1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InlineAsm.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/IntrinsicsAArch64.h" 63 #include "llvm/IR/IntrinsicsX86.h" 64 #include "llvm/IR/LLVMContext.h" 65 #include "llvm/IR/MDBuilder.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Statepoint.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/ValueMap.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/BlockFrequency.h" 79 #include "llvm/Support/BranchProbability.h" 80 #include "llvm/Support/Casting.h" 81 #include "llvm/Support/CommandLine.h" 82 #include "llvm/Support/Compiler.h" 83 #include "llvm/Support/Debug.h" 84 #include "llvm/Support/ErrorHandling.h" 85 #include "llvm/Support/MachineValueType.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Target/TargetMachine.h" 89 #include "llvm/Target/TargetOptions.h" 90 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 91 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 92 #include "llvm/Transforms/Utils/Local.h" 93 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 94 #include "llvm/Transforms/Utils/SizeOpts.h" 95 #include <algorithm> 96 #include <cassert> 97 #include <cstdint> 98 #include <iterator> 99 #include <limits> 100 #include <memory> 101 #include <utility> 102 #include <vector> 103 104 using namespace llvm; 105 using namespace llvm::PatternMatch; 106 107 #define DEBUG_TYPE "codegenprepare" 108 109 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 110 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 111 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 112 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 113 "sunken Cmps"); 114 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 115 "of sunken Casts"); 116 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 117 "computations were sunk"); 118 STATISTIC(NumMemoryInstsPhiCreated, 119 "Number of phis created when address " 120 "computations were sunk to memory instructions"); 121 STATISTIC(NumMemoryInstsSelectCreated, 122 "Number of select created when address " 123 "computations were sunk to memory instructions"); 124 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 125 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 126 STATISTIC(NumAndsAdded, 127 "Number of and mask instructions added to form ext loads"); 128 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 129 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 130 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 131 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 132 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 133 134 static cl::opt<bool> DisableBranchOpts( 135 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 136 cl::desc("Disable branch optimizations in CodeGenPrepare")); 137 138 static cl::opt<bool> 139 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 140 cl::desc("Disable GC optimizations in CodeGenPrepare")); 141 142 static cl::opt<bool> DisableSelectToBranch( 143 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 144 cl::desc("Disable select to branch conversion.")); 145 146 static cl::opt<bool> AddrSinkUsingGEPs( 147 "addr-sink-using-gep", cl::Hidden, cl::init(true), 148 cl::desc("Address sinking in CGP using GEPs.")); 149 150 static cl::opt<bool> EnableAndCmpSinking( 151 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 152 cl::desc("Enable sinkinig and/cmp into branches.")); 153 154 static cl::opt<bool> DisableStoreExtract( 155 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 156 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 157 158 static cl::opt<bool> StressStoreExtract( 159 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 160 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 161 162 static cl::opt<bool> DisableExtLdPromotion( 163 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 164 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 165 "CodeGenPrepare")); 166 167 static cl::opt<bool> StressExtLdPromotion( 168 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 169 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 170 "optimization in CodeGenPrepare")); 171 172 static cl::opt<bool> DisablePreheaderProtect( 173 "disable-preheader-prot", cl::Hidden, cl::init(false), 174 cl::desc("Disable protection against removing loop preheaders")); 175 176 static cl::opt<bool> ProfileGuidedSectionPrefix( 177 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 178 cl::desc("Use profile info to add section prefix for hot/cold functions")); 179 180 static cl::opt<bool> ProfileUnknownInSpecialSection( 181 "profile-unknown-in-special-section", cl::Hidden, cl::init(false), 182 cl::ZeroOrMore, 183 cl::desc("In profiling mode like sampleFDO, if a function doesn't have " 184 "profile, we cannot tell the function is cold for sure because " 185 "it may be a function newly added without ever being sampled. " 186 "With the flag enabled, compiler can put such profile unknown " 187 "functions into a special section, so runtime system can choose " 188 "to handle it in a different way than .text section, to save " 189 "RAM for example. ")); 190 191 static cl::opt<unsigned> FreqRatioToSkipMerge( 192 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 193 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 194 "(frequency of destination block) is greater than this ratio")); 195 196 static cl::opt<bool> ForceSplitStore( 197 "force-split-store", cl::Hidden, cl::init(false), 198 cl::desc("Force store splitting no matter what the target query says.")); 199 200 static cl::opt<bool> 201 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 202 cl::desc("Enable merging of redundant sexts when one is dominating" 203 " the other."), cl::init(true)); 204 205 static cl::opt<bool> DisableComplexAddrModes( 206 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 207 cl::desc("Disables combining addressing modes with different parts " 208 "in optimizeMemoryInst.")); 209 210 static cl::opt<bool> 211 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 212 cl::desc("Allow creation of Phis in Address sinking.")); 213 214 static cl::opt<bool> 215 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 216 cl::desc("Allow creation of selects in Address sinking.")); 217 218 static cl::opt<bool> AddrSinkCombineBaseReg( 219 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 220 cl::desc("Allow combining of BaseReg field in Address sinking.")); 221 222 static cl::opt<bool> AddrSinkCombineBaseGV( 223 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 224 cl::desc("Allow combining of BaseGV field in Address sinking.")); 225 226 static cl::opt<bool> AddrSinkCombineBaseOffs( 227 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 228 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 229 230 static cl::opt<bool> AddrSinkCombineScaledReg( 231 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 232 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 233 234 static cl::opt<bool> 235 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 236 cl::init(true), 237 cl::desc("Enable splitting large offset of GEP.")); 238 239 static cl::opt<bool> EnableICMP_EQToICMP_ST( 240 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 241 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 242 243 static cl::opt<bool> 244 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), 245 cl::desc("Enable BFI update verification for " 246 "CodeGenPrepare.")); 247 248 namespace { 249 250 enum ExtType { 251 ZeroExtension, // Zero extension has been seen. 252 SignExtension, // Sign extension has been seen. 253 BothExtension // This extension type is used if we saw sext after 254 // ZeroExtension had been set, or if we saw zext after 255 // SignExtension had been set. It makes the type 256 // information of a promoted instruction invalid. 257 }; 258 259 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 260 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 261 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 262 using SExts = SmallVector<Instruction *, 16>; 263 using ValueToSExts = DenseMap<Value *, SExts>; 264 265 class TypePromotionTransaction; 266 267 class CodeGenPrepare : public FunctionPass { 268 const TargetMachine *TM = nullptr; 269 const TargetSubtargetInfo *SubtargetInfo; 270 const TargetLowering *TLI = nullptr; 271 const TargetRegisterInfo *TRI; 272 const TargetTransformInfo *TTI = nullptr; 273 const TargetLibraryInfo *TLInfo; 274 const LoopInfo *LI; 275 std::unique_ptr<BlockFrequencyInfo> BFI; 276 std::unique_ptr<BranchProbabilityInfo> BPI; 277 ProfileSummaryInfo *PSI; 278 279 /// As we scan instructions optimizing them, this is the next instruction 280 /// to optimize. Transforms that can invalidate this should update it. 281 BasicBlock::iterator CurInstIterator; 282 283 /// Keeps track of non-local addresses that have been sunk into a block. 284 /// This allows us to avoid inserting duplicate code for blocks with 285 /// multiple load/stores of the same address. The usage of WeakTrackingVH 286 /// enables SunkAddrs to be treated as a cache whose entries can be 287 /// invalidated if a sunken address computation has been erased. 288 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 289 290 /// Keeps track of all instructions inserted for the current function. 291 SetOfInstrs InsertedInsts; 292 293 /// Keeps track of the type of the related instruction before their 294 /// promotion for the current function. 295 InstrToOrigTy PromotedInsts; 296 297 /// Keep track of instructions removed during promotion. 298 SetOfInstrs RemovedInsts; 299 300 /// Keep track of sext chains based on their initial value. 301 DenseMap<Value *, Instruction *> SeenChainsForSExt; 302 303 /// Keep track of GEPs accessing the same data structures such as structs or 304 /// arrays that are candidates to be split later because of their large 305 /// size. 306 MapVector< 307 AssertingVH<Value>, 308 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 309 LargeOffsetGEPMap; 310 311 /// Keep track of new GEP base after splitting the GEPs having large offset. 312 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 313 314 /// Map serial numbers to Large offset GEPs. 315 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 316 317 /// Keep track of SExt promoted. 318 ValueToSExts ValToSExtendedUses; 319 320 /// True if the function has the OptSize attribute. 321 bool OptSize; 322 323 /// DataLayout for the Function being processed. 324 const DataLayout *DL = nullptr; 325 326 /// Building the dominator tree can be expensive, so we only build it 327 /// lazily and update it when required. 328 std::unique_ptr<DominatorTree> DT; 329 330 public: 331 static char ID; // Pass identification, replacement for typeid 332 333 CodeGenPrepare() : FunctionPass(ID) { 334 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 335 } 336 337 bool runOnFunction(Function &F) override; 338 339 StringRef getPassName() const override { return "CodeGen Prepare"; } 340 341 void getAnalysisUsage(AnalysisUsage &AU) const override { 342 // FIXME: When we can selectively preserve passes, preserve the domtree. 343 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 344 AU.addRequired<TargetLibraryInfoWrapperPass>(); 345 AU.addRequired<TargetPassConfig>(); 346 AU.addRequired<TargetTransformInfoWrapperPass>(); 347 AU.addRequired<LoopInfoWrapperPass>(); 348 } 349 350 private: 351 template <typename F> 352 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 353 // Substituting can cause recursive simplifications, which can invalidate 354 // our iterator. Use a WeakTrackingVH to hold onto it in case this 355 // happens. 356 Value *CurValue = &*CurInstIterator; 357 WeakTrackingVH IterHandle(CurValue); 358 359 f(); 360 361 // If the iterator instruction was recursively deleted, start over at the 362 // start of the block. 363 if (IterHandle != CurValue) { 364 CurInstIterator = BB->begin(); 365 SunkAddrs.clear(); 366 } 367 } 368 369 // Get the DominatorTree, building if necessary. 370 DominatorTree &getDT(Function &F) { 371 if (!DT) 372 DT = std::make_unique<DominatorTree>(F); 373 return *DT; 374 } 375 376 bool eliminateFallThrough(Function &F); 377 bool eliminateMostlyEmptyBlocks(Function &F); 378 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 379 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 380 void eliminateMostlyEmptyBlock(BasicBlock *BB); 381 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 382 bool isPreheader); 383 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 384 bool optimizeInst(Instruction *I, bool &ModifiedDT); 385 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 386 Type *AccessTy, unsigned AddrSpace); 387 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); 388 bool optimizeInlineAsmInst(CallInst *CS); 389 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 390 bool optimizeExt(Instruction *&I); 391 bool optimizeExtUses(Instruction *I); 392 bool optimizeLoadExt(LoadInst *Load); 393 bool optimizeShiftInst(BinaryOperator *BO); 394 bool optimizeSelectInst(SelectInst *SI); 395 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 396 bool optimizeSwitchInst(SwitchInst *SI); 397 bool optimizeExtractElementInst(Instruction *Inst); 398 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 399 bool fixupDbgValue(Instruction *I); 400 bool placeDbgValues(Function &F); 401 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 402 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 403 bool tryToPromoteExts(TypePromotionTransaction &TPT, 404 const SmallVectorImpl<Instruction *> &Exts, 405 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 406 unsigned CreatedInstsCost = 0); 407 bool mergeSExts(Function &F); 408 bool splitLargeGEPOffsets(); 409 bool performAddressTypePromotion( 410 Instruction *&Inst, 411 bool AllowPromotionWithoutCommonHeader, 412 bool HasPromoted, TypePromotionTransaction &TPT, 413 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 414 bool splitBranchCondition(Function &F, bool &ModifiedDT); 415 bool simplifyOffsetableRelocate(Instruction &I); 416 417 bool tryToSinkFreeOperands(Instruction *I); 418 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, 419 Value *Arg1, CmpInst *Cmp, 420 Intrinsic::ID IID); 421 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 422 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 423 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 424 void verifyBFIUpdates(Function &F); 425 }; 426 427 } // end anonymous namespace 428 429 char CodeGenPrepare::ID = 0; 430 431 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 432 "Optimize for code generation", false, false) 433 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 434 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 435 "Optimize for code generation", false, false) 436 437 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 438 439 bool CodeGenPrepare::runOnFunction(Function &F) { 440 if (skipFunction(F)) 441 return false; 442 443 DL = &F.getParent()->getDataLayout(); 444 445 bool EverMadeChange = false; 446 // Clear per function information. 447 InsertedInsts.clear(); 448 PromotedInsts.clear(); 449 450 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 451 SubtargetInfo = TM->getSubtargetImpl(F); 452 TLI = SubtargetInfo->getTargetLowering(); 453 TRI = SubtargetInfo->getRegisterInfo(); 454 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 455 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 456 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 457 BPI.reset(new BranchProbabilityInfo(F, *LI)); 458 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 459 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 460 OptSize = F.hasOptSize(); 461 if (ProfileGuidedSectionPrefix) { 462 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 463 F.setSectionPrefix(".hot"); 464 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 465 F.setSectionPrefix(".unlikely"); 466 else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && 467 PSI->isFunctionHotnessUnknown(F)) 468 F.setSectionPrefix(".unknown"); 469 } 470 471 /// This optimization identifies DIV instructions that can be 472 /// profitably bypassed and carried out with a shorter, faster divide. 473 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 474 const DenseMap<unsigned int, unsigned int> &BypassWidths = 475 TLI->getBypassSlowDivWidths(); 476 BasicBlock* BB = &*F.begin(); 477 while (BB != nullptr) { 478 // bypassSlowDivision may create new BBs, but we don't want to reapply the 479 // optimization to those blocks. 480 BasicBlock* Next = BB->getNextNode(); 481 // F.hasOptSize is already checked in the outer if statement. 482 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 483 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 484 BB = Next; 485 } 486 } 487 488 // Eliminate blocks that contain only PHI nodes and an 489 // unconditional branch. 490 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 491 492 bool ModifiedDT = false; 493 if (!DisableBranchOpts) 494 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 495 496 // Split some critical edges where one of the sources is an indirect branch, 497 // to help generate sane code for PHIs involving such edges. 498 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 499 500 bool MadeChange = true; 501 while (MadeChange) { 502 MadeChange = false; 503 DT.reset(); 504 for (Function::iterator I = F.begin(); I != F.end(); ) { 505 BasicBlock *BB = &*I++; 506 bool ModifiedDTOnIteration = false; 507 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 508 509 // Restart BB iteration if the dominator tree of the Function was changed 510 if (ModifiedDTOnIteration) 511 break; 512 } 513 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 514 MadeChange |= mergeSExts(F); 515 if (!LargeOffsetGEPMap.empty()) 516 MadeChange |= splitLargeGEPOffsets(); 517 518 if (MadeChange) 519 eliminateFallThrough(F); 520 521 // Really free removed instructions during promotion. 522 for (Instruction *I : RemovedInsts) 523 I->deleteValue(); 524 525 EverMadeChange |= MadeChange; 526 SeenChainsForSExt.clear(); 527 ValToSExtendedUses.clear(); 528 RemovedInsts.clear(); 529 LargeOffsetGEPMap.clear(); 530 LargeOffsetGEPID.clear(); 531 } 532 533 SunkAddrs.clear(); 534 535 if (!DisableBranchOpts) { 536 MadeChange = false; 537 // Use a set vector to get deterministic iteration order. The order the 538 // blocks are removed may affect whether or not PHI nodes in successors 539 // are removed. 540 SmallSetVector<BasicBlock*, 8> WorkList; 541 for (BasicBlock &BB : F) { 542 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 543 MadeChange |= ConstantFoldTerminator(&BB, true); 544 if (!MadeChange) continue; 545 546 for (SmallVectorImpl<BasicBlock*>::iterator 547 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 548 if (pred_begin(*II) == pred_end(*II)) 549 WorkList.insert(*II); 550 } 551 552 // Delete the dead blocks and any of their dead successors. 553 MadeChange |= !WorkList.empty(); 554 while (!WorkList.empty()) { 555 BasicBlock *BB = WorkList.pop_back_val(); 556 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 557 558 DeleteDeadBlock(BB); 559 560 for (SmallVectorImpl<BasicBlock*>::iterator 561 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 562 if (pred_begin(*II) == pred_end(*II)) 563 WorkList.insert(*II); 564 } 565 566 // Merge pairs of basic blocks with unconditional branches, connected by 567 // a single edge. 568 if (EverMadeChange || MadeChange) 569 MadeChange |= eliminateFallThrough(F); 570 571 EverMadeChange |= MadeChange; 572 } 573 574 if (!DisableGCOpts) { 575 SmallVector<Instruction *, 2> Statepoints; 576 for (BasicBlock &BB : F) 577 for (Instruction &I : BB) 578 if (isStatepoint(I)) 579 Statepoints.push_back(&I); 580 for (auto &I : Statepoints) 581 EverMadeChange |= simplifyOffsetableRelocate(*I); 582 } 583 584 // Do this last to clean up use-before-def scenarios introduced by other 585 // preparatory transforms. 586 EverMadeChange |= placeDbgValues(F); 587 588 #ifndef NDEBUG 589 if (VerifyBFIUpdates) 590 verifyBFIUpdates(F); 591 #endif 592 593 return EverMadeChange; 594 } 595 596 // Verify BFI has been updated correctly by recomputing BFI and comparing them. 597 void CodeGenPrepare::verifyBFIUpdates(Function &F) { 598 DominatorTree NewDT(F); 599 LoopInfo NewLI(NewDT); 600 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); 601 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); 602 NewBFI.verifyMatch(*BFI); 603 } 604 605 /// Merge basic blocks which are connected by a single edge, where one of the 606 /// basic blocks has a single successor pointing to the other basic block, 607 /// which has a single predecessor. 608 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 609 bool Changed = false; 610 // Scan all of the blocks in the function, except for the entry block. 611 // Use a temporary array to avoid iterator being invalidated when 612 // deleting blocks. 613 SmallVector<WeakTrackingVH, 16> Blocks; 614 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 615 Blocks.push_back(&Block); 616 617 for (auto &Block : Blocks) { 618 auto *BB = cast_or_null<BasicBlock>(Block); 619 if (!BB) 620 continue; 621 // If the destination block has a single pred, then this is a trivial 622 // edge, just collapse it. 623 BasicBlock *SinglePred = BB->getSinglePredecessor(); 624 625 // Don't merge if BB's address is taken. 626 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 627 628 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 629 if (Term && !Term->isConditional()) { 630 Changed = true; 631 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 632 633 // Merge BB into SinglePred and delete it. 634 MergeBlockIntoPredecessor(BB); 635 } 636 } 637 return Changed; 638 } 639 640 /// Find a destination block from BB if BB is mergeable empty block. 641 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 642 // If this block doesn't end with an uncond branch, ignore it. 643 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 644 if (!BI || !BI->isUnconditional()) 645 return nullptr; 646 647 // If the instruction before the branch (skipping debug info) isn't a phi 648 // node, then other stuff is happening here. 649 BasicBlock::iterator BBI = BI->getIterator(); 650 if (BBI != BB->begin()) { 651 --BBI; 652 while (isa<DbgInfoIntrinsic>(BBI)) { 653 if (BBI == BB->begin()) 654 break; 655 --BBI; 656 } 657 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 658 return nullptr; 659 } 660 661 // Do not break infinite loops. 662 BasicBlock *DestBB = BI->getSuccessor(0); 663 if (DestBB == BB) 664 return nullptr; 665 666 if (!canMergeBlocks(BB, DestBB)) 667 DestBB = nullptr; 668 669 return DestBB; 670 } 671 672 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 673 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 674 /// edges in ways that are non-optimal for isel. Start by eliminating these 675 /// blocks so we can split them the way we want them. 676 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 677 SmallPtrSet<BasicBlock *, 16> Preheaders; 678 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 679 while (!LoopList.empty()) { 680 Loop *L = LoopList.pop_back_val(); 681 LoopList.insert(LoopList.end(), L->begin(), L->end()); 682 if (BasicBlock *Preheader = L->getLoopPreheader()) 683 Preheaders.insert(Preheader); 684 } 685 686 bool MadeChange = false; 687 // Copy blocks into a temporary array to avoid iterator invalidation issues 688 // as we remove them. 689 // Note that this intentionally skips the entry block. 690 SmallVector<WeakTrackingVH, 16> Blocks; 691 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 692 Blocks.push_back(&Block); 693 694 for (auto &Block : Blocks) { 695 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 696 if (!BB) 697 continue; 698 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 699 if (!DestBB || 700 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 701 continue; 702 703 eliminateMostlyEmptyBlock(BB); 704 MadeChange = true; 705 } 706 return MadeChange; 707 } 708 709 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 710 BasicBlock *DestBB, 711 bool isPreheader) { 712 // Do not delete loop preheaders if doing so would create a critical edge. 713 // Loop preheaders can be good locations to spill registers. If the 714 // preheader is deleted and we create a critical edge, registers may be 715 // spilled in the loop body instead. 716 if (!DisablePreheaderProtect && isPreheader && 717 !(BB->getSinglePredecessor() && 718 BB->getSinglePredecessor()->getSingleSuccessor())) 719 return false; 720 721 // Skip merging if the block's successor is also a successor to any callbr 722 // that leads to this block. 723 // FIXME: Is this really needed? Is this a correctness issue? 724 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 725 if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator())) 726 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 727 if (DestBB == CBI->getSuccessor(i)) 728 return false; 729 } 730 731 // Try to skip merging if the unique predecessor of BB is terminated by a 732 // switch or indirect branch instruction, and BB is used as an incoming block 733 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 734 // add COPY instructions in the predecessor of BB instead of BB (if it is not 735 // merged). Note that the critical edge created by merging such blocks wont be 736 // split in MachineSink because the jump table is not analyzable. By keeping 737 // such empty block (BB), ISel will place COPY instructions in BB, not in the 738 // predecessor of BB. 739 BasicBlock *Pred = BB->getUniquePredecessor(); 740 if (!Pred || 741 !(isa<SwitchInst>(Pred->getTerminator()) || 742 isa<IndirectBrInst>(Pred->getTerminator()))) 743 return true; 744 745 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 746 return true; 747 748 // We use a simple cost heuristic which determine skipping merging is 749 // profitable if the cost of skipping merging is less than the cost of 750 // merging : Cost(skipping merging) < Cost(merging BB), where the 751 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 752 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 753 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 754 // Freq(Pred) / Freq(BB) > 2. 755 // Note that if there are multiple empty blocks sharing the same incoming 756 // value for the PHIs in the DestBB, we consider them together. In such 757 // case, Cost(merging BB) will be the sum of their frequencies. 758 759 if (!isa<PHINode>(DestBB->begin())) 760 return true; 761 762 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 763 764 // Find all other incoming blocks from which incoming values of all PHIs in 765 // DestBB are the same as the ones from BB. 766 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 767 ++PI) { 768 BasicBlock *DestBBPred = *PI; 769 if (DestBBPred == BB) 770 continue; 771 772 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 773 return DestPN.getIncomingValueForBlock(BB) == 774 DestPN.getIncomingValueForBlock(DestBBPred); 775 })) 776 SameIncomingValueBBs.insert(DestBBPred); 777 } 778 779 // See if all BB's incoming values are same as the value from Pred. In this 780 // case, no reason to skip merging because COPYs are expected to be place in 781 // Pred already. 782 if (SameIncomingValueBBs.count(Pred)) 783 return true; 784 785 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 786 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 787 788 for (auto SameValueBB : SameIncomingValueBBs) 789 if (SameValueBB->getUniquePredecessor() == Pred && 790 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 791 BBFreq += BFI->getBlockFreq(SameValueBB); 792 793 return PredFreq.getFrequency() <= 794 BBFreq.getFrequency() * FreqRatioToSkipMerge; 795 } 796 797 /// Return true if we can merge BB into DestBB if there is a single 798 /// unconditional branch between them, and BB contains no other non-phi 799 /// instructions. 800 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 801 const BasicBlock *DestBB) const { 802 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 803 // the successor. If there are more complex condition (e.g. preheaders), 804 // don't mess around with them. 805 for (const PHINode &PN : BB->phis()) { 806 for (const User *U : PN.users()) { 807 const Instruction *UI = cast<Instruction>(U); 808 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 809 return false; 810 // If User is inside DestBB block and it is a PHINode then check 811 // incoming value. If incoming value is not from BB then this is 812 // a complex condition (e.g. preheaders) we want to avoid here. 813 if (UI->getParent() == DestBB) { 814 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 815 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 816 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 817 if (Insn && Insn->getParent() == BB && 818 Insn->getParent() != UPN->getIncomingBlock(I)) 819 return false; 820 } 821 } 822 } 823 } 824 825 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 826 // and DestBB may have conflicting incoming values for the block. If so, we 827 // can't merge the block. 828 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 829 if (!DestBBPN) return true; // no conflict. 830 831 // Collect the preds of BB. 832 SmallPtrSet<const BasicBlock*, 16> BBPreds; 833 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 834 // It is faster to get preds from a PHI than with pred_iterator. 835 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 836 BBPreds.insert(BBPN->getIncomingBlock(i)); 837 } else { 838 BBPreds.insert(pred_begin(BB), pred_end(BB)); 839 } 840 841 // Walk the preds of DestBB. 842 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 843 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 844 if (BBPreds.count(Pred)) { // Common predecessor? 845 for (const PHINode &PN : DestBB->phis()) { 846 const Value *V1 = PN.getIncomingValueForBlock(Pred); 847 const Value *V2 = PN.getIncomingValueForBlock(BB); 848 849 // If V2 is a phi node in BB, look up what the mapped value will be. 850 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 851 if (V2PN->getParent() == BB) 852 V2 = V2PN->getIncomingValueForBlock(Pred); 853 854 // If there is a conflict, bail out. 855 if (V1 != V2) return false; 856 } 857 } 858 } 859 860 return true; 861 } 862 863 /// Eliminate a basic block that has only phi's and an unconditional branch in 864 /// it. 865 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 866 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 867 BasicBlock *DestBB = BI->getSuccessor(0); 868 869 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 870 << *BB << *DestBB); 871 872 // If the destination block has a single pred, then this is a trivial edge, 873 // just collapse it. 874 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 875 if (SinglePred != DestBB) { 876 assert(SinglePred == BB && 877 "Single predecessor not the same as predecessor"); 878 // Merge DestBB into SinglePred/BB and delete it. 879 MergeBlockIntoPredecessor(DestBB); 880 // Note: BB(=SinglePred) will not be deleted on this path. 881 // DestBB(=its single successor) is the one that was deleted. 882 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 883 return; 884 } 885 } 886 887 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 888 // to handle the new incoming edges it is about to have. 889 for (PHINode &PN : DestBB->phis()) { 890 // Remove the incoming value for BB, and remember it. 891 Value *InVal = PN.removeIncomingValue(BB, false); 892 893 // Two options: either the InVal is a phi node defined in BB or it is some 894 // value that dominates BB. 895 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 896 if (InValPhi && InValPhi->getParent() == BB) { 897 // Add all of the input values of the input PHI as inputs of this phi. 898 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 899 PN.addIncoming(InValPhi->getIncomingValue(i), 900 InValPhi->getIncomingBlock(i)); 901 } else { 902 // Otherwise, add one instance of the dominating value for each edge that 903 // we will be adding. 904 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 905 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 906 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 907 } else { 908 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 909 PN.addIncoming(InVal, *PI); 910 } 911 } 912 } 913 914 // The PHIs are now updated, change everything that refers to BB to use 915 // DestBB and remove BB. 916 BB->replaceAllUsesWith(DestBB); 917 BB->eraseFromParent(); 918 ++NumBlocksElim; 919 920 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 921 } 922 923 // Computes a map of base pointer relocation instructions to corresponding 924 // derived pointer relocation instructions given a vector of all relocate calls 925 static void computeBaseDerivedRelocateMap( 926 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 927 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 928 &RelocateInstMap) { 929 // Collect information in two maps: one primarily for locating the base object 930 // while filling the second map; the second map is the final structure holding 931 // a mapping between Base and corresponding Derived relocate calls 932 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 933 for (auto *ThisRelocate : AllRelocateCalls) { 934 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 935 ThisRelocate->getDerivedPtrIndex()); 936 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 937 } 938 for (auto &Item : RelocateIdxMap) { 939 std::pair<unsigned, unsigned> Key = Item.first; 940 if (Key.first == Key.second) 941 // Base relocation: nothing to insert 942 continue; 943 944 GCRelocateInst *I = Item.second; 945 auto BaseKey = std::make_pair(Key.first, Key.first); 946 947 // We're iterating over RelocateIdxMap so we cannot modify it. 948 auto MaybeBase = RelocateIdxMap.find(BaseKey); 949 if (MaybeBase == RelocateIdxMap.end()) 950 // TODO: We might want to insert a new base object relocate and gep off 951 // that, if there are enough derived object relocates. 952 continue; 953 954 RelocateInstMap[MaybeBase->second].push_back(I); 955 } 956 } 957 958 // Accepts a GEP and extracts the operands into a vector provided they're all 959 // small integer constants 960 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 961 SmallVectorImpl<Value *> &OffsetV) { 962 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 963 // Only accept small constant integer operands 964 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 965 if (!Op || Op->getZExtValue() > 20) 966 return false; 967 } 968 969 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 970 OffsetV.push_back(GEP->getOperand(i)); 971 return true; 972 } 973 974 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 975 // replace, computes a replacement, and affects it. 976 static bool 977 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 978 const SmallVectorImpl<GCRelocateInst *> &Targets) { 979 bool MadeChange = false; 980 // We must ensure the relocation of derived pointer is defined after 981 // relocation of base pointer. If we find a relocation corresponding to base 982 // defined earlier than relocation of base then we move relocation of base 983 // right before found relocation. We consider only relocation in the same 984 // basic block as relocation of base. Relocations from other basic block will 985 // be skipped by optimization and we do not care about them. 986 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 987 &*R != RelocatedBase; ++R) 988 if (auto RI = dyn_cast<GCRelocateInst>(R)) 989 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 990 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 991 RelocatedBase->moveBefore(RI); 992 break; 993 } 994 995 for (GCRelocateInst *ToReplace : Targets) { 996 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 997 "Not relocating a derived object of the original base object"); 998 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 999 // A duplicate relocate call. TODO: coalesce duplicates. 1000 continue; 1001 } 1002 1003 if (RelocatedBase->getParent() != ToReplace->getParent()) { 1004 // Base and derived relocates are in different basic blocks. 1005 // In this case transform is only valid when base dominates derived 1006 // relocate. However it would be too expensive to check dominance 1007 // for each such relocate, so we skip the whole transformation. 1008 continue; 1009 } 1010 1011 Value *Base = ToReplace->getBasePtr(); 1012 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 1013 if (!Derived || Derived->getPointerOperand() != Base) 1014 continue; 1015 1016 SmallVector<Value *, 2> OffsetV; 1017 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 1018 continue; 1019 1020 // Create a Builder and replace the target callsite with a gep 1021 assert(RelocatedBase->getNextNode() && 1022 "Should always have one since it's not a terminator"); 1023 1024 // Insert after RelocatedBase 1025 IRBuilder<> Builder(RelocatedBase->getNextNode()); 1026 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1027 1028 // If gc_relocate does not match the actual type, cast it to the right type. 1029 // In theory, there must be a bitcast after gc_relocate if the type does not 1030 // match, and we should reuse it to get the derived pointer. But it could be 1031 // cases like this: 1032 // bb1: 1033 // ... 1034 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1035 // br label %merge 1036 // 1037 // bb2: 1038 // ... 1039 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1040 // br label %merge 1041 // 1042 // merge: 1043 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1044 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1045 // 1046 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1047 // no matter there is already one or not. In this way, we can handle all cases, and 1048 // the extra bitcast should be optimized away in later passes. 1049 Value *ActualRelocatedBase = RelocatedBase; 1050 if (RelocatedBase->getType() != Base->getType()) { 1051 ActualRelocatedBase = 1052 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1053 } 1054 Value *Replacement = Builder.CreateGEP( 1055 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1056 Replacement->takeName(ToReplace); 1057 // If the newly generated derived pointer's type does not match the original derived 1058 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1059 Value *ActualReplacement = Replacement; 1060 if (Replacement->getType() != ToReplace->getType()) { 1061 ActualReplacement = 1062 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1063 } 1064 ToReplace->replaceAllUsesWith(ActualReplacement); 1065 ToReplace->eraseFromParent(); 1066 1067 MadeChange = true; 1068 } 1069 return MadeChange; 1070 } 1071 1072 // Turns this: 1073 // 1074 // %base = ... 1075 // %ptr = gep %base + 15 1076 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1077 // %base' = relocate(%tok, i32 4, i32 4) 1078 // %ptr' = relocate(%tok, i32 4, i32 5) 1079 // %val = load %ptr' 1080 // 1081 // into this: 1082 // 1083 // %base = ... 1084 // %ptr = gep %base + 15 1085 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1086 // %base' = gc.relocate(%tok, i32 4, i32 4) 1087 // %ptr' = gep %base' + 15 1088 // %val = load %ptr' 1089 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1090 bool MadeChange = false; 1091 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1092 1093 for (auto *U : I.users()) 1094 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1095 // Collect all the relocate calls associated with a statepoint 1096 AllRelocateCalls.push_back(Relocate); 1097 1098 // We need at least one base pointer relocation + one derived pointer 1099 // relocation to mangle 1100 if (AllRelocateCalls.size() < 2) 1101 return false; 1102 1103 // RelocateInstMap is a mapping from the base relocate instruction to the 1104 // corresponding derived relocate instructions 1105 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1106 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1107 if (RelocateInstMap.empty()) 1108 return false; 1109 1110 for (auto &Item : RelocateInstMap) 1111 // Item.first is the RelocatedBase to offset against 1112 // Item.second is the vector of Targets to replace 1113 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1114 return MadeChange; 1115 } 1116 1117 /// Sink the specified cast instruction into its user blocks. 1118 static bool SinkCast(CastInst *CI) { 1119 BasicBlock *DefBB = CI->getParent(); 1120 1121 /// InsertedCasts - Only insert a cast in each block once. 1122 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1123 1124 bool MadeChange = false; 1125 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1126 UI != E; ) { 1127 Use &TheUse = UI.getUse(); 1128 Instruction *User = cast<Instruction>(*UI); 1129 1130 // Figure out which BB this cast is used in. For PHI's this is the 1131 // appropriate predecessor block. 1132 BasicBlock *UserBB = User->getParent(); 1133 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1134 UserBB = PN->getIncomingBlock(TheUse); 1135 } 1136 1137 // Preincrement use iterator so we don't invalidate it. 1138 ++UI; 1139 1140 // The first insertion point of a block containing an EH pad is after the 1141 // pad. If the pad is the user, we cannot sink the cast past the pad. 1142 if (User->isEHPad()) 1143 continue; 1144 1145 // If the block selected to receive the cast is an EH pad that does not 1146 // allow non-PHI instructions before the terminator, we can't sink the 1147 // cast. 1148 if (UserBB->getTerminator()->isEHPad()) 1149 continue; 1150 1151 // If this user is in the same block as the cast, don't change the cast. 1152 if (UserBB == DefBB) continue; 1153 1154 // If we have already inserted a cast into this block, use it. 1155 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1156 1157 if (!InsertedCast) { 1158 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1159 assert(InsertPt != UserBB->end()); 1160 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1161 CI->getType(), "", &*InsertPt); 1162 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1163 } 1164 1165 // Replace a use of the cast with a use of the new cast. 1166 TheUse = InsertedCast; 1167 MadeChange = true; 1168 ++NumCastUses; 1169 } 1170 1171 // If we removed all uses, nuke the cast. 1172 if (CI->use_empty()) { 1173 salvageDebugInfo(*CI); 1174 CI->eraseFromParent(); 1175 MadeChange = true; 1176 } 1177 1178 return MadeChange; 1179 } 1180 1181 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1182 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1183 /// reduce the number of virtual registers that must be created and coalesced. 1184 /// 1185 /// Return true if any changes are made. 1186 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1187 const DataLayout &DL) { 1188 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1189 // than sinking only nop casts, but is helpful on some platforms. 1190 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1191 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1192 ASC->getDestAddressSpace())) 1193 return false; 1194 } 1195 1196 // If this is a noop copy, 1197 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1198 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1199 1200 // This is an fp<->int conversion? 1201 if (SrcVT.isInteger() != DstVT.isInteger()) 1202 return false; 1203 1204 // If this is an extension, it will be a zero or sign extension, which 1205 // isn't a noop. 1206 if (SrcVT.bitsLT(DstVT)) return false; 1207 1208 // If these values will be promoted, find out what they will be promoted 1209 // to. This helps us consider truncates on PPC as noop copies when they 1210 // are. 1211 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1212 TargetLowering::TypePromoteInteger) 1213 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1214 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1215 TargetLowering::TypePromoteInteger) 1216 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1217 1218 // If, after promotion, these are the same types, this is a noop copy. 1219 if (SrcVT != DstVT) 1220 return false; 1221 1222 return SinkCast(CI); 1223 } 1224 1225 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1226 Value *Arg0, Value *Arg1, 1227 CmpInst *Cmp, 1228 Intrinsic::ID IID) { 1229 if (BO->getParent() != Cmp->getParent()) { 1230 // We used to use a dominator tree here to allow multi-block optimization. 1231 // But that was problematic because: 1232 // 1. It could cause a perf regression by hoisting the math op into the 1233 // critical path. 1234 // 2. It could cause a perf regression by creating a value that was live 1235 // across multiple blocks and increasing register pressure. 1236 // 3. Use of a dominator tree could cause large compile-time regression. 1237 // This is because we recompute the DT on every change in the main CGP 1238 // run-loop. The recomputing is probably unnecessary in many cases, so if 1239 // that was fixed, using a DT here would be ok. 1240 return false; 1241 } 1242 1243 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1244 if (BO->getOpcode() == Instruction::Add && 1245 IID == Intrinsic::usub_with_overflow) { 1246 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1247 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1248 } 1249 1250 // Insert at the first instruction of the pair. 1251 Instruction *InsertPt = nullptr; 1252 for (Instruction &Iter : *Cmp->getParent()) { 1253 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1254 // the overflow intrinsic are defined. 1255 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1256 InsertPt = &Iter; 1257 break; 1258 } 1259 } 1260 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1261 1262 IRBuilder<> Builder(InsertPt); 1263 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1264 if (BO->getOpcode() != Instruction::Xor) { 1265 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1266 BO->replaceAllUsesWith(Math); 1267 } else 1268 assert(BO->hasOneUse() && 1269 "Patterns with XOr should use the BO only in the compare"); 1270 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1271 Cmp->replaceAllUsesWith(OV); 1272 Cmp->eraseFromParent(); 1273 BO->eraseFromParent(); 1274 return true; 1275 } 1276 1277 /// Match special-case patterns that check for unsigned add overflow. 1278 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1279 BinaryOperator *&Add) { 1280 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1281 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1282 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1283 1284 // We are not expecting non-canonical/degenerate code. Just bail out. 1285 if (isa<Constant>(A)) 1286 return false; 1287 1288 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1289 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1290 B = ConstantInt::get(B->getType(), 1); 1291 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1292 B = ConstantInt::get(B->getType(), -1); 1293 else 1294 return false; 1295 1296 // Check the users of the variable operand of the compare looking for an add 1297 // with the adjusted constant. 1298 for (User *U : A->users()) { 1299 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1300 Add = cast<BinaryOperator>(U); 1301 return true; 1302 } 1303 } 1304 return false; 1305 } 1306 1307 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1308 /// intrinsic. Return true if any changes were made. 1309 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1310 bool &ModifiedDT) { 1311 Value *A, *B; 1312 BinaryOperator *Add; 1313 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1314 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1315 return false; 1316 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1317 A = Add->getOperand(0); 1318 B = Add->getOperand(1); 1319 } 1320 1321 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1322 TLI->getValueType(*DL, Add->getType()), 1323 Add->hasNUsesOrMore(2))) 1324 return false; 1325 1326 // We don't want to move around uses of condition values this late, so we 1327 // check if it is legal to create the call to the intrinsic in the basic 1328 // block containing the icmp. 1329 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1330 return false; 1331 1332 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1333 Intrinsic::uadd_with_overflow)) 1334 return false; 1335 1336 // Reset callers - do not crash by iterating over a dead instruction. 1337 ModifiedDT = true; 1338 return true; 1339 } 1340 1341 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1342 bool &ModifiedDT) { 1343 // We are not expecting non-canonical/degenerate code. Just bail out. 1344 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1345 if (isa<Constant>(A) && isa<Constant>(B)) 1346 return false; 1347 1348 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1349 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1350 if (Pred == ICmpInst::ICMP_UGT) { 1351 std::swap(A, B); 1352 Pred = ICmpInst::ICMP_ULT; 1353 } 1354 // Convert special-case: (A == 0) is the same as (A u< 1). 1355 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1356 B = ConstantInt::get(B->getType(), 1); 1357 Pred = ICmpInst::ICMP_ULT; 1358 } 1359 // Convert special-case: (A != 0) is the same as (0 u< A). 1360 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1361 std::swap(A, B); 1362 Pred = ICmpInst::ICMP_ULT; 1363 } 1364 if (Pred != ICmpInst::ICMP_ULT) 1365 return false; 1366 1367 // Walk the users of a variable operand of a compare looking for a subtract or 1368 // add with that same operand. Also match the 2nd operand of the compare to 1369 // the add/sub, but that may be a negated constant operand of an add. 1370 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1371 BinaryOperator *Sub = nullptr; 1372 for (User *U : CmpVariableOperand->users()) { 1373 // A - B, A u< B --> usubo(A, B) 1374 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1375 Sub = cast<BinaryOperator>(U); 1376 break; 1377 } 1378 1379 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1380 const APInt *CmpC, *AddC; 1381 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1382 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1383 Sub = cast<BinaryOperator>(U); 1384 break; 1385 } 1386 } 1387 if (!Sub) 1388 return false; 1389 1390 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1391 TLI->getValueType(*DL, Sub->getType()), 1392 Sub->hasNUsesOrMore(2))) 1393 return false; 1394 1395 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1396 Cmp, Intrinsic::usub_with_overflow)) 1397 return false; 1398 1399 // Reset callers - do not crash by iterating over a dead instruction. 1400 ModifiedDT = true; 1401 return true; 1402 } 1403 1404 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1405 /// registers that must be created and coalesced. This is a clear win except on 1406 /// targets with multiple condition code registers (PowerPC), where it might 1407 /// lose; some adjustment may be wanted there. 1408 /// 1409 /// Return true if any changes are made. 1410 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1411 if (TLI.hasMultipleConditionRegisters()) 1412 return false; 1413 1414 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1415 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1416 return false; 1417 1418 // Only insert a cmp in each block once. 1419 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1420 1421 bool MadeChange = false; 1422 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1423 UI != E; ) { 1424 Use &TheUse = UI.getUse(); 1425 Instruction *User = cast<Instruction>(*UI); 1426 1427 // Preincrement use iterator so we don't invalidate it. 1428 ++UI; 1429 1430 // Don't bother for PHI nodes. 1431 if (isa<PHINode>(User)) 1432 continue; 1433 1434 // Figure out which BB this cmp is used in. 1435 BasicBlock *UserBB = User->getParent(); 1436 BasicBlock *DefBB = Cmp->getParent(); 1437 1438 // If this user is in the same block as the cmp, don't change the cmp. 1439 if (UserBB == DefBB) continue; 1440 1441 // If we have already inserted a cmp into this block, use it. 1442 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1443 1444 if (!InsertedCmp) { 1445 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1446 assert(InsertPt != UserBB->end()); 1447 InsertedCmp = 1448 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1449 Cmp->getOperand(0), Cmp->getOperand(1), "", 1450 &*InsertPt); 1451 // Propagate the debug info. 1452 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1453 } 1454 1455 // Replace a use of the cmp with a use of the new cmp. 1456 TheUse = InsertedCmp; 1457 MadeChange = true; 1458 ++NumCmpUses; 1459 } 1460 1461 // If we removed all uses, nuke the cmp. 1462 if (Cmp->use_empty()) { 1463 Cmp->eraseFromParent(); 1464 MadeChange = true; 1465 } 1466 1467 return MadeChange; 1468 } 1469 1470 /// For pattern like: 1471 /// 1472 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1473 /// ... 1474 /// DomBB: 1475 /// ... 1476 /// br DomCond, TrueBB, CmpBB 1477 /// CmpBB: (with DomBB being the single predecessor) 1478 /// ... 1479 /// Cmp = icmp eq CmpOp0, CmpOp1 1480 /// ... 1481 /// 1482 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1483 /// different from lowering of icmp eq (PowerPC). This function try to convert 1484 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1485 /// After that, DomCond and Cmp can use the same comparison so reduce one 1486 /// comparison. 1487 /// 1488 /// Return true if any changes are made. 1489 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1490 const TargetLowering &TLI) { 1491 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1492 return false; 1493 1494 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1495 if (Pred != ICmpInst::ICMP_EQ) 1496 return false; 1497 1498 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1499 // icmp slt/sgt would introduce more redundant LLVM IR. 1500 for (User *U : Cmp->users()) { 1501 if (isa<BranchInst>(U)) 1502 continue; 1503 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1504 continue; 1505 return false; 1506 } 1507 1508 // This is a cheap/incomplete check for dominance - just match a single 1509 // predecessor with a conditional branch. 1510 BasicBlock *CmpBB = Cmp->getParent(); 1511 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1512 if (!DomBB) 1513 return false; 1514 1515 // We want to ensure that the only way control gets to the comparison of 1516 // interest is that a less/greater than comparison on the same operands is 1517 // false. 1518 Value *DomCond; 1519 BasicBlock *TrueBB, *FalseBB; 1520 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1521 return false; 1522 if (CmpBB != FalseBB) 1523 return false; 1524 1525 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1526 ICmpInst::Predicate DomPred; 1527 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1528 return false; 1529 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1530 return false; 1531 1532 // Convert the equality comparison to the opposite of the dominating 1533 // comparison and swap the direction for all branch/select users. 1534 // We have conceptually converted: 1535 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1536 // to 1537 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1538 // And similarly for branches. 1539 for (User *U : Cmp->users()) { 1540 if (auto *BI = dyn_cast<BranchInst>(U)) { 1541 assert(BI->isConditional() && "Must be conditional"); 1542 BI->swapSuccessors(); 1543 continue; 1544 } 1545 if (auto *SI = dyn_cast<SelectInst>(U)) { 1546 // Swap operands 1547 SI->swapValues(); 1548 SI->swapProfMetadata(); 1549 continue; 1550 } 1551 llvm_unreachable("Must be a branch or a select"); 1552 } 1553 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1554 return true; 1555 } 1556 1557 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1558 if (sinkCmpExpression(Cmp, *TLI)) 1559 return true; 1560 1561 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1562 return true; 1563 1564 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1565 return true; 1566 1567 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1568 return true; 1569 1570 return false; 1571 } 1572 1573 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1574 /// used in a compare to allow isel to generate better code for targets where 1575 /// this operation can be combined. 1576 /// 1577 /// Return true if any changes are made. 1578 static bool sinkAndCmp0Expression(Instruction *AndI, 1579 const TargetLowering &TLI, 1580 SetOfInstrs &InsertedInsts) { 1581 // Double-check that we're not trying to optimize an instruction that was 1582 // already optimized by some other part of this pass. 1583 assert(!InsertedInsts.count(AndI) && 1584 "Attempting to optimize already optimized and instruction"); 1585 (void) InsertedInsts; 1586 1587 // Nothing to do for single use in same basic block. 1588 if (AndI->hasOneUse() && 1589 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1590 return false; 1591 1592 // Try to avoid cases where sinking/duplicating is likely to increase register 1593 // pressure. 1594 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1595 !isa<ConstantInt>(AndI->getOperand(1)) && 1596 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1597 return false; 1598 1599 for (auto *U : AndI->users()) { 1600 Instruction *User = cast<Instruction>(U); 1601 1602 // Only sink 'and' feeding icmp with 0. 1603 if (!isa<ICmpInst>(User)) 1604 return false; 1605 1606 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1607 if (!CmpC || !CmpC->isZero()) 1608 return false; 1609 } 1610 1611 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1612 return false; 1613 1614 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1615 LLVM_DEBUG(AndI->getParent()->dump()); 1616 1617 // Push the 'and' into the same block as the icmp 0. There should only be 1618 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1619 // others, so we don't need to keep track of which BBs we insert into. 1620 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1621 UI != E; ) { 1622 Use &TheUse = UI.getUse(); 1623 Instruction *User = cast<Instruction>(*UI); 1624 1625 // Preincrement use iterator so we don't invalidate it. 1626 ++UI; 1627 1628 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1629 1630 // Keep the 'and' in the same place if the use is already in the same block. 1631 Instruction *InsertPt = 1632 User->getParent() == AndI->getParent() ? AndI : User; 1633 Instruction *InsertedAnd = 1634 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1635 AndI->getOperand(1), "", InsertPt); 1636 // Propagate the debug info. 1637 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1638 1639 // Replace a use of the 'and' with a use of the new 'and'. 1640 TheUse = InsertedAnd; 1641 ++NumAndUses; 1642 LLVM_DEBUG(User->getParent()->dump()); 1643 } 1644 1645 // We removed all uses, nuke the and. 1646 AndI->eraseFromParent(); 1647 return true; 1648 } 1649 1650 /// Check if the candidates could be combined with a shift instruction, which 1651 /// includes: 1652 /// 1. Truncate instruction 1653 /// 2. And instruction and the imm is a mask of the low bits: 1654 /// imm & (imm+1) == 0 1655 static bool isExtractBitsCandidateUse(Instruction *User) { 1656 if (!isa<TruncInst>(User)) { 1657 if (User->getOpcode() != Instruction::And || 1658 !isa<ConstantInt>(User->getOperand(1))) 1659 return false; 1660 1661 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1662 1663 if ((Cimm & (Cimm + 1)).getBoolValue()) 1664 return false; 1665 } 1666 return true; 1667 } 1668 1669 /// Sink both shift and truncate instruction to the use of truncate's BB. 1670 static bool 1671 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1672 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1673 const TargetLowering &TLI, const DataLayout &DL) { 1674 BasicBlock *UserBB = User->getParent(); 1675 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1676 auto *TruncI = cast<TruncInst>(User); 1677 bool MadeChange = false; 1678 1679 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1680 TruncE = TruncI->user_end(); 1681 TruncUI != TruncE;) { 1682 1683 Use &TruncTheUse = TruncUI.getUse(); 1684 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1685 // Preincrement use iterator so we don't invalidate it. 1686 1687 ++TruncUI; 1688 1689 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1690 if (!ISDOpcode) 1691 continue; 1692 1693 // If the use is actually a legal node, there will not be an 1694 // implicit truncate. 1695 // FIXME: always querying the result type is just an 1696 // approximation; some nodes' legality is determined by the 1697 // operand or other means. There's no good way to find out though. 1698 if (TLI.isOperationLegalOrCustom( 1699 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1700 continue; 1701 1702 // Don't bother for PHI nodes. 1703 if (isa<PHINode>(TruncUser)) 1704 continue; 1705 1706 BasicBlock *TruncUserBB = TruncUser->getParent(); 1707 1708 if (UserBB == TruncUserBB) 1709 continue; 1710 1711 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1712 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1713 1714 if (!InsertedShift && !InsertedTrunc) { 1715 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1716 assert(InsertPt != TruncUserBB->end()); 1717 // Sink the shift 1718 if (ShiftI->getOpcode() == Instruction::AShr) 1719 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1720 "", &*InsertPt); 1721 else 1722 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1723 "", &*InsertPt); 1724 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1725 1726 // Sink the trunc 1727 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1728 TruncInsertPt++; 1729 assert(TruncInsertPt != TruncUserBB->end()); 1730 1731 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1732 TruncI->getType(), "", &*TruncInsertPt); 1733 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1734 1735 MadeChange = true; 1736 1737 TruncTheUse = InsertedTrunc; 1738 } 1739 } 1740 return MadeChange; 1741 } 1742 1743 /// Sink the shift *right* instruction into user blocks if the uses could 1744 /// potentially be combined with this shift instruction and generate BitExtract 1745 /// instruction. It will only be applied if the architecture supports BitExtract 1746 /// instruction. Here is an example: 1747 /// BB1: 1748 /// %x.extract.shift = lshr i64 %arg1, 32 1749 /// BB2: 1750 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1751 /// ==> 1752 /// 1753 /// BB2: 1754 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1755 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1756 /// 1757 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1758 /// instruction. 1759 /// Return true if any changes are made. 1760 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1761 const TargetLowering &TLI, 1762 const DataLayout &DL) { 1763 BasicBlock *DefBB = ShiftI->getParent(); 1764 1765 /// Only insert instructions in each block once. 1766 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1767 1768 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1769 1770 bool MadeChange = false; 1771 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1772 UI != E;) { 1773 Use &TheUse = UI.getUse(); 1774 Instruction *User = cast<Instruction>(*UI); 1775 // Preincrement use iterator so we don't invalidate it. 1776 ++UI; 1777 1778 // Don't bother for PHI nodes. 1779 if (isa<PHINode>(User)) 1780 continue; 1781 1782 if (!isExtractBitsCandidateUse(User)) 1783 continue; 1784 1785 BasicBlock *UserBB = User->getParent(); 1786 1787 if (UserBB == DefBB) { 1788 // If the shift and truncate instruction are in the same BB. The use of 1789 // the truncate(TruncUse) may still introduce another truncate if not 1790 // legal. In this case, we would like to sink both shift and truncate 1791 // instruction to the BB of TruncUse. 1792 // for example: 1793 // BB1: 1794 // i64 shift.result = lshr i64 opnd, imm 1795 // trunc.result = trunc shift.result to i16 1796 // 1797 // BB2: 1798 // ----> We will have an implicit truncate here if the architecture does 1799 // not have i16 compare. 1800 // cmp i16 trunc.result, opnd2 1801 // 1802 if (isa<TruncInst>(User) && shiftIsLegal 1803 // If the type of the truncate is legal, no truncate will be 1804 // introduced in other basic blocks. 1805 && 1806 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1807 MadeChange = 1808 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1809 1810 continue; 1811 } 1812 // If we have already inserted a shift into this block, use it. 1813 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1814 1815 if (!InsertedShift) { 1816 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1817 assert(InsertPt != UserBB->end()); 1818 1819 if (ShiftI->getOpcode() == Instruction::AShr) 1820 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1821 "", &*InsertPt); 1822 else 1823 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1824 "", &*InsertPt); 1825 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1826 1827 MadeChange = true; 1828 } 1829 1830 // Replace a use of the shift with a use of the new shift. 1831 TheUse = InsertedShift; 1832 } 1833 1834 // If we removed all uses, or there are none, nuke the shift. 1835 if (ShiftI->use_empty()) { 1836 salvageDebugInfo(*ShiftI); 1837 ShiftI->eraseFromParent(); 1838 MadeChange = true; 1839 } 1840 1841 return MadeChange; 1842 } 1843 1844 /// If counting leading or trailing zeros is an expensive operation and a zero 1845 /// input is defined, add a check for zero to avoid calling the intrinsic. 1846 /// 1847 /// We want to transform: 1848 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1849 /// 1850 /// into: 1851 /// entry: 1852 /// %cmpz = icmp eq i64 %A, 0 1853 /// br i1 %cmpz, label %cond.end, label %cond.false 1854 /// cond.false: 1855 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1856 /// br label %cond.end 1857 /// cond.end: 1858 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1859 /// 1860 /// If the transform is performed, return true and set ModifiedDT to true. 1861 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1862 const TargetLowering *TLI, 1863 const DataLayout *DL, 1864 bool &ModifiedDT) { 1865 // If a zero input is undefined, it doesn't make sense to despeculate that. 1866 if (match(CountZeros->getOperand(1), m_One())) 1867 return false; 1868 1869 // If it's cheap to speculate, there's nothing to do. 1870 auto IntrinsicID = CountZeros->getIntrinsicID(); 1871 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1872 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1873 return false; 1874 1875 // Only handle legal scalar cases. Anything else requires too much work. 1876 Type *Ty = CountZeros->getType(); 1877 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1878 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1879 return false; 1880 1881 // The intrinsic will be sunk behind a compare against zero and branch. 1882 BasicBlock *StartBlock = CountZeros->getParent(); 1883 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1884 1885 // Create another block after the count zero intrinsic. A PHI will be added 1886 // in this block to select the result of the intrinsic or the bit-width 1887 // constant if the input to the intrinsic is zero. 1888 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1889 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1890 1891 // Set up a builder to create a compare, conditional branch, and PHI. 1892 IRBuilder<> Builder(CountZeros->getContext()); 1893 Builder.SetInsertPoint(StartBlock->getTerminator()); 1894 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1895 1896 // Replace the unconditional branch that was created by the first split with 1897 // a compare against zero and a conditional branch. 1898 Value *Zero = Constant::getNullValue(Ty); 1899 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1900 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1901 StartBlock->getTerminator()->eraseFromParent(); 1902 1903 // Create a PHI in the end block to select either the output of the intrinsic 1904 // or the bit width of the operand. 1905 Builder.SetInsertPoint(&EndBlock->front()); 1906 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1907 CountZeros->replaceAllUsesWith(PN); 1908 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1909 PN->addIncoming(BitWidth, StartBlock); 1910 PN->addIncoming(CountZeros, CallBlock); 1911 1912 // We are explicitly handling the zero case, so we can set the intrinsic's 1913 // undefined zero argument to 'true'. This will also prevent reprocessing the 1914 // intrinsic; we only despeculate when a zero input is defined. 1915 CountZeros->setArgOperand(1, Builder.getTrue()); 1916 ModifiedDT = true; 1917 return true; 1918 } 1919 1920 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1921 BasicBlock *BB = CI->getParent(); 1922 1923 // Lower inline assembly if we can. 1924 // If we found an inline asm expession, and if the target knows how to 1925 // lower it to normal LLVM code, do so now. 1926 if (CI->isInlineAsm()) { 1927 if (TLI->ExpandInlineAsm(CI)) { 1928 // Avoid invalidating the iterator. 1929 CurInstIterator = BB->begin(); 1930 // Avoid processing instructions out of order, which could cause 1931 // reuse before a value is defined. 1932 SunkAddrs.clear(); 1933 return true; 1934 } 1935 // Sink address computing for memory operands into the block. 1936 if (optimizeInlineAsmInst(CI)) 1937 return true; 1938 } 1939 1940 // Align the pointer arguments to this call if the target thinks it's a good 1941 // idea 1942 unsigned MinSize, PrefAlign; 1943 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1944 for (auto &Arg : CI->arg_operands()) { 1945 // We want to align both objects whose address is used directly and 1946 // objects whose address is used in casts and GEPs, though it only makes 1947 // sense for GEPs if the offset is a multiple of the desired alignment and 1948 // if size - offset meets the size threshold. 1949 if (!Arg->getType()->isPointerTy()) 1950 continue; 1951 APInt Offset(DL->getIndexSizeInBits( 1952 cast<PointerType>(Arg->getType())->getAddressSpace()), 1953 0); 1954 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1955 uint64_t Offset2 = Offset.getLimitedValue(); 1956 if ((Offset2 & (PrefAlign-1)) != 0) 1957 continue; 1958 AllocaInst *AI; 1959 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1960 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1961 AI->setAlignment(MaybeAlign(PrefAlign)); 1962 // Global variables can only be aligned if they are defined in this 1963 // object (i.e. they are uniquely initialized in this object), and 1964 // over-aligning global variables that have an explicit section is 1965 // forbidden. 1966 GlobalVariable *GV; 1967 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1968 GV->getPointerAlignment(*DL) < PrefAlign && 1969 DL->getTypeAllocSize(GV->getValueType()) >= 1970 MinSize + Offset2) 1971 GV->setAlignment(MaybeAlign(PrefAlign)); 1972 } 1973 // If this is a memcpy (or similar) then we may be able to improve the 1974 // alignment 1975 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1976 Align DestAlign = getKnownAlignment(MI->getDest(), *DL); 1977 MaybeAlign MIDestAlign = MI->getDestAlign(); 1978 if (!MIDestAlign || DestAlign > *MIDestAlign) 1979 MI->setDestAlignment(DestAlign); 1980 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 1981 MaybeAlign MTISrcAlign = MTI->getSourceAlign(); 1982 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 1983 if (!MTISrcAlign || SrcAlign > *MTISrcAlign) 1984 MTI->setSourceAlignment(SrcAlign); 1985 } 1986 } 1987 } 1988 1989 // If we have a cold call site, try to sink addressing computation into the 1990 // cold block. This interacts with our handling for loads and stores to 1991 // ensure that we can fold all uses of a potential addressing computation 1992 // into their uses. TODO: generalize this to work over profiling data 1993 if (CI->hasFnAttr(Attribute::Cold) && 1994 !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 1995 for (auto &Arg : CI->arg_operands()) { 1996 if (!Arg->getType()->isPointerTy()) 1997 continue; 1998 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1999 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 2000 } 2001 2002 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2003 if (II) { 2004 switch (II->getIntrinsicID()) { 2005 default: break; 2006 case Intrinsic::assume: { 2007 II->eraseFromParent(); 2008 return true; 2009 } 2010 2011 case Intrinsic::experimental_widenable_condition: { 2012 // Give up on future widening oppurtunties so that we can fold away dead 2013 // paths and merge blocks before going into block-local instruction 2014 // selection. 2015 if (II->use_empty()) { 2016 II->eraseFromParent(); 2017 return true; 2018 } 2019 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 2020 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2021 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2022 }); 2023 return true; 2024 } 2025 case Intrinsic::objectsize: 2026 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2027 case Intrinsic::is_constant: 2028 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2029 case Intrinsic::aarch64_stlxr: 2030 case Intrinsic::aarch64_stxr: { 2031 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2032 if (!ExtVal || !ExtVal->hasOneUse() || 2033 ExtVal->getParent() == CI->getParent()) 2034 return false; 2035 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2036 ExtVal->moveBefore(CI); 2037 // Mark this instruction as "inserted by CGP", so that other 2038 // optimizations don't touch it. 2039 InsertedInsts.insert(ExtVal); 2040 return true; 2041 } 2042 2043 case Intrinsic::launder_invariant_group: 2044 case Intrinsic::strip_invariant_group: { 2045 Value *ArgVal = II->getArgOperand(0); 2046 auto it = LargeOffsetGEPMap.find(II); 2047 if (it != LargeOffsetGEPMap.end()) { 2048 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2049 // Make sure not to have to deal with iterator invalidation 2050 // after possibly adding ArgVal to LargeOffsetGEPMap. 2051 auto GEPs = std::move(it->second); 2052 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2053 LargeOffsetGEPMap.erase(II); 2054 } 2055 2056 II->replaceAllUsesWith(ArgVal); 2057 II->eraseFromParent(); 2058 return true; 2059 } 2060 case Intrinsic::cttz: 2061 case Intrinsic::ctlz: 2062 // If counting zeros is expensive, try to avoid it. 2063 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2064 case Intrinsic::dbg_value: 2065 return fixupDbgValue(II); 2066 case Intrinsic::vscale: { 2067 // If datalayout has no special restrictions on vector data layout, 2068 // replace `llvm.vscale` by an equivalent constant expression 2069 // to benefit from cheap constant propagation. 2070 Type *ScalableVectorTy = 2071 VectorType::get(Type::getInt8Ty(II->getContext()), 1, true); 2072 if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) { 2073 auto Null = Constant::getNullValue(ScalableVectorTy->getPointerTo()); 2074 auto One = ConstantInt::getSigned(II->getType(), 1); 2075 auto *CGep = 2076 ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One); 2077 II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType())); 2078 II->eraseFromParent(); 2079 return true; 2080 } 2081 break; 2082 } 2083 case Intrinsic::masked_gather: 2084 return optimizeGatherScatterInst(II, II->getArgOperand(0)); 2085 case Intrinsic::masked_scatter: 2086 return optimizeGatherScatterInst(II, II->getArgOperand(1)); 2087 } 2088 2089 SmallVector<Value *, 2> PtrOps; 2090 Type *AccessTy; 2091 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2092 while (!PtrOps.empty()) { 2093 Value *PtrVal = PtrOps.pop_back_val(); 2094 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2095 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2096 return true; 2097 } 2098 } 2099 2100 // From here on out we're working with named functions. 2101 if (!CI->getCalledFunction()) return false; 2102 2103 // Lower all default uses of _chk calls. This is very similar 2104 // to what InstCombineCalls does, but here we are only lowering calls 2105 // to fortified library functions (e.g. __memcpy_chk) that have the default 2106 // "don't know" as the objectsize. Anything else should be left alone. 2107 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2108 IRBuilder<> Builder(CI); 2109 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2110 CI->replaceAllUsesWith(V); 2111 CI->eraseFromParent(); 2112 return true; 2113 } 2114 2115 return false; 2116 } 2117 2118 /// Look for opportunities to duplicate return instructions to the predecessor 2119 /// to enable tail call optimizations. The case it is currently looking for is: 2120 /// @code 2121 /// bb0: 2122 /// %tmp0 = tail call i32 @f0() 2123 /// br label %return 2124 /// bb1: 2125 /// %tmp1 = tail call i32 @f1() 2126 /// br label %return 2127 /// bb2: 2128 /// %tmp2 = tail call i32 @f2() 2129 /// br label %return 2130 /// return: 2131 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2132 /// ret i32 %retval 2133 /// @endcode 2134 /// 2135 /// => 2136 /// 2137 /// @code 2138 /// bb0: 2139 /// %tmp0 = tail call i32 @f0() 2140 /// ret i32 %tmp0 2141 /// bb1: 2142 /// %tmp1 = tail call i32 @f1() 2143 /// ret i32 %tmp1 2144 /// bb2: 2145 /// %tmp2 = tail call i32 @f2() 2146 /// ret i32 %tmp2 2147 /// @endcode 2148 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 2149 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2150 if (!RetI) 2151 return false; 2152 2153 PHINode *PN = nullptr; 2154 ExtractValueInst *EVI = nullptr; 2155 BitCastInst *BCI = nullptr; 2156 Value *V = RetI->getReturnValue(); 2157 if (V) { 2158 BCI = dyn_cast<BitCastInst>(V); 2159 if (BCI) 2160 V = BCI->getOperand(0); 2161 2162 EVI = dyn_cast<ExtractValueInst>(V); 2163 if (EVI) { 2164 V = EVI->getOperand(0); 2165 if (!std::all_of(EVI->idx_begin(), EVI->idx_end(), 2166 [](unsigned idx) { return idx == 0; })) 2167 return false; 2168 } 2169 2170 PN = dyn_cast<PHINode>(V); 2171 if (!PN) 2172 return false; 2173 } 2174 2175 if (PN && PN->getParent() != BB) 2176 return false; 2177 2178 // Make sure there are no instructions between the PHI and return, or that the 2179 // return is the first instruction in the block. 2180 if (PN) { 2181 BasicBlock::iterator BI = BB->begin(); 2182 // Skip over debug and the bitcast. 2183 do { 2184 ++BI; 2185 } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI || &*BI == EVI); 2186 if (&*BI != RetI) 2187 return false; 2188 } else { 2189 BasicBlock::iterator BI = BB->begin(); 2190 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2191 if (&*BI != RetI) 2192 return false; 2193 } 2194 2195 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2196 /// call. 2197 const Function *F = BB->getParent(); 2198 SmallVector<BasicBlock*, 4> TailCallBBs; 2199 if (PN) { 2200 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2201 // Look through bitcasts. 2202 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2203 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2204 BasicBlock *PredBB = PN->getIncomingBlock(I); 2205 // Make sure the phi value is indeed produced by the tail call. 2206 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2207 TLI->mayBeEmittedAsTailCall(CI) && 2208 attributesPermitTailCall(F, CI, RetI, *TLI)) 2209 TailCallBBs.push_back(PredBB); 2210 } 2211 } else { 2212 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2213 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2214 if (!VisitedBBs.insert(*PI).second) 2215 continue; 2216 2217 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2218 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2219 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2220 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2221 if (RI == RE) 2222 continue; 2223 2224 CallInst *CI = dyn_cast<CallInst>(&*RI); 2225 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2226 attributesPermitTailCall(F, CI, RetI, *TLI)) 2227 TailCallBBs.push_back(*PI); 2228 } 2229 } 2230 2231 bool Changed = false; 2232 for (auto const &TailCallBB : TailCallBBs) { 2233 // Make sure the call instruction is followed by an unconditional branch to 2234 // the return block. 2235 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2236 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2237 continue; 2238 2239 // Duplicate the return into TailCallBB. 2240 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2241 assert(!VerifyBFIUpdates || 2242 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); 2243 BFI->setBlockFreq( 2244 BB, 2245 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency()); 2246 ModifiedDT = Changed = true; 2247 ++NumRetsDup; 2248 } 2249 2250 // If we eliminated all predecessors of the block, delete the block now. 2251 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2252 BB->eraseFromParent(); 2253 2254 return Changed; 2255 } 2256 2257 //===----------------------------------------------------------------------===// 2258 // Memory Optimization 2259 //===----------------------------------------------------------------------===// 2260 2261 namespace { 2262 2263 /// This is an extended version of TargetLowering::AddrMode 2264 /// which holds actual Value*'s for register values. 2265 struct ExtAddrMode : public TargetLowering::AddrMode { 2266 Value *BaseReg = nullptr; 2267 Value *ScaledReg = nullptr; 2268 Value *OriginalValue = nullptr; 2269 bool InBounds = true; 2270 2271 enum FieldName { 2272 NoField = 0x00, 2273 BaseRegField = 0x01, 2274 BaseGVField = 0x02, 2275 BaseOffsField = 0x04, 2276 ScaledRegField = 0x08, 2277 ScaleField = 0x10, 2278 MultipleFields = 0xff 2279 }; 2280 2281 2282 ExtAddrMode() = default; 2283 2284 void print(raw_ostream &OS) const; 2285 void dump() const; 2286 2287 FieldName compare(const ExtAddrMode &other) { 2288 // First check that the types are the same on each field, as differing types 2289 // is something we can't cope with later on. 2290 if (BaseReg && other.BaseReg && 2291 BaseReg->getType() != other.BaseReg->getType()) 2292 return MultipleFields; 2293 if (BaseGV && other.BaseGV && 2294 BaseGV->getType() != other.BaseGV->getType()) 2295 return MultipleFields; 2296 if (ScaledReg && other.ScaledReg && 2297 ScaledReg->getType() != other.ScaledReg->getType()) 2298 return MultipleFields; 2299 2300 // Conservatively reject 'inbounds' mismatches. 2301 if (InBounds != other.InBounds) 2302 return MultipleFields; 2303 2304 // Check each field to see if it differs. 2305 unsigned Result = NoField; 2306 if (BaseReg != other.BaseReg) 2307 Result |= BaseRegField; 2308 if (BaseGV != other.BaseGV) 2309 Result |= BaseGVField; 2310 if (BaseOffs != other.BaseOffs) 2311 Result |= BaseOffsField; 2312 if (ScaledReg != other.ScaledReg) 2313 Result |= ScaledRegField; 2314 // Don't count 0 as being a different scale, because that actually means 2315 // unscaled (which will already be counted by having no ScaledReg). 2316 if (Scale && other.Scale && Scale != other.Scale) 2317 Result |= ScaleField; 2318 2319 if (countPopulation(Result) > 1) 2320 return MultipleFields; 2321 else 2322 return static_cast<FieldName>(Result); 2323 } 2324 2325 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2326 // with no offset. 2327 bool isTrivial() { 2328 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2329 // trivial if at most one of these terms is nonzero, except that BaseGV and 2330 // BaseReg both being zero actually means a null pointer value, which we 2331 // consider to be 'non-zero' here. 2332 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2333 } 2334 2335 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2336 switch (Field) { 2337 default: 2338 return nullptr; 2339 case BaseRegField: 2340 return BaseReg; 2341 case BaseGVField: 2342 return BaseGV; 2343 case ScaledRegField: 2344 return ScaledReg; 2345 case BaseOffsField: 2346 return ConstantInt::get(IntPtrTy, BaseOffs); 2347 } 2348 } 2349 2350 void SetCombinedField(FieldName Field, Value *V, 2351 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2352 switch (Field) { 2353 default: 2354 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2355 break; 2356 case ExtAddrMode::BaseRegField: 2357 BaseReg = V; 2358 break; 2359 case ExtAddrMode::BaseGVField: 2360 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2361 // in the BaseReg field. 2362 assert(BaseReg == nullptr); 2363 BaseReg = V; 2364 BaseGV = nullptr; 2365 break; 2366 case ExtAddrMode::ScaledRegField: 2367 ScaledReg = V; 2368 // If we have a mix of scaled and unscaled addrmodes then we want scale 2369 // to be the scale and not zero. 2370 if (!Scale) 2371 for (const ExtAddrMode &AM : AddrModes) 2372 if (AM.Scale) { 2373 Scale = AM.Scale; 2374 break; 2375 } 2376 break; 2377 case ExtAddrMode::BaseOffsField: 2378 // The offset is no longer a constant, so it goes in ScaledReg with a 2379 // scale of 1. 2380 assert(ScaledReg == nullptr); 2381 ScaledReg = V; 2382 Scale = 1; 2383 BaseOffs = 0; 2384 break; 2385 } 2386 } 2387 }; 2388 2389 } // end anonymous namespace 2390 2391 #ifndef NDEBUG 2392 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2393 AM.print(OS); 2394 return OS; 2395 } 2396 #endif 2397 2398 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2399 void ExtAddrMode::print(raw_ostream &OS) const { 2400 bool NeedPlus = false; 2401 OS << "["; 2402 if (InBounds) 2403 OS << "inbounds "; 2404 if (BaseGV) { 2405 OS << (NeedPlus ? " + " : "") 2406 << "GV:"; 2407 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2408 NeedPlus = true; 2409 } 2410 2411 if (BaseOffs) { 2412 OS << (NeedPlus ? " + " : "") 2413 << BaseOffs; 2414 NeedPlus = true; 2415 } 2416 2417 if (BaseReg) { 2418 OS << (NeedPlus ? " + " : "") 2419 << "Base:"; 2420 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2421 NeedPlus = true; 2422 } 2423 if (Scale) { 2424 OS << (NeedPlus ? " + " : "") 2425 << Scale << "*"; 2426 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2427 } 2428 2429 OS << ']'; 2430 } 2431 2432 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2433 print(dbgs()); 2434 dbgs() << '\n'; 2435 } 2436 #endif 2437 2438 namespace { 2439 2440 /// This class provides transaction based operation on the IR. 2441 /// Every change made through this class is recorded in the internal state and 2442 /// can be undone (rollback) until commit is called. 2443 class TypePromotionTransaction { 2444 /// This represents the common interface of the individual transaction. 2445 /// Each class implements the logic for doing one specific modification on 2446 /// the IR via the TypePromotionTransaction. 2447 class TypePromotionAction { 2448 protected: 2449 /// The Instruction modified. 2450 Instruction *Inst; 2451 2452 public: 2453 /// Constructor of the action. 2454 /// The constructor performs the related action on the IR. 2455 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2456 2457 virtual ~TypePromotionAction() = default; 2458 2459 /// Undo the modification done by this action. 2460 /// When this method is called, the IR must be in the same state as it was 2461 /// before this action was applied. 2462 /// \pre Undoing the action works if and only if the IR is in the exact same 2463 /// state as it was directly after this action was applied. 2464 virtual void undo() = 0; 2465 2466 /// Advocate every change made by this action. 2467 /// When the results on the IR of the action are to be kept, it is important 2468 /// to call this function, otherwise hidden information may be kept forever. 2469 virtual void commit() { 2470 // Nothing to be done, this action is not doing anything. 2471 } 2472 }; 2473 2474 /// Utility to remember the position of an instruction. 2475 class InsertionHandler { 2476 /// Position of an instruction. 2477 /// Either an instruction: 2478 /// - Is the first in a basic block: BB is used. 2479 /// - Has a previous instruction: PrevInst is used. 2480 union { 2481 Instruction *PrevInst; 2482 BasicBlock *BB; 2483 } Point; 2484 2485 /// Remember whether or not the instruction had a previous instruction. 2486 bool HasPrevInstruction; 2487 2488 public: 2489 /// Record the position of \p Inst. 2490 InsertionHandler(Instruction *Inst) { 2491 BasicBlock::iterator It = Inst->getIterator(); 2492 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2493 if (HasPrevInstruction) 2494 Point.PrevInst = &*--It; 2495 else 2496 Point.BB = Inst->getParent(); 2497 } 2498 2499 /// Insert \p Inst at the recorded position. 2500 void insert(Instruction *Inst) { 2501 if (HasPrevInstruction) { 2502 if (Inst->getParent()) 2503 Inst->removeFromParent(); 2504 Inst->insertAfter(Point.PrevInst); 2505 } else { 2506 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2507 if (Inst->getParent()) 2508 Inst->moveBefore(Position); 2509 else 2510 Inst->insertBefore(Position); 2511 } 2512 } 2513 }; 2514 2515 /// Move an instruction before another. 2516 class InstructionMoveBefore : public TypePromotionAction { 2517 /// Original position of the instruction. 2518 InsertionHandler Position; 2519 2520 public: 2521 /// Move \p Inst before \p Before. 2522 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2523 : TypePromotionAction(Inst), Position(Inst) { 2524 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2525 << "\n"); 2526 Inst->moveBefore(Before); 2527 } 2528 2529 /// Move the instruction back to its original position. 2530 void undo() override { 2531 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2532 Position.insert(Inst); 2533 } 2534 }; 2535 2536 /// Set the operand of an instruction with a new value. 2537 class OperandSetter : public TypePromotionAction { 2538 /// Original operand of the instruction. 2539 Value *Origin; 2540 2541 /// Index of the modified instruction. 2542 unsigned Idx; 2543 2544 public: 2545 /// Set \p Idx operand of \p Inst with \p NewVal. 2546 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2547 : TypePromotionAction(Inst), Idx(Idx) { 2548 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2549 << "for:" << *Inst << "\n" 2550 << "with:" << *NewVal << "\n"); 2551 Origin = Inst->getOperand(Idx); 2552 Inst->setOperand(Idx, NewVal); 2553 } 2554 2555 /// Restore the original value of the instruction. 2556 void undo() override { 2557 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2558 << "for: " << *Inst << "\n" 2559 << "with: " << *Origin << "\n"); 2560 Inst->setOperand(Idx, Origin); 2561 } 2562 }; 2563 2564 /// Hide the operands of an instruction. 2565 /// Do as if this instruction was not using any of its operands. 2566 class OperandsHider : public TypePromotionAction { 2567 /// The list of original operands. 2568 SmallVector<Value *, 4> OriginalValues; 2569 2570 public: 2571 /// Remove \p Inst from the uses of the operands of \p Inst. 2572 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2573 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2574 unsigned NumOpnds = Inst->getNumOperands(); 2575 OriginalValues.reserve(NumOpnds); 2576 for (unsigned It = 0; It < NumOpnds; ++It) { 2577 // Save the current operand. 2578 Value *Val = Inst->getOperand(It); 2579 OriginalValues.push_back(Val); 2580 // Set a dummy one. 2581 // We could use OperandSetter here, but that would imply an overhead 2582 // that we are not willing to pay. 2583 Inst->setOperand(It, UndefValue::get(Val->getType())); 2584 } 2585 } 2586 2587 /// Restore the original list of uses. 2588 void undo() override { 2589 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2590 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2591 Inst->setOperand(It, OriginalValues[It]); 2592 } 2593 }; 2594 2595 /// Build a truncate instruction. 2596 class TruncBuilder : public TypePromotionAction { 2597 Value *Val; 2598 2599 public: 2600 /// Build a truncate instruction of \p Opnd producing a \p Ty 2601 /// result. 2602 /// trunc Opnd to Ty. 2603 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2604 IRBuilder<> Builder(Opnd); 2605 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2606 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2607 } 2608 2609 /// Get the built value. 2610 Value *getBuiltValue() { return Val; } 2611 2612 /// Remove the built instruction. 2613 void undo() override { 2614 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2615 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2616 IVal->eraseFromParent(); 2617 } 2618 }; 2619 2620 /// Build a sign extension instruction. 2621 class SExtBuilder : public TypePromotionAction { 2622 Value *Val; 2623 2624 public: 2625 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2626 /// result. 2627 /// sext Opnd to Ty. 2628 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2629 : TypePromotionAction(InsertPt) { 2630 IRBuilder<> Builder(InsertPt); 2631 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2632 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2633 } 2634 2635 /// Get the built value. 2636 Value *getBuiltValue() { return Val; } 2637 2638 /// Remove the built instruction. 2639 void undo() override { 2640 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2641 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2642 IVal->eraseFromParent(); 2643 } 2644 }; 2645 2646 /// Build a zero extension instruction. 2647 class ZExtBuilder : public TypePromotionAction { 2648 Value *Val; 2649 2650 public: 2651 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2652 /// result. 2653 /// zext Opnd to Ty. 2654 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2655 : TypePromotionAction(InsertPt) { 2656 IRBuilder<> Builder(InsertPt); 2657 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2658 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2659 } 2660 2661 /// Get the built value. 2662 Value *getBuiltValue() { return Val; } 2663 2664 /// Remove the built instruction. 2665 void undo() override { 2666 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2667 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2668 IVal->eraseFromParent(); 2669 } 2670 }; 2671 2672 /// Mutate an instruction to another type. 2673 class TypeMutator : public TypePromotionAction { 2674 /// Record the original type. 2675 Type *OrigTy; 2676 2677 public: 2678 /// Mutate the type of \p Inst into \p NewTy. 2679 TypeMutator(Instruction *Inst, Type *NewTy) 2680 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2681 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2682 << "\n"); 2683 Inst->mutateType(NewTy); 2684 } 2685 2686 /// Mutate the instruction back to its original type. 2687 void undo() override { 2688 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2689 << "\n"); 2690 Inst->mutateType(OrigTy); 2691 } 2692 }; 2693 2694 /// Replace the uses of an instruction by another instruction. 2695 class UsesReplacer : public TypePromotionAction { 2696 /// Helper structure to keep track of the replaced uses. 2697 struct InstructionAndIdx { 2698 /// The instruction using the instruction. 2699 Instruction *Inst; 2700 2701 /// The index where this instruction is used for Inst. 2702 unsigned Idx; 2703 2704 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2705 : Inst(Inst), Idx(Idx) {} 2706 }; 2707 2708 /// Keep track of the original uses (pair Instruction, Index). 2709 SmallVector<InstructionAndIdx, 4> OriginalUses; 2710 /// Keep track of the debug users. 2711 SmallVector<DbgValueInst *, 1> DbgValues; 2712 2713 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2714 2715 public: 2716 /// Replace all the use of \p Inst by \p New. 2717 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2718 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2719 << "\n"); 2720 // Record the original uses. 2721 for (Use &U : Inst->uses()) { 2722 Instruction *UserI = cast<Instruction>(U.getUser()); 2723 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2724 } 2725 // Record the debug uses separately. They are not in the instruction's 2726 // use list, but they are replaced by RAUW. 2727 findDbgValues(DbgValues, Inst); 2728 2729 // Now, we can replace the uses. 2730 Inst->replaceAllUsesWith(New); 2731 } 2732 2733 /// Reassign the original uses of Inst to Inst. 2734 void undo() override { 2735 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2736 for (use_iterator UseIt = OriginalUses.begin(), 2737 EndIt = OriginalUses.end(); 2738 UseIt != EndIt; ++UseIt) { 2739 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2740 } 2741 // RAUW has replaced all original uses with references to the new value, 2742 // including the debug uses. Since we are undoing the replacements, 2743 // the original debug uses must also be reinstated to maintain the 2744 // correctness and utility of debug value instructions. 2745 for (auto *DVI: DbgValues) { 2746 LLVMContext &Ctx = Inst->getType()->getContext(); 2747 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); 2748 DVI->setOperand(0, MV); 2749 } 2750 } 2751 }; 2752 2753 /// Remove an instruction from the IR. 2754 class InstructionRemover : public TypePromotionAction { 2755 /// Original position of the instruction. 2756 InsertionHandler Inserter; 2757 2758 /// Helper structure to hide all the link to the instruction. In other 2759 /// words, this helps to do as if the instruction was removed. 2760 OperandsHider Hider; 2761 2762 /// Keep track of the uses replaced, if any. 2763 UsesReplacer *Replacer = nullptr; 2764 2765 /// Keep track of instructions removed. 2766 SetOfInstrs &RemovedInsts; 2767 2768 public: 2769 /// Remove all reference of \p Inst and optionally replace all its 2770 /// uses with New. 2771 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2772 /// \pre If !Inst->use_empty(), then New != nullptr 2773 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2774 Value *New = nullptr) 2775 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2776 RemovedInsts(RemovedInsts) { 2777 if (New) 2778 Replacer = new UsesReplacer(Inst, New); 2779 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2780 RemovedInsts.insert(Inst); 2781 /// The instructions removed here will be freed after completing 2782 /// optimizeBlock() for all blocks as we need to keep track of the 2783 /// removed instructions during promotion. 2784 Inst->removeFromParent(); 2785 } 2786 2787 ~InstructionRemover() override { delete Replacer; } 2788 2789 /// Resurrect the instruction and reassign it to the proper uses if 2790 /// new value was provided when build this action. 2791 void undo() override { 2792 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2793 Inserter.insert(Inst); 2794 if (Replacer) 2795 Replacer->undo(); 2796 Hider.undo(); 2797 RemovedInsts.erase(Inst); 2798 } 2799 }; 2800 2801 public: 2802 /// Restoration point. 2803 /// The restoration point is a pointer to an action instead of an iterator 2804 /// because the iterator may be invalidated but not the pointer. 2805 using ConstRestorationPt = const TypePromotionAction *; 2806 2807 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2808 : RemovedInsts(RemovedInsts) {} 2809 2810 /// Advocate every changes made in that transaction. 2811 void commit(); 2812 2813 /// Undo all the changes made after the given point. 2814 void rollback(ConstRestorationPt Point); 2815 2816 /// Get the current restoration point. 2817 ConstRestorationPt getRestorationPoint() const; 2818 2819 /// \name API for IR modification with state keeping to support rollback. 2820 /// @{ 2821 /// Same as Instruction::setOperand. 2822 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2823 2824 /// Same as Instruction::eraseFromParent. 2825 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2826 2827 /// Same as Value::replaceAllUsesWith. 2828 void replaceAllUsesWith(Instruction *Inst, Value *New); 2829 2830 /// Same as Value::mutateType. 2831 void mutateType(Instruction *Inst, Type *NewTy); 2832 2833 /// Same as IRBuilder::createTrunc. 2834 Value *createTrunc(Instruction *Opnd, Type *Ty); 2835 2836 /// Same as IRBuilder::createSExt. 2837 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2838 2839 /// Same as IRBuilder::createZExt. 2840 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2841 2842 /// Same as Instruction::moveBefore. 2843 void moveBefore(Instruction *Inst, Instruction *Before); 2844 /// @} 2845 2846 private: 2847 /// The ordered list of actions made so far. 2848 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2849 2850 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2851 2852 SetOfInstrs &RemovedInsts; 2853 }; 2854 2855 } // end anonymous namespace 2856 2857 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2858 Value *NewVal) { 2859 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 2860 Inst, Idx, NewVal)); 2861 } 2862 2863 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2864 Value *NewVal) { 2865 Actions.push_back( 2866 std::make_unique<TypePromotionTransaction::InstructionRemover>( 2867 Inst, RemovedInsts, NewVal)); 2868 } 2869 2870 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2871 Value *New) { 2872 Actions.push_back( 2873 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2874 } 2875 2876 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2877 Actions.push_back( 2878 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2879 } 2880 2881 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2882 Type *Ty) { 2883 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2884 Value *Val = Ptr->getBuiltValue(); 2885 Actions.push_back(std::move(Ptr)); 2886 return Val; 2887 } 2888 2889 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2890 Value *Opnd, Type *Ty) { 2891 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2892 Value *Val = Ptr->getBuiltValue(); 2893 Actions.push_back(std::move(Ptr)); 2894 return Val; 2895 } 2896 2897 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2898 Value *Opnd, Type *Ty) { 2899 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2900 Value *Val = Ptr->getBuiltValue(); 2901 Actions.push_back(std::move(Ptr)); 2902 return Val; 2903 } 2904 2905 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2906 Instruction *Before) { 2907 Actions.push_back( 2908 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2909 Inst, Before)); 2910 } 2911 2912 TypePromotionTransaction::ConstRestorationPt 2913 TypePromotionTransaction::getRestorationPoint() const { 2914 return !Actions.empty() ? Actions.back().get() : nullptr; 2915 } 2916 2917 void TypePromotionTransaction::commit() { 2918 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2919 ++It) 2920 (*It)->commit(); 2921 Actions.clear(); 2922 } 2923 2924 void TypePromotionTransaction::rollback( 2925 TypePromotionTransaction::ConstRestorationPt Point) { 2926 while (!Actions.empty() && Point != Actions.back().get()) { 2927 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2928 Curr->undo(); 2929 } 2930 } 2931 2932 namespace { 2933 2934 /// A helper class for matching addressing modes. 2935 /// 2936 /// This encapsulates the logic for matching the target-legal addressing modes. 2937 class AddressingModeMatcher { 2938 SmallVectorImpl<Instruction*> &AddrModeInsts; 2939 const TargetLowering &TLI; 2940 const TargetRegisterInfo &TRI; 2941 const DataLayout &DL; 2942 2943 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2944 /// the memory instruction that we're computing this address for. 2945 Type *AccessTy; 2946 unsigned AddrSpace; 2947 Instruction *MemoryInst; 2948 2949 /// This is the addressing mode that we're building up. This is 2950 /// part of the return value of this addressing mode matching stuff. 2951 ExtAddrMode &AddrMode; 2952 2953 /// The instructions inserted by other CodeGenPrepare optimizations. 2954 const SetOfInstrs &InsertedInsts; 2955 2956 /// A map from the instructions to their type before promotion. 2957 InstrToOrigTy &PromotedInsts; 2958 2959 /// The ongoing transaction where every action should be registered. 2960 TypePromotionTransaction &TPT; 2961 2962 // A GEP which has too large offset to be folded into the addressing mode. 2963 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 2964 2965 /// This is set to true when we should not do profitability checks. 2966 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2967 bool IgnoreProfitability; 2968 2969 /// True if we are optimizing for size. 2970 bool OptSize; 2971 2972 ProfileSummaryInfo *PSI; 2973 BlockFrequencyInfo *BFI; 2974 2975 AddressingModeMatcher( 2976 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 2977 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 2978 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 2979 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 2980 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 2981 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 2982 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2983 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2984 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2985 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP), 2986 OptSize(OptSize), PSI(PSI), BFI(BFI) { 2987 IgnoreProfitability = false; 2988 } 2989 2990 public: 2991 /// Find the maximal addressing mode that a load/store of V can fold, 2992 /// give an access type of AccessTy. This returns a list of involved 2993 /// instructions in AddrModeInsts. 2994 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2995 /// optimizations. 2996 /// \p PromotedInsts maps the instructions to their type before promotion. 2997 /// \p The ongoing transaction where every action should be registered. 2998 static ExtAddrMode 2999 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 3000 SmallVectorImpl<Instruction *> &AddrModeInsts, 3001 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 3002 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 3003 TypePromotionTransaction &TPT, 3004 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3005 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 3006 ExtAddrMode Result; 3007 3008 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 3009 MemoryInst, Result, InsertedInsts, 3010 PromotedInsts, TPT, LargeOffsetGEP, 3011 OptSize, PSI, BFI) 3012 .matchAddr(V, 0); 3013 (void)Success; assert(Success && "Couldn't select *anything*?"); 3014 return Result; 3015 } 3016 3017 private: 3018 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3019 bool matchAddr(Value *Addr, unsigned Depth); 3020 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 3021 bool *MovedAway = nullptr); 3022 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3023 ExtAddrMode &AMBefore, 3024 ExtAddrMode &AMAfter); 3025 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3026 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3027 Value *PromotedOperand) const; 3028 }; 3029 3030 class PhiNodeSet; 3031 3032 /// An iterator for PhiNodeSet. 3033 class PhiNodeSetIterator { 3034 PhiNodeSet * const Set; 3035 size_t CurrentIndex = 0; 3036 3037 public: 3038 /// The constructor. Start should point to either a valid element, or be equal 3039 /// to the size of the underlying SmallVector of the PhiNodeSet. 3040 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 3041 PHINode * operator*() const; 3042 PhiNodeSetIterator& operator++(); 3043 bool operator==(const PhiNodeSetIterator &RHS) const; 3044 bool operator!=(const PhiNodeSetIterator &RHS) const; 3045 }; 3046 3047 /// Keeps a set of PHINodes. 3048 /// 3049 /// This is a minimal set implementation for a specific use case: 3050 /// It is very fast when there are very few elements, but also provides good 3051 /// performance when there are many. It is similar to SmallPtrSet, but also 3052 /// provides iteration by insertion order, which is deterministic and stable 3053 /// across runs. It is also similar to SmallSetVector, but provides removing 3054 /// elements in O(1) time. This is achieved by not actually removing the element 3055 /// from the underlying vector, so comes at the cost of using more memory, but 3056 /// that is fine, since PhiNodeSets are used as short lived objects. 3057 class PhiNodeSet { 3058 friend class PhiNodeSetIterator; 3059 3060 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3061 using iterator = PhiNodeSetIterator; 3062 3063 /// Keeps the elements in the order of their insertion in the underlying 3064 /// vector. To achieve constant time removal, it never deletes any element. 3065 SmallVector<PHINode *, 32> NodeList; 3066 3067 /// Keeps the elements in the underlying set implementation. This (and not the 3068 /// NodeList defined above) is the source of truth on whether an element 3069 /// is actually in the collection. 3070 MapType NodeMap; 3071 3072 /// Points to the first valid (not deleted) element when the set is not empty 3073 /// and the value is not zero. Equals to the size of the underlying vector 3074 /// when the set is empty. When the value is 0, as in the beginning, the 3075 /// first element may or may not be valid. 3076 size_t FirstValidElement = 0; 3077 3078 public: 3079 /// Inserts a new element to the collection. 3080 /// \returns true if the element is actually added, i.e. was not in the 3081 /// collection before the operation. 3082 bool insert(PHINode *Ptr) { 3083 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3084 NodeList.push_back(Ptr); 3085 return true; 3086 } 3087 return false; 3088 } 3089 3090 /// Removes the element from the collection. 3091 /// \returns whether the element is actually removed, i.e. was in the 3092 /// collection before the operation. 3093 bool erase(PHINode *Ptr) { 3094 auto it = NodeMap.find(Ptr); 3095 if (it != NodeMap.end()) { 3096 NodeMap.erase(Ptr); 3097 SkipRemovedElements(FirstValidElement); 3098 return true; 3099 } 3100 return false; 3101 } 3102 3103 /// Removes all elements and clears the collection. 3104 void clear() { 3105 NodeMap.clear(); 3106 NodeList.clear(); 3107 FirstValidElement = 0; 3108 } 3109 3110 /// \returns an iterator that will iterate the elements in the order of 3111 /// insertion. 3112 iterator begin() { 3113 if (FirstValidElement == 0) 3114 SkipRemovedElements(FirstValidElement); 3115 return PhiNodeSetIterator(this, FirstValidElement); 3116 } 3117 3118 /// \returns an iterator that points to the end of the collection. 3119 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3120 3121 /// Returns the number of elements in the collection. 3122 size_t size() const { 3123 return NodeMap.size(); 3124 } 3125 3126 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3127 size_t count(PHINode *Ptr) const { 3128 return NodeMap.count(Ptr); 3129 } 3130 3131 private: 3132 /// Updates the CurrentIndex so that it will point to a valid element. 3133 /// 3134 /// If the element of NodeList at CurrentIndex is valid, it does not 3135 /// change it. If there are no more valid elements, it updates CurrentIndex 3136 /// to point to the end of the NodeList. 3137 void SkipRemovedElements(size_t &CurrentIndex) { 3138 while (CurrentIndex < NodeList.size()) { 3139 auto it = NodeMap.find(NodeList[CurrentIndex]); 3140 // If the element has been deleted and added again later, NodeMap will 3141 // point to a different index, so CurrentIndex will still be invalid. 3142 if (it != NodeMap.end() && it->second == CurrentIndex) 3143 break; 3144 ++CurrentIndex; 3145 } 3146 } 3147 }; 3148 3149 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3150 : Set(Set), CurrentIndex(Start) {} 3151 3152 PHINode * PhiNodeSetIterator::operator*() const { 3153 assert(CurrentIndex < Set->NodeList.size() && 3154 "PhiNodeSet access out of range"); 3155 return Set->NodeList[CurrentIndex]; 3156 } 3157 3158 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 3159 assert(CurrentIndex < Set->NodeList.size() && 3160 "PhiNodeSet access out of range"); 3161 ++CurrentIndex; 3162 Set->SkipRemovedElements(CurrentIndex); 3163 return *this; 3164 } 3165 3166 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3167 return CurrentIndex == RHS.CurrentIndex; 3168 } 3169 3170 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3171 return !((*this) == RHS); 3172 } 3173 3174 /// Keep track of simplification of Phi nodes. 3175 /// Accept the set of all phi nodes and erase phi node from this set 3176 /// if it is simplified. 3177 class SimplificationTracker { 3178 DenseMap<Value *, Value *> Storage; 3179 const SimplifyQuery &SQ; 3180 // Tracks newly created Phi nodes. The elements are iterated by insertion 3181 // order. 3182 PhiNodeSet AllPhiNodes; 3183 // Tracks newly created Select nodes. 3184 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3185 3186 public: 3187 SimplificationTracker(const SimplifyQuery &sq) 3188 : SQ(sq) {} 3189 3190 Value *Get(Value *V) { 3191 do { 3192 auto SV = Storage.find(V); 3193 if (SV == Storage.end()) 3194 return V; 3195 V = SV->second; 3196 } while (true); 3197 } 3198 3199 Value *Simplify(Value *Val) { 3200 SmallVector<Value *, 32> WorkList; 3201 SmallPtrSet<Value *, 32> Visited; 3202 WorkList.push_back(Val); 3203 while (!WorkList.empty()) { 3204 auto P = WorkList.pop_back_val(); 3205 if (!Visited.insert(P).second) 3206 continue; 3207 if (auto *PI = dyn_cast<Instruction>(P)) 3208 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3209 for (auto *U : PI->users()) 3210 WorkList.push_back(cast<Value>(U)); 3211 Put(PI, V); 3212 PI->replaceAllUsesWith(V); 3213 if (auto *PHI = dyn_cast<PHINode>(PI)) 3214 AllPhiNodes.erase(PHI); 3215 if (auto *Select = dyn_cast<SelectInst>(PI)) 3216 AllSelectNodes.erase(Select); 3217 PI->eraseFromParent(); 3218 } 3219 } 3220 return Get(Val); 3221 } 3222 3223 void Put(Value *From, Value *To) { 3224 Storage.insert({ From, To }); 3225 } 3226 3227 void ReplacePhi(PHINode *From, PHINode *To) { 3228 Value* OldReplacement = Get(From); 3229 while (OldReplacement != From) { 3230 From = To; 3231 To = dyn_cast<PHINode>(OldReplacement); 3232 OldReplacement = Get(From); 3233 } 3234 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3235 Put(From, To); 3236 From->replaceAllUsesWith(To); 3237 AllPhiNodes.erase(From); 3238 From->eraseFromParent(); 3239 } 3240 3241 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3242 3243 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3244 3245 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3246 3247 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3248 3249 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3250 3251 void destroyNewNodes(Type *CommonType) { 3252 // For safe erasing, replace the uses with dummy value first. 3253 auto Dummy = UndefValue::get(CommonType); 3254 for (auto I : AllPhiNodes) { 3255 I->replaceAllUsesWith(Dummy); 3256 I->eraseFromParent(); 3257 } 3258 AllPhiNodes.clear(); 3259 for (auto I : AllSelectNodes) { 3260 I->replaceAllUsesWith(Dummy); 3261 I->eraseFromParent(); 3262 } 3263 AllSelectNodes.clear(); 3264 } 3265 }; 3266 3267 /// A helper class for combining addressing modes. 3268 class AddressingModeCombiner { 3269 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3270 typedef std::pair<PHINode *, PHINode *> PHIPair; 3271 3272 private: 3273 /// The addressing modes we've collected. 3274 SmallVector<ExtAddrMode, 16> AddrModes; 3275 3276 /// The field in which the AddrModes differ, when we have more than one. 3277 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3278 3279 /// Are the AddrModes that we have all just equal to their original values? 3280 bool AllAddrModesTrivial = true; 3281 3282 /// Common Type for all different fields in addressing modes. 3283 Type *CommonType; 3284 3285 /// SimplifyQuery for simplifyInstruction utility. 3286 const SimplifyQuery &SQ; 3287 3288 /// Original Address. 3289 Value *Original; 3290 3291 public: 3292 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3293 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 3294 3295 /// Get the combined AddrMode 3296 const ExtAddrMode &getAddrMode() const { 3297 return AddrModes[0]; 3298 } 3299 3300 /// Add a new AddrMode if it's compatible with the AddrModes we already 3301 /// have. 3302 /// \return True iff we succeeded in doing so. 3303 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3304 // Take note of if we have any non-trivial AddrModes, as we need to detect 3305 // when all AddrModes are trivial as then we would introduce a phi or select 3306 // which just duplicates what's already there. 3307 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3308 3309 // If this is the first addrmode then everything is fine. 3310 if (AddrModes.empty()) { 3311 AddrModes.emplace_back(NewAddrMode); 3312 return true; 3313 } 3314 3315 // Figure out how different this is from the other address modes, which we 3316 // can do just by comparing against the first one given that we only care 3317 // about the cumulative difference. 3318 ExtAddrMode::FieldName ThisDifferentField = 3319 AddrModes[0].compare(NewAddrMode); 3320 if (DifferentField == ExtAddrMode::NoField) 3321 DifferentField = ThisDifferentField; 3322 else if (DifferentField != ThisDifferentField) 3323 DifferentField = ExtAddrMode::MultipleFields; 3324 3325 // If NewAddrMode differs in more than one dimension we cannot handle it. 3326 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3327 3328 // If Scale Field is different then we reject. 3329 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3330 3331 // We also must reject the case when base offset is different and 3332 // scale reg is not null, we cannot handle this case due to merge of 3333 // different offsets will be used as ScaleReg. 3334 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3335 !NewAddrMode.ScaledReg); 3336 3337 // We also must reject the case when GV is different and BaseReg installed 3338 // due to we want to use base reg as a merge of GV values. 3339 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3340 !NewAddrMode.HasBaseReg); 3341 3342 // Even if NewAddMode is the same we still need to collect it due to 3343 // original value is different. And later we will need all original values 3344 // as anchors during finding the common Phi node. 3345 if (CanHandle) 3346 AddrModes.emplace_back(NewAddrMode); 3347 else 3348 AddrModes.clear(); 3349 3350 return CanHandle; 3351 } 3352 3353 /// Combine the addressing modes we've collected into a single 3354 /// addressing mode. 3355 /// \return True iff we successfully combined them or we only had one so 3356 /// didn't need to combine them anyway. 3357 bool combineAddrModes() { 3358 // If we have no AddrModes then they can't be combined. 3359 if (AddrModes.size() == 0) 3360 return false; 3361 3362 // A single AddrMode can trivially be combined. 3363 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3364 return true; 3365 3366 // If the AddrModes we collected are all just equal to the value they are 3367 // derived from then combining them wouldn't do anything useful. 3368 if (AllAddrModesTrivial) 3369 return false; 3370 3371 if (!addrModeCombiningAllowed()) 3372 return false; 3373 3374 // Build a map between <original value, basic block where we saw it> to 3375 // value of base register. 3376 // Bail out if there is no common type. 3377 FoldAddrToValueMapping Map; 3378 if (!initializeMap(Map)) 3379 return false; 3380 3381 Value *CommonValue = findCommon(Map); 3382 if (CommonValue) 3383 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3384 return CommonValue != nullptr; 3385 } 3386 3387 private: 3388 /// Initialize Map with anchor values. For address seen 3389 /// we set the value of different field saw in this address. 3390 /// At the same time we find a common type for different field we will 3391 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3392 /// Return false if there is no common type found. 3393 bool initializeMap(FoldAddrToValueMapping &Map) { 3394 // Keep track of keys where the value is null. We will need to replace it 3395 // with constant null when we know the common type. 3396 SmallVector<Value *, 2> NullValue; 3397 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3398 for (auto &AM : AddrModes) { 3399 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3400 if (DV) { 3401 auto *Type = DV->getType(); 3402 if (CommonType && CommonType != Type) 3403 return false; 3404 CommonType = Type; 3405 Map[AM.OriginalValue] = DV; 3406 } else { 3407 NullValue.push_back(AM.OriginalValue); 3408 } 3409 } 3410 assert(CommonType && "At least one non-null value must be!"); 3411 for (auto *V : NullValue) 3412 Map[V] = Constant::getNullValue(CommonType); 3413 return true; 3414 } 3415 3416 /// We have mapping between value A and other value B where B was a field in 3417 /// addressing mode represented by A. Also we have an original value C 3418 /// representing an address we start with. Traversing from C through phi and 3419 /// selects we ended up with A's in a map. This utility function tries to find 3420 /// a value V which is a field in addressing mode C and traversing through phi 3421 /// nodes and selects we will end up in corresponded values B in a map. 3422 /// The utility will create a new Phi/Selects if needed. 3423 // The simple example looks as follows: 3424 // BB1: 3425 // p1 = b1 + 40 3426 // br cond BB2, BB3 3427 // BB2: 3428 // p2 = b2 + 40 3429 // br BB3 3430 // BB3: 3431 // p = phi [p1, BB1], [p2, BB2] 3432 // v = load p 3433 // Map is 3434 // p1 -> b1 3435 // p2 -> b2 3436 // Request is 3437 // p -> ? 3438 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3439 Value *findCommon(FoldAddrToValueMapping &Map) { 3440 // Tracks the simplification of newly created phi nodes. The reason we use 3441 // this mapping is because we will add new created Phi nodes in AddrToBase. 3442 // Simplification of Phi nodes is recursive, so some Phi node may 3443 // be simplified after we added it to AddrToBase. In reality this 3444 // simplification is possible only if original phi/selects were not 3445 // simplified yet. 3446 // Using this mapping we can find the current value in AddrToBase. 3447 SimplificationTracker ST(SQ); 3448 3449 // First step, DFS to create PHI nodes for all intermediate blocks. 3450 // Also fill traverse order for the second step. 3451 SmallVector<Value *, 32> TraverseOrder; 3452 InsertPlaceholders(Map, TraverseOrder, ST); 3453 3454 // Second Step, fill new nodes by merged values and simplify if possible. 3455 FillPlaceholders(Map, TraverseOrder, ST); 3456 3457 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3458 ST.destroyNewNodes(CommonType); 3459 return nullptr; 3460 } 3461 3462 // Now we'd like to match New Phi nodes to existed ones. 3463 unsigned PhiNotMatchedCount = 0; 3464 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3465 ST.destroyNewNodes(CommonType); 3466 return nullptr; 3467 } 3468 3469 auto *Result = ST.Get(Map.find(Original)->second); 3470 if (Result) { 3471 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3472 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3473 } 3474 return Result; 3475 } 3476 3477 /// Try to match PHI node to Candidate. 3478 /// Matcher tracks the matched Phi nodes. 3479 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3480 SmallSetVector<PHIPair, 8> &Matcher, 3481 PhiNodeSet &PhiNodesToMatch) { 3482 SmallVector<PHIPair, 8> WorkList; 3483 Matcher.insert({ PHI, Candidate }); 3484 SmallSet<PHINode *, 8> MatchedPHIs; 3485 MatchedPHIs.insert(PHI); 3486 WorkList.push_back({ PHI, Candidate }); 3487 SmallSet<PHIPair, 8> Visited; 3488 while (!WorkList.empty()) { 3489 auto Item = WorkList.pop_back_val(); 3490 if (!Visited.insert(Item).second) 3491 continue; 3492 // We iterate over all incoming values to Phi to compare them. 3493 // If values are different and both of them Phi and the first one is a 3494 // Phi we added (subject to match) and both of them is in the same basic 3495 // block then we can match our pair if values match. So we state that 3496 // these values match and add it to work list to verify that. 3497 for (auto B : Item.first->blocks()) { 3498 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3499 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3500 if (FirstValue == SecondValue) 3501 continue; 3502 3503 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3504 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3505 3506 // One of them is not Phi or 3507 // The first one is not Phi node from the set we'd like to match or 3508 // Phi nodes from different basic blocks then 3509 // we will not be able to match. 3510 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3511 FirstPhi->getParent() != SecondPhi->getParent()) 3512 return false; 3513 3514 // If we already matched them then continue. 3515 if (Matcher.count({ FirstPhi, SecondPhi })) 3516 continue; 3517 // So the values are different and does not match. So we need them to 3518 // match. (But we register no more than one match per PHI node, so that 3519 // we won't later try to replace them twice.) 3520 if (MatchedPHIs.insert(FirstPhi).second) 3521 Matcher.insert({ FirstPhi, SecondPhi }); 3522 // But me must check it. 3523 WorkList.push_back({ FirstPhi, SecondPhi }); 3524 } 3525 } 3526 return true; 3527 } 3528 3529 /// For the given set of PHI nodes (in the SimplificationTracker) try 3530 /// to find their equivalents. 3531 /// Returns false if this matching fails and creation of new Phi is disabled. 3532 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3533 unsigned &PhiNotMatchedCount) { 3534 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3535 // order, so the replacements (ReplacePhi) are also done in a deterministic 3536 // order. 3537 SmallSetVector<PHIPair, 8> Matched; 3538 SmallPtrSet<PHINode *, 8> WillNotMatch; 3539 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3540 while (PhiNodesToMatch.size()) { 3541 PHINode *PHI = *PhiNodesToMatch.begin(); 3542 3543 // Add us, if no Phi nodes in the basic block we do not match. 3544 WillNotMatch.clear(); 3545 WillNotMatch.insert(PHI); 3546 3547 // Traverse all Phis until we found equivalent or fail to do that. 3548 bool IsMatched = false; 3549 for (auto &P : PHI->getParent()->phis()) { 3550 if (&P == PHI) 3551 continue; 3552 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3553 break; 3554 // If it does not match, collect all Phi nodes from matcher. 3555 // if we end up with no match, them all these Phi nodes will not match 3556 // later. 3557 for (auto M : Matched) 3558 WillNotMatch.insert(M.first); 3559 Matched.clear(); 3560 } 3561 if (IsMatched) { 3562 // Replace all matched values and erase them. 3563 for (auto MV : Matched) 3564 ST.ReplacePhi(MV.first, MV.second); 3565 Matched.clear(); 3566 continue; 3567 } 3568 // If we are not allowed to create new nodes then bail out. 3569 if (!AllowNewPhiNodes) 3570 return false; 3571 // Just remove all seen values in matcher. They will not match anything. 3572 PhiNotMatchedCount += WillNotMatch.size(); 3573 for (auto *P : WillNotMatch) 3574 PhiNodesToMatch.erase(P); 3575 } 3576 return true; 3577 } 3578 /// Fill the placeholders with values from predecessors and simplify them. 3579 void FillPlaceholders(FoldAddrToValueMapping &Map, 3580 SmallVectorImpl<Value *> &TraverseOrder, 3581 SimplificationTracker &ST) { 3582 while (!TraverseOrder.empty()) { 3583 Value *Current = TraverseOrder.pop_back_val(); 3584 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3585 Value *V = Map[Current]; 3586 3587 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3588 // CurrentValue also must be Select. 3589 auto *CurrentSelect = cast<SelectInst>(Current); 3590 auto *TrueValue = CurrentSelect->getTrueValue(); 3591 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3592 Select->setTrueValue(ST.Get(Map[TrueValue])); 3593 auto *FalseValue = CurrentSelect->getFalseValue(); 3594 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3595 Select->setFalseValue(ST.Get(Map[FalseValue])); 3596 } else { 3597 // Must be a Phi node then. 3598 auto *PHI = cast<PHINode>(V); 3599 // Fill the Phi node with values from predecessors. 3600 for (auto B : predecessors(PHI->getParent())) { 3601 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3602 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3603 PHI->addIncoming(ST.Get(Map[PV]), B); 3604 } 3605 } 3606 Map[Current] = ST.Simplify(V); 3607 } 3608 } 3609 3610 /// Starting from original value recursively iterates over def-use chain up to 3611 /// known ending values represented in a map. For each traversed phi/select 3612 /// inserts a placeholder Phi or Select. 3613 /// Reports all new created Phi/Select nodes by adding them to set. 3614 /// Also reports and order in what values have been traversed. 3615 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3616 SmallVectorImpl<Value *> &TraverseOrder, 3617 SimplificationTracker &ST) { 3618 SmallVector<Value *, 32> Worklist; 3619 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3620 "Address must be a Phi or Select node"); 3621 auto *Dummy = UndefValue::get(CommonType); 3622 Worklist.push_back(Original); 3623 while (!Worklist.empty()) { 3624 Value *Current = Worklist.pop_back_val(); 3625 // if it is already visited or it is an ending value then skip it. 3626 if (Map.find(Current) != Map.end()) 3627 continue; 3628 TraverseOrder.push_back(Current); 3629 3630 // CurrentValue must be a Phi node or select. All others must be covered 3631 // by anchors. 3632 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3633 // Is it OK to get metadata from OrigSelect?! 3634 // Create a Select placeholder with dummy value. 3635 SelectInst *Select = SelectInst::Create( 3636 CurrentSelect->getCondition(), Dummy, Dummy, 3637 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3638 Map[Current] = Select; 3639 ST.insertNewSelect(Select); 3640 // We are interested in True and False values. 3641 Worklist.push_back(CurrentSelect->getTrueValue()); 3642 Worklist.push_back(CurrentSelect->getFalseValue()); 3643 } else { 3644 // It must be a Phi node then. 3645 PHINode *CurrentPhi = cast<PHINode>(Current); 3646 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3647 PHINode *PHI = 3648 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3649 Map[Current] = PHI; 3650 ST.insertNewPhi(PHI); 3651 for (Value *P : CurrentPhi->incoming_values()) 3652 Worklist.push_back(P); 3653 } 3654 } 3655 } 3656 3657 bool addrModeCombiningAllowed() { 3658 if (DisableComplexAddrModes) 3659 return false; 3660 switch (DifferentField) { 3661 default: 3662 return false; 3663 case ExtAddrMode::BaseRegField: 3664 return AddrSinkCombineBaseReg; 3665 case ExtAddrMode::BaseGVField: 3666 return AddrSinkCombineBaseGV; 3667 case ExtAddrMode::BaseOffsField: 3668 return AddrSinkCombineBaseOffs; 3669 case ExtAddrMode::ScaledRegField: 3670 return AddrSinkCombineScaledReg; 3671 } 3672 } 3673 }; 3674 } // end anonymous namespace 3675 3676 /// Try adding ScaleReg*Scale to the current addressing mode. 3677 /// Return true and update AddrMode if this addr mode is legal for the target, 3678 /// false if not. 3679 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3680 unsigned Depth) { 3681 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3682 // mode. Just process that directly. 3683 if (Scale == 1) 3684 return matchAddr(ScaleReg, Depth); 3685 3686 // If the scale is 0, it takes nothing to add this. 3687 if (Scale == 0) 3688 return true; 3689 3690 // If we already have a scale of this value, we can add to it, otherwise, we 3691 // need an available scale field. 3692 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3693 return false; 3694 3695 ExtAddrMode TestAddrMode = AddrMode; 3696 3697 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3698 // [A+B + A*7] -> [B+A*8]. 3699 TestAddrMode.Scale += Scale; 3700 TestAddrMode.ScaledReg = ScaleReg; 3701 3702 // If the new address isn't legal, bail out. 3703 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3704 return false; 3705 3706 // It was legal, so commit it. 3707 AddrMode = TestAddrMode; 3708 3709 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3710 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3711 // X*Scale + C*Scale to addr mode. 3712 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3713 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3714 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3715 TestAddrMode.InBounds = false; 3716 TestAddrMode.ScaledReg = AddLHS; 3717 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3718 3719 // If this addressing mode is legal, commit it and remember that we folded 3720 // this instruction. 3721 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3722 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3723 AddrMode = TestAddrMode; 3724 return true; 3725 } 3726 } 3727 3728 // Otherwise, not (x+c)*scale, just return what we have. 3729 return true; 3730 } 3731 3732 /// This is a little filter, which returns true if an addressing computation 3733 /// involving I might be folded into a load/store accessing it. 3734 /// This doesn't need to be perfect, but needs to accept at least 3735 /// the set of instructions that MatchOperationAddr can. 3736 static bool MightBeFoldableInst(Instruction *I) { 3737 switch (I->getOpcode()) { 3738 case Instruction::BitCast: 3739 case Instruction::AddrSpaceCast: 3740 // Don't touch identity bitcasts. 3741 if (I->getType() == I->getOperand(0)->getType()) 3742 return false; 3743 return I->getType()->isIntOrPtrTy(); 3744 case Instruction::PtrToInt: 3745 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3746 return true; 3747 case Instruction::IntToPtr: 3748 // We know the input is intptr_t, so this is foldable. 3749 return true; 3750 case Instruction::Add: 3751 return true; 3752 case Instruction::Mul: 3753 case Instruction::Shl: 3754 // Can only handle X*C and X << C. 3755 return isa<ConstantInt>(I->getOperand(1)); 3756 case Instruction::GetElementPtr: 3757 return true; 3758 default: 3759 return false; 3760 } 3761 } 3762 3763 /// Check whether or not \p Val is a legal instruction for \p TLI. 3764 /// \note \p Val is assumed to be the product of some type promotion. 3765 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3766 /// to be legal, as the non-promoted value would have had the same state. 3767 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3768 const DataLayout &DL, Value *Val) { 3769 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3770 if (!PromotedInst) 3771 return false; 3772 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3773 // If the ISDOpcode is undefined, it was undefined before the promotion. 3774 if (!ISDOpcode) 3775 return true; 3776 // Otherwise, check if the promoted instruction is legal or not. 3777 return TLI.isOperationLegalOrCustom( 3778 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3779 } 3780 3781 namespace { 3782 3783 /// Hepler class to perform type promotion. 3784 class TypePromotionHelper { 3785 /// Utility function to add a promoted instruction \p ExtOpnd to 3786 /// \p PromotedInsts and record the type of extension we have seen. 3787 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3788 Instruction *ExtOpnd, 3789 bool IsSExt) { 3790 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3791 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3792 if (It != PromotedInsts.end()) { 3793 // If the new extension is same as original, the information in 3794 // PromotedInsts[ExtOpnd] is still correct. 3795 if (It->second.getInt() == ExtTy) 3796 return; 3797 3798 // Now the new extension is different from old extension, we make 3799 // the type information invalid by setting extension type to 3800 // BothExtension. 3801 ExtTy = BothExtension; 3802 } 3803 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 3804 } 3805 3806 /// Utility function to query the original type of instruction \p Opnd 3807 /// with a matched extension type. If the extension doesn't match, we 3808 /// cannot use the information we had on the original type. 3809 /// BothExtension doesn't match any extension type. 3810 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 3811 Instruction *Opnd, 3812 bool IsSExt) { 3813 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3814 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3815 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 3816 return It->second.getPointer(); 3817 return nullptr; 3818 } 3819 3820 /// Utility function to check whether or not a sign or zero extension 3821 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3822 /// either using the operands of \p Inst or promoting \p Inst. 3823 /// The type of the extension is defined by \p IsSExt. 3824 /// In other words, check if: 3825 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3826 /// #1 Promotion applies: 3827 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3828 /// #2 Operand reuses: 3829 /// ext opnd1 to ConsideredExtType. 3830 /// \p PromotedInsts maps the instructions to their type before promotion. 3831 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3832 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3833 3834 /// Utility function to determine if \p OpIdx should be promoted when 3835 /// promoting \p Inst. 3836 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3837 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3838 } 3839 3840 /// Utility function to promote the operand of \p Ext when this 3841 /// operand is a promotable trunc or sext or zext. 3842 /// \p PromotedInsts maps the instructions to their type before promotion. 3843 /// \p CreatedInstsCost[out] contains the cost of all instructions 3844 /// created to promote the operand of Ext. 3845 /// Newly added extensions are inserted in \p Exts. 3846 /// Newly added truncates are inserted in \p Truncs. 3847 /// Should never be called directly. 3848 /// \return The promoted value which is used instead of Ext. 3849 static Value *promoteOperandForTruncAndAnyExt( 3850 Instruction *Ext, TypePromotionTransaction &TPT, 3851 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3852 SmallVectorImpl<Instruction *> *Exts, 3853 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3854 3855 /// Utility function to promote the operand of \p Ext when this 3856 /// operand is promotable and is not a supported trunc or sext. 3857 /// \p PromotedInsts maps the instructions to their type before promotion. 3858 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3859 /// created to promote the operand of Ext. 3860 /// Newly added extensions are inserted in \p Exts. 3861 /// Newly added truncates are inserted in \p Truncs. 3862 /// Should never be called directly. 3863 /// \return The promoted value which is used instead of Ext. 3864 static Value *promoteOperandForOther(Instruction *Ext, 3865 TypePromotionTransaction &TPT, 3866 InstrToOrigTy &PromotedInsts, 3867 unsigned &CreatedInstsCost, 3868 SmallVectorImpl<Instruction *> *Exts, 3869 SmallVectorImpl<Instruction *> *Truncs, 3870 const TargetLowering &TLI, bool IsSExt); 3871 3872 /// \see promoteOperandForOther. 3873 static Value *signExtendOperandForOther( 3874 Instruction *Ext, TypePromotionTransaction &TPT, 3875 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3876 SmallVectorImpl<Instruction *> *Exts, 3877 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3878 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3879 Exts, Truncs, TLI, true); 3880 } 3881 3882 /// \see promoteOperandForOther. 3883 static Value *zeroExtendOperandForOther( 3884 Instruction *Ext, TypePromotionTransaction &TPT, 3885 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3886 SmallVectorImpl<Instruction *> *Exts, 3887 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3888 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3889 Exts, Truncs, TLI, false); 3890 } 3891 3892 public: 3893 /// Type for the utility function that promotes the operand of Ext. 3894 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3895 InstrToOrigTy &PromotedInsts, 3896 unsigned &CreatedInstsCost, 3897 SmallVectorImpl<Instruction *> *Exts, 3898 SmallVectorImpl<Instruction *> *Truncs, 3899 const TargetLowering &TLI); 3900 3901 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3902 /// action to promote the operand of \p Ext instead of using Ext. 3903 /// \return NULL if no promotable action is possible with the current 3904 /// sign extension. 3905 /// \p InsertedInsts keeps track of all the instructions inserted by the 3906 /// other CodeGenPrepare optimizations. This information is important 3907 /// because we do not want to promote these instructions as CodeGenPrepare 3908 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3909 /// \p PromotedInsts maps the instructions to their type before promotion. 3910 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3911 const TargetLowering &TLI, 3912 const InstrToOrigTy &PromotedInsts); 3913 }; 3914 3915 } // end anonymous namespace 3916 3917 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3918 Type *ConsideredExtType, 3919 const InstrToOrigTy &PromotedInsts, 3920 bool IsSExt) { 3921 // The promotion helper does not know how to deal with vector types yet. 3922 // To be able to fix that, we would need to fix the places where we 3923 // statically extend, e.g., constants and such. 3924 if (Inst->getType()->isVectorTy()) 3925 return false; 3926 3927 // We can always get through zext. 3928 if (isa<ZExtInst>(Inst)) 3929 return true; 3930 3931 // sext(sext) is ok too. 3932 if (IsSExt && isa<SExtInst>(Inst)) 3933 return true; 3934 3935 // We can get through binary operator, if it is legal. In other words, the 3936 // binary operator must have a nuw or nsw flag. 3937 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3938 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3939 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3940 (IsSExt && BinOp->hasNoSignedWrap()))) 3941 return true; 3942 3943 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 3944 if ((Inst->getOpcode() == Instruction::And || 3945 Inst->getOpcode() == Instruction::Or)) 3946 return true; 3947 3948 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 3949 if (Inst->getOpcode() == Instruction::Xor) { 3950 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 3951 // Make sure it is not a NOT. 3952 if (Cst && !Cst->getValue().isAllOnesValue()) 3953 return true; 3954 } 3955 3956 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 3957 // It may change a poisoned value into a regular value, like 3958 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 3959 // poisoned value regular value 3960 // It should be OK since undef covers valid value. 3961 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 3962 return true; 3963 3964 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 3965 // It may change a poisoned value into a regular value, like 3966 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 3967 // poisoned value regular value 3968 // It should be OK since undef covers valid value. 3969 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 3970 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 3971 if (ExtInst->hasOneUse()) { 3972 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 3973 if (AndInst && AndInst->getOpcode() == Instruction::And) { 3974 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 3975 if (Cst && 3976 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 3977 return true; 3978 } 3979 } 3980 } 3981 3982 // Check if we can do the following simplification. 3983 // ext(trunc(opnd)) --> ext(opnd) 3984 if (!isa<TruncInst>(Inst)) 3985 return false; 3986 3987 Value *OpndVal = Inst->getOperand(0); 3988 // Check if we can use this operand in the extension. 3989 // If the type is larger than the result type of the extension, we cannot. 3990 if (!OpndVal->getType()->isIntegerTy() || 3991 OpndVal->getType()->getIntegerBitWidth() > 3992 ConsideredExtType->getIntegerBitWidth()) 3993 return false; 3994 3995 // If the operand of the truncate is not an instruction, we will not have 3996 // any information on the dropped bits. 3997 // (Actually we could for constant but it is not worth the extra logic). 3998 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3999 if (!Opnd) 4000 return false; 4001 4002 // Check if the source of the type is narrow enough. 4003 // I.e., check that trunc just drops extended bits of the same kind of 4004 // the extension. 4005 // #1 get the type of the operand and check the kind of the extended bits. 4006 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 4007 if (OpndType) 4008 ; 4009 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 4010 OpndType = Opnd->getOperand(0)->getType(); 4011 else 4012 return false; 4013 4014 // #2 check that the truncate just drops extended bits. 4015 return Inst->getType()->getIntegerBitWidth() >= 4016 OpndType->getIntegerBitWidth(); 4017 } 4018 4019 TypePromotionHelper::Action TypePromotionHelper::getAction( 4020 Instruction *Ext, const SetOfInstrs &InsertedInsts, 4021 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 4022 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4023 "Unexpected instruction type"); 4024 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 4025 Type *ExtTy = Ext->getType(); 4026 bool IsSExt = isa<SExtInst>(Ext); 4027 // If the operand of the extension is not an instruction, we cannot 4028 // get through. 4029 // If it, check we can get through. 4030 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 4031 return nullptr; 4032 4033 // Do not promote if the operand has been added by codegenprepare. 4034 // Otherwise, it means we are undoing an optimization that is likely to be 4035 // redone, thus causing potential infinite loop. 4036 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 4037 return nullptr; 4038 4039 // SExt or Trunc instructions. 4040 // Return the related handler. 4041 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 4042 isa<ZExtInst>(ExtOpnd)) 4043 return promoteOperandForTruncAndAnyExt; 4044 4045 // Regular instruction. 4046 // Abort early if we will have to insert non-free instructions. 4047 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 4048 return nullptr; 4049 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 4050 } 4051 4052 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 4053 Instruction *SExt, TypePromotionTransaction &TPT, 4054 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4055 SmallVectorImpl<Instruction *> *Exts, 4056 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4057 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4058 // get through it and this method should not be called. 4059 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4060 Value *ExtVal = SExt; 4061 bool HasMergedNonFreeExt = false; 4062 if (isa<ZExtInst>(SExtOpnd)) { 4063 // Replace s|zext(zext(opnd)) 4064 // => zext(opnd). 4065 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4066 Value *ZExt = 4067 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4068 TPT.replaceAllUsesWith(SExt, ZExt); 4069 TPT.eraseInstruction(SExt); 4070 ExtVal = ZExt; 4071 } else { 4072 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4073 // => z|sext(opnd). 4074 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4075 } 4076 CreatedInstsCost = 0; 4077 4078 // Remove dead code. 4079 if (SExtOpnd->use_empty()) 4080 TPT.eraseInstruction(SExtOpnd); 4081 4082 // Check if the extension is still needed. 4083 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4084 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4085 if (ExtInst) { 4086 if (Exts) 4087 Exts->push_back(ExtInst); 4088 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4089 } 4090 return ExtVal; 4091 } 4092 4093 // At this point we have: ext ty opnd to ty. 4094 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4095 Value *NextVal = ExtInst->getOperand(0); 4096 TPT.eraseInstruction(ExtInst, NextVal); 4097 return NextVal; 4098 } 4099 4100 Value *TypePromotionHelper::promoteOperandForOther( 4101 Instruction *Ext, TypePromotionTransaction &TPT, 4102 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4103 SmallVectorImpl<Instruction *> *Exts, 4104 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4105 bool IsSExt) { 4106 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4107 // get through it and this method should not be called. 4108 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4109 CreatedInstsCost = 0; 4110 if (!ExtOpnd->hasOneUse()) { 4111 // ExtOpnd will be promoted. 4112 // All its uses, but Ext, will need to use a truncated value of the 4113 // promoted version. 4114 // Create the truncate now. 4115 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4116 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4117 // Insert it just after the definition. 4118 ITrunc->moveAfter(ExtOpnd); 4119 if (Truncs) 4120 Truncs->push_back(ITrunc); 4121 } 4122 4123 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4124 // Restore the operand of Ext (which has been replaced by the previous call 4125 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4126 TPT.setOperand(Ext, 0, ExtOpnd); 4127 } 4128 4129 // Get through the Instruction: 4130 // 1. Update its type. 4131 // 2. Replace the uses of Ext by Inst. 4132 // 3. Extend each operand that needs to be extended. 4133 4134 // Remember the original type of the instruction before promotion. 4135 // This is useful to know that the high bits are sign extended bits. 4136 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4137 // Step #1. 4138 TPT.mutateType(ExtOpnd, Ext->getType()); 4139 // Step #2. 4140 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4141 // Step #3. 4142 Instruction *ExtForOpnd = Ext; 4143 4144 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4145 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4146 ++OpIdx) { 4147 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4148 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4149 !shouldExtOperand(ExtOpnd, OpIdx)) { 4150 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4151 continue; 4152 } 4153 // Check if we can statically extend the operand. 4154 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4155 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4156 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4157 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4158 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4159 : Cst->getValue().zext(BitWidth); 4160 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4161 continue; 4162 } 4163 // UndefValue are typed, so we have to statically sign extend them. 4164 if (isa<UndefValue>(Opnd)) { 4165 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4166 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4167 continue; 4168 } 4169 4170 // Otherwise we have to explicitly sign extend the operand. 4171 // Check if Ext was reused to extend an operand. 4172 if (!ExtForOpnd) { 4173 // If yes, create a new one. 4174 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 4175 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 4176 : TPT.createZExt(Ext, Opnd, Ext->getType()); 4177 if (!isa<Instruction>(ValForExtOpnd)) { 4178 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4179 continue; 4180 } 4181 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4182 } 4183 if (Exts) 4184 Exts->push_back(ExtForOpnd); 4185 TPT.setOperand(ExtForOpnd, 0, Opnd); 4186 4187 // Move the sign extension before the insertion point. 4188 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4189 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4190 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4191 // If more sext are required, new instructions will have to be created. 4192 ExtForOpnd = nullptr; 4193 } 4194 if (ExtForOpnd == Ext) { 4195 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4196 TPT.eraseInstruction(Ext); 4197 } 4198 return ExtOpnd; 4199 } 4200 4201 /// Check whether or not promoting an instruction to a wider type is profitable. 4202 /// \p NewCost gives the cost of extension instructions created by the 4203 /// promotion. 4204 /// \p OldCost gives the cost of extension instructions before the promotion 4205 /// plus the number of instructions that have been 4206 /// matched in the addressing mode the promotion. 4207 /// \p PromotedOperand is the value that has been promoted. 4208 /// \return True if the promotion is profitable, false otherwise. 4209 bool AddressingModeMatcher::isPromotionProfitable( 4210 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4211 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4212 << '\n'); 4213 // The cost of the new extensions is greater than the cost of the 4214 // old extension plus what we folded. 4215 // This is not profitable. 4216 if (NewCost > OldCost) 4217 return false; 4218 if (NewCost < OldCost) 4219 return true; 4220 // The promotion is neutral but it may help folding the sign extension in 4221 // loads for instance. 4222 // Check that we did not create an illegal instruction. 4223 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4224 } 4225 4226 /// Given an instruction or constant expr, see if we can fold the operation 4227 /// into the addressing mode. If so, update the addressing mode and return 4228 /// true, otherwise return false without modifying AddrMode. 4229 /// If \p MovedAway is not NULL, it contains the information of whether or 4230 /// not AddrInst has to be folded into the addressing mode on success. 4231 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4232 /// because it has been moved away. 4233 /// Thus AddrInst must not be added in the matched instructions. 4234 /// This state can happen when AddrInst is a sext, since it may be moved away. 4235 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4236 /// not be referenced anymore. 4237 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4238 unsigned Depth, 4239 bool *MovedAway) { 4240 // Avoid exponential behavior on extremely deep expression trees. 4241 if (Depth >= 5) return false; 4242 4243 // By default, all matched instructions stay in place. 4244 if (MovedAway) 4245 *MovedAway = false; 4246 4247 switch (Opcode) { 4248 case Instruction::PtrToInt: 4249 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4250 return matchAddr(AddrInst->getOperand(0), Depth); 4251 case Instruction::IntToPtr: { 4252 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4253 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4254 // This inttoptr is a no-op if the integer type is pointer sized. 4255 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4256 return matchAddr(AddrInst->getOperand(0), Depth); 4257 return false; 4258 } 4259 case Instruction::BitCast: 4260 // BitCast is always a noop, and we can handle it as long as it is 4261 // int->int or pointer->pointer (we don't want int<->fp or something). 4262 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4263 // Don't touch identity bitcasts. These were probably put here by LSR, 4264 // and we don't want to mess around with them. Assume it knows what it 4265 // is doing. 4266 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4267 return matchAddr(AddrInst->getOperand(0), Depth); 4268 return false; 4269 case Instruction::AddrSpaceCast: { 4270 unsigned SrcAS 4271 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4272 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4273 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 4274 return matchAddr(AddrInst->getOperand(0), Depth); 4275 return false; 4276 } 4277 case Instruction::Add: { 4278 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4279 ExtAddrMode BackupAddrMode = AddrMode; 4280 unsigned OldSize = AddrModeInsts.size(); 4281 // Start a transaction at this point. 4282 // The LHS may match but not the RHS. 4283 // Therefore, we need a higher level restoration point to undo partially 4284 // matched operation. 4285 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4286 TPT.getRestorationPoint(); 4287 4288 AddrMode.InBounds = false; 4289 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4290 matchAddr(AddrInst->getOperand(0), Depth+1)) 4291 return true; 4292 4293 // Restore the old addr mode info. 4294 AddrMode = BackupAddrMode; 4295 AddrModeInsts.resize(OldSize); 4296 TPT.rollback(LastKnownGood); 4297 4298 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4299 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4300 matchAddr(AddrInst->getOperand(1), Depth+1)) 4301 return true; 4302 4303 // Otherwise we definitely can't merge the ADD in. 4304 AddrMode = BackupAddrMode; 4305 AddrModeInsts.resize(OldSize); 4306 TPT.rollback(LastKnownGood); 4307 break; 4308 } 4309 //case Instruction::Or: 4310 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4311 //break; 4312 case Instruction::Mul: 4313 case Instruction::Shl: { 4314 // Can only handle X*C and X << C. 4315 AddrMode.InBounds = false; 4316 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4317 if (!RHS || RHS->getBitWidth() > 64) 4318 return false; 4319 int64_t Scale = RHS->getSExtValue(); 4320 if (Opcode == Instruction::Shl) 4321 Scale = 1LL << Scale; 4322 4323 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4324 } 4325 case Instruction::GetElementPtr: { 4326 // Scan the GEP. We check it if it contains constant offsets and at most 4327 // one variable offset. 4328 int VariableOperand = -1; 4329 unsigned VariableScale = 0; 4330 4331 int64_t ConstantOffset = 0; 4332 gep_type_iterator GTI = gep_type_begin(AddrInst); 4333 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4334 if (StructType *STy = GTI.getStructTypeOrNull()) { 4335 const StructLayout *SL = DL.getStructLayout(STy); 4336 unsigned Idx = 4337 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4338 ConstantOffset += SL->getElementOffset(Idx); 4339 } else { 4340 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 4341 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4342 const APInt &CVal = CI->getValue(); 4343 if (CVal.getMinSignedBits() <= 64) { 4344 ConstantOffset += CVal.getSExtValue() * TypeSize; 4345 continue; 4346 } 4347 } 4348 if (TypeSize) { // Scales of zero don't do anything. 4349 // We only allow one variable index at the moment. 4350 if (VariableOperand != -1) 4351 return false; 4352 4353 // Remember the variable index. 4354 VariableOperand = i; 4355 VariableScale = TypeSize; 4356 } 4357 } 4358 } 4359 4360 // A common case is for the GEP to only do a constant offset. In this case, 4361 // just add it to the disp field and check validity. 4362 if (VariableOperand == -1) { 4363 AddrMode.BaseOffs += ConstantOffset; 4364 if (ConstantOffset == 0 || 4365 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4366 // Check to see if we can fold the base pointer in too. 4367 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4368 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4369 AddrMode.InBounds = false; 4370 return true; 4371 } 4372 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4373 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4374 ConstantOffset > 0) { 4375 // Record GEPs with non-zero offsets as candidates for splitting in the 4376 // event that the offset cannot fit into the r+i addressing mode. 4377 // Simple and common case that only one GEP is used in calculating the 4378 // address for the memory access. 4379 Value *Base = AddrInst->getOperand(0); 4380 auto *BaseI = dyn_cast<Instruction>(Base); 4381 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4382 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4383 (BaseI && !isa<CastInst>(BaseI) && 4384 !isa<GetElementPtrInst>(BaseI))) { 4385 // Make sure the parent block allows inserting non-PHI instructions 4386 // before the terminator. 4387 BasicBlock *Parent = 4388 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4389 if (!Parent->getTerminator()->isEHPad()) 4390 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4391 } 4392 } 4393 AddrMode.BaseOffs -= ConstantOffset; 4394 return false; 4395 } 4396 4397 // Save the valid addressing mode in case we can't match. 4398 ExtAddrMode BackupAddrMode = AddrMode; 4399 unsigned OldSize = AddrModeInsts.size(); 4400 4401 // See if the scale and offset amount is valid for this target. 4402 AddrMode.BaseOffs += ConstantOffset; 4403 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4404 AddrMode.InBounds = false; 4405 4406 // Match the base operand of the GEP. 4407 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4408 // If it couldn't be matched, just stuff the value in a register. 4409 if (AddrMode.HasBaseReg) { 4410 AddrMode = BackupAddrMode; 4411 AddrModeInsts.resize(OldSize); 4412 return false; 4413 } 4414 AddrMode.HasBaseReg = true; 4415 AddrMode.BaseReg = AddrInst->getOperand(0); 4416 } 4417 4418 // Match the remaining variable portion of the GEP. 4419 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4420 Depth)) { 4421 // If it couldn't be matched, try stuffing the base into a register 4422 // instead of matching it, and retrying the match of the scale. 4423 AddrMode = BackupAddrMode; 4424 AddrModeInsts.resize(OldSize); 4425 if (AddrMode.HasBaseReg) 4426 return false; 4427 AddrMode.HasBaseReg = true; 4428 AddrMode.BaseReg = AddrInst->getOperand(0); 4429 AddrMode.BaseOffs += ConstantOffset; 4430 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4431 VariableScale, Depth)) { 4432 // If even that didn't work, bail. 4433 AddrMode = BackupAddrMode; 4434 AddrModeInsts.resize(OldSize); 4435 return false; 4436 } 4437 } 4438 4439 return true; 4440 } 4441 case Instruction::SExt: 4442 case Instruction::ZExt: { 4443 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4444 if (!Ext) 4445 return false; 4446 4447 // Try to move this ext out of the way of the addressing mode. 4448 // Ask for a method for doing so. 4449 TypePromotionHelper::Action TPH = 4450 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4451 if (!TPH) 4452 return false; 4453 4454 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4455 TPT.getRestorationPoint(); 4456 unsigned CreatedInstsCost = 0; 4457 unsigned ExtCost = !TLI.isExtFree(Ext); 4458 Value *PromotedOperand = 4459 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4460 // SExt has been moved away. 4461 // Thus either it will be rematched later in the recursive calls or it is 4462 // gone. Anyway, we must not fold it into the addressing mode at this point. 4463 // E.g., 4464 // op = add opnd, 1 4465 // idx = ext op 4466 // addr = gep base, idx 4467 // is now: 4468 // promotedOpnd = ext opnd <- no match here 4469 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4470 // addr = gep base, op <- match 4471 if (MovedAway) 4472 *MovedAway = true; 4473 4474 assert(PromotedOperand && 4475 "TypePromotionHelper should have filtered out those cases"); 4476 4477 ExtAddrMode BackupAddrMode = AddrMode; 4478 unsigned OldSize = AddrModeInsts.size(); 4479 4480 if (!matchAddr(PromotedOperand, Depth) || 4481 // The total of the new cost is equal to the cost of the created 4482 // instructions. 4483 // The total of the old cost is equal to the cost of the extension plus 4484 // what we have saved in the addressing mode. 4485 !isPromotionProfitable(CreatedInstsCost, 4486 ExtCost + (AddrModeInsts.size() - OldSize), 4487 PromotedOperand)) { 4488 AddrMode = BackupAddrMode; 4489 AddrModeInsts.resize(OldSize); 4490 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4491 TPT.rollback(LastKnownGood); 4492 return false; 4493 } 4494 return true; 4495 } 4496 } 4497 return false; 4498 } 4499 4500 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4501 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4502 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4503 /// for the target. 4504 /// 4505 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4506 // Start a transaction at this point that we will rollback if the matching 4507 // fails. 4508 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4509 TPT.getRestorationPoint(); 4510 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4511 // Fold in immediates if legal for the target. 4512 AddrMode.BaseOffs += CI->getSExtValue(); 4513 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4514 return true; 4515 AddrMode.BaseOffs -= CI->getSExtValue(); 4516 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4517 // If this is a global variable, try to fold it into the addressing mode. 4518 if (!AddrMode.BaseGV) { 4519 AddrMode.BaseGV = GV; 4520 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4521 return true; 4522 AddrMode.BaseGV = nullptr; 4523 } 4524 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4525 ExtAddrMode BackupAddrMode = AddrMode; 4526 unsigned OldSize = AddrModeInsts.size(); 4527 4528 // Check to see if it is possible to fold this operation. 4529 bool MovedAway = false; 4530 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4531 // This instruction may have been moved away. If so, there is nothing 4532 // to check here. 4533 if (MovedAway) 4534 return true; 4535 // Okay, it's possible to fold this. Check to see if it is actually 4536 // *profitable* to do so. We use a simple cost model to avoid increasing 4537 // register pressure too much. 4538 if (I->hasOneUse() || 4539 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4540 AddrModeInsts.push_back(I); 4541 return true; 4542 } 4543 4544 // It isn't profitable to do this, roll back. 4545 //cerr << "NOT FOLDING: " << *I; 4546 AddrMode = BackupAddrMode; 4547 AddrModeInsts.resize(OldSize); 4548 TPT.rollback(LastKnownGood); 4549 } 4550 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4551 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4552 return true; 4553 TPT.rollback(LastKnownGood); 4554 } else if (isa<ConstantPointerNull>(Addr)) { 4555 // Null pointer gets folded without affecting the addressing mode. 4556 return true; 4557 } 4558 4559 // Worse case, the target should support [reg] addressing modes. :) 4560 if (!AddrMode.HasBaseReg) { 4561 AddrMode.HasBaseReg = true; 4562 AddrMode.BaseReg = Addr; 4563 // Still check for legality in case the target supports [imm] but not [i+r]. 4564 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4565 return true; 4566 AddrMode.HasBaseReg = false; 4567 AddrMode.BaseReg = nullptr; 4568 } 4569 4570 // If the base register is already taken, see if we can do [r+r]. 4571 if (AddrMode.Scale == 0) { 4572 AddrMode.Scale = 1; 4573 AddrMode.ScaledReg = Addr; 4574 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4575 return true; 4576 AddrMode.Scale = 0; 4577 AddrMode.ScaledReg = nullptr; 4578 } 4579 // Couldn't match. 4580 TPT.rollback(LastKnownGood); 4581 return false; 4582 } 4583 4584 /// Check to see if all uses of OpVal by the specified inline asm call are due 4585 /// to memory operands. If so, return true, otherwise return false. 4586 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4587 const TargetLowering &TLI, 4588 const TargetRegisterInfo &TRI) { 4589 const Function *F = CI->getFunction(); 4590 TargetLowering::AsmOperandInfoVector TargetConstraints = 4591 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI); 4592 4593 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4594 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4595 4596 // Compute the constraint code and ConstraintType to use. 4597 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4598 4599 // If this asm operand is our Value*, and if it isn't an indirect memory 4600 // operand, we can't fold it! 4601 if (OpInfo.CallOperandVal == OpVal && 4602 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4603 !OpInfo.isIndirect)) 4604 return false; 4605 } 4606 4607 return true; 4608 } 4609 4610 // Max number of memory uses to look at before aborting the search to conserve 4611 // compile time. 4612 static constexpr int MaxMemoryUsesToScan = 20; 4613 4614 /// Recursively walk all the uses of I until we find a memory use. 4615 /// If we find an obviously non-foldable instruction, return true. 4616 /// Add the ultimately found memory instructions to MemoryUses. 4617 static bool FindAllMemoryUses( 4618 Instruction *I, 4619 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4620 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4621 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 4622 BlockFrequencyInfo *BFI, int SeenInsts = 0) { 4623 // If we already considered this instruction, we're done. 4624 if (!ConsideredInsts.insert(I).second) 4625 return false; 4626 4627 // If this is an obviously unfoldable instruction, bail out. 4628 if (!MightBeFoldableInst(I)) 4629 return true; 4630 4631 // Loop over all the uses, recursively processing them. 4632 for (Use &U : I->uses()) { 4633 // Conservatively return true if we're seeing a large number or a deep chain 4634 // of users. This avoids excessive compilation times in pathological cases. 4635 if (SeenInsts++ >= MaxMemoryUsesToScan) 4636 return true; 4637 4638 Instruction *UserI = cast<Instruction>(U.getUser()); 4639 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4640 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4641 continue; 4642 } 4643 4644 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4645 unsigned opNo = U.getOperandNo(); 4646 if (opNo != StoreInst::getPointerOperandIndex()) 4647 return true; // Storing addr, not into addr. 4648 MemoryUses.push_back(std::make_pair(SI, opNo)); 4649 continue; 4650 } 4651 4652 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4653 unsigned opNo = U.getOperandNo(); 4654 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4655 return true; // Storing addr, not into addr. 4656 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4657 continue; 4658 } 4659 4660 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4661 unsigned opNo = U.getOperandNo(); 4662 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4663 return true; // Storing addr, not into addr. 4664 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4665 continue; 4666 } 4667 4668 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4669 if (CI->hasFnAttr(Attribute::Cold)) { 4670 // If this is a cold call, we can sink the addressing calculation into 4671 // the cold path. See optimizeCallInst 4672 bool OptForSize = OptSize || 4673 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 4674 if (!OptForSize) 4675 continue; 4676 } 4677 4678 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); 4679 if (!IA) return true; 4680 4681 // If this is a memory operand, we're cool, otherwise bail out. 4682 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4683 return true; 4684 continue; 4685 } 4686 4687 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4688 PSI, BFI, SeenInsts)) 4689 return true; 4690 } 4691 4692 return false; 4693 } 4694 4695 /// Return true if Val is already known to be live at the use site that we're 4696 /// folding it into. If so, there is no cost to include it in the addressing 4697 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4698 /// instruction already. 4699 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4700 Value *KnownLive2) { 4701 // If Val is either of the known-live values, we know it is live! 4702 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4703 return true; 4704 4705 // All values other than instructions and arguments (e.g. constants) are live. 4706 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4707 4708 // If Val is a constant sized alloca in the entry block, it is live, this is 4709 // true because it is just a reference to the stack/frame pointer, which is 4710 // live for the whole function. 4711 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4712 if (AI->isStaticAlloca()) 4713 return true; 4714 4715 // Check to see if this value is already used in the memory instruction's 4716 // block. If so, it's already live into the block at the very least, so we 4717 // can reasonably fold it. 4718 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4719 } 4720 4721 /// It is possible for the addressing mode of the machine to fold the specified 4722 /// instruction into a load or store that ultimately uses it. 4723 /// However, the specified instruction has multiple uses. 4724 /// Given this, it may actually increase register pressure to fold it 4725 /// into the load. For example, consider this code: 4726 /// 4727 /// X = ... 4728 /// Y = X+1 4729 /// use(Y) -> nonload/store 4730 /// Z = Y+1 4731 /// load Z 4732 /// 4733 /// In this case, Y has multiple uses, and can be folded into the load of Z 4734 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4735 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4736 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4737 /// number of computations either. 4738 /// 4739 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4740 /// X was live across 'load Z' for other reasons, we actually *would* want to 4741 /// fold the addressing mode in the Z case. This would make Y die earlier. 4742 bool AddressingModeMatcher:: 4743 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4744 ExtAddrMode &AMAfter) { 4745 if (IgnoreProfitability) return true; 4746 4747 // AMBefore is the addressing mode before this instruction was folded into it, 4748 // and AMAfter is the addressing mode after the instruction was folded. Get 4749 // the set of registers referenced by AMAfter and subtract out those 4750 // referenced by AMBefore: this is the set of values which folding in this 4751 // address extends the lifetime of. 4752 // 4753 // Note that there are only two potential values being referenced here, 4754 // BaseReg and ScaleReg (global addresses are always available, as are any 4755 // folded immediates). 4756 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4757 4758 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4759 // lifetime wasn't extended by adding this instruction. 4760 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4761 BaseReg = nullptr; 4762 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4763 ScaledReg = nullptr; 4764 4765 // If folding this instruction (and it's subexprs) didn't extend any live 4766 // ranges, we're ok with it. 4767 if (!BaseReg && !ScaledReg) 4768 return true; 4769 4770 // If all uses of this instruction can have the address mode sunk into them, 4771 // we can remove the addressing mode and effectively trade one live register 4772 // for another (at worst.) In this context, folding an addressing mode into 4773 // the use is just a particularly nice way of sinking it. 4774 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4775 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4776 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4777 PSI, BFI)) 4778 return false; // Has a non-memory, non-foldable use! 4779 4780 // Now that we know that all uses of this instruction are part of a chain of 4781 // computation involving only operations that could theoretically be folded 4782 // into a memory use, loop over each of these memory operation uses and see 4783 // if they could *actually* fold the instruction. The assumption is that 4784 // addressing modes are cheap and that duplicating the computation involved 4785 // many times is worthwhile, even on a fastpath. For sinking candidates 4786 // (i.e. cold call sites), this serves as a way to prevent excessive code 4787 // growth since most architectures have some reasonable small and fast way to 4788 // compute an effective address. (i.e LEA on x86) 4789 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4790 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4791 Instruction *User = MemoryUses[i].first; 4792 unsigned OpNo = MemoryUses[i].second; 4793 4794 // Get the access type of this use. If the use isn't a pointer, we don't 4795 // know what it accesses. 4796 Value *Address = User->getOperand(OpNo); 4797 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4798 if (!AddrTy) 4799 return false; 4800 Type *AddressAccessTy = AddrTy->getElementType(); 4801 unsigned AS = AddrTy->getAddressSpace(); 4802 4803 // Do a match against the root of this address, ignoring profitability. This 4804 // will tell us if the addressing mode for the memory operation will 4805 // *actually* cover the shared instruction. 4806 ExtAddrMode Result; 4807 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4808 0); 4809 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4810 TPT.getRestorationPoint(); 4811 AddressingModeMatcher Matcher( 4812 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4813 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, BFI); 4814 Matcher.IgnoreProfitability = true; 4815 bool Success = Matcher.matchAddr(Address, 0); 4816 (void)Success; assert(Success && "Couldn't select *anything*?"); 4817 4818 // The match was to check the profitability, the changes made are not 4819 // part of the original matcher. Therefore, they should be dropped 4820 // otherwise the original matcher will not present the right state. 4821 TPT.rollback(LastKnownGood); 4822 4823 // If the match didn't cover I, then it won't be shared by it. 4824 if (!is_contained(MatchedAddrModeInsts, I)) 4825 return false; 4826 4827 MatchedAddrModeInsts.clear(); 4828 } 4829 4830 return true; 4831 } 4832 4833 /// Return true if the specified values are defined in a 4834 /// different basic block than BB. 4835 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4836 if (Instruction *I = dyn_cast<Instruction>(V)) 4837 return I->getParent() != BB; 4838 return false; 4839 } 4840 4841 /// Sink addressing mode computation immediate before MemoryInst if doing so 4842 /// can be done without increasing register pressure. The need for the 4843 /// register pressure constraint means this can end up being an all or nothing 4844 /// decision for all uses of the same addressing computation. 4845 /// 4846 /// Load and Store Instructions often have addressing modes that can do 4847 /// significant amounts of computation. As such, instruction selection will try 4848 /// to get the load or store to do as much computation as possible for the 4849 /// program. The problem is that isel can only see within a single block. As 4850 /// such, we sink as much legal addressing mode work into the block as possible. 4851 /// 4852 /// This method is used to optimize both load/store and inline asms with memory 4853 /// operands. It's also used to sink addressing computations feeding into cold 4854 /// call sites into their (cold) basic block. 4855 /// 4856 /// The motivation for handling sinking into cold blocks is that doing so can 4857 /// both enable other address mode sinking (by satisfying the register pressure 4858 /// constraint above), and reduce register pressure globally (by removing the 4859 /// addressing mode computation from the fast path entirely.). 4860 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4861 Type *AccessTy, unsigned AddrSpace) { 4862 Value *Repl = Addr; 4863 4864 // Try to collapse single-value PHI nodes. This is necessary to undo 4865 // unprofitable PRE transformations. 4866 SmallVector<Value*, 8> worklist; 4867 SmallPtrSet<Value*, 16> Visited; 4868 worklist.push_back(Addr); 4869 4870 // Use a worklist to iteratively look through PHI and select nodes, and 4871 // ensure that the addressing mode obtained from the non-PHI/select roots of 4872 // the graph are compatible. 4873 bool PhiOrSelectSeen = false; 4874 SmallVector<Instruction*, 16> AddrModeInsts; 4875 const SimplifyQuery SQ(*DL, TLInfo); 4876 AddressingModeCombiner AddrModes(SQ, Addr); 4877 TypePromotionTransaction TPT(RemovedInsts); 4878 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4879 TPT.getRestorationPoint(); 4880 while (!worklist.empty()) { 4881 Value *V = worklist.back(); 4882 worklist.pop_back(); 4883 4884 // We allow traversing cyclic Phi nodes. 4885 // In case of success after this loop we ensure that traversing through 4886 // Phi nodes ends up with all cases to compute address of the form 4887 // BaseGV + Base + Scale * Index + Offset 4888 // where Scale and Offset are constans and BaseGV, Base and Index 4889 // are exactly the same Values in all cases. 4890 // It means that BaseGV, Scale and Offset dominate our memory instruction 4891 // and have the same value as they had in address computation represented 4892 // as Phi. So we can safely sink address computation to memory instruction. 4893 if (!Visited.insert(V).second) 4894 continue; 4895 4896 // For a PHI node, push all of its incoming values. 4897 if (PHINode *P = dyn_cast<PHINode>(V)) { 4898 for (Value *IncValue : P->incoming_values()) 4899 worklist.push_back(IncValue); 4900 PhiOrSelectSeen = true; 4901 continue; 4902 } 4903 // Similar for select. 4904 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4905 worklist.push_back(SI->getFalseValue()); 4906 worklist.push_back(SI->getTrueValue()); 4907 PhiOrSelectSeen = true; 4908 continue; 4909 } 4910 4911 // For non-PHIs, determine the addressing mode being computed. Note that 4912 // the result may differ depending on what other uses our candidate 4913 // addressing instructions might have. 4914 AddrModeInsts.clear(); 4915 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4916 0); 4917 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4918 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4919 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 4920 BFI.get()); 4921 4922 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4923 if (GEP && !NewGEPBases.count(GEP)) { 4924 // If splitting the underlying data structure can reduce the offset of a 4925 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4926 // previously split data structures. 4927 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4928 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4929 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4930 } 4931 4932 NewAddrMode.OriginalValue = V; 4933 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4934 break; 4935 } 4936 4937 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4938 // or we have multiple but either couldn't combine them or combining them 4939 // wouldn't do anything useful, bail out now. 4940 if (!AddrModes.combineAddrModes()) { 4941 TPT.rollback(LastKnownGood); 4942 return false; 4943 } 4944 TPT.commit(); 4945 4946 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4947 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4948 4949 // If all the instructions matched are already in this BB, don't do anything. 4950 // If we saw a Phi node then it is not local definitely, and if we saw a select 4951 // then we want to push the address calculation past it even if it's already 4952 // in this BB. 4953 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4954 return IsNonLocalValue(V, MemoryInst->getParent()); 4955 })) { 4956 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 4957 << "\n"); 4958 return false; 4959 } 4960 4961 // Insert this computation right after this user. Since our caller is 4962 // scanning from the top of the BB to the bottom, reuse of the expr are 4963 // guaranteed to happen later. 4964 IRBuilder<> Builder(MemoryInst); 4965 4966 // Now that we determined the addressing expression we want to use and know 4967 // that we have to sink it into this block. Check to see if we have already 4968 // done this for some other load/store instr in this block. If so, reuse 4969 // the computation. Before attempting reuse, check if the address is valid 4970 // as it may have been erased. 4971 4972 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4973 4974 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4975 if (SunkAddr) { 4976 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 4977 << " for " << *MemoryInst << "\n"); 4978 if (SunkAddr->getType() != Addr->getType()) 4979 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4980 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 4981 SubtargetInfo->addrSinkUsingGEPs())) { 4982 // By default, we use the GEP-based method when AA is used later. This 4983 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4984 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4985 << " for " << *MemoryInst << "\n"); 4986 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4987 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4988 4989 // First, find the pointer. 4990 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4991 ResultPtr = AddrMode.BaseReg; 4992 AddrMode.BaseReg = nullptr; 4993 } 4994 4995 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4996 // We can't add more than one pointer together, nor can we scale a 4997 // pointer (both of which seem meaningless). 4998 if (ResultPtr || AddrMode.Scale != 1) 4999 return false; 5000 5001 ResultPtr = AddrMode.ScaledReg; 5002 AddrMode.Scale = 0; 5003 } 5004 5005 // It is only safe to sign extend the BaseReg if we know that the math 5006 // required to create it did not overflow before we extend it. Since 5007 // the original IR value was tossed in favor of a constant back when 5008 // the AddrMode was created we need to bail out gracefully if widths 5009 // do not match instead of extending it. 5010 // 5011 // (See below for code to add the scale.) 5012 if (AddrMode.Scale) { 5013 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 5014 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 5015 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 5016 return false; 5017 } 5018 5019 if (AddrMode.BaseGV) { 5020 if (ResultPtr) 5021 return false; 5022 5023 ResultPtr = AddrMode.BaseGV; 5024 } 5025 5026 // If the real base value actually came from an inttoptr, then the matcher 5027 // will look through it and provide only the integer value. In that case, 5028 // use it here. 5029 if (!DL->isNonIntegralPointerType(Addr->getType())) { 5030 if (!ResultPtr && AddrMode.BaseReg) { 5031 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 5032 "sunkaddr"); 5033 AddrMode.BaseReg = nullptr; 5034 } else if (!ResultPtr && AddrMode.Scale == 1) { 5035 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 5036 "sunkaddr"); 5037 AddrMode.Scale = 0; 5038 } 5039 } 5040 5041 if (!ResultPtr && 5042 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 5043 SunkAddr = Constant::getNullValue(Addr->getType()); 5044 } else if (!ResultPtr) { 5045 return false; 5046 } else { 5047 Type *I8PtrTy = 5048 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 5049 Type *I8Ty = Builder.getInt8Ty(); 5050 5051 // Start with the base register. Do this first so that subsequent address 5052 // matching finds it last, which will prevent it from trying to match it 5053 // as the scaled value in case it happens to be a mul. That would be 5054 // problematic if we've sunk a different mul for the scale, because then 5055 // we'd end up sinking both muls. 5056 if (AddrMode.BaseReg) { 5057 Value *V = AddrMode.BaseReg; 5058 if (V->getType() != IntPtrTy) 5059 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5060 5061 ResultIndex = V; 5062 } 5063 5064 // Add the scale value. 5065 if (AddrMode.Scale) { 5066 Value *V = AddrMode.ScaledReg; 5067 if (V->getType() == IntPtrTy) { 5068 // done. 5069 } else { 5070 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5071 cast<IntegerType>(V->getType())->getBitWidth() && 5072 "We can't transform if ScaledReg is too narrow"); 5073 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5074 } 5075 5076 if (AddrMode.Scale != 1) 5077 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5078 "sunkaddr"); 5079 if (ResultIndex) 5080 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5081 else 5082 ResultIndex = V; 5083 } 5084 5085 // Add in the Base Offset if present. 5086 if (AddrMode.BaseOffs) { 5087 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5088 if (ResultIndex) { 5089 // We need to add this separately from the scale above to help with 5090 // SDAG consecutive load/store merging. 5091 if (ResultPtr->getType() != I8PtrTy) 5092 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5093 ResultPtr = 5094 AddrMode.InBounds 5095 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5096 "sunkaddr") 5097 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5098 } 5099 5100 ResultIndex = V; 5101 } 5102 5103 if (!ResultIndex) { 5104 SunkAddr = ResultPtr; 5105 } else { 5106 if (ResultPtr->getType() != I8PtrTy) 5107 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5108 SunkAddr = 5109 AddrMode.InBounds 5110 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5111 "sunkaddr") 5112 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5113 } 5114 5115 if (SunkAddr->getType() != Addr->getType()) 5116 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5117 } 5118 } else { 5119 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5120 // non-integral pointers, so in that case bail out now. 5121 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5122 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5123 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5124 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5125 if (DL->isNonIntegralPointerType(Addr->getType()) || 5126 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5127 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5128 (AddrMode.BaseGV && 5129 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5130 return false; 5131 5132 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5133 << " for " << *MemoryInst << "\n"); 5134 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5135 Value *Result = nullptr; 5136 5137 // Start with the base register. Do this first so that subsequent address 5138 // matching finds it last, which will prevent it from trying to match it 5139 // as the scaled value in case it happens to be a mul. That would be 5140 // problematic if we've sunk a different mul for the scale, because then 5141 // we'd end up sinking both muls. 5142 if (AddrMode.BaseReg) { 5143 Value *V = AddrMode.BaseReg; 5144 if (V->getType()->isPointerTy()) 5145 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5146 if (V->getType() != IntPtrTy) 5147 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5148 Result = V; 5149 } 5150 5151 // Add the scale value. 5152 if (AddrMode.Scale) { 5153 Value *V = AddrMode.ScaledReg; 5154 if (V->getType() == IntPtrTy) { 5155 // done. 5156 } else if (V->getType()->isPointerTy()) { 5157 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5158 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5159 cast<IntegerType>(V->getType())->getBitWidth()) { 5160 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5161 } else { 5162 // It is only safe to sign extend the BaseReg if we know that the math 5163 // required to create it did not overflow before we extend it. Since 5164 // the original IR value was tossed in favor of a constant back when 5165 // the AddrMode was created we need to bail out gracefully if widths 5166 // do not match instead of extending it. 5167 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5168 if (I && (Result != AddrMode.BaseReg)) 5169 I->eraseFromParent(); 5170 return false; 5171 } 5172 if (AddrMode.Scale != 1) 5173 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5174 "sunkaddr"); 5175 if (Result) 5176 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5177 else 5178 Result = V; 5179 } 5180 5181 // Add in the BaseGV if present. 5182 if (AddrMode.BaseGV) { 5183 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5184 if (Result) 5185 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5186 else 5187 Result = V; 5188 } 5189 5190 // Add in the Base Offset if present. 5191 if (AddrMode.BaseOffs) { 5192 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5193 if (Result) 5194 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5195 else 5196 Result = V; 5197 } 5198 5199 if (!Result) 5200 SunkAddr = Constant::getNullValue(Addr->getType()); 5201 else 5202 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5203 } 5204 5205 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5206 // Store the newly computed address into the cache. In the case we reused a 5207 // value, this should be idempotent. 5208 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5209 5210 // If we have no uses, recursively delete the value and all dead instructions 5211 // using it. 5212 if (Repl->use_empty()) { 5213 // This can cause recursive deletion, which can invalidate our iterator. 5214 // Use a WeakTrackingVH to hold onto it in case this happens. 5215 Value *CurValue = &*CurInstIterator; 5216 WeakTrackingVH IterHandle(CurValue); 5217 BasicBlock *BB = CurInstIterator->getParent(); 5218 5219 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 5220 5221 if (IterHandle != CurValue) { 5222 // If the iterator instruction was recursively deleted, start over at the 5223 // start of the block. 5224 CurInstIterator = BB->begin(); 5225 SunkAddrs.clear(); 5226 } 5227 } 5228 ++NumMemoryInsts; 5229 return true; 5230 } 5231 5232 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find 5233 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can 5234 /// only handle a 2 operand GEP in the same basic block or a splat constant 5235 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector 5236 /// index. 5237 /// 5238 /// If the existing GEP has a vector base pointer that is splat, we can look 5239 /// through the splat to find the scalar pointer. If we can't find a scalar 5240 /// pointer there's nothing we can do. 5241 /// 5242 /// If we have a GEP with more than 2 indices where the middle indices are all 5243 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. 5244 /// 5245 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP 5246 /// followed by a GEP with an all zeroes vector index. This will enable 5247 /// SelectionDAGBuilder to use a the scalar GEP as the uniform base and have a 5248 /// zero index. 5249 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, 5250 Value *Ptr) { 5251 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 5252 if (!GEP || !GEP->hasIndices()) 5253 return false; 5254 5255 // If the GEP and the gather/scatter aren't in the same BB, don't optimize. 5256 // FIXME: We should support this by sinking the GEP. 5257 if (MemoryInst->getParent() != GEP->getParent()) 5258 return false; 5259 5260 SmallVector<Value *, 2> Ops(GEP->op_begin(), GEP->op_end()); 5261 5262 bool RewriteGEP = false; 5263 5264 if (Ops[0]->getType()->isVectorTy()) { 5265 Ops[0] = const_cast<Value *>(getSplatValue(Ops[0])); 5266 if (!Ops[0]) 5267 return false; 5268 RewriteGEP = true; 5269 } 5270 5271 unsigned FinalIndex = Ops.size() - 1; 5272 5273 // Ensure all but the last index is 0. 5274 // FIXME: This isn't strictly required. All that's required is that they are 5275 // all scalars or splats. 5276 for (unsigned i = 1; i < FinalIndex; ++i) { 5277 auto *C = dyn_cast<Constant>(Ops[i]); 5278 if (!C) 5279 return false; 5280 if (isa<VectorType>(C->getType())) 5281 C = C->getSplatValue(); 5282 auto *CI = dyn_cast_or_null<ConstantInt>(C); 5283 if (!CI || !CI->isZero()) 5284 return false; 5285 // Scalarize the index if needed. 5286 Ops[i] = CI; 5287 } 5288 5289 // Try to scalarize the final index. 5290 if (Ops[FinalIndex]->getType()->isVectorTy()) { 5291 if (Value *V = const_cast<Value *>(getSplatValue(Ops[FinalIndex]))) { 5292 auto *C = dyn_cast<ConstantInt>(V); 5293 // Don't scalarize all zeros vector. 5294 if (!C || !C->isZero()) { 5295 Ops[FinalIndex] = V; 5296 RewriteGEP = true; 5297 } 5298 } 5299 } 5300 5301 // If we made any changes or the we have extra operands, we need to generate 5302 // new instructions. 5303 if (!RewriteGEP && Ops.size() == 2) 5304 return false; 5305 5306 unsigned NumElts = cast<VectorType>(Ptr->getType())->getNumElements(); 5307 5308 IRBuilder<> Builder(MemoryInst); 5309 5310 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); 5311 5312 Value *NewAddr; 5313 5314 // If the final index isn't a vector, emit a scalar GEP containing all ops 5315 // and a vector GEP with all zeroes final index. 5316 if (!Ops[FinalIndex]->getType()->isVectorTy()) { 5317 NewAddr = Builder.CreateGEP(Ops[0], makeArrayRef(Ops).drop_front()); 5318 Type *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5319 NewAddr = Builder.CreateGEP(NewAddr, Constant::getNullValue(IndexTy)); 5320 } else { 5321 Value *Base = Ops[0]; 5322 Value *Index = Ops[FinalIndex]; 5323 5324 // Create a scalar GEP if there are more than 2 operands. 5325 if (Ops.size() != 2) { 5326 // Replace the last index with 0. 5327 Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy); 5328 Base = Builder.CreateGEP(Base, makeArrayRef(Ops).drop_front()); 5329 } 5330 5331 // Now create the GEP with scalar pointer and vector index. 5332 NewAddr = Builder.CreateGEP(Base, Index); 5333 } 5334 5335 MemoryInst->replaceUsesOfWith(Ptr, NewAddr); 5336 5337 // If we have no uses, recursively delete the value and all dead instructions 5338 // using it. 5339 if (Ptr->use_empty()) 5340 RecursivelyDeleteTriviallyDeadInstructions(Ptr, TLInfo); 5341 5342 return true; 5343 } 5344 5345 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5346 /// address computing into the block when possible / profitable. 5347 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5348 bool MadeChange = false; 5349 5350 const TargetRegisterInfo *TRI = 5351 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5352 TargetLowering::AsmOperandInfoVector TargetConstraints = 5353 TLI->ParseConstraints(*DL, TRI, *CS); 5354 unsigned ArgNo = 0; 5355 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5356 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5357 5358 // Compute the constraint code and ConstraintType to use. 5359 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5360 5361 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5362 OpInfo.isIndirect) { 5363 Value *OpVal = CS->getArgOperand(ArgNo++); 5364 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5365 } else if (OpInfo.Type == InlineAsm::isInput) 5366 ArgNo++; 5367 } 5368 5369 return MadeChange; 5370 } 5371 5372 /// Check if all the uses of \p Val are equivalent (or free) zero or 5373 /// sign extensions. 5374 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5375 assert(!Val->use_empty() && "Input must have at least one use"); 5376 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5377 bool IsSExt = isa<SExtInst>(FirstUser); 5378 Type *ExtTy = FirstUser->getType(); 5379 for (const User *U : Val->users()) { 5380 const Instruction *UI = cast<Instruction>(U); 5381 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5382 return false; 5383 Type *CurTy = UI->getType(); 5384 // Same input and output types: Same instruction after CSE. 5385 if (CurTy == ExtTy) 5386 continue; 5387 5388 // If IsSExt is true, we are in this situation: 5389 // a = Val 5390 // b = sext ty1 a to ty2 5391 // c = sext ty1 a to ty3 5392 // Assuming ty2 is shorter than ty3, this could be turned into: 5393 // a = Val 5394 // b = sext ty1 a to ty2 5395 // c = sext ty2 b to ty3 5396 // However, the last sext is not free. 5397 if (IsSExt) 5398 return false; 5399 5400 // This is a ZExt, maybe this is free to extend from one type to another. 5401 // In that case, we would not account for a different use. 5402 Type *NarrowTy; 5403 Type *LargeTy; 5404 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5405 CurTy->getScalarType()->getIntegerBitWidth()) { 5406 NarrowTy = CurTy; 5407 LargeTy = ExtTy; 5408 } else { 5409 NarrowTy = ExtTy; 5410 LargeTy = CurTy; 5411 } 5412 5413 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5414 return false; 5415 } 5416 // All uses are the same or can be derived from one another for free. 5417 return true; 5418 } 5419 5420 /// Try to speculatively promote extensions in \p Exts and continue 5421 /// promoting through newly promoted operands recursively as far as doing so is 5422 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5423 /// When some promotion happened, \p TPT contains the proper state to revert 5424 /// them. 5425 /// 5426 /// \return true if some promotion happened, false otherwise. 5427 bool CodeGenPrepare::tryToPromoteExts( 5428 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5429 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5430 unsigned CreatedInstsCost) { 5431 bool Promoted = false; 5432 5433 // Iterate over all the extensions to try to promote them. 5434 for (auto I : Exts) { 5435 // Early check if we directly have ext(load). 5436 if (isa<LoadInst>(I->getOperand(0))) { 5437 ProfitablyMovedExts.push_back(I); 5438 continue; 5439 } 5440 5441 // Check whether or not we want to do any promotion. The reason we have 5442 // this check inside the for loop is to catch the case where an extension 5443 // is directly fed by a load because in such case the extension can be moved 5444 // up without any promotion on its operands. 5445 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5446 return false; 5447 5448 // Get the action to perform the promotion. 5449 TypePromotionHelper::Action TPH = 5450 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5451 // Check if we can promote. 5452 if (!TPH) { 5453 // Save the current extension as we cannot move up through its operand. 5454 ProfitablyMovedExts.push_back(I); 5455 continue; 5456 } 5457 5458 // Save the current state. 5459 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5460 TPT.getRestorationPoint(); 5461 SmallVector<Instruction *, 4> NewExts; 5462 unsigned NewCreatedInstsCost = 0; 5463 unsigned ExtCost = !TLI->isExtFree(I); 5464 // Promote. 5465 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5466 &NewExts, nullptr, *TLI); 5467 assert(PromotedVal && 5468 "TypePromotionHelper should have filtered out those cases"); 5469 5470 // We would be able to merge only one extension in a load. 5471 // Therefore, if we have more than 1 new extension we heuristically 5472 // cut this search path, because it means we degrade the code quality. 5473 // With exactly 2, the transformation is neutral, because we will merge 5474 // one extension but leave one. However, we optimistically keep going, 5475 // because the new extension may be removed too. 5476 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5477 // FIXME: It would be possible to propagate a negative value instead of 5478 // conservatively ceiling it to 0. 5479 TotalCreatedInstsCost = 5480 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5481 if (!StressExtLdPromotion && 5482 (TotalCreatedInstsCost > 1 || 5483 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5484 // This promotion is not profitable, rollback to the previous state, and 5485 // save the current extension in ProfitablyMovedExts as the latest 5486 // speculative promotion turned out to be unprofitable. 5487 TPT.rollback(LastKnownGood); 5488 ProfitablyMovedExts.push_back(I); 5489 continue; 5490 } 5491 // Continue promoting NewExts as far as doing so is profitable. 5492 SmallVector<Instruction *, 2> NewlyMovedExts; 5493 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5494 bool NewPromoted = false; 5495 for (auto ExtInst : NewlyMovedExts) { 5496 Instruction *MovedExt = cast<Instruction>(ExtInst); 5497 Value *ExtOperand = MovedExt->getOperand(0); 5498 // If we have reached to a load, we need this extra profitability check 5499 // as it could potentially be merged into an ext(load). 5500 if (isa<LoadInst>(ExtOperand) && 5501 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5502 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5503 continue; 5504 5505 ProfitablyMovedExts.push_back(MovedExt); 5506 NewPromoted = true; 5507 } 5508 5509 // If none of speculative promotions for NewExts is profitable, rollback 5510 // and save the current extension (I) as the last profitable extension. 5511 if (!NewPromoted) { 5512 TPT.rollback(LastKnownGood); 5513 ProfitablyMovedExts.push_back(I); 5514 continue; 5515 } 5516 // The promotion is profitable. 5517 Promoted = true; 5518 } 5519 return Promoted; 5520 } 5521 5522 /// Merging redundant sexts when one is dominating the other. 5523 bool CodeGenPrepare::mergeSExts(Function &F) { 5524 bool Changed = false; 5525 for (auto &Entry : ValToSExtendedUses) { 5526 SExts &Insts = Entry.second; 5527 SExts CurPts; 5528 for (Instruction *Inst : Insts) { 5529 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5530 Inst->getOperand(0) != Entry.first) 5531 continue; 5532 bool inserted = false; 5533 for (auto &Pt : CurPts) { 5534 if (getDT(F).dominates(Inst, Pt)) { 5535 Pt->replaceAllUsesWith(Inst); 5536 RemovedInsts.insert(Pt); 5537 Pt->removeFromParent(); 5538 Pt = Inst; 5539 inserted = true; 5540 Changed = true; 5541 break; 5542 } 5543 if (!getDT(F).dominates(Pt, Inst)) 5544 // Give up if we need to merge in a common dominator as the 5545 // experiments show it is not profitable. 5546 continue; 5547 Inst->replaceAllUsesWith(Pt); 5548 RemovedInsts.insert(Inst); 5549 Inst->removeFromParent(); 5550 inserted = true; 5551 Changed = true; 5552 break; 5553 } 5554 if (!inserted) 5555 CurPts.push_back(Inst); 5556 } 5557 } 5558 return Changed; 5559 } 5560 5561 // Spliting large data structures so that the GEPs accessing them can have 5562 // smaller offsets so that they can be sunk to the same blocks as their users. 5563 // For example, a large struct starting from %base is splitted into two parts 5564 // where the second part starts from %new_base. 5565 // 5566 // Before: 5567 // BB0: 5568 // %base = 5569 // 5570 // BB1: 5571 // %gep0 = gep %base, off0 5572 // %gep1 = gep %base, off1 5573 // %gep2 = gep %base, off2 5574 // 5575 // BB2: 5576 // %load1 = load %gep0 5577 // %load2 = load %gep1 5578 // %load3 = load %gep2 5579 // 5580 // After: 5581 // BB0: 5582 // %base = 5583 // %new_base = gep %base, off0 5584 // 5585 // BB1: 5586 // %new_gep0 = %new_base 5587 // %new_gep1 = gep %new_base, off1 - off0 5588 // %new_gep2 = gep %new_base, off2 - off0 5589 // 5590 // BB2: 5591 // %load1 = load i32, i32* %new_gep0 5592 // %load2 = load i32, i32* %new_gep1 5593 // %load3 = load i32, i32* %new_gep2 5594 // 5595 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5596 // their offsets are smaller enough to fit into the addressing mode. 5597 bool CodeGenPrepare::splitLargeGEPOffsets() { 5598 bool Changed = false; 5599 for (auto &Entry : LargeOffsetGEPMap) { 5600 Value *OldBase = Entry.first; 5601 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5602 &LargeOffsetGEPs = Entry.second; 5603 auto compareGEPOffset = 5604 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5605 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5606 if (LHS.first == RHS.first) 5607 return false; 5608 if (LHS.second != RHS.second) 5609 return LHS.second < RHS.second; 5610 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5611 }; 5612 // Sorting all the GEPs of the same data structures based on the offsets. 5613 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5614 LargeOffsetGEPs.erase( 5615 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5616 LargeOffsetGEPs.end()); 5617 // Skip if all the GEPs have the same offsets. 5618 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5619 continue; 5620 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5621 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5622 Value *NewBaseGEP = nullptr; 5623 5624 auto LargeOffsetGEP = LargeOffsetGEPs.begin(); 5625 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5626 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5627 int64_t Offset = LargeOffsetGEP->second; 5628 if (Offset != BaseOffset) { 5629 TargetLowering::AddrMode AddrMode; 5630 AddrMode.BaseOffs = Offset - BaseOffset; 5631 // The result type of the GEP might not be the type of the memory 5632 // access. 5633 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5634 GEP->getResultElementType(), 5635 GEP->getAddressSpace())) { 5636 // We need to create a new base if the offset to the current base is 5637 // too large to fit into the addressing mode. So, a very large struct 5638 // may be splitted into several parts. 5639 BaseGEP = GEP; 5640 BaseOffset = Offset; 5641 NewBaseGEP = nullptr; 5642 } 5643 } 5644 5645 // Generate a new GEP to replace the current one. 5646 LLVMContext &Ctx = GEP->getContext(); 5647 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5648 Type *I8PtrTy = 5649 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5650 Type *I8Ty = Type::getInt8Ty(Ctx); 5651 5652 if (!NewBaseGEP) { 5653 // Create a new base if we don't have one yet. Find the insertion 5654 // pointer for the new base first. 5655 BasicBlock::iterator NewBaseInsertPt; 5656 BasicBlock *NewBaseInsertBB; 5657 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5658 // If the base of the struct is an instruction, the new base will be 5659 // inserted close to it. 5660 NewBaseInsertBB = BaseI->getParent(); 5661 if (isa<PHINode>(BaseI)) 5662 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5663 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5664 NewBaseInsertBB = 5665 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5666 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5667 } else 5668 NewBaseInsertPt = std::next(BaseI->getIterator()); 5669 } else { 5670 // If the current base is an argument or global value, the new base 5671 // will be inserted to the entry block. 5672 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5673 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5674 } 5675 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5676 // Create a new base. 5677 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5678 NewBaseGEP = OldBase; 5679 if (NewBaseGEP->getType() != I8PtrTy) 5680 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5681 NewBaseGEP = 5682 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5683 NewGEPBases.insert(NewBaseGEP); 5684 } 5685 5686 IRBuilder<> Builder(GEP); 5687 Value *NewGEP = NewBaseGEP; 5688 if (Offset == BaseOffset) { 5689 if (GEP->getType() != I8PtrTy) 5690 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5691 } else { 5692 // Calculate the new offset for the new GEP. 5693 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5694 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5695 5696 if (GEP->getType() != I8PtrTy) 5697 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5698 } 5699 GEP->replaceAllUsesWith(NewGEP); 5700 LargeOffsetGEPID.erase(GEP); 5701 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5702 GEP->eraseFromParent(); 5703 Changed = true; 5704 } 5705 } 5706 return Changed; 5707 } 5708 5709 /// Return true, if an ext(load) can be formed from an extension in 5710 /// \p MovedExts. 5711 bool CodeGenPrepare::canFormExtLd( 5712 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5713 Instruction *&Inst, bool HasPromoted) { 5714 for (auto *MovedExtInst : MovedExts) { 5715 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5716 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5717 Inst = MovedExtInst; 5718 break; 5719 } 5720 } 5721 if (!LI) 5722 return false; 5723 5724 // If they're already in the same block, there's nothing to do. 5725 // Make the cheap checks first if we did not promote. 5726 // If we promoted, we need to check if it is indeed profitable. 5727 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5728 return false; 5729 5730 return TLI->isExtLoad(LI, Inst, *DL); 5731 } 5732 5733 /// Move a zext or sext fed by a load into the same basic block as the load, 5734 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5735 /// extend into the load. 5736 /// 5737 /// E.g., 5738 /// \code 5739 /// %ld = load i32* %addr 5740 /// %add = add nuw i32 %ld, 4 5741 /// %zext = zext i32 %add to i64 5742 // \endcode 5743 /// => 5744 /// \code 5745 /// %ld = load i32* %addr 5746 /// %zext = zext i32 %ld to i64 5747 /// %add = add nuw i64 %zext, 4 5748 /// \encode 5749 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5750 /// allow us to match zext(load i32*) to i64. 5751 /// 5752 /// Also, try to promote the computations used to obtain a sign extended 5753 /// value used into memory accesses. 5754 /// E.g., 5755 /// \code 5756 /// a = add nsw i32 b, 3 5757 /// d = sext i32 a to i64 5758 /// e = getelementptr ..., i64 d 5759 /// \endcode 5760 /// => 5761 /// \code 5762 /// f = sext i32 b to i64 5763 /// a = add nsw i64 f, 3 5764 /// e = getelementptr ..., i64 a 5765 /// \endcode 5766 /// 5767 /// \p Inst[in/out] the extension may be modified during the process if some 5768 /// promotions apply. 5769 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 5770 bool AllowPromotionWithoutCommonHeader = false; 5771 /// See if it is an interesting sext operations for the address type 5772 /// promotion before trying to promote it, e.g., the ones with the right 5773 /// type and used in memory accesses. 5774 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 5775 *Inst, AllowPromotionWithoutCommonHeader); 5776 TypePromotionTransaction TPT(RemovedInsts); 5777 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5778 TPT.getRestorationPoint(); 5779 SmallVector<Instruction *, 1> Exts; 5780 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 5781 Exts.push_back(Inst); 5782 5783 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 5784 5785 // Look for a load being extended. 5786 LoadInst *LI = nullptr; 5787 Instruction *ExtFedByLoad; 5788 5789 // Try to promote a chain of computation if it allows to form an extended 5790 // load. 5791 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5792 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5793 TPT.commit(); 5794 // Move the extend into the same block as the load 5795 ExtFedByLoad->moveAfter(LI); 5796 // CGP does not check if the zext would be speculatively executed when moved 5797 // to the same basic block as the load. Preserving its original location 5798 // would pessimize the debugging experience, as well as negatively impact 5799 // the quality of sample pgo. We don't want to use "line 0" as that has a 5800 // size cost in the line-table section and logically the zext can be seen as 5801 // part of the load. Therefore we conservatively reuse the same debug 5802 // location for the load and the zext. 5803 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 5804 ++NumExtsMoved; 5805 Inst = ExtFedByLoad; 5806 return true; 5807 } 5808 5809 // Continue promoting SExts if known as considerable depending on targets. 5810 if (ATPConsiderable && 5811 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5812 HasPromoted, TPT, SpeculativelyMovedExts)) 5813 return true; 5814 5815 TPT.rollback(LastKnownGood); 5816 return false; 5817 } 5818 5819 // Perform address type promotion if doing so is profitable. 5820 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5821 // instructions that sign extended the same initial value. However, if 5822 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5823 // extension is just profitable. 5824 bool CodeGenPrepare::performAddressTypePromotion( 5825 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5826 bool HasPromoted, TypePromotionTransaction &TPT, 5827 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5828 bool Promoted = false; 5829 SmallPtrSet<Instruction *, 1> UnhandledExts; 5830 bool AllSeenFirst = true; 5831 for (auto I : SpeculativelyMovedExts) { 5832 Value *HeadOfChain = I->getOperand(0); 5833 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 5834 SeenChainsForSExt.find(HeadOfChain); 5835 // If there is an unhandled SExt which has the same header, try to promote 5836 // it as well. 5837 if (AlreadySeen != SeenChainsForSExt.end()) { 5838 if (AlreadySeen->second != nullptr) 5839 UnhandledExts.insert(AlreadySeen->second); 5840 AllSeenFirst = false; 5841 } 5842 } 5843 5844 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 5845 SpeculativelyMovedExts.size() == 1)) { 5846 TPT.commit(); 5847 if (HasPromoted) 5848 Promoted = true; 5849 for (auto I : SpeculativelyMovedExts) { 5850 Value *HeadOfChain = I->getOperand(0); 5851 SeenChainsForSExt[HeadOfChain] = nullptr; 5852 ValToSExtendedUses[HeadOfChain].push_back(I); 5853 } 5854 // Update Inst as promotion happen. 5855 Inst = SpeculativelyMovedExts.pop_back_val(); 5856 } else { 5857 // This is the first chain visited from the header, keep the current chain 5858 // as unhandled. Defer to promote this until we encounter another SExt 5859 // chain derived from the same header. 5860 for (auto I : SpeculativelyMovedExts) { 5861 Value *HeadOfChain = I->getOperand(0); 5862 SeenChainsForSExt[HeadOfChain] = Inst; 5863 } 5864 return false; 5865 } 5866 5867 if (!AllSeenFirst && !UnhandledExts.empty()) 5868 for (auto VisitedSExt : UnhandledExts) { 5869 if (RemovedInsts.count(VisitedSExt)) 5870 continue; 5871 TypePromotionTransaction TPT(RemovedInsts); 5872 SmallVector<Instruction *, 1> Exts; 5873 SmallVector<Instruction *, 2> Chains; 5874 Exts.push_back(VisitedSExt); 5875 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 5876 TPT.commit(); 5877 if (HasPromoted) 5878 Promoted = true; 5879 for (auto I : Chains) { 5880 Value *HeadOfChain = I->getOperand(0); 5881 // Mark this as handled. 5882 SeenChainsForSExt[HeadOfChain] = nullptr; 5883 ValToSExtendedUses[HeadOfChain].push_back(I); 5884 } 5885 } 5886 return Promoted; 5887 } 5888 5889 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5890 BasicBlock *DefBB = I->getParent(); 5891 5892 // If the result of a {s|z}ext and its source are both live out, rewrite all 5893 // other uses of the source with result of extension. 5894 Value *Src = I->getOperand(0); 5895 if (Src->hasOneUse()) 5896 return false; 5897 5898 // Only do this xform if truncating is free. 5899 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 5900 return false; 5901 5902 // Only safe to perform the optimization if the source is also defined in 5903 // this block. 5904 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5905 return false; 5906 5907 bool DefIsLiveOut = false; 5908 for (User *U : I->users()) { 5909 Instruction *UI = cast<Instruction>(U); 5910 5911 // Figure out which BB this ext is used in. 5912 BasicBlock *UserBB = UI->getParent(); 5913 if (UserBB == DefBB) continue; 5914 DefIsLiveOut = true; 5915 break; 5916 } 5917 if (!DefIsLiveOut) 5918 return false; 5919 5920 // Make sure none of the uses are PHI nodes. 5921 for (User *U : Src->users()) { 5922 Instruction *UI = cast<Instruction>(U); 5923 BasicBlock *UserBB = UI->getParent(); 5924 if (UserBB == DefBB) continue; 5925 // Be conservative. We don't want this xform to end up introducing 5926 // reloads just before load / store instructions. 5927 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5928 return false; 5929 } 5930 5931 // InsertedTruncs - Only insert one trunc in each block once. 5932 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5933 5934 bool MadeChange = false; 5935 for (Use &U : Src->uses()) { 5936 Instruction *User = cast<Instruction>(U.getUser()); 5937 5938 // Figure out which BB this ext is used in. 5939 BasicBlock *UserBB = User->getParent(); 5940 if (UserBB == DefBB) continue; 5941 5942 // Both src and def are live in this block. Rewrite the use. 5943 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5944 5945 if (!InsertedTrunc) { 5946 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5947 assert(InsertPt != UserBB->end()); 5948 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5949 InsertedInsts.insert(InsertedTrunc); 5950 } 5951 5952 // Replace a use of the {s|z}ext source with a use of the result. 5953 U = InsertedTrunc; 5954 ++NumExtUses; 5955 MadeChange = true; 5956 } 5957 5958 return MadeChange; 5959 } 5960 5961 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5962 // just after the load if the target can fold this into one extload instruction, 5963 // with the hope of eliminating some of the other later "and" instructions using 5964 // the loaded value. "and"s that are made trivially redundant by the insertion 5965 // of the new "and" are removed by this function, while others (e.g. those whose 5966 // path from the load goes through a phi) are left for isel to potentially 5967 // remove. 5968 // 5969 // For example: 5970 // 5971 // b0: 5972 // x = load i32 5973 // ... 5974 // b1: 5975 // y = and x, 0xff 5976 // z = use y 5977 // 5978 // becomes: 5979 // 5980 // b0: 5981 // x = load i32 5982 // x' = and x, 0xff 5983 // ... 5984 // b1: 5985 // z = use x' 5986 // 5987 // whereas: 5988 // 5989 // b0: 5990 // x1 = load i32 5991 // ... 5992 // b1: 5993 // x2 = load i32 5994 // ... 5995 // b2: 5996 // x = phi x1, x2 5997 // y = and x, 0xff 5998 // 5999 // becomes (after a call to optimizeLoadExt for each load): 6000 // 6001 // b0: 6002 // x1 = load i32 6003 // x1' = and x1, 0xff 6004 // ... 6005 // b1: 6006 // x2 = load i32 6007 // x2' = and x2, 0xff 6008 // ... 6009 // b2: 6010 // x = phi x1', x2' 6011 // y = and x, 0xff 6012 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 6013 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 6014 return false; 6015 6016 // Skip loads we've already transformed. 6017 if (Load->hasOneUse() && 6018 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 6019 return false; 6020 6021 // Look at all uses of Load, looking through phis, to determine how many bits 6022 // of the loaded value are needed. 6023 SmallVector<Instruction *, 8> WorkList; 6024 SmallPtrSet<Instruction *, 16> Visited; 6025 SmallVector<Instruction *, 8> AndsToMaybeRemove; 6026 for (auto *U : Load->users()) 6027 WorkList.push_back(cast<Instruction>(U)); 6028 6029 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 6030 unsigned BitWidth = LoadResultVT.getSizeInBits(); 6031 APInt DemandBits(BitWidth, 0); 6032 APInt WidestAndBits(BitWidth, 0); 6033 6034 while (!WorkList.empty()) { 6035 Instruction *I = WorkList.back(); 6036 WorkList.pop_back(); 6037 6038 // Break use-def graph loops. 6039 if (!Visited.insert(I).second) 6040 continue; 6041 6042 // For a PHI node, push all of its users. 6043 if (auto *Phi = dyn_cast<PHINode>(I)) { 6044 for (auto *U : Phi->users()) 6045 WorkList.push_back(cast<Instruction>(U)); 6046 continue; 6047 } 6048 6049 switch (I->getOpcode()) { 6050 case Instruction::And: { 6051 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 6052 if (!AndC) 6053 return false; 6054 APInt AndBits = AndC->getValue(); 6055 DemandBits |= AndBits; 6056 // Keep track of the widest and mask we see. 6057 if (AndBits.ugt(WidestAndBits)) 6058 WidestAndBits = AndBits; 6059 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 6060 AndsToMaybeRemove.push_back(I); 6061 break; 6062 } 6063 6064 case Instruction::Shl: { 6065 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 6066 if (!ShlC) 6067 return false; 6068 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 6069 DemandBits.setLowBits(BitWidth - ShiftAmt); 6070 break; 6071 } 6072 6073 case Instruction::Trunc: { 6074 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 6075 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 6076 DemandBits.setLowBits(TruncBitWidth); 6077 break; 6078 } 6079 6080 default: 6081 return false; 6082 } 6083 } 6084 6085 uint32_t ActiveBits = DemandBits.getActiveBits(); 6086 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 6087 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 6088 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 6089 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 6090 // followed by an AND. 6091 // TODO: Look into removing this restriction by fixing backends to either 6092 // return false for isLoadExtLegal for i1 or have them select this pattern to 6093 // a single instruction. 6094 // 6095 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 6096 // mask, since these are the only ands that will be removed by isel. 6097 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 6098 WidestAndBits != DemandBits) 6099 return false; 6100 6101 LLVMContext &Ctx = Load->getType()->getContext(); 6102 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 6103 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 6104 6105 // Reject cases that won't be matched as extloads. 6106 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 6107 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 6108 return false; 6109 6110 IRBuilder<> Builder(Load->getNextNode()); 6111 auto *NewAnd = cast<Instruction>( 6112 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 6113 // Mark this instruction as "inserted by CGP", so that other 6114 // optimizations don't touch it. 6115 InsertedInsts.insert(NewAnd); 6116 6117 // Replace all uses of load with new and (except for the use of load in the 6118 // new and itself). 6119 Load->replaceAllUsesWith(NewAnd); 6120 NewAnd->setOperand(0, Load); 6121 6122 // Remove any and instructions that are now redundant. 6123 for (auto *And : AndsToMaybeRemove) 6124 // Check that the and mask is the same as the one we decided to put on the 6125 // new and. 6126 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 6127 And->replaceAllUsesWith(NewAnd); 6128 if (&*CurInstIterator == And) 6129 CurInstIterator = std::next(And->getIterator()); 6130 And->eraseFromParent(); 6131 ++NumAndUses; 6132 } 6133 6134 ++NumAndsAdded; 6135 return true; 6136 } 6137 6138 /// Check if V (an operand of a select instruction) is an expensive instruction 6139 /// that is only used once. 6140 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 6141 auto *I = dyn_cast<Instruction>(V); 6142 // If it's safe to speculatively execute, then it should not have side 6143 // effects; therefore, it's safe to sink and possibly *not* execute. 6144 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 6145 TTI->getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency) >= 6146 TargetTransformInfo::TCC_Expensive; 6147 } 6148 6149 /// Returns true if a SelectInst should be turned into an explicit branch. 6150 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 6151 const TargetLowering *TLI, 6152 SelectInst *SI) { 6153 // If even a predictable select is cheap, then a branch can't be cheaper. 6154 if (!TLI->isPredictableSelectExpensive()) 6155 return false; 6156 6157 // FIXME: This should use the same heuristics as IfConversion to determine 6158 // whether a select is better represented as a branch. 6159 6160 // If metadata tells us that the select condition is obviously predictable, 6161 // then we want to replace the select with a branch. 6162 uint64_t TrueWeight, FalseWeight; 6163 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 6164 uint64_t Max = std::max(TrueWeight, FalseWeight); 6165 uint64_t Sum = TrueWeight + FalseWeight; 6166 if (Sum != 0) { 6167 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 6168 if (Probability > TLI->getPredictableBranchThreshold()) 6169 return true; 6170 } 6171 } 6172 6173 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 6174 6175 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 6176 // comparison condition. If the compare has more than one use, there's 6177 // probably another cmov or setcc around, so it's not worth emitting a branch. 6178 if (!Cmp || !Cmp->hasOneUse()) 6179 return false; 6180 6181 // If either operand of the select is expensive and only needed on one side 6182 // of the select, we should form a branch. 6183 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 6184 sinkSelectOperand(TTI, SI->getFalseValue())) 6185 return true; 6186 6187 return false; 6188 } 6189 6190 /// If \p isTrue is true, return the true value of \p SI, otherwise return 6191 /// false value of \p SI. If the true/false value of \p SI is defined by any 6192 /// select instructions in \p Selects, look through the defining select 6193 /// instruction until the true/false value is not defined in \p Selects. 6194 static Value *getTrueOrFalseValue( 6195 SelectInst *SI, bool isTrue, 6196 const SmallPtrSet<const Instruction *, 2> &Selects) { 6197 Value *V = nullptr; 6198 6199 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 6200 DefSI = dyn_cast<SelectInst>(V)) { 6201 assert(DefSI->getCondition() == SI->getCondition() && 6202 "The condition of DefSI does not match with SI"); 6203 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 6204 } 6205 6206 assert(V && "Failed to get select true/false value"); 6207 return V; 6208 } 6209 6210 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 6211 assert(Shift->isShift() && "Expected a shift"); 6212 6213 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 6214 // general vector shifts, and (3) the shift amount is a select-of-splatted 6215 // values, hoist the shifts before the select: 6216 // shift Op0, (select Cond, TVal, FVal) --> 6217 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6218 // 6219 // This is inverting a generic IR transform when we know that the cost of a 6220 // general vector shift is more than the cost of 2 shift-by-scalars. 6221 // We can't do this effectively in SDAG because we may not be able to 6222 // determine if the select operands are splats from within a basic block. 6223 Type *Ty = Shift->getType(); 6224 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6225 return false; 6226 Value *Cond, *TVal, *FVal; 6227 if (!match(Shift->getOperand(1), 6228 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6229 return false; 6230 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6231 return false; 6232 6233 IRBuilder<> Builder(Shift); 6234 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6235 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6236 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6237 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6238 Shift->replaceAllUsesWith(NewSel); 6239 Shift->eraseFromParent(); 6240 return true; 6241 } 6242 6243 /// If we have a SelectInst that will likely profit from branch prediction, 6244 /// turn it into a branch. 6245 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6246 // If branch conversion isn't desirable, exit early. 6247 if (DisableSelectToBranch || OptSize || 6248 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get())) 6249 return false; 6250 6251 // Find all consecutive select instructions that share the same condition. 6252 SmallVector<SelectInst *, 2> ASI; 6253 ASI.push_back(SI); 6254 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 6255 It != SI->getParent()->end(); ++It) { 6256 SelectInst *I = dyn_cast<SelectInst>(&*It); 6257 if (I && SI->getCondition() == I->getCondition()) { 6258 ASI.push_back(I); 6259 } else { 6260 break; 6261 } 6262 } 6263 6264 SelectInst *LastSI = ASI.back(); 6265 // Increment the current iterator to skip all the rest of select instructions 6266 // because they will be either "not lowered" or "all lowered" to branch. 6267 CurInstIterator = std::next(LastSI->getIterator()); 6268 6269 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 6270 6271 // Can we convert the 'select' to CF ? 6272 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 6273 return false; 6274 6275 TargetLowering::SelectSupportKind SelectKind; 6276 if (VectorCond) 6277 SelectKind = TargetLowering::VectorMaskSelect; 6278 else if (SI->getType()->isVectorTy()) 6279 SelectKind = TargetLowering::ScalarCondVectorVal; 6280 else 6281 SelectKind = TargetLowering::ScalarValSelect; 6282 6283 if (TLI->isSelectSupported(SelectKind) && 6284 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 6285 return false; 6286 6287 // The DominatorTree needs to be rebuilt by any consumers after this 6288 // transformation. We simply reset here rather than setting the ModifiedDT 6289 // flag to avoid restarting the function walk in runOnFunction for each 6290 // select optimized. 6291 DT.reset(); 6292 6293 // Transform a sequence like this: 6294 // start: 6295 // %cmp = cmp uge i32 %a, %b 6296 // %sel = select i1 %cmp, i32 %c, i32 %d 6297 // 6298 // Into: 6299 // start: 6300 // %cmp = cmp uge i32 %a, %b 6301 // %cmp.frozen = freeze %cmp 6302 // br i1 %cmp.frozen, label %select.true, label %select.false 6303 // select.true: 6304 // br label %select.end 6305 // select.false: 6306 // br label %select.end 6307 // select.end: 6308 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6309 // 6310 // %cmp should be frozen, otherwise it may introduce undefined behavior. 6311 // In addition, we may sink instructions that produce %c or %d from 6312 // the entry block into the destination(s) of the new branch. 6313 // If the true or false blocks do not contain a sunken instruction, that 6314 // block and its branch may be optimized away. In that case, one side of the 6315 // first branch will point directly to select.end, and the corresponding PHI 6316 // predecessor block will be the start block. 6317 6318 // First, we split the block containing the select into 2 blocks. 6319 BasicBlock *StartBlock = SI->getParent(); 6320 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6321 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6322 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); 6323 6324 // Delete the unconditional branch that was just created by the split. 6325 StartBlock->getTerminator()->eraseFromParent(); 6326 6327 // These are the new basic blocks for the conditional branch. 6328 // At least one will become an actual new basic block. 6329 BasicBlock *TrueBlock = nullptr; 6330 BasicBlock *FalseBlock = nullptr; 6331 BranchInst *TrueBranch = nullptr; 6332 BranchInst *FalseBranch = nullptr; 6333 6334 // Sink expensive instructions into the conditional blocks to avoid executing 6335 // them speculatively. 6336 for (SelectInst *SI : ASI) { 6337 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6338 if (TrueBlock == nullptr) { 6339 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6340 EndBlock->getParent(), EndBlock); 6341 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6342 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6343 } 6344 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6345 TrueInst->moveBefore(TrueBranch); 6346 } 6347 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6348 if (FalseBlock == nullptr) { 6349 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6350 EndBlock->getParent(), EndBlock); 6351 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6352 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6353 } 6354 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6355 FalseInst->moveBefore(FalseBranch); 6356 } 6357 } 6358 6359 // If there was nothing to sink, then arbitrarily choose the 'false' side 6360 // for a new input value to the PHI. 6361 if (TrueBlock == FalseBlock) { 6362 assert(TrueBlock == nullptr && 6363 "Unexpected basic block transform while optimizing select"); 6364 6365 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6366 EndBlock->getParent(), EndBlock); 6367 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6368 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6369 } 6370 6371 // Insert the real conditional branch based on the original condition. 6372 // If we did not create a new block for one of the 'true' or 'false' paths 6373 // of the condition, it means that side of the branch goes to the end block 6374 // directly and the path originates from the start block from the point of 6375 // view of the new PHI. 6376 BasicBlock *TT, *FT; 6377 if (TrueBlock == nullptr) { 6378 TT = EndBlock; 6379 FT = FalseBlock; 6380 TrueBlock = StartBlock; 6381 } else if (FalseBlock == nullptr) { 6382 TT = TrueBlock; 6383 FT = EndBlock; 6384 FalseBlock = StartBlock; 6385 } else { 6386 TT = TrueBlock; 6387 FT = FalseBlock; 6388 } 6389 IRBuilder<> IB(SI); 6390 auto CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 6391 IB.CreateCondBr(CondFr, TT, FT, SI); 6392 6393 SmallPtrSet<const Instruction *, 2> INS; 6394 INS.insert(ASI.begin(), ASI.end()); 6395 // Use reverse iterator because later select may use the value of the 6396 // earlier select, and we need to propagate value through earlier select 6397 // to get the PHI operand. 6398 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 6399 SelectInst *SI = *It; 6400 // The select itself is replaced with a PHI Node. 6401 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6402 PN->takeName(SI); 6403 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6404 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6405 PN->setDebugLoc(SI->getDebugLoc()); 6406 6407 SI->replaceAllUsesWith(PN); 6408 SI->eraseFromParent(); 6409 INS.erase(SI); 6410 ++NumSelectsExpanded; 6411 } 6412 6413 // Instruct OptimizeBlock to skip to the next block. 6414 CurInstIterator = StartBlock->end(); 6415 return true; 6416 } 6417 6418 /// Some targets have expensive vector shifts if the lanes aren't all the same 6419 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 6420 /// it's often worth sinking a shufflevector splat down to its use so that 6421 /// codegen can spot all lanes are identical. 6422 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6423 BasicBlock *DefBB = SVI->getParent(); 6424 6425 // Only do this xform if variable vector shifts are particularly expensive. 6426 if (!TLI->isVectorShiftByScalarCheap(SVI->getType())) 6427 return false; 6428 6429 // We only expect better codegen by sinking a shuffle if we can recognise a 6430 // constant splat. 6431 if (getSplatIndex(SVI->getShuffleMask()) < 0) 6432 return false; 6433 6434 // InsertedShuffles - Only insert a shuffle in each block once. 6435 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 6436 6437 bool MadeChange = false; 6438 for (User *U : SVI->users()) { 6439 Instruction *UI = cast<Instruction>(U); 6440 6441 // Figure out which BB this ext is used in. 6442 BasicBlock *UserBB = UI->getParent(); 6443 if (UserBB == DefBB) continue; 6444 6445 // For now only apply this when the splat is used by a shift instruction. 6446 if (!UI->isShift()) continue; 6447 6448 // Everything checks out, sink the shuffle if the user's block doesn't 6449 // already have a copy. 6450 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 6451 6452 if (!InsertedShuffle) { 6453 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6454 assert(InsertPt != UserBB->end()); 6455 InsertedShuffle = 6456 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 6457 SVI->getShuffleMask(), "", &*InsertPt); 6458 InsertedShuffle->setDebugLoc(SVI->getDebugLoc()); 6459 } 6460 6461 UI->replaceUsesOfWith(SVI, InsertedShuffle); 6462 MadeChange = true; 6463 } 6464 6465 // If we removed all uses, nuke the shuffle. 6466 if (SVI->use_empty()) { 6467 SVI->eraseFromParent(); 6468 MadeChange = true; 6469 } 6470 6471 return MadeChange; 6472 } 6473 6474 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6475 // If the operands of I can be folded into a target instruction together with 6476 // I, duplicate and sink them. 6477 SmallVector<Use *, 4> OpsToSink; 6478 if (!TLI->shouldSinkOperands(I, OpsToSink)) 6479 return false; 6480 6481 // OpsToSink can contain multiple uses in a use chain (e.g. 6482 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6483 // uses must come first, so we process the ops in reverse order so as to not 6484 // create invalid IR. 6485 BasicBlock *TargetBB = I->getParent(); 6486 bool Changed = false; 6487 SmallVector<Use *, 4> ToReplace; 6488 for (Use *U : reverse(OpsToSink)) { 6489 auto *UI = cast<Instruction>(U->get()); 6490 if (UI->getParent() == TargetBB || isa<PHINode>(UI)) 6491 continue; 6492 ToReplace.push_back(U); 6493 } 6494 6495 SetVector<Instruction *> MaybeDead; 6496 DenseMap<Instruction *, Instruction *> NewInstructions; 6497 Instruction *InsertPoint = I; 6498 for (Use *U : ToReplace) { 6499 auto *UI = cast<Instruction>(U->get()); 6500 Instruction *NI = UI->clone(); 6501 NewInstructions[UI] = NI; 6502 MaybeDead.insert(UI); 6503 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6504 NI->insertBefore(InsertPoint); 6505 InsertPoint = NI; 6506 InsertedInsts.insert(NI); 6507 6508 // Update the use for the new instruction, making sure that we update the 6509 // sunk instruction uses, if it is part of a chain that has already been 6510 // sunk. 6511 Instruction *OldI = cast<Instruction>(U->getUser()); 6512 if (NewInstructions.count(OldI)) 6513 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 6514 else 6515 U->set(NI); 6516 Changed = true; 6517 } 6518 6519 // Remove instructions that are dead after sinking. 6520 for (auto *I : MaybeDead) { 6521 if (!I->hasNUsesOrMore(1)) { 6522 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 6523 I->eraseFromParent(); 6524 } 6525 } 6526 6527 return Changed; 6528 } 6529 6530 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6531 Value *Cond = SI->getCondition(); 6532 Type *OldType = Cond->getType(); 6533 LLVMContext &Context = Cond->getContext(); 6534 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 6535 unsigned RegWidth = RegType.getSizeInBits(); 6536 6537 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6538 return false; 6539 6540 // If the register width is greater than the type width, expand the condition 6541 // of the switch instruction and each case constant to the width of the 6542 // register. By widening the type of the switch condition, subsequent 6543 // comparisons (for case comparisons) will not need to be extended to the 6544 // preferred register width, so we will potentially eliminate N-1 extends, 6545 // where N is the number of cases in the switch. 6546 auto *NewType = Type::getIntNTy(Context, RegWidth); 6547 6548 // Zero-extend the switch condition and case constants unless the switch 6549 // condition is a function argument that is already being sign-extended. 6550 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6551 // everything instead. 6552 Instruction::CastOps ExtType = Instruction::ZExt; 6553 if (auto *Arg = dyn_cast<Argument>(Cond)) 6554 if (Arg->hasSExtAttr()) 6555 ExtType = Instruction::SExt; 6556 6557 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 6558 ExtInst->insertBefore(SI); 6559 ExtInst->setDebugLoc(SI->getDebugLoc()); 6560 SI->setCondition(ExtInst); 6561 for (auto Case : SI->cases()) { 6562 APInt NarrowConst = Case.getCaseValue()->getValue(); 6563 APInt WideConst = (ExtType == Instruction::ZExt) ? 6564 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 6565 Case.setValue(ConstantInt::get(Context, WideConst)); 6566 } 6567 6568 return true; 6569 } 6570 6571 6572 namespace { 6573 6574 /// Helper class to promote a scalar operation to a vector one. 6575 /// This class is used to move downward extractelement transition. 6576 /// E.g., 6577 /// a = vector_op <2 x i32> 6578 /// b = extractelement <2 x i32> a, i32 0 6579 /// c = scalar_op b 6580 /// store c 6581 /// 6582 /// => 6583 /// a = vector_op <2 x i32> 6584 /// c = vector_op a (equivalent to scalar_op on the related lane) 6585 /// * d = extractelement <2 x i32> c, i32 0 6586 /// * store d 6587 /// Assuming both extractelement and store can be combine, we get rid of the 6588 /// transition. 6589 class VectorPromoteHelper { 6590 /// DataLayout associated with the current module. 6591 const DataLayout &DL; 6592 6593 /// Used to perform some checks on the legality of vector operations. 6594 const TargetLowering &TLI; 6595 6596 /// Used to estimated the cost of the promoted chain. 6597 const TargetTransformInfo &TTI; 6598 6599 /// The transition being moved downwards. 6600 Instruction *Transition; 6601 6602 /// The sequence of instructions to be promoted. 6603 SmallVector<Instruction *, 4> InstsToBePromoted; 6604 6605 /// Cost of combining a store and an extract. 6606 unsigned StoreExtractCombineCost; 6607 6608 /// Instruction that will be combined with the transition. 6609 Instruction *CombineInst = nullptr; 6610 6611 /// The instruction that represents the current end of the transition. 6612 /// Since we are faking the promotion until we reach the end of the chain 6613 /// of computation, we need a way to get the current end of the transition. 6614 Instruction *getEndOfTransition() const { 6615 if (InstsToBePromoted.empty()) 6616 return Transition; 6617 return InstsToBePromoted.back(); 6618 } 6619 6620 /// Return the index of the original value in the transition. 6621 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 6622 /// c, is at index 0. 6623 unsigned getTransitionOriginalValueIdx() const { 6624 assert(isa<ExtractElementInst>(Transition) && 6625 "Other kind of transitions are not supported yet"); 6626 return 0; 6627 } 6628 6629 /// Return the index of the index in the transition. 6630 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 6631 /// is at index 1. 6632 unsigned getTransitionIdx() const { 6633 assert(isa<ExtractElementInst>(Transition) && 6634 "Other kind of transitions are not supported yet"); 6635 return 1; 6636 } 6637 6638 /// Get the type of the transition. 6639 /// This is the type of the original value. 6640 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 6641 /// transition is <2 x i32>. 6642 Type *getTransitionType() const { 6643 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 6644 } 6645 6646 /// Promote \p ToBePromoted by moving \p Def downward through. 6647 /// I.e., we have the following sequence: 6648 /// Def = Transition <ty1> a to <ty2> 6649 /// b = ToBePromoted <ty2> Def, ... 6650 /// => 6651 /// b = ToBePromoted <ty1> a, ... 6652 /// Def = Transition <ty1> ToBePromoted to <ty2> 6653 void promoteImpl(Instruction *ToBePromoted); 6654 6655 /// Check whether or not it is profitable to promote all the 6656 /// instructions enqueued to be promoted. 6657 bool isProfitableToPromote() { 6658 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 6659 unsigned Index = isa<ConstantInt>(ValIdx) 6660 ? cast<ConstantInt>(ValIdx)->getZExtValue() 6661 : -1; 6662 Type *PromotedType = getTransitionType(); 6663 6664 StoreInst *ST = cast<StoreInst>(CombineInst); 6665 unsigned AS = ST->getPointerAddressSpace(); 6666 unsigned Align = ST->getAlignment(); 6667 // Check if this store is supported. 6668 if (!TLI.allowsMisalignedMemoryAccesses( 6669 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 6670 Align)) { 6671 // If this is not supported, there is no way we can combine 6672 // the extract with the store. 6673 return false; 6674 } 6675 6676 // The scalar chain of computation has to pay for the transition 6677 // scalar to vector. 6678 // The vector chain has to account for the combining cost. 6679 uint64_t ScalarCost = 6680 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 6681 uint64_t VectorCost = StoreExtractCombineCost; 6682 enum TargetTransformInfo::TargetCostKind CostKind = 6683 TargetTransformInfo::TCK_RecipThroughput; 6684 for (const auto &Inst : InstsToBePromoted) { 6685 // Compute the cost. 6686 // By construction, all instructions being promoted are arithmetic ones. 6687 // Moreover, one argument is a constant that can be viewed as a splat 6688 // constant. 6689 Value *Arg0 = Inst->getOperand(0); 6690 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 6691 isa<ConstantFP>(Arg0); 6692 TargetTransformInfo::OperandValueKind Arg0OVK = 6693 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6694 : TargetTransformInfo::OK_AnyValue; 6695 TargetTransformInfo::OperandValueKind Arg1OVK = 6696 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6697 : TargetTransformInfo::OK_AnyValue; 6698 ScalarCost += TTI.getArithmeticInstrCost( 6699 Inst->getOpcode(), Inst->getType(), CostKind, Arg0OVK, Arg1OVK); 6700 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 6701 CostKind, 6702 Arg0OVK, Arg1OVK); 6703 } 6704 LLVM_DEBUG( 6705 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 6706 << ScalarCost << "\nVector: " << VectorCost << '\n'); 6707 return ScalarCost > VectorCost; 6708 } 6709 6710 /// Generate a constant vector with \p Val with the same 6711 /// number of elements as the transition. 6712 /// \p UseSplat defines whether or not \p Val should be replicated 6713 /// across the whole vector. 6714 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 6715 /// otherwise we generate a vector with as many undef as possible: 6716 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 6717 /// used at the index of the extract. 6718 Value *getConstantVector(Constant *Val, bool UseSplat) const { 6719 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 6720 if (!UseSplat) { 6721 // If we cannot determine where the constant must be, we have to 6722 // use a splat constant. 6723 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 6724 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 6725 ExtractIdx = CstVal->getSExtValue(); 6726 else 6727 UseSplat = true; 6728 } 6729 6730 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); 6731 if (UseSplat) 6732 return ConstantVector::getSplat(EC, Val); 6733 6734 if (!EC.Scalable) { 6735 SmallVector<Constant *, 4> ConstVec; 6736 UndefValue *UndefVal = UndefValue::get(Val->getType()); 6737 for (unsigned Idx = 0; Idx != EC.Min; ++Idx) { 6738 if (Idx == ExtractIdx) 6739 ConstVec.push_back(Val); 6740 else 6741 ConstVec.push_back(UndefVal); 6742 } 6743 return ConstantVector::get(ConstVec); 6744 } else 6745 llvm_unreachable( 6746 "Generate scalable vector for non-splat is unimplemented"); 6747 } 6748 6749 /// Check if promoting to a vector type an operand at \p OperandIdx 6750 /// in \p Use can trigger undefined behavior. 6751 static bool canCauseUndefinedBehavior(const Instruction *Use, 6752 unsigned OperandIdx) { 6753 // This is not safe to introduce undef when the operand is on 6754 // the right hand side of a division-like instruction. 6755 if (OperandIdx != 1) 6756 return false; 6757 switch (Use->getOpcode()) { 6758 default: 6759 return false; 6760 case Instruction::SDiv: 6761 case Instruction::UDiv: 6762 case Instruction::SRem: 6763 case Instruction::URem: 6764 return true; 6765 case Instruction::FDiv: 6766 case Instruction::FRem: 6767 return !Use->hasNoNaNs(); 6768 } 6769 llvm_unreachable(nullptr); 6770 } 6771 6772 public: 6773 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 6774 const TargetTransformInfo &TTI, Instruction *Transition, 6775 unsigned CombineCost) 6776 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 6777 StoreExtractCombineCost(CombineCost) { 6778 assert(Transition && "Do not know how to promote null"); 6779 } 6780 6781 /// Check if we can promote \p ToBePromoted to \p Type. 6782 bool canPromote(const Instruction *ToBePromoted) const { 6783 // We could support CastInst too. 6784 return isa<BinaryOperator>(ToBePromoted); 6785 } 6786 6787 /// Check if it is profitable to promote \p ToBePromoted 6788 /// by moving downward the transition through. 6789 bool shouldPromote(const Instruction *ToBePromoted) const { 6790 // Promote only if all the operands can be statically expanded. 6791 // Indeed, we do not want to introduce any new kind of transitions. 6792 for (const Use &U : ToBePromoted->operands()) { 6793 const Value *Val = U.get(); 6794 if (Val == getEndOfTransition()) { 6795 // If the use is a division and the transition is on the rhs, 6796 // we cannot promote the operation, otherwise we may create a 6797 // division by zero. 6798 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 6799 return false; 6800 continue; 6801 } 6802 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 6803 !isa<ConstantFP>(Val)) 6804 return false; 6805 } 6806 // Check that the resulting operation is legal. 6807 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 6808 if (!ISDOpcode) 6809 return false; 6810 return StressStoreExtract || 6811 TLI.isOperationLegalOrCustom( 6812 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 6813 } 6814 6815 /// Check whether or not \p Use can be combined 6816 /// with the transition. 6817 /// I.e., is it possible to do Use(Transition) => AnotherUse? 6818 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 6819 6820 /// Record \p ToBePromoted as part of the chain to be promoted. 6821 void enqueueForPromotion(Instruction *ToBePromoted) { 6822 InstsToBePromoted.push_back(ToBePromoted); 6823 } 6824 6825 /// Set the instruction that will be combined with the transition. 6826 void recordCombineInstruction(Instruction *ToBeCombined) { 6827 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 6828 CombineInst = ToBeCombined; 6829 } 6830 6831 /// Promote all the instructions enqueued for promotion if it is 6832 /// is profitable. 6833 /// \return True if the promotion happened, false otherwise. 6834 bool promote() { 6835 // Check if there is something to promote. 6836 // Right now, if we do not have anything to combine with, 6837 // we assume the promotion is not profitable. 6838 if (InstsToBePromoted.empty() || !CombineInst) 6839 return false; 6840 6841 // Check cost. 6842 if (!StressStoreExtract && !isProfitableToPromote()) 6843 return false; 6844 6845 // Promote. 6846 for (auto &ToBePromoted : InstsToBePromoted) 6847 promoteImpl(ToBePromoted); 6848 InstsToBePromoted.clear(); 6849 return true; 6850 } 6851 }; 6852 6853 } // end anonymous namespace 6854 6855 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 6856 // At this point, we know that all the operands of ToBePromoted but Def 6857 // can be statically promoted. 6858 // For Def, we need to use its parameter in ToBePromoted: 6859 // b = ToBePromoted ty1 a 6860 // Def = Transition ty1 b to ty2 6861 // Move the transition down. 6862 // 1. Replace all uses of the promoted operation by the transition. 6863 // = ... b => = ... Def. 6864 assert(ToBePromoted->getType() == Transition->getType() && 6865 "The type of the result of the transition does not match " 6866 "the final type"); 6867 ToBePromoted->replaceAllUsesWith(Transition); 6868 // 2. Update the type of the uses. 6869 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 6870 Type *TransitionTy = getTransitionType(); 6871 ToBePromoted->mutateType(TransitionTy); 6872 // 3. Update all the operands of the promoted operation with promoted 6873 // operands. 6874 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 6875 for (Use &U : ToBePromoted->operands()) { 6876 Value *Val = U.get(); 6877 Value *NewVal = nullptr; 6878 if (Val == Transition) 6879 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 6880 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 6881 isa<ConstantFP>(Val)) { 6882 // Use a splat constant if it is not safe to use undef. 6883 NewVal = getConstantVector( 6884 cast<Constant>(Val), 6885 isa<UndefValue>(Val) || 6886 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 6887 } else 6888 llvm_unreachable("Did you modified shouldPromote and forgot to update " 6889 "this?"); 6890 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 6891 } 6892 Transition->moveAfter(ToBePromoted); 6893 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 6894 } 6895 6896 /// Some targets can do store(extractelement) with one instruction. 6897 /// Try to push the extractelement towards the stores when the target 6898 /// has this feature and this is profitable. 6899 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 6900 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 6901 if (DisableStoreExtract || 6902 (!StressStoreExtract && 6903 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 6904 Inst->getOperand(1), CombineCost))) 6905 return false; 6906 6907 // At this point we know that Inst is a vector to scalar transition. 6908 // Try to move it down the def-use chain, until: 6909 // - We can combine the transition with its single use 6910 // => we got rid of the transition. 6911 // - We escape the current basic block 6912 // => we would need to check that we are moving it at a cheaper place and 6913 // we do not do that for now. 6914 BasicBlock *Parent = Inst->getParent(); 6915 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 6916 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 6917 // If the transition has more than one use, assume this is not going to be 6918 // beneficial. 6919 while (Inst->hasOneUse()) { 6920 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 6921 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 6922 6923 if (ToBePromoted->getParent() != Parent) { 6924 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 6925 << ToBePromoted->getParent()->getName() 6926 << ") than the transition (" << Parent->getName() 6927 << ").\n"); 6928 return false; 6929 } 6930 6931 if (VPH.canCombine(ToBePromoted)) { 6932 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 6933 << "will be combined with: " << *ToBePromoted << '\n'); 6934 VPH.recordCombineInstruction(ToBePromoted); 6935 bool Changed = VPH.promote(); 6936 NumStoreExtractExposed += Changed; 6937 return Changed; 6938 } 6939 6940 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 6941 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 6942 return false; 6943 6944 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 6945 6946 VPH.enqueueForPromotion(ToBePromoted); 6947 Inst = ToBePromoted; 6948 } 6949 return false; 6950 } 6951 6952 /// For the instruction sequence of store below, F and I values 6953 /// are bundled together as an i64 value before being stored into memory. 6954 /// Sometimes it is more efficient to generate separate stores for F and I, 6955 /// which can remove the bitwise instructions or sink them to colder places. 6956 /// 6957 /// (store (or (zext (bitcast F to i32) to i64), 6958 /// (shl (zext I to i64), 32)), addr) --> 6959 /// (store F, addr) and (store I, addr+4) 6960 /// 6961 /// Similarly, splitting for other merged store can also be beneficial, like: 6962 /// For pair of {i32, i32}, i64 store --> two i32 stores. 6963 /// For pair of {i32, i16}, i64 store --> two i32 stores. 6964 /// For pair of {i16, i16}, i32 store --> two i16 stores. 6965 /// For pair of {i16, i8}, i32 store --> two i16 stores. 6966 /// For pair of {i8, i8}, i16 store --> two i8 stores. 6967 /// 6968 /// We allow each target to determine specifically which kind of splitting is 6969 /// supported. 6970 /// 6971 /// The store patterns are commonly seen from the simple code snippet below 6972 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 6973 /// void goo(const std::pair<int, float> &); 6974 /// hoo() { 6975 /// ... 6976 /// goo(std::make_pair(tmp, ftmp)); 6977 /// ... 6978 /// } 6979 /// 6980 /// Although we already have similar splitting in DAG Combine, we duplicate 6981 /// it in CodeGenPrepare to catch the case in which pattern is across 6982 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6983 /// during code expansion. 6984 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6985 const TargetLowering &TLI) { 6986 // Handle simple but common cases only. 6987 Type *StoreType = SI.getValueOperand()->getType(); 6988 6989 // The code below assumes shifting a value by <number of bits>, 6990 // whereas scalable vectors would have to be shifted by 6991 // <2log(vscale) + number of bits> in order to store the 6992 // low/high parts. Bailing out for now. 6993 if (isa<ScalableVectorType>(StoreType)) 6994 return false; 6995 6996 if (!DL.typeSizeEqualsStoreSize(StoreType) || 6997 DL.getTypeSizeInBits(StoreType) == 0) 6998 return false; 6999 7000 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 7001 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 7002 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 7003 return false; 7004 7005 // Don't split the store if it is volatile. 7006 if (SI.isVolatile()) 7007 return false; 7008 7009 // Match the following patterns: 7010 // (store (or (zext LValue to i64), 7011 // (shl (zext HValue to i64), 32)), HalfValBitSize) 7012 // or 7013 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 7014 // (zext LValue to i64), 7015 // Expect both operands of OR and the first operand of SHL have only 7016 // one use. 7017 Value *LValue, *HValue; 7018 if (!match(SI.getValueOperand(), 7019 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 7020 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 7021 m_SpecificInt(HalfValBitSize)))))) 7022 return false; 7023 7024 // Check LValue and HValue are int with size less or equal than 32. 7025 if (!LValue->getType()->isIntegerTy() || 7026 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 7027 !HValue->getType()->isIntegerTy() || 7028 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 7029 return false; 7030 7031 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 7032 // as the input of target query. 7033 auto *LBC = dyn_cast<BitCastInst>(LValue); 7034 auto *HBC = dyn_cast<BitCastInst>(HValue); 7035 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 7036 : EVT::getEVT(LValue->getType()); 7037 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 7038 : EVT::getEVT(HValue->getType()); 7039 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 7040 return false; 7041 7042 // Start to split store. 7043 IRBuilder<> Builder(SI.getContext()); 7044 Builder.SetInsertPoint(&SI); 7045 7046 // If LValue/HValue is a bitcast in another BB, create a new one in current 7047 // BB so it may be merged with the splitted stores by dag combiner. 7048 if (LBC && LBC->getParent() != SI.getParent()) 7049 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 7050 if (HBC && HBC->getParent() != SI.getParent()) 7051 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 7052 7053 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 7054 auto CreateSplitStore = [&](Value *V, bool Upper) { 7055 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 7056 Value *Addr = Builder.CreateBitCast( 7057 SI.getOperand(1), 7058 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 7059 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 7060 if (IsOffsetStore) 7061 Addr = Builder.CreateGEP( 7062 SplitStoreType, Addr, 7063 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 7064 MaybeAlign Alignment = SI.getAlign(); 7065 if (IsOffsetStore && Alignment) { 7066 // When splitting the store in half, naturally one half will retain the 7067 // alignment of the original wider store, regardless of whether it was 7068 // over-aligned or not, while the other will require adjustment. 7069 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 7070 } 7071 Builder.CreateAlignedStore(V, Addr, Alignment); 7072 }; 7073 7074 CreateSplitStore(LValue, false); 7075 CreateSplitStore(HValue, true); 7076 7077 // Delete the old store. 7078 SI.eraseFromParent(); 7079 return true; 7080 } 7081 7082 // Return true if the GEP has two operands, the first operand is of a sequential 7083 // type, and the second operand is a constant. 7084 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 7085 gep_type_iterator I = gep_type_begin(*GEP); 7086 return GEP->getNumOperands() == 2 && 7087 I.isSequential() && 7088 isa<ConstantInt>(GEP->getOperand(1)); 7089 } 7090 7091 // Try unmerging GEPs to reduce liveness interference (register pressure) across 7092 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 7093 // reducing liveness interference across those edges benefits global register 7094 // allocation. Currently handles only certain cases. 7095 // 7096 // For example, unmerge %GEPI and %UGEPI as below. 7097 // 7098 // ---------- BEFORE ---------- 7099 // SrcBlock: 7100 // ... 7101 // %GEPIOp = ... 7102 // ... 7103 // %GEPI = gep %GEPIOp, Idx 7104 // ... 7105 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 7106 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 7107 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 7108 // %UGEPI) 7109 // 7110 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 7111 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 7112 // ... 7113 // 7114 // DstBi: 7115 // ... 7116 // %UGEPI = gep %GEPIOp, UIdx 7117 // ... 7118 // --------------------------- 7119 // 7120 // ---------- AFTER ---------- 7121 // SrcBlock: 7122 // ... (same as above) 7123 // (* %GEPI is still alive on the indirectbr edges) 7124 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 7125 // unmerging) 7126 // ... 7127 // 7128 // DstBi: 7129 // ... 7130 // %UGEPI = gep %GEPI, (UIdx-Idx) 7131 // ... 7132 // --------------------------- 7133 // 7134 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 7135 // no longer alive on them. 7136 // 7137 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 7138 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 7139 // not to disable further simplications and optimizations as a result of GEP 7140 // merging. 7141 // 7142 // Note this unmerging may increase the length of the data flow critical path 7143 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 7144 // between the register pressure and the length of data-flow critical 7145 // path. Restricting this to the uncommon IndirectBr case would minimize the 7146 // impact of potentially longer critical path, if any, and the impact on compile 7147 // time. 7148 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 7149 const TargetTransformInfo *TTI) { 7150 BasicBlock *SrcBlock = GEPI->getParent(); 7151 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 7152 // (non-IndirectBr) cases exit early here. 7153 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 7154 return false; 7155 // Check that GEPI is a simple gep with a single constant index. 7156 if (!GEPSequentialConstIndexed(GEPI)) 7157 return false; 7158 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 7159 // Check that GEPI is a cheap one. 7160 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), 7161 TargetTransformInfo::TCK_SizeAndLatency) 7162 > TargetTransformInfo::TCC_Basic) 7163 return false; 7164 Value *GEPIOp = GEPI->getOperand(0); 7165 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 7166 if (!isa<Instruction>(GEPIOp)) 7167 return false; 7168 auto *GEPIOpI = cast<Instruction>(GEPIOp); 7169 if (GEPIOpI->getParent() != SrcBlock) 7170 return false; 7171 // Check that GEP is used outside the block, meaning it's alive on the 7172 // IndirectBr edge(s). 7173 if (find_if(GEPI->users(), [&](User *Usr) { 7174 if (auto *I = dyn_cast<Instruction>(Usr)) { 7175 if (I->getParent() != SrcBlock) { 7176 return true; 7177 } 7178 } 7179 return false; 7180 }) == GEPI->users().end()) 7181 return false; 7182 // The second elements of the GEP chains to be unmerged. 7183 std::vector<GetElementPtrInst *> UGEPIs; 7184 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 7185 // on IndirectBr edges. 7186 for (User *Usr : GEPIOp->users()) { 7187 if (Usr == GEPI) continue; 7188 // Check if Usr is an Instruction. If not, give up. 7189 if (!isa<Instruction>(Usr)) 7190 return false; 7191 auto *UI = cast<Instruction>(Usr); 7192 // Check if Usr in the same block as GEPIOp, which is fine, skip. 7193 if (UI->getParent() == SrcBlock) 7194 continue; 7195 // Check if Usr is a GEP. If not, give up. 7196 if (!isa<GetElementPtrInst>(Usr)) 7197 return false; 7198 auto *UGEPI = cast<GetElementPtrInst>(Usr); 7199 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 7200 // the pointer operand to it. If so, record it in the vector. If not, give 7201 // up. 7202 if (!GEPSequentialConstIndexed(UGEPI)) 7203 return false; 7204 if (UGEPI->getOperand(0) != GEPIOp) 7205 return false; 7206 if (GEPIIdx->getType() != 7207 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 7208 return false; 7209 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7210 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), 7211 TargetTransformInfo::TCK_SizeAndLatency) 7212 > TargetTransformInfo::TCC_Basic) 7213 return false; 7214 UGEPIs.push_back(UGEPI); 7215 } 7216 if (UGEPIs.size() == 0) 7217 return false; 7218 // Check the materializing cost of (Uidx-Idx). 7219 for (GetElementPtrInst *UGEPI : UGEPIs) { 7220 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7221 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 7222 unsigned ImmCost = 7223 TTI->getIntImmCost(NewIdx, GEPIIdx->getType(), 7224 TargetTransformInfo::TCK_SizeAndLatency); 7225 if (ImmCost > TargetTransformInfo::TCC_Basic) 7226 return false; 7227 } 7228 // Now unmerge between GEPI and UGEPIs. 7229 for (GetElementPtrInst *UGEPI : UGEPIs) { 7230 UGEPI->setOperand(0, GEPI); 7231 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7232 Constant *NewUGEPIIdx = 7233 ConstantInt::get(GEPIIdx->getType(), 7234 UGEPIIdx->getValue() - GEPIIdx->getValue()); 7235 UGEPI->setOperand(1, NewUGEPIIdx); 7236 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 7237 // inbounds to avoid UB. 7238 if (!GEPI->isInBounds()) { 7239 UGEPI->setIsInBounds(false); 7240 } 7241 } 7242 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 7243 // alive on IndirectBr edges). 7244 assert(find_if(GEPIOp->users(), [&](User *Usr) { 7245 return cast<Instruction>(Usr)->getParent() != SrcBlock; 7246 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 7247 return true; 7248 } 7249 7250 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 7251 // Bail out if we inserted the instruction to prevent optimizations from 7252 // stepping on each other's toes. 7253 if (InsertedInsts.count(I)) 7254 return false; 7255 7256 // TODO: Move into the switch on opcode below here. 7257 if (PHINode *P = dyn_cast<PHINode>(I)) { 7258 // It is possible for very late stage optimizations (such as SimplifyCFG) 7259 // to introduce PHI nodes too late to be cleaned up. If we detect such a 7260 // trivial PHI, go ahead and zap it here. 7261 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 7262 LargeOffsetGEPMap.erase(P); 7263 P->replaceAllUsesWith(V); 7264 P->eraseFromParent(); 7265 ++NumPHIsElim; 7266 return true; 7267 } 7268 return false; 7269 } 7270 7271 if (CastInst *CI = dyn_cast<CastInst>(I)) { 7272 // If the source of the cast is a constant, then this should have 7273 // already been constant folded. The only reason NOT to constant fold 7274 // it is if something (e.g. LSR) was careful to place the constant 7275 // evaluation in a block other than then one that uses it (e.g. to hoist 7276 // the address of globals out of a loop). If this is the case, we don't 7277 // want to forward-subst the cast. 7278 if (isa<Constant>(CI->getOperand(0))) 7279 return false; 7280 7281 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 7282 return true; 7283 7284 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 7285 /// Sink a zext or sext into its user blocks if the target type doesn't 7286 /// fit in one register 7287 if (TLI->getTypeAction(CI->getContext(), 7288 TLI->getValueType(*DL, CI->getType())) == 7289 TargetLowering::TypeExpandInteger) { 7290 return SinkCast(CI); 7291 } else { 7292 bool MadeChange = optimizeExt(I); 7293 return MadeChange | optimizeExtUses(I); 7294 } 7295 } 7296 return false; 7297 } 7298 7299 if (auto *Cmp = dyn_cast<CmpInst>(I)) 7300 if (optimizeCmp(Cmp, ModifiedDT)) 7301 return true; 7302 7303 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7304 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7305 bool Modified = optimizeLoadExt(LI); 7306 unsigned AS = LI->getPointerAddressSpace(); 7307 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 7308 return Modified; 7309 } 7310 7311 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 7312 if (splitMergedValStore(*SI, *DL, *TLI)) 7313 return true; 7314 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7315 unsigned AS = SI->getPointerAddressSpace(); 7316 return optimizeMemoryInst(I, SI->getOperand(1), 7317 SI->getOperand(0)->getType(), AS); 7318 } 7319 7320 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 7321 unsigned AS = RMW->getPointerAddressSpace(); 7322 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7323 RMW->getType(), AS); 7324 } 7325 7326 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7327 unsigned AS = CmpX->getPointerAddressSpace(); 7328 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7329 CmpX->getCompareOperand()->getType(), AS); 7330 } 7331 7332 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7333 7334 if (BinOp && (BinOp->getOpcode() == Instruction::And) && EnableAndCmpSinking) 7335 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 7336 7337 // TODO: Move this into the switch on opcode - it handles shifts already. 7338 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7339 BinOp->getOpcode() == Instruction::LShr)) { 7340 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7341 if (CI && TLI->hasExtractBitsInsn()) 7342 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7343 return true; 7344 } 7345 7346 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7347 if (GEPI->hasAllZeroIndices()) { 7348 /// The GEP operand must be a pointer, so must its result -> BitCast 7349 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7350 GEPI->getName(), GEPI); 7351 NC->setDebugLoc(GEPI->getDebugLoc()); 7352 GEPI->replaceAllUsesWith(NC); 7353 GEPI->eraseFromParent(); 7354 ++NumGEPsElim; 7355 optimizeInst(NC, ModifiedDT); 7356 return true; 7357 } 7358 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7359 return true; 7360 } 7361 return false; 7362 } 7363 7364 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 7365 // freeze(icmp a, const)) -> icmp (freeze a), const 7366 // This helps generate efficient conditional jumps. 7367 Instruction *CmpI = nullptr; 7368 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 7369 CmpI = II; 7370 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 7371 CmpI = F->getFastMathFlags().none() ? F : nullptr; 7372 7373 if (CmpI && CmpI->hasOneUse()) { 7374 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 7375 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 7376 isa<ConstantPointerNull>(Op0); 7377 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 7378 isa<ConstantPointerNull>(Op1); 7379 if (Const0 || Const1) { 7380 if (!Const0 || !Const1) { 7381 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI); 7382 F->takeName(FI); 7383 CmpI->setOperand(Const0 ? 1 : 0, F); 7384 } 7385 FI->replaceAllUsesWith(CmpI); 7386 FI->eraseFromParent(); 7387 return true; 7388 } 7389 } 7390 return false; 7391 } 7392 7393 if (tryToSinkFreeOperands(I)) 7394 return true; 7395 7396 switch (I->getOpcode()) { 7397 case Instruction::Shl: 7398 case Instruction::LShr: 7399 case Instruction::AShr: 7400 return optimizeShiftInst(cast<BinaryOperator>(I)); 7401 case Instruction::Call: 7402 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7403 case Instruction::Select: 7404 return optimizeSelectInst(cast<SelectInst>(I)); 7405 case Instruction::ShuffleVector: 7406 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7407 case Instruction::Switch: 7408 return optimizeSwitchInst(cast<SwitchInst>(I)); 7409 case Instruction::ExtractElement: 7410 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7411 } 7412 7413 return false; 7414 } 7415 7416 /// Given an OR instruction, check to see if this is a bitreverse 7417 /// idiom. If so, insert the new intrinsic and return true. 7418 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 7419 const TargetLowering &TLI) { 7420 if (!I.getType()->isIntegerTy() || 7421 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 7422 TLI.getValueType(DL, I.getType(), true))) 7423 return false; 7424 7425 SmallVector<Instruction*, 4> Insts; 7426 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7427 return false; 7428 Instruction *LastInst = Insts.back(); 7429 I.replaceAllUsesWith(LastInst); 7430 RecursivelyDeleteTriviallyDeadInstructions(&I); 7431 return true; 7432 } 7433 7434 // In this pass we look for GEP and cast instructions that are used 7435 // across basic blocks and rewrite them to improve basic-block-at-a-time 7436 // selection. 7437 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 7438 SunkAddrs.clear(); 7439 bool MadeChange = false; 7440 7441 CurInstIterator = BB.begin(); 7442 while (CurInstIterator != BB.end()) { 7443 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 7444 if (ModifiedDT) 7445 return true; 7446 } 7447 7448 bool MadeBitReverse = true; 7449 while (MadeBitReverse) { 7450 MadeBitReverse = false; 7451 for (auto &I : reverse(BB)) { 7452 if (makeBitReverse(I, *DL, *TLI)) { 7453 MadeBitReverse = MadeChange = true; 7454 break; 7455 } 7456 } 7457 } 7458 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7459 7460 return MadeChange; 7461 } 7462 7463 // Some CGP optimizations may move or alter what's computed in a block. Check 7464 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 7465 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 7466 assert(isa<DbgValueInst>(I)); 7467 DbgValueInst &DVI = *cast<DbgValueInst>(I); 7468 7469 // Does this dbg.value refer to a sunk address calculation? 7470 Value *Location = DVI.getVariableLocation(); 7471 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 7472 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 7473 if (SunkAddr) { 7474 // Point dbg.value at locally computed address, which should give the best 7475 // opportunity to be accurately lowered. This update may change the type of 7476 // pointer being referred to; however this makes no difference to debugging 7477 // information, and we can't generate bitcasts that may affect codegen. 7478 DVI.setOperand(0, MetadataAsValue::get(DVI.getContext(), 7479 ValueAsMetadata::get(SunkAddr))); 7480 return true; 7481 } 7482 return false; 7483 } 7484 7485 // A llvm.dbg.value may be using a value before its definition, due to 7486 // optimizations in this pass and others. Scan for such dbg.values, and rescue 7487 // them by moving the dbg.value to immediately after the value definition. 7488 // FIXME: Ideally this should never be necessary, and this has the potential 7489 // to re-order dbg.value intrinsics. 7490 bool CodeGenPrepare::placeDbgValues(Function &F) { 7491 bool MadeChange = false; 7492 DominatorTree DT(F); 7493 7494 for (BasicBlock &BB : F) { 7495 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 7496 Instruction *Insn = &*BI++; 7497 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 7498 if (!DVI) 7499 continue; 7500 7501 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 7502 7503 if (!VI || VI->isTerminator()) 7504 continue; 7505 7506 // If VI is a phi in a block with an EHPad terminator, we can't insert 7507 // after it. 7508 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 7509 continue; 7510 7511 // If the defining instruction dominates the dbg.value, we do not need 7512 // to move the dbg.value. 7513 if (DT.dominates(VI, DVI)) 7514 continue; 7515 7516 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 7517 << *DVI << ' ' << *VI); 7518 DVI->removeFromParent(); 7519 if (isa<PHINode>(VI)) 7520 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 7521 else 7522 DVI->insertAfter(VI); 7523 MadeChange = true; 7524 ++NumDbgValueMoved; 7525 } 7526 } 7527 return MadeChange; 7528 } 7529 7530 /// Scale down both weights to fit into uint32_t. 7531 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 7532 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 7533 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 7534 NewTrue = NewTrue / Scale; 7535 NewFalse = NewFalse / Scale; 7536 } 7537 7538 /// Some targets prefer to split a conditional branch like: 7539 /// \code 7540 /// %0 = icmp ne i32 %a, 0 7541 /// %1 = icmp ne i32 %b, 0 7542 /// %or.cond = or i1 %0, %1 7543 /// br i1 %or.cond, label %TrueBB, label %FalseBB 7544 /// \endcode 7545 /// into multiple branch instructions like: 7546 /// \code 7547 /// bb1: 7548 /// %0 = icmp ne i32 %a, 0 7549 /// br i1 %0, label %TrueBB, label %bb2 7550 /// bb2: 7551 /// %1 = icmp ne i32 %b, 0 7552 /// br i1 %1, label %TrueBB, label %FalseBB 7553 /// \endcode 7554 /// This usually allows instruction selection to do even further optimizations 7555 /// and combine the compare with the branch instruction. Currently this is 7556 /// applied for targets which have "cheap" jump instructions. 7557 /// 7558 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 7559 /// 7560 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 7561 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 7562 return false; 7563 7564 bool MadeChange = false; 7565 for (auto &BB : F) { 7566 // Does this BB end with the following? 7567 // %cond1 = icmp|fcmp|binary instruction ... 7568 // %cond2 = icmp|fcmp|binary instruction ... 7569 // %cond.or = or|and i1 %cond1, cond2 7570 // br i1 %cond.or label %dest1, label %dest2" 7571 BinaryOperator *LogicOp; 7572 BasicBlock *TBB, *FBB; 7573 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 7574 continue; 7575 7576 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 7577 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 7578 continue; 7579 7580 // The merging of mostly empty BB can cause a degenerate branch. 7581 if (TBB == FBB) 7582 continue; 7583 7584 unsigned Opc; 7585 Value *Cond1, *Cond2; 7586 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 7587 m_OneUse(m_Value(Cond2))))) 7588 Opc = Instruction::And; 7589 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 7590 m_OneUse(m_Value(Cond2))))) 7591 Opc = Instruction::Or; 7592 else 7593 continue; 7594 7595 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 7596 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 7597 continue; 7598 7599 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 7600 7601 // Create a new BB. 7602 auto TmpBB = 7603 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 7604 BB.getParent(), BB.getNextNode()); 7605 7606 // Update original basic block by using the first condition directly by the 7607 // branch instruction and removing the no longer needed and/or instruction. 7608 Br1->setCondition(Cond1); 7609 LogicOp->eraseFromParent(); 7610 7611 // Depending on the condition we have to either replace the true or the 7612 // false successor of the original branch instruction. 7613 if (Opc == Instruction::And) 7614 Br1->setSuccessor(0, TmpBB); 7615 else 7616 Br1->setSuccessor(1, TmpBB); 7617 7618 // Fill in the new basic block. 7619 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 7620 if (auto *I = dyn_cast<Instruction>(Cond2)) { 7621 I->removeFromParent(); 7622 I->insertBefore(Br2); 7623 } 7624 7625 // Update PHI nodes in both successors. The original BB needs to be 7626 // replaced in one successor's PHI nodes, because the branch comes now from 7627 // the newly generated BB (NewBB). In the other successor we need to add one 7628 // incoming edge to the PHI nodes, because both branch instructions target 7629 // now the same successor. Depending on the original branch condition 7630 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 7631 // we perform the correct update for the PHI nodes. 7632 // This doesn't change the successor order of the just created branch 7633 // instruction (or any other instruction). 7634 if (Opc == Instruction::Or) 7635 std::swap(TBB, FBB); 7636 7637 // Replace the old BB with the new BB. 7638 TBB->replacePhiUsesWith(&BB, TmpBB); 7639 7640 // Add another incoming edge form the new BB. 7641 for (PHINode &PN : FBB->phis()) { 7642 auto *Val = PN.getIncomingValueForBlock(&BB); 7643 PN.addIncoming(Val, TmpBB); 7644 } 7645 7646 // Update the branch weights (from SelectionDAGBuilder:: 7647 // FindMergedConditions). 7648 if (Opc == Instruction::Or) { 7649 // Codegen X | Y as: 7650 // BB1: 7651 // jmp_if_X TBB 7652 // jmp TmpBB 7653 // TmpBB: 7654 // jmp_if_Y TBB 7655 // jmp FBB 7656 // 7657 7658 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 7659 // The requirement is that 7660 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 7661 // = TrueProb for original BB. 7662 // Assuming the original weights are A and B, one choice is to set BB1's 7663 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 7664 // assumes that 7665 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 7666 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 7667 // TmpBB, but the math is more complicated. 7668 uint64_t TrueWeight, FalseWeight; 7669 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7670 uint64_t NewTrueWeight = TrueWeight; 7671 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 7672 scaleWeights(NewTrueWeight, NewFalseWeight); 7673 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7674 .createBranchWeights(TrueWeight, FalseWeight)); 7675 7676 NewTrueWeight = TrueWeight; 7677 NewFalseWeight = 2 * FalseWeight; 7678 scaleWeights(NewTrueWeight, NewFalseWeight); 7679 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7680 .createBranchWeights(TrueWeight, FalseWeight)); 7681 } 7682 } else { 7683 // Codegen X & Y as: 7684 // BB1: 7685 // jmp_if_X TmpBB 7686 // jmp FBB 7687 // TmpBB: 7688 // jmp_if_Y TBB 7689 // jmp FBB 7690 // 7691 // This requires creation of TmpBB after CurBB. 7692 7693 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 7694 // The requirement is that 7695 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 7696 // = FalseProb for original BB. 7697 // Assuming the original weights are A and B, one choice is to set BB1's 7698 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 7699 // assumes that 7700 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 7701 uint64_t TrueWeight, FalseWeight; 7702 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7703 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 7704 uint64_t NewFalseWeight = FalseWeight; 7705 scaleWeights(NewTrueWeight, NewFalseWeight); 7706 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7707 .createBranchWeights(TrueWeight, FalseWeight)); 7708 7709 NewTrueWeight = 2 * TrueWeight; 7710 NewFalseWeight = FalseWeight; 7711 scaleWeights(NewTrueWeight, NewFalseWeight); 7712 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7713 .createBranchWeights(TrueWeight, FalseWeight)); 7714 } 7715 } 7716 7717 ModifiedDT = true; 7718 MadeChange = true; 7719 7720 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 7721 TmpBB->dump()); 7722 } 7723 return MadeChange; 7724 } 7725