1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass munges the code in the input function to better prepare it for
11 // SelectionDAG-based code generation. This works around limitations in it's
12 // basic-block-at-a-time approach. It should eventually be removed.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/BlockFrequencyInfo.h"
26 #include "llvm/Analysis/BranchProbabilityInfo.h"
27 #include "llvm/Analysis/ConstantFolding.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/LoopInfo.h"
30 #include "llvm/Analysis/MemoryBuiltins.h"
31 #include "llvm/Analysis/ProfileSummaryInfo.h"
32 #include "llvm/Analysis/TargetLibraryInfo.h"
33 #include "llvm/Analysis/TargetTransformInfo.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/CodeGen/Analysis.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/MachineValueType.h"
38 #include "llvm/CodeGen/SelectionDAGNodes.h"
39 #include "llvm/CodeGen/TargetPassConfig.h"
40 #include "llvm/CodeGen/ValueTypes.h"
41 #include "llvm/IR/Argument.h"
42 #include "llvm/IR/Attributes.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/CallSite.h"
45 #include "llvm/IR/Constant.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/Dominators.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/GetElementPtrTypeIterator.h"
52 #include "llvm/IR/GlobalValue.h"
53 #include "llvm/IR/GlobalVariable.h"
54 #include "llvm/IR/IRBuilder.h"
55 #include "llvm/IR/InlineAsm.h"
56 #include "llvm/IR/InstrTypes.h"
57 #include "llvm/IR/Instruction.h"
58 #include "llvm/IR/Instructions.h"
59 #include "llvm/IR/IntrinsicInst.h"
60 #include "llvm/IR/Intrinsics.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/IR/MDBuilder.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/Operator.h"
65 #include "llvm/IR/PatternMatch.h"
66 #include "llvm/IR/Statepoint.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/Use.h"
69 #include "llvm/IR/User.h"
70 #include "llvm/IR/Value.h"
71 #include "llvm/IR/ValueHandle.h"
72 #include "llvm/IR/ValueMap.h"
73 #include "llvm/Pass.h"
74 #include "llvm/Support/BlockFrequency.h"
75 #include "llvm/Support/BranchProbability.h"
76 #include "llvm/Support/Casting.h"
77 #include "llvm/Support/CommandLine.h"
78 #include "llvm/Support/Compiler.h"
79 #include "llvm/Support/Debug.h"
80 #include "llvm/Support/ErrorHandling.h"
81 #include "llvm/Support/MathExtras.h"
82 #include "llvm/Support/raw_ostream.h"
83 #include "llvm/Target/TargetLowering.h"
84 #include "llvm/Target/TargetMachine.h"
85 #include "llvm/Target/TargetOptions.h"
86 #include "llvm/Target/TargetSubtargetInfo.h"
87 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
88 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
89 #include "llvm/Transforms/Utils/Cloning.h"
90 #include "llvm/Transforms/Utils/Local.h"
91 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
92 #include "llvm/Transforms/Utils/ValueMapper.h"
93 #include <algorithm>
94 #include <cassert>
95 #include <cstdint>
96 #include <iterator>
97 #include <limits>
98 #include <memory>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 using namespace llvm::PatternMatch;
104 
105 #define DEBUG_TYPE "codegenprepare"
106 
107 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
108 STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
109 STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
110 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
111                       "sunken Cmps");
112 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
113                        "of sunken Casts");
114 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
115                           "computations were sunk");
116 STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
117 STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
118 STATISTIC(NumAndsAdded,
119           "Number of and mask instructions added to form ext loads");
120 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
121 STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
122 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
123 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
124 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
125 
126 STATISTIC(NumMemCmpCalls, "Number of memcmp calls");
127 STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size");
128 STATISTIC(NumMemCmpGreaterThanMax,
129           "Number of memcmp calls with size greater than max size");
130 STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls");
131 
132 static cl::opt<bool> DisableBranchOpts(
133   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
134   cl::desc("Disable branch optimizations in CodeGenPrepare"));
135 
136 static cl::opt<bool>
137     DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
138                   cl::desc("Disable GC optimizations in CodeGenPrepare"));
139 
140 static cl::opt<bool> DisableSelectToBranch(
141   "disable-cgp-select2branch", cl::Hidden, cl::init(false),
142   cl::desc("Disable select to branch conversion."));
143 
144 static cl::opt<bool> AddrSinkUsingGEPs(
145   "addr-sink-using-gep", cl::Hidden, cl::init(true),
146   cl::desc("Address sinking in CGP using GEPs."));
147 
148 static cl::opt<bool> EnableAndCmpSinking(
149    "enable-andcmp-sinking", cl::Hidden, cl::init(true),
150    cl::desc("Enable sinkinig and/cmp into branches."));
151 
152 static cl::opt<bool> DisableStoreExtract(
153     "disable-cgp-store-extract", cl::Hidden, cl::init(false),
154     cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
155 
156 static cl::opt<bool> StressStoreExtract(
157     "stress-cgp-store-extract", cl::Hidden, cl::init(false),
158     cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
159 
160 static cl::opt<bool> DisableExtLdPromotion(
161     "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
162     cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
163              "CodeGenPrepare"));
164 
165 static cl::opt<bool> StressExtLdPromotion(
166     "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
167     cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
168              "optimization in CodeGenPrepare"));
169 
170 static cl::opt<bool> DisablePreheaderProtect(
171     "disable-preheader-prot", cl::Hidden, cl::init(false),
172     cl::desc("Disable protection against removing loop preheaders"));
173 
174 static cl::opt<bool> ProfileGuidedSectionPrefix(
175     "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
176     cl::desc("Use profile info to add section prefix for hot/cold functions"));
177 
178 static cl::opt<unsigned> FreqRatioToSkipMerge(
179     "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
180     cl::desc("Skip merging empty blocks if (frequency of empty block) / "
181              "(frequency of destination block) is greater than this ratio"));
182 
183 static cl::opt<bool> ForceSplitStore(
184     "force-split-store", cl::Hidden, cl::init(false),
185     cl::desc("Force store splitting no matter what the target query says."));
186 
187 static cl::opt<bool>
188 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
189     cl::desc("Enable merging of redundant sexts when one is dominating"
190     " the other."), cl::init(true));
191 
192 static cl::opt<unsigned> MemCmpNumLoadsPerBlock(
193     "memcmp-num-loads-per-block", cl::Hidden, cl::init(1),
194     cl::desc("The number of loads per basic block for inline expansion of "
195              "memcmp that is only being compared against zero."));
196 
197 namespace {
198 
199 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
200 using TypeIsSExt = PointerIntPair<Type *, 1, bool>;
201 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
202 using SExts = SmallVector<Instruction *, 16>;
203 using ValueToSExts = DenseMap<Value *, SExts>;
204 
205 class TypePromotionTransaction;
206 
207   class CodeGenPrepare : public FunctionPass {
208     const TargetMachine *TM = nullptr;
209     const TargetSubtargetInfo *SubtargetInfo;
210     const TargetLowering *TLI = nullptr;
211     const TargetRegisterInfo *TRI;
212     const TargetTransformInfo *TTI = nullptr;
213     const TargetLibraryInfo *TLInfo;
214     const LoopInfo *LI;
215     std::unique_ptr<BlockFrequencyInfo> BFI;
216     std::unique_ptr<BranchProbabilityInfo> BPI;
217 
218     /// As we scan instructions optimizing them, this is the next instruction
219     /// to optimize. Transforms that can invalidate this should update it.
220     BasicBlock::iterator CurInstIterator;
221 
222     /// Keeps track of non-local addresses that have been sunk into a block.
223     /// This allows us to avoid inserting duplicate code for blocks with
224     /// multiple load/stores of the same address.
225     ValueMap<Value*, Value*> SunkAddrs;
226 
227     /// Keeps track of all instructions inserted for the current function.
228     SetOfInstrs InsertedInsts;
229 
230     /// Keeps track of the type of the related instruction before their
231     /// promotion for the current function.
232     InstrToOrigTy PromotedInsts;
233 
234     /// Keep track of instructions removed during promotion.
235     SetOfInstrs RemovedInsts;
236 
237     /// Keep track of sext chains based on their initial value.
238     DenseMap<Value *, Instruction *> SeenChainsForSExt;
239 
240     /// Keep track of SExt promoted.
241     ValueToSExts ValToSExtendedUses;
242 
243     /// True if CFG is modified in any way.
244     bool ModifiedDT;
245 
246     /// True if optimizing for size.
247     bool OptSize;
248 
249     /// DataLayout for the Function being processed.
250     const DataLayout *DL = nullptr;
251 
252   public:
253     static char ID; // Pass identification, replacement for typeid
254 
255     CodeGenPrepare() : FunctionPass(ID) {
256       initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
257     }
258 
259     bool runOnFunction(Function &F) override;
260 
261     StringRef getPassName() const override { return "CodeGen Prepare"; }
262 
263     void getAnalysisUsage(AnalysisUsage &AU) const override {
264       // FIXME: When we can selectively preserve passes, preserve the domtree.
265       AU.addRequired<ProfileSummaryInfoWrapperPass>();
266       AU.addRequired<TargetLibraryInfoWrapperPass>();
267       AU.addRequired<TargetTransformInfoWrapperPass>();
268       AU.addRequired<LoopInfoWrapperPass>();
269     }
270 
271   private:
272     bool eliminateFallThrough(Function &F);
273     bool eliminateMostlyEmptyBlocks(Function &F);
274     BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
275     bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
276     void eliminateMostlyEmptyBlock(BasicBlock *BB);
277     bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
278                                        bool isPreheader);
279     bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT);
280     bool optimizeInst(Instruction *I, bool &ModifiedDT);
281     bool optimizeMemoryInst(Instruction *I, Value *Addr,
282                             Type *AccessTy, unsigned AS);
283     bool optimizeInlineAsmInst(CallInst *CS);
284     bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
285     bool optimizeExt(Instruction *&I);
286     bool optimizeExtUses(Instruction *I);
287     bool optimizeLoadExt(LoadInst *I);
288     bool optimizeSelectInst(SelectInst *SI);
289     bool optimizeShuffleVectorInst(ShuffleVectorInst *SI);
290     bool optimizeSwitchInst(SwitchInst *CI);
291     bool optimizeExtractElementInst(Instruction *Inst);
292     bool dupRetToEnableTailCallOpts(BasicBlock *BB);
293     bool placeDbgValues(Function &F);
294     bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
295                       LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
296     bool tryToPromoteExts(TypePromotionTransaction &TPT,
297                           const SmallVectorImpl<Instruction *> &Exts,
298                           SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
299                           unsigned CreatedInstsCost = 0);
300     bool mergeSExts(Function &F);
301     bool performAddressTypePromotion(
302         Instruction *&Inst,
303         bool AllowPromotionWithoutCommonHeader,
304         bool HasPromoted, TypePromotionTransaction &TPT,
305         SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
306     bool splitBranchCondition(Function &F);
307     bool simplifyOffsetableRelocate(Instruction &I);
308     bool splitIndirectCriticalEdges(Function &F);
309   };
310 
311 } // end anonymous namespace
312 
313 char CodeGenPrepare::ID = 0;
314 
315 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
316                       "Optimize for code generation", false, false)
317 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
318 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
319                     "Optimize for code generation", false, false)
320 
321 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
322 
323 bool CodeGenPrepare::runOnFunction(Function &F) {
324   if (skipFunction(F))
325     return false;
326 
327   DL = &F.getParent()->getDataLayout();
328 
329   bool EverMadeChange = false;
330   // Clear per function information.
331   InsertedInsts.clear();
332   PromotedInsts.clear();
333   BFI.reset();
334   BPI.reset();
335 
336   ModifiedDT = false;
337   if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
338     TM = &TPC->getTM<TargetMachine>();
339     SubtargetInfo = TM->getSubtargetImpl(F);
340     TLI = SubtargetInfo->getTargetLowering();
341     TRI = SubtargetInfo->getRegisterInfo();
342   }
343   TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
344   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
345   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
346   OptSize = F.optForSize();
347 
348   if (ProfileGuidedSectionPrefix) {
349     ProfileSummaryInfo *PSI =
350         getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
351     if (PSI->isFunctionHotInCallGraph(&F))
352       F.setSectionPrefix(".hot");
353     else if (PSI->isFunctionColdInCallGraph(&F))
354       F.setSectionPrefix(".unlikely");
355   }
356 
357   /// This optimization identifies DIV instructions that can be
358   /// profitably bypassed and carried out with a shorter, faster divide.
359   if (!OptSize && TLI && TLI->isSlowDivBypassed()) {
360     const DenseMap<unsigned int, unsigned int> &BypassWidths =
361        TLI->getBypassSlowDivWidths();
362     BasicBlock* BB = &*F.begin();
363     while (BB != nullptr) {
364       // bypassSlowDivision may create new BBs, but we don't want to reapply the
365       // optimization to those blocks.
366       BasicBlock* Next = BB->getNextNode();
367       EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
368       BB = Next;
369     }
370   }
371 
372   // Eliminate blocks that contain only PHI nodes and an
373   // unconditional branch.
374   EverMadeChange |= eliminateMostlyEmptyBlocks(F);
375 
376   // llvm.dbg.value is far away from the value then iSel may not be able
377   // handle it properly. iSel will drop llvm.dbg.value if it can not
378   // find a node corresponding to the value.
379   EverMadeChange |= placeDbgValues(F);
380 
381   if (!DisableBranchOpts)
382     EverMadeChange |= splitBranchCondition(F);
383 
384   // Split some critical edges where one of the sources is an indirect branch,
385   // to help generate sane code for PHIs involving such edges.
386   EverMadeChange |= splitIndirectCriticalEdges(F);
387 
388   bool MadeChange = true;
389   while (MadeChange) {
390     MadeChange = false;
391     SeenChainsForSExt.clear();
392     ValToSExtendedUses.clear();
393     RemovedInsts.clear();
394     for (Function::iterator I = F.begin(); I != F.end(); ) {
395       BasicBlock *BB = &*I++;
396       bool ModifiedDTOnIteration = false;
397       MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
398 
399       // Restart BB iteration if the dominator tree of the Function was changed
400       if (ModifiedDTOnIteration)
401         break;
402     }
403     if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
404       MadeChange |= mergeSExts(F);
405 
406     // Really free removed instructions during promotion.
407     for (Instruction *I : RemovedInsts)
408       I->deleteValue();
409 
410     EverMadeChange |= MadeChange;
411   }
412 
413   SunkAddrs.clear();
414 
415   if (!DisableBranchOpts) {
416     MadeChange = false;
417     SmallPtrSet<BasicBlock*, 8> WorkList;
418     for (BasicBlock &BB : F) {
419       SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
420       MadeChange |= ConstantFoldTerminator(&BB, true);
421       if (!MadeChange) continue;
422 
423       for (SmallVectorImpl<BasicBlock*>::iterator
424              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
425         if (pred_begin(*II) == pred_end(*II))
426           WorkList.insert(*II);
427     }
428 
429     // Delete the dead blocks and any of their dead successors.
430     MadeChange |= !WorkList.empty();
431     while (!WorkList.empty()) {
432       BasicBlock *BB = *WorkList.begin();
433       WorkList.erase(BB);
434       SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
435 
436       DeleteDeadBlock(BB);
437 
438       for (SmallVectorImpl<BasicBlock*>::iterator
439              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
440         if (pred_begin(*II) == pred_end(*II))
441           WorkList.insert(*II);
442     }
443 
444     // Merge pairs of basic blocks with unconditional branches, connected by
445     // a single edge.
446     if (EverMadeChange || MadeChange)
447       MadeChange |= eliminateFallThrough(F);
448 
449     EverMadeChange |= MadeChange;
450   }
451 
452   if (!DisableGCOpts) {
453     SmallVector<Instruction *, 2> Statepoints;
454     for (BasicBlock &BB : F)
455       for (Instruction &I : BB)
456         if (isStatepoint(I))
457           Statepoints.push_back(&I);
458     for (auto &I : Statepoints)
459       EverMadeChange |= simplifyOffsetableRelocate(*I);
460   }
461 
462   return EverMadeChange;
463 }
464 
465 /// Merge basic blocks which are connected by a single edge, where one of the
466 /// basic blocks has a single successor pointing to the other basic block,
467 /// which has a single predecessor.
468 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
469   bool Changed = false;
470   // Scan all of the blocks in the function, except for the entry block.
471   for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
472     BasicBlock *BB = &*I++;
473     // If the destination block has a single pred, then this is a trivial
474     // edge, just collapse it.
475     BasicBlock *SinglePred = BB->getSinglePredecessor();
476 
477     // Don't merge if BB's address is taken.
478     if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
479 
480     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
481     if (Term && !Term->isConditional()) {
482       Changed = true;
483       DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n");
484       // Remember if SinglePred was the entry block of the function.
485       // If so, we will need to move BB back to the entry position.
486       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
487       MergeBasicBlockIntoOnlyPred(BB, nullptr);
488 
489       if (isEntry && BB != &BB->getParent()->getEntryBlock())
490         BB->moveBefore(&BB->getParent()->getEntryBlock());
491 
492       // We have erased a block. Update the iterator.
493       I = BB->getIterator();
494     }
495   }
496   return Changed;
497 }
498 
499 /// Find a destination block from BB if BB is mergeable empty block.
500 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
501   // If this block doesn't end with an uncond branch, ignore it.
502   BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
503   if (!BI || !BI->isUnconditional())
504     return nullptr;
505 
506   // If the instruction before the branch (skipping debug info) isn't a phi
507   // node, then other stuff is happening here.
508   BasicBlock::iterator BBI = BI->getIterator();
509   if (BBI != BB->begin()) {
510     --BBI;
511     while (isa<DbgInfoIntrinsic>(BBI)) {
512       if (BBI == BB->begin())
513         break;
514       --BBI;
515     }
516     if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
517       return nullptr;
518   }
519 
520   // Do not break infinite loops.
521   BasicBlock *DestBB = BI->getSuccessor(0);
522   if (DestBB == BB)
523     return nullptr;
524 
525   if (!canMergeBlocks(BB, DestBB))
526     DestBB = nullptr;
527 
528   return DestBB;
529 }
530 
531 // Return the unique indirectbr predecessor of a block. This may return null
532 // even if such a predecessor exists, if it's not useful for splitting.
533 // If a predecessor is found, OtherPreds will contain all other (non-indirectbr)
534 // predecessors of BB.
535 static BasicBlock *
536 findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) {
537   // If the block doesn't have any PHIs, we don't care about it, since there's
538   // no point in splitting it.
539   PHINode *PN = dyn_cast<PHINode>(BB->begin());
540   if (!PN)
541     return nullptr;
542 
543   // Verify we have exactly one IBR predecessor.
544   // Conservatively bail out if one of the other predecessors is not a "regular"
545   // terminator (that is, not a switch or a br).
546   BasicBlock *IBB = nullptr;
547   for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) {
548     BasicBlock *PredBB = PN->getIncomingBlock(Pred);
549     TerminatorInst *PredTerm = PredBB->getTerminator();
550     switch (PredTerm->getOpcode()) {
551     case Instruction::IndirectBr:
552       if (IBB)
553         return nullptr;
554       IBB = PredBB;
555       break;
556     case Instruction::Br:
557     case Instruction::Switch:
558       OtherPreds.push_back(PredBB);
559       continue;
560     default:
561       return nullptr;
562     }
563   }
564 
565   return IBB;
566 }
567 
568 // Split critical edges where the source of the edge is an indirectbr
569 // instruction. This isn't always possible, but we can handle some easy cases.
570 // This is useful because MI is unable to split such critical edges,
571 // which means it will not be able to sink instructions along those edges.
572 // This is especially painful for indirect branches with many successors, where
573 // we end up having to prepare all outgoing values in the origin block.
574 //
575 // Our normal algorithm for splitting critical edges requires us to update
576 // the outgoing edges of the edge origin block, but for an indirectbr this
577 // is hard, since it would require finding and updating the block addresses
578 // the indirect branch uses. But if a block only has a single indirectbr
579 // predecessor, with the others being regular branches, we can do it in a
580 // different way.
581 // Say we have A -> D, B -> D, I -> D where only I -> D is an indirectbr.
582 // We can split D into D0 and D1, where D0 contains only the PHIs from D,
583 // and D1 is the D block body. We can then duplicate D0 as D0A and D0B, and
584 // create the following structure:
585 // A -> D0A, B -> D0A, I -> D0B, D0A -> D1, D0B -> D1
586 bool CodeGenPrepare::splitIndirectCriticalEdges(Function &F) {
587   // Check whether the function has any indirectbrs, and collect which blocks
588   // they may jump to. Since most functions don't have indirect branches,
589   // this lowers the common case's overhead to O(Blocks) instead of O(Edges).
590   SmallSetVector<BasicBlock *, 16> Targets;
591   for (auto &BB : F) {
592     auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator());
593     if (!IBI)
594       continue;
595 
596     for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ)
597       Targets.insert(IBI->getSuccessor(Succ));
598   }
599 
600   if (Targets.empty())
601     return false;
602 
603   bool Changed = false;
604   for (BasicBlock *Target : Targets) {
605     SmallVector<BasicBlock *, 16> OtherPreds;
606     BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds);
607     // If we did not found an indirectbr, or the indirectbr is the only
608     // incoming edge, this isn't the kind of edge we're looking for.
609     if (!IBRPred || OtherPreds.empty())
610       continue;
611 
612     // Don't even think about ehpads/landingpads.
613     Instruction *FirstNonPHI = Target->getFirstNonPHI();
614     if (FirstNonPHI->isEHPad() || Target->isLandingPad())
615       continue;
616 
617     BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split");
618     // It's possible Target was its own successor through an indirectbr.
619     // In this case, the indirectbr now comes from BodyBlock.
620     if (IBRPred == Target)
621       IBRPred = BodyBlock;
622 
623     // At this point Target only has PHIs, and BodyBlock has the rest of the
624     // block's body. Create a copy of Target that will be used by the "direct"
625     // preds.
626     ValueToValueMapTy VMap;
627     BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F);
628 
629     for (BasicBlock *Pred : OtherPreds) {
630       // If the target is a loop to itself, then the terminator of the split
631       // block needs to be updated.
632       if (Pred == Target)
633         BodyBlock->getTerminator()->replaceUsesOfWith(Target, DirectSucc);
634       else
635         Pred->getTerminator()->replaceUsesOfWith(Target, DirectSucc);
636     }
637 
638     // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that
639     // they are clones, so the number of PHIs are the same.
640     // (a) Remove the edge coming from IBRPred from the "Direct" PHI
641     // (b) Leave that as the only edge in the "Indirect" PHI.
642     // (c) Merge the two in the body block.
643     BasicBlock::iterator Indirect = Target->begin(),
644                          End = Target->getFirstNonPHI()->getIterator();
645     BasicBlock::iterator Direct = DirectSucc->begin();
646     BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt();
647 
648     assert(&*End == Target->getTerminator() &&
649            "Block was expected to only contain PHIs");
650 
651     while (Indirect != End) {
652       PHINode *DirPHI = cast<PHINode>(Direct);
653       PHINode *IndPHI = cast<PHINode>(Indirect);
654 
655       // Now, clean up - the direct block shouldn't get the indirect value,
656       // and vice versa.
657       DirPHI->removeIncomingValue(IBRPred);
658       Direct++;
659 
660       // Advance the pointer here, to avoid invalidation issues when the old
661       // PHI is erased.
662       Indirect++;
663 
664       PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI);
665       NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred),
666                              IBRPred);
667 
668       // Create a PHI in the body block, to merge the direct and indirect
669       // predecessors.
670       PHINode *MergePHI =
671           PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert);
672       MergePHI->addIncoming(NewIndPHI, Target);
673       MergePHI->addIncoming(DirPHI, DirectSucc);
674 
675       IndPHI->replaceAllUsesWith(MergePHI);
676       IndPHI->eraseFromParent();
677     }
678 
679     Changed = true;
680   }
681 
682   return Changed;
683 }
684 
685 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
686 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
687 /// edges in ways that are non-optimal for isel. Start by eliminating these
688 /// blocks so we can split them the way we want them.
689 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
690   SmallPtrSet<BasicBlock *, 16> Preheaders;
691   SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
692   while (!LoopList.empty()) {
693     Loop *L = LoopList.pop_back_val();
694     LoopList.insert(LoopList.end(), L->begin(), L->end());
695     if (BasicBlock *Preheader = L->getLoopPreheader())
696       Preheaders.insert(Preheader);
697   }
698 
699   bool MadeChange = false;
700   // Note that this intentionally skips the entry block.
701   for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
702     BasicBlock *BB = &*I++;
703     BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
704     if (!DestBB ||
705         !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
706       continue;
707 
708     eliminateMostlyEmptyBlock(BB);
709     MadeChange = true;
710   }
711   return MadeChange;
712 }
713 
714 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
715                                                    BasicBlock *DestBB,
716                                                    bool isPreheader) {
717   // Do not delete loop preheaders if doing so would create a critical edge.
718   // Loop preheaders can be good locations to spill registers. If the
719   // preheader is deleted and we create a critical edge, registers may be
720   // spilled in the loop body instead.
721   if (!DisablePreheaderProtect && isPreheader &&
722       !(BB->getSinglePredecessor() &&
723         BB->getSinglePredecessor()->getSingleSuccessor()))
724     return false;
725 
726   // Try to skip merging if the unique predecessor of BB is terminated by a
727   // switch or indirect branch instruction, and BB is used as an incoming block
728   // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
729   // add COPY instructions in the predecessor of BB instead of BB (if it is not
730   // merged). Note that the critical edge created by merging such blocks wont be
731   // split in MachineSink because the jump table is not analyzable. By keeping
732   // such empty block (BB), ISel will place COPY instructions in BB, not in the
733   // predecessor of BB.
734   BasicBlock *Pred = BB->getUniquePredecessor();
735   if (!Pred ||
736       !(isa<SwitchInst>(Pred->getTerminator()) ||
737         isa<IndirectBrInst>(Pred->getTerminator())))
738     return true;
739 
740   if (BB->getTerminator() != BB->getFirstNonPHI())
741     return true;
742 
743   // We use a simple cost heuristic which determine skipping merging is
744   // profitable if the cost of skipping merging is less than the cost of
745   // merging : Cost(skipping merging) < Cost(merging BB), where the
746   // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
747   // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
748   // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
749   //   Freq(Pred) / Freq(BB) > 2.
750   // Note that if there are multiple empty blocks sharing the same incoming
751   // value for the PHIs in the DestBB, we consider them together. In such
752   // case, Cost(merging BB) will be the sum of their frequencies.
753 
754   if (!isa<PHINode>(DestBB->begin()))
755     return true;
756 
757   SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
758 
759   // Find all other incoming blocks from which incoming values of all PHIs in
760   // DestBB are the same as the ones from BB.
761   for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E;
762        ++PI) {
763     BasicBlock *DestBBPred = *PI;
764     if (DestBBPred == BB)
765       continue;
766 
767     bool HasAllSameValue = true;
768     BasicBlock::const_iterator DestBBI = DestBB->begin();
769     while (const PHINode *DestPN = dyn_cast<PHINode>(DestBBI++)) {
770       if (DestPN->getIncomingValueForBlock(BB) !=
771           DestPN->getIncomingValueForBlock(DestBBPred)) {
772         HasAllSameValue = false;
773         break;
774       }
775     }
776     if (HasAllSameValue)
777       SameIncomingValueBBs.insert(DestBBPred);
778   }
779 
780   // See if all BB's incoming values are same as the value from Pred. In this
781   // case, no reason to skip merging because COPYs are expected to be place in
782   // Pred already.
783   if (SameIncomingValueBBs.count(Pred))
784     return true;
785 
786   if (!BFI) {
787     Function &F = *BB->getParent();
788     LoopInfo LI{DominatorTree(F)};
789     BPI.reset(new BranchProbabilityInfo(F, LI));
790     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
791   }
792 
793   BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
794   BlockFrequency BBFreq = BFI->getBlockFreq(BB);
795 
796   for (auto SameValueBB : SameIncomingValueBBs)
797     if (SameValueBB->getUniquePredecessor() == Pred &&
798         DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
799       BBFreq += BFI->getBlockFreq(SameValueBB);
800 
801   return PredFreq.getFrequency() <=
802          BBFreq.getFrequency() * FreqRatioToSkipMerge;
803 }
804 
805 /// Return true if we can merge BB into DestBB if there is a single
806 /// unconditional branch between them, and BB contains no other non-phi
807 /// instructions.
808 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
809                                     const BasicBlock *DestBB) const {
810   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
811   // the successor.  If there are more complex condition (e.g. preheaders),
812   // don't mess around with them.
813   BasicBlock::const_iterator BBI = BB->begin();
814   while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
815     for (const User *U : PN->users()) {
816       const Instruction *UI = cast<Instruction>(U);
817       if (UI->getParent() != DestBB || !isa<PHINode>(UI))
818         return false;
819       // If User is inside DestBB block and it is a PHINode then check
820       // incoming value. If incoming value is not from BB then this is
821       // a complex condition (e.g. preheaders) we want to avoid here.
822       if (UI->getParent() == DestBB) {
823         if (const PHINode *UPN = dyn_cast<PHINode>(UI))
824           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
825             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
826             if (Insn && Insn->getParent() == BB &&
827                 Insn->getParent() != UPN->getIncomingBlock(I))
828               return false;
829           }
830       }
831     }
832   }
833 
834   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
835   // and DestBB may have conflicting incoming values for the block.  If so, we
836   // can't merge the block.
837   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
838   if (!DestBBPN) return true;  // no conflict.
839 
840   // Collect the preds of BB.
841   SmallPtrSet<const BasicBlock*, 16> BBPreds;
842   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
843     // It is faster to get preds from a PHI than with pred_iterator.
844     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
845       BBPreds.insert(BBPN->getIncomingBlock(i));
846   } else {
847     BBPreds.insert(pred_begin(BB), pred_end(BB));
848   }
849 
850   // Walk the preds of DestBB.
851   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
852     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
853     if (BBPreds.count(Pred)) {   // Common predecessor?
854       BBI = DestBB->begin();
855       while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
856         const Value *V1 = PN->getIncomingValueForBlock(Pred);
857         const Value *V2 = PN->getIncomingValueForBlock(BB);
858 
859         // If V2 is a phi node in BB, look up what the mapped value will be.
860         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
861           if (V2PN->getParent() == BB)
862             V2 = V2PN->getIncomingValueForBlock(Pred);
863 
864         // If there is a conflict, bail out.
865         if (V1 != V2) return false;
866       }
867     }
868   }
869 
870   return true;
871 }
872 
873 /// Eliminate a basic block that has only phi's and an unconditional branch in
874 /// it.
875 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
876   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
877   BasicBlock *DestBB = BI->getSuccessor(0);
878 
879   DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
880 
881   // If the destination block has a single pred, then this is a trivial edge,
882   // just collapse it.
883   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
884     if (SinglePred != DestBB) {
885       // Remember if SinglePred was the entry block of the function.  If so, we
886       // will need to move BB back to the entry position.
887       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
888       MergeBasicBlockIntoOnlyPred(DestBB, nullptr);
889 
890       if (isEntry && BB != &BB->getParent()->getEntryBlock())
891         BB->moveBefore(&BB->getParent()->getEntryBlock());
892 
893       DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
894       return;
895     }
896   }
897 
898   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
899   // to handle the new incoming edges it is about to have.
900   PHINode *PN;
901   for (BasicBlock::iterator BBI = DestBB->begin();
902        (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
903     // Remove the incoming value for BB, and remember it.
904     Value *InVal = PN->removeIncomingValue(BB, false);
905 
906     // Two options: either the InVal is a phi node defined in BB or it is some
907     // value that dominates BB.
908     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
909     if (InValPhi && InValPhi->getParent() == BB) {
910       // Add all of the input values of the input PHI as inputs of this phi.
911       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
912         PN->addIncoming(InValPhi->getIncomingValue(i),
913                         InValPhi->getIncomingBlock(i));
914     } else {
915       // Otherwise, add one instance of the dominating value for each edge that
916       // we will be adding.
917       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
918         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
919           PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
920       } else {
921         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
922           PN->addIncoming(InVal, *PI);
923       }
924     }
925   }
926 
927   // The PHIs are now updated, change everything that refers to BB to use
928   // DestBB and remove BB.
929   BB->replaceAllUsesWith(DestBB);
930   BB->eraseFromParent();
931   ++NumBlocksElim;
932 
933   DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
934 }
935 
936 // Computes a map of base pointer relocation instructions to corresponding
937 // derived pointer relocation instructions given a vector of all relocate calls
938 static void computeBaseDerivedRelocateMap(
939     const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
940     DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
941         &RelocateInstMap) {
942   // Collect information in two maps: one primarily for locating the base object
943   // while filling the second map; the second map is the final structure holding
944   // a mapping between Base and corresponding Derived relocate calls
945   DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
946   for (auto *ThisRelocate : AllRelocateCalls) {
947     auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
948                             ThisRelocate->getDerivedPtrIndex());
949     RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
950   }
951   for (auto &Item : RelocateIdxMap) {
952     std::pair<unsigned, unsigned> Key = Item.first;
953     if (Key.first == Key.second)
954       // Base relocation: nothing to insert
955       continue;
956 
957     GCRelocateInst *I = Item.second;
958     auto BaseKey = std::make_pair(Key.first, Key.first);
959 
960     // We're iterating over RelocateIdxMap so we cannot modify it.
961     auto MaybeBase = RelocateIdxMap.find(BaseKey);
962     if (MaybeBase == RelocateIdxMap.end())
963       // TODO: We might want to insert a new base object relocate and gep off
964       // that, if there are enough derived object relocates.
965       continue;
966 
967     RelocateInstMap[MaybeBase->second].push_back(I);
968   }
969 }
970 
971 // Accepts a GEP and extracts the operands into a vector provided they're all
972 // small integer constants
973 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
974                                           SmallVectorImpl<Value *> &OffsetV) {
975   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
976     // Only accept small constant integer operands
977     auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
978     if (!Op || Op->getZExtValue() > 20)
979       return false;
980   }
981 
982   for (unsigned i = 1; i < GEP->getNumOperands(); i++)
983     OffsetV.push_back(GEP->getOperand(i));
984   return true;
985 }
986 
987 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
988 // replace, computes a replacement, and affects it.
989 static bool
990 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
991                           const SmallVectorImpl<GCRelocateInst *> &Targets) {
992   bool MadeChange = false;
993   // We must ensure the relocation of derived pointer is defined after
994   // relocation of base pointer. If we find a relocation corresponding to base
995   // defined earlier than relocation of base then we move relocation of base
996   // right before found relocation. We consider only relocation in the same
997   // basic block as relocation of base. Relocations from other basic block will
998   // be skipped by optimization and we do not care about them.
999   for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
1000        &*R != RelocatedBase; ++R)
1001     if (auto RI = dyn_cast<GCRelocateInst>(R))
1002       if (RI->getStatepoint() == RelocatedBase->getStatepoint())
1003         if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
1004           RelocatedBase->moveBefore(RI);
1005           break;
1006         }
1007 
1008   for (GCRelocateInst *ToReplace : Targets) {
1009     assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
1010            "Not relocating a derived object of the original base object");
1011     if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
1012       // A duplicate relocate call. TODO: coalesce duplicates.
1013       continue;
1014     }
1015 
1016     if (RelocatedBase->getParent() != ToReplace->getParent()) {
1017       // Base and derived relocates are in different basic blocks.
1018       // In this case transform is only valid when base dominates derived
1019       // relocate. However it would be too expensive to check dominance
1020       // for each such relocate, so we skip the whole transformation.
1021       continue;
1022     }
1023 
1024     Value *Base = ToReplace->getBasePtr();
1025     auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
1026     if (!Derived || Derived->getPointerOperand() != Base)
1027       continue;
1028 
1029     SmallVector<Value *, 2> OffsetV;
1030     if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
1031       continue;
1032 
1033     // Create a Builder and replace the target callsite with a gep
1034     assert(RelocatedBase->getNextNode() &&
1035            "Should always have one since it's not a terminator");
1036 
1037     // Insert after RelocatedBase
1038     IRBuilder<> Builder(RelocatedBase->getNextNode());
1039     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1040 
1041     // If gc_relocate does not match the actual type, cast it to the right type.
1042     // In theory, there must be a bitcast after gc_relocate if the type does not
1043     // match, and we should reuse it to get the derived pointer. But it could be
1044     // cases like this:
1045     // bb1:
1046     //  ...
1047     //  %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
1048     //  br label %merge
1049     //
1050     // bb2:
1051     //  ...
1052     //  %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
1053     //  br label %merge
1054     //
1055     // merge:
1056     //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
1057     //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
1058     //
1059     // In this case, we can not find the bitcast any more. So we insert a new bitcast
1060     // no matter there is already one or not. In this way, we can handle all cases, and
1061     // the extra bitcast should be optimized away in later passes.
1062     Value *ActualRelocatedBase = RelocatedBase;
1063     if (RelocatedBase->getType() != Base->getType()) {
1064       ActualRelocatedBase =
1065           Builder.CreateBitCast(RelocatedBase, Base->getType());
1066     }
1067     Value *Replacement = Builder.CreateGEP(
1068         Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
1069     Replacement->takeName(ToReplace);
1070     // If the newly generated derived pointer's type does not match the original derived
1071     // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
1072     Value *ActualReplacement = Replacement;
1073     if (Replacement->getType() != ToReplace->getType()) {
1074       ActualReplacement =
1075           Builder.CreateBitCast(Replacement, ToReplace->getType());
1076     }
1077     ToReplace->replaceAllUsesWith(ActualReplacement);
1078     ToReplace->eraseFromParent();
1079 
1080     MadeChange = true;
1081   }
1082   return MadeChange;
1083 }
1084 
1085 // Turns this:
1086 //
1087 // %base = ...
1088 // %ptr = gep %base + 15
1089 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1090 // %base' = relocate(%tok, i32 4, i32 4)
1091 // %ptr' = relocate(%tok, i32 4, i32 5)
1092 // %val = load %ptr'
1093 //
1094 // into this:
1095 //
1096 // %base = ...
1097 // %ptr = gep %base + 15
1098 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1099 // %base' = gc.relocate(%tok, i32 4, i32 4)
1100 // %ptr' = gep %base' + 15
1101 // %val = load %ptr'
1102 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
1103   bool MadeChange = false;
1104   SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1105 
1106   for (auto *U : I.users())
1107     if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1108       // Collect all the relocate calls associated with a statepoint
1109       AllRelocateCalls.push_back(Relocate);
1110 
1111   // We need atleast one base pointer relocation + one derived pointer
1112   // relocation to mangle
1113   if (AllRelocateCalls.size() < 2)
1114     return false;
1115 
1116   // RelocateInstMap is a mapping from the base relocate instruction to the
1117   // corresponding derived relocate instructions
1118   DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
1119   computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1120   if (RelocateInstMap.empty())
1121     return false;
1122 
1123   for (auto &Item : RelocateInstMap)
1124     // Item.first is the RelocatedBase to offset against
1125     // Item.second is the vector of Targets to replace
1126     MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1127   return MadeChange;
1128 }
1129 
1130 /// SinkCast - Sink the specified cast instruction into its user blocks
1131 static bool SinkCast(CastInst *CI) {
1132   BasicBlock *DefBB = CI->getParent();
1133 
1134   /// InsertedCasts - Only insert a cast in each block once.
1135   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
1136 
1137   bool MadeChange = false;
1138   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1139        UI != E; ) {
1140     Use &TheUse = UI.getUse();
1141     Instruction *User = cast<Instruction>(*UI);
1142 
1143     // Figure out which BB this cast is used in.  For PHI's this is the
1144     // appropriate predecessor block.
1145     BasicBlock *UserBB = User->getParent();
1146     if (PHINode *PN = dyn_cast<PHINode>(User)) {
1147       UserBB = PN->getIncomingBlock(TheUse);
1148     }
1149 
1150     // Preincrement use iterator so we don't invalidate it.
1151     ++UI;
1152 
1153     // The first insertion point of a block containing an EH pad is after the
1154     // pad.  If the pad is the user, we cannot sink the cast past the pad.
1155     if (User->isEHPad())
1156       continue;
1157 
1158     // If the block selected to receive the cast is an EH pad that does not
1159     // allow non-PHI instructions before the terminator, we can't sink the
1160     // cast.
1161     if (UserBB->getTerminator()->isEHPad())
1162       continue;
1163 
1164     // If this user is in the same block as the cast, don't change the cast.
1165     if (UserBB == DefBB) continue;
1166 
1167     // If we have already inserted a cast into this block, use it.
1168     CastInst *&InsertedCast = InsertedCasts[UserBB];
1169 
1170     if (!InsertedCast) {
1171       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1172       assert(InsertPt != UserBB->end());
1173       InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1174                                       CI->getType(), "", &*InsertPt);
1175     }
1176 
1177     // Replace a use of the cast with a use of the new cast.
1178     TheUse = InsertedCast;
1179     MadeChange = true;
1180     ++NumCastUses;
1181   }
1182 
1183   // If we removed all uses, nuke the cast.
1184   if (CI->use_empty()) {
1185     CI->eraseFromParent();
1186     MadeChange = true;
1187   }
1188 
1189   return MadeChange;
1190 }
1191 
1192 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1193 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1194 /// reduce the number of virtual registers that must be created and coalesced.
1195 ///
1196 /// Return true if any changes are made.
1197 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1198                                        const DataLayout &DL) {
1199   // Sink only "cheap" (or nop) address-space casts.  This is a weaker condition
1200   // than sinking only nop casts, but is helpful on some platforms.
1201   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1202     if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(),
1203                                   ASC->getDestAddressSpace()))
1204       return false;
1205   }
1206 
1207   // If this is a noop copy,
1208   EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1209   EVT DstVT = TLI.getValueType(DL, CI->getType());
1210 
1211   // This is an fp<->int conversion?
1212   if (SrcVT.isInteger() != DstVT.isInteger())
1213     return false;
1214 
1215   // If this is an extension, it will be a zero or sign extension, which
1216   // isn't a noop.
1217   if (SrcVT.bitsLT(DstVT)) return false;
1218 
1219   // If these values will be promoted, find out what they will be promoted
1220   // to.  This helps us consider truncates on PPC as noop copies when they
1221   // are.
1222   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1223       TargetLowering::TypePromoteInteger)
1224     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1225   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1226       TargetLowering::TypePromoteInteger)
1227     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1228 
1229   // If, after promotion, these are the same types, this is a noop copy.
1230   if (SrcVT != DstVT)
1231     return false;
1232 
1233   return SinkCast(CI);
1234 }
1235 
1236 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if
1237 /// possible.
1238 ///
1239 /// Return true if any changes were made.
1240 static bool CombineUAddWithOverflow(CmpInst *CI) {
1241   Value *A, *B;
1242   Instruction *AddI;
1243   if (!match(CI,
1244              m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI))))
1245     return false;
1246 
1247   Type *Ty = AddI->getType();
1248   if (!isa<IntegerType>(Ty))
1249     return false;
1250 
1251   // We don't want to move around uses of condition values this late, so we we
1252   // check if it is legal to create the call to the intrinsic in the basic
1253   // block containing the icmp:
1254 
1255   if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse())
1256     return false;
1257 
1258 #ifndef NDEBUG
1259   // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption
1260   // for now:
1261   if (AddI->hasOneUse())
1262     assert(*AddI->user_begin() == CI && "expected!");
1263 #endif
1264 
1265   Module *M = CI->getModule();
1266   Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
1267 
1268   auto *InsertPt = AddI->hasOneUse() ? CI : AddI;
1269 
1270   auto *UAddWithOverflow =
1271       CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt);
1272   auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt);
1273   auto *Overflow =
1274       ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt);
1275 
1276   CI->replaceAllUsesWith(Overflow);
1277   AddI->replaceAllUsesWith(UAdd);
1278   CI->eraseFromParent();
1279   AddI->eraseFromParent();
1280   return true;
1281 }
1282 
1283 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1284 /// registers that must be created and coalesced. This is a clear win except on
1285 /// targets with multiple condition code registers (PowerPC), where it might
1286 /// lose; some adjustment may be wanted there.
1287 ///
1288 /// Return true if any changes are made.
1289 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) {
1290   BasicBlock *DefBB = CI->getParent();
1291 
1292   // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1293   if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI))
1294     return false;
1295 
1296   // Only insert a cmp in each block once.
1297   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
1298 
1299   bool MadeChange = false;
1300   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1301        UI != E; ) {
1302     Use &TheUse = UI.getUse();
1303     Instruction *User = cast<Instruction>(*UI);
1304 
1305     // Preincrement use iterator so we don't invalidate it.
1306     ++UI;
1307 
1308     // Don't bother for PHI nodes.
1309     if (isa<PHINode>(User))
1310       continue;
1311 
1312     // Figure out which BB this cmp is used in.
1313     BasicBlock *UserBB = User->getParent();
1314 
1315     // If this user is in the same block as the cmp, don't change the cmp.
1316     if (UserBB == DefBB) continue;
1317 
1318     // If we have already inserted a cmp into this block, use it.
1319     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1320 
1321     if (!InsertedCmp) {
1322       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1323       assert(InsertPt != UserBB->end());
1324       InsertedCmp =
1325           CmpInst::Create(CI->getOpcode(), CI->getPredicate(),
1326                           CI->getOperand(0), CI->getOperand(1), "", &*InsertPt);
1327       // Propagate the debug info.
1328       InsertedCmp->setDebugLoc(CI->getDebugLoc());
1329     }
1330 
1331     // Replace a use of the cmp with a use of the new cmp.
1332     TheUse = InsertedCmp;
1333     MadeChange = true;
1334     ++NumCmpUses;
1335   }
1336 
1337   // If we removed all uses, nuke the cmp.
1338   if (CI->use_empty()) {
1339     CI->eraseFromParent();
1340     MadeChange = true;
1341   }
1342 
1343   return MadeChange;
1344 }
1345 
1346 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) {
1347   if (SinkCmpExpression(CI, TLI))
1348     return true;
1349 
1350   if (CombineUAddWithOverflow(CI))
1351     return true;
1352 
1353   return false;
1354 }
1355 
1356 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1357 /// used in a compare to allow isel to generate better code for targets where
1358 /// this operation can be combined.
1359 ///
1360 /// Return true if any changes are made.
1361 static bool sinkAndCmp0Expression(Instruction *AndI,
1362                                   const TargetLowering &TLI,
1363                                   SetOfInstrs &InsertedInsts) {
1364   // Double-check that we're not trying to optimize an instruction that was
1365   // already optimized by some other part of this pass.
1366   assert(!InsertedInsts.count(AndI) &&
1367          "Attempting to optimize already optimized and instruction");
1368   (void) InsertedInsts;
1369 
1370   // Nothing to do for single use in same basic block.
1371   if (AndI->hasOneUse() &&
1372       AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
1373     return false;
1374 
1375   // Try to avoid cases where sinking/duplicating is likely to increase register
1376   // pressure.
1377   if (!isa<ConstantInt>(AndI->getOperand(0)) &&
1378       !isa<ConstantInt>(AndI->getOperand(1)) &&
1379       AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
1380     return false;
1381 
1382   for (auto *U : AndI->users()) {
1383     Instruction *User = cast<Instruction>(U);
1384 
1385     // Only sink for and mask feeding icmp with 0.
1386     if (!isa<ICmpInst>(User))
1387       return false;
1388 
1389     auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
1390     if (!CmpC || !CmpC->isZero())
1391       return false;
1392   }
1393 
1394   if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
1395     return false;
1396 
1397   DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1398   DEBUG(AndI->getParent()->dump());
1399 
1400   // Push the 'and' into the same block as the icmp 0.  There should only be
1401   // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1402   // others, so we don't need to keep track of which BBs we insert into.
1403   for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
1404        UI != E; ) {
1405     Use &TheUse = UI.getUse();
1406     Instruction *User = cast<Instruction>(*UI);
1407 
1408     // Preincrement use iterator so we don't invalidate it.
1409     ++UI;
1410 
1411     DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
1412 
1413     // Keep the 'and' in the same place if the use is already in the same block.
1414     Instruction *InsertPt =
1415         User->getParent() == AndI->getParent() ? AndI : User;
1416     Instruction *InsertedAnd =
1417         BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
1418                                AndI->getOperand(1), "", InsertPt);
1419     // Propagate the debug info.
1420     InsertedAnd->setDebugLoc(AndI->getDebugLoc());
1421 
1422     // Replace a use of the 'and' with a use of the new 'and'.
1423     TheUse = InsertedAnd;
1424     ++NumAndUses;
1425     DEBUG(User->getParent()->dump());
1426   }
1427 
1428   // We removed all uses, nuke the and.
1429   AndI->eraseFromParent();
1430   return true;
1431 }
1432 
1433 /// Check if the candidates could be combined with a shift instruction, which
1434 /// includes:
1435 /// 1. Truncate instruction
1436 /// 2. And instruction and the imm is a mask of the low bits:
1437 /// imm & (imm+1) == 0
1438 static bool isExtractBitsCandidateUse(Instruction *User) {
1439   if (!isa<TruncInst>(User)) {
1440     if (User->getOpcode() != Instruction::And ||
1441         !isa<ConstantInt>(User->getOperand(1)))
1442       return false;
1443 
1444     const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
1445 
1446     if ((Cimm & (Cimm + 1)).getBoolValue())
1447       return false;
1448   }
1449   return true;
1450 }
1451 
1452 /// Sink both shift and truncate instruction to the use of truncate's BB.
1453 static bool
1454 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
1455                      DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
1456                      const TargetLowering &TLI, const DataLayout &DL) {
1457   BasicBlock *UserBB = User->getParent();
1458   DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
1459   TruncInst *TruncI = dyn_cast<TruncInst>(User);
1460   bool MadeChange = false;
1461 
1462   for (Value::user_iterator TruncUI = TruncI->user_begin(),
1463                             TruncE = TruncI->user_end();
1464        TruncUI != TruncE;) {
1465 
1466     Use &TruncTheUse = TruncUI.getUse();
1467     Instruction *TruncUser = cast<Instruction>(*TruncUI);
1468     // Preincrement use iterator so we don't invalidate it.
1469 
1470     ++TruncUI;
1471 
1472     int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
1473     if (!ISDOpcode)
1474       continue;
1475 
1476     // If the use is actually a legal node, there will not be an
1477     // implicit truncate.
1478     // FIXME: always querying the result type is just an
1479     // approximation; some nodes' legality is determined by the
1480     // operand or other means. There's no good way to find out though.
1481     if (TLI.isOperationLegalOrCustom(
1482             ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
1483       continue;
1484 
1485     // Don't bother for PHI nodes.
1486     if (isa<PHINode>(TruncUser))
1487       continue;
1488 
1489     BasicBlock *TruncUserBB = TruncUser->getParent();
1490 
1491     if (UserBB == TruncUserBB)
1492       continue;
1493 
1494     BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
1495     CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
1496 
1497     if (!InsertedShift && !InsertedTrunc) {
1498       BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
1499       assert(InsertPt != TruncUserBB->end());
1500       // Sink the shift
1501       if (ShiftI->getOpcode() == Instruction::AShr)
1502         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1503                                                    "", &*InsertPt);
1504       else
1505         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1506                                                    "", &*InsertPt);
1507 
1508       // Sink the trunc
1509       BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
1510       TruncInsertPt++;
1511       assert(TruncInsertPt != TruncUserBB->end());
1512 
1513       InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
1514                                        TruncI->getType(), "", &*TruncInsertPt);
1515 
1516       MadeChange = true;
1517 
1518       TruncTheUse = InsertedTrunc;
1519     }
1520   }
1521   return MadeChange;
1522 }
1523 
1524 /// Sink the shift *right* instruction into user blocks if the uses could
1525 /// potentially be combined with this shift instruction and generate BitExtract
1526 /// instruction. It will only be applied if the architecture supports BitExtract
1527 /// instruction. Here is an example:
1528 /// BB1:
1529 ///   %x.extract.shift = lshr i64 %arg1, 32
1530 /// BB2:
1531 ///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
1532 /// ==>
1533 ///
1534 /// BB2:
1535 ///   %x.extract.shift.1 = lshr i64 %arg1, 32
1536 ///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1537 ///
1538 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract
1539 /// instruction.
1540 /// Return true if any changes are made.
1541 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1542                                 const TargetLowering &TLI,
1543                                 const DataLayout &DL) {
1544   BasicBlock *DefBB = ShiftI->getParent();
1545 
1546   /// Only insert instructions in each block once.
1547   DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1548 
1549   bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1550 
1551   bool MadeChange = false;
1552   for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1553        UI != E;) {
1554     Use &TheUse = UI.getUse();
1555     Instruction *User = cast<Instruction>(*UI);
1556     // Preincrement use iterator so we don't invalidate it.
1557     ++UI;
1558 
1559     // Don't bother for PHI nodes.
1560     if (isa<PHINode>(User))
1561       continue;
1562 
1563     if (!isExtractBitsCandidateUse(User))
1564       continue;
1565 
1566     BasicBlock *UserBB = User->getParent();
1567 
1568     if (UserBB == DefBB) {
1569       // If the shift and truncate instruction are in the same BB. The use of
1570       // the truncate(TruncUse) may still introduce another truncate if not
1571       // legal. In this case, we would like to sink both shift and truncate
1572       // instruction to the BB of TruncUse.
1573       // for example:
1574       // BB1:
1575       // i64 shift.result = lshr i64 opnd, imm
1576       // trunc.result = trunc shift.result to i16
1577       //
1578       // BB2:
1579       //   ----> We will have an implicit truncate here if the architecture does
1580       //   not have i16 compare.
1581       // cmp i16 trunc.result, opnd2
1582       //
1583       if (isa<TruncInst>(User) && shiftIsLegal
1584           // If the type of the truncate is legal, no trucate will be
1585           // introduced in other basic blocks.
1586           &&
1587           (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1588         MadeChange =
1589             SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1590 
1591       continue;
1592     }
1593     // If we have already inserted a shift into this block, use it.
1594     BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1595 
1596     if (!InsertedShift) {
1597       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1598       assert(InsertPt != UserBB->end());
1599 
1600       if (ShiftI->getOpcode() == Instruction::AShr)
1601         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1602                                                    "", &*InsertPt);
1603       else
1604         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1605                                                    "", &*InsertPt);
1606 
1607       MadeChange = true;
1608     }
1609 
1610     // Replace a use of the shift with a use of the new shift.
1611     TheUse = InsertedShift;
1612   }
1613 
1614   // If we removed all uses, nuke the shift.
1615   if (ShiftI->use_empty())
1616     ShiftI->eraseFromParent();
1617 
1618   return MadeChange;
1619 }
1620 
1621 /// If counting leading or trailing zeros is an expensive operation and a zero
1622 /// input is defined, add a check for zero to avoid calling the intrinsic.
1623 ///
1624 /// We want to transform:
1625 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
1626 ///
1627 /// into:
1628 ///   entry:
1629 ///     %cmpz = icmp eq i64 %A, 0
1630 ///     br i1 %cmpz, label %cond.end, label %cond.false
1631 ///   cond.false:
1632 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
1633 ///     br label %cond.end
1634 ///   cond.end:
1635 ///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
1636 ///
1637 /// If the transform is performed, return true and set ModifiedDT to true.
1638 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
1639                                   const TargetLowering *TLI,
1640                                   const DataLayout *DL,
1641                                   bool &ModifiedDT) {
1642   if (!TLI || !DL)
1643     return false;
1644 
1645   // If a zero input is undefined, it doesn't make sense to despeculate that.
1646   if (match(CountZeros->getOperand(1), m_One()))
1647     return false;
1648 
1649   // If it's cheap to speculate, there's nothing to do.
1650   auto IntrinsicID = CountZeros->getIntrinsicID();
1651   if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
1652       (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
1653     return false;
1654 
1655   // Only handle legal scalar cases. Anything else requires too much work.
1656   Type *Ty = CountZeros->getType();
1657   unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
1658   if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
1659     return false;
1660 
1661   // The intrinsic will be sunk behind a compare against zero and branch.
1662   BasicBlock *StartBlock = CountZeros->getParent();
1663   BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
1664 
1665   // Create another block after the count zero intrinsic. A PHI will be added
1666   // in this block to select the result of the intrinsic or the bit-width
1667   // constant if the input to the intrinsic is zero.
1668   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
1669   BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
1670 
1671   // Set up a builder to create a compare, conditional branch, and PHI.
1672   IRBuilder<> Builder(CountZeros->getContext());
1673   Builder.SetInsertPoint(StartBlock->getTerminator());
1674   Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
1675 
1676   // Replace the unconditional branch that was created by the first split with
1677   // a compare against zero and a conditional branch.
1678   Value *Zero = Constant::getNullValue(Ty);
1679   Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
1680   Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
1681   StartBlock->getTerminator()->eraseFromParent();
1682 
1683   // Create a PHI in the end block to select either the output of the intrinsic
1684   // or the bit width of the operand.
1685   Builder.SetInsertPoint(&EndBlock->front());
1686   PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
1687   CountZeros->replaceAllUsesWith(PN);
1688   Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
1689   PN->addIncoming(BitWidth, StartBlock);
1690   PN->addIncoming(CountZeros, CallBlock);
1691 
1692   // We are explicitly handling the zero case, so we can set the intrinsic's
1693   // undefined zero argument to 'true'. This will also prevent reprocessing the
1694   // intrinsic; we only despeculate when a zero input is defined.
1695   CountZeros->setArgOperand(1, Builder.getTrue());
1696   ModifiedDT = true;
1697   return true;
1698 }
1699 
1700 namespace {
1701 
1702 // This class provides helper functions to expand a memcmp library call into an
1703 // inline expansion.
1704 class MemCmpExpansion {
1705   struct ResultBlock {
1706     BasicBlock *BB = nullptr;
1707     PHINode *PhiSrc1 = nullptr;
1708     PHINode *PhiSrc2 = nullptr;
1709 
1710     ResultBlock() = default;
1711   };
1712 
1713   CallInst *CI;
1714   ResultBlock ResBlock;
1715   unsigned MaxLoadSize;
1716   unsigned NumBlocks;
1717   unsigned NumBlocksNonOneByte;
1718   unsigned NumLoadsPerBlock;
1719   std::vector<BasicBlock *> LoadCmpBlocks;
1720   BasicBlock *EndBlock;
1721   PHINode *PhiRes;
1722   bool IsUsedForZeroCmp;
1723   const DataLayout &DL;
1724   IRBuilder<> Builder;
1725 
1726   unsigned calculateNumBlocks(unsigned Size);
1727   void createLoadCmpBlocks();
1728   void createResultBlock();
1729   void setupResultBlockPHINodes();
1730   void setupEndBlockPHINodes();
1731   void emitLoadCompareBlock(unsigned Index, unsigned LoadSize,
1732                             unsigned GEPIndex);
1733   Value *getCompareLoadPairs(unsigned Index, unsigned Size,
1734                              unsigned &NumBytesProcessed);
1735   void emitLoadCompareBlockMultipleLoads(unsigned Index, unsigned Size,
1736                                          unsigned &NumBytesProcessed);
1737   void emitLoadCompareByteBlock(unsigned Index, unsigned GEPIndex);
1738   void emitMemCmpResultBlock();
1739   Value *getMemCmpExpansionZeroCase(unsigned Size);
1740   Value *getMemCmpEqZeroOneBlock(unsigned Size);
1741   Value *getMemCmpOneBlock(unsigned Size);
1742   unsigned getLoadSize(unsigned Size);
1743   unsigned getNumLoads(unsigned Size);
1744 
1745 public:
1746   MemCmpExpansion(CallInst *CI, uint64_t Size, unsigned MaxLoadSize,
1747                   unsigned NumLoadsPerBlock, const DataLayout &DL);
1748 
1749   Value *getMemCmpExpansion(uint64_t Size);
1750 };
1751 
1752 } // end anonymous namespace
1753 
1754 // Initialize the basic block structure required for expansion of memcmp call
1755 // with given maximum load size and memcmp size parameter.
1756 // This structure includes:
1757 // 1. A list of load compare blocks - LoadCmpBlocks.
1758 // 2. An EndBlock, split from original instruction point, which is the block to
1759 // return from.
1760 // 3. ResultBlock, block to branch to for early exit when a
1761 // LoadCmpBlock finds a difference.
1762 MemCmpExpansion::MemCmpExpansion(CallInst *CI, uint64_t Size,
1763                                  unsigned MaxLoadSize, unsigned LoadsPerBlock,
1764                                  const DataLayout &TheDataLayout)
1765     : CI(CI), MaxLoadSize(MaxLoadSize), NumLoadsPerBlock(LoadsPerBlock),
1766       DL(TheDataLayout), Builder(CI) {
1767   // A memcmp with zero-comparison with only one block of load and compare does
1768   // not need to set up any extra blocks. This case could be handled in the DAG,
1769   // but since we have all of the machinery to flexibly expand any memcpy here,
1770   // we choose to handle this case too to avoid fragmented lowering.
1771   IsUsedForZeroCmp = isOnlyUsedInZeroEqualityComparison(CI);
1772   NumBlocks = calculateNumBlocks(Size);
1773   if ((!IsUsedForZeroCmp && NumLoadsPerBlock != 1) || NumBlocks != 1) {
1774     BasicBlock *StartBlock = CI->getParent();
1775     EndBlock = StartBlock->splitBasicBlock(CI, "endblock");
1776     setupEndBlockPHINodes();
1777     createResultBlock();
1778 
1779     // If return value of memcmp is not used in a zero equality, we need to
1780     // calculate which source was larger. The calculation requires the
1781     // two loaded source values of each load compare block.
1782     // These will be saved in the phi nodes created by setupResultBlockPHINodes.
1783     if (!IsUsedForZeroCmp)
1784       setupResultBlockPHINodes();
1785 
1786     // Create the number of required load compare basic blocks.
1787     createLoadCmpBlocks();
1788 
1789     // Update the terminator added by splitBasicBlock to branch to the first
1790     // LoadCmpBlock.
1791     StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]);
1792   }
1793 
1794   Builder.SetCurrentDebugLocation(CI->getDebugLoc());
1795 }
1796 
1797 void MemCmpExpansion::createLoadCmpBlocks() {
1798   for (unsigned i = 0; i < NumBlocks; i++) {
1799     BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb",
1800                                         EndBlock->getParent(), EndBlock);
1801     LoadCmpBlocks.push_back(BB);
1802   }
1803 }
1804 
1805 void MemCmpExpansion::createResultBlock() {
1806   ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block",
1807                                    EndBlock->getParent(), EndBlock);
1808 }
1809 
1810 // This function creates the IR instructions for loading and comparing 1 byte.
1811 // It loads 1 byte from each source of the memcmp parameters with the given
1812 // GEPIndex. It then subtracts the two loaded values and adds this result to the
1813 // final phi node for selecting the memcmp result.
1814 void MemCmpExpansion::emitLoadCompareByteBlock(unsigned Index,
1815                                                unsigned GEPIndex) {
1816   Value *Source1 = CI->getArgOperand(0);
1817   Value *Source2 = CI->getArgOperand(1);
1818 
1819   Builder.SetInsertPoint(LoadCmpBlocks[Index]);
1820   Type *LoadSizeType = Type::getInt8Ty(CI->getContext());
1821   // Cast source to LoadSizeType*.
1822   if (Source1->getType() != LoadSizeType)
1823     Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
1824   if (Source2->getType() != LoadSizeType)
1825     Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
1826 
1827   // Get the base address using the GEPIndex.
1828   if (GEPIndex != 0) {
1829     Source1 = Builder.CreateGEP(LoadSizeType, Source1,
1830                                 ConstantInt::get(LoadSizeType, GEPIndex));
1831     Source2 = Builder.CreateGEP(LoadSizeType, Source2,
1832                                 ConstantInt::get(LoadSizeType, GEPIndex));
1833   }
1834 
1835   Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
1836   Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
1837 
1838   LoadSrc1 = Builder.CreateZExt(LoadSrc1, Type::getInt32Ty(CI->getContext()));
1839   LoadSrc2 = Builder.CreateZExt(LoadSrc2, Type::getInt32Ty(CI->getContext()));
1840   Value *Diff = Builder.CreateSub(LoadSrc1, LoadSrc2);
1841 
1842   PhiRes->addIncoming(Diff, LoadCmpBlocks[Index]);
1843 
1844   if (Index < (LoadCmpBlocks.size() - 1)) {
1845     // Early exit branch if difference found to EndBlock. Otherwise, continue to
1846     // next LoadCmpBlock,
1847     Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff,
1848                                     ConstantInt::get(Diff->getType(), 0));
1849     BranchInst *CmpBr =
1850         BranchInst::Create(EndBlock, LoadCmpBlocks[Index + 1], Cmp);
1851     Builder.Insert(CmpBr);
1852   } else {
1853     // The last block has an unconditional branch to EndBlock.
1854     BranchInst *CmpBr = BranchInst::Create(EndBlock);
1855     Builder.Insert(CmpBr);
1856   }
1857 }
1858 
1859 unsigned MemCmpExpansion::getNumLoads(unsigned Size) {
1860   return (Size / MaxLoadSize) + countPopulation(Size % MaxLoadSize);
1861 }
1862 
1863 unsigned MemCmpExpansion::getLoadSize(unsigned Size) {
1864   return MinAlign(PowerOf2Floor(Size), MaxLoadSize);
1865 }
1866 
1867 /// Generate an equality comparison for one or more pairs of loaded values.
1868 /// This is used in the case where the memcmp() call is compared equal or not
1869 /// equal to zero.
1870 Value *MemCmpExpansion::getCompareLoadPairs(unsigned Index, unsigned Size,
1871                                             unsigned &NumBytesProcessed) {
1872   std::vector<Value *> XorList, OrList;
1873   Value *Diff;
1874 
1875   unsigned RemainingBytes = Size - NumBytesProcessed;
1876   unsigned NumLoadsRemaining = getNumLoads(RemainingBytes);
1877   unsigned NumLoads = std::min(NumLoadsRemaining, NumLoadsPerBlock);
1878 
1879   // For a single-block expansion, start inserting before the memcmp call.
1880   if (LoadCmpBlocks.empty())
1881     Builder.SetInsertPoint(CI);
1882   else
1883     Builder.SetInsertPoint(LoadCmpBlocks[Index]);
1884 
1885   Value *Cmp = nullptr;
1886   for (unsigned i = 0; i < NumLoads; ++i) {
1887     unsigned LoadSize = getLoadSize(RemainingBytes);
1888     unsigned GEPIndex = NumBytesProcessed / LoadSize;
1889     NumBytesProcessed += LoadSize;
1890     RemainingBytes -= LoadSize;
1891 
1892     Type *LoadSizeType = IntegerType::get(CI->getContext(), LoadSize * 8);
1893     Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
1894     assert(LoadSize <= MaxLoadSize && "Unexpected load type");
1895 
1896     Value *Source1 = CI->getArgOperand(0);
1897     Value *Source2 = CI->getArgOperand(1);
1898 
1899     // Cast source to LoadSizeType*.
1900     if (Source1->getType() != LoadSizeType)
1901       Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
1902     if (Source2->getType() != LoadSizeType)
1903       Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
1904 
1905     // Get the base address using the GEPIndex.
1906     if (GEPIndex != 0) {
1907       Source1 = Builder.CreateGEP(LoadSizeType, Source1,
1908                                   ConstantInt::get(LoadSizeType, GEPIndex));
1909       Source2 = Builder.CreateGEP(LoadSizeType, Source2,
1910                                   ConstantInt::get(LoadSizeType, GEPIndex));
1911     }
1912 
1913     // Get a constant or load a value for each source address.
1914     Value *LoadSrc1 = nullptr;
1915     if (auto *Source1C = dyn_cast<Constant>(Source1))
1916       LoadSrc1 = ConstantFoldLoadFromConstPtr(Source1C, LoadSizeType, DL);
1917     if (!LoadSrc1)
1918       LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
1919 
1920     Value *LoadSrc2 = nullptr;
1921     if (auto *Source2C = dyn_cast<Constant>(Source2))
1922       LoadSrc2 = ConstantFoldLoadFromConstPtr(Source2C, LoadSizeType, DL);
1923     if (!LoadSrc2)
1924       LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
1925 
1926     if (NumLoads != 1) {
1927       if (LoadSizeType != MaxLoadType) {
1928         LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType);
1929         LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType);
1930       }
1931       // If we have multiple loads per block, we need to generate a composite
1932       // comparison using xor+or.
1933       Diff = Builder.CreateXor(LoadSrc1, LoadSrc2);
1934       Diff = Builder.CreateZExt(Diff, MaxLoadType);
1935       XorList.push_back(Diff);
1936     } else {
1937       // If there's only one load per block, we just compare the loaded values.
1938       Cmp = Builder.CreateICmpNE(LoadSrc1, LoadSrc2);
1939     }
1940   }
1941 
1942   auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> {
1943     std::vector<Value *> OutList;
1944     for (unsigned i = 0; i < InList.size() - 1; i = i + 2) {
1945       Value *Or = Builder.CreateOr(InList[i], InList[i + 1]);
1946       OutList.push_back(Or);
1947     }
1948     if (InList.size() % 2 != 0)
1949       OutList.push_back(InList.back());
1950     return OutList;
1951   };
1952 
1953   if (!Cmp) {
1954     // Pairwise OR the XOR results.
1955     OrList = pairWiseOr(XorList);
1956 
1957     // Pairwise OR the OR results until one result left.
1958     while (OrList.size() != 1) {
1959       OrList = pairWiseOr(OrList);
1960     }
1961     Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0));
1962   }
1963 
1964   return Cmp;
1965 }
1966 
1967 void MemCmpExpansion::emitLoadCompareBlockMultipleLoads(
1968     unsigned Index, unsigned Size, unsigned &NumBytesProcessed) {
1969   Value *Cmp = getCompareLoadPairs(Index, Size, NumBytesProcessed);
1970 
1971   BasicBlock *NextBB = (Index == (LoadCmpBlocks.size() - 1))
1972                            ? EndBlock
1973                            : LoadCmpBlocks[Index + 1];
1974   // Early exit branch if difference found to ResultBlock. Otherwise,
1975   // continue to next LoadCmpBlock or EndBlock.
1976   BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp);
1977   Builder.Insert(CmpBr);
1978 
1979   // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
1980   // since early exit to ResultBlock was not taken (no difference was found in
1981   // any of the bytes).
1982   if (Index == LoadCmpBlocks.size() - 1) {
1983     Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
1984     PhiRes->addIncoming(Zero, LoadCmpBlocks[Index]);
1985   }
1986 }
1987 
1988 // This function creates the IR intructions for loading and comparing using the
1989 // given LoadSize. It loads the number of bytes specified by LoadSize from each
1990 // source of the memcmp parameters. It then does a subtract to see if there was
1991 // a difference in the loaded values. If a difference is found, it branches
1992 // with an early exit to the ResultBlock for calculating which source was
1993 // larger. Otherwise, it falls through to the either the next LoadCmpBlock or
1994 // the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with
1995 // a special case through emitLoadCompareByteBlock. The special handling can
1996 // simply subtract the loaded values and add it to the result phi node.
1997 void MemCmpExpansion::emitLoadCompareBlock(unsigned Index, unsigned LoadSize,
1998                                            unsigned GEPIndex) {
1999   if (LoadSize == 1) {
2000     MemCmpExpansion::emitLoadCompareByteBlock(Index, GEPIndex);
2001     return;
2002   }
2003 
2004   Type *LoadSizeType = IntegerType::get(CI->getContext(), LoadSize * 8);
2005   Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
2006   assert(LoadSize <= MaxLoadSize && "Unexpected load type");
2007 
2008   Value *Source1 = CI->getArgOperand(0);
2009   Value *Source2 = CI->getArgOperand(1);
2010 
2011   Builder.SetInsertPoint(LoadCmpBlocks[Index]);
2012   // Cast source to LoadSizeType*.
2013   if (Source1->getType() != LoadSizeType)
2014     Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
2015   if (Source2->getType() != LoadSizeType)
2016     Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
2017 
2018   // Get the base address using the GEPIndex.
2019   if (GEPIndex != 0) {
2020     Source1 = Builder.CreateGEP(LoadSizeType, Source1,
2021                                 ConstantInt::get(LoadSizeType, GEPIndex));
2022     Source2 = Builder.CreateGEP(LoadSizeType, Source2,
2023                                 ConstantInt::get(LoadSizeType, GEPIndex));
2024   }
2025 
2026   // Load LoadSizeType from the base address.
2027   Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
2028   Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
2029 
2030   if (DL.isLittleEndian()) {
2031     Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
2032                                                 Intrinsic::bswap, LoadSizeType);
2033     LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1);
2034     LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2);
2035   }
2036 
2037   if (LoadSizeType != MaxLoadType) {
2038     LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType);
2039     LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType);
2040   }
2041 
2042   // Add the loaded values to the phi nodes for calculating memcmp result only
2043   // if result is not used in a zero equality.
2044   if (!IsUsedForZeroCmp) {
2045     ResBlock.PhiSrc1->addIncoming(LoadSrc1, LoadCmpBlocks[Index]);
2046     ResBlock.PhiSrc2->addIncoming(LoadSrc2, LoadCmpBlocks[Index]);
2047   }
2048 
2049   Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, LoadSrc1, LoadSrc2);
2050   BasicBlock *NextBB = (Index == (LoadCmpBlocks.size() - 1))
2051                            ? EndBlock
2052                            : LoadCmpBlocks[Index + 1];
2053   // Early exit branch if difference found to ResultBlock. Otherwise, continue
2054   // to next LoadCmpBlock or EndBlock.
2055   BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp);
2056   Builder.Insert(CmpBr);
2057 
2058   // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
2059   // since early exit to ResultBlock was not taken (no difference was found in
2060   // any of the bytes).
2061   if (Index == LoadCmpBlocks.size() - 1) {
2062     Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
2063     PhiRes->addIncoming(Zero, LoadCmpBlocks[Index]);
2064   }
2065 }
2066 
2067 // This function populates the ResultBlock with a sequence to calculate the
2068 // memcmp result. It compares the two loaded source values and returns -1 if
2069 // src1 < src2 and 1 if src1 > src2.
2070 void MemCmpExpansion::emitMemCmpResultBlock() {
2071   // Special case: if memcmp result is used in a zero equality, result does not
2072   // need to be calculated and can simply return 1.
2073   if (IsUsedForZeroCmp) {
2074     BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
2075     Builder.SetInsertPoint(ResBlock.BB, InsertPt);
2076     Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1);
2077     PhiRes->addIncoming(Res, ResBlock.BB);
2078     BranchInst *NewBr = BranchInst::Create(EndBlock);
2079     Builder.Insert(NewBr);
2080     return;
2081   }
2082   BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
2083   Builder.SetInsertPoint(ResBlock.BB, InsertPt);
2084 
2085   Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1,
2086                                   ResBlock.PhiSrc2);
2087 
2088   Value *Res =
2089       Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1),
2090                            ConstantInt::get(Builder.getInt32Ty(), 1));
2091 
2092   BranchInst *NewBr = BranchInst::Create(EndBlock);
2093   Builder.Insert(NewBr);
2094   PhiRes->addIncoming(Res, ResBlock.BB);
2095 }
2096 
2097 unsigned MemCmpExpansion::calculateNumBlocks(unsigned Size) {
2098   unsigned NumBlocks = 0;
2099   bool HaveOneByteLoad = false;
2100   unsigned RemainingSize = Size;
2101   unsigned LoadSize = MaxLoadSize;
2102   while (RemainingSize) {
2103     if (LoadSize == 1)
2104       HaveOneByteLoad = true;
2105     NumBlocks += RemainingSize / LoadSize;
2106     RemainingSize = RemainingSize % LoadSize;
2107     LoadSize = LoadSize / 2;
2108   }
2109   NumBlocksNonOneByte = HaveOneByteLoad ? (NumBlocks - 1) : NumBlocks;
2110 
2111   if (IsUsedForZeroCmp)
2112     NumBlocks = NumBlocks / NumLoadsPerBlock +
2113                 (NumBlocks % NumLoadsPerBlock != 0 ? 1 : 0);
2114 
2115   return NumBlocks;
2116 }
2117 
2118 void MemCmpExpansion::setupResultBlockPHINodes() {
2119   Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
2120   Builder.SetInsertPoint(ResBlock.BB);
2121   ResBlock.PhiSrc1 =
2122       Builder.CreatePHI(MaxLoadType, NumBlocksNonOneByte, "phi.src1");
2123   ResBlock.PhiSrc2 =
2124       Builder.CreatePHI(MaxLoadType, NumBlocksNonOneByte, "phi.src2");
2125 }
2126 
2127 void MemCmpExpansion::setupEndBlockPHINodes() {
2128   Builder.SetInsertPoint(&EndBlock->front());
2129   PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res");
2130 }
2131 
2132 Value *MemCmpExpansion::getMemCmpExpansionZeroCase(unsigned Size) {
2133   unsigned NumBytesProcessed = 0;
2134   // This loop populates each of the LoadCmpBlocks with the IR sequence to
2135   // handle multiple loads per block.
2136   for (unsigned i = 0; i < NumBlocks; ++i)
2137     emitLoadCompareBlockMultipleLoads(i, Size, NumBytesProcessed);
2138 
2139   emitMemCmpResultBlock();
2140   return PhiRes;
2141 }
2142 
2143 /// A memcmp expansion that compares equality with 0 and only has one block of
2144 /// load and compare can bypass the compare, branch, and phi IR that is required
2145 /// in the general case.
2146 Value *MemCmpExpansion::getMemCmpEqZeroOneBlock(unsigned Size) {
2147   unsigned NumBytesProcessed = 0;
2148   Value *Cmp = getCompareLoadPairs(0, Size, NumBytesProcessed);
2149   return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext()));
2150 }
2151 
2152 /// A memcmp expansion that only has one block of load and compare can bypass
2153 /// the compare, branch, and phi IR that is required in the general case.
2154 Value *MemCmpExpansion::getMemCmpOneBlock(unsigned Size) {
2155   assert(NumLoadsPerBlock == 1 && "Only handles one load pair per block");
2156 
2157   Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8);
2158   Value *Source1 = CI->getArgOperand(0);
2159   Value *Source2 = CI->getArgOperand(1);
2160 
2161   // Cast source to LoadSizeType*.
2162   if (Source1->getType() != LoadSizeType)
2163     Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
2164   if (Source2->getType() != LoadSizeType)
2165     Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
2166 
2167   // Load LoadSizeType from the base address.
2168   Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
2169   Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
2170 
2171   if (DL.isLittleEndian() && Size != 1) {
2172     Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
2173                                                 Intrinsic::bswap, LoadSizeType);
2174     LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1);
2175     LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2);
2176   }
2177 
2178   if (Size < 4) {
2179     // The i8 and i16 cases don't need compares. We zext the loaded values and
2180     // subtract them to get the suitable negative, zero, or positive i32 result.
2181     LoadSrc1 = Builder.CreateZExt(LoadSrc1, Builder.getInt32Ty());
2182     LoadSrc2 = Builder.CreateZExt(LoadSrc2, Builder.getInt32Ty());
2183     return Builder.CreateSub(LoadSrc1, LoadSrc2);
2184   }
2185 
2186   // The result of memcmp is negative, zero, or positive, so produce that by
2187   // subtracting 2 extended compare bits: sub (ugt, ult).
2188   // If a target prefers to use selects to get -1/0/1, they should be able
2189   // to transform this later. The inverse transform (going from selects to math)
2190   // may not be possible in the DAG because the selects got converted into
2191   // branches before we got there.
2192   Value *CmpUGT = Builder.CreateICmpUGT(LoadSrc1, LoadSrc2);
2193   Value *CmpULT = Builder.CreateICmpULT(LoadSrc1, LoadSrc2);
2194   Value *ZextUGT = Builder.CreateZExt(CmpUGT, Builder.getInt32Ty());
2195   Value *ZextULT = Builder.CreateZExt(CmpULT, Builder.getInt32Ty());
2196   return Builder.CreateSub(ZextUGT, ZextULT);
2197 }
2198 
2199 // This function expands the memcmp call into an inline expansion and returns
2200 // the memcmp result.
2201 Value *MemCmpExpansion::getMemCmpExpansion(uint64_t Size) {
2202   if (IsUsedForZeroCmp)
2203     return NumBlocks == 1 ? getMemCmpEqZeroOneBlock(Size) :
2204                             getMemCmpExpansionZeroCase(Size);
2205 
2206   // TODO: Handle more than one load pair per block in getMemCmpOneBlock().
2207   if (NumBlocks == 1 && NumLoadsPerBlock == 1)
2208     return getMemCmpOneBlock(Size);
2209 
2210   // This loop calls emitLoadCompareBlock for comparing Size bytes of the two
2211   // memcmp sources. It starts with loading using the maximum load size set by
2212   // the target. It processes any remaining bytes using a load size which is the
2213   // next smallest power of 2.
2214   unsigned LoadSize = MaxLoadSize;
2215   unsigned NumBytesToBeProcessed = Size;
2216   unsigned Index = 0;
2217   while (NumBytesToBeProcessed) {
2218     // Calculate how many blocks we can create with the current load size.
2219     unsigned NumBlocks = NumBytesToBeProcessed / LoadSize;
2220     unsigned GEPIndex = (Size - NumBytesToBeProcessed) / LoadSize;
2221     NumBytesToBeProcessed = NumBytesToBeProcessed % LoadSize;
2222 
2223     // For each NumBlocks, populate the instruction sequence for loading and
2224     // comparing LoadSize bytes.
2225     while (NumBlocks--) {
2226       emitLoadCompareBlock(Index, LoadSize, GEPIndex);
2227       Index++;
2228       GEPIndex++;
2229     }
2230     // Get the next LoadSize to use.
2231     LoadSize = LoadSize / 2;
2232   }
2233 
2234   emitMemCmpResultBlock();
2235   return PhiRes;
2236 }
2237 
2238 // This function checks to see if an expansion of memcmp can be generated.
2239 // It checks for constant compare size that is less than the max inline size.
2240 // If an expansion cannot occur, returns false to leave as a library call.
2241 // Otherwise, the library call is replaced with a new IR instruction sequence.
2242 /// We want to transform:
2243 /// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15)
2244 /// To:
2245 /// loadbb:
2246 ///  %0 = bitcast i32* %buffer2 to i8*
2247 ///  %1 = bitcast i32* %buffer1 to i8*
2248 ///  %2 = bitcast i8* %1 to i64*
2249 ///  %3 = bitcast i8* %0 to i64*
2250 ///  %4 = load i64, i64* %2
2251 ///  %5 = load i64, i64* %3
2252 ///  %6 = call i64 @llvm.bswap.i64(i64 %4)
2253 ///  %7 = call i64 @llvm.bswap.i64(i64 %5)
2254 ///  %8 = sub i64 %6, %7
2255 ///  %9 = icmp ne i64 %8, 0
2256 ///  br i1 %9, label %res_block, label %loadbb1
2257 /// res_block:                                        ; preds = %loadbb2,
2258 /// %loadbb1, %loadbb
2259 ///  %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ]
2260 ///  %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ]
2261 ///  %10 = icmp ult i64 %phi.src1, %phi.src2
2262 ///  %11 = select i1 %10, i32 -1, i32 1
2263 ///  br label %endblock
2264 /// loadbb1:                                          ; preds = %loadbb
2265 ///  %12 = bitcast i32* %buffer2 to i8*
2266 ///  %13 = bitcast i32* %buffer1 to i8*
2267 ///  %14 = bitcast i8* %13 to i32*
2268 ///  %15 = bitcast i8* %12 to i32*
2269 ///  %16 = getelementptr i32, i32* %14, i32 2
2270 ///  %17 = getelementptr i32, i32* %15, i32 2
2271 ///  %18 = load i32, i32* %16
2272 ///  %19 = load i32, i32* %17
2273 ///  %20 = call i32 @llvm.bswap.i32(i32 %18)
2274 ///  %21 = call i32 @llvm.bswap.i32(i32 %19)
2275 ///  %22 = zext i32 %20 to i64
2276 ///  %23 = zext i32 %21 to i64
2277 ///  %24 = sub i64 %22, %23
2278 ///  %25 = icmp ne i64 %24, 0
2279 ///  br i1 %25, label %res_block, label %loadbb2
2280 /// loadbb2:                                          ; preds = %loadbb1
2281 ///  %26 = bitcast i32* %buffer2 to i8*
2282 ///  %27 = bitcast i32* %buffer1 to i8*
2283 ///  %28 = bitcast i8* %27 to i16*
2284 ///  %29 = bitcast i8* %26 to i16*
2285 ///  %30 = getelementptr i16, i16* %28, i16 6
2286 ///  %31 = getelementptr i16, i16* %29, i16 6
2287 ///  %32 = load i16, i16* %30
2288 ///  %33 = load i16, i16* %31
2289 ///  %34 = call i16 @llvm.bswap.i16(i16 %32)
2290 ///  %35 = call i16 @llvm.bswap.i16(i16 %33)
2291 ///  %36 = zext i16 %34 to i64
2292 ///  %37 = zext i16 %35 to i64
2293 ///  %38 = sub i64 %36, %37
2294 ///  %39 = icmp ne i64 %38, 0
2295 ///  br i1 %39, label %res_block, label %loadbb3
2296 /// loadbb3:                                          ; preds = %loadbb2
2297 ///  %40 = bitcast i32* %buffer2 to i8*
2298 ///  %41 = bitcast i32* %buffer1 to i8*
2299 ///  %42 = getelementptr i8, i8* %41, i8 14
2300 ///  %43 = getelementptr i8, i8* %40, i8 14
2301 ///  %44 = load i8, i8* %42
2302 ///  %45 = load i8, i8* %43
2303 ///  %46 = zext i8 %44 to i32
2304 ///  %47 = zext i8 %45 to i32
2305 ///  %48 = sub i32 %46, %47
2306 ///  br label %endblock
2307 /// endblock:                                         ; preds = %res_block,
2308 /// %loadbb3
2309 ///  %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ]
2310 ///  ret i32 %phi.res
2311 static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI,
2312                          const TargetLowering *TLI, const DataLayout *DL) {
2313   NumMemCmpCalls++;
2314 
2315   // TTI call to check if target would like to expand memcmp. Also, get the
2316   // MaxLoadSize.
2317   unsigned MaxLoadSize;
2318   if (!TTI->expandMemCmp(CI, MaxLoadSize))
2319     return false;
2320 
2321   // Early exit from expansion if -Oz.
2322   if (CI->getFunction()->optForMinSize())
2323     return false;
2324 
2325   // Early exit from expansion if size is not a constant.
2326   ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2));
2327   if (!SizeCast) {
2328     NumMemCmpNotConstant++;
2329     return false;
2330   }
2331 
2332   // Scale the max size down if the target can load more bytes than we need.
2333   uint64_t SizeVal = SizeCast->getZExtValue();
2334   if (MaxLoadSize > SizeVal)
2335     MaxLoadSize = 1 << SizeCast->getValue().logBase2();
2336 
2337   // Calculate how many load pairs are needed for the constant size.
2338   unsigned NumLoads = 0;
2339   unsigned RemainingSize = SizeVal;
2340   unsigned LoadSize = MaxLoadSize;
2341   while (RemainingSize) {
2342     NumLoads += RemainingSize / LoadSize;
2343     RemainingSize = RemainingSize % LoadSize;
2344     LoadSize = LoadSize / 2;
2345   }
2346 
2347   // Don't expand if this will require more loads than desired by the target.
2348   if (NumLoads > TLI->getMaxExpandSizeMemcmp(CI->getFunction()->optForSize())) {
2349     NumMemCmpGreaterThanMax++;
2350     return false;
2351   }
2352 
2353   NumMemCmpInlined++;
2354 
2355   // MemCmpHelper object creates and sets up basic blocks required for
2356   // expanding memcmp with size SizeVal.
2357   unsigned NumLoadsPerBlock = MemCmpNumLoadsPerBlock;
2358   MemCmpExpansion MemCmpHelper(CI, SizeVal, MaxLoadSize, NumLoadsPerBlock, *DL);
2359 
2360   Value *Res = MemCmpHelper.getMemCmpExpansion(SizeVal);
2361 
2362   // Replace call with result of expansion and erase call.
2363   CI->replaceAllUsesWith(Res);
2364   CI->eraseFromParent();
2365 
2366   return true;
2367 }
2368 
2369 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
2370   BasicBlock *BB = CI->getParent();
2371 
2372   // Lower inline assembly if we can.
2373   // If we found an inline asm expession, and if the target knows how to
2374   // lower it to normal LLVM code, do so now.
2375   if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
2376     if (TLI->ExpandInlineAsm(CI)) {
2377       // Avoid invalidating the iterator.
2378       CurInstIterator = BB->begin();
2379       // Avoid processing instructions out of order, which could cause
2380       // reuse before a value is defined.
2381       SunkAddrs.clear();
2382       return true;
2383     }
2384     // Sink address computing for memory operands into the block.
2385     if (optimizeInlineAsmInst(CI))
2386       return true;
2387   }
2388 
2389   // Align the pointer arguments to this call if the target thinks it's a good
2390   // idea
2391   unsigned MinSize, PrefAlign;
2392   if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
2393     for (auto &Arg : CI->arg_operands()) {
2394       // We want to align both objects whose address is used directly and
2395       // objects whose address is used in casts and GEPs, though it only makes
2396       // sense for GEPs if the offset is a multiple of the desired alignment and
2397       // if size - offset meets the size threshold.
2398       if (!Arg->getType()->isPointerTy())
2399         continue;
2400       APInt Offset(DL->getPointerSizeInBits(
2401                        cast<PointerType>(Arg->getType())->getAddressSpace()),
2402                    0);
2403       Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
2404       uint64_t Offset2 = Offset.getLimitedValue();
2405       if ((Offset2 & (PrefAlign-1)) != 0)
2406         continue;
2407       AllocaInst *AI;
2408       if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
2409           DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
2410         AI->setAlignment(PrefAlign);
2411       // Global variables can only be aligned if they are defined in this
2412       // object (i.e. they are uniquely initialized in this object), and
2413       // over-aligning global variables that have an explicit section is
2414       // forbidden.
2415       GlobalVariable *GV;
2416       if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
2417           GV->getPointerAlignment(*DL) < PrefAlign &&
2418           DL->getTypeAllocSize(GV->getValueType()) >=
2419               MinSize + Offset2)
2420         GV->setAlignment(PrefAlign);
2421     }
2422     // If this is a memcpy (or similar) then we may be able to improve the
2423     // alignment
2424     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
2425       unsigned Align = getKnownAlignment(MI->getDest(), *DL);
2426       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
2427         Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL));
2428       if (Align > MI->getAlignment())
2429         MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align));
2430     }
2431   }
2432 
2433   // If we have a cold call site, try to sink addressing computation into the
2434   // cold block.  This interacts with our handling for loads and stores to
2435   // ensure that we can fold all uses of a potential addressing computation
2436   // into their uses.  TODO: generalize this to work over profiling data
2437   if (!OptSize && CI->hasFnAttr(Attribute::Cold))
2438     for (auto &Arg : CI->arg_operands()) {
2439       if (!Arg->getType()->isPointerTy())
2440         continue;
2441       unsigned AS = Arg->getType()->getPointerAddressSpace();
2442       return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
2443     }
2444 
2445   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
2446   if (II) {
2447     switch (II->getIntrinsicID()) {
2448     default: break;
2449     case Intrinsic::objectsize: {
2450       // Lower all uses of llvm.objectsize.*
2451       ConstantInt *RetVal =
2452           lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true);
2453       // Substituting this can cause recursive simplifications, which can
2454       // invalidate our iterator.  Use a WeakTrackingVH to hold onto it in case
2455       // this
2456       // happens.
2457       Value *CurValue = &*CurInstIterator;
2458       WeakTrackingVH IterHandle(CurValue);
2459 
2460       replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
2461 
2462       // If the iterator instruction was recursively deleted, start over at the
2463       // start of the block.
2464       if (IterHandle != CurValue) {
2465         CurInstIterator = BB->begin();
2466         SunkAddrs.clear();
2467       }
2468       return true;
2469     }
2470     case Intrinsic::aarch64_stlxr:
2471     case Intrinsic::aarch64_stxr: {
2472       ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
2473       if (!ExtVal || !ExtVal->hasOneUse() ||
2474           ExtVal->getParent() == CI->getParent())
2475         return false;
2476       // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
2477       ExtVal->moveBefore(CI);
2478       // Mark this instruction as "inserted by CGP", so that other
2479       // optimizations don't touch it.
2480       InsertedInsts.insert(ExtVal);
2481       return true;
2482     }
2483     case Intrinsic::invariant_group_barrier:
2484       II->replaceAllUsesWith(II->getArgOperand(0));
2485       II->eraseFromParent();
2486       return true;
2487 
2488     case Intrinsic::cttz:
2489     case Intrinsic::ctlz:
2490       // If counting zeros is expensive, try to avoid it.
2491       return despeculateCountZeros(II, TLI, DL, ModifiedDT);
2492     }
2493 
2494     if (TLI) {
2495       SmallVector<Value*, 2> PtrOps;
2496       Type *AccessTy;
2497       if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
2498         while (!PtrOps.empty()) {
2499           Value *PtrVal = PtrOps.pop_back_val();
2500           unsigned AS = PtrVal->getType()->getPointerAddressSpace();
2501           if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
2502             return true;
2503         }
2504     }
2505   }
2506 
2507   // From here on out we're working with named functions.
2508   if (!CI->getCalledFunction()) return false;
2509 
2510   // Lower all default uses of _chk calls.  This is very similar
2511   // to what InstCombineCalls does, but here we are only lowering calls
2512   // to fortified library functions (e.g. __memcpy_chk) that have the default
2513   // "don't know" as the objectsize.  Anything else should be left alone.
2514   FortifiedLibCallSimplifier Simplifier(TLInfo, true);
2515   if (Value *V = Simplifier.optimizeCall(CI)) {
2516     CI->replaceAllUsesWith(V);
2517     CI->eraseFromParent();
2518     return true;
2519   }
2520 
2521   LibFunc Func;
2522   if (TLInfo->getLibFunc(ImmutableCallSite(CI), Func) &&
2523       Func == LibFunc_memcmp && expandMemCmp(CI, TTI, TLI, DL)) {
2524     ModifiedDT = true;
2525     return true;
2526   }
2527   return false;
2528 }
2529 
2530 /// Look for opportunities to duplicate return instructions to the predecessor
2531 /// to enable tail call optimizations. The case it is currently looking for is:
2532 /// @code
2533 /// bb0:
2534 ///   %tmp0 = tail call i32 @f0()
2535 ///   br label %return
2536 /// bb1:
2537 ///   %tmp1 = tail call i32 @f1()
2538 ///   br label %return
2539 /// bb2:
2540 ///   %tmp2 = tail call i32 @f2()
2541 ///   br label %return
2542 /// return:
2543 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
2544 ///   ret i32 %retval
2545 /// @endcode
2546 ///
2547 /// =>
2548 ///
2549 /// @code
2550 /// bb0:
2551 ///   %tmp0 = tail call i32 @f0()
2552 ///   ret i32 %tmp0
2553 /// bb1:
2554 ///   %tmp1 = tail call i32 @f1()
2555 ///   ret i32 %tmp1
2556 /// bb2:
2557 ///   %tmp2 = tail call i32 @f2()
2558 ///   ret i32 %tmp2
2559 /// @endcode
2560 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) {
2561   if (!TLI)
2562     return false;
2563 
2564   ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
2565   if (!RetI)
2566     return false;
2567 
2568   PHINode *PN = nullptr;
2569   BitCastInst *BCI = nullptr;
2570   Value *V = RetI->getReturnValue();
2571   if (V) {
2572     BCI = dyn_cast<BitCastInst>(V);
2573     if (BCI)
2574       V = BCI->getOperand(0);
2575 
2576     PN = dyn_cast<PHINode>(V);
2577     if (!PN)
2578       return false;
2579   }
2580 
2581   if (PN && PN->getParent() != BB)
2582     return false;
2583 
2584   // Make sure there are no instructions between the PHI and return, or that the
2585   // return is the first instruction in the block.
2586   if (PN) {
2587     BasicBlock::iterator BI = BB->begin();
2588     do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
2589     if (&*BI == BCI)
2590       // Also skip over the bitcast.
2591       ++BI;
2592     if (&*BI != RetI)
2593       return false;
2594   } else {
2595     BasicBlock::iterator BI = BB->begin();
2596     while (isa<DbgInfoIntrinsic>(BI)) ++BI;
2597     if (&*BI != RetI)
2598       return false;
2599   }
2600 
2601   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
2602   /// call.
2603   const Function *F = BB->getParent();
2604   SmallVector<CallInst*, 4> TailCalls;
2605   if (PN) {
2606     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
2607       CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
2608       // Make sure the phi value is indeed produced by the tail call.
2609       if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
2610           TLI->mayBeEmittedAsTailCall(CI) &&
2611           attributesPermitTailCall(F, CI, RetI, *TLI))
2612         TailCalls.push_back(CI);
2613     }
2614   } else {
2615     SmallPtrSet<BasicBlock*, 4> VisitedBBs;
2616     for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
2617       if (!VisitedBBs.insert(*PI).second)
2618         continue;
2619 
2620       BasicBlock::InstListType &InstList = (*PI)->getInstList();
2621       BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
2622       BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
2623       do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
2624       if (RI == RE)
2625         continue;
2626 
2627       CallInst *CI = dyn_cast<CallInst>(&*RI);
2628       if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
2629           attributesPermitTailCall(F, CI, RetI, *TLI))
2630         TailCalls.push_back(CI);
2631     }
2632   }
2633 
2634   bool Changed = false;
2635   for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
2636     CallInst *CI = TailCalls[i];
2637     CallSite CS(CI);
2638 
2639     // Conservatively require the attributes of the call to match those of the
2640     // return. Ignore noalias because it doesn't affect the call sequence.
2641     AttributeList CalleeAttrs = CS.getAttributes();
2642     if (AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex)
2643             .removeAttribute(Attribute::NoAlias) !=
2644         AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex)
2645             .removeAttribute(Attribute::NoAlias))
2646       continue;
2647 
2648     // Make sure the call instruction is followed by an unconditional branch to
2649     // the return block.
2650     BasicBlock *CallBB = CI->getParent();
2651     BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
2652     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
2653       continue;
2654 
2655     // Duplicate the return into CallBB.
2656     (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB);
2657     ModifiedDT = Changed = true;
2658     ++NumRetsDup;
2659   }
2660 
2661   // If we eliminated all predecessors of the block, delete the block now.
2662   if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
2663     BB->eraseFromParent();
2664 
2665   return Changed;
2666 }
2667 
2668 //===----------------------------------------------------------------------===//
2669 // Memory Optimization
2670 //===----------------------------------------------------------------------===//
2671 
2672 namespace {
2673 
2674 /// This is an extended version of TargetLowering::AddrMode
2675 /// which holds actual Value*'s for register values.
2676 struct ExtAddrMode : public TargetLowering::AddrMode {
2677   Value *BaseReg = nullptr;
2678   Value *ScaledReg = nullptr;
2679 
2680   ExtAddrMode() = default;
2681 
2682   void print(raw_ostream &OS) const;
2683   void dump() const;
2684 
2685   bool operator==(const ExtAddrMode& O) const {
2686     return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) &&
2687            (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) &&
2688            (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale);
2689   }
2690 };
2691 
2692 } // end anonymous namespace
2693 
2694 #ifndef NDEBUG
2695 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2696   AM.print(OS);
2697   return OS;
2698 }
2699 #endif
2700 
2701 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2702 void ExtAddrMode::print(raw_ostream &OS) const {
2703   bool NeedPlus = false;
2704   OS << "[";
2705   if (BaseGV) {
2706     OS << (NeedPlus ? " + " : "")
2707        << "GV:";
2708     BaseGV->printAsOperand(OS, /*PrintType=*/false);
2709     NeedPlus = true;
2710   }
2711 
2712   if (BaseOffs) {
2713     OS << (NeedPlus ? " + " : "")
2714        << BaseOffs;
2715     NeedPlus = true;
2716   }
2717 
2718   if (BaseReg) {
2719     OS << (NeedPlus ? " + " : "")
2720        << "Base:";
2721     BaseReg->printAsOperand(OS, /*PrintType=*/false);
2722     NeedPlus = true;
2723   }
2724   if (Scale) {
2725     OS << (NeedPlus ? " + " : "")
2726        << Scale << "*";
2727     ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2728   }
2729 
2730   OS << ']';
2731 }
2732 
2733 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2734   print(dbgs());
2735   dbgs() << '\n';
2736 }
2737 #endif
2738 
2739 namespace {
2740 
2741 /// \brief This class provides transaction based operation on the IR.
2742 /// Every change made through this class is recorded in the internal state and
2743 /// can be undone (rollback) until commit is called.
2744 class TypePromotionTransaction {
2745   /// \brief This represents the common interface of the individual transaction.
2746   /// Each class implements the logic for doing one specific modification on
2747   /// the IR via the TypePromotionTransaction.
2748   class TypePromotionAction {
2749   protected:
2750     /// The Instruction modified.
2751     Instruction *Inst;
2752 
2753   public:
2754     /// \brief Constructor of the action.
2755     /// The constructor performs the related action on the IR.
2756     TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2757 
2758     virtual ~TypePromotionAction() = default;
2759 
2760     /// \brief Undo the modification done by this action.
2761     /// When this method is called, the IR must be in the same state as it was
2762     /// before this action was applied.
2763     /// \pre Undoing the action works if and only if the IR is in the exact same
2764     /// state as it was directly after this action was applied.
2765     virtual void undo() = 0;
2766 
2767     /// \brief Advocate every change made by this action.
2768     /// When the results on the IR of the action are to be kept, it is important
2769     /// to call this function, otherwise hidden information may be kept forever.
2770     virtual void commit() {
2771       // Nothing to be done, this action is not doing anything.
2772     }
2773   };
2774 
2775   /// \brief Utility to remember the position of an instruction.
2776   class InsertionHandler {
2777     /// Position of an instruction.
2778     /// Either an instruction:
2779     /// - Is the first in a basic block: BB is used.
2780     /// - Has a previous instructon: PrevInst is used.
2781     union {
2782       Instruction *PrevInst;
2783       BasicBlock *BB;
2784     } Point;
2785 
2786     /// Remember whether or not the instruction had a previous instruction.
2787     bool HasPrevInstruction;
2788 
2789   public:
2790     /// \brief Record the position of \p Inst.
2791     InsertionHandler(Instruction *Inst) {
2792       BasicBlock::iterator It = Inst->getIterator();
2793       HasPrevInstruction = (It != (Inst->getParent()->begin()));
2794       if (HasPrevInstruction)
2795         Point.PrevInst = &*--It;
2796       else
2797         Point.BB = Inst->getParent();
2798     }
2799 
2800     /// \brief Insert \p Inst at the recorded position.
2801     void insert(Instruction *Inst) {
2802       if (HasPrevInstruction) {
2803         if (Inst->getParent())
2804           Inst->removeFromParent();
2805         Inst->insertAfter(Point.PrevInst);
2806       } else {
2807         Instruction *Position = &*Point.BB->getFirstInsertionPt();
2808         if (Inst->getParent())
2809           Inst->moveBefore(Position);
2810         else
2811           Inst->insertBefore(Position);
2812       }
2813     }
2814   };
2815 
2816   /// \brief Move an instruction before another.
2817   class InstructionMoveBefore : public TypePromotionAction {
2818     /// Original position of the instruction.
2819     InsertionHandler Position;
2820 
2821   public:
2822     /// \brief Move \p Inst before \p Before.
2823     InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2824         : TypePromotionAction(Inst), Position(Inst) {
2825       DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n");
2826       Inst->moveBefore(Before);
2827     }
2828 
2829     /// \brief Move the instruction back to its original position.
2830     void undo() override {
2831       DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2832       Position.insert(Inst);
2833     }
2834   };
2835 
2836   /// \brief Set the operand of an instruction with a new value.
2837   class OperandSetter : public TypePromotionAction {
2838     /// Original operand of the instruction.
2839     Value *Origin;
2840 
2841     /// Index of the modified instruction.
2842     unsigned Idx;
2843 
2844   public:
2845     /// \brief Set \p Idx operand of \p Inst with \p NewVal.
2846     OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2847         : TypePromotionAction(Inst), Idx(Idx) {
2848       DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2849                    << "for:" << *Inst << "\n"
2850                    << "with:" << *NewVal << "\n");
2851       Origin = Inst->getOperand(Idx);
2852       Inst->setOperand(Idx, NewVal);
2853     }
2854 
2855     /// \brief Restore the original value of the instruction.
2856     void undo() override {
2857       DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2858                    << "for: " << *Inst << "\n"
2859                    << "with: " << *Origin << "\n");
2860       Inst->setOperand(Idx, Origin);
2861     }
2862   };
2863 
2864   /// \brief Hide the operands of an instruction.
2865   /// Do as if this instruction was not using any of its operands.
2866   class OperandsHider : public TypePromotionAction {
2867     /// The list of original operands.
2868     SmallVector<Value *, 4> OriginalValues;
2869 
2870   public:
2871     /// \brief Remove \p Inst from the uses of the operands of \p Inst.
2872     OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2873       DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2874       unsigned NumOpnds = Inst->getNumOperands();
2875       OriginalValues.reserve(NumOpnds);
2876       for (unsigned It = 0; It < NumOpnds; ++It) {
2877         // Save the current operand.
2878         Value *Val = Inst->getOperand(It);
2879         OriginalValues.push_back(Val);
2880         // Set a dummy one.
2881         // We could use OperandSetter here, but that would imply an overhead
2882         // that we are not willing to pay.
2883         Inst->setOperand(It, UndefValue::get(Val->getType()));
2884       }
2885     }
2886 
2887     /// \brief Restore the original list of uses.
2888     void undo() override {
2889       DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2890       for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2891         Inst->setOperand(It, OriginalValues[It]);
2892     }
2893   };
2894 
2895   /// \brief Build a truncate instruction.
2896   class TruncBuilder : public TypePromotionAction {
2897     Value *Val;
2898 
2899   public:
2900     /// \brief Build a truncate instruction of \p Opnd producing a \p Ty
2901     /// result.
2902     /// trunc Opnd to Ty.
2903     TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2904       IRBuilder<> Builder(Opnd);
2905       Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2906       DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2907     }
2908 
2909     /// \brief Get the built value.
2910     Value *getBuiltValue() { return Val; }
2911 
2912     /// \brief Remove the built instruction.
2913     void undo() override {
2914       DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2915       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2916         IVal->eraseFromParent();
2917     }
2918   };
2919 
2920   /// \brief Build a sign extension instruction.
2921   class SExtBuilder : public TypePromotionAction {
2922     Value *Val;
2923 
2924   public:
2925     /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty
2926     /// result.
2927     /// sext Opnd to Ty.
2928     SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2929         : TypePromotionAction(InsertPt) {
2930       IRBuilder<> Builder(InsertPt);
2931       Val = Builder.CreateSExt(Opnd, Ty, "promoted");
2932       DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
2933     }
2934 
2935     /// \brief Get the built value.
2936     Value *getBuiltValue() { return Val; }
2937 
2938     /// \brief Remove the built instruction.
2939     void undo() override {
2940       DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
2941       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2942         IVal->eraseFromParent();
2943     }
2944   };
2945 
2946   /// \brief Build a zero extension instruction.
2947   class ZExtBuilder : public TypePromotionAction {
2948     Value *Val;
2949 
2950   public:
2951     /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty
2952     /// result.
2953     /// zext Opnd to Ty.
2954     ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2955         : TypePromotionAction(InsertPt) {
2956       IRBuilder<> Builder(InsertPt);
2957       Val = Builder.CreateZExt(Opnd, Ty, "promoted");
2958       DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
2959     }
2960 
2961     /// \brief Get the built value.
2962     Value *getBuiltValue() { return Val; }
2963 
2964     /// \brief Remove the built instruction.
2965     void undo() override {
2966       DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
2967       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2968         IVal->eraseFromParent();
2969     }
2970   };
2971 
2972   /// \brief Mutate an instruction to another type.
2973   class TypeMutator : public TypePromotionAction {
2974     /// Record the original type.
2975     Type *OrigTy;
2976 
2977   public:
2978     /// \brief Mutate the type of \p Inst into \p NewTy.
2979     TypeMutator(Instruction *Inst, Type *NewTy)
2980         : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
2981       DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
2982                    << "\n");
2983       Inst->mutateType(NewTy);
2984     }
2985 
2986     /// \brief Mutate the instruction back to its original type.
2987     void undo() override {
2988       DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
2989                    << "\n");
2990       Inst->mutateType(OrigTy);
2991     }
2992   };
2993 
2994   /// \brief Replace the uses of an instruction by another instruction.
2995   class UsesReplacer : public TypePromotionAction {
2996     /// Helper structure to keep track of the replaced uses.
2997     struct InstructionAndIdx {
2998       /// The instruction using the instruction.
2999       Instruction *Inst;
3000 
3001       /// The index where this instruction is used for Inst.
3002       unsigned Idx;
3003 
3004       InstructionAndIdx(Instruction *Inst, unsigned Idx)
3005           : Inst(Inst), Idx(Idx) {}
3006     };
3007 
3008     /// Keep track of the original uses (pair Instruction, Index).
3009     SmallVector<InstructionAndIdx, 4> OriginalUses;
3010 
3011     using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
3012 
3013   public:
3014     /// \brief Replace all the use of \p Inst by \p New.
3015     UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
3016       DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
3017                    << "\n");
3018       // Record the original uses.
3019       for (Use &U : Inst->uses()) {
3020         Instruction *UserI = cast<Instruction>(U.getUser());
3021         OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
3022       }
3023       // Now, we can replace the uses.
3024       Inst->replaceAllUsesWith(New);
3025     }
3026 
3027     /// \brief Reassign the original uses of Inst to Inst.
3028     void undo() override {
3029       DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
3030       for (use_iterator UseIt = OriginalUses.begin(),
3031                         EndIt = OriginalUses.end();
3032            UseIt != EndIt; ++UseIt) {
3033         UseIt->Inst->setOperand(UseIt->Idx, Inst);
3034       }
3035     }
3036   };
3037 
3038   /// \brief Remove an instruction from the IR.
3039   class InstructionRemover : public TypePromotionAction {
3040     /// Original position of the instruction.
3041     InsertionHandler Inserter;
3042 
3043     /// Helper structure to hide all the link to the instruction. In other
3044     /// words, this helps to do as if the instruction was removed.
3045     OperandsHider Hider;
3046 
3047     /// Keep track of the uses replaced, if any.
3048     UsesReplacer *Replacer = nullptr;
3049 
3050     /// Keep track of instructions removed.
3051     SetOfInstrs &RemovedInsts;
3052 
3053   public:
3054     /// \brief Remove all reference of \p Inst and optinally replace all its
3055     /// uses with New.
3056     /// \p RemovedInsts Keep track of the instructions removed by this Action.
3057     /// \pre If !Inst->use_empty(), then New != nullptr
3058     InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
3059                        Value *New = nullptr)
3060         : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
3061           RemovedInsts(RemovedInsts) {
3062       if (New)
3063         Replacer = new UsesReplacer(Inst, New);
3064       DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
3065       RemovedInsts.insert(Inst);
3066       /// The instructions removed here will be freed after completing
3067       /// optimizeBlock() for all blocks as we need to keep track of the
3068       /// removed instructions during promotion.
3069       Inst->removeFromParent();
3070     }
3071 
3072     ~InstructionRemover() override { delete Replacer; }
3073 
3074     /// \brief Resurrect the instruction and reassign it to the proper uses if
3075     /// new value was provided when build this action.
3076     void undo() override {
3077       DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
3078       Inserter.insert(Inst);
3079       if (Replacer)
3080         Replacer->undo();
3081       Hider.undo();
3082       RemovedInsts.erase(Inst);
3083     }
3084   };
3085 
3086 public:
3087   /// Restoration point.
3088   /// The restoration point is a pointer to an action instead of an iterator
3089   /// because the iterator may be invalidated but not the pointer.
3090   using ConstRestorationPt = const TypePromotionAction *;
3091 
3092   TypePromotionTransaction(SetOfInstrs &RemovedInsts)
3093       : RemovedInsts(RemovedInsts) {}
3094 
3095   /// Advocate every changes made in that transaction.
3096   void commit();
3097 
3098   /// Undo all the changes made after the given point.
3099   void rollback(ConstRestorationPt Point);
3100 
3101   /// Get the current restoration point.
3102   ConstRestorationPt getRestorationPoint() const;
3103 
3104   /// \name API for IR modification with state keeping to support rollback.
3105   /// @{
3106   /// Same as Instruction::setOperand.
3107   void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
3108 
3109   /// Same as Instruction::eraseFromParent.
3110   void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
3111 
3112   /// Same as Value::replaceAllUsesWith.
3113   void replaceAllUsesWith(Instruction *Inst, Value *New);
3114 
3115   /// Same as Value::mutateType.
3116   void mutateType(Instruction *Inst, Type *NewTy);
3117 
3118   /// Same as IRBuilder::createTrunc.
3119   Value *createTrunc(Instruction *Opnd, Type *Ty);
3120 
3121   /// Same as IRBuilder::createSExt.
3122   Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
3123 
3124   /// Same as IRBuilder::createZExt.
3125   Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
3126 
3127   /// Same as Instruction::moveBefore.
3128   void moveBefore(Instruction *Inst, Instruction *Before);
3129   /// @}
3130 
3131 private:
3132   /// The ordered list of actions made so far.
3133   SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
3134 
3135   using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
3136 
3137   SetOfInstrs &RemovedInsts;
3138 };
3139 
3140 } // end anonymous namespace
3141 
3142 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
3143                                           Value *NewVal) {
3144   Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>(
3145       Inst, Idx, NewVal));
3146 }
3147 
3148 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
3149                                                 Value *NewVal) {
3150   Actions.push_back(
3151       llvm::make_unique<TypePromotionTransaction::InstructionRemover>(
3152           Inst, RemovedInsts, NewVal));
3153 }
3154 
3155 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
3156                                                   Value *New) {
3157   Actions.push_back(
3158       llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
3159 }
3160 
3161 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
3162   Actions.push_back(
3163       llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
3164 }
3165 
3166 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
3167                                              Type *Ty) {
3168   std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
3169   Value *Val = Ptr->getBuiltValue();
3170   Actions.push_back(std::move(Ptr));
3171   return Val;
3172 }
3173 
3174 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
3175                                             Value *Opnd, Type *Ty) {
3176   std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
3177   Value *Val = Ptr->getBuiltValue();
3178   Actions.push_back(std::move(Ptr));
3179   return Val;
3180 }
3181 
3182 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
3183                                             Value *Opnd, Type *Ty) {
3184   std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
3185   Value *Val = Ptr->getBuiltValue();
3186   Actions.push_back(std::move(Ptr));
3187   return Val;
3188 }
3189 
3190 void TypePromotionTransaction::moveBefore(Instruction *Inst,
3191                                           Instruction *Before) {
3192   Actions.push_back(
3193       llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
3194           Inst, Before));
3195 }
3196 
3197 TypePromotionTransaction::ConstRestorationPt
3198 TypePromotionTransaction::getRestorationPoint() const {
3199   return !Actions.empty() ? Actions.back().get() : nullptr;
3200 }
3201 
3202 void TypePromotionTransaction::commit() {
3203   for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
3204        ++It)
3205     (*It)->commit();
3206   Actions.clear();
3207 }
3208 
3209 void TypePromotionTransaction::rollback(
3210     TypePromotionTransaction::ConstRestorationPt Point) {
3211   while (!Actions.empty() && Point != Actions.back().get()) {
3212     std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
3213     Curr->undo();
3214   }
3215 }
3216 
3217 namespace {
3218 
3219 /// \brief A helper class for matching addressing modes.
3220 ///
3221 /// This encapsulates the logic for matching the target-legal addressing modes.
3222 class AddressingModeMatcher {
3223   SmallVectorImpl<Instruction*> &AddrModeInsts;
3224   const TargetLowering &TLI;
3225   const TargetRegisterInfo &TRI;
3226   const DataLayout &DL;
3227 
3228   /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
3229   /// the memory instruction that we're computing this address for.
3230   Type *AccessTy;
3231   unsigned AddrSpace;
3232   Instruction *MemoryInst;
3233 
3234   /// This is the addressing mode that we're building up. This is
3235   /// part of the return value of this addressing mode matching stuff.
3236   ExtAddrMode &AddrMode;
3237 
3238   /// The instructions inserted by other CodeGenPrepare optimizations.
3239   const SetOfInstrs &InsertedInsts;
3240 
3241   /// A map from the instructions to their type before promotion.
3242   InstrToOrigTy &PromotedInsts;
3243 
3244   /// The ongoing transaction where every action should be registered.
3245   TypePromotionTransaction &TPT;
3246 
3247   /// This is set to true when we should not do profitability checks.
3248   /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
3249   bool IgnoreProfitability;
3250 
3251   AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI,
3252                         const TargetLowering &TLI,
3253                         const TargetRegisterInfo &TRI,
3254                         Type *AT, unsigned AS,
3255                         Instruction *MI, ExtAddrMode &AM,
3256                         const SetOfInstrs &InsertedInsts,
3257                         InstrToOrigTy &PromotedInsts,
3258                         TypePromotionTransaction &TPT)
3259       : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
3260         DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
3261         MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
3262         PromotedInsts(PromotedInsts), TPT(TPT) {
3263     IgnoreProfitability = false;
3264   }
3265 
3266 public:
3267   /// Find the maximal addressing mode that a load/store of V can fold,
3268   /// give an access type of AccessTy.  This returns a list of involved
3269   /// instructions in AddrModeInsts.
3270   /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
3271   /// optimizations.
3272   /// \p PromotedInsts maps the instructions to their type before promotion.
3273   /// \p The ongoing transaction where every action should be registered.
3274   static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS,
3275                            Instruction *MemoryInst,
3276                            SmallVectorImpl<Instruction*> &AddrModeInsts,
3277                            const TargetLowering &TLI,
3278                            const TargetRegisterInfo &TRI,
3279                            const SetOfInstrs &InsertedInsts,
3280                            InstrToOrigTy &PromotedInsts,
3281                            TypePromotionTransaction &TPT) {
3282     ExtAddrMode Result;
3283 
3284     bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI,
3285                                          AccessTy, AS,
3286                                          MemoryInst, Result, InsertedInsts,
3287                                          PromotedInsts, TPT).matchAddr(V, 0);
3288     (void)Success; assert(Success && "Couldn't select *anything*?");
3289     return Result;
3290   }
3291 
3292 private:
3293   bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
3294   bool matchAddr(Value *V, unsigned Depth);
3295   bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth,
3296                           bool *MovedAway = nullptr);
3297   bool isProfitableToFoldIntoAddressingMode(Instruction *I,
3298                                             ExtAddrMode &AMBefore,
3299                                             ExtAddrMode &AMAfter);
3300   bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
3301   bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
3302                              Value *PromotedOperand) const;
3303 };
3304 
3305 } // end anonymous namespace
3306 
3307 /// Try adding ScaleReg*Scale to the current addressing mode.
3308 /// Return true and update AddrMode if this addr mode is legal for the target,
3309 /// false if not.
3310 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
3311                                              unsigned Depth) {
3312   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3313   // mode.  Just process that directly.
3314   if (Scale == 1)
3315     return matchAddr(ScaleReg, Depth);
3316 
3317   // If the scale is 0, it takes nothing to add this.
3318   if (Scale == 0)
3319     return true;
3320 
3321   // If we already have a scale of this value, we can add to it, otherwise, we
3322   // need an available scale field.
3323   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
3324     return false;
3325 
3326   ExtAddrMode TestAddrMode = AddrMode;
3327 
3328   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
3329   // [A+B + A*7] -> [B+A*8].
3330   TestAddrMode.Scale += Scale;
3331   TestAddrMode.ScaledReg = ScaleReg;
3332 
3333   // If the new address isn't legal, bail out.
3334   if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
3335     return false;
3336 
3337   // It was legal, so commit it.
3338   AddrMode = TestAddrMode;
3339 
3340   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
3341   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
3342   // X*Scale + C*Scale to addr mode.
3343   ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
3344   if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
3345       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
3346     TestAddrMode.ScaledReg = AddLHS;
3347     TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
3348 
3349     // If this addressing mode is legal, commit it and remember that we folded
3350     // this instruction.
3351     if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
3352       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
3353       AddrMode = TestAddrMode;
3354       return true;
3355     }
3356   }
3357 
3358   // Otherwise, not (x+c)*scale, just return what we have.
3359   return true;
3360 }
3361 
3362 /// This is a little filter, which returns true if an addressing computation
3363 /// involving I might be folded into a load/store accessing it.
3364 /// This doesn't need to be perfect, but needs to accept at least
3365 /// the set of instructions that MatchOperationAddr can.
3366 static bool MightBeFoldableInst(Instruction *I) {
3367   switch (I->getOpcode()) {
3368   case Instruction::BitCast:
3369   case Instruction::AddrSpaceCast:
3370     // Don't touch identity bitcasts.
3371     if (I->getType() == I->getOperand(0)->getType())
3372       return false;
3373     return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
3374   case Instruction::PtrToInt:
3375     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3376     return true;
3377   case Instruction::IntToPtr:
3378     // We know the input is intptr_t, so this is foldable.
3379     return true;
3380   case Instruction::Add:
3381     return true;
3382   case Instruction::Mul:
3383   case Instruction::Shl:
3384     // Can only handle X*C and X << C.
3385     return isa<ConstantInt>(I->getOperand(1));
3386   case Instruction::GetElementPtr:
3387     return true;
3388   default:
3389     return false;
3390   }
3391 }
3392 
3393 /// \brief Check whether or not \p Val is a legal instruction for \p TLI.
3394 /// \note \p Val is assumed to be the product of some type promotion.
3395 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
3396 /// to be legal, as the non-promoted value would have had the same state.
3397 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
3398                                        const DataLayout &DL, Value *Val) {
3399   Instruction *PromotedInst = dyn_cast<Instruction>(Val);
3400   if (!PromotedInst)
3401     return false;
3402   int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
3403   // If the ISDOpcode is undefined, it was undefined before the promotion.
3404   if (!ISDOpcode)
3405     return true;
3406   // Otherwise, check if the promoted instruction is legal or not.
3407   return TLI.isOperationLegalOrCustom(
3408       ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
3409 }
3410 
3411 namespace {
3412 
3413 /// \brief Hepler class to perform type promotion.
3414 class TypePromotionHelper {
3415   /// \brief Utility function to check whether or not a sign or zero extension
3416   /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
3417   /// either using the operands of \p Inst or promoting \p Inst.
3418   /// The type of the extension is defined by \p IsSExt.
3419   /// In other words, check if:
3420   /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
3421   /// #1 Promotion applies:
3422   /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
3423   /// #2 Operand reuses:
3424   /// ext opnd1 to ConsideredExtType.
3425   /// \p PromotedInsts maps the instructions to their type before promotion.
3426   static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
3427                             const InstrToOrigTy &PromotedInsts, bool IsSExt);
3428 
3429   /// \brief Utility function to determine if \p OpIdx should be promoted when
3430   /// promoting \p Inst.
3431   static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
3432     return !(isa<SelectInst>(Inst) && OpIdx == 0);
3433   }
3434 
3435   /// \brief Utility function to promote the operand of \p Ext when this
3436   /// operand is a promotable trunc or sext or zext.
3437   /// \p PromotedInsts maps the instructions to their type before promotion.
3438   /// \p CreatedInstsCost[out] contains the cost of all instructions
3439   /// created to promote the operand of Ext.
3440   /// Newly added extensions are inserted in \p Exts.
3441   /// Newly added truncates are inserted in \p Truncs.
3442   /// Should never be called directly.
3443   /// \return The promoted value which is used instead of Ext.
3444   static Value *promoteOperandForTruncAndAnyExt(
3445       Instruction *Ext, TypePromotionTransaction &TPT,
3446       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3447       SmallVectorImpl<Instruction *> *Exts,
3448       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
3449 
3450   /// \brief Utility function to promote the operand of \p Ext when this
3451   /// operand is promotable and is not a supported trunc or sext.
3452   /// \p PromotedInsts maps the instructions to their type before promotion.
3453   /// \p CreatedInstsCost[out] contains the cost of all the instructions
3454   /// created to promote the operand of Ext.
3455   /// Newly added extensions are inserted in \p Exts.
3456   /// Newly added truncates are inserted in \p Truncs.
3457   /// Should never be called directly.
3458   /// \return The promoted value which is used instead of Ext.
3459   static Value *promoteOperandForOther(Instruction *Ext,
3460                                        TypePromotionTransaction &TPT,
3461                                        InstrToOrigTy &PromotedInsts,
3462                                        unsigned &CreatedInstsCost,
3463                                        SmallVectorImpl<Instruction *> *Exts,
3464                                        SmallVectorImpl<Instruction *> *Truncs,
3465                                        const TargetLowering &TLI, bool IsSExt);
3466 
3467   /// \see promoteOperandForOther.
3468   static Value *signExtendOperandForOther(
3469       Instruction *Ext, TypePromotionTransaction &TPT,
3470       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3471       SmallVectorImpl<Instruction *> *Exts,
3472       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3473     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3474                                   Exts, Truncs, TLI, true);
3475   }
3476 
3477   /// \see promoteOperandForOther.
3478   static Value *zeroExtendOperandForOther(
3479       Instruction *Ext, TypePromotionTransaction &TPT,
3480       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3481       SmallVectorImpl<Instruction *> *Exts,
3482       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3483     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3484                                   Exts, Truncs, TLI, false);
3485   }
3486 
3487 public:
3488   /// Type for the utility function that promotes the operand of Ext.
3489   using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
3490                             InstrToOrigTy &PromotedInsts,
3491                             unsigned &CreatedInstsCost,
3492                             SmallVectorImpl<Instruction *> *Exts,
3493                             SmallVectorImpl<Instruction *> *Truncs,
3494                             const TargetLowering &TLI);
3495 
3496   /// \brief Given a sign/zero extend instruction \p Ext, return the approriate
3497   /// action to promote the operand of \p Ext instead of using Ext.
3498   /// \return NULL if no promotable action is possible with the current
3499   /// sign extension.
3500   /// \p InsertedInsts keeps track of all the instructions inserted by the
3501   /// other CodeGenPrepare optimizations. This information is important
3502   /// because we do not want to promote these instructions as CodeGenPrepare
3503   /// will reinsert them later. Thus creating an infinite loop: create/remove.
3504   /// \p PromotedInsts maps the instructions to their type before promotion.
3505   static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
3506                           const TargetLowering &TLI,
3507                           const InstrToOrigTy &PromotedInsts);
3508 };
3509 
3510 } // end anonymous namespace
3511 
3512 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
3513                                         Type *ConsideredExtType,
3514                                         const InstrToOrigTy &PromotedInsts,
3515                                         bool IsSExt) {
3516   // The promotion helper does not know how to deal with vector types yet.
3517   // To be able to fix that, we would need to fix the places where we
3518   // statically extend, e.g., constants and such.
3519   if (Inst->getType()->isVectorTy())
3520     return false;
3521 
3522   // We can always get through zext.
3523   if (isa<ZExtInst>(Inst))
3524     return true;
3525 
3526   // sext(sext) is ok too.
3527   if (IsSExt && isa<SExtInst>(Inst))
3528     return true;
3529 
3530   // We can get through binary operator, if it is legal. In other words, the
3531   // binary operator must have a nuw or nsw flag.
3532   const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
3533   if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
3534       ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
3535        (IsSExt && BinOp->hasNoSignedWrap())))
3536     return true;
3537 
3538   // Check if we can do the following simplification.
3539   // ext(trunc(opnd)) --> ext(opnd)
3540   if (!isa<TruncInst>(Inst))
3541     return false;
3542 
3543   Value *OpndVal = Inst->getOperand(0);
3544   // Check if we can use this operand in the extension.
3545   // If the type is larger than the result type of the extension, we cannot.
3546   if (!OpndVal->getType()->isIntegerTy() ||
3547       OpndVal->getType()->getIntegerBitWidth() >
3548           ConsideredExtType->getIntegerBitWidth())
3549     return false;
3550 
3551   // If the operand of the truncate is not an instruction, we will not have
3552   // any information on the dropped bits.
3553   // (Actually we could for constant but it is not worth the extra logic).
3554   Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
3555   if (!Opnd)
3556     return false;
3557 
3558   // Check if the source of the type is narrow enough.
3559   // I.e., check that trunc just drops extended bits of the same kind of
3560   // the extension.
3561   // #1 get the type of the operand and check the kind of the extended bits.
3562   const Type *OpndType;
3563   InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
3564   if (It != PromotedInsts.end() && It->second.getInt() == IsSExt)
3565     OpndType = It->second.getPointer();
3566   else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
3567     OpndType = Opnd->getOperand(0)->getType();
3568   else
3569     return false;
3570 
3571   // #2 check that the truncate just drops extended bits.
3572   return Inst->getType()->getIntegerBitWidth() >=
3573          OpndType->getIntegerBitWidth();
3574 }
3575 
3576 TypePromotionHelper::Action TypePromotionHelper::getAction(
3577     Instruction *Ext, const SetOfInstrs &InsertedInsts,
3578     const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
3579   assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3580          "Unexpected instruction type");
3581   Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
3582   Type *ExtTy = Ext->getType();
3583   bool IsSExt = isa<SExtInst>(Ext);
3584   // If the operand of the extension is not an instruction, we cannot
3585   // get through.
3586   // If it, check we can get through.
3587   if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
3588     return nullptr;
3589 
3590   // Do not promote if the operand has been added by codegenprepare.
3591   // Otherwise, it means we are undoing an optimization that is likely to be
3592   // redone, thus causing potential infinite loop.
3593   if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
3594     return nullptr;
3595 
3596   // SExt or Trunc instructions.
3597   // Return the related handler.
3598   if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
3599       isa<ZExtInst>(ExtOpnd))
3600     return promoteOperandForTruncAndAnyExt;
3601 
3602   // Regular instruction.
3603   // Abort early if we will have to insert non-free instructions.
3604   if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
3605     return nullptr;
3606   return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
3607 }
3608 
3609 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
3610     Instruction *SExt, TypePromotionTransaction &TPT,
3611     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3612     SmallVectorImpl<Instruction *> *Exts,
3613     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3614   // By construction, the operand of SExt is an instruction. Otherwise we cannot
3615   // get through it and this method should not be called.
3616   Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
3617   Value *ExtVal = SExt;
3618   bool HasMergedNonFreeExt = false;
3619   if (isa<ZExtInst>(SExtOpnd)) {
3620     // Replace s|zext(zext(opnd))
3621     // => zext(opnd).
3622     HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
3623     Value *ZExt =
3624         TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
3625     TPT.replaceAllUsesWith(SExt, ZExt);
3626     TPT.eraseInstruction(SExt);
3627     ExtVal = ZExt;
3628   } else {
3629     // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
3630     // => z|sext(opnd).
3631     TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
3632   }
3633   CreatedInstsCost = 0;
3634 
3635   // Remove dead code.
3636   if (SExtOpnd->use_empty())
3637     TPT.eraseInstruction(SExtOpnd);
3638 
3639   // Check if the extension is still needed.
3640   Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
3641   if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
3642     if (ExtInst) {
3643       if (Exts)
3644         Exts->push_back(ExtInst);
3645       CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
3646     }
3647     return ExtVal;
3648   }
3649 
3650   // At this point we have: ext ty opnd to ty.
3651   // Reassign the uses of ExtInst to the opnd and remove ExtInst.
3652   Value *NextVal = ExtInst->getOperand(0);
3653   TPT.eraseInstruction(ExtInst, NextVal);
3654   return NextVal;
3655 }
3656 
3657 Value *TypePromotionHelper::promoteOperandForOther(
3658     Instruction *Ext, TypePromotionTransaction &TPT,
3659     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3660     SmallVectorImpl<Instruction *> *Exts,
3661     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
3662     bool IsSExt) {
3663   // By construction, the operand of Ext is an instruction. Otherwise we cannot
3664   // get through it and this method should not be called.
3665   Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
3666   CreatedInstsCost = 0;
3667   if (!ExtOpnd->hasOneUse()) {
3668     // ExtOpnd will be promoted.
3669     // All its uses, but Ext, will need to use a truncated value of the
3670     // promoted version.
3671     // Create the truncate now.
3672     Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
3673     if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
3674       // Insert it just after the definition.
3675       ITrunc->moveAfter(ExtOpnd);
3676       if (Truncs)
3677         Truncs->push_back(ITrunc);
3678     }
3679 
3680     TPT.replaceAllUsesWith(ExtOpnd, Trunc);
3681     // Restore the operand of Ext (which has been replaced by the previous call
3682     // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
3683     TPT.setOperand(Ext, 0, ExtOpnd);
3684   }
3685 
3686   // Get through the Instruction:
3687   // 1. Update its type.
3688   // 2. Replace the uses of Ext by Inst.
3689   // 3. Extend each operand that needs to be extended.
3690 
3691   // Remember the original type of the instruction before promotion.
3692   // This is useful to know that the high bits are sign extended bits.
3693   PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>(
3694       ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt)));
3695   // Step #1.
3696   TPT.mutateType(ExtOpnd, Ext->getType());
3697   // Step #2.
3698   TPT.replaceAllUsesWith(Ext, ExtOpnd);
3699   // Step #3.
3700   Instruction *ExtForOpnd = Ext;
3701 
3702   DEBUG(dbgs() << "Propagate Ext to operands\n");
3703   for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
3704        ++OpIdx) {
3705     DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
3706     if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
3707         !shouldExtOperand(ExtOpnd, OpIdx)) {
3708       DEBUG(dbgs() << "No need to propagate\n");
3709       continue;
3710     }
3711     // Check if we can statically extend the operand.
3712     Value *Opnd = ExtOpnd->getOperand(OpIdx);
3713     if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
3714       DEBUG(dbgs() << "Statically extend\n");
3715       unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
3716       APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
3717                             : Cst->getValue().zext(BitWidth);
3718       TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
3719       continue;
3720     }
3721     // UndefValue are typed, so we have to statically sign extend them.
3722     if (isa<UndefValue>(Opnd)) {
3723       DEBUG(dbgs() << "Statically extend\n");
3724       TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
3725       continue;
3726     }
3727 
3728     // Otherwise we have to explicity sign extend the operand.
3729     // Check if Ext was reused to extend an operand.
3730     if (!ExtForOpnd) {
3731       // If yes, create a new one.
3732       DEBUG(dbgs() << "More operands to ext\n");
3733       Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
3734         : TPT.createZExt(Ext, Opnd, Ext->getType());
3735       if (!isa<Instruction>(ValForExtOpnd)) {
3736         TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
3737         continue;
3738       }
3739       ExtForOpnd = cast<Instruction>(ValForExtOpnd);
3740     }
3741     if (Exts)
3742       Exts->push_back(ExtForOpnd);
3743     TPT.setOperand(ExtForOpnd, 0, Opnd);
3744 
3745     // Move the sign extension before the insertion point.
3746     TPT.moveBefore(ExtForOpnd, ExtOpnd);
3747     TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
3748     CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
3749     // If more sext are required, new instructions will have to be created.
3750     ExtForOpnd = nullptr;
3751   }
3752   if (ExtForOpnd == Ext) {
3753     DEBUG(dbgs() << "Extension is useless now\n");
3754     TPT.eraseInstruction(Ext);
3755   }
3756   return ExtOpnd;
3757 }
3758 
3759 /// Check whether or not promoting an instruction to a wider type is profitable.
3760 /// \p NewCost gives the cost of extension instructions created by the
3761 /// promotion.
3762 /// \p OldCost gives the cost of extension instructions before the promotion
3763 /// plus the number of instructions that have been
3764 /// matched in the addressing mode the promotion.
3765 /// \p PromotedOperand is the value that has been promoted.
3766 /// \return True if the promotion is profitable, false otherwise.
3767 bool AddressingModeMatcher::isPromotionProfitable(
3768     unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
3769   DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n');
3770   // The cost of the new extensions is greater than the cost of the
3771   // old extension plus what we folded.
3772   // This is not profitable.
3773   if (NewCost > OldCost)
3774     return false;
3775   if (NewCost < OldCost)
3776     return true;
3777   // The promotion is neutral but it may help folding the sign extension in
3778   // loads for instance.
3779   // Check that we did not create an illegal instruction.
3780   return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
3781 }
3782 
3783 /// Given an instruction or constant expr, see if we can fold the operation
3784 /// into the addressing mode. If so, update the addressing mode and return
3785 /// true, otherwise return false without modifying AddrMode.
3786 /// If \p MovedAway is not NULL, it contains the information of whether or
3787 /// not AddrInst has to be folded into the addressing mode on success.
3788 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
3789 /// because it has been moved away.
3790 /// Thus AddrInst must not be added in the matched instructions.
3791 /// This state can happen when AddrInst is a sext, since it may be moved away.
3792 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
3793 /// not be referenced anymore.
3794 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
3795                                                unsigned Depth,
3796                                                bool *MovedAway) {
3797   // Avoid exponential behavior on extremely deep expression trees.
3798   if (Depth >= 5) return false;
3799 
3800   // By default, all matched instructions stay in place.
3801   if (MovedAway)
3802     *MovedAway = false;
3803 
3804   switch (Opcode) {
3805   case Instruction::PtrToInt:
3806     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3807     return matchAddr(AddrInst->getOperand(0), Depth);
3808   case Instruction::IntToPtr: {
3809     auto AS = AddrInst->getType()->getPointerAddressSpace();
3810     auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
3811     // This inttoptr is a no-op if the integer type is pointer sized.
3812     if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
3813       return matchAddr(AddrInst->getOperand(0), Depth);
3814     return false;
3815   }
3816   case Instruction::BitCast:
3817     // BitCast is always a noop, and we can handle it as long as it is
3818     // int->int or pointer->pointer (we don't want int<->fp or something).
3819     if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
3820          AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
3821         // Don't touch identity bitcasts.  These were probably put here by LSR,
3822         // and we don't want to mess around with them.  Assume it knows what it
3823         // is doing.
3824         AddrInst->getOperand(0)->getType() != AddrInst->getType())
3825       return matchAddr(AddrInst->getOperand(0), Depth);
3826     return false;
3827   case Instruction::AddrSpaceCast: {
3828     unsigned SrcAS
3829       = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
3830     unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
3831     if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3832       return matchAddr(AddrInst->getOperand(0), Depth);
3833     return false;
3834   }
3835   case Instruction::Add: {
3836     // Check to see if we can merge in the RHS then the LHS.  If so, we win.
3837     ExtAddrMode BackupAddrMode = AddrMode;
3838     unsigned OldSize = AddrModeInsts.size();
3839     // Start a transaction at this point.
3840     // The LHS may match but not the RHS.
3841     // Therefore, we need a higher level restoration point to undo partially
3842     // matched operation.
3843     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3844         TPT.getRestorationPoint();
3845 
3846     if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
3847         matchAddr(AddrInst->getOperand(0), Depth+1))
3848       return true;
3849 
3850     // Restore the old addr mode info.
3851     AddrMode = BackupAddrMode;
3852     AddrModeInsts.resize(OldSize);
3853     TPT.rollback(LastKnownGood);
3854 
3855     // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
3856     if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
3857         matchAddr(AddrInst->getOperand(1), Depth+1))
3858       return true;
3859 
3860     // Otherwise we definitely can't merge the ADD in.
3861     AddrMode = BackupAddrMode;
3862     AddrModeInsts.resize(OldSize);
3863     TPT.rollback(LastKnownGood);
3864     break;
3865   }
3866   //case Instruction::Or:
3867   // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
3868   //break;
3869   case Instruction::Mul:
3870   case Instruction::Shl: {
3871     // Can only handle X*C and X << C.
3872     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
3873     if (!RHS)
3874       return false;
3875     int64_t Scale = RHS->getSExtValue();
3876     if (Opcode == Instruction::Shl)
3877       Scale = 1LL << Scale;
3878 
3879     return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
3880   }
3881   case Instruction::GetElementPtr: {
3882     // Scan the GEP.  We check it if it contains constant offsets and at most
3883     // one variable offset.
3884     int VariableOperand = -1;
3885     unsigned VariableScale = 0;
3886 
3887     int64_t ConstantOffset = 0;
3888     gep_type_iterator GTI = gep_type_begin(AddrInst);
3889     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
3890       if (StructType *STy = GTI.getStructTypeOrNull()) {
3891         const StructLayout *SL = DL.getStructLayout(STy);
3892         unsigned Idx =
3893           cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
3894         ConstantOffset += SL->getElementOffset(Idx);
3895       } else {
3896         uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType());
3897         if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
3898           ConstantOffset += CI->getSExtValue()*TypeSize;
3899         } else if (TypeSize) {  // Scales of zero don't do anything.
3900           // We only allow one variable index at the moment.
3901           if (VariableOperand != -1)
3902             return false;
3903 
3904           // Remember the variable index.
3905           VariableOperand = i;
3906           VariableScale = TypeSize;
3907         }
3908       }
3909     }
3910 
3911     // A common case is for the GEP to only do a constant offset.  In this case,
3912     // just add it to the disp field and check validity.
3913     if (VariableOperand == -1) {
3914       AddrMode.BaseOffs += ConstantOffset;
3915       if (ConstantOffset == 0 ||
3916           TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
3917         // Check to see if we can fold the base pointer in too.
3918         if (matchAddr(AddrInst->getOperand(0), Depth+1))
3919           return true;
3920       }
3921       AddrMode.BaseOffs -= ConstantOffset;
3922       return false;
3923     }
3924 
3925     // Save the valid addressing mode in case we can't match.
3926     ExtAddrMode BackupAddrMode = AddrMode;
3927     unsigned OldSize = AddrModeInsts.size();
3928 
3929     // See if the scale and offset amount is valid for this target.
3930     AddrMode.BaseOffs += ConstantOffset;
3931 
3932     // Match the base operand of the GEP.
3933     if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
3934       // If it couldn't be matched, just stuff the value in a register.
3935       if (AddrMode.HasBaseReg) {
3936         AddrMode = BackupAddrMode;
3937         AddrModeInsts.resize(OldSize);
3938         return false;
3939       }
3940       AddrMode.HasBaseReg = true;
3941       AddrMode.BaseReg = AddrInst->getOperand(0);
3942     }
3943 
3944     // Match the remaining variable portion of the GEP.
3945     if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
3946                           Depth)) {
3947       // If it couldn't be matched, try stuffing the base into a register
3948       // instead of matching it, and retrying the match of the scale.
3949       AddrMode = BackupAddrMode;
3950       AddrModeInsts.resize(OldSize);
3951       if (AddrMode.HasBaseReg)
3952         return false;
3953       AddrMode.HasBaseReg = true;
3954       AddrMode.BaseReg = AddrInst->getOperand(0);
3955       AddrMode.BaseOffs += ConstantOffset;
3956       if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
3957                             VariableScale, Depth)) {
3958         // If even that didn't work, bail.
3959         AddrMode = BackupAddrMode;
3960         AddrModeInsts.resize(OldSize);
3961         return false;
3962       }
3963     }
3964 
3965     return true;
3966   }
3967   case Instruction::SExt:
3968   case Instruction::ZExt: {
3969     Instruction *Ext = dyn_cast<Instruction>(AddrInst);
3970     if (!Ext)
3971       return false;
3972 
3973     // Try to move this ext out of the way of the addressing mode.
3974     // Ask for a method for doing so.
3975     TypePromotionHelper::Action TPH =
3976         TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
3977     if (!TPH)
3978       return false;
3979 
3980     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3981         TPT.getRestorationPoint();
3982     unsigned CreatedInstsCost = 0;
3983     unsigned ExtCost = !TLI.isExtFree(Ext);
3984     Value *PromotedOperand =
3985         TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
3986     // SExt has been moved away.
3987     // Thus either it will be rematched later in the recursive calls or it is
3988     // gone. Anyway, we must not fold it into the addressing mode at this point.
3989     // E.g.,
3990     // op = add opnd, 1
3991     // idx = ext op
3992     // addr = gep base, idx
3993     // is now:
3994     // promotedOpnd = ext opnd            <- no match here
3995     // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
3996     // addr = gep base, op                <- match
3997     if (MovedAway)
3998       *MovedAway = true;
3999 
4000     assert(PromotedOperand &&
4001            "TypePromotionHelper should have filtered out those cases");
4002 
4003     ExtAddrMode BackupAddrMode = AddrMode;
4004     unsigned OldSize = AddrModeInsts.size();
4005 
4006     if (!matchAddr(PromotedOperand, Depth) ||
4007         // The total of the new cost is equal to the cost of the created
4008         // instructions.
4009         // The total of the old cost is equal to the cost of the extension plus
4010         // what we have saved in the addressing mode.
4011         !isPromotionProfitable(CreatedInstsCost,
4012                                ExtCost + (AddrModeInsts.size() - OldSize),
4013                                PromotedOperand)) {
4014       AddrMode = BackupAddrMode;
4015       AddrModeInsts.resize(OldSize);
4016       DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
4017       TPT.rollback(LastKnownGood);
4018       return false;
4019     }
4020     return true;
4021   }
4022   }
4023   return false;
4024 }
4025 
4026 /// If we can, try to add the value of 'Addr' into the current addressing mode.
4027 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4028 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
4029 /// for the target.
4030 ///
4031 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
4032   // Start a transaction at this point that we will rollback if the matching
4033   // fails.
4034   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4035       TPT.getRestorationPoint();
4036   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
4037     // Fold in immediates if legal for the target.
4038     AddrMode.BaseOffs += CI->getSExtValue();
4039     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4040       return true;
4041     AddrMode.BaseOffs -= CI->getSExtValue();
4042   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
4043     // If this is a global variable, try to fold it into the addressing mode.
4044     if (!AddrMode.BaseGV) {
4045       AddrMode.BaseGV = GV;
4046       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4047         return true;
4048       AddrMode.BaseGV = nullptr;
4049     }
4050   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
4051     ExtAddrMode BackupAddrMode = AddrMode;
4052     unsigned OldSize = AddrModeInsts.size();
4053 
4054     // Check to see if it is possible to fold this operation.
4055     bool MovedAway = false;
4056     if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
4057       // This instruction may have been moved away. If so, there is nothing
4058       // to check here.
4059       if (MovedAway)
4060         return true;
4061       // Okay, it's possible to fold this.  Check to see if it is actually
4062       // *profitable* to do so.  We use a simple cost model to avoid increasing
4063       // register pressure too much.
4064       if (I->hasOneUse() ||
4065           isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
4066         AddrModeInsts.push_back(I);
4067         return true;
4068       }
4069 
4070       // It isn't profitable to do this, roll back.
4071       //cerr << "NOT FOLDING: " << *I;
4072       AddrMode = BackupAddrMode;
4073       AddrModeInsts.resize(OldSize);
4074       TPT.rollback(LastKnownGood);
4075     }
4076   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
4077     if (matchOperationAddr(CE, CE->getOpcode(), Depth))
4078       return true;
4079     TPT.rollback(LastKnownGood);
4080   } else if (isa<ConstantPointerNull>(Addr)) {
4081     // Null pointer gets folded without affecting the addressing mode.
4082     return true;
4083   }
4084 
4085   // Worse case, the target should support [reg] addressing modes. :)
4086   if (!AddrMode.HasBaseReg) {
4087     AddrMode.HasBaseReg = true;
4088     AddrMode.BaseReg = Addr;
4089     // Still check for legality in case the target supports [imm] but not [i+r].
4090     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4091       return true;
4092     AddrMode.HasBaseReg = false;
4093     AddrMode.BaseReg = nullptr;
4094   }
4095 
4096   // If the base register is already taken, see if we can do [r+r].
4097   if (AddrMode.Scale == 0) {
4098     AddrMode.Scale = 1;
4099     AddrMode.ScaledReg = Addr;
4100     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4101       return true;
4102     AddrMode.Scale = 0;
4103     AddrMode.ScaledReg = nullptr;
4104   }
4105   // Couldn't match.
4106   TPT.rollback(LastKnownGood);
4107   return false;
4108 }
4109 
4110 /// Check to see if all uses of OpVal by the specified inline asm call are due
4111 /// to memory operands. If so, return true, otherwise return false.
4112 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
4113                                     const TargetLowering &TLI,
4114                                     const TargetRegisterInfo &TRI) {
4115   const Function *F = CI->getFunction();
4116   TargetLowering::AsmOperandInfoVector TargetConstraints =
4117       TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI,
4118                             ImmutableCallSite(CI));
4119 
4120   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4121     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4122 
4123     // Compute the constraint code and ConstraintType to use.
4124     TLI.ComputeConstraintToUse(OpInfo, SDValue());
4125 
4126     // If this asm operand is our Value*, and if it isn't an indirect memory
4127     // operand, we can't fold it!
4128     if (OpInfo.CallOperandVal == OpVal &&
4129         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
4130          !OpInfo.isIndirect))
4131       return false;
4132   }
4133 
4134   return true;
4135 }
4136 
4137 // Max number of memory uses to look at before aborting the search to conserve
4138 // compile time.
4139 static constexpr int MaxMemoryUsesToScan = 20;
4140 
4141 /// Recursively walk all the uses of I until we find a memory use.
4142 /// If we find an obviously non-foldable instruction, return true.
4143 /// Add the ultimately found memory instructions to MemoryUses.
4144 static bool FindAllMemoryUses(
4145     Instruction *I,
4146     SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
4147     SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
4148     const TargetRegisterInfo &TRI, int SeenInsts = 0) {
4149   // If we already considered this instruction, we're done.
4150   if (!ConsideredInsts.insert(I).second)
4151     return false;
4152 
4153   // If this is an obviously unfoldable instruction, bail out.
4154   if (!MightBeFoldableInst(I))
4155     return true;
4156 
4157   const bool OptSize = I->getFunction()->optForSize();
4158 
4159   // Loop over all the uses, recursively processing them.
4160   for (Use &U : I->uses()) {
4161     // Conservatively return true if we're seeing a large number or a deep chain
4162     // of users. This avoids excessive compilation times in pathological cases.
4163     if (SeenInsts++ >= MaxMemoryUsesToScan)
4164       return true;
4165 
4166     Instruction *UserI = cast<Instruction>(U.getUser());
4167     if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
4168       MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
4169       continue;
4170     }
4171 
4172     if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
4173       unsigned opNo = U.getOperandNo();
4174       if (opNo != StoreInst::getPointerOperandIndex())
4175         return true; // Storing addr, not into addr.
4176       MemoryUses.push_back(std::make_pair(SI, opNo));
4177       continue;
4178     }
4179 
4180     if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
4181       unsigned opNo = U.getOperandNo();
4182       if (opNo != AtomicRMWInst::getPointerOperandIndex())
4183         return true; // Storing addr, not into addr.
4184       MemoryUses.push_back(std::make_pair(RMW, opNo));
4185       continue;
4186     }
4187 
4188     if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
4189       unsigned opNo = U.getOperandNo();
4190       if (opNo != AtomicCmpXchgInst::getPointerOperandIndex())
4191         return true; // Storing addr, not into addr.
4192       MemoryUses.push_back(std::make_pair(CmpX, opNo));
4193       continue;
4194     }
4195 
4196     if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
4197       // If this is a cold call, we can sink the addressing calculation into
4198       // the cold path.  See optimizeCallInst
4199       if (!OptSize && CI->hasFnAttr(Attribute::Cold))
4200         continue;
4201 
4202       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
4203       if (!IA) return true;
4204 
4205       // If this is a memory operand, we're cool, otherwise bail out.
4206       if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
4207         return true;
4208       continue;
4209     }
4210 
4211     if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI,
4212                           SeenInsts))
4213       return true;
4214   }
4215 
4216   return false;
4217 }
4218 
4219 /// Return true if Val is already known to be live at the use site that we're
4220 /// folding it into. If so, there is no cost to include it in the addressing
4221 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4222 /// instruction already.
4223 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
4224                                                    Value *KnownLive2) {
4225   // If Val is either of the known-live values, we know it is live!
4226   if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
4227     return true;
4228 
4229   // All values other than instructions and arguments (e.g. constants) are live.
4230   if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
4231 
4232   // If Val is a constant sized alloca in the entry block, it is live, this is
4233   // true because it is just a reference to the stack/frame pointer, which is
4234   // live for the whole function.
4235   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
4236     if (AI->isStaticAlloca())
4237       return true;
4238 
4239   // Check to see if this value is already used in the memory instruction's
4240   // block.  If so, it's already live into the block at the very least, so we
4241   // can reasonably fold it.
4242   return Val->isUsedInBasicBlock(MemoryInst->getParent());
4243 }
4244 
4245 /// It is possible for the addressing mode of the machine to fold the specified
4246 /// instruction into a load or store that ultimately uses it.
4247 /// However, the specified instruction has multiple uses.
4248 /// Given this, it may actually increase register pressure to fold it
4249 /// into the load. For example, consider this code:
4250 ///
4251 ///     X = ...
4252 ///     Y = X+1
4253 ///     use(Y)   -> nonload/store
4254 ///     Z = Y+1
4255 ///     load Z
4256 ///
4257 /// In this case, Y has multiple uses, and can be folded into the load of Z
4258 /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
4259 /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
4260 /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
4261 /// number of computations either.
4262 ///
4263 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
4264 /// X was live across 'load Z' for other reasons, we actually *would* want to
4265 /// fold the addressing mode in the Z case.  This would make Y die earlier.
4266 bool AddressingModeMatcher::
4267 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
4268                                      ExtAddrMode &AMAfter) {
4269   if (IgnoreProfitability) return true;
4270 
4271   // AMBefore is the addressing mode before this instruction was folded into it,
4272   // and AMAfter is the addressing mode after the instruction was folded.  Get
4273   // the set of registers referenced by AMAfter and subtract out those
4274   // referenced by AMBefore: this is the set of values which folding in this
4275   // address extends the lifetime of.
4276   //
4277   // Note that there are only two potential values being referenced here,
4278   // BaseReg and ScaleReg (global addresses are always available, as are any
4279   // folded immediates).
4280   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
4281 
4282   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
4283   // lifetime wasn't extended by adding this instruction.
4284   if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4285     BaseReg = nullptr;
4286   if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4287     ScaledReg = nullptr;
4288 
4289   // If folding this instruction (and it's subexprs) didn't extend any live
4290   // ranges, we're ok with it.
4291   if (!BaseReg && !ScaledReg)
4292     return true;
4293 
4294   // If all uses of this instruction can have the address mode sunk into them,
4295   // we can remove the addressing mode and effectively trade one live register
4296   // for another (at worst.)  In this context, folding an addressing mode into
4297   // the use is just a particularly nice way of sinking it.
4298   SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
4299   SmallPtrSet<Instruction*, 16> ConsideredInsts;
4300   if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI))
4301     return false;  // Has a non-memory, non-foldable use!
4302 
4303   // Now that we know that all uses of this instruction are part of a chain of
4304   // computation involving only operations that could theoretically be folded
4305   // into a memory use, loop over each of these memory operation uses and see
4306   // if they could  *actually* fold the instruction.  The assumption is that
4307   // addressing modes are cheap and that duplicating the computation involved
4308   // many times is worthwhile, even on a fastpath. For sinking candidates
4309   // (i.e. cold call sites), this serves as a way to prevent excessive code
4310   // growth since most architectures have some reasonable small and fast way to
4311   // compute an effective address.  (i.e LEA on x86)
4312   SmallVector<Instruction*, 32> MatchedAddrModeInsts;
4313   for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
4314     Instruction *User = MemoryUses[i].first;
4315     unsigned OpNo = MemoryUses[i].second;
4316 
4317     // Get the access type of this use.  If the use isn't a pointer, we don't
4318     // know what it accesses.
4319     Value *Address = User->getOperand(OpNo);
4320     PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
4321     if (!AddrTy)
4322       return false;
4323     Type *AddressAccessTy = AddrTy->getElementType();
4324     unsigned AS = AddrTy->getAddressSpace();
4325 
4326     // Do a match against the root of this address, ignoring profitability. This
4327     // will tell us if the addressing mode for the memory operation will
4328     // *actually* cover the shared instruction.
4329     ExtAddrMode Result;
4330     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4331         TPT.getRestorationPoint();
4332     AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI,
4333                                   AddressAccessTy, AS,
4334                                   MemoryInst, Result, InsertedInsts,
4335                                   PromotedInsts, TPT);
4336     Matcher.IgnoreProfitability = true;
4337     bool Success = Matcher.matchAddr(Address, 0);
4338     (void)Success; assert(Success && "Couldn't select *anything*?");
4339 
4340     // The match was to check the profitability, the changes made are not
4341     // part of the original matcher. Therefore, they should be dropped
4342     // otherwise the original matcher will not present the right state.
4343     TPT.rollback(LastKnownGood);
4344 
4345     // If the match didn't cover I, then it won't be shared by it.
4346     if (!is_contained(MatchedAddrModeInsts, I))
4347       return false;
4348 
4349     MatchedAddrModeInsts.clear();
4350   }
4351 
4352   return true;
4353 }
4354 
4355 /// Return true if the specified values are defined in a
4356 /// different basic block than BB.
4357 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
4358   if (Instruction *I = dyn_cast<Instruction>(V))
4359     return I->getParent() != BB;
4360   return false;
4361 }
4362 
4363 /// Sink addressing mode computation immediate before MemoryInst if doing so
4364 /// can be done without increasing register pressure.  The need for the
4365 /// register pressure constraint means this can end up being an all or nothing
4366 /// decision for all uses of the same addressing computation.
4367 ///
4368 /// Load and Store Instructions often have addressing modes that can do
4369 /// significant amounts of computation. As such, instruction selection will try
4370 /// to get the load or store to do as much computation as possible for the
4371 /// program. The problem is that isel can only see within a single block. As
4372 /// such, we sink as much legal addressing mode work into the block as possible.
4373 ///
4374 /// This method is used to optimize both load/store and inline asms with memory
4375 /// operands.  It's also used to sink addressing computations feeding into cold
4376 /// call sites into their (cold) basic block.
4377 ///
4378 /// The motivation for handling sinking into cold blocks is that doing so can
4379 /// both enable other address mode sinking (by satisfying the register pressure
4380 /// constraint above), and reduce register pressure globally (by removing the
4381 /// addressing mode computation from the fast path entirely.).
4382 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
4383                                         Type *AccessTy, unsigned AddrSpace) {
4384   Value *Repl = Addr;
4385 
4386   // Try to collapse single-value PHI nodes.  This is necessary to undo
4387   // unprofitable PRE transformations.
4388   SmallVector<Value*, 8> worklist;
4389   SmallPtrSet<Value*, 16> Visited;
4390   worklist.push_back(Addr);
4391 
4392   // Use a worklist to iteratively look through PHI nodes, and ensure that
4393   // the addressing mode obtained from the non-PHI roots of the graph
4394   // are equivalent.
4395   bool AddrModeFound = false;
4396   bool PhiSeen = false;
4397   SmallVector<Instruction*, 16> AddrModeInsts;
4398   ExtAddrMode AddrMode;
4399   TypePromotionTransaction TPT(RemovedInsts);
4400   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4401       TPT.getRestorationPoint();
4402   while (!worklist.empty()) {
4403     Value *V = worklist.back();
4404     worklist.pop_back();
4405 
4406     // We allow traversing cyclic Phi nodes.
4407     // In case of success after this loop we ensure that traversing through
4408     // Phi nodes ends up with all cases to compute address of the form
4409     //    BaseGV + Base + Scale * Index + Offset
4410     // where Scale and Offset are constans and BaseGV, Base and Index
4411     // are exactly the same Values in all cases.
4412     // It means that BaseGV, Scale and Offset dominate our memory instruction
4413     // and have the same value as they had in address computation represented
4414     // as Phi. So we can safely sink address computation to memory instruction.
4415     if (!Visited.insert(V).second)
4416       continue;
4417 
4418     // For a PHI node, push all of its incoming values.
4419     if (PHINode *P = dyn_cast<PHINode>(V)) {
4420       for (Value *IncValue : P->incoming_values())
4421         worklist.push_back(IncValue);
4422       PhiSeen = true;
4423       continue;
4424     }
4425 
4426     // For non-PHIs, determine the addressing mode being computed.  Note that
4427     // the result may differ depending on what other uses our candidate
4428     // addressing instructions might have.
4429     AddrModeInsts.clear();
4430     ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
4431         V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI,
4432         InsertedInsts, PromotedInsts, TPT);
4433 
4434     if (!AddrModeFound) {
4435       AddrModeFound = true;
4436       AddrMode = NewAddrMode;
4437       continue;
4438     }
4439     if (NewAddrMode == AddrMode)
4440       continue;
4441 
4442     AddrModeFound = false;
4443     break;
4444   }
4445 
4446   // If the addressing mode couldn't be determined, or if multiple different
4447   // ones were determined, bail out now.
4448   if (!AddrModeFound) {
4449     TPT.rollback(LastKnownGood);
4450     return false;
4451   }
4452   TPT.commit();
4453 
4454   // If all the instructions matched are already in this BB, don't do anything.
4455   // If we saw Phi node then it is not local definitely.
4456   if (!PhiSeen && none_of(AddrModeInsts, [&](Value *V) {
4457         return IsNonLocalValue(V, MemoryInst->getParent());
4458                   })) {
4459     DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode << "\n");
4460     return false;
4461   }
4462 
4463   // Insert this computation right after this user.  Since our caller is
4464   // scanning from the top of the BB to the bottom, reuse of the expr are
4465   // guaranteed to happen later.
4466   IRBuilder<> Builder(MemoryInst);
4467 
4468   // Now that we determined the addressing expression we want to use and know
4469   // that we have to sink it into this block.  Check to see if we have already
4470   // done this for some other load/store instr in this block.  If so, reuse the
4471   // computation.
4472   Value *&SunkAddr = SunkAddrs[Addr];
4473   if (SunkAddr) {
4474     DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
4475                  << *MemoryInst << "\n");
4476     if (SunkAddr->getType() != Addr->getType())
4477       SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4478   } else if (AddrSinkUsingGEPs ||
4479              (!AddrSinkUsingGEPs.getNumOccurrences() && TM &&
4480               SubtargetInfo->useAA())) {
4481     // By default, we use the GEP-based method when AA is used later. This
4482     // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
4483     DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
4484                  << *MemoryInst << "\n");
4485     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4486     Value *ResultPtr = nullptr, *ResultIndex = nullptr;
4487 
4488     // First, find the pointer.
4489     if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
4490       ResultPtr = AddrMode.BaseReg;
4491       AddrMode.BaseReg = nullptr;
4492     }
4493 
4494     if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
4495       // We can't add more than one pointer together, nor can we scale a
4496       // pointer (both of which seem meaningless).
4497       if (ResultPtr || AddrMode.Scale != 1)
4498         return false;
4499 
4500       ResultPtr = AddrMode.ScaledReg;
4501       AddrMode.Scale = 0;
4502     }
4503 
4504     // It is only safe to sign extend the BaseReg if we know that the math
4505     // required to create it did not overflow before we extend it. Since
4506     // the original IR value was tossed in favor of a constant back when
4507     // the AddrMode was created we need to bail out gracefully if widths
4508     // do not match instead of extending it.
4509     //
4510     // (See below for code to add the scale.)
4511     if (AddrMode.Scale) {
4512       Type *ScaledRegTy = AddrMode.ScaledReg->getType();
4513       if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
4514           cast<IntegerType>(ScaledRegTy)->getBitWidth())
4515         return false;
4516     }
4517 
4518     if (AddrMode.BaseGV) {
4519       if (ResultPtr)
4520         return false;
4521 
4522       ResultPtr = AddrMode.BaseGV;
4523     }
4524 
4525     // If the real base value actually came from an inttoptr, then the matcher
4526     // will look through it and provide only the integer value. In that case,
4527     // use it here.
4528     if (!DL->isNonIntegralPointerType(Addr->getType())) {
4529       if (!ResultPtr && AddrMode.BaseReg) {
4530         ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
4531                                            "sunkaddr");
4532         AddrMode.BaseReg = nullptr;
4533       } else if (!ResultPtr && AddrMode.Scale == 1) {
4534         ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
4535                                            "sunkaddr");
4536         AddrMode.Scale = 0;
4537       }
4538     }
4539 
4540     if (!ResultPtr &&
4541         !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
4542       SunkAddr = Constant::getNullValue(Addr->getType());
4543     } else if (!ResultPtr) {
4544       return false;
4545     } else {
4546       Type *I8PtrTy =
4547           Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
4548       Type *I8Ty = Builder.getInt8Ty();
4549 
4550       // Start with the base register. Do this first so that subsequent address
4551       // matching finds it last, which will prevent it from trying to match it
4552       // as the scaled value in case it happens to be a mul. That would be
4553       // problematic if we've sunk a different mul for the scale, because then
4554       // we'd end up sinking both muls.
4555       if (AddrMode.BaseReg) {
4556         Value *V = AddrMode.BaseReg;
4557         if (V->getType() != IntPtrTy)
4558           V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4559 
4560         ResultIndex = V;
4561       }
4562 
4563       // Add the scale value.
4564       if (AddrMode.Scale) {
4565         Value *V = AddrMode.ScaledReg;
4566         if (V->getType() == IntPtrTy) {
4567           // done.
4568         } else {
4569           assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
4570                  cast<IntegerType>(V->getType())->getBitWidth() &&
4571                  "We can't transform if ScaledReg is too narrow");
4572           V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4573         }
4574 
4575         if (AddrMode.Scale != 1)
4576           V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4577                                 "sunkaddr");
4578         if (ResultIndex)
4579           ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
4580         else
4581           ResultIndex = V;
4582       }
4583 
4584       // Add in the Base Offset if present.
4585       if (AddrMode.BaseOffs) {
4586         Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
4587         if (ResultIndex) {
4588           // We need to add this separately from the scale above to help with
4589           // SDAG consecutive load/store merging.
4590           if (ResultPtr->getType() != I8PtrTy)
4591             ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4592           ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4593         }
4594 
4595         ResultIndex = V;
4596       }
4597 
4598       if (!ResultIndex) {
4599         SunkAddr = ResultPtr;
4600       } else {
4601         if (ResultPtr->getType() != I8PtrTy)
4602           ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4603         SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4604       }
4605 
4606       if (SunkAddr->getType() != Addr->getType())
4607         SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4608     }
4609   } else {
4610     // We'd require a ptrtoint/inttoptr down the line, which we can't do for
4611     // non-integral pointers, so in that case bail out now.
4612     Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
4613     Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
4614     PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
4615     PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
4616     if (DL->isNonIntegralPointerType(Addr->getType()) ||
4617         (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
4618         (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
4619         (AddrMode.BaseGV &&
4620          DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
4621       return false;
4622 
4623     DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
4624                  << *MemoryInst << "\n");
4625     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4626     Value *Result = nullptr;
4627 
4628     // Start with the base register. Do this first so that subsequent address
4629     // matching finds it last, which will prevent it from trying to match it
4630     // as the scaled value in case it happens to be a mul. That would be
4631     // problematic if we've sunk a different mul for the scale, because then
4632     // we'd end up sinking both muls.
4633     if (AddrMode.BaseReg) {
4634       Value *V = AddrMode.BaseReg;
4635       if (V->getType()->isPointerTy())
4636         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4637       if (V->getType() != IntPtrTy)
4638         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4639       Result = V;
4640     }
4641 
4642     // Add the scale value.
4643     if (AddrMode.Scale) {
4644       Value *V = AddrMode.ScaledReg;
4645       if (V->getType() == IntPtrTy) {
4646         // done.
4647       } else if (V->getType()->isPointerTy()) {
4648         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4649       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
4650                  cast<IntegerType>(V->getType())->getBitWidth()) {
4651         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4652       } else {
4653         // It is only safe to sign extend the BaseReg if we know that the math
4654         // required to create it did not overflow before we extend it. Since
4655         // the original IR value was tossed in favor of a constant back when
4656         // the AddrMode was created we need to bail out gracefully if widths
4657         // do not match instead of extending it.
4658         Instruction *I = dyn_cast_or_null<Instruction>(Result);
4659         if (I && (Result != AddrMode.BaseReg))
4660           I->eraseFromParent();
4661         return false;
4662       }
4663       if (AddrMode.Scale != 1)
4664         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4665                               "sunkaddr");
4666       if (Result)
4667         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4668       else
4669         Result = V;
4670     }
4671 
4672     // Add in the BaseGV if present.
4673     if (AddrMode.BaseGV) {
4674       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
4675       if (Result)
4676         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4677       else
4678         Result = V;
4679     }
4680 
4681     // Add in the Base Offset if present.
4682     if (AddrMode.BaseOffs) {
4683       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
4684       if (Result)
4685         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4686       else
4687         Result = V;
4688     }
4689 
4690     if (!Result)
4691       SunkAddr = Constant::getNullValue(Addr->getType());
4692     else
4693       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
4694   }
4695 
4696   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
4697 
4698   // If we have no uses, recursively delete the value and all dead instructions
4699   // using it.
4700   if (Repl->use_empty()) {
4701     // This can cause recursive deletion, which can invalidate our iterator.
4702     // Use a WeakTrackingVH to hold onto it in case this happens.
4703     Value *CurValue = &*CurInstIterator;
4704     WeakTrackingVH IterHandle(CurValue);
4705     BasicBlock *BB = CurInstIterator->getParent();
4706 
4707     RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
4708 
4709     if (IterHandle != CurValue) {
4710       // If the iterator instruction was recursively deleted, start over at the
4711       // start of the block.
4712       CurInstIterator = BB->begin();
4713       SunkAddrs.clear();
4714     }
4715   }
4716   ++NumMemoryInsts;
4717   return true;
4718 }
4719 
4720 /// If there are any memory operands, use OptimizeMemoryInst to sink their
4721 /// address computing into the block when possible / profitable.
4722 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
4723   bool MadeChange = false;
4724 
4725   const TargetRegisterInfo *TRI =
4726       TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
4727   TargetLowering::AsmOperandInfoVector TargetConstraints =
4728       TLI->ParseConstraints(*DL, TRI, CS);
4729   unsigned ArgNo = 0;
4730   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4731     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4732 
4733     // Compute the constraint code and ConstraintType to use.
4734     TLI->ComputeConstraintToUse(OpInfo, SDValue());
4735 
4736     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
4737         OpInfo.isIndirect) {
4738       Value *OpVal = CS->getArgOperand(ArgNo++);
4739       MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
4740     } else if (OpInfo.Type == InlineAsm::isInput)
4741       ArgNo++;
4742   }
4743 
4744   return MadeChange;
4745 }
4746 
4747 /// \brief Check if all the uses of \p Val are equivalent (or free) zero or
4748 /// sign extensions.
4749 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
4750   assert(!Val->use_empty() && "Input must have at least one use");
4751   const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
4752   bool IsSExt = isa<SExtInst>(FirstUser);
4753   Type *ExtTy = FirstUser->getType();
4754   for (const User *U : Val->users()) {
4755     const Instruction *UI = cast<Instruction>(U);
4756     if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
4757       return false;
4758     Type *CurTy = UI->getType();
4759     // Same input and output types: Same instruction after CSE.
4760     if (CurTy == ExtTy)
4761       continue;
4762 
4763     // If IsSExt is true, we are in this situation:
4764     // a = Val
4765     // b = sext ty1 a to ty2
4766     // c = sext ty1 a to ty3
4767     // Assuming ty2 is shorter than ty3, this could be turned into:
4768     // a = Val
4769     // b = sext ty1 a to ty2
4770     // c = sext ty2 b to ty3
4771     // However, the last sext is not free.
4772     if (IsSExt)
4773       return false;
4774 
4775     // This is a ZExt, maybe this is free to extend from one type to another.
4776     // In that case, we would not account for a different use.
4777     Type *NarrowTy;
4778     Type *LargeTy;
4779     if (ExtTy->getScalarType()->getIntegerBitWidth() >
4780         CurTy->getScalarType()->getIntegerBitWidth()) {
4781       NarrowTy = CurTy;
4782       LargeTy = ExtTy;
4783     } else {
4784       NarrowTy = ExtTy;
4785       LargeTy = CurTy;
4786     }
4787 
4788     if (!TLI.isZExtFree(NarrowTy, LargeTy))
4789       return false;
4790   }
4791   // All uses are the same or can be derived from one another for free.
4792   return true;
4793 }
4794 
4795 /// \brief Try to speculatively promote extensions in \p Exts and continue
4796 /// promoting through newly promoted operands recursively as far as doing so is
4797 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
4798 /// When some promotion happened, \p TPT contains the proper state to revert
4799 /// them.
4800 ///
4801 /// \return true if some promotion happened, false otherwise.
4802 bool CodeGenPrepare::tryToPromoteExts(
4803     TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
4804     SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
4805     unsigned CreatedInstsCost) {
4806   bool Promoted = false;
4807 
4808   // Iterate over all the extensions to try to promote them.
4809   for (auto I : Exts) {
4810     // Early check if we directly have ext(load).
4811     if (isa<LoadInst>(I->getOperand(0))) {
4812       ProfitablyMovedExts.push_back(I);
4813       continue;
4814     }
4815 
4816     // Check whether or not we want to do any promotion.  The reason we have
4817     // this check inside the for loop is to catch the case where an extension
4818     // is directly fed by a load because in such case the extension can be moved
4819     // up without any promotion on its operands.
4820     if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion)
4821       return false;
4822 
4823     // Get the action to perform the promotion.
4824     TypePromotionHelper::Action TPH =
4825         TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
4826     // Check if we can promote.
4827     if (!TPH) {
4828       // Save the current extension as we cannot move up through its operand.
4829       ProfitablyMovedExts.push_back(I);
4830       continue;
4831     }
4832 
4833     // Save the current state.
4834     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4835         TPT.getRestorationPoint();
4836     SmallVector<Instruction *, 4> NewExts;
4837     unsigned NewCreatedInstsCost = 0;
4838     unsigned ExtCost = !TLI->isExtFree(I);
4839     // Promote.
4840     Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
4841                              &NewExts, nullptr, *TLI);
4842     assert(PromotedVal &&
4843            "TypePromotionHelper should have filtered out those cases");
4844 
4845     // We would be able to merge only one extension in a load.
4846     // Therefore, if we have more than 1 new extension we heuristically
4847     // cut this search path, because it means we degrade the code quality.
4848     // With exactly 2, the transformation is neutral, because we will merge
4849     // one extension but leave one. However, we optimistically keep going,
4850     // because the new extension may be removed too.
4851     long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
4852     // FIXME: It would be possible to propagate a negative value instead of
4853     // conservatively ceiling it to 0.
4854     TotalCreatedInstsCost =
4855         std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
4856     if (!StressExtLdPromotion &&
4857         (TotalCreatedInstsCost > 1 ||
4858          !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
4859       // This promotion is not profitable, rollback to the previous state, and
4860       // save the current extension in ProfitablyMovedExts as the latest
4861       // speculative promotion turned out to be unprofitable.
4862       TPT.rollback(LastKnownGood);
4863       ProfitablyMovedExts.push_back(I);
4864       continue;
4865     }
4866     // Continue promoting NewExts as far as doing so is profitable.
4867     SmallVector<Instruction *, 2> NewlyMovedExts;
4868     (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
4869     bool NewPromoted = false;
4870     for (auto ExtInst : NewlyMovedExts) {
4871       Instruction *MovedExt = cast<Instruction>(ExtInst);
4872       Value *ExtOperand = MovedExt->getOperand(0);
4873       // If we have reached to a load, we need this extra profitability check
4874       // as it could potentially be merged into an ext(load).
4875       if (isa<LoadInst>(ExtOperand) &&
4876           !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
4877             (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
4878         continue;
4879 
4880       ProfitablyMovedExts.push_back(MovedExt);
4881       NewPromoted = true;
4882     }
4883 
4884     // If none of speculative promotions for NewExts is profitable, rollback
4885     // and save the current extension (I) as the last profitable extension.
4886     if (!NewPromoted) {
4887       TPT.rollback(LastKnownGood);
4888       ProfitablyMovedExts.push_back(I);
4889       continue;
4890     }
4891     // The promotion is profitable.
4892     Promoted = true;
4893   }
4894   return Promoted;
4895 }
4896 
4897 /// Merging redundant sexts when one is dominating the other.
4898 bool CodeGenPrepare::mergeSExts(Function &F) {
4899   DominatorTree DT(F);
4900   bool Changed = false;
4901   for (auto &Entry : ValToSExtendedUses) {
4902     SExts &Insts = Entry.second;
4903     SExts CurPts;
4904     for (Instruction *Inst : Insts) {
4905       if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
4906           Inst->getOperand(0) != Entry.first)
4907         continue;
4908       bool inserted = false;
4909       for (auto &Pt : CurPts) {
4910         if (DT.dominates(Inst, Pt)) {
4911           Pt->replaceAllUsesWith(Inst);
4912           RemovedInsts.insert(Pt);
4913           Pt->removeFromParent();
4914           Pt = Inst;
4915           inserted = true;
4916           Changed = true;
4917           break;
4918         }
4919         if (!DT.dominates(Pt, Inst))
4920           // Give up if we need to merge in a common dominator as the
4921           // expermients show it is not profitable.
4922           continue;
4923         Inst->replaceAllUsesWith(Pt);
4924         RemovedInsts.insert(Inst);
4925         Inst->removeFromParent();
4926         inserted = true;
4927         Changed = true;
4928         break;
4929       }
4930       if (!inserted)
4931         CurPts.push_back(Inst);
4932     }
4933   }
4934   return Changed;
4935 }
4936 
4937 /// Return true, if an ext(load) can be formed from an extension in
4938 /// \p MovedExts.
4939 bool CodeGenPrepare::canFormExtLd(
4940     const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
4941     Instruction *&Inst, bool HasPromoted) {
4942   for (auto *MovedExtInst : MovedExts) {
4943     if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
4944       LI = cast<LoadInst>(MovedExtInst->getOperand(0));
4945       Inst = MovedExtInst;
4946       break;
4947     }
4948   }
4949   if (!LI)
4950     return false;
4951 
4952   // If they're already in the same block, there's nothing to do.
4953   // Make the cheap checks first if we did not promote.
4954   // If we promoted, we need to check if it is indeed profitable.
4955   if (!HasPromoted && LI->getParent() == Inst->getParent())
4956     return false;
4957 
4958   return TLI->isExtLoad(LI, Inst, *DL);
4959 }
4960 
4961 /// Move a zext or sext fed by a load into the same basic block as the load,
4962 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
4963 /// extend into the load.
4964 ///
4965 /// E.g.,
4966 /// \code
4967 /// %ld = load i32* %addr
4968 /// %add = add nuw i32 %ld, 4
4969 /// %zext = zext i32 %add to i64
4970 // \endcode
4971 /// =>
4972 /// \code
4973 /// %ld = load i32* %addr
4974 /// %zext = zext i32 %ld to i64
4975 /// %add = add nuw i64 %zext, 4
4976 /// \encode
4977 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
4978 /// allow us to match zext(load i32*) to i64.
4979 ///
4980 /// Also, try to promote the computations used to obtain a sign extended
4981 /// value used into memory accesses.
4982 /// E.g.,
4983 /// \code
4984 /// a = add nsw i32 b, 3
4985 /// d = sext i32 a to i64
4986 /// e = getelementptr ..., i64 d
4987 /// \endcode
4988 /// =>
4989 /// \code
4990 /// f = sext i32 b to i64
4991 /// a = add nsw i64 f, 3
4992 /// e = getelementptr ..., i64 a
4993 /// \endcode
4994 ///
4995 /// \p Inst[in/out] the extension may be modified during the process if some
4996 /// promotions apply.
4997 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
4998   // ExtLoad formation and address type promotion infrastructure requires TLI to
4999   // be effective.
5000   if (!TLI)
5001     return false;
5002 
5003   bool AllowPromotionWithoutCommonHeader = false;
5004   /// See if it is an interesting sext operations for the address type
5005   /// promotion before trying to promote it, e.g., the ones with the right
5006   /// type and used in memory accesses.
5007   bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
5008       *Inst, AllowPromotionWithoutCommonHeader);
5009   TypePromotionTransaction TPT(RemovedInsts);
5010   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5011       TPT.getRestorationPoint();
5012   SmallVector<Instruction *, 1> Exts;
5013   SmallVector<Instruction *, 2> SpeculativelyMovedExts;
5014   Exts.push_back(Inst);
5015 
5016   bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
5017 
5018   // Look for a load being extended.
5019   LoadInst *LI = nullptr;
5020   Instruction *ExtFedByLoad;
5021 
5022   // Try to promote a chain of computation if it allows to form an extended
5023   // load.
5024   if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
5025     assert(LI && ExtFedByLoad && "Expect a valid load and extension");
5026     TPT.commit();
5027     // Move the extend into the same block as the load
5028     ExtFedByLoad->moveAfter(LI);
5029     // CGP does not check if the zext would be speculatively executed when moved
5030     // to the same basic block as the load. Preserving its original location
5031     // would pessimize the debugging experience, as well as negatively impact
5032     // the quality of sample pgo. We don't want to use "line 0" as that has a
5033     // size cost in the line-table section and logically the zext can be seen as
5034     // part of the load. Therefore we conservatively reuse the same debug
5035     // location for the load and the zext.
5036     ExtFedByLoad->setDebugLoc(LI->getDebugLoc());
5037     ++NumExtsMoved;
5038     Inst = ExtFedByLoad;
5039     return true;
5040   }
5041 
5042   // Continue promoting SExts if known as considerable depending on targets.
5043   if (ATPConsiderable &&
5044       performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
5045                                   HasPromoted, TPT, SpeculativelyMovedExts))
5046     return true;
5047 
5048   TPT.rollback(LastKnownGood);
5049   return false;
5050 }
5051 
5052 // Perform address type promotion if doing so is profitable.
5053 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
5054 // instructions that sign extended the same initial value. However, if
5055 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
5056 // extension is just profitable.
5057 bool CodeGenPrepare::performAddressTypePromotion(
5058     Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
5059     bool HasPromoted, TypePromotionTransaction &TPT,
5060     SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
5061   bool Promoted = false;
5062   SmallPtrSet<Instruction *, 1> UnhandledExts;
5063   bool AllSeenFirst = true;
5064   for (auto I : SpeculativelyMovedExts) {
5065     Value *HeadOfChain = I->getOperand(0);
5066     DenseMap<Value *, Instruction *>::iterator AlreadySeen =
5067         SeenChainsForSExt.find(HeadOfChain);
5068     // If there is an unhandled SExt which has the same header, try to promote
5069     // it as well.
5070     if (AlreadySeen != SeenChainsForSExt.end()) {
5071       if (AlreadySeen->second != nullptr)
5072         UnhandledExts.insert(AlreadySeen->second);
5073       AllSeenFirst = false;
5074     }
5075   }
5076 
5077   if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
5078                         SpeculativelyMovedExts.size() == 1)) {
5079     TPT.commit();
5080     if (HasPromoted)
5081       Promoted = true;
5082     for (auto I : SpeculativelyMovedExts) {
5083       Value *HeadOfChain = I->getOperand(0);
5084       SeenChainsForSExt[HeadOfChain] = nullptr;
5085       ValToSExtendedUses[HeadOfChain].push_back(I);
5086     }
5087     // Update Inst as promotion happen.
5088     Inst = SpeculativelyMovedExts.pop_back_val();
5089   } else {
5090     // This is the first chain visited from the header, keep the current chain
5091     // as unhandled. Defer to promote this until we encounter another SExt
5092     // chain derived from the same header.
5093     for (auto I : SpeculativelyMovedExts) {
5094       Value *HeadOfChain = I->getOperand(0);
5095       SeenChainsForSExt[HeadOfChain] = Inst;
5096     }
5097     return false;
5098   }
5099 
5100   if (!AllSeenFirst && !UnhandledExts.empty())
5101     for (auto VisitedSExt : UnhandledExts) {
5102       if (RemovedInsts.count(VisitedSExt))
5103         continue;
5104       TypePromotionTransaction TPT(RemovedInsts);
5105       SmallVector<Instruction *, 1> Exts;
5106       SmallVector<Instruction *, 2> Chains;
5107       Exts.push_back(VisitedSExt);
5108       bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
5109       TPT.commit();
5110       if (HasPromoted)
5111         Promoted = true;
5112       for (auto I : Chains) {
5113         Value *HeadOfChain = I->getOperand(0);
5114         // Mark this as handled.
5115         SeenChainsForSExt[HeadOfChain] = nullptr;
5116         ValToSExtendedUses[HeadOfChain].push_back(I);
5117       }
5118     }
5119   return Promoted;
5120 }
5121 
5122 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
5123   BasicBlock *DefBB = I->getParent();
5124 
5125   // If the result of a {s|z}ext and its source are both live out, rewrite all
5126   // other uses of the source with result of extension.
5127   Value *Src = I->getOperand(0);
5128   if (Src->hasOneUse())
5129     return false;
5130 
5131   // Only do this xform if truncating is free.
5132   if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
5133     return false;
5134 
5135   // Only safe to perform the optimization if the source is also defined in
5136   // this block.
5137   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
5138     return false;
5139 
5140   bool DefIsLiveOut = false;
5141   for (User *U : I->users()) {
5142     Instruction *UI = cast<Instruction>(U);
5143 
5144     // Figure out which BB this ext is used in.
5145     BasicBlock *UserBB = UI->getParent();
5146     if (UserBB == DefBB) continue;
5147     DefIsLiveOut = true;
5148     break;
5149   }
5150   if (!DefIsLiveOut)
5151     return false;
5152 
5153   // Make sure none of the uses are PHI nodes.
5154   for (User *U : Src->users()) {
5155     Instruction *UI = cast<Instruction>(U);
5156     BasicBlock *UserBB = UI->getParent();
5157     if (UserBB == DefBB) continue;
5158     // Be conservative. We don't want this xform to end up introducing
5159     // reloads just before load / store instructions.
5160     if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
5161       return false;
5162   }
5163 
5164   // InsertedTruncs - Only insert one trunc in each block once.
5165   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
5166 
5167   bool MadeChange = false;
5168   for (Use &U : Src->uses()) {
5169     Instruction *User = cast<Instruction>(U.getUser());
5170 
5171     // Figure out which BB this ext is used in.
5172     BasicBlock *UserBB = User->getParent();
5173     if (UserBB == DefBB) continue;
5174 
5175     // Both src and def are live in this block. Rewrite the use.
5176     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
5177 
5178     if (!InsertedTrunc) {
5179       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5180       assert(InsertPt != UserBB->end());
5181       InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
5182       InsertedInsts.insert(InsertedTrunc);
5183     }
5184 
5185     // Replace a use of the {s|z}ext source with a use of the result.
5186     U = InsertedTrunc;
5187     ++NumExtUses;
5188     MadeChange = true;
5189   }
5190 
5191   return MadeChange;
5192 }
5193 
5194 // Find loads whose uses only use some of the loaded value's bits.  Add an "and"
5195 // just after the load if the target can fold this into one extload instruction,
5196 // with the hope of eliminating some of the other later "and" instructions using
5197 // the loaded value.  "and"s that are made trivially redundant by the insertion
5198 // of the new "and" are removed by this function, while others (e.g. those whose
5199 // path from the load goes through a phi) are left for isel to potentially
5200 // remove.
5201 //
5202 // For example:
5203 //
5204 // b0:
5205 //   x = load i32
5206 //   ...
5207 // b1:
5208 //   y = and x, 0xff
5209 //   z = use y
5210 //
5211 // becomes:
5212 //
5213 // b0:
5214 //   x = load i32
5215 //   x' = and x, 0xff
5216 //   ...
5217 // b1:
5218 //   z = use x'
5219 //
5220 // whereas:
5221 //
5222 // b0:
5223 //   x1 = load i32
5224 //   ...
5225 // b1:
5226 //   x2 = load i32
5227 //   ...
5228 // b2:
5229 //   x = phi x1, x2
5230 //   y = and x, 0xff
5231 //
5232 // becomes (after a call to optimizeLoadExt for each load):
5233 //
5234 // b0:
5235 //   x1 = load i32
5236 //   x1' = and x1, 0xff
5237 //   ...
5238 // b1:
5239 //   x2 = load i32
5240 //   x2' = and x2, 0xff
5241 //   ...
5242 // b2:
5243 //   x = phi x1', x2'
5244 //   y = and x, 0xff
5245 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
5246   if (!Load->isSimple() ||
5247       !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy()))
5248     return false;
5249 
5250   // Skip loads we've already transformed.
5251   if (Load->hasOneUse() &&
5252       InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
5253     return false;
5254 
5255   // Look at all uses of Load, looking through phis, to determine how many bits
5256   // of the loaded value are needed.
5257   SmallVector<Instruction *, 8> WorkList;
5258   SmallPtrSet<Instruction *, 16> Visited;
5259   SmallVector<Instruction *, 8> AndsToMaybeRemove;
5260   for (auto *U : Load->users())
5261     WorkList.push_back(cast<Instruction>(U));
5262 
5263   EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
5264   unsigned BitWidth = LoadResultVT.getSizeInBits();
5265   APInt DemandBits(BitWidth, 0);
5266   APInt WidestAndBits(BitWidth, 0);
5267 
5268   while (!WorkList.empty()) {
5269     Instruction *I = WorkList.back();
5270     WorkList.pop_back();
5271 
5272     // Break use-def graph loops.
5273     if (!Visited.insert(I).second)
5274       continue;
5275 
5276     // For a PHI node, push all of its users.
5277     if (auto *Phi = dyn_cast<PHINode>(I)) {
5278       for (auto *U : Phi->users())
5279         WorkList.push_back(cast<Instruction>(U));
5280       continue;
5281     }
5282 
5283     switch (I->getOpcode()) {
5284     case Instruction::And: {
5285       auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
5286       if (!AndC)
5287         return false;
5288       APInt AndBits = AndC->getValue();
5289       DemandBits |= AndBits;
5290       // Keep track of the widest and mask we see.
5291       if (AndBits.ugt(WidestAndBits))
5292         WidestAndBits = AndBits;
5293       if (AndBits == WidestAndBits && I->getOperand(0) == Load)
5294         AndsToMaybeRemove.push_back(I);
5295       break;
5296     }
5297 
5298     case Instruction::Shl: {
5299       auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
5300       if (!ShlC)
5301         return false;
5302       uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
5303       DemandBits.setLowBits(BitWidth - ShiftAmt);
5304       break;
5305     }
5306 
5307     case Instruction::Trunc: {
5308       EVT TruncVT = TLI->getValueType(*DL, I->getType());
5309       unsigned TruncBitWidth = TruncVT.getSizeInBits();
5310       DemandBits.setLowBits(TruncBitWidth);
5311       break;
5312     }
5313 
5314     default:
5315       return false;
5316     }
5317   }
5318 
5319   uint32_t ActiveBits = DemandBits.getActiveBits();
5320   // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
5321   // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
5322   // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
5323   // (and (load x) 1) is not matched as a single instruction, rather as a LDR
5324   // followed by an AND.
5325   // TODO: Look into removing this restriction by fixing backends to either
5326   // return false for isLoadExtLegal for i1 or have them select this pattern to
5327   // a single instruction.
5328   //
5329   // Also avoid hoisting if we didn't see any ands with the exact DemandBits
5330   // mask, since these are the only ands that will be removed by isel.
5331   if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
5332       WidestAndBits != DemandBits)
5333     return false;
5334 
5335   LLVMContext &Ctx = Load->getType()->getContext();
5336   Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
5337   EVT TruncVT = TLI->getValueType(*DL, TruncTy);
5338 
5339   // Reject cases that won't be matched as extloads.
5340   if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
5341       !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
5342     return false;
5343 
5344   IRBuilder<> Builder(Load->getNextNode());
5345   auto *NewAnd = dyn_cast<Instruction>(
5346       Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
5347   // Mark this instruction as "inserted by CGP", so that other
5348   // optimizations don't touch it.
5349   InsertedInsts.insert(NewAnd);
5350 
5351   // Replace all uses of load with new and (except for the use of load in the
5352   // new and itself).
5353   Load->replaceAllUsesWith(NewAnd);
5354   NewAnd->setOperand(0, Load);
5355 
5356   // Remove any and instructions that are now redundant.
5357   for (auto *And : AndsToMaybeRemove)
5358     // Check that the and mask is the same as the one we decided to put on the
5359     // new and.
5360     if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
5361       And->replaceAllUsesWith(NewAnd);
5362       if (&*CurInstIterator == And)
5363         CurInstIterator = std::next(And->getIterator());
5364       And->eraseFromParent();
5365       ++NumAndUses;
5366     }
5367 
5368   ++NumAndsAdded;
5369   return true;
5370 }
5371 
5372 /// Check if V (an operand of a select instruction) is an expensive instruction
5373 /// that is only used once.
5374 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
5375   auto *I = dyn_cast<Instruction>(V);
5376   // If it's safe to speculatively execute, then it should not have side
5377   // effects; therefore, it's safe to sink and possibly *not* execute.
5378   return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
5379          TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive;
5380 }
5381 
5382 /// Returns true if a SelectInst should be turned into an explicit branch.
5383 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
5384                                                 const TargetLowering *TLI,
5385                                                 SelectInst *SI) {
5386   // If even a predictable select is cheap, then a branch can't be cheaper.
5387   if (!TLI->isPredictableSelectExpensive())
5388     return false;
5389 
5390   // FIXME: This should use the same heuristics as IfConversion to determine
5391   // whether a select is better represented as a branch.
5392 
5393   // If metadata tells us that the select condition is obviously predictable,
5394   // then we want to replace the select with a branch.
5395   uint64_t TrueWeight, FalseWeight;
5396   if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
5397     uint64_t Max = std::max(TrueWeight, FalseWeight);
5398     uint64_t Sum = TrueWeight + FalseWeight;
5399     if (Sum != 0) {
5400       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
5401       if (Probability > TLI->getPredictableBranchThreshold())
5402         return true;
5403     }
5404   }
5405 
5406   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
5407 
5408   // If a branch is predictable, an out-of-order CPU can avoid blocking on its
5409   // comparison condition. If the compare has more than one use, there's
5410   // probably another cmov or setcc around, so it's not worth emitting a branch.
5411   if (!Cmp || !Cmp->hasOneUse())
5412     return false;
5413 
5414   // If either operand of the select is expensive and only needed on one side
5415   // of the select, we should form a branch.
5416   if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
5417       sinkSelectOperand(TTI, SI->getFalseValue()))
5418     return true;
5419 
5420   return false;
5421 }
5422 
5423 /// If \p isTrue is true, return the true value of \p SI, otherwise return
5424 /// false value of \p SI. If the true/false value of \p SI is defined by any
5425 /// select instructions in \p Selects, look through the defining select
5426 /// instruction until the true/false value is not defined in \p Selects.
5427 static Value *getTrueOrFalseValue(
5428     SelectInst *SI, bool isTrue,
5429     const SmallPtrSet<const Instruction *, 2> &Selects) {
5430   Value *V;
5431 
5432   for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
5433        DefSI = dyn_cast<SelectInst>(V)) {
5434     assert(DefSI->getCondition() == SI->getCondition() &&
5435            "The condition of DefSI does not match with SI");
5436     V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
5437   }
5438   return V;
5439 }
5440 
5441 /// If we have a SelectInst that will likely profit from branch prediction,
5442 /// turn it into a branch.
5443 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
5444   // Find all consecutive select instructions that share the same condition.
5445   SmallVector<SelectInst *, 2> ASI;
5446   ASI.push_back(SI);
5447   for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
5448        It != SI->getParent()->end(); ++It) {
5449     SelectInst *I = dyn_cast<SelectInst>(&*It);
5450     if (I && SI->getCondition() == I->getCondition()) {
5451       ASI.push_back(I);
5452     } else {
5453       break;
5454     }
5455   }
5456 
5457   SelectInst *LastSI = ASI.back();
5458   // Increment the current iterator to skip all the rest of select instructions
5459   // because they will be either "not lowered" or "all lowered" to branch.
5460   CurInstIterator = std::next(LastSI->getIterator());
5461 
5462   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
5463 
5464   // Can we convert the 'select' to CF ?
5465   if (DisableSelectToBranch || OptSize || !TLI || VectorCond ||
5466       SI->getMetadata(LLVMContext::MD_unpredictable))
5467     return false;
5468 
5469   TargetLowering::SelectSupportKind SelectKind;
5470   if (VectorCond)
5471     SelectKind = TargetLowering::VectorMaskSelect;
5472   else if (SI->getType()->isVectorTy())
5473     SelectKind = TargetLowering::ScalarCondVectorVal;
5474   else
5475     SelectKind = TargetLowering::ScalarValSelect;
5476 
5477   if (TLI->isSelectSupported(SelectKind) &&
5478       !isFormingBranchFromSelectProfitable(TTI, TLI, SI))
5479     return false;
5480 
5481   ModifiedDT = true;
5482 
5483   // Transform a sequence like this:
5484   //    start:
5485   //       %cmp = cmp uge i32 %a, %b
5486   //       %sel = select i1 %cmp, i32 %c, i32 %d
5487   //
5488   // Into:
5489   //    start:
5490   //       %cmp = cmp uge i32 %a, %b
5491   //       br i1 %cmp, label %select.true, label %select.false
5492   //    select.true:
5493   //       br label %select.end
5494   //    select.false:
5495   //       br label %select.end
5496   //    select.end:
5497   //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
5498   //
5499   // In addition, we may sink instructions that produce %c or %d from
5500   // the entry block into the destination(s) of the new branch.
5501   // If the true or false blocks do not contain a sunken instruction, that
5502   // block and its branch may be optimized away. In that case, one side of the
5503   // first branch will point directly to select.end, and the corresponding PHI
5504   // predecessor block will be the start block.
5505 
5506   // First, we split the block containing the select into 2 blocks.
5507   BasicBlock *StartBlock = SI->getParent();
5508   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
5509   BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
5510 
5511   // Delete the unconditional branch that was just created by the split.
5512   StartBlock->getTerminator()->eraseFromParent();
5513 
5514   // These are the new basic blocks for the conditional branch.
5515   // At least one will become an actual new basic block.
5516   BasicBlock *TrueBlock = nullptr;
5517   BasicBlock *FalseBlock = nullptr;
5518   BranchInst *TrueBranch = nullptr;
5519   BranchInst *FalseBranch = nullptr;
5520 
5521   // Sink expensive instructions into the conditional blocks to avoid executing
5522   // them speculatively.
5523   for (SelectInst *SI : ASI) {
5524     if (sinkSelectOperand(TTI, SI->getTrueValue())) {
5525       if (TrueBlock == nullptr) {
5526         TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
5527                                        EndBlock->getParent(), EndBlock);
5528         TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
5529       }
5530       auto *TrueInst = cast<Instruction>(SI->getTrueValue());
5531       TrueInst->moveBefore(TrueBranch);
5532     }
5533     if (sinkSelectOperand(TTI, SI->getFalseValue())) {
5534       if (FalseBlock == nullptr) {
5535         FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
5536                                         EndBlock->getParent(), EndBlock);
5537         FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
5538       }
5539       auto *FalseInst = cast<Instruction>(SI->getFalseValue());
5540       FalseInst->moveBefore(FalseBranch);
5541     }
5542   }
5543 
5544   // If there was nothing to sink, then arbitrarily choose the 'false' side
5545   // for a new input value to the PHI.
5546   if (TrueBlock == FalseBlock) {
5547     assert(TrueBlock == nullptr &&
5548            "Unexpected basic block transform while optimizing select");
5549 
5550     FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
5551                                     EndBlock->getParent(), EndBlock);
5552     BranchInst::Create(EndBlock, FalseBlock);
5553   }
5554 
5555   // Insert the real conditional branch based on the original condition.
5556   // If we did not create a new block for one of the 'true' or 'false' paths
5557   // of the condition, it means that side of the branch goes to the end block
5558   // directly and the path originates from the start block from the point of
5559   // view of the new PHI.
5560   BasicBlock *TT, *FT;
5561   if (TrueBlock == nullptr) {
5562     TT = EndBlock;
5563     FT = FalseBlock;
5564     TrueBlock = StartBlock;
5565   } else if (FalseBlock == nullptr) {
5566     TT = TrueBlock;
5567     FT = EndBlock;
5568     FalseBlock = StartBlock;
5569   } else {
5570     TT = TrueBlock;
5571     FT = FalseBlock;
5572   }
5573   IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI);
5574 
5575   SmallPtrSet<const Instruction *, 2> INS;
5576   INS.insert(ASI.begin(), ASI.end());
5577   // Use reverse iterator because later select may use the value of the
5578   // earlier select, and we need to propagate value through earlier select
5579   // to get the PHI operand.
5580   for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
5581     SelectInst *SI = *It;
5582     // The select itself is replaced with a PHI Node.
5583     PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
5584     PN->takeName(SI);
5585     PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
5586     PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
5587 
5588     SI->replaceAllUsesWith(PN);
5589     SI->eraseFromParent();
5590     INS.erase(SI);
5591     ++NumSelectsExpanded;
5592   }
5593 
5594   // Instruct OptimizeBlock to skip to the next block.
5595   CurInstIterator = StartBlock->end();
5596   return true;
5597 }
5598 
5599 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
5600   SmallVector<int, 16> Mask(SVI->getShuffleMask());
5601   int SplatElem = -1;
5602   for (unsigned i = 0; i < Mask.size(); ++i) {
5603     if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
5604       return false;
5605     SplatElem = Mask[i];
5606   }
5607 
5608   return true;
5609 }
5610 
5611 /// Some targets have expensive vector shifts if the lanes aren't all the same
5612 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
5613 /// it's often worth sinking a shufflevector splat down to its use so that
5614 /// codegen can spot all lanes are identical.
5615 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
5616   BasicBlock *DefBB = SVI->getParent();
5617 
5618   // Only do this xform if variable vector shifts are particularly expensive.
5619   if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
5620     return false;
5621 
5622   // We only expect better codegen by sinking a shuffle if we can recognise a
5623   // constant splat.
5624   if (!isBroadcastShuffle(SVI))
5625     return false;
5626 
5627   // InsertedShuffles - Only insert a shuffle in each block once.
5628   DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
5629 
5630   bool MadeChange = false;
5631   for (User *U : SVI->users()) {
5632     Instruction *UI = cast<Instruction>(U);
5633 
5634     // Figure out which BB this ext is used in.
5635     BasicBlock *UserBB = UI->getParent();
5636     if (UserBB == DefBB) continue;
5637 
5638     // For now only apply this when the splat is used by a shift instruction.
5639     if (!UI->isShift()) continue;
5640 
5641     // Everything checks out, sink the shuffle if the user's block doesn't
5642     // already have a copy.
5643     Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
5644 
5645     if (!InsertedShuffle) {
5646       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5647       assert(InsertPt != UserBB->end());
5648       InsertedShuffle =
5649           new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
5650                                 SVI->getOperand(2), "", &*InsertPt);
5651     }
5652 
5653     UI->replaceUsesOfWith(SVI, InsertedShuffle);
5654     MadeChange = true;
5655   }
5656 
5657   // If we removed all uses, nuke the shuffle.
5658   if (SVI->use_empty()) {
5659     SVI->eraseFromParent();
5660     MadeChange = true;
5661   }
5662 
5663   return MadeChange;
5664 }
5665 
5666 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
5667   if (!TLI || !DL)
5668     return false;
5669 
5670   Value *Cond = SI->getCondition();
5671   Type *OldType = Cond->getType();
5672   LLVMContext &Context = Cond->getContext();
5673   MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
5674   unsigned RegWidth = RegType.getSizeInBits();
5675 
5676   if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
5677     return false;
5678 
5679   // If the register width is greater than the type width, expand the condition
5680   // of the switch instruction and each case constant to the width of the
5681   // register. By widening the type of the switch condition, subsequent
5682   // comparisons (for case comparisons) will not need to be extended to the
5683   // preferred register width, so we will potentially eliminate N-1 extends,
5684   // where N is the number of cases in the switch.
5685   auto *NewType = Type::getIntNTy(Context, RegWidth);
5686 
5687   // Zero-extend the switch condition and case constants unless the switch
5688   // condition is a function argument that is already being sign-extended.
5689   // In that case, we can avoid an unnecessary mask/extension by sign-extending
5690   // everything instead.
5691   Instruction::CastOps ExtType = Instruction::ZExt;
5692   if (auto *Arg = dyn_cast<Argument>(Cond))
5693     if (Arg->hasSExtAttr())
5694       ExtType = Instruction::SExt;
5695 
5696   auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
5697   ExtInst->insertBefore(SI);
5698   SI->setCondition(ExtInst);
5699   for (auto Case : SI->cases()) {
5700     APInt NarrowConst = Case.getCaseValue()->getValue();
5701     APInt WideConst = (ExtType == Instruction::ZExt) ?
5702                       NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
5703     Case.setValue(ConstantInt::get(Context, WideConst));
5704   }
5705 
5706   return true;
5707 }
5708 
5709 
5710 namespace {
5711 
5712 /// \brief Helper class to promote a scalar operation to a vector one.
5713 /// This class is used to move downward extractelement transition.
5714 /// E.g.,
5715 /// a = vector_op <2 x i32>
5716 /// b = extractelement <2 x i32> a, i32 0
5717 /// c = scalar_op b
5718 /// store c
5719 ///
5720 /// =>
5721 /// a = vector_op <2 x i32>
5722 /// c = vector_op a (equivalent to scalar_op on the related lane)
5723 /// * d = extractelement <2 x i32> c, i32 0
5724 /// * store d
5725 /// Assuming both extractelement and store can be combine, we get rid of the
5726 /// transition.
5727 class VectorPromoteHelper {
5728   /// DataLayout associated with the current module.
5729   const DataLayout &DL;
5730 
5731   /// Used to perform some checks on the legality of vector operations.
5732   const TargetLowering &TLI;
5733 
5734   /// Used to estimated the cost of the promoted chain.
5735   const TargetTransformInfo &TTI;
5736 
5737   /// The transition being moved downwards.
5738   Instruction *Transition;
5739 
5740   /// The sequence of instructions to be promoted.
5741   SmallVector<Instruction *, 4> InstsToBePromoted;
5742 
5743   /// Cost of combining a store and an extract.
5744   unsigned StoreExtractCombineCost;
5745 
5746   /// Instruction that will be combined with the transition.
5747   Instruction *CombineInst = nullptr;
5748 
5749   /// \brief The instruction that represents the current end of the transition.
5750   /// Since we are faking the promotion until we reach the end of the chain
5751   /// of computation, we need a way to get the current end of the transition.
5752   Instruction *getEndOfTransition() const {
5753     if (InstsToBePromoted.empty())
5754       return Transition;
5755     return InstsToBePromoted.back();
5756   }
5757 
5758   /// \brief Return the index of the original value in the transition.
5759   /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
5760   /// c, is at index 0.
5761   unsigned getTransitionOriginalValueIdx() const {
5762     assert(isa<ExtractElementInst>(Transition) &&
5763            "Other kind of transitions are not supported yet");
5764     return 0;
5765   }
5766 
5767   /// \brief Return the index of the index in the transition.
5768   /// E.g., for "extractelement <2 x i32> c, i32 0" the index
5769   /// is at index 1.
5770   unsigned getTransitionIdx() const {
5771     assert(isa<ExtractElementInst>(Transition) &&
5772            "Other kind of transitions are not supported yet");
5773     return 1;
5774   }
5775 
5776   /// \brief Get the type of the transition.
5777   /// This is the type of the original value.
5778   /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
5779   /// transition is <2 x i32>.
5780   Type *getTransitionType() const {
5781     return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
5782   }
5783 
5784   /// \brief Promote \p ToBePromoted by moving \p Def downward through.
5785   /// I.e., we have the following sequence:
5786   /// Def = Transition <ty1> a to <ty2>
5787   /// b = ToBePromoted <ty2> Def, ...
5788   /// =>
5789   /// b = ToBePromoted <ty1> a, ...
5790   /// Def = Transition <ty1> ToBePromoted to <ty2>
5791   void promoteImpl(Instruction *ToBePromoted);
5792 
5793   /// \brief Check whether or not it is profitable to promote all the
5794   /// instructions enqueued to be promoted.
5795   bool isProfitableToPromote() {
5796     Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
5797     unsigned Index = isa<ConstantInt>(ValIdx)
5798                          ? cast<ConstantInt>(ValIdx)->getZExtValue()
5799                          : -1;
5800     Type *PromotedType = getTransitionType();
5801 
5802     StoreInst *ST = cast<StoreInst>(CombineInst);
5803     unsigned AS = ST->getPointerAddressSpace();
5804     unsigned Align = ST->getAlignment();
5805     // Check if this store is supported.
5806     if (!TLI.allowsMisalignedMemoryAccesses(
5807             TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
5808             Align)) {
5809       // If this is not supported, there is no way we can combine
5810       // the extract with the store.
5811       return false;
5812     }
5813 
5814     // The scalar chain of computation has to pay for the transition
5815     // scalar to vector.
5816     // The vector chain has to account for the combining cost.
5817     uint64_t ScalarCost =
5818         TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
5819     uint64_t VectorCost = StoreExtractCombineCost;
5820     for (const auto &Inst : InstsToBePromoted) {
5821       // Compute the cost.
5822       // By construction, all instructions being promoted are arithmetic ones.
5823       // Moreover, one argument is a constant that can be viewed as a splat
5824       // constant.
5825       Value *Arg0 = Inst->getOperand(0);
5826       bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
5827                             isa<ConstantFP>(Arg0);
5828       TargetTransformInfo::OperandValueKind Arg0OVK =
5829           IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
5830                          : TargetTransformInfo::OK_AnyValue;
5831       TargetTransformInfo::OperandValueKind Arg1OVK =
5832           !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
5833                           : TargetTransformInfo::OK_AnyValue;
5834       ScalarCost += TTI.getArithmeticInstrCost(
5835           Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
5836       VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
5837                                                Arg0OVK, Arg1OVK);
5838     }
5839     DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
5840                  << ScalarCost << "\nVector: " << VectorCost << '\n');
5841     return ScalarCost > VectorCost;
5842   }
5843 
5844   /// \brief Generate a constant vector with \p Val with the same
5845   /// number of elements as the transition.
5846   /// \p UseSplat defines whether or not \p Val should be replicated
5847   /// across the whole vector.
5848   /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
5849   /// otherwise we generate a vector with as many undef as possible:
5850   /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
5851   /// used at the index of the extract.
5852   Value *getConstantVector(Constant *Val, bool UseSplat) const {
5853     unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
5854     if (!UseSplat) {
5855       // If we cannot determine where the constant must be, we have to
5856       // use a splat constant.
5857       Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
5858       if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
5859         ExtractIdx = CstVal->getSExtValue();
5860       else
5861         UseSplat = true;
5862     }
5863 
5864     unsigned End = getTransitionType()->getVectorNumElements();
5865     if (UseSplat)
5866       return ConstantVector::getSplat(End, Val);
5867 
5868     SmallVector<Constant *, 4> ConstVec;
5869     UndefValue *UndefVal = UndefValue::get(Val->getType());
5870     for (unsigned Idx = 0; Idx != End; ++Idx) {
5871       if (Idx == ExtractIdx)
5872         ConstVec.push_back(Val);
5873       else
5874         ConstVec.push_back(UndefVal);
5875     }
5876     return ConstantVector::get(ConstVec);
5877   }
5878 
5879   /// \brief Check if promoting to a vector type an operand at \p OperandIdx
5880   /// in \p Use can trigger undefined behavior.
5881   static bool canCauseUndefinedBehavior(const Instruction *Use,
5882                                         unsigned OperandIdx) {
5883     // This is not safe to introduce undef when the operand is on
5884     // the right hand side of a division-like instruction.
5885     if (OperandIdx != 1)
5886       return false;
5887     switch (Use->getOpcode()) {
5888     default:
5889       return false;
5890     case Instruction::SDiv:
5891     case Instruction::UDiv:
5892     case Instruction::SRem:
5893     case Instruction::URem:
5894       return true;
5895     case Instruction::FDiv:
5896     case Instruction::FRem:
5897       return !Use->hasNoNaNs();
5898     }
5899     llvm_unreachable(nullptr);
5900   }
5901 
5902 public:
5903   VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
5904                       const TargetTransformInfo &TTI, Instruction *Transition,
5905                       unsigned CombineCost)
5906       : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
5907         StoreExtractCombineCost(CombineCost) {
5908     assert(Transition && "Do not know how to promote null");
5909   }
5910 
5911   /// \brief Check if we can promote \p ToBePromoted to \p Type.
5912   bool canPromote(const Instruction *ToBePromoted) const {
5913     // We could support CastInst too.
5914     return isa<BinaryOperator>(ToBePromoted);
5915   }
5916 
5917   /// \brief Check if it is profitable to promote \p ToBePromoted
5918   /// by moving downward the transition through.
5919   bool shouldPromote(const Instruction *ToBePromoted) const {
5920     // Promote only if all the operands can be statically expanded.
5921     // Indeed, we do not want to introduce any new kind of transitions.
5922     for (const Use &U : ToBePromoted->operands()) {
5923       const Value *Val = U.get();
5924       if (Val == getEndOfTransition()) {
5925         // If the use is a division and the transition is on the rhs,
5926         // we cannot promote the operation, otherwise we may create a
5927         // division by zero.
5928         if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
5929           return false;
5930         continue;
5931       }
5932       if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
5933           !isa<ConstantFP>(Val))
5934         return false;
5935     }
5936     // Check that the resulting operation is legal.
5937     int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
5938     if (!ISDOpcode)
5939       return false;
5940     return StressStoreExtract ||
5941            TLI.isOperationLegalOrCustom(
5942                ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
5943   }
5944 
5945   /// \brief Check whether or not \p Use can be combined
5946   /// with the transition.
5947   /// I.e., is it possible to do Use(Transition) => AnotherUse?
5948   bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
5949 
5950   /// \brief Record \p ToBePromoted as part of the chain to be promoted.
5951   void enqueueForPromotion(Instruction *ToBePromoted) {
5952     InstsToBePromoted.push_back(ToBePromoted);
5953   }
5954 
5955   /// \brief Set the instruction that will be combined with the transition.
5956   void recordCombineInstruction(Instruction *ToBeCombined) {
5957     assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
5958     CombineInst = ToBeCombined;
5959   }
5960 
5961   /// \brief Promote all the instructions enqueued for promotion if it is
5962   /// is profitable.
5963   /// \return True if the promotion happened, false otherwise.
5964   bool promote() {
5965     // Check if there is something to promote.
5966     // Right now, if we do not have anything to combine with,
5967     // we assume the promotion is not profitable.
5968     if (InstsToBePromoted.empty() || !CombineInst)
5969       return false;
5970 
5971     // Check cost.
5972     if (!StressStoreExtract && !isProfitableToPromote())
5973       return false;
5974 
5975     // Promote.
5976     for (auto &ToBePromoted : InstsToBePromoted)
5977       promoteImpl(ToBePromoted);
5978     InstsToBePromoted.clear();
5979     return true;
5980   }
5981 };
5982 
5983 } // end anonymous namespace
5984 
5985 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
5986   // At this point, we know that all the operands of ToBePromoted but Def
5987   // can be statically promoted.
5988   // For Def, we need to use its parameter in ToBePromoted:
5989   // b = ToBePromoted ty1 a
5990   // Def = Transition ty1 b to ty2
5991   // Move the transition down.
5992   // 1. Replace all uses of the promoted operation by the transition.
5993   // = ... b => = ... Def.
5994   assert(ToBePromoted->getType() == Transition->getType() &&
5995          "The type of the result of the transition does not match "
5996          "the final type");
5997   ToBePromoted->replaceAllUsesWith(Transition);
5998   // 2. Update the type of the uses.
5999   // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
6000   Type *TransitionTy = getTransitionType();
6001   ToBePromoted->mutateType(TransitionTy);
6002   // 3. Update all the operands of the promoted operation with promoted
6003   // operands.
6004   // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
6005   for (Use &U : ToBePromoted->operands()) {
6006     Value *Val = U.get();
6007     Value *NewVal = nullptr;
6008     if (Val == Transition)
6009       NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
6010     else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
6011              isa<ConstantFP>(Val)) {
6012       // Use a splat constant if it is not safe to use undef.
6013       NewVal = getConstantVector(
6014           cast<Constant>(Val),
6015           isa<UndefValue>(Val) ||
6016               canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
6017     } else
6018       llvm_unreachable("Did you modified shouldPromote and forgot to update "
6019                        "this?");
6020     ToBePromoted->setOperand(U.getOperandNo(), NewVal);
6021   }
6022   Transition->moveAfter(ToBePromoted);
6023   Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
6024 }
6025 
6026 /// Some targets can do store(extractelement) with one instruction.
6027 /// Try to push the extractelement towards the stores when the target
6028 /// has this feature and this is profitable.
6029 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
6030   unsigned CombineCost = std::numeric_limits<unsigned>::max();
6031   if (DisableStoreExtract || !TLI ||
6032       (!StressStoreExtract &&
6033        !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
6034                                        Inst->getOperand(1), CombineCost)))
6035     return false;
6036 
6037   // At this point we know that Inst is a vector to scalar transition.
6038   // Try to move it down the def-use chain, until:
6039   // - We can combine the transition with its single use
6040   //   => we got rid of the transition.
6041   // - We escape the current basic block
6042   //   => we would need to check that we are moving it at a cheaper place and
6043   //      we do not do that for now.
6044   BasicBlock *Parent = Inst->getParent();
6045   DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
6046   VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
6047   // If the transition has more than one use, assume this is not going to be
6048   // beneficial.
6049   while (Inst->hasOneUse()) {
6050     Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
6051     DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
6052 
6053     if (ToBePromoted->getParent() != Parent) {
6054       DEBUG(dbgs() << "Instruction to promote is in a different block ("
6055                    << ToBePromoted->getParent()->getName()
6056                    << ") than the transition (" << Parent->getName() << ").\n");
6057       return false;
6058     }
6059 
6060     if (VPH.canCombine(ToBePromoted)) {
6061       DEBUG(dbgs() << "Assume " << *Inst << '\n'
6062                    << "will be combined with: " << *ToBePromoted << '\n');
6063       VPH.recordCombineInstruction(ToBePromoted);
6064       bool Changed = VPH.promote();
6065       NumStoreExtractExposed += Changed;
6066       return Changed;
6067     }
6068 
6069     DEBUG(dbgs() << "Try promoting.\n");
6070     if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
6071       return false;
6072 
6073     DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
6074 
6075     VPH.enqueueForPromotion(ToBePromoted);
6076     Inst = ToBePromoted;
6077   }
6078   return false;
6079 }
6080 
6081 /// For the instruction sequence of store below, F and I values
6082 /// are bundled together as an i64 value before being stored into memory.
6083 /// Sometimes it is more efficent to generate separate stores for F and I,
6084 /// which can remove the bitwise instructions or sink them to colder places.
6085 ///
6086 ///   (store (or (zext (bitcast F to i32) to i64),
6087 ///              (shl (zext I to i64), 32)), addr)  -->
6088 ///   (store F, addr) and (store I, addr+4)
6089 ///
6090 /// Similarly, splitting for other merged store can also be beneficial, like:
6091 /// For pair of {i32, i32}, i64 store --> two i32 stores.
6092 /// For pair of {i32, i16}, i64 store --> two i32 stores.
6093 /// For pair of {i16, i16}, i32 store --> two i16 stores.
6094 /// For pair of {i16, i8},  i32 store --> two i16 stores.
6095 /// For pair of {i8, i8},   i16 store --> two i8 stores.
6096 ///
6097 /// We allow each target to determine specifically which kind of splitting is
6098 /// supported.
6099 ///
6100 /// The store patterns are commonly seen from the simple code snippet below
6101 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
6102 ///   void goo(const std::pair<int, float> &);
6103 ///   hoo() {
6104 ///     ...
6105 ///     goo(std::make_pair(tmp, ftmp));
6106 ///     ...
6107 ///   }
6108 ///
6109 /// Although we already have similar splitting in DAG Combine, we duplicate
6110 /// it in CodeGenPrepare to catch the case in which pattern is across
6111 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
6112 /// during code expansion.
6113 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
6114                                 const TargetLowering &TLI) {
6115   // Handle simple but common cases only.
6116   Type *StoreType = SI.getValueOperand()->getType();
6117   if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) ||
6118       DL.getTypeSizeInBits(StoreType) == 0)
6119     return false;
6120 
6121   unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
6122   Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
6123   if (DL.getTypeStoreSizeInBits(SplitStoreType) !=
6124       DL.getTypeSizeInBits(SplitStoreType))
6125     return false;
6126 
6127   // Match the following patterns:
6128   // (store (or (zext LValue to i64),
6129   //            (shl (zext HValue to i64), 32)), HalfValBitSize)
6130   //  or
6131   // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
6132   //            (zext LValue to i64),
6133   // Expect both operands of OR and the first operand of SHL have only
6134   // one use.
6135   Value *LValue, *HValue;
6136   if (!match(SI.getValueOperand(),
6137              m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
6138                     m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
6139                                    m_SpecificInt(HalfValBitSize))))))
6140     return false;
6141 
6142   // Check LValue and HValue are int with size less or equal than 32.
6143   if (!LValue->getType()->isIntegerTy() ||
6144       DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
6145       !HValue->getType()->isIntegerTy() ||
6146       DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
6147     return false;
6148 
6149   // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
6150   // as the input of target query.
6151   auto *LBC = dyn_cast<BitCastInst>(LValue);
6152   auto *HBC = dyn_cast<BitCastInst>(HValue);
6153   EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
6154                   : EVT::getEVT(LValue->getType());
6155   EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
6156                    : EVT::getEVT(HValue->getType());
6157   if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
6158     return false;
6159 
6160   // Start to split store.
6161   IRBuilder<> Builder(SI.getContext());
6162   Builder.SetInsertPoint(&SI);
6163 
6164   // If LValue/HValue is a bitcast in another BB, create a new one in current
6165   // BB so it may be merged with the splitted stores by dag combiner.
6166   if (LBC && LBC->getParent() != SI.getParent())
6167     LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
6168   if (HBC && HBC->getParent() != SI.getParent())
6169     HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
6170 
6171   auto CreateSplitStore = [&](Value *V, bool Upper) {
6172     V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
6173     Value *Addr = Builder.CreateBitCast(
6174         SI.getOperand(1),
6175         SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
6176     if (Upper)
6177       Addr = Builder.CreateGEP(
6178           SplitStoreType, Addr,
6179           ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
6180     Builder.CreateAlignedStore(
6181         V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment());
6182   };
6183 
6184   CreateSplitStore(LValue, false);
6185   CreateSplitStore(HValue, true);
6186 
6187   // Delete the old store.
6188   SI.eraseFromParent();
6189   return true;
6190 }
6191 
6192 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) {
6193   // Bail out if we inserted the instruction to prevent optimizations from
6194   // stepping on each other's toes.
6195   if (InsertedInsts.count(I))
6196     return false;
6197 
6198   if (PHINode *P = dyn_cast<PHINode>(I)) {
6199     // It is possible for very late stage optimizations (such as SimplifyCFG)
6200     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
6201     // trivial PHI, go ahead and zap it here.
6202     if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
6203       P->replaceAllUsesWith(V);
6204       P->eraseFromParent();
6205       ++NumPHIsElim;
6206       return true;
6207     }
6208     return false;
6209   }
6210 
6211   if (CastInst *CI = dyn_cast<CastInst>(I)) {
6212     // If the source of the cast is a constant, then this should have
6213     // already been constant folded.  The only reason NOT to constant fold
6214     // it is if something (e.g. LSR) was careful to place the constant
6215     // evaluation in a block other than then one that uses it (e.g. to hoist
6216     // the address of globals out of a loop).  If this is the case, we don't
6217     // want to forward-subst the cast.
6218     if (isa<Constant>(CI->getOperand(0)))
6219       return false;
6220 
6221     if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL))
6222       return true;
6223 
6224     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
6225       /// Sink a zext or sext into its user blocks if the target type doesn't
6226       /// fit in one register
6227       if (TLI &&
6228           TLI->getTypeAction(CI->getContext(),
6229                              TLI->getValueType(*DL, CI->getType())) ==
6230               TargetLowering::TypeExpandInteger) {
6231         return SinkCast(CI);
6232       } else {
6233         bool MadeChange = optimizeExt(I);
6234         return MadeChange | optimizeExtUses(I);
6235       }
6236     }
6237     return false;
6238   }
6239 
6240   if (CmpInst *CI = dyn_cast<CmpInst>(I))
6241     if (!TLI || !TLI->hasMultipleConditionRegisters())
6242       return OptimizeCmpExpression(CI, TLI);
6243 
6244   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6245     LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6246     if (TLI) {
6247       bool Modified = optimizeLoadExt(LI);
6248       unsigned AS = LI->getPointerAddressSpace();
6249       Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
6250       return Modified;
6251     }
6252     return false;
6253   }
6254 
6255   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
6256     if (TLI && splitMergedValStore(*SI, *DL, *TLI))
6257       return true;
6258     SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6259     if (TLI) {
6260       unsigned AS = SI->getPointerAddressSpace();
6261       return optimizeMemoryInst(I, SI->getOperand(1),
6262                                 SI->getOperand(0)->getType(), AS);
6263     }
6264     return false;
6265   }
6266 
6267   if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
6268       unsigned AS = RMW->getPointerAddressSpace();
6269       return optimizeMemoryInst(I, RMW->getPointerOperand(),
6270                                 RMW->getType(), AS);
6271   }
6272 
6273   if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
6274       unsigned AS = CmpX->getPointerAddressSpace();
6275       return optimizeMemoryInst(I, CmpX->getPointerOperand(),
6276                                 CmpX->getCompareOperand()->getType(), AS);
6277   }
6278 
6279   BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
6280 
6281   if (BinOp && (BinOp->getOpcode() == Instruction::And) &&
6282       EnableAndCmpSinking && TLI)
6283     return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts);
6284 
6285   if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
6286                 BinOp->getOpcode() == Instruction::LShr)) {
6287     ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
6288     if (TLI && CI && TLI->hasExtractBitsInsn())
6289       return OptimizeExtractBits(BinOp, CI, *TLI, *DL);
6290 
6291     return false;
6292   }
6293 
6294   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
6295     if (GEPI->hasAllZeroIndices()) {
6296       /// The GEP operand must be a pointer, so must its result -> BitCast
6297       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
6298                                         GEPI->getName(), GEPI);
6299       GEPI->replaceAllUsesWith(NC);
6300       GEPI->eraseFromParent();
6301       ++NumGEPsElim;
6302       optimizeInst(NC, ModifiedDT);
6303       return true;
6304     }
6305     return false;
6306   }
6307 
6308   if (CallInst *CI = dyn_cast<CallInst>(I))
6309     return optimizeCallInst(CI, ModifiedDT);
6310 
6311   if (SelectInst *SI = dyn_cast<SelectInst>(I))
6312     return optimizeSelectInst(SI);
6313 
6314   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
6315     return optimizeShuffleVectorInst(SVI);
6316 
6317   if (auto *Switch = dyn_cast<SwitchInst>(I))
6318     return optimizeSwitchInst(Switch);
6319 
6320   if (isa<ExtractElementInst>(I))
6321     return optimizeExtractElementInst(I);
6322 
6323   return false;
6324 }
6325 
6326 /// Given an OR instruction, check to see if this is a bitreverse
6327 /// idiom. If so, insert the new intrinsic and return true.
6328 static bool makeBitReverse(Instruction &I, const DataLayout &DL,
6329                            const TargetLowering &TLI) {
6330   if (!I.getType()->isIntegerTy() ||
6331       !TLI.isOperationLegalOrCustom(ISD::BITREVERSE,
6332                                     TLI.getValueType(DL, I.getType(), true)))
6333     return false;
6334 
6335   SmallVector<Instruction*, 4> Insts;
6336   if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
6337     return false;
6338   Instruction *LastInst = Insts.back();
6339   I.replaceAllUsesWith(LastInst);
6340   RecursivelyDeleteTriviallyDeadInstructions(&I);
6341   return true;
6342 }
6343 
6344 // In this pass we look for GEP and cast instructions that are used
6345 // across basic blocks and rewrite them to improve basic-block-at-a-time
6346 // selection.
6347 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) {
6348   SunkAddrs.clear();
6349   bool MadeChange = false;
6350 
6351   CurInstIterator = BB.begin();
6352   while (CurInstIterator != BB.end()) {
6353     MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
6354     if (ModifiedDT)
6355       return true;
6356   }
6357 
6358   bool MadeBitReverse = true;
6359   while (TLI && MadeBitReverse) {
6360     MadeBitReverse = false;
6361     for (auto &I : reverse(BB)) {
6362       if (makeBitReverse(I, *DL, *TLI)) {
6363         MadeBitReverse = MadeChange = true;
6364         ModifiedDT = true;
6365         break;
6366       }
6367     }
6368   }
6369   MadeChange |= dupRetToEnableTailCallOpts(&BB);
6370 
6371   return MadeChange;
6372 }
6373 
6374 // llvm.dbg.value is far away from the value then iSel may not be able
6375 // handle it properly. iSel will drop llvm.dbg.value if it can not
6376 // find a node corresponding to the value.
6377 bool CodeGenPrepare::placeDbgValues(Function &F) {
6378   bool MadeChange = false;
6379   for (BasicBlock &BB : F) {
6380     Instruction *PrevNonDbgInst = nullptr;
6381     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
6382       Instruction *Insn = &*BI++;
6383       DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
6384       // Leave dbg.values that refer to an alloca alone. These
6385       // instrinsics describe the address of a variable (= the alloca)
6386       // being taken.  They should not be moved next to the alloca
6387       // (and to the beginning of the scope), but rather stay close to
6388       // where said address is used.
6389       if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
6390         PrevNonDbgInst = Insn;
6391         continue;
6392       }
6393 
6394       Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
6395       if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
6396         // If VI is a phi in a block with an EHPad terminator, we can't insert
6397         // after it.
6398         if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
6399           continue;
6400         DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI);
6401         DVI->removeFromParent();
6402         if (isa<PHINode>(VI))
6403           DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
6404         else
6405           DVI->insertAfter(VI);
6406         MadeChange = true;
6407         ++NumDbgValueMoved;
6408       }
6409     }
6410   }
6411   return MadeChange;
6412 }
6413 
6414 /// \brief Scale down both weights to fit into uint32_t.
6415 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
6416   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
6417   uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
6418   NewTrue = NewTrue / Scale;
6419   NewFalse = NewFalse / Scale;
6420 }
6421 
6422 /// \brief Some targets prefer to split a conditional branch like:
6423 /// \code
6424 ///   %0 = icmp ne i32 %a, 0
6425 ///   %1 = icmp ne i32 %b, 0
6426 ///   %or.cond = or i1 %0, %1
6427 ///   br i1 %or.cond, label %TrueBB, label %FalseBB
6428 /// \endcode
6429 /// into multiple branch instructions like:
6430 /// \code
6431 ///   bb1:
6432 ///     %0 = icmp ne i32 %a, 0
6433 ///     br i1 %0, label %TrueBB, label %bb2
6434 ///   bb2:
6435 ///     %1 = icmp ne i32 %b, 0
6436 ///     br i1 %1, label %TrueBB, label %FalseBB
6437 /// \endcode
6438 /// This usually allows instruction selection to do even further optimizations
6439 /// and combine the compare with the branch instruction. Currently this is
6440 /// applied for targets which have "cheap" jump instructions.
6441 ///
6442 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
6443 ///
6444 bool CodeGenPrepare::splitBranchCondition(Function &F) {
6445   if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive())
6446     return false;
6447 
6448   bool MadeChange = false;
6449   for (auto &BB : F) {
6450     // Does this BB end with the following?
6451     //   %cond1 = icmp|fcmp|binary instruction ...
6452     //   %cond2 = icmp|fcmp|binary instruction ...
6453     //   %cond.or = or|and i1 %cond1, cond2
6454     //   br i1 %cond.or label %dest1, label %dest2"
6455     BinaryOperator *LogicOp;
6456     BasicBlock *TBB, *FBB;
6457     if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
6458       continue;
6459 
6460     auto *Br1 = cast<BranchInst>(BB.getTerminator());
6461     if (Br1->getMetadata(LLVMContext::MD_unpredictable))
6462       continue;
6463 
6464     unsigned Opc;
6465     Value *Cond1, *Cond2;
6466     if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
6467                              m_OneUse(m_Value(Cond2)))))
6468       Opc = Instruction::And;
6469     else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
6470                                  m_OneUse(m_Value(Cond2)))))
6471       Opc = Instruction::Or;
6472     else
6473       continue;
6474 
6475     if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
6476         !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp()))   )
6477       continue;
6478 
6479     DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
6480 
6481     // Create a new BB.
6482     auto TmpBB =
6483         BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
6484                            BB.getParent(), BB.getNextNode());
6485 
6486     // Update original basic block by using the first condition directly by the
6487     // branch instruction and removing the no longer needed and/or instruction.
6488     Br1->setCondition(Cond1);
6489     LogicOp->eraseFromParent();
6490 
6491     // Depending on the conditon we have to either replace the true or the false
6492     // successor of the original branch instruction.
6493     if (Opc == Instruction::And)
6494       Br1->setSuccessor(0, TmpBB);
6495     else
6496       Br1->setSuccessor(1, TmpBB);
6497 
6498     // Fill in the new basic block.
6499     auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
6500     if (auto *I = dyn_cast<Instruction>(Cond2)) {
6501       I->removeFromParent();
6502       I->insertBefore(Br2);
6503     }
6504 
6505     // Update PHI nodes in both successors. The original BB needs to be
6506     // replaced in one successor's PHI nodes, because the branch comes now from
6507     // the newly generated BB (NewBB). In the other successor we need to add one
6508     // incoming edge to the PHI nodes, because both branch instructions target
6509     // now the same successor. Depending on the original branch condition
6510     // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
6511     // we perform the correct update for the PHI nodes.
6512     // This doesn't change the successor order of the just created branch
6513     // instruction (or any other instruction).
6514     if (Opc == Instruction::Or)
6515       std::swap(TBB, FBB);
6516 
6517     // Replace the old BB with the new BB.
6518     for (auto &I : *TBB) {
6519       PHINode *PN = dyn_cast<PHINode>(&I);
6520       if (!PN)
6521         break;
6522       int i;
6523       while ((i = PN->getBasicBlockIndex(&BB)) >= 0)
6524         PN->setIncomingBlock(i, TmpBB);
6525     }
6526 
6527     // Add another incoming edge form the new BB.
6528     for (auto &I : *FBB) {
6529       PHINode *PN = dyn_cast<PHINode>(&I);
6530       if (!PN)
6531         break;
6532       auto *Val = PN->getIncomingValueForBlock(&BB);
6533       PN->addIncoming(Val, TmpBB);
6534     }
6535 
6536     // Update the branch weights (from SelectionDAGBuilder::
6537     // FindMergedConditions).
6538     if (Opc == Instruction::Or) {
6539       // Codegen X | Y as:
6540       // BB1:
6541       //   jmp_if_X TBB
6542       //   jmp TmpBB
6543       // TmpBB:
6544       //   jmp_if_Y TBB
6545       //   jmp FBB
6546       //
6547 
6548       // We have flexibility in setting Prob for BB1 and Prob for NewBB.
6549       // The requirement is that
6550       //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
6551       //     = TrueProb for orignal BB.
6552       // Assuming the orignal weights are A and B, one choice is to set BB1's
6553       // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
6554       // assumes that
6555       //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
6556       // Another choice is to assume TrueProb for BB1 equals to TrueProb for
6557       // TmpBB, but the math is more complicated.
6558       uint64_t TrueWeight, FalseWeight;
6559       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
6560         uint64_t NewTrueWeight = TrueWeight;
6561         uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
6562         scaleWeights(NewTrueWeight, NewFalseWeight);
6563         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
6564                          .createBranchWeights(TrueWeight, FalseWeight));
6565 
6566         NewTrueWeight = TrueWeight;
6567         NewFalseWeight = 2 * FalseWeight;
6568         scaleWeights(NewTrueWeight, NewFalseWeight);
6569         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
6570                          .createBranchWeights(TrueWeight, FalseWeight));
6571       }
6572     } else {
6573       // Codegen X & Y as:
6574       // BB1:
6575       //   jmp_if_X TmpBB
6576       //   jmp FBB
6577       // TmpBB:
6578       //   jmp_if_Y TBB
6579       //   jmp FBB
6580       //
6581       //  This requires creation of TmpBB after CurBB.
6582 
6583       // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
6584       // The requirement is that
6585       //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
6586       //     = FalseProb for orignal BB.
6587       // Assuming the orignal weights are A and B, one choice is to set BB1's
6588       // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
6589       // assumes that
6590       //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
6591       uint64_t TrueWeight, FalseWeight;
6592       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
6593         uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
6594         uint64_t NewFalseWeight = FalseWeight;
6595         scaleWeights(NewTrueWeight, NewFalseWeight);
6596         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
6597                          .createBranchWeights(TrueWeight, FalseWeight));
6598 
6599         NewTrueWeight = 2 * TrueWeight;
6600         NewFalseWeight = FalseWeight;
6601         scaleWeights(NewTrueWeight, NewFalseWeight);
6602         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
6603                          .createBranchWeights(TrueWeight, FalseWeight));
6604       }
6605     }
6606 
6607     // Note: No point in getting fancy here, since the DT info is never
6608     // available to CodeGenPrepare.
6609     ModifiedDT = true;
6610 
6611     MadeChange = true;
6612 
6613     DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
6614           TmpBB->dump());
6615   }
6616   return MadeChange;
6617 }
6618