InstrToOrigTy PromotedInsts; 298 299 /// Keep track of instructions removed during promotion. 300 SetOfInstrs RemovedInsts; 301 302 /// Keep track of sext chains based on their initial value. 303 DenseMap<Value *, Instruction *> SeenChainsForSExt; 304 305 /// Keep track of GEPs accessing the same data structures such as structs or 306 /// arrays that are candidates to be split later because of their large 307 /// size. 308 MapVector< 309 AssertingVH<Value>, 310 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 311 LargeOffsetGEPMap; 312 313 /// Keep track of new GEP base after splitting the GEPs having large offset. 314 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 315 316 /// Map serial numbers to Large offset GEPs. 317 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 318 319 /// Keep track of SExt promoted. 320 ValueToSExts ValToSExtendedUses; 321 322 /// True if the function has the OptSize attribute. 323 bool OptSize; 324 325 /// DataLayout for the Function being processed. 326 const DataLayout *DL = nullptr; 327 328 /// Building the dominator tree can be expensive, so we only build it 329 /// lazily and update it when required. 330 std::unique_ptr<DominatorTree> DT; 331 332 public: 333 static char ID; // Pass identification, replacement for typeid 334 335 CodeGenPrepare() : FunctionPass(ID) { 336 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 337 } 338 339 bool runOnFunction(Function &F) override; 340 341 StringRef getPassName() const override { return "CodeGen Prepare"; } 342 343 void getAnalysisUsage(AnalysisUsage &AU) const override { 344 // FIXME: When we can selectively preserve passes, preserve the domtree. 345 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 346 AU.addRequired<TargetLibraryInfoWrapperPass>(); 347 AU.addRequired<TargetPassConfig>(); 348 AU.addRequired<TargetTransformInfoWrapperPass>(); 349 AU.addRequired<LoopInfoWrapperPass>(); 350 } 351 352 private: 353 template <typename F> 354 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 355 // Substituting can cause recursive simplifications, which can invalidate 356 // our iterator. Use a WeakTrackingVH to hold onto it in case this 357 // happens. 358 Value *CurValue = &*CurInstIterator; 359 WeakTrackingVH IterHandle(CurValue); 360 361 f(); 362 363 // If the iterator instruction was recursively deleted, start over at the 364 // start of the block. 365 if (IterHandle != CurValue) { 366 CurInstIterator = BB->begin(); 367 SunkAddrs.clear(); 368 } 369 } 370 371 // Get the DominatorTree, building if necessary. 372 DominatorTree &getDT(Function &F) { 373 if (!DT) 374 DT = std::make_unique<DominatorTree>(F); 375 return *DT; 376 } 377 378 void removeAllAssertingVHReferences(Value *V); 379 bool eliminateAssumptions(Function &F); 380 bool eliminateFallThrough(Function &F); 381 bool eliminateMostlyEmptyBlocks(Function &F); 382 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 383 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 384 void eliminateMostlyEmptyBlock(BasicBlock *BB); 385 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 386 bool isPreheader); 387 bool makeBitReverse(Instruction &I); 388 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 389 bool optimizeInst(Instruction *I, bool &ModifiedDT); 390 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 391 Type *AccessTy, unsigned AddrSpace); 392 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); 393 bool optimizeInlineAsmInst(CallInst *CS); 394 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 395 bool optimizeExt(Instruction *&I); 396 bool optimizeExtUses(Instruction *I); 397 bool optimizeLoadExt(LoadInst *Load); 398 bool optimizeShiftInst(BinaryOperator *BO); 399 bool optimizeFunnelShift(IntrinsicInst *Fsh); 400 bool optimizeSelectInst(SelectInst *SI); 401 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 402 bool optimizeSwitchInst(SwitchInst *SI); 403 bool optimizeExtractElementInst(Instruction *Inst); 404 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 405 bool fixupDbgValue(Instruction *I); 406 bool placeDbgValues(Function &F); 407 bool placePseudoProbes(Function &F); 408 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 409 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 410 bool tryToPromoteExts(TypePromotionTransaction &TPT, 411 const SmallVectorImpl<Instruction *> &Exts, 412 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 413 unsigned CreatedInstsCost = 0); 414 bool mergeSExts(Function &F); 415 bool splitLargeGEPOffsets(); 416 bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, 417 SmallPtrSetImpl<Instruction *> &DeletedInstrs); 418 bool optimizePhiTypes(Function &F); 419 bool performAddressTypePromotion( 420 Instruction *&Inst, 421 bool AllowPromotionWithoutCommonHeader, 422 bool HasPromoted, TypePromotionTransaction &TPT, 423 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 424 bool splitBranchCondition(Function &F, bool &ModifiedDT); 425 bool simplifyOffsetableRelocate(GCStatepointInst &I); 426 427 bool tryToSinkFreeOperands(Instruction *I); 428 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, 429 Value *Arg1, CmpInst *Cmp, 430 Intrinsic::ID IID); 431 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 432 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 433 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 434 void verifyBFIUpdates(Function &F); 435 }; 436 437 } // end anonymous namespace 438 439 char CodeGenPrepare::ID = 0; 440 441 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 442 "Optimize for code generation", false, false) 443 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 444 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 445 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 446 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 447 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 448 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 449 "Optimize for code generation", false, false) 450 451 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 452 453 bool CodeGenPrepare::runOnFunction(Function &F) { 454 if (skipFunction(F)) 455 return false; 456 457 DL = &F.getParent()->getDataLayout(); 458 459 bool EverMadeChange = false; 460 // Clear per function information. 461 InsertedInsts.clear(); 462 PromotedInsts.clear(); 463 464 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 465 SubtargetInfo = TM->getSubtargetImpl(F); 466 TLI = SubtargetInfo->getTargetLowering(); 467 TRI = SubtargetInfo->getRegisterInfo(); 468 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 469 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 470 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 471 BPI.reset(new BranchProbabilityInfo(F, *LI)); 472 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 473 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 474 OptSize = F.hasOptSize(); 475 if (ProfileGuidedSectionPrefix) { 476 // The hot attribute overwrites profile count based hotness while profile 477 // counts based hotness overwrite the cold attribute. 478 // This is a conservative behabvior. 479 if (F.hasFnAttribute(Attribute::Hot) || 480 PSI->isFunctionHotInCallGraph(&F, *BFI)) 481 F.setSectionPrefix("hot"); 482 // If PSI shows this function is not hot, we will placed the function 483 // into unlikely section if (1) PSI shows this is a cold function, or 484 // (2) the function has a attribute of cold. 485 else if (PSI->isFunctionColdInCallGraph(&F, *BFI) || 486 F.hasFnAttribute(Attribute::Cold)) 487 F.setSectionPrefix("unlikely"); 488 else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && 489 PSI->isFunctionHotnessUnknown(F)) 490 F.setSectionPrefix("unknown"); 491 } 492 493 /// This optimization identifies DIV instructions that can be 494 /// profitably bypassed and carried out with a shorter, faster divide. 495 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 496 const DenseMap<unsigned int, unsigned int> &BypassWidths = 497 TLI->getBypassSlowDivWidths(); 498 BasicBlock* BB = &*F.begin(); 499 while (BB != nullptr) { 500 // bypassSlowDivision may create new BBs, but we don't want to reapply the 501 // optimization to those blocks. 502 BasicBlock* Next = BB->getNextNode(); 503 // F.hasOptSize is already checked in the outer if statement. 504 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 505 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 506 BB = Next; 507 } 508 } 509 510 // Get rid of @llvm.assume builtins before attempting to eliminate empty 511 // blocks, since there might be blocks that only contain @llvm.assume calls 512 // (plus arguments that we can get rid of). 513 EverMadeChange |= eliminateAssumptions(F); 514 515 // Eliminate blocks that contain only PHI nodes and an 516 // unconditional branch. 517 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 518 519 bool ModifiedDT = false; 520 if (!DisableBranchOpts) 521 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 522 523 // Split some critical edges where one of the sources is an indirect branch, 524 // to help generate sane code for PHIs involving such edges. 525 EverMadeChange |= 526 SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/true); 527 528 bool MadeChange = true; 529 while (MadeChange) { 530 MadeChange = false; 531 DT.reset(); 532 for (BasicBlock &BB : llvm::make_early_inc_range(F)) { 533 bool ModifiedDTOnIteration = false; 534 MadeChange |= optimizeBlock(BB, ModifiedDTOnIteration); 535 536 // Restart BB iteration if the dominator tree of the Function was changed 537 if (ModifiedDTOnIteration) 538 break; 539 } 540 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 541 MadeChange |= mergeSExts(F); 542 if (!LargeOffsetGEPMap.empty()) 543 MadeChange |= splitLargeGEPOffsets(); 544 MadeChange |= optimizePhiTypes(F); 545 546 if (MadeChange) 547 eliminateFallThrough(F); 548 549 // Really free removed instructions during promotion. 550 for (Instruction *I : RemovedInsts) 551 I->deleteValue(); 552 553 EverMadeChange |= MadeChange; 554 SeenChainsForSExt.clear(); 555 ValToSExtendedUses.clear(); 556 RemovedInsts.clear(); 557 LargeOffsetGEPMap.clear(); 558 LargeOffsetGEPID.clear(); 559 } 560 561 NewGEPBases.clear(); 562 SunkAddrs.clear(); 563 564 if (!DisableBranchOpts) { 565 MadeChange = false; 566 // Use a set vector to get deterministic iteration order. The order the 567 // blocks are removed may affect whether or not PHI nodes in successors 568 // are removed. 569 SmallSetVector<BasicBlock*, 8> WorkList; 570 for (BasicBlock &BB : F) { 571 SmallVector<BasicBlock *, 2> Successors(successors(&BB)); 572 MadeChange |= ConstantFoldTerminator(&BB, true); 573 if (!MadeChange) continue; 574 575 for (BasicBlock *Succ : Successors) 576 if (pred_empty(Succ)) 577 WorkList.insert(Succ); 578 } 579 580 // Delete the dead blocks and any of their dead successors. 581 MadeChange |= !WorkList.empty(); 582 while (!WorkList.empty()) { 583 BasicBlock *BB = WorkList.pop_back_val(); 584 SmallVector<BasicBlock*, 2> Successors(successors(BB)); 585 586 DeleteDeadBlock(BB); 587 588 for (BasicBlock *Succ : Successors) 589 if (pred_empty(Succ)) 590 WorkList.insert(Succ); 591 } 592 593 // Merge pairs of basic blocks with unconditional branches, connected by 594 // a single edge. 595 if (EverMadeChange || MadeChange) 596 MadeChange |= eliminateFallThrough(F); 597 598 EverMadeChange |= MadeChange; 599 } 600 601 if (!DisableGCOpts) { 602 SmallVector<GCStatepointInst *, 2> Statepoints; 603 for (BasicBlock &BB : F) 604 for (Instruction &I : BB) 605 if (auto *SP = dyn_cast<GCStatepointInst>(&I)) 606 Statepoints.push_back(SP); 607 for (auto &I : Statepoints) 608 EverMadeChange |= simplifyOffsetableRelocate(*I); 609 } 610 611 // Do this last to clean up use-before-def scenarios introduced by other 612 // preparatory transforms. 613 EverMadeChange |= placeDbgValues(F); 614 EverMadeChange |= placePseudoProbes(F); 615 616 #ifndef NDEBUG 617 if (VerifyBFIUpdates) 618 verifyBFIUpdates(F); 619 #endif 620 621 return EverMadeChange; 622 } 623 624 bool CodeGenPrepare::eliminateAssumptions(Function &F) { 625 bool MadeChange = false; 626 for (BasicBlock &BB : F) { 627 CurInstIterator = BB.begin(); 628 while (CurInstIterator != BB.end()) { 629 Instruction *I = &*(CurInstIterator++); 630 if (auto *Assume = dyn_cast<AssumeInst>(I)) { 631 MadeChange = true; 632 Value *Operand = Assume->getOperand(0); 633 Assume->eraseFromParent(); 634 635 resetIteratorIfInvalidatedWhileCalling(&BB, [&]() { 636 RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr); 637 }); 638 } 639 } 640 } 641 return MadeChange; 642 } 643 644 /// An instruction is about to be deleted, so remove all references to it in our 645 /// GEP-tracking data strcutures. 646 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) { 647 LargeOffsetGEPMap.erase(V); 648 NewGEPBases.erase(V); 649 650 auto GEP = dyn_cast<GetElementPtrInst>(V); 651 if (!GEP) 652 return; 653 654 LargeOffsetGEPID.erase(GEP); 655 656 auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand()); 657 if (VecI == LargeOffsetGEPMap.end()) 658 return; 659 660 auto &GEPVector = VecI->second; 661 llvm::erase_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; }); 662 663 if (GEPVector.empty()) 664 LargeOffsetGEPMap.erase(VecI); 665 } 666 667 // Verify BFI has been updated correctly by recomputing BFI and comparing them. 668 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) { 669 DominatorTree NewDT(F); 670 LoopInfo NewLI(NewDT); 671 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); 672 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); 673 NewBFI.verifyMatch(*BFI); 674 } 675 676 /// Merge basic blocks which are connected by a single edge, where one of the 677 /// basic blocks has a single successor pointing to the other basic block, 678 /// which has a single predecessor. 679 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 680 bool Changed = false; 681 // Scan all of the blocks in the function, except for the entry block. 682 // Use a temporary array to avoid iterator being invalidated when 683 // deleting blocks. 684 SmallVector<WeakTrackingVH, 16> Blocks; 685 for (auto &Block : llvm::drop_begin(F)) 686 Blocks.push_back(&Block); 687 688 SmallSet<WeakTrackingVH, 16> Preds; 689 for (auto &Block : Blocks) { 690 auto *BB = cast_or_null<BasicBlock>(Block); 691 if (!BB) 692 continue; 693 // If the destination block has a single pred, then this is a trivial 694 // edge, just collapse it. 695 BasicBlock *SinglePred = BB->getSinglePredecessor(); 696 697 // Don't merge if BB's address is taken. 698 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 699 700 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 701 if (Term && !Term->isConditional()) { 702 Changed = true; 703 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 704 705 // Merge BB into SinglePred and delete it. 706 MergeBlockIntoPredecessor(BB); 707 Preds.insert(SinglePred); 708 } 709 } 710 711 // (Repeatedly) merging blocks into their predecessors can create redundant 712 // debug intrinsics. 713 for (auto &Pred : Preds) 714 if (auto *BB = cast_or_null<BasicBlock>(Pred)) 715 RemoveRedundantDbgInstrs(BB); 716 717 return Changed; 718 } 719 720 /// Find a destination block from BB if BB is mergeable empty block. 721 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 722 // If this block doesn't end with an uncond branch, ignore it. 723 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 724 if (!BI || !BI->isUnconditional()) 725 return nullptr; 726 727 // If the instruction before the branch (skipping debug info) isn't a phi 728 // node, then other stuff is happening here. 729 BasicBlock::iterator BBI = BI->getIterator(); 730 if (BBI != BB->begin()) { 731 --BBI; 732 while (isa<DbgInfoIntrinsic>(BBI)) { 733 if (BBI == BB->begin()) 734 break; 735 --BBI; 736 } 737 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 738 return nullptr; 739 } 740 741 // Do not break infinite loops. 742 BasicBlock *DestBB = BI->getSuccessor(0); 743 if (DestBB == BB) 744 return nullptr; 745 746 if (!canMergeBlocks(BB, DestBB)) 747 DestBB = nullptr; 748 749 return DestBB; 750 } 751 752 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 753 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 754 /// edges in ways that are non-optimal for isel. Start by eliminating these 755 /// blocks so we can split them the way we want them. 756 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 757 SmallPtrSet<BasicBlock *, 16> Preheaders; 758 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 759 while (!LoopList.empty()) { 760 Loop *L = LoopList.pop_back_val(); 761 llvm::append_range(LoopList, *L); 762 if (BasicBlock *Preheader = L->getLoopPreheader()) 763 Preheaders.insert(Preheader); 764 } 765 766 bool MadeChange = false; 767 // Copy blocks into a temporary array to avoid iterator invalidation issues 768 // as we remove them. 769 // Note that this intentionally skips the entry block. 770 SmallVector<WeakTrackingVH, 16> Blocks; 771 for (auto &Block : llvm::drop_begin(F)) 772 Blocks.push_back(&Block); 773 774 for (auto &Block : Blocks) { 775 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 776 if (!BB) 777 continue; 778 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 779 if (!DestBB || 780 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 781 continue; 782 783 eliminateMostlyEmptyBlock(BB); 784 MadeChange = true; 785 } 786 return MadeChange; 787 } 788 789 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 790 BasicBlock *DestBB, 791 bool isPreheader) { 792 // Do not delete loop preheaders if doing so would create a critical edge. 793 // Loop preheaders can be good locations to spill registers. If the 794 // preheader is deleted and we create a critical edge, registers may be 795 // spilled in the loop body instead. 796 if (!DisablePreheaderProtect && isPreheader && 797 !(BB->getSinglePredecessor() && 798 BB->getSinglePredecessor()->getSingleSuccessor())) 799 return false; 800 801 // Skip merging if the block's successor is also a successor to any callbr 802 // that leads to this block. 803 // FIXME: Is this really needed? Is this a correctness issue? 804 for (BasicBlock *Pred : predecessors(BB)) { 805 if (auto *CBI = dyn_cast<CallBrInst>((Pred)->getTerminator())) 806 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 807 if (DestBB == CBI->getSuccessor(i)) 808 return false; 809 } 810 811 // Try to skip merging if the unique predecessor of BB is terminated by a 812 // switch or indirect branch instruction, and BB is used as an incoming block 813 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 814 // add COPY instructions in the predecessor of BB instead of BB (if it is not 815 // merged). Note that the critical edge created by merging such blocks wont be 816 // split in MachineSink because the jump table is not analyzable. By keeping 817 // such empty block (BB), ISel will place COPY instructions in BB, not in the 818 // predecessor of BB. 819 BasicBlock *Pred = BB->getUniquePredecessor(); 820 if (!Pred || 821 !(isa<SwitchInst>(Pred->getTerminator()) || 822 isa<IndirectBrInst>(Pred->getTerminator()))) 823 return true; 824 825 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 826 return true; 827 828 // We use a simple cost heuristic which determine skipping merging is 829 // profitable if the cost of skipping merging is less than the cost of 830 // merging : Cost(skipping merging) < Cost(merging BB), where the 831 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 832 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 833 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 834 // Freq(Pred) / Freq(BB) > 2. 835 // Note that if there are multiple empty blocks sharing the same incoming 836 // value for the PHIs in the DestBB, we consider them together. In such 837 // case, Cost(merging BB) will be the sum of their frequencies. 838 839 if (!isa<PHINode>(DestBB->begin())) 840 return true; 841 842 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 843 844 // Find all other incoming blocks from which incoming values of all PHIs in 845 // DestBB are the same as the ones from BB. 846 for (BasicBlock *DestBBPred : predecessors(DestBB)) { 847 if (DestBBPred == BB) 848 continue; 849 850 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 851 return DestPN.getIncomingValueForBlock(BB) == 852 DestPN.getIncomingValueForBlock(DestBBPred); 853 })) 854 SameIncomingValueBBs.insert(DestBBPred); 855 } 856 857 // See if all BB's incoming values are same as the value from Pred. In this 858 // case, no reason to skip merging because COPYs are expected to be place in 859 // Pred already. 860 if (SameIncomingValueBBs.count(Pred)) 861 return true; 862 863 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 864 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 865 866 for (auto *SameValueBB : SameIncomingValueBBs) 867 if (SameValueBB->getUniquePredecessor() == Pred && 868 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 869 BBFreq += BFI->getBlockFreq(SameValueBB); 870 871 return PredFreq.getFrequency() <= 872 BBFreq.getFrequency() * FreqRatioToSkipMerge; 873 } 874 875 /// Return true if we can merge BB into DestBB if there is a single 876 /// unconditional branch between them, and BB contains no other non-phi 877 /// instructions. 878 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 879 const BasicBlock *DestBB) const { 880 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 881 // the successor. If there are more complex condition (e.g. preheaders), 882 // don't mess around with them. 883 for (const PHINode &PN : BB->phis()) { 884 for (const User *U : PN.users()) { 885 const Instruction *UI = cast<Instruction>(U); 886 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 887 return false; 888 // If User is inside DestBB block and it is a PHINode then check 889 // incoming value. If incoming value is not from BB then this is 890 // a complex condition (e.g. preheaders) we want to avoid here. 891 if (UI->getParent() == DestBB) { 892 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 893 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 894 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 895 if (Insn && Insn->getParent() == BB && 896 Insn->getParent() != UPN->getIncomingBlock(I)) 897 return false; 898 } 899 } 900 } 901 } 902 903 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 904 // and DestBB may have conflicting incoming values for the block. If so, we 905 // can't merge the block. 906 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 907 if (!DestBBPN) return true; // no conflict. 908 909 // Collect the preds of BB. 910 SmallPtrSet<const BasicBlock*, 16> BBPreds; 911 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 912 // It is faster to get preds from a PHI than with pred_iterator. 913 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 914 BBPreds.insert(BBPN->getIncomingBlock(i)); 915 } else { 916 BBPreds.insert(pred_begin(BB), pred_end(BB)); 917 } 918 919 // Walk the preds of DestBB. 920 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 921 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 922 if (BBPreds.count(Pred)) { // Common predecessor? 923 for (const PHINode &PN : DestBB->phis()) { 924 const Value *V1 = PN.getIncomingValueForBlock(Pred); 925 const Value *V2 = PN.getIncomingValueForBlock(BB); 926 927 // If V2 is a phi node in BB, look up what the mapped value will be. 928 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 929 if (V2PN->getParent() == BB) 930 V2 = V2PN->getIncomingValueForBlock(Pred); 931 932 // If there is a conflict, bail out. 933 if (V1 != V2) return false; 934 } 935 } 936 } 937 938 return true; 939 } 940 941 /// Eliminate a basic block that has only phi's and an unconditional branch in 942 /// it. 943 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 944 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 945 BasicBlock *DestBB = BI->getSuccessor(0); 946 947 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 948 << *BB << *DestBB); 949 950 // If the destination block has a single pred, then this is a trivial edge, 951 // just collapse it. 952 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 953 if (SinglePred != DestBB) { 954 assert(SinglePred == BB && 955 "Single predecessor not the same as predecessor"); 956 // Merge DestBB into SinglePred/BB and delete it. 957 MergeBlockIntoPredecessor(DestBB); 958 // Note: BB(=SinglePred) will not be deleted on this path. 959 // DestBB(=its single successor) is the one that was deleted. 960 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 961 return; 962 } 963 } 964 965 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 966 // to handle the new incoming edges it is about to have. 967 for (PHINode &PN : DestBB->phis()) { 968 // Remove the incoming value for BB, and remember it. 969 Value *InVal = PN.removeIncomingValue(BB, false); 970 971 // Two options: either the InVal is a phi node defined in BB or it is some 972 // value that dominates BB. 973 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 974 if (InValPhi && InValPhi->getParent() == BB) { 975 // Add all of the input values of the input PHI as inputs of this phi. 976 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 977 PN.addIncoming(InValPhi->getIncomingValue(i), 978 InValPhi->getIncomingBlock(i)); 979 } else { 980 // Otherwise, add one instance of the dominating value for each edge that 981 // we will be adding. 982 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 983 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 984 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 985 } else { 986 for (BasicBlock *Pred : predecessors(BB)) 987 PN.addIncoming(InVal, Pred); 988 } 989 } 990 } 991 992 // The PHIs are now updated, change everything that refers to BB to use 993 // DestBB and remove BB. 994 BB->replaceAllUsesWith(DestBB); 995 BB->eraseFromParent(); 996 ++NumBlocksElim; 997 998 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 999 } 1000 1001 // Computes a map of base pointer relocation instructions to corresponding 1002 // derived pointer relocation instructions given a vector of all relocate calls 1003 static void computeBaseDerivedRelocateMap( 1004 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 1005 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 1006 &RelocateInstMap) { 1007 // Collect information in two maps: one primarily for locating the base object 1008 // while filling the second map; the second map is the final structure holding 1009 // a mapping between Base and corresponding Derived relocate calls 1010 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 1011 for (auto *ThisRelocate : AllRelocateCalls) { 1012 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 1013 ThisRelocate->getDerivedPtrIndex()); 1014 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 1015 } 1016 for (auto &Item : RelocateIdxMap) { 1017 std::pair<unsigned, unsigned> Key = Item.first; 1018 if (Key.first == Key.second) 1019 // Base relocation: nothing to insert 1020 continue; 1021 1022 GCRelocateInst *I = Item.second; 1023 auto BaseKey = std::make_pair(Key.first, Key.first); 1024 1025 // We're iterating over RelocateIdxMap so we cannot modify it. 1026 auto MaybeBase = RelocateIdxMap.find(BaseKey); 1027 if (MaybeBase == RelocateIdxMap.end()) 1028 // TODO: We might want to insert a new base object relocate and gep off 1029 // that, if there are enough derived object relocates. 1030 continue; 1031 1032 RelocateInstMap[MaybeBase->second].push_back(I); 1033 } 1034 } 1035 1036 // Accepts a GEP and extracts the operands into a vector provided they're all 1037 // small integer constants 1038 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 1039 SmallVectorImpl<Value *> &OffsetV) { 1040 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 1041 // Only accept small constant integer operands 1042 auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 1043 if (!Op || Op->getZExtValue() > 20) 1044 return false; 1045 } 1046 1047 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 1048 OffsetV.push_back(GEP->getOperand(i)); 1049 return true; 1050 } 1051 1052 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 1053 // replace, computes a replacement, and affects it. 1054 static bool 1055 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 1056 const SmallVectorImpl<GCRelocateInst *> &Targets) { 1057 bool MadeChange = false; 1058 // We must ensure the relocation of derived pointer is defined after 1059 // relocation of base pointer. If we find a relocation corresponding to base 1060 // defined earlier than relocation of base then we move relocation of base 1061 // right before found relocation. We consider only relocation in the same 1062 // basic block as relocation of base. Relocations from other basic block will 1063 // be skipped by optimization and we do not care about them. 1064 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 1065 &*R != RelocatedBase; ++R) 1066 if (auto *RI = dyn_cast<GCRelocateInst>(R)) 1067 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 1068 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 1069 RelocatedBase->moveBefore(RI); 1070 break; 1071 } 1072 1073 for (GCRelocateInst *ToReplace : Targets) { 1074 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 1075 "Not relocating a derived object of the original base object"); 1076 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 1077 // A duplicate relocate call. TODO: coalesce duplicates. 1078 continue; 1079 } 1080 1081 if (RelocatedBase->getParent() != ToReplace->getParent()) { 1082 // Base and derived relocates are in different basic blocks. 1083 // In this case transform is only valid when base dominates derived 1084 // relocate. However it would be too expensive to check dominance 1085 // for each such relocate, so we skip the whole transformation. 1086 continue; 1087 } 1088 1089 Value *Base = ToReplace->getBasePtr(); 1090 auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 1091 if (!Derived || Derived->getPointerOperand() != Base) 1092 continue; 1093 1094 SmallVector<Value *, 2> OffsetV; 1095 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 1096 continue; 1097 1098 // Create a Builder and replace the target callsite with a gep 1099 assert(RelocatedBase->getNextNode() && 1100 "Should always have one since it's not a terminator"); 1101 1102 // Insert after RelocatedBase 1103 IRBuilder<> Builder(RelocatedBase->getNextNode()); 1104 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1105 1106 // If gc_relocate does not match the actual type, cast it to the right type. 1107 // In theory, there must be a bitcast after gc_relocate if the type does not 1108 // match, and we should reuse it to get the derived pointer. But it could be 1109 // cases like this: 1110 // bb1: 1111 // ... 1112 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1113 // br label %merge 1114 // 1115 // bb2: 1116 // ... 1117 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1118 // br label %merge 1119 // 1120 // merge: 1121 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1122 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1123 // 1124 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1125 // no matter there is already one or not. In this way, we can handle all cases, and 1126 // the extra bitcast should be optimized away in later passes. 1127 Value *ActualRelocatedBase = RelocatedBase; 1128 if (RelocatedBase->getType() != Base->getType()) { 1129 ActualRelocatedBase = 1130 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1131 } 1132 Value *Replacement = Builder.CreateGEP( 1133 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1134 Replacement->takeName(ToReplace); 1135 // If the newly generated derived pointer's type does not match the original derived 1136 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1137 Value *ActualReplacement = Replacement; 1138 if (Replacement->getType() != ToReplace->getType()) { 1139 ActualReplacement = 1140 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1141 } 1142 ToReplace->replaceAllUsesWith(ActualReplacement); 1143 ToReplace->eraseFromParent(); 1144 1145 MadeChange = true; 1146 } 1147 return MadeChange; 1148 } 1149 1150 // Turns this: 1151 // 1152 // %base = ... 1153 // %ptr = gep %base + 15 1154 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1155 // %base' = relocate(%tok, i32 4, i32 4) 1156 // %ptr' = relocate(%tok, i32 4, i32 5) 1157 // %val = load %ptr' 1158 // 1159 // into this: 1160 // 1161 // %base = ... 1162 // %ptr = gep %base + 15 1163 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1164 // %base' = gc.relocate(%tok, i32 4, i32 4) 1165 // %ptr' = gep %base' + 15 1166 // %val = load %ptr' 1167 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { 1168 bool MadeChange = false; 1169 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1170 for (auto *U : I.users()) 1171 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1172 // Collect all the relocate calls associated with a statepoint 1173 AllRelocateCalls.push_back(Relocate); 1174 1175 // We need at least one base pointer relocation + one derived pointer 1176 // relocation to mangle 1177 if (AllRelocateCalls.size() < 2) 1178 return false; 1179 1180 // RelocateInstMap is a mapping from the base relocate instruction to the 1181 // corresponding derived relocate instructions 1182 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1183 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1184 if (RelocateInstMap.empty()) 1185 return false; 1186 1187 for (auto &Item : RelocateInstMap) 1188 // Item.first is the RelocatedBase to offset against 1189 // Item.second is the vector of Targets to replace 1190 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1191 return MadeChange; 1192 } 1193 1194 /// Sink the specified cast instruction into its user blocks. 1195 static bool SinkCast(CastInst *CI) { 1196 BasicBlock *DefBB = CI->getParent(); 1197 1198 /// InsertedCasts - Only insert a cast in each block once. 1199 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1200 1201 bool MadeChange = false; 1202 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1203 UI != E; ) { 1204 Use &TheUse = UI.getUse(); 1205 Instruction *User = cast<Instruction>(*UI); 1206 1207 // Figure out which BB this cast is used in. For PHI's this is the 1208 // appropriate predecessor block. 1209 BasicBlock *UserBB = User->getParent(); 1210 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1211 UserBB = PN->getIncomingBlock(TheUse); 1212 } 1213 1214 // Preincrement use iterator so we don't invalidate it. 1215 ++UI; 1216 1217 // The first insertion point of a block containing an EH pad is after the 1218 // pad. If the pad is the user, we cannot sink the cast past the pad. 1219 if (User->isEHPad()) 1220 continue; 1221 1222 // If the block selected to receive the cast is an EH pad that does not 1223 // allow non-PHI instructions before the terminator, we can't sink the 1224 // cast. 1225 if (UserBB->getTerminator()->isEHPad()) 1226 continue; 1227 1228 // If this user is in the same block as the cast, don't change the cast. 1229 if (UserBB == DefBB) continue; 1230 1231 // If we have already inserted a cast into this block, use it. 1232 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1233 1234 if (!InsertedCast) { 1235 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1236 assert(InsertPt != UserBB->end()); 1237 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1238 CI->getType(), "", &*InsertPt); 1239 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1240 } 1241 1242 // Replace a use of the cast with a use of the new cast. 1243 TheUse = InsertedCast; 1244 MadeChange = true; 1245 ++NumCastUses; 1246 } 1247 1248 // If we removed all uses, nuke the cast. 1249 if (CI->use_empty()) { 1250 salvageDebugInfo(*CI); 1251 CI->eraseFromParent(); 1252 MadeChange = true; 1253 } 1254 1255 return MadeChange; 1256 } 1257 1258 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1259 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1260 /// reduce the number of virtual registers that must be created and coalesced. 1261 /// 1262 /// Return true if any changes are made. 1263 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1264 const DataLayout &DL) { 1265 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1266 // than sinking only nop casts, but is helpful on some platforms. 1267 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1268 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1269 ASC->getDestAddressSpace())) 1270 return false; 1271 } 1272 1273 // If this is a noop copy, 1274 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1275 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1276 1277 // This is an fp<->int conversion? 1278 if (SrcVT.isInteger() != DstVT.isInteger()) 1279 return false; 1280 1281 // If this is an extension, it will be a zero or sign extension, which 1282 // isn't a noop. 1283 if (SrcVT.bitsLT(DstVT)) return false; 1284 1285 // If these values will be promoted, find out what they will be promoted 1286 // to. This helps us consider truncates on PPC as noop copies when they 1287 // are. 1288 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1289 TargetLowering::TypePromoteInteger) 1290 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1291 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1292 TargetLowering::TypePromoteInteger) 1293 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1294 1295 // If, after promotion, these are the same types, this is a noop copy. 1296 if (SrcVT != DstVT) 1297 return false; 1298 1299 return SinkCast(CI); 1300 } 1301 1302 // Match a simple increment by constant operation. Note that if a sub is 1303 // matched, the step is negated (as if the step had been canonicalized to 1304 // an add, even though we leave the instruction alone.) 1305 bool matchIncrement(const Instruction* IVInc, Instruction *&LHS, 1306 Constant *&Step) { 1307 if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) || 1308 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>( 1309 m_Instruction(LHS), m_Constant(Step))))) 1310 return true; 1311 if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) || 1312 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>( 1313 m_Instruction(LHS), m_Constant(Step))))) { 1314 Step = ConstantExpr::getNeg(Step); 1315 return true; 1316 } 1317 return false; 1318 } 1319 1320 /// If given \p PN is an inductive variable with value IVInc coming from the 1321 /// backedge, and on each iteration it gets increased by Step, return pair 1322 /// <IVInc, Step>. Otherwise, return None. 1323 static Optional<std::pair<Instruction *, Constant *> > 1324 getIVIncrement(const PHINode *PN, const LoopInfo *LI) { 1325 const Loop *L = LI->getLoopFor(PN->getParent()); 1326 if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch()) 1327 return None; 1328 auto *IVInc = 1329 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 1330 if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L) 1331 return None; 1332 Instruction *LHS = nullptr; 1333 Constant *Step = nullptr; 1334 if (matchIncrement(IVInc, LHS, Step) && LHS == PN) 1335 return std::make_pair(IVInc, Step); 1336 return None; 1337 } 1338 1339 static bool isIVIncrement(const Value *V, const LoopInfo *LI) { 1340 auto *I = dyn_cast<Instruction>(V); 1341 if (!I) 1342 return false; 1343 Instruction *LHS = nullptr; 1344 Constant *Step = nullptr; 1345 if (!matchIncrement(I, LHS, Step)) 1346 return false; 1347 if (auto *PN = dyn_cast<PHINode>(LHS)) 1348 if (auto IVInc = getIVIncrement(PN, LI)) 1349 return IVInc->first == I; 1350 return false; 1351 } 1352 1353 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1354 Value *Arg0, Value *Arg1, 1355 CmpInst *Cmp, 1356 Intrinsic::ID IID) { 1357 auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) { 1358 if (!isIVIncrement(BO, LI)) 1359 return false; 1360 const Loop *L = LI->getLoopFor(BO->getParent()); 1361 assert(L && "L should not be null after isIVIncrement()"); 1362 // Do not risk on moving increment into a child loop. 1363 if (LI->getLoopFor(Cmp->getParent()) != L) 1364 return false; 1365 1366 // Finally, we need to ensure that the insert point will dominate all 1367 // existing uses of the increment. 1368 1369 auto &DT = getDT(*BO->getParent()->getParent()); 1370 if (DT.dominates(Cmp->getParent(), BO->getParent())) 1371 // If we're moving up the dom tree, all uses are trivially dominated. 1372 // (This is the common case for code produced by LSR.) 1373 return true; 1374 1375 // Otherwise, special case the single use in the phi recurrence. 1376 return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch()); 1377 }; 1378 if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) { 1379 // We used to use a dominator tree here to allow multi-block optimization. 1380 // But that was problematic because: 1381 // 1. It could cause a perf regression by hoisting the math op into the 1382 // critical path. 1383 // 2. It could cause a perf regression by creating a value that was live 1384 // across multiple blocks and increasing register pressure. 1385 // 3. Use of a dominator tree could cause large compile-time regression. 1386 // This is because we recompute the DT on every change in the main CGP 1387 // run-loop. The recomputing is probably unnecessary in many cases, so if 1388 // that was fixed, using a DT here would be ok. 1389 // 1390 // There is one important particular case we still want to handle: if BO is 1391 // the IV increment. Important properties that make it profitable: 1392 // - We can speculate IV increment anywhere in the loop (as long as the 1393 // indvar Phi is its only user); 1394 // - Upon computing Cmp, we effectively compute something equivalent to the 1395 // IV increment (despite it loops differently in the IR). So moving it up 1396 // to the cmp point does not really increase register pressure. 1397 return false; 1398 } 1399 1400 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1401 if (BO->getOpcode() == Instruction::Add && 1402 IID == Intrinsic::usub_with_overflow) { 1403 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1404 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1405 } 1406 1407 // Insert at the first instruction of the pair. 1408 Instruction *InsertPt = nullptr; 1409 for (Instruction &Iter : *Cmp->getParent()) { 1410 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1411 // the overflow intrinsic are defined. 1412 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1413 InsertPt = &Iter; 1414 break; 1415 } 1416 } 1417 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1418 1419 IRBuilder<> Builder(InsertPt); 1420 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1421 if (BO->getOpcode() != Instruction::Xor) { 1422 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1423 BO->replaceAllUsesWith(Math); 1424 } else 1425 assert(BO->hasOneUse() && 1426 "Patterns with XOr should use the BO only in the compare"); 1427 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1428 Cmp->replaceAllUsesWith(OV); 1429 Cmp->eraseFromParent(); 1430 BO->eraseFromParent(); 1431 return true; 1432 } 1433 1434 /// Match special-case patterns that check for unsigned add overflow. 1435 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1436 BinaryOperator *&Add) { 1437 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1438 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1439 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1440 1441 // We are not expecting non-canonical/degenerate code. Just bail out. 1442 if (isa<Constant>(A)) 1443 return false; 1444 1445 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1446 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1447 B = ConstantInt::get(B->getType(), 1); 1448 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1449 B = ConstantInt::get(B->getType(), -1); 1450 else 1451 return false; 1452 1453 // Check the users of the variable operand of the compare looking for an add 1454 // with the adjusted constant. 1455 for (User *U : A->users()) { 1456 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1457 Add = cast<BinaryOperator>(U); 1458 return true; 1459 } 1460 } 1461 return false; 1462 } 1463 1464 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1465 /// intrinsic. Return true if any changes were made. 1466 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1467 bool &ModifiedDT) { 1468 Value *A, *B; 1469 BinaryOperator *Add; 1470 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1471 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1472 return false; 1473 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1474 A = Add->getOperand(0); 1475 B = Add->getOperand(1); 1476 } 1477 1478 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1479 TLI->getValueType(*DL, Add->getType()), 1480 Add->hasNUsesOrMore(2))) 1481 return false; 1482 1483 // We don't want to move around uses of condition values this late, so we 1484 // check if it is legal to create the call to the intrinsic in the basic 1485 // block containing the icmp. 1486 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1487 return false; 1488 1489 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1490 Intrinsic::uadd_with_overflow)) 1491 return false; 1492 1493 // Reset callers - do not crash by iterating over a dead instruction. 1494 ModifiedDT = true; 1495 return true; 1496 } 1497 1498 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1499 bool &ModifiedDT) { 1500 // We are not expecting non-canonical/degenerate code. Just bail out. 1501 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1502 if (isa<Constant>(A) && isa<Constant>(B)) 1503 return false; 1504 1505 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1506 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1507 if (Pred == ICmpInst::ICMP_UGT) { 1508 std::swap(A, B); 1509 Pred = ICmpInst::ICMP_ULT; 1510 } 1511 // Convert special-case: (A == 0) is the same as (A u< 1). 1512 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1513 B = ConstantInt::get(B->getType(), 1); 1514 Pred = ICmpInst::ICMP_ULT; 1515 } 1516 // Convert special-case: (A != 0) is the same as (0 u< A). 1517 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1518 std::swap(A, B); 1519 Pred = ICmpInst::ICMP_ULT; 1520 } 1521 if (Pred != ICmpInst::ICMP_ULT) 1522 return false; 1523 1524 // Walk the users of a variable operand of a compare looking for a subtract or 1525 // add with that same operand. Also match the 2nd operand of the compare to 1526 // the add/sub, but that may be a negated constant operand of an add. 1527 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1528 BinaryOperator *Sub = nullptr; 1529 for (User *U : CmpVariableOperand->users()) { 1530 // A - B, A u< B --> usubo(A, B) 1531 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1532 Sub = cast<BinaryOperator>(U); 1533 break; 1534 } 1535 1536 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1537 const APInt *CmpC, *AddC; 1538 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1539 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1540 Sub = cast<BinaryOperator>(U); 1541 break; 1542 } 1543 } 1544 if (!Sub) 1545 return false; 1546 1547 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1548 TLI->getValueType(*DL, Sub->getType()), 1549 Sub->hasNUsesOrMore(2))) 1550 return false; 1551 1552 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1553 Cmp, Intrinsic::usub_with_overflow)) 1554 return false; 1555 1556 // Reset callers - do not crash by iterating over a dead instruction. 1557 ModifiedDT = true; 1558 return true; 1559 } 1560 1561 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1562 /// registers that must be created and coalesced. This is a clear win except on 1563 /// targets with multiple condition code registers (PowerPC), where it might 1564 /// lose; some adjustment may be wanted there. 1565 /// 1566 /// Return true if any changes are made. 1567 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1568 if (TLI.hasMultipleConditionRegisters()) 1569 return false; 1570 1571 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1572 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1573 return false; 1574 1575 // Only insert a cmp in each block once. 1576 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1577 1578 bool MadeChange = false; 1579 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1580 UI != E; ) { 1581 Use &TheUse = UI.getUse(); 1582 Instruction *User = cast<Instruction>(*UI); 1583 1584 // Preincrement use iterator so we don't invalidate it. 1585 ++UI; 1586 1587 // Don't bother for PHI nodes. 1588 if (isa<PHINode>(User)) 1589 continue; 1590 1591 // Figure out which BB this cmp is used in. 1592 BasicBlock *UserBB = User->getParent(); 1593 BasicBlock *DefBB = Cmp->getParent(); 1594 1595 // If this user is in the same block as the cmp, don't change the cmp. 1596 if (UserBB == DefBB) continue; 1597 1598 // If we have already inserted a cmp into this block, use it. 1599 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1600 1601 if (!InsertedCmp) { 1602 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1603 assert(InsertPt != UserBB->end()); 1604 InsertedCmp = 1605 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1606 Cmp->getOperand(0), Cmp->getOperand(1), "", 1607 &*InsertPt); 1608 // Propagate the debug info. 1609 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1610 } 1611 1612 // Replace a use of the cmp with a use of the new cmp. 1613 TheUse = InsertedCmp; 1614 MadeChange = true; 1615 ++NumCmpUses; 1616 } 1617 1618 // If we removed all uses, nuke the cmp. 1619 if (Cmp->use_empty()) { 1620 Cmp->eraseFromParent(); 1621 MadeChange = true; 1622 } 1623 1624 return MadeChange; 1625 } 1626 1627 /// For pattern like: 1628 /// 1629 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1630 /// ... 1631 /// DomBB: 1632 /// ... 1633 /// br DomCond, TrueBB, CmpBB 1634 /// CmpBB: (with DomBB being the single predecessor) 1635 /// ... 1636 /// Cmp = icmp eq CmpOp0, CmpOp1 1637 /// ... 1638 /// 1639 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1640 /// different from lowering of icmp eq (PowerPC). This function try to convert 1641 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1642 /// After that, DomCond and Cmp can use the same comparison so reduce one 1643 /// comparison. 1644 /// 1645 /// Return true if any changes are made. 1646 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1647 const TargetLowering &TLI) { 1648 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1649 return false; 1650 1651 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1652 if (Pred != ICmpInst::ICMP_EQ) 1653 return false; 1654 1655 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1656 // icmp slt/sgt would introduce more redundant LLVM IR. 1657 for (User *U : Cmp->users()) { 1658 if (isa<BranchInst>(U)) 1659 continue; 1660 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1661 continue; 1662 return false; 1663 } 1664 1665 // This is a cheap/incomplete check for dominance - just match a single 1666 // predecessor with a conditional branch. 1667 BasicBlock *CmpBB = Cmp->getParent(); 1668 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1669 if (!DomBB) 1670 return false; 1671 1672 // We want to ensure that the only way control gets to the comparison of 1673 // interest is that a less/greater than comparison on the same operands is 1674 // false. 1675 Value *DomCond; 1676 BasicBlock *TrueBB, *FalseBB; 1677 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1678 return false; 1679 if (CmpBB != FalseBB) 1680 return false; 1681 1682 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1683 ICmpInst::Predicate DomPred; 1684 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1685 return false; 1686 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1687 return false; 1688 1689 // Convert the equality comparison to the opposite of the dominating 1690 // comparison and swap the direction for all branch/select users. 1691 // We have conceptually converted: 1692 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1693 // to 1694 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1695 // And similarly for branches. 1696 for (User *U : Cmp->users()) { 1697 if (auto *BI = dyn_cast<BranchInst>(U)) { 1698 assert(BI->isConditional() && "Must be conditional"); 1699 BI->swapSuccessors(); 1700 continue; 1701 } 1702 if (auto *SI = dyn_cast<SelectInst>(U)) { 1703 // Swap operands 1704 SI->swapValues(); 1705 SI->swapProfMetadata(); 1706 continue; 1707 } 1708 llvm_unreachable("Must be a branch or a select"); 1709 } 1710 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1711 return true; 1712 } 1713 1714 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1715 if (sinkCmpExpression(Cmp, *TLI)) 1716 return true; 1717 1718 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1719 return true; 1720 1721 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1722 return true; 1723 1724 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1725 return true; 1726 1727 return false; 1728 } 1729 1730 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1731 /// used in a compare to allow isel to generate better code for targets where 1732 /// this operation can be combined. 1733 /// 1734 /// Return true if any changes are made. 1735 static bool sinkAndCmp0Expression(Instruction *AndI, 1736 const TargetLowering &TLI, 1737 SetOfInstrs &InsertedInsts) { 1738 // Double-check that we're not trying to optimize an instruction that was 1739 // already optimized by some other part of this pass. 1740 assert(!InsertedInsts.count(AndI) && 1741 "Attempting to optimize already optimized and instruction"); 1742 (void) InsertedInsts; 1743 1744 // Nothing to do for single use in same basic block. 1745 if (AndI->hasOneUse() && 1746 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1747 return false; 1748 1749 // Try to avoid cases where sinking/duplicating is likely to increase register 1750 // pressure. 1751 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1752 !isa<ConstantInt>(AndI->getOperand(1)) && 1753 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1754 return false; 1755 1756 for (auto *U : AndI->users()) { 1757 Instruction *User = cast<Instruction>(U); 1758 1759 // Only sink 'and' feeding icmp with 0. 1760 if (!isa<ICmpInst>(User)) 1761 return false; 1762 1763 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1764 if (!CmpC || !CmpC->isZero()) 1765 return false; 1766 } 1767 1768 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1769 return false; 1770 1771 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1772 LLVM_DEBUG(AndI->getParent()->dump()); 1773 1774 // Push the 'and' into the same block as the icmp 0. There should only be 1775 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1776 // others, so we don't need to keep track of which BBs we insert into. 1777 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1778 UI != E; ) { 1779 Use &TheUse = UI.getUse(); 1780 Instruction *User = cast<Instruction>(*UI); 1781 1782 // Preincrement use iterator so we don't invalidate it. 1783 ++UI; 1784 1785 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1786 1787 // Keep the 'and' in the same place if the use is already in the same block. 1788 Instruction *InsertPt = 1789 User->getParent() == AndI->getParent() ? AndI : User; 1790 Instruction *InsertedAnd = 1791 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1792 AndI->getOperand(1), "", InsertPt); 1793 // Propagate the debug info. 1794 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1795 1796 // Replace a use of the 'and' with a use of the new 'and'. 1797 TheUse = InsertedAnd; 1798 ++NumAndUses; 1799 LLVM_DEBUG(User->getParent()->dump()); 1800 } 1801 1802 // We removed all uses, nuke the and. 1803 AndI->eraseFromParent(); 1804 return true; 1805 } 1806 1807 /// Check if the candidates could be combined with a shift instruction, which 1808 /// includes: 1809 /// 1. Truncate instruction 1810 /// 2. And instruction and the imm is a mask of the low bits: 1811 /// imm & (imm+1) == 0 1812 static bool isExtractBitsCandidateUse(Instruction *User) { 1813 if (!isa<TruncInst>(User)) { 1814 if (User->getOpcode() != Instruction::And || 1815 !isa<ConstantInt>(User->getOperand(1))) 1816 return false; 1817 1818 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1819 1820 if ((Cimm & (Cimm + 1)).getBoolValue()) 1821 return false; 1822 } 1823 return true; 1824 } 1825 1826 /// Sink both shift and truncate instruction to the use of truncate's BB. 1827 static bool 1828 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1829 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1830 const TargetLowering &TLI, const DataLayout &DL) { 1831 BasicBlock *UserBB = User->getParent(); 1832 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1833 auto *TruncI = cast<TruncInst>(User); 1834 bool MadeChange = false; 1835 1836 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1837 TruncE = TruncI->user_end(); 1838 TruncUI != TruncE;) { 1839 1840 Use &TruncTheUse = TruncUI.getUse(); 1841 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1842 // Preincrement use iterator so we don't invalidate it. 1843 1844 ++TruncUI; 1845 1846 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1847 if (!ISDOpcode) 1848 continue; 1849 1850 // If the use is actually a legal node, there will not be an 1851 // implicit truncate. 1852 // FIXME: always querying the result type is just an 1853 // approximation; some nodes' legality is determined by the 1854 // operand or other means. There's no good way to find out though. 1855 if (TLI.isOperationLegalOrCustom( 1856 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1857 continue; 1858 1859 // Don't bother for PHI nodes. 1860 if (isa<PHINode>(TruncUser)) 1861 continue; 1862 1863 BasicBlock *TruncUserBB = TruncUser->getParent(); 1864 1865 if (UserBB == TruncUserBB) 1866 continue; 1867 1868 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1869 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1870 1871 if (!InsertedShift && !InsertedTrunc) { 1872 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1873 assert(InsertPt != TruncUserBB->end()); 1874 // Sink the shift 1875 if (ShiftI->getOpcode() == Instruction::AShr) 1876 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1877 "", &*InsertPt); 1878 else 1879 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1880 "", &*InsertPt); 1881 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1882 1883 // Sink the trunc 1884 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1885 TruncInsertPt++; 1886 assert(TruncInsertPt != TruncUserBB->end()); 1887 1888 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1889 TruncI->getType(), "", &*TruncInsertPt); 1890 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1891 1892 MadeChange = true; 1893 1894 TruncTheUse = InsertedTrunc; 1895 } 1896 } 1897 return MadeChange; 1898 } 1899 1900 /// Sink the shift *right* instruction into user blocks if the uses could 1901 /// potentially be combined with this shift instruction and generate BitExtract 1902 /// instruction. It will only be applied if the architecture supports BitExtract 1903 /// instruction. Here is an example: 1904 /// BB1: 1905 /// %x.extract.shift = lshr i64 %arg1, 32 1906 /// BB2: 1907 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1908 /// ==> 1909 /// 1910 /// BB2: 1911 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1912 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1913 /// 1914 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1915 /// instruction. 1916 /// Return true if any changes are made. 1917 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1918 const TargetLowering &TLI, 1919 const DataLayout &DL) { 1920 BasicBlock *DefBB = ShiftI->getParent(); 1921 1922 /// Only insert instructions in each block once. 1923 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1924 1925 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1926 1927 bool MadeChange = false; 1928 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1929 UI != E;) { 1930 Use &TheUse = UI.getUse(); 1931 Instruction *User = cast<Instruction>(*UI); 1932 // Preincrement use iterator so we don't invalidate it. 1933 ++UI; 1934 1935 // Don't bother for PHI nodes. 1936 if (isa<PHINode>(User)) 1937 continue; 1938 1939 if (!isExtractBitsCandidateUse(User)) 1940 continue; 1941 1942 BasicBlock *UserBB = User->getParent(); 1943 1944 if (UserBB == DefBB) { 1945 // If the shift and truncate instruction are in the same BB. The use of 1946 // the truncate(TruncUse) may still introduce another truncate if not 1947 // legal. In this case, we would like to sink both shift and truncate 1948 // instruction to the BB of TruncUse. 1949 // for example: 1950 // BB1: 1951 // i64 shift.result = lshr i64 opnd, imm 1952 // trunc.result = trunc shift.result to i16 1953 // 1954 // BB2: 1955 // ----> We will have an implicit truncate here if the architecture does 1956 // not have i16 compare. 1957 // cmp i16 trunc.result, opnd2 1958 // 1959 if (isa<TruncInst>(User) && shiftIsLegal 1960 // If the type of the truncate is legal, no truncate will be 1961 // introduced in other basic blocks. 1962 && 1963 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1964 MadeChange = 1965 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1966 1967 continue; 1968 } 1969 // If we have already inserted a shift into this block, use it. 1970 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1971 1972 if (!InsertedShift) { 1973 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1974 assert(InsertPt != UserBB->end()); 1975 1976 if (ShiftI->getOpcode() == Instruction::AShr) 1977 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1978 "", &*InsertPt); 1979 else 1980 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1981 "", &*InsertPt); 1982 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1983 1984 MadeChange = true; 1985 } 1986 1987 // Replace a use of the shift with a use of the new shift. 1988 TheUse = InsertedShift; 1989 } 1990 1991 // If we removed all uses, or there are none, nuke the shift. 1992 if (ShiftI->use_empty()) { 1993 salvageDebugInfo(*ShiftI); 1994 ShiftI->eraseFromParent(); 1995 MadeChange = true; 1996 } 1997 1998 return MadeChange; 1999 } 2000 2001 /// If counting leading or trailing zeros is an expensive operation and a zero 2002 /// input is defined, add a check for zero to avoid calling the intrinsic. 2003 /// 2004 /// We want to transform: 2005 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 2006 /// 2007 /// into: 2008 /// entry: 2009 /// %cmpz = icmp eq i64 %A, 0 2010 /// br i1 %cmpz, label %cond.end, label %cond.false 2011 /// cond.false: 2012 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 2013 /// br label %cond.end 2014 /// cond.end: 2015 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 2016 /// 2017 /// If the transform is performed, return true and set ModifiedDT to true. 2018 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 2019 const TargetLowering *TLI, 2020 const DataLayout *DL, 2021 bool &ModifiedDT) { 2022 // If a zero input is undefined, it doesn't make sense to despeculate that. 2023 if (match(CountZeros->getOperand(1), m_One())) 2024 return false; 2025 2026 // If it's cheap to speculate, there's nothing to do. 2027 auto IntrinsicID = CountZeros->getIntrinsicID(); 2028 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 2029 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 2030 return false; 2031 2032 // Only handle legal scalar cases. Anything else requires too much work. 2033 Type *Ty = CountZeros->getType(); 2034 unsigned SizeInBits = Ty->getScalarSizeInBits(); 2035 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 2036 return false; 2037 2038 // Bail if the value is never zero. 2039 if (llvm::isKnownNonZero(CountZeros->getOperand(0), *DL)) 2040 return false; 2041 2042 // The intrinsic will be sunk behind a compare against zero and branch. 2043 BasicBlock *StartBlock = CountZeros->getParent(); 2044 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 2045 2046 // Create another block after the count zero intrinsic. A PHI will be added 2047 // in this block to select the result of the intrinsic or the bit-width 2048 // constant if the input to the intrinsic is zero. 2049 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 2050 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 2051 2052 // Set up a builder to create a compare, conditional branch, and PHI. 2053 IRBuilder<> Builder(CountZeros->getContext()); 2054 Builder.SetInsertPoint(StartBlock->getTerminator()); 2055 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 2056 2057 // Replace the unconditional branch that was created by the first split with 2058 // a compare against zero and a conditional branch. 2059 Value *Zero = Constant::getNullValue(Ty); 2060 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 2061 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 2062 StartBlock->getTerminator()->eraseFromParent(); 2063 2064 // Create a PHI in the end block to select either the output of the intrinsic 2065 // or the bit width of the operand. 2066 Builder.SetInsertPoint(&EndBlock->front()); 2067 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 2068 CountZeros->replaceAllUsesWith(PN); 2069 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 2070 PN->addIncoming(BitWidth, StartBlock); 2071 PN->addIncoming(CountZeros, CallBlock); 2072 2073 // We are explicitly handling the zero case, so we can set the intrinsic's 2074 // undefined zero argument to 'true'. This will also prevent reprocessing the 2075 // intrinsic; we only despeculate when a zero input is defined. 2076 CountZeros->setArgOperand(1, Builder.getTrue()); 2077 ModifiedDT = true; 2078 return true; 2079 } 2080 2081 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 2082 BasicBlock *BB = CI->getParent(); 2083 2084 // Lower inline assembly if we can. 2085 // If we found an inline asm expession, and if the target knows how to 2086 // lower it to normal LLVM code, do so now. 2087 if (CI->isInlineAsm()) { 2088 if (TLI->ExpandInlineAsm(CI)) { 2089 // Avoid invalidating the iterator. 2090 CurInstIterator = BB->begin(); 2091 // Avoid processing instructions out of order, which could cause 2092 // reuse before a value is defined. 2093 SunkAddrs.clear(); 2094 return true; 2095 } 2096 // Sink address computing for memory operands into the block. 2097 if (optimizeInlineAsmInst(CI)) 2098 return true; 2099 } 2100 2101 // Align the pointer arguments to this call if the target thinks it's a good 2102 // idea 2103 unsigned MinSize, PrefAlign; 2104 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 2105 for (auto &Arg : CI->args()) { 2106 // We want to align both objects whose address is used directly and 2107 // objects whose address is used in casts and GEPs, though it only makes 2108 // sense for GEPs if the offset is a multiple of the desired alignment and 2109 // if size - offset meets the size threshold. 2110 if (!Arg->getType()->isPointerTy()) 2111 continue; 2112 APInt Offset(DL->getIndexSizeInBits( 2113 cast<PointerType>(Arg->getType())->getAddressSpace()), 2114 0); 2115 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 2116 uint64_t Offset2 = Offset.getLimitedValue(); 2117 if ((Offset2 & (PrefAlign-1)) != 0) 2118 continue; 2119 AllocaInst *AI; 2120 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 2121 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2122 AI->setAlignment(Align(PrefAlign)); 2123 // Global variables can only be aligned if they are defined in this 2124 // object (i.e. they are uniquely initialized in this object), and 2125 // over-aligning global variables that have an explicit section is 2126 // forbidden. 2127 GlobalVariable *GV; 2128 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2129 GV->getPointerAlignment(*DL) < PrefAlign && 2130 DL->getTypeAllocSize(GV->getValueType()) >= 2131 MinSize + Offset2) 2132 GV->setAlignment(MaybeAlign(PrefAlign)); 2133 } 2134 // If this is a memcpy (or similar) then we may be able to improve the 2135 // alignment 2136 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2137 Align DestAlign = getKnownAlignment(MI->getDest(), *DL); 2138 MaybeAlign MIDestAlign = MI->getDestAlign(); 2139 if (!MIDestAlign || DestAlign > *MIDestAlign) 2140 MI->setDestAlignment(DestAlign); 2141 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 2142 MaybeAlign MTISrcAlign = MTI->getSourceAlign(); 2143 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 2144 if (!MTISrcAlign || SrcAlign > *MTISrcAlign) 2145 MTI->setSourceAlignment(SrcAlign); 2146 } 2147 } 2148 } 2149 2150 // If we have a cold call site, try to sink addressing computation into the 2151 // cold block. This interacts with our handling for loads and stores to 2152 // ensure that we can fold all uses of a potential addressing computation 2153 // into their uses. TODO: generalize this to work over profiling data 2154 if (CI->hasFnAttr(Attribute::Cold) && 2155 !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 2156 for (auto &Arg : CI->args()) { 2157 if (!Arg->getType()->isPointerTy()) 2158 continue; 2159 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2160 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 2161 } 2162 2163 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2164 if (II) { 2165 switch (II->getIntrinsicID()) { 2166 default: break; 2167 case Intrinsic::assume: 2168 llvm_unreachable("llvm.assume should have been removed already"); 2169 case Intrinsic::experimental_widenable_condition: { 2170 // Give up on future widening oppurtunties so that we can fold away dead 2171 // paths and merge blocks before going into block-local instruction 2172 // selection. 2173 if (II->use_empty()) { 2174 II->eraseFromParent(); 2175 return true; 2176 } 2177 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 2178 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2179 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2180 }); 2181 return true; 2182 } 2183 case Intrinsic::objectsize: 2184 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2185 case Intrinsic::is_constant: 2186 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2187 case Intrinsic::aarch64_stlxr: 2188 case Intrinsic::aarch64_stxr: { 2189 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2190 if (!ExtVal || !ExtVal->hasOneUse() || 2191 ExtVal->getParent() == CI->getParent()) 2192 return false; 2193 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2194 ExtVal->moveBefore(CI); 2195 // Mark this instruction as "inserted by CGP", so that other 2196 // optimizations don't touch it. 2197 InsertedInsts.insert(ExtVal); 2198 return true; 2199 } 2200 2201 case Intrinsic::launder_invariant_group: 2202 case Intrinsic::strip_invariant_group: { 2203 Value *ArgVal = II->getArgOperand(0); 2204 auto it = LargeOffsetGEPMap.find(II); 2205 if (it != LargeOffsetGEPMap.end()) { 2206 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2207 // Make sure not to have to deal with iterator invalidation 2208 // after possibly adding ArgVal to LargeOffsetGEPMap. 2209 auto GEPs = std::move(it->second); 2210 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2211 LargeOffsetGEPMap.erase(II); 2212 } 2213 2214 II->replaceAllUsesWith(ArgVal); 2215 II->eraseFromParent(); 2216 return true; 2217 } 2218 case Intrinsic::cttz: 2219 case Intrinsic::ctlz: 2220 // If counting zeros is expensive, try to avoid it. 2221 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2222 case Intrinsic::fshl: 2223 case Intrinsic::fshr: 2224 return optimizeFunnelShift(II); 2225 case Intrinsic::dbg_value: 2226 return fixupDbgValue(II); 2227 case Intrinsic::vscale: { 2228 // If datalayout has no special restrictions on vector data layout, 2229 // replace `llvm.vscale` by an equivalent constant expression 2230 // to benefit from cheap constant propagation. 2231 Type *ScalableVectorTy = 2232 VectorType::get(Type::getInt8Ty(II->getContext()), 1, true); 2233 if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) { 2234 auto *Null = Constant::getNullValue(ScalableVectorTy->getPointerTo()); 2235 auto *One = ConstantInt::getSigned(II->getType(), 1); 2236 auto *CGep = 2237 ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One); 2238 II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType())); 2239 II->eraseFromParent(); 2240 return true; 2241 } 2242 break; 2243 } 2244 case Intrinsic::masked_gather: 2245 return optimizeGatherScatterInst(II, II->getArgOperand(0)); 2246 case Intrinsic::masked_scatter: 2247 return optimizeGatherScatterInst(II, II->getArgOperand(1)); 2248 } 2249 2250 SmallVector<Value *, 2> PtrOps; 2251 Type *AccessTy; 2252 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2253 while (!PtrOps.empty()) { 2254 Value *PtrVal = PtrOps.pop_back_val(); 2255 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2256 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2257 return true; 2258 } 2259 } 2260 2261 // From here on out we're working with named functions. 2262 if (!CI->getCalledFunction()) return false; 2263 2264 // Lower all default uses of _chk calls. This is very similar 2265 // to what InstCombineCalls does, but here we are only lowering calls 2266 // to fortified library functions (e.g. __memcpy_chk) that have the default 2267 // "don't know" as the objectsize. Anything else should be left alone. 2268 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2269 IRBuilder<> Builder(CI); 2270 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2271 CI->replaceAllUsesWith(V); 2272 CI->eraseFromParent(); 2273 return true; 2274 } 2275 2276 return false; 2277 } 2278 2279 /// Look for opportunities to duplicate return instructions to the predecessor 2280 /// to enable tail call optimizations. The case it is currently looking for is: 2281 /// @code 2282 /// bb0: 2283 /// %tmp0 = tail call i32 @f0() 2284 /// br label %return 2285 /// bb1: 2286 /// %tmp1 = tail call i32 @f1() 2287 /// br label %return 2288 /// bb2: 2289 /// %tmp2 = tail call i32 @f2() 2290 /// br label %return 2291 /// return: 2292 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2293 /// ret i32 %retval 2294 /// @endcode 2295 /// 2296 /// => 2297 /// 2298 /// @code 2299 /// bb0: 2300 /// %tmp0 = tail call i32 @f0() 2301 /// ret i32 %tmp0 2302 /// bb1: 2303 /// %tmp1 = tail call i32 @f1() 2304 /// ret i32 %tmp1 2305 /// bb2: 2306 /// %tmp2 = tail call i32 @f2() 2307 /// ret i32 %tmp2 2308 /// @endcode 2309 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 2310 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2311 if (!RetI) 2312 return false; 2313 2314 PHINode *PN = nullptr; 2315 ExtractValueInst *EVI = nullptr; 2316 BitCastInst *BCI = nullptr; 2317 Value *V = RetI->getReturnValue(); 2318 if (V) { 2319 BCI = dyn_cast<BitCastInst>(V); 2320 if (BCI) 2321 V = BCI->getOperand(0); 2322 2323 EVI = dyn_cast<ExtractValueInst>(V); 2324 if (EVI) { 2325 V = EVI->getOperand(0); 2326 if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; })) 2327 return false; 2328 } 2329 2330 PN = dyn_cast<PHINode>(V); 2331 if (!PN) 2332 return false; 2333 } 2334 2335 if (PN && PN->getParent() != BB) 2336 return false; 2337 2338 auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) { 2339 const BitCastInst *BC = dyn_cast<BitCastInst>(Inst); 2340 if (BC && BC->hasOneUse()) 2341 Inst = BC->user_back(); 2342 2343 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 2344 return II->getIntrinsicID() == Intrinsic::lifetime_end; 2345 return false; 2346 }; 2347 2348 // Make sure there are no instructions between the first instruction 2349 // and return. 2350 const Instruction *BI = BB->getFirstNonPHI(); 2351 // Skip over debug and the bitcast. 2352 while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI || 2353 isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI)) 2354 BI = BI->getNextNode(); 2355 if (BI != RetI) 2356 return false; 2357 2358 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2359 /// call. 2360 const Function *F = BB->getParent(); 2361 SmallVector<BasicBlock*, 4> TailCallBBs; 2362 if (PN) { 2363 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2364 // Look through bitcasts. 2365 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2366 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2367 BasicBlock *PredBB = PN->getIncomingBlock(I); 2368 // Make sure the phi value is indeed produced by the tail call. 2369 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2370 TLI->mayBeEmittedAsTailCall(CI) && 2371 attributesPermitTailCall(F, CI, RetI, *TLI)) 2372 TailCallBBs.push_back(PredBB); 2373 } 2374 } else { 2375 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2376 for (BasicBlock *Pred : predecessors(BB)) { 2377 if (!VisitedBBs.insert(Pred).second) 2378 continue; 2379 if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) { 2380 CallInst *CI = dyn_cast<CallInst>(I); 2381 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2382 attributesPermitTailCall(F, CI, RetI, *TLI)) 2383 TailCallBBs.push_back(Pred); 2384 } 2385 } 2386 } 2387 2388 bool Changed = false; 2389 for (auto const &TailCallBB : TailCallBBs) { 2390 // Make sure the call instruction is followed by an unconditional branch to 2391 // the return block. 2392 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2393 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2394 continue; 2395 2396 // Duplicate the return into TailCallBB. 2397 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2398 assert(!VerifyBFIUpdates || 2399 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); 2400 BFI->setBlockFreq( 2401 BB, 2402 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency()); 2403 ModifiedDT = Changed = true; 2404 ++NumRetsDup; 2405 } 2406 2407 // If we eliminated all predecessors of the block, delete the block now. 2408 if (Changed && !BB->hasAddressTaken() && pred_empty(BB)) 2409 BB->eraseFromParent(); 2410 2411 return Changed; 2412 } 2413 2414 //===----------------------------------------------------------------------===// 2415 // Memory Optimization 2416 //===----------------------------------------------------------------------===// 2417 2418 namespace { 2419 2420 /// This is an extended version of TargetLowering::AddrMode 2421 /// which holds actual Value*'s for register values. 2422 struct ExtAddrMode : public TargetLowering::AddrMode { 2423 Value *BaseReg = nullptr; 2424 Value *ScaledReg = nullptr; 2425 Value *OriginalValue = nullptr; 2426 bool InBounds = true; 2427 2428 enum FieldName { 2429 NoField = 0x00, 2430 BaseRegField = 0x01, 2431 BaseGVField = 0x02, 2432 BaseOffsField = 0x04, 2433 ScaledRegField = 0x08, 2434 ScaleField = 0x10, 2435 MultipleFields = 0xff 2436 }; 2437 2438 2439 ExtAddrMode() = default; 2440 2441 void print(raw_ostream &OS) const; 2442 void dump() const; 2443 2444 FieldName compare(const ExtAddrMode &other) { 2445 // First check that the types are the same on each field, as differing types 2446 // is something we can't cope with later on. 2447 if (BaseReg && other.BaseReg && 2448 BaseReg->getType() != other.BaseReg->getType()) 2449 return MultipleFields; 2450 if (BaseGV && other.BaseGV && 2451 BaseGV->getType() != other.BaseGV->getType()) 2452 return MultipleFields; 2453 if (ScaledReg && other.ScaledReg && 2454 ScaledReg->getType() != other.ScaledReg->getType()) 2455 return MultipleFields; 2456 2457 // Conservatively reject 'inbounds' mismatches. 2458 if (InBounds != other.InBounds) 2459 return MultipleFields; 2460 2461 // Check each field to see if it differs. 2462 unsigned Result = NoField; 2463 if (BaseReg != other.BaseReg) 2464 Result |= BaseRegField; 2465 if (BaseGV != other.BaseGV) 2466 Result |= BaseGVField; 2467 if (BaseOffs != other.BaseOffs) 2468 Result |= BaseOffsField; 2469 if (ScaledReg != other.ScaledReg) 2470 Result |= ScaledRegField; 2471 // Don't count 0 as being a different scale, because that actually means 2472 // unscaled (which will already be counted by having no ScaledReg). 2473 if (Scale && other.Scale && Scale != other.Scale) 2474 Result |= ScaleField; 2475 2476 if (countPopulation(Result) > 1) 2477 return MultipleFields; 2478 else 2479 return static_cast<FieldName>(Result); 2480 } 2481 2482 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2483 // with no offset. 2484 bool isTrivial() { 2485 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2486 // trivial if at most one of these terms is nonzero, except that BaseGV and 2487 // BaseReg both being zero actually means a null pointer value, which we 2488 // consider to be 'non-zero' here. 2489 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2490 } 2491 2492 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2493 switch (Field) { 2494 default: 2495 return nullptr; 2496 case BaseRegField: 2497 return BaseReg; 2498 case BaseGVField: 2499 return BaseGV; 2500 case ScaledRegField: 2501 return ScaledReg; 2502 case BaseOffsField: 2503 return ConstantInt::get(IntPtrTy, BaseOffs); 2504 } 2505 } 2506 2507 void SetCombinedField(FieldName Field, Value *V, 2508 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2509 switch (Field) { 2510 default: 2511 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2512 break; 2513 case ExtAddrMode::BaseRegField: 2514 BaseReg = V; 2515 break; 2516 case ExtAddrMode::BaseGVField: 2517 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2518 // in the BaseReg field. 2519 assert(BaseReg == nullptr); 2520 BaseReg = V; 2521 BaseGV = nullptr; 2522 break; 2523 case ExtAddrMode::ScaledRegField: 2524 ScaledReg = V; 2525 // If we have a mix of scaled and unscaled addrmodes then we want scale 2526 // to be the scale and not zero. 2527 if (!Scale) 2528 for (const ExtAddrMode &AM : AddrModes) 2529 if (AM.Scale) { 2530 Scale = AM.Scale; 2531 break; 2532 } 2533 break; 2534 case ExtAddrMode::BaseOffsField: 2535 // The offset is no longer a constant, so it goes in ScaledReg with a 2536 // scale of 1. 2537 assert(ScaledReg == nullptr); 2538 ScaledReg = V; 2539 Scale = 1; 2540 BaseOffs = 0; 2541 break; 2542 } 2543 } 2544 }; 2545 2546 } // end anonymous namespace 2547 2548 #ifndef NDEBUG 2549 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2550 AM.print(OS); 2551 return OS; 2552 } 2553 #endif 2554 2555 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2556 void ExtAddrMode::print(raw_ostream &OS) const { 2557 bool NeedPlus = false; 2558 OS << "["; 2559 if (InBounds) 2560 OS << "inbounds "; 2561 if (BaseGV) { 2562 OS << (NeedPlus ? " + " : "") 2563 << "GV:"; 2564 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2565 NeedPlus = true; 2566 } 2567 2568 if (BaseOffs) { 2569 OS << (NeedPlus ? " + " : "") 2570 << BaseOffs; 2571 NeedPlus = true; 2572 } 2573 2574 if (BaseReg) { 2575 OS << (NeedPlus ? " + " : "") 2576 << "Base:"; 2577 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2578 NeedPlus = true; 2579 } 2580 if (Scale) { 2581 OS << (NeedPlus ? " + " : "") 2582 << Scale << "*"; 2583 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2584 } 2585 2586 OS << ']'; 2587 } 2588 2589 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2590 print(dbgs()); 2591 dbgs() << '\n'; 2592 } 2593 #endif 2594 2595 namespace { 2596 2597 /// This class provides transaction based operation on the IR. 2598 /// Every change made through this class is recorded in the internal state and 2599 /// can be undone (rollback) until commit is called. 2600 /// CGP does not check if instructions could be speculatively executed when 2601 /// moved. Preserving the original location would pessimize the debugging 2602 /// experience, as well as negatively impact the quality of sample PGO. 2603 class TypePromotionTransaction { 2604 /// This represents the common interface of the individual transaction. 2605 /// Each class implements the logic for doing one specific modification on 2606 /// the IR via the TypePromotionTransaction. 2607 class TypePromotionAction { 2608 protected: 2609 /// The Instruction modified. 2610 Instruction *Inst; 2611 2612 public: 2613 /// Constructor of the action. 2614 /// The constructor performs the related action on the IR. 2615 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2616 2617 virtual ~TypePromotionAction() = default; 2618 2619 /// Undo the modification done by this action. 2620 /// When this method is called, the IR must be in the same state as it was 2621 /// before this action was applied. 2622 /// \pre Undoing the action works if and only if the IR is in the exact same 2623 /// state as it was directly after this action was applied. 2624 virtual void undo() = 0; 2625 2626 /// Advocate every change made by this action. 2627 /// When the results on the IR of the action are to be kept, it is important 2628 /// to call this function, otherwise hidden information may be kept forever. 2629 virtual void commit() { 2630 // Nothing to be done, this action is not doing anything. 2631 } 2632 }; 2633 2634 /// Utility to remember the position of an instruction. 2635 class InsertionHandler { 2636 /// Position of an instruction. 2637 /// Either an instruction: 2638 /// - Is the first in a basic block: BB is used. 2639 /// - Has a previous instruction: PrevInst is used. 2640 union { 2641 Instruction *PrevInst; 2642 BasicBlock *BB; 2643 } Point; 2644 2645 /// Remember whether or not the instruction had a previous instruction. 2646 bool HasPrevInstruction; 2647 2648 public: 2649 /// Record the position of \p Inst. 2650 InsertionHandler(Instruction *Inst) { 2651 BasicBlock::iterator It = Inst->getIterator(); 2652 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2653 if (HasPrevInstruction) 2654 Point.PrevInst = &*--It; 2655 else 2656 Point.BB = Inst->getParent(); 2657 } 2658 2659 /// Insert \p Inst at the recorded position. 2660 void insert(Instruction *Inst) { 2661 if (HasPrevInstruction) { 2662 if (Inst->getParent()) 2663 Inst->removeFromParent(); 2664 Inst->insertAfter(Point.PrevInst); 2665 } else { 2666 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2667 if (Inst->getParent()) 2668 Inst->moveBefore(Position); 2669 else 2670 Inst->insertBefore(Position); 2671 } 2672 } 2673 }; 2674 2675 /// Move an instruction before another. 2676 class InstructionMoveBefore : public TypePromotionAction { 2677 /// Original position of the instruction. 2678 InsertionHandler Position; 2679 2680 public: 2681 /// Move \p Inst before \p Before. 2682 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2683 : TypePromotionAction(Inst), Position(Inst) { 2684 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2685 << "\n"); 2686 Inst->moveBefore(Before); 2687 } 2688 2689 /// Move the instruction back to its original position. 2690 void undo() override { 2691 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2692 Position.insert(Inst); 2693 } 2694 }; 2695 2696 /// Set the operand of an instruction with a new value. 2697 class OperandSetter : public TypePromotionAction { 2698 /// Original operand of the instruction. 2699 Value *Origin; 2700 2701 /// Index of the modified instruction. 2702 unsigned Idx; 2703 2704 public: 2705 /// Set \p Idx operand of \p Inst with \p NewVal. 2706 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2707 : TypePromotionAction(Inst), Idx(Idx) { 2708 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2709 << "for:" << *Inst << "\n" 2710 << "with:" << *NewVal << "\n"); 2711 Origin = Inst->getOperand(Idx); 2712 Inst->setOperand(Idx, NewVal); 2713 } 2714 2715 /// Restore the original value of the instruction. 2716 void undo() override { 2717 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2718 << "for: " << *Inst << "\n" 2719 << "with: " << *Origin << "\n"); 2720 Inst->setOperand(Idx, Origin); 2721 } 2722 }; 2723 2724 /// Hide the operands of an instruction. 2725 /// Do as if this instruction was not using any of its operands. 2726 class OperandsHider : public TypePromotionAction { 2727 /// The list of original operands. 2728 SmallVector<Value *, 4> OriginalValues; 2729 2730 public: 2731 /// Remove \p Inst from the uses of the operands of \p Inst. 2732 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2733 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2734 unsigned NumOpnds = Inst->getNumOperands(); 2735 OriginalValues.reserve(NumOpnds); 2736 for (unsigned It = 0; It < NumOpnds; ++It) { 2737 // Save the current operand. 2738 Value *Val = Inst->getOperand(It); 2739 OriginalValues.push_back(Val); 2740 // Set a dummy one. 2741 // We could use OperandSetter here, but that would imply an overhead 2742 // that we are not willing to pay. 2743 Inst->setOperand(It, UndefValue::get(Val->getType())); 2744 } 2745 } 2746 2747 /// Restore the original list of uses. 2748 void undo() override { 2749 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2750 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2751 Inst->setOperand(It, OriginalValues[It]); 2752 } 2753 }; 2754 2755 /// Build a truncate instruction. 2756 class TruncBuilder : public TypePromotionAction { 2757 Value *Val; 2758 2759 public: 2760 /// Build a truncate instruction of \p Opnd producing a \p Ty 2761 /// result. 2762 /// trunc Opnd to Ty. 2763 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2764 IRBuilder<> Builder(Opnd); 2765 Builder.SetCurrentDebugLocation(DebugLoc()); 2766 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2767 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2768 } 2769 2770 /// Get the built value. 2771 Value *getBuiltValue() { return Val; } 2772 2773 /// Remove the built instruction. 2774 void undo() override { 2775 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2776 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2777 IVal->eraseFromParent(); 2778 } 2779 }; 2780 2781 /// Build a sign extension instruction. 2782 class SExtBuilder : public TypePromotionAction { 2783 Value *Val; 2784 2785 public: 2786 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2787 /// result. 2788 /// sext Opnd to Ty. 2789 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2790 : TypePromotionAction(InsertPt) { 2791 IRBuilder<> Builder(InsertPt); 2792 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2793 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2794 } 2795 2796 /// Get the built value. 2797 Value *getBuiltValue() { return Val; } 2798 2799 /// Remove the built instruction. 2800 void undo() override { 2801 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2802 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2803 IVal->eraseFromParent(); 2804 } 2805 }; 2806 2807 /// Build a zero extension instruction. 2808 class ZExtBuilder : public TypePromotionAction { 2809 Value *Val; 2810 2811 public: 2812 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2813 /// result. 2814 /// zext Opnd to Ty. 2815 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2816 : TypePromotionAction(InsertPt) { 2817 IRBuilder<> Builder(InsertPt); 2818 Builder.SetCurrentDebugLocation(DebugLoc()); 2819 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2820 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2821 } 2822 2823 /// Get the built value. 2824 Value *getBuiltValue() { return Val; } 2825 2826 /// Remove the built instruction. 2827 void undo() override { 2828 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2829 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2830 IVal->eraseFromParent(); 2831 } 2832 }; 2833 2834 /// Mutate an instruction to another type. 2835 class TypeMutator : public TypePromotionAction { 2836 /// Record the original type. 2837 Type *OrigTy; 2838 2839 public: 2840 /// Mutate the type of \p Inst into \p NewTy. 2841 TypeMutator(Instruction *Inst, Type *NewTy) 2842 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2843 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2844 << "\n"); 2845 Inst->mutateType(NewTy); 2846 } 2847 2848 /// Mutate the instruction back to its original type. 2849 void undo() override { 2850 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2851 << "\n"); 2852 Inst->mutateType(OrigTy); 2853 } 2854 }; 2855 2856 /// Replace the uses of an instruction by another instruction. 2857 class UsesReplacer : public TypePromotionAction { 2858 /// Helper structure to keep track of the replaced uses. 2859 struct InstructionAndIdx { 2860 /// The instruction using the instruction. 2861 Instruction *Inst; 2862 2863 /// The index where this instruction is used for Inst. 2864 unsigned Idx; 2865 2866 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2867 : Inst(Inst), Idx(Idx) {} 2868 }; 2869 2870 /// Keep track of the original uses (pair Instruction, Index). 2871 SmallVector<InstructionAndIdx, 4> OriginalUses; 2872 /// Keep track of the debug users. 2873 SmallVector<DbgValueInst *, 1> DbgValues; 2874 2875 /// Keep track of the new value so that we can undo it by replacing 2876 /// instances of the new value with the original value. 2877 Value *New; 2878 2879 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2880 2881 public: 2882 /// Replace all the use of \p Inst by \p New. 2883 UsesReplacer(Instruction *Inst, Value *New) 2884 : TypePromotionAction(Inst), New(New) { 2885 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2886 << "\n"); 2887 // Record the original uses. 2888 for (Use &U : Inst->uses()) { 2889 Instruction *UserI = cast<Instruction>(U.getUser()); 2890 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2891 } 2892 // Record the debug uses separately. They are not in the instruction's 2893 // use list, but they are replaced by RAUW. 2894 findDbgValues(DbgValues, Inst); 2895 2896 // Now, we can replace the uses. 2897 Inst->replaceAllUsesWith(New); 2898 } 2899 2900 /// Reassign the original uses of Inst to Inst. 2901 void undo() override { 2902 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2903 for (InstructionAndIdx &Use : OriginalUses) 2904 Use.Inst->setOperand(Use.Idx, Inst); 2905 // RAUW has replaced all original uses with references to the new value, 2906 // including the debug uses. Since we are undoing the replacements, 2907 // the original debug uses must also be reinstated to maintain the 2908 // correctness and utility of debug value instructions. 2909 for (auto *DVI : DbgValues) 2910 DVI->replaceVariableLocationOp(New, Inst); 2911 } 2912 }; 2913 2914 /// Remove an instruction from the IR. 2915 class InstructionRemover : public TypePromotionAction { 2916 /// Original position of the instruction. 2917 InsertionHandler Inserter; 2918 2919 /// Helper structure to hide all the link to the instruction. In other 2920 /// words, this helps to do as if the instruction was removed. 2921 OperandsHider Hider; 2922 2923 /// Keep track of the uses replaced, if any. 2924 UsesReplacer *Replacer = nullptr; 2925 2926 /// Keep track of instructions removed. 2927 SetOfInstrs &RemovedInsts; 2928 2929 public: 2930 /// Remove all reference of \p Inst and optionally replace all its 2931 /// uses with New. 2932 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2933 /// \pre If !Inst->use_empty(), then New != nullptr 2934 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2935 Value *New = nullptr) 2936 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2937 RemovedInsts(RemovedInsts) { 2938 if (New) 2939 Replacer = new UsesReplacer(Inst, New); 2940 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2941 RemovedInsts.insert(Inst); 2942 /// The instructions removed here will be freed after completing 2943 /// optimizeBlock() for all blocks as we need to keep track of the 2944 /// removed instructions during promotion. 2945 Inst->removeFromParent(); 2946 } 2947 2948 ~InstructionRemover() override { delete Replacer; } 2949 2950 /// Resurrect the instruction and reassign it to the proper uses if 2951 /// new value was provided when build this action. 2952 void undo() override { 2953 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2954 Inserter.insert(Inst); 2955 if (Replacer) 2956 Replacer->undo(); 2957 Hider.undo(); 2958 RemovedInsts.erase(Inst); 2959 } 2960 }; 2961 2962 public: 2963 /// Restoration point. 2964 /// The restoration point is a pointer to an action instead of an iterator 2965 /// because the iterator may be invalidated but not the pointer. 2966 using ConstRestorationPt = const TypePromotionAction *; 2967 2968 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2969 : RemovedInsts(RemovedInsts) {} 2970 2971 /// Advocate every changes made in that transaction. Return true if any change 2972 /// happen. 2973 bool commit(); 2974 2975 /// Undo all the changes made after the given point. 2976 void rollback(ConstRestorationPt Point); 2977 2978 /// Get the current restoration point. 2979 ConstRestorationPt getRestorationPoint() const; 2980 2981 /// \name API for IR modification with state keeping to support rollback. 2982 /// @{ 2983 /// Same as Instruction::setOperand. 2984 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2985 2986 /// Same as Instruction::eraseFromParent. 2987 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2988 2989 /// Same as Value::replaceAllUsesWith. 2990 void replaceAllUsesWith(Instruction *Inst, Value *New); 2991 2992 /// Same as Value::mutateType. 2993 void mutateType(Instruction *Inst, Type *NewTy); 2994 2995 /// Same as IRBuilder::createTrunc. 2996 Value *createTrunc(Instruction *Opnd, Type *Ty); 2997 2998 /// Same as IRBuilder::createSExt. 2999 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 3000 3001 /// Same as IRBuilder::createZExt. 3002 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 3003 3004 /// Same as Instruction::moveBefore. 3005 void moveBefore(Instruction *Inst, Instruction *Before); 3006 /// @} 3007 3008 private: 3009 /// The ordered list of actions made so far. 3010 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 3011 3012 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 3013 3014 SetOfInstrs &RemovedInsts; 3015 }; 3016 3017 } // end anonymous namespace 3018 3019 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 3020 Value *NewVal) { 3021 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 3022 Inst, Idx, NewVal)); 3023 } 3024 3025 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 3026 Value *NewVal) { 3027 Actions.push_back( 3028 std::make_unique<TypePromotionTransaction::InstructionRemover>( 3029 Inst, RemovedInsts, NewVal)); 3030 } 3031 3032 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 3033 Value *New) { 3034 Actions.push_back( 3035 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 3036 } 3037 3038 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 3039 Actions.push_back( 3040 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 3041 } 3042 3043 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 3044 Type *Ty) { 3045 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 3046 Value *Val = Ptr->getBuiltValue(); 3047 Actions.push_back(std::move(Ptr)); 3048 return Val; 3049 } 3050 3051 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 3052 Value *Opnd, Type *Ty) { 3053 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 3054 Value *Val = Ptr->getBuiltValue(); 3055 Actions.push_back(std::move(Ptr)); 3056 return Val; 3057 } 3058 3059 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 3060 Value *Opnd, Type *Ty) { 3061 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 3062 Value *Val = Ptr->getBuiltValue(); 3063 Actions.push_back(std::move(Ptr)); 3064 return Val; 3065 } 3066 3067 void TypePromotionTransaction::moveBefore(Instruction *Inst, 3068 Instruction *Before) { 3069 Actions.push_back( 3070 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 3071 Inst, Before)); 3072 } 3073 3074 TypePromotionTransaction::ConstRestorationPt 3075 TypePromotionTransaction::getRestorationPoint() const { 3076 return !Actions.empty() ? Actions.back().get() : nullptr; 3077 } 3078 3079 bool TypePromotionTransaction::commit() { 3080 for (std::unique_ptr<TypePromotionAction> &Action : Actions) 3081 Action->commit(); 3082 bool Modified = !Actions.empty(); 3083 Actions.clear(); 3084 return Modified; 3085 } 3086 3087 void TypePromotionTransaction::rollback( 3088 TypePromotionTransaction::ConstRestorationPt Point) { 3089 while (!Actions.empty() && Point != Actions.back().get()) { 3090 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 3091 Curr->undo(); 3092 } 3093 } 3094 3095 namespace { 3096 3097 /// A helper class for matching addressing modes. 3098 /// 3099 /// This encapsulates the logic for matching the target-legal addressing modes. 3100 class AddressingModeMatcher { 3101 SmallVectorImpl<Instruction*> &AddrModeInsts; 3102 const TargetLowering &TLI; 3103 const TargetRegisterInfo &TRI; 3104 const DataLayout &DL; 3105 const LoopInfo &LI; 3106 const std::function<const DominatorTree &()> getDTFn; 3107 3108 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 3109 /// the memory instruction that we're computing this address for. 3110 Type *AccessTy; 3111 unsigned AddrSpace; 3112 Instruction *MemoryInst; 3113 3114 /// This is the addressing mode that we're building up. This is 3115 /// part of the return value of this addressing mode matching stuff. 3116 ExtAddrMode &AddrMode; 3117 3118 /// The instructions inserted by other CodeGenPrepare optimizations. 3119 const SetOfInstrs &InsertedInsts; 3120 3121 /// A map from the instructions to their type before promotion. 3122 InstrToOrigTy &PromotedInsts; 3123 3124 /// The ongoing transaction where every action should be registered. 3125 TypePromotionTransaction &TPT; 3126 3127 // A GEP which has too large offset to be folded into the addressing mode. 3128 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 3129 3130 /// This is set to true when we should not do profitability checks. 3131 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 3132 bool IgnoreProfitability; 3133 3134 /// True if we are optimizing for size. 3135 bool OptSize; 3136 3137 ProfileSummaryInfo *PSI; 3138 BlockFrequencyInfo *BFI; 3139 3140 AddressingModeMatcher( 3141 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 3142 const TargetRegisterInfo &TRI, const LoopInfo &LI, 3143 const std::function<const DominatorTree &()> getDTFn, 3144 Type *AT, unsigned AS, Instruction *MI, ExtAddrMode &AM, 3145 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 3146 TypePromotionTransaction &TPT, 3147 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3148 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 3149 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 3150 DL(MI->getModule()->getDataLayout()), LI(LI), getDTFn(getDTFn), 3151 AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM), 3152 InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT), 3153 LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) { 3154 IgnoreProfitability = false; 3155 } 3156 3157 public: 3158 /// Find the maximal addressing mode that a load/store of V can fold, 3159 /// give an access type of AccessTy. This returns a list of involved 3160 /// instructions in AddrModeInsts. 3161 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3162 /// optimizations. 3163 /// \p PromotedInsts maps the instructions to their type before promotion. 3164 /// \p The ongoing transaction where every action should be registered. 3165 static ExtAddrMode 3166 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 3167 SmallVectorImpl<Instruction *> &AddrModeInsts, 3168 const TargetLowering &TLI, const LoopInfo &LI, 3169 const std::function<const DominatorTree &()> getDTFn, 3170 const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts, 3171 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 3172 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3173 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 3174 ExtAddrMode Result; 3175 3176 bool Success = AddressingModeMatcher( 3177 AddrModeInsts, TLI, TRI, LI, getDTFn, AccessTy, AS, MemoryInst, Result, 3178 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 3179 BFI).matchAddr(V, 0); 3180 (void)Success; assert(Success && "Couldn't select *anything*?"); 3181 return Result; 3182 } 3183 3184 private: 3185 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3186 bool matchAddr(Value *Addr, unsigned Depth); 3187 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 3188 bool *MovedAway = nullptr); 3189 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3190 ExtAddrMode &AMBefore, 3191 ExtAddrMode &AMAfter); 3192 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3193 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3194 Value *PromotedOperand) const; 3195 }; 3196 3197 class PhiNodeSet; 3198 3199 /// An iterator for PhiNodeSet. 3200 class PhiNodeSetIterator { 3201 PhiNodeSet * const Set; 3202 size_t CurrentIndex = 0; 3203 3204 public: 3205 /// The constructor. Start should point to either a valid element, or be equal 3206 /// to the size of the underlying SmallVector of the PhiNodeSet. 3207 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 3208 PHINode * operator*() const; 3209 PhiNodeSetIterator& operator++(); 3210 bool operator==(const PhiNodeSetIterator &RHS) const; 3211 bool operator!=(const PhiNodeSetIterator &RHS) const; 3212 }; 3213 3214 /// Keeps a set of PHINodes. 3215 /// 3216 /// This is a minimal set implementation for a specific use case: 3217 /// It is very fast when there are very few elements, but also provides good 3218 /// performance when there are many. It is similar to SmallPtrSet, but also 3219 /// provides iteration by insertion order, which is deterministic and stable 3220 /// across runs. It is also similar to SmallSetVector, but provides removing 3221 /// elements in O(1) time. This is achieved by not actually removing the element 3222 /// from the underlying vector, so comes at the cost of using more memory, but 3223 /// that is fine, since PhiNodeSets are used as short lived objects. 3224 class PhiNodeSet { 3225 friend class PhiNodeSetIterator; 3226 3227 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3228 using iterator = PhiNodeSetIterator; 3229 3230 /// Keeps the elements in the order of their insertion in the underlying 3231 /// vector. To achieve constant time removal, it never deletes any element. 3232 SmallVector<PHINode *, 32> NodeList; 3233 3234 /// Keeps the elements in the underlying set implementation. This (and not the 3235 /// NodeList defined above) is the source of truth on whether an element 3236 /// is actually in the collection. 3237 MapType NodeMap; 3238 3239 /// Points to the first valid (not deleted) element when the set is not empty 3240 /// and the value is not zero. Equals to the size of the underlying vector 3241 /// when the set is empty. When the value is 0, as in the beginning, the 3242 /// first element may or may not be valid. 3243 size_t FirstValidElement = 0; 3244 3245 public: 3246 /// Inserts a new element to the collection. 3247 /// \returns true if the element is actually added, i.e. was not in the 3248 /// collection before the operation. 3249 bool insert(PHINode *Ptr) { 3250 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3251 NodeList.push_back(Ptr); 3252 return true; 3253 } 3254 return false; 3255 } 3256 3257 /// Removes the element from the collection. 3258 /// \returns whether the element is actually removed, i.e. was in the 3259 /// collection before the operation. 3260 bool erase(PHINode *Ptr) { 3261 if (NodeMap.erase(Ptr)) { 3262 SkipRemovedElements(FirstValidElement); 3263 return true; 3264 } 3265 return false; 3266 } 3267 3268 /// Removes all elements and clears the collection. 3269 void clear() { 3270 NodeMap.clear(); 3271 NodeList.clear(); 3272 FirstValidElement = 0; 3273 } 3274 3275 /// \returns an iterator that will iterate the elements in the order of 3276 /// insertion. 3277 iterator begin() { 3278 if (FirstValidElement == 0) 3279 SkipRemovedElements(FirstValidElement); 3280 return PhiNodeSetIterator(this, FirstValidElement); 3281 } 3282 3283 /// \returns an iterator that points to the end of the collection. 3284 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3285 3286 /// Returns the number of elements in the collection. 3287 size_t size() const { 3288 return NodeMap.size(); 3289 } 3290 3291 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3292 size_t count(PHINode *Ptr) const { 3293 return NodeMap.count(Ptr); 3294 } 3295 3296 private: 3297 /// Updates the CurrentIndex so that it will point to a valid element. 3298 /// 3299 /// If the element of NodeList at CurrentIndex is valid, it does not 3300 /// change it. If there are no more valid elements, it updates CurrentIndex 3301 /// to point to the end of the NodeList. 3302 void SkipRemovedElements(size_t &CurrentIndex) { 3303 while (CurrentIndex < NodeList.size()) { 3304 auto it = NodeMap.find(NodeList[CurrentIndex]); 3305 // If the element has been deleted and added again later, NodeMap will 3306 // point to a different index, so CurrentIndex will still be invalid. 3307 if (it != NodeMap.end() && it->second == CurrentIndex) 3308 break; 3309 ++CurrentIndex; 3310 } 3311 } 3312 }; 3313 3314 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3315 : Set(Set), CurrentIndex(Start) {} 3316 3317 PHINode * PhiNodeSetIterator::operator*() const { 3318 assert(CurrentIndex < Set->NodeList.size() && 3319 "PhiNodeSet access out of range"); 3320 return Set->NodeList[CurrentIndex]; 3321 } 3322 3323 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 3324 assert(CurrentIndex < Set->NodeList.size() && 3325 "PhiNodeSet access out of range"); 3326 ++CurrentIndex; 3327 Set->SkipRemovedElements(CurrentIndex); 3328 return *this; 3329 } 3330 3331 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3332 return CurrentIndex == RHS.CurrentIndex; 3333 } 3334 3335 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3336 return !((*this) == RHS); 3337 } 3338 3339 /// Keep track of simplification of Phi nodes. 3340 /// Accept the set of all phi nodes and erase phi node from this set 3341 /// if it is simplified. 3342 class SimplificationTracker { 3343 DenseMap<Value *, Value *> Storage; 3344 const SimplifyQuery &SQ; 3345 // Tracks newly created Phi nodes. The elements are iterated by insertion 3346 // order. 3347 PhiNodeSet AllPhiNodes; 3348 // Tracks newly created Select nodes. 3349 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3350 3351 public: 3352 SimplificationTracker(const SimplifyQuery &sq) 3353 : SQ(sq) {} 3354 3355 Value *Get(Value *V) { 3356 do { 3357 auto SV = Storage.find(V); 3358 if (SV == Storage.end()) 3359 return V; 3360 V = SV->second; 3361 } while (true); 3362 } 3363 3364 Value *Simplify(Value *Val) { 3365 SmallVector<Value *, 32> WorkList; 3366 SmallPtrSet<Value *, 32> Visited; 3367 WorkList.push_back(Val); 3368 while (!WorkList.empty()) { 3369 auto *P = WorkList.pop_back_val(); 3370 if (!Visited.insert(P).second) 3371 continue; 3372 if (auto *PI = dyn_cast<Instruction>(P)) 3373 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3374 for (auto *U : PI->users()) 3375 WorkList.push_back(cast<Value>(U)); 3376 Put(PI, V); 3377 PI->replaceAllUsesWith(V); 3378 if (auto *PHI = dyn_cast<PHINode>(PI)) 3379 AllPhiNodes.erase(PHI); 3380 if (auto *Select = dyn_cast<SelectInst>(PI)) 3381 AllSelectNodes.erase(Select); 3382 PI->eraseFromParent(); 3383 } 3384 } 3385 return Get(Val); 3386 } 3387 3388 void Put(Value *From, Value *To) { 3389 Storage.insert({ From, To }); 3390 } 3391 3392 void ReplacePhi(PHINode *From, PHINode *To) { 3393 Value* OldReplacement = Get(From); 3394 while (OldReplacement != From) { 3395 From = To; 3396 To = dyn_cast<PHINode>(OldReplacement); 3397 OldReplacement = Get(From); 3398 } 3399 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3400 Put(From, To); 3401 From->replaceAllUsesWith(To); 3402 AllPhiNodes.erase(From); 3403 From->eraseFromParent(); 3404 } 3405 3406 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3407 3408 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3409 3410 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3411 3412 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3413 3414 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3415 3416 void destroyNewNodes(Type *CommonType) { 3417 // For safe erasing, replace the uses with dummy value first. 3418 auto *Dummy = UndefValue::get(CommonType); 3419 for (auto *I : AllPhiNodes) { 3420 I->replaceAllUsesWith(Dummy); 3421 I->eraseFromParent(); 3422 } 3423 AllPhiNodes.clear(); 3424 for (auto *I : AllSelectNodes) { 3425 I->replaceAllUsesWith(Dummy); 3426 I->eraseFromParent(); 3427 } 3428 AllSelectNodes.clear(); 3429 } 3430 }; 3431 3432 /// A helper class for combining addressing modes. 3433 class AddressingModeCombiner { 3434 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3435 typedef std::pair<PHINode *, PHINode *> PHIPair; 3436 3437 private: 3438 /// The addressing modes we've collected. 3439 SmallVector<ExtAddrMode, 16> AddrModes; 3440 3441 /// The field in which the AddrModes differ, when we have more than one. 3442 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3443 3444 /// Are the AddrModes that we have all just equal to their original values? 3445 bool AllAddrModesTrivial = true; 3446 3447 /// Common Type for all different fields in addressing modes. 3448 Type *CommonType = nullptr; 3449 3450 /// SimplifyQuery for simplifyInstruction utility. 3451 const SimplifyQuery &SQ; 3452 3453 /// Original Address. 3454 Value *Original; 3455 3456 public: 3457 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3458 : SQ(_SQ), Original(OriginalValue) {} 3459 3460 /// Get the combined AddrMode 3461 const ExtAddrMode &getAddrMode() const { 3462 return AddrModes[0]; 3463 } 3464 3465 /// Add a new AddrMode if it's compatible with the AddrModes we already 3466 /// have. 3467 /// \return True iff we succeeded in doing so. 3468 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3469 // Take note of if we have any non-trivial AddrModes, as we need to detect 3470 // when all AddrModes are trivial as then we would introduce a phi or select 3471 // which just duplicates what's already there. 3472 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3473 3474 // If this is the first addrmode then everything is fine. 3475 if (AddrModes.empty()) { 3476 AddrModes.emplace_back(NewAddrMode); 3477 return true; 3478 } 3479 3480 // Figure out how different this is from the other address modes, which we 3481 // can do just by comparing against the first one given that we only care 3482 // about the cumulative difference. 3483 ExtAddrMode::FieldName ThisDifferentField = 3484 AddrModes[0].compare(NewAddrMode); 3485 if (DifferentField == ExtAddrMode::NoField) 3486 DifferentField = ThisDifferentField; 3487 else if (DifferentField != ThisDifferentField) 3488 DifferentField = ExtAddrMode::MultipleFields; 3489 3490 // If NewAddrMode differs in more than one dimension we cannot handle it. 3491 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3492 3493 // If Scale Field is different then we reject. 3494 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3495 3496 // We also must reject the case when base offset is different and 3497 // scale reg is not null, we cannot handle this case due to merge of 3498 // different offsets will be used as ScaleReg. 3499 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3500 !NewAddrMode.ScaledReg); 3501 3502 // We also must reject the case when GV is different and BaseReg installed 3503 // due to we want to use base reg as a merge of GV values. 3504 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3505 !NewAddrMode.HasBaseReg); 3506 3507 // Even if NewAddMode is the same we still need to collect it due to 3508 // original value is different. And later we will need all original values 3509 // as anchors during finding the common Phi node. 3510 if (CanHandle) 3511 AddrModes.emplace_back(NewAddrMode); 3512 else 3513 AddrModes.clear(); 3514 3515 return CanHandle; 3516 } 3517 3518 /// Combine the addressing modes we've collected into a single 3519 /// addressing mode. 3520 /// \return True iff we successfully combined them or we only had one so 3521 /// didn't need to combine them anyway. 3522 bool combineAddrModes() { 3523 // If we have no AddrModes then they can't be combined. 3524 if (AddrModes.size() == 0) 3525 return false; 3526 3527 // A single AddrMode can trivially be combined. 3528 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3529 return true; 3530 3531 // If the AddrModes we collected are all just equal to the value they are 3532 // derived from then combining them wouldn't do anything useful. 3533 if (AllAddrModesTrivial) 3534 return false; 3535 3536 if (!addrModeCombiningAllowed()) 3537 return false; 3538 3539 // Build a map between <original value, basic block where we saw it> to 3540 // value of base register. 3541 // Bail out if there is no common type. 3542 FoldAddrToValueMapping Map; 3543 if (!initializeMap(Map)) 3544 return false; 3545 3546 Value *CommonValue = findCommon(Map); 3547 if (CommonValue) 3548 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3549 return CommonValue != nullptr; 3550 } 3551 3552 private: 3553 /// Initialize Map with anchor values. For address seen 3554 /// we set the value of different field saw in this address. 3555 /// At the same time we find a common type for different field we will 3556 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3557 /// Return false if there is no common type found. 3558 bool initializeMap(FoldAddrToValueMapping &Map) { 3559 // Keep track of keys where the value is null. We will need to replace it 3560 // with constant null when we know the common type. 3561 SmallVector<Value *, 2> NullValue; 3562 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3563 for (auto &AM : AddrModes) { 3564 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3565 if (DV) { 3566 auto *Type = DV->getType(); 3567 if (CommonType && CommonType != Type) 3568 return false; 3569 CommonType = Type; 3570 Map[AM.OriginalValue] = DV; 3571 } else { 3572 NullValue.push_back(AM.OriginalValue); 3573 } 3574 } 3575 assert(CommonType && "At least one non-null value must be!"); 3576 for (auto *V : NullValue) 3577 Map[V] = Constant::getNullValue(CommonType); 3578 return true; 3579 } 3580 3581 /// We have mapping between value A and other value B where B was a field in 3582 /// addressing mode represented by A. Also we have an original value C 3583 /// representing an address we start with. Traversing from C through phi and 3584 /// selects we ended up with A's in a map. This utility function tries to find 3585 /// a value V which is a field in addressing mode C and traversing through phi 3586 /// nodes and selects we will end up in corresponded values B in a map. 3587 /// The utility will create a new Phi/Selects if needed. 3588 // The simple example looks as follows: 3589 // BB1: 3590 // p1 = b1 + 40 3591 // br cond BB2, BB3 3592 // BB2: 3593 // p2 = b2 + 40 3594 // br BB3 3595 // BB3: 3596 // p = phi [p1, BB1], [p2, BB2] 3597 // v = load p 3598 // Map is 3599 // p1 -> b1 3600 // p2 -> b2 3601 // Request is 3602 // p -> ? 3603 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3604 Value *findCommon(FoldAddrToValueMapping &Map) { 3605 // Tracks the simplification of newly created phi nodes. The reason we use 3606 // this mapping is because we will add new created Phi nodes in AddrToBase. 3607 // Simplification of Phi nodes is recursive, so some Phi node may 3608 // be simplified after we added it to AddrToBase. In reality this 3609 // simplification is possible only if original phi/selects were not 3610 // simplified yet. 3611 // Using this mapping we can find the current value in AddrToBase. 3612 SimplificationTracker ST(SQ); 3613 3614 // First step, DFS to create PHI nodes for all intermediate blocks. 3615 // Also fill traverse order for the second step. 3616 SmallVector<Value *, 32> TraverseOrder; 3617 InsertPlaceholders(Map, TraverseOrder, ST); 3618 3619 // Second Step, fill new nodes by merged values and simplify if possible. 3620 FillPlaceholders(Map, TraverseOrder, ST); 3621 3622 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3623 ST.destroyNewNodes(CommonType); 3624 return nullptr; 3625 } 3626 3627 // Now we'd like to match New Phi nodes to existed ones. 3628 unsigned PhiNotMatchedCount = 0; 3629 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3630 ST.destroyNewNodes(CommonType); 3631 return nullptr; 3632 } 3633 3634 auto *Result = ST.Get(Map.find(Original)->second); 3635 if (Result) { 3636 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3637 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3638 } 3639 return Result; 3640 } 3641 3642 /// Try to match PHI node to Candidate. 3643 /// Matcher tracks the matched Phi nodes. 3644 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3645 SmallSetVector<PHIPair, 8> &Matcher, 3646 PhiNodeSet &PhiNodesToMatch) { 3647 SmallVector<PHIPair, 8> WorkList; 3648 Matcher.insert({ PHI, Candidate }); 3649 SmallSet<PHINode *, 8> MatchedPHIs; 3650 MatchedPHIs.insert(PHI); 3651 WorkList.push_back({ PHI, Candidate }); 3652 SmallSet<PHIPair, 8> Visited; 3653 while (!WorkList.empty()) { 3654 auto Item = WorkList.pop_back_val(); 3655 if (!Visited.insert(Item).second) 3656 continue; 3657 // We iterate over all incoming values to Phi to compare them. 3658 // If values are different and both of them Phi and the first one is a 3659 // Phi we added (subject to match) and both of them is in the same basic 3660 // block then we can match our pair if values match. So we state that 3661 // these values match and add it to work list to verify that. 3662 for (auto B : Item.first->blocks()) { 3663 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3664 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3665 if (FirstValue == SecondValue) 3666 continue; 3667 3668 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3669 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3670 3671 // One of them is not Phi or 3672 // The first one is not Phi node from the set we'd like to match or 3673 // Phi nodes from different basic blocks then 3674 // we will not be able to match. 3675 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3676 FirstPhi->getParent() != SecondPhi->getParent()) 3677 return false; 3678 3679 // If we already matched them then continue. 3680 if (Matcher.count({ FirstPhi, SecondPhi })) 3681 continue; 3682 // So the values are different and does not match. So we need them to 3683 // match. (But we register no more than one match per PHI node, so that 3684 // we won't later try to replace them twice.) 3685 if (MatchedPHIs.insert(FirstPhi).second) 3686 Matcher.insert({ FirstPhi, SecondPhi }); 3687 // But me must check it. 3688 WorkList.push_back({ FirstPhi, SecondPhi }); 3689 } 3690 } 3691 return true; 3692 } 3693 3694 /// For the given set of PHI nodes (in the SimplificationTracker) try 3695 /// to find their equivalents. 3696 /// Returns false if this matching fails and creation of new Phi is disabled. 3697 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3698 unsigned &PhiNotMatchedCount) { 3699 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3700 // order, so the replacements (ReplacePhi) are also done in a deterministic 3701 // order. 3702 SmallSetVector<PHIPair, 8> Matched; 3703 SmallPtrSet<PHINode *, 8> WillNotMatch; 3704 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3705 while (PhiNodesToMatch.size()) { 3706 PHINode *PHI = *PhiNodesToMatch.begin(); 3707 3708 // Add us, if no Phi nodes in the basic block we do not match. 3709 WillNotMatch.clear(); 3710 WillNotMatch.insert(PHI); 3711 3712 // Traverse all Phis until we found equivalent or fail to do that. 3713 bool IsMatched = false; 3714 for (auto &P : PHI->getParent()->phis()) { 3715 // Skip new Phi nodes. 3716 if (PhiNodesToMatch.count(&P)) 3717 continue; 3718 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3719 break; 3720 // If it does not match, collect all Phi nodes from matcher. 3721 // if we end up with no match, them all these Phi nodes will not match 3722 // later. 3723 for (auto M : Matched) 3724 WillNotMatch.insert(M.first); 3725 Matched.clear(); 3726 } 3727 if (IsMatched) { 3728 // Replace all matched values and erase them. 3729 for (auto MV : Matched) 3730 ST.ReplacePhi(MV.first, MV.second); 3731 Matched.clear(); 3732 continue; 3733 } 3734 // If we are not allowed to create new nodes then bail out. 3735 if (!AllowNewPhiNodes) 3736 return false; 3737 // Just remove all seen values in matcher. They will not match anything. 3738 PhiNotMatchedCount += WillNotMatch.size(); 3739 for (auto *P : WillNotMatch) 3740 PhiNodesToMatch.erase(P); 3741 } 3742 return true; 3743 } 3744 /// Fill the placeholders with values from predecessors and simplify them. 3745 void FillPlaceholders(FoldAddrToValueMapping &Map, 3746 SmallVectorImpl<Value *> &TraverseOrder, 3747 SimplificationTracker &ST) { 3748 while (!TraverseOrder.empty()) { 3749 Value *Current = TraverseOrder.pop_back_val(); 3750 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3751 Value *V = Map[Current]; 3752 3753 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3754 // CurrentValue also must be Select. 3755 auto *CurrentSelect = cast<SelectInst>(Current); 3756 auto *TrueValue = CurrentSelect->getTrueValue(); 3757 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3758 Select->setTrueValue(ST.Get(Map[TrueValue])); 3759 auto *FalseValue = CurrentSelect->getFalseValue(); 3760 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3761 Select->setFalseValue(ST.Get(Map[FalseValue])); 3762 } else { 3763 // Must be a Phi node then. 3764 auto *PHI = cast<PHINode>(V); 3765 // Fill the Phi node with values from predecessors. 3766 for (auto *B : predecessors(PHI->getParent())) { 3767 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3768 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3769 PHI->addIncoming(ST.Get(Map[PV]), B); 3770 } 3771 } 3772 Map[Current] = ST.Simplify(V); 3773 } 3774 } 3775 3776 /// Starting from original value recursively iterates over def-use chain up to 3777 /// known ending values represented in a map. For each traversed phi/select 3778 /// inserts a placeholder Phi or Select. 3779 /// Reports all new created Phi/Select nodes by adding them to set. 3780 /// Also reports and order in what values have been traversed. 3781 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3782 SmallVectorImpl<Value *> &TraverseOrder, 3783 SimplificationTracker &ST) { 3784 SmallVector<Value *, 32> Worklist; 3785 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3786 "Address must be a Phi or Select node"); 3787 auto *Dummy = UndefValue::get(CommonType); 3788 Worklist.push_back(Original); 3789 while (!Worklist.empty()) { 3790 Value *Current = Worklist.pop_back_val(); 3791 // if it is already visited or it is an ending value then skip it. 3792 if (Map.find(Current) != Map.end()) 3793 continue; 3794 TraverseOrder.push_back(Current); 3795 3796 // CurrentValue must be a Phi node or select. All others must be covered 3797 // by anchors. 3798 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3799 // Is it OK to get metadata from OrigSelect?! 3800 // Create a Select placeholder with dummy value. 3801 SelectInst *Select = SelectInst::Create( 3802 CurrentSelect->getCondition(), Dummy, Dummy, 3803 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3804 Map[Current] = Select; 3805 ST.insertNewSelect(Select); 3806 // We are interested in True and False values. 3807 Worklist.push_back(CurrentSelect->getTrueValue()); 3808 Worklist.push_back(CurrentSelect->getFalseValue()); 3809 } else { 3810 // It must be a Phi node then. 3811 PHINode *CurrentPhi = cast<PHINode>(Current); 3812 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3813 PHINode *PHI = 3814 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3815 Map[Current] = PHI; 3816 ST.insertNewPhi(PHI); 3817 append_range(Worklist, CurrentPhi->incoming_values()); 3818 } 3819 } 3820 } 3821 3822 bool addrModeCombiningAllowed() { 3823 if (DisableComplexAddrModes) 3824 return false; 3825 switch (DifferentField) { 3826 default: 3827 return false; 3828 case ExtAddrMode::BaseRegField: 3829 return AddrSinkCombineBaseReg; 3830 case ExtAddrMode::BaseGVField: 3831 return AddrSinkCombineBaseGV; 3832 case ExtAddrMode::BaseOffsField: 3833 return AddrSinkCombineBaseOffs; 3834 case ExtAddrMode::ScaledRegField: 3835 return AddrSinkCombineScaledReg; 3836 } 3837 } 3838 }; 3839 } // end anonymous namespace 3840 3841 /// Try adding ScaleReg*Scale to the current addressing mode. 3842 /// Return true and update AddrMode if this addr mode is legal for the target, 3843 /// false if not. 3844 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3845 unsigned Depth) { 3846 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3847 // mode. Just process that directly. 3848 if (Scale == 1) 3849 return matchAddr(ScaleReg, Depth); 3850 3851 // If the scale is 0, it takes nothing to add this. 3852 if (Scale == 0) 3853 return true; 3854 3855 // If we already have a scale of this value, we can add to it, otherwise, we 3856 // need an available scale field. 3857 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3858 return false; 3859 3860 ExtAddrMode TestAddrMode = AddrMode; 3861 3862 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3863 // [A+B + A*7] -> [B+A*8]. 3864 TestAddrMode.Scale += Scale; 3865 TestAddrMode.ScaledReg = ScaleReg; 3866 3867 // If the new address isn't legal, bail out. 3868 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3869 return false; 3870 3871 // It was legal, so commit it. 3872 AddrMode = TestAddrMode; 3873 3874 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3875 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3876 // X*Scale + C*Scale to addr mode. If we found available IV increment, do not 3877 // go any further: we can reuse it and cannot eliminate it. 3878 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3879 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3880 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) && 3881 !isIVIncrement(ScaleReg, &LI) && CI->getValue().isSignedIntN(64)) { 3882 TestAddrMode.InBounds = false; 3883 TestAddrMode.ScaledReg = AddLHS; 3884 TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; 3885 3886 // If this addressing mode is legal, commit it and remember that we folded 3887 // this instruction. 3888 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3889 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3890 AddrMode = TestAddrMode; 3891 return true; 3892 } 3893 // Restore status quo. 3894 TestAddrMode = AddrMode; 3895 } 3896 3897 // If this is an add recurrence with a constant step, return the increment 3898 // instruction and the canonicalized step. 3899 auto GetConstantStep = [this](const Value * V) 3900 ->Optional<std::pair<Instruction *, APInt> > { 3901 auto *PN = dyn_cast<PHINode>(V); 3902 if (!PN) 3903 return None; 3904 auto IVInc = getIVIncrement(PN, &LI); 3905 if (!IVInc) 3906 return None; 3907 // TODO: The result of the intrinsics above is two-compliment. However when 3908 // IV inc is expressed as add or sub, iv.next is potentially a poison value. 3909 // If it has nuw or nsw flags, we need to make sure that these flags are 3910 // inferrable at the point of memory instruction. Otherwise we are replacing 3911 // well-defined two-compliment computation with poison. Currently, to avoid 3912 // potentially complex analysis needed to prove this, we reject such cases. 3913 if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first)) 3914 if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap()) 3915 return None; 3916 if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second)) 3917 return std::make_pair(IVInc->first, ConstantStep->getValue()); 3918 return None; 3919 }; 3920 3921 // Try to account for the following special case: 3922 // 1. ScaleReg is an inductive variable; 3923 // 2. We use it with non-zero offset; 3924 // 3. IV's increment is available at the point of memory instruction. 3925 // 3926 // In this case, we may reuse the IV increment instead of the IV Phi to 3927 // achieve the following advantages: 3928 // 1. If IV step matches the offset, we will have no need in the offset; 3929 // 2. Even if they don't match, we will reduce the overlap of living IV 3930 // and IV increment, that will potentially lead to better register 3931 // assignment. 3932 if (AddrMode.BaseOffs) { 3933 if (auto IVStep = GetConstantStep(ScaleReg)) { 3934 Instruction *IVInc = IVStep->first; 3935 // The following assert is important to ensure a lack of infinite loops. 3936 // This transforms is (intentionally) the inverse of the one just above. 3937 // If they don't agree on the definition of an increment, we'd alternate 3938 // back and forth indefinitely. 3939 assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep"); 3940 APInt Step = IVStep->second; 3941 APInt Offset = Step * AddrMode.Scale; 3942 if (Offset.isSignedIntN(64)) { 3943 TestAddrMode.InBounds = false; 3944 TestAddrMode.ScaledReg = IVInc; 3945 TestAddrMode.BaseOffs -= Offset.getLimitedValue(); 3946 // If this addressing mode is legal, commit it.. 3947 // (Note that we defer the (expensive) domtree base legality check 3948 // to the very last possible point.) 3949 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) && 3950 getDTFn().dominates(IVInc, MemoryInst)) { 3951 AddrModeInsts.push_back(cast<Instruction>(IVInc)); 3952 AddrMode = TestAddrMode; 3953 return true; 3954 } 3955 // Restore status quo. 3956 TestAddrMode = AddrMode; 3957 } 3958 } 3959 } 3960 3961 // Otherwise, just return what we have. 3962 return true; 3963 } 3964 3965 /// This is a little filter, which returns true if an addressing computation 3966 /// involving I might be folded into a load/store accessing it. 3967 /// This doesn't need to be perfect, but needs to accept at least 3968 /// the set of instructions that MatchOperationAddr can. 3969 static bool MightBeFoldableInst(Instruction *I) { 3970 switch (I->getOpcode()) { 3971 case Instruction::BitCast: 3972 case Instruction::AddrSpaceCast: 3973 // Don't touch identity bitcasts. 3974 if (I->getType() == I->getOperand(0)->getType()) 3975 return false; 3976 return I->getType()->isIntOrPtrTy(); 3977 case Instruction::PtrToInt: 3978 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3979 return true; 3980 case Instruction::IntToPtr: 3981 // We know the input is intptr_t, so this is foldable. 3982 return true; 3983 case Instruction::Add: 3984 return true; 3985 case Instruction::Mul: 3986 case Instruction::Shl: 3987 // Can only handle X*C and X << C. 3988 return isa<ConstantInt>(I->getOperand(1)); 3989 case Instruction::GetElementPtr: 3990 return true; 3991 default: 3992 return false; 3993 } 3994 } 3995 3996 /// Check whether or not \p Val is a legal instruction for \p TLI. 3997 /// \note \p Val is assumed to be the product of some type promotion. 3998 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3999 /// to be legal, as the non-promoted value would have had the same state. 4000 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 4001 const DataLayout &DL, Value *Val) { 4002 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 4003 if (!PromotedInst) 4004 return false; 4005 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 4006 // If the ISDOpcode is undefined, it was undefined before the promotion. 4007 if (!ISDOpcode) 4008 return true; 4009 // Otherwise, check if the promoted instruction is legal or not. 4010 return TLI.isOperationLegalOrCustom( 4011 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 4012 } 4013 4014 namespace { 4015 4016 /// Hepler class to perform type promotion. 4017 class TypePromotionHelper { 4018 /// Utility function to add a promoted instruction \p ExtOpnd to 4019 /// \p PromotedInsts and record the type of extension we have seen. 4020 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 4021 Instruction *ExtOpnd, 4022 bool IsSExt) { 4023 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4024 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 4025 if (It != PromotedInsts.end()) { 4026 // If the new extension is same as original, the information in 4027 // PromotedInsts[ExtOpnd] is still correct. 4028 if (It->second.getInt() == ExtTy) 4029 return; 4030 4031 // Now the new extension is different from old extension, we make 4032 // the type information invalid by setting extension type to 4033 // BothExtension. 4034 ExtTy = BothExtension; 4035 } 4036 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 4037 } 4038 4039 /// Utility function to query the original type of instruction \p Opnd 4040 /// with a matched extension type. If the extension doesn't match, we 4041 /// cannot use the information we had on the original type. 4042 /// BothExtension doesn't match any extension type. 4043 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 4044 Instruction *Opnd, 4045 bool IsSExt) { 4046 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4047 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 4048 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 4049 return It->second.getPointer(); 4050 return nullptr; 4051 } 4052 4053 /// Utility function to check whether or not a sign or zero extension 4054 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 4055 /// either using the operands of \p Inst or promoting \p Inst. 4056 /// The type of the extension is defined by \p IsSExt. 4057 /// In other words, check if: 4058 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 4059 /// #1 Promotion applies: 4060 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 4061 /// #2 Operand reuses: 4062 /// ext opnd1 to ConsideredExtType. 4063 /// \p PromotedInsts maps the instructions to their type before promotion. 4064 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 4065 const InstrToOrigTy &PromotedInsts, bool IsSExt); 4066 4067 /// Utility function to determine if \p OpIdx should be promoted when 4068 /// promoting \p Inst. 4069 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 4070 return !(isa<SelectInst>(Inst) && OpIdx == 0); 4071 } 4072 4073 /// Utility function to promote the operand of \p Ext when this 4074 /// operand is a promotable trunc or sext or zext. 4075 /// \p PromotedInsts maps the instructions to their type before promotion. 4076 /// \p CreatedInstsCost[out] contains the cost of all instructions 4077 /// created to promote the operand of Ext. 4078 /// Newly added extensions are inserted in \p Exts. 4079 /// Newly added truncates are inserted in \p Truncs. 4080 /// Should never be called directly. 4081 /// \return The promoted value which is used instead of Ext. 4082 static Value *promoteOperandForTruncAndAnyExt( 4083 Instruction *Ext, TypePromotionTransaction &TPT, 4084 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4085 SmallVectorImpl<Instruction *> *Exts, 4086 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 4087 4088 /// Utility function to promote the operand of \p Ext when this 4089 /// operand is promotable and is not a supported trunc or sext. 4090 /// \p PromotedInsts maps the instructions to their type before promotion. 4091 /// \p CreatedInstsCost[out] contains the cost of all the instructions 4092 /// created to promote the operand of Ext. 4093 /// Newly added extensions are inserted in \p Exts. 4094 /// Newly added truncates are inserted in \p Truncs. 4095 /// Should never be called directly. 4096 /// \return The promoted value which is used instead of Ext. 4097 static Value *promoteOperandForOther(Instruction *Ext, 4098 TypePromotionTransaction &TPT, 4099 InstrToOrigTy &PromotedInsts, 4100 unsigned &CreatedInstsCost, 4101 SmallVectorImpl<Instruction *> *Exts, 4102 SmallVectorImpl<Instruction *> *Truncs, 4103 const TargetLowering &TLI, bool IsSExt); 4104 4105 /// \see promoteOperandForOther. 4106 static Value *signExtendOperandForOther( 4107 Instruction *Ext, TypePromotionTransaction &TPT, 4108 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4109 SmallVectorImpl<Instruction *> *Exts, 4110 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4111 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4112 Exts, Truncs, TLI, true); 4113 } 4114 4115 /// \see promoteOperandForOther. 4116 static Value *zeroExtendOperandForOther( 4117 Instruction *Ext, TypePromotionTransaction &TPT, 4118 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4119 SmallVectorImpl<Instruction *> *Exts, 4120 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4121 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4122 Exts, Truncs, TLI, false); 4123 } 4124 4125 public: 4126 /// Type for the utility function that promotes the operand of Ext. 4127 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 4128 InstrToOrigTy &PromotedInsts, 4129 unsigned &CreatedInstsCost, 4130 SmallVectorImpl<Instruction *> *Exts, 4131 SmallVectorImpl<Instruction *> *Truncs, 4132 const TargetLowering &TLI); 4133 4134 /// Given a sign/zero extend instruction \p Ext, return the appropriate 4135 /// action to promote the operand of \p Ext instead of using Ext. 4136 /// \return NULL if no promotable action is possible with the current 4137 /// sign extension. 4138 /// \p InsertedInsts keeps track of all the instructions inserted by the 4139 /// other CodeGenPrepare optimizations. This information is important 4140 /// because we do not want to promote these instructions as CodeGenPrepare 4141 /// will reinsert them later. Thus creating an infinite loop: create/remove. 4142 /// \p PromotedInsts maps the instructions to their type before promotion. 4143 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 4144 const TargetLowering &TLI, 4145 const InstrToOrigTy &PromotedInsts); 4146 }; 4147 4148 } // end anonymous namespace 4149 4150 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 4151 Type *ConsideredExtType, 4152 const InstrToOrigTy &PromotedInsts, 4153 bool IsSExt) { 4154 // The promotion helper does not know how to deal with vector types yet. 4155 // To be able to fix that, we would need to fix the places where we 4156 // statically extend, e.g., constants and such. 4157 if (Inst->getType()->isVectorTy()) 4158 return false; 4159 4160 // We can always get through zext. 4161 if (isa<ZExtInst>(Inst)) 4162 return true; 4163 4164 // sext(sext) is ok too. 4165 if (IsSExt && isa<SExtInst>(Inst)) 4166 return true; 4167 4168 // We can get through binary operator, if it is legal. In other words, the 4169 // binary operator must have a nuw or nsw flag. 4170 if (const auto *BinOp = dyn_cast<BinaryOperator>(Inst)) 4171 if (isa<OverflowingBinaryOperator>(BinOp) && 4172 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 4173 (IsSExt && BinOp->hasNoSignedWrap()))) 4174 return true; 4175 4176 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 4177 if ((Inst->getOpcode() == Instruction::And || 4178 Inst->getOpcode() == Instruction::Or)) 4179 return true; 4180 4181 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 4182 if (Inst->getOpcode() == Instruction::Xor) { 4183 // Make sure it is not a NOT. 4184 if (const auto *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1))) 4185 if (!Cst->getValue().isAllOnes()) 4186 return true; 4187 } 4188 4189 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 4190 // It may change a poisoned value into a regular value, like 4191 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 4192 // poisoned value regular value 4193 // It should be OK since undef covers valid value. 4194 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 4195 return true; 4196 4197 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 4198 // It may change a poisoned value into a regular value, like 4199 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 4200 // poisoned value regular value 4201 // It should be OK since undef covers valid value. 4202 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 4203 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 4204 if (ExtInst->hasOneUse()) { 4205 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 4206 if (AndInst && AndInst->getOpcode() == Instruction::And) { 4207 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 4208 if (Cst && 4209 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 4210 return true; 4211 } 4212 } 4213 } 4214 4215 // Check if we can do the following simplification. 4216 // ext(trunc(opnd)) --> ext(opnd) 4217 if (!isa<TruncInst>(Inst)) 4218 return false; 4219 4220 Value *OpndVal = Inst->getOperand(0); 4221 // Check if we can use this operand in the extension. 4222 // If the type is larger than the result type of the extension, we cannot. 4223 if (!OpndVal->getType()->isIntegerTy() || 4224 OpndVal->getType()->getIntegerBitWidth() > 4225 ConsideredExtType->getIntegerBitWidth()) 4226 return false; 4227 4228 // If the operand of the truncate is not an instruction, we will not have 4229 // any information on the dropped bits. 4230 // (Actually we could for constant but it is not worth the extra logic). 4231 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 4232 if (!Opnd) 4233 return false; 4234 4235 // Check if the source of the type is narrow enough. 4236 // I.e., check that trunc just drops extended bits of the same kind of 4237 // the extension. 4238 // #1 get the type of the operand and check the kind of the extended bits. 4239 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 4240 if (OpndType) 4241 ; 4242 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 4243 OpndType = Opnd->getOperand(0)->getType(); 4244 else 4245 return false; 4246 4247 // #2 check that the truncate just drops extended bits. 4248 return Inst->getType()->getIntegerBitWidth() >= 4249 OpndType->getIntegerBitWidth(); 4250 } 4251 4252 TypePromotionHelper::Action TypePromotionHelper::getAction( 4253 Instruction *Ext, const SetOfInstrs &InsertedInsts, 4254 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 4255 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4256 "Unexpected instruction type"); 4257 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 4258 Type *ExtTy = Ext->getType(); 4259 bool IsSExt = isa<SExtInst>(Ext); 4260 // If the operand of the extension is not an instruction, we cannot 4261 // get through. 4262 // If it, check we can get through. 4263 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 4264 return nullptr; 4265 4266 // Do not promote if the operand has been added by codegenprepare. 4267 // Otherwise, it means we are undoing an optimization that is likely to be 4268 // redone, thus causing potential infinite loop. 4269 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 4270 return nullptr; 4271 4272 // SExt or Trunc instructions. 4273 // Return the related handler. 4274 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 4275 isa<ZExtInst>(ExtOpnd)) 4276 return promoteOperandForTruncAndAnyExt; 4277 4278 // Regular instruction. 4279 // Abort early if we will have to insert non-free instructions. 4280 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 4281 return nullptr; 4282 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 4283 } 4284 4285 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 4286 Instruction *SExt, TypePromotionTransaction &TPT, 4287 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4288 SmallVectorImpl<Instruction *> *Exts, 4289 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4290 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4291 // get through it and this method should not be called. 4292 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4293 Value *ExtVal = SExt; 4294 bool HasMergedNonFreeExt = false; 4295 if (isa<ZExtInst>(SExtOpnd)) { 4296 // Replace s|zext(zext(opnd)) 4297 // => zext(opnd). 4298 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4299 Value *ZExt = 4300 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4301 TPT.replaceAllUsesWith(SExt, ZExt); 4302 TPT.eraseInstruction(SExt); 4303 ExtVal = ZExt; 4304 } else { 4305 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4306 // => z|sext(opnd). 4307 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4308 } 4309 CreatedInstsCost = 0; 4310 4311 // Remove dead code. 4312 if (SExtOpnd->use_empty()) 4313 TPT.eraseInstruction(SExtOpnd); 4314 4315 // Check if the extension is still needed. 4316 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4317 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4318 if (ExtInst) { 4319 if (Exts) 4320 Exts->push_back(ExtInst); 4321 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4322 } 4323 return ExtVal; 4324 } 4325 4326 // At this point we have: ext ty opnd to ty. 4327 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4328 Value *NextVal = ExtInst->getOperand(0); 4329 TPT.eraseInstruction(ExtInst, NextVal); 4330 return NextVal; 4331 } 4332 4333 Value *TypePromotionHelper::promoteOperandForOther( 4334 Instruction *Ext, TypePromotionTransaction &TPT, 4335 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4336 SmallVectorImpl<Instruction *> *Exts, 4337 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4338 bool IsSExt) { 4339 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4340 // get through it and this method should not be called. 4341 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4342 CreatedInstsCost = 0; 4343 if (!ExtOpnd->hasOneUse()) { 4344 // ExtOpnd will be promoted. 4345 // All its uses, but Ext, will need to use a truncated value of the 4346 // promoted version. 4347 // Create the truncate now. 4348 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4349 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4350 // Insert it just after the definition. 4351 ITrunc->moveAfter(ExtOpnd); 4352 if (Truncs) 4353 Truncs->push_back(ITrunc); 4354 } 4355 4356 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4357 // Restore the operand of Ext (which has been replaced by the previous call 4358 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4359 TPT.setOperand(Ext, 0, ExtOpnd); 4360 } 4361 4362 // Get through the Instruction: 4363 // 1. Update its type. 4364 // 2. Replace the uses of Ext by Inst. 4365 // 3. Extend each operand that needs to be extended. 4366 4367 // Remember the original type of the instruction before promotion. 4368 // This is useful to know that the high bits are sign extended bits. 4369 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4370 // Step #1. 4371 TPT.mutateType(ExtOpnd, Ext->getType()); 4372 // Step #2. 4373 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4374 // Step #3. 4375 Instruction *ExtForOpnd = Ext; 4376 4377 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4378 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4379 ++OpIdx) { 4380 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4381 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4382 !shouldExtOperand(ExtOpnd, OpIdx)) { 4383 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4384 continue; 4385 } 4386 // Check if we can statically extend the operand. 4387 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4388 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4389 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4390 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4391 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4392 : Cst->getValue().zext(BitWidth); 4393 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4394 continue; 4395 } 4396 // UndefValue are typed, so we have to statically sign extend them. 4397 if (isa<UndefValue>(Opnd)) { 4398 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4399 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4400 continue; 4401 } 4402 4403 // Otherwise we have to explicitly sign extend the operand. 4404 // Check if Ext was reused to extend an operand. 4405 if (!ExtForOpnd) { 4406 // If yes, create a new one. 4407 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 4408 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 4409 : TPT.createZExt(Ext, Opnd, Ext->getType()); 4410 if (!isa<Instruction>(ValForExtOpnd)) { 4411 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4412 continue; 4413 } 4414 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4415 } 4416 if (Exts) 4417 Exts->push_back(ExtForOpnd); 4418 TPT.setOperand(ExtForOpnd, 0, Opnd); 4419 4420 // Move the sign extension before the insertion point. 4421 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4422 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4423 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4424 // If more sext are required, new instructions will have to be created. 4425 ExtForOpnd = nullptr; 4426 } 4427 if (ExtForOpnd == Ext) { 4428 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4429 TPT.eraseInstruction(Ext); 4430 } 4431 return ExtOpnd; 4432 } 4433 4434 /// Check whether or not promoting an instruction to a wider type is profitable. 4435 /// \p NewCost gives the cost of extension instructions created by the 4436 /// promotion. 4437 /// \p OldCost gives the cost of extension instructions before the promotion 4438 /// plus the number of instructions that have been 4439 /// matched in the addressing mode the promotion. 4440 /// \p PromotedOperand is the value that has been promoted. 4441 /// \return True if the promotion is profitable, false otherwise. 4442 bool AddressingModeMatcher::isPromotionProfitable( 4443 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4444 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4445 << '\n'); 4446 // The cost of the new extensions is greater than the cost of the 4447 // old extension plus what we folded. 4448 // This is not profitable. 4449 if (NewCost > OldCost) 4450 return false; 4451 if (NewCost < OldCost) 4452 return true; 4453 // The promotion is neutral but it may help folding the sign extension in 4454 // loads for instance. 4455 // Check that we did not create an illegal instruction. 4456 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4457 } 4458 4459 /// Given an instruction or constant expr, see if we can fold the operation 4460 /// into the addressing mode. If so, update the addressing mode and return 4461 /// true, otherwise return false without modifying AddrMode. 4462 /// If \p MovedAway is not NULL, it contains the information of whether or 4463 /// not AddrInst has to be folded into the addressing mode on success. 4464 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4465 /// because it has been moved away. 4466 /// Thus AddrInst must not be added in the matched instructions. 4467 /// This state can happen when AddrInst is a sext, since it may be moved away. 4468 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4469 /// not be referenced anymore. 4470 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4471 unsigned Depth, 4472 bool *MovedAway) { 4473 // Avoid exponential behavior on extremely deep expression trees. 4474 if (Depth >= 5) return false; 4475 4476 // By default, all matched instructions stay in place. 4477 if (MovedAway) 4478 *MovedAway = false; 4479 4480 switch (Opcode) { 4481 case Instruction::PtrToInt: 4482 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4483 return matchAddr(AddrInst->getOperand(0), Depth); 4484 case Instruction::IntToPtr: { 4485 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4486 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4487 // This inttoptr is a no-op if the integer type is pointer sized. 4488 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4489 return matchAddr(AddrInst->getOperand(0), Depth); 4490 return false; 4491 } 4492 case Instruction::BitCast: 4493 // BitCast is always a noop, and we can handle it as long as it is 4494 // int->int or pointer->pointer (we don't want int<->fp or something). 4495 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4496 // Don't touch identity bitcasts. These were probably put here by LSR, 4497 // and we don't want to mess around with them. Assume it knows what it 4498 // is doing. 4499 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4500 return matchAddr(AddrInst->getOperand(0), Depth); 4501 return false; 4502 case Instruction::AddrSpaceCast: { 4503 unsigned SrcAS 4504 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4505 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4506 if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS)) 4507 return matchAddr(AddrInst->getOperand(0), Depth); 4508 return false; 4509 } 4510 case Instruction::Add: { 4511 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4512 ExtAddrMode BackupAddrMode = AddrMode; 4513 unsigned OldSize = AddrModeInsts.size(); 4514 // Start a transaction at this point. 4515 // The LHS may match but not the RHS. 4516 // Therefore, we need a higher level restoration point to undo partially 4517 // matched operation. 4518 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4519 TPT.getRestorationPoint(); 4520 4521 AddrMode.InBounds = false; 4522 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4523 matchAddr(AddrInst->getOperand(0), Depth+1)) 4524 return true; 4525 4526 // Restore the old addr mode info. 4527 AddrMode = BackupAddrMode; 4528 AddrModeInsts.resize(OldSize); 4529 TPT.rollback(LastKnownGood); 4530 4531 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4532 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4533 matchAddr(AddrInst->getOperand(1), Depth+1)) 4534 return true; 4535 4536 // Otherwise we definitely can't merge the ADD in. 4537 AddrMode = BackupAddrMode; 4538 AddrModeInsts.resize(OldSize); 4539 TPT.rollback(LastKnownGood); 4540 break; 4541 } 4542 //case Instruction::Or: 4543 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4544 //break; 4545 case Instruction::Mul: 4546 case Instruction::Shl: { 4547 // Can only handle X*C and X << C. 4548 AddrMode.InBounds = false; 4549 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4550 if (!RHS || RHS->getBitWidth() > 64) 4551 return false; 4552 int64_t Scale = Opcode == Instruction::Shl 4553 ? 1LL << RHS->getLimitedValue(RHS->getBitWidth() - 1) 4554 : RHS->getSExtValue(); 4555 4556 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4557 } 4558 case Instruction::GetElementPtr: { 4559 // Scan the GEP. We check it if it contains constant offsets and at most 4560 // one variable offset. 4561 int VariableOperand = -1; 4562 unsigned VariableScale = 0; 4563 4564 int64_t ConstantOffset = 0; 4565 gep_type_iterator GTI = gep_type_begin(AddrInst); 4566 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4567 if (StructType *STy = GTI.getStructTypeOrNull()) { 4568 const StructLayout *SL = DL.getStructLayout(STy); 4569 unsigned Idx = 4570 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4571 ConstantOffset += SL->getElementOffset(Idx); 4572 } else { 4573 TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType()); 4574 if (TS.isNonZero()) { 4575 // The optimisations below currently only work for fixed offsets. 4576 if (TS.isScalable()) 4577 return false; 4578 int64_t TypeSize = TS.getFixedSize(); 4579 if (ConstantInt *CI = 4580 dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4581 const APInt &CVal = CI->getValue(); 4582 if (CVal.getMinSignedBits() <= 64) { 4583 ConstantOffset += CVal.getSExtValue() * TypeSize; 4584 continue; 4585 } 4586 } 4587 // We only allow one variable index at the moment. 4588 if (VariableOperand != -1) 4589 return false; 4590 4591 // Remember the variable index. 4592 VariableOperand = i; 4593 VariableScale = TypeSize; 4594 } 4595 } 4596 } 4597 4598 // A common case is for the GEP to only do a constant offset. In this case, 4599 // just add it to the disp field and check validity. 4600 if (VariableOperand == -1) { 4601 AddrMode.BaseOffs += ConstantOffset; 4602 if (ConstantOffset == 0 || 4603 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4604 // Check to see if we can fold the base pointer in too. 4605 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4606 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4607 AddrMode.InBounds = false; 4608 return true; 4609 } 4610 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4611 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4612 ConstantOffset > 0) { 4613 // Record GEPs with non-zero offsets as candidates for splitting in the 4614 // event that the offset cannot fit into the r+i addressing mode. 4615 // Simple and common case that only one GEP is used in calculating the 4616 // address for the memory access. 4617 Value *Base = AddrInst->getOperand(0); 4618 auto *BaseI = dyn_cast<Instruction>(Base); 4619 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4620 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4621 (BaseI && !isa<CastInst>(BaseI) && 4622 !isa<GetElementPtrInst>(BaseI))) { 4623 // Make sure the parent block allows inserting non-PHI instructions 4624 // before the terminator. 4625 BasicBlock *Parent = 4626 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4627 if (!Parent->getTerminator()->isEHPad()) 4628 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4629 } 4630 } 4631 AddrMode.BaseOffs -= ConstantOffset; 4632 return false; 4633 } 4634 4635 // Save the valid addressing mode in case we can't match. 4636 ExtAddrMode BackupAddrMode = AddrMode; 4637 unsigned OldSize = AddrModeInsts.size(); 4638 4639 // See if the scale and offset amount is valid for this target. 4640 AddrMode.BaseOffs += ConstantOffset; 4641 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4642 AddrMode.InBounds = false; 4643 4644 // Match the base operand of the GEP. 4645 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4646 // If it couldn't be matched, just stuff the value in a register. 4647 if (AddrMode.HasBaseReg) { 4648 AddrMode = BackupAddrMode; 4649 AddrModeInsts.resize(OldSize); 4650 return false; 4651 } 4652 AddrMode.HasBaseReg = true; 4653 AddrMode.BaseReg = AddrInst->getOperand(0); 4654 } 4655 4656 // Match the remaining variable portion of the GEP. 4657 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4658 Depth)) { 4659 // If it couldn't be matched, try stuffing the base into a register 4660 // instead of matching it, and retrying the match of the scale. 4661 AddrMode = BackupAddrMode; 4662 AddrModeInsts.resize(OldSize); 4663 if (AddrMode.HasBaseReg) 4664 return false; 4665 AddrMode.HasBaseReg = true; 4666 AddrMode.BaseReg = AddrInst->getOperand(0); 4667 AddrMode.BaseOffs += ConstantOffset; 4668 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4669 VariableScale, Depth)) { 4670 // If even that didn't work, bail. 4671 AddrMode = BackupAddrMode; 4672 AddrModeInsts.resize(OldSize); 4673 return false; 4674 } 4675 } 4676 4677 return true; 4678 } 4679 case Instruction::SExt: 4680 case Instruction::ZExt: { 4681 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4682 if (!Ext) 4683 return false; 4684 4685 // Try to move this ext out of the way of the addressing mode. 4686 // Ask for a method for doing so. 4687 TypePromotionHelper::Action TPH = 4688 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4689 if (!TPH) 4690 return false; 4691 4692 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4693 TPT.getRestorationPoint(); 4694 unsigned CreatedInstsCost = 0; 4695 unsigned ExtCost = !TLI.isExtFree(Ext); 4696 Value *PromotedOperand = 4697 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4698 // SExt has been moved away. 4699 // Thus either it will be rematched later in the recursive calls or it is 4700 // gone. Anyway, we must not fold it into the addressing mode at this point. 4701 // E.g., 4702 // op = add opnd, 1 4703 // idx = ext op 4704 // addr = gep base, idx 4705 // is now: 4706 // promotedOpnd = ext opnd <- no match here 4707 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4708 // addr = gep base, op <- match 4709 if (MovedAway) 4710 *MovedAway = true; 4711 4712 assert(PromotedOperand && 4713 "TypePromotionHelper should have filtered out those cases"); 4714 4715 ExtAddrMode BackupAddrMode = AddrMode; 4716 unsigned OldSize = AddrModeInsts.size(); 4717 4718 if (!matchAddr(PromotedOperand, Depth) || 4719 // The total of the new cost is equal to the cost of the created 4720 // instructions. 4721 // The total of the old cost is equal to the cost of the extension plus 4722 // what we have saved in the addressing mode. 4723 !isPromotionProfitable(CreatedInstsCost, 4724 ExtCost + (AddrModeInsts.size() - OldSize), 4725 PromotedOperand)) { 4726 AddrMode = BackupAddrMode; 4727 AddrModeInsts.resize(OldSize); 4728 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4729 TPT.rollback(LastKnownGood); 4730 return false; 4731 } 4732 return true; 4733 } 4734 } 4735 return false; 4736 } 4737 4738 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4739 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4740 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4741 /// for the target. 4742 /// 4743 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4744 // Start a transaction at this point that we will rollback if the matching 4745 // fails. 4746 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4747 TPT.getRestorationPoint(); 4748 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4749 if (CI->getValue().isSignedIntN(64)) { 4750 // Fold in immediates if legal for the target. 4751 AddrMode.BaseOffs += CI->getSExtValue(); 4752 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4753 return true; 4754 AddrMode.BaseOffs -= CI->getSExtValue(); 4755 } 4756 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4757 // If this is a global variable, try to fold it into the addressing mode. 4758 if (!AddrMode.BaseGV) { 4759 AddrMode.BaseGV = GV; 4760 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4761 return true; 4762 AddrMode.BaseGV = nullptr; 4763 } 4764 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4765 ExtAddrMode BackupAddrMode = AddrMode; 4766 unsigned OldSize = AddrModeInsts.size(); 4767 4768 // Check to see if it is possible to fold this operation. 4769 bool MovedAway = false; 4770 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4771 // This instruction may have been moved away. If so, there is nothing 4772 // to check here. 4773 if (MovedAway) 4774 return true; 4775 // Okay, it's possible to fold this. Check to see if it is actually 4776 // *profitable* to do so. We use a simple cost model to avoid increasing 4777 // register pressure too much. 4778 if (I->hasOneUse() || 4779 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4780 AddrModeInsts.push_back(I); 4781 return true; 4782 } 4783 4784 // It isn't profitable to do this, roll back. 4785 //cerr << "NOT FOLDING: " << *I; 4786 AddrMode = BackupAddrMode; 4787 AddrModeInsts.resize(OldSize); 4788 TPT.rollback(LastKnownGood); 4789 } 4790 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4791 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4792 return true; 4793 TPT.rollback(LastKnownGood); 4794 } else if (isa<ConstantPointerNull>(Addr)) { 4795 // Null pointer gets folded without affecting the addressing mode. 4796 return true; 4797 } 4798 4799 // Worse case, the target should support [reg] addressing modes. :) 4800 if (!AddrMode.HasBaseReg) { 4801 AddrMode.HasBaseReg = true; 4802 AddrMode.BaseReg = Addr; 4803 // Still check for legality in case the target supports [imm] but not [i+r]. 4804 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4805 return true; 4806 AddrMode.HasBaseReg = false; 4807 AddrMode.BaseReg = nullptr; 4808 } 4809 4810 // If the base register is already taken, see if we can do [r+r]. 4811 if (AddrMode.Scale == 0) { 4812 AddrMode.Scale = 1; 4813 AddrMode.ScaledReg = Addr; 4814 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4815 return true; 4816 AddrMode.Scale = 0; 4817 AddrMode.ScaledReg = nullptr; 4818 } 4819 // Couldn't match. 4820 TPT.rollback(LastKnownGood); 4821 return false; 4822 } 4823 4824 /// Check to see if all uses of OpVal by the specified inline asm call are due 4825 /// to memory operands. If so, return true, otherwise return false. 4826 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4827 const TargetLowering &TLI, 4828 const TargetRegisterInfo &TRI) { 4829 const Function *F = CI->getFunction(); 4830 TargetLowering::AsmOperandInfoVector TargetConstraints = 4831 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI); 4832 4833 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { 4834 // Compute the constraint code and ConstraintType to use. 4835 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4836 4837 // If this asm operand is our Value*, and if it isn't an indirect memory 4838 // operand, we can't fold it! TODO: Also handle C_Address? 4839 if (OpInfo.CallOperandVal == OpVal && 4840 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4841 !OpInfo.isIndirect)) 4842 return false; 4843 } 4844 4845 return true; 4846 } 4847 4848 // Max number of memory uses to look at before aborting the search to conserve 4849 // compile time. 4850 static constexpr int MaxMemoryUsesToScan = 20; 4851 4852 /// Recursively walk all the uses of I until we find a memory use. 4853 /// If we find an obviously non-foldable instruction, return true. 4854 /// Add accessed addresses and types to MemoryUses. 4855 static bool FindAllMemoryUses( 4856 Instruction *I, SmallVectorImpl<std::pair<Value *, Type *>> &MemoryUses, 4857 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4858 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 4859 BlockFrequencyInfo *BFI, int SeenInsts = 0) { 4860 // If we already considered this instruction, we're done. 4861 if (!ConsideredInsts.insert(I).second) 4862 return false; 4863 4864 // If this is an obviously unfoldable instruction, bail out. 4865 if (!MightBeFoldableInst(I)) 4866 return true; 4867 4868 // Loop over all the uses, recursively processing them. 4869 for (Use &U : I->uses()) { 4870 // Conservatively return true if we're seeing a large number or a deep chain 4871 // of users. This avoids excessive compilation times in pathological cases. 4872 if (SeenInsts++ >= MaxMemoryUsesToScan) 4873 return true; 4874 4875 Instruction *UserI = cast<Instruction>(U.getUser()); 4876 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4877 MemoryUses.push_back({U.get(), LI->getType()}); 4878 continue; 4879 } 4880 4881 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4882 if (U.getOperandNo() != StoreInst::getPointerOperandIndex()) 4883 return true; // Storing addr, not into addr. 4884 MemoryUses.push_back({U.get(), SI->getValueOperand()->getType()}); 4885 continue; 4886 } 4887 4888 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4889 if (U.getOperandNo() != AtomicRMWInst::getPointerOperandIndex()) 4890 return true; // Storing addr, not into addr. 4891 MemoryUses.push_back({U.get(), RMW->getValOperand()->getType()}); 4892 continue; 4893 } 4894 4895 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4896 if (U.getOperandNo() != AtomicCmpXchgInst::getPointerOperandIndex()) 4897 return true; // Storing addr, not into addr. 4898 MemoryUses.push_back({U.get(), CmpX->getCompareOperand()->getType()}); 4899 continue; 4900 } 4901 4902 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4903 if (CI->hasFnAttr(Attribute::Cold)) { 4904 // If this is a cold call, we can sink the addressing calculation into 4905 // the cold path. See optimizeCallInst 4906 bool OptForSize = OptSize || 4907 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 4908 if (!OptForSize) 4909 continue; 4910 } 4911 4912 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); 4913 if (!IA) return true; 4914 4915 // If this is a memory operand, we're cool, otherwise bail out. 4916 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4917 return true; 4918 continue; 4919 } 4920 4921 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4922 PSI, BFI, SeenInsts)) 4923 return true; 4924 } 4925 4926 return false; 4927 } 4928 4929 /// Return true if Val is already known to be live at the use site that we're 4930 /// folding it into. If so, there is no cost to include it in the addressing 4931 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4932 /// instruction already. 4933 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4934 Value *KnownLive2) { 4935 // If Val is either of the known-live values, we know it is live! 4936 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4937 return true; 4938 4939 // All values other than instructions and arguments (e.g. constants) are live. 4940 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4941 4942 // If Val is a constant sized alloca in the entry block, it is live, this is 4943 // true because it is just a reference to the stack/frame pointer, which is 4944 // live for the whole function. 4945 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4946 if (AI->isStaticAlloca()) 4947 return true; 4948 4949 // Check to see if this value is already used in the memory instruction's 4950 // block. If so, it's already live into the block at the very least, so we 4951 // can reasonably fold it. 4952 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4953 } 4954 4955 /// It is possible for the addressing mode of the machine to fold the specified 4956 /// instruction into a load or store that ultimately uses it. 4957 /// However, the specified instruction has multiple uses. 4958 /// Given this, it may actually increase register pressure to fold it 4959 /// into the load. For example, consider this code: 4960 /// 4961 /// X = ... 4962 /// Y = X+1 4963 /// use(Y) -> nonload/store 4964 /// Z = Y+1 4965 /// load Z 4966 /// 4967 /// In this case, Y has multiple uses, and can be folded into the load of Z 4968 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4969 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4970 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4971 /// number of computations either. 4972 /// 4973 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4974 /// X was live across 'load Z' for other reasons, we actually *would* want to 4975 /// fold the addressing mode in the Z case. This would make Y die earlier. 4976 bool AddressingModeMatcher:: 4977 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4978 ExtAddrMode &AMAfter) { 4979 if (IgnoreProfitability) return true; 4980 4981 // AMBefore is the addressing mode before this instruction was folded into it, 4982 // and AMAfter is the addressing mode after the instruction was folded. Get 4983 // the set of registers referenced by AMAfter and subtract out those 4984 // referenced by AMBefore: this is the set of values which folding in this 4985 // address extends the lifetime of. 4986 // 4987 // Note that there are only two potential values being referenced here, 4988 // BaseReg and ScaleReg (global addresses are always available, as are any 4989 // folded immediates). 4990 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4991 4992 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4993 // lifetime wasn't extended by adding this instruction. 4994 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4995 BaseReg = nullptr; 4996 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4997 ScaledReg = nullptr; 4998 4999 // If folding this instruction (and it's subexprs) didn't extend any live 5000 // ranges, we're ok with it. 5001 if (!BaseReg && !ScaledReg) 5002 return true; 5003 5004 // If all uses of this instruction can have the address mode sunk into them, 5005 // we can remove the addressing mode and effectively trade one live register 5006 // for another (at worst.) In this context, folding an addressing mode into 5007 // the use is just a particularly nice way of sinking it. 5008 SmallVector<std::pair<Value *, Type *>, 16> MemoryUses; 5009 SmallPtrSet<Instruction*, 16> ConsideredInsts; 5010 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 5011 PSI, BFI)) 5012 return false; // Has a non-memory, non-foldable use! 5013 5014 // Now that we know that all uses of this instruction are part of a chain of 5015 // computation involving only operations that could theoretically be folded 5016 // into a memory use, loop over each of these memory operation uses and see 5017 // if they could *actually* fold the instruction. The assumption is that 5018 // addressing modes are cheap and that duplicating the computation involved 5019 // many times is worthwhile, even on a fastpath. For sinking candidates 5020 // (i.e. cold call sites), this serves as a way to prevent excessive code 5021 // growth since most architectures have some reasonable small and fast way to 5022 // compute an effective address. (i.e LEA on x86) 5023 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 5024 for (const std::pair<Value *, Type *> &Pair : MemoryUses) { 5025 Value *Address = Pair.first; 5026 Type *AddressAccessTy = Pair.second; 5027 unsigned AS = Address->getType()->getPointerAddressSpace(); 5028 5029 // Do a match against the root of this address, ignoring profitability. This 5030 // will tell us if the addressing mode for the memory operation will 5031 // *actually* cover the shared instruction. 5032 ExtAddrMode Result; 5033 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5034 0); 5035 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5036 TPT.getRestorationPoint(); 5037 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn, 5038 AddressAccessTy, AS, MemoryInst, Result, 5039 InsertedInsts, PromotedInsts, TPT, 5040 LargeOffsetGEP, OptSize, PSI, BFI); 5041 Matcher.IgnoreProfitability = true; 5042 bool Success = Matcher.matchAddr(Address, 0); 5043 (void)Success; assert(Success && "Couldn't select *anything*?"); 5044 5045 // The match was to check the profitability, the changes made are not 5046 // part of the original matcher. Therefore, they should be dropped 5047 // otherwise the original matcher will not present the right state. 5048 TPT.rollback(LastKnownGood); 5049 5050 // If the match didn't cover I, then it won't be shared by it. 5051 if (!is_contained(MatchedAddrModeInsts, I)) 5052 return false; 5053 5054 MatchedAddrModeInsts.clear(); 5055 } 5056 5057 return true; 5058 } 5059 5060 /// Return true if the specified values are defined in a 5061 /// different basic block than BB. 5062 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 5063 if (Instruction *I = dyn_cast<Instruction>(V)) 5064 return I->getParent() != BB; 5065 return false; 5066 } 5067 5068 /// Sink addressing mode computation immediate before MemoryInst if doing so 5069 /// can be done without increasing register pressure. The need for the 5070 /// register pressure constraint means this can end up being an all or nothing 5071 /// decision for all uses of the same addressing computation. 5072 /// 5073 /// Load and Store Instructions often have addressing modes that can do 5074 /// significant amounts of computation. As such, instruction selection will try 5075 /// to get the load or store to do as much computation as possible for the 5076 /// program. The problem is that isel can only see within a single block. As 5077 /// such, we sink as much legal addressing mode work into the block as possible. 5078 /// 5079 /// This method is used to optimize both load/store and inline asms with memory 5080 /// operands. It's also used to sink addressing computations feeding into cold 5081 /// call sites into their (cold) basic block. 5082 /// 5083 /// The motivation for handling sinking into cold blocks is that doing so can 5084 /// both enable other address mode sinking (by satisfying the register pressure 5085 /// constraint above), and reduce register pressure globally (by removing the 5086 /// addressing mode computation from the fast path entirely.). 5087 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 5088 Type *AccessTy, unsigned AddrSpace) { 5089 Value *Repl = Addr; 5090 5091 // Try to collapse single-value PHI nodes. This is necessary to undo 5092 // unprofitable PRE transformations. 5093 SmallVector<Value*, 8> worklist; 5094 SmallPtrSet<Value*, 16> Visited; 5095 worklist.push_back(Addr); 5096 5097 // Use a worklist to iteratively look through PHI and select nodes, and 5098 // ensure that the addressing mode obtained from the non-PHI/select roots of 5099 // the graph are compatible. 5100 bool PhiOrSelectSeen = false; 5101 SmallVector<Instruction*, 16> AddrModeInsts; 5102 const SimplifyQuery SQ(*DL, TLInfo); 5103 AddressingModeCombiner AddrModes(SQ, Addr); 5104 TypePromotionTransaction TPT(RemovedInsts); 5105 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5106 TPT.getRestorationPoint(); 5107 while (!worklist.empty()) { 5108 Value *V = worklist.pop_back_val(); 5109 5110 // We allow traversing cyclic Phi nodes. 5111 // In case of success after this loop we ensure that traversing through 5112 // Phi nodes ends up with all cases to compute address of the form 5113 // BaseGV + Base + Scale * Index + Offset 5114 // where Scale and Offset are constans and BaseGV, Base and Index 5115 // are exactly the same Values in all cases. 5116 // It means that BaseGV, Scale and Offset dominate our memory instruction 5117 // and have the same value as they had in address computation represented 5118 // as Phi. So we can safely sink address computation to memory instruction. 5119 if (!Visited.insert(V).second) 5120 continue; 5121 5122 // For a PHI node, push all of its incoming values. 5123 if (PHINode *P = dyn_cast<PHINode>(V)) { 5124 append_range(worklist, P->incoming_values()); 5125 PhiOrSelectSeen = true; 5126 continue; 5127 } 5128 // Similar for select. 5129 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 5130 worklist.push_back(SI->getFalseValue()); 5131 worklist.push_back(SI->getTrueValue()); 5132 PhiOrSelectSeen = true; 5133 continue; 5134 } 5135 5136 // For non-PHIs, determine the addressing mode being computed. Note that 5137 // the result may differ depending on what other uses our candidate 5138 // addressing instructions might have. 5139 AddrModeInsts.clear(); 5140 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5141 0); 5142 // Defer the query (and possible computation of) the dom tree to point of 5143 // actual use. It's expected that most address matches don't actually need 5144 // the domtree. 5145 auto getDTFn = [MemoryInst, this]() -> const DominatorTree & { 5146 Function *F = MemoryInst->getParent()->getParent(); 5147 return this->getDT(*F); 5148 }; 5149 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 5150 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn, 5151 *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 5152 BFI.get()); 5153 5154 GetElementPtrInst *GEP = LargeOffsetGEP.first; 5155 if (GEP && !NewGEPBases.count(GEP)) { 5156 // If splitting the underlying data structure can reduce the offset of a 5157 // GEP, collect the GEP. Skip the GEPs that are the new bases of 5158 // previously split data structures. 5159 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 5160 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 5161 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 5162 } 5163 5164 NewAddrMode.OriginalValue = V; 5165 if (!AddrModes.addNewAddrMode(NewAddrMode)) 5166 break; 5167 } 5168 5169 // Try to combine the AddrModes we've collected. If we couldn't collect any, 5170 // or we have multiple but either couldn't combine them or combining them 5171 // wouldn't do anything useful, bail out now. 5172 if (!AddrModes.combineAddrModes()) { 5173 TPT.rollback(LastKnownGood); 5174 return false; 5175 } 5176 bool Modified = TPT.commit(); 5177 5178 // Get the combined AddrMode (or the only AddrMode, if we only had one). 5179 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 5180 5181 // If all the instructions matched are already in this BB, don't do anything. 5182 // If we saw a Phi node then it is not local definitely, and if we saw a select 5183 // then we want to push the address calculation past it even if it's already 5184 // in this BB. 5185 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 5186 return IsNonLocalValue(V, MemoryInst->getParent()); 5187 })) { 5188 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 5189 << "\n"); 5190 return Modified; 5191 } 5192 5193 // Insert this computation right after this user. Since our caller is 5194 // scanning from the top of the BB to the bottom, reuse of the expr are 5195 // guaranteed to happen later. 5196 IRBuilder<> Builder(MemoryInst); 5197 5198 // Now that we determined the addressing expression we want to use and know 5199 // that we have to sink it into this block. Check to see if we have already 5200 // done this for some other load/store instr in this block. If so, reuse 5201 // the computation. Before attempting reuse, check if the address is valid 5202 // as it may have been erased. 5203 5204 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 5205 5206 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 5207 if (SunkAddr) { 5208 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 5209 << " for " << *MemoryInst << "\n"); 5210 if (SunkAddr->getType() != Addr->getType()) 5211 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5212 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 5213 SubtargetInfo->addrSinkUsingGEPs())) { 5214 // By default, we use the GEP-based method when AA is used later. This 5215 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 5216 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5217 << " for " << *MemoryInst << "\n"); 5218 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5219 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 5220 5221 // First, find the pointer. 5222 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 5223 ResultPtr = AddrMode.BaseReg; 5224 AddrMode.BaseReg = nullptr; 5225 } 5226 5227 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 5228 // We can't add more than one pointer together, nor can we scale a 5229 // pointer (both of which seem meaningless). 5230 if (ResultPtr || AddrMode.Scale != 1) 5231 return Modified; 5232 5233 ResultPtr = AddrMode.ScaledReg; 5234 AddrMode.Scale = 0; 5235 } 5236 5237 // It is only safe to sign extend the BaseReg if we know that the math 5238 // required to create it did not overflow before we extend it. Since 5239 // the original IR value was tossed in favor of a constant back when 5240 // the AddrMode was created we need to bail out gracefully if widths 5241 // do not match instead of extending it. 5242 // 5243 // (See below for code to add the scale.) 5244 if (AddrMode.Scale) { 5245 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 5246 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 5247 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 5248 return Modified; 5249 } 5250 5251 if (AddrMode.BaseGV) { 5252 if (ResultPtr) 5253 return Modified; 5254 5255 ResultPtr = AddrMode.BaseGV; 5256 } 5257 5258 // If the real base value actually came from an inttoptr, then the matcher 5259 // will look through it and provide only the integer value. In that case, 5260 // use it here. 5261 if (!DL->isNonIntegralPointerType(Addr->getType())) { 5262 if (!ResultPtr && AddrMode.BaseReg) { 5263 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 5264 "sunkaddr"); 5265 AddrMode.BaseReg = nullptr; 5266 } else if (!ResultPtr && AddrMode.Scale == 1) { 5267 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 5268 "sunkaddr"); 5269 AddrMode.Scale = 0; 5270 } 5271 } 5272 5273 if (!ResultPtr && 5274 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 5275 SunkAddr = Constant::getNullValue(Addr->getType()); 5276 } else if (!ResultPtr) { 5277 return Modified; 5278 } else { 5279 Type *I8PtrTy = 5280 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 5281 Type *I8Ty = Builder.getInt8Ty(); 5282 5283 // Start with the base register. Do this first so that subsequent address 5284 // matching finds it last, which will prevent it from trying to match it 5285 // as the scaled value in case it happens to be a mul. That would be 5286 // problematic if we've sunk a different mul for the scale, because then 5287 // we'd end up sinking both muls. 5288 if (AddrMode.BaseReg) { 5289 Value *V = AddrMode.BaseReg; 5290 if (V->getType() != IntPtrTy) 5291 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5292 5293 ResultIndex = V; 5294 } 5295 5296 // Add the scale value. 5297 if (AddrMode.Scale) { 5298 Value *V = AddrMode.ScaledReg; 5299 if (V->getType() == IntPtrTy) { 5300 // done. 5301 } else { 5302 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5303 cast<IntegerType>(V->getType())->getBitWidth() && 5304 "We can't transform if ScaledReg is too narrow"); 5305 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5306 } 5307 5308 if (AddrMode.Scale != 1) 5309 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5310 "sunkaddr"); 5311 if (ResultIndex) 5312 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5313 else 5314 ResultIndex = V; 5315 } 5316 5317 // Add in the Base Offset if present. 5318 if (AddrMode.BaseOffs) { 5319 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5320 if (ResultIndex) { 5321 // We need to add this separately from the scale above to help with 5322 // SDAG consecutive load/store merging. 5323 if (ResultPtr->getType() != I8PtrTy) 5324 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5325 ResultPtr = 5326 AddrMode.InBounds 5327 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5328 "sunkaddr") 5329 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5330 } 5331 5332 ResultIndex = V; 5333 } 5334 5335 if (!ResultIndex) { 5336 SunkAddr = ResultPtr; 5337 } else { 5338 if (ResultPtr->getType() != I8PtrTy) 5339 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5340 SunkAddr = 5341 AddrMode.InBounds 5342 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5343 "sunkaddr") 5344 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5345 } 5346 5347 if (SunkAddr->getType() != Addr->getType()) 5348 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5349 } 5350 } else { 5351 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5352 // non-integral pointers, so in that case bail out now. 5353 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5354 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5355 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5356 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5357 if (DL->isNonIntegralPointerType(Addr->getType()) || 5358 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5359 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5360 (AddrMode.BaseGV && 5361 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5362 return Modified; 5363 5364 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5365 << " for " << *MemoryInst << "\n"); 5366 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5367 Value *Result = nullptr; 5368 5369 // Start with the base register. Do this first so that subsequent address 5370 // matching finds it last, which will prevent it from trying to match it 5371 // as the scaled value in case it happens to be a mul. That would be 5372 // problematic if we've sunk a different mul for the scale, because then 5373 // we'd end up sinking both muls. 5374 if (AddrMode.BaseReg) { 5375 Value *V = AddrMode.BaseReg; 5376 if (V->getType()->isPointerTy()) 5377 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5378 if (V->getType() != IntPtrTy) 5379 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5380 Result = V; 5381 } 5382 5383 // Add the scale value. 5384 if (AddrMode.Scale) { 5385 Value *V = AddrMode.ScaledReg; 5386 if (V->getType() == IntPtrTy) { 5387 // done. 5388 } else if (V->getType()->isPointerTy()) { 5389 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5390 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5391 cast<IntegerType>(V->getType())->getBitWidth()) { 5392 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5393 } else { 5394 // It is only safe to sign extend the BaseReg if we know that the math 5395 // required to create it did not overflow before we extend it. Since 5396 // the original IR value was tossed in favor of a constant back when 5397 // the AddrMode was created we need to bail out gracefully if widths 5398 // do not match instead of extending it. 5399 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5400 if (I && (Result != AddrMode.BaseReg)) 5401 I->eraseFromParent(); 5402 return Modified; 5403 } 5404 if (AddrMode.Scale != 1) 5405 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5406 "sunkaddr"); 5407 if (Result) 5408 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5409 else 5410 Result = V; 5411 } 5412 5413 // Add in the BaseGV if present. 5414 if (AddrMode.BaseGV) { 5415 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5416 if (Result) 5417 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5418 else 5419 Result = V; 5420 } 5421 5422 // Add in the Base Offset if present. 5423 if (AddrMode.BaseOffs) { 5424 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5425 if (Result) 5426 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5427 else 5428 Result = V; 5429 } 5430 5431 if (!Result) 5432 SunkAddr = Constant::getNullValue(Addr->getType()); 5433 else 5434 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5435 } 5436 5437 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5438 // Store the newly computed address into the cache. In the case we reused a 5439 // value, this should be idempotent. 5440 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5441 5442 // If we have no uses, recursively delete the value and all dead instructions 5443 // using it. 5444 if (Repl->use_empty()) { 5445 resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() { 5446 RecursivelyDeleteTriviallyDeadInstructions( 5447 Repl, TLInfo, nullptr, 5448 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5449 }); 5450 } 5451 ++NumMemoryInsts; 5452 return true; 5453 } 5454 5455 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find 5456 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can 5457 /// only handle a 2 operand GEP in the same basic block or a splat constant 5458 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector 5459 /// index. 5460 /// 5461 /// If the existing GEP has a vector base pointer that is splat, we can look 5462 /// through the splat to find the scalar pointer. If we can't find a scalar 5463 /// pointer there's nothing we can do. 5464 /// 5465 /// If we have a GEP with more than 2 indices where the middle indices are all 5466 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. 5467 /// 5468 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP 5469 /// followed by a GEP with an all zeroes vector index. This will enable 5470 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a 5471 /// zero index. 5472 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, 5473 Value *Ptr) { 5474 Value *NewAddr; 5475 5476 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 5477 // Don't optimize GEPs that don't have indices. 5478 if (!GEP->hasIndices()) 5479 return false; 5480 5481 // If the GEP and the gather/scatter aren't in the same BB, don't optimize. 5482 // FIXME: We should support this by sinking the GEP. 5483 if (MemoryInst->getParent() != GEP->getParent()) 5484 return false; 5485 5486 SmallVector<Value *, 2> Ops(GEP->operands()); 5487 5488 bool RewriteGEP = false; 5489 5490 if (Ops[0]->getType()->isVectorTy()) { 5491 Ops[0] = getSplatValue(Ops[0]); 5492 if (!Ops[0]) 5493 return false; 5494 RewriteGEP = true; 5495 } 5496 5497 unsigned FinalIndex = Ops.size() - 1; 5498 5499 // Ensure all but the last index is 0. 5500 // FIXME: This isn't strictly required. All that's required is that they are 5501 // all scalars or splats. 5502 for (unsigned i = 1; i < FinalIndex; ++i) { 5503 auto *C = dyn_cast<Constant>(Ops[i]); 5504 if (!C) 5505 return false; 5506 if (isa<VectorType>(C->getType())) 5507 C = C->getSplatValue(); 5508 auto *CI = dyn_cast_or_null<ConstantInt>(C); 5509 if (!CI || !CI->isZero()) 5510 return false; 5511 // Scalarize the index if needed. 5512 Ops[i] = CI; 5513 } 5514 5515 // Try to scalarize the final index. 5516 if (Ops[FinalIndex]->getType()->isVectorTy()) { 5517 if (Value *V = getSplatValue(Ops[FinalIndex])) { 5518 auto *C = dyn_cast<ConstantInt>(V); 5519 // Don't scalarize all zeros vector. 5520 if (!C || !C->isZero()) { 5521 Ops[FinalIndex] = V; 5522 RewriteGEP = true; 5523 } 5524 } 5525 } 5526 5527 // If we made any changes or the we have extra operands, we need to generate 5528 // new instructions. 5529 if (!RewriteGEP && Ops.size() == 2) 5530 return false; 5531 5532 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5533 5534 IRBuilder<> Builder(MemoryInst); 5535 5536 Type *SourceTy = GEP->getSourceElementType(); 5537 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); 5538 5539 // If the final index isn't a vector, emit a scalar GEP containing all ops 5540 // and a vector GEP with all zeroes final index. 5541 if (!Ops[FinalIndex]->getType()->isVectorTy()) { 5542 NewAddr = Builder.CreateGEP(SourceTy, Ops[0], 5543 makeArrayRef(Ops).drop_front()); 5544 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5545 auto *SecondTy = GetElementPtrInst::getIndexedType( 5546 SourceTy, makeArrayRef(Ops).drop_front()); 5547 NewAddr = 5548 Builder.CreateGEP(SecondTy, NewAddr, Constant::getNullValue(IndexTy)); 5549 } else { 5550 Value *Base = Ops[0]; 5551 Value *Index = Ops[FinalIndex]; 5552 5553 // Create a scalar GEP if there are more than 2 operands. 5554 if (Ops.size() != 2) { 5555 // Replace the last index with 0. 5556 Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy); 5557 Base = Builder.CreateGEP(SourceTy, Base, 5558 makeArrayRef(Ops).drop_front()); 5559 SourceTy = GetElementPtrInst::getIndexedType( 5560 SourceTy, makeArrayRef(Ops).drop_front()); 5561 } 5562 5563 // Now create the GEP with scalar pointer and vector index. 5564 NewAddr = Builder.CreateGEP(SourceTy, Base, Index); 5565 } 5566 } else if (!isa<Constant>(Ptr)) { 5567 // Not a GEP, maybe its a splat and we can create a GEP to enable 5568 // SelectionDAGBuilder to use it as a uniform base. 5569 Value *V = getSplatValue(Ptr); 5570 if (!V) 5571 return false; 5572 5573 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5574 5575 IRBuilder<> Builder(MemoryInst); 5576 5577 // Emit a vector GEP with a scalar pointer and all 0s vector index. 5578 Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType()); 5579 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5580 Type *ScalarTy; 5581 if (cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == 5582 Intrinsic::masked_gather) { 5583 ScalarTy = MemoryInst->getType()->getScalarType(); 5584 } else { 5585 assert(cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == 5586 Intrinsic::masked_scatter); 5587 ScalarTy = MemoryInst->getOperand(0)->getType()->getScalarType(); 5588 } 5589 NewAddr = Builder.CreateGEP(ScalarTy, V, Constant::getNullValue(IndexTy)); 5590 } else { 5591 // Constant, SelectionDAGBuilder knows to check if its a splat. 5592 return false; 5593 } 5594 5595 MemoryInst->replaceUsesOfWith(Ptr, NewAddr); 5596 5597 // If we have no uses, recursively delete the value and all dead instructions 5598 // using it. 5599 if (Ptr->use_empty()) 5600 RecursivelyDeleteTriviallyDeadInstructions( 5601 Ptr, TLInfo, nullptr, 5602 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5603 5604 return true; 5605 } 5606 5607 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5608 /// address computing into the block when possible / profitable. 5609 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5610 bool MadeChange = false; 5611 5612 const TargetRegisterInfo *TRI = 5613 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5614 TargetLowering::AsmOperandInfoVector TargetConstraints = 5615 TLI->ParseConstraints(*DL, TRI, *CS); 5616 unsigned ArgNo = 0; 5617 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { 5618 // Compute the constraint code and ConstraintType to use. 5619 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5620 5621 // TODO: Also handle C_Address? 5622 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5623 OpInfo.isIndirect) { 5624 Value *OpVal = CS->getArgOperand(ArgNo++); 5625 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5626 } else if (OpInfo.Type == InlineAsm::isInput) 5627 ArgNo++; 5628 } 5629 5630 return MadeChange; 5631 } 5632 5633 /// Check if all the uses of \p Val are equivalent (or free) zero or 5634 /// sign extensions. 5635 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5636 assert(!Val->use_empty() && "Input must have at least one use"); 5637 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5638 bool IsSExt = isa<SExtInst>(FirstUser); 5639 Type *ExtTy = FirstUser->getType(); 5640 for (const User *U : Val->users()) { 5641 const Instruction *UI = cast<Instruction>(U); 5642 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5643 return false; 5644 Type *CurTy = UI->getType(); 5645 // Same input and output types: Same instruction after CSE. 5646 if (CurTy == ExtTy) 5647 continue; 5648 5649 // If IsSExt is true, we are in this situation: 5650 // a = Val 5651 // b = sext ty1 a to ty2 5652 // c = sext ty1 a to ty3 5653 // Assuming ty2 is shorter than ty3, this could be turned into: 5654 // a = Val 5655 // b = sext ty1 a to ty2 5656 // c = sext ty2 b to ty3 5657 // However, the last sext is not free. 5658 if (IsSExt) 5659 return false; 5660 5661 // This is a ZExt, maybe this is free to extend from one type to another. 5662 // In that case, we would not account for a different use. 5663 Type *NarrowTy; 5664 Type *LargeTy; 5665 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5666 CurTy->getScalarType()->getIntegerBitWidth()) { 5667 NarrowTy = CurTy; 5668 LargeTy = ExtTy; 5669 } else { 5670 NarrowTy = ExtTy; 5671 LargeTy = CurTy; 5672 } 5673 5674 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5675 return false; 5676 } 5677 // All uses are the same or can be derived from one another for free. 5678 return true; 5679 } 5680 5681 /// Try to speculatively promote extensions in \p Exts and continue 5682 /// promoting through newly promoted operands recursively as far as doing so is 5683 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5684 /// When some promotion happened, \p TPT contains the proper state to revert 5685 /// them. 5686 /// 5687 /// \return true if some promotion happened, false otherwise. 5688 bool CodeGenPrepare::tryToPromoteExts( 5689 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5690 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5691 unsigned CreatedInstsCost) { 5692 bool Promoted = false; 5693 5694 // Iterate over all the extensions to try to promote them. 5695 for (auto *I : Exts) { 5696 // Early check if we directly have ext(load). 5697 if (isa<LoadInst>(I->getOperand(0))) { 5698 ProfitablyMovedExts.push_back(I); 5699 continue; 5700 } 5701 5702 // Check whether or not we want to do any promotion. The reason we have 5703 // this check inside the for loop is to catch the case where an extension 5704 // is directly fed by a load because in such case the extension can be moved 5705 // up without any promotion on its operands. 5706 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5707 return false; 5708 5709 // Get the action to perform the promotion. 5710 TypePromotionHelper::Action TPH = 5711 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5712 // Check if we can promote. 5713 if (!TPH) { 5714 // Save the current extension as we cannot move up through its operand. 5715 ProfitablyMovedExts.push_back(I); 5716 continue; 5717 } 5718 5719 // Save the current state. 5720 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5721 TPT.getRestorationPoint(); 5722 SmallVector<Instruction *, 4> NewExts; 5723 unsigned NewCreatedInstsCost = 0; 5724 unsigned ExtCost = !TLI->isExtFree(I); 5725 // Promote. 5726 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5727 &NewExts, nullptr, *TLI); 5728 assert(PromotedVal && 5729 "TypePromotionHelper should have filtered out those cases"); 5730 5731 // We would be able to merge only one extension in a load. 5732 // Therefore, if we have more than 1 new extension we heuristically 5733 // cut this search path, because it means we degrade the code quality. 5734 // With exactly 2, the transformation is neutral, because we will merge 5735 // one extension but leave one. However, we optimistically keep going, 5736 // because the new extension may be removed too. 5737 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5738 // FIXME: It would be possible to propagate a negative value instead of 5739 // conservatively ceiling it to 0. 5740 TotalCreatedInstsCost = 5741 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5742 if (!StressExtLdPromotion && 5743 (TotalCreatedInstsCost > 1 || 5744 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5745 // This promotion is not profitable, rollback to the previous state, and 5746 // save the current extension in ProfitablyMovedExts as the latest 5747 // speculative promotion turned out to be unprofitable. 5748 TPT.rollback(LastKnownGood); 5749 ProfitablyMovedExts.push_back(I); 5750 continue; 5751 } 5752 // Continue promoting NewExts as far as doing so is profitable. 5753 SmallVector<Instruction *, 2> NewlyMovedExts; 5754 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5755 bool NewPromoted = false; 5756 for (auto *ExtInst : NewlyMovedExts) { 5757 Instruction *MovedExt = cast<Instruction>(ExtInst); 5758 Value *ExtOperand = MovedExt->getOperand(0); 5759 // If we have reached to a load, we need this extra profitability check 5760 // as it could potentially be merged into an ext(load). 5761 if (isa<LoadInst>(ExtOperand) && 5762 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5763 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5764 continue; 5765 5766 ProfitablyMovedExts.push_back(MovedExt); 5767 NewPromoted = true; 5768 } 5769 5770 // If none of speculative promotions for NewExts is profitable, rollback 5771 // and save the current extension (I) as the last profitable extension. 5772 if (!NewPromoted) { 5773 TPT.rollback(LastKnownGood); 5774 ProfitablyMovedExts.push_back(I); 5775 continue; 5776 } 5777 // The promotion is profitable. 5778 Promoted = true; 5779 } 5780 return Promoted; 5781 } 5782 5783 /// Merging redundant sexts when one is dominating the other. 5784 bool CodeGenPrepare::mergeSExts(Function &F) { 5785 bool Changed = false; 5786 for (auto &Entry : ValToSExtendedUses) { 5787 SExts &Insts = Entry.second; 5788 SExts CurPts; 5789 for (Instruction *Inst : Insts) { 5790 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5791 Inst->getOperand(0) != Entry.first) 5792 continue; 5793 bool inserted = false; 5794 for (auto &Pt : CurPts) { 5795 if (getDT(F).dominates(Inst, Pt)) { 5796 Pt->replaceAllUsesWith(Inst); 5797 RemovedInsts.insert(Pt); 5798 Pt->removeFromParent(); 5799 Pt = Inst; 5800 inserted = true; 5801 Changed = true; 5802 break; 5803 } 5804 if (!getDT(F).dominates(Pt, Inst)) 5805 // Give up if we need to merge in a common dominator as the 5806 // experiments show it is not profitable. 5807 continue; 5808 Inst->replaceAllUsesWith(Pt); 5809 RemovedInsts.insert(Inst); 5810 Inst->removeFromParent(); 5811 inserted = true; 5812 Changed = true; 5813 break; 5814 } 5815 if (!inserted) 5816 CurPts.push_back(Inst); 5817 } 5818 } 5819 return Changed; 5820 } 5821 5822 // Splitting large data structures so that the GEPs accessing them can have 5823 // smaller offsets so that they can be sunk to the same blocks as their users. 5824 // For example, a large struct starting from %base is split into two parts 5825 // where the second part starts from %new_base. 5826 // 5827 // Before: 5828 // BB0: 5829 // %base = 5830 // 5831 // BB1: 5832 // %gep0 = gep %base, off0 5833 // %gep1 = gep %base, off1 5834 // %gep2 = gep %base, off2 5835 // 5836 // BB2: 5837 // %load1 = load %gep0 5838 // %load2 = load %gep1 5839 // %load3 = load %gep2 5840 // 5841 // After: 5842 // BB0: 5843 // %base = 5844 // %new_base = gep %base, off0 5845 // 5846 // BB1: 5847 // %new_gep0 = %new_base 5848 // %new_gep1 = gep %new_base, off1 - off0 5849 // %new_gep2 = gep %new_base, off2 - off0 5850 // 5851 // BB2: 5852 // %load1 = load i32, i32* %new_gep0 5853 // %load2 = load i32, i32* %new_gep1 5854 // %load3 = load i32, i32* %new_gep2 5855 // 5856 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5857 // their offsets are smaller enough to fit into the addressing mode. 5858 bool CodeGenPrepare::splitLargeGEPOffsets() { 5859 bool Changed = false; 5860 for (auto &Entry : LargeOffsetGEPMap) { 5861 Value *OldBase = Entry.first; 5862 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5863 &LargeOffsetGEPs = Entry.second; 5864 auto compareGEPOffset = 5865 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5866 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5867 if (LHS.first == RHS.first) 5868 return false; 5869 if (LHS.second != RHS.second) 5870 return LHS.second < RHS.second; 5871 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5872 }; 5873 // Sorting all the GEPs of the same data structures based on the offsets. 5874 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5875 LargeOffsetGEPs.erase( 5876 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5877 LargeOffsetGEPs.end()); 5878 // Skip if all the GEPs have the same offsets. 5879 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5880 continue; 5881 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5882 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5883 Value *NewBaseGEP = nullptr; 5884 5885 auto *LargeOffsetGEP = LargeOffsetGEPs.begin(); 5886 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5887 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5888 int64_t Offset = LargeOffsetGEP->second; 5889 if (Offset != BaseOffset) { 5890 TargetLowering::AddrMode AddrMode; 5891 AddrMode.BaseOffs = Offset - BaseOffset; 5892 // The result type of the GEP might not be the type of the memory 5893 // access. 5894 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5895 GEP->getResultElementType(), 5896 GEP->getAddressSpace())) { 5897 // We need to create a new base if the offset to the current base is 5898 // too large to fit into the addressing mode. So, a very large struct 5899 // may be split into several parts. 5900 BaseGEP = GEP; 5901 BaseOffset = Offset; 5902 NewBaseGEP = nullptr; 5903 } 5904 } 5905 5906 // Generate a new GEP to replace the current one. 5907 LLVMContext &Ctx = GEP->getContext(); 5908 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5909 Type *I8PtrTy = 5910 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5911 Type *I8Ty = Type::getInt8Ty(Ctx); 5912 5913 if (!NewBaseGEP) { 5914 // Create a new base if we don't have one yet. Find the insertion 5915 // pointer for the new base first. 5916 BasicBlock::iterator NewBaseInsertPt; 5917 BasicBlock *NewBaseInsertBB; 5918 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5919 // If the base of the struct is an instruction, the new base will be 5920 // inserted close to it. 5921 NewBaseInsertBB = BaseI->getParent(); 5922 if (isa<PHINode>(BaseI)) 5923 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5924 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5925 NewBaseInsertBB = 5926 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5927 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5928 } else 5929 NewBaseInsertPt = std::next(BaseI->getIterator()); 5930 } else { 5931 // If the current base is an argument or global value, the new base 5932 // will be inserted to the entry block. 5933 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5934 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5935 } 5936 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5937 // Create a new base. 5938 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5939 NewBaseGEP = OldBase; 5940 if (NewBaseGEP->getType() != I8PtrTy) 5941 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5942 NewBaseGEP = 5943 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5944 NewGEPBases.insert(NewBaseGEP); 5945 } 5946 5947 IRBuilder<> Builder(GEP); 5948 Value *NewGEP = NewBaseGEP; 5949 if (Offset == BaseOffset) { 5950 if (GEP->getType() != I8PtrTy) 5951 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5952 } else { 5953 // Calculate the new offset for the new GEP. 5954 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5955 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5956 5957 if (GEP->getType() != I8PtrTy) 5958 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5959 } 5960 GEP->replaceAllUsesWith(NewGEP); 5961 LargeOffsetGEPID.erase(GEP); 5962 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5963 GEP->eraseFromParent(); 5964 Changed = true; 5965 } 5966 } 5967 return Changed; 5968 } 5969 5970 bool CodeGenPrepare::optimizePhiType( 5971 PHINode *I, SmallPtrSetImpl<PHINode *> &Visited, 5972 SmallPtrSetImpl<Instruction *> &DeletedInstrs) { 5973 // We are looking for a collection on interconnected phi nodes that together 5974 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts 5975 // are of the same type. Convert the whole set of nodes to the type of the 5976 // bitcast. 5977 Type *PhiTy = I->getType(); 5978 Type *ConvertTy = nullptr; 5979 if (Visited.count(I) || 5980 (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy())) 5981 return false; 5982 5983 SmallVector<Instruction *, 4> Worklist; 5984 Worklist.push_back(cast<Instruction>(I)); 5985 SmallPtrSet<PHINode *, 4> PhiNodes; 5986 PhiNodes.insert(I); 5987 Visited.insert(I); 5988 SmallPtrSet<Instruction *, 4> Defs; 5989 SmallPtrSet<Instruction *, 4> Uses; 5990 // This works by adding extra bitcasts between load/stores and removing 5991 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi)) 5992 // we can get in the situation where we remove a bitcast in one iteration 5993 // just to add it again in the next. We need to ensure that at least one 5994 // bitcast we remove are anchored to something that will not change back. 5995 bool AnyAnchored = false; 5996 5997 while (!Worklist.empty()) { 5998 Instruction *II = Worklist.pop_back_val(); 5999 6000 if (auto *Phi = dyn_cast<PHINode>(II)) { 6001 // Handle Defs, which might also be PHI's 6002 for (Value *V : Phi->incoming_values()) { 6003 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6004 if (!PhiNodes.count(OpPhi)) { 6005 if (Visited.count(OpPhi)) 6006 return false; 6007 PhiNodes.insert(OpPhi); 6008 Visited.insert(OpPhi); 6009 Worklist.push_back(OpPhi); 6010 } 6011 } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) { 6012 if (!OpLoad->isSimple()) 6013 return false; 6014 if (!Defs.count(OpLoad)) { 6015 Defs.insert(OpLoad); 6016 Worklist.push_back(OpLoad); 6017 } 6018 } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) { 6019 if (!Defs.count(OpEx)) { 6020 Defs.insert(OpEx); 6021 Worklist.push_back(OpEx); 6022 } 6023 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6024 if (!ConvertTy) 6025 ConvertTy = OpBC->getOperand(0)->getType(); 6026 if (OpBC->getOperand(0)->getType() != ConvertTy) 6027 return false; 6028 if (!Defs.count(OpBC)) { 6029 Defs.insert(OpBC); 6030 Worklist.push_back(OpBC); 6031 AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) && 6032 !isa<ExtractElementInst>(OpBC->getOperand(0)); 6033 } 6034 } else if (!isa<UndefValue>(V)) { 6035 return false; 6036 } 6037 } 6038 } 6039 6040 // Handle uses which might also be phi's 6041 for (User *V : II->users()) { 6042 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6043 if (!PhiNodes.count(OpPhi)) { 6044 if (Visited.count(OpPhi)) 6045 return false; 6046 PhiNodes.insert(OpPhi); 6047 Visited.insert(OpPhi); 6048 Worklist.push_back(OpPhi); 6049 } 6050 } else if (auto *OpStore = dyn_cast<StoreInst>(V)) { 6051 if (!OpStore->isSimple() || OpStore->getOperand(0) != II) 6052 return false; 6053 Uses.insert(OpStore); 6054 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6055 if (!ConvertTy) 6056 ConvertTy = OpBC->getType(); 6057 if (OpBC->getType() != ConvertTy) 6058 return false; 6059 Uses.insert(OpBC); 6060 AnyAnchored |= 6061 any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); }); 6062 } else { 6063 return false; 6064 } 6065 } 6066 } 6067 6068 if (!ConvertTy || !AnyAnchored || !TLI->shouldConvertPhiType(PhiTy, ConvertTy)) 6069 return false; 6070 6071 LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to " 6072 << *ConvertTy << "\n"); 6073 6074 // Create all the new phi nodes of the new type, and bitcast any loads to the 6075 // correct type. 6076 ValueToValueMap ValMap; 6077 ValMap[UndefValue::get(PhiTy)] = UndefValue::get(ConvertTy); 6078 for (Instruction *D : Defs) { 6079 if (isa<BitCastInst>(D)) { 6080 ValMap[D] = D->getOperand(0); 6081 DeletedInstrs.insert(D); 6082 } else { 6083 ValMap[D] = 6084 new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode()); 6085 } 6086 } 6087 for (PHINode *Phi : PhiNodes) 6088 ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(), 6089 Phi->getName() + ".tc", Phi); 6090 // Pipe together all the PhiNodes. 6091 for (PHINode *Phi : PhiNodes) { 6092 PHINode *NewPhi = cast<PHINode>(ValMap[Phi]); 6093 for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++) 6094 NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)], 6095 Phi->getIncomingBlock(i)); 6096 Visited.insert(NewPhi); 6097 } 6098 // And finally pipe up the stores and bitcasts 6099 for (Instruction *U : Uses) { 6100 if (isa<BitCastInst>(U)) { 6101 DeletedInstrs.insert(U); 6102 U->replaceAllUsesWith(ValMap[U->getOperand(0)]); 6103 } else { 6104 U->setOperand(0, 6105 new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U)); 6106 } 6107 } 6108 6109 // Save the removed phis to be deleted later. 6110 for (PHINode *Phi : PhiNodes) 6111 DeletedInstrs.insert(Phi); 6112 return true; 6113 } 6114 6115 bool CodeGenPrepare::optimizePhiTypes(Function &F) { 6116 if (!OptimizePhiTypes) 6117 return false; 6118 6119 bool Changed = false; 6120 SmallPtrSet<PHINode *, 4> Visited; 6121 SmallPtrSet<Instruction *, 4> DeletedInstrs; 6122 6123 // Attempt to optimize all the phis in the functions to the correct type. 6124 for (auto &BB : F) 6125 for (auto &Phi : BB.phis()) 6126 Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs); 6127 6128 // Remove any old phi's that have been converted. 6129 for (auto *I : DeletedInstrs) { 6130 I->replaceAllUsesWith(UndefValue::get(I->getType())); 6131 I->eraseFromParent(); 6132 } 6133 6134 return Changed; 6135 } 6136 6137 /// Return true, if an ext(load) can be formed from an extension in 6138 /// \p MovedExts. 6139 bool CodeGenPrepare::canFormExtLd( 6140 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 6141 Instruction *&Inst, bool HasPromoted) { 6142 for (auto *MovedExtInst : MovedExts) { 6143 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 6144 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 6145 Inst = MovedExtInst; 6146 break; 6147 } 6148 } 6149 if (!LI) 6150 return false; 6151 6152 // If they're already in the same block, there's nothing to do. 6153 // Make the cheap checks first if we did not promote. 6154 // If we promoted, we need to check if it is indeed profitable. 6155 if (!HasPromoted && LI->getParent() == Inst->getParent()) 6156 return false; 6157 6158 return TLI->isExtLoad(LI, Inst, *DL); 6159 } 6160 6161 /// Move a zext or sext fed by a load into the same basic block as the load, 6162 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 6163 /// extend into the load. 6164 /// 6165 /// E.g., 6166 /// \code 6167 /// %ld = load i32* %addr 6168 /// %add = add nuw i32 %ld, 4 6169 /// %zext = zext i32 %add to i64 6170 // \endcode 6171 /// => 6172 /// \code 6173 /// %ld = load i32* %addr 6174 /// %zext = zext i32 %ld to i64 6175 /// %add = add nuw i64 %zext, 4 6176 /// \encode 6177 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 6178 /// allow us to match zext(load i32*) to i64. 6179 /// 6180 /// Also, try to promote the computations used to obtain a sign extended 6181 /// value used into memory accesses. 6182 /// E.g., 6183 /// \code 6184 /// a = add nsw i32 b, 3 6185 /// d = sext i32 a to i64 6186 /// e = getelementptr ..., i64 d 6187 /// \endcode 6188 /// => 6189 /// \code 6190 /// f = sext i32 b to i64 6191 /// a = add nsw i64 f, 3 6192 /// e = getelementptr ..., i64 a 6193 /// \endcode 6194 /// 6195 /// \p Inst[in/out] the extension may be modified during the process if some 6196 /// promotions apply. 6197 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 6198 bool AllowPromotionWithoutCommonHeader = false; 6199 /// See if it is an interesting sext operations for the address type 6200 /// promotion before trying to promote it, e.g., the ones with the right 6201 /// type and used in memory accesses. 6202 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 6203 *Inst, AllowPromotionWithoutCommonHeader); 6204 TypePromotionTransaction TPT(RemovedInsts); 6205 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6206 TPT.getRestorationPoint(); 6207 SmallVector<Instruction *, 1> Exts; 6208 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 6209 Exts.push_back(Inst); 6210 6211 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 6212 6213 // Look for a load being extended. 6214 LoadInst *LI = nullptr; 6215 Instruction *ExtFedByLoad; 6216 6217 // Try to promote a chain of computation if it allows to form an extended 6218 // load. 6219 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 6220 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 6221 TPT.commit(); 6222 // Move the extend into the same block as the load. 6223 ExtFedByLoad->moveAfter(LI); 6224 ++NumExtsMoved; 6225 Inst = ExtFedByLoad; 6226 return true; 6227 } 6228 6229 // Continue promoting SExts if known as considerable depending on targets. 6230 if (ATPConsiderable && 6231 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 6232 HasPromoted, TPT, SpeculativelyMovedExts)) 6233 return true; 6234 6235 TPT.rollback(LastKnownGood); 6236 return false; 6237 } 6238 6239 // Perform address type promotion if doing so is profitable. 6240 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 6241 // instructions that sign extended the same initial value. However, if 6242 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 6243 // extension is just profitable. 6244 bool CodeGenPrepare::performAddressTypePromotion( 6245 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 6246 bool HasPromoted, TypePromotionTransaction &TPT, 6247 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 6248 bool Promoted = false; 6249 SmallPtrSet<Instruction *, 1> UnhandledExts; 6250 bool AllSeenFirst = true; 6251 for (auto *I : SpeculativelyMovedExts) { 6252 Value *HeadOfChain = I->getOperand(0); 6253 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 6254 SeenChainsForSExt.find(HeadOfChain); 6255 // If there is an unhandled SExt which has the same header, try to promote 6256 // it as well. 6257 if (AlreadySeen != SeenChainsForSExt.end()) { 6258 if (AlreadySeen->second != nullptr) 6259 UnhandledExts.insert(AlreadySeen->second); 6260 AllSeenFirst = false; 6261 } 6262 } 6263 6264 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 6265 SpeculativelyMovedExts.size() == 1)) { 6266 TPT.commit(); 6267 if (HasPromoted) 6268 Promoted = true; 6269 for (auto *I : SpeculativelyMovedExts) { 6270 Value *HeadOfChain = I->getOperand(0); 6271 SeenChainsForSExt[HeadOfChain] = nullptr; 6272 ValToSExtendedUses[HeadOfChain].push_back(I); 6273 } 6274 // Update Inst as promotion happen. 6275 Inst = SpeculativelyMovedExts.pop_back_val(); 6276 } else { 6277 // This is the first chain visited from the header, keep the current chain 6278 // as unhandled. Defer to promote this until we encounter another SExt 6279 // chain derived from the same header. 6280 for (auto *I : SpeculativelyMovedExts) { 6281 Value *HeadOfChain = I->getOperand(0); 6282 SeenChainsForSExt[HeadOfChain] = Inst; 6283 } 6284 return false; 6285 } 6286 6287 if (!AllSeenFirst && !UnhandledExts.empty()) 6288 for (auto *VisitedSExt : UnhandledExts) { 6289 if (RemovedInsts.count(VisitedSExt)) 6290 continue; 6291 TypePromotionTransaction TPT(RemovedInsts); 6292 SmallVector<Instruction *, 1> Exts; 6293 SmallVector<Instruction *, 2> Chains; 6294 Exts.push_back(VisitedSExt); 6295 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 6296 TPT.commit(); 6297 if (HasPromoted) 6298 Promoted = true; 6299 for (auto *I : Chains) { 6300 Value *HeadOfChain = I->getOperand(0); 6301 // Mark this as handled. 6302 SeenChainsForSExt[HeadOfChain] = nullptr; 6303 ValToSExtendedUses[HeadOfChain].push_back(I); 6304 } 6305 } 6306 return Promoted; 6307 } 6308 6309 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 6310 BasicBlock *DefBB = I->getParent(); 6311 6312 // If the result of a {s|z}ext and its source are both live out, rewrite all 6313 // other uses of the source with result of extension. 6314 Value *Src = I->getOperand(0); 6315 if (Src->hasOneUse()) 6316 return false; 6317 6318 // Only do this xform if truncating is free. 6319 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 6320 return false; 6321 6322 // Only safe to perform the optimization if the source is also defined in 6323 // this block. 6324 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 6325 return false; 6326 6327 bool DefIsLiveOut = false; 6328 for (User *U : I->users()) { 6329 Instruction *UI = cast<Instruction>(U); 6330 6331 // Figure out which BB this ext is used in. 6332 BasicBlock *UserBB = UI->getParent(); 6333 if (UserBB == DefBB) continue; 6334 DefIsLiveOut = true; 6335 break; 6336 } 6337 if (!DefIsLiveOut) 6338 return false; 6339 6340 // Make sure none of the uses are PHI nodes. 6341 for (User *U : Src->users()) { 6342 Instruction *UI = cast<Instruction>(U); 6343 BasicBlock *UserBB = UI->getParent(); 6344 if (UserBB == DefBB) continue; 6345 // Be conservative. We don't want this xform to end up introducing 6346 // reloads just before load / store instructions. 6347 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 6348 return false; 6349 } 6350 6351 // InsertedTruncs - Only insert one trunc in each block once. 6352 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 6353 6354 bool MadeChange = false; 6355 for (Use &U : Src->uses()) { 6356 Instruction *User = cast<Instruction>(U.getUser()); 6357 6358 // Figure out which BB this ext is used in. 6359 BasicBlock *UserBB = User->getParent(); 6360 if (UserBB == DefBB) continue; 6361 6362 // Both src and def are live in this block. Rewrite the use. 6363 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 6364 6365 if (!InsertedTrunc) { 6366 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6367 assert(InsertPt != UserBB->end()); 6368 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 6369 InsertedInsts.insert(InsertedTrunc); 6370 } 6371 6372 // Replace a use of the {s|z}ext source with a use of the result. 6373 U = InsertedTrunc; 6374 ++NumExtUses; 6375 MadeChange = true; 6376 } 6377 6378 return MadeChange; 6379 } 6380 6381 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 6382 // just after the load if the target can fold this into one extload instruction, 6383 // with the hope of eliminating some of the other later "and" instructions using 6384 // the loaded value. "and"s that are made trivially redundant by the insertion 6385 // of the new "and" are removed by this function, while others (e.g. those whose 6386 // path from the load goes through a phi) are left for isel to potentially 6387 // remove. 6388 // 6389 // For example: 6390 // 6391 // b0: 6392 // x = load i32 6393 // ... 6394 // b1: 6395 // y = and x, 0xff 6396 // z = use y 6397 // 6398 // becomes: 6399 // 6400 // b0: 6401 // x = load i32 6402 // x' = and x, 0xff 6403 // ... 6404 // b1: 6405 // z = use x' 6406 // 6407 // whereas: 6408 // 6409 // b0: 6410 // x1 = load i32 6411 // ... 6412 // b1: 6413 // x2 = load i32 6414 // ... 6415 // b2: 6416 // x = phi x1, x2 6417 // y = and x, 0xff 6418 // 6419 // becomes (after a call to optimizeLoadExt for each load): 6420 // 6421 // b0: 6422 // x1 = load i32 6423 // x1' = and x1, 0xff 6424 // ... 6425 // b1: 6426 // x2 = load i32 6427 // x2' = and x2, 0xff 6428 // ... 6429 // b2: 6430 // x = phi x1', x2' 6431 // y = and x, 0xff 6432 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 6433 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 6434 return false; 6435 6436 // Skip loads we've already transformed. 6437 if (Load->hasOneUse() && 6438 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 6439 return false; 6440 6441 // Look at all uses of Load, looking through phis, to determine how many bits 6442 // of the loaded value are needed. 6443 SmallVector<Instruction *, 8> WorkList; 6444 SmallPtrSet<Instruction *, 16> Visited; 6445 SmallVector<Instruction *, 8> AndsToMaybeRemove; 6446 for (auto *U : Load->users()) 6447 WorkList.push_back(cast<Instruction>(U)); 6448 6449 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 6450 unsigned BitWidth = LoadResultVT.getSizeInBits(); 6451 // If the BitWidth is 0, do not try to optimize the type 6452 if (BitWidth == 0) 6453 return false; 6454 6455 APInt DemandBits(BitWidth, 0); 6456 APInt WidestAndBits(BitWidth, 0); 6457 6458 while (!WorkList.empty()) { 6459 Instruction *I = WorkList.pop_back_val(); 6460 6461 // Break use-def graph loops. 6462 if (!Visited.insert(I).second) 6463 continue; 6464 6465 // For a PHI node, push all of its users. 6466 if (auto *Phi = dyn_cast<PHINode>(I)) { 6467 for (auto *U : Phi->users()) 6468 WorkList.push_back(cast<Instruction>(U)); 6469 continue; 6470 } 6471 6472 switch (I->getOpcode()) { 6473 case Instruction::And: { 6474 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 6475 if (!AndC) 6476 return false; 6477 APInt AndBits = AndC->getValue(); 6478 DemandBits |= AndBits; 6479 // Keep track of the widest and mask we see. 6480 if (AndBits.ugt(WidestAndBits)) 6481 WidestAndBits = AndBits; 6482 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 6483 AndsToMaybeRemove.push_back(I); 6484 break; 6485 } 6486 6487 case Instruction::Shl: { 6488 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 6489 if (!ShlC) 6490 return false; 6491 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 6492 DemandBits.setLowBits(BitWidth - ShiftAmt); 6493 break; 6494 } 6495 6496 case Instruction::Trunc: { 6497 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 6498 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 6499 DemandBits.setLowBits(TruncBitWidth); 6500 break; 6501 } 6502 6503 default: 6504 return false; 6505 } 6506 } 6507 6508 uint32_t ActiveBits = DemandBits.getActiveBits(); 6509 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 6510 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 6511 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 6512 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 6513 // followed by an AND. 6514 // TODO: Look into removing this restriction by fixing backends to either 6515 // return false for isLoadExtLegal for i1 or have them select this pattern to 6516 // a single instruction. 6517 // 6518 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 6519 // mask, since these are the only ands that will be removed by isel. 6520 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 6521 WidestAndBits != DemandBits) 6522 return false; 6523 6524 LLVMContext &Ctx = Load->getType()->getContext(); 6525 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 6526 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 6527 6528 // Reject cases that won't be matched as extloads. 6529 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 6530 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 6531 return false; 6532 6533 IRBuilder<> Builder(Load->getNextNode()); 6534 auto *NewAnd = cast<Instruction>( 6535 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 6536 // Mark this instruction as "inserted by CGP", so that other 6537 // optimizations don't touch it. 6538 InsertedInsts.insert(NewAnd); 6539 6540 // Replace all uses of load with new and (except for the use of load in the 6541 // new and itself). 6542 Load->replaceAllUsesWith(NewAnd); 6543 NewAnd->setOperand(0, Load); 6544 6545 // Remove any and instructions that are now redundant. 6546 for (auto *And : AndsToMaybeRemove) 6547 // Check that the and mask is the same as the one we decided to put on the 6548 // new and. 6549 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 6550 And->replaceAllUsesWith(NewAnd); 6551 if (&*CurInstIterator == And) 6552 CurInstIterator = std::next(And->getIterator()); 6553 And->eraseFromParent(); 6554 ++NumAndUses; 6555 } 6556 6557 ++NumAndsAdded; 6558 return true; 6559 } 6560 6561 /// Check if V (an operand of a select instruction) is an expensive instruction 6562 /// that is only used once. 6563 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 6564 auto *I = dyn_cast<Instruction>(V); 6565 // If it's safe to speculatively execute, then it should not have side 6566 // effects; therefore, it's safe to sink and possibly *not* execute. 6567 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 6568 TTI->getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency) >= 6569 TargetTransformInfo::TCC_Expensive; 6570 } 6571 6572 /// Returns true if a SelectInst should be turned into an explicit branch. 6573 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 6574 const TargetLowering *TLI, 6575 SelectInst *SI) { 6576 // If even a predictable select is cheap, then a branch can't be cheaper. 6577 if (!TLI->isPredictableSelectExpensive()) 6578 return false; 6579 6580 // FIXME: This should use the same heuristics as IfConversion to determine 6581 // whether a select is better represented as a branch. 6582 6583 // If metadata tells us that the select condition is obviously predictable, 6584 // then we want to replace the select with a branch. 6585 uint64_t TrueWeight, FalseWeight; 6586 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 6587 uint64_t Max = std::max(TrueWeight, FalseWeight); 6588 uint64_t Sum = TrueWeight + FalseWeight; 6589 if (Sum != 0) { 6590 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 6591 if (Probability > TTI->getPredictableBranchThreshold()) 6592 return true; 6593 } 6594 } 6595 6596 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 6597 6598 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 6599 // comparison condition. If the compare has more than one use, there's 6600 // probably another cmov or setcc around, so it's not worth emitting a branch. 6601 if (!Cmp || !Cmp->hasOneUse()) 6602 return false; 6603 6604 // If either operand of the select is expensive and only needed on one side 6605 // of the select, we should form a branch. 6606 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 6607 sinkSelectOperand(TTI, SI->getFalseValue())) 6608 return true; 6609 6610 return false; 6611 } 6612 6613 /// If \p isTrue is true, return the true value of \p SI, otherwise return 6614 /// false value of \p SI. If the true/false value of \p SI is defined by any 6615 /// select instructions in \p Selects, look through the defining select 6616 /// instruction until the true/false value is not defined in \p Selects. 6617 static Value *getTrueOrFalseValue( 6618 SelectInst *SI, bool isTrue, 6619 const SmallPtrSet<const Instruction *, 2> &Selects) { 6620 Value *V = nullptr; 6621 6622 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 6623 DefSI = dyn_cast<SelectInst>(V)) { 6624 assert(DefSI->getCondition() == SI->getCondition() && 6625 "The condition of DefSI does not match with SI"); 6626 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 6627 } 6628 6629 assert(V && "Failed to get select true/false value"); 6630 return V; 6631 } 6632 6633 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 6634 assert(Shift->isShift() && "Expected a shift"); 6635 6636 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 6637 // general vector shifts, and (3) the shift amount is a select-of-splatted 6638 // values, hoist the shifts before the select: 6639 // shift Op0, (select Cond, TVal, FVal) --> 6640 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6641 // 6642 // This is inverting a generic IR transform when we know that the cost of a 6643 // general vector shift is more than the cost of 2 shift-by-scalars. 6644 // We can't do this effectively in SDAG because we may not be able to 6645 // determine if the select operands are splats from within a basic block. 6646 Type *Ty = Shift->getType(); 6647 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6648 return false; 6649 Value *Cond, *TVal, *FVal; 6650 if (!match(Shift->getOperand(1), 6651 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6652 return false; 6653 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6654 return false; 6655 6656 IRBuilder<> Builder(Shift); 6657 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6658 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6659 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6660 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6661 Shift->replaceAllUsesWith(NewSel); 6662 Shift->eraseFromParent(); 6663 return true; 6664 } 6665 6666 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) { 6667 Intrinsic::ID Opcode = Fsh->getIntrinsicID(); 6668 assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && 6669 "Expected a funnel shift"); 6670 6671 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper 6672 // than general vector shifts, and (3) the shift amount is select-of-splatted 6673 // values, hoist the funnel shifts before the select: 6674 // fsh Op0, Op1, (select Cond, TVal, FVal) --> 6675 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal) 6676 // 6677 // This is inverting a generic IR transform when we know that the cost of a 6678 // general vector shift is more than the cost of 2 shift-by-scalars. 6679 // We can't do this effectively in SDAG because we may not be able to 6680 // determine if the select operands are splats from within a basic block. 6681 Type *Ty = Fsh->getType(); 6682 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6683 return false; 6684 Value *Cond, *TVal, *FVal; 6685 if (!match(Fsh->getOperand(2), 6686 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6687 return false; 6688 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6689 return false; 6690 6691 IRBuilder<> Builder(Fsh); 6692 Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1); 6693 Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, TVal }); 6694 Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, FVal }); 6695 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6696 Fsh->replaceAllUsesWith(NewSel); 6697 Fsh->eraseFromParent(); 6698 return true; 6699 } 6700 6701 /// If we have a SelectInst that will likely profit from branch prediction, 6702 /// turn it into a branch. 6703 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6704 if (DisableSelectToBranch) 6705 return false; 6706 6707 // Find all consecutive select instructions that share the same condition. 6708 SmallVector<SelectInst *, 2> ASI; 6709 ASI.push_back(SI); 6710 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 6711 It != SI->getParent()->end(); ++It) { 6712 SelectInst *I = dyn_cast<SelectInst>(&*It); 6713 if (I && SI->getCondition() == I->getCondition()) { 6714 ASI.push_back(I); 6715 } else { 6716 break; 6717 } 6718 } 6719 6720 SelectInst *LastSI = ASI.back(); 6721 // Increment the current iterator to skip all the rest of select instructions 6722 // because they will be either "not lowered" or "all lowered" to branch. 6723 CurInstIterator = std::next(LastSI->getIterator()); 6724 6725 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 6726 6727 // Can we convert the 'select' to CF ? 6728 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 6729 return false; 6730 6731 TargetLowering::SelectSupportKind SelectKind; 6732 if (VectorCond) 6733 SelectKind = TargetLowering::VectorMaskSelect; 6734 else if (SI->getType()->isVectorTy()) 6735 SelectKind = TargetLowering::ScalarCondVectorVal; 6736 else 6737 SelectKind = TargetLowering::ScalarValSelect; 6738 6739 if (TLI->isSelectSupported(SelectKind) && 6740 (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize || 6741 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()))) 6742 return false; 6743 6744 // The DominatorTree needs to be rebuilt by any consumers after this 6745 // transformation. We simply reset here rather than setting the ModifiedDT 6746 // flag to avoid restarting the function walk in runOnFunction for each 6747 // select optimized. 6748 DT.reset(); 6749 6750 // Transform a sequence like this: 6751 // start: 6752 // %cmp = cmp uge i32 %a, %b 6753 // %sel = select i1 %cmp, i32 %c, i32 %d 6754 // 6755 // Into: 6756 // start: 6757 // %cmp = cmp uge i32 %a, %b 6758 // %cmp.frozen = freeze %cmp 6759 // br i1 %cmp.frozen, label %select.true, label %select.false 6760 // select.true: 6761 // br label %select.end 6762 // select.false: 6763 // br label %select.end 6764 // select.end: 6765 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6766 // 6767 // %cmp should be frozen, otherwise it may introduce undefined behavior. 6768 // In addition, we may sink instructions that produce %c or %d from 6769 // the entry block into the destination(s) of the new branch. 6770 // If the true or false blocks do not contain a sunken instruction, that 6771 // block and its branch may be optimized away. In that case, one side of the 6772 // first branch will point directly to select.end, and the corresponding PHI 6773 // predecessor block will be the start block. 6774 6775 // First, we split the block containing the select into 2 blocks. 6776 BasicBlock *StartBlock = SI->getParent(); 6777 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6778 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6779 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); 6780 6781 // Delete the unconditional branch that was just created by the split. 6782 StartBlock->getTerminator()->eraseFromParent(); 6783 6784 // These are the new basic blocks for the conditional branch. 6785 // At least one will become an actual new basic block. 6786 BasicBlock *TrueBlock = nullptr; 6787 BasicBlock *FalseBlock = nullptr; 6788 BranchInst *TrueBranch = nullptr; 6789 BranchInst *FalseBranch = nullptr; 6790 6791 // Sink expensive instructions into the conditional blocks to avoid executing 6792 // them speculatively. 6793 for (SelectInst *SI : ASI) { 6794 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6795 if (TrueBlock == nullptr) { 6796 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6797 EndBlock->getParent(), EndBlock); 6798 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6799 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6800 } 6801 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6802 TrueInst->moveBefore(TrueBranch); 6803 } 6804 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6805 if (FalseBlock == nullptr) { 6806 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6807 EndBlock->getParent(), EndBlock); 6808 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6809 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6810 } 6811 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6812 FalseInst->moveBefore(FalseBranch); 6813 } 6814 } 6815 6816 // If there was nothing to sink, then arbitrarily choose the 'false' side 6817 // for a new input value to the PHI. 6818 if (TrueBlock == FalseBlock) { 6819 assert(TrueBlock == nullptr && 6820 "Unexpected basic block transform while optimizing select"); 6821 6822 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6823 EndBlock->getParent(), EndBlock); 6824 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6825 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6826 } 6827 6828 // Insert the real conditional branch based on the original condition. 6829 // If we did not create a new block for one of the 'true' or 'false' paths 6830 // of the condition, it means that side of the branch goes to the end block 6831 // directly and the path originates from the start block from the point of 6832 // view of the new PHI. 6833 BasicBlock *TT, *FT; 6834 if (TrueBlock == nullptr) { 6835 TT = EndBlock; 6836 FT = FalseBlock; 6837 TrueBlock = StartBlock; 6838 } else if (FalseBlock == nullptr) { 6839 TT = TrueBlock; 6840 FT = EndBlock; 6841 FalseBlock = StartBlock; 6842 } else { 6843 TT = TrueBlock; 6844 FT = FalseBlock; 6845 } 6846 IRBuilder<> IB(SI); 6847 auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 6848 IB.CreateCondBr(CondFr, TT, FT, SI); 6849 6850 SmallPtrSet<const Instruction *, 2> INS; 6851 INS.insert(ASI.begin(), ASI.end()); 6852 // Use reverse iterator because later select may use the value of the 6853 // earlier select, and we need to propagate value through earlier select 6854 // to get the PHI operand. 6855 for (SelectInst *SI : llvm::reverse(ASI)) { 6856 // The select itself is replaced with a PHI Node. 6857 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6858 PN->takeName(SI); 6859 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6860 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6861 PN->setDebugLoc(SI->getDebugLoc()); 6862 6863 SI->replaceAllUsesWith(PN); 6864 SI->eraseFromParent(); 6865 INS.erase(SI); 6866 ++NumSelectsExpanded; 6867 } 6868 6869 // Instruct OptimizeBlock to skip to the next block. 6870 CurInstIterator = StartBlock->end(); 6871 return true; 6872 } 6873 6874 /// Some targets only accept certain types for splat inputs. For example a VDUP 6875 /// in MVE takes a GPR (integer) register, and the instruction that incorporate 6876 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register. 6877 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6878 // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only 6879 if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 6880 m_Undef(), m_ZeroMask()))) 6881 return false; 6882 Type *NewType = TLI->shouldConvertSplatType(SVI); 6883 if (!NewType) 6884 return false; 6885 6886 auto *SVIVecType = cast<FixedVectorType>(SVI->getType()); 6887 assert(!NewType->isVectorTy() && "Expected a scalar type!"); 6888 assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && 6889 "Expected a type of the same size!"); 6890 auto *NewVecType = 6891 FixedVectorType::get(NewType, SVIVecType->getNumElements()); 6892 6893 // Create a bitcast (shuffle (insert (bitcast(..)))) 6894 IRBuilder<> Builder(SVI->getContext()); 6895 Builder.SetInsertPoint(SVI); 6896 Value *BC1 = Builder.CreateBitCast( 6897 cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType); 6898 Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1); 6899 Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType); 6900 6901 SVI->replaceAllUsesWith(BC2); 6902 RecursivelyDeleteTriviallyDeadInstructions( 6903 SVI, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); 6904 6905 // Also hoist the bitcast up to its operand if it they are not in the same 6906 // block. 6907 if (auto *BCI = dyn_cast<Instruction>(BC1)) 6908 if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0))) 6909 if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) && 6910 !Op->isTerminator() && !Op->isEHPad()) 6911 BCI->moveAfter(Op); 6912 6913 return true; 6914 } 6915 6916 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6917 // If the operands of I can be folded into a target instruction together with 6918 // I, duplicate and sink them. 6919 SmallVector<Use *, 4> OpsToSink; 6920 if (!TLI->shouldSinkOperands(I, OpsToSink)) 6921 return false; 6922 6923 // OpsToSink can contain multiple uses in a use chain (e.g. 6924 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6925 // uses must come first, so we process the ops in reverse order so as to not 6926 // create invalid IR. 6927 BasicBlock *TargetBB = I->getParent(); 6928 bool Changed = false; 6929 SmallVector<Use *, 4> ToReplace; 6930 Instruction *InsertPoint = I; 6931 DenseMap<const Instruction *, unsigned long> InstOrdering; 6932 unsigned long InstNumber = 0; 6933 for (const auto &I : *TargetBB) 6934 InstOrdering[&I] = InstNumber++; 6935 6936 for (Use *U : reverse(OpsToSink)) { 6937 auto *UI = cast<Instruction>(U->get()); 6938 if (isa<PHINode>(UI)) 6939 continue; 6940 if (UI->getParent() == TargetBB) { 6941 if (InstOrdering[UI] < InstOrdering[InsertPoint]) 6942 InsertPoint = UI; 6943 continue; 6944 } 6945 ToReplace.push_back(U); 6946 } 6947 6948 SetVector<Instruction *> MaybeDead; 6949 DenseMap<Instruction *, Instruction *> NewInstructions; 6950 for (Use *U : ToReplace) { 6951 auto *UI = cast<Instruction>(U->get()); 6952 Instruction *NI = UI->clone(); 6953 NewInstructions[UI] = NI; 6954 MaybeDead.insert(UI); 6955 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6956 NI->insertBefore(InsertPoint); 6957 InsertPoint = NI; 6958 InsertedInsts.insert(NI); 6959 6960 // Update the use for the new instruction, making sure that we update the 6961 // sunk instruction uses, if it is part of a chain that has already been 6962 // sunk. 6963 Instruction *OldI = cast<Instruction>(U->getUser()); 6964 if (NewInstructions.count(OldI)) 6965 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 6966 else 6967 U->set(NI); 6968 Changed = true; 6969 } 6970 6971 // Remove instructions that are dead after sinking. 6972 for (auto *I : MaybeDead) { 6973 if (!I->hasNUsesOrMore(1)) { 6974 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 6975 I->eraseFromParent(); 6976 } 6977 } 6978 6979 return Changed; 6980 } 6981 6982 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6983 Value *Cond = SI->getCondition(); 6984 Type *OldType = Cond->getType(); 6985 LLVMContext &Context = Cond->getContext(); 6986 EVT OldVT = TLI->getValueType(*DL, OldType); 6987 MVT RegType = TLI->getRegisterType(Context, OldVT); 6988 unsigned RegWidth = RegType.getSizeInBits(); 6989 6990 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6991 return false; 6992 6993 // If the register width is greater than the type width, expand the condition 6994 // of the switch instruction and each case constant to the width of the 6995 // register. By widening the type of the switch condition, subsequent 6996 // comparisons (for case comparisons) will not need to be extended to the 6997 // preferred register width, so we will potentially eliminate N-1 extends, 6998 // where N is the number of cases in the switch. 6999 auto *NewType = Type::getIntNTy(Context, RegWidth); 7000 7001 // Extend the switch condition and case constants using the target preferred 7002 // extend unless the switch condition is a function argument with an extend 7003 // attribute. In that case, we can avoid an unnecessary mask/extension by 7004 // matching the argument extension instead. 7005 Instruction::CastOps ExtType = Instruction::ZExt; 7006 // Some targets prefer SExt over ZExt. 7007 if (TLI->isSExtCheaperThanZExt(OldVT, RegType)) 7008 ExtType = Instruction::SExt; 7009 7010 if (auto *Arg = dyn_cast<Argument>(Cond)) { 7011 if (Arg->hasSExtAttr()) 7012 ExtType = Instruction::SExt; 7013 if (Arg->hasZExtAttr()) 7014 ExtType = Instruction::ZExt; 7015 } 7016 7017 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 7018 ExtInst->insertBefore(SI); 7019 ExtInst->setDebugLoc(SI->getDebugLoc()); 7020 SI->setCondition(ExtInst); 7021 for (auto Case : SI->cases()) { 7022 APInt NarrowConst = Case.getCaseValue()->getValue(); 7023 APInt WideConst = (ExtType == Instruction::ZExt) ? 7024 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 7025 Case.setValue(ConstantInt::get(Context, WideConst)); 7026 } 7027 7028 return true; 7029 } 7030 7031 7032 namespace { 7033 7034 /// Helper class to promote a scalar operation to a vector one. 7035 /// This class is used to move downward extractelement transition. 7036 /// E.g., 7037 /// a = vector_op <2 x i32> 7038 /// b = extractelement <2 x i32> a, i32 0 7039 /// c = scalar_op b 7040 /// store c 7041 /// 7042 /// => 7043 /// a = vector_op <2 x i32> 7044 /// c = vector_op a (equivalent to scalar_op on the related lane) 7045 /// * d = extractelement <2 x i32> c, i32 0 7046 /// * store d 7047 /// Assuming both extractelement and store can be combine, we get rid of the 7048 /// transition. 7049 class VectorPromoteHelper { 7050 /// DataLayout associated with the current module. 7051 const DataLayout &DL; 7052 7053 /// Used to perform some checks on the legality of vector operations. 7054 const TargetLowering &TLI; 7055 7056 /// Used to estimated the cost of the promoted chain. 7057 const TargetTransformInfo &TTI; 7058 7059 /// The transition being moved downwards. 7060 Instruction *Transition; 7061 7062 /// The sequence of instructions to be promoted. 7063 SmallVector<Instruction *, 4> InstsToBePromoted; 7064 7065 /// Cost of combining a store and an extract. 7066 unsigned StoreExtractCombineCost; 7067 7068 /// Instruction that will be combined with the transition. 7069 Instruction *CombineInst = nullptr; 7070 7071 /// The instruction that represents the current end of the transition. 7072 /// Since we are faking the promotion until we reach the end of the chain 7073 /// of computation, we need a way to get the current end of the transition. 7074 Instruction *getEndOfTransition() const { 7075 if (InstsToBePromoted.empty()) 7076 return Transition; 7077 return InstsToBePromoted.back(); 7078 } 7079 7080 /// Return the index of the original value in the transition. 7081 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 7082 /// c, is at index 0. 7083 unsigned getTransitionOriginalValueIdx() const { 7084 assert(isa<ExtractElementInst>(Transition) && 7085 "Other kind of transitions are not supported yet"); 7086 return 0; 7087 } 7088 7089 /// Return the index of the index in the transition. 7090 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 7091 /// is at index 1. 7092 unsigned getTransitionIdx() const { 7093 assert(isa<ExtractElementInst>(Transition) && 7094 "Other kind of transitions are not supported yet"); 7095 return 1; 7096 } 7097 7098 /// Get the type of the transition. 7099 /// This is the type of the original value. 7100 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 7101 /// transition is <2 x i32>. 7102 Type *getTransitionType() const { 7103 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 7104 } 7105 7106 /// Promote \p ToBePromoted by moving \p Def downward through. 7107 /// I.e., we have the following sequence: 7108 /// Def = Transition <ty1> a to <ty2> 7109 /// b = ToBePromoted <ty2> Def, ... 7110 /// => 7111 /// b = ToBePromoted <ty1> a, ... 7112 /// Def = Transition <ty1> ToBePromoted to <ty2> 7113 void promoteImpl(Instruction *ToBePromoted); 7114 7115 /// Check whether or not it is profitable to promote all the 7116 /// instructions enqueued to be promoted. 7117 bool isProfitableToPromote() { 7118 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 7119 unsigned Index = isa<ConstantInt>(ValIdx) 7120 ? cast<ConstantInt>(ValIdx)->getZExtValue() 7121 : -1; 7122 Type *PromotedType = getTransitionType(); 7123 7124 StoreInst *ST = cast<StoreInst>(CombineInst); 7125 unsigned AS = ST->getPointerAddressSpace(); 7126 // Check if this store is supported. 7127 if (!TLI.allowsMisalignedMemoryAccesses( 7128 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 7129 ST->getAlign())) { 7130 // If this is not supported, there is no way we can combine 7131 // the extract with the store. 7132 return false; 7133 } 7134 7135 // The scalar chain of computation has to pay for the transition 7136 // scalar to vector. 7137 // The vector chain has to account for the combining cost. 7138 InstructionCost ScalarCost = 7139 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 7140 InstructionCost VectorCost = StoreExtractCombineCost; 7141 enum TargetTransformInfo::TargetCostKind CostKind = 7142 TargetTransformInfo::TCK_RecipThroughput; 7143 for (const auto &Inst : InstsToBePromoted) { 7144 // Compute the cost. 7145 // By construction, all instructions being promoted are arithmetic ones. 7146 // Moreover, one argument is a constant that can be viewed as a splat 7147 // constant. 7148 Value *Arg0 = Inst->getOperand(0); 7149 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 7150 isa<ConstantFP>(Arg0); 7151 TargetTransformInfo::OperandValueKind Arg0OVK = 7152 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 7153 : TargetTransformInfo::OK_AnyValue; 7154 TargetTransformInfo::OperandValueKind Arg1OVK = 7155 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 7156 : TargetTransformInfo::OK_AnyValue; 7157 ScalarCost += TTI.getArithmeticInstrCost( 7158 Inst->getOpcode(), Inst->getType(), CostKind, Arg0OVK, Arg1OVK); 7159 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 7160 CostKind, 7161 Arg0OVK, Arg1OVK); 7162 } 7163 LLVM_DEBUG( 7164 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 7165 << ScalarCost << "\nVector: " << VectorCost << '\n'); 7166 return ScalarCost > VectorCost; 7167 } 7168 7169 /// Generate a constant vector with \p Val with the same 7170 /// number of elements as the transition. 7171 /// \p UseSplat defines whether or not \p Val should be replicated 7172 /// across the whole vector. 7173 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 7174 /// otherwise we generate a vector with as many undef as possible: 7175 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 7176 /// used at the index of the extract. 7177 Value *getConstantVector(Constant *Val, bool UseSplat) const { 7178 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 7179 if (!UseSplat) { 7180 // If we cannot determine where the constant must be, we have to 7181 // use a splat constant. 7182 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 7183 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 7184 ExtractIdx = CstVal->getSExtValue(); 7185 else 7186 UseSplat = true; 7187 } 7188 7189 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); 7190 if (UseSplat) 7191 return ConstantVector::getSplat(EC, Val); 7192 7193 if (!EC.isScalable()) { 7194 SmallVector<Constant *, 4> ConstVec; 7195 UndefValue *UndefVal = UndefValue::get(Val->getType()); 7196 for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) { 7197 if (Idx == ExtractIdx) 7198 ConstVec.push_back(Val); 7199 else 7200 ConstVec.push_back(UndefVal); 7201 } 7202 return ConstantVector::get(ConstVec); 7203 } else 7204 llvm_unreachable( 7205 "Generate scalable vector for non-splat is unimplemented"); 7206 } 7207 7208 /// Check if promoting to a vector type an operand at \p OperandIdx 7209 /// in \p Use can trigger undefined behavior. 7210 static bool canCauseUndefinedBehavior(const Instruction *Use, 7211 unsigned OperandIdx) { 7212 // This is not safe to introduce undef when the operand is on 7213 // the right hand side of a division-like instruction. 7214 if (OperandIdx != 1) 7215 return false; 7216 switch (Use->getOpcode()) { 7217 default: 7218 return false; 7219 case Instruction::SDiv: 7220 case Instruction::UDiv: 7221 case Instruction::SRem: 7222 case Instruction::URem: 7223 return true; 7224 case Instruction::FDiv: 7225 case Instruction::FRem: 7226 return !Use->hasNoNaNs(); 7227 } 7228 llvm_unreachable(nullptr); 7229 } 7230 7231 public: 7232 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 7233 const TargetTransformInfo &TTI, Instruction *Transition, 7234 unsigned CombineCost) 7235 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 7236 StoreExtractCombineCost(CombineCost) { 7237 assert(Transition && "Do not know how to promote null"); 7238 } 7239 7240 /// Check if we can promote \p ToBePromoted to \p Type. 7241 bool canPromote(const Instruction *ToBePromoted) const { 7242 // We could support CastInst too. 7243 return isa<BinaryOperator>(ToBePromoted); 7244 } 7245 7246 /// Check if it is profitable to promote \p ToBePromoted 7247 /// by moving downward the transition through. 7248 bool shouldPromote(const Instruction *ToBePromoted) const { 7249 // Promote only if all the operands can be statically expanded. 7250 // Indeed, we do not want to introduce any new kind of transitions. 7251 for (const Use &U : ToBePromoted->operands()) { 7252 const Value *Val = U.get(); 7253 if (Val == getEndOfTransition()) { 7254 // If the use is a division and the transition is on the rhs, 7255 // we cannot promote the operation, otherwise we may create a 7256 // division by zero. 7257 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 7258 return false; 7259 continue; 7260 } 7261 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 7262 !isa<ConstantFP>(Val)) 7263 return false; 7264 } 7265 // Check that the resulting operation is legal. 7266 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 7267 if (!ISDOpcode) 7268 return false; 7269 return StressStoreExtract || 7270 TLI.isOperationLegalOrCustom( 7271 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 7272 } 7273 7274 /// Check whether or not \p Use can be combined 7275 /// with the transition. 7276 /// I.e., is it possible to do Use(Transition) => AnotherUse? 7277 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 7278 7279 /// Record \p ToBePromoted as part of the chain to be promoted. 7280 void enqueueForPromotion(Instruction *ToBePromoted) { 7281 InstsToBePromoted.push_back(ToBePromoted); 7282 } 7283 7284 /// Set the instruction that will be combined with the transition. 7285 void recordCombineInstruction(Instruction *ToBeCombined) { 7286 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 7287 CombineInst = ToBeCombined; 7288 } 7289 7290 /// Promote all the instructions enqueued for promotion if it is 7291 /// is profitable. 7292 /// \return True if the promotion happened, false otherwise. 7293 bool promote() { 7294 // Check if there is something to promote. 7295 // Right now, if we do not have anything to combine with, 7296 // we assume the promotion is not profitable. 7297 if (InstsToBePromoted.empty() || !CombineInst) 7298 return false; 7299 7300 // Check cost. 7301 if (!StressStoreExtract && !isProfitableToPromote()) 7302 return false; 7303 7304 // Promote. 7305 for (auto &ToBePromoted : InstsToBePromoted) 7306 promoteImpl(ToBePromoted); 7307 InstsToBePromoted.clear(); 7308 return true; 7309 } 7310 }; 7311 7312 } // end anonymous namespace 7313 7314 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 7315 // At this point, we know that all the operands of ToBePromoted but Def 7316 // can be statically promoted. 7317 // For Def, we need to use its parameter in ToBePromoted: 7318 // b = ToBePromoted ty1 a 7319 // Def = Transition ty1 b to ty2 7320 // Move the transition down. 7321 // 1. Replace all uses of the promoted operation by the transition. 7322 // = ... b => = ... Def. 7323 assert(ToBePromoted->getType() == Transition->getType() && 7324 "The type of the result of the transition does not match " 7325 "the final type"); 7326 ToBePromoted->replaceAllUsesWith(Transition); 7327 // 2. Update the type of the uses. 7328 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 7329 Type *TransitionTy = getTransitionType(); 7330 ToBePromoted->mutateType(TransitionTy); 7331 // 3. Update all the operands of the promoted operation with promoted 7332 // operands. 7333 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 7334 for (Use &U : ToBePromoted->operands()) { 7335 Value *Val = U.get(); 7336 Value *NewVal = nullptr; 7337 if (Val == Transition) 7338 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 7339 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 7340 isa<ConstantFP>(Val)) { 7341 // Use a splat constant if it is not safe to use undef. 7342 NewVal = getConstantVector( 7343 cast<Constant>(Val), 7344 isa<UndefValue>(Val) || 7345 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 7346 } else 7347 llvm_unreachable("Did you modified shouldPromote and forgot to update " 7348 "this?"); 7349 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 7350 } 7351 Transition->moveAfter(ToBePromoted); 7352 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 7353 } 7354 7355 /// Some targets can do store(extractelement) with one instruction. 7356 /// Try to push the extractelement towards the stores when the target 7357 /// has this feature and this is profitable. 7358 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 7359 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 7360 if (DisableStoreExtract || 7361 (!StressStoreExtract && 7362 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 7363 Inst->getOperand(1), CombineCost))) 7364 return false; 7365 7366 // At this point we know that Inst is a vector to scalar transition. 7367 // Try to move it down the def-use chain, until: 7368 // - We can combine the transition with its single use 7369 // => we got rid of the transition. 7370 // - We escape the current basic block 7371 // => we would need to check that we are moving it at a cheaper place and 7372 // we do not do that for now. 7373 BasicBlock *Parent = Inst->getParent(); 7374 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 7375 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 7376 // If the transition has more than one use, assume this is not going to be 7377 // beneficial. 7378 while (Inst->hasOneUse()) { 7379 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 7380 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 7381 7382 if (ToBePromoted->getParent() != Parent) { 7383 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 7384 << ToBePromoted->getParent()->getName() 7385 << ") than the transition (" << Parent->getName() 7386 << ").\n"); 7387 return false; 7388 } 7389 7390 if (VPH.canCombine(ToBePromoted)) { 7391 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 7392 << "will be combined with: " << *ToBePromoted << '\n'); 7393 VPH.recordCombineInstruction(ToBePromoted); 7394 bool Changed = VPH.promote(); 7395 NumStoreExtractExposed += Changed; 7396 return Changed; 7397 } 7398 7399 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 7400 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 7401 return false; 7402 7403 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 7404 7405 VPH.enqueueForPromotion(ToBePromoted); 7406 Inst = ToBePromoted; 7407 } 7408 return false; 7409 } 7410 7411 /// For the instruction sequence of store below, F and I values 7412 /// are bundled together as an i64 value before being stored into memory. 7413 /// Sometimes it is more efficient to generate separate stores for F and I, 7414 /// which can remove the bitwise instructions or sink them to colder places. 7415 /// 7416 /// (store (or (zext (bitcast F to i32) to i64), 7417 /// (shl (zext I to i64), 32)), addr) --> 7418 /// (store F, addr) and (store I, addr+4) 7419 /// 7420 /// Similarly, splitting for other merged store can also be beneficial, like: 7421 /// For pair of {i32, i32}, i64 store --> two i32 stores. 7422 /// For pair of {i32, i16}, i64 store --> two i32 stores. 7423 /// For pair of {i16, i16}, i32 store --> two i16 stores. 7424 /// For pair of {i16, i8}, i32 store --> two i16 stores. 7425 /// For pair of {i8, i8}, i16 store --> two i8 stores. 7426 /// 7427 /// We allow each target to determine specifically which kind of splitting is 7428 /// supported. 7429 /// 7430 /// The store patterns are commonly seen from the simple code snippet below 7431 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 7432 /// void goo(const std::pair<int, float> &); 7433 /// hoo() { 7434 /// ... 7435 /// goo(std::make_pair(tmp, ftmp)); 7436 /// ... 7437 /// } 7438 /// 7439 /// Although we already have similar splitting in DAG Combine, we duplicate 7440 /// it in CodeGenPrepare to catch the case in which pattern is across 7441 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 7442 /// during code expansion. 7443 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 7444 const TargetLowering &TLI) { 7445 // Handle simple but common cases only. 7446 Type *StoreType = SI.getValueOperand()->getType(); 7447 7448 // The code below assumes shifting a value by <number of bits>, 7449 // whereas scalable vectors would have to be shifted by 7450 // <2log(vscale) + number of bits> in order to store the 7451 // low/high parts. Bailing out for now. 7452 if (isa<ScalableVectorType>(StoreType)) 7453 return false; 7454 7455 if (!DL.typeSizeEqualsStoreSize(StoreType) || 7456 DL.getTypeSizeInBits(StoreType) == 0) 7457 return false; 7458 7459 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 7460 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 7461 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 7462 return false; 7463 7464 // Don't split the store if it is volatile. 7465 if (SI.isVolatile()) 7466 return false; 7467 7468 // Match the following patterns: 7469 // (store (or (zext LValue to i64), 7470 // (shl (zext HValue to i64), 32)), HalfValBitSize) 7471 // or 7472 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 7473 // (zext LValue to i64), 7474 // Expect both operands of OR and the first operand of SHL have only 7475 // one use. 7476 Value *LValue, *HValue; 7477 if (!match(SI.getValueOperand(), 7478 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 7479 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 7480 m_SpecificInt(HalfValBitSize)))))) 7481 return false; 7482 7483 // Check LValue and HValue are int with size less or equal than 32. 7484 if (!LValue->getType()->isIntegerTy() || 7485 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 7486 !HValue->getType()->isIntegerTy() || 7487 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 7488 return false; 7489 7490 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 7491 // as the input of target query. 7492 auto *LBC = dyn_cast<BitCastInst>(LValue); 7493 auto *HBC = dyn_cast<BitCastInst>(HValue); 7494 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 7495 : EVT::getEVT(LValue->getType()); 7496 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 7497 : EVT::getEVT(HValue->getType()); 7498 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 7499 return false; 7500 7501 // Start to split store. 7502 IRBuilder<> Builder(SI.getContext()); 7503 Builder.SetInsertPoint(&SI); 7504 7505 // If LValue/HValue is a bitcast in another BB, create a new one in current 7506 // BB so it may be merged with the splitted stores by dag combiner. 7507 if (LBC && LBC->getParent() != SI.getParent()) 7508 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 7509 if (HBC && HBC->getParent() != SI.getParent()) 7510 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 7511 7512 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 7513 auto CreateSplitStore = [&](Value *V, bool Upper) { 7514 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 7515 Value *Addr = Builder.CreateBitCast( 7516 SI.getOperand(1), 7517 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 7518 Align Alignment = SI.getAlign(); 7519 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 7520 if (IsOffsetStore) { 7521 Addr = Builder.CreateGEP( 7522 SplitStoreType, Addr, 7523 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 7524 7525 // When splitting the store in half, naturally one half will retain the 7526 // alignment of the original wider store, regardless of whether it was 7527 // over-aligned or not, while the other will require adjustment. 7528 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 7529 } 7530 Builder.CreateAlignedStore(V, Addr, Alignment); 7531 }; 7532 7533 CreateSplitStore(LValue, false); 7534 CreateSplitStore(HValue, true); 7535 7536 // Delete the old store. 7537 SI.eraseFromParent(); 7538 return true; 7539 } 7540 7541 // Return true if the GEP has two operands, the first operand is of a sequential 7542 // type, and the second operand is a constant. 7543 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 7544 gep_type_iterator I = gep_type_begin(*GEP); 7545 return GEP->getNumOperands() == 2 && 7546 I.isSequential() && 7547 isa<ConstantInt>(GEP->getOperand(1)); 7548 } 7549 7550 // Try unmerging GEPs to reduce liveness interference (register pressure) across 7551 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 7552 // reducing liveness interference across those edges benefits global register 7553 // allocation. Currently handles only certain cases. 7554 // 7555 // For example, unmerge %GEPI and %UGEPI as below. 7556 // 7557 // ---------- BEFORE ---------- 7558 // SrcBlock: 7559 // ... 7560 // %GEPIOp = ... 7561 // ... 7562 // %GEPI = gep %GEPIOp, Idx 7563 // ... 7564 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 7565 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 7566 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 7567 // %UGEPI) 7568 // 7569 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 7570 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 7571 // ... 7572 // 7573 // DstBi: 7574 // ... 7575 // %UGEPI = gep %GEPIOp, UIdx 7576 // ... 7577 // --------------------------- 7578 // 7579 // ---------- AFTER ---------- 7580 // SrcBlock: 7581 // ... (same as above) 7582 // (* %GEPI is still alive on the indirectbr edges) 7583 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 7584 // unmerging) 7585 // ... 7586 // 7587 // DstBi: 7588 // ... 7589 // %UGEPI = gep %GEPI, (UIdx-Idx) 7590 // ... 7591 // --------------------------- 7592 // 7593 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 7594 // no longer alive on them. 7595 // 7596 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 7597 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 7598 // not to disable further simplications and optimizations as a result of GEP 7599 // merging. 7600 // 7601 // Note this unmerging may increase the length of the data flow critical path 7602 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 7603 // between the register pressure and the length of data-flow critical 7604 // path. Restricting this to the uncommon IndirectBr case would minimize the 7605 // impact of potentially longer critical path, if any, and the impact on compile 7606 // time. 7607 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 7608 const TargetTransformInfo *TTI) { 7609 BasicBlock *SrcBlock = GEPI->getParent(); 7610 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 7611 // (non-IndirectBr) cases exit early here. 7612 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 7613 return false; 7614 // Check that GEPI is a simple gep with a single constant index. 7615 if (!GEPSequentialConstIndexed(GEPI)) 7616 return false; 7617 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 7618 // Check that GEPI is a cheap one. 7619 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), 7620 TargetTransformInfo::TCK_SizeAndLatency) 7621 > TargetTransformInfo::TCC_Basic) 7622 return false; 7623 Value *GEPIOp = GEPI->getOperand(0); 7624 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 7625 if (!isa<Instruction>(GEPIOp)) 7626 return false; 7627 auto *GEPIOpI = cast<Instruction>(GEPIOp); 7628 if (GEPIOpI->getParent() != SrcBlock) 7629 return false; 7630 // Check that GEP is used outside the block, meaning it's alive on the 7631 // IndirectBr edge(s). 7632 if (find_if(GEPI->users(), [&](User *Usr) { 7633 if (auto *I = dyn_cast<Instruction>(Usr)) { 7634 if (I->getParent() != SrcBlock) { 7635 return true; 7636 } 7637 } 7638 return false; 7639 }) == GEPI->users().end()) 7640 return false; 7641 // The second elements of the GEP chains to be unmerged. 7642 std::vector<GetElementPtrInst *> UGEPIs; 7643 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 7644 // on IndirectBr edges. 7645 for (User *Usr : GEPIOp->users()) { 7646 if (Usr == GEPI) continue; 7647 // Check if Usr is an Instruction. If not, give up. 7648 if (!isa<Instruction>(Usr)) 7649 return false; 7650 auto *UI = cast<Instruction>(Usr); 7651 // Check if Usr in the same block as GEPIOp, which is fine, skip. 7652 if (UI->getParent() == SrcBlock) 7653 continue; 7654 // Check if Usr is a GEP. If not, give up. 7655 if (!isa<GetElementPtrInst>(Usr)) 7656 return false; 7657 auto *UGEPI = cast<GetElementPtrInst>(Usr); 7658 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 7659 // the pointer operand to it. If so, record it in the vector. If not, give 7660 // up. 7661 if (!GEPSequentialConstIndexed(UGEPI)) 7662 return false; 7663 if (UGEPI->getOperand(0) != GEPIOp) 7664 return false; 7665 if (GEPIIdx->getType() != 7666 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 7667 return false; 7668 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7669 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), 7670 TargetTransformInfo::TCK_SizeAndLatency) 7671 > TargetTransformInfo::TCC_Basic) 7672 return false; 7673 UGEPIs.push_back(UGEPI); 7674 } 7675 if (UGEPIs.size() == 0) 7676 return false; 7677 // Check the materializing cost of (Uidx-Idx). 7678 for (GetElementPtrInst *UGEPI : UGEPIs) { 7679 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7680 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 7681 InstructionCost ImmCost = TTI->getIntImmCost( 7682 NewIdx, GEPIIdx->getType(), TargetTransformInfo::TCK_SizeAndLatency); 7683 if (ImmCost > TargetTransformInfo::TCC_Basic) 7684 return false; 7685 } 7686 // Now unmerge between GEPI and UGEPIs. 7687 for (GetElementPtrInst *UGEPI : UGEPIs) { 7688 UGEPI->setOperand(0, GEPI); 7689 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7690 Constant *NewUGEPIIdx = 7691 ConstantInt::get(GEPIIdx->getType(), 7692 UGEPIIdx->getValue() - GEPIIdx->getValue()); 7693 UGEPI->setOperand(1, NewUGEPIIdx); 7694 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 7695 // inbounds to avoid UB. 7696 if (!GEPI->isInBounds()) { 7697 UGEPI->setIsInBounds(false); 7698 } 7699 } 7700 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 7701 // alive on IndirectBr edges). 7702 assert(find_if(GEPIOp->users(), [&](User *Usr) { 7703 return cast<Instruction>(Usr)->getParent() != SrcBlock; 7704 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 7705 return true; 7706 } 7707 7708 static bool optimizeBranch(BranchInst *Branch, const TargetLowering &TLI) { 7709 // Try and convert 7710 // %c = icmp ult %x, 8 7711 // br %c, bla, blb 7712 // %tc = lshr %x, 3 7713 // to 7714 // %tc = lshr %x, 3 7715 // %c = icmp eq %tc, 0 7716 // br %c, bla, blb 7717 // Creating the cmp to zero can be better for the backend, especially if the 7718 // lshr produces flags that can be used automatically. 7719 if (!TLI.preferZeroCompareBranch() || !Branch->isConditional()) 7720 return false; 7721 7722 ICmpInst *Cmp = dyn_cast<ICmpInst>(Branch->getCondition()); 7723 if (!Cmp || !isa<ConstantInt>(Cmp->getOperand(1)) || !Cmp->hasOneUse()) 7724 return false; 7725 7726 Value *X = Cmp->getOperand(0); 7727 APInt CmpC = cast<ConstantInt>(Cmp->getOperand(1))->getValue(); 7728 7729 for (auto *U : X->users()) { 7730 Instruction *UI = dyn_cast<Instruction>(U); 7731 // A quick dominance check 7732 if (!UI || 7733 (UI->getParent() != Branch->getParent() && 7734 UI->getParent() != Branch->getSuccessor(0) && 7735 UI->getParent() != Branch->getSuccessor(1)) || 7736 (UI->getParent() != Branch->getParent() && 7737 !UI->getParent()->getSinglePredecessor())) 7738 continue; 7739 7740 if (CmpC.isPowerOf2() && Cmp->getPredicate() == ICmpInst::ICMP_ULT && 7741 match(UI, m_Shr(m_Specific(X), m_SpecificInt(CmpC.logBase2())))) { 7742 IRBuilder<> Builder(Branch); 7743 if (UI->getParent() != Branch->getParent()) 7744 UI->moveBefore(Branch); 7745 Value *NewCmp = Builder.CreateCmp(ICmpInst::ICMP_EQ, UI, 7746 ConstantInt::get(UI->getType(), 0)); 7747 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); 7748 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); 7749 Cmp->replaceAllUsesWith(NewCmp); 7750 return true; 7751 } 7752 if (Cmp->isEquality() && 7753 (match(UI, m_Add(m_Specific(X), m_SpecificInt(-CmpC))) || 7754 match(UI, m_Sub(m_Specific(X), m_SpecificInt(CmpC))))) { 7755 IRBuilder<> Builder(Branch); 7756 if (UI->getParent() != Branch->getParent()) 7757 UI->moveBefore(Branch); 7758 Value *NewCmp = Builder.CreateCmp(Cmp->getPredicate(), UI, 7759 ConstantInt::get(UI->getType(), 0)); 7760 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); 7761 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); 7762 Cmp->replaceAllUsesWith(NewCmp); 7763 return true; 7764 } 7765 } 7766 return false; 7767 } 7768 7769 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 7770 // Bail out if we inserted the instruction to prevent optimizations from 7771 // stepping on each other's toes. 7772 if (InsertedInsts.count(I)) 7773 return false; 7774 7775 // TODO: Move into the switch on opcode below here. 7776 if (PHINode *P = dyn_cast<PHINode>(I)) { 7777 // It is possible for very late stage optimizations (such as SimplifyCFG) 7778 // to introduce PHI nodes too late to be cleaned up. If we detect such a 7779 // trivial PHI, go ahead and zap it here. 7780 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 7781 LargeOffsetGEPMap.erase(P); 7782 P->replaceAllUsesWith(V); 7783 P->eraseFromParent(); 7784 ++NumPHIsElim; 7785 return true; 7786 } 7787 return false; 7788 } 7789 7790 if (CastInst *CI = dyn_cast<CastInst>(I)) { 7791 // If the source of the cast is a constant, then this should have 7792 // already been constant folded. The only reason NOT to constant fold 7793 // it is if something (e.g. LSR) was careful to place the constant 7794 // evaluation in a block other than then one that uses it (e.g. to hoist 7795 // the address of globals out of a loop). If this is the case, we don't 7796 // want to forward-subst the cast. 7797 if (isa<Constant>(CI->getOperand(0))) 7798 return false; 7799 7800 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 7801 return true; 7802 7803 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 7804 /// Sink a zext or sext into its user blocks if the target type doesn't 7805 /// fit in one register 7806 if (TLI->getTypeAction(CI->getContext(), 7807 TLI->getValueType(*DL, CI->getType())) == 7808 TargetLowering::TypeExpandInteger) { 7809 return SinkCast(CI); 7810 } else { 7811 bool MadeChange = optimizeExt(I); 7812 return MadeChange | optimizeExtUses(I); 7813 } 7814 } 7815 return false; 7816 } 7817 7818 if (auto *Cmp = dyn_cast<CmpInst>(I)) 7819 if (optimizeCmp(Cmp, ModifiedDT)) 7820 return true; 7821 7822 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7823 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7824 bool Modified = optimizeLoadExt(LI); 7825 unsigned AS = LI->getPointerAddressSpace(); 7826 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 7827 return Modified; 7828 } 7829 7830 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 7831 if (splitMergedValStore(*SI, *DL, *TLI)) 7832 return true; 7833 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7834 unsigned AS = SI->getPointerAddressSpace(); 7835 return optimizeMemoryInst(I, SI->getOperand(1), 7836 SI->getOperand(0)->getType(), AS); 7837 } 7838 7839 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 7840 unsigned AS = RMW->getPointerAddressSpace(); 7841 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7842 RMW->getType(), AS); 7843 } 7844 7845 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7846 unsigned AS = CmpX->getPointerAddressSpace(); 7847 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7848 CmpX->getCompareOperand()->getType(), AS); 7849 } 7850 7851 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7852 7853 if (BinOp && BinOp->getOpcode() == Instruction::And && EnableAndCmpSinking && 7854 sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts)) 7855 return true; 7856 7857 // TODO: Move this into the switch on opcode - it handles shifts already. 7858 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7859 BinOp->getOpcode() == Instruction::LShr)) { 7860 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7861 if (CI && TLI->hasExtractBitsInsn()) 7862 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7863 return true; 7864 } 7865 7866 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7867 if (GEPI->hasAllZeroIndices()) { 7868 /// The GEP operand must be a pointer, so must its result -> BitCast 7869 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7870 GEPI->getName(), GEPI); 7871 NC->setDebugLoc(GEPI->getDebugLoc()); 7872 GEPI->replaceAllUsesWith(NC); 7873 GEPI->eraseFromParent(); 7874 ++NumGEPsElim; 7875 optimizeInst(NC, ModifiedDT); 7876 return true; 7877 } 7878 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7879 return true; 7880 } 7881 return false; 7882 } 7883 7884 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 7885 // freeze(icmp a, const)) -> icmp (freeze a), const 7886 // This helps generate efficient conditional jumps. 7887 Instruction *CmpI = nullptr; 7888 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 7889 CmpI = II; 7890 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 7891 CmpI = F->getFastMathFlags().none() ? F : nullptr; 7892 7893 if (CmpI && CmpI->hasOneUse()) { 7894 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 7895 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 7896 isa<ConstantPointerNull>(Op0); 7897 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 7898 isa<ConstantPointerNull>(Op1); 7899 if (Const0 || Const1) { 7900 if (!Const0 || !Const1) { 7901 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI); 7902 F->takeName(FI); 7903 CmpI->setOperand(Const0 ? 1 : 0, F); 7904 } 7905 FI->replaceAllUsesWith(CmpI); 7906 FI->eraseFromParent(); 7907 return true; 7908 } 7909 } 7910 return false; 7911 } 7912 7913 if (tryToSinkFreeOperands(I)) 7914 return true; 7915 7916 switch (I->getOpcode()) { 7917 case Instruction::Shl: 7918 case Instruction::LShr: 7919 case Instruction::AShr: 7920 return optimizeShiftInst(cast<BinaryOperator>(I)); 7921 case Instruction::Call: 7922 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7923 case Instruction::Select: 7924 return optimizeSelectInst(cast<SelectInst>(I)); 7925 case Instruction::ShuffleVector: 7926 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7927 case Instruction::Switch: 7928 return optimizeSwitchInst(cast<SwitchInst>(I)); 7929 case Instruction::ExtractElement: 7930 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7931 case Instruction::Br: 7932 return optimizeBranch(cast<BranchInst>(I), *TLI); 7933 } 7934 7935 return false; 7936 } 7937 7938 /// Given an OR instruction, check to see if this is a bitreverse 7939 /// idiom. If so, insert the new intrinsic and return true. 7940 bool CodeGenPrepare::makeBitReverse(Instruction &I) { 7941 if (!I.getType()->isIntegerTy() || 7942 !TLI->isOperationLegalOrCustom(ISD::BITREVERSE, 7943 TLI->getValueType(*DL, I.getType(), true))) 7944 return false; 7945 7946 SmallVector<Instruction*, 4> Insts; 7947 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7948 return false; 7949 Instruction *LastInst = Insts.back(); 7950 I.replaceAllUsesWith(LastInst); 7951 RecursivelyDeleteTriviallyDeadInstructions( 7952 &I, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); 7953 return true; 7954 } 7955 7956 // In this pass we look for GEP and cast instructions that are used 7957 // across basic blocks and rewrite them to improve basic-block-at-a-time 7958 // selection. 7959 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 7960 SunkAddrs.clear(); 7961 bool MadeChange = false; 7962 7963 CurInstIterator = BB.begin(); 7964 while (CurInstIterator != BB.end()) { 7965 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 7966 if (ModifiedDT) 7967 return true; 7968 } 7969 7970 bool MadeBitReverse = true; 7971 while (MadeBitReverse) { 7972 MadeBitReverse = false; 7973 for (auto &I : reverse(BB)) { 7974 if (makeBitReverse(I)) { 7975 MadeBitReverse = MadeChange = true; 7976 break; 7977 } 7978 } 7979 } 7980 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7981 7982 return MadeChange; 7983 } 7984 7985 // Some CGP optimizations may move or alter what's computed in a block. Check 7986 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 7987 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 7988 assert(isa<DbgValueInst>(I)); 7989 DbgValueInst &DVI = *cast<DbgValueInst>(I); 7990 7991 // Does this dbg.value refer to a sunk address calculation? 7992 bool AnyChange = false; 7993 SmallDenseSet<Value *> LocationOps(DVI.location_ops().begin(), 7994 DVI.location_ops().end()); 7995 for (Value *Location : LocationOps) { 7996 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 7997 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 7998 if (SunkAddr) { 7999 // Point dbg.value at locally computed address, which should give the best 8000 // opportunity to be accurately lowered. This update may change the type 8001 // of pointer being referred to; however this makes no difference to 8002 // debugging information, and we can't generate bitcasts that may affect 8003 // codegen. 8004 DVI.replaceVariableLocationOp(Location, SunkAddr); 8005 AnyChange = true; 8006 } 8007 } 8008 return AnyChange; 8009 } 8010 8011 // A llvm.dbg.value may be using a value before its definition, due to 8012 // optimizations in this pass and others. Scan for such dbg.values, and rescue 8013 // them by moving the dbg.value to immediately after the value definition. 8014 // FIXME: Ideally this should never be necessary, and this has the potential 8015 // to re-order dbg.value intrinsics. 8016 bool CodeGenPrepare::placeDbgValues(Function &F) { 8017 bool MadeChange = false; 8018 DominatorTree DT(F); 8019 8020 for (BasicBlock &BB : F) { 8021 for (Instruction &Insn : llvm::make_early_inc_range(BB)) { 8022 DbgValueInst *DVI = dyn_cast<DbgValueInst>(&Insn); 8023 if (!DVI) 8024 continue; 8025 8026 SmallVector<Instruction *, 4> VIs; 8027 for (Value *V : DVI->getValues()) 8028 if (Instruction *VI = dyn_cast_or_null<Instruction>(V)) 8029 VIs.push_back(VI); 8030 8031 // This DVI may depend on multiple instructions, complicating any 8032 // potential sink. This block takes the defensive approach, opting to 8033 // "undef" the DVI if it has more than one instruction and any of them do 8034 // not dominate DVI. 8035 for (Instruction *VI : VIs) { 8036 if (VI->isTerminator()) 8037 continue; 8038 8039 // If VI is a phi in a block with an EHPad terminator, we can't insert 8040 // after it. 8041 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 8042 continue; 8043 8044 // If the defining instruction dominates the dbg.value, we do not need 8045 // to move the dbg.value. 8046 if (DT.dominates(VI, DVI)) 8047 continue; 8048 8049 // If we depend on multiple instructions and any of them doesn't 8050 // dominate this DVI, we probably can't salvage it: moving it to 8051 // after any of the instructions could cause us to lose the others. 8052 if (VIs.size() > 1) { 8053 LLVM_DEBUG( 8054 dbgs() 8055 << "Unable to find valid location for Debug Value, undefing:\n" 8056 << *DVI); 8057 DVI->setUndef(); 8058 break; 8059 } 8060 8061 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 8062 << *DVI << ' ' << *VI); 8063 DVI->removeFromParent(); 8064 if (isa<PHINode>(VI)) 8065 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 8066 else 8067 DVI->insertAfter(VI); 8068 MadeChange = true; 8069 ++NumDbgValueMoved; 8070 } 8071 } 8072 } 8073 return MadeChange; 8074 } 8075 8076 // Group scattered pseudo probes in a block to favor SelectionDAG. Scattered 8077 // probes can be chained dependencies of other regular DAG nodes and block DAG 8078 // combine optimizations. 8079 bool CodeGenPrepare::placePseudoProbes(Function &F) { 8080 bool MadeChange = false; 8081 for (auto &Block : F) { 8082 // Move the rest probes to the beginning of the block. 8083 auto FirstInst = Block.getFirstInsertionPt(); 8084 while (FirstInst != Block.end() && FirstInst->isDebugOrPseudoInst()) 8085 ++FirstInst; 8086 BasicBlock::iterator I(FirstInst); 8087 I++; 8088 while (I != Block.end()) { 8089 if (auto *II = dyn_cast<PseudoProbeInst>(I++)) { 8090 II->moveBefore(&*FirstInst); 8091 MadeChange = true; 8092 } 8093 } 8094 } 8095 return MadeChange; 8096 } 8097 8098 /// Scale down both weights to fit into uint32_t. 8099 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 8100 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 8101 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 8102 NewTrue = NewTrue / Scale; 8103 NewFalse = NewFalse / Scale; 8104 } 8105 8106 /// Some targets prefer to split a conditional branch like: 8107 /// \code 8108 /// %0 = icmp ne i32 %a, 0 8109 /// %1 = icmp ne i32 %b, 0 8110 /// %or.cond = or i1 %0, %1 8111 /// br i1 %or.cond, label %TrueBB, label %FalseBB 8112 /// \endcode 8113 /// into multiple branch instructions like: 8114 /// \code 8115 /// bb1: 8116 /// %0 = icmp ne i32 %a, 0 8117 /// br i1 %0, label %TrueBB, label %bb2 8118 /// bb2: 8119 /// %1 = icmp ne i32 %b, 0 8120 /// br i1 %1, label %TrueBB, label %FalseBB 8121 /// \endcode 8122 /// This usually allows instruction selection to do even further optimizations 8123 /// and combine the compare with the branch instruction. Currently this is 8124 /// applied for targets which have "cheap" jump instructions. 8125 /// 8126 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 8127 /// 8128 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 8129 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 8130 return false; 8131 8132 bool MadeChange = false; 8133 for (auto &BB : F) { 8134 // Does this BB end with the following? 8135 // %cond1 = icmp|fcmp|binary instruction ... 8136 // %cond2 = icmp|fcmp|binary instruction ... 8137 // %cond.or = or|and i1 %cond1, cond2 8138 // br i1 %cond.or label %dest1, label %dest2" 8139 Instruction *LogicOp; 8140 BasicBlock *TBB, *FBB; 8141 if (!match(BB.getTerminator(), 8142 m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB))) 8143 continue; 8144 8145 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 8146 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 8147 continue; 8148 8149 // The merging of mostly empty BB can cause a degenerate branch. 8150 if (TBB == FBB) 8151 continue; 8152 8153 unsigned Opc; 8154 Value *Cond1, *Cond2; 8155 if (match(LogicOp, 8156 m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2))))) 8157 Opc = Instruction::And; 8158 else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)), 8159 m_OneUse(m_Value(Cond2))))) 8160 Opc = Instruction::Or; 8161 else 8162 continue; 8163 8164 auto IsGoodCond = [](Value *Cond) { 8165 return match( 8166 Cond, 8167 m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()), 8168 m_LogicalOr(m_Value(), m_Value())))); 8169 }; 8170 if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2)) 8171 continue; 8172 8173 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 8174 8175 // Create a new BB. 8176 auto *TmpBB = 8177 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 8178 BB.getParent(), BB.getNextNode()); 8179 8180 // Update original basic block by using the first condition directly by the 8181 // branch instruction and removing the no longer needed and/or instruction. 8182 Br1->setCondition(Cond1); 8183 LogicOp->eraseFromParent(); 8184 8185 // Depending on the condition we have to either replace the true or the 8186 // false successor of the original branch instruction. 8187 if (Opc == Instruction::And) 8188 Br1->setSuccessor(0, TmpBB); 8189 else 8190 Br1->setSuccessor(1, TmpBB); 8191 8192 // Fill in the new basic block. 8193 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 8194 if (auto *I = dyn_cast<Instruction>(Cond2)) { 8195 I->removeFromParent(); 8196 I->insertBefore(Br2); 8197 } 8198 8199 // Update PHI nodes in both successors. The original BB needs to be 8200 // replaced in one successor's PHI nodes, because the branch comes now from 8201 // the newly generated BB (NewBB). In the other successor we need to add one 8202 // incoming edge to the PHI nodes, because both branch instructions target 8203 // now the same successor. Depending on the original branch condition 8204 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 8205 // we perform the correct update for the PHI nodes. 8206 // This doesn't change the successor order of the just created branch 8207 // instruction (or any other instruction). 8208 if (Opc == Instruction::Or) 8209 std::swap(TBB, FBB); 8210 8211 // Replace the old BB with the new BB. 8212 TBB->replacePhiUsesWith(&BB, TmpBB); 8213 8214 // Add another incoming edge form the new BB. 8215 for (PHINode &PN : FBB->phis()) { 8216 auto *Val = PN.getIncomingValueForBlock(&BB); 8217 PN.addIncoming(Val, TmpBB); 8218 } 8219 8220 // Update the branch weights (from SelectionDAGBuilder:: 8221 // FindMergedConditions). 8222 if (Opc == Instruction::Or) { 8223 // Codegen X | Y as: 8224 // BB1: 8225 // jmp_if_X TBB 8226 // jmp TmpBB 8227 // TmpBB: 8228 // jmp_if_Y TBB 8229 // jmp FBB 8230 // 8231 8232 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 8233 // The requirement is that 8234 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 8235 // = TrueProb for original BB. 8236 // Assuming the original weights are A and B, one choice is to set BB1's 8237 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 8238 // assumes that 8239 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 8240 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 8241 // TmpBB, but the math is more complicated. 8242 uint64_t TrueWeight, FalseWeight; 8243 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 8244 uint64_t NewTrueWeight = TrueWeight; 8245 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 8246 scaleWeights(NewTrueWeight, NewFalseWeight); 8247 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 8248 .createBranchWeights(TrueWeight, FalseWeight)); 8249 8250 NewTrueWeight = TrueWeight; 8251 NewFalseWeight = 2 * FalseWeight; 8252 scaleWeights(NewTrueWeight, NewFalseWeight); 8253 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 8254 .createBranchWeights(TrueWeight, FalseWeight)); 8255 } 8256 } else { 8257 // Codegen X & Y as: 8258 // BB1: 8259 // jmp_if_X TmpBB 8260 // jmp FBB 8261 // TmpBB: 8262 // jmp_if_Y TBB 8263 // jmp FBB 8264 // 8265 // This requires creation of TmpBB after CurBB. 8266 8267 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 8268 // The requirement is that 8269 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 8270 // = FalseProb for original BB. 8271 // Assuming the original weights are A and B, one choice is to set BB1's 8272 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 8273 // assumes that 8274 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 8275 uint64_t TrueWeight, FalseWeight; 8276 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 8277 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 8278 uint64_t NewFalseWeight = FalseWeight; 8279 scaleWeights(NewTrueWeight, NewFalseWeight); 8280 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 8281 .createBranchWeights(TrueWeight, FalseWeight)); 8282 8283 NewTrueWeight = 2 * TrueWeight; 8284 NewFalseWeight = FalseWeight; 8285 scaleWeights(NewTrueWeight, NewFalseWeight); 8286 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 8287 .createBranchWeights(TrueWeight, FalseWeight)); 8288 } 8289 } 8290 8291 ModifiedDT = true; 8292 MadeChange = true; 8293 8294 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 8295 TmpBB->dump()); 8296 } 8297 return MadeChange; 8298 } 8299