1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/Passes.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/CodeGen/Analysis.h" 27 #include "llvm/IR/CallSite.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/GetElementPtrTypeIterator.h" 34 #include "llvm/IR/IRBuilder.h" 35 #include "llvm/IR/InlineAsm.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/MDBuilder.h" 39 #include "llvm/IR/PatternMatch.h" 40 #include "llvm/IR/Statepoint.h" 41 #include "llvm/IR/ValueHandle.h" 42 #include "llvm/IR/ValueMap.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/BranchProbability.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Target/TargetLowering.h" 49 #include "llvm/Target/TargetSubtargetInfo.h" 50 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 51 #include "llvm/Transforms/Utils/BuildLibCalls.h" 52 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 53 #include "llvm/Transforms/Utils/Local.h" 54 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 55 using namespace llvm; 56 using namespace llvm::PatternMatch; 57 58 #define DEBUG_TYPE "codegenprepare" 59 60 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 61 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 62 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 63 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 64 "sunken Cmps"); 65 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 66 "of sunken Casts"); 67 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 68 "computations were sunk"); 69 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 70 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 71 STATISTIC(NumAndsAdded, 72 "Number of and mask instructions added to form ext loads"); 73 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 74 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 75 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 76 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 77 STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches"); 78 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 79 80 static cl::opt<bool> DisableBranchOpts( 81 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 82 cl::desc("Disable branch optimizations in CodeGenPrepare")); 83 84 static cl::opt<bool> 85 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 86 cl::desc("Disable GC optimizations in CodeGenPrepare")); 87 88 static cl::opt<bool> DisableSelectToBranch( 89 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 90 cl::desc("Disable select to branch conversion.")); 91 92 static cl::opt<bool> AddrSinkUsingGEPs( 93 "addr-sink-using-gep", cl::Hidden, cl::init(false), 94 cl::desc("Address sinking in CGP using GEPs.")); 95 96 static cl::opt<bool> EnableAndCmpSinking( 97 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 98 cl::desc("Enable sinkinig and/cmp into branches.")); 99 100 static cl::opt<bool> DisableStoreExtract( 101 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 102 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 103 104 static cl::opt<bool> StressStoreExtract( 105 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 106 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 107 108 static cl::opt<bool> DisableExtLdPromotion( 109 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 110 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 111 "CodeGenPrepare")); 112 113 static cl::opt<bool> StressExtLdPromotion( 114 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 115 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 116 "optimization in CodeGenPrepare")); 117 118 static cl::opt<bool> DisablePreheaderProtect( 119 "disable-preheader-prot", cl::Hidden, cl::init(false), 120 cl::desc("Disable protection against removing loop preheaders")); 121 122 namespace { 123 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; 124 typedef PointerIntPair<Type *, 1, bool> TypeIsSExt; 125 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy; 126 class TypePromotionTransaction; 127 128 class CodeGenPrepare : public FunctionPass { 129 const TargetMachine *TM; 130 const TargetLowering *TLI; 131 const TargetTransformInfo *TTI; 132 const TargetLibraryInfo *TLInfo; 133 const LoopInfo *LI; 134 135 /// As we scan instructions optimizing them, this is the next instruction 136 /// to optimize. Transforms that can invalidate this should update it. 137 BasicBlock::iterator CurInstIterator; 138 139 /// Keeps track of non-local addresses that have been sunk into a block. 140 /// This allows us to avoid inserting duplicate code for blocks with 141 /// multiple load/stores of the same address. 142 ValueMap<Value*, Value*> SunkAddrs; 143 144 /// Keeps track of all instructions inserted for the current function. 145 SetOfInstrs InsertedInsts; 146 /// Keeps track of the type of the related instruction before their 147 /// promotion for the current function. 148 InstrToOrigTy PromotedInsts; 149 150 /// True if CFG is modified in any way. 151 bool ModifiedDT; 152 153 /// True if optimizing for size. 154 bool OptSize; 155 156 /// DataLayout for the Function being processed. 157 const DataLayout *DL; 158 159 public: 160 static char ID; // Pass identification, replacement for typeid 161 explicit CodeGenPrepare(const TargetMachine *TM = nullptr) 162 : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr), DL(nullptr) { 163 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 164 } 165 bool runOnFunction(Function &F) override; 166 167 StringRef getPassName() const override { return "CodeGen Prepare"; } 168 169 void getAnalysisUsage(AnalysisUsage &AU) const override { 170 // FIXME: When we can selectively preserve passes, preserve the domtree. 171 AU.addRequired<TargetLibraryInfoWrapperPass>(); 172 AU.addRequired<TargetTransformInfoWrapperPass>(); 173 AU.addRequired<LoopInfoWrapperPass>(); 174 } 175 176 private: 177 bool eliminateFallThrough(Function &F); 178 bool eliminateMostlyEmptyBlocks(Function &F); 179 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 180 void eliminateMostlyEmptyBlock(BasicBlock *BB); 181 bool optimizeBlock(BasicBlock &BB, bool& ModifiedDT); 182 bool optimizeInst(Instruction *I, bool& ModifiedDT); 183 bool optimizeMemoryInst(Instruction *I, Value *Addr, 184 Type *AccessTy, unsigned AS); 185 bool optimizeInlineAsmInst(CallInst *CS); 186 bool optimizeCallInst(CallInst *CI, bool& ModifiedDT); 187 bool moveExtToFormExtLoad(Instruction *&I); 188 bool optimizeExtUses(Instruction *I); 189 bool optimizeLoadExt(LoadInst *I); 190 bool optimizeSelectInst(SelectInst *SI); 191 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); 192 bool optimizeSwitchInst(SwitchInst *CI); 193 bool optimizeExtractElementInst(Instruction *Inst); 194 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 195 bool placeDbgValues(Function &F); 196 bool sinkAndCmp(Function &F); 197 bool extLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI, 198 Instruction *&Inst, 199 const SmallVectorImpl<Instruction *> &Exts, 200 unsigned CreatedInstCost); 201 bool splitBranchCondition(Function &F); 202 bool simplifyOffsetableRelocate(Instruction &I); 203 void stripInvariantGroupMetadata(Instruction &I); 204 }; 205 } 206 207 char CodeGenPrepare::ID = 0; 208 INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare", 209 "Optimize for code generation", false, false) 210 211 FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) { 212 return new CodeGenPrepare(TM); 213 } 214 215 bool CodeGenPrepare::runOnFunction(Function &F) { 216 if (skipFunction(F)) 217 return false; 218 219 DL = &F.getParent()->getDataLayout(); 220 221 bool EverMadeChange = false; 222 // Clear per function information. 223 InsertedInsts.clear(); 224 PromotedInsts.clear(); 225 226 ModifiedDT = false; 227 if (TM) 228 TLI = TM->getSubtargetImpl(F)->getTargetLowering(); 229 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 230 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 231 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 232 OptSize = F.optForSize(); 233 234 /// This optimization identifies DIV instructions that can be 235 /// profitably bypassed and carried out with a shorter, faster divide. 236 if (!OptSize && TLI && TLI->isSlowDivBypassed()) { 237 const DenseMap<unsigned int, unsigned int> &BypassWidths = 238 TLI->getBypassSlowDivWidths(); 239 BasicBlock* BB = &*F.begin(); 240 while (BB != nullptr) { 241 // bypassSlowDivision may create new BBs, but we don't want to reapply the 242 // optimization to those blocks. 243 BasicBlock* Next = BB->getNextNode(); 244 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 245 BB = Next; 246 } 247 } 248 249 // Eliminate blocks that contain only PHI nodes and an 250 // unconditional branch. 251 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 252 253 // llvm.dbg.value is far away from the value then iSel may not be able 254 // handle it properly. iSel will drop llvm.dbg.value if it can not 255 // find a node corresponding to the value. 256 EverMadeChange |= placeDbgValues(F); 257 258 // If there is a mask, compare against zero, and branch that can be combined 259 // into a single target instruction, push the mask and compare into branch 260 // users. Do this before OptimizeBlock -> OptimizeInst -> 261 // OptimizeCmpExpression, which perturbs the pattern being searched for. 262 if (!DisableBranchOpts) { 263 EverMadeChange |= sinkAndCmp(F); 264 EverMadeChange |= splitBranchCondition(F); 265 } 266 267 bool MadeChange = true; 268 while (MadeChange) { 269 MadeChange = false; 270 for (Function::iterator I = F.begin(); I != F.end(); ) { 271 BasicBlock *BB = &*I++; 272 bool ModifiedDTOnIteration = false; 273 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 274 275 // Restart BB iteration if the dominator tree of the Function was changed 276 if (ModifiedDTOnIteration) 277 break; 278 } 279 EverMadeChange |= MadeChange; 280 } 281 282 SunkAddrs.clear(); 283 284 if (!DisableBranchOpts) { 285 MadeChange = false; 286 SmallPtrSet<BasicBlock*, 8> WorkList; 287 for (BasicBlock &BB : F) { 288 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 289 MadeChange |= ConstantFoldTerminator(&BB, true); 290 if (!MadeChange) continue; 291 292 for (SmallVectorImpl<BasicBlock*>::iterator 293 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 294 if (pred_begin(*II) == pred_end(*II)) 295 WorkList.insert(*II); 296 } 297 298 // Delete the dead blocks and any of their dead successors. 299 MadeChange |= !WorkList.empty(); 300 while (!WorkList.empty()) { 301 BasicBlock *BB = *WorkList.begin(); 302 WorkList.erase(BB); 303 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 304 305 DeleteDeadBlock(BB); 306 307 for (SmallVectorImpl<BasicBlock*>::iterator 308 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 309 if (pred_begin(*II) == pred_end(*II)) 310 WorkList.insert(*II); 311 } 312 313 // Merge pairs of basic blocks with unconditional branches, connected by 314 // a single edge. 315 if (EverMadeChange || MadeChange) 316 MadeChange |= eliminateFallThrough(F); 317 318 EverMadeChange |= MadeChange; 319 } 320 321 if (!DisableGCOpts) { 322 SmallVector<Instruction *, 2> Statepoints; 323 for (BasicBlock &BB : F) 324 for (Instruction &I : BB) 325 if (isStatepoint(I)) 326 Statepoints.push_back(&I); 327 for (auto &I : Statepoints) 328 EverMadeChange |= simplifyOffsetableRelocate(*I); 329 } 330 331 return EverMadeChange; 332 } 333 334 /// Merge basic blocks which are connected by a single edge, where one of the 335 /// basic blocks has a single successor pointing to the other basic block, 336 /// which has a single predecessor. 337 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 338 bool Changed = false; 339 // Scan all of the blocks in the function, except for the entry block. 340 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 341 BasicBlock *BB = &*I++; 342 // If the destination block has a single pred, then this is a trivial 343 // edge, just collapse it. 344 BasicBlock *SinglePred = BB->getSinglePredecessor(); 345 346 // Don't merge if BB's address is taken. 347 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 348 349 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 350 if (Term && !Term->isConditional()) { 351 Changed = true; 352 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 353 // Remember if SinglePred was the entry block of the function. 354 // If so, we will need to move BB back to the entry position. 355 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 356 MergeBasicBlockIntoOnlyPred(BB, nullptr); 357 358 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 359 BB->moveBefore(&BB->getParent()->getEntryBlock()); 360 361 // We have erased a block. Update the iterator. 362 I = BB->getIterator(); 363 } 364 } 365 return Changed; 366 } 367 368 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 369 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 370 /// edges in ways that are non-optimal for isel. Start by eliminating these 371 /// blocks so we can split them the way we want them. 372 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 373 SmallPtrSet<BasicBlock *, 16> Preheaders; 374 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 375 while (!LoopList.empty()) { 376 Loop *L = LoopList.pop_back_val(); 377 LoopList.insert(LoopList.end(), L->begin(), L->end()); 378 if (BasicBlock *Preheader = L->getLoopPreheader()) 379 Preheaders.insert(Preheader); 380 } 381 382 bool MadeChange = false; 383 // Note that this intentionally skips the entry block. 384 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 385 BasicBlock *BB = &*I++; 386 387 // If this block doesn't end with an uncond branch, ignore it. 388 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 389 if (!BI || !BI->isUnconditional()) 390 continue; 391 392 // If the instruction before the branch (skipping debug info) isn't a phi 393 // node, then other stuff is happening here. 394 BasicBlock::iterator BBI = BI->getIterator(); 395 if (BBI != BB->begin()) { 396 --BBI; 397 while (isa<DbgInfoIntrinsic>(BBI)) { 398 if (BBI == BB->begin()) 399 break; 400 --BBI; 401 } 402 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 403 continue; 404 } 405 406 // Do not break infinite loops. 407 BasicBlock *DestBB = BI->getSuccessor(0); 408 if (DestBB == BB) 409 continue; 410 411 if (!canMergeBlocks(BB, DestBB)) 412 continue; 413 414 // Do not delete loop preheaders if doing so would create a critical edge. 415 // Loop preheaders can be good locations to spill registers. If the 416 // preheader is deleted and we create a critical edge, registers may be 417 // spilled in the loop body instead. 418 if (!DisablePreheaderProtect && Preheaders.count(BB) && 419 !(BB->getSinglePredecessor() && BB->getSinglePredecessor()->getSingleSuccessor())) 420 continue; 421 422 eliminateMostlyEmptyBlock(BB); 423 MadeChange = true; 424 } 425 return MadeChange; 426 } 427 428 /// Return true if we can merge BB into DestBB if there is a single 429 /// unconditional branch between them, and BB contains no other non-phi 430 /// instructions. 431 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 432 const BasicBlock *DestBB) const { 433 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 434 // the successor. If there are more complex condition (e.g. preheaders), 435 // don't mess around with them. 436 BasicBlock::const_iterator BBI = BB->begin(); 437 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 438 for (const User *U : PN->users()) { 439 const Instruction *UI = cast<Instruction>(U); 440 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 441 return false; 442 // If User is inside DestBB block and it is a PHINode then check 443 // incoming value. If incoming value is not from BB then this is 444 // a complex condition (e.g. preheaders) we want to avoid here. 445 if (UI->getParent() == DestBB) { 446 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 447 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 448 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 449 if (Insn && Insn->getParent() == BB && 450 Insn->getParent() != UPN->getIncomingBlock(I)) 451 return false; 452 } 453 } 454 } 455 } 456 457 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 458 // and DestBB may have conflicting incoming values for the block. If so, we 459 // can't merge the block. 460 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 461 if (!DestBBPN) return true; // no conflict. 462 463 // Collect the preds of BB. 464 SmallPtrSet<const BasicBlock*, 16> BBPreds; 465 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 466 // It is faster to get preds from a PHI than with pred_iterator. 467 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 468 BBPreds.insert(BBPN->getIncomingBlock(i)); 469 } else { 470 BBPreds.insert(pred_begin(BB), pred_end(BB)); 471 } 472 473 // Walk the preds of DestBB. 474 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 475 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 476 if (BBPreds.count(Pred)) { // Common predecessor? 477 BBI = DestBB->begin(); 478 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 479 const Value *V1 = PN->getIncomingValueForBlock(Pred); 480 const Value *V2 = PN->getIncomingValueForBlock(BB); 481 482 // If V2 is a phi node in BB, look up what the mapped value will be. 483 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 484 if (V2PN->getParent() == BB) 485 V2 = V2PN->getIncomingValueForBlock(Pred); 486 487 // If there is a conflict, bail out. 488 if (V1 != V2) return false; 489 } 490 } 491 } 492 493 return true; 494 } 495 496 497 /// Eliminate a basic block that has only phi's and an unconditional branch in 498 /// it. 499 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 500 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 501 BasicBlock *DestBB = BI->getSuccessor(0); 502 503 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 504 505 // If the destination block has a single pred, then this is a trivial edge, 506 // just collapse it. 507 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 508 if (SinglePred != DestBB) { 509 // Remember if SinglePred was the entry block of the function. If so, we 510 // will need to move BB back to the entry position. 511 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 512 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 513 514 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 515 BB->moveBefore(&BB->getParent()->getEntryBlock()); 516 517 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 518 return; 519 } 520 } 521 522 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 523 // to handle the new incoming edges it is about to have. 524 PHINode *PN; 525 for (BasicBlock::iterator BBI = DestBB->begin(); 526 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 527 // Remove the incoming value for BB, and remember it. 528 Value *InVal = PN->removeIncomingValue(BB, false); 529 530 // Two options: either the InVal is a phi node defined in BB or it is some 531 // value that dominates BB. 532 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 533 if (InValPhi && InValPhi->getParent() == BB) { 534 // Add all of the input values of the input PHI as inputs of this phi. 535 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 536 PN->addIncoming(InValPhi->getIncomingValue(i), 537 InValPhi->getIncomingBlock(i)); 538 } else { 539 // Otherwise, add one instance of the dominating value for each edge that 540 // we will be adding. 541 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 542 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 543 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 544 } else { 545 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 546 PN->addIncoming(InVal, *PI); 547 } 548 } 549 } 550 551 // The PHIs are now updated, change everything that refers to BB to use 552 // DestBB and remove BB. 553 BB->replaceAllUsesWith(DestBB); 554 BB->eraseFromParent(); 555 ++NumBlocksElim; 556 557 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 558 } 559 560 // Computes a map of base pointer relocation instructions to corresponding 561 // derived pointer relocation instructions given a vector of all relocate calls 562 static void computeBaseDerivedRelocateMap( 563 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 564 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 565 &RelocateInstMap) { 566 // Collect information in two maps: one primarily for locating the base object 567 // while filling the second map; the second map is the final structure holding 568 // a mapping between Base and corresponding Derived relocate calls 569 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 570 for (auto *ThisRelocate : AllRelocateCalls) { 571 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 572 ThisRelocate->getDerivedPtrIndex()); 573 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 574 } 575 for (auto &Item : RelocateIdxMap) { 576 std::pair<unsigned, unsigned> Key = Item.first; 577 if (Key.first == Key.second) 578 // Base relocation: nothing to insert 579 continue; 580 581 GCRelocateInst *I = Item.second; 582 auto BaseKey = std::make_pair(Key.first, Key.first); 583 584 // We're iterating over RelocateIdxMap so we cannot modify it. 585 auto MaybeBase = RelocateIdxMap.find(BaseKey); 586 if (MaybeBase == RelocateIdxMap.end()) 587 // TODO: We might want to insert a new base object relocate and gep off 588 // that, if there are enough derived object relocates. 589 continue; 590 591 RelocateInstMap[MaybeBase->second].push_back(I); 592 } 593 } 594 595 // Accepts a GEP and extracts the operands into a vector provided they're all 596 // small integer constants 597 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 598 SmallVectorImpl<Value *> &OffsetV) { 599 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 600 // Only accept small constant integer operands 601 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 602 if (!Op || Op->getZExtValue() > 20) 603 return false; 604 } 605 606 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 607 OffsetV.push_back(GEP->getOperand(i)); 608 return true; 609 } 610 611 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 612 // replace, computes a replacement, and affects it. 613 static bool 614 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 615 const SmallVectorImpl<GCRelocateInst *> &Targets) { 616 bool MadeChange = false; 617 for (GCRelocateInst *ToReplace : Targets) { 618 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 619 "Not relocating a derived object of the original base object"); 620 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 621 // A duplicate relocate call. TODO: coalesce duplicates. 622 continue; 623 } 624 625 if (RelocatedBase->getParent() != ToReplace->getParent()) { 626 // Base and derived relocates are in different basic blocks. 627 // In this case transform is only valid when base dominates derived 628 // relocate. However it would be too expensive to check dominance 629 // for each such relocate, so we skip the whole transformation. 630 continue; 631 } 632 633 Value *Base = ToReplace->getBasePtr(); 634 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 635 if (!Derived || Derived->getPointerOperand() != Base) 636 continue; 637 638 SmallVector<Value *, 2> OffsetV; 639 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 640 continue; 641 642 // Create a Builder and replace the target callsite with a gep 643 assert(RelocatedBase->getNextNode() && 644 "Should always have one since it's not a terminator"); 645 646 // Insert after RelocatedBase 647 IRBuilder<> Builder(RelocatedBase->getNextNode()); 648 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 649 650 // If gc_relocate does not match the actual type, cast it to the right type. 651 // In theory, there must be a bitcast after gc_relocate if the type does not 652 // match, and we should reuse it to get the derived pointer. But it could be 653 // cases like this: 654 // bb1: 655 // ... 656 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 657 // br label %merge 658 // 659 // bb2: 660 // ... 661 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 662 // br label %merge 663 // 664 // merge: 665 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 666 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 667 // 668 // In this case, we can not find the bitcast any more. So we insert a new bitcast 669 // no matter there is already one or not. In this way, we can handle all cases, and 670 // the extra bitcast should be optimized away in later passes. 671 Value *ActualRelocatedBase = RelocatedBase; 672 if (RelocatedBase->getType() != Base->getType()) { 673 ActualRelocatedBase = 674 Builder.CreateBitCast(RelocatedBase, Base->getType()); 675 } 676 Value *Replacement = Builder.CreateGEP( 677 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 678 Replacement->takeName(ToReplace); 679 // If the newly generated derived pointer's type does not match the original derived 680 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 681 Value *ActualReplacement = Replacement; 682 if (Replacement->getType() != ToReplace->getType()) { 683 ActualReplacement = 684 Builder.CreateBitCast(Replacement, ToReplace->getType()); 685 } 686 ToReplace->replaceAllUsesWith(ActualReplacement); 687 ToReplace->eraseFromParent(); 688 689 MadeChange = true; 690 } 691 return MadeChange; 692 } 693 694 // Turns this: 695 // 696 // %base = ... 697 // %ptr = gep %base + 15 698 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 699 // %base' = relocate(%tok, i32 4, i32 4) 700 // %ptr' = relocate(%tok, i32 4, i32 5) 701 // %val = load %ptr' 702 // 703 // into this: 704 // 705 // %base = ... 706 // %ptr = gep %base + 15 707 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 708 // %base' = gc.relocate(%tok, i32 4, i32 4) 709 // %ptr' = gep %base' + 15 710 // %val = load %ptr' 711 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 712 bool MadeChange = false; 713 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 714 715 for (auto *U : I.users()) 716 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 717 // Collect all the relocate calls associated with a statepoint 718 AllRelocateCalls.push_back(Relocate); 719 720 // We need atleast one base pointer relocation + one derived pointer 721 // relocation to mangle 722 if (AllRelocateCalls.size() < 2) 723 return false; 724 725 // RelocateInstMap is a mapping from the base relocate instruction to the 726 // corresponding derived relocate instructions 727 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 728 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 729 if (RelocateInstMap.empty()) 730 return false; 731 732 for (auto &Item : RelocateInstMap) 733 // Item.first is the RelocatedBase to offset against 734 // Item.second is the vector of Targets to replace 735 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 736 return MadeChange; 737 } 738 739 /// SinkCast - Sink the specified cast instruction into its user blocks 740 static bool SinkCast(CastInst *CI) { 741 BasicBlock *DefBB = CI->getParent(); 742 743 /// InsertedCasts - Only insert a cast in each block once. 744 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 745 746 bool MadeChange = false; 747 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 748 UI != E; ) { 749 Use &TheUse = UI.getUse(); 750 Instruction *User = cast<Instruction>(*UI); 751 752 // Figure out which BB this cast is used in. For PHI's this is the 753 // appropriate predecessor block. 754 BasicBlock *UserBB = User->getParent(); 755 if (PHINode *PN = dyn_cast<PHINode>(User)) { 756 UserBB = PN->getIncomingBlock(TheUse); 757 } 758 759 // Preincrement use iterator so we don't invalidate it. 760 ++UI; 761 762 // The first insertion point of a block containing an EH pad is after the 763 // pad. If the pad is the user, we cannot sink the cast past the pad. 764 if (User->isEHPad()) 765 continue; 766 767 // If the block selected to receive the cast is an EH pad that does not 768 // allow non-PHI instructions before the terminator, we can't sink the 769 // cast. 770 if (UserBB->getTerminator()->isEHPad()) 771 continue; 772 773 // If this user is in the same block as the cast, don't change the cast. 774 if (UserBB == DefBB) continue; 775 776 // If we have already inserted a cast into this block, use it. 777 CastInst *&InsertedCast = InsertedCasts[UserBB]; 778 779 if (!InsertedCast) { 780 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 781 assert(InsertPt != UserBB->end()); 782 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 783 CI->getType(), "", &*InsertPt); 784 } 785 786 // Replace a use of the cast with a use of the new cast. 787 TheUse = InsertedCast; 788 MadeChange = true; 789 ++NumCastUses; 790 } 791 792 // If we removed all uses, nuke the cast. 793 if (CI->use_empty()) { 794 CI->eraseFromParent(); 795 MadeChange = true; 796 } 797 798 return MadeChange; 799 } 800 801 /// If the specified cast instruction is a noop copy (e.g. it's casting from 802 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 803 /// reduce the number of virtual registers that must be created and coalesced. 804 /// 805 /// Return true if any changes are made. 806 /// 807 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 808 const DataLayout &DL) { 809 // If this is a noop copy, 810 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 811 EVT DstVT = TLI.getValueType(DL, CI->getType()); 812 813 // This is an fp<->int conversion? 814 if (SrcVT.isInteger() != DstVT.isInteger()) 815 return false; 816 817 // If this is an extension, it will be a zero or sign extension, which 818 // isn't a noop. 819 if (SrcVT.bitsLT(DstVT)) return false; 820 821 // If these values will be promoted, find out what they will be promoted 822 // to. This helps us consider truncates on PPC as noop copies when they 823 // are. 824 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 825 TargetLowering::TypePromoteInteger) 826 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 827 if (TLI.getTypeAction(CI->getContext(), DstVT) == 828 TargetLowering::TypePromoteInteger) 829 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 830 831 // If, after promotion, these are the same types, this is a noop copy. 832 if (SrcVT != DstVT) 833 return false; 834 835 return SinkCast(CI); 836 } 837 838 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 839 /// possible. 840 /// 841 /// Return true if any changes were made. 842 static bool CombineUAddWithOverflow(CmpInst *CI) { 843 Value *A, *B; 844 Instruction *AddI; 845 if (!match(CI, 846 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 847 return false; 848 849 Type *Ty = AddI->getType(); 850 if (!isa<IntegerType>(Ty)) 851 return false; 852 853 // We don't want to move around uses of condition values this late, so we we 854 // check if it is legal to create the call to the intrinsic in the basic 855 // block containing the icmp: 856 857 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 858 return false; 859 860 #ifndef NDEBUG 861 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 862 // for now: 863 if (AddI->hasOneUse()) 864 assert(*AddI->user_begin() == CI && "expected!"); 865 #endif 866 867 Module *M = CI->getModule(); 868 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 869 870 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 871 872 auto *UAddWithOverflow = 873 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 874 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 875 auto *Overflow = 876 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 877 878 CI->replaceAllUsesWith(Overflow); 879 AddI->replaceAllUsesWith(UAdd); 880 CI->eraseFromParent(); 881 AddI->eraseFromParent(); 882 return true; 883 } 884 885 /// Sink the given CmpInst into user blocks to reduce the number of virtual 886 /// registers that must be created and coalesced. This is a clear win except on 887 /// targets with multiple condition code registers (PowerPC), where it might 888 /// lose; some adjustment may be wanted there. 889 /// 890 /// Return true if any changes are made. 891 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 892 BasicBlock *DefBB = CI->getParent(); 893 894 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 895 if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI)) 896 return false; 897 898 // Only insert a cmp in each block once. 899 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 900 901 bool MadeChange = false; 902 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 903 UI != E; ) { 904 Use &TheUse = UI.getUse(); 905 Instruction *User = cast<Instruction>(*UI); 906 907 // Preincrement use iterator so we don't invalidate it. 908 ++UI; 909 910 // Don't bother for PHI nodes. 911 if (isa<PHINode>(User)) 912 continue; 913 914 // Figure out which BB this cmp is used in. 915 BasicBlock *UserBB = User->getParent(); 916 917 // If this user is in the same block as the cmp, don't change the cmp. 918 if (UserBB == DefBB) continue; 919 920 // If we have already inserted a cmp into this block, use it. 921 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 922 923 if (!InsertedCmp) { 924 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 925 assert(InsertPt != UserBB->end()); 926 InsertedCmp = 927 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 928 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 929 // Propagate the debug info. 930 InsertedCmp->setDebugLoc(CI->getDebugLoc()); 931 } 932 933 // Replace a use of the cmp with a use of the new cmp. 934 TheUse = InsertedCmp; 935 MadeChange = true; 936 ++NumCmpUses; 937 } 938 939 // If we removed all uses, nuke the cmp. 940 if (CI->use_empty()) { 941 CI->eraseFromParent(); 942 MadeChange = true; 943 } 944 945 return MadeChange; 946 } 947 948 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 949 if (SinkCmpExpression(CI, TLI)) 950 return true; 951 952 if (CombineUAddWithOverflow(CI)) 953 return true; 954 955 return false; 956 } 957 958 /// Check if the candidates could be combined with a shift instruction, which 959 /// includes: 960 /// 1. Truncate instruction 961 /// 2. And instruction and the imm is a mask of the low bits: 962 /// imm & (imm+1) == 0 963 static bool isExtractBitsCandidateUse(Instruction *User) { 964 if (!isa<TruncInst>(User)) { 965 if (User->getOpcode() != Instruction::And || 966 !isa<ConstantInt>(User->getOperand(1))) 967 return false; 968 969 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 970 971 if ((Cimm & (Cimm + 1)).getBoolValue()) 972 return false; 973 } 974 return true; 975 } 976 977 /// Sink both shift and truncate instruction to the use of truncate's BB. 978 static bool 979 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 980 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 981 const TargetLowering &TLI, const DataLayout &DL) { 982 BasicBlock *UserBB = User->getParent(); 983 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 984 TruncInst *TruncI = dyn_cast<TruncInst>(User); 985 bool MadeChange = false; 986 987 for (Value::user_iterator TruncUI = TruncI->user_begin(), 988 TruncE = TruncI->user_end(); 989 TruncUI != TruncE;) { 990 991 Use &TruncTheUse = TruncUI.getUse(); 992 Instruction *TruncUser = cast<Instruction>(*TruncUI); 993 // Preincrement use iterator so we don't invalidate it. 994 995 ++TruncUI; 996 997 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 998 if (!ISDOpcode) 999 continue; 1000 1001 // If the use is actually a legal node, there will not be an 1002 // implicit truncate. 1003 // FIXME: always querying the result type is just an 1004 // approximation; some nodes' legality is determined by the 1005 // operand or other means. There's no good way to find out though. 1006 if (TLI.isOperationLegalOrCustom( 1007 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1008 continue; 1009 1010 // Don't bother for PHI nodes. 1011 if (isa<PHINode>(TruncUser)) 1012 continue; 1013 1014 BasicBlock *TruncUserBB = TruncUser->getParent(); 1015 1016 if (UserBB == TruncUserBB) 1017 continue; 1018 1019 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1020 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1021 1022 if (!InsertedShift && !InsertedTrunc) { 1023 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1024 assert(InsertPt != TruncUserBB->end()); 1025 // Sink the shift 1026 if (ShiftI->getOpcode() == Instruction::AShr) 1027 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1028 "", &*InsertPt); 1029 else 1030 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1031 "", &*InsertPt); 1032 1033 // Sink the trunc 1034 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1035 TruncInsertPt++; 1036 assert(TruncInsertPt != TruncUserBB->end()); 1037 1038 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1039 TruncI->getType(), "", &*TruncInsertPt); 1040 1041 MadeChange = true; 1042 1043 TruncTheUse = InsertedTrunc; 1044 } 1045 } 1046 return MadeChange; 1047 } 1048 1049 /// Sink the shift *right* instruction into user blocks if the uses could 1050 /// potentially be combined with this shift instruction and generate BitExtract 1051 /// instruction. It will only be applied if the architecture supports BitExtract 1052 /// instruction. Here is an example: 1053 /// BB1: 1054 /// %x.extract.shift = lshr i64 %arg1, 32 1055 /// BB2: 1056 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1057 /// ==> 1058 /// 1059 /// BB2: 1060 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1061 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1062 /// 1063 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1064 /// instruction. 1065 /// Return true if any changes are made. 1066 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1067 const TargetLowering &TLI, 1068 const DataLayout &DL) { 1069 BasicBlock *DefBB = ShiftI->getParent(); 1070 1071 /// Only insert instructions in each block once. 1072 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1073 1074 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1075 1076 bool MadeChange = false; 1077 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1078 UI != E;) { 1079 Use &TheUse = UI.getUse(); 1080 Instruction *User = cast<Instruction>(*UI); 1081 // Preincrement use iterator so we don't invalidate it. 1082 ++UI; 1083 1084 // Don't bother for PHI nodes. 1085 if (isa<PHINode>(User)) 1086 continue; 1087 1088 if (!isExtractBitsCandidateUse(User)) 1089 continue; 1090 1091 BasicBlock *UserBB = User->getParent(); 1092 1093 if (UserBB == DefBB) { 1094 // If the shift and truncate instruction are in the same BB. The use of 1095 // the truncate(TruncUse) may still introduce another truncate if not 1096 // legal. In this case, we would like to sink both shift and truncate 1097 // instruction to the BB of TruncUse. 1098 // for example: 1099 // BB1: 1100 // i64 shift.result = lshr i64 opnd, imm 1101 // trunc.result = trunc shift.result to i16 1102 // 1103 // BB2: 1104 // ----> We will have an implicit truncate here if the architecture does 1105 // not have i16 compare. 1106 // cmp i16 trunc.result, opnd2 1107 // 1108 if (isa<TruncInst>(User) && shiftIsLegal 1109 // If the type of the truncate is legal, no trucate will be 1110 // introduced in other basic blocks. 1111 && 1112 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1113 MadeChange = 1114 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1115 1116 continue; 1117 } 1118 // If we have already inserted a shift into this block, use it. 1119 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1120 1121 if (!InsertedShift) { 1122 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1123 assert(InsertPt != UserBB->end()); 1124 1125 if (ShiftI->getOpcode() == Instruction::AShr) 1126 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1127 "", &*InsertPt); 1128 else 1129 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1130 "", &*InsertPt); 1131 1132 MadeChange = true; 1133 } 1134 1135 // Replace a use of the shift with a use of the new shift. 1136 TheUse = InsertedShift; 1137 } 1138 1139 // If we removed all uses, nuke the shift. 1140 if (ShiftI->use_empty()) 1141 ShiftI->eraseFromParent(); 1142 1143 return MadeChange; 1144 } 1145 1146 // Translate a masked load intrinsic like 1147 // <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align, 1148 // <16 x i1> %mask, <16 x i32> %passthru) 1149 // to a chain of basic blocks, with loading element one-by-one if 1150 // the appropriate mask bit is set 1151 // 1152 // %1 = bitcast i8* %addr to i32* 1153 // %2 = extractelement <16 x i1> %mask, i32 0 1154 // %3 = icmp eq i1 %2, true 1155 // br i1 %3, label %cond.load, label %else 1156 // 1157 //cond.load: ; preds = %0 1158 // %4 = getelementptr i32* %1, i32 0 1159 // %5 = load i32* %4 1160 // %6 = insertelement <16 x i32> undef, i32 %5, i32 0 1161 // br label %else 1162 // 1163 //else: ; preds = %0, %cond.load 1164 // %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ] 1165 // %7 = extractelement <16 x i1> %mask, i32 1 1166 // %8 = icmp eq i1 %7, true 1167 // br i1 %8, label %cond.load1, label %else2 1168 // 1169 //cond.load1: ; preds = %else 1170 // %9 = getelementptr i32* %1, i32 1 1171 // %10 = load i32* %9 1172 // %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1 1173 // br label %else2 1174 // 1175 //else2: ; preds = %else, %cond.load1 1176 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1177 // %12 = extractelement <16 x i1> %mask, i32 2 1178 // %13 = icmp eq i1 %12, true 1179 // br i1 %13, label %cond.load4, label %else5 1180 // 1181 static void scalarizeMaskedLoad(CallInst *CI) { 1182 Value *Ptr = CI->getArgOperand(0); 1183 Value *Alignment = CI->getArgOperand(1); 1184 Value *Mask = CI->getArgOperand(2); 1185 Value *Src0 = CI->getArgOperand(3); 1186 1187 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1188 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1189 assert(VecType && "Unexpected return type of masked load intrinsic"); 1190 1191 Type *EltTy = CI->getType()->getVectorElementType(); 1192 1193 IRBuilder<> Builder(CI->getContext()); 1194 Instruction *InsertPt = CI; 1195 BasicBlock *IfBlock = CI->getParent(); 1196 BasicBlock *CondBlock = nullptr; 1197 BasicBlock *PrevIfBlock = CI->getParent(); 1198 1199 Builder.SetInsertPoint(InsertPt); 1200 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1201 1202 // Short-cut if the mask is all-true. 1203 bool IsAllOnesMask = isa<Constant>(Mask) && 1204 cast<Constant>(Mask)->isAllOnesValue(); 1205 1206 if (IsAllOnesMask) { 1207 Value *NewI = Builder.CreateAlignedLoad(Ptr, AlignVal); 1208 CI->replaceAllUsesWith(NewI); 1209 CI->eraseFromParent(); 1210 return; 1211 } 1212 1213 // Adjust alignment for the scalar instruction. 1214 AlignVal = std::min(AlignVal, VecType->getScalarSizeInBits()/8); 1215 // Bitcast %addr fron i8* to EltTy* 1216 Type *NewPtrType = 1217 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1218 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1219 unsigned VectorWidth = VecType->getNumElements(); 1220 1221 Value *UndefVal = UndefValue::get(VecType); 1222 1223 // The result vector 1224 Value *VResult = UndefVal; 1225 1226 if (isa<ConstantVector>(Mask)) { 1227 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1228 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1229 continue; 1230 Value *Gep = 1231 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1232 LoadInst* Load = Builder.CreateAlignedLoad(Gep, AlignVal); 1233 VResult = Builder.CreateInsertElement(VResult, Load, 1234 Builder.getInt32(Idx)); 1235 } 1236 Value *NewI = Builder.CreateSelect(Mask, VResult, Src0); 1237 CI->replaceAllUsesWith(NewI); 1238 CI->eraseFromParent(); 1239 return; 1240 } 1241 1242 PHINode *Phi = nullptr; 1243 Value *PrevPhi = UndefVal; 1244 1245 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1246 1247 // Fill the "else" block, created in the previous iteration 1248 // 1249 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1250 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1251 // %to_load = icmp eq i1 %mask_1, true 1252 // br i1 %to_load, label %cond.load, label %else 1253 // 1254 if (Idx > 0) { 1255 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1256 Phi->addIncoming(VResult, CondBlock); 1257 Phi->addIncoming(PrevPhi, PrevIfBlock); 1258 PrevPhi = Phi; 1259 VResult = Phi; 1260 } 1261 1262 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1263 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1264 ConstantInt::get(Predicate->getType(), 1)); 1265 1266 // Create "cond" block 1267 // 1268 // %EltAddr = getelementptr i32* %1, i32 0 1269 // %Elt = load i32* %EltAddr 1270 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1271 // 1272 CondBlock = IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.load"); 1273 Builder.SetInsertPoint(InsertPt); 1274 1275 Value *Gep = 1276 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1277 LoadInst *Load = Builder.CreateAlignedLoad(Gep, AlignVal); 1278 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx)); 1279 1280 // Create "else" block, fill it in the next iteration 1281 BasicBlock *NewIfBlock = 1282 CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); 1283 Builder.SetInsertPoint(InsertPt); 1284 Instruction *OldBr = IfBlock->getTerminator(); 1285 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1286 OldBr->eraseFromParent(); 1287 PrevIfBlock = IfBlock; 1288 IfBlock = NewIfBlock; 1289 } 1290 1291 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1292 Phi->addIncoming(VResult, CondBlock); 1293 Phi->addIncoming(PrevPhi, PrevIfBlock); 1294 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1295 CI->replaceAllUsesWith(NewI); 1296 CI->eraseFromParent(); 1297 } 1298 1299 // Translate a masked store intrinsic, like 1300 // void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align, 1301 // <16 x i1> %mask) 1302 // to a chain of basic blocks, that stores element one-by-one if 1303 // the appropriate mask bit is set 1304 // 1305 // %1 = bitcast i8* %addr to i32* 1306 // %2 = extractelement <16 x i1> %mask, i32 0 1307 // %3 = icmp eq i1 %2, true 1308 // br i1 %3, label %cond.store, label %else 1309 // 1310 // cond.store: ; preds = %0 1311 // %4 = extractelement <16 x i32> %val, i32 0 1312 // %5 = getelementptr i32* %1, i32 0 1313 // store i32 %4, i32* %5 1314 // br label %else 1315 // 1316 // else: ; preds = %0, %cond.store 1317 // %6 = extractelement <16 x i1> %mask, i32 1 1318 // %7 = icmp eq i1 %6, true 1319 // br i1 %7, label %cond.store1, label %else2 1320 // 1321 // cond.store1: ; preds = %else 1322 // %8 = extractelement <16 x i32> %val, i32 1 1323 // %9 = getelementptr i32* %1, i32 1 1324 // store i32 %8, i32* %9 1325 // br label %else2 1326 // . . . 1327 static void scalarizeMaskedStore(CallInst *CI) { 1328 Value *Src = CI->getArgOperand(0); 1329 Value *Ptr = CI->getArgOperand(1); 1330 Value *Alignment = CI->getArgOperand(2); 1331 Value *Mask = CI->getArgOperand(3); 1332 1333 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1334 VectorType *VecType = dyn_cast<VectorType>(Src->getType()); 1335 assert(VecType && "Unexpected data type in masked store intrinsic"); 1336 1337 Type *EltTy = VecType->getElementType(); 1338 1339 IRBuilder<> Builder(CI->getContext()); 1340 Instruction *InsertPt = CI; 1341 BasicBlock *IfBlock = CI->getParent(); 1342 Builder.SetInsertPoint(InsertPt); 1343 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1344 1345 // Short-cut if the mask is all-true. 1346 bool IsAllOnesMask = isa<Constant>(Mask) && 1347 cast<Constant>(Mask)->isAllOnesValue(); 1348 1349 if (IsAllOnesMask) { 1350 Builder.CreateAlignedStore(Src, Ptr, AlignVal); 1351 CI->eraseFromParent(); 1352 return; 1353 } 1354 1355 // Adjust alignment for the scalar instruction. 1356 AlignVal = std::max(AlignVal, VecType->getScalarSizeInBits()/8); 1357 // Bitcast %addr fron i8* to EltTy* 1358 Type *NewPtrType = 1359 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1360 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1361 unsigned VectorWidth = VecType->getNumElements(); 1362 1363 if (isa<ConstantVector>(Mask)) { 1364 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1365 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1366 continue; 1367 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1368 Value *Gep = 1369 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1370 Builder.CreateAlignedStore(OneElt, Gep, AlignVal); 1371 } 1372 CI->eraseFromParent(); 1373 return; 1374 } 1375 1376 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1377 1378 // Fill the "else" block, created in the previous iteration 1379 // 1380 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1381 // %to_store = icmp eq i1 %mask_1, true 1382 // br i1 %to_store, label %cond.store, label %else 1383 // 1384 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1385 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1386 ConstantInt::get(Predicate->getType(), 1)); 1387 1388 // Create "cond" block 1389 // 1390 // %OneElt = extractelement <16 x i32> %Src, i32 Idx 1391 // %EltAddr = getelementptr i32* %1, i32 0 1392 // %store i32 %OneElt, i32* %EltAddr 1393 // 1394 BasicBlock *CondBlock = 1395 IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.store"); 1396 Builder.SetInsertPoint(InsertPt); 1397 1398 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1399 Value *Gep = 1400 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1401 Builder.CreateAlignedStore(OneElt, Gep, AlignVal); 1402 1403 // Create "else" block, fill it in the next iteration 1404 BasicBlock *NewIfBlock = 1405 CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); 1406 Builder.SetInsertPoint(InsertPt); 1407 Instruction *OldBr = IfBlock->getTerminator(); 1408 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1409 OldBr->eraseFromParent(); 1410 IfBlock = NewIfBlock; 1411 } 1412 CI->eraseFromParent(); 1413 } 1414 1415 // Translate a masked gather intrinsic like 1416 // <16 x i32 > @llvm.masked.gather.v16i32( <16 x i32*> %Ptrs, i32 4, 1417 // <16 x i1> %Mask, <16 x i32> %Src) 1418 // to a chain of basic blocks, with loading element one-by-one if 1419 // the appropriate mask bit is set 1420 // 1421 // % Ptrs = getelementptr i32, i32* %base, <16 x i64> %ind 1422 // % Mask0 = extractelement <16 x i1> %Mask, i32 0 1423 // % ToLoad0 = icmp eq i1 % Mask0, true 1424 // br i1 % ToLoad0, label %cond.load, label %else 1425 // 1426 // cond.load: 1427 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0 1428 // % Load0 = load i32, i32* % Ptr0, align 4 1429 // % Res0 = insertelement <16 x i32> undef, i32 % Load0, i32 0 1430 // br label %else 1431 // 1432 // else: 1433 // %res.phi.else = phi <16 x i32>[% Res0, %cond.load], [undef, % 0] 1434 // % Mask1 = extractelement <16 x i1> %Mask, i32 1 1435 // % ToLoad1 = icmp eq i1 % Mask1, true 1436 // br i1 % ToLoad1, label %cond.load1, label %else2 1437 // 1438 // cond.load1: 1439 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1440 // % Load1 = load i32, i32* % Ptr1, align 4 1441 // % Res1 = insertelement <16 x i32> %res.phi.else, i32 % Load1, i32 1 1442 // br label %else2 1443 // . . . 1444 // % Result = select <16 x i1> %Mask, <16 x i32> %res.phi.select, <16 x i32> %Src 1445 // ret <16 x i32> %Result 1446 static void scalarizeMaskedGather(CallInst *CI) { 1447 Value *Ptrs = CI->getArgOperand(0); 1448 Value *Alignment = CI->getArgOperand(1); 1449 Value *Mask = CI->getArgOperand(2); 1450 Value *Src0 = CI->getArgOperand(3); 1451 1452 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1453 1454 assert(VecType && "Unexpected return type of masked load intrinsic"); 1455 1456 IRBuilder<> Builder(CI->getContext()); 1457 Instruction *InsertPt = CI; 1458 BasicBlock *IfBlock = CI->getParent(); 1459 BasicBlock *CondBlock = nullptr; 1460 BasicBlock *PrevIfBlock = CI->getParent(); 1461 Builder.SetInsertPoint(InsertPt); 1462 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1463 1464 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1465 1466 Value *UndefVal = UndefValue::get(VecType); 1467 1468 // The result vector 1469 Value *VResult = UndefVal; 1470 unsigned VectorWidth = VecType->getNumElements(); 1471 1472 // Shorten the way if the mask is a vector of constants. 1473 bool IsConstMask = isa<ConstantVector>(Mask); 1474 1475 if (IsConstMask) { 1476 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1477 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1478 continue; 1479 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1480 "Ptr" + Twine(Idx)); 1481 LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal, 1482 "Load" + Twine(Idx)); 1483 VResult = Builder.CreateInsertElement(VResult, Load, 1484 Builder.getInt32(Idx), 1485 "Res" + Twine(Idx)); 1486 } 1487 Value *NewI = Builder.CreateSelect(Mask, VResult, Src0); 1488 CI->replaceAllUsesWith(NewI); 1489 CI->eraseFromParent(); 1490 return; 1491 } 1492 1493 PHINode *Phi = nullptr; 1494 Value *PrevPhi = UndefVal; 1495 1496 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1497 1498 // Fill the "else" block, created in the previous iteration 1499 // 1500 // %Mask1 = extractelement <16 x i1> %Mask, i32 1 1501 // %ToLoad1 = icmp eq i1 %Mask1, true 1502 // br i1 %ToLoad1, label %cond.load, label %else 1503 // 1504 if (Idx > 0) { 1505 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1506 Phi->addIncoming(VResult, CondBlock); 1507 Phi->addIncoming(PrevPhi, PrevIfBlock); 1508 PrevPhi = Phi; 1509 VResult = Phi; 1510 } 1511 1512 Value *Predicate = Builder.CreateExtractElement(Mask, 1513 Builder.getInt32(Idx), 1514 "Mask" + Twine(Idx)); 1515 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1516 ConstantInt::get(Predicate->getType(), 1), 1517 "ToLoad" + Twine(Idx)); 1518 1519 // Create "cond" block 1520 // 1521 // %EltAddr = getelementptr i32* %1, i32 0 1522 // %Elt = load i32* %EltAddr 1523 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1524 // 1525 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load"); 1526 Builder.SetInsertPoint(InsertPt); 1527 1528 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1529 "Ptr" + Twine(Idx)); 1530 LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal, 1531 "Load" + Twine(Idx)); 1532 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx), 1533 "Res" + Twine(Idx)); 1534 1535 // Create "else" block, fill it in the next iteration 1536 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1537 Builder.SetInsertPoint(InsertPt); 1538 Instruction *OldBr = IfBlock->getTerminator(); 1539 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1540 OldBr->eraseFromParent(); 1541 PrevIfBlock = IfBlock; 1542 IfBlock = NewIfBlock; 1543 } 1544 1545 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1546 Phi->addIncoming(VResult, CondBlock); 1547 Phi->addIncoming(PrevPhi, PrevIfBlock); 1548 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1549 CI->replaceAllUsesWith(NewI); 1550 CI->eraseFromParent(); 1551 } 1552 1553 // Translate a masked scatter intrinsic, like 1554 // void @llvm.masked.scatter.v16i32(<16 x i32> %Src, <16 x i32*>* %Ptrs, i32 4, 1555 // <16 x i1> %Mask) 1556 // to a chain of basic blocks, that stores element one-by-one if 1557 // the appropriate mask bit is set. 1558 // 1559 // % Ptrs = getelementptr i32, i32* %ptr, <16 x i64> %ind 1560 // % Mask0 = extractelement <16 x i1> % Mask, i32 0 1561 // % ToStore0 = icmp eq i1 % Mask0, true 1562 // br i1 %ToStore0, label %cond.store, label %else 1563 // 1564 // cond.store: 1565 // % Elt0 = extractelement <16 x i32> %Src, i32 0 1566 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0 1567 // store i32 %Elt0, i32* % Ptr0, align 4 1568 // br label %else 1569 // 1570 // else: 1571 // % Mask1 = extractelement <16 x i1> % Mask, i32 1 1572 // % ToStore1 = icmp eq i1 % Mask1, true 1573 // br i1 % ToStore1, label %cond.store1, label %else2 1574 // 1575 // cond.store1: 1576 // % Elt1 = extractelement <16 x i32> %Src, i32 1 1577 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1578 // store i32 % Elt1, i32* % Ptr1, align 4 1579 // br label %else2 1580 // . . . 1581 static void scalarizeMaskedScatter(CallInst *CI) { 1582 Value *Src = CI->getArgOperand(0); 1583 Value *Ptrs = CI->getArgOperand(1); 1584 Value *Alignment = CI->getArgOperand(2); 1585 Value *Mask = CI->getArgOperand(3); 1586 1587 assert(isa<VectorType>(Src->getType()) && 1588 "Unexpected data type in masked scatter intrinsic"); 1589 assert(isa<VectorType>(Ptrs->getType()) && 1590 isa<PointerType>(Ptrs->getType()->getVectorElementType()) && 1591 "Vector of pointers is expected in masked scatter intrinsic"); 1592 1593 IRBuilder<> Builder(CI->getContext()); 1594 Instruction *InsertPt = CI; 1595 BasicBlock *IfBlock = CI->getParent(); 1596 Builder.SetInsertPoint(InsertPt); 1597 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1598 1599 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1600 unsigned VectorWidth = Src->getType()->getVectorNumElements(); 1601 1602 // Shorten the way if the mask is a vector of constants. 1603 bool IsConstMask = isa<ConstantVector>(Mask); 1604 1605 if (IsConstMask) { 1606 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1607 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1608 continue; 1609 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx), 1610 "Elt" + Twine(Idx)); 1611 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1612 "Ptr" + Twine(Idx)); 1613 Builder.CreateAlignedStore(OneElt, Ptr, AlignVal); 1614 } 1615 CI->eraseFromParent(); 1616 return; 1617 } 1618 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1619 // Fill the "else" block, created in the previous iteration 1620 // 1621 // % Mask1 = extractelement <16 x i1> % Mask, i32 Idx 1622 // % ToStore = icmp eq i1 % Mask1, true 1623 // br i1 % ToStore, label %cond.store, label %else 1624 // 1625 Value *Predicate = Builder.CreateExtractElement(Mask, 1626 Builder.getInt32(Idx), 1627 "Mask" + Twine(Idx)); 1628 Value *Cmp = 1629 Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1630 ConstantInt::get(Predicate->getType(), 1), 1631 "ToStore" + Twine(Idx)); 1632 1633 // Create "cond" block 1634 // 1635 // % Elt1 = extractelement <16 x i32> %Src, i32 1 1636 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1637 // %store i32 % Elt1, i32* % Ptr1 1638 // 1639 BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1640 Builder.SetInsertPoint(InsertPt); 1641 1642 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx), 1643 "Elt" + Twine(Idx)); 1644 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1645 "Ptr" + Twine(Idx)); 1646 Builder.CreateAlignedStore(OneElt, Ptr, AlignVal); 1647 1648 // Create "else" block, fill it in the next iteration 1649 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1650 Builder.SetInsertPoint(InsertPt); 1651 Instruction *OldBr = IfBlock->getTerminator(); 1652 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1653 OldBr->eraseFromParent(); 1654 IfBlock = NewIfBlock; 1655 } 1656 CI->eraseFromParent(); 1657 } 1658 1659 /// If counting leading or trailing zeros is an expensive operation and a zero 1660 /// input is defined, add a check for zero to avoid calling the intrinsic. 1661 /// 1662 /// We want to transform: 1663 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1664 /// 1665 /// into: 1666 /// entry: 1667 /// %cmpz = icmp eq i64 %A, 0 1668 /// br i1 %cmpz, label %cond.end, label %cond.false 1669 /// cond.false: 1670 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1671 /// br label %cond.end 1672 /// cond.end: 1673 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1674 /// 1675 /// If the transform is performed, return true and set ModifiedDT to true. 1676 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1677 const TargetLowering *TLI, 1678 const DataLayout *DL, 1679 bool &ModifiedDT) { 1680 if (!TLI || !DL) 1681 return false; 1682 1683 // If a zero input is undefined, it doesn't make sense to despeculate that. 1684 if (match(CountZeros->getOperand(1), m_One())) 1685 return false; 1686 1687 // If it's cheap to speculate, there's nothing to do. 1688 auto IntrinsicID = CountZeros->getIntrinsicID(); 1689 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1690 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1691 return false; 1692 1693 // Only handle legal scalar cases. Anything else requires too much work. 1694 Type *Ty = CountZeros->getType(); 1695 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1696 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1697 return false; 1698 1699 // The intrinsic will be sunk behind a compare against zero and branch. 1700 BasicBlock *StartBlock = CountZeros->getParent(); 1701 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1702 1703 // Create another block after the count zero intrinsic. A PHI will be added 1704 // in this block to select the result of the intrinsic or the bit-width 1705 // constant if the input to the intrinsic is zero. 1706 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1707 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1708 1709 // Set up a builder to create a compare, conditional branch, and PHI. 1710 IRBuilder<> Builder(CountZeros->getContext()); 1711 Builder.SetInsertPoint(StartBlock->getTerminator()); 1712 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1713 1714 // Replace the unconditional branch that was created by the first split with 1715 // a compare against zero and a conditional branch. 1716 Value *Zero = Constant::getNullValue(Ty); 1717 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1718 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1719 StartBlock->getTerminator()->eraseFromParent(); 1720 1721 // Create a PHI in the end block to select either the output of the intrinsic 1722 // or the bit width of the operand. 1723 Builder.SetInsertPoint(&EndBlock->front()); 1724 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1725 CountZeros->replaceAllUsesWith(PN); 1726 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1727 PN->addIncoming(BitWidth, StartBlock); 1728 PN->addIncoming(CountZeros, CallBlock); 1729 1730 // We are explicitly handling the zero case, so we can set the intrinsic's 1731 // undefined zero argument to 'true'. This will also prevent reprocessing the 1732 // intrinsic; we only despeculate when a zero input is defined. 1733 CountZeros->setArgOperand(1, Builder.getTrue()); 1734 ModifiedDT = true; 1735 return true; 1736 } 1737 1738 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool& ModifiedDT) { 1739 BasicBlock *BB = CI->getParent(); 1740 1741 // Lower inline assembly if we can. 1742 // If we found an inline asm expession, and if the target knows how to 1743 // lower it to normal LLVM code, do so now. 1744 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1745 if (TLI->ExpandInlineAsm(CI)) { 1746 // Avoid invalidating the iterator. 1747 CurInstIterator = BB->begin(); 1748 // Avoid processing instructions out of order, which could cause 1749 // reuse before a value is defined. 1750 SunkAddrs.clear(); 1751 return true; 1752 } 1753 // Sink address computing for memory operands into the block. 1754 if (optimizeInlineAsmInst(CI)) 1755 return true; 1756 } 1757 1758 // Align the pointer arguments to this call if the target thinks it's a good 1759 // idea 1760 unsigned MinSize, PrefAlign; 1761 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1762 for (auto &Arg : CI->arg_operands()) { 1763 // We want to align both objects whose address is used directly and 1764 // objects whose address is used in casts and GEPs, though it only makes 1765 // sense for GEPs if the offset is a multiple of the desired alignment and 1766 // if size - offset meets the size threshold. 1767 if (!Arg->getType()->isPointerTy()) 1768 continue; 1769 APInt Offset(DL->getPointerSizeInBits( 1770 cast<PointerType>(Arg->getType())->getAddressSpace()), 1771 0); 1772 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1773 uint64_t Offset2 = Offset.getLimitedValue(); 1774 if ((Offset2 & (PrefAlign-1)) != 0) 1775 continue; 1776 AllocaInst *AI; 1777 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1778 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1779 AI->setAlignment(PrefAlign); 1780 // Global variables can only be aligned if they are defined in this 1781 // object (i.e. they are uniquely initialized in this object), and 1782 // over-aligning global variables that have an explicit section is 1783 // forbidden. 1784 GlobalVariable *GV; 1785 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1786 GV->getPointerAlignment(*DL) < PrefAlign && 1787 DL->getTypeAllocSize(GV->getValueType()) >= 1788 MinSize + Offset2) 1789 GV->setAlignment(PrefAlign); 1790 } 1791 // If this is a memcpy (or similar) then we may be able to improve the 1792 // alignment 1793 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1794 unsigned Align = getKnownAlignment(MI->getDest(), *DL); 1795 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 1796 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL)); 1797 if (Align > MI->getAlignment()) 1798 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align)); 1799 } 1800 } 1801 1802 // If we have a cold call site, try to sink addressing computation into the 1803 // cold block. This interacts with our handling for loads and stores to 1804 // ensure that we can fold all uses of a potential addressing computation 1805 // into their uses. TODO: generalize this to work over profiling data 1806 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1807 for (auto &Arg : CI->arg_operands()) { 1808 if (!Arg->getType()->isPointerTy()) 1809 continue; 1810 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1811 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1812 } 1813 1814 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1815 if (II) { 1816 switch (II->getIntrinsicID()) { 1817 default: break; 1818 case Intrinsic::objectsize: { 1819 // Lower all uses of llvm.objectsize.* 1820 uint64_t Size; 1821 Type *ReturnTy = CI->getType(); 1822 Constant *RetVal = nullptr; 1823 ConstantInt *Op1 = cast<ConstantInt>(II->getArgOperand(1)); 1824 ObjSizeMode Mode = Op1->isZero() ? ObjSizeMode::Max : ObjSizeMode::Min; 1825 if (getObjectSize(II->getArgOperand(0), 1826 Size, *DL, TLInfo, false, Mode)) { 1827 RetVal = ConstantInt::get(ReturnTy, Size); 1828 } else { 1829 RetVal = ConstantInt::get(ReturnTy, 1830 Mode == ObjSizeMode::Min ? 0 : -1ULL); 1831 } 1832 // Substituting this can cause recursive simplifications, which can 1833 // invalidate our iterator. Use a WeakVH to hold onto it in case this 1834 // happens. 1835 Value *CurValue = &*CurInstIterator; 1836 WeakVH IterHandle(CurValue); 1837 1838 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1839 1840 // If the iterator instruction was recursively deleted, start over at the 1841 // start of the block. 1842 if (IterHandle != CurValue) { 1843 CurInstIterator = BB->begin(); 1844 SunkAddrs.clear(); 1845 } 1846 return true; 1847 } 1848 case Intrinsic::masked_load: { 1849 // Scalarize unsupported vector masked load 1850 if (!TTI->isLegalMaskedLoad(CI->getType())) { 1851 scalarizeMaskedLoad(CI); 1852 ModifiedDT = true; 1853 return true; 1854 } 1855 return false; 1856 } 1857 case Intrinsic::masked_store: { 1858 if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType())) { 1859 scalarizeMaskedStore(CI); 1860 ModifiedDT = true; 1861 return true; 1862 } 1863 return false; 1864 } 1865 case Intrinsic::masked_gather: { 1866 if (!TTI->isLegalMaskedGather(CI->getType())) { 1867 scalarizeMaskedGather(CI); 1868 ModifiedDT = true; 1869 return true; 1870 } 1871 return false; 1872 } 1873 case Intrinsic::masked_scatter: { 1874 if (!TTI->isLegalMaskedScatter(CI->getArgOperand(0)->getType())) { 1875 scalarizeMaskedScatter(CI); 1876 ModifiedDT = true; 1877 return true; 1878 } 1879 return false; 1880 } 1881 case Intrinsic::aarch64_stlxr: 1882 case Intrinsic::aarch64_stxr: { 1883 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1884 if (!ExtVal || !ExtVal->hasOneUse() || 1885 ExtVal->getParent() == CI->getParent()) 1886 return false; 1887 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1888 ExtVal->moveBefore(CI); 1889 // Mark this instruction as "inserted by CGP", so that other 1890 // optimizations don't touch it. 1891 InsertedInsts.insert(ExtVal); 1892 return true; 1893 } 1894 case Intrinsic::invariant_group_barrier: 1895 II->replaceAllUsesWith(II->getArgOperand(0)); 1896 II->eraseFromParent(); 1897 return true; 1898 1899 case Intrinsic::cttz: 1900 case Intrinsic::ctlz: 1901 // If counting zeros is expensive, try to avoid it. 1902 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 1903 } 1904 1905 if (TLI) { 1906 // Unknown address space. 1907 // TODO: Target hook to pick which address space the intrinsic cares 1908 // about? 1909 unsigned AddrSpace = ~0u; 1910 SmallVector<Value*, 2> PtrOps; 1911 Type *AccessTy; 1912 if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy, AddrSpace)) 1913 while (!PtrOps.empty()) 1914 if (optimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy, AddrSpace)) 1915 return true; 1916 } 1917 } 1918 1919 // From here on out we're working with named functions. 1920 if (!CI->getCalledFunction()) return false; 1921 1922 // Lower all default uses of _chk calls. This is very similar 1923 // to what InstCombineCalls does, but here we are only lowering calls 1924 // to fortified library functions (e.g. __memcpy_chk) that have the default 1925 // "don't know" as the objectsize. Anything else should be left alone. 1926 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1927 if (Value *V = Simplifier.optimizeCall(CI)) { 1928 CI->replaceAllUsesWith(V); 1929 CI->eraseFromParent(); 1930 return true; 1931 } 1932 return false; 1933 } 1934 1935 /// Look for opportunities to duplicate return instructions to the predecessor 1936 /// to enable tail call optimizations. The case it is currently looking for is: 1937 /// @code 1938 /// bb0: 1939 /// %tmp0 = tail call i32 @f0() 1940 /// br label %return 1941 /// bb1: 1942 /// %tmp1 = tail call i32 @f1() 1943 /// br label %return 1944 /// bb2: 1945 /// %tmp2 = tail call i32 @f2() 1946 /// br label %return 1947 /// return: 1948 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1949 /// ret i32 %retval 1950 /// @endcode 1951 /// 1952 /// => 1953 /// 1954 /// @code 1955 /// bb0: 1956 /// %tmp0 = tail call i32 @f0() 1957 /// ret i32 %tmp0 1958 /// bb1: 1959 /// %tmp1 = tail call i32 @f1() 1960 /// ret i32 %tmp1 1961 /// bb2: 1962 /// %tmp2 = tail call i32 @f2() 1963 /// ret i32 %tmp2 1964 /// @endcode 1965 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 1966 if (!TLI) 1967 return false; 1968 1969 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 1970 if (!RetI) 1971 return false; 1972 1973 PHINode *PN = nullptr; 1974 BitCastInst *BCI = nullptr; 1975 Value *V = RetI->getReturnValue(); 1976 if (V) { 1977 BCI = dyn_cast<BitCastInst>(V); 1978 if (BCI) 1979 V = BCI->getOperand(0); 1980 1981 PN = dyn_cast<PHINode>(V); 1982 if (!PN) 1983 return false; 1984 } 1985 1986 if (PN && PN->getParent() != BB) 1987 return false; 1988 1989 // Make sure there are no instructions between the PHI and return, or that the 1990 // return is the first instruction in the block. 1991 if (PN) { 1992 BasicBlock::iterator BI = BB->begin(); 1993 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1994 if (&*BI == BCI) 1995 // Also skip over the bitcast. 1996 ++BI; 1997 if (&*BI != RetI) 1998 return false; 1999 } else { 2000 BasicBlock::iterator BI = BB->begin(); 2001 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2002 if (&*BI != RetI) 2003 return false; 2004 } 2005 2006 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2007 /// call. 2008 const Function *F = BB->getParent(); 2009 SmallVector<CallInst*, 4> TailCalls; 2010 if (PN) { 2011 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2012 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 2013 // Make sure the phi value is indeed produced by the tail call. 2014 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 2015 TLI->mayBeEmittedAsTailCall(CI) && 2016 attributesPermitTailCall(F, CI, RetI, *TLI)) 2017 TailCalls.push_back(CI); 2018 } 2019 } else { 2020 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2021 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2022 if (!VisitedBBs.insert(*PI).second) 2023 continue; 2024 2025 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2026 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2027 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2028 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2029 if (RI == RE) 2030 continue; 2031 2032 CallInst *CI = dyn_cast<CallInst>(&*RI); 2033 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2034 attributesPermitTailCall(F, CI, RetI, *TLI)) 2035 TailCalls.push_back(CI); 2036 } 2037 } 2038 2039 bool Changed = false; 2040 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 2041 CallInst *CI = TailCalls[i]; 2042 CallSite CS(CI); 2043 2044 // Conservatively require the attributes of the call to match those of the 2045 // return. Ignore noalias because it doesn't affect the call sequence. 2046 AttributeSet CalleeAttrs = CS.getAttributes(); 2047 if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 2048 removeAttribute(Attribute::NoAlias) != 2049 AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 2050 removeAttribute(Attribute::NoAlias)) 2051 continue; 2052 2053 // Make sure the call instruction is followed by an unconditional branch to 2054 // the return block. 2055 BasicBlock *CallBB = CI->getParent(); 2056 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 2057 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2058 continue; 2059 2060 // Duplicate the return into CallBB. 2061 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 2062 ModifiedDT = Changed = true; 2063 ++NumRetsDup; 2064 } 2065 2066 // If we eliminated all predecessors of the block, delete the block now. 2067 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2068 BB->eraseFromParent(); 2069 2070 return Changed; 2071 } 2072 2073 //===----------------------------------------------------------------------===// 2074 // Memory Optimization 2075 //===----------------------------------------------------------------------===// 2076 2077 namespace { 2078 2079 /// This is an extended version of TargetLowering::AddrMode 2080 /// which holds actual Value*'s for register values. 2081 struct ExtAddrMode : public TargetLowering::AddrMode { 2082 Value *BaseReg; 2083 Value *ScaledReg; 2084 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} 2085 void print(raw_ostream &OS) const; 2086 void dump() const; 2087 2088 bool operator==(const ExtAddrMode& O) const { 2089 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && 2090 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && 2091 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); 2092 } 2093 }; 2094 2095 #ifndef NDEBUG 2096 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2097 AM.print(OS); 2098 return OS; 2099 } 2100 #endif 2101 2102 void ExtAddrMode::print(raw_ostream &OS) const { 2103 bool NeedPlus = false; 2104 OS << "["; 2105 if (BaseGV) { 2106 OS << (NeedPlus ? " + " : "") 2107 << "GV:"; 2108 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2109 NeedPlus = true; 2110 } 2111 2112 if (BaseOffs) { 2113 OS << (NeedPlus ? " + " : "") 2114 << BaseOffs; 2115 NeedPlus = true; 2116 } 2117 2118 if (BaseReg) { 2119 OS << (NeedPlus ? " + " : "") 2120 << "Base:"; 2121 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2122 NeedPlus = true; 2123 } 2124 if (Scale) { 2125 OS << (NeedPlus ? " + " : "") 2126 << Scale << "*"; 2127 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2128 } 2129 2130 OS << ']'; 2131 } 2132 2133 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2134 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2135 print(dbgs()); 2136 dbgs() << '\n'; 2137 } 2138 #endif 2139 2140 /// \brief This class provides transaction based operation on the IR. 2141 /// Every change made through this class is recorded in the internal state and 2142 /// can be undone (rollback) until commit is called. 2143 class TypePromotionTransaction { 2144 2145 /// \brief This represents the common interface of the individual transaction. 2146 /// Each class implements the logic for doing one specific modification on 2147 /// the IR via the TypePromotionTransaction. 2148 class TypePromotionAction { 2149 protected: 2150 /// The Instruction modified. 2151 Instruction *Inst; 2152 2153 public: 2154 /// \brief Constructor of the action. 2155 /// The constructor performs the related action on the IR. 2156 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2157 2158 virtual ~TypePromotionAction() {} 2159 2160 /// \brief Undo the modification done by this action. 2161 /// When this method is called, the IR must be in the same state as it was 2162 /// before this action was applied. 2163 /// \pre Undoing the action works if and only if the IR is in the exact same 2164 /// state as it was directly after this action was applied. 2165 virtual void undo() = 0; 2166 2167 /// \brief Advocate every change made by this action. 2168 /// When the results on the IR of the action are to be kept, it is important 2169 /// to call this function, otherwise hidden information may be kept forever. 2170 virtual void commit() { 2171 // Nothing to be done, this action is not doing anything. 2172 } 2173 }; 2174 2175 /// \brief Utility to remember the position of an instruction. 2176 class InsertionHandler { 2177 /// Position of an instruction. 2178 /// Either an instruction: 2179 /// - Is the first in a basic block: BB is used. 2180 /// - Has a previous instructon: PrevInst is used. 2181 union { 2182 Instruction *PrevInst; 2183 BasicBlock *BB; 2184 } Point; 2185 /// Remember whether or not the instruction had a previous instruction. 2186 bool HasPrevInstruction; 2187 2188 public: 2189 /// \brief Record the position of \p Inst. 2190 InsertionHandler(Instruction *Inst) { 2191 BasicBlock::iterator It = Inst->getIterator(); 2192 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2193 if (HasPrevInstruction) 2194 Point.PrevInst = &*--It; 2195 else 2196 Point.BB = Inst->getParent(); 2197 } 2198 2199 /// \brief Insert \p Inst at the recorded position. 2200 void insert(Instruction *Inst) { 2201 if (HasPrevInstruction) { 2202 if (Inst->getParent()) 2203 Inst->removeFromParent(); 2204 Inst->insertAfter(Point.PrevInst); 2205 } else { 2206 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2207 if (Inst->getParent()) 2208 Inst->moveBefore(Position); 2209 else 2210 Inst->insertBefore(Position); 2211 } 2212 } 2213 }; 2214 2215 /// \brief Move an instruction before another. 2216 class InstructionMoveBefore : public TypePromotionAction { 2217 /// Original position of the instruction. 2218 InsertionHandler Position; 2219 2220 public: 2221 /// \brief Move \p Inst before \p Before. 2222 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2223 : TypePromotionAction(Inst), Position(Inst) { 2224 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 2225 Inst->moveBefore(Before); 2226 } 2227 2228 /// \brief Move the instruction back to its original position. 2229 void undo() override { 2230 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2231 Position.insert(Inst); 2232 } 2233 }; 2234 2235 /// \brief Set the operand of an instruction with a new value. 2236 class OperandSetter : public TypePromotionAction { 2237 /// Original operand of the instruction. 2238 Value *Origin; 2239 /// Index of the modified instruction. 2240 unsigned Idx; 2241 2242 public: 2243 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 2244 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2245 : TypePromotionAction(Inst), Idx(Idx) { 2246 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2247 << "for:" << *Inst << "\n" 2248 << "with:" << *NewVal << "\n"); 2249 Origin = Inst->getOperand(Idx); 2250 Inst->setOperand(Idx, NewVal); 2251 } 2252 2253 /// \brief Restore the original value of the instruction. 2254 void undo() override { 2255 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2256 << "for: " << *Inst << "\n" 2257 << "with: " << *Origin << "\n"); 2258 Inst->setOperand(Idx, Origin); 2259 } 2260 }; 2261 2262 /// \brief Hide the operands of an instruction. 2263 /// Do as if this instruction was not using any of its operands. 2264 class OperandsHider : public TypePromotionAction { 2265 /// The list of original operands. 2266 SmallVector<Value *, 4> OriginalValues; 2267 2268 public: 2269 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 2270 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2271 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2272 unsigned NumOpnds = Inst->getNumOperands(); 2273 OriginalValues.reserve(NumOpnds); 2274 for (unsigned It = 0; It < NumOpnds; ++It) { 2275 // Save the current operand. 2276 Value *Val = Inst->getOperand(It); 2277 OriginalValues.push_back(Val); 2278 // Set a dummy one. 2279 // We could use OperandSetter here, but that would imply an overhead 2280 // that we are not willing to pay. 2281 Inst->setOperand(It, UndefValue::get(Val->getType())); 2282 } 2283 } 2284 2285 /// \brief Restore the original list of uses. 2286 void undo() override { 2287 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2288 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2289 Inst->setOperand(It, OriginalValues[It]); 2290 } 2291 }; 2292 2293 /// \brief Build a truncate instruction. 2294 class TruncBuilder : public TypePromotionAction { 2295 Value *Val; 2296 public: 2297 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 2298 /// result. 2299 /// trunc Opnd to Ty. 2300 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2301 IRBuilder<> Builder(Opnd); 2302 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2303 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2304 } 2305 2306 /// \brief Get the built value. 2307 Value *getBuiltValue() { return Val; } 2308 2309 /// \brief Remove the built instruction. 2310 void undo() override { 2311 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2312 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2313 IVal->eraseFromParent(); 2314 } 2315 }; 2316 2317 /// \brief Build a sign extension instruction. 2318 class SExtBuilder : public TypePromotionAction { 2319 Value *Val; 2320 public: 2321 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 2322 /// result. 2323 /// sext Opnd to Ty. 2324 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2325 : TypePromotionAction(InsertPt) { 2326 IRBuilder<> Builder(InsertPt); 2327 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2328 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2329 } 2330 2331 /// \brief Get the built value. 2332 Value *getBuiltValue() { return Val; } 2333 2334 /// \brief Remove the built instruction. 2335 void undo() override { 2336 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2337 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2338 IVal->eraseFromParent(); 2339 } 2340 }; 2341 2342 /// \brief Build a zero extension instruction. 2343 class ZExtBuilder : public TypePromotionAction { 2344 Value *Val; 2345 public: 2346 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 2347 /// result. 2348 /// zext Opnd to Ty. 2349 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2350 : TypePromotionAction(InsertPt) { 2351 IRBuilder<> Builder(InsertPt); 2352 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2353 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2354 } 2355 2356 /// \brief Get the built value. 2357 Value *getBuiltValue() { return Val; } 2358 2359 /// \brief Remove the built instruction. 2360 void undo() override { 2361 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2362 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2363 IVal->eraseFromParent(); 2364 } 2365 }; 2366 2367 /// \brief Mutate an instruction to another type. 2368 class TypeMutator : public TypePromotionAction { 2369 /// Record the original type. 2370 Type *OrigTy; 2371 2372 public: 2373 /// \brief Mutate the type of \p Inst into \p NewTy. 2374 TypeMutator(Instruction *Inst, Type *NewTy) 2375 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2376 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2377 << "\n"); 2378 Inst->mutateType(NewTy); 2379 } 2380 2381 /// \brief Mutate the instruction back to its original type. 2382 void undo() override { 2383 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2384 << "\n"); 2385 Inst->mutateType(OrigTy); 2386 } 2387 }; 2388 2389 /// \brief Replace the uses of an instruction by another instruction. 2390 class UsesReplacer : public TypePromotionAction { 2391 /// Helper structure to keep track of the replaced uses. 2392 struct InstructionAndIdx { 2393 /// The instruction using the instruction. 2394 Instruction *Inst; 2395 /// The index where this instruction is used for Inst. 2396 unsigned Idx; 2397 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2398 : Inst(Inst), Idx(Idx) {} 2399 }; 2400 2401 /// Keep track of the original uses (pair Instruction, Index). 2402 SmallVector<InstructionAndIdx, 4> OriginalUses; 2403 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator; 2404 2405 public: 2406 /// \brief Replace all the use of \p Inst by \p New. 2407 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2408 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2409 << "\n"); 2410 // Record the original uses. 2411 for (Use &U : Inst->uses()) { 2412 Instruction *UserI = cast<Instruction>(U.getUser()); 2413 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2414 } 2415 // Now, we can replace the uses. 2416 Inst->replaceAllUsesWith(New); 2417 } 2418 2419 /// \brief Reassign the original uses of Inst to Inst. 2420 void undo() override { 2421 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2422 for (use_iterator UseIt = OriginalUses.begin(), 2423 EndIt = OriginalUses.end(); 2424 UseIt != EndIt; ++UseIt) { 2425 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2426 } 2427 } 2428 }; 2429 2430 /// \brief Remove an instruction from the IR. 2431 class InstructionRemover : public TypePromotionAction { 2432 /// Original position of the instruction. 2433 InsertionHandler Inserter; 2434 /// Helper structure to hide all the link to the instruction. In other 2435 /// words, this helps to do as if the instruction was removed. 2436 OperandsHider Hider; 2437 /// Keep track of the uses replaced, if any. 2438 UsesReplacer *Replacer; 2439 2440 public: 2441 /// \brief Remove all reference of \p Inst and optinally replace all its 2442 /// uses with New. 2443 /// \pre If !Inst->use_empty(), then New != nullptr 2444 InstructionRemover(Instruction *Inst, Value *New = nullptr) 2445 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2446 Replacer(nullptr) { 2447 if (New) 2448 Replacer = new UsesReplacer(Inst, New); 2449 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2450 Inst->removeFromParent(); 2451 } 2452 2453 ~InstructionRemover() override { delete Replacer; } 2454 2455 /// \brief Really remove the instruction. 2456 void commit() override { delete Inst; } 2457 2458 /// \brief Resurrect the instruction and reassign it to the proper uses if 2459 /// new value was provided when build this action. 2460 void undo() override { 2461 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2462 Inserter.insert(Inst); 2463 if (Replacer) 2464 Replacer->undo(); 2465 Hider.undo(); 2466 } 2467 }; 2468 2469 public: 2470 /// Restoration point. 2471 /// The restoration point is a pointer to an action instead of an iterator 2472 /// because the iterator may be invalidated but not the pointer. 2473 typedef const TypePromotionAction *ConstRestorationPt; 2474 /// Advocate every changes made in that transaction. 2475 void commit(); 2476 /// Undo all the changes made after the given point. 2477 void rollback(ConstRestorationPt Point); 2478 /// Get the current restoration point. 2479 ConstRestorationPt getRestorationPoint() const; 2480 2481 /// \name API for IR modification with state keeping to support rollback. 2482 /// @{ 2483 /// Same as Instruction::setOperand. 2484 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2485 /// Same as Instruction::eraseFromParent. 2486 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2487 /// Same as Value::replaceAllUsesWith. 2488 void replaceAllUsesWith(Instruction *Inst, Value *New); 2489 /// Same as Value::mutateType. 2490 void mutateType(Instruction *Inst, Type *NewTy); 2491 /// Same as IRBuilder::createTrunc. 2492 Value *createTrunc(Instruction *Opnd, Type *Ty); 2493 /// Same as IRBuilder::createSExt. 2494 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2495 /// Same as IRBuilder::createZExt. 2496 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2497 /// Same as Instruction::moveBefore. 2498 void moveBefore(Instruction *Inst, Instruction *Before); 2499 /// @} 2500 2501 private: 2502 /// The ordered list of actions made so far. 2503 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2504 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt; 2505 }; 2506 2507 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2508 Value *NewVal) { 2509 Actions.push_back( 2510 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal)); 2511 } 2512 2513 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2514 Value *NewVal) { 2515 Actions.push_back( 2516 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal)); 2517 } 2518 2519 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2520 Value *New) { 2521 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2522 } 2523 2524 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2525 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2526 } 2527 2528 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2529 Type *Ty) { 2530 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2531 Value *Val = Ptr->getBuiltValue(); 2532 Actions.push_back(std::move(Ptr)); 2533 return Val; 2534 } 2535 2536 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2537 Value *Opnd, Type *Ty) { 2538 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2539 Value *Val = Ptr->getBuiltValue(); 2540 Actions.push_back(std::move(Ptr)); 2541 return Val; 2542 } 2543 2544 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2545 Value *Opnd, Type *Ty) { 2546 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2547 Value *Val = Ptr->getBuiltValue(); 2548 Actions.push_back(std::move(Ptr)); 2549 return Val; 2550 } 2551 2552 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2553 Instruction *Before) { 2554 Actions.push_back( 2555 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before)); 2556 } 2557 2558 TypePromotionTransaction::ConstRestorationPt 2559 TypePromotionTransaction::getRestorationPoint() const { 2560 return !Actions.empty() ? Actions.back().get() : nullptr; 2561 } 2562 2563 void TypePromotionTransaction::commit() { 2564 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2565 ++It) 2566 (*It)->commit(); 2567 Actions.clear(); 2568 } 2569 2570 void TypePromotionTransaction::rollback( 2571 TypePromotionTransaction::ConstRestorationPt Point) { 2572 while (!Actions.empty() && Point != Actions.back().get()) { 2573 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2574 Curr->undo(); 2575 } 2576 } 2577 2578 /// \brief A helper class for matching addressing modes. 2579 /// 2580 /// This encapsulates the logic for matching the target-legal addressing modes. 2581 class AddressingModeMatcher { 2582 SmallVectorImpl<Instruction*> &AddrModeInsts; 2583 const TargetMachine &TM; 2584 const TargetLowering &TLI; 2585 const DataLayout &DL; 2586 2587 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2588 /// the memory instruction that we're computing this address for. 2589 Type *AccessTy; 2590 unsigned AddrSpace; 2591 Instruction *MemoryInst; 2592 2593 /// This is the addressing mode that we're building up. This is 2594 /// part of the return value of this addressing mode matching stuff. 2595 ExtAddrMode &AddrMode; 2596 2597 /// The instructions inserted by other CodeGenPrepare optimizations. 2598 const SetOfInstrs &InsertedInsts; 2599 /// A map from the instructions to their type before promotion. 2600 InstrToOrigTy &PromotedInsts; 2601 /// The ongoing transaction where every action should be registered. 2602 TypePromotionTransaction &TPT; 2603 2604 /// This is set to true when we should not do profitability checks. 2605 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2606 bool IgnoreProfitability; 2607 2608 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, 2609 const TargetMachine &TM, Type *AT, unsigned AS, 2610 Instruction *MI, ExtAddrMode &AM, 2611 const SetOfInstrs &InsertedInsts, 2612 InstrToOrigTy &PromotedInsts, 2613 TypePromotionTransaction &TPT) 2614 : AddrModeInsts(AMI), TM(TM), 2615 TLI(*TM.getSubtargetImpl(*MI->getParent()->getParent()) 2616 ->getTargetLowering()), 2617 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2618 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2619 PromotedInsts(PromotedInsts), TPT(TPT) { 2620 IgnoreProfitability = false; 2621 } 2622 public: 2623 2624 /// Find the maximal addressing mode that a load/store of V can fold, 2625 /// give an access type of AccessTy. This returns a list of involved 2626 /// instructions in AddrModeInsts. 2627 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2628 /// optimizations. 2629 /// \p PromotedInsts maps the instructions to their type before promotion. 2630 /// \p The ongoing transaction where every action should be registered. 2631 static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, 2632 Instruction *MemoryInst, 2633 SmallVectorImpl<Instruction*> &AddrModeInsts, 2634 const TargetMachine &TM, 2635 const SetOfInstrs &InsertedInsts, 2636 InstrToOrigTy &PromotedInsts, 2637 TypePromotionTransaction &TPT) { 2638 ExtAddrMode Result; 2639 2640 bool Success = AddressingModeMatcher(AddrModeInsts, TM, AccessTy, AS, 2641 MemoryInst, Result, InsertedInsts, 2642 PromotedInsts, TPT).matchAddr(V, 0); 2643 (void)Success; assert(Success && "Couldn't select *anything*?"); 2644 return Result; 2645 } 2646 private: 2647 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2648 bool matchAddr(Value *V, unsigned Depth); 2649 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 2650 bool *MovedAway = nullptr); 2651 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2652 ExtAddrMode &AMBefore, 2653 ExtAddrMode &AMAfter); 2654 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2655 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2656 Value *PromotedOperand) const; 2657 }; 2658 2659 /// Try adding ScaleReg*Scale to the current addressing mode. 2660 /// Return true and update AddrMode if this addr mode is legal for the target, 2661 /// false if not. 2662 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 2663 unsigned Depth) { 2664 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 2665 // mode. Just process that directly. 2666 if (Scale == 1) 2667 return matchAddr(ScaleReg, Depth); 2668 2669 // If the scale is 0, it takes nothing to add this. 2670 if (Scale == 0) 2671 return true; 2672 2673 // If we already have a scale of this value, we can add to it, otherwise, we 2674 // need an available scale field. 2675 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 2676 return false; 2677 2678 ExtAddrMode TestAddrMode = AddrMode; 2679 2680 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 2681 // [A+B + A*7] -> [B+A*8]. 2682 TestAddrMode.Scale += Scale; 2683 TestAddrMode.ScaledReg = ScaleReg; 2684 2685 // If the new address isn't legal, bail out. 2686 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 2687 return false; 2688 2689 // It was legal, so commit it. 2690 AddrMode = TestAddrMode; 2691 2692 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 2693 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 2694 // X*Scale + C*Scale to addr mode. 2695 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 2696 if (isa<Instruction>(ScaleReg) && // not a constant expr. 2697 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 2698 TestAddrMode.ScaledReg = AddLHS; 2699 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 2700 2701 // If this addressing mode is legal, commit it and remember that we folded 2702 // this instruction. 2703 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 2704 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 2705 AddrMode = TestAddrMode; 2706 return true; 2707 } 2708 } 2709 2710 // Otherwise, not (x+c)*scale, just return what we have. 2711 return true; 2712 } 2713 2714 /// This is a little filter, which returns true if an addressing computation 2715 /// involving I might be folded into a load/store accessing it. 2716 /// This doesn't need to be perfect, but needs to accept at least 2717 /// the set of instructions that MatchOperationAddr can. 2718 static bool MightBeFoldableInst(Instruction *I) { 2719 switch (I->getOpcode()) { 2720 case Instruction::BitCast: 2721 case Instruction::AddrSpaceCast: 2722 // Don't touch identity bitcasts. 2723 if (I->getType() == I->getOperand(0)->getType()) 2724 return false; 2725 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 2726 case Instruction::PtrToInt: 2727 // PtrToInt is always a noop, as we know that the int type is pointer sized. 2728 return true; 2729 case Instruction::IntToPtr: 2730 // We know the input is intptr_t, so this is foldable. 2731 return true; 2732 case Instruction::Add: 2733 return true; 2734 case Instruction::Mul: 2735 case Instruction::Shl: 2736 // Can only handle X*C and X << C. 2737 return isa<ConstantInt>(I->getOperand(1)); 2738 case Instruction::GetElementPtr: 2739 return true; 2740 default: 2741 return false; 2742 } 2743 } 2744 2745 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 2746 /// \note \p Val is assumed to be the product of some type promotion. 2747 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 2748 /// to be legal, as the non-promoted value would have had the same state. 2749 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 2750 const DataLayout &DL, Value *Val) { 2751 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 2752 if (!PromotedInst) 2753 return false; 2754 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 2755 // If the ISDOpcode is undefined, it was undefined before the promotion. 2756 if (!ISDOpcode) 2757 return true; 2758 // Otherwise, check if the promoted instruction is legal or not. 2759 return TLI.isOperationLegalOrCustom( 2760 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 2761 } 2762 2763 /// \brief Hepler class to perform type promotion. 2764 class TypePromotionHelper { 2765 /// \brief Utility function to check whether or not a sign or zero extension 2766 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 2767 /// either using the operands of \p Inst or promoting \p Inst. 2768 /// The type of the extension is defined by \p IsSExt. 2769 /// In other words, check if: 2770 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 2771 /// #1 Promotion applies: 2772 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 2773 /// #2 Operand reuses: 2774 /// ext opnd1 to ConsideredExtType. 2775 /// \p PromotedInsts maps the instructions to their type before promotion. 2776 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 2777 const InstrToOrigTy &PromotedInsts, bool IsSExt); 2778 2779 /// \brief Utility function to determine if \p OpIdx should be promoted when 2780 /// promoting \p Inst. 2781 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 2782 return !(isa<SelectInst>(Inst) && OpIdx == 0); 2783 } 2784 2785 /// \brief Utility function to promote the operand of \p Ext when this 2786 /// operand is a promotable trunc or sext or zext. 2787 /// \p PromotedInsts maps the instructions to their type before promotion. 2788 /// \p CreatedInstsCost[out] contains the cost of all instructions 2789 /// created to promote the operand of Ext. 2790 /// Newly added extensions are inserted in \p Exts. 2791 /// Newly added truncates are inserted in \p Truncs. 2792 /// Should never be called directly. 2793 /// \return The promoted value which is used instead of Ext. 2794 static Value *promoteOperandForTruncAndAnyExt( 2795 Instruction *Ext, TypePromotionTransaction &TPT, 2796 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2797 SmallVectorImpl<Instruction *> *Exts, 2798 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 2799 2800 /// \brief Utility function to promote the operand of \p Ext when this 2801 /// operand is promotable and is not a supported trunc or sext. 2802 /// \p PromotedInsts maps the instructions to their type before promotion. 2803 /// \p CreatedInstsCost[out] contains the cost of all the instructions 2804 /// created to promote the operand of Ext. 2805 /// Newly added extensions are inserted in \p Exts. 2806 /// Newly added truncates are inserted in \p Truncs. 2807 /// Should never be called directly. 2808 /// \return The promoted value which is used instead of Ext. 2809 static Value *promoteOperandForOther(Instruction *Ext, 2810 TypePromotionTransaction &TPT, 2811 InstrToOrigTy &PromotedInsts, 2812 unsigned &CreatedInstsCost, 2813 SmallVectorImpl<Instruction *> *Exts, 2814 SmallVectorImpl<Instruction *> *Truncs, 2815 const TargetLowering &TLI, bool IsSExt); 2816 2817 /// \see promoteOperandForOther. 2818 static Value *signExtendOperandForOther( 2819 Instruction *Ext, TypePromotionTransaction &TPT, 2820 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2821 SmallVectorImpl<Instruction *> *Exts, 2822 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2823 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2824 Exts, Truncs, TLI, true); 2825 } 2826 2827 /// \see promoteOperandForOther. 2828 static Value *zeroExtendOperandForOther( 2829 Instruction *Ext, TypePromotionTransaction &TPT, 2830 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2831 SmallVectorImpl<Instruction *> *Exts, 2832 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2833 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2834 Exts, Truncs, TLI, false); 2835 } 2836 2837 public: 2838 /// Type for the utility function that promotes the operand of Ext. 2839 typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT, 2840 InstrToOrigTy &PromotedInsts, 2841 unsigned &CreatedInstsCost, 2842 SmallVectorImpl<Instruction *> *Exts, 2843 SmallVectorImpl<Instruction *> *Truncs, 2844 const TargetLowering &TLI); 2845 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 2846 /// action to promote the operand of \p Ext instead of using Ext. 2847 /// \return NULL if no promotable action is possible with the current 2848 /// sign extension. 2849 /// \p InsertedInsts keeps track of all the instructions inserted by the 2850 /// other CodeGenPrepare optimizations. This information is important 2851 /// because we do not want to promote these instructions as CodeGenPrepare 2852 /// will reinsert them later. Thus creating an infinite loop: create/remove. 2853 /// \p PromotedInsts maps the instructions to their type before promotion. 2854 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 2855 const TargetLowering &TLI, 2856 const InstrToOrigTy &PromotedInsts); 2857 }; 2858 2859 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 2860 Type *ConsideredExtType, 2861 const InstrToOrigTy &PromotedInsts, 2862 bool IsSExt) { 2863 // The promotion helper does not know how to deal with vector types yet. 2864 // To be able to fix that, we would need to fix the places where we 2865 // statically extend, e.g., constants and such. 2866 if (Inst->getType()->isVectorTy()) 2867 return false; 2868 2869 // We can always get through zext. 2870 if (isa<ZExtInst>(Inst)) 2871 return true; 2872 2873 // sext(sext) is ok too. 2874 if (IsSExt && isa<SExtInst>(Inst)) 2875 return true; 2876 2877 // We can get through binary operator, if it is legal. In other words, the 2878 // binary operator must have a nuw or nsw flag. 2879 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 2880 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 2881 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 2882 (IsSExt && BinOp->hasNoSignedWrap()))) 2883 return true; 2884 2885 // Check if we can do the following simplification. 2886 // ext(trunc(opnd)) --> ext(opnd) 2887 if (!isa<TruncInst>(Inst)) 2888 return false; 2889 2890 Value *OpndVal = Inst->getOperand(0); 2891 // Check if we can use this operand in the extension. 2892 // If the type is larger than the result type of the extension, we cannot. 2893 if (!OpndVal->getType()->isIntegerTy() || 2894 OpndVal->getType()->getIntegerBitWidth() > 2895 ConsideredExtType->getIntegerBitWidth()) 2896 return false; 2897 2898 // If the operand of the truncate is not an instruction, we will not have 2899 // any information on the dropped bits. 2900 // (Actually we could for constant but it is not worth the extra logic). 2901 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 2902 if (!Opnd) 2903 return false; 2904 2905 // Check if the source of the type is narrow enough. 2906 // I.e., check that trunc just drops extended bits of the same kind of 2907 // the extension. 2908 // #1 get the type of the operand and check the kind of the extended bits. 2909 const Type *OpndType; 2910 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 2911 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 2912 OpndType = It->second.getPointer(); 2913 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 2914 OpndType = Opnd->getOperand(0)->getType(); 2915 else 2916 return false; 2917 2918 // #2 check that the truncate just drops extended bits. 2919 return Inst->getType()->getIntegerBitWidth() >= 2920 OpndType->getIntegerBitWidth(); 2921 } 2922 2923 TypePromotionHelper::Action TypePromotionHelper::getAction( 2924 Instruction *Ext, const SetOfInstrs &InsertedInsts, 2925 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 2926 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2927 "Unexpected instruction type"); 2928 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 2929 Type *ExtTy = Ext->getType(); 2930 bool IsSExt = isa<SExtInst>(Ext); 2931 // If the operand of the extension is not an instruction, we cannot 2932 // get through. 2933 // If it, check we can get through. 2934 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 2935 return nullptr; 2936 2937 // Do not promote if the operand has been added by codegenprepare. 2938 // Otherwise, it means we are undoing an optimization that is likely to be 2939 // redone, thus causing potential infinite loop. 2940 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 2941 return nullptr; 2942 2943 // SExt or Trunc instructions. 2944 // Return the related handler. 2945 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 2946 isa<ZExtInst>(ExtOpnd)) 2947 return promoteOperandForTruncAndAnyExt; 2948 2949 // Regular instruction. 2950 // Abort early if we will have to insert non-free instructions. 2951 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 2952 return nullptr; 2953 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 2954 } 2955 2956 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 2957 llvm::Instruction *SExt, TypePromotionTransaction &TPT, 2958 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2959 SmallVectorImpl<Instruction *> *Exts, 2960 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2961 // By construction, the operand of SExt is an instruction. Otherwise we cannot 2962 // get through it and this method should not be called. 2963 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 2964 Value *ExtVal = SExt; 2965 bool HasMergedNonFreeExt = false; 2966 if (isa<ZExtInst>(SExtOpnd)) { 2967 // Replace s|zext(zext(opnd)) 2968 // => zext(opnd). 2969 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 2970 Value *ZExt = 2971 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 2972 TPT.replaceAllUsesWith(SExt, ZExt); 2973 TPT.eraseInstruction(SExt); 2974 ExtVal = ZExt; 2975 } else { 2976 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 2977 // => z|sext(opnd). 2978 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 2979 } 2980 CreatedInstsCost = 0; 2981 2982 // Remove dead code. 2983 if (SExtOpnd->use_empty()) 2984 TPT.eraseInstruction(SExtOpnd); 2985 2986 // Check if the extension is still needed. 2987 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 2988 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 2989 if (ExtInst) { 2990 if (Exts) 2991 Exts->push_back(ExtInst); 2992 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 2993 } 2994 return ExtVal; 2995 } 2996 2997 // At this point we have: ext ty opnd to ty. 2998 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 2999 Value *NextVal = ExtInst->getOperand(0); 3000 TPT.eraseInstruction(ExtInst, NextVal); 3001 return NextVal; 3002 } 3003 3004 Value *TypePromotionHelper::promoteOperandForOther( 3005 Instruction *Ext, TypePromotionTransaction &TPT, 3006 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3007 SmallVectorImpl<Instruction *> *Exts, 3008 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3009 bool IsSExt) { 3010 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3011 // get through it and this method should not be called. 3012 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3013 CreatedInstsCost = 0; 3014 if (!ExtOpnd->hasOneUse()) { 3015 // ExtOpnd will be promoted. 3016 // All its uses, but Ext, will need to use a truncated value of the 3017 // promoted version. 3018 // Create the truncate now. 3019 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3020 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3021 ITrunc->removeFromParent(); 3022 // Insert it just after the definition. 3023 ITrunc->insertAfter(ExtOpnd); 3024 if (Truncs) 3025 Truncs->push_back(ITrunc); 3026 } 3027 3028 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3029 // Restore the operand of Ext (which has been replaced by the previous call 3030 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3031 TPT.setOperand(Ext, 0, ExtOpnd); 3032 } 3033 3034 // Get through the Instruction: 3035 // 1. Update its type. 3036 // 2. Replace the uses of Ext by Inst. 3037 // 3. Extend each operand that needs to be extended. 3038 3039 // Remember the original type of the instruction before promotion. 3040 // This is useful to know that the high bits are sign extended bits. 3041 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 3042 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 3043 // Step #1. 3044 TPT.mutateType(ExtOpnd, Ext->getType()); 3045 // Step #2. 3046 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3047 // Step #3. 3048 Instruction *ExtForOpnd = Ext; 3049 3050 DEBUG(dbgs() << "Propagate Ext to operands\n"); 3051 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3052 ++OpIdx) { 3053 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3054 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3055 !shouldExtOperand(ExtOpnd, OpIdx)) { 3056 DEBUG(dbgs() << "No need to propagate\n"); 3057 continue; 3058 } 3059 // Check if we can statically extend the operand. 3060 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3061 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3062 DEBUG(dbgs() << "Statically extend\n"); 3063 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3064 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3065 : Cst->getValue().zext(BitWidth); 3066 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3067 continue; 3068 } 3069 // UndefValue are typed, so we have to statically sign extend them. 3070 if (isa<UndefValue>(Opnd)) { 3071 DEBUG(dbgs() << "Statically extend\n"); 3072 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3073 continue; 3074 } 3075 3076 // Otherwise we have to explicity sign extend the operand. 3077 // Check if Ext was reused to extend an operand. 3078 if (!ExtForOpnd) { 3079 // If yes, create a new one. 3080 DEBUG(dbgs() << "More operands to ext\n"); 3081 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3082 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3083 if (!isa<Instruction>(ValForExtOpnd)) { 3084 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3085 continue; 3086 } 3087 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3088 } 3089 if (Exts) 3090 Exts->push_back(ExtForOpnd); 3091 TPT.setOperand(ExtForOpnd, 0, Opnd); 3092 3093 // Move the sign extension before the insertion point. 3094 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3095 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3096 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3097 // If more sext are required, new instructions will have to be created. 3098 ExtForOpnd = nullptr; 3099 } 3100 if (ExtForOpnd == Ext) { 3101 DEBUG(dbgs() << "Extension is useless now\n"); 3102 TPT.eraseInstruction(Ext); 3103 } 3104 return ExtOpnd; 3105 } 3106 3107 /// Check whether or not promoting an instruction to a wider type is profitable. 3108 /// \p NewCost gives the cost of extension instructions created by the 3109 /// promotion. 3110 /// \p OldCost gives the cost of extension instructions before the promotion 3111 /// plus the number of instructions that have been 3112 /// matched in the addressing mode the promotion. 3113 /// \p PromotedOperand is the value that has been promoted. 3114 /// \return True if the promotion is profitable, false otherwise. 3115 bool AddressingModeMatcher::isPromotionProfitable( 3116 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3117 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); 3118 // The cost of the new extensions is greater than the cost of the 3119 // old extension plus what we folded. 3120 // This is not profitable. 3121 if (NewCost > OldCost) 3122 return false; 3123 if (NewCost < OldCost) 3124 return true; 3125 // The promotion is neutral but it may help folding the sign extension in 3126 // loads for instance. 3127 // Check that we did not create an illegal instruction. 3128 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3129 } 3130 3131 /// Given an instruction or constant expr, see if we can fold the operation 3132 /// into the addressing mode. If so, update the addressing mode and return 3133 /// true, otherwise return false without modifying AddrMode. 3134 /// If \p MovedAway is not NULL, it contains the information of whether or 3135 /// not AddrInst has to be folded into the addressing mode on success. 3136 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3137 /// because it has been moved away. 3138 /// Thus AddrInst must not be added in the matched instructions. 3139 /// This state can happen when AddrInst is a sext, since it may be moved away. 3140 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3141 /// not be referenced anymore. 3142 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3143 unsigned Depth, 3144 bool *MovedAway) { 3145 // Avoid exponential behavior on extremely deep expression trees. 3146 if (Depth >= 5) return false; 3147 3148 // By default, all matched instructions stay in place. 3149 if (MovedAway) 3150 *MovedAway = false; 3151 3152 switch (Opcode) { 3153 case Instruction::PtrToInt: 3154 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3155 return matchAddr(AddrInst->getOperand(0), Depth); 3156 case Instruction::IntToPtr: { 3157 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3158 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3159 // This inttoptr is a no-op if the integer type is pointer sized. 3160 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3161 return matchAddr(AddrInst->getOperand(0), Depth); 3162 return false; 3163 } 3164 case Instruction::BitCast: 3165 // BitCast is always a noop, and we can handle it as long as it is 3166 // int->int or pointer->pointer (we don't want int<->fp or something). 3167 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 3168 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 3169 // Don't touch identity bitcasts. These were probably put here by LSR, 3170 // and we don't want to mess around with them. Assume it knows what it 3171 // is doing. 3172 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3173 return matchAddr(AddrInst->getOperand(0), Depth); 3174 return false; 3175 case Instruction::AddrSpaceCast: { 3176 unsigned SrcAS 3177 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3178 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3179 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3180 return matchAddr(AddrInst->getOperand(0), Depth); 3181 return false; 3182 } 3183 case Instruction::Add: { 3184 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3185 ExtAddrMode BackupAddrMode = AddrMode; 3186 unsigned OldSize = AddrModeInsts.size(); 3187 // Start a transaction at this point. 3188 // The LHS may match but not the RHS. 3189 // Therefore, we need a higher level restoration point to undo partially 3190 // matched operation. 3191 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3192 TPT.getRestorationPoint(); 3193 3194 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3195 matchAddr(AddrInst->getOperand(0), Depth+1)) 3196 return true; 3197 3198 // Restore the old addr mode info. 3199 AddrMode = BackupAddrMode; 3200 AddrModeInsts.resize(OldSize); 3201 TPT.rollback(LastKnownGood); 3202 3203 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3204 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3205 matchAddr(AddrInst->getOperand(1), Depth+1)) 3206 return true; 3207 3208 // Otherwise we definitely can't merge the ADD in. 3209 AddrMode = BackupAddrMode; 3210 AddrModeInsts.resize(OldSize); 3211 TPT.rollback(LastKnownGood); 3212 break; 3213 } 3214 //case Instruction::Or: 3215 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3216 //break; 3217 case Instruction::Mul: 3218 case Instruction::Shl: { 3219 // Can only handle X*C and X << C. 3220 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3221 if (!RHS) 3222 return false; 3223 int64_t Scale = RHS->getSExtValue(); 3224 if (Opcode == Instruction::Shl) 3225 Scale = 1LL << Scale; 3226 3227 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3228 } 3229 case Instruction::GetElementPtr: { 3230 // Scan the GEP. We check it if it contains constant offsets and at most 3231 // one variable offset. 3232 int VariableOperand = -1; 3233 unsigned VariableScale = 0; 3234 3235 int64_t ConstantOffset = 0; 3236 gep_type_iterator GTI = gep_type_begin(AddrInst); 3237 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3238 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 3239 const StructLayout *SL = DL.getStructLayout(STy); 3240 unsigned Idx = 3241 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3242 ConstantOffset += SL->getElementOffset(Idx); 3243 } else { 3244 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3245 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3246 ConstantOffset += CI->getSExtValue()*TypeSize; 3247 } else if (TypeSize) { // Scales of zero don't do anything. 3248 // We only allow one variable index at the moment. 3249 if (VariableOperand != -1) 3250 return false; 3251 3252 // Remember the variable index. 3253 VariableOperand = i; 3254 VariableScale = TypeSize; 3255 } 3256 } 3257 } 3258 3259 // A common case is for the GEP to only do a constant offset. In this case, 3260 // just add it to the disp field and check validity. 3261 if (VariableOperand == -1) { 3262 AddrMode.BaseOffs += ConstantOffset; 3263 if (ConstantOffset == 0 || 3264 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 3265 // Check to see if we can fold the base pointer in too. 3266 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 3267 return true; 3268 } 3269 AddrMode.BaseOffs -= ConstantOffset; 3270 return false; 3271 } 3272 3273 // Save the valid addressing mode in case we can't match. 3274 ExtAddrMode BackupAddrMode = AddrMode; 3275 unsigned OldSize = AddrModeInsts.size(); 3276 3277 // See if the scale and offset amount is valid for this target. 3278 AddrMode.BaseOffs += ConstantOffset; 3279 3280 // Match the base operand of the GEP. 3281 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 3282 // If it couldn't be matched, just stuff the value in a register. 3283 if (AddrMode.HasBaseReg) { 3284 AddrMode = BackupAddrMode; 3285 AddrModeInsts.resize(OldSize); 3286 return false; 3287 } 3288 AddrMode.HasBaseReg = true; 3289 AddrMode.BaseReg = AddrInst->getOperand(0); 3290 } 3291 3292 // Match the remaining variable portion of the GEP. 3293 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 3294 Depth)) { 3295 // If it couldn't be matched, try stuffing the base into a register 3296 // instead of matching it, and retrying the match of the scale. 3297 AddrMode = BackupAddrMode; 3298 AddrModeInsts.resize(OldSize); 3299 if (AddrMode.HasBaseReg) 3300 return false; 3301 AddrMode.HasBaseReg = true; 3302 AddrMode.BaseReg = AddrInst->getOperand(0); 3303 AddrMode.BaseOffs += ConstantOffset; 3304 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 3305 VariableScale, Depth)) { 3306 // If even that didn't work, bail. 3307 AddrMode = BackupAddrMode; 3308 AddrModeInsts.resize(OldSize); 3309 return false; 3310 } 3311 } 3312 3313 return true; 3314 } 3315 case Instruction::SExt: 3316 case Instruction::ZExt: { 3317 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 3318 if (!Ext) 3319 return false; 3320 3321 // Try to move this ext out of the way of the addressing mode. 3322 // Ask for a method for doing so. 3323 TypePromotionHelper::Action TPH = 3324 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 3325 if (!TPH) 3326 return false; 3327 3328 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3329 TPT.getRestorationPoint(); 3330 unsigned CreatedInstsCost = 0; 3331 unsigned ExtCost = !TLI.isExtFree(Ext); 3332 Value *PromotedOperand = 3333 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 3334 // SExt has been moved away. 3335 // Thus either it will be rematched later in the recursive calls or it is 3336 // gone. Anyway, we must not fold it into the addressing mode at this point. 3337 // E.g., 3338 // op = add opnd, 1 3339 // idx = ext op 3340 // addr = gep base, idx 3341 // is now: 3342 // promotedOpnd = ext opnd <- no match here 3343 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 3344 // addr = gep base, op <- match 3345 if (MovedAway) 3346 *MovedAway = true; 3347 3348 assert(PromotedOperand && 3349 "TypePromotionHelper should have filtered out those cases"); 3350 3351 ExtAddrMode BackupAddrMode = AddrMode; 3352 unsigned OldSize = AddrModeInsts.size(); 3353 3354 if (!matchAddr(PromotedOperand, Depth) || 3355 // The total of the new cost is equal to the cost of the created 3356 // instructions. 3357 // The total of the old cost is equal to the cost of the extension plus 3358 // what we have saved in the addressing mode. 3359 !isPromotionProfitable(CreatedInstsCost, 3360 ExtCost + (AddrModeInsts.size() - OldSize), 3361 PromotedOperand)) { 3362 AddrMode = BackupAddrMode; 3363 AddrModeInsts.resize(OldSize); 3364 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 3365 TPT.rollback(LastKnownGood); 3366 return false; 3367 } 3368 return true; 3369 } 3370 } 3371 return false; 3372 } 3373 3374 /// If we can, try to add the value of 'Addr' into the current addressing mode. 3375 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 3376 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 3377 /// for the target. 3378 /// 3379 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 3380 // Start a transaction at this point that we will rollback if the matching 3381 // fails. 3382 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3383 TPT.getRestorationPoint(); 3384 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 3385 // Fold in immediates if legal for the target. 3386 AddrMode.BaseOffs += CI->getSExtValue(); 3387 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3388 return true; 3389 AddrMode.BaseOffs -= CI->getSExtValue(); 3390 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 3391 // If this is a global variable, try to fold it into the addressing mode. 3392 if (!AddrMode.BaseGV) { 3393 AddrMode.BaseGV = GV; 3394 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3395 return true; 3396 AddrMode.BaseGV = nullptr; 3397 } 3398 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 3399 ExtAddrMode BackupAddrMode = AddrMode; 3400 unsigned OldSize = AddrModeInsts.size(); 3401 3402 // Check to see if it is possible to fold this operation. 3403 bool MovedAway = false; 3404 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 3405 // This instruction may have been moved away. If so, there is nothing 3406 // to check here. 3407 if (MovedAway) 3408 return true; 3409 // Okay, it's possible to fold this. Check to see if it is actually 3410 // *profitable* to do so. We use a simple cost model to avoid increasing 3411 // register pressure too much. 3412 if (I->hasOneUse() || 3413 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 3414 AddrModeInsts.push_back(I); 3415 return true; 3416 } 3417 3418 // It isn't profitable to do this, roll back. 3419 //cerr << "NOT FOLDING: " << *I; 3420 AddrMode = BackupAddrMode; 3421 AddrModeInsts.resize(OldSize); 3422 TPT.rollback(LastKnownGood); 3423 } 3424 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 3425 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 3426 return true; 3427 TPT.rollback(LastKnownGood); 3428 } else if (isa<ConstantPointerNull>(Addr)) { 3429 // Null pointer gets folded without affecting the addressing mode. 3430 return true; 3431 } 3432 3433 // Worse case, the target should support [reg] addressing modes. :) 3434 if (!AddrMode.HasBaseReg) { 3435 AddrMode.HasBaseReg = true; 3436 AddrMode.BaseReg = Addr; 3437 // Still check for legality in case the target supports [imm] but not [i+r]. 3438 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3439 return true; 3440 AddrMode.HasBaseReg = false; 3441 AddrMode.BaseReg = nullptr; 3442 } 3443 3444 // If the base register is already taken, see if we can do [r+r]. 3445 if (AddrMode.Scale == 0) { 3446 AddrMode.Scale = 1; 3447 AddrMode.ScaledReg = Addr; 3448 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3449 return true; 3450 AddrMode.Scale = 0; 3451 AddrMode.ScaledReg = nullptr; 3452 } 3453 // Couldn't match. 3454 TPT.rollback(LastKnownGood); 3455 return false; 3456 } 3457 3458 /// Check to see if all uses of OpVal by the specified inline asm call are due 3459 /// to memory operands. If so, return true, otherwise return false. 3460 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 3461 const TargetMachine &TM) { 3462 const Function *F = CI->getParent()->getParent(); 3463 const TargetLowering *TLI = TM.getSubtargetImpl(*F)->getTargetLowering(); 3464 const TargetRegisterInfo *TRI = TM.getSubtargetImpl(*F)->getRegisterInfo(); 3465 TargetLowering::AsmOperandInfoVector TargetConstraints = 3466 TLI->ParseConstraints(F->getParent()->getDataLayout(), TRI, 3467 ImmutableCallSite(CI)); 3468 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3469 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3470 3471 // Compute the constraint code and ConstraintType to use. 3472 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 3473 3474 // If this asm operand is our Value*, and if it isn't an indirect memory 3475 // operand, we can't fold it! 3476 if (OpInfo.CallOperandVal == OpVal && 3477 (OpInfo.ConstraintType != TargetLowering::C_Memory || 3478 !OpInfo.isIndirect)) 3479 return false; 3480 } 3481 3482 return true; 3483 } 3484 3485 /// Recursively walk all the uses of I until we find a memory use. 3486 /// If we find an obviously non-foldable instruction, return true. 3487 /// Add the ultimately found memory instructions to MemoryUses. 3488 static bool FindAllMemoryUses( 3489 Instruction *I, 3490 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 3491 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetMachine &TM) { 3492 // If we already considered this instruction, we're done. 3493 if (!ConsideredInsts.insert(I).second) 3494 return false; 3495 3496 // If this is an obviously unfoldable instruction, bail out. 3497 if (!MightBeFoldableInst(I)) 3498 return true; 3499 3500 const bool OptSize = I->getFunction()->optForSize(); 3501 3502 // Loop over all the uses, recursively processing them. 3503 for (Use &U : I->uses()) { 3504 Instruction *UserI = cast<Instruction>(U.getUser()); 3505 3506 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 3507 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 3508 continue; 3509 } 3510 3511 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 3512 unsigned opNo = U.getOperandNo(); 3513 if (opNo == 0) return true; // Storing addr, not into addr. 3514 MemoryUses.push_back(std::make_pair(SI, opNo)); 3515 continue; 3516 } 3517 3518 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 3519 // If this is a cold call, we can sink the addressing calculation into 3520 // the cold path. See optimizeCallInst 3521 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 3522 continue; 3523 3524 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 3525 if (!IA) return true; 3526 3527 // If this is a memory operand, we're cool, otherwise bail out. 3528 if (!IsOperandAMemoryOperand(CI, IA, I, TM)) 3529 return true; 3530 continue; 3531 } 3532 3533 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TM)) 3534 return true; 3535 } 3536 3537 return false; 3538 } 3539 3540 /// Return true if Val is already known to be live at the use site that we're 3541 /// folding it into. If so, there is no cost to include it in the addressing 3542 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 3543 /// instruction already. 3544 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 3545 Value *KnownLive2) { 3546 // If Val is either of the known-live values, we know it is live! 3547 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 3548 return true; 3549 3550 // All values other than instructions and arguments (e.g. constants) are live. 3551 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 3552 3553 // If Val is a constant sized alloca in the entry block, it is live, this is 3554 // true because it is just a reference to the stack/frame pointer, which is 3555 // live for the whole function. 3556 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 3557 if (AI->isStaticAlloca()) 3558 return true; 3559 3560 // Check to see if this value is already used in the memory instruction's 3561 // block. If so, it's already live into the block at the very least, so we 3562 // can reasonably fold it. 3563 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 3564 } 3565 3566 /// It is possible for the addressing mode of the machine to fold the specified 3567 /// instruction into a load or store that ultimately uses it. 3568 /// However, the specified instruction has multiple uses. 3569 /// Given this, it may actually increase register pressure to fold it 3570 /// into the load. For example, consider this code: 3571 /// 3572 /// X = ... 3573 /// Y = X+1 3574 /// use(Y) -> nonload/store 3575 /// Z = Y+1 3576 /// load Z 3577 /// 3578 /// In this case, Y has multiple uses, and can be folded into the load of Z 3579 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 3580 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 3581 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 3582 /// number of computations either. 3583 /// 3584 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 3585 /// X was live across 'load Z' for other reasons, we actually *would* want to 3586 /// fold the addressing mode in the Z case. This would make Y die earlier. 3587 bool AddressingModeMatcher:: 3588 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 3589 ExtAddrMode &AMAfter) { 3590 if (IgnoreProfitability) return true; 3591 3592 // AMBefore is the addressing mode before this instruction was folded into it, 3593 // and AMAfter is the addressing mode after the instruction was folded. Get 3594 // the set of registers referenced by AMAfter and subtract out those 3595 // referenced by AMBefore: this is the set of values which folding in this 3596 // address extends the lifetime of. 3597 // 3598 // Note that there are only two potential values being referenced here, 3599 // BaseReg and ScaleReg (global addresses are always available, as are any 3600 // folded immediates). 3601 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 3602 3603 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 3604 // lifetime wasn't extended by adding this instruction. 3605 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3606 BaseReg = nullptr; 3607 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3608 ScaledReg = nullptr; 3609 3610 // If folding this instruction (and it's subexprs) didn't extend any live 3611 // ranges, we're ok with it. 3612 if (!BaseReg && !ScaledReg) 3613 return true; 3614 3615 // If all uses of this instruction can have the address mode sunk into them, 3616 // we can remove the addressing mode and effectively trade one live register 3617 // for another (at worst.) In this context, folding an addressing mode into 3618 // the use is just a particularly nice way of sinking it. 3619 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 3620 SmallPtrSet<Instruction*, 16> ConsideredInsts; 3621 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TM)) 3622 return false; // Has a non-memory, non-foldable use! 3623 3624 // Now that we know that all uses of this instruction are part of a chain of 3625 // computation involving only operations that could theoretically be folded 3626 // into a memory use, loop over each of these memory operation uses and see 3627 // if they could *actually* fold the instruction. The assumption is that 3628 // addressing modes are cheap and that duplicating the computation involved 3629 // many times is worthwhile, even on a fastpath. For sinking candidates 3630 // (i.e. cold call sites), this serves as a way to prevent excessive code 3631 // growth since most architectures have some reasonable small and fast way to 3632 // compute an effective address. (i.e LEA on x86) 3633 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 3634 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 3635 Instruction *User = MemoryUses[i].first; 3636 unsigned OpNo = MemoryUses[i].second; 3637 3638 // Get the access type of this use. If the use isn't a pointer, we don't 3639 // know what it accesses. 3640 Value *Address = User->getOperand(OpNo); 3641 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 3642 if (!AddrTy) 3643 return false; 3644 Type *AddressAccessTy = AddrTy->getElementType(); 3645 unsigned AS = AddrTy->getAddressSpace(); 3646 3647 // Do a match against the root of this address, ignoring profitability. This 3648 // will tell us if the addressing mode for the memory operation will 3649 // *actually* cover the shared instruction. 3650 ExtAddrMode Result; 3651 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3652 TPT.getRestorationPoint(); 3653 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TM, AddressAccessTy, AS, 3654 MemoryInst, Result, InsertedInsts, 3655 PromotedInsts, TPT); 3656 Matcher.IgnoreProfitability = true; 3657 bool Success = Matcher.matchAddr(Address, 0); 3658 (void)Success; assert(Success && "Couldn't select *anything*?"); 3659 3660 // The match was to check the profitability, the changes made are not 3661 // part of the original matcher. Therefore, they should be dropped 3662 // otherwise the original matcher will not present the right state. 3663 TPT.rollback(LastKnownGood); 3664 3665 // If the match didn't cover I, then it won't be shared by it. 3666 if (!is_contained(MatchedAddrModeInsts, I)) 3667 return false; 3668 3669 MatchedAddrModeInsts.clear(); 3670 } 3671 3672 return true; 3673 } 3674 3675 } // end anonymous namespace 3676 3677 /// Return true if the specified values are defined in a 3678 /// different basic block than BB. 3679 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 3680 if (Instruction *I = dyn_cast<Instruction>(V)) 3681 return I->getParent() != BB; 3682 return false; 3683 } 3684 3685 /// Sink addressing mode computation immediate before MemoryInst if doing so 3686 /// can be done without increasing register pressure. The need for the 3687 /// register pressure constraint means this can end up being an all or nothing 3688 /// decision for all uses of the same addressing computation. 3689 /// 3690 /// Load and Store Instructions often have addressing modes that can do 3691 /// significant amounts of computation. As such, instruction selection will try 3692 /// to get the load or store to do as much computation as possible for the 3693 /// program. The problem is that isel can only see within a single block. As 3694 /// such, we sink as much legal addressing mode work into the block as possible. 3695 /// 3696 /// This method is used to optimize both load/store and inline asms with memory 3697 /// operands. It's also used to sink addressing computations feeding into cold 3698 /// call sites into their (cold) basic block. 3699 /// 3700 /// The motivation for handling sinking into cold blocks is that doing so can 3701 /// both enable other address mode sinking (by satisfying the register pressure 3702 /// constraint above), and reduce register pressure globally (by removing the 3703 /// addressing mode computation from the fast path entirely.). 3704 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 3705 Type *AccessTy, unsigned AddrSpace) { 3706 Value *Repl = Addr; 3707 3708 // Try to collapse single-value PHI nodes. This is necessary to undo 3709 // unprofitable PRE transformations. 3710 SmallVector<Value*, 8> worklist; 3711 SmallPtrSet<Value*, 16> Visited; 3712 worklist.push_back(Addr); 3713 3714 // Use a worklist to iteratively look through PHI nodes, and ensure that 3715 // the addressing mode obtained from the non-PHI roots of the graph 3716 // are equivalent. 3717 Value *Consensus = nullptr; 3718 unsigned NumUsesConsensus = 0; 3719 bool IsNumUsesConsensusValid = false; 3720 SmallVector<Instruction*, 16> AddrModeInsts; 3721 ExtAddrMode AddrMode; 3722 TypePromotionTransaction TPT; 3723 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3724 TPT.getRestorationPoint(); 3725 while (!worklist.empty()) { 3726 Value *V = worklist.back(); 3727 worklist.pop_back(); 3728 3729 // Break use-def graph loops. 3730 if (!Visited.insert(V).second) { 3731 Consensus = nullptr; 3732 break; 3733 } 3734 3735 // For a PHI node, push all of its incoming values. 3736 if (PHINode *P = dyn_cast<PHINode>(V)) { 3737 for (Value *IncValue : P->incoming_values()) 3738 worklist.push_back(IncValue); 3739 continue; 3740 } 3741 3742 // For non-PHIs, determine the addressing mode being computed. Note that 3743 // the result may differ depending on what other uses our candidate 3744 // addressing instructions might have. 3745 SmallVector<Instruction*, 16> NewAddrModeInsts; 3746 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 3747 V, AccessTy, AddrSpace, MemoryInst, NewAddrModeInsts, *TM, 3748 InsertedInsts, PromotedInsts, TPT); 3749 3750 // This check is broken into two cases with very similar code to avoid using 3751 // getNumUses() as much as possible. Some values have a lot of uses, so 3752 // calling getNumUses() unconditionally caused a significant compile-time 3753 // regression. 3754 if (!Consensus) { 3755 Consensus = V; 3756 AddrMode = NewAddrMode; 3757 AddrModeInsts = NewAddrModeInsts; 3758 continue; 3759 } else if (NewAddrMode == AddrMode) { 3760 if (!IsNumUsesConsensusValid) { 3761 NumUsesConsensus = Consensus->getNumUses(); 3762 IsNumUsesConsensusValid = true; 3763 } 3764 3765 // Ensure that the obtained addressing mode is equivalent to that obtained 3766 // for all other roots of the PHI traversal. Also, when choosing one 3767 // such root as representative, select the one with the most uses in order 3768 // to keep the cost modeling heuristics in AddressingModeMatcher 3769 // applicable. 3770 unsigned NumUses = V->getNumUses(); 3771 if (NumUses > NumUsesConsensus) { 3772 Consensus = V; 3773 NumUsesConsensus = NumUses; 3774 AddrModeInsts = NewAddrModeInsts; 3775 } 3776 continue; 3777 } 3778 3779 Consensus = nullptr; 3780 break; 3781 } 3782 3783 // If the addressing mode couldn't be determined, or if multiple different 3784 // ones were determined, bail out now. 3785 if (!Consensus) { 3786 TPT.rollback(LastKnownGood); 3787 return false; 3788 } 3789 TPT.commit(); 3790 3791 // Check to see if any of the instructions supersumed by this addr mode are 3792 // non-local to I's BB. 3793 bool AnyNonLocal = false; 3794 for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) { 3795 if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) { 3796 AnyNonLocal = true; 3797 break; 3798 } 3799 } 3800 3801 // If all the instructions matched are already in this BB, don't do anything. 3802 if (!AnyNonLocal) { 3803 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 3804 return false; 3805 } 3806 3807 // Insert this computation right after this user. Since our caller is 3808 // scanning from the top of the BB to the bottom, reuse of the expr are 3809 // guaranteed to happen later. 3810 IRBuilder<> Builder(MemoryInst); 3811 3812 // Now that we determined the addressing expression we want to use and know 3813 // that we have to sink it into this block. Check to see if we have already 3814 // done this for some other load/store instr in this block. If so, reuse the 3815 // computation. 3816 Value *&SunkAddr = SunkAddrs[Addr]; 3817 if (SunkAddr) { 3818 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 3819 << *MemoryInst << "\n"); 3820 if (SunkAddr->getType() != Addr->getType()) 3821 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3822 } else if (AddrSinkUsingGEPs || 3823 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 3824 TM->getSubtargetImpl(*MemoryInst->getParent()->getParent()) 3825 ->useAA())) { 3826 // By default, we use the GEP-based method when AA is used later. This 3827 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 3828 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3829 << *MemoryInst << "\n"); 3830 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 3831 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 3832 3833 // First, find the pointer. 3834 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 3835 ResultPtr = AddrMode.BaseReg; 3836 AddrMode.BaseReg = nullptr; 3837 } 3838 3839 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 3840 // We can't add more than one pointer together, nor can we scale a 3841 // pointer (both of which seem meaningless). 3842 if (ResultPtr || AddrMode.Scale != 1) 3843 return false; 3844 3845 ResultPtr = AddrMode.ScaledReg; 3846 AddrMode.Scale = 0; 3847 } 3848 3849 if (AddrMode.BaseGV) { 3850 if (ResultPtr) 3851 return false; 3852 3853 ResultPtr = AddrMode.BaseGV; 3854 } 3855 3856 // If the real base value actually came from an inttoptr, then the matcher 3857 // will look through it and provide only the integer value. In that case, 3858 // use it here. 3859 if (!ResultPtr && AddrMode.BaseReg) { 3860 ResultPtr = 3861 Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr"); 3862 AddrMode.BaseReg = nullptr; 3863 } else if (!ResultPtr && AddrMode.Scale == 1) { 3864 ResultPtr = 3865 Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr"); 3866 AddrMode.Scale = 0; 3867 } 3868 3869 if (!ResultPtr && 3870 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 3871 SunkAddr = Constant::getNullValue(Addr->getType()); 3872 } else if (!ResultPtr) { 3873 return false; 3874 } else { 3875 Type *I8PtrTy = 3876 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 3877 Type *I8Ty = Builder.getInt8Ty(); 3878 3879 // Start with the base register. Do this first so that subsequent address 3880 // matching finds it last, which will prevent it from trying to match it 3881 // as the scaled value in case it happens to be a mul. That would be 3882 // problematic if we've sunk a different mul for the scale, because then 3883 // we'd end up sinking both muls. 3884 if (AddrMode.BaseReg) { 3885 Value *V = AddrMode.BaseReg; 3886 if (V->getType() != IntPtrTy) 3887 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3888 3889 ResultIndex = V; 3890 } 3891 3892 // Add the scale value. 3893 if (AddrMode.Scale) { 3894 Value *V = AddrMode.ScaledReg; 3895 if (V->getType() == IntPtrTy) { 3896 // done. 3897 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3898 cast<IntegerType>(V->getType())->getBitWidth()) { 3899 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3900 } else { 3901 // It is only safe to sign extend the BaseReg if we know that the math 3902 // required to create it did not overflow before we extend it. Since 3903 // the original IR value was tossed in favor of a constant back when 3904 // the AddrMode was created we need to bail out gracefully if widths 3905 // do not match instead of extending it. 3906 Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex); 3907 if (I && (ResultIndex != AddrMode.BaseReg)) 3908 I->eraseFromParent(); 3909 return false; 3910 } 3911 3912 if (AddrMode.Scale != 1) 3913 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3914 "sunkaddr"); 3915 if (ResultIndex) 3916 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 3917 else 3918 ResultIndex = V; 3919 } 3920 3921 // Add in the Base Offset if present. 3922 if (AddrMode.BaseOffs) { 3923 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3924 if (ResultIndex) { 3925 // We need to add this separately from the scale above to help with 3926 // SDAG consecutive load/store merging. 3927 if (ResultPtr->getType() != I8PtrTy) 3928 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3929 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 3930 } 3931 3932 ResultIndex = V; 3933 } 3934 3935 if (!ResultIndex) { 3936 SunkAddr = ResultPtr; 3937 } else { 3938 if (ResultPtr->getType() != I8PtrTy) 3939 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3940 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 3941 } 3942 3943 if (SunkAddr->getType() != Addr->getType()) 3944 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3945 } 3946 } else { 3947 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3948 << *MemoryInst << "\n"); 3949 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 3950 Value *Result = nullptr; 3951 3952 // Start with the base register. Do this first so that subsequent address 3953 // matching finds it last, which will prevent it from trying to match it 3954 // as the scaled value in case it happens to be a mul. That would be 3955 // problematic if we've sunk a different mul for the scale, because then 3956 // we'd end up sinking both muls. 3957 if (AddrMode.BaseReg) { 3958 Value *V = AddrMode.BaseReg; 3959 if (V->getType()->isPointerTy()) 3960 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3961 if (V->getType() != IntPtrTy) 3962 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3963 Result = V; 3964 } 3965 3966 // Add the scale value. 3967 if (AddrMode.Scale) { 3968 Value *V = AddrMode.ScaledReg; 3969 if (V->getType() == IntPtrTy) { 3970 // done. 3971 } else if (V->getType()->isPointerTy()) { 3972 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3973 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3974 cast<IntegerType>(V->getType())->getBitWidth()) { 3975 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3976 } else { 3977 // It is only safe to sign extend the BaseReg if we know that the math 3978 // required to create it did not overflow before we extend it. Since 3979 // the original IR value was tossed in favor of a constant back when 3980 // the AddrMode was created we need to bail out gracefully if widths 3981 // do not match instead of extending it. 3982 Instruction *I = dyn_cast_or_null<Instruction>(Result); 3983 if (I && (Result != AddrMode.BaseReg)) 3984 I->eraseFromParent(); 3985 return false; 3986 } 3987 if (AddrMode.Scale != 1) 3988 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3989 "sunkaddr"); 3990 if (Result) 3991 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3992 else 3993 Result = V; 3994 } 3995 3996 // Add in the BaseGV if present. 3997 if (AddrMode.BaseGV) { 3998 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 3999 if (Result) 4000 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4001 else 4002 Result = V; 4003 } 4004 4005 // Add in the Base Offset if present. 4006 if (AddrMode.BaseOffs) { 4007 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4008 if (Result) 4009 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4010 else 4011 Result = V; 4012 } 4013 4014 if (!Result) 4015 SunkAddr = Constant::getNullValue(Addr->getType()); 4016 else 4017 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 4018 } 4019 4020 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 4021 4022 // If we have no uses, recursively delete the value and all dead instructions 4023 // using it. 4024 if (Repl->use_empty()) { 4025 // This can cause recursive deletion, which can invalidate our iterator. 4026 // Use a WeakVH to hold onto it in case this happens. 4027 Value *CurValue = &*CurInstIterator; 4028 WeakVH IterHandle(CurValue); 4029 BasicBlock *BB = CurInstIterator->getParent(); 4030 4031 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 4032 4033 if (IterHandle != CurValue) { 4034 // If the iterator instruction was recursively deleted, start over at the 4035 // start of the block. 4036 CurInstIterator = BB->begin(); 4037 SunkAddrs.clear(); 4038 } 4039 } 4040 ++NumMemoryInsts; 4041 return true; 4042 } 4043 4044 /// If there are any memory operands, use OptimizeMemoryInst to sink their 4045 /// address computing into the block when possible / profitable. 4046 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 4047 bool MadeChange = false; 4048 4049 const TargetRegisterInfo *TRI = 4050 TM->getSubtargetImpl(*CS->getParent()->getParent())->getRegisterInfo(); 4051 TargetLowering::AsmOperandInfoVector TargetConstraints = 4052 TLI->ParseConstraints(*DL, TRI, CS); 4053 unsigned ArgNo = 0; 4054 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4055 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4056 4057 // Compute the constraint code and ConstraintType to use. 4058 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 4059 4060 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4061 OpInfo.isIndirect) { 4062 Value *OpVal = CS->getArgOperand(ArgNo++); 4063 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 4064 } else if (OpInfo.Type == InlineAsm::isInput) 4065 ArgNo++; 4066 } 4067 4068 return MadeChange; 4069 } 4070 4071 /// \brief Check if all the uses of \p Inst are equivalent (or free) zero or 4072 /// sign extensions. 4073 static bool hasSameExtUse(Instruction *Inst, const TargetLowering &TLI) { 4074 assert(!Inst->use_empty() && "Input must have at least one use"); 4075 const Instruction *FirstUser = cast<Instruction>(*Inst->user_begin()); 4076 bool IsSExt = isa<SExtInst>(FirstUser); 4077 Type *ExtTy = FirstUser->getType(); 4078 for (const User *U : Inst->users()) { 4079 const Instruction *UI = cast<Instruction>(U); 4080 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 4081 return false; 4082 Type *CurTy = UI->getType(); 4083 // Same input and output types: Same instruction after CSE. 4084 if (CurTy == ExtTy) 4085 continue; 4086 4087 // If IsSExt is true, we are in this situation: 4088 // a = Inst 4089 // b = sext ty1 a to ty2 4090 // c = sext ty1 a to ty3 4091 // Assuming ty2 is shorter than ty3, this could be turned into: 4092 // a = Inst 4093 // b = sext ty1 a to ty2 4094 // c = sext ty2 b to ty3 4095 // However, the last sext is not free. 4096 if (IsSExt) 4097 return false; 4098 4099 // This is a ZExt, maybe this is free to extend from one type to another. 4100 // In that case, we would not account for a different use. 4101 Type *NarrowTy; 4102 Type *LargeTy; 4103 if (ExtTy->getScalarType()->getIntegerBitWidth() > 4104 CurTy->getScalarType()->getIntegerBitWidth()) { 4105 NarrowTy = CurTy; 4106 LargeTy = ExtTy; 4107 } else { 4108 NarrowTy = ExtTy; 4109 LargeTy = CurTy; 4110 } 4111 4112 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 4113 return false; 4114 } 4115 // All uses are the same or can be derived from one another for free. 4116 return true; 4117 } 4118 4119 /// \brief Try to form ExtLd by promoting \p Exts until they reach a 4120 /// load instruction. 4121 /// If an ext(load) can be formed, it is returned via \p LI for the load 4122 /// and \p Inst for the extension. 4123 /// Otherwise LI == nullptr and Inst == nullptr. 4124 /// When some promotion happened, \p TPT contains the proper state to 4125 /// revert them. 4126 /// 4127 /// \return true when promoting was necessary to expose the ext(load) 4128 /// opportunity, false otherwise. 4129 /// 4130 /// Example: 4131 /// \code 4132 /// %ld = load i32* %addr 4133 /// %add = add nuw i32 %ld, 4 4134 /// %zext = zext i32 %add to i64 4135 /// \endcode 4136 /// => 4137 /// \code 4138 /// %ld = load i32* %addr 4139 /// %zext = zext i32 %ld to i64 4140 /// %add = add nuw i64 %zext, 4 4141 /// \encode 4142 /// Thanks to the promotion, we can match zext(load i32*) to i64. 4143 bool CodeGenPrepare::extLdPromotion(TypePromotionTransaction &TPT, 4144 LoadInst *&LI, Instruction *&Inst, 4145 const SmallVectorImpl<Instruction *> &Exts, 4146 unsigned CreatedInstsCost = 0) { 4147 // Iterate over all the extensions to see if one form an ext(load). 4148 for (auto I : Exts) { 4149 // Check if we directly have ext(load). 4150 if ((LI = dyn_cast<LoadInst>(I->getOperand(0)))) { 4151 Inst = I; 4152 // No promotion happened here. 4153 return false; 4154 } 4155 // Check whether or not we want to do any promotion. 4156 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4157 continue; 4158 // Get the action to perform the promotion. 4159 TypePromotionHelper::Action TPH = TypePromotionHelper::getAction( 4160 I, InsertedInsts, *TLI, PromotedInsts); 4161 // Check if we can promote. 4162 if (!TPH) 4163 continue; 4164 // Save the current state. 4165 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4166 TPT.getRestorationPoint(); 4167 SmallVector<Instruction *, 4> NewExts; 4168 unsigned NewCreatedInstsCost = 0; 4169 unsigned ExtCost = !TLI->isExtFree(I); 4170 // Promote. 4171 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4172 &NewExts, nullptr, *TLI); 4173 assert(PromotedVal && 4174 "TypePromotionHelper should have filtered out those cases"); 4175 4176 // We would be able to merge only one extension in a load. 4177 // Therefore, if we have more than 1 new extension we heuristically 4178 // cut this search path, because it means we degrade the code quality. 4179 // With exactly 2, the transformation is neutral, because we will merge 4180 // one extension but leave one. However, we optimistically keep going, 4181 // because the new extension may be removed too. 4182 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4183 TotalCreatedInstsCost -= ExtCost; 4184 if (!StressExtLdPromotion && 4185 (TotalCreatedInstsCost > 1 || 4186 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 4187 // The promotion is not profitable, rollback to the previous state. 4188 TPT.rollback(LastKnownGood); 4189 continue; 4190 } 4191 // The promotion is profitable. 4192 // Check if it exposes an ext(load). 4193 (void)extLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInstsCost); 4194 if (LI && (StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 4195 // If we have created a new extension, i.e., now we have two 4196 // extensions. We must make sure one of them is merged with 4197 // the load, otherwise we may degrade the code quality. 4198 (LI->hasOneUse() || hasSameExtUse(LI, *TLI)))) 4199 // Promotion happened. 4200 return true; 4201 // If this does not help to expose an ext(load) then, rollback. 4202 TPT.rollback(LastKnownGood); 4203 } 4204 // None of the extension can form an ext(load). 4205 LI = nullptr; 4206 Inst = nullptr; 4207 return false; 4208 } 4209 4210 /// Move a zext or sext fed by a load into the same basic block as the load, 4211 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 4212 /// extend into the load. 4213 /// \p I[in/out] the extension may be modified during the process if some 4214 /// promotions apply. 4215 /// 4216 bool CodeGenPrepare::moveExtToFormExtLoad(Instruction *&I) { 4217 // Try to promote a chain of computation if it allows to form 4218 // an extended load. 4219 TypePromotionTransaction TPT; 4220 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4221 TPT.getRestorationPoint(); 4222 SmallVector<Instruction *, 1> Exts; 4223 Exts.push_back(I); 4224 // Look for a load being extended. 4225 LoadInst *LI = nullptr; 4226 Instruction *OldExt = I; 4227 bool HasPromoted = extLdPromotion(TPT, LI, I, Exts); 4228 if (!LI || !I) { 4229 assert(!HasPromoted && !LI && "If we did not match any load instruction " 4230 "the code must remain the same"); 4231 I = OldExt; 4232 return false; 4233 } 4234 4235 // If they're already in the same block, there's nothing to do. 4236 // Make the cheap checks first if we did not promote. 4237 // If we promoted, we need to check if it is indeed profitable. 4238 if (!HasPromoted && LI->getParent() == I->getParent()) 4239 return false; 4240 4241 EVT VT = TLI->getValueType(*DL, I->getType()); 4242 EVT LoadVT = TLI->getValueType(*DL, LI->getType()); 4243 4244 // If the load has other users and the truncate is not free, this probably 4245 // isn't worthwhile. 4246 if (!LI->hasOneUse() && TLI && 4247 (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) && 4248 !TLI->isTruncateFree(I->getType(), LI->getType())) { 4249 I = OldExt; 4250 TPT.rollback(LastKnownGood); 4251 return false; 4252 } 4253 4254 // Check whether the target supports casts folded into loads. 4255 unsigned LType; 4256 if (isa<ZExtInst>(I)) 4257 LType = ISD::ZEXTLOAD; 4258 else { 4259 assert(isa<SExtInst>(I) && "Unexpected ext type!"); 4260 LType = ISD::SEXTLOAD; 4261 } 4262 if (TLI && !TLI->isLoadExtLegal(LType, VT, LoadVT)) { 4263 I = OldExt; 4264 TPT.rollback(LastKnownGood); 4265 return false; 4266 } 4267 4268 // Move the extend into the same block as the load, so that SelectionDAG 4269 // can fold it. 4270 TPT.commit(); 4271 I->removeFromParent(); 4272 I->insertAfter(LI); 4273 ++NumExtsMoved; 4274 return true; 4275 } 4276 4277 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 4278 BasicBlock *DefBB = I->getParent(); 4279 4280 // If the result of a {s|z}ext and its source are both live out, rewrite all 4281 // other uses of the source with result of extension. 4282 Value *Src = I->getOperand(0); 4283 if (Src->hasOneUse()) 4284 return false; 4285 4286 // Only do this xform if truncating is free. 4287 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 4288 return false; 4289 4290 // Only safe to perform the optimization if the source is also defined in 4291 // this block. 4292 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 4293 return false; 4294 4295 bool DefIsLiveOut = false; 4296 for (User *U : I->users()) { 4297 Instruction *UI = cast<Instruction>(U); 4298 4299 // Figure out which BB this ext is used in. 4300 BasicBlock *UserBB = UI->getParent(); 4301 if (UserBB == DefBB) continue; 4302 DefIsLiveOut = true; 4303 break; 4304 } 4305 if (!DefIsLiveOut) 4306 return false; 4307 4308 // Make sure none of the uses are PHI nodes. 4309 for (User *U : Src->users()) { 4310 Instruction *UI = cast<Instruction>(U); 4311 BasicBlock *UserBB = UI->getParent(); 4312 if (UserBB == DefBB) continue; 4313 // Be conservative. We don't want this xform to end up introducing 4314 // reloads just before load / store instructions. 4315 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 4316 return false; 4317 } 4318 4319 // InsertedTruncs - Only insert one trunc in each block once. 4320 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 4321 4322 bool MadeChange = false; 4323 for (Use &U : Src->uses()) { 4324 Instruction *User = cast<Instruction>(U.getUser()); 4325 4326 // Figure out which BB this ext is used in. 4327 BasicBlock *UserBB = User->getParent(); 4328 if (UserBB == DefBB) continue; 4329 4330 // Both src and def are live in this block. Rewrite the use. 4331 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 4332 4333 if (!InsertedTrunc) { 4334 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 4335 assert(InsertPt != UserBB->end()); 4336 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 4337 InsertedInsts.insert(InsertedTrunc); 4338 } 4339 4340 // Replace a use of the {s|z}ext source with a use of the result. 4341 U = InsertedTrunc; 4342 ++NumExtUses; 4343 MadeChange = true; 4344 } 4345 4346 return MadeChange; 4347 } 4348 4349 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 4350 // just after the load if the target can fold this into one extload instruction, 4351 // with the hope of eliminating some of the other later "and" instructions using 4352 // the loaded value. "and"s that are made trivially redundant by the insertion 4353 // of the new "and" are removed by this function, while others (e.g. those whose 4354 // path from the load goes through a phi) are left for isel to potentially 4355 // remove. 4356 // 4357 // For example: 4358 // 4359 // b0: 4360 // x = load i32 4361 // ... 4362 // b1: 4363 // y = and x, 0xff 4364 // z = use y 4365 // 4366 // becomes: 4367 // 4368 // b0: 4369 // x = load i32 4370 // x' = and x, 0xff 4371 // ... 4372 // b1: 4373 // z = use x' 4374 // 4375 // whereas: 4376 // 4377 // b0: 4378 // x1 = load i32 4379 // ... 4380 // b1: 4381 // x2 = load i32 4382 // ... 4383 // b2: 4384 // x = phi x1, x2 4385 // y = and x, 0xff 4386 // 4387 // becomes (after a call to optimizeLoadExt for each load): 4388 // 4389 // b0: 4390 // x1 = load i32 4391 // x1' = and x1, 0xff 4392 // ... 4393 // b1: 4394 // x2 = load i32 4395 // x2' = and x2, 0xff 4396 // ... 4397 // b2: 4398 // x = phi x1', x2' 4399 // y = and x, 0xff 4400 // 4401 4402 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 4403 4404 if (!Load->isSimple() || 4405 !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy())) 4406 return false; 4407 4408 // Skip loads we've already transformed or have no reason to transform. 4409 if (Load->hasOneUse()) { 4410 User *LoadUser = *Load->user_begin(); 4411 if (cast<Instruction>(LoadUser)->getParent() == Load->getParent() && 4412 !dyn_cast<PHINode>(LoadUser)) 4413 return false; 4414 } 4415 4416 // Look at all uses of Load, looking through phis, to determine how many bits 4417 // of the loaded value are needed. 4418 SmallVector<Instruction *, 8> WorkList; 4419 SmallPtrSet<Instruction *, 16> Visited; 4420 SmallVector<Instruction *, 8> AndsToMaybeRemove; 4421 for (auto *U : Load->users()) 4422 WorkList.push_back(cast<Instruction>(U)); 4423 4424 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 4425 unsigned BitWidth = LoadResultVT.getSizeInBits(); 4426 APInt DemandBits(BitWidth, 0); 4427 APInt WidestAndBits(BitWidth, 0); 4428 4429 while (!WorkList.empty()) { 4430 Instruction *I = WorkList.back(); 4431 WorkList.pop_back(); 4432 4433 // Break use-def graph loops. 4434 if (!Visited.insert(I).second) 4435 continue; 4436 4437 // For a PHI node, push all of its users. 4438 if (auto *Phi = dyn_cast<PHINode>(I)) { 4439 for (auto *U : Phi->users()) 4440 WorkList.push_back(cast<Instruction>(U)); 4441 continue; 4442 } 4443 4444 switch (I->getOpcode()) { 4445 case llvm::Instruction::And: { 4446 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 4447 if (!AndC) 4448 return false; 4449 APInt AndBits = AndC->getValue(); 4450 DemandBits |= AndBits; 4451 // Keep track of the widest and mask we see. 4452 if (AndBits.ugt(WidestAndBits)) 4453 WidestAndBits = AndBits; 4454 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 4455 AndsToMaybeRemove.push_back(I); 4456 break; 4457 } 4458 4459 case llvm::Instruction::Shl: { 4460 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 4461 if (!ShlC) 4462 return false; 4463 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 4464 auto ShlDemandBits = APInt::getAllOnesValue(BitWidth).lshr(ShiftAmt); 4465 DemandBits |= ShlDemandBits; 4466 break; 4467 } 4468 4469 case llvm::Instruction::Trunc: { 4470 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 4471 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 4472 auto TruncBits = APInt::getAllOnesValue(TruncBitWidth).zext(BitWidth); 4473 DemandBits |= TruncBits; 4474 break; 4475 } 4476 4477 default: 4478 return false; 4479 } 4480 } 4481 4482 uint32_t ActiveBits = DemandBits.getActiveBits(); 4483 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 4484 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 4485 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 4486 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 4487 // followed by an AND. 4488 // TODO: Look into removing this restriction by fixing backends to either 4489 // return false for isLoadExtLegal for i1 or have them select this pattern to 4490 // a single instruction. 4491 // 4492 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 4493 // mask, since these are the only ands that will be removed by isel. 4494 if (ActiveBits <= 1 || !APIntOps::isMask(ActiveBits, DemandBits) || 4495 WidestAndBits != DemandBits) 4496 return false; 4497 4498 LLVMContext &Ctx = Load->getType()->getContext(); 4499 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 4500 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 4501 4502 // Reject cases that won't be matched as extloads. 4503 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 4504 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 4505 return false; 4506 4507 IRBuilder<> Builder(Load->getNextNode()); 4508 auto *NewAnd = dyn_cast<Instruction>( 4509 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 4510 4511 // Replace all uses of load with new and (except for the use of load in the 4512 // new and itself). 4513 Load->replaceAllUsesWith(NewAnd); 4514 NewAnd->setOperand(0, Load); 4515 4516 // Remove any and instructions that are now redundant. 4517 for (auto *And : AndsToMaybeRemove) 4518 // Check that the and mask is the same as the one we decided to put on the 4519 // new and. 4520 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 4521 And->replaceAllUsesWith(NewAnd); 4522 if (&*CurInstIterator == And) 4523 CurInstIterator = std::next(And->getIterator()); 4524 And->eraseFromParent(); 4525 ++NumAndUses; 4526 } 4527 4528 ++NumAndsAdded; 4529 return true; 4530 } 4531 4532 /// Check if V (an operand of a select instruction) is an expensive instruction 4533 /// that is only used once. 4534 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 4535 auto *I = dyn_cast<Instruction>(V); 4536 // If it's safe to speculatively execute, then it should not have side 4537 // effects; therefore, it's safe to sink and possibly *not* execute. 4538 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 4539 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 4540 } 4541 4542 /// Returns true if a SelectInst should be turned into an explicit branch. 4543 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 4544 const TargetLowering *TLI, 4545 SelectInst *SI) { 4546 // If even a predictable select is cheap, then a branch can't be cheaper. 4547 if (!TLI->isPredictableSelectExpensive()) 4548 return false; 4549 4550 // FIXME: This should use the same heuristics as IfConversion to determine 4551 // whether a select is better represented as a branch. 4552 4553 // If metadata tells us that the select condition is obviously predictable, 4554 // then we want to replace the select with a branch. 4555 uint64_t TrueWeight, FalseWeight; 4556 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 4557 uint64_t Max = std::max(TrueWeight, FalseWeight); 4558 uint64_t Sum = TrueWeight + FalseWeight; 4559 if (Sum != 0) { 4560 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 4561 if (Probability > TLI->getPredictableBranchThreshold()) 4562 return true; 4563 } 4564 } 4565 4566 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 4567 4568 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 4569 // comparison condition. If the compare has more than one use, there's 4570 // probably another cmov or setcc around, so it's not worth emitting a branch. 4571 if (!Cmp || !Cmp->hasOneUse()) 4572 return false; 4573 4574 // If either operand of the select is expensive and only needed on one side 4575 // of the select, we should form a branch. 4576 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 4577 sinkSelectOperand(TTI, SI->getFalseValue())) 4578 return true; 4579 4580 return false; 4581 } 4582 4583 /// If \p isTrue is true, return the true value of \p SI, otherwise return 4584 /// false value of \p SI. If the true/false value of \p SI is defined by any 4585 /// select instructions in \p Selects, look through the defining select 4586 /// instruction until the true/false value is not defined in \p Selects. 4587 static Value *getTrueOrFalseValue( 4588 SelectInst *SI, bool isTrue, 4589 const SmallPtrSet<const Instruction *, 2> &Selects) { 4590 Value *V; 4591 4592 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 4593 DefSI = dyn_cast<SelectInst>(V)) { 4594 assert(DefSI->getCondition() == SI->getCondition() && 4595 "The condition of DefSI does not match with SI"); 4596 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 4597 } 4598 return V; 4599 } 4600 4601 /// If we have a SelectInst that will likely profit from branch prediction, 4602 /// turn it into a branch. 4603 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 4604 // Find all consecutive select instructions that share the same condition. 4605 SmallVector<SelectInst *, 2> ASI; 4606 ASI.push_back(SI); 4607 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 4608 It != SI->getParent()->end(); ++It) { 4609 SelectInst *I = dyn_cast<SelectInst>(&*It); 4610 if (I && SI->getCondition() == I->getCondition()) { 4611 ASI.push_back(I); 4612 } else { 4613 break; 4614 } 4615 } 4616 4617 SelectInst *LastSI = ASI.back(); 4618 // Increment the current iterator to skip all the rest of select instructions 4619 // because they will be either "not lowered" or "all lowered" to branch. 4620 CurInstIterator = std::next(LastSI->getIterator()); 4621 4622 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 4623 4624 // Can we convert the 'select' to CF ? 4625 if (DisableSelectToBranch || OptSize || !TLI || VectorCond || 4626 SI->getMetadata(LLVMContext::MD_unpredictable)) 4627 return false; 4628 4629 TargetLowering::SelectSupportKind SelectKind; 4630 if (VectorCond) 4631 SelectKind = TargetLowering::VectorMaskSelect; 4632 else if (SI->getType()->isVectorTy()) 4633 SelectKind = TargetLowering::ScalarCondVectorVal; 4634 else 4635 SelectKind = TargetLowering::ScalarValSelect; 4636 4637 if (TLI->isSelectSupported(SelectKind) && 4638 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 4639 return false; 4640 4641 ModifiedDT = true; 4642 4643 // Transform a sequence like this: 4644 // start: 4645 // %cmp = cmp uge i32 %a, %b 4646 // %sel = select i1 %cmp, i32 %c, i32 %d 4647 // 4648 // Into: 4649 // start: 4650 // %cmp = cmp uge i32 %a, %b 4651 // br i1 %cmp, label %select.true, label %select.false 4652 // select.true: 4653 // br label %select.end 4654 // select.false: 4655 // br label %select.end 4656 // select.end: 4657 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 4658 // 4659 // In addition, we may sink instructions that produce %c or %d from 4660 // the entry block into the destination(s) of the new branch. 4661 // If the true or false blocks do not contain a sunken instruction, that 4662 // block and its branch may be optimized away. In that case, one side of the 4663 // first branch will point directly to select.end, and the corresponding PHI 4664 // predecessor block will be the start block. 4665 4666 // First, we split the block containing the select into 2 blocks. 4667 BasicBlock *StartBlock = SI->getParent(); 4668 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 4669 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 4670 4671 // Delete the unconditional branch that was just created by the split. 4672 StartBlock->getTerminator()->eraseFromParent(); 4673 4674 // These are the new basic blocks for the conditional branch. 4675 // At least one will become an actual new basic block. 4676 BasicBlock *TrueBlock = nullptr; 4677 BasicBlock *FalseBlock = nullptr; 4678 BranchInst *TrueBranch = nullptr; 4679 BranchInst *FalseBranch = nullptr; 4680 4681 // Sink expensive instructions into the conditional blocks to avoid executing 4682 // them speculatively. 4683 for (SelectInst *SI : ASI) { 4684 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 4685 if (TrueBlock == nullptr) { 4686 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 4687 EndBlock->getParent(), EndBlock); 4688 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 4689 } 4690 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 4691 TrueInst->moveBefore(TrueBranch); 4692 } 4693 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 4694 if (FalseBlock == nullptr) { 4695 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 4696 EndBlock->getParent(), EndBlock); 4697 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 4698 } 4699 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 4700 FalseInst->moveBefore(FalseBranch); 4701 } 4702 } 4703 4704 // If there was nothing to sink, then arbitrarily choose the 'false' side 4705 // for a new input value to the PHI. 4706 if (TrueBlock == FalseBlock) { 4707 assert(TrueBlock == nullptr && 4708 "Unexpected basic block transform while optimizing select"); 4709 4710 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 4711 EndBlock->getParent(), EndBlock); 4712 BranchInst::Create(EndBlock, FalseBlock); 4713 } 4714 4715 // Insert the real conditional branch based on the original condition. 4716 // If we did not create a new block for one of the 'true' or 'false' paths 4717 // of the condition, it means that side of the branch goes to the end block 4718 // directly and the path originates from the start block from the point of 4719 // view of the new PHI. 4720 BasicBlock *TT, *FT; 4721 if (TrueBlock == nullptr) { 4722 TT = EndBlock; 4723 FT = FalseBlock; 4724 TrueBlock = StartBlock; 4725 } else if (FalseBlock == nullptr) { 4726 TT = TrueBlock; 4727 FT = EndBlock; 4728 FalseBlock = StartBlock; 4729 } else { 4730 TT = TrueBlock; 4731 FT = FalseBlock; 4732 } 4733 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 4734 4735 SmallPtrSet<const Instruction *, 2> INS; 4736 INS.insert(ASI.begin(), ASI.end()); 4737 // Use reverse iterator because later select may use the value of the 4738 // earlier select, and we need to propagate value through earlier select 4739 // to get the PHI operand. 4740 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 4741 SelectInst *SI = *It; 4742 // The select itself is replaced with a PHI Node. 4743 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 4744 PN->takeName(SI); 4745 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 4746 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 4747 4748 SI->replaceAllUsesWith(PN); 4749 SI->eraseFromParent(); 4750 INS.erase(SI); 4751 ++NumSelectsExpanded; 4752 } 4753 4754 // Instruct OptimizeBlock to skip to the next block. 4755 CurInstIterator = StartBlock->end(); 4756 return true; 4757 } 4758 4759 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 4760 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 4761 int SplatElem = -1; 4762 for (unsigned i = 0; i < Mask.size(); ++i) { 4763 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 4764 return false; 4765 SplatElem = Mask[i]; 4766 } 4767 4768 return true; 4769 } 4770 4771 /// Some targets have expensive vector shifts if the lanes aren't all the same 4772 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 4773 /// it's often worth sinking a shufflevector splat down to its use so that 4774 /// codegen can spot all lanes are identical. 4775 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 4776 BasicBlock *DefBB = SVI->getParent(); 4777 4778 // Only do this xform if variable vector shifts are particularly expensive. 4779 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 4780 return false; 4781 4782 // We only expect better codegen by sinking a shuffle if we can recognise a 4783 // constant splat. 4784 if (!isBroadcastShuffle(SVI)) 4785 return false; 4786 4787 // InsertedShuffles - Only insert a shuffle in each block once. 4788 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 4789 4790 bool MadeChange = false; 4791 for (User *U : SVI->users()) { 4792 Instruction *UI = cast<Instruction>(U); 4793 4794 // Figure out which BB this ext is used in. 4795 BasicBlock *UserBB = UI->getParent(); 4796 if (UserBB == DefBB) continue; 4797 4798 // For now only apply this when the splat is used by a shift instruction. 4799 if (!UI->isShift()) continue; 4800 4801 // Everything checks out, sink the shuffle if the user's block doesn't 4802 // already have a copy. 4803 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 4804 4805 if (!InsertedShuffle) { 4806 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 4807 assert(InsertPt != UserBB->end()); 4808 InsertedShuffle = 4809 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 4810 SVI->getOperand(2), "", &*InsertPt); 4811 } 4812 4813 UI->replaceUsesOfWith(SVI, InsertedShuffle); 4814 MadeChange = true; 4815 } 4816 4817 // If we removed all uses, nuke the shuffle. 4818 if (SVI->use_empty()) { 4819 SVI->eraseFromParent(); 4820 MadeChange = true; 4821 } 4822 4823 return MadeChange; 4824 } 4825 4826 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 4827 if (!TLI || !DL) 4828 return false; 4829 4830 Value *Cond = SI->getCondition(); 4831 Type *OldType = Cond->getType(); 4832 LLVMContext &Context = Cond->getContext(); 4833 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 4834 unsigned RegWidth = RegType.getSizeInBits(); 4835 4836 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 4837 return false; 4838 4839 // If the register width is greater than the type width, expand the condition 4840 // of the switch instruction and each case constant to the width of the 4841 // register. By widening the type of the switch condition, subsequent 4842 // comparisons (for case comparisons) will not need to be extended to the 4843 // preferred register width, so we will potentially eliminate N-1 extends, 4844 // where N is the number of cases in the switch. 4845 auto *NewType = Type::getIntNTy(Context, RegWidth); 4846 4847 // Zero-extend the switch condition and case constants unless the switch 4848 // condition is a function argument that is already being sign-extended. 4849 // In that case, we can avoid an unnecessary mask/extension by sign-extending 4850 // everything instead. 4851 Instruction::CastOps ExtType = Instruction::ZExt; 4852 if (auto *Arg = dyn_cast<Argument>(Cond)) 4853 if (Arg->hasSExtAttr()) 4854 ExtType = Instruction::SExt; 4855 4856 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 4857 ExtInst->insertBefore(SI); 4858 SI->setCondition(ExtInst); 4859 for (SwitchInst::CaseIt Case : SI->cases()) { 4860 APInt NarrowConst = Case.getCaseValue()->getValue(); 4861 APInt WideConst = (ExtType == Instruction::ZExt) ? 4862 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 4863 Case.setValue(ConstantInt::get(Context, WideConst)); 4864 } 4865 4866 return true; 4867 } 4868 4869 namespace { 4870 /// \brief Helper class to promote a scalar operation to a vector one. 4871 /// This class is used to move downward extractelement transition. 4872 /// E.g., 4873 /// a = vector_op <2 x i32> 4874 /// b = extractelement <2 x i32> a, i32 0 4875 /// c = scalar_op b 4876 /// store c 4877 /// 4878 /// => 4879 /// a = vector_op <2 x i32> 4880 /// c = vector_op a (equivalent to scalar_op on the related lane) 4881 /// * d = extractelement <2 x i32> c, i32 0 4882 /// * store d 4883 /// Assuming both extractelement and store can be combine, we get rid of the 4884 /// transition. 4885 class VectorPromoteHelper { 4886 /// DataLayout associated with the current module. 4887 const DataLayout &DL; 4888 4889 /// Used to perform some checks on the legality of vector operations. 4890 const TargetLowering &TLI; 4891 4892 /// Used to estimated the cost of the promoted chain. 4893 const TargetTransformInfo &TTI; 4894 4895 /// The transition being moved downwards. 4896 Instruction *Transition; 4897 /// The sequence of instructions to be promoted. 4898 SmallVector<Instruction *, 4> InstsToBePromoted; 4899 /// Cost of combining a store and an extract. 4900 unsigned StoreExtractCombineCost; 4901 /// Instruction that will be combined with the transition. 4902 Instruction *CombineInst; 4903 4904 /// \brief The instruction that represents the current end of the transition. 4905 /// Since we are faking the promotion until we reach the end of the chain 4906 /// of computation, we need a way to get the current end of the transition. 4907 Instruction *getEndOfTransition() const { 4908 if (InstsToBePromoted.empty()) 4909 return Transition; 4910 return InstsToBePromoted.back(); 4911 } 4912 4913 /// \brief Return the index of the original value in the transition. 4914 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 4915 /// c, is at index 0. 4916 unsigned getTransitionOriginalValueIdx() const { 4917 assert(isa<ExtractElementInst>(Transition) && 4918 "Other kind of transitions are not supported yet"); 4919 return 0; 4920 } 4921 4922 /// \brief Return the index of the index in the transition. 4923 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 4924 /// is at index 1. 4925 unsigned getTransitionIdx() const { 4926 assert(isa<ExtractElementInst>(Transition) && 4927 "Other kind of transitions are not supported yet"); 4928 return 1; 4929 } 4930 4931 /// \brief Get the type of the transition. 4932 /// This is the type of the original value. 4933 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 4934 /// transition is <2 x i32>. 4935 Type *getTransitionType() const { 4936 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 4937 } 4938 4939 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 4940 /// I.e., we have the following sequence: 4941 /// Def = Transition <ty1> a to <ty2> 4942 /// b = ToBePromoted <ty2> Def, ... 4943 /// => 4944 /// b = ToBePromoted <ty1> a, ... 4945 /// Def = Transition <ty1> ToBePromoted to <ty2> 4946 void promoteImpl(Instruction *ToBePromoted); 4947 4948 /// \brief Check whether or not it is profitable to promote all the 4949 /// instructions enqueued to be promoted. 4950 bool isProfitableToPromote() { 4951 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 4952 unsigned Index = isa<ConstantInt>(ValIdx) 4953 ? cast<ConstantInt>(ValIdx)->getZExtValue() 4954 : -1; 4955 Type *PromotedType = getTransitionType(); 4956 4957 StoreInst *ST = cast<StoreInst>(CombineInst); 4958 unsigned AS = ST->getPointerAddressSpace(); 4959 unsigned Align = ST->getAlignment(); 4960 // Check if this store is supported. 4961 if (!TLI.allowsMisalignedMemoryAccesses( 4962 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 4963 Align)) { 4964 // If this is not supported, there is no way we can combine 4965 // the extract with the store. 4966 return false; 4967 } 4968 4969 // The scalar chain of computation has to pay for the transition 4970 // scalar to vector. 4971 // The vector chain has to account for the combining cost. 4972 uint64_t ScalarCost = 4973 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 4974 uint64_t VectorCost = StoreExtractCombineCost; 4975 for (const auto &Inst : InstsToBePromoted) { 4976 // Compute the cost. 4977 // By construction, all instructions being promoted are arithmetic ones. 4978 // Moreover, one argument is a constant that can be viewed as a splat 4979 // constant. 4980 Value *Arg0 = Inst->getOperand(0); 4981 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 4982 isa<ConstantFP>(Arg0); 4983 TargetTransformInfo::OperandValueKind Arg0OVK = 4984 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 4985 : TargetTransformInfo::OK_AnyValue; 4986 TargetTransformInfo::OperandValueKind Arg1OVK = 4987 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 4988 : TargetTransformInfo::OK_AnyValue; 4989 ScalarCost += TTI.getArithmeticInstrCost( 4990 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 4991 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 4992 Arg0OVK, Arg1OVK); 4993 } 4994 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 4995 << ScalarCost << "\nVector: " << VectorCost << '\n'); 4996 return ScalarCost > VectorCost; 4997 } 4998 4999 /// \brief Generate a constant vector with \p Val with the same 5000 /// number of elements as the transition. 5001 /// \p UseSplat defines whether or not \p Val should be replicated 5002 /// across the whole vector. 5003 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 5004 /// otherwise we generate a vector with as many undef as possible: 5005 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 5006 /// used at the index of the extract. 5007 Value *getConstantVector(Constant *Val, bool UseSplat) const { 5008 unsigned ExtractIdx = UINT_MAX; 5009 if (!UseSplat) { 5010 // If we cannot determine where the constant must be, we have to 5011 // use a splat constant. 5012 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 5013 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 5014 ExtractIdx = CstVal->getSExtValue(); 5015 else 5016 UseSplat = true; 5017 } 5018 5019 unsigned End = getTransitionType()->getVectorNumElements(); 5020 if (UseSplat) 5021 return ConstantVector::getSplat(End, Val); 5022 5023 SmallVector<Constant *, 4> ConstVec; 5024 UndefValue *UndefVal = UndefValue::get(Val->getType()); 5025 for (unsigned Idx = 0; Idx != End; ++Idx) { 5026 if (Idx == ExtractIdx) 5027 ConstVec.push_back(Val); 5028 else 5029 ConstVec.push_back(UndefVal); 5030 } 5031 return ConstantVector::get(ConstVec); 5032 } 5033 5034 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 5035 /// in \p Use can trigger undefined behavior. 5036 static bool canCauseUndefinedBehavior(const Instruction *Use, 5037 unsigned OperandIdx) { 5038 // This is not safe to introduce undef when the operand is on 5039 // the right hand side of a division-like instruction. 5040 if (OperandIdx != 1) 5041 return false; 5042 switch (Use->getOpcode()) { 5043 default: 5044 return false; 5045 case Instruction::SDiv: 5046 case Instruction::UDiv: 5047 case Instruction::SRem: 5048 case Instruction::URem: 5049 return true; 5050 case Instruction::FDiv: 5051 case Instruction::FRem: 5052 return !Use->hasNoNaNs(); 5053 } 5054 llvm_unreachable(nullptr); 5055 } 5056 5057 public: 5058 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 5059 const TargetTransformInfo &TTI, Instruction *Transition, 5060 unsigned CombineCost) 5061 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 5062 StoreExtractCombineCost(CombineCost), CombineInst(nullptr) { 5063 assert(Transition && "Do not know how to promote null"); 5064 } 5065 5066 /// \brief Check if we can promote \p ToBePromoted to \p Type. 5067 bool canPromote(const Instruction *ToBePromoted) const { 5068 // We could support CastInst too. 5069 return isa<BinaryOperator>(ToBePromoted); 5070 } 5071 5072 /// \brief Check if it is profitable to promote \p ToBePromoted 5073 /// by moving downward the transition through. 5074 bool shouldPromote(const Instruction *ToBePromoted) const { 5075 // Promote only if all the operands can be statically expanded. 5076 // Indeed, we do not want to introduce any new kind of transitions. 5077 for (const Use &U : ToBePromoted->operands()) { 5078 const Value *Val = U.get(); 5079 if (Val == getEndOfTransition()) { 5080 // If the use is a division and the transition is on the rhs, 5081 // we cannot promote the operation, otherwise we may create a 5082 // division by zero. 5083 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 5084 return false; 5085 continue; 5086 } 5087 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 5088 !isa<ConstantFP>(Val)) 5089 return false; 5090 } 5091 // Check that the resulting operation is legal. 5092 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 5093 if (!ISDOpcode) 5094 return false; 5095 return StressStoreExtract || 5096 TLI.isOperationLegalOrCustom( 5097 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 5098 } 5099 5100 /// \brief Check whether or not \p Use can be combined 5101 /// with the transition. 5102 /// I.e., is it possible to do Use(Transition) => AnotherUse? 5103 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 5104 5105 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 5106 void enqueueForPromotion(Instruction *ToBePromoted) { 5107 InstsToBePromoted.push_back(ToBePromoted); 5108 } 5109 5110 /// \brief Set the instruction that will be combined with the transition. 5111 void recordCombineInstruction(Instruction *ToBeCombined) { 5112 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 5113 CombineInst = ToBeCombined; 5114 } 5115 5116 /// \brief Promote all the instructions enqueued for promotion if it is 5117 /// is profitable. 5118 /// \return True if the promotion happened, false otherwise. 5119 bool promote() { 5120 // Check if there is something to promote. 5121 // Right now, if we do not have anything to combine with, 5122 // we assume the promotion is not profitable. 5123 if (InstsToBePromoted.empty() || !CombineInst) 5124 return false; 5125 5126 // Check cost. 5127 if (!StressStoreExtract && !isProfitableToPromote()) 5128 return false; 5129 5130 // Promote. 5131 for (auto &ToBePromoted : InstsToBePromoted) 5132 promoteImpl(ToBePromoted); 5133 InstsToBePromoted.clear(); 5134 return true; 5135 } 5136 }; 5137 } // End of anonymous namespace. 5138 5139 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 5140 // At this point, we know that all the operands of ToBePromoted but Def 5141 // can be statically promoted. 5142 // For Def, we need to use its parameter in ToBePromoted: 5143 // b = ToBePromoted ty1 a 5144 // Def = Transition ty1 b to ty2 5145 // Move the transition down. 5146 // 1. Replace all uses of the promoted operation by the transition. 5147 // = ... b => = ... Def. 5148 assert(ToBePromoted->getType() == Transition->getType() && 5149 "The type of the result of the transition does not match " 5150 "the final type"); 5151 ToBePromoted->replaceAllUsesWith(Transition); 5152 // 2. Update the type of the uses. 5153 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 5154 Type *TransitionTy = getTransitionType(); 5155 ToBePromoted->mutateType(TransitionTy); 5156 // 3. Update all the operands of the promoted operation with promoted 5157 // operands. 5158 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 5159 for (Use &U : ToBePromoted->operands()) { 5160 Value *Val = U.get(); 5161 Value *NewVal = nullptr; 5162 if (Val == Transition) 5163 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 5164 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 5165 isa<ConstantFP>(Val)) { 5166 // Use a splat constant if it is not safe to use undef. 5167 NewVal = getConstantVector( 5168 cast<Constant>(Val), 5169 isa<UndefValue>(Val) || 5170 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 5171 } else 5172 llvm_unreachable("Did you modified shouldPromote and forgot to update " 5173 "this?"); 5174 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 5175 } 5176 Transition->removeFromParent(); 5177 Transition->insertAfter(ToBePromoted); 5178 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 5179 } 5180 5181 /// Some targets can do store(extractelement) with one instruction. 5182 /// Try to push the extractelement towards the stores when the target 5183 /// has this feature and this is profitable. 5184 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 5185 unsigned CombineCost = UINT_MAX; 5186 if (DisableStoreExtract || !TLI || 5187 (!StressStoreExtract && 5188 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 5189 Inst->getOperand(1), CombineCost))) 5190 return false; 5191 5192 // At this point we know that Inst is a vector to scalar transition. 5193 // Try to move it down the def-use chain, until: 5194 // - We can combine the transition with its single use 5195 // => we got rid of the transition. 5196 // - We escape the current basic block 5197 // => we would need to check that we are moving it at a cheaper place and 5198 // we do not do that for now. 5199 BasicBlock *Parent = Inst->getParent(); 5200 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 5201 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 5202 // If the transition has more than one use, assume this is not going to be 5203 // beneficial. 5204 while (Inst->hasOneUse()) { 5205 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 5206 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 5207 5208 if (ToBePromoted->getParent() != Parent) { 5209 DEBUG(dbgs() << "Instruction to promote is in a different block (" 5210 << ToBePromoted->getParent()->getName() 5211 << ") than the transition (" << Parent->getName() << ").\n"); 5212 return false; 5213 } 5214 5215 if (VPH.canCombine(ToBePromoted)) { 5216 DEBUG(dbgs() << "Assume " << *Inst << '\n' 5217 << "will be combined with: " << *ToBePromoted << '\n'); 5218 VPH.recordCombineInstruction(ToBePromoted); 5219 bool Changed = VPH.promote(); 5220 NumStoreExtractExposed += Changed; 5221 return Changed; 5222 } 5223 5224 DEBUG(dbgs() << "Try promoting.\n"); 5225 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 5226 return false; 5227 5228 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 5229 5230 VPH.enqueueForPromotion(ToBePromoted); 5231 Inst = ToBePromoted; 5232 } 5233 return false; 5234 } 5235 5236 bool CodeGenPrepare::optimizeInst(Instruction *I, bool& ModifiedDT) { 5237 // Bail out if we inserted the instruction to prevent optimizations from 5238 // stepping on each other's toes. 5239 if (InsertedInsts.count(I)) 5240 return false; 5241 5242 if (PHINode *P = dyn_cast<PHINode>(I)) { 5243 // It is possible for very late stage optimizations (such as SimplifyCFG) 5244 // to introduce PHI nodes too late to be cleaned up. If we detect such a 5245 // trivial PHI, go ahead and zap it here. 5246 if (Value *V = SimplifyInstruction(P, *DL, TLInfo, nullptr)) { 5247 P->replaceAllUsesWith(V); 5248 P->eraseFromParent(); 5249 ++NumPHIsElim; 5250 return true; 5251 } 5252 return false; 5253 } 5254 5255 if (CastInst *CI = dyn_cast<CastInst>(I)) { 5256 // If the source of the cast is a constant, then this should have 5257 // already been constant folded. The only reason NOT to constant fold 5258 // it is if something (e.g. LSR) was careful to place the constant 5259 // evaluation in a block other than then one that uses it (e.g. to hoist 5260 // the address of globals out of a loop). If this is the case, we don't 5261 // want to forward-subst the cast. 5262 if (isa<Constant>(CI->getOperand(0))) 5263 return false; 5264 5265 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 5266 return true; 5267 5268 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 5269 /// Sink a zext or sext into its user blocks if the target type doesn't 5270 /// fit in one register 5271 if (TLI && 5272 TLI->getTypeAction(CI->getContext(), 5273 TLI->getValueType(*DL, CI->getType())) == 5274 TargetLowering::TypeExpandInteger) { 5275 return SinkCast(CI); 5276 } else { 5277 bool MadeChange = moveExtToFormExtLoad(I); 5278 return MadeChange | optimizeExtUses(I); 5279 } 5280 } 5281 return false; 5282 } 5283 5284 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5285 if (!TLI || !TLI->hasMultipleConditionRegisters()) 5286 return OptimizeCmpExpression(CI, TLI); 5287 5288 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5289 stripInvariantGroupMetadata(*LI); 5290 if (TLI) { 5291 bool Modified = optimizeLoadExt(LI); 5292 unsigned AS = LI->getPointerAddressSpace(); 5293 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 5294 return Modified; 5295 } 5296 return false; 5297 } 5298 5299 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 5300 stripInvariantGroupMetadata(*SI); 5301 if (TLI) { 5302 unsigned AS = SI->getPointerAddressSpace(); 5303 return optimizeMemoryInst(I, SI->getOperand(1), 5304 SI->getOperand(0)->getType(), AS); 5305 } 5306 return false; 5307 } 5308 5309 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 5310 5311 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 5312 BinOp->getOpcode() == Instruction::LShr)) { 5313 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 5314 if (TLI && CI && TLI->hasExtractBitsInsn()) 5315 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 5316 5317 return false; 5318 } 5319 5320 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 5321 if (GEPI->hasAllZeroIndices()) { 5322 /// The GEP operand must be a pointer, so must its result -> BitCast 5323 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 5324 GEPI->getName(), GEPI); 5325 GEPI->replaceAllUsesWith(NC); 5326 GEPI->eraseFromParent(); 5327 ++NumGEPsElim; 5328 optimizeInst(NC, ModifiedDT); 5329 return true; 5330 } 5331 return false; 5332 } 5333 5334 if (CallInst *CI = dyn_cast<CallInst>(I)) 5335 return optimizeCallInst(CI, ModifiedDT); 5336 5337 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 5338 return optimizeSelectInst(SI); 5339 5340 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 5341 return optimizeShuffleVectorInst(SVI); 5342 5343 if (auto *Switch = dyn_cast<SwitchInst>(I)) 5344 return optimizeSwitchInst(Switch); 5345 5346 if (isa<ExtractElementInst>(I)) 5347 return optimizeExtractElementInst(I); 5348 5349 return false; 5350 } 5351 5352 /// Given an OR instruction, check to see if this is a bitreverse 5353 /// idiom. If so, insert the new intrinsic and return true. 5354 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 5355 const TargetLowering &TLI) { 5356 if (!I.getType()->isIntegerTy() || 5357 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 5358 TLI.getValueType(DL, I.getType(), true))) 5359 return false; 5360 5361 SmallVector<Instruction*, 4> Insts; 5362 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 5363 return false; 5364 Instruction *LastInst = Insts.back(); 5365 I.replaceAllUsesWith(LastInst); 5366 RecursivelyDeleteTriviallyDeadInstructions(&I); 5367 return true; 5368 } 5369 5370 // In this pass we look for GEP and cast instructions that are used 5371 // across basic blocks and rewrite them to improve basic-block-at-a-time 5372 // selection. 5373 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool& ModifiedDT) { 5374 SunkAddrs.clear(); 5375 bool MadeChange = false; 5376 5377 CurInstIterator = BB.begin(); 5378 while (CurInstIterator != BB.end()) { 5379 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 5380 if (ModifiedDT) 5381 return true; 5382 } 5383 5384 bool MadeBitReverse = true; 5385 while (TLI && MadeBitReverse) { 5386 MadeBitReverse = false; 5387 for (auto &I : reverse(BB)) { 5388 if (makeBitReverse(I, *DL, *TLI)) { 5389 MadeBitReverse = MadeChange = true; 5390 ModifiedDT = true; 5391 break; 5392 } 5393 } 5394 } 5395 MadeChange |= dupRetToEnableTailCallOpts(&BB); 5396 5397 return MadeChange; 5398 } 5399 5400 // llvm.dbg.value is far away from the value then iSel may not be able 5401 // handle it properly. iSel will drop llvm.dbg.value if it can not 5402 // find a node corresponding to the value. 5403 bool CodeGenPrepare::placeDbgValues(Function &F) { 5404 bool MadeChange = false; 5405 for (BasicBlock &BB : F) { 5406 Instruction *PrevNonDbgInst = nullptr; 5407 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 5408 Instruction *Insn = &*BI++; 5409 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 5410 // Leave dbg.values that refer to an alloca alone. These 5411 // instrinsics describe the address of a variable (= the alloca) 5412 // being taken. They should not be moved next to the alloca 5413 // (and to the beginning of the scope), but rather stay close to 5414 // where said address is used. 5415 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 5416 PrevNonDbgInst = Insn; 5417 continue; 5418 } 5419 5420 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 5421 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 5422 // If VI is a phi in a block with an EHPad terminator, we can't insert 5423 // after it. 5424 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 5425 continue; 5426 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 5427 DVI->removeFromParent(); 5428 if (isa<PHINode>(VI)) 5429 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 5430 else 5431 DVI->insertAfter(VI); 5432 MadeChange = true; 5433 ++NumDbgValueMoved; 5434 } 5435 } 5436 } 5437 return MadeChange; 5438 } 5439 5440 // If there is a sequence that branches based on comparing a single bit 5441 // against zero that can be combined into a single instruction, and the 5442 // target supports folding these into a single instruction, sink the 5443 // mask and compare into the branch uses. Do this before OptimizeBlock -> 5444 // OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being 5445 // searched for. 5446 bool CodeGenPrepare::sinkAndCmp(Function &F) { 5447 if (!EnableAndCmpSinking) 5448 return false; 5449 if (!TLI || !TLI->isMaskAndBranchFoldingLegal()) 5450 return false; 5451 bool MadeChange = false; 5452 for (BasicBlock &BB : F) { 5453 // Does this BB end with the following? 5454 // %andVal = and %val, #single-bit-set 5455 // %icmpVal = icmp %andResult, 0 5456 // br i1 %cmpVal label %dest1, label %dest2" 5457 BranchInst *Brcc = dyn_cast<BranchInst>(BB.getTerminator()); 5458 if (!Brcc || !Brcc->isConditional()) 5459 continue; 5460 ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0)); 5461 if (!Cmp || Cmp->getParent() != &BB) 5462 continue; 5463 ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 5464 if (!Zero || !Zero->isZero()) 5465 continue; 5466 Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0)); 5467 if (!And || And->getOpcode() != Instruction::And || And->getParent() != &BB) 5468 continue; 5469 ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1)); 5470 if (!Mask || !Mask->getUniqueInteger().isPowerOf2()) 5471 continue; 5472 DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB.dump()); 5473 5474 // Push the "and; icmp" for any users that are conditional branches. 5475 // Since there can only be one branch use per BB, we don't need to keep 5476 // track of which BBs we insert into. 5477 for (Use &TheUse : Cmp->uses()) { 5478 // Find brcc use. 5479 BranchInst *BrccUser = dyn_cast<BranchInst>(TheUse); 5480 if (!BrccUser || !BrccUser->isConditional()) 5481 continue; 5482 BasicBlock *UserBB = BrccUser->getParent(); 5483 if (UserBB == &BB) continue; 5484 DEBUG(dbgs() << "found Brcc use\n"); 5485 5486 // Sink the "and; icmp" to use. 5487 MadeChange = true; 5488 BinaryOperator *NewAnd = 5489 BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "", 5490 BrccUser); 5491 CmpInst *NewCmp = 5492 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero, 5493 "", BrccUser); 5494 TheUse = NewCmp; 5495 ++NumAndCmpsMoved; 5496 DEBUG(BrccUser->getParent()->dump()); 5497 } 5498 } 5499 return MadeChange; 5500 } 5501 5502 /// \brief Scale down both weights to fit into uint32_t. 5503 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 5504 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 5505 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 5506 NewTrue = NewTrue / Scale; 5507 NewFalse = NewFalse / Scale; 5508 } 5509 5510 /// \brief Some targets prefer to split a conditional branch like: 5511 /// \code 5512 /// %0 = icmp ne i32 %a, 0 5513 /// %1 = icmp ne i32 %b, 0 5514 /// %or.cond = or i1 %0, %1 5515 /// br i1 %or.cond, label %TrueBB, label %FalseBB 5516 /// \endcode 5517 /// into multiple branch instructions like: 5518 /// \code 5519 /// bb1: 5520 /// %0 = icmp ne i32 %a, 0 5521 /// br i1 %0, label %TrueBB, label %bb2 5522 /// bb2: 5523 /// %1 = icmp ne i32 %b, 0 5524 /// br i1 %1, label %TrueBB, label %FalseBB 5525 /// \endcode 5526 /// This usually allows instruction selection to do even further optimizations 5527 /// and combine the compare with the branch instruction. Currently this is 5528 /// applied for targets which have "cheap" jump instructions. 5529 /// 5530 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 5531 /// 5532 bool CodeGenPrepare::splitBranchCondition(Function &F) { 5533 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 5534 return false; 5535 5536 bool MadeChange = false; 5537 for (auto &BB : F) { 5538 // Does this BB end with the following? 5539 // %cond1 = icmp|fcmp|binary instruction ... 5540 // %cond2 = icmp|fcmp|binary instruction ... 5541 // %cond.or = or|and i1 %cond1, cond2 5542 // br i1 %cond.or label %dest1, label %dest2" 5543 BinaryOperator *LogicOp; 5544 BasicBlock *TBB, *FBB; 5545 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 5546 continue; 5547 5548 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 5549 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 5550 continue; 5551 5552 unsigned Opc; 5553 Value *Cond1, *Cond2; 5554 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 5555 m_OneUse(m_Value(Cond2))))) 5556 Opc = Instruction::And; 5557 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 5558 m_OneUse(m_Value(Cond2))))) 5559 Opc = Instruction::Or; 5560 else 5561 continue; 5562 5563 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 5564 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 5565 continue; 5566 5567 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 5568 5569 // Create a new BB. 5570 auto TmpBB = 5571 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 5572 BB.getParent(), BB.getNextNode()); 5573 5574 // Update original basic block by using the first condition directly by the 5575 // branch instruction and removing the no longer needed and/or instruction. 5576 Br1->setCondition(Cond1); 5577 LogicOp->eraseFromParent(); 5578 5579 // Depending on the conditon we have to either replace the true or the false 5580 // successor of the original branch instruction. 5581 if (Opc == Instruction::And) 5582 Br1->setSuccessor(0, TmpBB); 5583 else 5584 Br1->setSuccessor(1, TmpBB); 5585 5586 // Fill in the new basic block. 5587 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 5588 if (auto *I = dyn_cast<Instruction>(Cond2)) { 5589 I->removeFromParent(); 5590 I->insertBefore(Br2); 5591 } 5592 5593 // Update PHI nodes in both successors. The original BB needs to be 5594 // replaced in one succesor's PHI nodes, because the branch comes now from 5595 // the newly generated BB (NewBB). In the other successor we need to add one 5596 // incoming edge to the PHI nodes, because both branch instructions target 5597 // now the same successor. Depending on the original branch condition 5598 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 5599 // we perfrom the correct update for the PHI nodes. 5600 // This doesn't change the successor order of the just created branch 5601 // instruction (or any other instruction). 5602 if (Opc == Instruction::Or) 5603 std::swap(TBB, FBB); 5604 5605 // Replace the old BB with the new BB. 5606 for (auto &I : *TBB) { 5607 PHINode *PN = dyn_cast<PHINode>(&I); 5608 if (!PN) 5609 break; 5610 int i; 5611 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 5612 PN->setIncomingBlock(i, TmpBB); 5613 } 5614 5615 // Add another incoming edge form the new BB. 5616 for (auto &I : *FBB) { 5617 PHINode *PN = dyn_cast<PHINode>(&I); 5618 if (!PN) 5619 break; 5620 auto *Val = PN->getIncomingValueForBlock(&BB); 5621 PN->addIncoming(Val, TmpBB); 5622 } 5623 5624 // Update the branch weights (from SelectionDAGBuilder:: 5625 // FindMergedConditions). 5626 if (Opc == Instruction::Or) { 5627 // Codegen X | Y as: 5628 // BB1: 5629 // jmp_if_X TBB 5630 // jmp TmpBB 5631 // TmpBB: 5632 // jmp_if_Y TBB 5633 // jmp FBB 5634 // 5635 5636 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 5637 // The requirement is that 5638 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 5639 // = TrueProb for orignal BB. 5640 // Assuming the orignal weights are A and B, one choice is to set BB1's 5641 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 5642 // assumes that 5643 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 5644 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 5645 // TmpBB, but the math is more complicated. 5646 uint64_t TrueWeight, FalseWeight; 5647 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 5648 uint64_t NewTrueWeight = TrueWeight; 5649 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 5650 scaleWeights(NewTrueWeight, NewFalseWeight); 5651 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 5652 .createBranchWeights(TrueWeight, FalseWeight)); 5653 5654 NewTrueWeight = TrueWeight; 5655 NewFalseWeight = 2 * FalseWeight; 5656 scaleWeights(NewTrueWeight, NewFalseWeight); 5657 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 5658 .createBranchWeights(TrueWeight, FalseWeight)); 5659 } 5660 } else { 5661 // Codegen X & Y as: 5662 // BB1: 5663 // jmp_if_X TmpBB 5664 // jmp FBB 5665 // TmpBB: 5666 // jmp_if_Y TBB 5667 // jmp FBB 5668 // 5669 // This requires creation of TmpBB after CurBB. 5670 5671 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 5672 // The requirement is that 5673 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 5674 // = FalseProb for orignal BB. 5675 // Assuming the orignal weights are A and B, one choice is to set BB1's 5676 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 5677 // assumes that 5678 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 5679 uint64_t TrueWeight, FalseWeight; 5680 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 5681 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 5682 uint64_t NewFalseWeight = FalseWeight; 5683 scaleWeights(NewTrueWeight, NewFalseWeight); 5684 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 5685 .createBranchWeights(TrueWeight, FalseWeight)); 5686 5687 NewTrueWeight = 2 * TrueWeight; 5688 NewFalseWeight = FalseWeight; 5689 scaleWeights(NewTrueWeight, NewFalseWeight); 5690 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 5691 .createBranchWeights(TrueWeight, FalseWeight)); 5692 } 5693 } 5694 5695 // Note: No point in getting fancy here, since the DT info is never 5696 // available to CodeGenPrepare. 5697 ModifiedDT = true; 5698 5699 MadeChange = true; 5700 5701 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 5702 TmpBB->dump()); 5703 } 5704 return MadeChange; 5705 } 5706 5707 void CodeGenPrepare::stripInvariantGroupMetadata(Instruction &I) { 5708 if (auto *InvariantMD = I.getMetadata(LLVMContext::MD_invariant_group)) 5709 I.dropUnknownNonDebugMetadata(InvariantMD->getMetadataID()); 5710 } 5711